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AbstractKnowledge acquisition from data bases is a research frontier for both database technology and machine learning (ML) techniques, and has seen sustainedresearch over recent years. It also acts as a link between the two �elds, thuso�ering a dual bene�t. Firstly, since data base technology has already found wideapplication in many �elds, ML research obviously stands to gain from this greaterexposure and established technological foundation. Secondly, ML techniques canaugment the ability of existing data base systems to represent, acquire, and processa collection of expertise such as those which form part of the semantics of manyadvanced applications (e.g. CAD/CAM). The major contribution of this thesis isthe introduction of an e�cient induction algorithm to facilitate the acquisition ofsuch knowledge from data bases.There are three typical families of inductive algorithms: the generalisation-specialisation based AQ11-like family, the decision tree based ID3-like family, andthe extension matrix based family. A heuristic induction algorithm, HCV, basedon the newly-developed extension matrix approach is described in this thesis. Bydividing the positive examples (PE) of a speci�c class in a given example set intointersecting groups and adopting a set of strategies to �nd a heuristic conjunctiverule in each group which covers all the group's positive examples and none of thenegative examples (NE), HCV can �nd rules in the form of variable-valued logicfor PE against NE in low-order polynomial time. The rules generated in HCVare shown empirically to be more compact than the rules produced by AQ11-likealgorithms and the decision trees produced by the ID3-like algorithms.KEshell2, an intelligent learning data base system, which makes use of theHCV algorithm and couples ML techniques with data base and knowledge basetechnology, is also described.
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Chapter 1Introduction1.1 Problem and DomainArti�cial intelligence (AI) is a subject concerned with the problem of how tomake machines perform tasks, like vision, planning and diagnosis, that usuallyneed human intelligence. Machine learning (ML) research in AI is concerned withthe problem of how machines can acquire the knowledge that might enable themto perform those tasks. Along with the recognition of the so called knowledge bot-tleneck problem [Feigenbaum 81] in transforming knowledge from human expertsto knowledge-based systems, ML research has been expanding rapidly in recentyears.Research on ML has concentrated in the main on inducing rules from un-ordered sets of examples, especially attribute-based induction, an inductive for-malism where examples are described in terms of a �xed collection of attributes.Learning from examples has been seen [Michie 87, Quinlan 88a] as a feasible wayof avoiding the knowledge bottleneck problem. While it is often di�cult for anexpert to articulate his expertise explicitly and clearly, it is usually relatively easyto document case studies of his skill at work. Learning from examples is also abasis of other learning strategies, such as learning by observation and learningby discovery. The learning systems in commercial use today are almost exclu-sively inductive ones. The two most widespread families of learning algorithmsto date are ID3-like family and AQ11-like family, both being attribute-based. Incontrast to the credit assignment and the generate-and-test process in genetic al-gorithms [Carbonell 90] and numerical activity vectors in connectionist methods1



[Dayho� 90], attribute-based learning has concentrated on symbolic and heuristiccomputations. These relate to models that operate at the levels of symbols andoperations that manipulate symbolic expressions with an emphasis on heuristicrather than computationally explosive optimization strategies. No explicit creditassignment strategies are necessary in the attribute-based induction paradigm.However, despite some commercial success with existing learning systems, thereare limitations to both ID3-like and AQ11-like algorithms for both research andapplications. Although a lot of work has been done on the basic ID3 and AQ11algorithms, as we will analyse in detail in Chapter 2, each of the improvementshas also caused new problems. The motivation of this thesis is to take a little-known and inadequate approach (the newly-developed extension matrix approach[Hong 85]), improve it to be competitive with ID3-like and AQ11-like algorithmsand do an empirical study of its properties. The principal contribution of thisthesis is to describe a heuristic induction algorithm, HCV, based on the extensionmatrix approach. By dividing the positive examples (PE) of a speci�c conceptor class in a given example set into intersecting groups and adopting a set ofstrategies to �nd a heuristic conjunctive formula in each group which covers allthe group's positive examples and none of the negative examples (NE), HCV can�nd a covering formula in the form of a variable-valued logic for PE against NEin low-order polynomial time. A comparison of HCV with the ID3-like algorithmsand the AQ11-like algorithms is also made with examples.Based on the HCV algorithm, an intelligent learning data base system, KEshell2[Wu 92c], which couples ML techniques with data base and knowledge base tech-nology to implement automatic knowledge acquisition from data bases, is alsodeveloped.
2



1.2 Outline of the ThesisThis thesis is organised as follows.Chapter 2 provides a review of the current inductive learning research [Wu93b]. It �rst summarizes the three typical families of inductive algorithms, theAQ11-like, ID3-like and the extension matrix approach based algorithms, withtheir main features and recent development being analysed; and then reviews themain theme of this thesis, knowledge acquisition from data bases.Chapter 3 and Chapter 4 describe the major research contribution of this thesis.In Chapter 3, the HCV algorithm [Wu 92a, Wu 93a] based on the extension matrixapproach is designed in detail. It starts with a simple example of attribute-basedlearning. The strategies adopted in HCV are described and analysed afterwardsand a comparison between the algorithm with ID3 is made �nally. Chapter 4provides a performance comparison of HCV with other algorithms, such as ID3,ID5R, ASSISTANT, AQR and CN2, in terms of rule compactness and accuracyon the three famous classi�cation problems, the MONK's problems.Chapter 5 presents an intelligent learning data base system, KEshell2, whichis an improved version of KEshell [Wu 90, Wu 91] with the HCV algorithm abovebeing coupled with data base and knowledge base technology to implement auto-matic knowledge acquisition from relational data bases. This chapter �rst gives anintroduction to the techniques developed in KEshell and then presents KEshell2with examples.
3



1.3 Digest of Conclusions1. The development of the HCV algorithm provides a reasonable solution to theNP-hard problem in the extension matrix approach for inductive learning.As its time is low-order polynomial, HCV can be seen as one of the fastestlearning algorithms to date.2. The rules in variable-valued logic generated in HCV are shown empirically tobe more compact in the term of the number of conjunctive rules than boththe decision trees or their equivalent decision rules produced by the ID3-likealgorithms and the rules produced by the AQ11-like algorithms although wehave not yet theoretical proof.3. An important result which is clearly highlighted by this thesis is that thegoal of creating practical intelligent learning data base systems to implementautomatic knowledge acquisition from data bases is no longer di�cult orelusive.

4



Chapter 2Review of Inductive Learning2.1 IntroductionAQ11 and ID3 are the two most widespread algorithms in machine learning.They are respectively representatives of the generalisation-specialisation strategybased and the decision tree method based families of inductive algorithms. How-ever, a new family of inductive algorithms (AE1 et al.) based on the extensionmatrix approach has been proposed recently. Although this approach is littleknown to the machine learning community due to its own inadequacy, we will�nd in Chapter 3 and Chapter 4 that it can be improved to compete with otherlearning methods.This chapter �rst summarizes AQ11, ID3 and the extension matrix approachand then reviews the main theme of this thesis, knowledge acquisition from databases.2.2 AQ112.2.1 Developers and backgroundAQ11 [Michalski et al. 78] is a \bottom-up" algorithm designed by Michalski etal. It shares the basic generalisation-specialisation strategy with Winston's ARCHprogram [Winston 70] and Mitchell's candidate elimination algorithm [Mitchell 77,Mitchell 78]. 5



Winston's work on concept learning was performed on his ARCH program. Hedescribed a mechanism which learned concepts by looking for relationships be-tween semantic network representations of block world con�gurations. Two pro-cesses were particularly important in his formulation: 1) �nding and exploitingcommonalities among structural descriptions for the same type of con�guration;and 2) �nding signi�cant di�erences between positive examples and negative exam-ples. The two processes correspond to the present terminology generalisation andspecialisation. His ARCH program e�ectively generalised the representation soas to cover all the positive examples and specialised it so as to exclude all the neg-ative ones. If examples were presented incrementally, then a new positive exampletriggered generalisation and a new negative example triggered specialisation.In 1977, Mitchell described a method, called \candidate elimination", which issimilar to Winston's method in the sense that it is based on generalisation andspecialisation but di�erent in the way in which it explores the solution (or hypoth-esis) space. In Winston's ARCH program, hypotheses were generated and testedone by one, while in Mitchell's method, hypotheses are systematically deleted froma representation of the entire hypothesis space as they are found to be unsatisfac-tory. The novel feature of Mitchell's method was the way in which it allowed thehypothesis space to be e�ciently represented as a version space.The aim of Mitchell's method is to ensure that, at all times, the version spacecontains the complete set of satisfactory representations. A simpli�ed descrip-tion of the candidate elimination algorithm is as follows. A generalised notion,called the description identi�cation, of the version space method is described in[Mellish 91].Procedure Candidate EliminationS1: Initialise the version space.S2: Set G to be the set of most general representations.S3: Set S to be the set of most specific representations.S4: For each new training example do6



S41: If it is positive then update S so as to ensurethat it still contains the set of maximallyspecific, satisfactory representations.S42: If it is negative then update G so as to ensurethat it still contains the complete set of maxi-mally general, satisfactory representations.S43: If G=S then exit.Return.AQ11 was a more sophisticated variant of the basic generalisation-specialisationmethod which could be used to generate representations for a classi�cation func-tion, i.e., a target mapping with more than one output and more than two inputgroups.2.2.2 Algorithm descriptionThe input of AQ11 took the form of a set of (attribute; value) pairs, which iswhy it was claimed to be the earliest attribute-based algorithm. The target outputwas the classi�cation for the input. The representations produced for the target7



mapping were rules written in an extended logic notation, called variable-valuedlogic1 [Michalski 75], one rule for each distinct concept2.Suppose the training set is subdivided into n subsets with each subset contain-ing the inputs which should evoke a particular output, AQ11 works as follows.For each subset doS1: Convert all the examples in the subset into positiveexamples.S2: Convert all the other examples into negative examplesand use previously generated rules as dummy negativeexamples.S3: Apply generalisation-specialisation and a set ofheuristic strategies [Hong 89a] to the training examplesso produced.1The variable-valued logic developed by Michalski is a calculus for representing de-cision problems where decision variables can take on some range of values. Its principalsyntactic entity is a selector with the general form[X#R] (2.1)where X is a variable or attribute, # is a relational operator (such as =; 6=; <;>;�; and�), and R, called a reference, is a list of one or more values that X could take on. Awell-formed rule in the logic is similar to a production rule but with selectors as thebasic components of both its left-hand and right-hand sides.2In PLANT/ds [Michalski et al. 80] where AQ11 has been �rst successfully applied,for example, a concept is one of the �fteen soybean diseases.8



2.2.3 ApplicationAQ11 is known for succeeding in automatic construction of the knowledge basein the expert system PLANT/ds [Michalski et al. 80]. It was the successful appli-cation of AQ11 on soybean diagnosis that provided the �rst clear demonstrationof the application potential of ML techniques.In the soybean experiment, the inputs were descriptions of diseased soybeanplants and the target outputs were the names of diseases. A striking result of theexperiment was the fact that the rules derived by AQ11 actually out-performedhuman experts3. The inductively derived rules achieved 100% correct diagnoseswhile rules derived from experts achieved only 96.2% correctness.The experiment showed that the basic generalisation-specialisation methodcould be used to generate representations for a classi�cation function. This cleardemonstration of the power of ML techniques helped to establish ML as a majorsub�eld of AI with serious, practical applications. It demonstrated the way inwhich ML could be used to solve realistic problems.2.2.4 Advantages and disadvantagesThe main advantage of AQ11 is that it will make sure that the maximallygeneral representations do not cover any negative representations. In other words,it will make sure that the general boundary does not overlap any preciously con-structed general boundaries. However, there are various problems with AQ11.First, as we can see from its Step 2, it is only possible when rules are of thesame syntactic form as examples.Second, the rules produced by AQ11 will vary depending on the order in whichthe training subsets are presented. In general, the �rst rule induced will be moregeneral than the ones produced later.3Although AQ11 produced rather large and unwieldy rules while the rules derivedfrom the experts tended to be much shorter.9



Third, the AQ11 algorithm is computationally more expensive in both the costof rule production and the complexity of rules produced than ID3, although therules produced in AQ11 in the form of variable-valued logic are said to be morecomprehensible [O'Rorke 82].Finally, another drawback of the AQ11 algorithm is that being bottom-up innature it is prone to disruption by noisy data where an example turns up in morethan one subset.2.3 ID32.3.1 Developer and backgroundID3 [Quinlan 79] is a \top-down" algorithm developed by Quinlan out of theConcept Learning System (CLS) by Hunt [Hunt et al. 66].CLS is a learning mechanism which accepts a set of training pairs and con-structs a representation in the form of a decision tree, which is equivalent to adisjunctive rule. The decision tree is structured so that each leaf node has a targetoutput associated with it. An arbitrary input is processed by simply applyingthe tree to the input (i.e. propagating the input down through the tree). Thisproduces a leaf node which in turn yields the target output.Main steps in the CLS algorithm can be described as follows.S1: T the whole training set.Create a T node.S2: If all examples in T are positive, create a `yes' nodewith T as its parent and stop.S3: If all examples in T are negative, create a `no' nodewith T as its parent and stop.10



S4: Select an attribute X with values v1; :::; vN and partitionT into subsets T1; :::; TN according to their values on X.Create N Ti nodes (i = 1; :::; N) with T as their parentand X = vi as the label of the branch from T to Ti.S5: For each Ti do: T  Ti and goto S2.2.3.2 Algorithm descriptionQuinlan modi�ed the CLS algorithm in two ways.First, he added a process known as windowing. This was designed to enablethe algorithm to cope with very large training sets.If the training set is very large then, rather than process the entire set inone, it may be more e�cient to process a small sample �rst. If the sample is arepresentative of the complete set, the decision tree produced will be similar tothe one which we would get by processing the entire training set. Once we haveproduced a tentative tree we can then gradually perfect it. To do this we simplysearch through the training set looking for any (input, output) pairs which are notproperly represented and each time we �nd such an exception we modify the treeappropriately. However, in recent work, windowing does not feature very strongly.Some evidence [Wirth et al. 88] suggests that windowing typically provides verylittle bene�t.Second, and more importantly, Quinlan devised an information theoretic heuris-tic (the entropy measure) which decided how to split the inputs at each stage ofthe tree growing process thus enabling smaller and therefore more e�cient decisiontrees to be constructed.ID3 works as follows.Suppose T = PE [ NE where PE is the set of positive examples and NEis the set of negative examples, p =jPEj and n =jNE j. An example e will bedetermined to belong to PE with probability p=(p + n) and NE with probability11



n=(p + n). By employing the information theoretic heuristic, a decision tree isconsidered as a source of message, \PE" or \NE", with the expected informationneeded to generate this message, given byI(p; n) = 8><>: � pp+n log2 pp+n � np+n log2 np+n when p 6= 0 & n 6= 00 otherwise: (2.2)If attribute X with value domain fv1; :::; vNg is used for the root of the decisiontree, it will partition T into fT1; :::; TNg where Ti contains those examples in T thathave value vi of X. Let Ti contain pi examples of PE and ni of NE. The expectedinformation required for the subtree for Ti is I(pi; ni). The expected informationrequired for the tree with X as root, EI(X), is then obtained as weighted average.EI(X) = NXi=1 pi + nip + n I(pi; ni) (2.3)where the weight for the i-th branch is the proportion of the examples in T thatbelong to Ti. The information gained by branching on X, G(X), is thereforeG(X) = I(p; n)� EI(X): (2.4)ID3 examines all candidate attributes, chooses X to maximizeG(X), constructsthe tree, and then uses the same process recursively to construct decision trees forresidual subsets T1; :::; TN. For each Ti (i = 1; :::; N): if all the examples in Ti arepositive, create a `yes' node and halt; if all the examples in Ti are negative, createa `no' node and halt; otherwise select another attribute in the same way as above.2.3.3 ApplicationID3 has been shown [O'Rorke 82] to be computationally cheaper in both thecost of rule production and the complexity of rules produced than the AQ11 algo-rithm although the rules produced by AQ11 are said to be more comprehensiblethan the decision tree representation used in the ID3-like algorithms. The decisiontree method based family of algorithms, also called divide-and-conquer methods[Quinlan 91], have been incorporated into a number of commercial systems includ-ing 1st Class, ACLS, Expert-Ease, ExTran and RuleMaster.12



2.3.4 Advantages and disadvantagesOne of the great advantages of the ID3 method is the fact that it does notrequire users to specify background knowledge in the form of, say, generalisationhierarchies4. This means that ID3 can be applied to any syntactically well-formedtraining set. This, together with the high performance of the algorithm, hasenabled ID3 to form the central component in several commercial packages.Like AQ11, ID3 has some limitations:First, its decision tree representation is less convenient for manipulations thanthe variable-valued logic in AQ11 and production rules when a single decision treeis not su�cient to represent all the expertise of a domain. In this case, a numberof decision trees of the domain need to be converted into decision rules before theycan be used by a rule-based system. Although the conversion of decision treesto rules is not very di�cult if we do not try to simplify the rules produced (seeSection 2.4.6), the rules transformed from decision trees are still too simple toexpress things like memberships. Of course, for those domains where a decisiontree is su�cient to express the expertise, we can use the decision tree directly bydesigning a non-rule-based problem solver.Second, once an attribute is selected, all arcs labeled by values that attributetakes must be expanded. This can make resulting paths longer than those actuallyneeded because, by the time speci�c concepts (leaves on the decision tree) aredeveloped, irrelevant variables may have been introduced.Third, the number of branches (paths) might still be large since at each arc,only one value can be labeled.4N�u~nez argued that for this reason, most of the time the ID3 family of algorithmsare neither logical nor understandable to experts and he made some improvements (i.e.,executing di�erent types of generalisation and reducing the classi�cation cost) on ID3in his algorithm by means of background knowledge in [N�u~nez 91].13



Finally, although the information theoretic heuristic can usually generate e�-cient decision trees, ID3 is still heuristic, which means it is not guaranteed to �ndthe simplest decision tree that characterizes the given training instances becausethe information theoretic heuristic is by no means complete, and su�ers from ex-cessive complexity [Utgo� 89] and is therefore usually incomprehensible to expertssince it needs to examine all candidate attributes to choose one at each non-leafnode.2.4 Recent Development of AQ11 and ID32.4.1 IntroductionThe original AQ11 and ID3 algorithms have been extended in several ways toimprove their various capacities such as noise handling and incremental inductionin their successors such as AQ15, CN2, ID5R and C4. This section gives an accountof these developments.2.4.2 Noise handlingThe Achilles heel of AQ11 is its inability to handle noise. Two approacheshave been tried to overcome this di�culty. The �rst approach [Michalski et al. 86]uses a partial match procedure, called TRUNC, to execute rules in AQ15, whilethe second approach, CN2 [Clark et al. 89], couples the entropy measure adoptedin ID3 to produce rules in domains where problems of poor description languageand/or noise may be present.ID3 can be easily adapted to handle noise by virtue of its top-down approachto decision tree construction. During induction, all possible attribute tests areconsidered when growing a leaf in a decision tree and the entropy measure is usedto choose one to place at each node. In noisy environments, we can halt tree growthwhen no more signi�cant information gain can be found. ID3's capacity to handlenoisy data has been studied in [Quinlan 86a] and [Quinlan et al. 86]. Noise handling14



in decision tree method based induction algorithms has been studied independentlyas a statistical technique [Breiman et al. 84] and shows a convergence between MLresearch in AI and statistics [Gams et al. 91, Gammerman et al. 91].However, the results produced by noise-tolerant algorithms such as AQ15 andCN2 are usually not completely consistent with the given training examples, whichmeans those algorithms cannot guarantee to generate exact rules or decision treesin noise-free problems. This is not acceptable in cases where we need consistentrules to correctly classify all known examples.2.4.3 Incremental learningThere are several common problems in all kinds of inductive learning algo-rithms:1. First, when an example set is very large, how can they speed up their learningprocesses?2. Second, when an example set is not a static repository of data, e.g. exam-ples may be added, deleted, or changed, the induction on the example setcannot be a one-time process, so how can induction algorithms deal with thechanging examples?3. Finally, when some inconsistency (e.g. noise) is found in an example set ora knowledge base just produced, how can they remove it?One possible way to solve those problems is incremental learning, which meansdividing a large example set into a number of subsets and treating each subseteach time. Although no existing algorithm has found a complete solution to thoseproblems, a lot of work has been done in this direction. For instance, AQ11has taken advantage of di�erent subsets. The AQ11 based AQ15 [Hong et al. 86,Michalski et al. 86], ID4 [Schlimmer et al. 86], ID5R [Utgo� 89] and the windowingtechnique in ID3 can be viewed as good examples of research on incrementallearning. 15



Generally speaking, incremental induction usually takes more time because itneeds to restructure decision trees or rules when some new examples do not �t thedecision trees or rules developed so far. This is a common trade-o� between timeand space in Computer Science.2.4.4 Constructive learningNeither AQ11-like nor ID3-like algorithms need explicit, built-in backgroundknowledge. That is why they are sometimes called empirical learning methods,which are di�erent in nature from the knowledge-rich learning methods, such asAM [Lenat 79] and EURISKO [Lenat 83] developed by Lenat, learning by analogy(or case-based reasoning [Kolodner 92]), explanation-based learning [DeJong et al.86, Mitchell et al. 86], and inductive logic programming [Muggleton 90].However, there is always implicit background knowledge embedded in the for-mulation of solution spaces and in the representation of examples. When a solu-tion space turns out to be inadequate, which we often call the imperfect-knowledgeproblem, representation modi�cation is needed and the modi�cation process typi-cally involves searching for useful new descriptive features (constructive induction)in terms of existing features or attributes. AQ17 [Bloedorn et al. 92, Thrun et al.91] of the AQ11-like family has been developed to implement iterative constructionof new attributes based on existing ones.Constructive learning [Michalski 86, Muggleton 88, Matheus 89, Mehra et al.89, Matheus et al. 89, Bala et al. 92] has become a strong theme in inductivelearning research. One of the di�culties in constructive learning is that the com-plexity in some cases (such as iterative feature construction) is extreme but thereare situations in which it is a necessary part of learning [Thornton 91].2.4.5 Decision tree pruningThe basic ID3 algorithm tends to construct exact decision trees. However,in many real-world problems such as medical diagnosis and image recognition,16



the classi�cation cannot be exact due to noise and/or uncertainty in data. As aresult, a constructed tree by ID3 may not be able to capture the proper relationsin data. Decision tree pruning mechanisms have been designed in many systemssuch as ASSISTANT [Cestnik et al. 87] and C4 [Quinlan et al. 87] to prevent thisphenomenon. Once a non-leaf subtree meets a speci�c criterion (e.g. with an equalor smaller number of misclassi�cations), it is replaced by a leaf.Pruning can usually simplify decision trees. The simpli�ed trees can sometimesclassify more accurately unseen cases in noisy environments [Quinlan 89a]. How-ever, pruning decision trees is something very similar to the TRUNC techniqueadopted in AQ15 and noise handling in other algorithms mentioned in Section2.4.2. It can simplify decision trees in noisy environments, but not improve theinduction algorithms used to construct the trees. Also, we do not expect it towork properly in noise-free environments.2.4.6 Decompiling decision trees into production rulesDecompiling decision trees has been studied in [Corlett 83, Quinlan 87, Quinlan89a] and implemented in C4 [Quinlan et al. 87] and C4.5 [Quinlan 92]. It containsthree basic steps:1. Traverse a decision tree to obtain a number of conjunctive rules. Each pathfrom the root to a leaf in the tree corresponds to a conjunctive rule with theleaf as its conclusion.2. Check each condition in each conjunctive rule to see if it can be droppedwithout more misclassi�cation than expected on the original training exam-ples or new test examples.3. If some conjunctive rules are the same after Step 2, then keep only one ofthem.Transformation of decision trees to production rules provides a way of com-bining di�erent trees into the same knowledge base for more complicated domain.17



