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Abstract

Knowledge acquisition from data bases is a research frontier for both data
base technology and machine learning (ML) techniques, and has seen sustained
research over recent years. It also acts as a link between the two fields, thus
offering a dual benefit. Firstly, since data base technology has already found wide
application in many fields, ML research obviously stands to gain from this greater
exposure and established technological foundation. Secondly, ML techniques can
augment the ability of existing data base systems to represent, acquire, and process
a collection of expertise such as those which form part of the semantics of many
advanced applications (e.g. CAD/CAM). The major contribution of this thesis is
the introduction of an efficient induction algorithm to facilitate the acquisition of

such knowledge from data bases.

There are three typical families of inductive algorithms: the generalisation-
specialisation based AQ11-like family, the decision tree based 1D3-like family, and
the extension matrix based family. A heuristic induction algorithm, HCV, based
on the newly-developed extension matrix approach is described in this thesis. By
dividing the positive examples (PE) of a specific class in a given example set into
intersecting groups and adopting a set of strategies to find a heuristic conjunctive
rule in each group which covers all the group’s positive examples and none of the
negative examples (NE), HCV can find rules in the form of variable-valued logic
for PE against NE in low-order polynomial time. The rules generated in HCV
are shown empirically to be more compact than the rules produced by AQ11-like
algorithms and the decision trees produced by the ID3-like algorithms.

KFEshell2, an intelligent learning data base system, which makes use of the
HCV algorithm and couples ML techniques with data base and knowledge base

technology, is also described.
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Chapter 1

Introduction

1.1 Problem and Domain

Artificial intelligence (Al) is a subject concerned with the problem of how to
make machines perform tasks, like vision, planning and diagnosis, that usually
need human intelligence. Machine learning (ML) research in Al is concerned with
the problem of how machines can acquire the knowledge that might enable them
to perform those tasks. Along with the recognition of the so called knowledge bot-
tleneck problem [Feigenbaum 81] in transforming knowledge from human experts
to knowledge-based systems, ML research has been expanding rapidly in recent

years.

Research on ML has concentrated in the main on inducing rules from un-
ordered sets of examples, especially attribute-based induction, an inductive for-
malism where examples are described in terms of a fixed collection of attributes.
Learning from examples has been seen [Michie 87, Quinlan 88a] as a feasible way
of avoiding the knowledge bottleneck problem. While it is often difficult for an
expert to articulate his expertise explicitly and clearly, it is usually relatively easy
to document case studies of his skill at work. Learning from examples is also a
basis of other learning strategies, such as learning by observation and learning
by discovery. The learning systems in commercial use today are almost exclu-
sively inductive ones. The two most widespread families of learning algorithms
to date are ID3-like family and AQ11-like family, both being attribute-based. In
contrast to the credit assignment and the generate-and-test process in genetic al-

gorithms [Carbonell 90] and numerical activity vectors in connectionist methods



[Dayhoff 90], attribute-based learning has concentrated on symbolic and heuristic
computations. These relate to models that operate at the levels of symbols and
operations that manipulate symbolic expressions with an emphasis on heuristic
rather than computationally explosive optimization strategies. No explicit credit

assignment strategies are necessary in the attribute-based induction paradigm.

However, despite some commercial success with existing learning systems, there
are limitations to both ID3-like and AQ11-like algorithms for both research and
applications. Although a lot of work has been done on the basic ID3 and AQ11
algorithms, as we will analyse in detail in Chapter 2, each of the improvements
has also caused new problems. The motivation of this thesis is to take a little-
known and inadequate approach (the newly-developed extension matrix approach
[Hong 85]), improve it to be competitive with ID3-like and AQ11-like algorithms
and do an empirical study of its properties. The principal contribution of this
thesis is to describe a heuristic induction algorithm, HCV, based on the extension
matrix approach. By dividing the positive examples (PE) of a specific concept
or class in a given example set into intersecting groups and adopting a set of
strategies to find a heuristic conjunctive formula in each group which covers all
the group’s positive examples and none of the negative examples (NE), HCV can
find a covering formula in the form of a variable-valued logic for PE against NE
in low-order polynomial time. A comparison of HCV with the ID3-like algorithms
and the AQ11-like algorithms is also made with examples.

Based on the HCV algorithm, an intelligent learning data base system, KEshell2
[Wu 92¢], which couples ML techniques with data base and knowledge base tech-
nology to implement automatic knowledge acquisition from data bases, is also

developed.



1.2 Outline of the Thesis

This thesis is organised as follows.

Chapter 2 provides a review of the current inductive learning research [Wu
93b]. It first summarizes the three typical families of inductive algorithms, the
AQ11-like, ID3-like and the extension matrix approach based algorithms, with
their main features and recent development being analysed; and then reviews the

main theme of this thesis, knowledge acquisition from data bases.

Chapter 3 and Chapter 4 describe the major research contribution of this thesis.
In Chapter 3, the HCV algorithm [Wu 92a, Wu 93a] based on the extension matrix
approach is designed in detail. It starts with a simple example of attribute-based
learning. The strategies adopted in HCV are described and analysed afterwards
and a comparison between the algorithm with ID3 is made finally. Chapter 4
provides a performance comparison of HCV with other algorithms, such as 1D3,
ID5R, ASSISTANT, AQR and CN2, in terms of rule compactness and accuracy

on the three famous classification problems, the MONK's problems.

Chapter 5 presents an intelligent learning data base system, KFEshell2, which
is an improved version of KFEshell [Wu 90, Wu 91] with the HCV algorithm above
being coupled with data base and knowledge base technology to implement auto-
matic knowledge acquisition from relational data bases. This chapter first gives an
introduction to the techniques developed in KFEshell and then presents KFEshell2

with examples.



1.3 Digest of Conclusions

1. The development of the HCV algorithm provides a reasonable solution to the
NP-hard problem in the extension matrix approach for inductive learning.
As its time is low-order polynomial, HCV can be seen as one of the fastest

learning algorithms to date.

2. The rules in variable-valued logic generated in HCV are shown empirically to
be more compact in the term of the number of conjunctive rules than both
the decision trees or their equivalent decision rules produced by the 1D3-like
algorithms and the rules produced by the AQ11-like algorithms although we

have not yet theoretical proof.

3. An important result which is clearly highlighted by this thesis is that the
goal of creating practical intelligent learning data base systems to implement
automatic knowledge acquisition from data bases is no longer difficult or

elusive.



Chapter 2

Review of Inductive Learning

2.1 Introduction

AQ11 and ID3 are the two most widespread algorithms in machine learning.
They are respectively representatives of the generalisation-specialisation strategy
based and the decision tree method based families of inductive algorithms. How-
ever, a new family of inductive algorithms (AEL et al) based on the extension
matrix approach has been proposed recently. Although this approach is little
known to the machine learning community due to its own inadequacy, we will
find in Chapter 3 and Chapter 4 that it can be improved to compete with other

learning methods.

This chapter first summarizes AQ11, ID3 and the extension matrix approach
and then reviews the main theme of this thesis, knowledge acquisition from data

bases.

2.2 AQl1

2.2.1 Developers and background

AQ11 [Michalski et al. 78] is a “bottom-up” algorithm designed by Michalski et
al. It shares the basic generalisation-specialisation strategy with Winston’s ARCH
program [Winston 70] and Mitchell’s candidate elimination algorithm [Mitchell 77,
Mitchell 78].



Winston’s work on concept learning was performed on his ARCH program. He
described a mechanism which learned concepts by looking for relationships be-
tween semantic network representations of block world configurations. Two pro-
cesses were particularly important in his formulation: 1) finding and exploiting
commonalities among structural descriptions for the same type of configuration;
and 2) finding significant differences between positive examples and negative exam-
ples. The two processes correspond to the present terminology generalisation and
specitalisation. His ARCH program effectively generalised the representation so
as to cover all the positive examples and specialised it so as to exclude all the neg-
ative ones. If examples were presented incrementally, then a new positive example

triggered generalisation and a new negative example triggered specialisation.

In 1977, Mitchell described a method, called “candidate elimination”, which is
similar to Winston’s method in the sense that it is based on generalisation and
specialisation but different in the way in which it explores the solution (or hypoth-
esis) space. In Winston’s ARCH program, hypotheses were generated and tested
one by one, while in Mitchell’s method, hypotheses are systematically deleted from
a representation of the entire hypothesis space as they are found to be unsatisfac-
tory. The novel feature of Mitchell’s method was the way in which it allowed the

hypothesis space to be efficiently represented as a version space.

The aim of Mitchell’s method is to ensure that, at all times, the version space
contains the complete set of satisfactory representations. A simplified descrip-
tion of the candidate elimination algorithm is as follows. A generalised notion,

called the description identification, of the version space method is described in

[Mellish 91].

Procedure Candidate Elimination
31: Initialise the version space.
52: BSet G to be the set of most general representations.
33: Set S to be the set of most specific representations.

S4: For each new training example do



341: If it 1s positive then update S so as to ensure

that it still contains the set of maximally

specific, satisfactory representations.

S542: If it is negative then update G so as to ensure

that it still contains the complete set of maxi-

mally general, satisfactory representations.

S43: If G=S then exit.

Return.

AQ11 was a more sophisticated variant of the basic generalisation-specialisation
method which could be used to generate representations for a classification funec-
tion, i.e., a target mapping with more than one output and more than two input

groups.

2.2.2 Algorithm description

The input of AQ11 took the form of a set of (attribute, value) pairs, which is
why it was claimed to be the earliest attribute-based algorithm. The target output

was the classification for the input. The representations produced for the target



mapping were rules written in an extended logic notation, called variable-valued

logic' [Michalski 75], one rule for each distinct concept?.

Suppose the training set is subdivided into n subsets with each subset contain-

ing the inputs which should evoke a particular output, AQ11 works as follows.

For each subset do

31: Convert all the examples in the subset into positive
examples.

52: Convert all the other examples into negative examples
and use previously generated rules as dummy negative
examples.

S53: Apply generalisation-specialisation and a set of
heuristic strategies [Hong 89a] to the training examples

so produced.

!The variable-valued logic developed by Michalski is a calculus for representing de-
cision problems where decision variables can take on some range of values. Its principal

syntactic entity is a selector with the general form

[X#R)] (2.1)

where X is a variable or attribute, # is a relational operator (such as =, #, <, >, <, and
>), and R, called a reference, is a list of one or more values that X could take on. A
well-formed rule in the logic is similar to a production rule but with selectors as the

basic components of both its left-hand and right-hand sides.

2In PLANT/ds [Michalski et al. 80] where AQ11 has been first successfully applied,

for example, a concept is one of the fifteen soybean diseases.



2.2.3 Application

AQ11 is known for succeeding in automatic construction of the knowledge base
in the expert system PLANT /ds [Michalski et al. 80]. It was the successful appli-
cation of AQ11 on soybean diagnosis that provided the first clear demonstration

of the application potential of ML techniques.

In the soybean experiment, the inputs were descriptions of diseased soybean
plants and the target outputs were the names of diseases. A striking result of the
experiment was the fact that the rules derived by AQ11 actually out-performed
human experts®. The inductively derived rules achieved 100% correct diagnoses

while rules derived from experts achieved only 96.2% correctness.

The experiment showed that the basic generalisation-specialisation method
could be used to generate representations for a classification function. This clear
demonstration of the power of ML techniques helped to establish ML as a major
subfield of AI with serious, practical applications. It demonstrated the way in

which ML could be used to solve realistic problems.

2.2.4 Advantages and disadvantages

The main advantage of AQ11 is that it will make sure that the maximally
general representations do not cover any negative representations. In other words,
it will make sure that the general boundary does not overlap any preciously con-

structed general boundaries. However, there are various problems with AQ11.

First, as we can see from its Step 2, it is only possible when rules are of the

same syntactic form as examples.

Second, the rules produced by AQ11 will vary depending on the order in which
the training subsets are presented. In general, the first rule induced will be more

general than the ones produced later.

3Although AQ11 produced rather large and unwieldy rules while the rules derived

from the experts tended to be much shorter.



Third, the AQ11 algorithm is computationally more expensive in both the cost
of rule production and the complexity of rules produced than ID3, although the
rules produced in AQ11 in the form of variable-valued logic are said to be more

comprehensible [O’Rorke 82].

Finally, another drawback of the AQ11 algorithm is that being bottom-up in
nature it is prone to disruption by noisy data where an example turns up in more

than one subset.

2.3 1ID3

2.3.1 Developer and background
ID3 [Quinlan 79] is a “top-down” algorithm developed by Quinlan out of the
Concept Learning System (CLS) by Hunt [Hunt et al. 66].

CLS is a learning mechanism which accepts a set of training pairs and con-
structs a representation in the form of a decision tree, which is equivalent to a
disjunctive rule. The decision tree is structured so that each leaf node has a target
output associated with it. An arbitrary input is processed by simply applying
the tree to the input (i.e. propagating the input down through the tree). This

produces a leaf node which in turn yields the target output.

Main steps in the CLS algorithm can be described as follows.

S1: T«the whole training set.
Create a T node.

S2: If all examples in T are positive, create a ‘yes’ node
with T as its parent and stop.

S3: If all examples in T are negative, create a ‘no’ node

with T as its parent and stop.

10



S34: Select an attribute X with values vy,...,vy and partition
T into subsets 7i,...,7n according to their values on X.
Create N T; nodes (2 =1,...,N) with T as their parent
and X = v; as the label of the branch from T to T;.

S5: For each 1; do: T « T, and goto S2.

2.3.2 Algorithm description

Quinlan modified the CLS algorithm in two ways.

First, he added a process known as windowing. This was designed to enable

the algorithm to cope with very large training sets.

It the training set is very large then, rather than process the entire set in
one, it may be more efficient to process a small sample first. If the sample is a
representative of the complete set, the decision tree produced will be similar to
the one which we would get by processing the entire training set. Once we have
produced a tentative tree we can then gradually perfect it. To do this we simply
search through the training set looking for any (input, output) pairs which are not
properly represented and each time we find such an exception we modify the tree
appropriately. However, in recent work, windowing does not feature very strongly.
Some evidence [Wirth et al. 88] suggests that windowing typically provides very
little benefit.

Second, and more importantly, Quinlan devised an information theoretic heuris-
tic (the entropy measure) which decided how to split the inputs at each stage of
the tree growing process thus enabling smaller and therefore more efficient decision

trees to be constructed.
1D3 works as follows.

Suppose T' = PE U NE where PE is the set of positive examples and NE
is the set of negative examples, p =|PE| and n =|NFE |. An example e will be
determined to belong to PE with probability p/(p + n) and NE with probability

11



n/(p + n). By employing the information theoretic heuristic, a decision tree is
considered as a source of message, “PE” or “NE”, with the expected information

needed to generate this message, given by

— L2 Jogy L — _Jog,— when 0&n#0
Hpym) = | PO~ longt when p£0&n (2.2

0 otherwise.

If attribute X with value domain {vy, ..., vx} is used for the root of the decision
tree, it will partition 7" into {7}, ..., Ty} where T; contains those examples in T" that
have value v; of X. Let T; contain p; examples of PE and n; of NE. The expected
information required for the subtree for T} is I(p;,n;). The expected information

required for the tree with X as root, FI(.X), is then obtained as weighted average.

nj(pi,ni) (2.3)

where the weight for the ¢-th branch is the proportion of the examples in T' that
belong to T;. The information gained by branching on X, G(X), is therefore

G(X) = I(p,n) — EI(X). (2.4)

ID3 examines all candidate attributes, chooses X to maximize G(X), constructs
the tree, and then uses the same process recursively to construct decision trees for
residual subsets T4, ..., Tn. For each T; (¢ = 1,..., N): if all the examples in T; are
positive, create a ‘yes’ node and halt; if all the examples in T; are negative, create

a ‘no’ node and halt; otherwise select another attribute in the same way as above.

2.3.3 Application

ID3 has been shown [O’Rorke 82] to be computationally cheaper in both the
cost of rule production and the complexity of rules produced than the AQ11 algo-
rithm although the rules produced by AQ11 are said to be more comprehensible
than the decision tree representation used in the ID3-like algorithms. The decision
tree method based family of algorithms, also called divide-and-conquer methods

[Quinlan 91], have been incorporated into a number of commercial systems includ-

ing Ist Class, ACLS, Expert-Fase, ExTran and RuleMaster.
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2.3.4 Advantages and disadvantages

One of the great advantages of the ID3 method is the fact that it does not
require users to specify background knowledge in the form of, say, generalisation
hierarchies?. This means that ID3 can be applied to any syntactically well-formed
training set. This, together with the high performance of the algorithm, has

enabled ID3 to form the central component in several commercial packages.
Like AQ11, ID3 has some limitations:

First, its decision tree representation is less convenient for manipulations than
the variable-valued logic in AQ11 and production rules when a single decision tree
is not sufficient to represent all the expertise of a domain. In this case, a number
of decision trees of the domain need to be converted into decision rules before they
can be used by a rule-based system. Although the conversion of decision trees
to rules is not very difficult if we do not try to simplify the rules produced (see
Section 2.4.6), the rules transformed from decision trees are still too simple to
express things like memberships. Of course, for those domains where a decision
tree is sufficient to express the expertise, we can use the decision tree directly by

designing a non-rule-based problem solver.

Second, once an attribute is selected, all arcs labeled by values that attribute
takes must be expanded. This can make resulting paths longer than those actually
needed because, by the time specific concepts (leaves on the decision tree) are

developed, irrelevant variables may have been introduced.

Third, the number of branches (paths) might still be large since at each arc,

only one value can be labeled.

4Nifiez argued that for this reason, most of the time the ID3 family of algorithms
are neither logical nor understandable to experts and he made some improvements (i.e.,
executing different types of generalisation and reducing the classification cost) on ID3

in his algorithm by means of background knowledge in [Ninez 91].
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Finally, although the information theoretic heuristic can usually generate effi-
cient decision trees, ID3 is still heuristic, which means it is not guaranteed to find
the simplest decision tree that characterizes the given training instances because
the information theoretic heuristic is by no means complete, and suffers from ex-
cessive complexity [Utgofl 89] and is therefore usually incomprehensible to experts
since it needs to examine all candidate attributes to choose one at each non-leaf

node.

2.4 Recent Development of AQ11 and ID3

2.4.1 Introduction

The original AQ11 and ID3 algorithms have been extended in several ways to
improve their various capacities such as noise handling and incremental induction
in their successors such as AQ15, CN2, ID5R and C4. This section gives an account

of these developments.

2.4.2 Noise handling

The Achilles heel of AQI11 is its inability to handle noise. Two approaches
have been tried to overcome this difficulty. The first approach [Michalski et al. 86]
uses a partial match procedure, called TRUNC, to execute rules in AQ15, while
the second approach, CN2 [Clark et al. 89], couples the entropy measure adopted
in ID3 to produce rules in domains where problems of poor description language

and/or noise may be present.

ID3 can be easily adapted to handle noise by virtue of its top-down approach
to decision tree construction. During induction, all possible attribute tests are
considered when growing a leaf in a decision tree and the entropy measure is used
to choose one to place at each node. In noisy environments, we can halt tree growth
when no more significant information gain can be found. ID3’s capacity to handle

noisy data has been studied in [Quinlan 86a] and [Quinlan et al. 86]. Noise handling
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in decision tree method based induction algorithms has been studied independently
as a statistical technique [Breiman et al. 84] and shows a convergence between ML

research in Al and statistics [Gams et al. 91, Gammerman et al. 91].

However, the results produced by noise-tolerant algorithms such as AQ15 and
CN2 are usually not completely consistent with the given training examples, which
means those algorithms cannot guarantee to generate exact rules or decision trees
in noise-free problems. This is not acceptable in cases where we need consistent

rules to correctly classify all known examples.

2.4.3 Incremental learning

There are several common problems in all kinds of inductive learning algo-

rithms:

1. First, when an example set is very large, how can they speed up their learning

processes?

2. Second, when an example set is not a static repository of data, e.g. exam-
ples may be added, deleted, or changed, the induction on the example set
cannot be a one-time process, so how can induction algorithms deal with the

changing examples?

3. Finally, when some inconsistency (e.g. noise) is found in an example set or

a knowledge base just produced, how can they remove it?

One possible way to solve those problems is incremental learning, which means
dividing a large example set into a number of subsets and treating each subset
each time. Although no existing algorithm has found a complete solution to those
problems, a lot of work has been done in this direction. For instance, AQ11
has taken advantage of different subsets. The AQ11 based AQ15 [Hong et al. 86,
Michalski et al. 86], ID4 [Schlimmer et al. 86], ID5R [Utgoff 89] and the windowing
technique in ID3 can be viewed as good examples of research on incremental

learning.
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Generally speaking, incremental induction usually takes more time because it
needs to restructure decision trees or rules when some new examples do not fit the
decision trees or rules developed so far. This is a common trade-off between time

and space in Computer Science.

2.4.4 Constructive learning

Neither AQ11-like nor 1D3-like algorithms need explicit, built-in background
knowledge. That is why they are sometimes called empirical learning methods,
which are different in nature from the knowledge-rich learning methods, such as
AM [Lenat 79] and EURISKO [Lenat 83] developed by Lenat, learning by analogy
(or case-based reasoning [Kolodner 92]), explanation-based learning [DeJong et al.

86, Mitchell et al. 86], and inductive logic programming [Muggleton 90].

However, there is always implicit background knowledge embedded in the for-
mulation of solution spaces and in the representation of examples. When a solu-
tion space turns out to be inadequate, which we often call the imperfect-knowledge
problem, representation modification is needed and the modification process typi-
cally involves searching for useful new descriptive features (constructive induction)
in terms of existing features or attributes. AQ17 [Bloedorn et al. 92, Thrun et al.
91] of the AQ11-like family has been developed to implement iterative construction

of new attributes based on existing ones.

Constructive learning [Michalski 86, Muggleton 88, Matheus 89, Mehra et al.
89, Matheus et al. 89, Bala et al. 92] has become a strong theme in inductive
learning research. One of the difficulties in constructive learning is that the com-
plexity in some cases (such as iterative feature construction) is extreme but there

are situations in which it is a necessary part of learning [Thornton 91].

2.4.5 Decision tree pruning

The basic ID3 algorithm tends to construct exact decision trees. However,

in many real-world problems such as medical diagnosis and image recognition,
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the classification cannot be exact due to noise and/or uncertainty in data. As a
result, a constructed tree by ID3 may not be able to capture the proper relations
in data. Decision tree pruning mechanisms have been designed in many systems
such as ASSISTANT [Cestnik et al. 87] and C4 [Quinlan et al. 87] to prevent this
phenomenon. Once a non-leaf subtree meets a specific criterion (e.g. with an equal

or smaller number of misclassifications), it is replaced by a leaf.

Pruning can usually simplify decision trees. The simplified trees can sometimes
classify more accurately unseen cases in noisy environments [Quinlan 89a]. How-
ever, pruning decision trees is something very similar to the TRUNC technique
adopted in AQ15 and noise handling in other algorithms mentioned in Section
2.4.2. It can simplify decision trees in noisy environments, but not improve the
induction algorithms used to construct the trees. Also, we do not expect it to

work properly in noise-free environments.

2.4.6 Decompiling decision trees into production rules

Decompiling decision trees has been studied in [Corlett 83, Quinlan 87, Quinlan
89a] and implemented in C4 [Quinlan et al. 87] and C4.5 [Quinlan 92]. It contains

three basic steps:

1. Traverse a decision tree to obtain a number of conjunctive rules. Each path
from the root to a leaf in the tree corresponds to a conjunctive rule with the

leaf as its conclusion.

2. Check each condition in each conjunctive rule to see if it can be dropped
without more misclassification than expected on the original training exam-

ples or new test examples.

