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Abstract

The acquisition of a scene-specific normal behaviour model underlies many existing

approaches to the problem of automated video surveillance. Since it is unrealistic

to acquire a comprehensive set of labelled behaviours for every surveyed scenario,

modelling normal behaviour typically corresponds to modelling the distribution of a

large collection of unlabelled examples. In general, however, it would be desirable to

be able to filter an unlabelled dataset to remove potentially anomalous examples.

This thesis proposes a simple semi-supervised learning framework that could al-

low a human operator to efficiently filter the examples used to construct a normal be-

haviour model by providing occasional feedback: Specifically, the classification output

of the model under construction is used to filter the incoming sequence of unlabelled

examples so that human approval is requested before incorporating any example clas-

sified as anomalous, while all other examples are automatically used for training.

A key component of the proposed framework is an incremental one-class learning

algorithm which can be trained on a sequence of normal examples while allowing new

examples to be classified at any stage during training. The proposed algorithm rep-

resents an initial set of training examples with a kernel density estimate, before using

merging operations to incrementally construct a Gaussian mixture model while min-

imising an information-theoretic cost function. This algorithm is shown to outperform

an existing state-of-the-art approach without requiring off-line model selection.

Throughout this thesis behaviours are considered in terms of whole motion tra-

jectories: in order to apply the proposed algorithm, trajectories must be encoded

with fixed length vectors. To determine an appropriate encoding strategy, an em-

pirical comparison is conducted to determine the relative class-separability afforded

by several different trajectory representations for a range of datasets. The results ob-

tained suggest that the choice of representation makes a small but consistent differ-

ence to class separability, indicating that cubic B-Spline control points (fitted using

least-squares regression) provide a good choice for use in subsequent experiments.

The proposed semi-supervised learning framework is tested on three different real

trajectory datasets. In all cases the rate of human intervention requests drops steadily,

reaching a usefully low level of ∼ 1% in one case. A further experiment indicates that

once a sufficient number of interventions has been provided, a high level of classifica-

tion performance can be achieved even if subsequent requests are ignored. The auto-

matic incorporation of unlabelled data is shown to improve classification performance

in all cases, while a high level of classification performance is maintained even when

unlabelled data containing a high proportion of anomalous examples is presented.
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Chapter 1

Introduction

This thesis contributes to a growing body of research concerning the development

of computer vision algorithms for detecting unusual behaviour in video footage ob-

tained in a surveillance context. Currently, real-world video surveillance places an

unreasonable burden on human operators, whose role typically involves attempting

to simultaneously monitor the output of large numbers of CCTV cameras. An unfor-

tunate consequence of this situation is that only a small fraction of the footage being

captured at any given moment is likely to be subject to human scrutiny [33]: moreover,

without prior knowledge of the activities taking place at a given time, the fraction of

observed footage is - unavoidably - chosen arbitrarily.

Therefore, while fully automated surveillance remains an intangible prospect, there

is a clear potential role for computer vision in quantifying the relative salience of dif-

ferent video streams on the basis of some first-order interpretation of their content.

Such strategies could significantly enhance the efficiency of human CCTV operators,

by appropriately prioritising their attention at any given moment. To this end, a wide

range of different techniques - discussed in detail in Chapter 2 - have been developed

for modelling the typical patterns of behaviour that occur in video footage from a

given scenario, and for detecting unusual events on this basis.

Although many classification problems are solved in a supervised fashion using

human-labelled examples, the acquisition of a comprehensive set of labelled behaviours

for every surveyed location is an unrealistic prospect. In this light, the majority of tech-

niques for detecting unusual events involve learning - in an unsupervised fashion - sta-

tistical models that characterise the distribution of behaviours observed in a given set

of video data. As a potential compromise between these strategies, this thesis imple-

ments and explores a semi-supervised framework that allows occasional human input

to be incorporated in the construction of behaviour models, such that some control

over their content can be exerted with minimal labelling effort.

11
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Figure 1.1: Semi-supervised learning framework for normal behaviour modelling (see
Chapter 5): Trajectories represented in a fixed-dimensionality parametric form (see Chapter
4) are assessed by a classifier. New examples classified as normal are automatically used
to train the classifier (see Chapter 3), while anomalous examples are passed to a human
operator for approval (initially, all examples are classified as anomalous.)

1.1 Semi-supervised learning of a normal-behaviour model

This thesis proposes a semi-supervised learning framework for incrementally con-

structing a model of normal behaviour on the basis of a small number of human-

labelled normal examples and a large number of unlabelled examples.

The proposed framework - illustrated in Figure 1.1 - constitutes an on-line learning

scenario where the incremental construction of a normal behaviour model is allowed

to take place in a largely unsupervised fashion, with one key exception: the approval

of a human operator is requested before incorporating any new training examples of

an unprecedented nature. Initially, all examples require human approval before being

used for training: however, as the generalisation of the underlying normal behaviour

model improves, an increasing proportion of new examples are automatically used

for training.

By only requesting labels for the most unusual examples, the proposed frame-

work allows a human operator to filter the training data used to construct a normal

behaviour model with minimal effort. The role of human input thus consists in pro-

viding a “safety net” to prevent the inclusion of inappropriate training examples in a

normal-behaviour model. In a fully unsupervised setting, it is possible that the finite

sample of training data used to construct a behaviour model may contain a distribu-

tion of examples that is unrepresentative of normal activity: the proposed framework

provides a means to sidestep such issues without resorting to the laborious manual

labelling of all training instances.

Indeed, given that current approaches to automated surveillance are intended to
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assist - rather than replace - human operators, it is desirable to be able to utilise the

opportunity for occasional human feedback when training such systems. A series of

experiments, presented in Chapter 5, use motion trajectory data from three different

surveillance scenarios to demonstrate the potential efficacy of the proposed learning

framework, indicating that high classification rates can be achieved while only requir-

ing a fraction of training data to be labelled.

1.2 Key sub-problems

Implementing the learning framework described in the preceding section requires

solutions to two main sub-problems: incrementally learning a model of normal be-

haviour without anomalous counter-examples, and representing behaviours occur-

ring in video data in a consistent parametric form.

Incremental one-class learning. The proposed learning framework is intended to

generate a model of normal behaviour on the basis of training data that consists solely

of normal examples. This constraint is essential because, although the subsequent

identification of anomalous examples is of crucial importance, in many situations the

available training data may only contain examples of normal activity.

In this vein, a key component of the proposed framework is an underlying “one-

class” learning algorithm capable of incrementally constructing a model of normal

behaviour on the basis of a stream of normal training examples, while providing the

ability to classify new examples at any point during training. In order for such an algo-

rithm to be useful it must generalise parsimoniously, so that its ability to classify new

examples as normal reflects the number of training examples that have been observed

so far. Chapter 3 presents a potential solution to this problem based on density estima-

tion: this technique represents an initial set of training examples with a kernel density

estimate, before using merging operations to incrementally construct a Gaussian mix-

ture model while minimising an information-theoretic cost function. The resulting

algorithm is shown to be effective on a range of benchmark datasets and - crucially

- does not require any off-line optimisation step to determine an appropriate level of

model complexity.

Parametric behaviour representation. In order to use the proposed learning algo-

rithm for behaviour classification it is necessary to represent behaviours in a consistent

parametric form (ie. with fixed length vectors). Moreover, if learning is to take place

incrementally, the chosen behaviour representation must - rather than being learned -

be defined in a “hard-coded” fashion so that it is available at the start of training.
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The review of current approaches to behaviour learning/classification presented

in Chapter 2 indicates that motion trajectories - which have formed the basis for a

large number of approaches - provide a suitable substrate for a hard-coded behaviour

representation. In particular, a number of different techniques can be used to encode

motion trajectories in a parametric form, thereby allowing the algorithm proposed

in Chapter 3 to be applied. An investigation of the impact of different parametric

trajectory representations on the ability to discriminate between different classes of

trajectory is presented in Chapter 4. While it is clear that motion trajectories may

not always constitute an adequate description of the activities observed in a given

video sequence, they provide strong clues about its content and have the advantage

of implicitly segmenting activity. Nonetheless, it should be noted that the training

framework and learning algorithm explored in this thesis are not specific to trajectory

data and could potentially be applied to other forms of behaviour representation.

1.3 Thesis overview

The contributions of this thesis are organised in terms of the following chapters:

Chapter 2 presents a detailed of overview of current approaches to behaviour mod-

elling and classification, together with summaries of the techniques that have

been used to detect anomalous behaviour, and the different ways in which cur-

rent behaviour classifiers can be trained.

Chapter 3 proposes and evaluates a new incremental one-class learning algorithm.

This algorithm is shown to outperform a current state-of-the-art approach across

a range of benchmark datasets while avoiding the need for a preliminary learn-

ing step to determine the underlying model complexity.

Chapter 4 presents a comprehensive empirical comparison of techniques for repre-

senting motion trajectories with fixed-length vectors: The impact of different

representations on the relative separability of motion classes from several differ-

ent real trajectory datasets is measured over a range of dimensionalities.

Chapter 5 combines the the findings of the preceding chapters by implementing and

exploring the proposed semi-supervised normal-behaviour learning framework.

Classification performance, and user intervention rates are measured during

simulated training runs on three different trajectory datasets.

Chapter 6 presents an evaluation of the main contributions of this thesis, together

with a number of potential directions for future research.



Chapter 2

Behaviour Modeling for Anomalous
Event Detection

The two complementary goals of automated surveillance systems are the recognition

of specific types of behaviour, and the identification of previously-unseen or atypi-

cal behaviour. A wide variety of representations and learning strategies have been

used to address these problems: This chapter presents a review of existing work in

the field and examines several important dimensions along which existing work can

be categorised. Firstly, Section 2.1 provides an overview of the different activity rep-

resentations that can be extracted from video footage; Section 2.2 then explores the

different ways in which behaviours can be modelled once phrased in terms of these

representations. The final sections of this chapter review techniques for anomalous

behaviour detection (Section 2.3), and the types of training procedure implicit in dif-

ferent behaviour modelling strategies (Section 2.4).

2.1 Representing Video Footage

Providing an interpretation (or indicating an absence therein) of the behaviour occur-

ring in a video sequence depends on the extraction of meaningful intermediate repre-

sentations from raw video data. This section reviews the different representational

strategies that have been used to “distill” video footage for subsequent behaviour

modelling and classification. The choice of representation has a large bearing on the

types of behaviour that can subsequently be recognised, and may in some cases be

closely linked to a specific classification task (eg. recognising fights). This section

highlights three main types of activity representation, reviewed as follows: motion

trajectories; articulated motion, and scene-wide activity descriptors.

15
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2.1.1 Trajectories

Motion trajectories provide one of the most intuitive cues for distinguishing between

different types of behaviour. It is clear that the sequence of an individual’s locations

over time, although far from a complete encapsulation of their activity, would betray

the occurrence of many of the different types of behaviour. In this light, motion trajec-

tories provide a highly efficient means of summarising video data. Indeed they have

formed the basis for a large body of work on automated surveillance [59, 33], and

have also been applied with success to the problem of video indexing and retrieval

[9]. This section reviews the strategies that have been used to represent trajectory data

for behaviour modelling purposes.

Raw trajectory data

Perhaps the simplest solution is to construct geometric models directly from trajectory

data, in order to model the spatial extent of typical paths in a scene. This technique

has been adopted by Fernyhough et al. in [41]; Makris and Ellis in [82]; Junejo et al. in

[66, 67], Piciarelli and Foresti in [100, 101]; and most recently by Wang and Grimson

in [157]. We return to these approaches and discuss the trajectory modelling strategies

they employ in detail in Section 2.2.3.

Discretised representation

Instead of dealing with whole trajectories, an attractive strategy is to construct a dis-

crete “alphabet” of low-level primitives (eg. common local motion transitions), which

can then be used to represent trajectories as discrete sequences.

This technique was employed by Johnson and Hogg in [64], in one of the earliest

papers on trajectory modelling. To acquire a discretised representation, a large set of

trajectories is decomposed into a set of 4-dimensional “flow vectors” describing lo-

cal motion transitions f = (x,y,∆x,∆y), from which a finite set of prototype vectors

is obtained using a competitive neural network clustering algorithm [119]. The clus-

tering algorithm is constrained to represent an equal number of training examples

with each prototype vector, ensuring that the distribution of prototypes reflects that

of the underlying data. A very similar motion quantisation approach was adopted

by Stauffer and Grimson in [136], augmenting the vector space with a dimension cor-

responding to the area (of the image-plane silhouette) of each moving object, so that

f = (x,y,∆x,∆y, size).

Sumpter and Bulpitt use the same technique in [138] to acquire a discretised rep-

resentation of flock of sheep and a “robotic sheepdog”; this is formulated in a 11-
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dimensional space corresponding to the local flow vector of the flock, 5 spline param-

eters describing the shape of the flock, and the location of the “sheepdog” at a given

instant. It is also possible to prespecify a quantisation without a learning step: Wang

and Grimson create a motion “codebook” in [154] by dividing the image plane into

a grid of 10x10 pixel regions and categorising optic flow within a region as one of 4

possible directions.

Another type of discretised trajectory representation can be obtained using the ge-

ometric path-modelling approach described in Section 2.2.3. In [83] Makris and Ellis

build a network of “sub-path” regions in a scene, allowing trajectories to be repre-

sented as discrete sequences corresponding to traversals of the network. A similar

trajectory representation can also be obtained using the on-line geometric path clus-

tering approach proposed by Piciarelli and Foresti in [101], which generates a tree of

possible routes through a scene.

In a similar vein, Nait-Charif & McKenna describe activity within a scene in [92]

(in a care home environment) in terms of transitions between entry zones, inactivity

zones, and exit zones. The regions are learned by fitting a Gaussian mixture model,

as described in [85], to the start and end points of trajectories. Trajectories can then be

described in terms of transitions between, and occupancies of, the learned zones. The

idea of representing video footage as sequences of discrete low-level primitives has

been widely applied to representations other than trajectories (see Section 2.1.3), and

affords a wide range of different techniques for subsequently modelling behaviours

(see Section 2.2).

Parametric representation

The preceding discretised approaches to trajectory representation provide one solu-

tion to the problem posed by the unbounded nature of trajectory data. Another so-

lution, which makes a further set of machine learning techniques applicable to be-

haviour modelling, is to project trajectory data into a parameter space of fixed dimen-

sionality. If the dimensionality is sufficiently low, techniques such as density estima-

tion can be applied; otherwise, it is at least possible to measure similarity using the

Euclidean distance.

Noting that a trajectory consists of two independent 1-dimensional time series (ie.

regularly sampled X and Y coordinates), it is possible to apply 1D signal approxima-

tion techniques to parametrise trajectories. This technique is employed by Naftel and

Khalid in [90, 89] where the Discrete Fourier Transform (DFT) is used to approximate

the X and Y components of trajectories. The DFT projects signal information from

the time domain to the frequency domain, allowing signals to be approximated to ar-
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bitrary levels of accuracy/dimensionality by disregarding a proportion of the higher

frequency coefficients. In [90, 89], DFT coefficients for the X and Y components of

each trajectory are concatenated to yield fixed-length vectors, which are then used

to cluster the trajectories. A similar strategy is also employed by Sahouria and Za-

khour [120] where the X and Y components of trajectories are represented by a set of

wavelet coefficients (obtained using the Haar wavelet transform), for the purpose of

video indexing. More recently, Sillito and Fisher have adopted a least-squares cubic

B-Spline trajectory representation as the basis for an incremental trajectory modelling

algorithm in [133] (see Chapter 5).

The only existing comparison of low-dimensional trajectory parametrisations is

presented in [90], where Naftel and Khalid compare DFT with Chebyshev polynomial

approximation and - using the shopping mall scenario from the CAVIAR dataset [42]

- find that DFT allows query trajectories corrupted by the addition of random noise to

be most reliably matched to their non-corrupted counterparts. However, this compar-

ison - which only utilises a single dataset - does not address the important question of

how well different classes of trajectories are separated when encoded using different

representations. Moreover, it does not include previously adopted trajectory repre-

sentations such as Haar wavelet coefficients [120] and cubic B-spline control points

[133]. To address these issues, Sillito and Fisher [134] measured the class separabil-

ity of several different trajectory datasets when represented using DFT, Chebyshev,

Haar wavelet, and cubic B-Spline representations, finding that Chebyshev and cubic

B-Spline representations yield a marginal improvement in class separability for most

datasets (see Chapter 4 for further details).

Alternatively, if very high dimensional representations are acceptable, a simpler

approach to vectorising trajectory data is to specify a maximum vector length (or ob-

tain this directly from a given dataset), and thereafter generate vectors of fixed length

by filling the first N elements with the coordinates of a given trajectory, and filling any

remaining unused elements by repeating the final coordinates of the trajectory. This

“padding” approach has been employed by Hu et al. in [61], to preprocess trajectories

before clustering them using a variant of the Self-Organising Map learning algorithm.

In a later paper, [60], Hu et al. also propose another trajectory parametrisation, which

involves coarsely subsampling trajectories and then interpolating them to achieve the

desired dimensionality (note that unlike the padding approach this disregards tem-

poral information). Since the high dimensionality of padded/resampled vectors pro-

hibits modelling using density estimation techniques, their principal attraction lies in

enabling the Euclidean distance to be used as trajectory similarity measure.

With the equivalent aim of providing a similarity measure for trajectory clustering,
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Porikli et al. propose another - entirely different - style of trajectory parametrisation

in [105], where each individual trajectory is represented by its own Hidden Markov

Model (see Section 2.2.1). This allows the similarity of pair of trajectories to be mea-

sured by assessing the likelihood of one being generated by another’s HMM parame-

ters and vice versa, using a symmetrised distance function. Note that, although pos-

sible, there is no reason to enforce fixed dimensionality on this particular trajectory

parametrisation (different numbers of Hidden states are chosen according to trajec-

tory complexity in [105]) as it provides a similarity metric without requiring the direct

comparison (eg. by Euclidean distance) of parameter vectors.

In certain cases (eg. where object tracking is not feasible), trajectory data can be

usefully represented in terms of its constituent local motion transitions. In [98], Owens

and Hunter parametrised each step of a trajectory with a vector encoding current lo-

cation along with moving averages of the location and the x and y components of

velocity and acceleration:

f =
(
x,y, s(x), s(y), s(dx), s(dy), s(d2x), s(d2y)

)
Johnson and Hogg adopt a similar representation in [65], seeking to model the proba-

bility of a certain transition occurring given a history of three recent locations. The first

step in achieving this is to represent a trajectory dataset with a set of 8-dimensional

vectors, whose density is then modelled:

f = (∆xt,∆yt, xt,yt, xt−1,yt−1, xt−2,yt−2)

Saleemi et al. employ a similar representational strategy in [121] using 5-dimensional

vectors corresponding to two pairs of coordinates separated by a certain time interval

(which must be greater than 0 and less than 5 seconds), and also model the density of

this parametrisation:

f =
(

x(t+∆t),y(t+∆t), xt,yt,∆t
)

Modelling the density of local motion parametrisations affords a wide range of possi-

bilities for behaviour synthesis and classification, and is discussed in further detail in

Section 2.2.2.

Landmark-based representation

A small number of approaches parametrise trajectories in terms of a set of hand-coded

landmarks within a scene, sidestepping the need for the modelling approaches de-

scribed in Section 2.2. In [88], Morris and Hogg describe a method for analysing the

trajectories generated by pedestrians walking through a car park, on the basis of their
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Figure 2.1: Hand-labelled scene and state transition network from [32].

’interactions’ with parked cars. Using a handcrafted map of parked cars, each tra-

jectory is decomposed into pairs of speed and ’distance to nearest car’ parameters

sampled at locations which correspond to global proximity minima for each car in

the scene. A cumulative histogram of all the {speed,distance} pairs sampled is con-

structed, and then used to estimate a probability distribution over those parameters,

which is used to represent each trajectory with a vector encoding the 5 least likely

{speed,distance} pairs observed.

In a similar vein, Dee and Hogg [32] propose a technique for analysing traver-

sals of scene networks, by quantifying the extent to which a given behaviour can be

regarded as “goal directed”. The essential premise of their approach is that an anoma-

lous motion trajectory cannot be explained as an attempt to move efficiently from one

location to another. For a given scene, Dee and Hogg construct a hand-crafted map

encoding the regions corresponding to destinations/goals and entry points, together

with the sub-goals which must be traversed when moving between them. This map

has a corresponding topological network representation where nodes correspond to

map regions, with edges joining nodes whose map regions are visible/accessible from

one another (see Figure 2.1). For each possible goal a version of this network is in-

stantiated so that transitions corresponding to motion away from the goal have an

associated cost. For a given trajectory, the network traversal cost corresponding to

each goal is calculated, and used to identify the goal (with lowest cost) that best ex-

plains the trajectory: the cost value associated with this goal serves to quantify the

goal-directed nature of the trajectory, and can be used to identify unusual behaviour.

Dee and Hogg show that this measure correlates well with human judgments for two

different scenarios.

2.1.2 Local Articulated Motion

The utility of the preceding trajectory-based representations depends on the assump-

tion that a human can be well approximated as a moving “blob”. In some cases, how-
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ever, the changing configuration of a person’s limbs may be the key to recognising

a range of potentially interesting behaviours: it is possible that certain instances of

behaviours such as fighting, or tampering with objects in a scene, could be indistin-

guishable from ordinary behaviour under the moving blob assumption. The reliable

recognition of these behaviours requires a more fine-grained description of an indi-

vidual’s motion. While it is difficult to reliably track the positions of an individual’s

limbs over time, a variety of techniques exist for characterising the patterns of local

motion that arise from different types of behaviour.

In an early example of event detection based on articulated motion, Datta et al.

propose a technique for detecting violent behaviour in [30]. Their approach involves

detecting human silhouettes by filtering the objects identified by a background sub-

traction algorithm. The bounding box is divided along the vertical axis into three

equal sections: the top section is used to identify the location of a person’s head and

shoulders. The location of each detected person’s head is tracked using colour infor-

mation, while the silhouette is used to estimate the extent and orientation of upper and

lower limbs in each frame. These pieces of information are combined to detect fights

in a rule-based fashion: when a person’s head moves suddenly (this can be quantified

by the first derivative of acceleration, known as “jerk”) and a second person’s limb is

extended towards the first person, the frame is flagged as potentially violent. While

this representation is shown to be effective, it is likely to be very difficult to accurately

identify limb configurations in real-world sequences.

Another way to address this problem is thus to capture local motion patterns with-

out the specific identification and tracking of limbs. One such approach was proposed

by Efros et al. in [38], where a descriptor for local motion is formed by measuring

optic flow in a fixed window centred on the location of a moving person. The optic

flow is split into two channels corresponding to the x and y components of the mea-

sured flow, each then split into two further channels corresponding to the (half-wave

rectified) positive and negative components of each motion direction. Splitting the

motion into positive and negative components allows a Gaussian blur to be applied to

each channel without losing information by averaging positive and negative motion

along each axis. The motion descriptor thus finally consists of four “blurry” motion

channels which provide an approximate description of the optical flow in a given re-

gion. Efros et al. determine the similarity of a pair of action sequences (over some

small number of frames) using a spatio-temporal cross-correlation measure (summed

over the 4 channels); this enables classification of different actions using the K-nearest

neighbours algorithm in conjunction with a labelled database of actions, and is shown

to effectively distinguish between various types of action occurring in ballet, tennis
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and football videos [38].

The local motion descriptors proposed by Efros et al. have also been utilised by

Robertson and Reid in [114] for activity recognition in a surveillance context. As in

[38], a database of labelled motion descriptors is used to classify new examples; in

[114] the database contains examples of walking, running and stationary people. Each

descriptor consists of 5 frames (x 4 channels x 20 x 20 pixels) of optic flow information,

resulting in a very high dimensional representation. In order to speed up the evalu-

ation of new actions with respect to the database, a probabilistic matching method

(proposed by Sidenbladh et al. in [131]) is employed. In [131], PCA is performed on

a database and the projection of a new example is used to define a probability distri-

bution over the possible sign configurations of PCA coefficients; this allows samples

to be drawn from the database according to a query example, thereby providing a

way to estimate the probability of a new example belonging to a given class. In [114],

databases of position and velocity information for different activity classes are kept

alongside the database of motion descriptors: given a query the most likely veloc-

ity/position/action indicated by each database are combined using a Bayesian net-

work to determine the most likely activity underlying a given instance of motion.

Robertson and Reid adopt a similar strategy in [113] for estimating gaze direction

for detected faces/heads. Using a color histogram obtained from example skin re-

gions in a given scenario, it is possible to estimate the probability that a new pixel

corresponds to skin. A head descriptor is formed by estimating head locations from

the motion silhouettes of detected people, weighting the foreground pixels (of de-

tected head regions) according to their skin probability values, and finally rescaling to

a uniform size. As in [114], descriptors are concatenated across 5 frames. A labelled

database containing a total of 100 example descriptors for each of 8 possible head di-

rections is used to classify new examples, using the PCA-based matching procedure

employed in [114], and the estimated head direction is then improved by incorporat-

ing a motion direction cue using Bayes’ rule. While the estimated gaze direction is not

used for any higher level behaviour modelling in [113], it is clear that it could provide

a useful cue for behaviour classification in a surveillance context.

The strategy employed by Robertson and Reid in [114, 113] shows how a high-

dimensional local motion descriptors can be used to analyse video footage in combi-

nation with a labelled database of actions. The key insight is that if it is possible to

formulate an efficient matching procedure, then high-dimensional motion descriptors

can be used to classify low-level actions in conjunction with a set of labelled examples.

In addition to optic flow representation of Efros et al., there are a range of other strate-

gies for classifying action segments which could also potentially be applied to surveil-
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lance - it is worth noting, however, that the motion descriptor proposed by Efros et al.

is unique in being specifically intended for classifying motion at a distance. A popular

strategy in the action recognition literature is to consider the changing silhouette of a

moving person as a spatiotemporal volume: several approaches [73, 128, 49] attempt

to find salient feature points in the spatio-temporal volume that characterise a given

class of motion, while others [70, 95] parametrise and classify spatiotemporal volumes

according to the responses of a set of spatiotemporal filters.

Boiman and Irani propose a novel approach to local action classification in [15]

which does not rely on tracking moving objects. Instead of attempting to classify ac-

tions, the technique proposed in [15] focuses solely on the identification of unusual

local motion patterns. This technique works on the basis of a “query” video clip and

a database of video footage containing ordinary behaviour: using the database, the

“likelihood” of each pixel in the video clip is estimated by quantifying the extent to

which its surrounding (spatiotemporal) region can be explained in terms of similar

regions in the database. Boiman and Irani decompose each spatiotemporal region into

a set of local descriptors at different scales and formulate a probabilistic cost function

which can be used to compare regions in the query with those in the database while

allowing for discrepancies between the sets of descriptors and their relative locations.

Quantifying the likelihood of a query video region requires a computationally expen-

sive search procedure, which is made more efficient in [15] by initially restricting the

search procedure to the coarsest level of motion description. Unusual behaviour can

thus be detected by thresholding the likelihood function for a given query. This strat-

egy is shown be effective in various scenarios, although it is unclear whether it could

be used to detect unusual behaviour in a real-time context.

2.1.3 Scene-wide Motion Patterns

A major weakness of many of the preceding approaches is that they rely on an accurate

estimate of the location of moving objects in a scene. In scenarios where tracking is

impractical, for example in crowds, a different type of approach to representing video

data is required. This section describes a variety of representational strategies which

have the capacity to model global patterns of activity in a scene without requiring

tracking. Global motion patterns have the additional advantage of capturing multiple

activities within a scene - rather than those of a single individual - thereby providing

a potential means to recognise interactions.

An early example of this style of representation was employed by Brand and Ket-

tnaker [17] to describe activity on frame-by-frame basis. Firstly, activity in an office

scenario is represented with the parameters of an ellipse fitted to the largest connected
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region of foreground pixels (detected by a background subtraction algorithm) aug-

mented with information about how the ellipse has changed since the previous frame

(in particular, change in centroid and mass). Secondly, activity at a road junction is

represented with the set observed of flow vectors larger than a certain magnitude.

Without requiring tracking, these representations are used in [17] as the substrate

upon which to build sequence models (single or multiple observation HMMs) and

are shown to enable the classification of various activities.

Another, more complex, strategy for scene-wide activity representation proposed

by Xiang et al. in [169], has formed the basis for a large body of work on automated

surveillance [168, 166, 165, 163]. Their approach focuses on instantaneous motion be-

tween scenes, and essentially works by identifying foreground objects (using a Gaus-

sian mixture model background subtraction algorithm) and then calculating a “Pixel

Change History” representation for these regions: from this a 7 dimensional represen-

tation is formed for each detected region in a given frame, consisting of bounding box

parameters for the region combined with the x and y moments of the pixel change

history. The collection of 7-dimensional instances in a given video is then modelled

with a mixture of K (determined by BIC criteria) Gaussians, so that each component

corresponds to an “event class”. This means each frame can be represented with a

K-dimensional vector containing the posterior probabilities for each event having oc-

curred in a given frame. Video footage can thus be represented as a trajectory in K-

dimensional space, which can be firstly be used to divide the video data into segments

corresponding to behavioural episodes [165], and secondly as the representational

substrate upon which to build sequence models for the different classes of behaviour

observed.

In contrast to the preceding approaches, it is also possible to describe activity in a

scene in an entirely hard-coded fashion: in [178] Zhong et al. generate binary motion

images for a sequence of frames by applying a temporal Gaussian derivative filter cen-

tred on each frame combined with a spatial smoothing filter. Each frame is mapped to

a vector of fixed dimensionality by dividing the image plane into a regular grid, and

computing the sum of detected motion pixels in each cell. The vector representations

for each frame are clustered using K-means to provide a dictionary of activity proto-

types. Zhong et al. then divide video footage into a series of regular segments (length

4 seconds in [178]) whose content is described with a binary vector corresponding

to the presence/absence of each activity prototype. This representation is shown to

be potentially effective for activity clustering and unusual event detection in differ-

ent scenarios including videos of poker tables, nursing homes, and street surveillance

footage. In a similar vein, Wang et al. encode scene activity by dividing the scene
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into a grid of 10x10 pixel regions, and measuring optical flow within those regions. In

each region the flow is quantised in terms of four possible directions, meaning that a

480x720 scene is described in terms of 48x72x4 possible motion primitives - an advan-

tage of this representation is that it does not require a preliminary learning step.

Likewise, in [1] Adam et al. adopt a representational strategy that does not require

any learning step; their aim is to provide a practical, computationally lightweight so-

lution to unusual event detection. Firstly, optical flow is measured at a grid of fixed

“monitor” locations in the image plane: for each location, this is achieved by estimat-

ing a likelihood function over different possible local patch displacements between

frames, and then choosing the “maximum likelihood” direction and magnitude of

motion. The likelihood function - if deemed too flat/ambiguous - can be used as a

basis for disregarding measurements altogether. Each frame is thus represented by

a set of flow vectors corresponding to the grid of monitor locations. For each mon-

itor a record of the last N measurements is kept, and used to construct a histogram

which provides a likelihood measure for new observations. Anomalous events are

then detected whenever a certain proportion of recently observed frames contain flow

observations whose likelihood falls below a threshold. Although the scene-wide flow

patterns calculated in [1] are only used to analyse motion on a local basis, they could

potentially be used for modelling global motion patterns.

Optical flow is also employed by Andrade et al. in [3, 2] for the purpose of de-

tecting anomalous events in crowded scenes. In [3], activity within a scene is cap-

tured by by measuring optic flow within a regular grid of 8x8 pixel blocks; the result-

ing set of flow measurements is filtered according to a binary mask produced by a

background subtraction algorithm, so that flow measurements outside detected fore-

ground regions are set to zero. This results in a high dimensional parametrisation for

each video frame: PCA (Principal Components Analysis) is then applied to the video

sequence to find a set of eigenvectors with which to project the flow measurements

from each frame into a 10 dimensional space. Video footage, now represented as a 10-

dimensional time series, is divided into 4-second segments (as in [178]) which are used

to train sequence models and cluster the segments. Flow is extracted in the same way

in [2], but modelled in a different way without an intermediate PCA step: an HMM

with a mixture-of-Gaussians emission distribution is used to model the changing list

of flow vectors measured in the scene, and the same model is trained for each local

region of the scene. The flow field representation used in [3, 2] is shown to capture the

difference between normal crowd behaviour and events such as falling and sudden

overcrowding, albeit for simulated data.

A key advantage of these approaches is that they are able to provide summaries of
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video content without solving the difficult problem of reliably detecting and tracking

moving objects. However each of these approaches decomposes video footage into

short segments, which are typically of an arbitrary predetermined length. It is clear

therefore that this type of representation provides a convenient way to sidestep ex-

plicit motion representation for the detection/classification of short-term behaviours,

but does not provide a means to represent the same longer-term behaviours that can

be captured by trajectory data.

2.2 Modelling Behaviour Patterns

Once video data is phrased in terms of the representations described in Section 2.1, it

is possible to construct models corresponding to different behaviour patterns, which

can then be used for classifying future behaviours and identifying anomalies. This

section reviews a variety of techniques for constructing such models. Firstly, Section

2.2.1 reviews techniques for modelling behaviours that are initially represented as con-

tinuous/discrete sequences. Then, Section 2.2.2 reviews techniques for discovering

clusters of similar behaviour patterns in datasets. Finally, several approaches which

represent sets of trajectories with spatial boundaries are reviewed in Section 2.2.3.