The �nal production rules produced are sometimes both simpler than the originaldecision trees and more accurate when classifying new examples in noisy environ-ments [Quinlan 87].However, dropping conditions from the decision-tree-traversal rules in Step 2 issomething like a new induction algorithm which can work on the original examplesets but in a way totally di�erent from the ID3-like algorithms. Therefore, thetime complexity for the transformation is expensive. Also, Appendix A shows anexample set where no conditions can be dropped from the decision-tree-traversalrules. In this case, Step 2 is redundant.2.4.7 Binarization of decision treesBinarization in CART [Breiman et al. 84], ASSISTANT [Cestnik et al. 87] andNewID [Boswell 90] groups the attribute values into two subsets. It can usuallyproduce smaller decision trees.However, as indicated in [Quinlan 88b], there are two major problems in thosesystems. Firstly, binarization could lead to decision trees that are even more un-intelligible to human experts than the ordinary case due to unrelated attributevalues being grouped together and multiple tests on the same attributes in the bi-nary decision trees. Secondly, binarization requires a large increase in computationto properly split the attribute values.2.4.8 A new selection criterion for decision tree construc-tionAs ID3 has been found to operate unsatisfactorily when there are attributeswith varying numbers of discrete possible values, [Quinlan 88b] proposes a newheuristic, called the gain ratio criterion, instead of the entropy measure adoptedin ID3 for selecting tests in decision tree generation.Here again, in some cases as shown in [Quinlan 88b], the new gain ratio cri-terion can outperform the entropy measure. However, in many other cases, even18



when there are attributes with varying numbers of discrete possible values, thenew criterion cannot improve the decision trees produced by ID3 at all. AppendixB shows two decision trees produced by the new gain ratio heuristic and the en-tropy measure respectively on the same example set in Table B-1. The decisiontree produced by the new criterion (Figure B-2) is a little more complicated thanthe decision tree produced by the original ID3 algorithm (Figure B-1): both needseven conjunctive rules (paths from the root to terminals in each decision tree)but the new criterion needs one more conjunction. Appendix B is also empiricalproof of ID3's heuristic rather than complete property: a decision tree made byhand (Figure B-3) is clearly smaller than the tree produced by ID3.2.4.9 Structured inductionID3's simplicity is largely attributable to the following two restrictions placedon its application domains [Quinlan 88a]:� The induction is a kind of classi�cation, i.e., the knowledge we are tryingto capture is that of assigning a case to one of a set of mutually exclusiveclasses.� Each case is described in terms of a �xed collection of properties or attributes.An attribute may have a small set of discrete possible values or might be areal-valued numerical variable.This limitation of ID3 exists also in both the AQ11-like family of algorithmsmentioned above and the extension matrix approach based family of algorithmsbelow for complex applications.Although induction o�ers a considerable short cut in comparison to those meth-ods of rule generation such as explanation-based learning and inductive logic pro-gramming which couple both deduction and induction, decision tree method basedalgorithms provide large decision trees that are opaque to the user in large prob-lem domains. Shapiro [1987] has developed the technique of structured induction.19



The basic idea is to split the whole complex problem which might be very largein size into a number of subproblems by using domain knowledge and apply theID3 algorithm to each of the subproblems. Shapiro's work concerned solutionsto the chess endgames King and Pawn vs. King (black-to-move) and King andPawn vs. King and Rock (white-to-move, white pawn on a 7) as trial problems ofmeasurable complexity. The resultant systems contained humanly understandabledecision trees which were synthesised from expert supplied examples.Shapiro (personal communication, May 23, 1992) has recently also developedan industrial-strength code generator (which can be used to remove the need forany inference engine to run the resulting decision trees or rules generated by ID3)with target languages being C, COBOL (85 and VSII), and REXX and is deliver-ing applications into large US corporations with greater than 80% automaticallygenerated code. The code generator is said to be able to code standard transaction-based processing by the provision of examples and code-fragments.The structured induction technique can also be coupled with both the AQ11-like family of algorithms mentioned above and the extension matrix approachbased family of algorithms below.2.4.10 ConclusionsIn addition to the development mentioned above, other features such as han-dling real-valued attributes [Paterson et al. 82, Fayyad et al. 92] have also beenstudied. However, as we have analysed above, although each of them is useful insome speci�c cases, none of the extensions have generally improved AQ11 or ID3in noiseless environments. AQ11's time complexity and rule compactness in noise-free domains have not been improved at all. The core of the decision tree methodbased family of algorithms is still the entropy measure to select an attribute byexamining all candidate attributes during the splitting of examples.20



2.5 The Extension Matrix Approach2.5.1 Developers and backgroundThe new family of inductive algorithms based on the extension matrix approachwas �rst developed in the University of Illinois by Hong et al. [Hong 85, Hong et al.87] and then redesigned by the author [Wu 92a]. In contrast to the generalisation-specialisation strategy in AQ11-like algorithms and the decision tree method inID3-like algorithms, the algorithms of the extension matrix approach based familytake a new kind of matrix, called an extension matrix, as their mathematical basis.2.5.2 Terminology and notationLet a be the number of attributes fX1; :::;Xag in an example space, n bejNEj= j fe�1 ; :::; e�ng j where e�i (i = 1; :::; n) is the i-th negative example and pbe jPEj=j fe+1 ; :::; e+p g j where e+i (i = 1; :::; p) is the i-th positive example. LetNE be expressed by NEM = fe�1 ; :::; e�ngT = (rij)n�a (2.5)with the i-th negative example e�i (i = 1; :::; n) being expressed on the i-th row ofmatrix NEM and NEM (i; j) = rij indicating the value of e�i on attribute Xj isrij.De�nition 2.5.1. Let the k-th (k = 1; :::; p) positive example be expressed ase+k = (v+1k; :::; v+ak), the matrix below is the extension matrix of e+k against NEEMk = (rijk )n�a (2.6)where rijk = 8><>: � when v+jk = NEMijNEMij when v+jk 6= NEMijand `�' denotes a dead element which cannot be used to distinguish the positiveexample from negative examples. 21



De�nition 2.5.2. In an EMk, a set of n nondead elements riji (i = 1; :::; n;ji 2 f1; :::; ag) that come from the n di�erent i rows is called a path in the extensionmatrix.Lemma [Hong 89a]. A path fr1j1; :::; rnjng in an EMk corresponds to a con-junctive formula L = n̂i=1[Xji 6= riji ] (2.7)which covers e+k against NE and vice versa.Each [Xji 6= riji ] here is a selector in variable-valued logic. If riji appears onm (m 2 f0; :::; ng) rows in the same column ji of an EMk, we say it or [Xji 6= riji]covers m rows of the EMk.De�nition 2.5.3. Matrix EMD = (rij)n�a withrij = 8><>: � when 9k1 2 fi1; :::; ikg : EMk1(i; j) = �_kk2=1EMik2 (i; j) = NEM(i; j) otherwise (2.8)is called the disjunction matrix of the positive example set fe+i1; :::; e+ikg againstNE or the disjunction matrix of EMi1 ; :::; EMik.De�nition 2.5.4. In the EMD of a positive example set fe+i1; :::; e+ikg againstNE, a set of n nondead elements riji (i = 1; :::; n; ji 2 f1; :::; ag) that come fromthe n di�erent i rows is also called a path.Theorem 2.5.1. A path fr1j1; :::; rnjng in the EMD of fe+i1; :::; e+ikg againstNE corresponds to a conjunctive formula or coverL = n̂i=1[Xji 6= riji ] (2.9)which covers all of fe+i1; :::; e+ikg against NE and vice versa.Proof. If EMD(i; j) = �, there must be a k2 2 fi1; :::; ikg andEMk2(i; j) = �, which means there is no common nondead element on the (i; j)-position of all the extension matrixes EMi1; :::; EMik. If there exists no deadelement on the (i; j)-position of any EMk2(k2 2 fi1; :::; ikg), it is certain thatEMk2(i; j) = NEM(i; j) according to De�nition 2.5.1 and that the NEM(i,j) is a22



common nondead element in EMi1 ; :::; EMik according to De�nition 2.5.3. There-fore, the common nondead elements in all the extension matrixes EMi1 ; :::; EMikand the nondead elements in their disjunction matrix EMD correspond to eachother and each common path in EMi1 ; :::; EMik formed by the common nondeadelements in every EMik2 (k2 = 1; :::; k) corresponds to a path in EMD and viceversa. According to the above Lemma, the formula which corresponds to a pathin EMD must be a common formula for all of the fe+i1; :::; e+ikg against NE.If there is no path which covers all the n rows in EMD, there is no commonpath and therefore no conjunctive formula cover in all the extension matrixesEMi1 ; :::; EMik.De�nition 2.5.5. If there exists at least one path in the EMD of a positiveexample set fe+i1; :::; e+ikg against NE, all the positive examples in the set intersectand the positive example set is called an intersecting group.Theorem 2.5.2. For a given set of examples, if PE and NE are persistent,which means they contain no common examples, there always exists at least oneconjunctive formula covering any positive example e+k 2 PE against NE.Proof. As PE and NE are persistent, we can always �nd at least one nondeadelement on each row i in the EMk of e+k against NE which discriminates e+k andthe i-th negative example e�i in NEM. Therefore, we can always �nd at least onepath which corresponds to a conjunctive formula cover in EMk.From De�nition 2.5.5 and the proof process of Theorem 2.5.2, we can easilyget the following corollary.Corollary. For a given set of examples, if PE and NE are persistent, therealways exists at least one conjunctive formula cover for each intersecting examplegroup.2.5.3 Optimization problemsThere are two striking optimization problems in the extension matrix approach:23



� The minimum formula (MFL) problem: Generating a conjunctive formulathat covers a positive example or an intersecting group of positive examplesagainst NE and has the minimum number of di�erent conjunctive selectors.� The minimum cover (MCV) problem: Seeking a cover which covers all posi-tive examples in PE against NE and has the minimumnumber of conjunctiveformulae with each conjunctive formula being as short as possible.As the extension matrix EMk of each positive example e+k against NE containsall such paths that each correspond to a conjunctive formula of e+k against NEand an optimal cover of PE against NE is such a minimum set of formulae thatis a logical combination of all the formulae from every EMk (k = 1; :::; p), bothMFL and MCV problems have been proved to be NP-hard [Hong 85].Two complete algorithms, MFL and MCV, are designed to solve the optimiza-tion problems MFL and MCV in paper [Wu 92a] with O(na2a) andO(n2a22a + pa222a) time respectively when each attribute domain Di(i = 1; :::; a)satis�es jDij= 2. When there exists jDjj>2 or Dj is a real-valued interval (j 2f1; :::; ag), a decomposition method that decomposes Dj into several sub-domainswhose bases are each two is also designed there.2.5.4 Heuristic strategies in AE1As the nature of the MFL and MCV problems is NP-hard, when an exampleset or an attribute space is large the induction process based on the completealgorithms will become computationally intractable. Two strategies are adoptedin AE1 to �nd approximate rather than optimal solutions for both MFL and MCVproblems [Hong 85]:1. Starting search from the columns with the most nondead elements, and2. Simplifying redundance by deductive inference rules in mathematical logic.24



There are two problems in AE1. First, its �rst strategy can easily lose optimalsolutions in some cases. Taking the simple extension matrix below as an example,the �rst heuristic strategy in AE1 cannot produce the optimal formula ( [X1 6=1]^[X3 6= 1] ) since it will choose the selector [X2 6= 0] at �rst. Second, simplifyingredundance for MFL and MCV problems is NP-hard. No heuristic strategy forthis process has been reported. 0BBBBBBBBBBBBBBB@ 1 * ** 0 11 0 ** 0 11 0 ** * 1
1CCCCCCCCCCCCCCCA2.5.5 Advantages and disadvantagesGenerally speaking, the extension matrix approach is still little known due toits own inadequacy described above. The developer of AE1 has recently developedan AE5 system [Hong 89b] based on AE1 but the basic algorithm remains to bethe same. The only di�erence between AE5 and AE1 is that some facilities suchas constructive and incremental induction have been added to the AE5 system.So, the two major problems of AE1 described above also apply to AE5. However,a detailed comparison between the improved extension matrix approach with ID3and AQ11 will be given in Chapter 3 after the HCV algorithm of this family hasbeen introduced.
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2.6 Learning from Data Bases2.6.1 IntroductionAlthough some commercial successes have been found in existing learning sys-tems, there are limitations on current ML programs. Existing knowledge acquisi-tion tools (such as [Mowforth 86, Boose et al. 88, Marcus 88, Piatetsky-Shapiro etal. 91, Frawley et al. 92]) have concentrated on building knowledge bases for ex-pert systems and designing various learning algorithms. As data base technologyhas already found wide application in many �elds, ML research obviously standsto gain from this greater exposure and established technological foundation. Twofundamental questions arise here. Does data base technology need ML techniques?If so, how can they be coupled successfully?2.6.2 Does data base technology need ML?On one hand, as data bases grow in both number and size, the prospect ofmining them for new, useful knowledge becomes yet more enticing [Quinlan 89b].On the other hand, despite its commercial success, conventional data base tech-nology has limitations in many advanced applications (see Appendix D). That iswhy integrating AI technology into data base technology, called IDB (intelligentdata base) research, has been identi�ed [Brodie 88] as one of the research fron-tiers of data base technology and has become a popular research topic all over theworld. There are �ve directions in the current IDB research: object-oriented database systems; deductive data base systems; expert data base systems; intelligentman-machine interfaces which include the design of meaningful operation inter-faces and of friendly natural-language interfaces; and recursive query optimization.The knowledge bases (which contain deductive rules and/or semantic informationsuch as the conceptual hierarchy among data) in existing IDB systems can only bebuilt up by hand with known technology. Knowledge acquisition in IDB systems26



has become a central and di�cult problem in IDB research. Research in this areais expected to lead to signi�cant progress in the whole data base �eld.2.6.3 How can ML be well coupled with data bases?Broadly speaking, all kinds of attribute-based learning algorithms can beadapted to extract knowledge from data bases. It is not di�cult to add an in-duction engine to an existing data base system in an ad hoc way (such as [Caiet al. 91] and [Ke et al. 91]) to implement rule induction from data bases or de-sign some speci�c engines to learn from domain-speci�c data sets (e.g. [Blum 82]).However, when we integrate ML techniques into data base systems, we must facemany problems [Quinlan 89b] such as:� The knowledge learned needs to be tested and/or used back in the integratedIDB systems. This implies more expressive representations for both data(e.g. tuples in relational data bases, which represent instances of a problemdomain) and knowledge (e.g. rules in a rule-based system, which can be usedto solve users' problems in the domain) and deduction/inference mechanismsare needed.� More e�cient induction algorithms are needed. The algorithms should becapable of being applied to realistic data bases, e.g. � 106 relational tuples.This needs the algorithms to be more e�cient than existing ones. Expo-nential or even medium-order polynomial complexity will not be of practicaluse.� Another problem is how to balance ML facilities and other functions in theIDB systems, particularly when is the proper time to trigger the ML facilities.The �rst and the third problems both concern how to couple ML facilitieswith data base and knowledge base technology in IDB systems. This is the maindi�culty in developing practical IDB systems. However, the second problem con-cerning low-order polynomial time induction algorithms is the crucial requirement27



for knowledge acquisition from data bases. Although a lot of work (e.g. [Cai et al.91], [Ke et al. 91] and various induction algorithms [Bundy et al. 85, McDonald89, Muggleton 86, Langley 89, Wu 93b]) has been done, the requirements abovefor knowledge acquisition from realistic data bases are still far away for existingsystems to reach and no existing systems have been reported to be able to integratee�ectively ML techniques with both data base and knowledge base technology.In this thesis, we de�ne an integrated learning system, which couples MLtechniques with both data base and knowledge base technology, as an intelligentlearning data base system (ILDB) if it provides mechanisms for1. translating standard (e.g. relational) data base information into a form suit-able for use by its induction engines,2. using induction techniques to extract rules from data bases, and3. interpreting the rules produced to solve users' problems.With an ILDB system, one can, for example, produce a small number of con-junctive rules for some diseases from a large medical cases of these diseases. TheILDB system can then use the rules in two di�erent ways: keeping these rules in-stead of the original cases because the original cases might take up a large space;and using these rules to diagnose new cases.
28



Chapter 3HCV: A Heuristic Covering Algorithm3.1 IntroductionTime complexity and description compactness1 are two important criteria forall induction algorithms. In the extension matrix approach, there are two extremestrategies, each of which places special emphasis on only one of the two criteria.The �rst is �nding all possible formulae from each positive example's extensionmatrix �rst and then taking an exhaustive search among all the formulae to �ndthe shortest combination which covers all the positive examples. This strategycan give the shortest description in the form of variable-valued logic but works inexponential time. The second is simply separating one positive example from NEby \memorizing" the positive example or all positive examples in PE from NEby \memorizing" each of the positive examples into a Boolean OR formula. Thistrivial heuristic can work quickly but generates an extremely large description. AnOR formula of this kind cannot be used directly to classify new examples whichhave not been presented in the training example set while simplifying it into theshortest form also needs NP-hard time. Therefore, a good learning algorithmshould be able to either avoid the NP-hard time or produce a briefer descriptionwhich is at least able to correctly classify the PE and NE in a given training1As we have de�ned in Section 2.5.3, the measures for description compactnessadopted in this thesis are 1) the number of conjunctive formulae or rules, and 2) thenumber of all conjuncts or selectors in all the conjunctive rules.29



example set. In this chapter, we will show that the HCV algorithm has madeprogress on both the time and the description compactness.For the MFL problem introduced in Section 2.5.3, a heuristic algorithm, HFL,is speci�cally designed to �nd a conjunctive formula for an extension matrix ora disjunction matrix of an intersecting group of positive examples. Three of thefour strategies adopted in HFL are complete and the fourth one is a reasonableheuristic. The HCV algorithm is a heuristic induction algorithm designed forthe MCV problem also mentioned in Section 2.5.3. By partitioning the positiveexamples (PE) in a given example set into intersecting groups and calling HFLto �nd a heuristic conjunctive formula in each group which covers all the positiveexamples in the group and none of the negative examples (NE), it can �nd acovering formula in the form of variable-valued logic for PE against NE in low-order polynomial time.This chapter presents the algorithm in detail. As the AQ11 algorithm has beenshown [O'Rorke 82] to be more expensive in both the cost of rule production andthe complexity of rules produced than the ID3 algorithm and its heuristic strategiesare much more complicated [Hong 89a], we will concentrate the comparison ofour HCV algorithm on the ID3 algorithm in terms of time complexity and rulecompactness in this chapter. More algorithms will be compared with HCV inChapter 4.3.2 An Example of Attribute-based LearningGiven a discrete �nite attribute space of a dimensions, E = D1� :::�Da, whereeach Dj (j = 1; :::; a) is a �nite set of symbolic values or a numerical interval, anexample, or a case, e=(V1; :::; Va) is an element of E means Vj 2 Dj . A positiveexample is such an example that belongs to a known class which, say, has a speci�cname in E. All the other examples which do not belong to the known class can becalled negative examples (NE) at the moment we are considering the known class.The induction task is to generate a description, say production rules or a decision30



Table 3{1: Cases of Pneumonia and TuberculosisORDER FEVER COUGH X-RAY ESR AUSCULTATION DISEASE1 high heavy 
ack normal bubble-like2 medium heavy 
ack normal bubble-like3 low slight spot normal dry-peep Pneumonia4 high medium 
ack normal bubble-like5 medium slight 
ack normal bubble-like6 absent slight strip normal normal7 high heavy hole fast dry-peep8 low slight strip normal normal Tuberculosis9 absent slight spot fast dry-peep10 low medium 
ack fast normaltree, that covers all of the positive examples (PE) against2 NE or classi�es themcorrectly.Example 3-1 (from [Hong 89a]). Given sets PE and NE of cases of Pneumoniaand Tuberculosis in Table 3-1. Each case is described by �ve attributes: feverfabsent, low, medium, highg, cough fslight, medium, heavyg, shape of focusshown by X-ray fspot, strip, 
ack, holeg, erythrocyte sedimentation rate (ESR)fnormal, fastg, and sound of heart by auscultation fnormal, dry-peep, bubble-likeg.Running ID3, we get a decision tree in Figure 3-13 which is equivalent to the2`against' is used to mean that the description should cover none of the negativeexamples.3Notice that the information gains for FEVER and ESR are the same on the 3rd,7th, and 9th examples after the AUSCULTATION attribute has been chosen. ID3 hasno speci�c strategy to deal with this situation, so our implementation simply selects theattribute which is presented �rst in the table. Other implementations may use di�er-ent strategies (e.g. always choosing the last attribute presented) and therefore produceslightly di�erent results. Although in our current example set, choosing the last at-tribute leads to a slightly better decision tree, we can easily give further examples wherethe reverse is the case. 31
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cccccccccccc############ normalbubble-like

Tuberculosis TuberculosisPneumonia Tuberculosis Pneumonialowhighabsent dry-peepFEVERAUSCULTATION
Figure 3{1: A decision tree (by ID3) for Example 3-1conjunctive decision rules below (the conditions in the bold type style can bedropped):if AUSCULTATION=bubble-like then Pneumonia;if AUSCULTATION=dry-peep & FEVER=absentthen Tuberculosis;if AUSCULTATION=dry-peep & FEVER=high then Tuberculosis;if AUSCULTATION=dry-peep & FEVER=low then Pneumonia; andif AUSCULTATION=normal then Tuberculosis.Running the HCV algorithm in Section 3-4, we can get the following rule invariable-valued logic for Pneumonia against examples of Tuberculosis:[ ESR=normal ][ AUSCULTATION 2fbubble-like, dry-peepg ]! [ DISEASE=Pneumonia ]. 32



A comparison in more detail between ID3 and HCV will be given inSection 3.6.3.3 The HFL algorithmThe HFL algorithm is designed to �nd a heuristic conjunctive formula whichcorresponds to a path in an extension matrix or a disjunction matrix when thereis at least one path in the disjunction matrix. As a disjunction matrix can beprocessed in the same way as an extension matrix to �nd its conjunctive formulae,we will only refer to the extension matrixes below.3.3.1 Four strategies in HFLFour strategies are adopted in the HFL algorithm:1. The fast strategy. In an extension matrix EMk = (rij)n�a, if there is no deadelement in a (say j) column, then [Xj 6= rj] where rj = _ai=1rij is chosen asthe one selector cover for EMk.For example, selector [AUSCULTATION 6= fnormal; dry � peepg] belowcan cover all the �ve rows in the extension matrix.0BBBBBBBBBBBB@ absent slight strip * normal* * hole fast dry � peeplow slight strip * normalabsent slight spot fast dry � peeplow medium * fast normal 1CCCCCCCCCCCCA2. The precedence strategy. When a rij in column j is the only nondead elementof a row i in an extension matrix EMk = (rij)n�a, the selector [Xj 6= rj]where rj = _ai=1rij is called an inevitable selector and thus is chosen withtop precedence. 33