3. If some conjunctive rules are the same after Step 2, then keep only one of

them.

Transformation of decision trees to production rules provides a way of com-

bining different trees into the same knowledge base for more complicated domain.
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The final production rules produced are sometimes both simpler than the original
decision trees and more accurate when classifying new examples in noisy environ-

ments [Quinlan 87].

However, dropping conditions from the decision-tree-traversal rules in Step 2 is
something like a new induction algorithm which can work on the original example
sets but in a way totally different from the ID3-like algorithms. Therefore, the
time complexity for the transformation is expensive. Also, Appendix A shows an
example set where no conditions can be dropped from the decision-tree-traversal

rules. In this case, Step 2 is redundant.

2.4.7 Binarization of decision trees

Binarization in CART [Breiman et al. 84], ASSISTANT [Cestnik et al. 87] and
NewlID [Boswell 90] groups the attribute values into two subsets. It can usually

produce smaller decision trees.

However, as indicated in [Quinlan 88b], there are two major problems in those
systems. Firstly, binarization could lead to decision trees that are even more un-
intelligible to human experts than the ordinary case due to unrelated attribute
values being grouped together and multiple tests on the same attributes in the bi-
nary decision trees. Secondly, binarization requires a large increase in computation

to properly split the attribute values.

2.4.8 A new selection criterion for decision tree construc-

tion

As ID3 has been found to operate unsatisfactorily when there are attributes
with varying numbers of discrete possible values, [Quinlan 88b] proposes a new
heuristic, called the gain ratio criterion, instead of the entropy measure adopted

in ID3 for selecting tests in decision tree generation.

Here again, in some cases as shown in [Quinlan 88b], the new gain ratio cri-

terion can outperform the entropy measure. However, in many other cases, even
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when there are attributes with varying numbers of discrete possible values, the
new criterion cannot improve the decision trees produced by ID3 at all. Appendix
B shows two decision trees produced by the new gain ratio heuristic and the en-
tropy measure respectively on the same example set in Table B-1. The decision
tree produced by the new criterion (Figure B-2) is a little more complicated than
the decision tree produced by the original ID3 algorithm (Figure B-1): both need
seven conjunctive rules (paths from the root to terminals in each decision tree)
but the new criterion needs one more conjunction. Appendix B is also empirical
proof of ID3’s heuristic rather than complete property: a decision tree made by

hand (Figure B-3) is clearly smaller than the tree produced by ID3.

2.4.9 Structured induction

ID3’s simplicity is largely attributable to the following two restrictions placed

on its application domains [Quinlan 88a:

e The induction is a kind of classification, i.e., the knowledge we are trying
to capture is that of assigning a case to one of a set of mutually exclusive

classes.

e Each case is described in terms of a fixed collection of properties or attributes.
An attribute may have a small set of discrete possible values or might be a

real-valued numerical variable.

This limitation of 1D3 exists also in both the AQ11-like family of algorithms
mentioned above and the extension matrix approach based family of algorithms

below for complex applications.

Although induction offers a considerable short cut in comparison to those meth-
ods of rule generation such as explanation-based learning and inductive logic pro-
gramming which couple both deduction and induction, decision tree method based
algorithms provide large decision trees that are opaque to the user in large prob-

lem domains. Shapiro [1987] has developed the technique of structured induction.
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The basic idea is to split the whole complex problem which might be very large
in size into a number of subproblems by using domain knowledge and apply the
ID3 algorithm to each of the subproblems. Shapiro’s work concerned solutions
to the chess endgames King and Pawn vs. King (black-to-move) and King and
Pawn vs. King and Rock (white-to-move, white pawn on a 7) as trial problems of
measurable complexity. The resultant systems contained humanly understandable

decision trees which were synthesised from expert supplied examples.

Shapiro (personal communication, May 23, 1992) has recently also developed
an industrial-strength code generator (which can be used to remove the need for
any inference engine to run the resulting decision trees or rules generated by ID3)
with target languages being C, COBOL (85 and VSII), and REXX and is deliver-
ing applications into large US corporations with greater than 80% automatically
generated code. The code generator is said to be able to code standard transaction-

based processing by the provision of examples and code-fragments.

The structured induction technique can also be coupled with both the AQ11-
like family of algorithms mentioned above and the extension matrix approach

based family of algorithms below.

2.4.10 Conclusions

In addition to the development mentioned above, other features such as han-
dling real-valued attributes [Paterson et al. 82, Fayyad et al. 92] have also been
studied. However, as we have analysed above, although each of them is useful in
some specific cases, none of the extensions have generally improved AQ11 or 1D3
in noiseless environments. AQ11’s time complexity and rule compactness in noise-
free domains have not been improved at all. The core of the decision tree method
based family of algorithms is still the entropy measure to select an attribute by

examining all candidate attributes during the splitting of examples.
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2.5 The Extension Matrix Approach

2.5.1 Developers and background

The new family of inductive algorithms based on the extension matrix approach
was first developed in the University of Illinois by Hong et al. [Hong 85, Hong et al.
87] and then redesigned by the author [Wu 92a]. In contrast to the generalisation-
specialisation strategy in AQ11-like algorithms and the decision tree method in
ID3-like algorithms, the algorithms of the extension matrix approach based family

take a new kind of matrix, called an extension matriz, as their mathematical basis.

2.5.2 Terminology and notation

Let a be the number of attributes {X7,..., X,} in an example space, n be
INE|=| {er,....,e;} | where e (¢ = 1,...,n) is the i-th negative example and p
be |PE|=| {ef, ..,ef} | where er (i = 1,...,p) is the i-th positive example. Let

NE be expressed by
NEM = {61_7 sy e;}T = (rij)n*a (25)

with the i-th negative example e; (¢ = 1,...,n) being expressed on the i-th row of
matrix NEM and NEM(¢,7) = ryj indicating the value of ¢; on attribute X; is

TZ']‘.

Definition 2.5.1. Let the k-th (k= 1,...,p) positive example be expressed as

ef = (of ..., vl ), the matrix below is the extension matriz of el against NE
EMy = (rij, Jnxa (2.6)
where
* when v]‘z: = NEM;;

Tige =

NEM” when U-J_ 7£ NEM”

Jk

and ‘*” denotes a dead element which cannot be used to distinguish the positive

example from negative examples.
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Definition 2.5.2. In an EMj, a set of n nondead elements r;;, (¢ = 1,...,n,
Ji € {1,...,a}) that come from the n different ¢ rows is called a path in the extension

matrix.

Lemma [Hong 89a]. A path {r;,...,7j,} in an EM} corresponds to a con-

junctive formula
n

L= A\I[Xj #rij.] (2.7)

1=1
which covers ef against NE and vice versa.

Each [Xj, # rj;,] here is a selector in variable-valued logic. If r;;, appears on
m (m € {0,...,n}) rows in the same column j; of an My, we say it or [ X}, # r;j,]

covers m rows of the £ M.

Definition 2.5.3. Matrix FM D = (7;j)n«a with

* when Jky € {ix, . i} EMg, (2,7) = *
Ty =
V£2:1EMik2 (¢,7) = NEM(i,5) otherwise
(2.8)
is called the disjunction matriz of the positive example set {e;»';, s e;»: against

NFE or the disjunction matrix of FM,,, ..., EM;

ke

Definition 2.5.4. In the EM D of a positive example set {ef, ..., el } against

71 Zk

NE, a set of n nondead elements r;;, (¢ = 1,...,n,j; € {1,...,a}) that come from

the n different ¢ rows is also called a path.

Theorem 2.5.1. A path {ryj,,...,7,;.} in the EMD of {¢f,...,el} against

71 Zk

NFE corresponds to a conjunctive formula or cover

L= ;\[in # 7ij.] (2.9)

=1

+ +

which covers all of {e, ..., ¢} } against NE and vice versa.

Proof. If EMD(i,j) = *, there must be a ky € {iy,....,0x} and
EMy,(i,7) = *, which means there is no common nondead element on the (¢, j)-

M, . If there exists no dead

position of all the extension matrixes M, , ..

element on the (¢,7)-position of any EMy, (k2 € {i1,...,11}), it is certain that
EMy,(i,5) = NEM(i,j) according to Definition 2.5.1 and that the NEM(i,j) is a
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common nondead element in £ M,

... WM;, according to Definition 2.5.3. There-
, EM;

s
fore, the common nondead elements in all the extension matrixes EM,,, ...
and the nondead elements in their disjunction matrix EMD correspond to each
other and each common path in FM,, , ..., EM;, formed by the common nondead
elements in every EM,;, (ky = 1,...,k) corresponds to a path in EMD and wvice
versa. According to the above Lemma, the formula which corresponds to a path

+ +

in EMD must be a common formula for all of the {e] ..., e} } against NE.

If there is no path which covers all the n rows in EMD, there is no common
path and therefore no conjunctive formula cover in all the extension matrixes
EM;, ..., EM,;

19 ¢ ke

Definition 2.5.5. If there exists at least one path in the EMD of a positive
_l_

i

+

Ly €

example set {e against N E all the positive examples in the set intersect

and the positive example set is called an intersecting group.

Theorem 2.5.2. For a given set of examples, it PE and NE are persistent,
which means they contain no common examples, there always exists at least one

conjunctive formula covering any positive example ef € PE against NE.

Proof. As PE and NE are persistent, we can always find at least one nondead
element on each row 7 in the EM; of ¢ against NE which discriminates ¢ and
the 2-th negative example e¢; in NEM. Therefore, we can always find at least one

path which corresponds to a conjunctive formula cover in £ Mj.

From Definition 2.5.5 and the proof process of Theorem 2.5.2, we can easily

get the following corollary.

Corollary. For a given set of examples, if PE and NE are persistent, there

always exists at least one conjunctive formula cover for each intersecting example

group.

2.5.3 Optimization problems

There are two striking optimization problems in the extension matrix approach:
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e The minimum formula (MFL) problem: Generating a conjunctive formula
that covers a positive example or an intersecting group of positive examples

against NE and has the minimum number of different conjunctive selectors.

e The minimum cover (MCV) problem: Seeking a cover which covers all posi-
tive examples in PE against NE and has the minimum number of conjunctive

formulae with each conjunctive formula being as short as possible.

As the extension matrix EM, of each positive example €] against NE contains
all such paths that each correspond to a conjunctive formula of ¢ against NE
and an optimal cover of PF against NE is such a minimum set of formulae that

is a logical combination of all the formulae from every EMy, (k = 1,...,p), both

MFL and MCV problems have been proved to be NP-hard [Hong 85].

Two complete algorithms, MFL and MCV, are designed to solve the optimiza-
tion problems MFL and MCV in paper [Wu 92a] with O(nae2®) and
O(n2%22" 4 pa?2%*) time respectively when each attribute domain D;(i = 1,...,a)
satisfies |D;|= 2. When there exists |D;|>2 or D; is a real-valued interval (j €
{1,...,a}), a decomposition method that decomposes D; into several sub-domains

whose bases are each two is also designed there.

2.5.4 Heuristic strategies in AE1

As the nature of the MFL and MCV problems is NP-hard, when an example
set or an attribute space is large the induction process based on the complete
algorithms will become computationally intractable. Two strategies are adopted
in AE1 to find approximate rather than optimal solutions for both MFL and MCV

problems [Hong 85]:

1. Starting search from the columns with the most nondead elements, and

2. Simplifying redundance by deductive inference rules in mathematical logic.
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There are two problems in AE1. First, its first strategy can easily lose optimal
solutions in some cases. Taking the simple extension matrix below as an example,
the first heuristic strategy in AEl cannot produce the optimal formula ( [X; #
LJA[X5 # 1] ) since it will choose the selector [ X, # 0] at first. Second, simplifying
redundance for MFL. and MCV problems is NP-hard. No heuristic strategy for

this process has been reported.

1 * %
0 1
1o *
0 1
1o *
|

2.5.5 Advantages and disadvantages

Generally speaking, the extension matrix approach is still little known due to
its own inadequacy described above. The developer of AE1 has recently developed
an AE5 system [Hong 89b] based on AEL but the basic algorithm remains to be
the same. The only difference between AE5 and AE1 is that some facilities such
as constructive and incremental induction have been added to the AE5 system.
So, the two major problems of AE1 described above also apply to AE5. However,
a detailed comparison between the improved extension matrix approach with 1D3
and AQ11 will be given in Chapter 3 after the HCV algorithm of this family has

been introduced.
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2.6 Learning from Data Bases

2.6.1 Introduction

Although some commercial successes have been found in existing learning sys-
tems, there are limitations on current ML programs. Existing knowledge acquisi-
tion tools (such as [Mowforth 86, Boose et al. 88, Marcus 88, Piatetsky-Shapiro et
al. 91, Frawley et al. 92]) have concentrated on building knowledge bases for ex-
pert systems and designing various learning algorithms. As data base technology
has already found wide application in many fields, ML research obviously stands
to gain from this greater exposure and established technological foundation. Two
fundamental questions arise here. Does data base technology need ML techniques?

If so, how can they be coupled successfully?

2.6.2 Does data base technology need ML?

On one hand, as data bases grow in both number and size, the prospect of
mining them for new, useful knowledge becomes yet more enticing [Quinlan 89b).
On the other hand, despite its commercial success, conventional data base tech-
nology has limitations in many advanced applications (see Appendix D). That is
why integrating Al technology into data base technology, called IDB (intelligent
data base) research, has been identified [Brodie 88] as one of the research fron-
tiers of data base technology and has become a popular research topic all over the
world. There are five directions in the current IDB research: object-oriented data
base systems; deductive data base systems; expert data base systems; intelligent
man-machine interfaces which include the design of meaningful operation inter-
faces and of friendly natural-language interfaces; and recursive query optimization.
The knowledge bases (which contain deductive rules and/or semantic information
such as the conceptual hierarchy among data) in existing IDB systems can only be

built up by hand with known technology. Knowledge acquisition in IDB systems
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has become a central and difficult problem in IDB research. Research in this area

is expected to lead to significant progress in the whole data base field.

2.6.3 How can ML be well coupled with data bases?

Broadly speaking, all kinds of attribute-based learning algorithms can be
adapted to extract knowledge from data bases. It is not difficult to add an in-
duction engine to an existing data base system in an ad hoc way (such as [Cai
et al. 91] and [Ke et al. 91]) to implement rule induction from data bases or de-
sign some specific engines to learn from domain-specific data sets (e.g. [Blum 82]).
However, when we integrate ML techniques into data base systems, we must face

many problems [Quinlan 89b] such as:

e The knowledge learned needs to be tested and/or used back in the integrated
IDB systems. This implies more expressive representations for both data
(e.g. tuples in relational data bases, which represent instances of a problem
domain) and knowledge (e.g. rules in a rule-based system, which can be used
to solve users’ problems in the domain) and deduction/inference mechanisms

are needed.

e More efficient induction algorithms are needed. The algorithms should be
capable of being applied to realistic data bases, e.g. > 10° relational tuples.
This needs the algorithms to be more efficient than existing ones. Expo-
nential or even medium-order polynomial complexity will not be of practical

use.

e Another problem is how to balance ML facilities and other functions in the

IDB systems, particularly when is the proper time to trigger the ML facilities.

The first and the third problems both concern how to couple ML facilities
with data base and knowledge base technology in IDB systems. This is the main
difficulty in developing practical IDB systems. However, the second problem con-

cerning low-order polynomial time induction algorithms is the crucial requirement
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for knowledge acquisition from data bases. Although a lot of work (e.g. [Cai et al.
91], [Ke et al. 91] and various induction algorithms [Bundy et al. 85, McDonald
89, Muggleton 86, Langley 89, Wu 93b]) has been done, the requirements above
for knowledge acquisition from realistic data bases are still far away for existing
systems to reach and no existing systems have been reported to be able to integrate

effectively ML techniques with both data base and knowledge base technology.

In this thesis, we define an integrated learning system, which couples ML
techniques with both data base and knowledge base technology, as an intelligent

learning data base system (ILDB) if it provides mechanisms for

1. translating standard (e.g. relational) data base information into a form suit-

able for use by its induction engines,
2. using induction techniques to extract rules from data bases, and
3. interpreting the rules produced to solve users’ problems.

With an ILDB system, one can, for example, produce a small number of con-
junctive rules for some diseases from a large medical cases of these diseases. The
ILDB system can then use the rules in two different ways: keeping these rules in-
stead of the original cases because the original cases might take up a large space;

and using these rules to diagnose new cases.
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Chapter 3

HCV: A Heuristic Covering Algorithm

3.1 Introduction

L are two important criteria for

Time complexity and description compactness
all induction algorithms. In the extension matrix approach, there are two extreme
strategies, each of which places special emphasis on only one of the two criteria.
The first is finding all possible formulae from each positive example’s extension
matrix first and then taking an exhaustive search among all the formulae to find
the shortest combination which covers all the positive examples. This strategy
can give the shortest description in the form of variable-valued logic but works in
exponential time. The second is simply separating one positive example from NE
by “memorizing” the positive example or all positive examples in PE from NE
by “memorizing” each of the positive examples into a Boolean OR formula. This
trivial heuristic can work quickly but generates an extremely large description. An
OR formula of this kind cannot be used directly to classify new examples which
have not been presented in the training example set while simplifying it into the
shortest form also needs NP-hard time. Therefore, a good learning algorithm
should be able to either avoid the NP-hard time or produce a briefer description
which is at least able to correctly classify the PE and NE in a given training

'As we have defined in Section 2.5.3, the measures for description compactness
adopted in this thesis are 1) the number of conjunctive formulae or rules, and 2) the

number of all conjuncts or selectors in all the conjunctive rules.
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example set. In this chapter, we will show that the HCV algorithm has made

progress on both the time and the description compactness.

For the MFL problem introduced in Section 2.5.3, a heuristic algorithm, HFL,
is specifically designed to find a conjunctive formula for an extension matrix or
a disjunction matrix of an intersecting group of positive examples. Three of the
four strategies adopted in HFL are complete and the fourth one is a reasonable
heuristic. The HCV algorithm is a heuristic induction algorithm designed for
the MCV problem also mentioned in Section 2.5.3. By partitioning the positive
examples (PE) in a given example set into intersecting groups and calling HFL
to find a heuristic conjunctive formula in each group which covers all the positive
examples in the group and none of the negative examples (NE), it can find a
covering formula in the form of variable-valued logic for PE against NE in low-

order polynomial time.

This chapter presents the algorithm in detail. As the AQ11 algorithm has been
shown [O’Rorke 82] to be more expensive in both the cost of rule production and
the complexity of rules produced than the ID3 algorithm and its heuristic strategies
are much more complicated [Hong 89a], we will concentrate the comparison of
our HCV algorithm on the ID3 algorithm in terms of time complexity and rule

compactness in this chapter. More algorithms will be compared with HCV in

Chapter 4.

3.2 An Example of Attribute-based Learning

Given a discrete finite attribute space of a dimensions, £ = Dy x ... x D,, where
each D; (j = 1,...,a) is a finite set of symbolic values or a numerical interval, an
example, or a case, e=(Vi,..., V) is an element of £ means V; € D;. A positive
example is such an example that belongs to a known class which, say, has a specific
name in K. All the other examples which do not belong to the known class can be
called negative examples (NE) at the moment we are considering the known class.

The induction task is to generate a description, say production rules or a decision
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Table 3—1: Cases of Pneumonia and Tuberculosis

ORDER | FEVER | COUGH | X-RAY ESR AUSCULTATION | DISEASE
1 high heavy flack normal bubble-like
2 medium heavy flack normal bubble-like
3 low slight spot normal dry-peep Pneumonia
4 high medium flack normal bubble-like
5 medium slight flack normal bubble-like
6 absent slight strip normal normal
7 high heavy hole fast dry-peep
8 low slight strip normal normal Tuberculosis
9 absent slight spot fast dry-peep
10 low medium flack fast normal

tree, that covers all of the positive examples (PE) against®* NE or classifies them

correctly.

Example 3-1 (from [Hong 89a]). Given sets PE and NE of cases of Pneumonia
and Tuberculosis in Table 3-1. Fach case is described by five attributes: fever
{absent, low, medium, high}, cough {slight, medium, heavy}, shape of focus
shown by X-ray {spot, strip, flack, hole}, erythrocyte sedimentation rate (ESR)
{normal, fast}, and sound of heart by auscultation {normal, dry-peep, bubble-

like}.

Running ID3, we get a decision tree in Figure 3-1° which is equivalent to the

2against’ is used to mean that the description should cover none of the negative

examples.

3Notice that the information gains for FEVER and ESR are the same on the 3rd,
7th, and 9th examples after the AUSCULTATION attribute has been chosen. ID3 has
no specific strategy to deal with this situation, so our implementation simply selects the
attribute which is presented first in the table. Other implementations may use differ-
ent strategies (e.g. always choosing the last attribute presented) and therefore produce
slightly different results. Although in our current example set, choosing the last at-
tribute leads to a slightly better decision tree, we can easily give further examples where

the reverse is the case.
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AUSCULTATION

bubble-like | dry-peep =\ norma

Pneumonia FEVER Tuberculosis

Tuberculosis Tuberculosis Pneumonia

Figure 3—1: A decision tree (by ID3) for Example 3-1

conjunctive decision rules below (the conditions in the bold type style can be
dropped):
if AUSCULTATION=bubble-like then Pneumonia;

if AUSCULTATION=dry-peep & FEVER=absent

then Tuberculosis;
if AUSCULTATION=dry-peep & FEVER=Righ then Tuberculosis;
it AUSCULTATION=dry-peep & FEVER=Ilow then Pneumonia; and

i AUSCULTATION=normal then Tuberculosis.

Running the HCV algorithm in Section 3-4, we can get the following rule in

variable-valued logic for Pneumonia against examples of Tuberculosis:

[ ESR=normal ]

[ AUSCULTATION e{bubble-like, dry-peep} |

[ DISEASE=Pneumonia |].
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A comparison in more detail between ID3 and HCV will be given in

Section 3.6.

3.3 The HFL algorithm

The HFL algorithm is designed to find a heuristic conjunctive formula which
corresponds to a path in an extension matrix or a disjunction matrix when there
is at least one path in the disjunction matrix. As a disjunction matrix can be
processed in the same way as an extension matrix to find its conjunctive formulae,

we will only refer to the extension matrixes below.

3.3.1 Four strategies in HFL

Four strategies are adopted in the HFL algorithm:

1. The fast strategy. In an extension matrix £ M}, = (74 )n«a, if there is no dead
element in a (say j) column, then [X; # r;] where r; = V& r;; is chosen as

the one selector cover for £ M.

For example, selector [AUSCULTATION # {normal,dry — peep}] below

can cover all the five rows in the extension matrix.

absent  slight  strip  * normal
* * hole fast dry — peep
low slight  strip  * normal

absent  slight  spot fast dry — peep

low medium *  fast normal

2. The precedence strategy. When a r;; in column j is the only nondead element
of a row ¢ in an extension matrix KMy = (7i;)n«a, the selector [X; # ry]
where r; = V{_ r;; is called an inevitable selector and thus is chosen with

top precedence.
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For example, [X; # 1] and [X;3 # 1] are two inevitable selectors in the

extension matrix below which we have mentioned in Section 2.5.4.

1 * %
0 1
1o *
0 1
1o *
|

3. The elimination strategy. When each appearance of some nondead element
in the ji-th column of some row is always coupled with another nondead
element in the jy-th column of the same row in an extension matrix KM, =
(rij )sas [Xj, # 15, ] where rj, = Vi_ 7 is called an eliminable selector and

thus eliminated by selector [X;, # r;,| where rj, = Vi rj,.

For example, attribute X; can be eliminated by attribute X3 below.