2.2.1 Sequence Models

Many of the approaches to video content representation discussed in Section 2.1 yield

segments of behaviour represented either as a string of symbols, corresponding to

a learned/prespecified quantisation (eg. [83]), or as high dimensional trajectories in

some parameter space (eg. [48]). As illustrated in Figure 2.2, the methods described

in this section serve two possible purposes: either to model a set of sequences in a

probabilistic manner, or to represent individual sequences as a precursor to clustering.

Hidden Markov models, discussed first, are unique in addressing both issues.

Hidden Markov Models and their variants

Definition The Hidden Markov Model (HMM) is a generative model which posits

a sequence of latent/”hidden” (output-generating) states that gives rise to observed

sequences. Each hidden state can give rise to observations according to a discrete (ie.

a discrete set of possible outputs with probability table) or continuous (eg. Gaus-

sian, Poisson etc) distribution, with different distribution parameters specified for

each state. Output can thus be generated by moving through a sequence of states,

generating an observation at each one according to their distribution models, before

moving to another state (or staying put). The propensity to change between different
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Figure 2.2: The role of sequence models in behaviour modelling.

states is governed by a matrix of transition probabilities T; similarly the propensity

for the sequence to start in a given state is specified by a vector of prior probabilities

V. Given some assumptions about the number of hidden states and the type of emis-

sion distribution, the HMM parameters that best correspond to a given observation

sequence (or set of sequences) can be estimated using the Expectation Maximisation

algorithm (see Rabiner [107]).

Classification and clustering. HMMs provide a useful tool for sequence classifica-

tion: Because it is possible to compute the likelihood of a new sequence of observa-

tions having been generated by a given HMM, a new sequence can be classified by

determining which member of a set of HMMs (corresponding to different behaviours)

was most likely to have generated it. In a similar vein, the resulting likelihood values

could also be thresholded to identify outliers.

In order to identify clusters in a set of sequences a technique frequently adopted

in the behaviour modelling literature is to fit each individual sequence with its own

HMM. This provides the ability to measure the similarity of two sequences, by as-

sessing the likelihood of one being generated by another’s HMM parameters and vice

versa, and combining these quantities in a symmetrised distance function. This prin-

ciple has been applied for a variety of sequence types including trajectories [104] and

scene descriptor sequences [168, 3], typically using the following distance function

(where S denotes a sequence and λ a set of HMM parameters):

Dij =
1
2
{log P(Sj|λi) + log P(Si|λj)
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Having defined a similarity metric, it is then possible to employ similarity-based

clustering techniques such as Spectral Clustering (see Section 2.2.2). Once groups of

similar sequences have been identified an HMM can be fitted to each group of se-

quences, to enable classification as described earlier.

Sequence smoothing. Another useful property of HMMs is that they can be used to

determine the most likely series of hidden states given a set of observations, which

can be used to estimate the “smooth” behaviour sequences underlying noisy observa-

tions. The smoothing property of HMMs has been exploited by Robertson and Reid

in [114] for providing commentary on video footage of tennis games: an estimate of a

person’s action at each instance in a short sequence is obtained (using the optical flow

based method described in Section 2.1.2), and its likelihood is assessed with respect

to a series of hand-defined HMMs corresponding to different behaviours; the HMM

that best explains the data is then used to estimate the most likely sequence of actions

(which each have an emission distribution defined by a probability table for observ-

able actions) underlying the observed sequence. This effectively imposes a smoothing

prior on the observed sequences of low level actions, and is shown to increase the

accuracy of action classification in [114]; this technique is also applied to surveillance

footage by the same authors in [115].

HMM Trajectory Models Since HMMs can have continuous emission distributions,

they are well suited to modelling continuous sequences such as motion trajectory data.

Porikli et al. use HMMs for trajectory clustering in [105, 103, 104], where an individual

HMM is fitted to each trajectory as a precursor to spectral clustering. The emission

distribution for each state is modelled with a Mixture of Gaussians, and it is suggested

in [104] that a range of different numbers of states and mixture components are tested

in order to choose the configuration that maximises a penalised likelihood function.

This effectively means that each HMM state represents a section of a given trajectory,

with a model for the distribution of coordinates in that section. A weakness of this

representational strategy is that, within a given section (ie. region corresponding to an

HMM state), it places no constraints on the ordering of coordinates. For example, the

coordinates of a trajectory could be randomly shuffled within sections corresponding

to different states of a given HMM with no impact on the resulting model likelihood.

An alternative HMM-based approach, proposed by Bashir et al in [10], addresses

this issue by segmenting each trajectory based on significant changes in curvature,

and describing each trajectory segment with a parametric representation. (Bashir et

al acquire a reduced-dimensionality segment representation by performing Principal
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Components Analysis on a set of spatially-normalised/resampled segments - see [9]

for details.) Thus, instead of a sequence of 2D coordinates, the trajectory is represented

as sequence of coordinates in the dimensions defined by the PCA-based segment rep-

resentation. Although this approach adopts a normalised segment representation ap-

proach - which cannot distinguish between short and long movements of the same

shape - it is clear that other representations could be employed. As with the preceding

approach, the emission distribution for each state is defined by a Mixture of Gaussians

in the segment representation space, but it is clear that the segment-based HMM ap-

proach would not assign a trajectory the same likelihood as its shuffled counterpart.

Nonetheless, a potential weakness of this approach is the extent to which it relies on

a consistent segmentation procedure - if this were to fail misleading results could be

obtained. In [10], Bashir et al. construct HMMs for sets of example trajectories corre-

sponding to different classes of motion, and classify new motions by assigning them

to the class whose HMM has the highest likelihood.

HMMs for Multiple Independent Observations. In the approaches described so far,

each HMM gives rise to a sequence of single (potentially multivariate) observations

according to the emission distribution for each state. It may also be desirable to model

sequences where multiple observations (which are conditionally independent given

a particular hidden state) are made at each time-step: this is addressed by an HMM

variant known as the Multiple Observation Hidden Markov Model (MOHMM), which

has been applied in a variety of behaviour modelling contexts [168, 3, 17]. Xiang and

Gong employ MOHMMs in [168, 166, 165, 163], to model video segments represented

by a multi-dimensional trajectory corresponding to typical features in motion history

images (as described in Section 2.1.3): in their approach, instead of each HMM state

having an emission distribution defined in a high dimensional space, each state has

a separate one-dimensional emission distribution for each observed dimension. An-

drade et al. employ a MOHMM in the same manner in [3] to model a multidimen-

sional trajectory defined by the PCA components of optic-flow based features (see

Section 2.1.3) in order to analyse crowd behaviour. This represents a significant re-

duction in the number of parameters needed to define the emission distribution and,

pertinently, the quantity of training data needed to estimate those parameters.

While both Andrade et al. and Xiang and Gong employ MOHMMs with multiple

single-dimensional emission distributions, there is no constraint on the nature (eg. di-

mensionality) of these distributions for HMMs, save that the observations that they

model are conditionally independent given a particular hidden state. Figure 2.3, re-

produced from [48], illustrates the difference between HMMs and MOHMMs. It is of
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Figure 2.3: HMMs and Multiple Observation HMMs (from [48])

course possible just to use a standard HMM structure if the multiple observations all

follow the same emission distribution - this approach is adopted in subsequent work

by Andrade et al. [2] where a single (Mixture of Gaussians) emission distribution is

used to model a fixed length list of optic flow vectors in each frame. A potential prob-

lem is that this doesn’t provide a means to distinguish between long and short lists of

observations, which may be important in the case of behaviour analysis - Brand et al.

encounter this problem in [17] and address it by adding a second emission distribution

corresponding to the number of observations (modelled with a log-normal distribu-

tion). This model, termed the Multiple Observation Mixture and Counter Hidden

Markov Model (MOMC-HMM), is used in [17] to model lists of flow vectors observed

in a traffic scenario.

HMMs for Multiple Dependent Observations While the MOHMM structure pro-

vides a convenient way to model parallel independent events with a single latent

cause, it may conversely be desirable to model the causal links between different

classes of event in order to capture the influence that a given event has on the likeli-

hood of observing other events in the next frame. If patterns of scene-wide behaviour

are being modelled, it is likely that capturing interactions between local events may

provide a powerful cue for distinguishing between different classes of global events.

While it is possible to capture patterns of interaction with the MOHMM structure, it is

very inefficient (requiring a different state for every distinct configuration of events.)

A better alternative is to posit several distinct chains of states (corresponding to each

type of event) where each state in a given chain depends on both its own previous state

and those from other chains: this structure, proposed by Brand et al in [18] is known

as the Coupled Hidden Markov Model CHMM. It has been employed by Oliver et

al. in [97] to model different types of interactions between people based on trajectory



2.2. Modelling Behaviour Patterns 31

features: CHMMs are constructed with two connected chains of hidden states, each

corresponding to the trajectory of an individual. Representing each class of interac-

tion with a CHMM is shown to provide better classification accuracy than a standard

HMM.

Gong and Xiang explore the use of CHMMs in [48] to model the behaviour oc-

curring in a loading bay scenario, with several interconnected chains of hidden states

corresponding to different event classes. In this case the model is being used to de-

rive smooth state sequences (as Robertson and Reid do in [114]) from noisy data -

the CHMM structure is shown to give greater accuracy than a MOHMM trained on

the same data. Gong and Xiang also propose a variant of the CHMM where, rather

than being fully connected, a sparse set of connections between chains is derived. The

structure of this model, termed the Dynamically Multi-Linked Hidden Markov Model

(DML-HMM), is obtained by training models with different connectivity patterns and

choosing the model which maximises a penalised likelihood function, the Bayesian

Information Criterion (see [12, 20]), which specifies a trade-off between model like-

lihood and the number of parameters used. The DML-HMM is shown to perform

equivalently to CHMMs in [48], with the added advantage that the resulting structure

reveals the salient causal connections between events.

Markov models for prototype sequences

Many of the techniques for representing video data discussed in Section 2.1 involve

the construction of a ’prototype’ alphabet, typically by identifying clusters in a set of

extracted features. Video sequences can then be represented as prototype sequences:

in many cases, if prototypes are extracted in a noisy/unreliable fashion, HMMs pro-

vide an ideal tool for modelling their sequences. However, if the extraction of pro-

totypes from video data is reliable and consistent, several other techniques can be

employed, reviewed as follows.

The geometric path models proposed by Makris and Ellis in [82] provide an ex-

ample of a reliable, albeit coarse-grained, prototype for representing motion in video

data. This approach (described in Section 2.2.3) generates a set of models for the typ-

ical routes taken through a given scene, which can then be used to classify new tra-

jectories. The same authors extend this approach in [83] where the set of learned path

models (along with entry/exit and ’stop’ regions) is represented with a topological

network, as illustrated in Figure 2.4. A similar approach is proposed Piciarelli in [101],

leading to a network of trajectory segments for a given scene (see Section 2.2.3). In

both cases, trajectories can be described as traversals of a topological network. Given

a set example traversals of the network, it is very simple to estimate local transition
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Figure 2.4: Topological representation (left) of scene (right) [83].

probabilities for each node in the network, by simply calculating the proportion of

transitions that have been made to each adjacent node as follows: pij = Nij

∑k Nik
. The

combination of the scene network with local transition probabilities corresponds to a

Markov model with directly observable states: this provides a means to estimate the

likelihood of different network traversals, and thus enables unusual instances to be

identified.

One useful property of the preceding approach is that it can be used to predict the

next state (ie. path/region to be entered by a pedestrian) based on the set of transi-

tion probabilities for the current state. In some cases, however, accurately predicting

the next observation may require a number of previous observations rather than just

one. This issue has been addressed in [46], where Galata et al. propose a strategy

for modelling prototype sequences using Variable Length Markov Models (VLMMs)

[116]. Like all Markov models, VLMMs contain a complete set of first order state

transition probabilities; however, these are augmented with transition probabilities

for a selection of distinct observation sequences which are found to provide a better

prediction of the next observation than any shorter sequence (quantified using the

KL divergence). Thus, when given a sequence of observations, the longest stored se-

quence which matches the most recent observations is used to predict the next state.

Galata et al. use VLMMs to model articulated motion: this is encoded with a series

of prototypes, for which a subset - termed ’key prototypes’ - correspond to significant

transitions in behaviour. VLMMs are constructed to capture the typical transitions

between key prototypes, and are shown to provide better predictions than a simple

first order Markov model [46]. When applied to transitions between prototypes corre-

sponding to behaviour in a scene, it is possible that this model could provide a useful

means to detect unusual behaviour.
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Figure 2.5: Motion Trace Prototype and Corresponding Trajectories [64]

Leaky integrator sequence parametrisation

A novel sequence representation strategy, based on leaky integrators, was proposed

by Johnson and Hogg in [64] for modelling trajectories encoded as sequences of local

motion prototypes. In order to represent the prototype sequences corresponding to

different behaviours with fixed-length vectors, Johnson and Hogg proposed a neural

network architecture in which each prototype has a corresponding leaky integrator

neuron. As a sequence of flow vectors is observed, the activation level of each neuron

in the model is increased whenever its corresponding prototype is observed, other-

wise decaying exponentially until new input is received. The set of activation levels in

the model therefore provides a “time delayed trace” which captures the recent history

of observed prototypes. In [64] a set of 1000 leaky neurons is used to capture prototype

activation sequences, which effectively means that the network parametrises each pro-

totype sequence with a 1000 dimensional vector. These 1000 dimensional vectors are

then clustered to yield a set of typical trajectory models (ie. cluster centres), which

can be used to classify new vectors of prototype activations using a nearest neighbour

approach. Figure 2.5 illustrates the set of prototype activations for a given cluster and

the corresponding training data. Since it converts a sequence of prototypes to a high

dimensional vector, this approach blurs the boundaries between parametric trajectory

representations (as described in Section 2.1.1) and sequence models, enabling proto-

type sequences to be clustered using standard techniques.

2.2.2 Identifying Behaviour Patterns

Section 2.1 provided a variety of ways to represent behaviours or segments of be-

haviours observed in video data. The sequence models discussed in Section 2.2.1 pro-

vide one way to model classes of behaviour patterns. However, a necessary prereq-

uisite for behaviour classification - in the absence of pre-labelled data - is the identifi-
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cation of the different classes of behaviour present in a dataset. This section reviews

a number of different techniques that have been used to identify natural groupings in

collections of parametrised behaviour and, where applicable, the ways in which these

can be used to determine whether new examples are anomalous. In several cases, the

groups obtained by clustering a dataset can be used to provide a discrete “codebook”

with which to represent new items of data.

Clustering Parametrised Behaviour

Many behaviour clustering strategies employ an algorithm known as Competitive

Learning (see [119, 54, 71]): this works by initialising a random set of cluster cen-

tres, and incrementally adjusting these cluster centres as training data is presented. At

each step, a data point is assigned to its closest cluster centre, and the cluster centre

is moved towards the data point by some small amount. After multiple presentations

of a dataset, each cluster centre accounts for a collection of similar items within the

dataset (those which are not closer to any other cluster). Johnson and Hogg use this

approach in [64], both to construct a codebook of typical motion vectors, and to iden-

tify salient clusters in a high-dimensional representation of trajectories. For improved

codebook generation, Johnson and Hogg alter this algorithm by limiting the number

of examples each cluster can account for [64].

It is worth noting that Competitive Learning is essentially an incremental variant

of the K-means clustering algorithm [80, 12], which iteratively adjusts cluster centres

on the basis of multiple presentations of the whole dataset, rather than single examples.

However, a key advantage of the incremental learning procedure is that it reduces the

computational cost of clustering large datasets (as noted by Stauffer and Grimson,

who also create a motion vector codebook using this technique in [136]).

A popular variant of Competitive Learning is the Self Organising Map (SOM) al-

gorithm proposed by Kohonen in [71], which adds the constraint that cluster centres

are represented in a 2D space or “map”. In this algorithm, rather than just modifying

the closest cluster centre for each data point, cluster centres with adjacent projections

on the 2D map are also modified. The extent of this additional modification depends

on a neighbourhood function, which typically decreases exponentially with distance

(in the 2D space) from the chosen cluster. This process can be regarded as constructing

a non-linear manifold in the input feature space [53, 71]. SOMs have been used to clus-

ter parametrised behaviours in a number of approaches: In [98] Owens and Hunter

use a SOM to cluster parametrised trajectory segments (see Section 2.1.1); more re-

cently, Naftel and Khalid used a SOM to cluster whole trajectories represented with

DFT coefficients in [90] before modelling each cluster with a Gaussian distribution.
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The Expectation Maximisation (EM) algorithm provides a more direct means of

modelling the clusters in a dataset with Gaussians. For a given number of Gaus-

sian components, this approach maximises the likelihood of the model parameters

(ie. means/cluster centres, covariance matrices, and weights) given the dataset, by

iteratively repeating the following steps. Firstly, the “E-step” calculates the relative

contributions of each component to the probability density at each data point (the

“component responsibilities”). Secondly, the “M-step” re-estimates the parameters of

each component, weighting the contribution of each data point by the corresponding

responsibility values. An important feature of this algorithm is that is guaranteed to

converge to a locally optimal solution [53, 12]. Xiang and Gong use EM to fit a Gaus-

sian mixture model to a large set of parametrised instantaneous motion patterns (see

Section 2.1.3). Having chosen the number of components according to the Bayesian

Information Criterion (which specifies a trade-off between model likelihood and the

number of parameters - see [20, 53, 12]), the resulting Gaussian components accurately

reflect clusters of typical low-level actions in the scene.

In a series of trajectory modelling approaches proposed by Hu et al. [61, 60], the

“fuzzy K-means” algorithm is used to cluster parametrised trajectories. As with the

SOM algorithm, this is an incremental procedure where each new example modifies

multiple cluster centres. However, the extent of this modification is determined by

a “fuzzy membership function” which assigns values inversely proportional to the

distance of each cluster from the new example. The “fuzzy membership” values are

conceptually equivalent to the component responsibilities computed when using EM

to fit a Gaussian mixture model. In [60] Hu et al. propose a two stage trajectory

clustering technique: firstly, resampled versions of trajectories are clustered to reveal

spatially similar sets; the original trajectories belonging to these sets are then clus-

tered for a second time to reveal subsets with similar spatiotemporal profiles. Hu et

al. assess the quality of clustering obtained for different numbers of clusters using the

Tightness and Separation Criterion [170], which is a “fuzzy” equivalent of the stan-

dard within-vs-between class scatter ratio (see [45, 12]), but has the advantage (for

high dimensional data) of not requiring the calculation of covariance matrices.

Similarity-based Clustering

Some forms of data cannot easily be represented with vectors of fixed length, which

renders the preceding clustering algorithms inapplicable because they rely on the cal-

culation of Euclidean distances, means and covariance matrices. However, even if a

certain type of data cannot be represented with fixed-length vectors, it is still often

possible to define a metric which quantifies the similarity of two data points with a
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scalar value. In this light, a technique known as Spectral Clustering [127, 94] provides

a way to identify clusters based on the affinity matrix (containing the similarity value

for each distinct pair of examples) calculated for a given dataset. Spectral clustering

works by calculating the eigenvectors of the affinity matrix, and selecting those with

the N largest eigenvalues. Each item of data is then represented with a vector of length

N, corresponding to its entries in the chosen eigenvectors; these vectors can then be

clustered using K-means. In short, this technique allows the reconstruction of a para-

metric representation for a given item of data, based on the structure of the affinity

matrix.

Spectral clustering has been used to identify groups in several different types of

behavioural data. In [105], Porikli and Haga use spectral clustering to identify groups

of similar trajectories, after defining an HMM-based trajectory similarity metric (see

Section 2.2.1 for details). Andrade et al. adopt a similar approach in [3] where optic

flow sequences extracted from a set of 4-second video segments are modelled with

Multiple Observation HMMs, which are used - as in [105] - to define a similarity mea-

sure for the video segments. Andrade et al employ a spectral clustering algorithm

proposed by Zelnik-Manor and Perona in [175], which provides a method for esti-

mating the number of clusters present in a dataset. Similarly, in [168, 167], Xiang and

Gong model video segments using MOHMMs and, again, define a likelihood based

similarity measure in order to perform spectral clustering. However, Xiang and Gong

propose a novel spectral clustering technique in [167] where, rather than representing

the dataset with corresponding elements in the largest eigenvectors (ie. those with

largest eigenvalues) of the affinity matrix, a set of the most “relevant” eigenvectors

(those which best separate the dataset into clusters) is chosen.

In a similar vein, in [66, 67] Junejo et al. represent a trajectory dataset with a

fully connected weighted graph, where each edge weight corresponds to the simi-

larity of two trajectories (quantified by the Hausdorff distance): this enables clusters

to be found by recursively partitioning the graph according to the edge weights. To

achieve this, Junejo et al. employ the Normalised Cut algorithm proposed by Shi and

Malik in [130], which aims to partition graphs into maximally dissimilar sets of nodes,

while maximising the similarity of nodes within each set. It is interesting to note that

this procedure recursively splits the dataset using the second-largest eigenvector of

the affinity matrix, and is thus inherently similar to spectral clustering.

An interesting extension to similarity-based clustering is proposed by Wang et al.

[157] in the context of trajectory clustering, where each similarity value calculated is

accompanied by a measure of confidence which ranges between 0 and 1. In [157], a

trajectory similarity measure S measures the distance between two trajectories at the
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points where they are closest, while a confidence measure C determines how often the

trajectories actually coincide. Wang et al. propose a way to incorporate confidence

measures into an aggregate similarity measure, Wij =
S

Cij
ij

(1−Sij)
Cij +S

Cij
ij

, which ranges be-

tween 1
2 in the case of no confidence, and the true similarity value Sij in the case of full

confidence. This provides a single affinity value which enables spectral clustering to

be employed, while taking into account the confidence values.

Clustering Bags-of-Prototypes

The preceding clustering approaches are only applicable for behaviour representa-

tions which can be parametrised and/or used to define a similarity measure. How-

ever, many of the video representation strategies described in Section 2.1 represent

behaviour with a sequence/set of low level prototypes. The sequence modelling

techniques described in Section 2.2.1 provided one way to model/compare different

sequences. Another effective strategy is to ignore the ordering of the prototype se-

quences, and to attempt to extract behaviour patterns based on the co-occurrence of

prototypes within a given sequence: an advantage of this approach is that it relaxes

the need for perfect tracking, and could potentially facilitate the classification of in-

complete sequences.

One of the first examples of this approach was proposed by Stauffer and Grimson

in [136] where behaviours are represented as sets of prototypes (obtained by clustering

local motion/object size vectors). Given a large set of sequences, Stauffer and Grim-

son provide a method to identify a set of typical behaviours based on the cooccurence

statistics for prototypes within each sequence. Given a large set of sequences, a model

is created consisting of a cooccurence matrix (which encodes the relative frequency of

each distinct pair of prototypes) and a vector of prior probabilities for each prototype.

Using the fact that it is possible to express an estimate for the cooccurence matrix in

terms of the vector of prior probabilities, a two component model (consisting of two

vectors of prior probabilities) is formulated. The two prior distributions that provide

the best approximation to the original cooccurence matrix are found using a gradi-

ent descent procedure, and used to split the cooccurence matrix/prior vector to form

two new models. This procedure is applied recursively, yielding a tree-like decom-

position where the leaf nodes contain models corresponding to distinct behaviours:

new sequences can then be easily classified on the basis of the frequencies of their

constituent prototypes and the prior probability vectors from each behaviour model.

Another strategy for behaviour clustering on the basis of cooccuring prototypes

is proposed by Zhong et al. in [178], where an approach inspired by document clus-
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tering is adopted. Each frame of video data is represented with a vector containing

a coarse approximation of motion in the scene (see Section 2.1.3), and these vectors

are clustered to provide a set of prototypes. Video data is then divided into 4-second

segments (analogous to documents), which are represented with a binary vector in-

dicating which prototypes (analogous to words) were observed in each segment. A

binary cooccurence matrix is then constructed by containing the binary vectors for

each video segment, together with a similarity matrix for the prototypes (calculated

using a Chi-squared statistic). These matrices are combined to form a large affinity

matrix encoding the similarity both between video segments and prototypes, and be-

tween prototypes (an identity matrix occupies the portion of the matrix corresponding

to segment-segment similarities). As in the case of spectral clustering, the eigenvec-

tors of this matrix yield a parametric representation (termed the “co-embedding co-

ordinates”) for each segment and prototype. The coordinates corresponding to video

segments are then clustered using K-means to reveal sets of similar video segments.

In [155] Wang et al. cluster sets of motion prototypes occurring in video segments

using a variant of the Hierarchical Dirichlet Process model proposed in [147]. Video

data is split into 10 second segments, each represented with a collection of prototypes

corresponding to local motion vectors. The Hierarchical Dirichlet Process is a gener-

ative graphical model which describes a distribution over the different possible col-

lections of typically cooccuring words - or “topics” - in a set of documents. Given

a set of documents, sampling techniques can be used to discover the instantiation of

this model which best describes the data, leading to a generative “mixture-of-topics”

model for the dataset. An important feature of the HDP model is that it includes a

distribution over possible topic distributions, which allows the number of topics to be

estimated from the data. Since the original HDP model describes a single class of doc-

ument, Wang et al. propose an extension allowing multiple document models to be

learned, enabling a set of different behaviour patterns - each characterised by different

mixtures of low level topics - to be identified. A weakness of the model proposed in

[155] is that it requires the number of behaviour clusters to be prespecified. In this

light, the same authors extend this model in [154] to identify both the number of top-

ics and clusters, in this case modelling prototypes occurring within trajectories rather

than video segments.

Generative Local Motion Models

Another way to model video data described with local motion vectors is to model

the underlying probability density function of all the vectors observed. Johnson and

Hogg adopt this approach in [65] with the aim of synthesising motion trajectories
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on the basis of a collection of real observed trajectories. They estimate a probability

distribution for local motion transitions, given a history of the last 3 locations:

P(∆xt,∆yt|xt,yt, xt−1,yt−1, xt−2,yt−2)

This can be used to generate synthetic trajectories in two different ways: either by

applying gradient ascent at each step to to reveal the most probable trajectory, or ran-

domly sampling from the distribution at each step to generate one of many possible

trajectories. The first step in estimating the conditional distribution is to fit a Gaus-

sian mixture model to the set of previous observations, yielding the joint probability

density function:

p(∆xt,∆yt, xt,yt, xt−1,yt−1, xt−2,yt−2)

This mixture can then be conditioned on the most recent three locations, yielding an-

other mixture model approximating the conditional probability distribution, which

can then be sampled as described. Using this technique, Johnson and Hogg were able

to synthesise a large set of realistic trajectories, on the basis of local motion observa-

tions from 15 real trajectories.

A similar strategy for motion modelling was recently adopted by Saleemi et al. in

[121], for the purpose of trajectory analysis in a surveillance context. From a set of

trajectory data, Saleemi et al. extract vectors corresponding to motion transitions over

time intervals of up to 5 seconds, recording every instance

f =
(

x(t+∆t),y(t+∆t), xt,yt,∆t
)

where 0 < ∆t ≤ 5. The probability density function for these observations is estimated

using Kernel Density Estimation, taking a uniformly weighted sum of the contribu-

tions from a set of Gaussian kernels centred on each observation (see Chapter 3 for

further details). Saleemi et al. propose a method to predict the most likely motion

transition from a given location, by sampling from the estimated distribution using

the Metropolis Hastings algorithm (see [4, 79]) with a Gaussian proposal distribution

centred on the current location. As with the previous approach, future trajectories can

be estimated by iteratively predicting the next location on the basis of the previous es-

timate. A method for anomaly detection is also proposed, by comparing each location

in a trajectory with a prediction based on previous locations. The mean/variance of

the set of samples used to generate each predication allows the Mahalanobis distance

to be used to quantify the discrepancy between real/predicted observations: thus,

for a given trajectory, the mean discrepancy value can then be thresholded to detect

anomalies.
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2.2.3 Spatial Path Models

Several behaviour modelling approaches use raw trajectory data to define 2D regions

in the image/ground plane corresponding to the typical paths taken through a scene.

The essential characteristic of these models is that they provide a way to represent

groups of tracks by explicitly encoding their spatial extent. These models can be used

to classify new trajectories but, unlike the sequence models discussed in Section 2.2.1,

do not pose any constraints on the ordering of a coordinate sequence. However, as

noted in Section 2.2.1, networks of path models can be used to form the basis for

Markov models encoding the possible motion transitions within a scene. Many exam-

ples of geometric path modelling [82, 41, 101] use a competitive learning procedure to

simultaneously identify clusters of trajectories and their corresponding path models,

while others [66, 157] serve to represent clusters of trajectories obtained through other

means.

One of the first path modelling approaches was proposed by Fernyhough et al.

in [41], where the silhouettes of tracked vehicles are used to define a binary mask of

occupied pixels for each trajectory, combined with a sequence of spatial coordinates

sampled at regular temporal intervals. Motion masks with significant overlap (at least

80% of pixels) are summed to form spatial regions where each pixel corresponds to

the frequency of observed paths that occupied it. For each set of trajectories corre-

sponding to a given motion mask, those whose coordinates - which are sampled at

regular intervals - coincide within a certain “tolerance radius” are grouped and av-

eraged: these coordinate sequences are then used to divide each motion mask into a

series of sub-regions which are used for symbolic reasoning about object behaviour.

Makris and Ellis propose an alternative strategy in [82] where paths are defined

by a series of “nodes” constituting an average trajectory, combined with a bounding

envelope (see Figure 2.6). In an incremental learning procedure, each new trajectory

is linearly interpolated and resampled before being compared to the set of existing

routes. In the absence of any similar existing path models, a new model is instanti-

ated; alternatively, if an existing route is sufficiently similar to the new trajectory, its

nodes are updated. The bounding envelope defining the spatial extent of the path is

defined by vectors perpendicular to the average trajectory, calculated at each node.

The extent to which a trajectory falls outside a given bounding envelope is used to

define a distance metric between routes and trajectories, which is used to determine

whether new trajectories should update existing routes or initialise new ones.

The path model proposed by Makris and Ellis is used as the basis for a network

model of a scene [83], as described in Section 2.2.1. In a similar vein, an online method

for simultaneously estimating a set of path models and a corresponding network
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Figure 2.6: Spatial Path Model [82]

structure is proposed by Piciarelli and Foresti in [101]. In their approach, each path

model is represented by a mean coordinate sequence, where each coordinate has an

associated covariance measure. As in [82], new trajectories that are sufficiently close

to an existing path model are used to update it - however, in this case the matching

of a new trajectory to its closest cluster occurs in an online fashion. While the dis-

tance of a trajectory to the path model (normalised by the covariance measure for each

coordinate) lies below a threshold, the corresponding coordinates in the path model

are updated. However, if the threshold is exceeded, the path model is split into three

sections: a common prefix segment (where the new trajectory agreed with the existing

route) and the two possible routes which can be taken after this point. The recursive

application of this procedure allows a tree of sub-clusters to be generated, for which

transition probabilities can then be calculated to yield a Markov model for the scene.

In several other approaches, path modelling occurs as a final step after trajectory

clustering. In [66, 67] Junejo et al. identified groups of similar trajectories using a spec-

tral clustering algorithm, quantifying trajectory similarity using the Hausdorff dis-

tance. The groups of trajectories were then used to create path models using a “route

+ envelope” approach similar to [82]. However, instead of resampling all trajectories

to enforce a common coordinate system, the Dynamic Time Warping algorithm (see

eg. [122]) is used to identify sets of corresponding points for the calculation of the

average trajectory and path envelope. Wang et al. also group trajectories using spec-

tral clustering in [157], but identify path boundaries by thresholding a nonparametric

density estimate of the coordinates occupied by each set of trajectories. In both [66]

and [157] each path model is augmented with models characterising the distribution

of velocities (and trajectory curvature values in [66]) that have been observed within

its boundary.
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2.3 How is Anomalous Behaviour Detected?

The objective of many of the behaviour learning algorithms discussed is to provide

a means to detect behaviour worthy of scrutiny/attention in a surveillance context,

frequently termed “anomalous behaviour”. There are two types of strategy that can

be adopted to detect such behaviour, reviewed as follows.

Deviation from a learned normal behaviour model

Noting that a comprehensive definition of every possible anomalous behaviour is gen-

erally an unrealistic prospect, the most widely adopted strategy for classifying new

behaviour is to quantify the extent to which it deviates from a model of normal be-

haviour. This can then be used to rank behaviours according to their anomalous na-

ture, or to provide a hard normal/anomalous classification boundary in conjunction

with a user-specified threshold. This principle can be manifested in a variety of differ-

ent contexts, reviewed as follows.