For example, [X1 6= 1] and [X3 6= 1] are two inevitable selectors in theextension matrix below which we have mentioned in Section 2.5.4.0BBBBBBBBBBBBBBB@ 1 * ** 0 11 0 ** 0 11 0 ** * 1
1CCCCCCCCCCCCCCCA3. The elimination strategy. When each appearance of some nondead elementin the j1-th column of some row is always coupled with another nondeadelement in the j2-th column of the same row in an extension matrix EMk =(rij)n�a, [Xj1 6= rj1 ] where rj1 = _ai=1rij1 is called an eliminable selector andthus eliminated by selector [Xj2 6= rj2 ] where rj2 = _ai=1rij2 .For example, attribute X2 can be eliminated by attribute X3 below.0BBBBBBBBBBBBBBB@ 1 * ** 0 11 0 1* 0 11 0 1* * 1
1CCCCCCCCCCCCCCCA4. The least-frequency strategy. When all inevitable selectors have been chosenand all eliminable selectors have been excluded but all the selectors chosenhave not yet covered all the rows in an extension matrix, exclude a least-frequency selector which has least nondead elements in its correspondingcolumn in the extension matrix.For example, attribute X1 in the following extension matrix can be elimi-nated and there still exists a path.34



0BBBBBBBBBBBBBBB@ 1 * 1* 0 11 0 ** 0 11 0 ** 0 1
1CCCCCCCCCCCCCCCATheorem 3.1. All of the fast, precedence and elimination strategies are com-plete, which means if there exists one or more shortest conjunctive formulae in anextension matrix, they will not lose it.Proof. a) For an extension matrix EMk = (rij)n�a, the largest and the possibleleast numbers of di�erent selectors in a path are n and 1 respectively. When nselectors, whether the same or di�erent, from n di�erent rows but the same columnj form a path, they can be integrated into one, [Xj 6= _ai=1rij]. So the selectorfound by the fast strategy must be an optimal formula of the extension matrix.b) When rij in column j is the only nondead element of some row i in anextension matrix, the selector [Xj 6= rij] needs to appear or to be integrated into acomplex selector like [Xj 6= f:::; rij; :::g] in any path of the extension matrix. Pick-ing up such kinds of selectors with top precedence will not violate the correctnessof any path which is built but will speed up the construction process.c) For any path f:::; rj1; :::g in an extension matrix, we can simply replacerj1 with rj2 and f:::; rj2; :::g is also a path in the same extension matrix whenrj1 = _ai=1rij1 , rj2 = _ai=1rij2 , and each appearance of some nondead element inthe j1-th column of some row is always coupled with another nondead elementin the j2-th column of the same row. If there is another rj3 in the path whosecorresponding selector [Xj3 6= rj3] is also eliminable by [Xj2 6= rj2 ], we can simplifythe path by replacing rj1 and rj3 with rj2 . Therefore, the elimination strategy iscomplete for constructing optimal covers.35



Theorem 3.2. If there exists at least one shorter path which has less than ndi�erent conjunctive selectors in an extension matrix, the solution generated bythe least-frequency strategy must be the shorter one.Proof. When all inevitable selectors have been chosen and all eliminable se-lectors have been excluded but all the selectors chosen have not yet covered allthe rows in an extension matrix, there must exist at least one redundant selectorin the extension matrix. For example, suppose there are k (k � n) rows in theextension matrix which have not been covered and all the nondead elements onthose rows are ri1ji11; :::; ri1ji1j1 ; :::; rikjik1 ; :::; rikjik jk , as no more inevitable selectorcan be found at this moment, each row must contains at least two nondead ele-ments. Therefore, crossing out any column can guarantee that each of those rowswill still contain at least one nondead element, which means there is still at leastone path left in the extension matrix. We can thus get the correctness proof of thefourth strategy above. As di�erent selectors from the same column in an extensionmatrix can be integrated into one, excluding a column means there are at mostn� 1 selectors in the paths left. So the paths after this strategy must be shorterthan the trivial ones.Although the column with least nondead elements is not necessarily removedfrom all the optimal paths, the removal looks reasonable as choosing a column withfewer nondead elements means more columns thus more selectors may be involvedin connecting a path. So the fourth strategy is a sensible heuristic. However,it is still heuristic. Firstly, this strategy is sensitive to the order of attributesin given examples. When we have two attributes with the same least nondeadelements at some stage, di�erent implementations of this strategy could producedi�erent results. For the extension matrix below, excluding the second or thethird attribute will produce di�erent formulae (X3 6= 1 ^ X4 6= 0 ^ X5 6= 0 andX1 6= 0 ^X2 6= 1 respectively) to cover the same extension matrix, although thenumbers of nondead elements in the second and third columns are the same: three.However, recall that the order of attributes also matters in the ID3 algorithm (seeSection 3.2, footnote 3). 36



0BBBBBBBBBBBBBBBBBBB@ 0 1 * 0 0* 1 1 * *0 * 1 * ** 1 * 0 *0 * 1 0 00 * * 0 00 * * * 0
1CCCCCCCCCCCCCCCCCCCASecondly, removing the least-frequency selector could also lose optimal paths.Taking the following extension matrix as an example, X1 6= 0 ^ X3 6= 0 is itsoptimal formula. Removing the third column will cause the �nal formula to beX1 6= 0 ^X2 6= 1 ^X4 6= 1. 0BBBBBBBBBBBBBBB@ 0 1 0 *0 1 * 1* * 0 1* 1 0 *0 * * 10 1 * 1
1CCCCCCCCCCCCCCCAThese two problems also apply in a similar way to the �rst strategy of AE1described in Section 2.5.4. However, as compared to AE1, we have adopted threecomplete strategies in HFL.3.3.2 Algorithm descriptionIn the HFL algorithm below, Function RESET1 is designed to �nd the selector[Xj 6= rj] where rj = _ai=1rij when the j-th column has been chosen by eitherthe fast strategy or the precedence strategy, Function RESET2 is designed tocross out the nondead elements on uncovered rows in column j when the j-thcolumn has been found eliminable by either the elimination strategy or the least-frequency strategy, and words between /* and */ are explanatory notes. An EM37



in the algorithm can be either an extension matrix (EMk) or a disjunction matrix(EMD) in which there is at least one path.Procedure HFL(EM; Hfl)integer n, amatrix EM(n, a), D(a), CH(a), C(n)set HflS0: D 0 /* D marks the elimination status of each column. */CH 0 /* CH marks the chosing status of each column. */C 0 /* C marks the covering status of each row. */Flag `F' /* Flag=`T' indicates that EM has beenfully covered. */Hfl � /* initialisation */S1: /* the fast strategy */i 1while i�a & Flag=`F' dof j 1, Flag1 `F'/* During the test of each column i in EM, Flag1=`T' means some * element in the column has beenfound and thus the fast strategy fails there. */while j�n & Flag1=`F' dof if C(j)=1 then goto L1if EM(i,j)=� then Flag1 `T'L1: j j+1g 38



if j=n+1 & Flag1=`F' thenf RESET1(i,Set)Hfl Hfl^[Xi6=Set]ggS2: /* the precedence strategy */if Flag=`F' thenf Flag2 `F'/* Flag2=`T' indicates that at least one inevitableselector has been chosen during this step. */for i=1 to n doif C(i)=0 and only EM(i,j) is a nondeadelement on the i-th rowthen f RESET1(j,Set), Flag2 `T'Hfl Hfl^ [Xj 6=Set] gnext igif Flag2=`T' then goto S1S3: /* the elimination strategy */if Flag=`F' thenf Flag3 `F'/* Flag3=`T' indicates that at least one eliminableselector has been excluded during this step. */for i=1 to a do39



if CH(i)=0 & D(i)=0 thenf j 1, Flag32 `F'/* Flag32=`T' means column i has beeneliminated. */while j�a & Flag32=`F' doif CH(j)=0 & D(j)=0 & i6=j thenf k=1, Flag33 `F'/* Flag33=`T' means column i cannot be eliminated by column j withthe elimination strategy. */while k�n & Flag33=`F' doif EM(i,k)6= � & EM(j,k)=�then Flag33 `T'else k k+1if k=n+1 & Flag33=`F'then f D(i) 1,RESET2(i)Flag32 `T'Flag3 `T' ggelse j j+1gL2: next igif Flag3=`T' then goto S240



S4: /* the least-frequency strategy */if Flag=`F' thenf for i=1 to a dot(i) 0/* t(i) counts the nondead elements onuncovered rows in column i. */if CH(i)=0 & D(i)=0 thenfor j=1 to n doif C(j)=0 & EM(j,i)6= �then t(i) t(i)+1next jnext ii 1while i�a & t(i)=0 do i i+1for j=i+1 to a doif t(j)<t(i) & t(j)6=0 then i jnext jD(i) 1,RESET2(i)goto S2gFunction RESET1(j,Set)Set �for i=1 to n doif C(i)=0 & EM(i,j)6= �41



then f Set Set[fEM(i,j)gEM(i,j) �, C(i) 1 gnext iCH(j) 1if all of C(k)=1 (k=1,...,n) then Flag `T'/* This test is for those cases where after one selectorhas been chosen, EM has been fully covered. */Return(Set)Function RESET2(j)for i=1 to n doif EM(i,j)6= � then EM(i,j) �next iReturnReturn(Hfl)Steps S1, S2, S3 and S4 implement the fast, precedence, elimination and least-frequency strategies introduced in Section 3.3.1. Once the fast strategy �nds acolumn which has nondead elements on all the uncovered rows in an EM, the EMcan be fully covered and thus the Hfl is ready. After one or more inevitableselectors have been chosen in Step S2, HFL will come back to Step S1 to test thefast strategy on uncovered rows. Every time a selector has been chosen by eitherthe fast strategy or the precedence strategy, there are two possible cases: all theselectors which have been chosen up till now either have or have not yet covered allthe rows in the EM. Those two cases are tested in Function RESET1. After oneor more columns have been crossed out by the elimination strategy in Step S3, theprecedence strategy and the fast strategy will be tested again. Only in those caseswhen all inevitable selectors have been chosen and all eliminable selectors havebeen excluded but all the selectors chosen have not yet covered all the rows in an42



extension matrix, the least-frequency strategy is used and it can always cross out acolumn which has not been crossed out before. After Step S4, HFL comes back totest the precedence strategy. Since excluding a column by either the eliminationstrategy in Step S3 or the least-frequency strategy in Step 4 does not cover anyuncovered rows, the fast strategy cannot be applicable immediately after these twostrategies. This is why the control in HFL comes back to Step 2 instead of Step 1at the end of both Step 3 and Step 4. Each time the control comes back to StepS2 or Step S1, there is at least one column or selector has been processed, eitherchosen or crossed out. There are a columns in an EM in total, therefore at mosta loops in HFL are needed.Step S0 requires n+ 2a+ 2 operations. The time complexity for Steps S1, S2,S3 and S4 is O(na), O(na), O(na2) and O(na) respectively. In the worst case, aloops are needed among Steps S1, S2, S3 and S4 to complete the assignment ofFlag `T '. The time complexity for the whole algorithm is thusO(n+ 2a+ 2 + a(na+ na+ na2 + na)) � O(na3):When the EM in the HFL algorithm is the extension matrix EMk of a positiveexample e+k = (v+1k; :::; v+ak) against NE, a selector [Xj 6= rj] in theHfl is equivalentto [Xj = v+jk ] with existing examples in a given example set. Meanwhile, if theEM is the disjunction matrix EMD of an intersecting group of positive examplese+i1; :::; e+ik against NE, a selector [Xj 6= rj] is equivalent to [Xj 2 _kk2=1v+jik2 ] in thecontext of existing examples. When Xj is a numerical attribute, _kk2=1v+jik2 can befurther grouped into a number of intervals none of which will contain any NEMij(i = 1; :::; n) (see Section 3.5.5).From Theorems 3.1 and 3.2, we can easily get the theorem below (Theorem3.3).Theorem 3.3. If there exists at least one path in an EM, the HFL algorithmcan produce a conjunctive formula which corresponds to a path in the EM. Thenumber of selectors in Hfl produced by HFL is always smaller than n so long asthere is at least one path with less than n di�erent elements in the EM.43



3.3.3 An example run of HFLFor the example set given in Table 3-1, there are �ve positive examples forPneumonia. PE = fe+1 ; e+2 ; e+3 ; e+4 ; e+5 g, NE = fe�6 ; e�7 ; e�8 ; e�9 ; e�10g, andNEM = 0BBBBBBBBBBBB@ absent slight strip normal normalhigh heavy hole fast dry � peeplow slight strip normal normalabsent slight spot fast dry � peeplow medium flack fast normal 1CCCCCCCCCCCCA :The disjunction matrix EMD of fe+1 ; e+2 ; e+3 ; e+4 ; e+5 g against NE isEMD = 0BBBBBBBBBBBB@ absent * strip * normal* * hole fast ** * strip * normalabsent * * fast ** * * fast normal 1CCCCCCCCCCCCAby De�nition 2.5.3.Running HFL on EMD, attribute FEV ER is eliminated by the least-frequencystrategy during the �rst loop of Steps S1, S2, S3 and S4 and EMD becomes0BBBBBBBBBBBB@ * * strip * normal* * hole fast ** * strip * normal* * * fast ** * * fast normal 1CCCCCCCCCCCCA :In the second loop, [ESR 6= fast] which is equivalent to [ESR = normal] ischosen as an inevitable selector on the fourth row by the precedence strategy andit covers rows 2, 4 and 5. EMD now becomes44



0BBBBBBBBBBBB@ * * strip * normal* * * * ** * strip * normal* * * * ** * * * * 1CCCCCCCCCCCCA :In the third loop, attributeX�ray is eliminated by attributeAUSCULTATIONby the elimination strategy and EMD becomes0BBBBBBBBBBBB@ * * * * normal* * * * ** * * * normal* * * * ** * * * * 1CCCCCCCCCCCCA :Selector [AUSCULTATION 6= normal] which is equivalent to[AUSCULTATION 2 fbubble� like; dry � peepg] is �nally chosen by the faststrategy to cover the remaining rows 1 and 3.Therefore, the Hfl for EMD generated by the HFL algorithm is[ESR = normal] ^ [AUSCULTATION 2 fbubble� like; dry � peepg]which covers all the �ve examples of Pneumonia against examples of Tuberculosis.
45



3.4 The HCV Algorithm3.4.1 Algorithm descriptionThe basic idea for the HCV algorithm is to partition PE of a speci�c class intop0 (p0 � p) intersecting groups �rst; call the heuristic Algorithm HFL to �nd aHfl for each intersecting group; then give the covering formula by logically ORingall the Hfl's �nally.The GEM algorithm is designed to generate the disjunction matrix EMD ofe+i1; :::; e+ik against NE from EMi1 ; :::; EMik according to De�nition 2.5.3. Whenthere exists a dead element on the (i; j)-position of any of EMi1; :::; EMik,EMD(i; j) = �. Otherwise, EMD(i; j) = NEM(i; j) = EMik2 (k2 2 f1; :::; kg).Procedure GEM(fEMi1,..., EMikg; EMD)integer n, a, kmatrix EMi1(n,a), ..., EMik(n,a), EMD(n,a)for j1=1 to n dofor j2=1 to a doif 9k22f1, ..., kg: EMik2(j1, j2)=�then EM(j1, j2) �else EM(j1, j2) EMi1(j1, j2)next j2next j1Return(EM)The time complexity for Algorithm GEM is O(nak) with k being the numberof positive examples. 46



Algorithm IDEN below is designed to test whether there is a path in a disjunc-tion matrix EMD with the result being returned by logical variable Flag. It testseach row of EMD to ascertain whether there is at least one nondead element onthe row. If each row has at least one nondead element, then there exists at leastone path in EMD and thus Flag is assigned to `T'.Procedure IDEN(EMD; Flag)integer n, amatrix EMD(n, a)logical Flagi 1, Flag2 `F'while i�n & Flag2=`F' dof j 1, Flag3 `F'while j�a & Flag3=`F' doif EMD(i, j)6= � then Flag3 `T'else j j+1if Flag3 `F' then Flag2 `T'else i i+1gif Flag2=`F' then Flag `T'else Flag `F'Return(Flag)In the worst case, Algorithm IDEN needs to test each element in EMD. Thetime complexity for Algorithm IDEN is O(na).Based on the GEM and IDEN algorithms above and the HFL algorithm inSection 3.3, the HCV algorithm is designed as follows where GEM and IDEN are47



used to partition PE into intersecting groups and HFL is used to �nd a conjunctiveformula for each intersecting group.Procedure HCV(EM1, ..., EMp; Hcv)integer n, a, pmatrix EM1(n,a), ..., EMp(n,a), D(p)set HcvS1: D 0 /* D(j)=1 (j=1, ..., p) indicates thatEMj has been put into an intersecting group. */Hcv � /* initialisation */S2: for i=1 to p doif D(i)=0 thenf EM EMifor j=i+1 to p doif D(j)=0 thenf call GEM(fEM, EMjg; EM2)call IDEN(EM2; Flag)if Flag=`T' thenf EM EM2, D(j) 1 ggnext jcall HFL(EM; Hfl)Hcv  Hcv_Hflgnext iReturn(Hcv) 48



Step S1 in the algorithm above requires p + 1 operations. The worst caseoperation for Step S2 isO( pXi=1(na+ pXj=i+1(2na + na+ na+ 1) + (na3) + 1))� O(pna3 + p2na):So the time complexity for Algorithm HCV is O(pna3 + p2na).Theorem 3.4. The formula Hcv generated by Algorithm HCV covers all thepositive examples against negative examples in a given example set.Proof. Each Hfl in the Hcv produced by Algorithm HCV covers a group ofpositive examples against NE. So no negative example in NE will be covered byany Hfl. Neither will the Hcv cover any of the negative examples in NE (becauseit is an OR combination of all the Hfls). As all positive examples have beenincluded in the intersecting groups in Step S2, each positive example is coveredby a Hfl in the Hcv.Algorithm HCV is a bidirectional algorithm. It �rst groups the positive ex-ample set in a top{down way and then calls algorithm HFL, which works in abottom{up way. Its time is low-order polynomial as opposed to exponential inthe �rst strategy mentioned in the introduction of this chapter. From Theorems3.1 and 3.2 and the Corollary in Section 2.5.2, both Algorithm HFL and Algo-rithm HCV usually produce shorter formulae than the trivial strategy (the secondstrategy) also mentioned in the introduction of this chapter so long as the shorterformulae exist.Theorem 3.5. If there exists at least one conjunctive cover in a given trainingexample set, the formula produced by HCV must be a conjunctive one.Proof. If there exists at least one conjunctive cover in a given training exampleset, there must exist at least one path in the disjunction matrix of all the positiveexamples against the negative examples in the given example set according toTheorem 2.5.1. Therefore, all the positive examples will be put into an intersectinggroup in Step 2 of HCV and a conjunctive Hfl will be produced by calling HFLas the solution. 49



However, the intersecting groups partitioned by HCV and therefore the resultsreturned by the HFL algorithm (described in Section 3.3) on each intersectinggroup or partition are sensitive to the order of examples in a given example set. Fora given partition, the order of positive examples does not a�ect their disjunctionmatrix and therefore does not change the result of HFL. When changing the orderof two negative examples, just two rows are swaped in the disjunction matrix ofthe positive examples in the partition. As all the four strategies in HFL only relateto the number of nondead elements in each column, the order of negative examplescannot a�ect the results of HFL or, therefore of HCV. So, only when the order ofpositive examples changes can the result produced by HCV become di�erent. Wewill demonstrate this in Section 3.4.2.3.4.2 Two example runs of HCVExample 3-2. Table 3-2 (which is the same as Table A-1 in Appendix A)shows a set of training examples for deciding whether to play golf on a Saturdayafternoon.Considering PE (of Play) and NE (of Don't Play) in Table 3-2, let us observethe results generated by the HCV algorithm.For the given example set, NE = fe�1 ; e�2 ; e�7 ; e�8 ; e�12; e�13; e�14g, PE =fe+3 ; e+4 ; e+5 ; e+6 ; e+9 ; e+10; e+11g andNEM = 0BBBBBBBBBBBBBBBBBBB@ rain hot high truerain cool normal truesunny hot normal truesunny mild high truesunny hot high falsesunny cool normal falserain mild normal true
1CCCCCCCCCCCCCCCCCCCA :The �rst intersecting group found in Step S2 by starting with the �rst positiveexample (e+3 ) and calling the GEM and IDEN algorithms is fe+3 ; e+4 ; e+6 g and the50



Table 3{2: Cases of Play and Don't Play (adapted from [Quinlan 86b])ORDER OUTLOOK TEMPERATURE HUMIDITY WINDY DECISION1 rain hot high true Don't Play2 rain cool normal true Don't Play3 overcast mild high true Play4 overcast mild normal false Play5 rain hot high false Play6 overcast cool normal true Play7 sunny hot normal true Don't Play8 sunny mild high true Don't Play9 sunny mild normal false Play10 rain cool normal false Play11 rain hot high false Play12 sunny hot high false Don't Play13 sunny cool normal false Don't Play14 rain mild normal true Don't Play
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disjunction matrix EMD1 against NE isEMD1 = 0BBBBBBBBBBBBBBBBBBB@ rain hot * *rain * * *sunny hot * *sunny * * *sunny hot * *sunny * * *rain * * *
1CCCCCCCCCCCCCCCCCCCA :Calling HFL, [OUTLOOK 6= frain; sunnyg] which is equivalent to[OUTLOOK = overcast] is chosen by the fast strategy and the �rst Hfl is thus[OUTLOOK = overcast]:The second intersecting group found in Step S2 by starting with the thirdpositive example (e+5 ) and calling the GEM and IDEN algorithms is fe+5 ; e+10; e+11gand the disjunction matrix EMD2 isEMD2 = 0BBBBBBBBBBBBBBBBBBB@ * * * true* * * truesunny * * truesunny mild * truesunny * * *sunny * * ** mild * true
1CCCCCCCCCCCCCCCCCCCA :Running HFL, [WINDY 6= true] and [OUTLOOK 6= sunny] which are equiv-alent to [WINDY = false] and [OUTLOOK = rain] respectively are both cho-sen as inevitable selectors and they cover all of the �ve rows in EMD2. Therefore,the second Hfl is [WINDY = false] ^ [OUTLOOK = rain]:52



The third intersecting group is fe+9 g and the disjunction matrix EMD3 isEMD3 = 0BBBBBBBBBBBBBBBBBBB@ rain hot high truerain cool * true* hot * true* * high true* hot high ** cool * *rain * * true
1CCCCCCCCCCCCCCCCCCCA :Running HFL, [TEMPERATURE 6= fhot; coolg] is �rst chosen as an in-evitable selector and it covers rows 1, 2, 3, 5 and 6, attributes OUTLOOK andHUMIDITY are then excluded by attribute WINDY and [WINDY 6= true] is�nally chosen as an inevitable selector on the fourth row after OUTLOOK andHUMIDITY have been crossed out. The equivalent Hfl for this intersectinggroup is [TEMPERATURE = mild] ^ [WINDY = false]:Therefore, Hcv = [OUTLOOK = overcast] _[WINDY = false] ^ [OUTLOOK = rain] _[TEMPERATURE = mild] ^ [WINDY = false]whose equivalent rule in variable-valued logic is:53



[ OUTLOOK=overcast ]_ [ WINDY=false ][ OUTLOOK=rain ]_ [ TEMPERATURE=mild ][ WINDY=false ]! [ DECISION=Play ] .Meanwhile, the decision tree generated by ID3 and its equivalent rules aregiven in Appendix A.For the example set shown in Table 3-2, there are 14!=87,178,290,000 possibleorders for the 14 examples. When we consider the intersecting groups of positiveexamples of Play against examples of Don't Play, the order of negative examplesdoes not change the partitioning of positive examples. So there are 7!=5040 pos-sible partitionings for the 7 positive examples. Theoretically, once the order ofpositive examples changes, the partitions and therefore the result produced byHCV could be di�erent. However, over 500 di�erent orders of the 7 positive ex-amples have been tested and 2 di�erent partitionings have been found, but theresults produced by HCV are the same.Example 3-3. Table 3-3 shows two di�erent orders of the same eight examplesin an arti�cial example set, with which HCV produces di�erent results.The results produced by HCV for the T class are given below:54