1 * %
0 1
1 01
0 1
1 01
|

4. The least-frequency strategy. When all inevitable selectors have been chosen
and all eliminable selectors have been excluded but all the selectors chosen
have not yet covered all the rows in an extension matrix, exclude a least-
frequency selector which has least nondead elements in its corresponding

column in the extension matrix.

For example, attribute X; in the following extension matrix can be elimi-

nated and there still exists a path.
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I * 1
0 1
1 o *
0 1
1 o *
0 1

Theorem 3.1. All of the fast, precedence and elimination strategies are com-
plete, which means if there exists one or more shortest conjunctive formulae in an

extension matrix, they will not lose it.

Proof. a) For an extension matrix £ My, = (r;;)nxq, the largest and the possible
least numbers of different selectors in a path are n and 1 respectively. When n
selectors, whether the same or different, from n different rows but the same column
J form a path, they can be integrated into one, [X; # Vi ;r;]. So the selector

found by the fast strategy must be an optimal formula of the extension matrix.

b) When r;; in column j is the only nondead element of some row ¢ in an
extension matrix, the selector [X; # r;;] needs to appear or to be integrated into a
complex selector like [X; # {...,7ij,...}] in any path of the extension matrix. Pick-
ing up such kinds of selectors with top precedence will not violate the correctness

of any path which is built but will speed up the construction process.

¢) For any path {...,r;,...} in an extension matrix, we can simply replace

r;, with r;, and {...,r;,...} is also a path in the same extension matrix when
ry = Vi iriy,, v, = Vi ry,, and each appearance of some nondead element in
the ji-th column of some row is always coupled with another nondead element
in the j-th column of the same row. If there is another r;, in the path whose
corresponding selector [ X, # r;,] is also eliminable by [ X, # r;,], we can simplify
the path by replacing r;, and r;, with r;,. Therefore, the elimination strategy is

complete for constructing optimal covers.
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Theorem 3.2. If there exists at least one shorter path which has less than n
different conjunctive selectors in an extension matrix, the solution generated by

the least-frequency strategy must be the shorter one.

Proof. When all inevitable selectors have been chosen and all eliminable se-
lectors have been excluded but all the selectors chosen have not yet covered all
the rows in an extension matrix, there must exist at least one redundant selector
in the extension matrix. For example, suppose there are k (k < n) rows in the
extension matrix which have not been covered and all the nondead elements on

those rows are r;,j, ., as no more inevitable selector

ey Tirgiygy s ooos Vingig10 -+ Tingiy sy
can be found at this moment, each row must contains at least two nondead ele-
ments. Therefore, crossing out any column can guarantee that each of those rows
will still contain at least one nondead element, which means there is still at least
one path left in the extension matrix. We can thus get the correctness proof of the
fourth strategy above. As different selectors from the same column in an extension
matrix can be integrated into one, excluding a column means there are at most

n — 1 selectors in the paths left. So the paths after this strategy must be shorter

than the trivial ones.

Although the column with least nondead elements is not necessarily removed
from all the optimal paths, the removal looks reasonable as choosing a column with
fewer nondead elements means more columns thus more selectors may be involved
in connecting a path. So the fourth strategy is a sensible heuristic. However,
it is still heuristic. Firstly, this strategy is sensitive to the order of attributes
in given examples. When we have two attributes with the same least nondead
elements at some stage, different implementations of this strategy could produce
different results. For the extension matrix below, excluding the second or the
third attribute will produce different formulae (X5 # 1 A Xy # 0 A X5 # 0 and
X1 # 0A Xy # 1 respectively) to cover the same extension matrix, although the
numbers of nondead elements in the second and third columns are the same: three.
However, recall that the order of attributes also matters in the ID3 algorithm (see

Section 3.2, footnote 3).
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01 * 00
ko1 1 * %
0 * 1 * *
1 ko *
0 * 100
0 * * 00
0 * * * 0

Secondly, removing the least-frequency selector could also lose optimal paths.
Taking the following extension matrix as an example, X7 # 0 A X3 # 0 is its
optimal formula. Removing the third column will cause the final formula to be

01 0 *
01 * 1
N
* 1 0 *
0 * * 1
01 * 1

These two problems also apply in a similar way to the first strategy of AE1
described in Section 2.5.4. However, as compared to AE1, we have adopted three

complete strategies in HFL.

3.3.2 Algorithm description

In the HFL algorithm below, Function RESET1 is designed to find the selector
[X; # rj] where r; = V& r;; when the j-th column has been chosen by either
the fast strategy or the precedence strategy, Function RESET2 is designed to
cross out the nondead elements on uncovered rows in column j when the j-th
column has been found eliminable by either the elimination strategy or the least-

frequency strategy, and words between /* and */ are explanatory notes. An EM

37



in the algorithm can be either an extension matrix (EMj) or a disjunction matrix

(EMD) in which there is at least one path.

Procedure HFL(EM; Hf1)
integer n, a
matrix EM(n, a), D(a), CH(a), C(n)
set Hf1
S0: D«0 /* D marks the elimination status of each column. */
CH«—0 /* CH marks the chosing status of each column. */
C«0 /* C marks the covering status of each row. */
Flag« ‘F’ /* Flag=‘T"indicates that EM has been
fully covered. */
Hfl— ¢ /* initialisation */
Si: /* the fast strategy */
11
while i<a & Flag=‘F’ do
{ j«1, Flagl« ‘F’

/* During the test of each column i in EM, Flagl
=“T" means some * element in the column has been
found and thus the fast strategy fails there. */

while j<n & Flagl=‘F’ do

{ if C€(j)=1 then goto L1
if EM(i,j)=* then Flagl« ‘T’

Li: jej+1
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if j=n+1 & Flagl=‘F’ then
{ RESET1(i,Set)

Hf1+Hf1A[X#Set]

}

S2: /* the precedence strategy */
if Flag=‘F’ then
{ Flag2« ‘F’
/* Flag2="T" indicates that at least one inevitable
selector has been chosen during this step. */
for i=1 to n do
if C(1)=0 and only EM(i,j) is a nondead
element on the :-th row
then { RESET1(j,Set), Flag2« ‘T’
Hf1—Hf1A [X; #Set] }
next 1
}
if Flag2=‘T’ then goto S1
S3: /* the eliminalion strategy */
if Flag=‘F’ then
{ Flag3« ‘F’
/* Flag3=“T"indicates that at least one eliminable
selector has been excluded during this step. */

for i=1 to a do
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if CH(i)=0 & D(i)=0 then
{ j«1, Flag32+ ‘F’
/* Flag32="T" means column i has been
eliminated. */
while j<a & Flag32=‘F’ do
if CH(j)=0 & D(j)=0 & i#j then
{ k=1, Flag33« ‘F’

/* Flag33="T" means column i can
not be eliminated by column j with
the elimination strategy. */

while k<n & Flag33=‘F’ do
if EM(i,k)# * & EM(j,k)=x
then Flag33« ‘T’
else k«k+1
if k=n+1 & Flag33=‘F’
then { D(i)«1,RESET2(1)
Flag32+ ‘T’

Flag3« ‘T’ }

else j+«—j+1

L2: next 1

}

if Flag3=‘T’ then goto S2
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S4: /* the least-frequency strategy */
if Flag=‘F’ then
{ for i=1 to a do
t(i)«0
/* t(i) counts the nondead elements on
uncovered rows in column i. */
if CH(i)=0 & D(i)=0 then
for j=1 to n do
if C(§)=0 & EM(J,i)
then t(i)«—t(i)+1
next j
next 1
11
while i<a & t(i)=0 do i«i+1
for j=i+l to a do
if t(§)<t(i) & t(j)#0 then i+]
next j
D(1)«1,RESET2(i)

goto 52

Function RESET1(j,Set)
Set— ¢
for i=1 to n do

if C(i)=0 & EM(i,j)#*
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then { Set«SetU{EM(i,j)}
EM(i,j)« %, C(1)«1 }
next 1
CH(j)«1
if all of C(k)=1 (k=1,...,n) then Flag« ‘T’
/* This test is for those cases where after one selector
has been chosen, EM has been fully covered. */

Return(Set)

Function RESET2(j)
for i=1 to n do
if EM(i,j)# * then EM(i,j)«
next 1

Return

Return(Hf1)

Steps S1, S2, S3 and S4 implement the fast, precedence, elimination and least-
frequency strategies introduced in Section 3.3.1. Once the fast strategy finds a
column which has nondead elements on all the uncovered rows in an EM, the EM
can be fully covered and thus the H fl is ready. After one or more inevitable
selectors have been chosen in Step 52, HFL will come back to Step S1 to test the
fast strategy on uncovered rows. Every time a selector has been chosen by either
the fast strategy or the precedence strategy, there are two possible cases: all the
selectors which have been chosen up till now either have or have not yet covered all
the rows in the EM. Those two cases are tested in Function RESET1. After one
or more columns have been crossed out by the elimination strategy in Step S3, the
precedence strategy and the fast strategy will be tested again. Only in those cases
when all inevitable selectors have been chosen and all eliminable selectors have

been excluded but all the selectors chosen have not yet covered all the rows in an
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extension matrix, the least-frequency strategy is used and it can always cross out a
column which has not been crossed out before. After Step 54, HFL comes back to
test the precedence strategy. Since excluding a column by either the elimination
strategy in Step S3 or the least-frequency strategy in Step 4 does not cover any
uncovered rows, the fast strategy cannot be applicable immediately after these two
strategies. This is why the control in HFL comes back to Step 2 instead of Step 1
at the end of both Step 3 and Step 4. Each time the control comes back to Step
S2 or Step S1, there is at least one column or selector has been processed, either
chosen or crossed out. There are a columns in an EM in total, therefore at most

a loops in HFL are needed.

Step SO requires n + 2a + 2 operations. The time complexity for Steps S1, S2,
S3 and S4 is O(na), O(na), O(na?) and O(na) respectively. In the worst case, a
loops are needed among Steps S1, S2, S3 and S4 to complete the assignment of
Flag « “T’. The time complexity for the whole algorithm is thus

O(n+2a+ 2+ a(na + na + na® + na)) ~ O(na?’).

When the EM in the HFL algorithm is the extension matrix £/M}, of a positive

example ¢f = (vf,...,v} ) against NE, a selector [X; # r;] in the H f1 is equivalent

Y Yag

to [X; = v]':] with existing examples in a given example set. Meanwhile, if the

EM is the disjunction matrix KM D of an intersecting group of positive examples

+ +

el ...,el against NE, a selector [X; # r;] is equivalent to [X; € \/QFIUZk | in the
2

_|_

context of existing examples. When X is a numerical attribute, \/§2_1v]. can be
=1V,

further grouped into a number of intervals none of which will contain any N FEM;;

(1 =1,...,n) (see Section 3.5.5).

From Theorems 3.1 and 3.2, we can easily get the theorem below (Theorem

3.3).

Theorem 3.3. If there exists at least one path in an EM, the HFL algorithm
can produce a conjunctive formula which corresponds to a path in the EM. The
number of selectors in H fI produced by HFL is always smaller than n so long as

there is at least one path with less than n different elements in the EM.
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3.3.3 An example run of HFL

For the example set given in Table 3-1, there are five positive examples for

Pneumonia. PE = {ef,ef,ed.ef, el }, NE = {eg,e7,¢e5,¢5,¢10}, and

absent  slight  strip normal  normal
high heavy  hole fast  dry — peep

NEM = low slight  strip mnormal  normal

absent  slight  spot fast  dry — peep

low medium flack  fast normal

The disjunction matrix EM D of {ef,eT,e3,ef, ed} against NE is

*

absent * strip normal

* * hole fast *

EMD = * * strip * normal
absent * *  fast *
< %

fast normal

by Definition 2.5.3.

Running HFL on KM D, attribute F'EV E R is eliminated by the least-frequency
strategy during the first loop of Steps S1, S2, S3 and S4 and FM D becomes

X strip Y normal
* % hole fast *
X strip Y normal
£ kK fogt <
ox % fast normal

In the second loop, [FSR # fast] which is equivalent to [ESR = normal] is
chosen as an inevitable selector on the fourth row by the precedence strategy and

it covers rows 2, 4 and 5. EM D now becomes
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X strip * normal
Kook ok % <
X strip * normal
Kook ok % <
Kook ok % <

In the third loop, attribute X —ray is eliminated by attribute AUSCULTATION
by the elimination strategy and KM D becomes

* Ok * K pormal
X % ok ok *
* Ok * K pormal
X % ok ok *
X % ok ok *

Selector [AUSCULTATION  #  normal] which is equivalent to
[AUSCULTATION € {bubble — like,dry — peep}] is finally chosen by the fast

strategy to cover the remaining rows 1 and 3.

Therefore, the H fl for EM D generated by the HFL algorithm is
[ESR = normal] N [AUSCULTATION € {bubble — like, dry — peep}]

which covers all the five examples of Pneumonia against examples of Tuberculosis.
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3.4 The HCV Algorithm

3.4.1 Algorithm description

The basic idea for the HCV algorithm is to partition PE of a specific class into
P (p' < p) intersecting groups first; call the heuristic Algorithm HFL to find a
H f1 for each intersecting group; then give the covering formula by logically ORing
all the H fI’s finally.

The GEM algorithm is designed to generate the disjunction matrix EM D of
el ...,el against NE from EM,,, ..., EM;, according to Definition 2.5.3. When

119 %00 1k
there exists a dead element on the (i,7)-position of any of EM,,...,EM,,,
EMD(i,j) = *. Otherwise, EMD(z,j) = NEM(3,j) = EM;, (ks € {1,..., k}).

Procedure GEM({EM;,,..., EM; }; EMD)
integer n, a, k
matrix EM; (n,a), ..., EM; (n,a), EMD(n,a)
for j;=1 to n do
for jy=1 to a do
if Jkee{l, ..., k}: EM; (§1, j2)=x
then EM(jq1, j2)«*
else EM(j1, jo)«<EM;, (1, J2)
next j,
next j;

Return(EM)

The time complexity for Algorithm GEM is O(nak) with k being the number

of positive examples.

46



Algorithm IDEN below is designed to test whether there is a path in a disjunc-
tion matrix EMD with the result being returned by logical variable Flag. It tests
each row of EMD to ascertain whether there is at least one nondead element on
the row. If each row has at least one nondead element, then there exists at least

one path in EMD and thus Flag is assigned to ‘T’.

Procedure IDEN(EMD; Flag)
integer n, a
matrix EMD(n, a)
logical Flag
i1, Flag2« ‘F’
while i<n & Flag2=‘F’ do
{ j«1, Flag3« ‘F’
while j<a & Flag3=‘F’ do
if EMD(i, j)# * then Flag3« ‘T’
else j+«—j+1
if Flag3« ‘F’ then Flag2« ‘T’
else 11+l
}
if Flag2=‘F’ then Flag« ‘T’
else Flag«— ‘F’

Return(Flag)

In the worst case, Algorithm IDEN needs to test each element in EMD. The
time complexity for Algorithm IDEN is O(na).

Based on the GEM and IDEN algorithms above and the HFL algorithm in
Section 3.3, the HCV algorithm is designed as follows where GEM and IDEN are
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used to partition PE into intersecting groups and HFL is used to find a conjunctive

formula for each intersecting group.
Procedure HCV(EMy, ..., EM,; Hcv)
integer n, a, p
matrix EM;(n,a), ..., EM,(n,a), D(p)
set Hcv
Si: D«0 /* D(j)=1 (j=1, ..., p) indicates that
EM; has been put into an intersecting group. */
Hcve—¢ /* initialisation */
32: for i=1 to p do
if D(i)=0 then
{ EM—EN,
for j=i+l1l to p do
if D(j)=0 then
{ call GEM({EM, EM;}; EM2)
call IDEN(EM2; Flag)
if Flag=‘T’ then

{ EM—EM2, D(j)«1 }

next j
call HFL(EM; Hf1)

Hcv «—HcvVHf1

next 1i

Return(Hev)
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Step S1 in the algorithm above requires p 4+ 1 operations. The worst case

operation for Step S2 is

O(Zp:(na + Zp: (2na 4+ na +na+1) + (na?’) +1))

=1 7=1+1

~ O(pna® + p*na).
So the time complexity for Algorithm HCV is O(pna® + p*na).

Theorem 3.4. The formula Hcv generated by Algorithm HCV covers all the

positive examples against negative examples in a given example set.

Proof. Fach H [ in the Hev produced by Algorithm HCV covers a group of
positive examples against NE. So no negative example in NE will be covered by
any H fl. Neither will the Hcv cover any of the negative examples in NE (because
it is an OR combination of all the H fls). As all positive examples have been

included in the intersecting groups in Step S2, each positive example is covered

by a H fl in the Hewv.

Algorithm HCV is a bidirectional algorithm. It first groups the positive ex-
ample set in a top—down way and then calls algorithm HFL, which works in a
bottom-up way. Its time is low-order polynomial as opposed to exponential in
the first strategy mentioned in the introduction of this chapter. From Theorems
3.1 and 3.2 and the Corollary in Section 2.5.2, both Algorithm HFL and Algo-
rithm HCV usually produce shorter formulae than the trivial strategy (the second
strategy) also mentioned in the introduction of this chapter so long as the shorter

formulae exist.

Theorem 3.5. If there exists at least one conjunctive cover in a given training

example set, the formula produced by HCV must be a conjunctive one.

Proof. If there exists at least one conjunctive cover in a given training example
set, there must exist at least one path in the disjunction matrix of all the positive
examples against the negative examples in the given example set according to
Theorem 2.5.1. Therefore, all the positive examples will be put into an intersecting
group in Step 2 of HCV and a conjunctive H fI will be produced by calling HFL

as the solution.
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However, the intersecting groups partitioned by HCV and therefore the results
returned by the HFL algorithm (described in Section 3.3) on each intersecting
group or partition are sensitive to the order of examples in a given example set. For
a given partition, the order of positive examples does not affect their disjunction
matrix and therefore does not change the result of HFL. When changing the order
of two negative examples, just two rows are swaped in the disjunction matrix of
the positive examples in the partition. As all the four strategies in HFL only relate
to the number of nondead elements in each column, the order of negative examples
cannot affect the results of HFL or, therefore of HCV. So, only when the order of
positive examples changes can the result produced by HCV become different. We

will demonstrate this in Section 3.4.2.

3.4.2 Two example runs of HCV

Example 3-2. Table 3-2 (which is the same as Table A-1 in Appendix A)
shows a set of training examples for deciding whether to play golf on a Saturday

afternoon.

Considering PE (of Play) and NE (of Don’t Play) in Table 3-2, let us observe
the results generated by the HCV algorithm.

For the given example set, NE = {e],e5,e7, ¢35, €615,¢14f, PE =

+ o+ ottt ot ot
{637647 6576676976107611} and

ratn  hot high  true
ratn  cool normal true
sunny hot normal true
NEM = | sunny mild high  true
sunny  hot high  false

sunny cool mnormal false

ratn  meld normal irue

The first intersecting group found in Step S2 by starting with the first positive
example (e3) and calling the GEM and IDEN algorithms is {ed, e, el } and the
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Table 3—2: Cases of Play and Don’t Play (adapted from [Quinlan 86b])

ORDFER | OUTLOOK | TEMPERATURE | HUMIDITY | WINDY | DECISION
1 rain hot high true Don’t Play
2 rain cool normal true Don’t Play
3 overcast mild high true Play
4 overcast mild normal false Play
5 rain hot high false Play
6 overcast cool normal true Play
7 sunny hot normal true Don’t Play
8 sunny mild high true Don’t Play
9 sunny mild normal false Play
10 rain cool normal false Play
11 rain hot high false Play
12 sunny hot high false Don’t Play
13 sunny cool normal false Don’t Play
14 rain mild normal true Don’t Play
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disjunction matrix KM Dy against NE is

EMD, =

Calling HFL, [OUTLOOK

rain  hot
rain *

sunny hot
sunny

sunny hot

sunny

rain

# {rain,sunny}] which is equivalent to

[OUTLOOK = overcast] is chosen by the fast strategy and the first H f1 is thus

[OUTLOOK = overcast].

The second intersecting group found in Step S2 by starting with the third

positive example (e}) and calling the GEM and IDEN algorithms is {eF, efy, ef;}

and the disjunction matrix KM D, is

EMD, =

< <
< <
sunny  *

sunny mild

sunny  *
sunny  *
* mald

true
true
true

true

true

Running HFL, [WIN DY # true] and [OUT LOOK # sunny] which are equiv-
alent to [WINDY = false] and [OUTLOOK = rain] respectively are both cho-

sen as inevitable selectors and they cover all of the five rows in KM D,. Therefore,

the second H fl is

[WINDY = false] A [OUTLOOK = rain].
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The third intersecting group is {ed } and the disjunction matrix £M D5 is

ratn  hot high true

rain cool ¥ true

* hot *  true

EMDs = * * high true
*  hot high ¥
* cool * *

rain ¥ o true

Running HFL, [TEMPERATURE # {hot,cool}] is first chosen as an in-
evitable selector and it covers rows 1, 2, 3, 5 and 6, attributes OUT LOOK and
HUMIDITY are then excluded by attribute WINDY and [WINDY # true] is
finally chosen as an inevitable selector on the fourth row after OUT LOOK and
HUMIDITY have been crossed out. The equivalent H fl for this intersecting

group 1s

[TEMPERATURE = mild] A [WINDY = false].

Therefore,

Hev = [OUTLOOK = overcast] V

WINDY = false] N [OUTLOOK = rain] V

[TEMPERATURE = mild] A [WINDY = false]

whose equivalent rule in variable-valued logic is:
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[ OUTLOOK=overcast |

V
[ WINDY=false ]
[ OUTLOOK=rain ]
V
[ TEMPERATURE=mild ]
[ WINDY=false ]
~

[ DECISION=Play ] .

Meanwhile, the decision tree generated by ID3 and its equivalent rules are

given in Appendix A.

For the example set shown in Table 3-2, there are 14!=87,178,290,000 possible
orders for the 14 examples. When we consider the intersecting groups of positive
examples of Play against examples of Don’t Play, the order of negative examples
does not change the partitioning of positive examples. So there are 7!=5040 pos-
sible partitionings for the 7 positive examples. Theoretically, once the order of
positive examples changes, the partitions and therefore the result produced by
HCV could be different. However, over 500 different orders of the 7 positive ex-
amples have been tested and 2 different partitionings have been found, but the

results produced by HCV are the same.

Example 3-3. Table 3-3 shows two different orders of the same eight examples

in an artificial example set, with which HCV produces different results.

The results produced by HCV for the T class are given below:
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For Table 3-3 (a): For Table 3-3 (b):

[B=[1]]
[ B=[1]] [C=[1]]
[ A=[0] ] \
\ [A=[1]]
[A=[1]] [C=[1]]
[ C=[1]] \
— [ A=[0] ]
The T class. [ C=]0] ]
The F class.

However, the order of examples does not effect the decision trees generated by
ID3. Figure 3-2 shows the decision tree generated by 1D3 for both Table 3-3 (a)

and (b). The decision-tree-traversal rules are as follows:

B=1 & A=0 B=0 & A=0
V. B=1& A=1& C=1 V. B=0& A=1 & C=o
V. B=0& A=1 & C=1 V. B=1& A=1 & (=0
- -

The T class. The F class.