Distance to nearest cluster. Behaviour classification can be phrased in geometric

terms using path boundary models (see Section 2.2.3): in [66] trajectories are marked

as anomalous if more than 10% of their points lie outside the boundary of their closest

model. This intuitive principle is more commonly manifested in the context of ab-

stract parametric representations. In [64] typical paths are represented with clusters

of high dimensional vectors: within a given cluster the Euclidean distances between

each member and the cluster centre are modelled with a Gaussian distribution, and

new instances are classified as anomalous if their distance lies more than 3 standard

deviations outside this distribution. Similarly, in [60], distances within clusters of mo-

tion vectors are modelled using an exponential distribution, with an outlier detection

threshold determined by the furthest cluster member.

Deviation from Gaussian distribution. A more common approach is to directly model

the distribution of parametrised behaviours. In [66] distributions of velocities and tra-

jectory curvatures within a path region are modelled with Gaussian distributions: in

each case the Mahalanobis distance is used determine to whether a new instance is

anomalous, according to a user specified threshold. Similarly, in [121], a Gaussian dis-

tribution is used to model a set of predictions for an object’s next location sampled

from a nonparametric model, so that deviations can be quantified using the Maha-

lanobis distance. An alternative approach to quantifying deviation is proposed in [90]

where clusters of parametrised trajectories are modelled with multivariate Gaussians:
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to detect anomalies, instead of simply thresholding the Mahalanobis distance of new

examples, Hotelling’s T2 statistic is used to test whether the cluster belongs to the

same distribution as the new instance. However, since a specific significance level is

required for rejecting the null hypothesis, the specification of a classification threshold

is not sidestepped.

Deviation from nonparametric distribution. Various approaches model distributions

with nonparametric techniques. In [157] coordinates occupied by members of a trajec-

tory cluster are modelled using Kernel Density Estimation - a threshold on this den-

sity function indicates whether an object’s current position is anomalous. A related

technique is adopted in [1], where simple histogram models are used to monitor the

distribution of optic flow in local image regions, as with KDE the density of new in-

stances can be calculated and thresholded. In a different vein, in [15] a nonparametric

probabilistic matching procedure is used to compare a local motion descriptor with a

database of examples, providing a likelihood value which can be thresholded to de-

tect unusual instances. Non parametric Bayesian topic models are used to identify

cooccuring sets of motion prototypes in [155, 154], and could also be used to assign

likelihood values to new examples given a dataset.

Sequence model likelihood. Many of the behaviour models discussed describe sets

of learned behaviours in terms of generative sequence models such as HMMs (see

Section 2.2.1). Typically a set of these models is used to represent several clusters of

sequences (eg. of coordinates, scene descriptors, etc) representing normal behaviour.

The likelihood of each model can be assessed with respect to a new sequence, to iden-

tify the one that best explains it. Several approaches identify anomalies by placing a

threshold on the likelihood of the closest model [3, 17], a weighted mixture of all mod-

els [168], or state transitions for a scene-wide Markov model [83, 101]. Alternatively, in

[2], where HMMs are used to evaluate a succession of very short (1 second) sequences,

anomalies are detected on the basis of a sudden drop in likelihood. For evaluating

longer sequences, a useful property of latent sequence models such as HMMs is that

they allow partial sequences to be evaluated: in [168] a moving average of changes

in likelihood is maintained as each sequence unfolds; a threshold on this value then

allows anomalies to be detected before the whole sequence is observed.

Offline analysis. The preceding approaches to anomaly detection enable new in-

stances to be classified on the basis of a model. A small number of approaches aim

to identify anomalies in a training dataset as part of the model learning process. In

[105] a similarity matrix is calculated so that groups of behaviour can be identified
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using spectral clustering; to identify anomalies, a “conformity score” is calculated for

each instance by averaging its corresponding column/row of the similarity matrix - a

low value indicates that a given instance is unprecedented in the dataset and may be

anomalous. In a similar vein, in [178], the clusters of video segments resulting from a

spectral clustering process are assessed based on their similarity to other clusters. An

“inter-cluster similarity score” (a sum of all pairwise similarities between members of

two clusters) is thresholded so that clusters with no resemblance to other clusters -

and thus assumed to correspond to unusual events - can be identified.

Classification using anomaly models.

A small number of approaches make use of specific information about the types of

anomalous behaviour that are to be detected, either in the form of anomalous training

examples, or a rule-based definition.

Anomalous training examples. Given a set of labelled normal and anomalous be-

haviours, an intuitive approach is to train a discriminative classifier. In [88] vectors

(which describe a pedestrian’s propensity to approach cars as they walk through a

scene) are hand labelled as either normal or unusual, and a simple perceptron is

trained to distinguish between the two classes. Since this representation is limited to a

very specific feature, it is possible to characterise an adequate classification boundary

without a needing an extremely large number of anomalous instances.

An alternative approach, adopted in [166], is to assume that a certain prespeci-

fied proportion of clusters in an unlabelled dataset correspond to anomalous activ-

ity. In [166], clusters are ranked according to the number of examples they represent,

and it is assumed that those containing fewer examples are more likely to be anoma-

lous. The clusters are divided on this basis into two (normal and anomalous) sets,

which are each represented with a mixture of probabilistic sequence models. The like-

lihood of each new behaviour can then be calculated for the two mixture models, and

anomalous behaviour can be detected by thresholding the ratio of these likelihood

values. Depending on the chosen threshold, this does not necessarily restrict the class

of anomalies that can be detected, since new unprecedented anomalous instances may

be detectable on the basis of having equal likelihood under the two models.

Rule based approaches. It is also possible to define rules to identify certain types of

anomalous behaviour. A very specific rule based definition of anomalous behaviour is

adopted in [30], where articulated motion is detected from human silhouettes and new

instances are analysed in conjunction with a set of hard-coded conditions indicative
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of fighting (see Section 2.1.2), resulting in a binary fighting/not fighting classification.

A more general rule is adopted in [32] where trajectories are assigned a single score

quantifying how circuitously a person reaches their destination (see Section 2.1.1). The

rule implicit in this approach is that normal trajectories are direct and efficient, or

conversely that anomalous trajectories are circuitous and inefficient. The resulting

score can be used to rank/classify new trajectories according to this rule, correlating

well with human judgments.

2.4 How are the Models Trained?

This section provides an overview of the different training strategies implicit in the

behaviour modelling approaches discussed thus far. There are two main stages where

training data can play an important part in generating a behaviour classifier: the first

is the acquisition of the feature space in which to represent video data, and the second

is the building of behaviour models from the video content representations acquired

in the first stage.

Stage 1: Feature Extraction/Representation

Main strategies. Video data can be processed in a variety of ways, ranging from

object detection and tracking to the extraction of coarse scene descriptors based on

optic flow. In order to cluster/model behaviours it is necessary to map these extracted

features onto a tractable representational substrate, as described in Section 2.1. Figure

2.7 illustrates the three different approaches that can be adopted: using raw feature

data directly (eg. for similarity-based clustering); reducing/fixing the dimensionality

of the extracted features, or representing the extracted features with prototypes (ie.

instances of a discrete alphabet). Clearly no learning step is required in the case of

raw feature data; it is also possible to pre-define a prototype representation for cer-

tain types of data (eg. by binning motion vectors according to a predefined scheme)

and, similarly, several hard-coded dimensionality reduction strategies (ie. those which

do not require additional data) exist for motion trajectory data. However, many ap-

proaches rely on an initial training stage where a feature representation is derived

from a dataset, discussed as follows.

Prototype representation. Prototype representations for a given feature can be ob-

tained by applying clustering algorithms (see Section 2.2.2) to all available instances

of the feature in question, allowing future instances to be represented by their clos-

est cluster centres. Most approaches discussed use an incremental K-means or Self-
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Figure 2.7: Strategies for parametrising video data.

Organising Map algorithm, with an arbitrary - user specified - number of cluster cen-

tres. Clearly, the chosen number of clusters/prototypes will have an impact on the

fidelity of the resulting representation to the underlying data, and will therefore affect

the performance of subsequent behaviour modelling steps.

To apply prototype clustering algorithms effectively requires an initial cross-validation

procedure - in some cases this can be achieved without reference to subsequent mod-

elling stages. Various heuristics exist for assessing clustering results (eg. the Tight-

ness and Separability Criterion [170]); alternatively, clustering by fitting a Gaussian

mixture model allows the number of clusters to be determined by formal criteria (eg.

Bayesian Information Criterion [12]) for assessing the trade-off between model com-

plexity/likelihood. Since several papers do not address the model-selection problem

(instead, adopting arbitrary numbers of prototypes), it is possible that the quality of a

feature representation may be better judged on the basis of the final high-level model,

making cross validation a more complex/costly proposition.
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Dimensionality reduction. The most common technique for dimensionality reduc-

tion is Principal Components Analysis. Since it is possible to either pre-specify the

resulting dimensionality or the proportion of data variation to be accounted for by the

representation, the only requirement of this technique is that a representative set of

data is available. Prototype representations can also be used for dimensionality re-

duction: in [168] a Gaussian mixture model is fitted to the features observed in a large

set of video frames, so that each video frame can be represented by a vector of proba-

bilities indicating the likelihood that each prototype (ie. feature class represented by a

Gaussian component) has been observed.

Learned vs pre-specified. The principal advantage of using a feature representation

extracted from a dataset is that it is more likely to accurately reflect the subtle modes

of variation in that dataset than a pre-specified strategy. However, it is conversely pos-

sible that subsequent novel instances of data could be inappropriately mapped onto

the learned set of prototypes/PCA subspace. In this light, one argument in favour of

hard-coded representations is that they can provide a more accurate representation of

novel data. Finally, if data-driven feature representations are to be used as the basis

for online behaviour learning algorithms, it is clear that they must be acquired from

a pre-existing dataset in an initial offline step. In this light, a key advantage of hard-

coded feature representations is that they remove the need for pre-existing training

data in online learning scenarios.

Stage 2: Behaviour Modelling

Unsupervised Learning. Once activity detected in video data is phrased in terms of

a suitable representation, behaviour models can be constructed. The principal goal of

these models is to provide a means to classify future instances, and to indicate when

instances are novel/anomalous. For the majority of approaches reviewed, the clusters

present in a dataset are identified in an unsupervised learning procedure (see Section

2.2.2). For fixed-length vector representations, variants of K-means clustering can be

applied, with the same model selection issues as described for learning feature pro-

totypes. Where instances - which may not be easily parametrised - can be compared

using a similarity measure, spectral clustering (see Section 2.2.2) provides an elegant

solution, with several techniques for automatically identifying the number of clusters

present in a dataset [175, 167]. Where data occurs as sets of unordered prototypes,

document clustering algorithms provide a way to identify sets (or hierarchies therein)

of typically occurring prototypes: several such methods (eg. the Hierarchical Dirich-

let Process model used in [156]) also enable the number of clusters to automatically
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be identified. Finally, it is important to note that, in cases where model-selection is

sidestepped by pre-specifying quantities such as the number of clusters present in

a dataset, an element of supervision is implicit: it is not clear that such approaches

could operate effectively on a new dataset without human input to specify appropri-

ate model parameters.

Supervised Learning. In several cases, the human classification/labelling of training

data allows the key problem addressed by unsupervised approaches - the identifica-

tion of natural groupings within a dataset - to be sidestepped. A database contain-

ing labelled pedestrian action/gaze descriptors is used to classify new instances in

[114, 113], in conjunction with an efficient PCA-based search procedure [131]. La-

belled instances of parametrised motion in a car park scenario are used to train a lin-

ear classifier to distinguish normal/suspicious behaviour in [88]. Labelled sequences

corresponding to different classes of interactions between moving people/objects are

used to build probabilistic sequence models in [48, 97]. A more complex notion of su-

pervision is implicit in the trajectory classification strategy proposed in [32, 34], where

human knowledge is encoded in a set of hand-crafted topological networks corre-

sponding to the different routes taken through a scene.

Semi-supervised Learning. The preceding approaches rely on fully labelled datasets

to construct behaviour classifiers. It is possible, however, to make use of a set of la-

belled data in conjunction with a larger set of unlabelled data, a strategy known as

Semi-supervised Learning. This approach has received very little attention in the cur-

rent behaviour modelling literature, with the following exceptions.

In [176], Zhang et al. propose a learning strategy for normal/anomalous behaviour

classification, where an HMM trained on normal behaviour is used to update itself and

generate anomalous behaviour models from a set of unlabelled data. This involves a

recursive procedure where the lowest likelihood (w.r.t. the normal behaviour HMM)

segment in the unlabelled dataset is removed and used to train a new HMM represent-

ing an instance of anomalous behaviour; the same process is then repeated on the re-

duced set of unlabelled data for a user-specified number of iterations. The net result of

this procedure is a set of HMMs representing anomalous behaviour, with an updated

version of the original normal behaviour HMM accounting for the remaining unla-

belled data. While this method provides a novel way to combine normal-labelled and

unlabelled data, it has a clear weakness in requiring the number of anomaly models to

be pre-specified, yielding a set of anomalous behaviour models even if the unlabelled

data were all normal.
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In contrast, Sillito and Fisher propose a semi-supervised normal behaviour learn-

ing strategy in [133] where no assumptions are made about the proportion of anoma-

lous examples present in the training data. Their approach - which represents be-

haviours in terms of parametrised trajectories - uses an incremental one class learning

algorithm [132] (see Chapter 3) seeded with a small number normal-labelled exam-

ples to filter a sequence of unlabelled examples: those examples classified as normal

are automatically used as further training data, while those classified as anomalous

are passed to a human operator for approval (they may then either be labelled as nor-

mal, or discarded). This approach allows a normal behaviour model to be constructed

from a dataset containing an unspecified proportion of anomalous behaviour while

only requiring a small proportion of data to be labelled (see Chapter 5).

Batch vs Incremental Training. A key practical consideration for behaviour learn-

ing/classification systems is whether their training data must be presented in a single

batch or can arrive in a sequence. A number of approaches discussed (eg. [82, 64, 60])

adopt incremental clustering algorithms, but nonetheless require training data to ar-

rive in a batch so that multiple passes of the clustering algorithm can be made. De-

fined from a pragmatic viewpoint, incremental training requires that each instance is

presented only once and that the resulting model can be used for classification at any

point during training. In this light, virtually all approaches discussed in this review

require batch training. The semi-supervised normal trajectory modelling algorithm

described earlier (Sillito and Fisher [133] - see Chapter 5) is one exception. There are a

small number of other exceptions, described as follows; however, a notable absence in

the papers discussed is any measurement of the changing classification performance

obtained as new training instances are presented.

An incremental scene modelling approach is proposed by Piciarelli and Foresti in

[101], where a network of path models is constructed as training data arrives, without

requiring multiple presentations of the same training data; this method does, how-

ever, require the pre-specification of certain parameters which indirectly control the

complexity of the resulting model. Given that the majority of behaviour learning algo-

rithms are unsupervised, a major issue prohibiting incremental training is the model

selection process necessary for identifying the clusters present in a dataset. Xiang et al.

propose a solution to this problem in [166] where a preliminary batch training stage

initialises a set of behaviour models which can then be updated incrementally. This

strategy provides a blueprint for adapting a number of existing approaches to enable

incremental training, provided that the initial behaviour models can be incrementally

adapted.
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2.5 Conclusions

This chapter has examined a diverse range of strategies for representing video data

and constructing behaviour models, indicating several areas where further contribu-

tions can be made.

The examination of training strategies in Section 2.4 indicated that very few be-

haviour learning algorithms made use of both labelled and unlabelled data, with

existing examples relying on a large quantity of user-labelled data for initialisation.

Similarly, few behaviour classifiers were designed to be trained incrementally, and no

current presentation of these approaches has documented classification performance

during training.

It was also noted that many behaviour representations require a batch learning

step. If an incremental behaviour modelling algorithm without an initial batch-learning

step is to be developed, a reduced set of feature representations is available. This in-

cludes raw/binned motion vectors, local action descriptors, raw trajectory data, and

parametric trajectory models. As mentioned in Section 2.1.1, although there are many

ways to parametrise trajectories, there is a need for a comprehensive comparison of

their ability to adequately represent different behaviours.

This thesis attempts to shed further light on these unexplored areas.



Chapter 3

Incremental One-Class Learning

3.1 Introduction

One-class learning - the solution to a problem interchangeably known as “outlier /

novelty / anomaly detection” - describes the formation of a generalised description of

a single class of data, on the sole basis of examples from that class. In other words, it is

the process of acquiring a rule that can identify whether or not a new example belongs

to an observed class of data, in the absence of examples from any other class.

This problem presents itself in cases where one wishes to distinguish between

members of a class for which examples are abundantly available, and members of

another rarely observed class. The identification of anomalous behaviour from video

footage, when only normal examples are available, is an important example of this

problem. Other examples include the detection of jet engine failure [55], computer net-

work intrusions [173], and disease symptoms [139]. In each of these domains, anoma-

lous examples may be scarce or entirely absent during training, but their subsequent

identification is of crucial importance.

This chapter presents a novel incremental one-class learning algorithm, which

is shown to yield improved classification performance on a variety of benchmark

datasets when compared with an existing state-of-the-art approach. First, however,

an overview of existing approaches to one-class learning is presented, followed by

a description of current incremental versions of these algorithms. Experiments in-

volving motion trajectory data are presented later, in Chapter 4, where the proposed

algorithm forms part of a semi-supervised framework for learning models of normal

trajectories.

51
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3.2 One-Class Learning Algorithms

This section provides an overview of existing one-class learning strategies, which fall

into three broad categories.

3.2.1 Density estimation

Given a set of examples corresponding to a particular class of data, an intuitive strat-

egy for identifying outliers is to estimate the underlying probability density function

(p.d.f.) of the example data. New examples can then be assessed by evaluating their

probability density with respect to the estimated p.d.f.: if sufficiently high, the new

example is likely to be from the same class as the model; otherwise, it can be classified

as an outlier.

Some of the earliest machine learning approaches to outlier detection involve esti-

mating the p.d.f. of a dataset using a technique known as Kernel Density Estimation

(KDE): this allows the probability density at the location of a new example to be es-

timated by summing the (uniformly weighted) contributions from a set of identical

kernel functions (often Gaussian) centred on each member of the dataset. This ap-

proach was first adopted by Bishop in [11] to filter the data presented to a neural

network (trained to estimate the fraction of oil in a pipeline given a 12-dimensional

measurement) so that potentially misleading network output was discarded when un-

precedented data was presented.

Similarly, Tarrassenko et al. used KDE in [139] to estimate the p.d.f. of a set of

5-dimensional measurements taken from normal mammograms, so that potentially

abnormal examples could detected. More recently, Yeung and Chow successfully ap-

plied this technique to a 112-dimensional dataset corresponding to normal computer

network activity, so that intrusions could be detected. In each of the preceding ap-

proaches, some form of cross-validation is used to determine an appropriate outlier

detection threshold for the estimated p.d.f.; in the absence of anomalous examples,

this requires the deliberate misclassification of a certain (low probability) proportion

of a validation set. Another key issue, solved in a heuristic fashion in [11, 139], is the

selection of appropriate kernel parameters. This can have a large impact on model

quality: since our proposed approach relies on KDE, the issue of kernel parameter

choice is discussed later in the chapter (Sections 3.5.2 and 3.6.2) .

Noting that the cost of evaluating a KDE model scales linearly with the size of the

dataset, it can be desirable to estimate the density of a dataset in a different way. In

some cases a single Gaussian model may be sufficient; for more complex datasets, a

weighted Gaussian Mixture Model (GMM) can be fitted using the Expectation Max-
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imisation (EM) algorithm (see eg. Bishop [12]). GMMs were used to model hand-

written digit data for outlier detection by Tax and Duin in [144]; in their approach

an outlier threshold is set for log probability densities at least 3 standard deviations

below the mean for the training data. An alternative outlier detection strategy for

GMMs is proposed by Roberts in [109]: instead of placing a threshold on the p.d.f.,

new examples are assigned to their closest component and a threshold derived from

Extreme Value Theory (EVT) is used to identify outliers. The EVT threshold depends

on the quantity of data that a given component is responsible for; it is successfully

used in conjunction with GMMs to identify outliers in biomedical data in [109, 110].

This approach is discussed further in Section 3.5.3 as it is tested in conjunction with

the proposed learning algorithm.

Although GMMs are less computationally expensive to evaluate than KDE mod-

els, they present two major problems. Firstly an appropriate level of model complexity

(ie. number of components in the model) must be selected: to this end, several crite-

ria have been proposed to address this problem by specifying a trade-off between the

likelihood of the model given the data and the number of parameters required. Al-

though there is no single “best” criterion, the Bayesian Information Criterion (BIC) is

a popular choice (see [111, 20, 164] for experimental comparisons). Nonetheless, the

complexity chosen according to such criteria can be misleading when training data is

sparse, potentially leading to “underfitted” distributions covering regions that may

contain outliers. Another key problem with this approach is that GMM parameters

need to be initialised (typically randomly) prior to fitting using the EM algorithm: be-

cause EM is only guaranteed to find a local, rather than global maximum (for the data

likelihood given the model parameters), the initial parameter values can have a large

- and unpredictable - impact on the quality of the resulting model.

3.2.2 Boundary estimation

The preceding density estimation approaches estimated a p.d.f. so that a threshold

could be used to define a boundary around the training examples, separating known

data from outliers. An alternative strategy, therefore, is to attempt to estimate/define

the boundary directly: a number of techniques have been proposed to achieve this,

described as follows.

Given a dataset, an intuitive first-order solution to this problem is to find the small-

est possible hypersphere enclosing the data. If a new example is not an outlier, it is

likely to lie within the hypersphere. This approach was proposed by Tax and Duin as

a one-class learning strategy, known as Support Vector Data Description, in [141, 142].

Drawing inspiration from the theoretical underpinnings of Support Vector Machines
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(see eg. [19]), Tax and Duin formulate the discovery of a minimum-volume enclosing

hypersphere, defined by a weighted subset of the training data (the support vectors),

as a convex optimisation problem. The distance of a new example from the centre of

the hypersphere can be calculated using a sum of weighted inner products between

the example and each support vector.

As with Support Vector Machines, the optimisation includes “slack” variables which

allow a trade off between hypersphere volume (inversely analogous to margin size for

SVMs) and misclassified training data to be specified. Most crucially, the optimisation

process allows the similarity between data points to be expressed using Kernel func-

tions (instead of simple Euclidean distance): this enables arbitrarily complex enclos-

ing hypervolumes to be obtained, according to the chosen kernel function. A popular

choice of kernel function is the “Gaussian” kernel - shown to be a successful choice for

SVDD in [141, 142] - which expresses the distance between two data points x and x′
as:

k (x, x′) = exp

(
−‖x − x′‖2

2σ2

)
This behaviour of this kernel function is determined by a parameter σ which has a

large impact on the resulting model: Figure 3.1 shows the boundaries obtained by the

SVDD algorithm for a 2-dimensional dataset, using the Gaussian kernel function with

different values of σ. For large values of σ this kernel resembles a linear function of

Euclidean distance, yielding a circular boundary similar to that obtained without us-

ing kernels. For smaller values of σ the function is peaked, emphasising the affinities

of points which are close together while discounting those of more disparate points:

this can yield a boundary which accurately reflects that of the underlying dataset. The

kernel function can also be regarded as defining a projection of the data into a higher

dimensional space [19, 142], where the definition of a hyperspherical boundary maps

onto a more complex boundary in the original feature space.

It is clear that the kernel parameter has a large impact on how suitable a given

boundary model is for describing a dataset and detecting outliers: if too “simple”

(eg. Gaussian kernel with large σ) the boundary could encompass regions which may

contain outliers; conversely, if too complex, the boundary may define an insufficient

region to properly characterise the class of data being modelled. In the absence of ex-

ample outliers, choosing appropriate kernel parameters presents a problem. Various

methods have been proposed to address this issue, including: procedures for gener-

ating synthetic outliers (Tax and Duin [145]) and, more recently, a consistency based

approach which initialises the simplest possible classifier and increases its complexity

parameter until the classification performance on a validation set starts to deteriorate
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Figure 3.1: The impact of different kernel parameter values on an SVDD boundary (repro-
duced from [142]; see text for description.)

(Tax and Muller [143]).

Another variant of the SVDD algorithm was proposed by Scholkopf et al. in [125]

where, instead of fitting a hypersphere to the data, a hyperplane is obtained which

separates the training data from the origin with maximum margin. This approach has

been used to detect anomalies in jet engine vibration data by Hayton et al. in [55].

When used with the Gaussian kernel function, the approach proposed by Scholkopf

et al. has been shown to yield equivalent results to SVDD [142, 12].

A related approach, which could equally belong in the density estimation cate-

gory, is proposed by Roth in [118] where a kernel-based version of Linear Discriminant

Analysis (LDA) is formulated. This variant of LDA is used to address the one-class

learning problem by finding the one dimensional projection which best separates a

one-class dataset from a negative replica of itself. Since LDA models each class with a

Gaussian distribution, Roth’s approach yields a version of the Mahalanobis distance

which can be expressed in terms of kernel functions: this model effectively corre-

sponds to Gaussian density estimation in the feature space defined by the kernel func-

tion. Like the preceding approaches, this allows flexible boundaries to be defined in

the original feature space. Its key advantage, however, is that it allows such bound-

aries to be defined using statistical approaches for detecting outliers with respect to a

Gaussian distribution.

3.2.3 Subspace estimation

The preceding approaches characterise a dataset by estimating its density function or

enclosing boundaries. Another way to characterise a dataset is to determine whether

it can be well defined by a lower-dimensional feature space: for example if a set of
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3-dimensional data is found to lie on a plane, the data can be accurately described

using a 2-dimensional representation (together with a mapping between the original

and reduced-dimensionality feature spaces.) When the reduced-dimensionality rep-

resentations are mapped back to the original feature space, it is possible to calculate

a reconstruction error for each data point to determine the quality of its represen-

tation. This has an important role for one-class learning: if a given class of data is

well-characterised by a reduced dimensionality representation, then the reconstruc-

tion error for a new data point provides an indication of whether or not it belongs to

the same class.

Principal Components Analysis (see eg. [12, 53]) is a useful technique for identi-

fying low dimensional subspaces that can be defined by a linear mapping (ie. from a

given feature space to a straight line/plane/hyperplane occurring in that space). This

technique defines a subspace with an orthogonal set of basis vectors derived from the

largest N eigenvectors of the covariance matrix of a given set of data. For the purpose

of one-class learning, this technique is only effective if a given class of data is well

characterised by the linear subspace on which it lies. However, real world data may

lie on curved subspaces (eg. 2D data may lie on a curve rather than a straight line), in

which case a one-class classification scheme based on PCA reconstruction error may

perform poorly.

One solution to this problem is to used Kernel PCA, a nonlinear generalisation of

PCA for feature spaces defined by kernel functions, proposed by Scholkopf et al in

[126]. This approach has recently been adopted as a one-class learning strategy by

Hoffman in [58]. It is shown in [58] that Kernel PCA (KPCA) performs similarly to

Support Vector Data Description for the “hard margin” case (where all training data

must be correctly classified), using a Gaussian kernel in both cases. However, in the

“soft margin” case where a proportion of training data can be misclassified, KPCA is

shown to outperform SVDD on a synthetic 2D dataset containing outliers. On two

real datasets KPCA is able to outperform both SVDD and Kernel Density Estimation

(albeit by a small margin). However, as with other kernel-based methods, the success

of KPCA relies crucially on the correct choice of kernel parameter and, additionally,

that an appropriate number of eigenvectors is chosen.

Auto-associative neural networks provide another solution to the problem of esti-

mating nonlinear subspaces for one-class learning. Such networks have an input layer

corresponding to the original feature space, one or more hidden layers with fewer di-

mensions than the input, and an output layer of the same dimensionality as the input.

The network is trained to generate an output equal to its input, thereby achieving a

reconstruction from the representational space defined by the hidden layer(s). Auto-
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associative networks have been applied to novelty detection in a variety of domains

[63, 99, 84] where, as with PCA and KPCA, reconstruction error is used to define clas-

sification boundaries. The use of multiple hidden layers enables auto-associative net-

works to find nonlinear subspaces [12]. In the case of one hidden layer, these networks

have been shown by Bourland and Kamp to be, at best, equivalent to PCA [16]; how-

ever, Japkowicz et al. show in [62] that nonlinear activation functions in networks

with one hidden layer can yield nonlinear reconstruction error surfaces that enable

better one-class classification performance than PCA.

Summary

This section has reviewed a variety of different techniques that can be used to con-

struct a one-class classifier from a given dataset. It is clear that many of these tech-

niques are potentially very effective. However it is also clear that the problem of model

selection is inherent in every approach discussed: each algorithm has at least one pa-

rameter whose value has a crucial effect in determining the resulting classification

performance. In all cases the value of this parameter specifies a compromise between

the ability to generalise to new instances of the observed class and the ability to detect

outliers. To address this, many of the models discussed were accompanied by some

form of cross-validation strategy for choosing parameter values. It is nonetheless im-

portant to realise that these models are intended to solve a fundamentally ill-defined

classification problem, where a second class of hypothetical “novel” items is by defi-

nition unavailable: in this light, it is difficult for any model selection strategy that can

only utilise information from a single class of data to accurately determine the result-

ing classification performance. It is difficult to precisely determine the ’best’ approach

from the literature: since each one is shown to be more effective than other approaches

on certain datasets, it is likely that the relative efficacy of each algorithm depends on

the specific task at hand.

3.3 Existing Incremental Approaches

While the approaches reviewed in the preceding section provide a range of solutions

to the one-class learning problem, each method assumes that training data is available

in a single batch. In many cases, this means that if a new example/set of examples

is to be added to the training set, the original training procedure must be repeated

from scratch on the augmented set of training data. A small number of incremental

one-class learning strategies, reviewed as follows, have been proposed to address this

issue.
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Yamanishi, K.; Takeuchi, J.; Williams, G. & Milne, P. “On-line Unsupervised Outlier
Detection Using Finite Mixtures with Discounting Learning Algorithms”, [171].

In [171] Yamanishi et al. propose a one-class learning strategy based on incremen-

tal learning of Gaussian mixture models; in contrast to other GMM based one-class

learning algorithms (eg. [112]) this approach is designed so that the GMM parameters

can be updated indefinitely by new training data. To achieve this, Yamanishi et al.

employ a variant of the incremental EM (Expectation Maximization) algorithm [93]

where each new data point makes an exponentially decaying contribution to the suf-

ficient statistics of each component in the mixture model: each data point is only used

in a single EM cycle before being discarded. In contrast to the other one-class learning

algorithms discussed, this method does not attempt to incrementally build a complete

normal class description, but rather to model a finite window of training data preced-

ing each new example. In order to detect outliers, each new data point that is used

to update the model is assigned a score which quantifies the resulting change in the

mixture model (using an approximation of the Hellinger distance). Once a dataset has

been processed, outliers can be identified by ranking data according to their Hellinger

distance scores: a high value, indicating a large change in model parameters, provides

an indication that a data point is novel. It is important to note this is an unsupervised

learning algorithm: the model is updated on all data points - including potential out-

liers - so that a score can be calculated following each training update in order to

rank the data. A potential weakness of this strategy is that a series of consecutive

anomalous examples would receive diminishing novelty scores as the model param-

eters adapted: therefore, in subsequent rankings, these anomalous examples may not

be highlighted due to their local temporal context during training. Another weakness

of the method proposed in [171] is that it does not include a strategy for choosing an

appropriate number of mixture components: this quantity must be pre-specified, and

cannot change during training.

Tax, D. M. J. & Laskov, P. “Online SVM learning: from classification to data
description and back” [146].

It is also possible to formulate kernel based boundary estimation algorithms for in-

cremental training: in [146] Tax and Laskov develop an incremental version of the

Support Vector Data Description algorithm. As with the original SVDD algorithm, the

incremental version proposed [146] seeks to enclose a given dataset with a minimum

volume hypersphere, defined by a weighted subset of the original data (the support

vectors). In the original SVDD algorithm, the optimal set of weights is defined by a
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constrained optimisation problem, which can be solved by quadratic programming.

To enable incremental training, Tax and Laskov propose a method for augmenting an

existing optimal solution with new examples, whereby the weights of existing support

vectors are adjusted whenever a new example is added so that an optimal solution is

maintained (see Laskov et al. for details [74]). Furthermore, a method is suggested in

[146] for initialising the model with a small initial set of data points (all set as support

vectors with equal weight), thus removing dependence on a preexisting batch solu-

tion. As with the original SVDD algorithm, the incremental updating process is de-

fined in terms of inner products, which can be replaced with kernel functions so that

complex boundaries can be defined. Thus, this incremental algorithm also inherits

the problem of choosing an appropriate kernel function and parametrisation therein.

Since the algorithm assumes a fixed kernel function which cannot change as more ex-

amples are observed, it leads (in the absence of prior knowledge) to the paradoxical

scenario of needing to retrain the algorithm several times - despite its incremental na-

ture - in order to determine an appropriate kernel parameter through cross-validation

(eg. [145, 143]). While it is in principle necessary to retain all data points to achieve

the best solution, it is suggested in [146, 74] that the computational/storage costs of

this algorithm could be limited by maintaining a finite window consisting of the last

N data, discarding the data point with lowest weight at each iteration.

Summary

While both of the preceding approaches enable the incremental updating of a one-

class classifier, the algorithm proposed by Yamanishi et al. differs by maintaining

an exponentially decaying description of a dataset instead of a complete description,

potentially leading to the false detection of outliers as old examples are forgotten.