For Table 3-3 (a): For Table 3-3 (b):[ B=[1] ][ B=[1] ] [ C=[1] ][ A=[0] ] __ [ A=[1] ][ A=[1] ] [ C=[1] ][ C=[1] ] _! [ A=[0] ]The T class. [ C=[0] ]! The F class.However, the order of examples does not e�ect the decision trees generated byID3. Figure 3-2 shows the decision tree generated by ID3 for both Table 3-3 (a)and (b). The decision-tree-traversal rules are as follows:B=1 & A=0 B=0 & A=0_ B=1 & A=1 & C=1 _ B=0 & A=1 & C=o_ B=0 & A=1 & C=1 _ B=1 & A=1 & C=0! !The T class. The F class.3.4.3 A comparison between HCV and AE1As we mentioned in Section 2.5.4, the extension matrix approach was �rstintroduced in AE1 in 1985. To the best of the author's knowledge, the approachitself has not yet been improved at all in anywhere since then except in the author'sHCV algorithm. The developer of AE1 has recently developed an AE5 system[Hong 89b] based on AE1 but the basic algorithm remains to be the same. Theonly di�erence between AE5 and AE1 is that some facilities such as constructiveand incremental induction have been added to the AE5 system. So, the two majorproblems of AE1 described in Section 2.5.4 also apply to AE5.55



Table 3{3: Cases in di�erent orders(a)ORDER A B C CLASS1 0 0 1 F2 0 1 0 T3 0 1 1 T4 1 0 0 F5 1 0 1 T6 1 1 0 F7 1 1 1 T(b)ORDER A B C CLASS1 0 0 1 F2 1 1 1 T3 0 1 1 T4 1 0 0 F5 1 0 1 T6 1 1 0 F7 0 1 0 T
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Although HCV is based on the extension matrix approach developed in AE1,there are two radical improvements on the approach itself in HCV as well as thoseimplementation aspects described in Section 3.5.� The use of disjunction matrixes.Although disjunction matrixes are also de�ned in [Hong 85], AE1 does notproduce and use them in the partitioning of positive examples. AE1 still needs toproduce all extension matrixes of positive examples against negative examples (byremembering only dead elements in each extension matrix [Hong 89b]), while inHCV, as we will see in Section 3.5.6, we need at most two extension matrixes ateach time stage. By using disjunction matrixes, HCV can both save a lot of dataspace and provide a natural way to reduce its rules' complexity. As we have seenfrom Theorem 3.5, if there exists at least one conjunctive cover in a given trainingexample set, the formula produced by HCV must be a conjunctive one. This is byno means guaranteed in AE1.� Three complete strategies in HFL.HCV has provided a reasonable solution to both the MFL and the MCV prob-lems described in Section 2.5, which are NP-hard in nature. So the second disad-vantage of AE1 has disappeared in HCV. Although the �rst disadvantage of AE1still exists in HCV's least-frequency strategy, we have provided three completestrategies at the same time. For those example sets where the three strategies areenough to produce the �nal results, we can guarantee that the results are optimal.According to all the experiments the author has carried out including those men-tioned in this thesis, the three strategies are always useful even when they are notenough to produce an optimal result.
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3.5 Some Related Problems in Implementation3.5.1 IntroductionThe HCV algorithm has been implemented on both PC machines (see Chapter5) and Sun workstations. The term \HCV (Version 1.0)" in the following accountindicates the current implementation (Version 1.0, [Wu 92d]) of the HCV algo-rithm in SICStus Prolog which runs on SUN3 and SPARC workstations. In thisimplementation, HCV (Version 1.0) can classify more than two classes of exam-ples and produce rules for each class of pre-classi�ed examples by using part of theAQ11 technique outlined in Section 2.2 (i.e. assuming that examples not classi�edas positive are negative). For the example set in Appendix B, the rules producedby HCV (Version 1.0) are shown below:[ X2=[b] ]_ [ X2=[c,a] ][ X1=[0] ] [ X1=[1] ][ X2=[a] ] __ [ X2=[c] ][ X1=[0] ] [ X4=[1] ][ X4=[0] ] !! The F class.The T class.The HCV (Version 1.0) program also allows the user to evaluate the rules' accuracyin terms of a set of pre-classi�ed test examples (see Chapter 4).3.5.2 Don't Cares in HCVThe # symbol in HCV (Version 1.0), like in many other induction programs, hasa speci�c meaning when representing attribute values: Don't Cares. For instance,the example set in Appendix B can be equivalently expressed as Table 3-4 in HCV(Version 1.0). 59



Table 3{4: Cases of T and FORDER X1 X2 X3 X4 CLASS1 1 a # 1 F2 1 a a 0 F3 1 b c 1 T4 0 b b 0 T5 0 a c 1 T6 1 b a # T7 1 c c 0 F8 1 c b 1 F9 0 c b 0 T10 0 a a 0 T11 0 c c 1 F12 0 c a 0 T13 1 a b 0 F14 0 a a 1 T15 0 b a 1 T
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A Don't Care value of an attribute in an example is used to indicate that thevalue of the attribute is irrelevant to the classi�cation of the example. An examplewith Don't Care values can always be converted into a number of equivalent exam-ples which have no Don't Cares. Therefore, a Don't Care attribute is universallyquanti�ed and Don't Care values can in practice be used to compress data spaces.In the extension matrix approach, a dead element (�) in an extension matrixindicates that a positive example and a negative example have the same attributevalue and therefore the attribute value cannot be used to distinguish the positiveexample from the negative example. When a negative example (say the i-th)has a Don't Care value on an attribute (say the j-th), the rij in every positiveexample's extension matrix must be � because the negative example can takeevery positive example's j-th attribute value. When a positive example has a Don'tCare value on its j-th attribute, all the values on the j-th column of the positiveexample's extension matrix must be � according to the meanings of Don't Carevalues and �.3.5.3 Noise handling in HCVStrictly speaking, the HCV algorithm as it stands does not process noisy data.Unknowns, which are di�erent from the Don't Care values described above andusually used to represent uncertainty or missing attribute values, are not permittedin either the HCV algorithm or the HCV (Version 1.0) program. A ? value is justa common value like a, 'X0.5' or 0.24 in HCV (Version 1.0). It has no speci�cmeaning here. However, it is not di�cult to add a screening engine to removenoise from an example set before induction takes place.When an example turns up in more than one class in an example set, wesay that there is a contradiction in the example set. The HCV (Version 1.0)program checks for contradictions when a training example set is input. Oncea contradiction is found, the corresponding example will be omitted from bothinduction and test. For instance, even if we put two more examples as below inTable 3-4, the results produced by HCV (Version 1.0) will not change at all.61



ORDER X1 X2 X3 X4 CLASS16 0 c a 1 F17 0 c a 1 TWhen an example turns up more than once in the same class in an exampleset, we say that there is a repetition in the example set. Repetitions are silentlyprocessed in HCV (Version 1.0): each example is counted in only once duringinduction even if it appears many times.3.5.4 The default ruleIn the HCV (Version 1.0) program, we have adopted the speci�c engine in CN2[Clark et al. 89] for de�ning default rules which have no reference to attributevalues. The most commonly occurring class in a training example set is assignedto all those new examples which cannot be classi�ed by the rules produced by theHCV algorithm. Examples can be found in Appendix C.3.5.5 Numerical attributesBasically, numerical attributes in the HCV algorithm are processed in the sameway as symbolic ones during induction. When generating selectors, HCV (Version1.0) adopts the following procedure to group values of each numerical attribute(sayXm) once selected by the fast or precedence strategy into a number of intervals:Step 1: Collect all values, V list, of the numerical attribute which thecurrent intersecting group of positive examples take.Step 2: Sort V list into an ascendant order.Step 3: Partition V list into a number of intervals, [V11; V1i1 ], [V21; V2i2 ],..., [Vk1; V1ik ], such that1. there is not a V such that Vj1 < V < Vjij (j = f1; :::; kg) andV appeared on Xm of any negative examples;62



2. there must be some V 0 that Vjij < V 0 < V(j+1)1 for eachj 2 f1; :::; k � 1g and V 0 appeared on Xm of some negativeexample(s).Step 4: Write the selector as [Xm = [[V11; V1i1 ]; [V21; V2i2 ]; :::; [Vk1; V1ik ]]where \=" indicates membership (2).3.5.6 Size of extension matrixesIn each extension matrix or disjunction matrix, all nondead elements are thesame as those in the negative example matrix NEM according to De�nitions 2.5.1and 2.5.3. We only need to remember the dead elements in execution. The numberof dead elements in the extension matrix or disjunction matrix must be less thanna where n and a are the numbers of negative examples and attributes in a givenexample set.All the positive examples are processed one by one in the HCV algorithm.At each stage, we need at most an extension matrix and a disjunction matrix.The space needed for an implementation of the HCV algorithm is less than 2na.Therefore, the HCV algorithm is low-order polynomial learnable in both time andspace. This is an important feature for good learning algorithms [Valiant 84].3.6 A Comparison with ID3 and HCVOne di�erence between HCV and ID3 is that the HCV algorithm only pro-duces rules for positive examples while ID3 generates decision trees to classifyboth positive and negative examples. However, this is not an advantage of ID3over HCV. For instance, if all the examples in an example set are people fromdi�erent countries in the world, when we are told that some of them are Britishand the task is to �nd characteristics of British, we will only be interested in thedescription produced for British because all other examples which cannot be sat-is�ed by the description will automatically belong to other countries. Although63



the ID3 algorithm will automatically produce a description for negative examplesat the same time as it produces the description for positive examples, we do notthink that is useful in many cases. A description for negative examples belongingto all other countries except Britain will not help anything because 1) it can beinferred from the description for positive examples, and 2) if we want to knowwhich speci�c country a negative example belongs to, we need to run ID3 onceagain. The HCV (Version 1.0) program mentioned in the last section has alreadybeen able to produce rules to classify more than two classes of examples. Theentropy measure in ID3 can also be easily extended [Clark 90] to chunk examplesinto more than two classes.The following is a comparison between ID3 and HCV.The reason for using decision trees rather than rules, such as the variable-valued logic rules adopted in AQ11 and HCV, is said by [Jackson 90] to be thatthe ID3-like algorithms are comparatively simpler than other learning algorithms.From the fourth disadvantage of ID3 (see Section 2.3.4) and the time complexityof HCV, we can say that the argument is now no longer convincing. Although theinformation theoretic heuristic is by no means complete, ID3 needs to examineall possible candidate attributes and their values to choose one attribute at eachnon-leaf node of its decision trees and thus its time complexity is still expensive[Utgo� 89]. In HCV, although all of the fast, precedence and elimination strategiesare complete (see Theorem 3.1), which means if there exists one or more shortestconjunctive formulae in an extension matrix they will not lose it, the fast strategycan choose an optimal attribute as soon as it �nds the attribute without anyattention to other attributes and the precedence strategy can choose an inevitableattribute by examining only the values of one row in an extension matrix. Highe�ciency has been seen as an important requirement for knowledge discovery andexponential or even medium-order polynomial complexity will not be of practicaluse [Quinlan 89b] in realistic data bases. We have not provided the comparisonof HCV and ID3 on time performance because there are di�erent results for ID3'stime complexity and it is di�cult to say which is correct or wrong. Therefore,we can not say in general that HCV outperforms ID3 in time. However, we have64



given detailed analysis on HCV's time complexity and have shown that it is low-order polynomial and therefore computationally acceptable. The �rst signi�cantadvantage of the HCV algorithm is that it supports a reasonable solution to theNP-hard problem in the extension matrix approach for inductive learning.Contrasting to the second and third disadvantages of ID3, di�erent values ofthe same attribute which take on only positive examples can be easily groupedinto a selector in the variable-valued logic. In ID3, once an attribute is selected,all arcs labeled by values that attribute takes must be expanded. This can stillmake the number of branches (paths) large since at each arc only one value canbe labeled, and resulting paths might be longer than those actually needed be-cause, by the time speci�c concepts (leaves on the decision tree) are developed,irrelevant variables may have been introduced. All of the four strategies adoptedin Algorithm HFL and the partitioning technique in HCV are designed to reducethe number of selectors. From Theorem 3.1, for those problems where the fast,precedence and elimination strategies are enough to produce their �nal formulae,we can guarantee that the formulae are optimal. From Theorem 3.5, if there existsat least one conjunctive cover in a given training example set for positive examplesagainst negative examples, the formula produced by HCV must be a conjunctiveone. However, the information theoretic heuristic in ID3 is not complete, whichmeans it is not guaranteed to �nd the simplest decision tree that characterizes thegiven training instances. From the example sets given above, the rules producedby HCV are all more compact 4 in terms of the numbers of conjunctive rules andconjunctions than the decision trees or their equivalent decision rules produced byID3. So, the compactness of rules in HCV is its second advantage. However, theleast-frequency strategy is still heuristic. We cannot guarantee the rules producedby HCV must be more compact than the decision trees generated by ID3 in allpossible cases. There are still three kinds of possible results for a new example4This is still true when we (1) only count the rules for positive examples and (2)count a membership like Xj 2 [V1; :::; Vn] (or Xj = [V1; :::; Vn]) in HCV rules as nnon-membership conjunctions. 65



set: 1) HCV produces more compact rules as analysed and shown above; 2) HCVand ID3 produce similar rules because ID3 can usually produce e�cient decisiontrees, and 3) ID3 produces more compact rules than HCV when ID3 can producethe shortest decision tree while HCV cannot generate optimal rules. For instance,the order of cases in a given example set can e�ect the result of HCV but does notchange the decision tree generated by ID3. Sometimes, we could possibly changethe order of examples to make ID3 outperform HCV.Also, all of the four strategies adopted in Algorithm HFL and the partition-ing technique in HCV are more comprehensible than the information theoreticheuristic for most human experts who are not familiar with information theory.3.7 ConclusionsThe HCV algorithm described in this chapter can be viewed as a representativeof the extension matrix approach based family of inductive algorithms. As its timeis low-order polynomial, it can be seen as one of the fastest learning algorithmsto date. From the analysis of the strategies adopted in HCV and the examplesets shown above, the description in variable-valued logic generated in HCV issimilar to that adopted in AQ11, which is the advantage of AQ11 over ID3. Also,the rules generated by HCV have been shown empirically to be fairly compactalthough we cannot yet generally say they are necessarily more compact than thedecision trees produced by the ID3-like algorithms. For those problems wherethe fast, precedence and elimination strategies are enough to produce their �nalformulae, we can guarantee that the formulae are optimal but the informationtheoretic heuristic in ID3 cannot.
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Chapter 4The MONK's Problems: APerformance Comparison of HCVwith Other Induction Algorithms4.1 IntroductionThis chapter provides a performance comparison of HCV with other algorithms,such as ID3, ID5R, ASSISTANT, AQR (which can be viewed as an implementationof the AQ11 algorithm to chunk examples into only two classes) and CN2, interms of rule compactness and accuracy on the threeMONK's problems. All thesealgorithms have been mentioned in Sections 2.2 to 2.4. The MONK's problemsare concerned with learning concept descriptions from examples.The data for the three MONK's problems are described in Chapter 1 of[Thrun et al. 91]. However, as some examples were missing from the training setsin [Thrun et al. 91], I have consulted John Cheng in Carnegie Mellon Universityand completed the data sets myself. The results from applying the HCV (Ver-sion 1.0) program to the three problems are recorded in Appendix C, whereas theresults generated by other algorithms are adopted from [Thrun et al. 91]. Thoseresults were given by a collection of researchers, each of whom was an advocate orthe creator of the algorithm they tested.67



4.2 The MONK's ProblemsThe MONK's problems are derived from an arti�cial robot domain, in whichrobots (examples) are described by six multiple-valued attributes, i.e., head shape,body shape, is smiling, holding, jacket color, and has tie. The size of the value setsof the six attributes are 3, 3, 2, 3, 4 and 2, respectively as below.head shape 2 fround, square, octagongbody shape 2 fround, square, octagongis smiling 2 fyes, nogholding 2 fsword, balloon, 
aggjacket color 2 fred, yellow, green, blueghas tie 2 fyes, nogConsequently, the example space consists of the total of 3�3�2�3�4�2=432possible examples. The three MONK's problems, called M1, M2, and M3, are allbinary classi�cations de�ned over the same space. They di�er in the type of theconcept to be learned, and in the amount of noise in the training examples. Eachproblem is given by a logical description of a concept. Robots belong to eitherthis concept or not, but instead of providing a complete concept description tothe learning problem, only a subset of all 432 possible robots with its classi�cationis given. The learning task is then to generalise over these examples and, if theparticular learning technique at hand allows this, to derive a simple concept de-scription. After a concept description has been produced by a learning algorithmfrom the training examples of each of the three problems, the whole 432 examplesare used to test the accuracy of the concept description.The three MONK's problems are speci�cally designed as below:� Problem M1: (head shape = body shape) OR (jacket color = red)From 432 examples (216 positive and 216 negative), 124 (62 positive and62 negative) were randomly selected for the training set. There were nomisclassi�cations in the training examples.68



This problem is in standard disjunctive normal form (DNF) and is supposedto be easily learnable by all symbolic learning algorithms.� Problem M2: exactly two of the six attributes have their �rst valueFrom 432 examples (142 positive and 190 negative), 169 (105 positive and62 negative) were randomly selected as training examples. Again, there wasno noise in the training set.This problem is said to be among the most di�cult to learn using solely logic-based inductive learners (such as AQ11-like algorithms and ID3-like algorithms).It combines di�erent attributes in a way which makes it complicated to describein DNF or CNF (conjunctive normal form) using the given attributes only.� ProblemM3: (jacket color = green) AND (holding = sword) OR (jacket coloris NOT blue) AND (body shape is NOT octagon)From 432 examples (228 positive and 204 negative), 162 (60 positive and 62negative) were selected randomly, and among them there were 5% misclas-si�cations, i.e., noise, in the training set.This problem is again in DNF but serves to evaluate learning algorithms underthe presence of noise.4.3 Results Produced by HCVAppendix C records in detail the results produced by HCV (Version 1.0) onthe three MONK's Problems. A default rule (with its condition being DEFAULT,see Section 3.5.4) there means that if none of the rules before the default rule aresuccessful in matching a given test example, then the test example will be classi�edto the default class. Tables 4-1 and 4-2 provide a short overview of Appendix C.As ID3 rules do not contain memberships in their conditions, Table 4-1 providesa third measurement, the number of equivalent non-membership conjunctions, to69



Table 4{1: Rules (by HCV) from Training SetsMeasurement Training Set 1 Training Set 2 Training Set 3number of conjunctive rules 7 39 18number of conjunctions 16 168 62number of equivalent non-membershipconjunctions 25 241 92Table 4{2: Accuracy (by HCV) on Test SetsTest Set 1 Test Set 2 Test Set 3100% 81.25% 90.28%convert the memberships in HCV rules to plain conjunctions. In this measurement,a membership like Xj = [V1; :::; Vn] is counted as n non-membership conjunctions.However, this measurement is only applicable to the comparison of HCV withID3 and ID5R because all other algorithms such as ASSISTANT, AQR and CN2have memberships in their rules. Actually, as we discussed in Section 2.3.4, beingunable to group attribute values is simply a disadvantage of ID3.4.4 Results Produced by Other Algorithms onTraining SetsThe following tables, which are adopted from Chapters 6 and 3 of[Thrun et al. 91], show the results produced by ID3 (with and without window-ing), ID5R, ASSISTANT, AQR and CN2 on the training sets of the three MONK'sproblems. We will not include ASSISTANT's results on the M3 problem in thisand next sections because ASSISTANT has been intended (by pruning its deci-sion tree) to detect and eliminate the misclassi�ed examples in Training Set 3 and70



Table 4{3: ID3 without Windowing on the MONK's ProblemsMeasurement Training Set 1 Training Set 2 Training Set 3number of non-leaf nodes 32 64 14number of leaves 62 110 31Table 4{4: ID3 with Windowing on the MONK's ProblemsMeasurement Training Set 1 Training Set 2 Training Set 3number of non-leaf nodes 13 66 13number of leaves 28 110 29therefore its results cannot 100% correctly classify all the training examples andare not comparable to those produced by other algorithms. The measurements forthe decision trees produced by the ID3-like algorithms are the numbers of leavesand non-leaf nodes and for variable-valued logic rules produced by the AQ11-likealgorithms are the numbers of conjunctive rules (or complexes) and conjunctions(selectors).
Table 4{5: ID5R on the MONK's ProblemsMeasurement Training Set 1 Training Set 2 Training Set 3number of non-leaf nodes 34 64 14number of leaves 52 99 2871



Table 4{6: ASSISTANT on the MONK's ProblemsMeasurement Training Set 1 Training Set 2number of non-leaf nodes 7 56number of leaves 8 56Table 4{7: AQR on the MONK's ProblemsMeasurement Training Set 1 Training Set 2 Training Set 3number of conjunctive rules 36 83 36number of conjunctions 123 334 114Table 4{8: CN2 on the MONK's ProblemsMeasurement Training Set 1 Training Set 2 Training Set 3number of conjunctive rules 10 58 24number of conjunctions 13 145 38Table 4{9: Number of RulesAlgorithm Training Set 1 Training Set 2 Training Set 3ID3 without Windowing 62 110 31ID3 with Windowing 28 110 29ID5R 52 99 28ASSISTANT 8 56AQR 36 83 36CN2 10 58 24HCV 7 39 1872



4.5 Performance ComparisonAs each leaf in a decision tree corresponds to a conjunctive decision-tree-traversal rule, the number of leaves in a decision tree is equivalent to the numberof conjunctive decision-tree-traversal rules. Table 4-9 lists the number of conjunc-tive rules produced by each of the induction algorithms mentioned so far in thischapter. From Table 4-9, we can clearly see that the rules produced by HCV arethe most compact in terms of the number of conjunctive rules. Since non-leafnodes in a decision tree are shared by di�erent conjunctive decision-tree-traversalrules, the number of non-leaf nodes in a decision tree is not comparable to thenumber of conjunctions in the equivalent conjunctive decision-tree-traversal rules.With respect to the number of conjunctions generated, CN2 seems to be betterthan HCV. However, as we will discuss below, the rules produced by CN2 do notmatch the training examples exactly.Of course, the comparison on Table 4-9 is not completely `fair' because dif-ferent algorithms have di�erent notions of `conjunctive rule'. For example, HCV,ASSISTANT, AQR and CN2 use memberships while ID3 and ID5R do not orcannot.Table 4-10 provides numerical evaluation of the accuracy of the rules or decisiontrees produced by various algorithms based on the percentage of the test examplescorrectly classi�ed. As we can see from Table 4-10, HCV works perfectly well onthe M1 problem. Its accuracy is also among the best on the M2 problem. However,it does not perform that well in noisy environments like the M3 problem.It is shown [Thrun et al. 91] that the rules produced by CN2 on Training Set 2can only 92.90% correctly classify the original training set. This is a common casefor many noise-tolerant AQ11-like algorithms such as CN2 and AQ15 because eachof them has a threshold parameter to indicate the minimum percentage of selec-tors/conjunctions in a rule they generated that must be true for the rule to apply.The rules produced by them are intentionally incomplete and inconsistent withthe training set since they were generated with some error tolerance. Sometimes,73