3.4.3 A comparison between HCV and AE1l

As we mentioned in Section 2.5.4, the extension matrix approach was first
introduced in AE1 in 1985. To the best of the author’s knowledge, the approach
itself has not yet been improved at all in anywhere since then except in the author’s
HCV algorithm. The developer of AE1 has recently developed an AE5 system
[Hong 89b] based on AEl but the basic algorithm remains to be the same. The
only difference between AE5 and AE1 is that some facilities such as constructive
and incremental induction have been added to the AE5 system. So, the two major

problems of AE1 described in Section 2.5.4 also apply to AE5.
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Table 3—3: Cases in different orders

(a)

ORDER | A | B| C| CLASS

1 0101 F
2 011710

3 0]1]1 T
4 117010 F
3 1101 T
6 11110 F
7 11171 T

ORDER | A | B| C| CLASS
0

1 0 1 F
2 1111

3 0]1]1 T
4 117010 F
3 1101 T
6 11110 F
7 011710 T
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0 1
A A
1 0 1
¢ T
1 0 1
T F T

Figure 3—-2: A decision tree (by ID3) for Table 3-3
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Although HCV is based on the extension matrix approach developed in AE1,
there are two radical improvements on the approach itself in HCV as well as those

implementation aspects described in Section 3.5.

e The use of disjunction matrixes.

Although disjunction matrixes are also defined in [Hong 85], AE1 does not
produce and use them in the partitioning of positive examples. AE1 still needs to
produce all extension matrixes of positive examples against negative examples (by
remembering only dead elements in each extension matrix [Hong 89b]), while in
HCV, as we will see in Section 3.5.6, we need at most two extension matrixes at
each time stage. By using disjunction matrixes, HCV can both save a lot of data
space and provide a natural way to reduce its rules’ complexity. As we have seen
from Theorem 3.5, if there exists at least one conjunctive cover in a given training
example set, the formula produced by HCV must be a conjunctive one. This is by

no means guaranteed in AEL.

e Three complete strategies in HFL.

HCYV has provided a reasonable solution to both the MFL and the MCV prob-
lems described in Section 2.5, which are NP-hard in nature. So the second disad-
vantage of AE1 has disappeared in HCV. Although the first disadvantage of AE1
still exists in HCV’s least-frequency strategy, we have provided three complete
strategies at the same time. For those example sets where the three strategies are
enough to produce the final results, we can guarantee that the results are optimal.
According to all the experiments the author has carried out including those men-
tioned in this thesis, the three strategies are always useful even when they are not

enough to produce an optimal result.
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3.5 Some Related Problems in Implementation

3.5.1 Introduction

The HCV algorithm has been implemented on both PC machines (see Chapter
5) and Sun workstations. The term “HCV (Version 1.0)” in the following account
indicates the current implementation (Version 1.0, [Wu 92d]) of the HCV algo-
rithm in SICStus Prolog which runs on SUN3 and SPARC workstations. In this
implementation, HCV (Version 1.0) can classify more than two classes of exam-
ples and produce rules for each class of pre-classified examples by using part of the
AQI11 technique outlined in Section 2.2 (i.e. assuming that examples not classified

as positive are negative). For the example set in Appendix B, the rules produced

by HCV (Version 1.0) are shown below:

[ X2=[b] ]

% [ X2=[c,a] ]
[ X1=[0] ] [ X1=[1]]
[ X2=[a] ] Y

v [ X2=[c] ]
[ X1=[0] ] [ X4=[1]]
[ X4=[0] ] —

— The F class.
The T class.

The HCV (Version 1.0) program also allows the user to evaluate the rules” accuracy

in terms of a set of pre-classified test examples (see Chapter 4).

3.5.2 Don’t Cares in HCV

The # symbol in HCV (Version 1.0), like in many other induction programs, has
a specific meaning when representing attribute values: Dont Cares. For instance,
the example set in Appendix B can be equivalently expressed as Table 3-4 in HCV
(Version 1.0).
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Table 3—4: Cases of T and F

X2 | X3 | X4 | CLASS

ORDER | X1

10
11
12
13

14
15
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A Don’t Care value of an attribute in an example is used to indicate that the
value of the attribute is irrelevant to the classification of the example. An example
with Don’t Care values can always be converted into a number of equivalent exam-
ples which have no Don’t Cares. Therefore, a Don’t Care attribute is universally

quantified and Don’t Care values can in practice be used to compress data spaces.

In the extension matrix approach, a dead element (*) in an extension matrix
indicates that a positive example and a negative example have the same attribute
value and therefore the attribute value cannot be used to distinguish the positive
example from the negative example. When a negative example (say the i-th)
has a Dont Care value on an attribute (say the j-th), the r;; in every positive
example’s extension matrix must be % because the negative example can take
every positive example’s j-th attribute value. When a positive example has a Don’t
Care value on its j-th attribute, all the values on the j-th column of the positive
example’s extension matrix must be * according to the meanings of Dont Care

values and .

3.5.3 Noise handling in HCV

Strictly speaking, the HCV algorithm as it stands does not process noisy data.
Unknowns, which are different from the Don’t Care values described above and
usually used to represent uncertainty or missing attribute values, are not permitted
in either the HCV algorithm or the HCV (Version 1.0) program. A 7 value is just
a common value like a, ’X0.5’ or 0.24 in HCV (Version 1.0). It has no specific
meaning here. However, it is not difficult to add a screening engine to remove

noise from an example set before induction takes place.

When an example turns up in more than one class in an example set, we
say that there is a contradiction in the example set. The HCV (Version 1.0)
program checks for contradictions when a training example set is input. Once
a contradiction is found, the corresponding example will be omitted from both
induction and test. For instance, even if we put two more examples as below in

Table 3-4, the results produced by HCV (Version 1.0) will not change at all.
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ORDER | X1 | X2 | X3 | X4 | CLASS
16 0 C a 1 F
17 0 C a 1 T

When an example turns up more than once in the same class in an example
set, we say that there is a repetition in the example set. Repetitions are silently
processed in HCV (Version 1.0): each example is counted in only once during

induction even if it appears many times.

3.5.4 The default rule

In the HCV (Version 1.0) program, we have adopted the specific engine in CN2
[Clark et al. 89] for defining default rules which have no reference to attribute
values. The most commonly occurring class in a training example set is assigned
to all those new examples which cannot be classified by the rules produced by the
HCV algorithm. Examples can be found in Appendix C.

3.5.5 Numerical attributes

Basically, numerical attributes in the HCV algorithm are processed in the same
way as symbolic ones during induction. When generating selectors, HCV (Version
1.0) adopts the following procedure to group values of each numerical attribute

(say X,,) once selected by the fast or precedence strategy into a number of intervals:

Step 1: Collect all values, Viist, of the numerical attribute which the
current intersecting group of positive examples take.

Step 2: Sort Vliist into an ascendant order.

Step 3: Partition Vlist into a number of intervals, [V1,, V1, |, [Va,, Va, ],
vy [Vins V1, |, such that

L. there is not a V' such that Vj, <V <Vj, (7 ={1,....k}) and

V appeared on X, of any negative examples;
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2. there must be some V' that V% < V' < Wjq), for each
J €{l,....k—1} and V' appeared on X,, of some negative

example(s).

Step 4: Write the selector as [X,, = [[Vi,, Vi, ], [Va,, Vi, | ooy [Vi, Vi, ]

where “=" indicates membership (€).

3.5.6 Size of extension matrixes

In each extension matrix or disjunction matrix, all nondead elements are the
same as those in the negative example matrix N M according to Definitions 2.5.1
and 2.5.3. We only need to remember the dead elements in execution. The number
of dead elements in the extension matrix or disjunction matrix must be less than
na where n and a are the numbers of negative examples and attributes in a given

example set.

All the positive examples are processed one by one in the HCV algorithm.
At each stage, we need at most an extension matrix and a disjunction matrix.
The space needed for an implementation of the HCV algorithm is less than 2na.
Therefore, the HCV algorithm is low-order polynomial learnable in both time and

space. This is an important feature for good learning algorithms [Valiant 84].

3.6 A Comparison with ID3 and HCV

One difference between HCV and ID3 is that the HCV algorithm only pro-
duces rules for positive examples while 1D3 generates decision trees to classify
both positive and negative examples. However, this is not an advantage of 1D3
over HCV. For instance, if all the examples in an example set are people from
different countries in the world, when we are told that some of them are British
and the task is to find characteristics of British, we will only be interested in the
description produced for British because all other examples which cannot be sat-

isfied by the description will automatically belong to other countries. Although
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the 1D3 algorithm will automatically produce a description for negative examples
at the same time as it produces the description for positive examples, we do not
think that is useful in many cases. A description for negative examples belonging
to all other countries except Britain will not help anything because 1) it can be
inferred from the description for positive examples, and 2) if we want to know
which specific country a negative example belongs to, we need to run I1D3 once
again. The HCV (Version 1.0) program mentioned in the last section has already
been able to produce rules to classify more than two classes of examples. The
entropy measure in ID3 can also be easily extended [Clark 90] to chunk examples

into more than two classes.
The following is a comparison between ID3 and HCV.

The reason for using decision trees rather than rules, such as the variable-
valued logic rules adopted in AQ11 and HCV, is said by [Jackson 90] to be that
the ID3-like algorithms are comparatively simpler than other learning algorithms.
From the fourth disadvantage of ID3 (see Section 2.3.4) and the time complexity
of HCV, we can say that the argument is now no longer convincing. Although the
information theoretic heuristic is by no means complete, ID3 needs to examine
all possible candidate attributes and their values to choose one attribute at each
non-leaf node of its decision trees and thus its time complexity is still expensive
[Utgoff 89]. In HCV, although all of the fast, precedence and elimination strategies
are complete (see Theorem 3.1), which means if there exists one or more shortest
conjunctive formulae in an extension matrix they will not lose it, the fast strategy
can choose an optimal attribute as soon as it finds the attribute without any
attention to other attributes and the precedence strategy can choose an inevitable
attribute by examining only the values of one row in an extension matrix. High
efficiency has been seen as an important requirement for knowledge discovery and
exponential or even medium-order polynomial complexity will not be of practical
use [Quinlan 89b] in realistic data bases. We have not provided the comparison
of HCV and ID3 on time performance because there are different results for 1D3’s
time complexity and it is difficult to say which is correct or wrong. Therefore,

we can not say in general that HCV outperforms ID3 in time. However, we have
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given detailed analysis on HCV’s time complexity and have shown that it is low-
order polynomial and therefore computationally acceptable. The first significant
advantage of the HCV algorithm is that it supports a reasonable solution to the

NP-hard problem in the extension matrix approach for inductive learning.

Contrasting to the second and third disadvantages of 1D3, different values of
the same attribute which take on only positive examples can be easily grouped
into a selector in the variable-valued logic. In ID3, once an attribute is selected,
all arcs labeled by values that attribute takes must be expanded. This can still
make the number of branches (paths) large since at each arc only one value can
be labeled, and resulting paths might be longer than those actually needed be-
cause, by the time specific concepts (leaves on the decision tree) are developed,
irrelevant variables may have been introduced. All of the four strategies adopted
in Algorithm HFL and the partitioning technique in HCV are designed to reduce
the number of selectors. From Theorem 3.1, for those problems where the fast,
precedence and elimination strategies are enough to produce their final formulae,
we can guarantee that the formulae are optimal. From Theorem 3.5, if there exists
at least one conjunctive cover in a given training example set for positive examples
against negative examples, the formula produced by HCV must be a conjunctive
one. However, the information theoretic heuristic in ID3 is not complete, which
means it is not guaranteed to find the simplest decision tree that characterizes the
given training instances. From the example sets given above, the rules produced
by HCV are all more compact # in terms of the numbers of conjunctive rules and
conjunctions than the decision trees or their equivalent decision rules produced by
ID3. So, the compactness of rules in HCV is its second advantage. However, the
least-frequency strategy is still heuristic. We cannot guarantee the rules produced
by HCV must be more compact than the decision trees generated by ID3 in all

possible cases. There are still three kinds of possible results for a new example

4This is still true when we (1) only count the rules for positive examples and (2)
count a membership like X; € [Vi,...,V,] (or X; = [V4,...,V,]) in HCV rules as n

non-membership conjunctions.
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set: 1) HCV produces more compact rules as analysed and shown above; 2) HCV
and 1D3 produce similar rules because ID3 can usually produce efficient decision
trees, and 3) ID3 produces more compact rules than HCV when 1D3 can produce
the shortest decision tree while HCV cannot generate optimal rules. For instance,
the order of cases in a given example set can effect the result of HCV but does not
change the decision tree generated by ID3. Sometimes, we could possibly change

the order of examples to make ID3 outperform HCV.

Also, all of the four strategies adopted in Algorithm HFL and the partition-
ing technique in HCV are more comprehensible than the information theoretic

heuristic for most human experts who are not familiar with information theory.

3.7 Conclusions

The HCV algorithm described in this chapter can be viewed as a representative
of the extension matrix approach based family of inductive algorithms. As its time
is low-order polynomial, it can be seen as one of the fastest learning algorithms
to date. From the analysis of the strategies adopted in HCV and the example
sets shown above, the description in variable-valued logic generated in HCV is
similar to that adopted in AQ11, which is the advantage of AQ11 over ID3. Also,
the rules generated by HCV have been shown empirically to be fairly compact
although we cannot yet generally say they are necessarily more compact than the
decision trees produced by the 1D3-like algorithms. For those problems where
the fast, precedence and elimination strategies are enough to produce their final
formulae, we can guarantee that the formulae are optimal but the information

theoretic heuristic in ID3 cannot.
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Chapter 4

The MONK’s Problems: A

Performance Comparison of HCV
with Other Induction Algorithms

4.1 Introduction

This chapter provides a performance comparison of HCV with other algorithms,
such as ID3, ID5R, ASSISTANT, AQR (which can be viewed as an implementation
of the AQ11 algorithm to chunk examples into only two classes) and CN2, in
terms of rule compactness and accuracy on the three MONK’s problems. All these
algorithms have been mentioned in Sections 2.2 to 2.4. The MONK’s problems

are concerned with learning concept descriptions from examples.

The data for the three MONK’s problems are described in Chapter 1 of
[Thrun et al. 91]. However, as some examples were missing from the training sets
in [Thrun et al. 91], I have consulted John Cheng in Carnegie Mellon University
and completed the data sets myself. The results from applying the HCV (Ver-
sion 1.0) program to the three problems are recorded in Appendix C, whereas the
results generated by other algorithms are adopted from [Thrun et al. 91]. Those
results were given by a collection of researchers, each of whom was an advocate or

the creator of the algorithm they tested.
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4.2 The MONK’s Problems

The MONK’s problems are derived from an artificial robot domain, in which
robots (examples) are described by six multiple-valued attributes, i.e., head_shape,
body_shape, is_smiling, holding, jacket_color, and has_tie. The size of the value sets

of the six attributes are 3, 3, 2, 3, 4 and 2, respectively as below.

head_shape € {round, square, octagon}
body_shape € {round, square, octagon}
is_smiling € {yes, no}

holding € {sword, balloon, flag}
jacket_color € {red, yellow, green, blue}
has_tie € {yes, no}

Consequently, the example space consists of the total of 3x3x2x3x4x2=432
possible examples. The three MONK’s problems, called M1, M2, and M3, are all
binary classifications defined over the same space. They differ in the type of the
concept to be learned, and in the amount of noise in the training examples. Each
problem is given by a logical description of a concept. Robots belong to either
this concept or not, but instead of providing a complete concept description to
the learning problem, only a subset of all 432 possible robots with its classification
is given. The learning task is then to generalise over these examples and, if the
particular learning technique at hand allows this, to derive a simple concept de-
scription. After a concept description has been produced by a learning algorithm
from the training examples of each of the three problems, the whole 432 examples

are used to test the accuracy of the concept description.

The three MONK’s problems are specifically designed as below:

e Problem M1: (head_shape = body_shape) OR (jacket_color = red)

From 432 examples (216 positive and 216 negative), 124 (62 positive and
62 negative) were randomly selected for the training set. There were no

misclassifications in the training examples.
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This problem is in standard disjunctive normal form (DNF) and is supposed

to be easily learnable by all symbolic learning algorithms.

e Problem M2: exactly two of the six attributes have their first value

From 432 examples (142 positive and 190 negative), 169 (105 positive and
62 negative) were randomly selected as training examples. Again, there was

no noise in the training set.

This problem is said to be among the most difficult to learn using solely logic-
based inductive learners (such as AQ11-like algorithms and ID3-like algorithms).
It combines different attributes in a way which makes it complicated to describe

in DNF or CNF (conjunctive normal form) using the given attributes only.

e Problem M3: (jacket_color = green) AND (holding = sword) OR (jacket_color
is NOT blue) AND (body_shape is NOT octagon)

From 432 examples (228 positive and 204 negative), 162 (60 positive and 62
negative) were selected randomly, and among them there were 5% misclas-

sifications, i.e., noise, in the training set.

This problem is again in DNF but serves to evaluate learning algorithms under

the presence of noise.

4.3 Results Produced by HCV

Appendix C records in detail the results produced by HCV (Version 1.0) on
the three MONK’s Problems. A default rule (with its condition being DEFAULT,
see Section 3.5.4) there means that if none of the rules before the default rule are
successful in matching a given test example, then the test example will be classified

to the default class. Tables 4-1 and 4-2 provide a short overview of Appendix C.

As ID3 rules do not contain memberships in their conditions, Table 4-1 provides

a third measurement, the number of equivalent non-membership conjunctions, to

69



Table 4-1: Rules (by HCV) from Training Sets

Measurement Training Set 1 | Training Set 2 | Training Set 3
number of conjunctive rules 7 39 18
number of conjunctions 16 168 62

number of equivalent non-membership

conjunctions 25 241 92

Table 4-2: Accuracy (by HCV) on Test Sets

Test Set 1 | Test Set 2 | Test Set 3
100% 81.25% 90.28%

convert the membershipsin HCV rules to plain conjunctions. In this measurement,
a membership like X; = [Vi, ..., V,,] is counted as n non-membership conjunctions.
However, this measurement is only applicable to the comparison of HCV with
ID3 and ID5R because all other algorithms such as ASSISTANT, AQR and CN2
have memberships in their rules. Actually, as we discussed in Section 2.3.4, being

unable to group attribute values is simply a disadvantage of 1D3.

4.4 Results Produced by Other Algorithms on

Training Sets

The following tables, which are adopted from Chapters 6 and 3 of
[Thrun et al. 91], show the results produced by ID3 (with and without window-
ing), ID5R, ASSISTANT, AQR and CN2 on the training sets of the three MONK’s
problems. We will not include ASSISTANT’s results on the M3 problem in this
and next sections because ASSISTANT has been intended (by pruning its deci-

sion tree) to detect and eliminate the misclassified examples in Training Set 3 and
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Table 4-3: ID3 without Windowing on the MONK’s Problems

Measurement

Training Set 1

Training Set 2

Training Set 3

number of non-leaf nodes

number of leaves

32
62

64
110

14
31

Table 4-4: 1D3 with Windowing on the MONK’s Problems

Measurement

Training Set 1

Training Set 2

Training Set 3

number of non-leaf nodes

number of leaves

13
28

66
110

13
29

therefore its results cannot 100% correctly classify all the training examples and
are not comparable to those produced by other algorithms. The measurements for
the decision trees produced by the ID3-like algorithms are the numbers of leaves
and non-leaf nodes and for variable-valued logic rules produced by the AQ11-like

algorithms are the numbers of conjunctive rules (or complexes) and conjunctions

(selectors).

Table 4—-5: ID5R on the MONK’s Problems

Measurement

Training Set 1

Training Set 2

Training Set 3

number of non-leaf nodes

number of leaves

34
52

64
99

14
28
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Table 4—6: ASSISTANT on the MONK’s Problems

Measurement

Training Set 1

Training Set 2

number of non-leaf nodes

number of leaves

7
8

56
56

Table 4-7: AQR on the MONK’s Problems

Measurement

Training Set 1

Training Set 2

Training Set 3

number of conjunctive rules

number of conjunctions

36
123

83
334

36
114

Table 4-8: CN2 on the MONK’s Problems

Measurement

Training Set 1

Training Set 2

Training Set 3

number of conjunctive rules

number of conjunctions

10
13

58
145

24
38

Table 4-9: Number of Rules

Algorithm

ID3 without Windowing
ID3 with Windowing
ID5R
ASSISTANT
AQR
CN2
HCV

Training Set 1 | Training Set 2 | Training Set 3

62 110 31
28 110 29
52 99 28
8 56

36 83 36
10 58 24
7 39 18
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4.5 Performance Comparison

As each leaf in a decision tree corresponds to a conjunctive decision-tree-
traversal rule, the number of leaves in a decision tree is equivalent to the number
of conjunctive decision-tree-traversal rules. Table 4-9 lists the number of conjunc-
tive rules produced by each of the induction algorithms mentioned so far in this
chapter. From Table 4-9, we can clearly see that the rules produced by HCV are
the most compact in terms of the number of conjunctive rules. Since non-leaf
nodes in a decision tree are shared by different conjunctive decision-tree-traversal
rules, the number of non-leaf nodes in a decision tree is not comparable to the
number of conjunctions in the equivalent conjunctive decision-tree-traversal rules.
With respect to the number of conjunctions generated, CN2 seems to be better
than HCV. However, as we will discuss below, the rules produced by CN2 do not

match the training examples exactly.

Of course, the comparison on Table 4-9 is not completely ‘fair’ because dif-
ferent algorithms have different notions of ‘conjunctive rule’. For example, HCV,
ASSISTANT, AQR and CN2 use memberships while ID3 and ID5R do not or

cannot.

Table 4-10 provides numerical evaluation of the accuracy of the rules or decision
trees produced by various algorithms based on the percentage of the test examples
correctly classified. As we can see from Table 4-10, HCV works perfectly well on
the M1 problem. Its accuracy is also among the best on the M2 problem. However,

it does not perform that well in noisy environments like the M3 problem.

It is shown [Thrun et al. 91] that the rules produced by CN2 on Training Set 2
can only 92.90% correctly classify the original training set. This is a common case
for many noise-tolerant AQ11-like algorithms such as CN2 and AQ15 because each
of them has a threshold parameter to indicate the minimum percentage of selec-
tors/conjunctions in a rule they generated that must be true for the rule to apply.
The rules produced by them are intentionally incomplete and inconsistent with

the training set since they were generated with some error tolerance. Sometimes,
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Table 4-10: Accuracy

Algorithm Test Set 1 Test Set 2 Test Set 3
ID3 without Windowing | 83.24% 69.12% 95.60%
ID3 with Windowing 98.56% 67.92% 94.44%
ID5R 79.77% 69.23% 95.28%
ASSISTANT 100.00% | 81.25% on 351 examples

AQR 95.88% 79.63% 87.04%

CN2 100.00% 68.98% 89.12%

HCV 100.00% 81.25% 90.28%

this feature of noise-tolerant AQ11-like algorithms can recognize noise in training
examples. For example, AQ14-NT, a version of the AQ11 algorithm that employs
a noise-filtration technique, can recognise 100% correctly all the test examples in
Test Set 3 after some loops of concept-driven filtration of training examples with
truncation parameter equal to 10% and repeated induction. However, as we have
discussed in Section 2.4, noise filtration or tolerance can only work usefully in noisy
environments. It can be harmful in noise-free domains. For example, 100% correct
classification of the original training examples should be a basic requirement for
all learning algorithms in noiseless environments. The CN2 and AQ15 algorithms

can easily violate this requirement.