As with their batch counterparts, the performance of these incremental approaches

is contingent on the correct choice of model parameters. In both cases it is assumed

that parameter values are determined according to prior knowledge, or the results of a

cross validation experiment. When training data arrives as a single batch, it is reason-

able to perform cross validation to determine the best model parameters. However,

for applications where incremental one-class learning is useful, its function is to a large

extent undermined by the need to retrain several times for cross validation. While it is

clear that incremental one-class learning methods can be justified as a means of aug-

menting an existing batch classifier with new information, such methods would have

far greater utility if model selection could be incorporated in the incremental learning

process.
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3.4 Overview of Incremental GMM Learning

Noting that the algorithm proposed in this chapter entails the incremental construc-

tion of a Gaussian Mixture Model (GMM), this section reviews a range of existing

approaches to the problem of incremental GMM learning and establishes how they

relate to the proposed algorithm. Sections 3.4.2 and 3.4.3 discuss techniques for incre-

mentally updating a GMM with new data, without the requirement of a complete set

of historical data: Section 3.4.2 summarises strategies for updating model parameters,

while 3.4.3 summarises techniques for changing model structure in response to new

data. Finally Section 3.4.4 briefly discusses several related techniques where model

structure is determined in an incremental fashion from a single batch of data.

3.4.1 Goal of GMM Learning

A Gaussian Mixture model defines a probability density function in terms of a set

of K ≥ 2 Gaussian distributions with prior probabilities π = {π1, . . . ,πK}; means µ =

{µ1, . . . ,µK}, and covariance matrices Σ = {Σ1, . . . ,ΣK} as follows (see eg. [53, 12] etc):

p(z|π,µΣ) =
K

∑
j=1

(
πjN (xn|µj,Σj)

)
(3.1)

For a given set of data X = {x1, . . . xN}, and a prespecified number of mixture com-

ponents K, the goal of GMM learning is to find the parameter values for π,µ,Σ that

maximise the likelihood of [generating] the training data. If X is available as a sin-

gle batch, this optimisation can be accomplished using the Expectation-Maximisation

algorithm [35] which, given a set of initial parameter estimates, works by iterative

application of the following steps:

1. (E Step) Estimate the “responsibility” r(xn,k) of the kth component for the nth

data point xn:

r(xn,k) =
πkN (xn|µk,Σk)

∑K
j=1 πjN (xn|µj,Σj)

(3.2)

2. (M Step) Calculate µ,Σ,π for each component k according to the estimated re-

sponsibilities:

πnew
k =

1
N

N

∑
n=1

r(xn,k)

µnew
k =

1
N.πnew

k

N

∑
n=1

r(xn,k).xn

Σnew
k =

1
N.πnew

k

N

∑
n=1

r(xn,k).(xn − µnew
k )(xn − µnew

k )T (3.3)
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Parameter Update Snew = . . . Refs

B1. Batch EM ∑N
n=1 rnew(xn,k).C(xn) [35]

B2. Incremental EM Sold + (rnew(xn,k) − rold(xn,k)).C(xn) [93]

O1. Soft assignment Sold + r(xnew,k).C(xnew) [5, 44]

O2. Hard assignment Sold + I
(
r(xnew,k) = maxj r(xnew, j)

)
.C(xnew) [132, 31, 76]

O3. Exponential decay* (1 − α)Sold + αC(xnew) [136, 69, 171, 76]

Table 3.1: This table summarises several different ways to update the parameters of a
mixture model with new data, expressed in terms of sufficient statistics. In each case C(xn)

denotes the contribution of data point xnto the sufficient statistic in question (specifically:
Cπ(x) = 1, Cµ(x) = x and CΣ(x) = xxT). For example, update B2 for Snew

Σk
would be

Sold
Σk

+ (rnew(xn,k) − rold(x,k))xnxT
n . (*Note that for O3, πk is directly estimated using

Equation 3.7 and Equation 3.4 is replaced with Sπk = πk.)

For a given parameter initialisation, this procedure is guaranteed [35] to converge

to a local optimum (of the training data log-likelihood): it cannot, however, be directly

used for incremental learning as both optimisation steps refer to the whole dataset.

3.4.2 On-line refinement of model parameters.

It is possible to adapt Equations 3.2 and 3.3 so that GMM parameters can be adjusted

on the basis of single items of training data. A key insight is that the parameters π,µ,Σ

can be represented in terms of the following sufficient statistics (specifically, sums of

the contributions from each data point) Sπk ,Sµk ,SΣk , which can then be updated - in a

number of different ways - for single data points:

Sπk =
N

∑
n=1

r(xn,k) → πk =
1
N
Sπk (3.4)

Sµk =
N

∑
n=1

r(xn,k).xn → µk =
Sµk

Sπk

(3.5)

SΣk =
N

∑
n=1

r(xn,k).xnxT
n → Σk =

SΣk

Sµk

− µkµT
k . (3.6)

Table 3.1 summarises several different strategies for updating a GMM incremen-

tally. The strategy with the greatest theoretical support is an incremental variant of the

EM algorithm (Table 3.1, B2) proposed in [93], where Neal and Hinton showed that

performing a partial E-step (so that Equation 3.2 is only recomputed for a single data

point) before each M-step is sufficient to guarantee convergence to a local maximum
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of the data log likelihood. However, this strategy does not provide a means for online

learning, as it requires the whole dataset to be retained together with N × k evalua-

tions of Equation 3.2. Nonetheless, a range of similar strategies - albeit without the

same theoretical guarantees - can be used to incrementally update GMM parameters

on a single-presentation basis. One simple strategy, adopted by Friedman and Russell

in [44] (Table 3.1, O1), simply adds the contribution of each new example to the suffi-

cient statistics for each component. In a similar vein, several approaches [76, 132, 31]

update the closest component to each new data point (Table 3.1, O2). A key problem

with the summation of historical contributions from all observed data is that the re-

sponsibilities of mixture components for a given data point are bound to change as the

parameters are updated, so the contributions of earlier data to the model parameters

will be based on poor estimates of the current component responsibilities.

One way to alleviate this problem of misleading contributions from historical data

is to maintain an exponentially decaying average (Table 3.1, O3) of the contributions

from recently observed data. Given this update the impact of each new data point

(and hence the rate at which old ones are forgotten) is determined by a parameter α;

furthermore, the component weight is now estimated directly (rather than through

Equation 3.4) as follows:

πnew = (1 − α)πold + α f (r(xnew,k)) (3.7)

This approach forms the basis of a popular method proposed by Stauffer and

Grimson in [136] for learning background models in RGB space, and several other

methods [69, 171, 76]. It should be noted that component responsibilities r(x,k) do in

fact feature in these approaches: in [136, 76] only the component closest to each new

data point is updated, while in [69, 171] the contribution of each xnew is weighted by

r(xnew,k). An inherent problem with this type of decaying average is that the initial

parameter estimates have an undesirably large impact on the resulting model in the

early stages of training. Lee proposes a means to address this in [76], by initially up-

dating components through summation of data contributions (Table 3.1, O2) and then

switching towards the exponential decay update (Table 3.1, O1) once a certain quan-

tity of data has been observed. This can be implemented by maintaining a separate

decay constant for each component such that

αk = (
1 − α

ck
+ α) (3.8)

where ck = ∑N
n=1 I

(
r(xn,k) = maxj r(xn, j)

)
is a counter for the number of data

points represented by the component, so that αk is close to 1
ck

for low ck but tends

towards α as ck increases. This strategy is shown in [76] to yield faster convergence
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for several different input distributions when compared to approaches where αk = α.

Nonetheless, this approach, as with [69, 171, 76, 136], requires that α is prespecified.

3.4.3 On-line refinement of model structure.

The methods described in the preceding section provide a means to update an ex-

isting GMM with new data. On their own, however, these update equations are

insufficient for incremental GMM learning as they assume that both the number of

mixture components and their initial parameter values have been appropriately pre-

specified. This section reviews strategies for dynamically adjusting the component

structure of a GMM on the basis of data that arrives sequentially and cannot be re-

tained after being used for training: existing approaches either process this data in

chunks [27, 135, 52, 51] or on a single-item basis [136, 123, 5, 182, 132, 72, 31].

Data arrives as single points.

Given the latter constraint, a key problem is initialising the model. In all virtually all

approaches, the first data point observed instantiates the first new component with

a heuristically determined initial covariance matrix; thereafter a range of different

strategies are employed. In [136, 76] new data points that fall outside 2.5 standard

deviations of the closest existing component automatically instantiate a new one or -

if a pre-specified maximum number of components is exceeded - replace the existing

component with lowest weight; otherwise the closest existing component is updated

as described in Section 3.4.2. The method proposed in [136] has an additional heuris-

tic constraint - for the purpose of background modelling - where a reduced GMM is

generated by ranking components according to weight
variance and selecting the first N com-

ponents that have a total weight below a prespecified threshold.

A similar approach, with a more principled justification, is adopted by Zivkovic

and van der Heijden in [182] where the recursive weight update rule (Equation 3.7)

is reformulated to include a Dirichlet prior on the distribution of component weights,

with uniform negative coefficients set to − P
2 where P is the number of model parame-

ters per component. This results in the following update rule, which imposes a penalty

on over-complex models by reducing the weight of components that only account for

a small proportion of data points:

(1 − α)πk + α
r(xnew,k) − αP

2

1 − M αP
2

(3.9)

Although the weight update is constrained so that ∑i πi = 1, individual weights can

fall below zero - this is used in [182] to facilitate the reduction of model complexity:
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components with π ≤ 0 are removed, and the remaining positive weights are then re-

normalised. This method is shown to give good performance, yielding GMMs with

the correct number of components for various benchmark datasets. It should be noted

that this method must be initialised with a prespecified maximum number of M mix-

ture components (centred on the first M training data, with prespecified covariance),

and that the number of components can only be reduced during training. In this light,

a key weakness of this method is that it provides no means to adapt model complexity

in response to the appearance of new clusters.

In contrast, several other methods have been proposed where new components

can be generated in response to new data. Arandjelovic and Cipolla propose an in-

cremental GMM learning algorithm in [5] with the specific constraint that incoming

training data is “temporally coherent”, meaning that consecutive observations are as-

sumed to lie close together in feature space. Their algorithm is typically initialised

with a single Gaussian fitted to the first few data points; thereafter two models are

maintained: 1) a “historical mixture” (in the first instance this is equivalent to the ini-

tial model) which is not updated by subsequent data points and 2) a “current mixture”

which is updated by adding the contribution of each new data point to its sufficient

statistics (Table 3.1, O1). Every time the current mixture is updated, a more complex

model is hypothesised by splitting the current mixture (ie. by subtracting historical

components from their corresponding current components). The BIC model selection

criterion is then used to determine whether to split any component (this criterion is

evaluated in the absence of historical data by calculating the expected likelihood of

the number of points represented by a given component, in both merged and split

forms). If any components are split, the current model replaces the existing historical

mixture. Although this is an elegant strategy for temporally coherent data, if the latter

constraint is violated (eg. if current mixture is updated with temporally interspersed

points from two distinct locations) new components created by splitting the model

may not provide a good representation of the underlying data.

This chapter proposes an alternative approach to this problem [132] whereby each

new data point contributes a new component to the mixture in a manner equivalent

to a kernel density estimate, and the resulting model organisation is adjusted - to keep

the number of components under a prespecified maximum - by merging pairs of com-

ponents according to a cost function (see Section 3.5 for details). The premise of this

method is that - as with kernel density estimation - a large number of mixture com-

ponents can be used to represent a wide range of different distributions, even though

many could be represented with fewer components. This assumption is adequate for

the purpose one-class learning, where it is not necessary to have a model structure that
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accurately reflects the intrinsic complexity of the dataset, but rather one that yields a

useful approximation of the underlying density of that data.

A similar method has subsequently been proposed by Kristan et al. in [72] for

the purpose of incremental (1 dimensional) density estimation: as with the proposed

approach, Gaussian kernels are continually added to a mixture model, while model

complexity is kept below a prespecified maximum by compressing the mixture when-

ever a new kernel is added. The variance of each new kernel added to the model is

estimated using a variant of the “plug-in” method for bandwidth estimation (see eg.

[159]) which relies on an estimate of the curvature of the resulting density function.

While this method provides the advantage that the kernel width can be re-estimated

even when the remainder of the model is no longer a kernel density estimate, its ap-

plicability is limited as it cannot easily be extended to the multivariate case (see eg.

[177]). When the addition of a new kernel causes the model complexity to exceed the

prespecified maximum, the model is compressed in the following way: first a new

mixture is created where the variance of each original component is inflated by a pre-

specified amount; the weights of the inflated mixture that minimise the Integrated

Squared Error (ISE) with respect to the original mixture are then determined (having

been defined as a quadratic programming problem) using the Sequential Minimal Op-

timisation algorithm [106]. In many cases, the preliminary inflation of the mixture will

cause some of the resulting optimised weights to be zero, allowing these components

to be removed. Finally the ISE between the reduced inflated mixture and the original

mixture is then optimised with respect to all model parameters using the Levenberg-

Marquadt algorithm: again, it is not clear that this part of the algorithm would be

suitable for on-line learning at higher dimensionalities, given the quadratic increase

in the number of GMM parameters w.r.t. dimensionality.

Another related approach that is applicable to multivariate data was recently pro-

posed by Declercq and Piater in [31]. As with the preceding approaches, each new

example contributes a new component to the mixture model and pairs of components

are merged to reduce model complexity. However, unlike the preceding approaches,

there is no upper limit on the number of components in the model: instead, after each

new component is added, their method attempts to merge pairs of components un-

til a threshold on a merging cost function is exceeded. Merging cost is evaluated by

comparing the empirical distribution function of the data represented by two compo-

nents with a Gaussian cumulative distribution function - specifically, by numerically

integrating the absolute difference between the two curves, and mapping this distance

to a pseudo-probability λ using a negative exponential function with a user-specified

scale parameter. Two different methods are proposed for updating a mixture, one in-
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volving a fixed conservative merging threshold of λ = 0.95, and another using a lower

version of this threshold (rescaled according to the number of examples observed)

that encourages merging. These methods are used in [31] to define a two-level up-

dating procedure where a mixture model is learned using the lower threshold, while

each component is simultaneously represented by a more complex mixture updated

using the higher threshold: this allows a component to be split - when its merging

threshold is exceeded - by using EM to fit a pair of components to samples drawn

from its the underlying mixture. This method is shown to work well on several toy

datasets, although it is not clear how the empirical distribution function for the under-

lying training data - which is central to the merging cost function - can be evaluated

without reference to that data.

Data arrives in batches.

Finally, several other methods have been proposed for updating a GMM with the

parameters of a further GMM learned from new data. This can be regarded as a form

of “chunked” on-line learning, where many of the issues implicit in the preceding

methods, eg. evaluating the cost of component merging, are still of central importance.

An early approach to the problem of merging two mixture models was proposed

by Hall et al. in [52] where mixture components are modelled as hyper-ellipsoids, and

pairs of components are merged if their merged volume is lower than the sum of their

individual volumes. Subsequently, Hall and Hicks proposed a more complex method

in [51, 57] where two GMMs are initially trivially combined to produce a N + M com-

ponent mixture by concatenating their parameters and renormalising priors, so that a

matrix of weights wi=1...N+M,j=1...K can then be specified to define a reduced mixture

with K components, where each is a weighted combination of components from the

concatenated mixture (constrained so that columns corresponding to new components

must each sum to 1). Noting that weight matrices which satisfy this constraint lie on

specific hyperplane, Downhill Simplex optimisation is then used to search on this hy-

perplane for weights that optimise the χ2 distance (which can be calculated in closed

form) between the reduced and concatenated mixtures. This procedure is repeated

for different values of K yielding a range of reduced mixtures; an approximation to

the expected log-likelihood per data point (achieved by calculating the derivative of

a sum of exponentials approximating f (η) =
´

p(x)q(x)ηdx at η = 0) is then used to

calculate the BIC criterion so that an optimum number of components can be chosen.

The method proposed in [51] is not intended for an on-line learning scenario, and

it may be too computationally demanding for such purposes. In contrast, Song and

Wang recently proposed an on-line GMM learning algorithm in [135] which also re-
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lies on merging pairs of GMMs. In [135], each new batch of data is used to fit several

GMMs of different complexities, and is then represented by the GMM that maximises

the BIC criterion. The data is clustered by assigning each item to the mixture com-

ponent with highest posterior probability: at this point each statistical tests are per-

formed to determine whether the clusters of data represented by each new mixture

component are statistically equivalent to any component in the pre-existing mixture.

Firstly, the equivalence of covariance matrices is assessed using a test statistic pro-

posed in [75]; if this test is passed (ie. null hypothesis that the matrices are equivalent

is accepted), Hotelling’s T2 test is then used to assess the equivalence of the two means

vectors. Any pair of components deemed to be statistically equivalent is then merged,

with any conflicts (where a new component is deemed to be equivalent to more than

one existing component) resolved comparing the likelihood of the data represented

by the new component w.r.t. each merging candidate.

In a similar vein, Charron et al. propose a technique for merging GMMs in [27]

where a set of weights (as in [51, 57]) defining a set of merged combinations of com-

ponents from a concatenated mixture is determined using the EM algorithm. This

is achieved by reformulating the standard E step (Equation 3.2) so that the respon-

sibility of a merged component for each existing component is calculated in terms

of the expected likelihood (
´

p(x)q(x)dx)nof n data points drawn from existing mix-

ture component p(x) (where n is the number πN of data points accounted for) when

represented by new merged component q(x). The M step then consists of creating

new components by merging existing components according to the responsibilities

calculated in the E step. To determine an appropriate number of components, the

weight update is reformulated to include a Dirichlet prior (as in [182]) which forces

the weights of redundant components to 0 so that they can then be removed. An in-

teresting issue which is not clear from [27] is how the weights defining the initial set

of merged components are initialised.

3.4.4 Incremental model construction given batch data.

A number of other incremental approaches have been proposed for learning from a

batch dataset: these approaches are “incremental” in the sense that they allow a GMM

to be constructed one component at a time, but not in the sense discussed earlier,

as each update step requires the whole dataset to be available. Although these ap-

proaches do not provide a means to incrementally learn a GMM from a stream of

incoming data, they address certain issues - such as selecting an appropriate number

of components - which are relevant to problem of online GMM learning.

An early example of this type of approach was proposed by Vlassis and Likas in
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[152], where the quality of GMM parameters learned using EM is assessed by measur-

ing the sample kurtosis of the data underlying each mixture component. The excess

kurtosis (k = µ4
µ2

2
− 3 where the nth moment µn = E ((x − µ)n)) provides a measure of

the “peakedness” of a distribution [161] and has the property that k = 0 for a Gaussian

distribution. The latter property is exploited in [152] in the form of a weighted total

kurtosis measure for a GMM which has a positive value that is close to zero when the

data underlying each mixture component is well described by a Gaussian distribution.

Mixtures are fitted in [152] by optimising the parameters of an initially small number

of components using EM, and then splitting a mixture component if 1) the kurtosis

measure starts to increase or 2) the kurtosis measure exceeds a prespecified threshold

once a (local) maximum likelihood is reached. If these conditions are met, the com-

ponent making the largest contribution to the total kurtosis measure is split: noting

that this method is intended to deal with 1-dimensional data, splitting is achieved by

instantiating two replicas of the original component with means 1 standard deviation

to the left/right of the original mean. While this approach is interesting, the use of

kurtosis to indicate the goodness-of-fit for individual Gaussian components does not

trivially extend to multivariate data. Moreover, the straightforward method of split-

ting components used in [152] does not translate to the multivariate case.

This problem is addressed in [153], where Vlassis and Likas propose a method

for incrementally increasing the number of components in a (potentially multivariate)

GMM. To determine the best parameters for a newly inserted component, new com-

ponents (with a fixed spherical covariance) are hypothesised at the location of all data

points, and the component which yields the highest data log likelihood for the mixture

is chosen for insertion. A free parameter of some importance is the weight wnew of the

new component - this is chosen for each candidate component by maximising a 2nd

order Taylor approximation (about wnew = 0.5) of the data log likelihood as a function

of wnew. Finally, partial EM steps (where the parameters of existing components are

fixed) are used to optimise the parameters of the new component before it is added to

the mixture. Starting with a one-component mixture, this process continues until some

stopping criterion (eg. prespecified maximum number of components, no increase in

data likelihood, BIC favours lower complexity etc.) is reached. One drawback of this

method is that - given a large dataset - the computational cost of evaluating candidate

components is high. Verbeek et al. suggest an alternative method in [151], where the

data underlying each existing component is identified (by hard assignment), and used

to generate a small set of candidate components. This is achieved by randomly select-

ing two data points from each set and splitting the data according to their closest point:

the mean and covariance of these subsets define two new candidate components; this
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process is repeated M times to generate 2M candidate components for each existing

component. Because a much smaller number of candidates is generated compared

to [153], it is possible to speculatively optimise the parameters of each candidate us-

ing partial EM steps before augmenting the original mixture with the candidate that

yields the highest data log likelihood as in [153], and applying EM to optimise the

whole model.

A novel variant of this approach has been proposed by Titsias in [148], where a

mixture model is constructed one component at a time, using an outlier component

(with a uniform distribution) to represent any data that is not yet explained by an ex-

isting mixture component. Initially all data is represented by an outlier component,

and the first component is initialised with mixing weight set to 0.5, mean centred on

a randomly selected data point, and a spherical covariance matrix scaled by the maxi-

mum variance in across all individual dimensions. The EM algorithm then is used to

optimise the parameters of the new component together with the mixing weight which

determines how much of the data is still accounted for by the outlier component. To

add new components the parameters of any existing components are fixed, and the

initial task of fitting the data with a single component and an outlier component is

repeated with the following important constraint: after the first component has been

added, the likelihood function optimised by EM is weighted according to the respon-

sibility of the outlier component for each data point, so that data that is represented

by existing components is probabilistically “masked” during the EM optimisation of

each new component (making this approach conceptually similar to Boosting [43]).

This process yields a natural stopping criterion when only a small proportion of the

dataset is represented by the outlier component (eg. in [148] when the number of un-

accounted data points is equal to the data dimensionality), allowing the number of

clusters to be determined automatically. This method is shown to improve on that of

Verbeek et al. on several benchmark datasets, and a variant of this method is applied

by Titsias and Williams in [149] to learn models of multiple foreground objects from

video sequences.

3.5 Proposed Algorithm

The semi-supervised trajectory learning framework proposed in this thesis (see Chap-

ters 1 and 4) requires an incremental one-class learning algorithm that is capable of

finding an appropriate model without undertaking a separate batch cross validation

stage. This section attempts to address this problem by proposing a novel incremental

one-class learning algorithm which only requires an upper limit on model complexity
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to be specified, while Section 3.6 examines the performance of the algorithm, compar-

ing it with that of the Incremental SVDD algorithm discussed in the preceding section.

3.5.1 Incremental Density Estimation

Given a stream of incoming data our goal is to construct a Gaussian mixture model

that can be used to detect outliers at any stage during training. The procedure pro-

posed in this section seeks to achieve this by initially representing the dataset with

an over-fitted model (generalising poorly to both the dataset being modelled and -

crucially - to outliers) and then incrementally improving the model’s coverage of the

dataset as new examples arrive. This is achieved as follows: in the initial stages of

training the mixture model is identical to a kernel density estimate, with each new

data point contributing an identical Gaussian kernel; then, after a certain number of

data have been added to the model, the number of components is kept constant by

merging a pair of components for every new kernel added.

At every stage in training the model consists of a set of N Gaussian components

defined by: weights/prior probabilities π = {π1, . . . ,πN}; means µ = {µ1, . . . ,µN}, and

covariance matrices Σ = {Σ1, . . . ,ΣN}. Together, these form the following probability

density function, where d refers to the dimensionality of the data (see eg. [53, 12] etc):

p(z) =
N

∑
i=1

(
wi ·

1

(2π)
d
2 |Σi|

1
2
· e−

1
2 (z−µi)TΣ−1

i (z−µi)

)
(3.10)

The training procedure outlined in the remainder of this section provides a way to

estimate GMM parameters that enable the strategies outlined in Section 3.5.3 to define

useful classification boundaries for detecting outliers.

Initialisation phase In the initial stages of training - before the number of observed

data N reaches the user defined parameter Nmax - we build a mixture model by creat-

ing a new Gaussian component for every new training example. Each component is

centred on its corresponding data point but all components share an identical covari-

ance matrix K and weight 1
N . Thus, for a given dataset X = {x1, . . . , xN}, Equation 3.10

becomes:

p(z) =
1

(2π)
d
2 |K| 1

2
· 1

N
·

N

∑
n=1

e−
1
2 (z−xn)TK−1(z−xn) (3.11)

At this stage in training the model is identical to Kernel Density Estimation, which

has been used for outlier detection in a variety of scenarios (see Section 3.2). Training

the model is straight-forward: when a new training example xnew is received, it is

simply added to the set X:
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X → X ∪ {xnew} (3.12)

As each new example arrives, the weights of the components are updated (to

the new value of 1
N ), and the covariance matrix common to each component is re-

estimated (see Section 3.5.2 for details). At the end of this phase, when the maximum

number of components have been added N = Nmax, the mixture model is defined as

follows (where σ(Nmax) is the final estimate of σ - see Section 3.5.2).

w1...N = 1
N

Σ1...N = Id · σ(Nmax)

µ1...N = x1...N

(3.13)

Merging phase Once the maximum number of mixture components has been reached,

we employ a merging strategy to keep the number of components constant. As with

the previous stage, each new data point xnew contributes a Gaussian kernel function to

the model; the covariance matrix of each kernel is set to the final estimate obtained in

the previous stage. This yields a set of Nmax + 1 components. To restore the model to

the desired number of components Nmax, a pair of components - which may include

the new one - is then merged as follows (see Appendix A for derivation):

wmerge(i,j) = wi + wj

µmerge(i,j) = wi
wi+wj

· µi +
wj

wi+wj
· µj

Σmerge(i,j) = wi
wi+wj

(
Σi + µiµ

T
i
)
+ wj

wi+wj

(
Σj + µjµ

T
j

)
−µmerge(i,j)µ

T
merge(i,j)

(3.14)

We wish to choose a pair of components to merge in a way that minimizes the

resulting change in the p.d.f. encoded by the model. The Kullback-Leibler diver-

gence provides a means of assessing the “damage” caused by replacing a particular

pair of components with a single merged component. Essentially, the KL divergence

KL(P||Q) =
´ ∞
−∞ p(x) log p(x)

q(x) dx quantifies the expected information loss per sample

when an approximating distribution Q is substituted for a true distribution P. For a

pair of Gaussian distributions Gp = {µp,Σp} and Gq = {µq,Σq} of dimensionality d, it

can be calculated as follows [47, 12]:

KL(Gp||Gq) =
1
2

(
log

|Σq|
|Σp|

+ Tr(Σ−1
q Σp) + (µp − µq)Σ−1

q (µp − µq)T − d
)

(3.15)

This allows us to quantify the cost of replacing components Gi and Gj (where i 6= j)

with their merged counterpart Gmerge(i,j) by calculating a weighted combination (as
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proposed by Goldberger and Roweis in [47]) of their respective Kullback-Leibler di-

vergences from Gmerge(i,j) as follows:

cost(Gi, Gj) = wiKL(Gi||Gmerge(i,j)) + wjKL(Gj||Gmerge(i,j)) (3.16)

This cost function can be understood by noting that it corresponds to an upper bound

on the expected decrease in the log-likelihood of a point drawn from wiGi + wjGj when

the latter is replaced by Gmerge(i,j) (see Appendix A for discussion/derivation).

Choosing the pair of components that minimises this cost function requires the cal-

culation of a matrix containing the merging costs for all unique pairs of components.

This matrix is initialised when the maximum number of components is reached, re-

quiring Nmax(Nmax−1)
2 calculations of the merging cost function: it is evident that the

computational complexity of this calculation is O(n2), increasing quadratically with

the final number of components Nmax. However, this O(n2) cost matrix initialisation

is a one-off calculation: thereafter, the computational complexity of maintaining this

matrix is O(n) as the matrix only needs to be updated for entries corresponding to

merged/new components (see next paragraph).

Model updating procedure When a new training example xnew arrives, a new com-

ponent GNmax+1 = {xnew, H f inal} is added to the mixture model, with weight 1
Nex+1

(where Nex is the total number of training examples received before the current one).

To restore the sum of the weights in the model to unity, the weights of the pre-existing

components are rescaled by a factor of Nex
Nex+1 . The merging costs for the new compo-

nent are then calculated (requiring Nmax calculations of the cost function), and the cost

matrix is augmented with a new row/column corresponding to the new component.

Using the newly updated cost matrix, the pair of components with the lowest merging

cost is chosen:

{Gi, Gj} = arg min
Gi ,Gj : i 6=j

(
cost(Gi, Gj)

)
This pair of components is merged (according to Equation 3.14), thus reducing the

model to its original number of components (Nmax). Merging costs are then calculated

for the new merged component, requiring a further Nmax − 1 calculations of the cost

function; a total of 2Nmax − 1 evaluations of this function is therefore required for every

new training example added.

The procedure for updating the merging cost matrix is illustrated in Figure 3.2. As

shown, two merging scenarios are possible: either a pair of existing components is

merged, or the newly added kernel is merged with an existing component. Whenever

a pair of components is merged a vacant index is produced in the cost matrix (and
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mixture model data structure) corresponding to one of the merged components. If the

newly added kernel has been merged with an existing component, its empty index

Nmax + 1 is simply removed; otherwise, if two existing components have been merged,

the new kernel assumes the vacant index created by the merge.

3.5.2 Kernel Parameter Choice

Kernel covariance matrix. An important remaining issue is to determine an ap-

propriate covariance matrix for the kernel functions which are added to the mixture

throughout training (and entirely define the model before merging starts.) We de-

termine this matrix from the training data observed before the merging phase com-

mences. As with all previous applications of KDE to the problem of outlier detection

[11, 139, 173], a uniform spherical covariance matrix is assumed, defined by a single

parameter σ as follows (where Id is the d × d identity matrix):

K(σ) = Id · σ2 (3.17)

While it is in principle possible to estimate full kernel covariance matrices using

sampling techniques, as proposed by Zhang et al. in [177], such methods would be

prohibitively time-consuming given the proposed online learning scenario.

Leave-one-out criterion for estimating σ. An intuitive approach, given that the set

of Gaussian kernel functions constitutes a generative model, is to choose a value for σ

that maximises the model likelihood. A problem with this approach is that, since there

is a kernel function centred on every data point, the model likelihood is maximised

when σ = 0. However, this problem is addressed by the “leave-one-out” likelihood

criterion proposed by Duin in [37], which works by calculating the probability den-

sity for each training example xn given a model constructed from all others ∀x 6= xn,

yielding the following log likelihood function for the dataset:

Lsum(X|σ) =
N

∑
n=1

log

(
1

(2πσ)
d
2
· 1

N − 1
· ∑
∀x 6=xn

e−
||xn−x||2

2σ2

)
(3.18)

This has recently been shown to be a good model selection criterion for multivari-

ate kernel density estimation by Zhang et al. in [177]. A potential problem with this

function is that it could be unduly influenced by outlying samples: in particular, by

assigning low likelihoods to values of σ which result in near-zero probability density

values for a very small number of outlying samples. Since the training data may be

sparsely distributed in the early stages of training, this is an important consideration.

A potential solution to this problem is to take the sum of those log likelihood values
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Figure 3.2: Illustration of the procedure for updating the merging-cost matrix. It should be
noted that this matrix is symmetrical: thus for each merging operation a total of 2Nmax − 1

entries (first corresponding to the new component and then the merged component) must
be calculated. (See text for further details.)
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lying within the interquartile range, thereby omitting the highest and lowest 25% of log

likelihood values from the sum:

LIQR(X|σ) = ∑
∀xn∈IQR{x1,...xN}

(
log

(
1

(2πσ)
d
2
· 1

N − 1
· ∑
∀x 6=xn

e−
||xn−x||2

2σ2

))
(3.19)

How is σ determined? The maximum-likelihood value of σ is estimated by evaluat-

ing the chosen likelihood function for a range of 200 linearly spaced values between

the smallest and largest nearest neighbour distances observed so far (where N is the

current number of training instances), and choosing the maximum. We re-estimate the

value of sigma every time a new example is added to the dataset X:

σest(N) = argmax
σ

(L({x1, . . . , xN}|σ))

Noting that this estimation procedure is likely to give misleading results when

only a small number of training instances have been observed, we initially set σ to an

arbitrarily small value of σmin = 0.001. The data-driven estimate σest is then phased in

gradually as training progresses, by weighting σmin and σest in the following manner

(where Nmax is the maximum number of kernels that will be added to the model, and

N ≤ Nmax is the number of kernels currently added):

σ(N) = σmin(1 − N(N − 1)
Nmax(Nmax − 1)

) + σest.(
N(N − 1)

Nmax(Nmax − 1)
)

The weighting factor N(N−1)
Nmax(Nmax−1) expresses the number of unique pairings of the

data points that have been observed so far, 1
2 N(N − 1), as a proportion of the total

when the merging phase starts, 1
2 Nmax(Nmax − 1). When the merging phase starts, the

kernel covariance matrix is then fixed to:

K f inal = Id.σ(Nmax)

Section 3.6.2 examines the behaviour of the different likelihood functions, while

Section 3.6.5 compares their impact on classification performance.