Table 4{10: AccuracyAlgorithm Test Set 1 Test Set 2 Test Set 3ID3 without Windowing 83.24% 69.12% 95.60%ID3 with Windowing 98.56% 67.92% 94.44%ID5R 79.77% 69.23% 95.28%ASSISTANT 100.00% 81.25% on 351 examplesAQR 95.88% 79.63% 87.04%CN2 100.00% 68.98% 89.12%HCV 100.00% 81.25% 90.28%this feature of noise-tolerant AQ11-like algorithms can recognize noise in trainingexamples. For example, AQ14-NT, a version of the AQ11 algorithm that employsa noise-�ltration technique, can recognise 100% correctly all the test examples inTest Set 3 after some loops of concept-driven �ltration of training examples withtruncation parameter equal to 10% and repeated induction. However, as we havediscussed in Section 2.4, noise �ltration or tolerance can only work usefully in noisyenvironments. It can be harmful in noise-free domains. For example, 100% correctclassi�cation of the original training examples should be a basic requirement forall learning algorithms in noiseless environments. The CN2 and AQ15 algorithmscan easily violate this requirement.4.6 ConclusionsIn addition to the algorithms mentioned above, many other algorithms such as� AQ17-DCI (a version of the AQ11 algorithm with data-driven constructiveinduction),� AQ17-HCI (a version of the AQ11 algorithm with hypothesis-driven con-structive induction) 74



� AQ15-GA (a version of the AQ11 algorithm combined with a genetic algo-rithm),� AQ15-FCLS (a version of the AQ11 algorithm oriented toward learning 
ex-ible concepts),� AQ14-NT (as mentioned in the last section),� ECOBWEB (a unsupervised clustering system: examples are not preclassi-�ed as positive or negative examples there),� Backpropagation (a function approximation algorithm for multilayer feed-forward networks based on gradient descent), and� Cascade-Correlation (a neural network learning algorithm that builds a near-minimal multi-layer network topology in the course of training)have also been applied to and tested on the three MONK's problems[Thrun et al. 91]. With respect to accuracy of the results generated by variousalgorithms including those have been mentioned in earlier sections, the neuralnetwork methods, Cascade-Correlation and Backpropagation (with weight decay),seem to be the best on the three MONK's problems. Their accuracy on the threetest example sets are both 100%, 100% and 92.7% respectively. However, theresult compactness and time of all those algorithms are not comparable becausethey have di�erent knowledge representation and were implemented and tested bydi�erent people on di�erent machines.
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Chapter 5KEshell2: An Intelligent LearningData Base System5.1 IntroductionKEshell2 is an improved version of KEshell [Wu 90, Wu 91] with the facilitiesof extracting knowledge from relational data bases. This chapter �rst gives anintroduction to KEshell and then presents KEshell2 with examples.KEshell is an alternative tool to rule-based production systems based on anintegration of rule-based and numeric computations. It adopts a 2-level represen-tation language, rule schema + rule body, which is derived originally from Xionget al.'s \rule skeleton + rule body" representation [Wu 90]. Rule schemata in thelanguage are used to describe the hierarchy among factors or nodes in domainreasoning networks while rule bodies, which comprise computing rules as well asinference rules, are used to express speci�c evaluation methods for the factorsand/or the certainty factors of the factors in their corresponding rule schemata.By representing explicitly numeric computation and inexact calculations as well asinference rules, the language supports a 
exible way to process procedural knowl-edge and uncertainty. This representation can be easily adapted to rule induction:a rule schema can be used to describe the relationship between concepts or classesand features or attributes, and the corresponding rule body can express all the con-crete rules produced by induction algorithms. Induction techniques can normallyproduce rules within a rule body, not the whole rule set.76



KEshell2 is based on KEshell, with the dBASE3 package and the major con-tribution of this thesis described in Chapter 3 integrated to permit knowledgeacquisition from relational data bases. The HCV algorithm and the ID3 algo-rithm have been implemented in the knowledge acquisition engine (K.A. Engine)of KEshell2. A deduction module which uses the rules produced by HCV to solveusers' problems has been designed and implemented in the inference and deductionengine (I/D Engine) of KEshell2.5.2 KEshell: A \Rule Schema + Rule Body"Based Knowledge Engineering Shell5.2.1 Problems in production systemsRule-based production systems are one of the most widely used models ofknowledge representation in AI, in particular expert systems. Rather than express-ing a logical calculus about the world as in Prolog-based systems or computingthe numeric values de�ned over data as in conventional programming, productionsystems normally determine how the symbol structures that represent the currentstate of the problem should be manipulated to bring the representation closer toa solution. Problems which have been solved in production systems can usuallybe encoded in LISP or PROLOG, of course; the point is that production systemsand rule-based programming languages are speci�cally designed to do them, andas a result they do them rather well [Jackson 90].A production system is de�ned by three basic components:� a rule base which consists of a collection of IF ... THEN statements calledproductions, production rules, or simply rules;By convention, the IF part of a rule is called its LHS (left-hand side), andits THEN part is called its RHS (right-hand side). Both LHS and RHS of a ruleusually adopt the grammar of either (object; attribute; value) triples (such as in77



OPS5 and EMYCIN) or (attribute; value) pairs (such as in M.1, EXPERT andKES). An (object; attribute; value) triple or an (attribute; value) pair is called acondition when it appears in the LHS of a rule and called a conclusion when in theRHS. A rule in the rule base typically says that if its LHS holds then its RHS canbe logically drawn and is thus called [Wu 90] an inference rule as opposed to thecontrol rules (or meta rules) which are used, say, to determine how to apply otherrules and the computing rules which will be introduced below in the rule schema+ rule body language.� a working memory which holds facts including the data, goal statement andintermediate results that make up the current state of the problem in solving;Facts in the working memory can take the form of either (object; attribute;value) triples or (attribute; value) pairs with associated certainty factors givingthe strength of belief in the values.� an inference engine which decides when to apply which rules.The inference engine typically operates according to the following\recognise{act" algorithm:1. Match. Find the rules in the rule base whose LHSs are satis�ed from theexisting contents of the working memory.2. Con
ict resolution. Select one rule with a satis�ed LHS by applying one ormore con
ict resolution strategies; if no rule is available in the rule base,stop.3. Act. Adapt the working memory according to the RHS of the selected rule,perhaps adding a new item or deleting an old one.4. Goto (1) for further 3-phase \match{con
ict resolution{act" cycles.78



There are many advantages in production systems [Wu 90, Barr et al. 81,Brownston et al. 85], such as expressibility, modularity, uniformity and natural-ness, but there are also several signi�cant disadvantages inherent in the formalism[Wu 90]. We summarize these below:5.2.1.1 Low e�ciencyE�ciency is an important consideration in production systems since they maybe expected to exhibit high performance in interactive domains or real-time do-mains. However, chaining in production systems is much more complicated thantesting the satis�ability of individual propositional formulae [Dowling & Gallier 84].Non-worst-case subexponential algorithms are not possible for the general case[Tambe & Newell 88, Miranker et al. 90] and existing rule-based programming cannot abolish combinatorial explosion completely [Jackson 90] although in practicalapplications, the con
ict resolution strategies, such as LEX andMEA [Brownston et al. 85] employed in OPS5, tend to choose rules that lead to areasonable solution.In the basic forward chaining algorithm, each 3-phase \matching { con
ictresolution { action" cycle deals with the problem of matching rules in a rule basewith the working memory. However, the successful matching of a rule with theworking memory does not always mean its immediate action. A rule may fail tomatch the working memory in an overall problem-solving process but it often needsto be tested in each 3-phase cycle. Meanwhile, some other rules may be successfulin matching the working memory from the very beginning of a problem solvingbut always fail to get the priority of action in each con
ict resolution phase. Whenthere are changes in the working memory, they need to be tested again and again.Those problems cause low e�ciency of the basic forward inference. For naiveproduction system algorithms, all but the smallest systems are computationallyintractable. Some earlier systems have been observed to spend more than 90% oftheir total run time performing matching [Forgy 82].79



Even in Rete [Forgy 82] of the OPS5 language and TREAT [Miranker 87] ofthe DADO machine, the two commonly assumed best match algorithms, there areno de�nite solutions for those problems. Both Rete and TREAT were developedto avoid matching all rules with the working memory to �nd applicable rules oneach cycle. For example, when rules in a rule base are �rst loaded into the system,OPS5 compiles them into a set of features to be checked. The features are mostlytests of values of attributes which are shared by di�erent rules. They are connectedin a tree-structured discrimination network that e�ciently performs the matchingprocess. However, the NP-hard problem has by no means been eliminated in OPS5and DADO.5.2.1.2 Lack of 
exibility in expressing procedural knowledgeSymbolic computation, in which non-numeric symbols and symbol structurescan be construed as standing for various concepts and relationships between them,has been characteristic of AI. Knowledge representation in AI is concerned mainlywith the way in which symbolic information might be stored and large bodies ofknowledge can be formally described for the purpose of symbolic computation.Although the distinctions between AI representations like production systems andprocedural representations are clear [Jackson 90, Barr et al. 81], procedural knowl-edge has not been well integrated into production systems up till now. When theLHS and RHS in a rule contain all of 1) an assignment of a symbolic value in adiscrete domain, 2) an assignment of a numeric function value and 3) a logical con-dition or conclusion, it is di�cult to use existing production systems or rule-basedprogramming languages { although such things can be represented, it is done inan ad hoc way, rather than as an integral part of the notation.5.2.1.3 Lack of 
exibility in inexact inferenceThere has been broad agreement among AI researchers that inexact inferenceis important in many expert system applications due to many di�erent sources ofuncertainty from imperfect domain knowledge and/or imperfect case data in AI80



problem solving; however, there is very little agreement concerning the form inex-act inference should take [Jackson 90]. Five typical inexact models [Wu et al. 88,Jackson 90] which have been adopted in AI systems are probability theory basedmethods, the belief and disbelief model adopted in MYCIN, fuzzy logic, belieffunctions (e.g. the Dempster{Shafer theory on evidence) and incidence calculus,each having its inherent advantages and disadvantages.A standard approach to implement inexact inference in existing AI systems iscomprised of three components: a measure (e.g. a probability or a fuzzy degree)to describe imperfect data, a measure (e.g. a conditional probability or a rulestrength) to represent imperfect rules and an inexact model which contains a setof computing formulae to evaluate the certainty factor of each conclusion in theRHS of a rule according to the certainty factors of all the conditions in the LHSof the rule. There are two problems in the normal approach:� The inexact model once chosen is implicitly implemented inside the inferenceengine rather than being expressed explicitly. In other words, the executionof di�erent rules uses the same set of computing formulae for their conclu-sions' certainty factors. This rigidity is inconvenient for some applications(see Example 5-3) where di�erent conclusions need di�erent operators tocompute their uncertainty factors.� Each inexact model has its own drawbacks. It would be quite useful in someapplications if we can integrate several models together, say, using bothprobability calculus and fuzzy calculus. However, that is impossible withthe standard implementation approach.With respect to all of the considerations in Sections 5.2.1.1 to 5.2.1.3, weintegrate rule-based and numeric computations into a 2-level description in ourrule schema + rule body language to improve the production system structure.In contrast to the aforesaid problems, a linear forward chaining algorithm, LFA([Wu 93d], also described in Appendix E), is supported by the language based onsorting the knowledge in a knowledge base into a partial order. Numeric compu-tation and inexact calculus are explicitly expressed in the same way as inference81



rules in rule bodies in the language so that an expert can use di�erent inexactmodels or their changed formulae when building a knowledge base.5.2.2 Rule schema + rule body5.2.2.1 The syntaxThe grammar used in rule schema + rule body is that of (factor, value) pairsas opposed to (object, attribute, value) triples in OPS5 and EMYCIN.De�nition 5.1. A factor, which has a similar meaning to an attribute in M.1,EXPERT and KES, is a name involved in a domain expertise. It can be a logicalassertion, a discrete set variable or a continuous numeric variable.De�nition 5.2. A rule schema has a rule-like structure with the general formof IF E1; :::; En THEN Aor IF E1 ^ ::: ^ En THEN Awhere all of E1; :::; En and A are factors. Each Ei (i = 1; :::; n) is called a premisefactor and A is called the conclusion factor in the rule schema.In rule induction, each Ei is an attribute and each value of A indicates a classto learn.De�nition 5.3. Each rule schema IF E1; :::; En THEN A has a correspondingrule body which contains all the available information to evaluate the value of A(when A is a non-logical variable) and/or the certainty factor of A. All the factorsincluded in the rule body must appear in the rule schema so that when there aredata for all of E1; :::; En, A can de�nitely be evaluated by the rule body if theinformation inside is complete.De�nition 5.4. A computing rule is di�erent from an inference rule in that itsRHS is an assignment to a non-logical variable or a certainty factor. For example,IF A>10, CF(B)>0.4 THEN X=sin(C)+maxf0.5, cos(D)g.82



In each rule body, there may be one or more inference rules similar to thosein production systems and/or computing rules for computation. All the rules ina rule body are used to determine the value of the conclusion factor in its corre-sponding rule schema and/or the certainty factor (CF ) of the value/factor. Whenthe conclusion factor is a logical assertion, the rule body can be used to computethe CF of the assertion. When the conclusion factor is a set variable or a numericvariable, the rule body is used both to evaluate the value of the factor and to com-pute its CF . Thus, the computation of the CF of a factor can be processed in thesame way as the evaluation of non-logical factors, both being explicitly expressedin rule bodies. When all the factors in a domain expertise are logical assertionsand all the rule bodies have the same rules for computing CF s, the inexact infer-ence then behaves similarly to the standard implementation approach mentionedin Section 5.2.1.3. When all the factors are numeric variables and no uncertaintycalculus is needed, all the rule bodies will be used to express computation modelsand a rule schema plus its rule body is analogous to a procedure or function inconventional programming.De�nition 5.5. A rule schema with its corresponding rule body is called arule set.A rule set is an independent knowledge unit in the rule schema + rule bodylanguage. It can be described in BNF (Backus Normal form) as follows.<rule set> := Rule Set # <rule set number><rule schema><rulebody><rule set number> := <integer><rule schema> := Schema: IF <premise factors> THEN <conclusionfactor><premise factors> := <premise factor>f, <premise factors>g<premise factor> := <factor><conclusion factor> := <factor><factor> := <variable name>j<logical assertion><logical assertion> := <predicate(object)>j<predicate><rule body> := Body: (<C-rule>j<I-rule>)f<rule body>g83



<C-rule> := (<factor>jCF (<factor>))= <assignment expression><assignment expression> := <value>j<algebraic expression><I-rule> := IF<antecedents>THEN<conclusion><antecedents> := <antecedent>f,<antecedents>g<antecedent> := (<factor>jCF (<factor>))<relation-sym><assignmentexpression><relation-sym> := >j<j=j<>j>=j<=<conclusion> := <C-rule><value> :=<integer>j<real>j<symbolic value> j<probability>j<fuzzydegree>The terms <variable name>, <predicate(object)>, <predicate>, <algebraicexpression> and di�erent kinds of values above have the standard interpretation.Clearly, the rule schema + rule body representation can be easily adapted torule induction. A rule schema can be used to describe the relationship betweenconcepts or classes and features or attributes, and the corresponding rule bodycan express all the concrete rules produced by induction algorithms. Inductiontechniques have the job of learning a rule body instead of the whole rule set.5.2.2.2 Advantages of the languageAs compared with production systems, the rule schema + rule body languagehas �ve main advantages:1. it can avoid matching all the rules in a knowledge base with the workingmemory at run time when some piece of data is not available;Suppose we have a rule schema \If A1; A2; A3; A4; A5 then B" and all A1; :::; A5have a value domain f1,...,1000g, there are at least 10005 possible decision-tree likerules with form of or similar toIf A1 = N1; A2 = N2; A3 = N3; A4 = N4; A5 = N5 then ...84



in total where Ni 2 f1; :::; 1000g (i = 1; :::; 5). Now if we have a large quantity ofdata on A1; A2; A3 and A4 but no data ab out A5, only 5 comparisons are needed:Once no data about A5 is found during matching of the rule schema, all of therules in the rule body will be neglected without matching.A linear forward chaining algorithm (LFA) will be further described in Ap-pendix E based on this advantage.2. it gives a naturally structured organisation of knowledge bases in terms ofrule sets;The self-contained format (see De�nition 5.3) of rule sets and their commu-nication channel (the working memory in grammar of (factor; value) pairs withassociated certainty factors giving the strength of belief in the values, see Section5.2.3.1) clearly enhance the modularity of the language. One can edit, modifyand execute a rule set independently without much attention to other rule sets.Modularity is an important virtue for AI programs (like other software) becauseit makes programs easier to understand, explain and modify.3. it gives an expressive representation of computation knowledge;Example 5-1. The knowledge for solving the general equation AX2 +BX +C = 0 can be expressed in rule schema + rule body as follows.Rule schema: IF A, B, C THEN XRule body:IF A=0, B6=0 THEN X=-C/BIF A6=0 THEN X=(-B+pB2 � 4AC)/(2A)IF A6=0 THEN X=(-B-pB2 � 4AC)/(2A)4. the 
exible expression of uncertainty calculus in rule bodies.85



Example 5-2. In fuzzy multi-objective judgement problems [Wu et al. 87],we often need di�erent judging operators, such as M(^;_);M(
;�)1;M(^;�)and M(
;_), for di�erent objectives to evaluate their fuzzy degrees. It is easyto de�ne a speci�c judging operator for each objective in the rule sets where theobjective is the conclusion factor.Also, a domain expert can de�ne CFs as either probabilities or fuzzy degrees,as required. It is possible to use both probability calculus and fuzzy calculus ina knowledge base for inexact inference in rule schema + rule body. However,this mainly depends on the calculus formulae and possible transformation de�nedin rule bodies. For each factor in a domain expertise, its CF will be computedaccording to the rule bodies which have it as their conclusion factor.5.2.2.3 A working exampleExample 5-3 shows a condensed excerpt from a knowledge base in rule schema+ rule body for an assessment problem.Example 5-3. An assessment problem in a given area has three objectives:numeric Object 1, fuzzy Object 2 whose value domain is fA, B, Cg and logicalObject 3. Object 1 is de�ned on X1;X2 and X3, whose value can be evaluatedfrom the values of either X31 and X32 or X33;X34 and X35. All of Xi's (i =1; 2; 3; 31; 32; 33; 34; 35) are numeric while all of Y 1; Y 2 and Y 3, which are used tode�ne Object 2, have the fuzzy domain of fA, B, Cg. Object 3 can be inferredfrom X35 and two pieces of logical evidence, Z1 and Z2. The expertise given byan anonymous expert is shown below in rule schema + rule body. Words between/* and */ are explanatory notes.1 a� b = a+ b (5.1)a
 b = ab (5.2)where a and b are fuzzy degrees. 86



Rule Set #1Schema:IF Object 1, Object 2, Object 3 THEN AssessmentBody:IF Object 1>85, Object 2=A, CF(Object 3)>0.7 THEN Assessment=AIF Object 1>85, Object 2=A THEN Assessment=B/* A further condition, CF(Object 3)<=0.7, is implied in the secondrule. */IF CF(Object 3)>0.5, Object 1>60, Object 2<>C THEN Assessment=B/* `<>' denotes 6=. */Assessment=C/* When none of the above three rules can be satis�ed, this rule isunconditionally applicable. */IF CF(Object 3)>0.5 then CF(Assessment)=CF(Object 2)CF(Assessment)=minf0.5, CF(Object 2)gRule Set #2Schema:IF X1, X2, X3 THEN Object 1Body:Object 1=(X1+X2+X3)/3Rule Set #3Schema:IF X31, X32 THEN X3Body:X3=maxfX31, X32gRule Set #4Schema:IF X33, X34, X35 THEN X3Body:X3=(minfX33,X34g+X35)/2Rule Set #5 87



Schema:IF Y1, Y2, Y3 THEN Object 2Body:IF Y2<>C THEN Object 2=Y1IF Y2=C THEN Object 2=Y3CF(Object 2)=minf1-CF(Y1)CF(Y2)CF(Y3), CF(Y1), CF(Y2), CF(Y3)gRule Set #6Schema:IF X35, Z1, Z2 THEN Object 3Body:IF X35>75 THEN CF(Object 3)=(CF(Z1)+CF(Z2)-CF(Z1)CF(Z2))/2CF(Object 3)=(CF(Z1)+CF(Z2))/(1-minfCF(Z1),CF(Z2)g)The uncertainty calculus in Rule Sets #5 and #1 is de�ned on fuzzy logic whilein Rule Set #6, CF(Z1), CF(Z2) and CF(Object 3) are de�ned on probabilities. InRule Sets #2, #3 and #4, uncertainty calculus is unnecessary because all of Xi's(i = 1; 2; 3; 31; 32; 33; 34; 35) are supposed to be real numbers without uncertainty.The di�erent CFs de�ned on fuzzy degrees and probabilities are uni�ed in RuleBody #1 to give the �nal fuzzy CF to the goal Assessment.5.2.3 KEshell: a rule schema + rule body based knowl-edge engineering shell5.2.3.1 OverviewKEshell is a rule schema + rule body based knowledge engineering shell, withits structure shown in Figure 5-1.In the diagram, KB denotes knowledge bases and KBMS is a knowledge basemanagement subsystem that detects the repetitions, redundancy and contradic-tions which will be described in Section 5.2.3.2, �nds dead cycles in a knowledgebase and sorts it. KEshell has been implemented in Turbo-PROLOG on IBM PCcomputers. 88



6? � ?� -�? 6
?? 66� -� -� -

KBMSBuilder Inference EngineWorking MemoryTracing EngineUser(s)
KBECAFRETNI

Domain Expert(s)SIKT/Editor
Figure 5{1: The System Structure of KEshell

89



Facts in the working memory are represented as (factor; value) pairs withaccompanying certainty factors, which can be either probabilities or fuzzy degrees.Rule schemata and rule bodies in KB represent domain expertise. As the factorsin a rule schema are allowed to be variables, it is easy to enter many concreterules, inference rules and/or computing formulae, in one generic rule schema andthen take the rule body as a \look-up" table.The inference engine in KEshell supports both forward and backward chainingwith the forward chaining working in linear time (see Appendix E). When there isa dead cycle in a knowledge base, which means there is some error in the knowledgebase that cannot be removed, only backward chaining can be adopted. KEshellhas a special engine in KBMS to detect cycles in knowledge bases.There are two ways to build knowledge bases. The �rst is the structured in-teractive knowledge transfer module (SIKT) which will be described in Section5.2.3.2. As we will show, the communication between experts and SIKT is quitefriendly. An expert does not need to know much about knowledge engineering orprogramming to build a knowledge base in this mode, just answering all the ques-tions SIKT asked. The other way is to use a text editor, which will be describedin Section 5.2.3.3. All other modules will also be described in detail below.5.2.3.2 Structured interactive knowledge transfer | SIKTKEshell was intended to be an expert system building tool (not a programminglanguage) with which experts were expected to interact directly to build knowledgebases without the aid of knowledge engineers (or expert systems programmers).The SIKT in KEshell is a module that guides experts in inputing their expertisein a top-down mode and an interactive manner.For knowledge transfer, two work bu�ers are set up: a de�ned factor set (DFS),where all the factors that have been given evaluation methods are put and anunde�ned-factor stack (UDF), which is a set of all the factors whose evaluationmethods have not been given by expert(s).The guidance procedure is designed as follows:90