4.6 Conclusions

In addition to the algorithms mentioned above, many other algorithms such as

e AQIL7-DCI (a version of the AQ11 algorithm with data-driven constructive

induction),

e AQI7-HCI (a version of the AQ11 algorithm with hypothesis-driven con-

structive induction)
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e AQ15-GA (a version of the AQ11 algorithm combined with a genetic algo-
rithm),

e AQI15-FCLS (a version of the AQ11 algorithm oriented toward learning flex-

ible concepts),

e AQI4-NT (as mentioned in the last section),

e FCOBWEB (a unsupervised clustering system: examples are not preclassi-

fied as positive or negative examples there),

e Backpropagation (a function approximation algorithm for multilayer feed-

forward networks based on gradient descent), and

e Cascade-Correlation (a neural network learning algorithm that builds a near-

minimal multi-layer network topology in the course of training)

have also been applied to and tested on the three MONK’s problems
[Thrun et al. 91]. With respect to accuracy of the results generated by various
algorithms including those have been mentioned in earlier sections, the neural
network methods, Cascade-Correlation and Backpropagation (with weight decay),
seem to be the best on the three MONK’s problems. Their accuracy on the three
test example sets are both 100%, 100% and 92.7% respectively. However, the
result compactness and time of all those algorithms are not comparable because
they have different knowledge representation and were implemented and tested by

different people on different machines.
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Chapter 5

KEshell2: An Intelligent Learning
Data Base System

5.1 Introduction

KEshell2 is an improved version of KEshell [Wu 90, Wu 91] with the facilities
of extracting knowledge from relational data bases. This chapter first gives an

introduction to KFEshell and then presents KFEshell? with examples.

KFEshell is an alternative tool to rule-based production systems based on an
integration of rule-based and numeric computations. It adopts a 2-level represen-
tation language, rule schema + rule body, which is derived originally from Xiong
et al’s “rule skeleton + rule body” representation [Wu 90]. Rule schemata in the
language are used to describe the hierarchy among factors or nodes in domain
reasoning networks while rule bodies, which comprise computing rules as well as
inference rules, are used to express specific evaluation methods for the factors
and/or the certainty factors of the factors in their corresponding rule schemata.
By representing explicitly numeric computation and inexact calculations as well as
inference rules, the language supports a flexible way to process procedural knowl-
edge and uncertainty. This representation can be easily adapted to rule induction:
a rule schema can be used to describe the relationship between concepts or classes
and features or attributes, and the corresponding rule body can express all the con-
crete rules produced by induction algorithms. Induction techniques can normally

produce rules within a rule body, not the whole rule set.
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KFEshell2 is based on KFEshell, with the dBASFE3 package and the major con-
tribution of this thesis described in Chapter 3 integrated to permit knowledge
acquisition from relational data bases. The HCV algorithm and the ID3 algo-
rithm have been implemented in the knowledge acquisition engine (K.A. Engine)
of KFEshell2. A deduction module which uses the rules produced by HCV to solve

users’ problems has been designed and implemented in the inference and deduction

engine (I/D Engine) of KFshell2.

5.2 KFEshell: A “Rule Schema + Rule Body”
Based Knowledge Engineering Shell

5.2.1 Problems in production systems

Rule-based production systems are one of the most widely used models of
knowledge representation in Al in particular expert systems. Rather than express-
ing a logical calculus about the world as in Prolog-based systems or computing
the numeric values defined over data as in conventional programming, production
systems normally determine how the symbol structures that represent the current
state of the problem should be manipulated to bring the representation closer to
a solution. Problems which have been solved in production systems can usually
be encoded in LISP or PROLOG, of course; the point is that production systems
and rule-based programming languages are specifically designed to do them, and

as a result they do them rather well [Jackson 90].

A production system is defined by three basic components:

o a rule base which consists of a collection of IF ... THEN statements called

productions, production rules, or simply rules;

By convention, the IF part of a rule is called its LHS (left-hand side), and
its THEN part is called its RHS (right-hand side). Both LHS and RHS of a rule

usually adopt the grammar of either (object, attribute, value) triples (such as in
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OPS5 and EMYCIN) or (attribute, value) pairs (such as in M.1, EXPERT and
KES). An (object, attribute,value) triple or an (attribute,value) pair is called a
condition when it appears in the LHS of a rule and called a conclusion when in the
RHS. A rule in the rule base typically says that if its LHS holds then its RHS can
be logically drawn and is thus called [Wu 90] an inference rule as opposed to the
control rules (or meta rules) which are used, say, to determine how to apply other
rules and the computing rules which will be introduced below in the rule schema

+ rule body language.

o a working memory which holds facts including the data, goal statement and

intermediate results that make up the current state of the problem in solving;

Facts in the working memory can take the form of either (object,attribute,
value) triples or (attribute, value) pairs with associated certainty factors giving

the strength of belief in the values.

e an inference engine which decides when to apply which rules.

The inference engine typically operates according to the following

“recognise—act” algorithm:

1. Match. Find the rules in the rule base whose LHSs are satisfied from the

existing contents of the working memory.

2. Conflict resolution. Select one rule with a satisfied LHS by applying one or
more conflict resolution strategies; if no rule is available in the rule base,

stop.

3. Act. Adapt the working memory according to the RHS of the selected rule,

perhaps adding a new item or deleting an old one.

4. Goto (1) for further 3-phase “match—conflict resolution—act” cycles.
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There are many advantages in production systems [Wu 90, Barr et al. 81,
Brownston et al. 85], such as expressibility, modularity, uniformity and natural-
ness, but there are also several significant disadvantages inherent in the formalism

[Wu 90]. We summarize these below:

5.2.1.1 Low efficiency

Efficiency is an important consideration in production systems since they may
be expected to exhibit high performance in interactive domains or real-time do-
mains. However, chaining in production systems is much more complicated than
testing the satisfiability of individual propositional formulae [Dowling & Gallier 84].
Non-worst-case subexponential algorithms are not possible for the general case
[Tambe & Newell 83, Miranker et al. 90] and existing rule-based programming can
not abolish combinatorial explosion completely [Jackson 90] although in practical
applications, the conflict resolution strategies, such as LEX and
MEA [Brownston et al. 85] employed in OPS5, tend to choose rules that lead to a

reasonable solution.

In the basic forward chaining algorithm, each 3-phase “matching — conflict
resolution — action” cycle deals with the problem of matching rules in a rule base
with the working memory. However, the successful matching of a rule with the
working memory does not always mean its immediate action. A rule may fail to
match the working memory in an overall problem-solving process but it often needs
to be tested in each 3-phase cycle. Meanwhile, some other rules may be successtul
in matching the working memory from the very beginning of a problem solving
but always fail to get the priority of action in each conflict resolution phase. When
there are changes in the working memory, they need to be tested again and again.
Those problems cause low efficiency of the basic forward inference. For naive
production system algorithms, all but the smallest systems are computationally
intractable. Some earlier systems have been observed to spend more than 90% of

their total run time performing matching [Forgy 82].
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Even in Rete [Forgy 82] of the OPS) language and TREAT [Miranker 87] of
the DADO machine, the two commonly assumed best match algorithms, there are
no definite solutions for those problems. Both Rete and TREAT were developed
to avoid matching all rules with the working memory to find applicable rules on
each cycle. For example, when rules in a rule base are first loaded into the system,
OPS5H compiles them into a set of features to be checked. The features are mostly
tests of values of attributes which are shared by different rules. They are connected
in a tree-structured discrimination network that efficiently performs the matching

process. However, the NP-hard problem has by no means been eliminated in OPS5

and DADO.

5.2.1.2 Lack of flexibility in expressing procedural knowledge

Symbolic computation, in which non-numeric symbols and symbol structures
can be construed as standing for various concepts and relationships between them,
has been characteristic of AI. Knowledge representation in Al is concerned mainly
with the way in which symbolic information might be stored and large bodies of
knowledge can be formally described for the purpose of symbolic computation.
Although the distinctions between Al representations like production systems and
procedural representations are clear [Jackson 90, Barr et al. 81], procedural knowl-
edge has not been well integrated into production systems up till now. When the
LHS and RHS in a rule contain all of 1) an assignment of a symbolic value in a
discrete domain, 2) an assignment of a numeric function value and 3) a logical con-
dition or conclusion, it is difficult to use existing production systems or rule-based
programming languages — although such things can be represented, it is done in

an ad hoc way, rather than as an integral part of the notation.

5.2.1.3 Lack of flexibility in inexact inference

There has been broad agreement among Al researchers that inexact inference
is important in many expert system applications due to many different sources of

uncertainty from imperfect domain knowledge and/or imperfect case data in Al
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problem solving; however, there is very little agreement concerning the form inex-
act inference should take [Jackson 90]. Five typical inexact models [Wu et al. 88,
Jackson 90] which have been adopted in Al systems are probability theory based
methods, the belief and disbelief model adopted in MYCIN, fuzzy logic, belief
functions (e.g. the Dempster—Shafer theory on evidence) and incidence calculus,

each having its inherent advantages and disadvantages.

A standard approach to implement inexact inference in existing Al systems is
comprised of three components: a measure (e.g. a probability or a fuzzy degree)
to describe imperfect data, a measure (e.g. a conditional probability or a rule
strength) to represent imperfect rules and an inexact model which contains a set
of computing formulae to evaluate the certainty factor of each conclusion in the
RHS of a rule according to the certainty factors of all the conditions in the LHS

of the rule. There are two problems in the normal approach:

e The inexact model once chosen is implicitly implemented inside the inference
engine rather than being expressed explicitly. In other words, the execution
of different rules uses the same set of computing formulae for their conclu-
sions’ certainty factors. This rigidity is inconvenient for some applications
(see Example 5-3) where different conclusions need different operators to

compute their uncertainty factors.

e Each inexact model has its own drawbacks. It would be quite useful in some
applications if we can integrate several models together, say, using both
probability calculus and fuzzy calculus. However, that is impossible with

the standard implementation approach.

With respect to all of the considerations in Sections 5.2.1.1 to 5.2.1.3, we
integrate rule-based and numeric computations into a 2-level description in our
rule schema + rule body language to improve the production system structure.
In contrast to the aforesaid problems, a linear forward chaining algorithm, LFA
([Wu 93d], also described in Appendix E), is supported by the language based on
sorting the knowledge in a knowledge base into a partial order. Numeric compu-

tation and inexact calculus are explicitly expressed in the same way as inference
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rules in rule bodies in the language so that an expert can use different inexact

models or their changed formulae when building a knowledge base.

5.2.2 Rule schema + rule body
5.2.2.1 The syntax

The grammar used in rule schema + rule body is that of (factor, value) pairs

as opposed to (object, attribute, value) triples in OPS5 and EMY CIN.

Definition 5.1. A factor, which has a similar meaning to an attribute in M.1,
EXPERT and KES, is a name involved in a domain expertise. It can be a logical

assertion, a discrete set variable or a continuous numeric variable.

Definition 5.2. A rule schema has a rule-like structure with the general form

of

IF By, ..., E, THEN A

or IF Ey AN E, THEN A

where all of Fy,..., F, and A are factors. Fach F; (i =1,...,n) is called a premise

factor and A is called the conclusion factor in the rule schema.

In rule induction, each F; is an attribute and each value of A indicates a class

to learn.

Definition 5.3. Each rule schema IF Fy, ..., £, THEN A has a corresponding
rule body which contains all the available information to evaluate the value of A
(when A is a non-logical variable) and/or the certainty factor of A. All the factors
included in the rule body must appear in the rule schema so that when there are
data for all of Fy,..., F,, A can definitely be evaluated by the rule body if the

information inside is complete.

Definition 5.4. A computing rule is different from an inference rule in that its

RHS is an assignment to a non-logical variable or a certainty factor. For example,

IF A>10, CF(B)>0.4 THEN X=sin(C)+max{0.5, cos(D)}.
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In each rule body, there may be one or more inference rules similar to those
in production systems and/or computing rules for computation. All the rules in
a rule body are used to determine the value of the conclusion factor in its corre-
sponding rule schema and/or the certainty factor (C'F) of the value/factor. When
the conclusion factor is a logical assertion, the rule body can be used to compute
the C'F of the assertion. When the conclusion factor is a set variable or a numeric
variable, the rule body is used both to evaluate the value of the factor and to com-
pute its C'F'. Thus, the computation of the C'F' of a factor can be processed in the
same way as the evaluation of non-logical factors, both being explicitly expressed
in rule bodies. When all the factors in a domain expertise are logical assertions
and all the rule bodies have the same rules for computing C'F's, the inexact infer-
ence then behaves similarly to the standard implementation approach mentioned
in Section 5.2.1.3. When all the factors are numeric variables and no uncertainty
calculus is needed, all the rule bodies will be used to express computation models
and a rule schema plus its rule body is analogous to a procedure or function in

conventional programming.

Definition 5.5. A rule schema with its corresponding rule body is called a

rule set.

A rule set is an independent knowledge unit in the rule schema + rule body

language. It can be described in BNF (Backus Normal form) as follows.

<rule set> := Rule Set # <rule set number><rule schema><rule
body>

<rule set number> := <integer>

<rule schema> := Schema: [F <premise factors> THEN <conclusion
factor>

<premise factors> := <premise factor>{, <premise factors>}

<premise factor> := <factor>

<conclusion factor> := <factor>

<factor> := <variable name>|<logical assertion>

<logical assertion> := <predicate(object)>|<predicate>

<rule body> := Body: (<C-rule>|<I-rule>){<rule body>}
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<C-rule> := (<factor>|C F(<factor>))= <assignment expression>

<assignment expression> := <value>|<algebraic expression>

<I-rule> := [F<antecedents>THEN<conclusion>

<antecedents> := <antecedent>{,<antecedents>}

<antecedent> := (<factor>|C'F (<factor>))<relation-sym> <assignment
expression>

<relation-sym> 1= >|<|=|<>|>=|<=

<conclusion> := <C-rule>

<value> := <integer>|<real>|<symbolic value> |<probability>| <fuzzy

degree>

The terms <variable name>, <predicate(object)>, <predicate>, <algebraic

expression> and different kinds of values above have the standard interpretation.

Clearly, the rule schema + rule body representation can be easily adapted to
rule induction. A rule schema can be used to describe the relationship between
concepts or classes and features or attributes, and the corresponding rule body
can express all the concrete rules produced by induction algorithms. Induction

techniques have the job of learning a rule body instead of the whole rule set.

5.2.2.2 Advantages of the language

As compared with production systems, the rule schema + rule body language

has five main advantages:

1. it can avoid matching all the rules in a knowledge base with the working

memory at run time when some piece of data is not available;

Suppose we have a rule schema “If Ay, Ay, A3, Ay, As then B” and all Ay, ..., A
have a value domain {1....,1000}, there are at least 1000° possible decision-tree like

rules with form of or similar to

If Al = Nl,AQ = NQ,Ag = N37A4 = N4,A5 = N5 then ...
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in total where N; € {1,...,1000} (: = 1,...,5). Now if we have a large quantity of
data on Ay, Ay, A3 and A4 but no data ab out As, only 5 comparisons are needed:
Once no data about As is found during matching of the rule schema, all of the

rules in the rule body will be neglected without matching.

A linear forward chaining algorithm (LFA) will be further described in Ap-

pendix E based on this advantage.

2. it gives a naturally structured organisation of knowledge bases in terms of

rule sets;

The self-contained format (see Definition 5.3) of rule sets and their commu-
nication channel (the working memory in grammar of ( factor,value) pairs with
associated certainty factors giving the strength of belief in the values, see Section
5.2.3.1) clearly enhance the modularity of the language. One can edit, modify
and execute a rule set independently without much attention to other rule sets.
Modularity is an important virtue for Al programs (like other software) because

it makes programs easier to understand, explain and modify.

3. it gives an expressive representation of computation knowledge:;

Example 5-1. The knowledge for solving the general equation AX? + BX +

C' = 0 can be expressed in rule schema + rule body as follows.

Rule schema: IF A, B, C THEN X

Rule body:

IF A=0, B#0 THEN X=-C/B
IF A#0 THEN X=(-B+VB? — 1AC)/(24)
IF A0 THEN X=(-B-/B? —4AC)/(2A)

4. the flexible expression of uncertainty calculus in rule bodies.
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Example 5-2. In fuzzy multi-objective judgement problems [Wu et al. 87],
we often need different judging operators, such as M(A,V), M(®@,&)', M(A, &)
and M(@,V), for different objectives to evaluate their fuzzy degrees. It is easy
to define a specific judging operator for each objective in the rule sets where the

objective is the conclusion factor.

Also, a domain expert can define CFs as either probabilities or fuzzy degrees,
as required. It is possible to use both probability calculus and fuzzy calculus in
a knowledge base for inexact inference in rule schema + rule body. However,
this mainly depends on the calculus formulae and possible transformation defined
in rule bodies. For each factor in a domain expertise, its CF will be computed

according to the rule bodies which have it as their conclusion factor.

5.2.2.3 A working example

Example 5-3 shows a condensed excerpt from a knowledge base in rule schema

+ rule body for an assessment problem.

Example 5-3. An assessment problem in a given area has three objectives:
numeric Object_1, fuzzy Object 2 whose value domain is {A, B, C} and logical
Object_3. Object_1 is defined on X1, X2 and X3, whose value can be evaluated
from the values of either X31 and X32 or X33, X34 and X35. All of X¢’s (i =
1,2,3,31,32,33,34,35) are numeric while all of Y'1,Y2 and Y3, which are used to
define Object 2, have the fuzzy domain of {A, B, C}. Object_3 can be inferred
from X35 and two pieces of logical evidence, Z1 and Z2. The expertise given by
an anonymous expert is shown below in rule schema + rule body. Words between

/* and */ are explanatory notes.

a®b=a+b (5.1)
a®b=ab (5.2)

where @ and b are fuzzy degrees.
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Rule Set #1
Schema:
IF Object_1, Object_2, Object_3 THEN Assessment
Body:
IF Object_1>85, Object2=A, CF(Object_3)>0.7 THEN Assessment=A
IF Object_1>85, Object 2=A THEN Assessment=B
/* A further condition, CF(Object_3)<=0.7, is implied in the second
rule. */
IF CF(Object_3)>0.5, Object_1>60, Object_2<>C THEN Assessment=B
/* ‘<>’ denotes #. */
Assessment=C
/* When none of the above three rules can be satisfied, this rule is
unconditionally applicable. */
IF CF(Object_3)>0.5 then CF(Assessment)=CF(Object_2)
CF(Assessment)=min{0.5, CF(Object_2)}
Rule Set #2
Schema:
IF X1, X2, X3 THEN Object_1
Body:
Object 1=(X1+X2+X3)/3
Rule Set #3
Schema:
IF X31, X32 THEN X3
Body:
X3=max{X31, X32}
Rule Set #4
Schema:
IF X33, X34, X35 THEN X3
Body:
X3=(min{X33,X34}+X35)/2

Rule Set #5
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Schema:
IF Y1, Y2, Y3 THEN Object_2
Body:
IF Y2<>C THEN Object 2=Y1
IF Y2=C THEN Object2=Y3
CF(Object_2)=min{1-CF(Y1)CF(Y2)CF(Y3), CF(Y1), CF(Y2), CF(Y3)}
Rule Set #6
Schema:
IF X35, Z1, Z2 THEN Object_3
Body:
IF X35>75 THEN CF(Object3)=(CF(Z1)+CF(22)-CF(Z1)CF(Z2))/2

CF(Object 3)=(CF(Z1)+CF(Z2))/(1-min{ CF(Z1),CF(Z2)})

The uncertainty calculus in Rule Sets #5 and #1 is defined on fuzzy logic while
in Rule Set #6, CF(Z1), CF(Z2) and CF(Object_3) are defined on probabilities. In
Rule Sets #2, #3 and #4, uncertainty calculus is unnecessary because all of X1’s
(1 =1,2,3,31,32,33,34,35) are supposed to be real numbers without uncertainty.
The different CFs defined on fuzzy degrees and probabilities are unified in Rule
Body #1 to give the final fuzzy CF to the goal Assessment.

5.2.3 KFEshell: a rule schema + rule body based knowl-

edge engineering shell
5.2.3.1 Overview

KFEshell is a rule schema + rule body based knowledge engineering shell, with

its structure shown in Figure 5-1.

In the diagram, KB denotes knowledge bases and KBMS is a knowledge base
management subsystem that detects the repetitions, redundancy and contradic-
tions which will be described in Section 5.2.3.2, finds dead cycles in a knowledge
base and sorts it. KEshell has been implemented in Turbo-PROLOG on IBM PC

computers.
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Figure 5-1: The System Structure of KFshell
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Facts in the working memory are represented as (factor,value) pairs with
accompanying certainty factors, which can be either probabilities or fuzzy degrees.
Rule schemata and rule bodies in KB represent domain expertise. As the factors
in a rule schema are allowed to be variables, it is easy to enter many concrete
rules, inference rules and/or computing formulae, in one generic rule schema and

then take the rule body as a “look-up” table.

The inference engine in KFEshell supports both forward and backward chaining
with the forward chaining working in linear time (see Appendix E). When there is
a dead cycle in a knowledge base, which means there is some error in the knowledge
base that cannot be removed, only backward chaining can be adopted. KFEshell

has a special engine in KBMS to detect cycles in knowledge bases.

There are two ways to build knowledge bases. The first is the structured in-
teractive knowledge transfer module (SIKT) which will be described in Section
5.2.3.2. As we will show, the communication between experts and SIKT is quite
friendly. An expert does not need to know much about knowledge engineering or
programming to build a knowledge base in this mode, just answering all the ques-
tions SIKT asked. The other way is to use a text editor, which will be described
in Section 5.2.3.3. All other modules will also be described in detail below.

5.2.3.2 Structured interactive knowledge transfer — SIKT

KEshell was intended to be an expert system building tool (not a programming
language) with which experts were expected to interact directly to build knowledge
bases without the aid of knowledge engineers (or expert systems programmers).
The SIKT in KEshell is a module that guides experts in inputing their expertise

in a top-down mode and an interactive manner.

For knowledge transfer, two work buffers are set up: a defined factor set (DFS),
where all the factors that have been given evaluation methods are put and an
undefined-factor stack (UDF), which is a set of all the factors whose evaluation

methods have not been given by expert(s).

The guidance procedure is designed as follows:
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Step-1: DFS=¢, UDF=¢;

Step-2: Ask the expert to give all the top factors in his/her domain reasoning
network and put all the factors given by the expert into UDF;

Step-3: If UDF=¢ then goto Step-7;
Step-4: POP(Factor) from UDF, if Factor appears in DFS then goto Step-3;

Step-5: 1) Ask the expert if Factor is a terminal factor in the domain reasoning
network, which means that users will provide possible evidence for it for inference.

If yes then put Factor into DFS and goto Step-3;

ii) Acquire a new rule schema whose conclusion factor is Factor: ask the
expert to give all the factors that can determine the Factor in a new evaluation
method and put all the new factors that have not existed in DFS or UDF into
UDF and write down a new rule schema in form of IF' all the factors THEN Factor

into the knowledge base;

Step-6: Ask the expert if there is any other new method to determine Factor,
if yes then goto Step-5 else put Factor into DFS and goto Step-3;

Step-7: Check for semantic inconsistencies in the schemata given;

There are three types of semantic inconsistencies: 1) dead cycles (see Section
5.2.3), 2) repetitions, and 3) knowledge insufficiency. When there are two rule
schemata which are the same in a knowledge base, we say there exists a repeti-
tion in the knowledge base. The expert will be asked to integrate the same rule
schemata into one when a repetition is found. If there exists such a factor in a
knowledge base that is neither a top factor (e.g. a disease) nor a terminal factor
(e.g. a symptom) in the corresponding domain reasoning network and there is no
rule schema which has the factor as its conclusion factor, the knowledge base is
incomplete. The expert will be asked to input more knowledge on the factor when

the factor is discovered.

Step-8: For each rule schema acquire its rule body: Ask the expert to input
each rule in a line and put the rule into the knowledge base. This process is

repeated until the expert answers with an empty line;
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Step-9: Check for semantic inconsistencies in each rule body;

The semantic inconsistencies in a rule body mean three possible aspects: 1)
repetitions, 2) redundancy, and 3) contradictions. When there are two rules in a
rule body which are the same, we say there exists a repetition in the rule body
and one of them will be automatically deleted. When there are two rules in a
rule body which have the same RHS but the LHS of one contains the LHS of the
other, we say there exists redundancy in the rule body and the former rule will be
automatically deleted. A contradiction in a rule body indicates two such rules in
the rule body that have the same LHS but different RHSs. Contradictions will be

displayed to the expert so that he may make appropriate alterations.