How does the kernel covariance affect the resulting model? In the case of straight-

forward kernel density estimation (as opposed to density estimation achieved through

the merging rule described in Section 3.5.1) the kernel covariance K effectively acts as

a model complexity parameter. If defined as K = Id.σ , then large values of σ result

in smoother density estimates (which are more invariant to the distribution of the
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underlying data sample) while smaller values result in more complex density func-

tions (which more closely reflect the nuances of the underlying data sample) [12]. For

Gaussian mixture models resulting from the proposed merging procedure, the ker-

nel function has a more complex role, affecting the resulting density estimate in two

different ways.

It is simple to show (see Appendix A for derivation) that for any mixture compo-

nent in the resulting model representing multiple examples {z1, . . . zn} (ie. which has

been involved in merging operations) the resulting covariance matrix can be expressed

as

Cov({z1, . . . zn}) + K (3.20)

where Cov({z1, . . . zn}) is the maximum likelihood estimate for the covariance of

{z1, . . . zn}, and K is the kernel covariance matrix. In this light, it is clear that K (and

hence σ) acts as a bias term contributing to the spread of each component in the mix-

ture model. So, as with kernel density estimation, larger values of σ will result in

smoother density estimates which are less specific to the underlying data.

Given a model where all mixture components represent multiple examples, it is

therefore possible to remove the bias associated with the kernel covariance K by sim-

ply subtracting it from each component in the model. This, however, does not fully

remove the impact of K on the model. Given the merging procedure described in Sec-

tion 3.5.1, the relative cost (as measured by KL divergence) of merging a newly added

kernel with an existing mixture component, compared to that of merging a pair of ex-

isting components, is clearly affected by the kernel covariance matrix K. In particular,

smaller K would reduce the cost of merging a new kernel with an existing component,

while larger K would increase this cost, encouraging pairs of existing components to

be merged.

The two-fold impact of K on the resulting mixture model is examined in Section

3.6.6, where classification performance is measured for two choices of σ, before and

after the subtraction of K from each mixture component.

3.5.3 Outlier Detection Strategies

The preceding sections outlined a way to incrementally generate a Gaussian mixture

model from a stream of data. In order to use this mixture model for outlier detec-

tion, a classification boundary must be defined. We explore two possible strategies for

defining such a boundary, summarised as follows (the impact of these strategies on

classification performance is examined in Section 3.6.5).
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Figure 3.3: Setting a density threshold for outlier detection (see text for description).

Density Threshold The most intuitive way to define such a boundary is to place a

threshold on the value of the estimated probability function defined by Equation 3.10;

as noted in [11], this is equivalent to modelling outliers with a uniform distribution.

Thus, if a test example has a probability density value which falls below a threshold

τ, it is classified as an outlier:

p(z)

{
< τ → outlier

≥ τ → normal
(3.21)

The remaining problem is to choose an appropriate value for τ. The strategy

adopted here is to set a threshold which classifies the portion of the training data with

the lowest (R × 100)% of density values as outliers. This is achieved by estimating the

Empirical Distribution Function (EDF) [159] for the density values assigned to training

data X = {x1, . . . , xN} by the current model (where I(�) is the indicator function):

P̂X (density ≤ p(z)) =
1
N

N

∑
i=1

I (p(xi) ≤ p(z))

The set of observed density values p(xi) and their corresponding cumulative prob-

ability values P̂X (density ≤ p(xi)) can then be linearly interpolated to find the value

τ corresponding to the desired threshold P̂X (density ≤ τ) = R. This process is illus-

trated in Figure 3.3 where a threshold corresponding to R = 0.1 is determined for a

one-dimensional Gaussian mixture model.

Extreme Value Threshold An alternative strategy for detecting outliers with respect

to a Gaussian mixture model has been proposed by Roberts in [109, 110], where a

model from Extreme Value Theory [29] is used to assign a probability value to the

deviation of a new example from each component in the model.
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The key insight is as follows: for a series of separate sets of M samples drawn

from a Gaussian distribution, the deviation of the most extreme example in each set

has been shown to follow the Gumbel distribution. The parameters of this distribu-

tion depend on the number of samples M, so that for larger values of M the expected

deviation of the most extreme sample increases. Thus, for a single multivariate Gaus-

sian estimated from M samples, the probability of observing a new (extreme) sample

whose Mahalanobis distance exceeds d is given by the Gumbel distribution function

as follows:

P(D > d|M) = 1 − exp
(
−exp

(
−d − α(M)

β(M)

))
(3.22)

The location α(M) and scale β(M) parameters of this distribution depend on M as

follows [109, 110]:

α(M) = (2ln M)
1
2 − ln ln M + ln2π

2(2ln M)
1
2

β(M) = (2ln M)
1
2

To use Equation 3.22 to detect outliers with respect to a Gaussian mixture model,

a strategy shown to give good results in [109, 110] is, given a test example z, to eval-

uate its Mahalanobis distance dk(z) =
√

(z − µk)TΣk(z − µk) from each component

k ∈ {1 . . . Nmax} in the model. The Mahalanobis distance dk∗(z) from the closest mix-

ture component k∗ = argmin
k

(dk(z)) is then used to determine whether z is an outlier,

according to a threshold ρ placed on Equation 3.22 as follows:

P(D > dk∗(z)|Mk∗)

{
< ρ → outlier

≥ ρ → normal
(3.23)

The value Mk∗ denotes the number of training samples for which the k∗th mixture

component is responsible: this can be estimated as Mk∗ = N · wk∗ where wk∗ denotes

the prior probability associated with k∗ and N denotes the total number of training

examples observed so far [109, 110].

An advantage of this approach is that - despite operating on a component-wise ba-

sis - a single threshold value ρ will effect more conservative classification boundaries

for components representing fewer observations; furthermore it alleviates the need for

continually estimating an empirical distribution function over the observed training

density values.
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3.6 Experiments

This section examines the performance of the proposed algorithm on a variety of

datasets. The datasets and their associated classification problems are described in

Section 3.6.1, while the remainder of the section presents a series of experiments based

on these datasets.

3.6.1 Datasets

This section describes the datasets used to test the proposed algorithm. The chosen

datasets all contain instances of continuous-valued vectors corresponding to two or

more distinct classes. For the purpose of testing the proposed one-class learning algo-

rithm, a single class of data is arbitrarily chosen from each dataset to represent “nor-

mal” data, while the remaining classes are used to represent outliers.

In all the experiments described, the data used to train the algorithm are rescaled

linearly so that the elements in each vector all lie between −1 and 1. The rescaling

factors calculated for the training data are applied to the test data, thus allowing us

to assess the performance of the proposed algorithm on unseen data. It should be

noted that rescaling occurs as an offline step using the whole set of training data.

While this appears to violate the premise of incremental learning, it is based on the

reasonable assumption that feasible limits for the measurements represented by each

vector element are likely be known a priori in most circumstances. (Indeed, it would

also be realistic to estimate this scaling from a preliminary sample of data.)

Synthetic Spiral Dataset

In order to visualise the behaviour of the proposed algorithm, a synthetic two dimen-

sional dataset was created by drawing random samples within a 3 × 3 square region.

Samples lying with a spiral shaped region, defined by the following inequality, are

used to define a “normal” class (where a = 0.7, w = 0.1, and r and θ are polar coordi-

nates corresponding to radius and angle):

aθ < r ≤ aθ + w

Similarly, samples lying outside the spiral-shaped region are used to define an

outlier class. Figure 3.4 shows the resulting dataset, from which 2500 samples inside

the spiral region are used as training data, and a further set of 5000 samples (2500

inside and 2500 outside) are used as test data.
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Training Data
 (2500 points inside spiral)

Test Data 
(2500 points inside spiral, 2500 outliers)

 

 

inside spiral
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Figure 3.4: Synthetic spiral dataset (see text for description).

Real Datasets

In order to test the proposed algorithm, a variety of datasets were selected from the

UCI Machine Learning Repository [6], listed as follows. The chosen datasets were

arbitrarily selected on the basis of: containing real-world data, having fewer than 40

continuous valued attributes, and multiple classes where at least one contains more

than 250 instances.

1. The Wisconsin Breast Cancer Database, which contains 699 (9-dimensional) vectors

corresponding to cytological measurements. We use the 458 examples of benign

cells as the normal class and the 241 examples of cancer as outliers.

2. The Letter Recognition Database, which contains 20,000 (16-dimensional) parametri-

sations of printed letters, with 26 classes corresponding to the alphabet. We use

the 789 examples of the letter ’A’ as the hypothetical normal class, and all other

classes as outliers.

3. The STATLOG Landsat Satellite Database, which contains 6435 (36-dimensional)

vectors corresponding multispectral images of 6 different types of ground cov-

erage. We use the 1533 examples of ’red soil’ as the normal class and all others

as outliers.

4. The STATLOG Shuttle Database, which contains 58,000 (9-dimensional) vectors

corresponding to readings from radiators within a NASA space shuttle. The

dataset contains 7 classes corresponding to different activity patterns. We use

the 45586 examples of the most common class ’Rad Flow’ as the normal class,

and all others as outliers.

5. The Pima Indians Diabetes Database, which contains 768 (8 dimensional) vectors

corresponding to medical diagnostics used to test for diabetes. We use 500 ex-
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amples corresponding to non-diabetics as the normal class, while the remaining

268 examples corresponding to cases of diabetes are used as outliers.

6. The Pen-Based Recognition of Handwritten Digits Data Set, which contains 10992

(16 dimensional) vectors corresponding to resampled pen trajectories from 10

classes of handwritten digit. We use the 1143 instances of the digit ’0’ as the

normal class, and all others as outliers.

In each case no pre-processing takes place other than the rescaling step mentioned

earlier; however, any instances with missing values are discarded. Furthermore, many

of the datasets are split into suggested training/test sets intended for testing multi-

class supervised learning algorithms. In order to test our one-class learning algorithm,

we combine these sets and use 90% of the examples from the chosen normal class

for training, while retaining the remaining 10% for testing, together with the outlier

class/classes. For the shuttle dataset, where the selected 90% portion of available

training data contains a very large number of examples (41027), only the first 2500

examples are used, enabling experiments to be conducted in reasonable time.

To give a preliminary impression of class-separability, Figures 3.5 and 3.6 show

two different 2-dimensional visualisations for each of the preceding datasets, cor-

responding to linear projections determined using Principal Components Analysis

(which gives the 2 dimensions which capture maximum variation) and Linear Dis-

criminant Analysis (which gives the 2 dimensions yielding the best within-vs-between

class scatter). The Shuttle and Pima Indians datasets - in contrast to the other datasets

considered - do not appear to be well separated for either of the 2D projections, in-

dicating that these datasets may present the most challenging test for the proposed

one-class learning algorithm.

3.6.2 How do the kernel parameter selection methods behave?

This section presents a set of preliminary experiments documenting the behaviour

of the two strategies described in Section 3.5.2 for estimating the kernel covariance

parameter σ.

The values of σ yielded by attempting to maximise the log-likelihood functions

described by Equations 3.19 and 3.18 were recorded for different quantities of training

data, ranging from 2 examples to 250 examples, for each dataset described in Section

3.6.1. The purpose of this experiment was to compare the behaviour of the two meth-

ods described in Section 3.5.2, and to determine how many items of training data need

to have been observed before a reasonable value of σ can be obtained.

For each dataset, Figure 3.7 shows how the estimated value of σ changes as more
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Figure 3.5: 2D Visualisation of real test datasets (Cancer, Letter and Pen-Digits datasets)
using PCA and LDA projections. (See text for discussion.)
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Figure 3.6: 2D Visualisation of real test datasets (Pima Indians, Satellite and Shuttle
datasets) using PCA and LDA projections. (See text for discussion.)
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Figure 3.7: Behaviour of model parameter estimation techniques for kernel covariance
matrix for increasing quantities of training data (see text for discussion).
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data points are observed. In each plot, the mean estimated σ vs number of observa-

tions curves (generated for 10 different random selections of 250 training data) are

shown, accompanied by shaded regions indicating ±1 standard deviation at each

point. The orange curves indicate the values of σ estimated using Lsum(X|σ), the sum

of leave-one-out log-likelihood values (Equation 3.18), while the blue curves indicate

the values estimated using LIQR(X|σ), the sum of those values lying within the in-

terquartile range (Equation 3.19).

General behaviour. In both cases it is clear that the estimated value of σ rapidly de-

creases as more training data is observed. In most cases the variance of the estimated

values (taken for different random selections of training data) also decreases. After

an initial rapid drop in the estimated value of σ, both measures appear to stabilise: at

this stage they continue to decrease, but at a much slower rate. Noting that the cost

of evaluating both functions increases quadratically in the number of training exam-

ples, it rapidly becomes impractical to continue estimating σ. In this light, we use 100

training examples to estimate σ in the experiments described in the following sections,

noting that the phase of gradual decrease appears to have been reached at this point

in each of the plots shown in Figure 3.7.

How do the methods differ? Although the pattern of rapid decrease followed by

very gradual decrease is shared by both methods for estimating σ, it is clear from the

plots shown in Figure 3.7 that the two methods behave differently in all cases (except

for Satellite dataset, for which the two methods give identical results).

As discussed in Section 3.5.2, the underlying rationale for using LIQR(X|σ) (the

sum of log-likelihood values lying within the interquartile range) rather than Lsum(X|σ)

(the sum of all log-likelihood values) is to prevent a small number of isolated data

points from disproportionately increasing the estimated value of σ. Indeed, this rea-

soning is supported by the results shown in Figure 3.7, which indicate that the σ val-

ues estimated using Lsum(X|σ) are almost always higher than those estimated using

LIQR(X|σ); furthermore, in some cases (eg. for the spiral dataset), the values estimated

using LIQR(X|σ) appear to stabilise more quickly.

Noting the observed difference in the behaviour of the two methods, it may be sen-

sible to adopt LIQR(X|σ), which favours smaller values of σ, in situations where mis-

classified normal examples are more tolerable than misclassified outliers. Conversely

Lsum(X|σ) may be favourable in situations where “false alarms” due to misclassified

normal examples are more costly than the misclassification of a small number of out-

liers. The classification performance resulting from these methods, and the various
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Phase 1: Kernel Density Estimation

(Add an identical Gaussian component 

for every new training example)

Phase 2:  Gaussian Mixture Model

(Represent multiple examples with

each Gaussian component)

MAXIMUM NUMBER OF 

COMPONENTS REACHED

(N=100)

10 examples

10 components
100 examples

100 components

250 examples

100 components

2500 examples

100 components

Figure 3.8: Mixture model organisation during training on the synthetic spiral dataset (see
text for description).

outlier detection techniques discussed in Section 3.5.3, is examined in the following

sections.

3.6.3 How does the proposed algorithm behave?

This section presents experiments illustrating the behaviour of the proposed algorithm

in its simplest form. The sum of all leave-one-out log-likelihood values (Equation

3.18) is used to estimate σ, while a classification threshold is determined by placing a

threshold on the resulting probability density function (Equation 3.21).

In this section, and for all subsequent experiments, the proposed algorithm is

tested with the maximum number of components Nmax set to 100. This is based on the

reasonable assumption that a set of 100 Gaussian components is more than adequate

to model most datasets, and the observation that the estimated values of σ appear to

stabilise by this point (see Section 3.5.2).

Visualisation of mixture model organisation. To ascertain that the proposed al-

gorithm behaves as expected, the organisation of the resulting mixture model was

recorded during training on the synthetic two dimensional spiral dataset described in

Section 3.6.1. Figure 3.8 shows both the position, and 1 standard deviation boundary,

of each component at several stages during training: at 10 and 100 observations, dur-

ing the kernel density estimation phase, and then at 250 and 2500 observations during

the merging phase. It is clear from the model organisations recorded for 100, 250

and 2500 observations that the proposed merging procedure yields a progressive im-

provement in the representation of the underlying training data distribution as more

examples are observed.
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How does classification performance change during training? To further charac-

terise the behaviour of the proposed algorithm, classification performance was mea-

sured at regular intervals during training on each of the datasets described in Section

3.6.1. In order to define a classification boundary for this experiment, we use the

density threshold approach described in Section 3.5.3, setting a threshold τ, where

P̂X (density ≤ τ) = 0.9, so that approximately 10% of the normal training data is delib-

erately misclassified. It should be noted that this classification threshold may not nec-

essarily provide the best classification performance (in Section 3.6.4, ROC curves [40]

are used to fully characterise the range of performance levels that can be obtained);

nonetheless, it provides a useful characterisation of the behaviour of the proposed

algorithm.

Figure 3.6.3 illustrates the changing performance of the proposed algorithm for

each dataset. In each case the proposed algorithm was trained on 10 different random

permutations (90% for training, 10% for testing) of the designated class of normal

data. As each training example is added, the resulting classification performance is

measured, averaged over 10 trials. In each plot, the blue curve shows the proportion

of the normal test data correctly recognised as normal (True Positive rate), while the

red curve shows the proportion of the designated outlier data misclassified as normal

(False Positive rate): both curves are accompanied by shaded regions indicating ±1

standard deviation at each point. Furthermore, in each plot a vertical dashed line

indicates the start of the merging phase, which occurs when 100 components have

been added to the model.

In general, classification performance can be seen to improve as more training ex-

amples are observed, with a high True Positive Rate (TPR) and low False Positive Rate

(FPR) achieved at the end of training (see Table 3.2 for relevant figures). The classi-

fication performance obtained on the Pima Indians dataset is one principal exception

to this trend: in this case FPR increases steadily as TPR increases, meaning that gen-

eralisation to the normal class is occurring at the expense of the misclassification of a

large proportion of the outlier class; after training on this dataset, a classification rate

(corrected for differences in class proportions) of 57.7 ± 1.13% is obtained for the test

data, which is only marginally better than random guessing (ie. 50%). In a similar

vein, FPR appears to increase during training on the Shuttle dataset; however, in this

case, a reasonable level of classification performance (a class-corrected classification

rate of 88.1 ± 1.08%) is obtained at the end of training. The only other dataset for

which a high (ie. ≥ 1%) False Positive Rate is observed is the Spiral dataset; in this

case, however, performance improves with training, with FPR falling steadily as more

training examples are observed.
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Where the algorithm appears to fail, it is possible to draw one of two conclusions:

one possibility is that the normal and outlier classes overlap significantly in feature

space, thereby preventing the probability density of the normal class from providing

a useful classification boundary; alternatively poor classification performance may

reveal an underlying failing of the proposed algorithm. The 2-dimensional PCA/LDA

projections shown in Figures 3.5 and 3.6 lend some support to the former hypothesis,

as the Pima Indians and Shuttle datasets appear to be the least well-separated. Section

3.6.4 attempts to shed further light on this question, by comparing the performance of

the proposed algorithm with an existing state-of-the-art approach.

Dataset Classification (%) False Pos. Rate (%) True Pos. Rate (%)

cancer 94 ± 2.35 0 ± 0 88 ± 4.71

letter 91.7 ± 2.23 0.201 ± 0.0615 83.7 ± 4.44

pendigits 94.2 ± 1.73 0 ± 0 88.3 ± 3.46

pimaindians 57.7 ± 1.13 72.6 ± 1.14 88 ± 2.31

satellite 94.3 ± 1.08 0.867 ± 0.0474 89.5 ± 2.16

shuttle 88.1 ± 1.09 13.0 ± 2.43 89.3 ± 0.83

spiral 89.0 ± 0.871 8.55 ± 1.95 86.5 ± 0.977

Table 3.2: Classification performance at the end of training using proposed algorithm
(using Lsum(X|σ) and density threshold). The left hand column shows an aggregate
measure of classification performance corrected for differences in class proportions (ie.
C = 1

2 [TPR + (1 − FPR)].)

3.6.4 How well does the proposed algorithm perform?

This section attempts to place the behaviour of the proposed algorithm in context, by

comparing its performance with that of the Incremental Support Vector Data Descrip-

tion algorithm [146, 74] described in Section 3.3 (referred to hereafter as IncSVDD).

We use a freely available implementation of IncSVDD contained in the DDtools

MATLAB toolbox [140]. In all tests we use a Gaussian kernel function and optimize

the kernel parameter (for the whole training dataset) using the consistent_occ function

from [140], which implements the consistency-based model selection criterion pro-

posed in [143]. We use this criterion to find the best kernel parameter value from a

set of 20 values uniformly distributed between the shortest and longest Euclidean dis-

tances observed within the dataset. To improve this initial estimate, we then repeat the

parameter optimization process on a finer scale, for a further 20 values surrounding

the optimal parameter from the first set.
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Figure 3.9: Classification performance vs number of observations, for a mixture model
generated using the proposed algorithm. In this case, the maximum number of components
is set to 100, σ is estimated using Lsum(X|σ), and a classification boundary is defined by
placing a density threshold at τ where P̂X (density ≤ τ) = 0.9. (See text for discussion).
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Dataset cancer letter pendigits pimaindians satellite shuttle spiral

Proposed Alg. 0.9208 0.9571 0.9918 0.1628 0.8193 0.6906 0.3474

IncSVDD 0.8709 0.2566 0.9903 0.0144 0.7469 0.6523 0.0004

Table 3.3: Comparison of IncSVDD with the proposed algorithm (using Lsum(X|σ) and
density threshold). This table shows mean values of 50 ∗ AUCFPR≤ 1

50
taken over 10 trials

for each dataset: this value measures the area under the ROC curve for FPR values below
1
50 , and is normalised to range between 0 and 1.

As with the previous section, the most basic variant of the proposed algorithm is

used: the sum of all leave-one-out log-likelihood values (Equation 3.18) is used to es-

timate σ, while a classification threshold is determined by placing a threshold on the

resulting probability density function (Equation 3.21). We compare the performance

of the two algorithms at the end of training on each dataset by generating ROC (Re-

ceiver Operating Characteristic) curves which document the range of possible trade

offs between TPR and FPR that can be obtained by varying the classification threshold

for each classifier. (For IncSVDD, this threshold corresponds to Euclidean distance

from the centre of a high-dimensional hypersphere defined by a weighted subset of

training data in conjunction with a kernel function [142, 146].)

Figure 3.10 shows the ROC curves obtained for the two algorithms at the end of

training on each dataset. Each ROC curve displayed is the mean ROC curve obtained

for 10 trials (corresponding to different random selections of training data), generated

by vertically averaging TPR values for each corresponding FPR value as described in

[40]. For almost all datasets, the mean ROC curve obtained for the proposed algorithm

lies above that obtained for IncSVDD, for FPR values below 0.02. In other words, it

correctly classifies a greater proportion of normal data than IncSVDD for those thresh-

olds which allow no more than 1 in 50 outliers to be misclassified. This observation

can be quantified numerically by measuring the area under the ROC curves in the re-

gion where FPR ≤ 0.02 (see Table 3.3 for resulting values), yielding a difference which

is statistically significant (p = 0.0156 Wilcoxon Signed-Rank Test [86]).

In general the two algorithms yield comparable performance, with the exception of

the Spiral and Letter datasets, where the proposed algorithm outperforms IncSVDD

by a large margin, and the Shuttle dataset, where IncSVDD yields better classifica-

tion performance. It is also interesting to note that IncSVDD did not outperform the

proposed algorithm for the Pima Indians dataset, lending weight to the hypothesis -

posed in the preceding section - that the normal and outlier classes from this dataset

may overlap in feature space.
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Figure 3.10: Comparison of ROC curves for Incremental SVDD and the proposed algorithm
(using Lsum(X|σ) and density threshold). Note that the range of the axes differs between
plots. (See text for discussion.)
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3.6.5 Which configuration works best?

As potential improvements to the basic configuration of the proposed algorithm (used

to generate the preceding results), Sections 3.5.2 and 3.5.3 suggested alternative meth-

ods for selecting the σ parameter (using the interquartile range of leave-one-out log-

likelihood values), and defining a classification boundary (using the component-wise

extreme value statistic proposed by Roberts [109]). This section examines the impact

of these alternative methods on the resulting classification performance.

As for the previous section, we generate ROC curves (vertically averaged over 10

trials) to evaluate classification performance at the end of training on each dataset.

These curves, shown in Figure 3.11, are generated for four different configurations of

the proposed algorithm: models with density-based classification boundaries (thick

and thin blue curves for σ estimated using Lsum(X|σ) and LIQR(X|σ) respectively),

and models with EVT-based classification boundaries (thick and think purple curves

for σ estimated using Lsum(X|σ) and LIQR(X|σ)). For reference purposes the ROC

curves for IncSVDD are also shown.

Overall, the results achieved for the four combinations of σ selection method and

classification boundary appear to be very similar, with no clear trend linking relative

performance levels (ie. relative to the configuration used in the preceding sections -

denoted by the thick blue curve) with any given alternative configuration. However,

performance did appear to differ significantly on two of the datasets. For the Spiral

dataset, models where σ was estimated using LIQR(X|σ) (shown in Section 3.6.2 to

yield smaller values than Lsum(X|σ) ) produced better performance than those using

Lsum(X|σ) , regardless of the type of classification boundary. Noting that the Spiral

dataset requires the model boundary to occupy a very precisely defined region sur-

rounded by outliers, it is clear that the resulting classification performance is sensitive

to the slightest over-generalisation, thus favouring a smaller value of σ.

Conversely, for the Shuttle dataset, the models where σ is estimated using Lsum(X|σ),

provide better performance (in conjunction with a density-based boundary) than mod-

els using LIQR(X|σ) for either boundary type; in this case the bias introduced by a

larger value of σ may be beneficial. However this classification performance is re-

duced when an EVT-based classification boundary is used; one potential reason for

this is that - unlike density values, which may reflect overlapping low-density con-

tributions from several components - the EVT probability values are calculated with

respect to a single component, providing reduced capacity for generalisation (and thus

yielding lower values of TPR for a given FPR value).

However, it is also important to note that generalisation due to the overlapping

“tails” of components (ie. when a given location is covered by the low probability re-



3.6. Experiments 93

0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

Tr
u

e
 P

o
si

ti
v

e
 R

a
te

Dataset: cancer

0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1
Dataset: letter

0 0.02 0.04 0.06 0.08 0.1
0.95

0.96

0.97

0.98

0.99

1

Tr
u

e
 P

o
si

ti
v

e
 R

a
te

Dataset: pendigits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Dataset: pimaindians

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Tr
u

e
 P

o
si

ti
v

e
 R

a
te

Dataset: satellite

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1
Dataset: shuttle

False Positive Rate

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Tr
u

e
 P

o
si

ti
v

e
 R

a
te

Dataset: spiral

False Positive Rate

Density threshold  
LIQR(σ)

(Mean ROC curves for 10 trials)

Lsum(σ)

EVT threshold  
LIQR(σ)

Lsum(σ)

IncSVDD  
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Sections 3.5.2 and 3.6.2) and different methods of defining classification boundary (see
Section 3.5.3) on resulting classification performance. (See text for description).



94 Chapter 3. Incremental One-Class Learning

gions of several Gaussian components whose densities add together to yield a density

above the normal classification threshold) may not always be desirable: in such cases,

the component-wise EVT threshold may be the best choice. This point is illustrated

by the performance on the Letter dataset, where the EVT-based boundaries appear

to yield a marginal improvement over the density-based boundaries, regardless of

the method used to select σ. For this dataset, which contains parametrised images of

printed letters, the summation of weak resemblances between a new instance (eg. the

letter ’R’) and a number of model components (all representing the letter ’A’) appears

to be undesirable.

3.6.6 How does the kernel function affect classification performance?

The preceding section (see Figure 3.11) showed that the value of σ (as determined by

the two model selection criteria Lsum(X|σ) / LIQR(X|σ) which favour slightly higher

/ lower σ respectively) had a noticeable effect on classification performance for cer-

tain datasets . As discussed in Section 3.5.2, the value of the kernel parameter σ af-

fects the resulting mixture model in two different ways: 1) By acting as a bias term

which smooths the resulting density estimate and 2) by altering relative cost of dif-

ferent merging operations as each new kernel is added to the model. To determine

how these factors account for the observed difference in classification performance for

different σ, a further experiment was conducted where the kernel bias term Id.σ was

subtracted (at the end of training) from each covariance matrix in the model1.

Figure 3.12 shows ROC curves documenting classification performance (obtained

using a density based threshold) for models generated with two different values of σ

(determined by using either Lsum(X|σ) or LIQR(X|σ)), both before and after the sub-

traction of the kernel bias term . In most cases, the impact of the kernel covariance

on the underlying model structure (through altering the relative cost of merging pairs

of existing components when each new kernel is added) appears to be minimal. For

the Spiral and Shuttle datasets, where there is a relatively large difference between

models with different σ values before the subtraction of the kernel bias term, there is

almost no difference afterwards. For the Letter dataset, however, there is a large differ-

ence in classification performance for different σ values after the kernel bias term has

been subtracted, implying that in this particular case the underlying model structure

is significantly affected by different values of σ.

Nonetheless, removing the kernel bias term has a large effect on classification per-

formance in almost all cases. In several cases (ie. the Cancer, Letter, Pendigits and

1To avoid the possibility of zero elements in the diagonal of the resulting covariance matrices another,
much smaller, bias term Id.10−6 was then added to each matrix.
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Figure 3.12: ROC curves illustrating the impact of subtracting the kernel bias term (see
Section 3.5.2) from the mixture models obtained at the end of training given two different
values of σ (see Section 3.6.2). A density-based threshold is adopted in all cases. (See text
for description).
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Satellite datasets) subtracting the kernel bias term substantially reduces classification

performance. Conversely, for the Spiral and Shuttle datasets, removing the kernel

bias yields a substantial improvement in classification performance. The observed

improvements/reductions in classification performance indicate that the impact of

the kernel covariance matrix on classification performance can largely be accounted

for in terms of its role as a bias/smoothing term. Noting that the only datasets where

removing the kernel bias did not reduce performance (the Spiral and Shuttle datasets)

were those with the largest number of training examples (2500), it would be reason-

able to conclude that the kernel bias term plays an important role in compensating

for the lower ratio of training examples to mixture components encountered with the

other datasets. In this light, it would be interesting to conduct further experiments

with larger datasets to determine whether removing the kernel bias term would pro-

vide improved performance in all cases, once a sufficient number of examples have

been observed.

3.7 Discussion

The algorithm proposed in this chapter provides a way to incrementally build a Gaus-

sian mixture model to represent a single class of data: experimental results on both

synthetic and real-world datasets indicate that the proposed algorithm is capable of

delivering a useful level of classification performance, outperforming the Incremen-

tal SVDD algorithm [146] in the majority of cases when the latter is optimised using

the consistency-based criterion proposed in [143]. It is worth noting that the param-

eter selection procedure used for the IncSVDD algorithm has the benefit of operating

on the basis of the whole set of training data in an off-line optimisation step, while

the proposed algorithm performs parameter selection “on-the-fly” on the basis of the

first 100 (as configured here) points observed, making it significantly more useful in a

practical situation.

However, it is important to note that the parameter selection procedures implicit

in both algorithms operate on the sole basis of heuristics derived from the (one class)

training data, rather than classification performance on a (two class) validation set

(which is by definition unavailable in scenarios where one-class learning is required).

The preceding results are therefore as much a comparison of the ability of the (train-

ing data based) parameter selection procedures to deliver reasonable parameters for

the two learning algorithms as they are of the learning algorithms themselves. In this

light, the results presented in this chapter do not rule out the possibility that IncSVDD

may provide better classification performance than the proposed algorithm if given
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the correct parameters; however, when considering each algorithm in conjunction

with its best available model selection procedure, the proposed algorithm compares

favourably with IncSVDD.

The intended purpose of the proposed algorithm is to provide a mechanism for

incrementally learning models of typical motion trajectories. The next chapter of this

thesis addresses the issue of representing motion trajectories in a consistent paramet-

ric form, so that the proposed algorithm can be applied. Finally, Chapter 4 explores

the application of the algorithm proposed in this chapter to suitably parametrised tra-

jectory data, as part of a semi-supervised learning framework.





Chapter 4

Parametric Trajectory
Representation for Behaviour

Classification

4.1 Introduction

In order to apply the learning algorithm described in Chapter 3 to trajectory data, it is

necessary to encode each trajectory with a vector of fixed length: this poses a problem

as there is no restriction on the length of a given trajectory. A solution to this prob-

lem is to represent each trajectory with a low-dimensional parametric approximation.

However, there are many different possible parametric representations that could be

applied to trajectories, and no clear indication of the most appropriate choice for the

modelling/classification approach proposed in this thesis. This chapter attempts to

address this problem through experimental comparison.

Firstly, several different ways to encode a trajectory with a pre-defined number of

parameters are described in Section 4.2. A number of techniques for quantifying class

separability are then reviewed in Section 4.3. Finally Section 4.4 present quantifica-

tions of the trade-off between dimensionality and class-separability for each represen-

tation, using several different real trajectory datasets.