Step-1: DFS=�, UDF=�;Step-2: Ask the expert to give all the top factors in his/her domain reasoningnetwork and put all the factors given by the expert into UDF;Step-3: If UDF=� then goto Step-7;Step-4: POP(Factor) from UDF, if Factor appears in DFS then goto Step-3;Step-5: i) Ask the expert if Factor is a terminal factor in the domain reasoningnetwork, which means that users will provide possible evidence for it for inference.If yes then put Factor into DFS and goto Step-3;ii) Acquire a new rule schema whose conclusion factor is Factor: ask theexpert to give all the factors that can determine the Factor in a new evaluationmethod and put all the new factors that have not existed in DFS or UDF intoUDF and write down a new rule schema in form of IF all the factors THEN Factorinto the knowledge base;Step-6: Ask the expert if there is any other new method to determine Factor,if yes then goto Step-5 else put Factor into DFS and goto Step-3;Step-7: Check for semantic inconsistencies in the schemata given;There are three types of semantic inconsistencies: 1) dead cycles (see Section5.2.3), 2) repetitions, and 3) knowledge insu�ciency. When there are two ruleschemata which are the same in a knowledge base, we say there exists a repeti-tion in the knowledge base. The expert will be asked to integrate the same ruleschemata into one when a repetition is found. If there exists such a factor in aknowledge base that is neither a top factor (e.g. a disease) nor a terminal factor(e.g. a symptom) in the corresponding domain reasoning network and there is norule schema which has the factor as its conclusion factor, the knowledge base isincomplete. The expert will be asked to input more knowledge on the factor whenthe factor is discovered.Step-8: For each rule schema acquire its rule body: Ask the expert to inputeach rule in a line and put the rule into the knowledge base. This process isrepeated until the expert answers with an empty line;91



Step-9: Check for semantic inconsistencies in each rule body;The semantic inconsistencies in a rule body mean three possible aspects: 1)repetitions, 2) redundancy, and 3) contradictions. When there are two rules in arule body which are the same, we say there exists a repetition in the rule bodyand one of them will be automatically deleted. When there are two rules in arule body which have the same RHS but the LHS of one contains the LHS of theother, we say there exists redundancy in the rule body and the former rule will beautomatically deleted. A contradiction in a rule body indicates two such rules inthe rule body that have the same LHS but di�erent RHSs. Contradictions will bedisplayed to the expert so that he may make appropriate alterations.Step-10: Call Step-7 and Step-9 until no changes and no inconsistencies arefound;Step-11: Let the expert approve the knowledge base that has just been built: Ifthe expert declares that there are still some modi�cations, then allow expert tomodify the existing knowledge base and goto Step-10 to check consistency;Step-12: Sort the existing knowledge base into a partial order.The sorting algorithm has been introduced in Section 5.2.3.The dialogue between an expert and SIKT to build the knowledge base inExample 5-3 is recorded in Appendix F.In contrast to KBEmacs [Waters 85], whose power came principally from theability to construct a program out of the algorithmic fragments stored in a library,SIKT does not act as a general program editor for programmers but is able toautomatically build executable knowledge bases in rule schema + rule body outof the dialogue with experts.5.2.3.3 The editorThe syntax for the editor is the rule schema + rule body language in BNFplus a declaration of factors' types and domains for those factors which are set92



variables. For instance, the knowledge base �le for Example 5-3 can be edited asthe following declaration plus the description of rule sets in Section 5.2.2.3.factor type(Assessment, 2)factor type(Object 1, 3)factor type(Object 2, 2)factor type(Object 3, 1)factor type(X1, 3)factor type(X2, 3)factor type(X3, 3)factor type(X31, 3)factor type(X32, 3)factor type(X33, 3)factor type(X34, 3)factor type(X35, 3)factor type(Y1, 2)factor type(Y2, 2)factor type(Y3, 2)factor type(Z1, 1)factor type(Z2, 1)factor set(Assessment,[A, B, C])factor set(Object 2,[A, B, C])factor set(Y1,[A, B, C])factor set(Y2,[A, B, C])factor set(Y3,[A, B, C])5.2.3.4 The tracing engineThere is a tracing engine in KEshell for knowledge base debugging at run time.It �rst labels all the knowledge that has been used during inference, then deletesthe knowledge which is useless for concluding the goal(s) even if it was used duringthe inference and has been labeled, and �nally displays the inference process by93
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and andandFigure 5{2: An Example for the Trace Engineusing only the knowledge that is still labeled. For example, suppose rule sets #1,#2, #3, #4 and #5 in Figure 5-2 have been executed during a problem solvingsession, the #4 rule set is useless for reaching the goal G1. The tracing enginecan also work in linear time by displaying rule sets according to their renumberedordinals in a similar way to the linear forward chaining algorithm in Appendix E.5.2.3.5 The interfaceThe interface for users is even simpler. Questions concerning evidence areasked, answers are obtained, the chaining process takes place, and the solution(s)are given. The following is a sample dialogue using the knowledge base shown inExample 5-3. The sentences with K: at the beginning are generated by KEshelland those with M: are input of a user.K: Fact acquisition now:K: Can you provide data for X1? (YjNjQ:Stop giving more data)M: YK: The value:M: 79K: CF (DEFAULT=1): 94



M:/* an empty line */K: Can you provide data for X2? (YjNjQ:Stop giving more data)M: YK: The value:M: 79K: CF (DEFAULT=1):M:K: Can you provide data for X33? (YjNjQ:Stop giving more data)M: YK: The value:M: 89K: CF (DEFAULT=1):M:K: Can you provide data for X34? (YjNjQ:Stop giving more data)M: YK: The value:M: 79K: CF (DEFAULT=1):M:K: Can you provide data for X35? (YjNjQ:Stop giving more data)M: YK: The value:M: 79K: CF (DEFAULT=1):M:K: Can you provide data for X31? (YjNjQ:Stop giving more data)M: YK: The value:M: 79K: CF (DEFAULT=1): 95



M:K: Can you provide data for X32? (YjNjQ:Stop giving more data)M: NK: Can you provide data for Y1? (YjNjQ:Stop giving more data)M: YK: The value: (Domain: fA, B, Cg)M: DK: Wrong input! Try again: (Domain: fA, B, Cg)M: BK: CF (DEFAULT=1):M: 0.6K: Can you provide data for Y2? (YjNjQ:Stop giving more data)M: YK: The value: (Domain: fA, B, Cg)M: AK: CF (DEFAULT=1):M: 0.8K: Can you provide data for Y3? (YjNjQ:Stop giving more data)M: YK: The value: (Domain: fA, B, Cg)M: BK: CF (DEFAULT=1):M: 0.75K: Can you provide data for Z1? (YjNjQ:Stop giving more data)M: YK: CF (DEFAULT=0):M: 0.8K: Can you provide data for Z2? (YjNjQ:Stop giving more data)M: YK: CF (DEFAULT=0):M: 0.6 96



K: Linear forward chaining now ...K: The solution for your problem isK: Assessment=C with CF=0.55.2.4 SummaryRule schema + rule body is a representation language which integrates nu-meric computation, inexact calculus and logical inference. We have described therepresentation language and the structured interactive knowledge transfer module(SIKT) in KEshell in detail in this section. The production system model used inthis section, which the author would take as the standard model, is muchmore likethat used in OPS5 and text books [Jackson 90, Barr et al. 81] than other systemsor languages where e�ciency gains are at the expense of representational power.The major feature of KEshell is that the shell has supported all the techniquesmentioned in this section and put them to practical use. As compared with largesystem programming languages [Harmon et al. 85], such as OPS5, ART and KEE,inexperienced programmers and subject matter experts can interactively buildknowledge bases in KEshell by calling the SIKT module. The price paid for thisis that the representation in KEshell is not so powerful as in these programminglanguages. For example, users can de�ne control in an OPS5-like rule but theycannot do so in KEshell.
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Figure 5{3: The System Structure of KEshell25.3 KEshell2: A Knowledge Engineering Shellwhich Couples ML Techniques with DataBase and Knowledge Base Technology5.3.1 System structureFigure 5-3 shows the system structure of KEshell2, the improved version ofKEshell with the knowledge acquisition engine, K.A. Engine, which implementsinduction from data bases, and dBASE3 being integrated.98



In the diagram, Monitor is a man-machine interface which exchanges informa-tion with users in the form of pull-down menus. I/D Engine is an inference anddeduction engine based on the inference engine of KEshell. KBMS and DBMSare facilities adopted mainly from KEshell and dBASE3 respectively to supportknowledge base and data base management functions. Utility contains a set ofcommon procedures that are shared by K.A. Engine, KBMS and DBMS. AccessStorage Interface is composed of the basic knowledge/data operators. DB and KBdenote data bases and knowledge bases respectively and OS indicates operatingsystem facilities. For the implementation of KEshell2, the operating system usedwas PC-DOS, referred to as DOS hereafter.5.3.2 MonitorThe Monitor module in KEshell2 accepts users' operational commands andcalls corresponding functional modules in the system.There are �ve options in its main menu: 1. KBMS; 2. I/D Engine; 3. K.A.Engine; 4. DBMS; and 5. DOS with their second-level menus being as follows.� KBMS: 1. Build a Knowledge Base (SIKT), 2. Adapt Knowledge, 3. FindCycles, 4. Sort a Knowledge Base, 5. List Rule Schemata, 6. List ConcreteRules, 7. Edit a KB File, and 8. Clear Working Memory.� I/D Engine: 1. Forward Chaining, 2. Backward Chaining, 3. Deduction, 4.Knowledge Trace, 5. Clear Evidence, and 6. Adapt Facts.� K.A. Engine: 1. Build a Knowledge Base (SIKT), 2. Semantic Information,3. Rule Induction by HCV, and 4. Rule Induction by ID3.� DBMS: 1. Enter dBASE3, and 2. List a Relation.� DOS: 0. Enter PC-DOS, 1. Load a KB File, 2. Save Knowledge, 3. Directory,4. Print, 5. Copy, 6. Delete, 7. Rename, 8. Time, 9. Date, 10. List Facts, 11.Adapt Facts, 12. Save Working Memory, 13. Edit a Text File, 14. List a DOSFile, and 15. Quit. 99



The functions of most of the second-level submodules are just what their namesimply.5.3.3 KBMSThe KBMS module in KEshell2 is adopted from the KEshell system. Itsupports facilities for interactively building, adapting and displaying knowledgebases, checking for semantic inconsistencies including dead cycles, sorting knowl-edge bases into partial order to implement linear forward chaining and editingknowledge base �les.All the submodules in KBMS are the same as in KEshell and have been intro-duced in Section 5.2.5.3.4 DBMSThe DBMS module in KEshell2 is based on dBASE3, a commercial relationaldata base management system. Users can do conventional data base operations bysimply entering dBASE3. However, a new function, List a Relation, is developedhere to translate dBASE3 �les into the Prolog-based representation described inAppendix D. The representation binds relational tuples and schema together in anatural and 
exible way.For example, XDBASE3.DBF and XDBASE3.DBT are two sample dBASE3�les from Turbo Prolog Toolbox [Borland 87]. The relational schema and tuplesincluded in them are listed in Tables 5-1 and 5-2 respectively.The List a Relation submodule in DBMS reads by calling the XDBASE3.PRO�le in Turbo Prolog Toolbox and translates them into the following predicate.relation(\XDBASE3",[�eld(\NAME", string),�eld(\BIRTH DATE", string),�eld(\SALARY", real),�eld(\AGE", integer), 100



Table 5{1: Relational Schema of XDBASE3.DBFFIELD TYPE WIDTHNAME string 25BIRTH DATE date 8SALARY numeric 8.2AGE numeric 2MEMO memoTable 5{2: Tuples in XDBASE3.DBF and XDBASE3.DBTNAME BIRTH DATE SALARY AGE MEMOFrank Borland 19131205 10250.95 73 Frank Borland's memoJoe Programmer 19600707 45000 26 Joe Programmer's memoBit Twiddler 19521117 37000 33 Bit Twiddler's memoMary Martin 19500227 37000 36 Mary Martin's memo�eld(\MEMO", string)],[tuple(\Frank Borland", \19131205", \10250.95",\73",\Frank Borland's memo"),tuple(\Joe Programmer", \19600707", \45000", \26", \Joe Programmer's memo"),tuple(\Bit Twiddler", \19521117", \ 37000", \33", \Bit Twiddler's memo"),tuple(\Mary Martin", \19500227", \37000", \36", \Mary Martin's memo")])5.3.5 I/D EngineAll the submodules except Deduction in I/D Engine are taken from KEshelland have been described in Section 5.2. The Deduction submodule is designed tointerpret the rules produced by the HCV algorithm to solve users' problems.Taking the rules produced by HCV for Example 3-2 in Section 3.4.2 as anexample, the following is an example run of the Deduction submodule.K: The rules (H
's) in the working memory are:K: if [ OUTLOOK=overcast ] then [DECISION=Play]K: if [ WINDY=false ] & [ OUTLOOK=rain ] then [DECISION=Play]101



K: if [ TEMPERATURE=mild ] & [ WINDY=false ] then [DECISION=Play]K: Please input your example in form of <�eld/attribute>=<value>:M: OUTLOOK=rain, TEMPERATURE=hot, HUMIDITY=normal, WINDY=falseK: According to the 2nd h
, (i.e.,K: if [ WINDY=false ] & [ OUTLOOK=rain ] then [DECISION=Play]K: ), the deduction result is: Play.5.3.6 K.A. EngineThere are four submodules in the K.A. Engine in KEshell2: 1) Build a Knowl-edge Base (SIKT), which is the same as in KBMS, 2) Semantic Information, whichwill be described below, 3) Rule Induction by HCV, which implements the HCValgorithm described in Chapter 3, and 4) Rule Induction by ID3, which imple-ments the ID3 algorithm summarized in Chapter 2. The third, Rule Induction byHCV is the core of the KEshell2 system.5.3.6.1 Semantic informationThe theme of KEshell2 is the provision of mechanisms for extracting knowledgefrom data bases. To couple machine learning techniques with data base technol-ogy, some semantic information (see Appendix D, such as causalities and logicimplications) among relational data is used to trigger induction engines in theSemantic Information submodule.The submodule works according to the following steps.1. Find all relations in the working directory, which can be set or changed bythe Directory submodule in the DOS module;2. Ask the user to identify which of the relations is a relationship and of eithercausality or logical implication type;3. Read the schema in the identi�ed relation and ask the user to describe thecausality structure between the �elds in the schema;102



4. Read the tuples in the relation and translate them into executable forms forthe Rule Induction by HCV submodule.The translation in Step 4 is based on the Prolog-based representation in Ap-pendix D.The following is an example run of this submodule on the example shown inTables 5-1 and 5-2.K: All the relations in the current working memory have been detected are:K: XDBASE3, AVAL FLTK: Please indicate which of them is a relationship ANDK: of either causality or logical implication type:M: XDBASE3K: Now, please identify the semantic labels of attributesK: in the relationship:K: (All the �elds in the XDBASE3 relationship areK: NAME, BIRTH DATE, SALARY, AGE, MEMO)K: The result �eld:M: SALARYK: and the condition �elds:M: NAME, AGEK: O.K. The logic structure is:K: IF NAME, AGE then SALARYK: Would you like to induct rules from your current data bases now?M: NIf `Y'(yes), this submodule will automatically call the Rule Induction by HCVsubmodule.5.3.6.2 Induction from data basesData bases can be provided in three di�erent ways to the Rule Induction byHCV submodule. 103



1. Induction from dBASE3 �les.When data is provided by dBASE3 �les, the Rule Induction by HCV sub-module �rst collects all the di�erent values the result �eld takes and thenruns the HCV algorithm after using part of the AQ11 technique introducedin Chapter 2 (by assuming that all examples not classi�ed as positive arenegative):for each di�erent value the result �eld takes(a) convert all the tuples whose result �eld takes the value into positiveexamples;(b) convert all the other examples into negative examples; and(c) apply the HCV algorithm.2. Induction from conventional DOS data �les.When data is provided by a data �le in the form of positive examples andnegative examples, for instance, like the DATA31.DB below, induction byHCV only produces rules for positive examples./* �le: DATA31.DB */attributelist([\OUTLOOK", \TEMPERATURE", \HUMIDITY", \WINDY"])result(\DECISION")n([rain,hot,high,true])n([rain,cool,normal,true])p([overcast,hot,high,true])p([overcast,mild,normal,false])p([rain,hot,high,false])p([overcast,cool,normal,true])n([sunny,hot,normal,true])n([sunny,mild,high,true])p([sunny,mild,normal,false])p([overcast,mild,normal,false])p([rain,cool,normal,false]) 104



p([rain,hot,high,false])n([sunny,hot,high,false])n([sunny,cool,normal,false])3. Induction by using part of the AQ11 technique.When data in a data �le takes the form of examples rather than being dis-tinguished as positive examples and negative examples, for example, like theDATA33.DB �le below, the Rule Induction by HCV submodule works in asimilar way to induction from dBASE3 �les: it �rst collects all the di�erentvalues the result attribute takes and then runs the HCV algorithm on eachdi�erent value by assuming that all examples not classi�ed as positive arenegative./* �le: DATA33.DB */attributelist([\OUTLOOK", \TEMPERATURE", \HUMIDITY", \WINDY"])result(\DECISION")eg(\Don't Play", [rain,hot,high,true])eg(\Don't Play", [rain,cool,normal,true])eg(\Play", [overcast,hot,high,true])eg(\Play", [overcast,mild,normal,false])eg(\Play", [rain,hot,high,false])eg(\Play", [overcast,cool,normal,true])eg(\Don't Play", [sunny,hot,normal,true])eg(\Don't Play", [sunny,mild,high,true])eg(\Play", [sunny,mild,normal,false])eg(\Play", [overcast,mild,normal,false])eg(\Play", [rain,cool,normal,false])eg(\Play", [rain,hot,high,false])eg(\Don't Play", [sunny,hot,high,false])eg(\Don't Play", [sunny,cool,normal,false])The Rule Induction by HCV submodule produces �ve rules for examples inDATA33.DB: 105



if [ OUTLOOK=overcast ] then [DECISION=Play],if [ WINDY=false ] & [ OUTLOOK=rain ] then [DECISION=Play],if [ TEMPERATURE=mild ] & [ WINDY=false ] then [DECISION=Play],if [ OUTLOOK=[sunny,rain] ] & [ WINDY=true ] then [DECISION=Don'tPlay], andif [ OUTLOOK=sunny ] & [ TEMPERATURE=[cool,hot] ] then [DECI-SION=Don't Play].Meanwhile, the Rule Induction by ID3 submodule is designed to work onlyon the data in the form of positive examples and negative examples. We can, ofcourse, incorporate part of the AQ11 technique into ID3 and run it on each subsetof the examples which have the same value on the result attribute or �eld; theinconvenience is that all the descriptions produced for negative examples at eachID3's run need to be thrown away. We can also extend the entropy measure inID3 to chunk examples into more than two classes. However, we have not yetdone these kinds of extensions in KEshell2. In those cases like DATA33.DB whereonly two subsets exist, data �les are supposed to be organised in the form ofDATA31.DB for ID3 and DATA33.DB for HCV. For the example set in Example3-2, HCV produces �ve conjunctive rules as shown above for both Play and Don'tPlay as opposed to seven by ID3 (see Appendix A).5.4 ConclusionsKEshell2 has coupled machine learning techniques with both data base andknowledge base technology. It is an intelligent learning data base system withmechanisms for 1) translating dBASE3 �les into a form suitable to its rule induc-tion engine, 2) using induction techniques to extract knowledge from data bases,and 3) interpreting the knowledge produced to solve users' problems.106



Chapter 6ConclusionsAs we have discussed in Section 2.6, knowledge acquisition from data bases isan important research frontier for both machine learning and data base technology[Wu 93b]. Although a lot of work has been done and some commercial packagesare available already, existing work has concentrated on the following four aspects:1) building knowledge bases for expert systems, 2) designing various learning al-gorithms; 3) adding an induction engine to an existing data base system in an adhoc way to implement rule induction from data bases; and 4) designing a speci�cengine to learn from a domain-speci�c data set. The requirements [Quinlan 89b]for knowledge acquisition from realistic data bases are still out of reach of exist-ing systems. A crucial requirement is the time complexity of existing learningalgorithms, as realistic data bases are usually fairly large.Along these lines, the author has recently been investigating highly e�cient in-duction algorithms [Wu 93a, Wu 93c]. The HCV algorithm described in Chapter3 is a low-order polynomial induction algorithm. The target of �nding low-orderpolynomial algorithms has been met by HCV. Di�erent from both ID3-like andAQ11-like algorithms, HCV takes the little-known and inadequate extension ma-trix approach and improves it to be competitive with the decision tree based andthe generalisation-specialisation based families of inductive algorithms.HCV has been tested on several example sets including the famous MONK'sproblems outlined in Chapter 4. Experiments have shown empirically that therules produced by HCV in variable-valued logic are more compact than the decision107



trees produced by the ID3-like algorithms in terms of the numbers of conjunctiverules and conjunctions. We can thus believe that the rules produced by HCV arefairly good.We have also shown in Chapter 5 that the HCV algorithm has been incor-porated in the intelligent learning data base system, KEshell2, to implement thewhole process of knowledge acquisition from data bases. By the whole process,we mean an integrated data base and knowledge base system which can learnfrom data bases is able to 1) translate conventional data base information into aform suitable for use by the induction mechanisms, 2) use induction techniquesto produce knowledge from data bases, and 3) interpret the knowledge producedto solve users' problems e�ciently. Although there are still some limitations onthe current KEshell2 for putting it into large applications due to it being imple-mented on PC machines, all the functions and capacities shown in KEshell2 havedemonstrated that the target of building practical intelligent data base systems toextract knowledge from data bases is no longer di�cult or elusive.There are three directions for further work based on this thesis:1. developing the capacities of the HCV algorithm to induct constructively,structuredly, incrementally and in noisy (including missing-attribute-value)environments;2. taking the Prolog-based representation described in Appendix D as a con-ceptual design tool to design advanced data base systems where semanticinformation needs to be e�ectively processed; and3. constructing practical intelligent data base systems by coupling the HCValgorithm, the Prolog-based representation, domain background knowledge,and existing data base and knowledge base technology.
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Appendix AConverting a decision tree toproduction rulesThe decision tree generated by ID3 for the example set in Table A-1 is shownin Figure A-1, which is equivalent to the following decision rules:if OUTLOOK=overcast then Play;if OUTLOOK=rain & WINDY=true then Don't Play;if OUTLOOK=rain & WINDY=false then Play;if OUTLOOK=sunny & TEMPERATURE = hot then Don't Play;if OUTLOOK=sunny & TEMPERATURE = cool then Don't Play;if OUTLOOK=sunny& TEMPERATURE = mild& HUMIDITY=normalthen Play; andif OUTLOOK=sunny & TEMPERATURE = mild & HUMIDITY=highthen Don't Play.Here, no conditions in the conjunctive rules can be dropped.
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Table A{1: Cases of Play and Don't Play (adapted from [Quinlan 86b])ORDER OUTLOOK TEMPERATURE HUMIDITY WINDY DECISION1 rain hot high true Don't Play2 rain cool normal true Don't Play3 overcast mild high true Play4 overcast mild normal false Play5 rain hot high false Play6 overcast cool normal true Play7 sunny hot normal true Don't Play8 sunny mild high true Don't Play9 sunny mild normal false Play10 rain cool normal false Play11 rain hot high false Play12 sunny hot high false Don't Play13 sunny cool normal false Don't Play14 rain mild normal true Don't Play
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Figure A{1: A decision tree (by ID3) for Table A-1
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Appendix BThree decision trees for the sameexample setFor the example set in Table B-1, the decision trees produced by ID3 and thenew gain ratio heuristic mentioned in Section 2.4.8 are shown in Figure B-1 andFigure B-2 respectively.The rules correspond to the decision tree in Figure B-1 (the conditions in thebold type style can be dropped):X2=b_ X2=a & X1=0 X2=a & X1=1_ X2=c & X3=a _ X2=c & X3=c_ X2=c & X3=b & X1=0 _ X2=c & X3=b & X1=1! !The T class. The F class.The decision tree in Figure A-2 is equivalent to the following decision rules:X1=1 & X2=b_ X1=0 & X3=a X1=1 & X2=a_ X1=0 & X3=b _ X1=1 & X2=b_ X1=0 & X3=c & X2=a _ X1=0 & X3=c & X2=c! !The T class. The F class.124