Step-10: Clall Step-7 and Step-9 until no changes and no inconsistencies are
found;

Step-11: Let the expert approve the knowledge base that has just been built: If
the expert declares that there are still some modifications, then allow expert to

modify the existing knowledge base and goto Step-10 to check consistency:;
Step-12: Sort the existing knowledge base into a partial order.
The sorting algorithm has been introduced in Section 5.2.3.

The dialogue between an expert and SIKT to build the knowledge base in
Example 5-3 is recorded in Appendix F.

In contrast to KBEmacs [Waters 85], whose power came principally from the
ability to construct a program out of the algorithmic fragments stored in a library,
SIKT does not act as a general program editor for programmers but is able to
automatically build executable knowledge bases in rule schema + rule body out

of the dialogue with experts.

5.2.3.3 The editor

The syntax for the editor is the rule schema + rule body language in BNF

plus a declaration of factors’ types and domains for those factors which are set
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variables. For instance, the knowledge base file for Example 5-3 can be edited as

the following declaration plus the description of rule sets in Section 5.2.2.3.

factor_type(Assessment, 2)
factor_type(Object_1, 3)
factor_type(Object_2, 2)
factor_type(Object3, 1)
factor_type(X1, 3)
factor_type(X2, 3)
factor_type(X3, 3)
factor_type(X31, 3)
factor_type(X32, 3)
factor_type(X33, 3)
factor_type(X34, 3)
factor_type(X35, 3)
factor_type(Y1, 2)
factor_type(Y2, 2)
factor_type(Y3, 2)
factor_type(Z1, 1)
factor_type(Z2, 1)
factor_set(Assessment,[A, B, C])
factorset(Object2,[A, B, C])
factorset(Y1,[A, B, C])
factorset(Y2,[A, B, C])

factorset(Y3,[A, B, C])

5.2.3.4 The tracing engine

There is a tracing engine in KFEshell for knowledge base debugging at run time.
It first labels all the knowledge that has been used during inference, then deletes
the knowledge which is useless for concluding the goal(s) even if it was used during

the inference and has been labeled, and finally displays the inference process by
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Figure 5-2: An Example for the Trace Engine

using only the knowledge that is still labeled. For example, suppose rule sets #1,
#2, #3, #4 and #5 in Figure 5-2 have been executed during a problem solving
session, the #4 rule set is useless for reaching the goal G1. The tracing engine
can also work in linear time by displaying rule sets according to their renumbered

ordinals in a similar way to the linear forward chaining algorithm in Appendix E.

5.2.3.5 The interface

The interface for users is even simpler. Questions concerning evidence are
asked, answers are obtained, the chaining process takes place, and the solution(s)
are given. The following is a sample dialogue using the knowledge base shown in
Example 5-3. The sentences with K: at the beginning are generated by KFEshell

and those with M: are input of a user.
K: Fact acquisition now:
K: Can you provide data for X1? (Y|N|Q:Stop giving more data)
M:Y
K: The value:
M: 79

K: CF (DEFAULT=1):
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/* an empty line */
: Can you provide data for X2? (Y|N|Q:Stop giving more data)
:Y
: The value:
: 79

: CF (DEFAULT=1):

: Can you provide data for X337 (Y|N|Q:Stop giving more data)
:Y

: The value:

: 89

: CF (DEFAULT=1):

: Can you provide data for X347 (Y|N|Q:Stop giving more data)
:Y

: The value:

: 79

: CF (DEFAULT=1):

: Can you provide data for X357 (Y|N|Q:Stop giving more data)
:Y

: The value:

: 79

: CF (DEFAULT=1):

: Can you provide data for X317 (Y|N|Q:Stop giving more data)
:Y

: The value:

: 79

: CF (DEFAULT=1):
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: Can you provide data for X327 (Y|N|Q:Stop giving more data)
: N

: Can you provide data for Y1? (Y|N|Q:Stop giving more data)
:Y

: The value: (Domain: {A, B, C})

: D

: Wrong input! Try again: (Domain: {A, B, C})

: B

: OF (DEFAULT=1):

: 0.6

: Can you provide data for Y2? (Y|N|Q:Stop giving more data)
:Y

: The value: (Domain: {A, B, C})

A

: OF (DEFAULT=1):

: 0.8

: Can you provide data for Y3? (Y|N|Q:Stop giving more data)
:Y

: The value: (Domain: {A, B, C})

: B

: OF (DEFAULT=1):

1 0.75

: Can you provide data for Z1? (Y|N|Q:Stop giving more data)
:Y

: OF (DEFAULT=0):

: 0.8

: Can you provide data for Z2? (Y|N|Q:Stop giving more data)
:Y

: OF (DEFAULT=0):

: 0.6
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K: Linear forward chaining now ...
K: The solution for your problem is

K: Assessment=C with CF=0.5

5.2.4 Summary

Rule schema + rule body is a representation language which integrates nu-
meric computation, inexact calculus and logical inference. We have described the
representation language and the structured interactive knowledge transfer module
(SIKT) in KEshell in detail in this section. The production system model used in
this section, which the author would take as the standard model, is much more like
that used in OPS5 and text books [Jackson 90, Barr et al. 81] than other systems

or languages where efficiency gains are at the expense of representational power.

The major feature of KFEshell is that the shell has supported all the techniques
mentioned in this section and put them to practical use. As compared with large
system programming languages [Harmon et al. 85], such as OPS5, ART and KEE,
inexperienced programmers and subject matter experts can interactively build
knowledge bases in KFshell by calling the SIKT module. The price paid for this
is that the representation in KFshell is not so powerful as in these programming
languages. For example, users can define control in an OPS5-like rule but they

cannot do so in Klshell.
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KBMS ™ DBMS
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Figure 5-3: The System Structure of KFEshell2

5.3 KFEshell22 A Knowledge Engineering Shell
which Couples ML Techniques with Data

Base and Knowledge Base Technology

5.3.1 System structure

Figure 5-3 shows the system structure of KFEshell2, the improved version of
KFEshell with the knowledge acquisition engine, K.A. Engine, which implements
induction from data bases, and dBASE3 being integrated.
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In the diagram, Monitor is a man-machine interface which exchanges informa-
tion with users in the form of pull-down menus. [/D Engine is an inference and
deduction engine based on the inference engine of KFEshell KBMS and DBMS
are facilities adopted mainly from KFshell and dBASES respectively to support
knowledge base and data base management functions. Utility contains a set of
common procedures that are shared by K.A. Engine, KBMS and DBMS. Access
Storage Interface is composed of the basic knowledge/data operators. DB and KB
denote data bases and knowledge bases respectively and OS indicates operating

system facilities. For the implementation of K Eshell2, the operating system used

was PC-DOS, referred to as DOS hereafter.

5.3.2 Monitor

The Monitor module in KFEshell2 accepts users’ operational commands and

calls corresponding functional modules in the system.

There are five options in its main menu: 1. KBMS; 2. I/D Engine; 3. K.A.
Engine; 4. DBMS; and 5. DOS with their second-level menus being as follows.

e KBMS: 1. Build a Knowledge Base (SIKT), 2. Adapt Knowledge, 3. Find
Cycles, 4. Sort a Knowledge Base, 5. List Rule Schemata, 6. List Concrete
Rules, 7. Edit a KB File, and 8. Clear Working Memory.

[/D Engine: 1. Forward Chaining, 2. Backward Chaining, 3. Deduction, 4.
Knowledge Trace, 5. Clear Evidence, and 6. Adapt Facts.

K.A. Engine: 1. Build a Knowledge Base (SIKT), 2. Semantic Information,
3. Rule Induction by HCV, and 4. Rule Induction by ID3.

DBMS: 1. Enter dBASE3, and 2. List a Relation.

e DOS: 0. Enter PC-DOS, 1. Load a KB File, 2. Save Knowledge, 3. Directory,
4. Print, 5. Copy, 6. Delete, 7. Rename, 8. Time, 9. Date, 10. List Facts, 11.
Adapt Facts, 12. Save Working Memory, 13. Edit a Text File, 14. List a DOS
File, and 15. Quit.
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The functions of most of the second-level submodules are just what their names

imply.

5.3.3 KBMS

The KBMS module in KFEshell?2 is adopted from the KFshell system. It
supports facilities for interactively building, adapting and displaying knowledge
bases, checking for semantic inconsistencies including dead cycles, sorting knowl-
edge bases into partial order to implement linear forward chaining and editing

knowledge base files.

All the submodules in KBMS are the same as in KF'shell and have been intro-
duced in Section 5.2.

5.3.4 DBMS

The DBMS module in KFEshell2 is based on dBASES3, a commercial relational
data base management system. Users can do conventional data base operations by
simply entering dBASE3. However, a new function, List a Relation, is developed
here to translate dBASES files into the Prolog-based representation described in
Appendix D. The representation binds relational tuples and schema together in a

natural and flexible way.

For example, XDBASE3.DBF and XDBASE3.DBT are two sample dBASES3
files from Turbo Prolog Toolbox [Borland 87]. The relational schema and tuples
included in them are listed in Tables 5-1 and 5-2 respectively.

The List a Relation submodule in DBMS reads by calling the XDBASE3.PRO
file in Turbo Prolog Toolbox and translates them into the following predicate.

relation(“XDBASE3”,

[field(“NAME”, string),

field(“BIRTH DATE?”, string),

field(“SALARY”, real),

field(“AGE”, integer),
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Table 5—1: Relational Schema of XDBASE3.DBF

FIELD TYPE | WIDTH
NAME string 25
BIRTH_DATE | date 8
SALARY numeric | 8.2

AGE numeric | 2
MEMO memo

Table 5-2: Tuples in XDBASE3.DBF and XDBASE3.DBT

NAME BIRTH_DATE | SALARY | AGE MEMO
Frank Borland 19131205 10250.95 73 Frank Borland’s memo
Joe Programmer 19600707 45000 26 Joe Programmer’s memo
Bit Twiddler 19521117 37000 33 Bit Twiddler’s memo
Mary Martin 19500227 37000 36 Mary Martin’s memo

field(“MEMO?, string)],

[tuple( “Frank Borland”, “19131205”, “10250.95",“73",“Frank Borland’s memo”),
tuple(“Joe Programmer”, 196007077, “45000", 26", “Joe Programmer’s memo”),
tuple(“Bit Twiddler”, “19521117”, ¢ 370007, “33”, “Bit Twiddler's memo”),

tuple(“Mary Martin”, 195002277, “37000", 36", “Mary Martin's memo")])

5.3.5 I/D Engine

All the submodules except Deduction in I/D Engine are taken from KFEshell
and have been described in Section 5.2. The Deduction submodule is designed to

interpret the rules produced by the HCV algorithm to solve users’ problems.

Taking the rules produced by HCV for Example 3-2 in Section 3.4.2 as an
example, the following is an example run of the Deduction submodule.

K: The rules (Hf’s) in the working memory are:

K: if [ OUTLOOK=overcast | then [DECTSTON=Play]

K: if [ WINDY=false ] & [ OUTLOOK=rain | then [DECISION=Play]
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K: if | TEMPERATURE=mild | & [ WINDY=false | then [DECISION=Play]

K: Please input your example in form of <field/attribute>=<value>:

M: OUTLOOK=rain, TEMPERATURE=hot, HUMIDITY =normal, WINDY =false
K: According to the 2nd hfl, (i.e.,

K: if [ WINDY=false | & [ OUTLOOK=rain | then [DECISION=Play]

K: ), the deduction result is: Play.

5.3.6 K.A. Engine

There are four submodules in the K.A. Engine in KFEshell2: 1) Build a Knowl-
edge Base (SIKT), which is the same as in KBMS, 2) Semantic Information, which
will be described below, 3) Rule Induction by HCV, which implements the HCV
algorithm described in Chapter 3, and 4) Rule Induction by ID3, which imple-
ments the ID3 algorithm summarized in Chapter 2. The third, Rule Induction by
HCYV is the core of the KFEshell2 system.

5.3.6.1 Semantic information

The theme of KFshell2 is the provision of mechanisms for extracting knowledge
from data bases. To couple machine learning techniques with data base technol-
ogy, some semantic information (see Appendix D, such as causalities and logic
implications) among relational data is used to trigger induction engines in the

Semantic Information submodule.

The submodule works according to the following steps.

1. Find all relations in the working directory, which can be set or changed by

the Directory submodule in the DOS module;

2. Ask the user to identify which of the relations is a relationship and of either

causality or logical implication type;

3. Read the schema in the identified relation and ask the user to describe the

causality structure between the fields in the schema;
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4. Read the tuples in the relation and translate them into executable forms for

the Rule Induction by HCV submodule.

The translation in Step 4 is based on the Prolog-based representation in Ap-
pendix D.

The following is an example run of this submodule on the example shown in

Tables 5-1 and 5-2.
K: All the relations in the current working memory have been detected are:
K: XDBASE3, AVAL_FLT
K: Please indicate which of them is a relationship AND
K: of either causality or logical implication type:
M: XDBASE3
K: Now, please identify the semantic labels of attributes
K: in the relationship:
K: (All the fields in the XDBASES relationship are
K: NAME, BIRTH.DATE, SALARY, AGE, MEMO)
K: The result field:
M: SALARY
K: and the condition fields:
M: NAME, AGE
K: O.K. The logic structure is:
K: IF NAME, AGE then SALARY
K: Would you like to induct rules from your current data bases now?

M: N

If °Y’(yes), this submodule will automatically call the Rule Induction by HCV

submodule.

5.3.6.2 Induction from data bases

Data bases can be provided in three different ways to the Rule Induction by
HCV submodule.
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1. Induction from dBASES files.

When data is provided by dBASE3 files, the Rule Induction by HCV sub-
module first collects all the different values the result field takes and then
runs the HCV algorithm after using part of the AQ11 technique introduced
in Chapter 2 (by assuming that all examples not classified as positive are

negative):

for each different value the result field takes

(a) convert all the tuples whose result field takes the value into positive

examples;
(b) convert all the other examples into negative examples; and

(¢) apply the HCV algorithm.

2. Induction from conventional DOS data files.

When data is provided by a data file in the form of positive examples and
negative examples, for instance, like the DATA31.DB below, induction by
HCV only produces rules for positive examples.

/* file: DATA31.DB */

attributelist([“OUTLOOK”, “TEMPERATURE", “HUMIDITY”, “WINDY"])

result(“DECISION")

n([rain hot,high,true])

n([rain,cool,normal, true])

p([overcast,hot high,true])

p([overcast,mild,normal false])

p([rain hot high false])

p([overcast,cool,normal,true])

n([sunny,hot,normal,true])

n([sunny,mild high,true])

p([sunny,mild normal false])

p([overcast,mild,normal false])

p([rain,cool,normal false])
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p([rain hot high false])
n([sunny,hot,high false])

n([sunny,cool,normal false])

Induction by using part of the AQ11 technique.

When data in a data file takes the form of examples rather than being dis-

tinguished as positive examples and negative examples, for example, like the

DATA33.DB file below, the Rule Induction by HCV submodule works in a
similar way to induction from dBASFES files: it first collects all the different
values the result attribute takes and then runs the HCV algorithm on each
different value by assuming that all examples not classified as positive are
negative.

/* file: DATA33.DB */

attributelist([“OUTLOOK”, “TEMPERATURE", “HUMIDITY”, “WINDY"])

result(“DECISION")

eg(“Don’t Play”, [rain,hot,high,true])

eg(“Don’t Play”, [rain,cool,normal,true])

eg(“Play”, [overcast,hot,high,true])

eg(“Play”, [overcast,mild,normal false])

eg(“Play”, [rain,hot high false])

eg(“Play”, [overcast,cool,normal true])

eg(“Don’t Play”, [sunny,hot,normal,true])

eg(“Don’t Play”, [sunny,mild high,true])

eg(“Play”, [sunny,mild normal false])

eg(“Play”, [overcast,mild,normal false])

eg(“Play”, [rain,cool,normal false])

eg(“Play”, [rain,hot high false])

eg(“Don’t Play”, [sunny,hot high false])
eg(“Don’t Play”, [sunny,cool,normal false])

The Rule Induction by HCV submodule produces five rules for examples in
DATA33.DB:
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if [ OUTLOOK=overcast ]| then [DECISION=Play],
if [ WINDY=false | & [ OUTLOOK=rain | then [DECISION=Play],
if [ TEMPERATURE=mild | & [ WINDY=false ] then [DECISION=Play],

if [ OUTLOOK=[sunny,rain] | & [ WINDY=true | then [DECISION=Don’t
Play], and

if [ OUTLOOK=sunny | & [ TEMPERATURE=][cool,hot] ] then [DECI-
SION=Don’t Play].

Meanwhile, the Rule Induction by I1D3 submodule is designed to work only
on the data in the form of positive examples and negative examples. We can, of
course, incorporate part of the AQ11 technique into ID3 and run it on each subset
of the examples which have the same value on the result attribute or field; the
inconvenience is that all the descriptions produced for negative examples at each
ID3’s run need to be thrown away. We can also extend the entropy measure in
ID3 to chunk examples into more than two classes. However, we have not yet
done these kinds of extensions in KEshell2. In those cases like DATA33.DB where
only two subsets exist, data files are supposed to be organised in the form of
DATA31.DB for ID3 and DATA33.DB for HCV. For the example set in Example
3-2, HCV produces five conjunctive rules as shown above for both Play and Don’t
Play as opposed to seven by ID3 (see Appendix A).

5.4 Conclusions

KFEshell2 has coupled machine learning techniques with both data base and
knowledge base technology. It is an intelligent learning data base system with
mechanisms for 1) translating dBASFE3 files into a form suitable to its rule induc-
tion engine, 2) using induction techniques to extract knowledge from data bases,

and 3) interpreting the knowledge produced to solve users’ problems.
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Chapter 6

Conclusions

As we have discussed in Section 2.6, knowledge acquisition from data bases is
an important research frontier for both machine learning and data base technology
[Wu 93b]. Although a lot of work has been done and some commercial packages
are available already, existing work has concentrated on the following four aspects:
1) building knowledge bases for expert systems, 2) designing various learning al-
gorithms; 3) adding an induction engine to an existing data base system in an ad
hoc way to implement rule induction from data bases; and 4) designing a specific
engine to learn from a domain-specific data set. The requirements [Quinlan 89b]
for knowledge acquisition from realistic data bases are still out of reach of exist-
ing systems. A crucial requirement is the time complexity of existing learning

algorithms, as realistic data bases are usually fairly large.

Along these lines, the author has recently been investigating highly efficient in-
duction algorithms [Wu 93a, Wu 93c]. The HCV algorithm described in Chapter
3 is a low-order polynomial induction algorithm. The target of finding low-order
polynomial algorithms has been met by HCV. Different from both ID3-like and
AQ11-like algorithms, HCV takes the little-known and inadequate extension ma-
trix approach and improves it to be competitive with the decision tree based and

the generalisation-specialisation based families of inductive algorithms.

HCV has been tested on several example sets including the famous MONK’s
problems outlined in Chapter 4. Experiments have shown empirically that the

rules produced by HCV in variable-valued logic are more compact than the decision
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trees produced by the ID3-like algorithms in terms of the numbers of conjunctive
rules and conjunctions. We can thus believe that the rules produced by HCV are

fairly good.

We have also shown in Chapter 5 that the HCV algorithm has been incor-
porated in the intelligent learning data base system, KFEshell2, to implement the
whole process of knowledge acquisition from data bases. By the whole process,
we mean an integrated data base and knowledge base system which can learn
from data bases is able to 1) translate conventional data base information into a
form suitable for use by the induction mechanisms, 2) use induction techniques
to produce knowledge from data bases, and 3) interpret the knowledge produced
to solve users’ problems efficiently. Although there are still some limitations on
the current KFshell2? for putting it into large applications due to it being imple-
mented on PC machines, all the functions and capacities shown in KFEshell2 have
demonstrated that the target of building practical intelligent data base systems to

extract knowledge from data bases is no longer difficult or elusive.

There are three directions for further work based on this thesis:

1. developing the capacities of the HCV algorithm to induct constructively,
structuredly, incrementally and in noisy (including missing-attribute-value)

environments;

2. taking the Prolog-based representation described in Appendix D as a con-
ceptual design tool to design advanced data base systems where semantic

information needs to be effectively processed; and

3. constructing practical intelligent data base systems by coupling the HCV
algorithm, the Prolog-based representation, domain background knowledge,

and existing data base and knowledge base technology.
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Appendix A

Converting a decision tree to

production rules

The decision tree generated by ID3 for the example set in Table A-1 is shown

in Figure A-1, which is equivalent to the following decision rules:

if OUTLOOK=overcast then Play;

if OUTLOOK=rain & WINDY=true then Don’t Play;

if OUTLOOK=rain & WINDY=false then Play;

if OUTLOOK=sunny& TEMPERATURFE = hot then Don’t Play;
if OUTLOOK=sunny& TEMPERATURFE = cool then Don’t Play;

if OUTLOOK=sunny& TEMPFERATURF = mild& HUMIDITY =normal
then Play; and

if OUTLOOK=sunny& TEMPERATURF = mild & HUMIDITY=high
then Don’t Play.

Here, no conditions in the conjunctive rules can be dropped.
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Table A—1: Cases of Play and Don’t Play (adapted from [Quinlan 86b])

ORDFER | OUTLOOK | TEMPERATURE | HUMIDITY | WINDY | DECISION
1 rain hot high true Don’t Play
2 rain cool normal true Don’t Play
3 overcast mild high true Play
4 overcast mild normal false Play
5 rain hot high false Play
6 overcast cool normal true Play
7 sunny hot normal true Don’t Play
8 sunny mild high true Don’t Play
9 sunny mild normal false Play
10 rain cool normal false Play
11 rain hot high false Play
12 sunny hot high false Don’t Play
13 sunny cool normal false Don’t Play
14 rain mild normal true Don’t Play
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OUTLOOK

sunny overcast rain
TEMPERATURE Play WINDY
hot cool mild true false
Don’t Play Don’t Play  HUMIDITY Don’t Play Play
normal high
Play Don’t Play

Figure A—1: A decision tree (by ID3) for Table A-1
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Appendix B

Three decision trees for the same

example set

For the example set in Table B-1, the decision trees produced by ID3 and the

new gain ratio heuristic mentioned in Section 2.4.8 are shown in Figure B-1 and

Figure B-2 respectively.

The rules correspond to the decision tree in Figure B-1 (the conditions in the

bold type style can be dropped):

< < <

X2=h

X2=a & X1=0

X2=c & X3=a Y

X2=c & X3=b & X1=0 Y
-

The T class.

X2=a & X1=1
X2=c & X3=c
X2=c & X3=b & X1=1

The F class.

The decision tree in Figure A-2 is equivalent to the following decision rules:

< < <

X1=1 & X2=b

X1=0 & X3=a

X1=0 & X3=b %

X1=0 & X3=c & X2=a Y
.

The T class.
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X1=1 & X2=a
X1=1 & X2=b
X1=0 & X3=c & X2=c

The F class.



Table B—1: Cases of T and F

X2 | X3 | X4 | CLASS

ORDER | X1

10
11
12
13
14
15
16
17
18
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X2

X3 X1
T

F X1 T

Figure B—1: A decision tree (by ID3) for Table B-1
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X1

X3 X2

Figure B—2: A decision tree (by the gain ratio heuristic) for Table B-1
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X1

X4 X2

Figure B—3: A briefer decision tree (by hand) for Table B-1

Meanwhile, Figure B-3 gives another tree made by hand, which correctly clas-

sifies the same example set and corresponds to the following decision rules.