4.2 Parametric Trajectory Representations

This section reviews several different strategies for approximating a trajectory using

a fixed set of parameters. As illustrated in Figure 4.1, a motion trajectory can be con-

sidered in terms of two independent signals: X and Y positions vs time. In this light,

a trajectory representation can be obtained by fitting a separate parametric curve to

99
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Figure 4.1: Representation of trajectory data as separate (X and Y vs time) signals.

both signals and concatenating the resulting parameters into a single vector [120, 90],

which means that many solutions to the problem of 1D curve/function approximation

can be directly applied to the task of trajectory representation.

Each of the representational strategies discussed in this chapter allows a trajectory

to be described with an arbitrary number of parameters, which means that varying

levels of accuracy can be obtained for a given strategy. For example, Figure 4.2 illus-

trates the how the fidelity of a cubic spline trajectory representation (see Section 4.2.1)

changes as a function of the number of control points. Clearly, with a large enough

number of parameters it is possible to model a given trajectory almost exactly. In the

context of behaviour of classification, the quality of a representation corresponds to its

ability to separate a set of distinct classes, which may not always correspond directly

to approximation error. In this light, an interesting question is how the quality of the

representations differs when only a small subset of the possible parameters is used to

approximate each trajectory.

Each representational approach discussed provides a means to describe arbitrary-

length coordinate vectors ~X and ~Y, sampled at times ~T = {t1, . . . tN}, with fixed-length

parameter vectors ~CX and ~CY, which can then be concatenated as a single vector de-

scribing the trajectory, together with the total time tN :

{
~X,~Y,~T

}
→
[
CX

1 , . . . ,CX
M,CY

1 , . . . ,CY
M, tN

]
(4.1)

In each case the parameters ~CX, ~CY extracted for a given coordinate sequence de-

fine a curve with respect to an underlying curve parameter, over a fixed interval. As

suggested by Figure 4.1 a natural choice for this parameter is time, another possibility

- relevant to trajectory representation - is arc-length (ie. the total distance traversed at a
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5 Control Points 10 Control Points 25 Control Points

Figure 4.2: Cubic spline trajectory approximation with different numbers of control points.

given point) [50]. We explore both possibilities - thus, in the remainder of this section,

the parameter sn accompanying the nth coordinate pair xn,yn could refer interchange-

ably to one of the following:

1. Proportion of total time: sn =
tn

tN

2. Proportion of total arc-length: sn = ∑n
i=2

√
(xi − xi−1)2 + (yi − yi−1)2

∑N
i=2

√
(xi − xi−1)2 + (yi − yi−1)2

The use of a normalised curve parameter s ∈ [0,1] is important as it means that the

spatial locations occupied during a trajectory can be inferred directly from { ~CX, ~CY}
without knowledge of the total distance traversed/time taken; moreover, it is a nec-

essary consequence of certain representations (eg. those using Chebyshev or Wavelet

basis functions) which are only defined in terms of a specific interval.

Ultimately, all of the following trajectory representation strategies define a curve

approximation as sum of M basis functions h1(s), . . . , hM(s) weighted by a correspond-

ing set of coefficients c1, . . . cM, so that X(s) = ∑M
m=1 hm(s) · cm. What distinguishes each

method is the nature of the basis functions, and the manner in which the coefficients

may be determined from a discrete coordinate sequence. In each case we describe how

to determine a set of coefficients ~CX = [c1,...cM] approximating a coordinate sequence
~X = [x1,...xN ] , noting that exactly the same procedure can be applied to ~Y.

4.2.1 Least-Squares B-Spline Approximation

It is possible to describe a wide range of non-linear curves using a linearly weighted

sum of a set of non-linear basis functions. B-Spline functions [8, 53] are an important

example of such basis functions and have been widely adopted, both for the creation of
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nonlinear curves in computer graphics contexts [102, 124], and for the representation

of such curves in computer vision algorithms [50, 13, 24].

A B-spline curve X(s) can be defined by a set of p B-spline functions Bi,d(s), each

weighted by a corresponding control point CX
i :

X(s) =
p−1

∑
i=0

CX
i Bi,d(s)

The parameter d indicates the “order” of the B-spline functions, which determines

the smoothness of the resulting curve, giving it d − 2 continuous derivatives at each

knot point (see below). Cubic B-spline functions, where d = 4, are a popular choice (see

eg. [50, 13, 24]) and are adopted here, ensuring smooth joins between curve segments.

Each B-spline function Bi,4(s) is defined by a knot vector ~τ and the following re-

cursive formulae:

Bi,1(s) =

{
1 if τi ≤ s < τi+1

0 otherwise
Bi,m(s) = s−τi

τi+m−1−τi
Bi,m−1 + τi+m−s

τi+m−τi+1
Bi+1,m−1 (4.2)

The knot vector ~τ encodes a set of points in the underlying parameter space (eg.

time) which determine the interval over which the basis functions are defined, and

their distribution within that interval. For a set of p basis functions of order d this

vector has length p + d. For the purpose of representing multiple curves with the

same basis set, the first/last d knots are set to be equal to the start/end of the desired

interval, and the intermediate p − d knots are uniformly spaced.

An approximation for a set of coordinates ~X = [x1, . . . xN ]T with parameter values
~S = [s1, . . . sN ]T can be expressed in terms of a vector of p unknown control points ~CX,

and an N × p matrix Φ where Φn,i = Bi,d+1(sn), so that:

~X ≈ Φ ~CX (4.3)

The p control points which minimise the sum of squared errors between the origi-

nal coordinates and their approximation can then be found using the Moore-Penrose

pseudoinverse operator Φ† = (ΦTΦ)−1ΦT as follows [12]:

~CX = Φ†~X (4.4)

Finally, it should be noted that this least-squares regression procedure is not spe-

cific to B-spline functions and can be used in conjunction with any other type of basis

function, including the Fourier, Wavelet and Chebyshev basis functions discussed in

the remainder of this section. In each case, however, there are other more efficient

ways to fit curve models using these functions.
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4.2.2 Discrete Fourier Transform

The Fourier Transform is a mathematical operation which maps a signal between the

time and frequency domains. This allows a series of measurements sampled at regular

intervals to be described as a weighted set of sinusoidal functions corresponding to

different frequencies, where the weights for the constituent frequencies encode the

information contained in the original signal.

For a discrete signal ~X of length N, there are N
2 distinct frequencies; the magnitude

of the k-th frequency can be calculated as follows (where i is the imaginary unit
√
−1)

[106]:

fk(~X) =
1
N

N

∑
n=1

xn exp
(
−2πi(k − 1)(n − 1)

N

)
The resulting value of fk is a complex number where the real part corresponds to

a convolution of the original signal with a Cosine function (of wavelength N
k ), and the

imaginary component corresponds to a convolution with a Sine function. In a similar

vein the signal can be reconstructed from the extracted frequencies ~F = { f1 . . . fN} as

follows:

xn(~F) =
N

∑
k=1

fk exp
(

2πi(k − 1)(n − 1)
N

)
For the purpose of trajectory representation, an important property of this repre-

sentation is that the first M values of fk form a useful coarse-grained approximation of

the original signal, by disregarding the N − M highest spatial frequencies (Naftel et al.

represent trajectories in this fashion in [91, 90].) Noting that the imaginary component

of f1 is always zero, a set of coordinates ~X = [x1, . . . xN ] can thus be represented with a

2M − 1 dimensional vector as follows (where <(z) and =(z) denote the magnitude of

the real and imaginary components of z):

~CX =
[
<( f1(~X)),<( f2(~X)),=( f2(~X)), . . . ,<( fM(~X)),=( fM(~X))

]
Since trajectories are assumed to be regularly sampled in time, the Discrete Fourier

Transform yields a spatiotemporal parametrisation by default. To achieve spatial

parametrisation with this method, we linearly interpolate the original trajectory to

create a new coordinate sequence regularly sampled in terms of arc-length.

4.2.3 Chebyshev Polynomials

Chebyshev polynomials, which are often used for function approximation [106], pro-

vide another useful set of basis functions that can be used to represent trajectories
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[22, 90]. The nth degree Chebyshev polynomial function is defined as follows:

Tn(s) = cos(narccos(s))

When parametrised by an appropriate set of coefficients {c1, . . . cN}, a function f (s)

defined on the interval [−1,1] can be modelled with a weighted sum of Chebyshev

polynomials as follows [106]:

f (s) ≈
N−1

∑
k=0

ckTk(s)

As with DFT coefficients, the first M coefficients can be used to provide a useful

approximation of the original signal [106]. In order to calculate coefficients to ap-

proximate a function X(s) with the first M Chebyshev polynomials, it is necessary to

evaluate X(s) and T0(s), . . . , TM−1(s) for values of s where TM(s) = 0. There are M

such values for TM(s), with the kth one given by:

s0,k = cos

(
π(k + 1

2 )
M

)
Clearly, the parameter values ~S associated with a discretely sampled coordinate

sequence ~X do not necessarily correspond to s0,0, . . . s0,M−1. Moreover, Chebyshev ap-

proximation operates on the interval [−1,1] while the normalised curve parameters

defined at the start of this section lie between 0 and 1. We address this issue by rescal-

ing ~S to the interval [−1,1] and using linear interpolation to find an an X value, x0,k,

for each s0,k. Finally, each coefficient cj can be calculated as follows [106]:

c0 =
1
M

M−1

∑
k=0

x0,k · T0 (s0,k) cj>0 =
2
M

M−1

∑
k=0

x0,k · Tj (s0,k) (4.5)

4.2.4 Haar Wavelet Coefficients

Wavelets provide another useful class of basis functions that can be used to parametrise

signals in a multiscale fashion. Unlike Fourier and Chebyshev functions, which con-

tribute globally to the resulting signal, Wavelet basis functions are localised; in other

words, they assign zero values to all but a specific subsection of the interval over

which the signal is defined.

There are many different possible wavelet basis functions (see eg. [21]); however,

for the purposes of this chapter we restrict our attention to Haar wavelets, as these

have previously been applied to trajectory parametrisation by Sahouria et al. in [120],

and are popular for time series indexing (see eg. [162, 25]). The Haar ’mother wavelet’

function ψ and scaling function φ are defined on the interval [0,1] as follows [21]:
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φ(s) =

1 if 0 ≤ s < 1

0 otherwise
ψ(s) =


1 if 0 ≤ s ≤ 1

2

−1 if 1
2 < s ≤ 1

0 otherwise

Given a mother wavelet function ψ, a range of rescaled and shifted versions of the

function can be derived, to define a set of local basis functions at multiple scales/resolutions.

Given the above definition for ψ, the Haar wavelet function corresponding to the kth

location at the jth resolution can then be defined as follows [158]:

ψj,k(s) = 2
j
2 ψ(2js − k)

Figure 4.3d illustrates the resulting Haar wavelet functions at the first (ie. coarsest)

three resolutions j = 0 . . . 2. For each successive scale, the number of basis functions

corresponding to different locations increases by a factor of 2, which means the num-

ber of basis functions used to approximate a given signal must always be an integer

power of 2; similarly, the signal length must also be an integer power of 2. As with the

preceding approaches, a signal can be expressed as a weighted sum of wavelet basis

functions - the Jth resolution approximation to a signal X(s) can be written in terms

of a set of 2J coefficients {α, β0,0, . . . β J−1,2J−1} as follows [158]:

X(s) ≈ αφ(s) +
J−1

∑
j=0

2j−1

∑
k=0

β j,kψj,k(s)

Given a signal ~X = [x1, . . . xN ], where N is an integer power of 2, the Haar wavelet

coefficients can be calculated as follows [158] (it should be noted that this calculation

can be performed in a more efficient manner using repeated applications of a transfor-

mation matrix - see [137, 21] for details):

α =
1
N

n

∑
i=1

φ(si) · xi β j,k =
1
N

n

∑
i=1

ψj,k(si) · xi

The requirement that signal length should be an integer power of 2 poses a prob-

lem for trajectory parametrisation, which involves sequences of arbitrary length. This

issue is addressed in [120] by resampling trajectories to an appropriate length; we

adopt this strategy here, resampling (using linear interpolation) each coordinate se-

quence to a uniform length of 512 (ie. 29) elements. A vector of 2J coefficients (where

J ≥ 1) can then be constructed to represent the resampled signal:

~CX =
[
α, β0,0, . . . β J−1,2J−1

]
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Figure 4.3: This figure shows sets of basis functions corresponding to the four represen-
tational strategies discussed in Section 4.2. In each case - except for the Fourier basis
functions which must be used in odd numbered sets - a set of 8 basis functions is shown,
corresponding to a 16+1 dimensional trajectory representation (8 coefficients each for X
and Y coordinate sequences, and 1 for time). For the Fourier, Chebyshev and Haar wavelet
functions, the colouration of the curves indicates the different resolutions represented by
subsets of the 8 (or 7) basis functions. See text for further details.
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4.3 Measures of Separability

Given a set of trajectories corresponding to several different classes of motion and a

potential parametric representation, a reasonable question to ask is: to what extent do

the motion patterns from each class form distinct clusters in the space defined by the

chosen representation? Answering this question requires the ability to quantify the

extent to which the regions of feature-space occupied by each class overlap, a quality

known as separability. This section highlights three techniques that may be used to

quantify class separability.

A key feature of the following methods is that they can be applied deterministi-

cally to a given labeled dataset, without requiring the pre-specification of any param-

eters/assumptions about the nature of the data.

4.3.1 Within-vs-between class scatter

If the different classes constituting a dataset are well separated in a given feature space,

it is likely that the dispersion of the class means will be large, while the dispersion of

the points within each class will be small. It is possible to quantify this intuitive quality

in the following manner [45, 160].

The dispersion of the class means is captured by the between-class covariance matrix

SB, which measures the covariance of the class means µk with respect to µglobal , the

mean of the whole dataset, with the contribution of each class mean weighted by the

proportion of the dataset it accounts for Nk
Nglobal

as follows:

SB = ∑
∀k

Nk

Nglobal
(µk − µglobal)(µk − µglobal)T

The overall measure of within-class dispersion is captured by the the within-class-

covariance matrix SW , which is calculated by adding the covariance matrices Σk cor-

responding to each individual class, again, weighted by the portion of the dataset

accounted for:

SW = ∑
∀k

Nk

Nglobal
Σk

The matrices SB and SW can be combined in a variety of different ways (see [45,

160]) to yield a single value which increases proportionally to the separability of the

classes. Of these measures, one of the most widely adopted [45, 39, 160, 12] is the

following:

JS = Tr{S−1
W SB} (4.6)
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Dataset A1 Dataset A2 Dataset A3

Dataset B1

Dataset C1 Dataset C2

Dataset B2

Class 1 Class 2 Class 3 
(where applicable)

Figure 4.4: Synthetic 2D datasets used to examine the behaviour of the different separability
measures described in Section 4.3 (see text for discussion).
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Figure 4.5: Separability measures applied to synthetic datasets shown in Figure 4.4. (a)
Within-vs-between class scatter JS (Equation 4.6); (b) Graph-based edge-weight statistic
JRNG (Equation 4.9); (c) Nearest-neighbour classification accuracy JNN (Equation 4.10).

To illustrate the behaviour of this separability measure, it is applied to a series

synthetic 2D datasets as shown in Figure 4.4. Datasets A1,2,3 contain three normally

distributed classes with increasing degrees of overlap, ranging from perfect separation

(A1) to total overlap (A3). The corresponding values of Equation 4.6 are plotted as a

bar chart in Figure 4.5a: it can be seen that this separability measure correctly assigns

a large value to dataset A1, a lower value to A2, and a very small value to A3.

A further set of datasets B1,2 and C1,2 provide a more difficult scenario. In B1, the

classes in the dataset are well-separated, but each class is bimodally distributed; as a

comparison, B2 contains two overlapping unimodal class distributions (whose means

and covariances are virtually identical to those in B1). The results in Figure 4.5a, show

that B1 and B2 are both assigned a very low separability score. Similarly in C1, classes

are uniformly distributed in two non-overlapping “horse shoe” shaped regions, while

in C2 the two classes come from overlapping unimodal distributions: again the two

datasets are assigned very similar separability values.

It is clear that the principal failing of this separability measure is its underlying

assumption that each class is well described by a unimodal distribution. This problem

is acknowledged in [45], where it is suggested that the dataset could be clustered to

yield a larger set of unimodal sub-classes, to which Equation 4.6 could then be applied.

However, by introducing the problem of clustering, this solution ceases to provide a

measure that can be deterministically calculated from the dataset.

4.3.2 Graph-based edge-weight statistic

Noting the cases in which the preceding separability estimator fails, it would be desir-

able to be able to quantify separability without making assumptions about the para-

metric form of the class distributions. In this light, an attractive non-parametric tech-
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nique has been proposed by Zighed et al. in [181], described as follows.

To measure separability, a Relative-Neighbourhood Graph (see [150]) is constructed

from the dataset, where each node represents an individual data point, and edges join

only those pairs of nodes that have no mutually closer neighbour. Formally, nodes

xi and xj are joined if the following condition is met (where d(xi, xj) denotes the Eu-

clidean distance between the two points):

d(xi, xj) ≤ max
[
d(xi, xk),d(xj, xk)

]
∀k/∈{i,j}

Furthermore, each edge is weighted according to the similarity of the data points

it joins, where similarity is defined as the following inverse function of Euclidean dis-

tance (which can range between 0 and 1) [181]:

Sij =
1

1 + d(xi, xj)

Thus a matrix W describing the resulting graph can be constructed from the dataset,

where each element wij is defined as follows:

wij =


1

1+d(xi ,xj)
if d(xi, xj)i 6=j ≤ max

[
d(xi, xk),d(xj, xk)

]
∀k/∈{i,j}

0 otherwise
(4.7)

It is then possible to define quantities analogous to within and between class scat-

ter in terms of this matrix, through summation of the weights of edges joining mem-

bers of the same class/those joining members of different classes as follows (where

I(�) denotes the indicator function, and Ln denotes the label of the nth data point):

Ewithin=
N−1

∑
i=1

(
N

∑
j=i+1

I(Li = Lj) · wij

)
Ebetween =

N−1

∑
i=1

(
N

∑
j=i+1

I(Li 6= Lj) · wij

)
(4.8)

Noting that edges are only present for pairs of data points that are (relatively [150])

proximal, it is possible to measure separability in terms of Ewithin and Ebetween. In par-

ticular, for a dataset whose classes are well-separated, the weights of edges joining

members of the same class Ewithin will constitute the majority of the total sum of edge

weights, Ewithin + Ebetween. This leads to the following measure, ranging between 0 and

1, which increases proportionally to class separability:

JRNG =
Ewithin

Ewithin + Ebetween
(4.9)

Again, we examine the behaviour of this measure on the synthetic datasets shown

in Figure 4.4. As for the preceding method, the results shown in Figure 4.5b correctly
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Figure 4.6: Relative Neighbourhood Graphs visualised for datasets B1 (left) and B2 (right).
Thick lines indicate between-class edges, while thin lines indicate within-class edges. The
darkness of each line indicates the edge weight (lighter shades indicate lower weights).

indicate the relative separability of datasets A1-A3. However, unlike the preceding

method, datasets B1 and C1 are assigned a high separability value, similar to that of

A1, while lower values are correctly assigned to datasets B2 and C2. This method

therefore represents a useful substitute for the preceding method, when assessing the

relative separability of datasets whose classes are not guaranteed to be unimodally

distributed.

4.3.3 Nearest-neighbour classification accuracy

The final measure of class separability considered here is the average leave-one-out

nearest-neighbour classification accuracy for the dataset. This classification method

assigns to each data point the label of its nearest neighbour (as determined by Eu-

clidean distance [53, 160, 12]); the better the separation of the different classes in

dataset, the more likely it is that 1-nearest neighbour classification will be accurate.

Given a set of class labels, and a function L(xi) providing the label of the each data

point xi, a leave-one-out function predicting the class of each data point given the

remainder of the dataset can be defined as follows (where d(xi, xj) denotes Euclidean

distance):

P(xi) = L(arg min
{xj|i 6=j}

(d(xi, xj)))

The mean classification accuracy could thus be calculated as follows (where I(�)
denotes the indicator function, and Ln and Pn denote the true and predicted labels for
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the nth data point):

A =
1
N

N

∑
i=1

I (L(xi) = P(xi))

Given datasets where class sizes are unequal, it is useful to modify this criterion so

that it does not depend on the relative class sizes. For example in a two class dataset,

where 80% of the examples come from a single class, an 80% classification accuracy

could be misleading. To address this issue, the above measure is calculated separately

for each class Ck so that:

Ak =
1

Nk
∑

∀xi∈Ck

I (L(xi) = P(xi))

Finally this measure is averaged over the K classes present in the dataset to provide

the following estimate of classification performance:

JNN =
1
K

K

∑
k=1

Ak (4.10)

Figure 4.5c shows the leave-one-out classification performance for the datasets

shown in Figure 4.4. The resulting classification performance closely resembles the

separability values assigned by the preceding graph-based measure JRNG, indicating

the efficacy of this measure. In this vein, JNN provides an intuitive way to confirm the

veracity of the values assigned by the preceding separability measures.

4.3.4 Summary

In this section we have reviewed three different methods for assessing the separabil-

ity of a set of classes in a given representational space. It is clear that the graph-based

measure JRNG [181] and the nearest-neighbour classification performance JNN provide

a better reflection of class separability than the within-vs-between class scatter ratio JS,

if the distribution of data within individual classes is not unimodal, while behaving

similarly if the classes are unimodal. Given the unknown nature of the class distribu-

tions in the trajectory datasets analysed in the remainder of this chapter, we will use

JRNG and JNN as the principal means of measuring separability, while referring to JS

as a supplementary measure of the relative dispersion of class means.
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4.4 Experiments

4.4.1 Trajectory datasets

This section describes a number of different trajectory datasets which are used in the

following section to examine the behaviour of the representations described in Section

4.2, using the separability measures described in Section 4.3. Each dataset is chosen

on the basis of containing multiple, distinct, classes of motion pattern.

CAVIAR “Shopping Mall” Dataset The CAVIAR dataset [42] provides a series of

different video sequences, together with corresponding set hand-labeled ground truth

data. We use a set of trajectories from this dataset corresponding to a side-on view of

a corridor in a Portuguese shopping centre, as illustrated in Figure 4.7. This trajectory

data has been used to assess representation/clustering methods in [90], where it was

hand-labeled according to a set of six different motion classes - corresponding to mo-

tion along the corridor (two possible directions), and motion to/from the shop (four

possible directions). We have replicated this labeling, as shown in Figure 4.7, yielding

a set of 111 trajectories, with at least 10 examples for each of the 6 classes.

NGSIM “Peachtree Street” Traffic Dataset The NGSIM archive [23], part of a

United States Department of Transportation initiative, provides a variety of real vehi-

cle trajectory datasets which are intended to enable accurate parametrisation of traffic

simulations. We use the “Peachtree Street” dataset, which contains over 2000 examples

of vehicle trajectories over a road segment with a wide range of entry/exit points. For

the purposes of this chapter we disregard all trajectories lasting fewer than 2 seconds.

We label the trajectories according to their entry/exit point combination, initially re-

sulting in 124 different classes; however, we discard any class containing fewer than

10 examples, yielding a final set of 33 different classes, corresponding to a total of 1758

trajectories. This dataset is illustrated in Figure 4.8, together with an aerial photograph

of the relevant area, overlaid with regions corresponding to a set of 8 cameras which

were used to collect the data (see [23] for details). It should be noted that the trajectory

data has been mapped to a local coordinate system, relative to the centre of the street.

Australian Sign Language Dataset The Australian Sign Language dataset, created

by Kadous [68] and available from the UCI Machine Learning Repository [6], provides

a large set of trajectory data corresponding to hand movements for different words

expressed in Australian Sign Language. The dataset contains hand trajectories for 95

different words, with 27 examples of each word, giving a total of 2565 trajectories.
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Class: left−>right (27 examples)

Class: left−>shop (10 examples) Class: shop−>left (19 examples)

Class: right−>shop (13 examples)

Class: right−>left (28 examples)

Class: shop−>right (14 examples)

 

 

Start points End points Trajectories

Figure 4.7: CAVIAR “Shopping Mall” scenario. Each section of this figure shows a set of
trajectories corresponding to a manually assigned class. See text for further details.
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Figure 4.8: NGSIM “Peachtree Street” scenario with camera locations overlaid (left) and
vehicle trajectories coloured according to route (right). See text for further details.
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While the dataset contains the positions of both the left and right hands, together with

information about their articulated configurations, a significant portion of informa-

tion is captured by the position of the right hand. This assumption has been adopted

in several approaches [90, 10], where word classification on the basis of right-hand

trajectories has provided a challenging benchmark test. Figure 4.9 shows example tra-

jectories for a random selection of 25 classes: it is clear that the variation between the

trajectories corresponding to different words is sometimes extremely subtle.

Gun Point Dataset Another hand-trajectory dataset, created by Ratanamahatana

and Keogh [108], contains two classes of trajectory corresponding to a surveillance

scenario where the task is to detect the presence of a gun. One class of trajectories

corresponds to people lifting their hand and pointing forwards, while a second class

of trajectories corresponds to a subtly different motion pattern where a gun is removed

from a holster before being pointed forwards; each class contains multiple examples

of the same motion produced by two different people. An example from this scenario

is illustrated in Figure 4.10a, and a corresponding set of trajectories is shown in Figure

4.10b. The dataset contains a total of 233 trajectories, with 121 examples of the gun

pointing action, and 112 examples of the hand pointing action.

Pen Digits Dataset The Pen-Based Recognition of Handwritten Digits dataset [6], con-

tains 10,992 pen trajectories corresponding to instances of the digits ’0’ to ’9’ written on

a graphics tablet. We use 200 randomly chosen examples of each digit, leading to a to-

tal of 2000 trajectories with 10 distinct classes. Each trajectory is translated/uniformly

rescaled to a common coordinate frame using the same procedure described for the

processed/resampled version of this dataset, which is also available from [6]. Figure

4.11 shows an illustration of several example trajectories from each class.

Summary The datasets described in this section organise trajectories into classes in

two different ways. As defined here, the classes in the CAVIAR and NGSIM datasets

correspond entirely to route information. The challenge that these datasets pose for

a potential trajectory representation is to separate instances corresponding to the dif-

ferent routes, while accommodating the large spatiotemporal variations possible with

a given route. For example, within a given trajectory class from the NGSIM dataset,

some trajectories may correspond to vehicles which stopped at certain traffic lights,

while others may involve lane changes etc. Conversely, for the ASL, Gun-point and

Pen-digits datasets, trajectories from different classes may start and end in similar lo-

cations: thus, in order to separate the different classes in these datasets, an accurate

representation of the shape of each trajectory is required.
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Figure 4.9: Australian Sign Language dataset: right-hand trajectories for a random selection
of 25 classes (out of a possible 95), with 10 examples shown per class. See text for further
details.
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(a)
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No gun

(b)

Figure 4.10: Gun Point Dataset. (a) Example video frames for the drawing/pointing of a
gun (reproduced from [108]). (b) Resulting hand trajectories, which correspond to pointing
with a gun (red) and without (blue). See text for further details.
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Figure 4.11: Example trajectories from the Pen-digits dataset. See text for further details.

4.4.2 How does trajectory representation affect separability?

The separability measures reviewed in Section 4.3 provide a way to estimate the over-

lap of a set of classes in a given representational space. Using these measures, we

now evaluate the separability of the four trajectory datasets described in the preceding

section, for each of the parametric trajectory representations reviewed in Section 4.2.

Since each representational strategy allows a trajectory to be described with an arbi-

trary number of parameters, we measure the separability of each dataset/representation

over a range of dimensionalities (specifically, between 8 and 32 dimensions).

Although Section 4.2 proposes the concatenation of the two M dimensional param-

eter vectors ~CX and ~CY (representing original coordinate sequences ~X and ~Y respec-

tively) with the total time taken tN to yield a single 2M + 1 dimensional vector, we

omit tN from the trajectory representation vectors used in the following experiments.

Since the resulting vectors would need to be rescaled if time were incorporated, this

allows the separability of different representations to be compared independently of

any particular choice of rescaling strategy.

For each representation and its corresponding range of dimensionalities, Figure

4.12 shows the separability values obtained using JRNG, the proportion of weighted

edges joining members of the same class in a relative neighbourhood graph span-

ning each dataset. Similarly, Figure 4.13 shows the values of JNN , the leave-one-out

1-nearest-neighbour classification rate. For completeness, the within-vs-between class

scatter values, JS, are also shown in Figure 4.14, although for reasons discussed in

Section 4.3 these do not form the basis of our discussion. In all figures, each row

shows results for a given dataset: the left hand plot shows results for representations

parametrised by time while the right hand plot shows results for those parametrised

by arc-length; plots within each row have identical Y-axis scale/limits to facilitate the
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comparison of time/arc-length parametrisations.

Which representation works best? It can immediately be seen that in most cases the

differences in separability values are small, with the observed values typically span-

ning a range of around 0.05 (the JRNG and JNN measures assign values between 0 and

1). The results do not, therefore, indicate that the choice of representation makes more

than a small difference to class separability. A natural question to ask, however, is

whether there is any persistent “ordering” corresponding to different representations

within the small range of observed variation. In most cases, the Haar representation

appears to improve upon the DFT representation, and the highest separability values

are yielded by either the Chebyshev or Spline representations.

For the NGSIM and CAVIAR datasets, the Chebyshev representation appears to

yield the best separability values. Noting that these datasets contain widely vary-

ing class-proportions, it is likely that JNN will provide the most sensitive measure

of separability as it takes into account differences in class size (in contrast the graph

based JRNG measure is affected by class proportions as classes with fewer members

contribute fewer graph edges). A potential explanation for the comparatively high

separability afforded by the Chebyshev representation on these datasets is that the

coefficients for first two Chebyshev basis functions describe a straight line approx-

imation to the trajectory: since the trajectories in these datasets have been labelled

according to their start and end points, this may provide a substantial contribution to

the separation of their locations in parameter space.

In contrast, for the ASL, Pen-digits, and Gun-point datasets, the Spline representa-

tion appears to yield the highest separability values. This difference is most apparent

when trajectories are parametrised by arc-length: while trend this is less clear for tem-

poral parametrisation, the highest separability values are provided by arc-length for

these datasets (this is discussed next).

Which parametrisation strategy works best? The impact of the two different curve

parametrisation strategies (ie. either proportion of total time or of total arc-length) can

be examined by comparing the left/right hand plots for each dataset. For the CAVIAR,

Pen Digits and Gun-point datasets, parametrisation by arc-length appears to improve

separability in all cases. For the ASL and NGSIM datasets this trend is less clear, al-

though in both cases the highest observed separability values correspond to arc-length

parametrisation. As discussed earlier, JNN provides a particularly useful measure for

the CAVIAR and NGSIM datasets, as it is corrected for class proportions. In both cases

the relative ordering of JNN is very similar to that observed for the JRNG plots, and
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Figure 4.12: Graph-based separability measure JRNG calculated for each dataset, using
different trajectory representations over a range of dimensionalities. (Please note that the
Y axis scale differs between plots.)
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Figure 4.13: Leave-one-out nearest neighbour classification performance for each dataset,
using different trajectory representations over a range of dimensionalities. (Note that the
Y axis scale differs between plots.)
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Figure 4.14: Within-vs-between-class scatter ratio JS for each dataset, using different tra-
jectory representations over a range of dimensionalities. (Please note that the Y axis scale
differs between plots.)
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arc-length parametrisation yields an improvement over time-based parametrisation:

however, this is most significantly manifested for the NGSIM dataset where arc-length

parametrisation yields a large (∼ 10%) improvement in classification rate.

A clear potential reason for the sharp improvement observed when using arc-

length parametrisation to represent the NGSIM dataset pertains to the wide range of

different spatio-temporal profiles present in this data: since this data contains vehicle

trajectories from a road segment which includes traffic lights etc., it is likely to yield a

widely differing set of spatio-temporal profiles for a given route. While one would not

automatically rule out the possibility of a single representation which captures spatial

and spatiotemporal characteristics, the results obtained for NGSIM dataset indicate

that a single spatio-temporal representation may be inadequate if a sufficiently large

number of different spatial and spatiotemporal categories are present - regardless of

the particular method used.

What impact does dimensionality have? It is clear from Figures 4.12 and 4.13 that

the dimensionality of the chosen trajectory representation affects class separability.

In the majority of cases, separability appears to increase when trajectories are repre-

sented with more parameters. Although this appears to be at odds with conventional

wisdom regarding over-fitting (see [53, 12] etc.), it is important to note that the range

of dimensionalities examined here (at most 16 parameters to describe an X or Y co-

ordinate sequence) does not allow more than a coarse approximation of most of the

trajectories considered here. In the majority of cases a peak level of separability ap-

pears to be reached between 14 and 20 dimensions, followed by a plateau.

In certain cases, however, increasing the dimensionality of the trajectory repre-

sentation reduces the resulting level of separability. One example is the Chebyshev

representation of the CAVIAR dataset, where maximum separability appears to be

reached for dimensionalities below 10. As discussed earlier, a potential reason for

this is that the first two Chebyshev basis functions (corresponding to 4 dimensions

in the final representation) capture the most important discriminative information for

this dataset: variation in the additional dimensions may serve to move members of a

given class further apart in the resulting feature space. It is also worth noting, how-

ever, that in cases where separability for a given representation/dataset is observed

to decrease with increasing dimensionality, the decrease is never catastrophic, with

near-peak separability levels being maintained in all cases for up to 32-dimensions.
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4.4.3 When might temporal parametrisation be necessary?