Table B{1: Cases of T and FORDER X1 X2 X3 X4 CLASS1 1 a a 1 F2 1 a b 1 F3 1 a c 1 F4 1 a a 0 F5 1 b c 1 T6 0 b b 0 T7 0 a c 1 T8 1 b a 0 T9 1 b a 1 T10 1 c c 0 F11 1 c b 1 F12 0 c b 0 T13 0 a a 0 T14 0 c c 1 F15 0 c a 0 T16 1 a b 0 F17 0 a a 1 T18 0 b a 1 T
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Figure B{1: A decision tree (by ID3) for Table B-1
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Figure B{2: A decision tree (by the gain ratio heuristic) for Table B-1
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Figure B{3: A briefer decision tree (by hand) for Table B-1Meanwhile, Figure B-3 gives another tree made by hand, which correctly clas-si�es the same example set and corresponds to the following decision rules.X1=1 & X2=b X1=1 & X2=a_ X1=0 & X4=0 _ X1=1 & X2=c_ X1=0 & X4=1 & X2=a _ X1=0 & X4=1 & X2=c! !The T class. The F class.Figure B-3 is clearly smaller than both Figure B-1 and Figure B-2 in terms ofthe numbers of leaves and nodes (including leaves) in decision trees or the numbersof conjunctive rules and conjunctions in the equivalent rules to the decision trees.128



Appendix CResults produced by HCV on theMONK's problemsC.1 The M1 problem124 examples in the training �le (6 attributes).Rules for the Non-M1 class:The 1st conjunctive rule:[ body shape=[octagon,square] ] ^[ jacket color=[blue,green,yellow] ] ^[ head shape=[round] ]! the Non-M1 class.(Positive examples covered: 31)The 2nd conjunctive rule:[ head shape=[square] ] ^[ jacket color=[blue,yellow,green] ] ^[ body shape=[octagon,round] ]! the Non-M1 class.(Positive examples covered: 20)129



The 3rd conjunctive rule:[ head shape=[octagon] ] ^[ jacket color=[blue,green,yellow] ] ^[ body shape=[square,round] ]! the Non-M1 class.(Positive examples covered: 11)Net cpu time for computing this class: 51.97 seconds.Rules for the M1 class:The 4th conjunctive rule:[ body shape=[round] ] ^[ head shape=[round] ]! the M1 class.(Positive examples covered: 10)The 5th conjunctive rule:[ jacket color=[red] ]! the M1 class.(Positive examples covered: 28)The 6th conjunctive rule:[ head shape=[square] ] ^[ body shape=[square] ]! the M1 class.(Positive examples covered: 12)The 7th conjunctive rule:[ head shape=[octagon] ] ^130



[ body shape=[octagon] ]! the M1 class.(Positive examples covered: 12)DEFAULT ! the Non-M1 class.(Positive examples covered: 62)There are 432 test examples in the test example �le.432 examples have been correctly classi�ed; while 0 were misclassi�ed.The accuracy of the rules produced by HCV on the test examplesis 100.0%.C.2 The M2 problem169 examples in the training �le (6 attributes).Rules for the M2 class:The 1st conjunctive rule:[ has tie=[no] ] ^[ jacket color=[yellow,blue] ] ^[ body shape=[round] ] ^[ head shape=[round] ] ^[ holding=[balloon,
ag] ]! the M2 class.(Positive examples covered: 2)The 2nd conjunctive rule:[ jacket color=[blue,green,yellow] ] ^131



[ has tie=[no] ] ^[ is smiling=[yes] ] ^[ holding=[balloon,
ag] ] ^[ head shape=[round] ]! the M2 class.(Positive examples covered: 9)The 3rd conjunctive rule:[ body shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ holding=[balloon,
ag] ] ^[ jacket color=[yellow,blue,green] ] ^[ has tie=[yes] ] ^[ head shape=[round] ]! the M2 class.(Positive examples covered: 5)The 4th conjunctive rule:[ body shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ has tie=[no] ] ^[ jacket color=[red] ]! the M2 class.(Positive examples covered: 3)The 5th conjunctive rule:[ is smiling=[no] ] ^ 132



[ jacket color=[yellow,green] ] ^[ has tie=[no] ] ^[ holding=[sword] ] ^[ body shape=[round,octagon] ]! the M2 class.(Positive examples covered: 4)The 6th conjunctive rule:[ holding=[balloon,
ag] ] ^[ jacket color=[blue,green,yellow] ] ^[ has tie=[no] ] ^[ is smiling=[yes] ] ^[ body shape=[round] ]! the M2 class.(Positive examples covered: 8)The 7th conjunctive rule:[ holding=[
ag] ] ^[ is smiling=[no] ] ^[ has tie=[yes] ] ^[ jacket color=[red,yellow] ] ^[ body shape=[square,round] ] ^[ head shape=[square] ]! the M2 class.(Positive examples covered: 2)The 8th conjunctive rule: 133



[ head shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ has tie=[no] ] ^[ jacket color=[red] ]! the M2 class.(Positive examples covered: 2)The 9th conjunctive rule:[ head shape=[square] ] ^[ body shape=[octagon,square] ] ^[ jacket color=[yellow,blue] ] ^[ is smiling=[yes] ] ^[ holding=[balloon,sword] ]! the M2 class.(Positive examples covered: 4)The 10th conjunctive rule:[ head shape=[octagon,square] ] ^[ holding=[balloon,
ag] ] ^[ jacket color=[yellow,green] ] ^[ has tie=[yes] ] ^[ is smiling=[yes] ]! the M2 class.(Positive examples covered: 6)The 11th conjunctive rule:[ head shape=[octagon,square] ] ^134



[ body shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ jacket color=[green,yellow,blue] ] ^[ has tie=[yes] ] ^[ holding=[sword] ]! the M2 class.(Positive examples covered: 4)The 12th conjunctive rule:[ head shape=[square] ] ^[ body shape=[octagon,square] ] ^[ holding=[balloon] ] ^[ jacket color=[red] ]! the M2 class.(Positive examples covered: 2)The 13th conjunctive rule:[ head shape=[octagon,square] ] ^[ body shape=[square,octagon] ] ^[ has tie=[no] ] ^[ holding=[sword] ] ^[ is smiling=[yes] ] ^[ jacket color=[yellow,green] ]! the M2 class.(Positive examples covered: 4)The 14th conjunctive rule: 135



[ head shape=[octagon,square] ] ^[ body shape=[square,octagon] ] ^[ is smiling=[no] ] ^[ holding=[balloon,
ag] ] ^[ jacket color=[red] ]! the M2 class.(Positive examples covered: 5)The 15th conjunctive rule:[ has tie=[no] ] ^[ holding=[sword] ] ^[ jacket color=[blue] ] ^[ body shape=[round] ]! the M2 class.(Positive examples covered: 1)The 16th conjunctive rule:[ has tie=[yes] ] ^[ body shape=[round] ] ^[ jacket color=[yellow] ] ^[ is smiling=[no] ]! the M2 class.(Positive examples covered: 2)The 17th conjunctive rule:[ head shape=[octagon] ] ^[ body shape=[square] ] 1̂36



[ holding=[
ag] ] ^[ jacket color=[red] ]! the M2 class.(Positive examples covered: 1)Rules for the Non-M2 class:The 18th conjunctive rule:[ is smiling=[yes] ] ^[ body shape=[round] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 9)The 19th conjunctive rule:[ jacket color=[green,red] ] ^[ body shape=[round] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 4)The 20th conjunctive rule:[ has tie=[yes] ] ^[ body shape=[octagon,round] ] ^[ holding=[sword,
ag] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 6)137



The 21st conjunctive rule:[ jacket color=[blue,red] ] ^[ holding=[
ag,sword] ] ^[ is smiling=[yes] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 4)The 22nd conjunctive rule:[ has tie=[yes] ] ^[ is smiling=[yes] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 5)The 23rd conjunctive rule:[ jacket color=[red] ] ^[ is smiling=[yes] ] ^[ body shape=[round,square] ] ^[ head shape=[square,round] ]! the Non-M2 class.(Positive examples covered: 4)The 24th conjunctive rule:[ holding=[sword] ] ^[ jacket color=[blue,yellow] ] ^[ head shape=[round] ] 138



! the Non-M2 class.(Positive examples covered: 3)The 25th conjunctive rule:[ has tie=[yes] ] ^[ jacket color=[red] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 1)The 26th conjunctive rule:[ body shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ has tie=[no] ] ^[ jacket color=[yellow,blue,green] ] ^[ holding=[
ag,balloon] ]! the Non-M2 class.(Positive examples covered: 15)The 27th conjunctive rule:[ holding=[sword] ] ^[ is smiling=[yes] ] ^[ head shape=[round] ]! the Non-M2 class.(Positive examples covered: 1)The 28th conjunctive rule:[ holding=[sword] ] ^ 139



[ is smiling=[yes] ] ^[ jacket color=[green,yellow] ] ^[ body shape=[square,round] ] ^[ head shape=[square] ]! the Non-M2 class.(Positive examples covered: 3)The 29th conjunctive rule:[ has tie=[yes] ] ^[ jacket color=[green,red,blue] ] ^[ body shape=[round] ]! the Non-M2 class.(Positive examples covered: 10)The 30th conjunctive rule:[ head shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ holding=[balloon,
ag] ] ^[ has tie=[no] ] ^[ jacket color=[green,yellow,blue] ]! the Non-M2 class.(Positive examples covered: 6)The 31st conjunctive rule:[ head shape=[square] ] ^[ body shape=[square] ] ^[ jacket color=[yellow,green] ] ^140



[ has tie=[no] ]! the Non-M2 class.(Positive examples covered: 3)The 32nd conjunctive rule:[ jacket color=[red] ] ^[ holding=[sword] ] ^[ has tie=[yes] ]! the Non-M2 class.(Positive examples covered: 5)The 33rd conjunctive rule:[ head shape=[octagon,square] ] ^[ body shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ has tie=[no] ] ^[ jacket color=[green,yellow,blue] ]! the Non-M2 class.(Positive examples covered: 4)The 34th conjunctive rule:[ head shape=[octagon,square] ] ^[ body shape=[octagon,square] ] ^[ is smiling=[no] ] ^[ jacket color=[yellow,green] ] ^[ holding=[balloon,
ag] ]! the Non-M2 class. 141



(Positive examples covered: 8)The 35th conjunctive rule:[ head shape=[octagon,square] ] ^[ body shape=[octagon] ] ^[ jacket color=[yellow,blue,red] ] ^[ holding=[
ag,sword] ] ^[ is smiling=[yes] ]! the Non-M2 class.(Positive examples covered: 4)The 36th conjunctive rule:[ head shape=[octagon,square] ] ^[ body shape=[square,octagon] ] ^[ has tie=[no] ] ^[ holding=[balloon,
ag] ] ^[ jacket color=[green] ]! the Non-M2 class.(Positive examples covered: 3)The 37th conjunctive rule:[ jacket color=[red] ] ^[ is smiling=[yes] ] ^[ body shape=[round] ]! the Non-M2 class.(Positive examples covered: 2)The 38th conjunctive rule: 142



[ head shape=[octagon] ] ^[ jacket color=[blue,red] ] ^[ holding=[balloon,sword] ] ^[ is smiling=[yes] ]! the Non-M2 class.(Positive examples covered: 3)The 39th conjunctive rule:[ has tie=[yes] ] ^[ holding=[sword] ] ^[ is smiling=[yes] ]! the Non-M2 class.(Positive examples covered: 2)DEFAULT ! the Non-M2 class.(Positive examples covered: 105)There are 432 test examples in the test example �le.351 examples have been correctly classi�ed; while 81 were misclassi�ed.The accuracy of the rules produced by HCV on the test examplesis 81.25%.
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C.3 The M3 problem122 examples in the training �le (6 attributes).Rules for the M3 class:The 1st conjunctive rule:[ jacket color=[yellow,red] ] ^[ body shape=[square,round] ] ^[ head shape=[octagon,round] ]! the M3 class.(Positive examples covered: 31)The 2nd conjunctive rule:[ holding=[balloon] ] ^[ jacket color=[green] ] ^[ body shape=[square,round] ] ^[ head shape=[octagon,round] ]! the M3 class.(Positive examples covered: 4)The 3rd conjunctive rule:[ body shape=[square] ] ^[ holding=[sword] ] ^[ jacket color=[yellow,green] ]! the M3 class.(Positive examples covered: 5)The 4th conjunctive rule: 144



[ head shape=[octagon,square] ] ^[ jacket color=[green,yellow,red] ] ^[ body shape=[round] ]! the M3 class.(Positive examples covered: 10)The 5th conjunctive rule:[ jacket color=[red] ] ^[ body shape=[square] ]! the M3 class.(Positive examples covered: 3)The 6th conjunctive rule:[ jacket color=[yellow] ] ^[ body shape=[square] ] ^[ has tie=[no] ]! the M3 class.(Positive examples covered: 1)The 7th conjunctive rule:[ head shape=[octagon,square] ] ^[ jacket color=[green] ] ^[ holding=[
ag] ] ^[ body shape=[square] ]! the M3 class.(Positive examples covered: 3)The 8th conjunctive rule: 145



[ head shape=[octagon,square] ] ^[ body shape=[octagon] ] ^[ holding=[sword] ] ^[ is smiling=[yes] ]! the M3 class.(Positive examples covered: 3)Rules for the Non-M3 class:The 9th conjunctive rule:[ jacket color=[blue,green] ] ^[ holding=[
ag,sword] ] ^[ body shape=[octagon,round] ] ^[ head shape=[round] ]! the Non-M3 class.(Positive examples covered: 12)The 10th conjunctive rule:[ body shape=[octagon,square] ] ^[ holding=[balloon,
ag] ] ^[ jacket color=[blue,green] ] ^[ has tie=[yes] ] ^[ head shape=[round] ]! the Non-M3 class.(Positive examples covered: 4)The 11th conjunctive rule:[ body shape=[octagon,square] ] ^146



[ jacket color=[red,yellow,blue] ] ^[ holding=[sword] ] ^[ head shape=[round] ]! the Non-M3 class.(Positive examples covered: 5)The 12th conjunctive rule:[ holding=[balloon] ] ^[ is smiling=[yes] ] ^[ body shape=[round,octagon] ] ^[ has tie=[yes] ]! the Non-M3 class.(Positive examples covered: 6)The 13th conjunctive rule:[ jacket color=[blue] ] ^[ head shape=[square] ]! the Non-M3 class.(Positive examples covered: 9)The 14th conjunctive rule:[ head shape=[square] ] ^[ jacket color=[green,yellow] ] ^[ has tie=[yes] ] ^[ is smiling=[yes] ] ^[ holding=[balloon,
ag] ]! the Non-M3 class. 147



(Positive examples covered: 3)The 15th conjunctive rule:[ head shape=[octagon,square] ] ^[ body shape=[octagon,square] ] ^[ holding=[
ag,balloon] ] ^[ jacket color=[blue,green] ] ^[ is smiling=[yes] ] ^[ has tie=[no] ]! the Non-M3 class.(Positive examples covered: 3)The 16th conjunctive rule:[ body shape=[octagon] ] ^[ jacket color=[yellow,red] ]! the Non-M3 class.(Positive examples covered: 11)The 17th conjunctive rule:[ body shape=[octagon] ] ^[ holding=[balloon,
ag] ]! the Non-M3 class.(Positive examples covered: 4)The 18th conjunctive rule:[ jacket color=[blue] ] ^[ body shape=[square,round] ]! the Non-M3 class. 148



(Positive examples covered: 5)DEFAULT ! the Non-M3 class.(Positive examples covered: 62)There are 432 test examples in the test example �le.390 examples have been correctly classi�ed; while 42 were misclassi�ed.The accuracy of the rules produced by HCV on the test examplesis 90.277777777777779%.
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Appendix DA representation for integratingknowledge and dataD.1 IntroductionAlthough the history of data base systems research is one of exceptional produc-tivity and startling economic impact, many advanced applications have revealedde�ciencies of the conventional data base management systems (DBMSs) in repre-senting and processing complex objects and knowledge [Cattell et al. 91]. Object-oriented approaches are currently very popular in processing structurally complexobjects while deductive data bases or logic data bases have been proposed as asolution to those applications where both knowledge and data models are needed.However, it has been characteristic of the current deductive data bases that onlyactual data is represented explicitly in logic while the data schema is implicitlydescribed in the form of predicates. In this appendix, we present a Prolog-basedrepresentation. It binds the actual data and data schema together in a naturaland 
exible way. In addition to expressing all the information which can be rep-resented in the entity-relationship (E-R) model, the representation can representother kinds of semantic information as well.Based on the representation, an approach to generation of semantic networksfrom relational data base schemata is described in this appendix. ML facilitiesin an IDB system can be triggered by the relationships of causality and logicalimplication types acquired in the approach.150



D.2 MotivationsOver the past twenty years data base research has evolved technologies that arenow widely used in almost every computing and scienti�c �eld. However, manynew advanced applications including computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided software engineering (CASE), imageprocessing, and o�ce automation (OA) have revealed that traditional DBMSs areinadequate, especially on the following cases:� Conventional data base technology has laid particular stress on dealing withlarge amounts of persistent and highly structured data e�ciently and usingtransactions for concurrency control and recovery. For some applications likeCAD/CAM [Wu 92b] where the data schemata need to vary frequently, newdata models are needed.� In some applications like geographical data and image data, the semanticrelationships among data need to be represented as well as the data itself.Conventional data models in data base technology cannot support any rep-resentation facility for complex semantic information.� Traditional data base technology can only support facilities for processingdata. Along with the developments of other subjects, like decision scienceand AI, more and more applications need facilities for supporting both dataand knowledge management.To widen the applicability of data base technology to these new kinds of ap-plications, object-oriented data models have been proposed as the data models ofnext-generation DBMSs [Cattell et al. 91] to handle more complex kinds of dataand objects and deductive data bases have been expected to support a solution toprocess both knowledge and data models.In object-oriented approaches, complex data structures (e.g. multimedia data)can be de�ned in terms of objects. Data that might span many tuples in a re-151



lational DBMS can be represented and manipulated as a data object. Proce-dures/operations as well as data types can be stored with a set of structuralbuilt-in objects and those procedures can be used as methods to encapsulate ob-ject semantics. Containment relationships between objects may be used to de�necomposite or complex objects from atomic objects. An object can be assigneda unique identi�er which is equivalent to a primary key in a relation. Relation-ships between objects can also be represented more e�ciently in object-orienteddata models by using a more convenient syntax than relational joins. Also, mostobject-oriented DBMSs have type inheritance and version management as well asmost of the important features of conventional DBMSs.Deductive data base systems provide knowledge management, supporting anumber of rules for automatic data inferring and management of integrity con-straints between data. Rules in deductive data bases are also called intensionaldata bases while the explicitly stored data are called extensional data bases (EDBs).There are several di�erent approaches [Draxler 91] to implement deductive database systems, such as integration and coupling on a physical or a logic level, buttheir EDBs are mostly relational. As the relational data model and Prolog havea common theoretical foundation [Zaniolo 86] and Prolog is a programming lan-guage that contains within it the language of relations and can thus be used in avery direct way to implement relational data bases, much of the research on bothdeductive data base systems and even conventional relational DBMSs has beenimplemented in Prolog [Li 84, Kazic et al. 90, Nieme et al. 91].The normal way in existing deductive data base systems to model relationaldata bases in Prolog is based on the following analogies: a relational tuple corre-sponds to a fact in Prolog, the collection of tuples in a relation corresponds to thefacts with the same predicate name, and constraints and queries are representedas Prolog rules. There are two disadvantages in this conventional approach:� It does not represent data schemata explicitly. Users must remember ex-actly all structures of di�erent fact collections when, e.g. de�ning relationaloperations, which means it is impossible to manipulate relations by giving152



only relation names and �eld names. From the view of the DBA (data baseanalyst), the management of larger applications also becomes more di�cult.� It is inconvenient for data restructuring which presupposes the capabilityto add, modify and remove schema components and causes correspondingchanges in the actual data.One of the motivations of the representation described below is to represent re-lational data bases in such a way that the above disadvantages of the conventionalapproach can be eliminated. The other motivation is the insu�ciency of the E-Rmodel, which is a widely adopted data abstract model for the conceptual structuredesign of data bases, in expressing semantic information. The simple relationshiptypes in the E-R model, such as one to many (1:N) and many to many (M:N),cannot describe well the di�erent explicit semantic features of the relationshipsamong entities, still less the variations and developments of entities in function,performance, structure, status and attributes etc. with time and external variables'variations. The aim of the representation is to integrate knowledge and data insuch a natural way that all the information which can be represented in the E-Rmodel and other kinds of semantic information which cannot be described well inthe E-R model can both be easily expressed and that the semantic informationcan be used to couple ML facilities with data base and knowledge base technologyin order to implement knowledge acquisition from data bases.D.3 The representationOur representation consists of two parts: the �rst part for relational data basesand the second part for semantic information.D.3.1 Representation for the relational modelThere are two ways to represent relational tuples. One represents them aslabeled n-tuples and the other as ordered n-tuples. In the second, an n-tuple is153



usually represented in the form of (V1; :::; Vn) where the values V1; :::; Vn appear inthe same order as their �eld names in the relation schema. As lists are a commonform of representation in Prolog where the relative positions of elements can betaken as important, the representation below is based on the ordered n-tuples way.The following is a BNF (Backus Normal form) notation for representing arelational data base within our representation.<Database> := <Relation>f, <Relation>g�<Relation> := relation(<Relation Name><Field List>f<Tuples>g10)<Relation Name> := <Prolog Name><Field List> := <Field>f,<Field>g�<Field> := <Field Name><Field Type><Field Name> := <Prolog Name><Field Type> := charjstringjlogicaljintegerjrealjdate<Tuples> := <Tuple>f,<Tuple>g�<Tuple> := <Element>f, <Element>g�<Element> := char(Char)jstring(String)jlogical(Boolean)jinteger(Integer)jreal(Real)jdate(String)<Prolog Name> := (any legal Prolog atom)A relation generated by the above BNF notation has the structure ofrelation(RelationName;FieldList; Tuples) (D.1)or relation(RelationName;F ieldList):Each relation in a relational data base has a unique name, RelationName.The predicate relation describes all the �elds and possible tuples in the relationRelationName. Fields in a relation are described by an ordered list, FieldList.Their types are identi�ed by the atoms char, string, logical, integer, real anddate, which denote the domain of single characters, character strings, truth-values,154



integers, real numbers and speci�c strings for date description. Each �eld can beuniquely identi�ed asfield(RelationName;F ieldName;Type): (D.2)The component Tuples in a relation supports a Prolog representation of rela-tional tuples. It contains those tuples of which the relation value consists. In theTuples in a relation, the value of each �eld appears in the same position as the �eldname in the �eld list. It is easy to de�ne structural constraints which check thateach tuple con�rms to the �elds description in a relation and is uniquely de�ned.This is the way our representation binds relational schemata and relational tuples.In other words, the Tuples component describes the relational tuples, whereas thecomponents RelationName and FieldList belong to the relational data schemata.All of RelationName, FieldList and Tuples are represented explicitly and can thusbe manipulated easily. Constraints between �elds and dependency types in rela-tionships will be represented in Section D.3.2.It is convenient to de�ne a predicate:keyfield(RelationName;KeyF ieldList)where KeyFieldList := fieldf; fieldg� as the key �elds of relation RelationName.Since in some relational DBMSs (e.g. dBASE3), key �elds are not explicitly de-�ned, we did not include the key�eld predicate in our representation.D.3.2 Representation for more semantic informationThe E-R model is one of the most successful methods of formulating useful ab-stract models in the conceptual structure design of data bases and the key designaid for conventional data bases implemented under a wide variety of commerciallyavailable systems [Kazic et al. 90]. By focusing on the entities and their relation-ships, it structures the way designers approach the problem of creating extensibledata bases. However, there are two substantial problems here. One is that trans-forming an E-R model into a relational model during the logical design of data155



bases results in loss of some semantic information that exists in the E-R model. Inother words, the entities and relationships are not distinguished in the relationaldata model. It is impossible for the relational data model to describe the changesof relationship(s) and other entities caused by an entity in an E-R model. Forexample, age is an important factor for counting an employee's salary in manyBritish institutions. However, we cannot explicitly express whether the employee'ssalary will increase according to the change of his/her age in the relational datamodel. The other problem is that the E-R model itself is insu�cient in express-ing complex semantic information as its relationship types, such as one to manyand many to many, are too simple to describe explicitly semantic features of therelationships between entities and within entities themselves. For example, di�er-ent types of relationships, such as logical implication and conceptual inheritance,cannot be expressed in the E-R model.The E-R model and the relational data model are successful in those applica-tions where only the ability to deal with large amounts of persistent and �xed-format data e�ciently is needed. For new applications, such as those mentioned inthe motivations, new representation models are in demand. Object-oriented datamodels are a new generation of extended data models, based on the relationaldata model. However, as we can see from their main features, brie
y summarizedin Section D.2, object-oriented models are themselves data models although somesystems (e.g. POSTGRES [Cattell et al. 91]) have included rule processing facili-ties. Data management, object management and knowledge management are threedi�erent dimensions of problem solving techniques. They would all be needed insome complex applications.Knowledge management entails the ability to represent, acquire and enforcea collection of expertise such as those which form part of the semantics of anapplication. Such expertise describes integrity constraints among data in the ap-plication as well as allowing the derivation of data which is usually called virtualdata contrasting to the real data stored in the data base(s). The task of knowledgemanagement is a key motivation of deductive data base research.The representation described in this appendix is basically designed for the156



approach that generates semantic networks from relational data base schemata (seeSection D.5). Therefore, we have put an emphasis on representing the semanticinformation which cannot be represented in the relational data model and the E-Rmodel.Semantic information in the real world includes four di�erent categories:� descriptive knowledge about entities,� inherent laws and constraints between attributes or �elds in entities,� relationships among entities which can be further divided into six types 1, i.e.,hierarchy, fellow member, attribute, role, causality and logical implication,and� dependency types in the relationships between entities.The following are some predicates in our representation used to express seman-tic information. The examples for those predicates will be mainly drawn from thesample data base schemata in Figure D-1.D.3.2.1 Distinguishing entities and relationshipsEach relationship (Relation) is distinguished with a predicate asis� assoc(Relation): (D.3)In Figure D-1, Dependant and Employee are two entities whereas Assignmentis a relationship indicating a manager monitors employees to work for a project.1In order to give a more precise semantic classi�cation, it is possible to divide one ormore of the relationship types here into greater detail. The completeness of a semanticmodel can only be de�ned in terms of speci�c applications. We cannot say whether allthe relationships here are necessary for every application. Neither can we say they arecomplete. However, as we can see from Figure D-1, they do exist in the real world.157