X1=1 & X2=b X1=1 & X2=a
v X1=0 & X4=0 v o Xl=1 & X2=c¢
v X1=0 & X4=1 & X2=a vV X1=0 & X4=1 & X2=c
— —

The T class. The F class.

Figure B-3 is clearly smaller than both Figure B-1 and Figure B-2 in terms of
the numbers of leaves and nodes (including leaves) in decision trees or the numbers

of conjunctive rules and conjunctions in the equivalent rules to the decision trees.
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Appendix C

Results produced by HCV on the
MONK'’s problems

C.1 The M1 problem

124 examples in the training file (6 attributes).

Rules for the Non-M1 class:
The 1st conjunctive rule:
[ body _shape=[octagon,square] | A
[ jacket_color=[blue,green,yellow] | A
[ head_shape=[round] ]
— the Non-M1 class.
(Positive examples covered: 31)
The 2nd conjunctive rule:
[ head _shape=[square] | A
[ jacket_color=[blue,yellow,green] | A
[ body _shape=[octagon,round] |
— the Non-M1 class.

(Positive examples covered: 20)
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The 3rd conjunctive rule:
[ head_shape=[octagon] ] A
[ jacket_color=[blue,green,yellow] | A
[ body_shape=[square,round] |
— the Non-M1 class.
(Positive examples covered: 11)
Net cpu time for computing this class: 51.97 seconds.
Rules for the M1 class:
The 4th conjunctive rule:
[ body_shape=[round] | A
[ head_shape=[round] ]
— the M1 class.
(Positive examples covered: 10)
The 5th conjunctive rule:
[ jacket _color=[red] |
— the M1 class.
(Positive examples covered: 28)
The 6th conjunctive rule:
[ head_shape=[square] ] A
[ body_shape=[square] |
— the M1 class.
(Positive examples covered: 12)
The 7th conjunctive rule:

[ head_shape=[octagon] ] A
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[ body_shape=[octagon] |
— the M1 class.

(Positive examples covered: 12)

DEFAULT — the Non-M1 class.

(Positive examples covered: 62)

There are 432 test examples in the test example file.
432 examples have been correctly classified; while 0 were misclassified.
The accuracy of the rules produced by HCV on the test examples

is 100.0%.

C.2 The M2 problem

169 examples in the training file (6 attributes).

Rules for the M2 class:
The 1st conjunctive rule:

[ has_tie=[no] ] A

[ jacket_color=[yellow,blue] ] A

[ body_shape=[round] ] A

[ head_shape=[round] ] A

[ holding=[balloon, flag] |

— the M2 class.

(Positive examples covered: 2)

The 2nd conjunctive rule:

[ jacket_color=[blue,green,yellow] | A
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[ has_tie=[no] ] A
[ is_smiling=[yes] ] A
[ holding=[balloon. flag] ] A
[ head_shape=[round] ]
s the M2 class.
(Positive examples covered: 9)
The 3rd conjunctive rule:
[ body_shape=[octagon,square] ] A
[ is_smiling=[no] ] A
[ holding=[balloon. flag] ] A
[ jacket_color=[yellow,blue,green] | A
[ has_tie=[yes] | A
[ head_shape=[round] ]
s the M2 class.
(Positive examples covered: 5)
The 4th conjunctive rule:
[ body_shape=[octagon,square] ] A
[ is_smiling=[no] ] A
[ has_tie=[no] ] A
[ jacket_color=[red] ]
s the M2 class.
(Positive examples covered: 3)
The 5th conjunctive rule:

[ issmiling=[no] | A
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[ jacket_color=[yellow,green] | A
[ has_tie=[no] | A
[ holding=[sword] | A
[ body_shape=[round,octagon] ]
— the M2 class.
(Positive examples covered: 4)
The 6th conjunctive rule:
[ holding=[balloon,flag] | A
[ jacket_color=[blue,green,yellow] | A
[ has_tie=[no] | A
[ issmiling=[yes] | A
[ body_shape=[round] ]
— the M2 class.
(Positive examples covered: 8)
The 7th conjunctive rule:
[ holding=[flag] | A
[ issmiling=[no] | A
[ has_tie=[yes]| | A
[ jacket_color=[red,yellow] | A
[ body_shape=[square,round] | A
[ head_shape=[square] |
— the M2 class.
(Positive examples covered: 2)

The 8th conjunctive rule:
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[ head_shape=[octagon,square] | A
[ issmiling=[no] | A
[ has_tie=[no] | A
[ jacket _color=[red] |
— the M2 class.
(Positive examples covered: 2)
The 9th conjunctive rule:
[ head _shape=[square] | A
[ body _shape=[octagon,square] | A
[ jacket _color=[yellow,blue| | A
[ issmiling=[yes] | A
[ holding=[balloon,sword] |
— the M2 class.
(Positive examples covered: 4)
The 10th conjunctive rule:
[ head_shape=[octagon,square] | A
[ holding=[balloon,flag] | A
[ jacket _color=[yellow,green] | A
[ has_tie=[yes]| | A
s smiling=yes]
— the M2 class.
(Positive examples covered: 6)
The 11th conjunctive rule:

[ head_shape=[octagon,square] | A
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[ body _shape=[octagon,square] | A
[ issmiling=[no] | A
[ jacket_color=[green,yellow,blue] | A
[ has_tie=[yes]| | A
[ holding=[sword] ]
— the M2 class.
(Positive examples covered: 4)
The 12th conjunctive rule:
[ head_shape=[square] ] A
[ body _shape=[octagon,square] | A
[ holding=[balloon] | A
[ jacket _color=[red] |
— the M2 class.
(Positive examples covered: 2)
The 13th conjunctive rule:
[ head_shape=[octagon,square] | A
[ body_shape=[square,octagon] | A
[ has_tie=[no] | A
[ holding=[sword] | A
[ is_smiling=[yes] | A
[ jacket_color=[yellow,green] |
— the M2 class.
(Positive examples covered: 4)

The 14th conjunctive rule:
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[ head_shape=[octagon,square] | A
[ body_shape=[square,octagon] ] A
[ is_smiling=[no] ] A
[ holding=[balloon. flag] ] A
[ jacket_color=[red] ]
~ the M2 class.
(Positive examples covered: 5)
The 15th conjunctive rule:
[ has_tie=[no] ] A
[ holding=[sword] ] A
[ jacket_color=[blue] | A
[ body_shape=[round] ]
~ the M2 class.
(Positive examples covered: 1)
The 16th conjunctive rule:
[ has_tie=[yes] | A
[ body_shape=[round] ] A
[ jacket_color=[yellow] ] A
[ is_smiling=[no] ]
~ the M2 class.
(Positive examples covered: 2)
The 17th conjunctive rule:
[ head_shape=[octagon] ] A

[ body_shape=[square] | A
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[ holding=[flag] | A
[ jacket _color=[red] |
— the M2 class.

(Positive examples covered: 1)

Rules for the Non-M2 class:
The 18th conjunctive rule:
[ issmiling=[yes] | A
[ body_shape=[round] | A
[ head_shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 9)
The 19th conjunctive rule:
[ jacket_color=[green,red] | A
[ body_shape=[round] | A
[ head_shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 4)
The 20th conjunctive rule:
[ has_tie=[yes]| | A
[ body_shape=[octagon,round] | A
[ holding=[sword,flag] | A
[ head_shape=[round] ]
— the Non-M2 class.

(Positive examples covered: 6)
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The 21st conjunctive rule:
[ jacket_color=[blue,red] | A
[ holding=[flag,sword] | A
[ issmiling=[yes] | A
[ head_shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 4)
The 22nd conjunctive rule:
[ has_tie=[yes]| | A
[ issmiling=[yes] | A
[ head_shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 5)
The 23rd conjunctive rule:
[ jacket_color=[red] | A
[ is_smiling=[yes] | A
[ body_shape=[round,square] | A
[ head_shape=[square,round] ]
— the Non-M2 class.
(Positive examples covered: 4)
The 24th conjunctive rule:
[ holding=[sword] ] A
[ jacket_color=[blue,yellow] | A

[ head_shape=[round] ]
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— the Non-M2 class.
(Positive examples covered: 3)
The 25th conjunctive rule:
[ has_tie=[yes]| | A
[ jacket_color=[red] | A
[ head_shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 1)
The 26th conjunctive rule:
[ body_shape=[octagon,square| | A
[ is_smiling=[no] | A
[ has_tie=[no] | A
[ jacket_color=[yellow,blue,green] | A
[ holding=[flag,balloon] |
— the Non-M2 class.
(Positive examples covered: 15)
The 27th conjunctive rule:
[ holding=[sword] | A
[ is_smiling=[yes] | A
[ head_shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 1)
The 28th conjunctive rule:

[ holding=[sword] | A
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[ issmiling=[yes] | A
[ jacket_color=[green,yellow] | A
[ body_shape=[square,round] | A
[ head_shape=[square] ]
— the Non-M2 class.
(Positive examples covered: 3)
The 29th conjunctive rule:
[ has_tie=[yes]| | A
[ jacket_color=[green,red,blue] | A
[ body _shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 10)
The 30th conjunctive rule:
[ head _shape=[octagon,square] | A
[ issmiling=[no] | A
[ holding=[balloon,flag] | A
[ has_tie=[no] | A
[ jacket_color=[green,yellow,blue] |
— the Non-M2 class.
(Positive examples covered: 6)
The 31st conjunctive rule:
[ head_shape=[square] ] A
[ body_shape=[square] | A

[ jacket_color=[yellow,green] | A
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[ has_tie=[no] |
— the Non-M2 class.
(Positive examples covered: 3)
The 32nd conjunctive rule:
[ jacket_color=[red] | A
[ holding=[sword] ] A
[ has_tie=[yes] |
— the Non-M2 class.
(Positive examples covered: 5)
The 33rd conjunctive rule:
[ head_shape=[octagon,square] | A
[ body _shape=[octagon,square] | A
[ issmiling=[no] | A
[ has_tie=[no] | A
[ jacket_color=[green,yellow,blue] |
— the Non-M2 class.
(Positive examples covered: 4)
The 34th conjunctive rule:
[ head_shape=[octagon,square] | A
[ body _shape=[octagon,square] | A
[ issmiling=[no] | A
[ jacket _color=[yellow,green] | A
[ holding=[balloon,flag] |

— the Non-M2 class.
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(Positive examples covered: 8)
The 35th conjunctive rule:
[ head _shape=[octagon,square] | A
[ body_shape=[octagon] | A
[ jacket_color=[yellow,blue,red] | A
[ holding=[flag,sword] | A
s smiling=yes]
— the Non-M2 class.
(Positive examples covered: 4)
The 36th conjunctive rule:
[ head_shape=[octagon,square] | A
[ body_shape=[square,octagon] | A
[ has_tie=[no] | A
[ holding=[balloon,flag] | A
[ jacket_color=[green] |
— the Non-M2 class.
(Positive examples covered: 3)
The 37th conjunctive rule:
[ jacket_color=[red] | A
[ issmiling=[yes] | A
[ body _shape=[round] ]
— the Non-M2 class.
(Positive examples covered: 2)

The 38th conjunctive rule:
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[ head_shape=|octagon] ] A
[ jacket_color=[blue,red] ] A
[ holding=[balloon,sword] ] A
[ is_smiling=[yes] ]
— the Non-M2 class.
(Positive examples covered: 3)
The 39th conjunctive rule:
[ has_tie=[yes] ] A
[ holding=[sword] ] A
[ is_smiling=[yes] ]
— the Non-M2 class.

(Positive examples covered: 2)

DEFAULT — the Non-M2 class.

(Positive examples covered: 105)

There are 432 test examples in the test example file.
351 examples have been correctly classified; while 81 were misclassified.
The accuracy of the rules produced by HCV on the test examples

is 81.25%.

143



C.3 The M3 problem

122 examples in the training file (6 attributes).

Rules for the M3 class:
The 1st conjunctive rule:
[ jacket_color=[yellow,red] | A
[ body_shape=[square,round] | A
[ head_shape=[octagon,round] |
— the M3 class.
(Positive examples covered: 31)
The 2nd conjunctive rule:
[ holding=[balloon] | A
[ jacket_color=[green] | A
[ body_shape=[square,round] | A
[ head_shape=[octagon,round] |
— the M3 class.
(Positive examples covered: 4)
The 3rd conjunctive rule:
[ body_shape=[square] | A
[ holding=[sword] | A
[ jacket_color=[yellow,green] |
— the M3 class.
(Positive examples covered: 5)

The 4th conjunctive rule:
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[ head _shape=[octagon,square] | A
[ jacket_color=[green,yellow,red] | A
[ body _shape=[round] ]
— the M3 class.
(Positive examples covered: 10)
The 5th conjunctive rule:
[ jacket_color=[red] | A
[ body_shape=[square] |
— the M3 class.
(Positive examples covered: 3)
The 6th conjunctive rule:
[ jacket_color=[yellow] | A
[ body_shape=[square] | A
[ has_tie=[no] |
— the M3 class.
(Positive examples covered: 1)
The 7th conjunctive rule:
[ head _shape=[octagon,square] | A
[ jacket_color=[green] | A
[ holding=[flag] | A
[ body_shape=[square] |
— the M3 class.
(Positive examples covered: 3)

The 8th conjunctive rule:
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[ head_shape=|octagon,square] ] A
[ body_shape=|octagon] ] A
[ holding=[sword] ] A
[issmiling=[ves] ]

— the M3 class.

(Positive examples covered: 3)

Rules for the Non-M3 class:
The 9th conjunctive rule:
[ jacket_color=[blue,green] | A
[ holding=[flag,sword] | A
[ body_shape=[octagon,round] ] A
[ head_shape=[round] ]
— the Non-M3 class.
(Positive examples covered: 12)
The 10th conjunctive rule:
[ body _shape=[octagon,square] | A
[ holding=[balloon,flag] | A
[ jacket_color=[blue,green] | A
[ has_tie=[yes]| | A
[ head_shape=[round] ]
— the Non-M3 class.
(Positive examples covered: 4)
The 11th conjunctive rule:

[ body _shape=[octagon,square] | A
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[ jacket_color=[red,yellow,blue] | A
[ holding=[sword] ] A
[ head_shape=[round] ]
s the Non-M3 class.
(Positive examples covered: 5)
The 12th conjunctive rule:
[ holding=[balloon] ] A
[ is_smiling=[yes] ] A
[ body_shape=[round,octagon] | A
[ has_tie=[yes] |
s the Non-M3 class.
(Positive examples covered: 6)
The 13th conjunctive rule:
[ jacket_color=[blue] | A
[ head_shape=[square] |
s the Non-M3 class.
(Positive examples covered: 9)
The 14th conjunctive rule:
[ head_shape=[square] ] A
[ jacket_color=[green,yellow] | A
[ has_tie=[yes] | A
[ is_smiling=[yes] ] A
[ holding=[balloon, flag] |

— the Non-M3 class.
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(Positive examples covered: 3)

The 15th conjunctive rule:

[ head_shape=[octagon,square] | A

[ body _shape=[octagon,square] | A

[ holding=[flag,balloon] | A
[ jacket_color=[blue,green] | A
[ issmiling=[yes] | A
[ has_tie=[no] |
— the Non-M3 class.
(Positive examples covered: 3)
The 16th conjunctive rule:
[ body_shape=[octagon] | A
[ jacket_color=[yellow,red] ]
— the Non-M3 class.
(Positive examples covered: 11)
The 17th conjunctive rule:
[ body_shape=[octagon] | A
[ holding=[balloon,flag] |
— the Non-M3 class.
(Positive examples covered: 4)
The 18th conjunctive rule:
[ jacket_color=[blue] | A
[ body_shape=[square,round] |

— the Non-M3 class.
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(Positive examples covered: 5)

DEFAULT — the Non-M3 class.

(Positive examples covered: 62)

There are 432 test examples in the test example file.
390 examples have been correctly classified; while 42 were misclassified.
The accuracy of the rules produced by HCV on the test examples

s 90.277777TT7TT7779%.
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Appendix D

A representation for integrating

knowledge and data

D.1 Introduction

Although the history of data base systems research is one of exceptional produc-
tivity and startling economic impact, many advanced applications have revealed
deficiencies of the conventional data base management systems (DBMSs) in repre-
senting and processing complex objects and knowledge [Cattell et al. 91]. Object-
oriented approaches are currently very popular in processing structurally complex
objects while deductive data bases or logic data bases have been proposed as a
solution to those applications where both knowledge and data models are needed.
However, it has been characteristic of the current deductive data bases that only
actual data is represented explicitly in logic while the data schema is implicitly
described in the form of predicates. In this appendix, we present a Prolog-based
representation. It binds the actual data and data schema together in a natural
and flexible way. In addition to expressing all the information which can be rep-
resented in the entity-relationship (E-R) model, the representation can represent

other kinds of semantic information as well.

Based on the representation, an approach to generation of semantic networks
from relational data base schemata is described in this appendix. ML facilities
in an IDB system can be triggered by the relationships of causality and logical

implication types acquired in the approach.
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D.2 Motivations

Over the past twenty years data base research has evolved technologies that are
now widely used in almost every computing and scientific field. However, many
new advanced applications including computer-aided design (CAD), computer-
aided manufacturing (CAM), computer-aided software engineering (CASE), image
processing, and office automation (OA) have revealed that traditional DBMSs are

inadequate, especially on the following cases:

e Conventional data base technology has laid particular stress on dealing with
large amounts of persistent and highly structured data efficiently and using
transactions for concurrency control and recovery. For some applications like

CAD/CAM [Wu 92b] where the data schemata need to vary frequently, new

data models are needed.

e In some applications like geographical data and image data, the semantic
relationships among data need to be represented as well as the data itself.
Conventional data models in data base technology cannot support any rep-

resentation facility for complex semantic information.

e Traditional data base technology can only support facilities for processing
data. Along with the developments of other subjects, like decision science
and Al more and more applications need facilities for supporting both data

and knowledge management.

To widen the applicability of data base technology to these new kinds of ap-
plications, object-oriented data models have been proposed as the data models of
next-generation DBMSs [Cattell et al. 91] to handle more complex kinds of data
and objects and deductive data bases have been expected to support a solution to

process both knowledge and data models.

In object-oriented approaches, complex data structures (e.g. multimedia data)

can be defined in terms of objects. Data that might span many tuples in a re-
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lational DBMS can be represented and manipulated as a data object. Proce-
dures/operations as well as data types can be stored with a set of structural
built-in objects and those procedures can be used as methods to encapsulate ob-
ject semantics. Containment relationships between objects may be used to define
composite or complex objects from atomic objects. An object can be assigned
a unique identifier which is equivalent to a primary key in a relation. Relation-
ships between objects can also be represented more efficiently in object-oriented
data models by using a more convenient syntax than relational joins. Also, most
object-oriented DBMSs have type inheritance and version management as well as

most of the important features of conventional DBMSs.

Deductive data base systems provide knowledge management, supporting a
number of rules for automatic data inferring and management of integrity con-
straints between data. Rules in deductive data bases are also called intensional
data bases while the explicitly stored data are called extensional data bases (EDBs).
There are several different approaches [Draxler 91] to implement deductive data
base systems, such as integration and coupling on a physical or a logic level, but
their EDBs are mostly relational. As the relational data model and Prolog have
a common theoretical foundation [Zaniolo 86] and Prolog is a programming lan-
guage that contains within it the language of relations and can thus be used in a
very direct way to implement relational data bases, much of the research on both
deductive data base systems and even conventional relational DBMSs has been

implemented in Prolog [Li 84, Kazic et al. 90, Nieme et al. 91].

The normal way in existing deductive data base systems to model relational
data bases in Prolog is based on the following analogies: a relational tuple corre-
sponds to a fact in Prolog, the collection of tuples in a relation corresponds to the
facts with the same predicate name, and constraints and queries are represented

as Prolog rules. There are two disadvantages in this conventional approach:

o [t does not represent data schemata explicitly. Users must remember ex-
actly all structures of different fact collections when, e.g. defining relational

operations, which means it is impossible to manipulate relations by giving
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only relation names and field names. From the view of the DBA (data base

analyst), the management of larger applications also becomes more difficult.

o [t is inconvenient for data restructuring which presupposes the capability
to add, modify and remove schema components and causes corresponding

changes in the actual data.

One of the motivations of the representation described below is to represent re-
lational data bases in such a way that the above disadvantages of the conventional
approach can be eliminated. The other motivation is the insufficiency of the E-R
model, which is a widely adopted data abstract model for the conceptual structure
design of data bases, in expressing semantic information. The simple relationship
types in the E-R model, such as one to many (1:N) and many to many (M:N),
cannot describe well the different explicit semantic features of the relationships
among entities, still less the variations and developments of entities in function,
performance, structure, status and attributes etc. with time and external variables’
variations. The aim of the representation is to integrate knowledge and data in
such a natural way that all the information which can be represented in the E-R
model and other kinds of semantic information which cannot be described well in
the E-R model can both be easily expressed and that the semantic information
can be used to couple ML facilities with data base and knowledge base technology

in order to implement knowledge acquisition from data bases.

D.3 The representation

Our representation consists of two parts: the first part for relational data bases

and the second part for semantic information.

D.3.1 Representation for the relational model

There are two ways to represent relational tuples. One represents them as

labeled n-tuples and the other as ordered n-tuples. In the second, an n-tuple is
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usually represented in the form of (V4,...,V,,) where the values V1, ..., V,, appear in
the same order as their field names in the relation schema. As lists are a common
form of representation in Prolog where the relative positions of elements can be

taken as important, the representation below is based on the ordered n-tuples way.

The following is a BNF (Backus Normal form) notation for representing a

relational data base within our representation.

<Database> := <Relation>{, <Relation>}*

<Relation> := relation(<Relation Name><Field List>{<Tuples>}})

<Relation Name> := <Prolog Name>

<Field List> := <Field>{,<Field>}*

<Field> := <Field Name><Field Type>

<Field Name> := <Prolog Name>

<Field Type> := char|string|logical [integer|real|date

<Tuples> := <Tuple>{,<Tuple>}*

<Tuple> := <Element>{, <Element>}*

<Element> := char(Char)|string(String)|logical(Boolean)|
integer(Integer)|real(Real)|date(String)

<Prolog Name> := (any legal Prolog atom)

A relation generated by the above BNF notation has the structure of
relation(Relation Name, FieldList, Tuples) (D.1)

or

relation(Relation Name, FieldlList).

Each relation in a relational data base has a unique name, RelationName.
The predicate relation describes all the fields and possible tuples in the relation
RelationName. Fields in a relation are described by an ordered list, FieldList.
Their types are identified by the atoms char, string, logical, integer, real and

date, which denote the domain of single characters, character strings, truth-values,
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integers, real numbers and specific strings for date description. Each field can be

uniquely identified as

field(RelationName, FieldName, Type). (D.2)

The component Tuples in a relation supports a Prolog representation of rela-
tional tuples. It contains those tuples of which the relation value consists. In the
Tuples in a relation, the value of each field appears in the same position as the field
name in the field list. It is easy to define structural constraints which check that
each tuple confirms to the fields description in a relation and is uniquely defined.
This is the way our representation binds relational schemata and relational tuples.
In other words, the Tuples component describes the relational tuples, whereas the
components RelationName and FieldList belong to the relational data schemata.
All of RelationName, FieldList and Tuples are represented explicitly and can thus
be manipulated easily. Constraints between fields and dependency types in rela-

tionships will be represented in Section D.3.2.

It is convenient to define a predicate:
key field( Relation Name, K ey FieldList)

where KeylFieldlList := field{, field}* as the key fields of relation RelationName.
Since in some relational DBMSs (e.g. dBASE3), key fields are not explicitly de-

fined, we did not include the keyfield predicate in our representation.