Although the preceding results indicate that arc-length parametrisation yields higher

separability than temporal parametrisation, it is clear that the class structure in the

datasets addressed so far is largely spatial in nature. It is therefore useful to provide

some indication of the potential utility of temporal curve parametrisation. Despite the

preceding results, it is possible that arc-length parametrisation may be inadequate for

many trajectory classification purposes: for surveillance applications, the spatiotem-

poral characteristics of trajectory may capture the most important information for be-

haviour classifications.

To illustrate this point, Figure 4.15a shows a simple synthetic dataset where simu-

lated motion trajectories are generated between two possible entry/exit zones. Each

traversal of this scenario (ie. up or down with respect to the ground plane view in

Figure 4.15a), is associated with three different temporal profiles (either moving con-

tinuously, or pausing in one of two possible locations), leading to 6 distinct spatiotem-

poral classes. The spline representation from the preceding section (see Section 4.2.1

for details) was used to represent this dataset. Figure 4.15b shows the separability val-

ues (calculated using the JRNG edge-weight statistic) for this dataset across a range of

dimensionalities, using both the spatial and spatiotemporal spline representations: it

is clear that the spatiotemporal representation separates the 6 classes almost perfectly,

while the spatial representation only allows partial separation.

While the inclusion of total time elapsed could allow both representations to distin-

guish between trajectories with and without pauses, it would not enable the location

of those pauses to be distinguished. The ability to discriminate between trajectories

involving pauses in different locations is likely to be important in a surveillance con-

text (where loitering in different locations may have different implications), indicating

the potential utility of temporal trajectory parametrisation for certain applications.

4.5 Discussion

This chapter has reviewed several different ways to parametrise motion trajectories

with fixed-length vectors. Using the separability measures described in Section 4.3,

the impact of trajectory representation on class separability has been examined for

several real trajectory datasets.

The results did not, in general, indicate that the choice of trajectory representa-

tion made more than a small difference to class separability. Nonetheless, the Cheby-

shev and Spline representations appeared to provide the best class separability, with

the former yielding the highest values for trajectories classified according to their
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start/end points and the latter for trajectories classified according to their shape. Fur-

thermore, a comparison of the separability of trajectories represented using both arc-

length and temporal curve parametrisation indicated that arc-length parametrisation

yielded higher separability values for the majority of datasets considered. However, a

further experiment with synthetic data indicated that temporal parametrisation may

be essential for trajectory classification in a surveillance scenario, implying that both

strategies are worthy of consideration depending on the particular task at hand.

The experiments presented in this chapter have measured class separation based

on Euclidean distances between raw/unprocessed feature vectors; it is thus possi-

ble that further processing of feature vectors corresponding to a given representa-

tion (eg. by re-weighting or rescaling attributes) may yield improved separation. It

is in principle possible that such weightings could be learned from a given dataset,

which highlights the problem of attempting to define separability as a quality distinct

from a given learning method. However, given the density-based one-class learn-

ing/classification approach proposed in Chapter 3, where class labels within the set of

“normal”-labelled data are unavailable, the definitions of separability employed here

are likely to provide an adequate reflection of the impact different trajectory represen-

tations on classification performance.

It should be noted that the set of trajectory representations examined in this chap-

ter is by no means exhaustive. For example, the choice of Haar wavelets (rather than

one of many other possible wavelet families - see [137, 21]) relates to the fact that this

wavelet has been previously used in the trajectory classification literature [120]; it is

possible that other wavelet families may deliver very different, potentially improved,

results. Similarly, the trajectory datasets considered here might not constitute an ad-

equate characterisation of the different class-separation scenarios that may arise in

real-world surveillance data (particularly when considering the problem of anomaly

detection). Nonetheless, the experiments have shown that the choice of trajectory rep-

resentation does have an impact on class separability as defined in this chapter.

The over-arching purpose of this chapter was to determine an appropriate fixed-

length vector representation so that the distribution of normal trajectories could be

incrementally modelled using the algorithm proposed in Chapter 3. To this end, the

results presented in this chapter suggest that the Spline and Chebyshev representa-

tions are appropriate candidates, and that 14 (15 if time is included) dimensions is

sufficient to achieve near-peak class separability for the datasets considered here. In

this light we adopt a 15 dimensional Spline representation for the trajectory modelling

experiments conducted in the next chapter, noting that it appears to provide a good

compromise between capturing route and shape information.





Chapter 5

Semi-supervised Learning for
Anomalous Trajectory Detection

5.1 Introduction

The review of existing approaches to behaviour learning/classification presented in

Chapter 2 indicated that there is a paucity of techniques for incrementally learning

models of normal/typical behaviour. This chapter attempts to address this issue by

combining the incremental one-class learning algorithm proposed in Chapter 3 with

the “hard-coded” parametric trajectory representation approach explored in Chapter

4, to provide a method for incrementally modelling the distribution of motion trajec-

tories corresponding to normal behaviour. The resulting incremental trajectory mod-

elling strategy then provides the foundation for a novel solution to the problem of

incorporating labelled and unlabelled data in the learning of normal behaviour mod-

els, which forms the key focus of this chapter.

As discussed in Chapter 2, the most common strategy underlying systems for de-

tecting anomalous behaviour is to model the distribution of observations from a given

feature space in an unsupervised fashion. Here the term “anomalous behaviour”

refers to behaviour worthy of scrutiny in a surveillance context: an intuitive assump-

tion is that such behaviour is rare, and therefore not reflected in models which capture

the underlying distribution of a large collection of behavioural data. Outside the un-

precedented circumstance of having a representative corpus of anomalous behaviour

examples (or having a rule based model eg. [32]), unsupervised learning is a necessary

precursor to anomalous behaviour detection. The resulting models - which capture the

underlying distribution of a set of training data - can then be used for behaviour classi-

fication, based on the assumption that a low probability (or an equivalent heuristic in

the case of non-probabilistic models) is assigned to examples of anomalous behaviour.

129
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The potential violation of this principle, however, may present a risk if behaviour

classification models based on unsupervised learning are regularly deployed in differ-

ent real-world settings. In each case, learning equates to modelling a finite sample of

unlabelled data, which is assumed to be representative of the true distribution of be-

haviours that occur in a given scenario. It is possible, therefore, that on some occasions

the available selection of unlabelled training data may contain multiple instances of a

particular, relatively unusual, behaviour which could distort subsequent normal-vs-

anomalous classification boundaries.

We propose to address this issue by implementing a semi-supervised training

framework, where a model of normal behaviour is constructed incrementally in a

largely unsupervised fashion with the following important exception: the approval of

a human operator is requested before any seemingly unusual behaviour pattern (ac-

cording to the model constructed so far) is used to train the model. This training strat-

egy provides a way to make parsimonious use of human attention as a “safety net” to

ensure that only normal examples are used to construct the resulting behaviour clas-

sifier. Moreover, given that current automated surveillance approaches are intended

to assist, rather than replace, human operators, the proposed strategy provides an in-

tuitive way to exploit the opportunity for occasional human feedback when training

such systems.

The proposed trajectory-based behaviour modelling strategy is described in detail

in Section 5.2.2, and its relationship to several existing machine learning approaches is

discussed in Section 5.2.3. Finally, experimental results characterising the behaviour

of the proposed algorithm are presented and discussed in Sections 5.4 and 5.5.

5.2 Incremental Semi-supervised Normal Behaviour Modelling

5.2.1 Behaviour Representation

The work presented in this chapter concerns an algorithm for incrementally learning

from/classifying a sequence of whole trajectories, as produced by a pedestrian/vehicle

tracking algorithm (see [174] for a review of existing strategies). While the requirement

that whole trajectories are used as training/test data could be regarded as a practical

shortcoming, it nonetheless provides a useful initial basis for exploring the character-

istics of the proposed learning framework.

As discussed in Chapter 2, incremental behaviour learning algorithms require ei-

ther a specific feature learning stage or an appropriate hard-coded behaviour repre-

sentation. Here we employ a hard-coded behaviour representation, adopting the para-

metric trajectory representation approach discussed and examined in Chapter 4. The
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comparison of trajectory representations presented in Chapter 4 indicated that a 14-

dimensional (7 control point) cubic B-Spline representation provided a good trade-off

between separability and dimensionality for a range of different datasets. This rep-

resentation, illustrated in Figure 5.1, is used as the basis for behaviour modelling in

this chapter: a key assumption of our approach is that differences between trajecto-

ries corresponding to different behaviours will be reliably reflected by distances in

this representational space. Since Chapter 4 indicated that temporal and arc-length

parametrisation may yield improvements depending on the nature of the classifica-

tion task at hand, we initially explore both techniques in this chapter.

To remove temporal scaling invariance, each trajectory is represented by concate-

nating its corresponding 14 dimensional vector of spline control points with the to-

tal time taken tN to yield a single 15 dimensional vector. In the absence of further

processing, however, it is clear that the Euclidean distance between two trajectory

vectors will depend on the particular units used to describe spatial coordinates and

time. In order to remove this dependence, we rescale each dataset - once it has been

parametrised with a given representation - so that its attributes all lie on the interval

[−1,1]. We rescale the first M attributes according to a global maximum/minimum

value for those attributes, rather than rescaling each one separately: this avoids - in

the case of Spline and Haar wavelet representations - parameters corresponding to

different regions of the trajectory being arbitrarily emphasised.
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Figure 5.1: Spatiotemporal trajectory approximation using cubic B-spline curves.

5.2.2 Learning Algorithm

The learning algorithm proposed in Chapter 3 provides a way to incrementally esti-

mate the probability density function underlying a given dataset, building a deliber-

ately over-complex Gaussian mixture model that can be used to define conservative
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classification boundaries (see Chapter 3 for details) for outlier detection at any stage

during training. We use this technique to incrementally model the distribution of a

sequence of parametrised trajectories corresponding to normal behaviour in a given

scenario, ie. to estimate p(~Z|normal) where ~Z is an instance of the 15-dimensional

B-Spline trajectory representation described in Chapter 4.

In the proposed framework, illustrated in Figure 5.2, trajectories are assumed to

arrive in a sequence, where each new trajectory is classified according to the current

estimate of p(~Z|normal). By default, in the absence of any training data, all trajectories

are classified as anomalous. If a new trajectory is classified as anomalous, it is brought

to the attention of a human operator, who may either choose to label the trajectory as

normal (in the case of a new instance of normal behavior not yet represented in the

model), or to label the trajectory as anomalous - thereby excluding it from the model

- in the case of a genuine anomalous event. Conversely, if a trajectory is classified

as normal, it is automatically used to update p(~Z|normal) without requiring human

approval (this is known as “self-training” - see Section 5.2.3).

In summary, new trajectories can only be used to update the model representing

p(~Z|normal) if one of the following two conditions are met:

1. The trajectory is classified as normal according to the current model.

2. The trajectory is deemed to be normal by a human operator.

It is important to note that Condition 2 only occurs if Condition 1 is not met, which

means that requests for human approval are not made unless the trajectory is deemed

anomalous according to the current model. The proposed mechanism thus enables

a human operator to filter the training data used to construct a normal-behaviour

model, by only drawing their attention to the most unusual examples.

While it could be argued that the self-training framework provides no safe-guard

against the accidental inclusion of misclassified anomalous instances it is clear that, by

using a human to filter a certain proportion of training data, the proposed framework

provides a potential improvement over an entirely unsupervised training scheme and

would - at worst - yield a classifier which performs equivalently to one trained in an

unsupervised fashion.

By allowing training to occur in a largely unsupervised fashion while making use

of occasional human effort to confirm the labels of unprecedented - but potentially

normal - events, the proposed approach provides a natural way to incorporate labelled

and unlabelled data in a one-class learning problem in a cost-effective manner.
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Figure 5.2: Self-training framework for (normal) motion trajectory modelling: Trajec-
tories produced by a tracking algorithm are represented with vectors of cubic spline control
points (see Chapter 4) and then assessed by a classifier. New examples classified as normal
are automatically used to train the classifier (see Chapter 3), while anomalous examples are
passed to a human operator for approval.

5.2.3 Related Approaches

There is a wide body of research exploring the incorporation of labelled and unla-

belled data in the solution of classification problems. To place the proposed learning

framework in context, this section briefly discusses its relationship to two relevant

classes of machine learning strategy.

Semi-supervised Learning The proposed approach provides a way to integrate la-

belled data (normal examples confirmed by an operator) with unlabelled data in order

to learn a classification rule. The combination of labelled and unlabelled data to solve

learning/classification problems is known as Semi-Supervised Learning [26, 180], and

can be implemented in a variety of different ways.

The proposed approach corresponds to a form of semi-supervised learning known

as Self Training. This technique is a wrapper method for supervised learning algo-

rithms which allows unlabelled data to be used for training through repeated itera-

tions of the following procedure: given a set of labelled and unlabelled data, a classi-

fier is trained using the available set of labelled data and then used to provide labels

for the set of initially-unlabelled data. Those items of unlabelled data which were clas-

sified with high confidence are then added to the original labelled training set, which

is then used to iteratively retrain the original classifier. This procedure was originally

proposed by Yarowsky in [172] for the text classification, and has recently been ap-

plied to the problems of audio classification (Moreno and Agarwal [87]) and object

detection (Rosenberg et al. [117]). In all cases the underlying supervised learning al-
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gorithm is trained on examples with hard (ie. discrete, non-probabilistic) labels, but

classifies new examples on the basis of a continuous value (eg. posterior probability)

which can be used as an accompanying “confidence” measure for the classification. In

[172] a threshold is placed on this confidence value in order to determine which unla-

belled examples can be used for self-training, while in [87, 117] the example classified

with the highest confidence value at each iteration is used.

The implementations of self-training in [172, 117, 87] differ in certain respects: in

[117, 87] self-labelled examples retain their label for all subsequent training iterations,

while in [172] such examples can lose their labels if their corresponding confidence

measure drops below the original labelling threshold. A number of related approaches

[96, 7] assign unlabelled examples with “soft” probabilistic labels which are utilised

during training and re-estimated at each iteration: cast in this form, the self-training

process is equivalent to the Expectation Maximisation algorithm. However, the self-

training component of the proposed approach most closely resembles that of [117, 87]

as hard labels are assigned/used during self-training and these cannot subsequently

change: the latter is unavoidable as the proposed algorithm is required to learn in-

crementally given a single presentation of each example. The need to train on sin-

gular examples means that the proposed approach also resembles [172], as a classi-

fication/confidence threshold is used to determine whether or not a new example is

suitable for self-training.

The algorithms discussed thus far all correspond to discriminative problems where

training data is provided from multiple classes: the proposed approach is unusual in

that the underlying supervised learning algorithm assumes labelled data from one

class only. In this light there is another seemingly relevant set of semi-supervised

learning approaches concerned with learning from Positive and Unlabelled Data eg.

[36, 78]. In these approaches classifiers are trained on unlabelled data accompanied

by labelled data from a single “positive” class with the aim of identifying whether or

not new members belong to that class. In [36], Denis et al. build a classifier by estimat-

ing P(x) from the entire dataset and P(x|positive) from the subset of positive-labelled

data (in [36] these are Naive Bayes models of word frequencies in documents): then,

given knowledge of P(positive) it is possible to estimate P(x|negative) and thus to

generate a classifier. In [78], Liu et al. use EM to iteratively refine models for pos-

itive and negative documents, while fixing the labels of positive documents during

EM iterations. Both of these approaches rely on the assumption that the set of un-

labelled data contains a significant proportion of non-positive data: in contrast, the

proposed learning framework operates on the assumption that anomalous data is ex-

tremely rare, and so must be able to learn from unlabelled data which may contain no
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anomalous examples.

There are many other interesting semi-supervised learning techniques (eg. graph

based methods, transductive SVMs, etc. [26, 180]) that have not been discussed here,

as they are not readily applicable given the specific task constraints (incremental one-

class learning) posed in this thesis. Similarly techniques such as co-training (Blum

and Mitchell [14]) and tri-training (Zhou et al. [179]), which make use of multiple

classifiers trained on different features to provide labels for unlabelled data, are not

applicable as the whole-trajectory behaviour representation adopted here does not

naturally decompose into separate independent features.

Active Learning Since the proposed learning framework relies on the ability to re-

quest labels for certain data points, it can also be regarded as a form of Active Learning

(see Settles [129] for an overview). The term “Active learning” refers to a class of ma-

chine learning strategies where the underlying learning algorithm can select/generate

unlabelled queries to be labelled by a human operator (or “oracle” [129]). Thus, un-

like the preceding semi-supervised approaches - which make use of unlabelled data -

all the training examples used in an active learning framework are labelled. The key

problem addressed by active learning algorithms is how to choose examples that will

improve classification performance when labelled and added to the training set.

Many active learning approaches assume the existence of a large set of unlabelled

examples, and operate on the basis of metrics for ranking this set of examples in order

to chose the “best” example to query; in contrast, the proposed algorithm must make

a sequence of choices about whether to query the labels of single examples. Nonethe-

less, two querying strategies from the active learning literature bear a strong resem-

blance to the approach adopted here: one is “uncertainty sampling” (Lewis et al. [77])

which chooses examples for which classification confidence is lowest; another related

strategy, intended to deal with a stream of examples, defines a “region of uncertainty”

in state space (Cohn et al. [28]) and queries new examples lying within this region.

In the proposed framework we classify new examples (and thereby choose those to

query) by thresholding a value which quantifies how likely it is that a new example

belongs to the normal behaviour class: it is clear that this value can be interpreted as a

measure of one-class classification confidence/uncertainty; equally, placing a thresh-

old on this value can be viewed as defining a region of uncertainty.
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5.3 Datasets and Preliminary Experiments

5.3.1 Datasets

This section describes three different trajectory datasets, and how they are used to test

the proposed behaviour learning/classification algorithm. In order to give an indica-

tion of the relative separability of the normal and anomalous instances in each dataset,

Figures 5.7 and 5.8 show scatter plots corresponding to 2-dimensional Principal Com-

ponents Analysis and Fisher Linear Discriminant projections for each dataset: while

these plots cannot provide a conclusive measure of separability, they suggest that the

NGSIM dataset may present the most challenging classification problem as there is no

2D projection where normal and anomalous examples are well separated.

CAVIAR “INRIA” Dataset The publicly available CAVIAR dataset1 consists of video

footage and tracking data for a range of behaviours performed by actors in the en-

trance lobby of INRIA Labs, and contains around 60 complete tracks. We selected a

subset of 21 tracks to represent normal behaviour, consisting of people walking di-

rectly from one exit point to another. We then selected a further subset of 19 tracks

to define anomalous behaviour, consisting of actors fighting, falling down, and leav-

ing/collecting packages. Although this data, shown in Figure 5.3, clearly encapsu-

lates the type of problem an anomalous trajectory detection algorithm should be able

to solve, it is not sufficient for testing our algorithm as there are no further examples

available for training.

Normal Behaviour

(21 examples)

Anomalous Behaviour

(19 examples)

Figure 5.3: Test trajectories from the CAVIAR “Inria” dataset. See text for description.

The absence of additional training data is addressed by simulating a large set of

ordinary walking behaviour between the entry/exit points featured in the test sets.

For each pair of entry/exit locations, a route is hand-defined by a set of elliptical re-

1Available at: http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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gions which represent entry/exit points and way points. This allows us to generate

a diverse collection of possible paths by drawing sets of samples from these regions.

Each set of samples is then interpolated to form a series of subgoals, which are used to

generate a realistic trajectory in conjunction with the model for instantaneous pedes-

trian dynamics proposed by Helbing and Molnar in [56]. We define a route model

for each of the 11 entry-exit pairs which appear in the test data and generate 100 sim-

ulated tracks for both traversal directions of each route, resulting in a total of 2200

tracks. Figure 5.4 shows the elliptical regions defining one of the 11 routes (in ground

plane coordinates) between two exit points and a random subset of simulated tracks

(10 from each route) projected onto the image plane.
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Figure 5.4: Normal behaviour simulation for CAVIAR scenario. Left: ellipses indicate all entry/exit

points, and way points for a given route. Right: example simulated tracks coloured by route.

Leeds Carpark Dataset While the preceding dataset provides a means to test whether

the proposed model can be used to classify real test data, the resulting performance

will be highly dependent on the nature of the simulated training data. It is thus impor-

tant to ascertain that similar behaviour can be obtained when training on real tracking

data instead of simulations.

To establish this we use another dataset created by Dee and Hogg [32, 34], which

contains examples of pedestrian and vehicle trajectories obtained by applying a track-

ing algorithm (proposed by Magee in [81]) to video footage obtained from a car-park

scenario. The resulting dataset, shown in Figure 5.5, consists of 262 trajectories corre-

sponding to ordinary walking/driving behaviour, and a further set of 6 - deliberately

circuitous - trajectories corresponding to the behaviour of actors.

While this is a relatively small set of data, it affords us the possibility of examin-

ing the classification performance/intervention rates attained during the early stages

of training with the proposed algorithm, without requiring simulated training data.

We split the data so that 235 (ie. 90%) of the normal examples are used for training
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our algorithm and 27 are retained for testing, along with the 6 anomalous examples

provided by actors.

Normal Behaviour

(262 examples)

Anomalous Behaviour

(6 examples)

Figure 5.5: Trajectories from the Leeds carpark dataset. See text for description.

NGSIM “Peachtree Street” Dataset Finally we adapt the NGSIM “Peachtree Street”

vehicle trajectory dataset [23] (used in Chapter 4 for comparing trajectory representa-

tions) to provide another normal-vs-anomalous classification problem accompanied

by real training data. As described in Chapter 4, this dataset contains over 2000 differ-

ent vehicle trajectories, which are labelled according to their entry/exit locations, and

can be divided into classes on this basis. As in Chapter 4, we disregard any trajectory

lasting for fewer than 2 seconds, which yields a set of 2007 trajectories.
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Anomalous Trajectories (from routes with fewer than 25 examples)

Figure 5.6: NGSIM “Peachtree Street” dataset. See text for description.

We use this dataset to provide a normal-vs-anomalous classification problem by

treating trajectories belonging to classes with at least 25 members as normal, and all
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others as anomalous. This yields a set of 1758 “normal” trajectories (33 classes), of

which 1582 (approximately 90%) are used for training, and the remaining 176 are used

for testing, together with the 249 (91 classes) designated “anomalous” trajectories. Fig-

ure 5.6 provides an illustration of this dataset.

5.3.2 How should the classification boundary be defined?

In order to apply the one-class learning algorithm proposed in Chapter 3 within the

semi-supervised learning framework described in Section 5.2.2, it is necessary to pre-

specify a classification threshold. Chapter 3 highlighted two different methods for

defining a classification boundary by to do this.

1. Impose a density threshold, chosen such that a certain proportion (a user spec-

ified value) of training data are deliberately misclassified as anomalous: if the

probability density at the location of a new example falls below this threshold it

is classified as anomalous.

2. Impose a component-wise threshold based on Extreme Value Theory [109]: if

the deviation of a new example from its closest component has sufficiently low

probability (a user specified value), it is classified as anomalous.

Rather than pre-selecting the best classification method and threshold parameter for

each individual dataset, we attempt to determine a reasonable choice for all datasets.

Specifically, we evaluate both classification methods, using several different thresh-

olds, for all three datasets2. Figures 5.9 and 5.10 (corresponding to trajectory represen-

tations based on time and arc-length respectively - see Section 5.3.3) show how clas-

sification performance changes as training progresses for each dataset/classification

method: each plot shows 8 different curves corresponding to either EVT (thin lines)

or density boundaries (thick lines) with one of the following thresholds: 0.5 (black);

0.2 (blue); 0.1 (purple) and 0.05 (red). In each Figure, the left hand plot show the True

Positive Rate (TPR - the proportion of correctly classified normal trajectories) while

the right hand plots show the False Positive Rate (FPR - the proportion of incorrectly

classified anomalous trajectories).

From the set of 8 classification boundaries tested, the EVT-based boundary with

a classification threshold set at P < 0.2 appears to provide the best all-round perfor-

mance. For the Leeds and CAVIAR datasets (temporal trajectory representation) this

boundary gives the highest TPR values when FPR equals zero, while also providing a

2In each experiment the LIQR function (see Chapter 3) is used to estimate the kernel parameter σ and,
as in Chapter 3, the maximum number of mixture components is set to 100 in all experiments.
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Figure 5.7: 2D Visualisation of trajectory datasets using PCA and LDA projections (from
15-dimensional spline representation with temporal parametrisation).
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Figure 5.8: 2D Visualisation of trajectory datasets using PCA and LDA projections (from
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Name Interpretation

True Positive Rate (TPR) Proportion of normal examples classified as normal

False Positive Rate (FPR) Proportion of anomalous examples classified as normal

True Negative Rate (TNR) Proportion of anomalous examples classified as anomalous

False Negative Rate (FNR) Proportion of normal examples classified as anomalous

Table 5.1: Summary of the terms used to describe classification performance.

reasonable trade-off between TPR and FPR for the NGSIM dataset (none of the strate-

gies allow zero FPR for this dataset). An arrow next to each plot indicates the final

FPR/TPR values obtained with this boundary: unless otherwise stated, this classifica-

tion strategy/threshold is used in the remainder of this chapter.

Since it is possible that the range of thresholds [0.05,0.5] measured in the preced-

ing experiment does not encompass the best possible density-based threshold (whose

values correspond to the proportion of observed training data that should be rejected,

ie. classified as anomalous), Table 5.2 shows TPR and FPR values at the end of train-

ing for the best EVT threshold (0.2) and two further density thresholds (0.01, where

1% of training data is rejected and min, where no training data is rejected). The results

show that the EVT (0.2) threshold provides better classification performance than the

density (0.01) threshold on all datasets. While the density (min) threshold yields im-

provement over EVT (0.2) for the NGSIM and CAVIAR datasets, it nonetheless yields

substantially reduced classification performance for the Leeds dataset, confirming that

the EVT (0.2) is indeed an appropriate choice.

This experiment illustrates a key problem with using a density based threshold: It

is, of course, possible that there exists a density value - outside the range present in

the training data - that would yield better performance on the Leeds dataset than the

chosen EVT boundary, but there is no way to pre-determine such a threshold in terms

of a parameter that is not specific to the dataset itself.

5.3.3 Spatial or temporal trajectory parametrisation?

The results presented in Figures 5.9 and 5.10 indicate that trajectory representations

based on temporal parametrisation yield the best results for the CAVIAR and Leeds

datasets, confirming the potential importance of spatiotemporal trajectory represen-

tations for anomalous behaviour detection suggested in Chapter 4. Conversely, as

predicted by the results presented in Chapter 4, trajectory representations based on

arc-length parametrisation yield the best results for the NGSIM dataset.

Since the primary concern of this chapter is to assess the learning framework
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(a) CAVIAR “INRIA” dataset.
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(b) Leeds carpark dataset.
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(c) NGSIM “Peachtree Street” dataset.

Figure 5.9: The impact of different boundary definitions (and their corresponding threshold
values) on classification performance during incremental learning. Trajectories are rep-
resented using a 15-dimensional spline representation parametrised by time. Each curve
represents the mean value over 10 trials. Note that the Y-axis scales/limits for left/right
hand plots do not match: the (right hand) plots of False Positive Rates only cover a subset
of the full range [0,1] in order to facilitate comparison of the different curves (for FPR plots
where only a subset of the curves are visible, the remaining curves are equal to zero).
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(a) CAVIAR “INRIA” dataset.
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(b) Leeds carpark dataset.
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Figure 5.10: Repeat of experiment shown in Figure 5.9. Trajectories are represented using
a 15-dimensional spline representation parametrised by arc-length. See text for discussion.
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Caviar (temporal) NGSIM (spatial) Leeds (temporal)

TPR FPR TPR FPR TPR FPR

Density min 0.9524 0 0.9604 0.0452 0.6556 0

Density 0.01 0.8190 0 0.9299 0.0325 0.6519 0

EVT 0.2 0.9095 0 0.9299 0.0321 0.7741 0

Table 5.2: Is there a density-based boundary that works better than the chosen EVT
boundary? This table shows classification performance at the end of training for two extra
density thresholds: 0.01, where 1% of training data is rejected, and min where no training
data is rejected. Results are shown for the best curve parametrisation strategy for each
dataset.

described in Section 5.2.2, in all subsequent experiments each dataset will be repre-

sented using the best method as identified in this section (temporal parametrisation

for CAVIAR and Leeds datasets, and spatial parametrisation for the NGSIM dataset).

While the results presented here and in Chapter 4 indicate certain limitations of para-

metric trajectory representations, it is important to note that the over-arching principle

explored in this chapter be could applied to any suitable form of parametric behaviour

representation.

5.4 Experiments

5.4.1 How do performance and intervention rate change with time?

Using the classification boundary identified in the Section 5.3.2, we now measure the

number of operator interventions that would be incurred during training on each

dataset, and examine how classification performance and the rate of user-intervention

requests change as more training examples are observed. As in the preceding section,

the proposed algorithm is trained on 10 different random permutations of normal tra-

jectory data (split 90% train / 10% test). In addition to the True / False Positive Rates

(which correspond to classification performance on the test data), we measure the

proportion of the last 20 training examples that would have required human approval

before being incorporated into the normal behaviour model. This quantity, referred to

hereafter as the Intervention Rate, is also equivalent to the False Negative Rate calcu-

lated as a moving average from the training data.

Figure 5.11 shows the classification performance and intervention rates obtained

for the three datasets. The True Positive Rate rises rapidly during the first 100-200

observations before increasing steadily at a slower rate, yielding final TPR values of
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Leeds NGSIM CAVIAR

235 Obs. TPR 0.77 ± 0.095 0.74 ± 0.054 0.31 ± 0.11

FPR 0 0.0077 ± 0.0037 0

1386 Obs. TPR - 0.93 ± 0.023 0.86 ± 0.094

FPR - 0.032 ± 0.0076 0

Final TPR 0.77 ± 0.095 0.93 ± 0.023 0.91 ± 0.052

FPR 0 0.032 ± 0.0076 0

Table 5.3: Classification performance obtained at different stages of training. (See text for
discussion.)

0.77 ± 0.095 (mean ±1 standard deviation) for the Leeds dataset, 0.93 ± 0.023 for the

NGSIM dataset, and 0.91 ± 0.052 for the CAVIAR dataset. For the Leeds and CAVIAR

datasets, the False Positive Rate remains at zero for the duration of training, while

for the NGSIM dataset FPR gradually increases to a (low) value of 0.032 ± 0.0076 at

the end of training (the potential causes/implications of this increase are examined in

Section 5.4.4).

Table 5.3 shows classification performance at the end of training, after 235 observa-

tions (the largest number where all datasets can be compared), and after 1386 observa-

tions (the largest number where the CAVIAR and NGSIM datasets can be compared).

After 235 observations, classifiers trained on the NGSIM and Leeds datasets yield sim-

ilar TPR values, while those trained on the CAVIAR dataset yield a much lower TPR

value: a potential explanation is that the distributions of the synthetic training data

and real test data used for this dataset are different, meaning that a larger quantity

of training data is required to ensure that the resulting classification boundary en-

compasses the region of feature-space occupied by the training data. However, after

1386 observations, similar TPR values are obtained for both the NGSIM and CAVIAR

datasets.

The Intervention rate follows a similar (opposite) pattern to TPR, dropping rapidly

at the start of training before decreasing more slowly. For the Leeds and NGSIM

datasets, the Intervention rate corresponds roughly to 1 − TPR, as would be expected

(since the Intervention rate is a moving average of FNR = 1 − TPR calculated from

the training data). However, for the CAVIAR dataset, the Intervention rate is lower

than would be predicted from the TPR values: again, this may reflect the discrepancy

between the distributions of the synthetic training data and real test data. Table 5.4

shows the number of interventions requested during different stages of training (for

ranges of observations that can be compared between datasets). During the first 235
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(a) CAVIAR “INRIA” dataset.

(b) Leeds carpark dataset.

(c) NGSIM “Peachtree Street” dataset.

Figure 5.11: Measuring classification performance and intervention rate as a sequence
of training examples is presented. Curves/error bars correspond to the mean/standard
deviation obtained for 10 different random permutations of normal training/test data. (See
text for discussion.)
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Leeds (235) NGSIM (1386) CAVIAR (2200)

Obs. 1-235 103.6 ± 8.7 (44.1%) 78.8 ± 5.97 (33.5%) 100.7 ± 4.5 (42.9%)

Obs. 236-1386 - 166.6 ± 33.1 (14.5%) 37.3 ± 16.5 (3.2%)

Obs 887-1386 - 51.3 ± 10.9 (10.3%) 6.4 ± 3.4 (1.3%)

Total Interventions 103.6 ± 8.7 (44.1%) 245.4 ± 37.5 (17.7%) 141.9 ± 21.1 (6.5%)

Table 5.4: The number of operator interventions that would be incurred during different
stages of training. (See text for discussion.)

observations (the total number available for the Leeds dataset) the number of interven-

tions requested for each dataset is similar (with the NGSIM dataset incurring fewest

interventions); thereafter (between 236-1386 observations) the intervention rate for the

CAVIAR dataset falls to ∼ 3.2%, compared to ∼ 14.5% for the NGSIM dataset. For the

last 500 observations in the NGSIM dataset (887-1386), the intervention rates for the

CAVIAR and NGSIM datasets are ∼ 1.3% and ∼ 10.3% respectively.