Clearly, each entity (Entity) satis�es the feature below:entity(Entity) :-relation(Entity, , ), not(is-assoc(Entity)).Each entity-relationship association is described with predicate assoc-entityassoc� entity(Relation;EntityList;AssocTypeList) (D.4)where AssocType 2 f1; Ng denotes the nature of an entity is single or multiplevalued in an association.For instance, relationship Assignment contains entities Employee, Manager andProject.Information about (D.3) and (D.4) can be found in the E-R model but it islost when the E-R model is transformed into the relational data model.D.3.2.2 Identifying the semantic type of each relationshipThere are examples of six types of relationships in Figure D-1:� hierarchy which indicates conceptual inheritance: the relationships betweenEmployee and All Employee and between Home Address and Address,� fellow member: the relationship between Home Address and O�ce Address,� attribute: Labour and Budget are two attribute entities of entity Project,� role: Employee Experience and Manager Experience are two role entities inthe Assignment relationship,� causality: the Labour.Title of an employee in Employee Quali�cation may bea reason for his/her Employee.Title assignment in relationship Assignmentand 158
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� logical implication: the Income.Fringe of an employee can be concludedfrom his Project in Assignment, say (Employee No = 14, Project No = 4 !Income.Fringe = 150), in the Assignment Income relationship.The semantic type (AssocType) of each relationship (Relation) is identi�ed byassoc� type(Relation;AssocType): (D.5)Di�erent types of relationships have di�erent 1) structural features in describ-ing the formulation of the relationships, 2) semantic integrity constraints on data,and 3) operational features or behaviour, such as insertion, deletion, comparisonand retrieval, on the data in the relationships [Su et al. 80].D.3.2.3 Representing semantic labels in each relationshipSemantic labels are useful for processing natural-language like queries and �ringmachine learning engines in intelligent data base systems.For each type of relationship, there are di�erent semantic labels to identifydi�erent roles in the relationship. For example, in a causality relationship, thereare two kinds of labels, cause and e�ect. In a logical implication relationship, thereare also two kinds of labels, condition (if) and conclusion (then). A key entity ina relationship can be given a key label to identify the relationship. For example,if a Project needs a speci�c Assignment, we say the Project entity is a key entityin the Assignment relationship.Each entity's semantic label in each relationship is identi�ed bylabel(Entity;Relation; Label): (D.6)For example, in the Assignment Income relationship, we have the followinglabels. label(Project;AssignmentIncome; cause)label(Income;AssignmentIncome; effect)160



D.3.2.4 Representing deductive knowledgeKnowledge about causality and logical implication is necessary for deductivedata bases to establish virtual data. In existing deductive systems, this is oftenrepresented as production rules. As there are several disadvantages inherent inconventional production rules, we represent deductive knowledge in the form of\rule schema + rule body" [Wu 90,Wu 91] (see also Section 6.2). The Prologrepresentation is thusschema(Relation;CauseEntityList;ResultEntity); (D.7)body � left(Relation;No;CauseOrResultEntity;Attri;RelSym; V alue); (D.8)body � right(Relation;No;ResultEntity;Attri; V alue) (D.9)where No is used to identify di�erent parts of the same body, Attri indicates anattribute and RelSym denotes a conventional arithmetic or symbolic relation.For the example given for the logical implication, we can express it as:schema(AssignmentIncome;Project; EmployeeRecord);body � left(AssignmentIncome; 1; P roject; P roject No;=; 4);body � left(AssignmentIncome; 1; EmployeeRecord;EmployeeNo;=; 14);body � right(AssignmentIncome; 1; EmployeeRecord; IncomeFringe; 150):D.3.2.5 Representing constraints knowledgeConstraints are important in the relational data model. Three sorts of con-straints have been classi�ed and represented in our representation. The �rst isabout the integrity of attributes in each relation,constraint1(Relation;Attribute;RelSym; V alue): (D.10)For example, in the Dependant relation, the AGE attribute is supposed to bealways less than 120.The second is the dependency type of each relationship, such as one-to-one(which means a result entity tuple has a unique corresponding tuple of each cause161



entity, e.g. an Assignment tuple corresponds to a unique Project tuple), full (whichmeans all possible tuples of the result entity have their corresponding cause entitys'tuples, e.g. each Assignment tuple must have its corresponding Project, Expenseand Employee tuples) or dual (each tuple of a result entity corresponds to a tupleof each cause entity and vice versa, e.g. each Assignment tuple has its own Projecttuple and vice versa),constraint2(Relation;MappingType): (D.11)The third is the constraint relationship between an attribute in a relation andouter variables,constraint3(Relation;Attribute;OuterV ariableList; ConstraintString):(D.12)See the example in Section D.3.2.6 where Year could be an outer variable ofFigure D-1.Here, semantic constraints about relational data have also been explicitly ex-pressed rather than being hidden in application programs. This feature of ourrepresentation makes it easier to maintain and adapt application programs.D.3.2.6 Representing regularities between attributesThese represent inherent regularities between attributes, for example, the time-dependent function of an attribute, and the function or logical dependency rela-tionship among the attributes,function((Relation;Attribute); (Rel;Attri)�; Function) (D.13)where (Rel;Attri)� indicates a list of relational attributes. For instance, if anemployee was born in 1950, his age can be computed by the following regularknowledge.function((Employee;Age); [(T ime; Y ear)]; Age = Y ear � 1950)162



D.4 DiscussionsPredicates (D.1), (D.2), (D.3) and (D.5) above are homologous to the node de-scriptions in domain semantic networks, while Predicates (D.4), (D.6) and (D.12)homologous to directed arcs. Predicates (D.7), (D.8) and (D.9) are homologousto reasoning networks in production systems and Predicates (D.10), (D.11) and(D.13) may be used to de�ne deep2 knowledge of problem domains. It is stilldi�cult to adopt semantic networks to represent reasoning networks and deepknowledge with the existing techniques. The above thirteen predicates have thusformed a Prolog-based representation for complex applications where both knowl-edge and data management is needed. Such a representation can represent anyinformation that can be expressed in the E-R model.Also, the representation which consists of the thirteen basic predicates de-scribes explicitly relational schemata as well as relational tuples, thus the disad-vantages of the normal way to model relational data bases in Prolog discussed inSection D.2 have been eliminated.D.5 An approach to generation of semantic net-works from relational data base schemataBased on the Prolog-based representation above, an approach to generationof semantic networks from relational data base schemata has been designed andpartly integrated into KEshell2 (see Chapter 6) to couple ML facilities with database and knowledge base technology.2In contrast to the shallow knowledge (which is directly used for problem solving) inknowledge bases in expert systems, deep knowledge in problem domains can be used todetect inconsistencies in shallow knowledge and data.163



The main idea of the approach is: �rst transform the static description ofdescriptive data base schema into an active knowledge description and then acquirethe semantic information lost in the relational data model and the E-R model.The generation approach covers three steps.Step 1: Generating predicate description (D.1) and (D.2) from relational schemadescription.Step 2: Identifying entities and relationships by using Predicates (D.3) and(D.4).Predicate (D.3) can be used to conduct the acquisition of Predicate (D.4) andthe semantic association types and the deductive knowledge in Step 3. Predicate(D.4) can be used to conduct the acquisition of semantic labels in Step 3 and tocon�ne the consistency test of target data bases.Step 3: Acquiring the information that cannot be described in the E-R model.1) Identify the semantic type (predicate (D.5)) of each relationship and acquireeach entity's semantic label (predicate (D.6)) in each relationship according to thestructural properties and operational features of each relationship type.2) Acquire deductive knowledge.For each causality relationship, �rst generate a rule schema (Predicate (D.7))and then acquire the corresponding rule body of the rule schema in interactivemode, its structure being Predicates (D.8) and (D.9).For each logical implication relationship, �rst acquire a rule body and thengenerate a corresponding rule schema.3) Acquire constraints knowledge (Predicates (D.10), (D.11) and (D.12)).4) Acquire the regular knowledge of the attributes themselves (predicate (D.13)).
164



Appendix ELFA: a linear forward chainingalgorithmE.1 Domain reasoning networksBased on the rule schema + rule body representation in Section 5.2.2, thisappendix describes a linear forward chaining algorithm, LFA [Wu 93d].De�nition E-1. A domain reasoning network is an AND/OR tree associatedwith a knowledge base in rule schema + rule body by the following analogies:1) Nodes in the tree correspond to factors in the knowledge base.2) A rule schema IF E1; :::; En THEN A in the knowledge base corre-sponds to the arcs, which indicates the hierarchy among factors, inFigure E-1 in the tree. 6� �6����������� @@@@@@@@@@IAE1 Enand...Figure E{1: A Rule Schema165
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Figure E{2: The Domain Reasoning Network for Example 5-3The domain reasoning network corresponding to the knowledge base in Exam-ple 5-3 is shown in Figure E-2.We can easily �nd some similarities between the nodes here in domain reasoningnetworks and the features in the Rete-like discrimination networks [Lee et al. 92].However, both the Rete-like discrimination networks and the decision trees usedin [Ghallab 81] only compile the LHSs of rules in a knowledge base and deal withdetailed attribute values while the domain reasoning networks compile both LHSsand RHSs of rule schemas and have no speci�c attribute values involved.De�nition E.2. In a domain reasoning network, a top node is a goal which issupposed to be a solution (e.g. a disease) to the problem domain, a terminal node166



is a user node whose possible data (e.g. a symptom) is supposed to be given byusers, and a middle node is a subgoal.De�nition E.3. A knowledge base in rule skeleton + rule body is in a partialordermeans if Rule Schema#N is if Factor-1, ..., Factor-n, then Factorthen all the rule schemata with Factor-1, ..., Factor-n as their conclusionfactors have rule-set ordinals smaller than N.The LFA algorithm, which performs forward chaining on knowledge bases inrule schema + rule body, comprises two major strategies: sorting the knowledge ina knowledge base into a partial order according to the hierarchy among factors atthe end of knowledge acquisition or knowledge modi�cation and using the renum-bered knowledge in 2-phase \matching { action" cycles during problem solving.E.2 Sorting knowledge in a knowledge base intoa partial orderThe sorting process covers four steps.(1) Find and remove dead cycles.De�nition E.4. A cycle in a domain reasoning network is a dead cycle if noneof the nodes involved in the cycle are terminal nodes in the domain reasoningnetwork, which means that their evidence is not supposed to be given by users,and there is no other rule schema whose conclusion factor is one of them.Example E-1. The cycle \A5 ! A3 ! A1 ! A5" in Figure E-3 is a deadone.A dead cycle in a domain reasoning network is an error in the correspondingknowledge base because none of the factors involved can be computed duringproblem solving.(2) Renumber all the rule schemata whose premise factors are all terminalnodes in the domain reasoning network. For any factor F, if all the schemata with167
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it as their conclusion factor have been renumbered, it is treated as a terminal nodefor further renumbering. If all the rule schemata in a knowledge base have beenrenumbered, goto (4).(3) Resolve a live cycle and goto (2).De�nition E.5. A cycle is called a live cycle when there is such a F in thecycle, called a live node, that is either a terminal node or is a conclusion factor ofa rule schema IF E1; :::; En THEN F and none of E1; :::; En are involved in anydead cycles.Example E-2. The cycle \B8 ! B4 ! B2 ! B8" in Figure 6-3 is a live oneand B4 is a live node in the cycle.A live cycle can be resolved by treating one of its live nodes as a terminal nodefor further renumbering.(4) Stop.For instance, a partial order for the knowledge base in Example 5-3 is as follows.old ordinal new ordinal#3 #1#4 #2#2 #3#5 #4#6 #5#1 #6For those problems which can be represented in the rule schema + rule bodylanguage, the sorting process above is always feasible if all possible dead cyclescan be removed by domain experts. However, for other problems which requiredynamic creation of nodes in their reasoning networks, neither the rule schema +rule body language nor the sorting process will be well suited.169



E.3 Linear forward chainingAfter knowledge sorting, the process for forward inference is designed as follows.for the �rst renumbered schema to the last one in the knowledge base doif there exists data in the working memory for each of thepremise factors of the schemathen �re the corresponding rule body of the schemanext schemaWe can easily prove that the time complexity of the above algorithm is O(n)where n is the number of rule sets.Consider Rule Schema #N .Rule Schema #N: If Factor-1, ..., Factor-n then FactorWhen N = 1, all the Factor-i's (i = 1; :::; n) must be terminal nodes in thedomain reasoning network and their possible data are supposed to be given by usersbefore forward inference starts. So it is clear at the start of inference whetheror not Rule Schema #1 is successful in matching the working memory. WhenN = 2, there are two possible cases. One is that all the Factor-i's are terminalnodes, this case is similar to N = 1. The other is that there exists some Factor-j(j 2 [1; n]) which is not a terminal node. In the latter case, the Factor-j mustbe the conclusion factor of Rule Schema #1. So after the matching and possibleaction of Rule Set #1, whether Rule Schema #2 is successful in matching theworking memory and whether its corresponding body is able to be operated areclear. When N = K > 2, there are two possible cases similar to N = 2. The�rst case is that all the Factor-i's are terminal nodes, which is similar to N = 1.The second is that there exists one or more Factor-j(s) as non-terminal node(s).From the sorting process of above, each possible non-terminal node Factor-j mustbe the conclusion of one or more Rule Schema #1, ..., Rule Schema #(K � 1).170



When it is time to match Rule Schema #K, whether each Factor-i has evidenceand their possible evidence are known already. Therefore, whether Rule Schema#K is successful in matching the working memory and whether its correspondingrule body is able to be operated are clear then. As soon as the matching of a ruleschema is successful, which means there exist data for all of its premise factors,operate the corresponding rule body to produce new data of its conclusion.From the analysis above, we can see that the most signi�cant feature of the LFAalgorithm is that it can properly choose one rule set from the sorted knowledgebase at each cycle without any speci�c con
ict resolution.E.4 Restrictions on LFAThere are two restrictions on the LFA algorithm: static inference, which meansthe knowledge in a sorted knowledge base cannot be changed by either users orthe system itself during inference, and collecting all possible evidence at the startof inference to give all possible solutions. Data once acquired cannot be changedby users. When problems require dynamic creation of nodes in their reasoningnetworks or external modi�cation of rules and data during inference, or theirinitial evidence is not available at the start of inference, the algorithm is not wellsuited.
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Appendix FAn example run of SIKT in KEshellThe following records the dialogue between an expert and the SIKT module inKEshell to build the knowledge base in Example 5-3 in Chapter 5.The sentences with K: at the beginning are generated by SIKT and those withM: are input of the expert. Words between /* and */ are explanatory notes.K: Give all the goals (i.e. the top nodes in your domain reasoning network):M: AssessmentK: De�ne the domain type of Assessment: (1:Logical True/False;2:A Finite Set; 3:A Real)M: 2K: Give all the factors which can determine Assessment in the 1st method:M: Object 1, Object 2, Object 3K: Any other method to determine Assessment? (YjN)M: NK: De�ne the domain type of Object 1: (1:Logical True/False;2:A Finite Set;3:A Real)M: 3K: Are users expected to provide data for Object 1? (YjN)M: NK: Give all the factors which can determine Object 1 in the 1st method:M: X1, X2, X3K: Any other method to determine Object 1? (YjN)M: N 172



K: De�ne the domain type of X1: (1:Logical True/False;2:A Finite Set;3:A Real)M: 3K: Are users expected to provide data for X1? (YjN)M: YK: De�ne the domain type of X2: (1:Logical True/False;2:A Finite Set;3:A Real)M: 3K: Are users expected to provide data for X2? (YjN)M: YK: De�ne the domain type of X3: (1:Logical True/False;2:A Finite Set;3:A Real)M: 3K: Are users expected to provide data for X3? (YjN)M: NK: Give all the factors which can de�ne X3 in the 1st method:M: X31, X32K: Any other method to determine X3? (YjN)M: YK: Give all the factors which can determine X3 in the 2nd method:M: X33, X34, X35K: Any other method to determine X3? (YjN)M: NK: De�ne the domain type of X33: (1:Logical True/False;2:A Finite Set;3:A Real)M: 3K: Are users expected to provide data for X33? (YjN)M: Y... /* the same way as above to transfer information about X34, X35, X31and X32 */K: De�ne the domain type of Object 2: (1:Logical True/False;2:A Finite Set;3:A Real)M: 2K: Give its domain:M: A, B, CK: Are users expected to provide data for Object 2? (YjN)173



M: NK: Give all the factors which can determine Object 2 in the 1st method:M: Y1, Y2, Y3K: Any other method to determine Object 2? (YjN)M: NK: De�ne the domain type of Y1: (1:Logical True/False;2:A Finite Set;3:A Real)M: 2K: Give its domain:M: A, B, CK: Are users expected to provide data for Y1? (YjN)M: Y... /* the same way as above to transfer information about Y2 and Y3 */K: De�ne the domain type of Object 3: (1:Logical True/False;2:A Finite Set;3:A Real)M: 1K: Are users expected to provide data for Object 3? (YjN)M: NK: Give all the factors which can determine Object 3 in the 1st method:M: X35, Z1, Z2K: Any other method to determine Object 3? (YjN)M: NK: De�ne the domain type of Z1: (1:Logical True/False;2:A Finite Set;3:A Real)M: 1K: Are users expected to provide data for Z1? (YjN)M: Y... /* the same way as above to transfer information about Z2 */K: OK. All the rule schemata you have input are:K: Schema #1: IF Object 1, Object 2, Object 3 THEN AssessmentK: Schema #2: IF X1, X2, X3 THEN Object 1K: Schema #3: IF X31, X32 THEN X3K: Schema #4: IF X33, X34, X35 THEN X3K: Schema #5: IF Y1, Y2, Y3 THEN Object 2 174



K: Schema #6: IF X35, Z1, Z2 THEN Object 3K: No evident inconsistencies have been found in those rule schemata.K: Now, please give your detailed computing and/or inference rules correspondingK: to the aforesaid methods:K: The 1st rule schema is: IF Object 1, Object 2, Object 3 THEN AssessmentK: Give your concrete rules to determine the value/CF of Assessment:K: (Each rule in a line (i.e. ending with a <RETURN>) and A SPACE LINE at the end!)M: IF Object 1>85, Object 2=A, CF(Object 3)>0.7 THEN Assessment=AK: | The (1,1) rule accepted.M: IF Object 1>85, Object 2=100 THEN Assessment=BK: | There are errors in *** Object 2=100 THEN Assessment=B ***!K: Rewrite the whole rule:M: IF Object 1>85, Object 2=A THEN Assessment=BK: | The (1,2) rule accepted.M: IF CF(Object 3)>0.5, Object 1>60, Object 2<>C THEN Assessment=BK: | The (1,3) rule accepted.M: Assessment=CK: | The (1,4) rule accepted.... /* The same way as above to receive other rules in Rule Set #1. */K: | The (1,6) rule accepted.M:/* an empty line */K: The 2nd rule schema is: IF X1, X2, X3 THEN Object 1K: Give your concrete rules to determine the value/CF of Object 1:K: (Each rule in a line (i.e. ending with a <RETURN>) and A SPACE LINE at the end!)... /* The same way as above to receive the rules in Rule Bodies #2 { 6. */K: Thank you. A knowledge base has been basically set up according to your input.K: No evident inconsistencies have been found in the knowledge base.K: Do you want to check or modify it? (YjN)M: YK: Choose one of the options in the following window:175



K: A: add a rule schema; D: delete a rule schema;K: C: change a rule schema; L: list all the schemata;K: B: adapt rules in a rule set; Q: quit.M: BK: Which rule set? (Give the ordinal)M: 6K: All the rules in the 6th rule body are:K: IF X35>75 THEN CF(Object 3)=(CF(Z1)+CF(Z2)-CF(Z1)CF(Z2))/2K: IF THEN CF(Object 3)=(CF(Z1)+CF(Z2))/(1-minfCF(Z1),CF(Z2)g)K: No more rules.K: Choose one of the options in the following window:/* The contents in the former window will be covered by the following contents. */K: A: append speci�c rules; D: delete a speci�c rule;K: C: change a speci�c rule; L: list all the rules in the rule set;K: Q: quitM: Q/* The former window is recovered now. */M: QK: OK. Try to sort the knowledge base into a partial order now ...K: Sorting is successful. The new ordinals are:K: #3 {> #1K: #4 {> #2K: #2 {> #3K: #5 {> #4K: #6 {> #5K: #1 {> #6
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