D.3.2 Representation for more semantic information

The E-R model is one of the most successful methods of formulating useful ab-
stract models in the conceptual structure design of data bases and the key design
aid for conventional data bases implemented under a wide variety of commercially
available systems [Kazic et al. 90]. By focusing on the entities and their relation-
ships, it structures the way designers approach the problem of creating extensible
data bases. However, there are two substantial problems here. One is that trans-

forming an E-R model into a relational model during the logical design of data
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bases results in loss of some semantic information that exists in the E-R model. In
other words, the entities and relationships are not distinguished in the relational
data model. It is impossible for the relational data model to describe the changes
of relationship(s) and other entities caused by an entity in an E-R model. For
example, age is an important factor for counting an employee’s salary in many
British institutions. However, we cannot explicitly express whether the employee’s
salary will increase according to the change of his/her age in the relational data
model. The other problem is that the E-R model itself is insufficient in express-
ing complex semantic information as its relationship types, such as one to many
and many to many, are too simple to describe explicitly semantic features of the
relationships between entities and within entities themselves. For example, differ-
ent types of relationships, such as logical implication and conceptual inheritance,

cannot be expressed in the E-R model.

The E-R model and the relational data model are successful in those applica-
tions where only the ability to deal with large amounts of persistent and fixed-
format data efficiently is needed. For new applications, such as those mentioned in
the motivations, new representation models are in demand. Object-oriented data
models are a new generation of extended data models, based on the relational
data model. However, as we can see from their main features, briefly summarized
in Section D.2, object-oriented models are themselves data models although some
systems (e.g. POSTGRES [Cattell et al. 91]) have included rule processing facili-
ties. Data management, object management and knowledge management are three
different dimensions of problem solving techniques. They would all be needed in

some complex applications.

Knowledge management entails the ability to represent, acquire and enforce
a collection of expertise such as those which form part of the semantics of an
application. Such expertise describes integrity constraints among data in the ap-
plication as well as allowing the derivation of data which is usually called virtual
data contrasting to the real data stored in the data base(s). The task of knowledge

management is a key motivation of deductive data base research.

The representation described in this appendix is basically designed for the
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approach that generates semantic networks from relational data base schemata (see
Section D.5). Therefore, we have put an emphasis on representing the semantic
information which cannot be represented in the relational data model and the E-R

model.

Semantic information in the real world includes four different categories:

o descriptive knowledge about entities,
e inherent laws and constraints between attributes or fields in entities,

e relationships among entities which can be further divided into six types !, i.e.,
hierarchy, fellow member, attribute, role, causality and logical implication,

and

e dependency types in the relationships between entities.

The following are some predicates in our representation used to express seman-
tic information. The examples for those predicates will be mainly drawn from the

sample data base schemata in Figure D-1.

D.3.2.1 Distinguishing entities and relationships
FEach relationship (Relation) is distinguished with a predicate as

is — assoc( Relation). (D.3)

In Figure D-1, Dependant and Employee are two entities whereas Assignment

is a relationship indicating a manager monitors employees to work for a project.

'In order to give a more precise semantic classification, it is possible to divide one or
more of the relationship types here into greater detail. The completeness of a semantic
model can only be defined in terms of specific applications. We cannot say whether all
the relationships here are necessary for every application. Neither can we say they are

complete. However, as we can see from Figure D-1, they do exist in the real world.
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Clearly, each entity (Entity) satisfies the feature below:

entity(Entity) :-

relation(Entity,-,_), not(is-assoc(Entity)).

Each entity-relationship association is described with predicate assoc-entity
assoc — entity(Relation, EntityList, AssocTypeList) (D.4)

where AssocType € {1, N} denotes the nature of an entity is single or multiple

valued in an association.

For instance, relationship Assignment contains entities Employee, Manager and

Project.

Information about (D.3) and (D.4) can be found in the E-R model but it is

lost when the E-R model is transformed into the relational data model.

D.3.2.2 Identifying the semantic type of each relationship

There are examples of six types of relationships in Figure D-1:

e hierarchy which indicates conceptual inheritance: the relationships between

Employee and All Employee and between Home Address and Address,

o fellow member: the relationship between Home Address and Office Address,

o attribute: Labour and Budget are two attribute entities of entity Project,

o role: Employee Experience and Manager Experience are two role entities in

the Assignment relationship,

e causality: the Labour. Title of an employee in Employee Qualification may be
a reason for his/her Employee. Title assignment in relationship Assignment

and
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Figure D—1: Sample Data Base Schemata (Derived from [Su et al. 80])
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e logical implication: the Income.Fringe of an employee can be concluded
from his Project in Assignment, say (Employee No = 14, Project No = 4 —

Income.Fringe = 150), in the Assignment Income relationship.

The semantic type (AssocType) of each relationship (Relation) is identified by

assoc — type( Relation, AssocT ype). (D.5)

Different types of relationships have different 1) structural features in describ-
ing the formulation of the relationships, 2) semantic integrity constraints on data,
and 3) operational features or behaviour, such as insertion, deletion, comparison

and retrieval, on the data in the relationships [Su et al. 80].

D.3.2.3 Representing semantic labels in each relationship

Semantic labels are useful for processing natural-language like queries and firing

machine learning engines in intelligent data base systems.

For each type of relationship, there are different semantic labels to identify
different roles in the relationship. For example, in a causality relationship, there
are two kinds of labels, cause and effect. In a logical implication relationship, there
are also two kinds of labels, condition (¢f) and conclusion (then). A key entity in
a relationship can be given a key label to identify the relationship. For example,
if a Project needs a specific Assignment, we say the Project entity is a key entity

in the Assignment relationship.

Each entity’s semantic label in each relationship is identified by

label( Entity, Relation, Label). (D.6)

For example, in the Assignment Income relationship, we have the following
labels.

label( Project, Assignment Income, cause)

label(Income, AssignmentIncome, ef fect)
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D.3.2.4 Representing deductive knowledge

Knowledge about causality and logical implication is necessary for deductive
data bases to establish virtual data. In existing deductive systems, this is often
represented as production rules. As there are several disadvantages inherent in
conventional production rules, we represent deductive knowledge in the form of
“rule schema + rule body” [Wu 90,Wu 91] (see also Section 6.2). The Prolog

representation is thus

schema(Relation, Cause Entity List, Result Entity), (D.7)
body — left(Relation, No, CauseOr Result Entity, Attri, RelSym, Value), (D.8)
body — right(Relation, No, Result Entity, Attri, Value) (D.9)

where No is used to identify different parts of the same body, Attr: indicates an

attribute and RelSym denotes a conventional arithmetic or symbolic relation.
For the example given for the logical implication, we can express it as:
schema( AssignmentIncome, Project, Employee Record),
body — le ft(AssignmentIncome, 1, Project, Project_No,=,4),
body — le ft( AssignmentIncome, 1, EmployeeRecord, EmployeeNo, =, 14),

body — right(AssignmentIncome, 1, Employee Record, IncomeFringe, 150).

D.3.2.5 Representing constraints knowledge

Constraints are important in the relational data model. Three sorts of con-
straints have been classified and represented in our representation. The first is

about the integrity of attributes in each relation,
constraintl(Relation, Attribute, RelSym, Value). (D.10)

For example, in the Dependant relation, the AGFE attribute is supposed to be
always less than 120.

The second is the dependency type of each relationship, such as one-to-one

(which means a result entity tuple has a unique corresponding tuple of each cause
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entity, e.g. an Assignment tuple corresponds to a unique Project tuple), full (which
means all possible tuples of the result entity have their corresponding cause entitys’
tuples, e.g. each Assignment tuple must have its corresponding Project, Fxpense
and Employee tuples) or dual (each tuple of a result entity corresponds to a tuple
of each cause entity and vice versa, e.g. each Assignment tuple has its own Project

tuple and vice versa),

constraint2( Relation, MappingType). (D.11)

The third is the constraint relationship between an attribute in a relation and

outer variables,

constraint3( Relation, Attribute, OuterVariable List, ConstraintString).
(D.12)

See the example in Section D.3.2.6 where Year could be an outer variable of

Figure D-1.

Here, semantic constraints about relational data have also been explicitly ex-
pressed rather than being hidden in application programs. This feature of our

representation makes it easier to maintain and adapt application programs.

D.3.2.6 Representing regularities between attributes

These represent inherent regularities between attributes, for example, the time-
dependent function of an attribute, and the function or logical dependency rela-

tionship among the attributes,
function((Relation, Attribute), (Rel, Attri)+, Function) (D.13)

where (Rel, Attri)* indicates a list of relational attributes. For instance, if an
employee was born in 1950, his age can be computed by the following regular

knowledge.

function((Employee, Age), [(Time, Year)], Age = Year — 1950)
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D.4 Discussions

Predicates (D.1), (D.2), (D.3) and (D.5) above are homologous to the node de-
scriptions in domain semantic networks, while Predicates (D.4), (D.6) and (D.12)
homologous to directed arcs. Predicates (D.7), (D.8) and (D.9) are homologous
to reasoning networks in production systems and Predicates (D.10), (D.11) and
(D.13) may be used to define deep? knowledge of problem domains. It is still
difficult to adopt semantic networks to represent reasoning networks and deep
knowledge with the existing techniques. The above thirteen predicates have thus
formed a Prolog-based representation for complex applications where both knowl-
edge and data management is needed. Such a representation can represent any

information that can be expressed in the E-R model.

Also, the representation which consists of the thirteen basic predicates de-
scribes explicitly relational schemata as well as relational tuples, thus the disad-
vantages of the normal way to model relational data bases in Prolog discussed in

Section D.2 have been eliminated.

D.5 An approach to generation of semantic net-

works from relational data base schemata

Based on the Prolog-based representation above, an approach to generation
of semantic networks from relational data base schemata has been designed and
partly integrated into KFEshell2 (see Chapter 6) to couple ML facilities with data

base and knowledge base technology.

’In contrast to the shallow knowledge (which is directly used for problem solving) in
knowledge bases in expert systems, deep knowledge in problem domains can be used to

detect inconsistencies in shallow knowledge and data.
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The main idea of the approach is: first transform the static description of
descriptive data base schemainto an active knowledge description and then acquire

the semantic information lost in the relational data model and the E-R model.
The generation approach covers three steps.

Step 1: Generating predicate description (D.1) and (D.2) from relational schema

description.

Step 2: Identifying entities and relationships by using Predicates (D.3) and
(D.4)

Predicate (D.3) can be used to conduct the acquisition of Predicate (D.4) and
the semantic association types and the deductive knowledge in Step 3. Predicate
(D.4) can be used to conduct the acquisition of semantic labels in Step 3 and to

confine the consistency test of target data bases.
Step 3: Acquiring the information that cannot be described in the E-R model.

1) Identify the semantic type (predicate (D.5)) of each relationship and acquire
each entity’s semantic label (predicate (D.6)) in each relationship according to the

structural properties and operational features of each relationship type.
2) Acquire deductive knowledge.

For each causality relationship, first generate a rule schema (Predicate (D.7))
and then acquire the corresponding rule body of the rule schema in interactive

mode, its structure being Predicates (D.8) and (D.9).

For each logical implication relationship, first acquire a rule body and then

generate a corresponding rule schema.

3) Acquire constraints knowledge (Predicates (D.10), (D.11) and (D.12)).

4) Acquire the regular knowledge of the attributes themselves (predicate (D.13)).
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Appendix E

LFA: a linear forward chaining

algorithm

E.1 Domain reasoning networks

Based on the rule schema + rule body representation in Section 5.2.2, this

appendix describes a linear forward chaining algorithm, LFA [Wu 93d].

Definition E-1. A domain reasoning network is an AND/OR tree associated

with a knowledge base in rule schema + rule body by the following analogies:

1) Nodes in the tree correspond to factors in the knowledge base.

2) A rule schema [F Ey, ..., F, THEN A in the knowledge base corre-
sponds to the arcs, which indicates the hierarchy among factors, in

Figure E-1 in the tree.

and

E1l En
Figure E-1: A Rule Schema
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Figure E-2: The Domain Reasoning Network for Example 5-3

The domain reasoning network corresponding to the knowledge base in Exam-

ple 5-3 is shown in Figure E-2.

We can easily find some similarities between the nodes here in domain reasoning
networks and the features in the Rete-like discrimination networks [Lee et al. 92].
However, both the Rete-like discrimination networks and the decision trees used
in [Ghallab 81] only compile the LHSs of rules in a knowledge base and deal with
detailed attribute values while the domain reasoning networks compile both LHSs

and RHSs of rule schemas and have no specific attribute values involved.

Definition E.2. In a domain reasoning network, a top node is a goal which is

supposed to be a solution (e.g. a disease) to the problem domain, a terminal node
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is a user node whose possible data (e.g. a symptom) is supposed to be given by

users, and a middle node is a subgoal.

Definition E.3. A knowledge base in rule skeleton + rule body is in a partial
order means if Rule Schema # /N is if Factor-1, ..., Factor-n, then Factor
then all the rule schemata with Factor-1, ..., Factor-n as their conclusion

factors have rule-set ordinals smaller than N.

The LFA algorithm, which performs forward chaining on knowledge bases in
rule schema + rule body, comprises two major strategies: sorting the knowledge in
a knowledge base into a partial order according to the hierarchy among factors at
the end of knowledge acquisition or knowledge modification and using the renum-

bered knowledge in 2-phase “matching — action” cycles during problem solving.

E.2 Sorting knowledge in a knowledge base into

a partial order

The sorting process covers four steps.
(1) Find and remove dead cycles.

Definition E.4. A cycle in a domain reasoning network is a dead cycle if none
of the nodes involved in the cycle are terminal nodes in the domain reasoning
network, which means that their evidence is not supposed to be given by users,

and there is no other rule schema whose conclusion factor is one of them.

Example E-1. The cycle “A5 — A3 — A; — As” in Figure E-3 is a dead

one.

A dead cycle in a domain reasoning network is an error in the corresponding
knowledge base because none of the factors involved can be computed during

problem solving.

(2) Renumber all the rule schemata whose premise factors are all terminal

nodes in the domain reasoning network. For any factor F, if all the schemata with
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it as their conclusion factor have been renumbered, it is treated as a terminal node
for further renumbering. If all the rule schemata in a knowledge base have been

renumbered, goto (4).
(3) Resolve a live cycle and goto (2).

Definition E.5. A cycle is called a live cycle when there is such a F in the
cycle, called a live node, that is either a terminal node or is a conclusion factor of

a rule schema IF Fq,..., F, THEN F and none of Ky, ..., E, are involved in any

dead cycles.

Example E-2. The cycle “Bg — By — By — Bg” in Figure 6-3 is a live one

and B, is a live node in the cycle.

A live cycle can be resolved by treating one of its live nodes as a terminal node

for further renumbering.
(4) Stop.

For instance, a partial order for the knowledge base in Example 5-3 is as follows.

old ordinal new ordinal
43 #1
#4 #2
#2 #3
#5 #4
#6 #5
#1 #6

For those problems which can be represented in the rule schema + rule body
language, the sorting process above is always feasible if all possible dead cycles
can be removed by domain experts. However, for other problems which require
dynamic creation of nodes in their reasoning networks, neither the rule schema +

rule body language nor the sorting process will be well suited.
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E.3 Linear forward chaining

After knowledge sorting, the process for forward inference is designed as follows.

for the first renumbered schema to the last one in the knowledge base do
if there exists data in the working memory for each of the
premise factors of the schema
then fire the corresponding rule body of the schema

next schema

We can easily prove that the time complexity of the above algorithm is O(n)

where n is the number of rule sets.

Consider Rule Schema #N.
Rule Schema #N: If Factor-1, ..., Factor-n then Factor

When N = 1, all the Factor-i’s (¢ = 1,...,n) must be terminal nodes in the
domain reasoning network and their possible data are supposed to be given by users
before forward inference starts. So it is clear at the start of inference whether
or not Rule Schema #1 is successful in matching the working memory. When
N = 2, there are two possible cases. One is that all the Factor-i’s are terminal
nodes, this case is similar to NV = 1. The other is that there exists some Factor-
J(5 € [1,n]) which is not a terminal node. In the latter case, the Factor-j must
be the conclusion factor of Rule Schema #1. So after the matching and possible
action of Rule Set #1, whether Rule Schema #2 is successful in matching the
working memory and whether its corresponding body is able to be operated are
clear. When N = K > 2, there are two possible cases similar to N = 2. The
first case is that all the Factor-i’s are terminal nodes, which is similar to N = 1.
The second is that there exists one or more Factor-j(s) as non-terminal node(s).
From the sorting process of above, each possible non-terminal node Factor-j must

be the conclusion of one or more Rule Schema #1, ..., Rule Schema #(K — 1).
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When it is time to match Rule Schema #K, whether each Factor-: has evidence
and their possible evidence are known already. Therefore, whether Rule Schema
# K is successful in matching the working memory and whether its corresponding
rule body is able to be operated are clear then. As soon as the matching of a rule
schema is successful, which means there exist data for all of its premise factors,

operate the corresponding rule body to produce new data of its conclusion.

From the analysis above, we can see that the most significant feature of the LFA
algorithm is that it can properly choose one rule set from the sorted knowledge

base at each cycle without any specific conflict resolution.

E.4 Restrictions on LFA

There are two restrictions on the LFA algorithm: static inference, which means
the knowledge in a sorted knowledge base cannot be changed by either users or
the system itself during inference, and collecting all possible evidence at the start
of inference to give all possible solutions. Data once acquired cannot be changed
by users. When problems require dynamic creation of nodes in their reasoning
networks or external modification of rules and data during inference, or their
initial evidence is not available at the start of inference, the algorithm is not well

suited.
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Appendix F

An example run of SIKT in KEshell

The following records the dialogue between an expert and the SIKT module in

KFEshell to build the knowledge base in Example 5-3 in Chapter 5.

The sentences with K: at the beginning are generated by SIKT and those with

M: are input of the expert. Words between /* and */ are explanatory notes.

K: Give all the goals (i.e. the top nodes in your domain reasoning network):
M: Assessment

K: Define the domain type of Assessment: (1:Logical True/False;2:A Finite Set; 3:A Real)

K: Give all the factors which can determine Assessment in the 1st method:
M: Object_1, Object_2, Object_3

K: Any other method to determine Assessment? (Y|N)

M: N

K: Define the domain type of Object_1: (1:Logical True/False;2:A Finite Set;3:A Real)

K: Are users expected to provide data for Object_1? (Y|N)

M: N

K: Give all the factors which can determine Object_1 in the 1st method:
M: X1, X2, X3

K: Any other method to determine Object_1? (Y|N)

M: N
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K: Define the domain type of X1: (1:Logical True/False;2:A Finite Set;3:A Real)

K: Are users expected to provide data for X1?7 (Y|N)
M:Y

K: Define the domain type of X2: (1:Logical True/False;2:A Finite Set;3:A Real)

K: Are users expected to provide data for X2?7 (Y|N)
M:Y

K: Define the domain type of X3: (1:Logical True/False;2:A Finite Set;3:A Real)

K: Are users expected to provide data for X3? (Y|N)

M: N

K: Give all the factors which can define X3 in the 1st method:

M: X31, X32

K: Any other method to determine X3? (Y|N)

M:Y

K: Give all the factors which can determine X3 in the 2nd method:
M: X33, X34, X35

K: Any other method to determine X3? (Y|N)

M: N

K: Define the domain type of X33: (1:Logical True/False;2:A Finite Set;3:A Real)

K: Are users expected to provide data for X337 (Y|N)

M:Y

... /* the same way as above to transfer information about X34, X35, X31

and X32 */

K: Define the domain type of Object_2: (1:Logical True/False;2:A Finite Set;3:A Real)
M: 2

K: Give its domain:

M: A, B, C

K: Are users expected to provide data for Object_2? (Y|N)
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: N

: Give all the factors which can determine Object_2 in the 1st method:
:Y1,Y2,Y3

: Any other method to determine Object_2?7 (Y|N)

: N

: Define the domain type of Y1: (1:Logical True/False;2:A Finite Set;3:A Real)

: Give its domain:

A, B, C

: Are users expected to provide data for Y17 (Y|N)

:Y

. /* the same way as above to transfer information about Y2 and Y3 */

: Define the domain type of Object_3: (1:Logical True/False;2:A Finite Set;3:A Real)

: Are users expected to provide data for Object_3? (Y|N)

: N

: Give all the factors which can determine Object_3 in the 1st method:
. X35, 71, 72

: Any other method to determine Object_3? (Y|N)

: N

: Define the domain type of Z1: (1:Logical True/False;2:A Finite Set;3:A Real)

: Are users expected to provide data for Z17 (Y|N)

:Y

. /* the same way as above to transfer information about Z2 */

: OK. All the rule schemata you have input are:

: Schema #1: IF Object1, Object_2, Object_-3 THEN Assessment
: Schema #2: IF X1, X2, X3 THEN Object_1

: Schema #3: IF X31, X32 THEN X3

: Schema #4: IF X33, X34, X35 THEN X3

: Schema #5: IF Y1, Y2, Y3 THEN Object2
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: Schema #6: IF X35, Z1, Z2 THEN Object_3

: No evident inconsistencies have been found in those rule schemata.

: Now, please give your detailed computing and/or inference rules corresponding
: to the aforesaid methods:

: The 1st rule schema is: IF Object_1, Object_2, Object_.3 THEN Assessment

: Give your concrete rules to determine the value/CF of Assessment:

: (Each rule in a line (i.e. ending with a <RETURN>) and A SPACE LINE at the end!)
: IF Object_1>85, Object_2=A, CF(Object_3)>0.7 THEN Assessment=A

: — The (1,1) rule accepted.

: IF Object_1>85, Object_2=100 THEN Assessment=B

: — There are errors in *** Object_2=100 THEN Assessment=B ***!

: Rewrite the whole rule:

: IF Object_1>85, Object 2=A THEN Assessment=B

: — The (1,2) rule accepted.

: IF CF(Object_3)>0.5, Object_1>60, Object_2<>C THEN Assessment=B

: — The (1,3) rule accepted.

: Assessment=C

: — The (1,4) rule accepted.

. /* The same way as above to receive other rules in Rule Set #1. */

: — The (1,6) rule accepted.

/* an empty line */
: The 2nd rule schema is: TF X1, X2, X3 THEN Object_1
: Give your concrete rules to determine the value/CF of Object_1:
: (Each rule in a line (i.e. ending with a <RETURN>) and A SPACE LINE at the end!)
. /* The same way as above to receive the rules in Rule Bodies #2 — 6. */
: Thank you. A knowledge base has been basically set up according to your input.
: No evident inconsistencies have been found in the knowledge base.
: Do you want to check or modify it? (Y|N)
:Y

: Choose one of the options in the following window:
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: A: add a rule schema; D: delete a rule schema;

: C: change a rule schema; L: list all the schemata;
: B: adapt rules in a rule set; Q: quit.

: B

: Which rule set? (Give the ordinal)

: All the rules in the 6th rule body are:
: IF X35>75 THEN CF(Object3)=(CF(Z1)+CF(Z2)-CF(Z1)CF(Z2))/2
: IF THEN CF(Object_3)=(CF(Z1)+CF(Z2))/(1-min{CF(Z1),CF(Z2)})
: No more rules.
: Choose one of the options in the following window:
The contents in the former window will be covered by the following contents. */
: A: append specific rules; D: delete a specific rule;
: C: change a specific rule; L: list all the rules in the rule set;
: Q: quit
1 Q
The former window is recovered now. */
1 Q
: OK. Try to sort the knowledge base into a partial order now ...

: Sorting is successful. The new ordinals are:

#3 > #1
#4 > #2
#2 > #3
#5 > #4
#6 > #5
#1 > #6
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