It is possible that the low intervention rate observed for the CAVIAR dataset re-

flects the simplicity/uniformity of the distribution of synthetic training data, and may

thus provide an unrealistic indication of the intervention rate that could be achieved

at this stage in training (ie. when 1000-2000 training examples have been observed).

Indeed the TPR values observed for both datasets are similar at the end of training, in-

dicating that the intervention rate for the CAVIAR dataset (as predicted by 1 − TPR)

may potentially be similar to that observed for the NGSIM dataset if real training data

were used (conversely, however, such training data could have yielded a higher TPR

and correspondingly low intervention rate).

The results presented here indicate that, depending on the nature of the dataset in

question, an intervention rate between 1% and 10% may be obtained after training the

proposed algorithm on ∼ 1000 example trajectories, with 10% being the most realistic

figure when taking into consideration the relative realism of each dataset. It is clear

that, in a real-world scenario, this represents an unreasonably high intervention rate.

However, since the results illustrated in Figure 5.11 show a steady improvement in

classification performance for each dataset, they do not rule out the possibility that

low intervention rates could be obtained given sufficient training data.

5.4.2 How many interventions are necessary?

While the preceding experiment examined how the proportion of training examples

requiring user interventions might change as training progresses, the impact of user

interventions on classification performance was not determined. To address this issue,
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a further experiment was conducted where the maximum number of interventions

available during a given training run was restricted. For each dataset, the proposed

algorithm was trained using several different intervention “quotas” ranging (in uni-

formly spaced steps) from 10 interventions to (a number close to) the mean number

of interventions identified in the preceding experiments. During training, once the

maximum number of interventions is reached, further training examples which are

classified as anomalous are discarded.

For each dataset, Figure 5.12 illustrates the classification performance obtained at

the end of training using range of different intervention quotas. When only 10 user

interventions are available, final classification performance is significantly reduced

(TP = 0/FP = 0 for the CAVIAR dataset, TP = 0.12 ± 0.067/FP = 0 for the Leeds

dataset, and TP = 0.44 ± 0.095/FP = 0.001 ± 0.001 for the NGSIM dataset) compared

to classifiers trained with unlimited interventions (see Table 5.3 for performance fig-

ures). As shown in Figure 5.12, classification performance increases proportionally to

the number of available interventions: in each case, below a certain critical number

of interventions, increases in the intervention quota make a large difference to classi-

fication performance; thereafter, increasing the intervention quota yields a relatively

small increase in classification performance.

The results shown in Figure 5.12 serve to illustrate the role of user interventions in

the proposed semi-supervised learning framework: it is clear that without the ap-

proval of certain key items of training data, the proposed framework successfully

prevents the normal behaviour model from encompassing the corresponding “non-

approved” regions of feature space. The relationship observed between classification

performance and intervention quotas also serves to indicate that a reasonable level

of performance can be achieved even if only a subset of intervention requests are

addressed: a critical quantity of ∼ 100 interventions seems to be necessary for the

datasets considered here.

5.4.3 What difference does training on unlabelled examples make?

The preceding experiments have shown that the proposed framework allows a high

level of classification performance to be achieved while only requiring labels for a

minority of the training examples presented. A related issue, unresolved by these ex-

periments, is determining the extent to which classification performance is improved

by self-training on unlabelled examples (ie. those classified as normal). We examine

the impact of unlabelled examples by modifying the experiment presented in Section

5.4.1 so that any unlabelled data classified as normal is discarded rather than being

used for training. In order to ensure that there is no difference in the behaviour of
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(a) CAVIAR “INRIA” dataset.
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(b) Leeds carpark dataset.
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(c) NGSIM “Peachtree Street” dataset.

Figure 5.12: Measuring the classification performance that is obtained when only a finite
“quota” of user-interventions is made available. The final point on each plot corresponds
to an “infinite”, ie. unrestricted, intervention quota. (See text for discussion.)
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the underlying learning algorithm in this experiment compared to that presented in

Section 5.4.1, unlabelled data is only discarded after the first 100 examples have been

presented: specifically, this ensures that the same kernel width (which is estimated

from the first 100 training examples and affects learning/generalisation behaviour -

see Chapter 3) is used in both experiments.

For each dataset, Figure 5.13 shows how classification performance changes as

more observations are presented, both with and without the option of self-training

on unlabelled data. For the CAVIAR dataset, removing the option to self-train on

unlabelled data yields a large decrease in TPR (a mean value of 0.46 compared to

0.91), and a corresponding increase in the number of interventions (230.6 compared

to 141.9). The same pattern - lower TPR and higher intervention rate in the absence

of unlabelled data - can be observed for the NGSIM and Leeds datasets: however,

in these cases, the difference is less extreme (see Table 5.5 for exact figures) than ob-

served for the CAVIAR dataset. For the NGSIM dataset, training without unlabelled

data causes a small reduction in FPR (a mean value 0.025 compared to 0.032), although

this difference is smaller than the corresponding decrease in TPR. In this light it is also

interesting to note that decreasing the quantity of labelled data, as explored using inter-

vention quotas in the preceding section (see Figure 5.12), also causes FPR to decrease

for the NGSIM dataset.

Overall, the option to self-train on unlabelled data appears to yield an improve-

ment in classification performance and reduction in intervention rate for all datasets.

While this effect is clearly observable for all datasets, its extent appears to depend on

the dataset in question: the extreme difference observed for the CAVIAR dataset may

be related to the discrepancy between synthetic/real train/test data (eg. it is possible

that more unlabelled examples are required to ensure sufficient overlap between the

training/test distributions in this case).

5.4.4 Will anomalous examples inevitably contaminate the model?

A key concern with proposed learning framework is that self-training may occur for

incorrectly classified unlabelled training examples (ie. anomalous examples misclas-

sified as normal), ultimately reducing the model’s ability to distinguish between nor-

mal and anomalous examples. This concern is particularly pertinent in the case of

the NGSIM dataset, where FPR appears to rise steadily as more training examples are

observed; it is indeed possible that the same would occur for the Leeds and CAVIAR

datasets given sufficient training examples.

Here we conduct a further experiment to determine the extent to which classifi-

cation performance might be damaged by training the model on unlabelled exam-
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(a) CAVIAR “INRIA” dataset.
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(b) Leeds carpark dataset.
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(c) NGSIM “Peachtree Street” dataset.

Figure 5.13: The difference between the classification performance and intervention rates
obtained when training with (solid lines) and without (dashed lines) the option to self-train
on unlabelled data. (See text for discussion.)
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Data Leeds NGSIM CAVIAR

TPR L+U 0.77 ± 0.095 0.93 ± 0.023 0.91 ± 0.052

L 0.74 ± 0.10 0.89 ± 0.023 0.46 ± 0.11

FPR L+U 0 0.032 ± 0.0076 0

L 0 0.025 ± 0.0097 0

Interventions L+U 103.6 ± 8.7 (44.1%) 245.4 ± 37.5 (17.7%) 141.9 ± 21.1 (6.5%)

L 140.1 ± 8.0 (59.6%) 283.4 ± 39.7 (20.5%) 230.6 ± 33.7 (10.5%)

Table 5.5: The difference between the classification performance obtained and total number
of intervention incurred after training with (L+U) and without (L) the option to self-train
on unlabelled data. (See text for discussion.)

ples containing a large proportion of anomalous examples. For each dataset, we

take trained classifiers from Section 5.4.1 (trained with unlimited interventions), and

present a series of further sequences of unlabelled training data. Each sequence con-

sists of the entire set of anomalous test data and an identical quantity of randomly

chosen (normal) training data, with noise (drawn from a Gaussian distribution with

µ =~0 and Σ = 0.01 · I) added to each example (for the first presentation of the anoma-

lous test set, no noise is added). We train the models on unlabelled data generated in

this manner3 until at least 10,000 examples have been presented.

During this additional training stage new data can only be incorporated into the

normal behaviour model via self-training, ie. only if it is classified as normal: by pre-

senting anomalous test data as unlabelled training data, we can determine whether or

not occasional self-training on misclassified anomalous items leads to a catastrophic

deterioration in classification performance. Figure 5.14 shows how classification per-

formance changes for each dataset as the extra unlabelled data is presented (these

plots can be regarded as a continuation of those shown in Figure 5.11), while Table 5.6

shows the TPR and FPR values obtained before and after the extra data is presented.

For each dataset, training on the additional data causes a gradual increase in FPR.

Although this reflects a deterioration in the ability to detect anomalous instances, the

increase in FPR is matched by a corresponding increase in TPR for all datasets. Al-

though a seemingly large increase in FPR (0 → 0.12) is observed for the Leeds dataset,

it is important to note that there are only 6 anomalous test examples for this dataset:

in fact, the value of 0.12 corresponds to a single anomalous example being misclassi-

3An earlier experiment was conducted where unlabelled data was generated from a uniform distribu-
tion within a hypersphere enclosing the dataset (using the method proposed by Tax and Duin in [145]).
However, perhaps due to the high dimensionality (15 dim) of the chosen feature space, all examples
generated this way were classified as anomalous and thus could not be used for self-training.
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Leeds NGSIM CAVIAR

TPR Before 0.77 ± 0.095 0.93 ± 0.023 0.91 ± 0.052

After 0.86 ± 0.096 0.95 ± 0.020 0.93 ± 0.034

FPR Before 0 0.032 ± 0.0076 0

After 0.12 ± 0.081 0.051 ± 0.016 0.016 ± 0.036

Table 5.6: Classification performance figures obtained before and after the presentation of
10,000 unlabelled examples, corresponding to the start and end points of the curves shown
in Figure 5.13. (See text for discussion.)

fied in 7
10 trials. The present results do not conclusively rule out the possibility that

a much smaller increase in FPR may have been measured for the Leeds dataset, if a

larger selection of anomalous examples were available.

It is interesting to consider the underlying cause of the observed increase in FPR.

For the NGSIM dataset, where the FPR was non-zero before the presentation of the

additional instances, it is possible that the presentation of anomalous instances could

have caused classification performance to deteriorate. For the CAVIAR and Leeds

datasets, however, FPR was zero before the addition training data was presented: this

means that the anomalous test data could not initially have been used for self-training,

implying that self-training on “normal” instances caused the classification boundary

to spread sufficiently to encompass some of the anomalous examples. It is difficult to

determine whether this is a failing of the underlying learning algorithm, or whether

it is an inevitable consequence of the imperfect separation of normal and anomalous

instances in the chosen feature space (see Chapter 4). The very gradual nature of the

increase in FPR (apparently reaching a plateau for the Leeds and CAVIAR datasets

at around 7000 observations), and the fact that it is accompanied by a corresponding

increase in TPR, lends some support to the latter hypothesis.

Despite the observed deterioration in classification performance, it is useful to

consider the classification performance that would be afforded by an entirely unsu-

pervised learning algorithm if trained on the unlabelled data used in the preceding

experiment (ie. containing 50% normal and 50% anomalous instances). It is clear that

modelling the distribution of this data would not allow anomalous instances to be de-

tected on the basis of their low probability with respect to the model: in contrast, the

proposed learning framework retains a reasonably high level of classification perfor-

mance despite the large proportion of anomalous training data.
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(a) CAVIAR “INRIA” dataset.

(b) Leeds carpark dataset.

(c) NGSIM “Peachtree Street” dataset.

Figure 5.14: Determining whether self training could damages the model: these plots mea-
sure classification performance as normal training examples and anomalous test examples
- both with added noise - are presented as further unlabelled training data for pre-trained
classifiers. (See text for discussion.)
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5.5 Discussion

The results presented in this chapter have demonstrated that the learning algorithm

proposed in Chapter 3 can be used in conjunction with a parametric trajectory rep-

resentation (see Chapter 4) to yield high levels of classification performance for three

different normal vs anomalous trajectory classification scenarios.

The central aim of this chapter was to test / demonstrate an incremental semi-

supervised learning framework where a human operator is used to filter the training

examples used to construct a normal behaviour model by providing labels for any

new examples classified as anomalous. We have measured how the rate of requests

for labels (ie. human interventions) would change during training on three different

trajectory datasets: while in each case the intervention rate is seen to decrease steadily

as more examples are observed, a usefully low (ie. ≤ 2%) intervention rate is only

achieved for one case (the CAVIAR dataset). Due to the limited quantity of available

training data, it is difficult to speculate about whether a similarly low intervention rate

would be achieved for the other datasets given sufficient training examples. Nonethe-

less, we have also shown (in Section 5.4.2) that it is possible to reach a high level of

classification performance if only a finite set of interventions are provided, although

it should also be noted that performance is compromised significantly if the quota of

available interventions is too small.

As discussed in Section 5.2.3, the proposed framework could be regarded as a com-

bination of active learning and semi-supervised learning: what distinguishes the pro-

posed approach from active learning is that in addition to selecting which examples

need to be labelled, the remaining unlabelled examples are also used to improve the

classifier via self-training. Section 5.4.3 examined the difference between classifiers

trained with and without unlabelled data, and indicated that the ability to self-train

on unlabelled data yielded an improvement in classification performance combined

with reduction in intervention rate for all datasets. For the CAVIAR dataset, perfor-

mance degraded significantly in the absence of unlabelled data while a much smaller

decrease was observed for the Leeds/NGSIM datasets: in these cases it appears that

labelled data makes the most significant contribution to classification performance.

Conversely, Section 5.4.4 attempted to determine whether self-training on unla-

belled data could potentially damage the model: trained classifiers were presented

with a sequence of 10,000 unlabelled examples (containing an equal mixture of nor-

mal and anomalous examples) yielding a small increase in FPR for all datasets, even

those for which FPR was initially zero. This increase in FPR was accompanied by

a corresponding increase in TPR which suggests either that the normal and anoma-

lous classes may overlap in the chosen feature space, or that the underlying learning
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algorithm yields an insufficiently parsimonious classification boundary and “over-

generalises” to the normal behaviour class. Nonetheless, when taking into consider-

ation the high proportion (50%) of anomalous examples in the unlabelled data pre-

sented, this experiment also provides a demonstration of a key advantage of the pro-

posed learning framework: that it provides a “safety net” to prevent the inadver-

tent incorporation of anomalous instances. Given an entirely unsupervised learning

framework (ie. where all examples are used for training and classification of new

examples is based on their probability with respect to the model) the presentation

of 10,000 examples containing 50% anomalous behaviour would cause a catastrophic

degradation in classification performance.

The learning framework proposed in this chapter provides a potential strategy for

using a human operator to filter training examples used to construct a normal-vs-

anomalous behaviour classifier. Although the results obtained in this chapter go some

way to suggesting that this idea could be effective, comprehensive testing on a larger

set of - more extensive - real-world datasets would be necessary to provide a conclu-

sive indication of its potential applicability in real-world scenarios. It is also worth

noting that the semi-supervised learning framework we demonstrate in this chapter

could be applied as a wrapper to any existing anomaly detection algorithm capable of

incremental unsupervised learning: further experiments with different learning algo-

rithms and different types of data may provide a useful indication of its wider appli-

cability and efficacy.





Chapter 6

Conclusions

6.1 Main contributions and their limitations

This thesis has explored a semi-supervised learning framework for building scene-

specific models of motion trajectory data that can be used to detect anomalous be-

haviour. The preceding chapters presented three main contributions:

1. A novel incremental one class learning algorithm which outperforms the best

existing approach while only requiring an upper limit on model complexity to

be specified.

2. A thorough empirical comparison of the relative class separability afforded by

the four parametric trajectory representations that have previously been applied

in the literature.

3. A semi-supervised learning framework for anomalous trajectory classification,

where the training data used to construct a normal behaviour model is filtered

to remove potential anomalies with minimal human labelling effort.

These contributions are summarised in the remainder of this section, together with a

discussion of their limitations.

6.1.1 Incremental One-class Learning

Main findings The learning framework proposed in this thesis relies on the existence

of a technique for incrementally - and parsimoniously - building a model of normal

behaviour, so that anomalous instances can be detected. To address this issue, Chap-

ter 3 proposed a technique for incrementally constructing a density estimate from a

sequence of multivariate data - drawn from a single class - for the purpose of outlier

159
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detection. The method worked by initially constructing a maximally-complex Gaus-

sian mixture model where each new data point was represented by a Gaussian kernel

function. Thereafter, once a maximum number of components had been added to the

model, a pair of mixture components was merged for each new component added

(specifically, the pair with lowest KL divergence pre/post merging).

The results presented in Chapter 3 indicated that mixture models generated using

this approach - in conjunction with a density-based classification threshold - yielded

useful levels of normal-vs-outlier classification performance for a range of datasets,

throughout the incremental training process. In all of the experiments presented, the

maximum number of mixture components was set to the same value (100). Despite

this, the resulting classification performance was equivalent to that of classifiers gen-

erated using the Incremental SVDD algorithm [146, 140] where model complexity was

determined using cross-validation [143]. Moreover, for low False Positive Rates (ie.

below 1
50 ), the proposed algorithm was shown to consistently yield higher True Posi-

tive rates than Incremental SVDD. Further results presented in Chapter 5 show that the

algorithm also works effectively for anomaly detection on the basis of parametrised

trajectory data.

Two different classification techniques were tested in Chapter 3: thresholding ei-

ther 1) the density estimated by the mixture model (so that a user specified portion of

training data is rejected) or 2) a component-wise measure of how likely a given devia-

tion is according to the Gumbel distribution [109]. In most cases the density threshold

provided the best results, but the component-wise threshold provided improved re-

sults on two datasets where it was hypothesised that generalisation due to component

overlap was not beneficial. Interestingly, further results presented in Chapter 5 indi-

cated that the component-wise classification boundary can also be useful when the

range of density values calculated for the training data does not encompass the best

classification threshold. Finally, examination of the role of the kernel function in the

resulting mixture model presented in Chapter 3/Appendix A showed that the ker-

nel covariance matrix acts as a bias/smoothing term added to all components in the

model. Experiments showed that subtracting the kernel bias term reduces classifica-

tion performance on many datasets, indicating that it acts to usefully compensate for

the relatively low ratio of training examples to mixture components.

Limitations There are a number of potential criticisms that could be levelled at the

proposed algorithm: while it has been shown to yield effective classification perfor-

mance, it has involved a number of arbitrary - albeit consistent - choices. One such

choice is the maximum number of mixture components: this has been set to 100 with
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the justification that this is a reasonable upper limit on model complexity for most

problems. While this choice yields reasonable results for a range of datasets, it would

nonetheless be desirable to be able to adapt this quantity according to the dataset in

question (eg. by adding an extra component if the current number is insufficient to

represent a given dataset). Addressing this issue presents the challenge of evaluating

the trade-off between data likelihood and model complexity (eg. using BIC or AIC

[20]) without having the whole dataset to hand, while taking into account the need

for an initially parsimonious/over-complex model when only a small quantity of data

has been observed. Similarly, although the kernel covariance matrix is shown to have

a considerable impact on classification performance, it is estimated in a one-off step

from the first 100 training examples. Although this appears to be adequate for most

datasets considered, it would be better to be able refine this estimate using further

training examples (for example, it could be the case that the first 100 examples led to

an inappropriately large bias, but there is currently no way this could be corrected).

It is interesting to note that two highlighted weaknesses correspond to aspects of

the learning procedure that are arbitrarily prespecified, and that their potential so-

lutions are at odds with a scenario where data arrives sequentially before being dis-

carded. Since the method is designed to operate usefully from the point where the

very first training examples are presented, it is impossible to escape the need to pre-

specify certain assumptions. In this light, perhaps the deepest criticism of the pro-

posed method - its demonstrable classification performance notwithstanding - might

be that the meaning/justification of its underlying assumptions is somewhat opaque.

6.1.2 Trajectory Representation

Main findings In order to apply the incremental one-class learning algorithm pro-

posed in Chapter 3 to trajectory data, it was necessary to encode trajectories in fixed-

length vector form. To avoid the need for a separate learning step to determine an ap-

propriate representation, a “hard-coded” technique for representing trajectories was

required. To address this issue, Chapter 4 presented an empirical comparison of four

different representations (each corresponding to a different family of basis functions)

where the class separability of several benchmark datasets was measured over a range

of dimensionalities. The representations considered had all previously been adopted

in the trajectory classification literature and included: the Haar wavelet transform, the

Discrete Fourier Transform, Chebyshev polynomial approximation and least-squares

cubic B-Spline regression.

Separability was measured using two main criteria: 1) The proportion of Relative-

Neighbourhood-Graph edge weights corresponding to within-class edges [181], and
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2) The leave-one-out 1-nearest-neighbour classification rate (corrected for differences

in class size). These measures were applied to a range of datasets - ranging from pen

trajectories to vehicle trajectories - which each contained a number of distinct classes.

The results obtained indicate that although there was only a small difference in sepa-

rability between the representations, the relative separability of the different represen-

tations had a persistent ordering in which the Haar representation generally yielded

improved separability compared to the DFT representation, and the best separability

was provided by either the Chebyshev or Spline representations. Furthermore, sepa-

rability was found to increase with dimensionality before reaching a plateau at around

20 dimensions, although this trend was less clear for the Spline representation.

Chapter 4 also examined the impact of the underlying curve parametrisation strat-

egy on the relative separability of each dataset/representation, exploring two differ-

ent curve parameters: 1) Proportion of total time taken and 2) Proportion of total-arc

length. Interestingly, curve parametrisation based on arc-length was found to yield

the highest separability values for most datasets, implying that spatio-temporal infor-

mation is largely irrelevant for the datasets considered (given their particular class la-

bels). This difference was most noticeable for the NGSIM dataset, where spatial curve

parametrisation yields a ∼ 10% improvement in nearest-neighbour classification rate

- explained by the fact that this dataset is divided into spatially defined classes, but

contains a wide range of spatiotemporal profiles. However, a further experiment with

simulated data confirmed - not unexpectedly - that temporal parametrisation is es-

sential for distinguishing between trajectories which include pauses in different lo-

cations. This was confirmed by experiments presented in Chapter 5 which showed

that normal/anomalous behaviour classification for the CAVIAR and Leeds trajectory

datasets (each containing examples of anomalous behaviour provided by actors) was

improved by temporal trajectory parametrisation.

These contradictory findings call into question the feasibility of a single fixed-

length representation that captures both spatial and temporal characteristics: the abil-

ity to separate temporal characteristics appears to come at the expense of being able to

separate spatial ones, despite the fact both characteristics are undoubtedly important

for classifiying behaviour in a surveillance context. While reasonably high levels of

classification performance are obtained using a spatiotemporal trajectory representa-

tion in Chapter 5, the results obtained for the NGSIM dataset hint that this strategy

may not scale well to more complex datasets.

Limitations While the results obtained present a useful characterisation of the po-

tential impact of different parametric trajectory representations on the separability of
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different motion classes, there are a number of ways in which these results present an

incomplete picture of the issues that were sought to be addressed.

The experiments presented measure the utility of each trajectory representation ac-

cording to separability measures defined in terms of the Euclidean distance between

raw coefficient vectors. While this gives a reasonable indication of the relative classi-

fication performance that might be afforded by density/neighbourhood based classi-

fiers for different representations, it may not fully characterise the classification per-

formance achievable in each case. For example, given a labelled dataset, it may be

possible to learn a weighting for the constituent attributes of a given representation

(eg. DFT coefficients) which would provide a relative level of classification perfor-

mance that is at odds with the trends observed here. In other words, abstract measures

of separability - defined independently of any given learning algorithm and dataset -

may have limited scope as predictors of achievable classification performance.

In a different vein, it is also important to note that there are many other potential

trajectory representations that could have been explored - the selection examined in

this thesis merely reflects those that have been adopted in the trajectory classification

literature. There are, however, many other possible representations, including a vast

array of different families of wavelet functions (eg. Daubechies wavelets, and different

orders therein), and different orders of B-Spline functions (eg. linear, quadratic, etc.),

among others. Similarly, given the separability framework adopted here, it would also

be possible to the compare the class separability afforded by a range of non-parametric

trajectory distance measures (eg. Hausdorff distance, Dynamic Time Warping cost,

etc.) alongside that of parametric representations.

Finally, although a diverse range of datasets has been used to compare trajectory

representations, it is not at all clear that they adequately characterise the type of dis-

crimination task that would need to be addressed when distinguishing between nor-

mal and anomalous trajectories in real world data. While the CAVIAR and Leeds

datasets (used to test the proposed learning framework in Chapter 5) provide some

examples of such data, the number of available examples is insufficient to meaning-

fully characterise the adequacy of different representations.

6.1.3 Semi-supervised Normal-behaviour Modelling

Main findings The central focus of this thesis was to explore the possibility of a semi-

supervised learning framework for incrementally constructing a model of normal be-

haviour, where unlabelled examples are combined with occasional human labelled

examples. The proposed framework used the classification output of an incremental

one-class learning algorithm to determine whether to request labels for a sequence
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of unlabelled trajectories: labels were requested for trajectories classified as anoma-

lous, while those classified as normal were automatically used as training data. The

rationale of this framework is that it allows a human operator to filter a sequence of

unlabelled dataset - to ensure that it only contains normal examples - by providing

labels for a small set of “unprecedented” examples. Using the one-class learning al-

gorithm proposed in Chapter 3 in conjunction with a 15-dimensional cubic spline rep-

resentation, classification performance and intervention rate were measured during

simulated training runs on three different real trajectory datasets.

The results obtained for each dataset followed a similar pattern of behaviour: the

proportion of correctly recognised normal behaviour (True Positive rate) initially rose

quickly before continuing to increase more slowly (reaching a level of ∼ 90% for the

CAVIAR and NGSIM datasets and a lower level of ∼ 80% for the Leeds dataset, where

fewer training examples were available). In all cases the proportion of incorrectly

classified anomalous test data (False Positive rate) remained low (never exceeding

zero for the Leeds and CAVIAR datasets, while gradually increasing to a low level of

3.2% for the NGSIM dataset). In all cases, the rate of intervention requests initially fell

rapidly before continuing to decrease at a slower rate: for the CAVIAR dataset, where

the largest number of training examples were available, this reached a usefully low

level of ∼ 1% at the end of training.

A further experiment explored the impact of restricting the total number of user

interventions, indicating that once a critical number of interventions - around 100 -

had been provided, a high level of classification performance (comparable to that ob-

tained with unlimited interventions) could be achieved even when all subsequent in-

tervention requests were ignored. For each dataset, even when unlimited interven-

tions are available, the total number of requested interventions corresponded to a mi-

nority of the total training data presented, with automatically incorporated unlabelled

data constituting the remainder. To determine the impact of unlabelled data, training

was repeated without the ability to automatically incorporate unlabelled data: in each

case, the absence of unlabelled data caused a decrease in True Positive rate and an

increase in the intervention rate. Interestingly, this magnitude of this change was very

large for the CAVIAR dataset (where training/test data distributions may differ), but

was only marginal for the other datasets considered.

Finally, we attempted to determine the extent to which the classification perfor-

mance afforded by the proposed framework might deteriorate given training data

that contained a large proportion of anomalous activity. When pre-trained models

were presented with a further sequence of 10,000 unlabelled examples comprising

50% normal training data and 50% anomalous test data (all with added noise), only
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a small increase in False Positive rate was observed (typically reaching a plateau for

the last 3-4000 presented examples). This finding demonstrated the advantage of the

proposed framework - as a means to filter/selectively model unlabelled data - over an

entirely unsupervised learning algorithm, since any reasonable model for the distribu-

tion of the 10,000 unlabelled training examples presented would provide little means

to discriminate normal/anomalous activity.

Limitations While the results presented in Chapter 5 provide some indication of the

potential efficacy of the proposed learning framework they leave a number of ques-

tions unresolved. One key issue is whether the rate of requests for labels is - in general

- likely to decrease to a useful level. The one dataset for which this was shown to be

the case (the CAVIAR dataset) consisted of simulated training data (as only a small

quantity of real test data was available) whose distribution may have been mislead-

ingly simple compared to the equivalent real trajectory data that would have occurred

in the same scenario. The only way in which this question could be addressed - aside

from developing an improved algorithm that yields lower intervention rates on the

available datasets - would be to test the algorithm on larger sets of real trajectory data.

A second issue which has not been conclusively addressed is the potential for clas-

sification performance to deteriorate if/when inappropriate unlabelled examples are

automatically incorporated as normal training data. While the results obtained only

showed a small increase in False Positive rate when a large set of normal and anoma-

lous unlabelled examples were presented, the results do not rule out the possibility for

further increases. Although - as discussed earlier - the proposed framework can only

improve on its equivalent unsupervised counterpart, the possibility that a declining

ability to correctly filter unlabelled data may eventually negate the human labelling

effort expended calls into question the logic of the proposed framework. Another po-

tential explanation for the observed increase in FPR lies in the potential inadequacy

of the fixed-length vector trajectory representation used (as discussed earlier): in this

light a more conclusive demonstration of the proposed framework may require a more

accurate picture of the adequacy of the underlying representation for distinguishing

normal/anomalous behaviour.

Viewed from a pragmatic perspective, the proposed trajectory modelling frame-

work has a number of shortcomings that would need to be addressed before it could

be genuinely useful. If the system is to detect behaviour in real-time, it would be nec-

essary to evaluate trajectories as they unfold, rather than after a given person/vehicle

has left the scene: however, as currently implemented, the proposed framework pro-

vides no means to accomplish this. In a similar vein, a key issue for the potential
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applicability of the proposed framework is its ability to integrate with the output of

an automatic tracking algorithm. Since current tracking algorithms (see eg. [174])

are by no means perfect, the trajectory representation strategy and learning algo-

rithm would need to be adapted to take into account the regular occurrence of par-

tial/incomplete tracks. Furthermore, even if perfect tracking were available, the cur-

rent learning/classification framework does not take into account the reconstruction

error implicit in the parametric representation of each trajectory: in reality however,

two similar parameter vectors with very different reconstruction errors are unlikely to

represent similar behaviours and should not be treated as doing so. Indeed, quantify-

ing the reconstruction error associated with each parametrised trajectory may provide

a means to alleviate the seeming overlap between normal and anomalous trajectories

in the chosen feature space.

In a different vein, another shortcoming of the proposed learning framework is

that is assumes a human operator to be an infallible source of accurate labels. In re-

ality, trajectories could potentially be mislabelled but the current procedure provides

no scope to address this issue. It could also be argued that the proposed framework

is wasteful, as labelled anomalous examples are discarded: although anomalous be-

haviours are unlikely to follow any definitive template, incorporating a model for

observed anomalies into the proposed framework may serve to improve classifica-

tion performance (for example by allowing the classification threshold parameter to

determined non-arbitrarily).

6.2 Future work

As indicated in the preceding discussion, there are a variety of ways in which the work

presented in this thesis could be further developed. Several potential extensions are

briefly described as follows.

Classification of unfolding trajectories given current model. The current trajectory

modelling / classification framework requires a trajectory to be completed before it

can be classified. In a practical setting, it would be important to be able to identify

anomalous trajectories as they unfold. It would thus be useful to explore methods for

classifying unfolding trajectories, without fundamentally altering the current (whole-

trajectory based) model. Given the current model, the key problem would be mapping

partially formed trajectories to the parameter space (eg. spline control points) used to

represent whole trajectories. One straightforward practical solution to this problem

would involve storing a mean trajectory for each mixture component, so that a non-
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parametric distance measure (eg. the Hausdorff distance) could be used to match

each partial trajectory to its closest mean trajectory: the partial trajectory could then

be blended with its closest mean trajectory to generate a hypothetical whole trajectory,

which can be parametrised/classified according to current framework.

Dealing with automatic tracking output. Noting that current tracking algorithms

are unlikely to consistently generate whole / unbroken motion trajectories, it may

not be realistic to construct a model of whole motion trajectories as envisaged in this

thesis. It is possible that the current framework could be used to model and classify

the trajectory segments resulting from automatic tracking, rather than whole trajecto-

ries. Nonetheless, one potential problem with directly attempting to model tracking

output is that a prohibitively large number of mixture components may be needed to

adequately represent the distribution of trajectory segments, whose range of lengths

and start/end points will necessarily be much wider than that of whole trajectories.

However, while it would be important to be able to classify all tracking output, it

is not necessary to use it all for training. In this light, provided that it is possible to

classify partial segments of any length, the set of trajectory segments used for train-

ing could be restricted to those of a certain minimum length. The minimum segment

length would effectively specify a compromise between the required model complex-

ity (a shorter minimum segment length would require more mixture components) and

the number of available data (a greater minimum length would reduce the number of

available training examples). Ultimately, however, it is likely that the most appropri-

ate representational strategy will depend strongly on the characteristics of the chosen

tracking algorithm and of the particular scenario in question.

Additionally, it is worth noting that focussing solely on trajectory segments would

relinquish the ability to capture and classify the global aspects of a given behaviour:

for example, a globally unusual trajectory may be comprised of a collection of intrin-

sically normal segments. It is clear that the detection of such behaviours hinges on

the development of improved tracking algorithms, or techniques for associating track

segments corresponding to a given identity.

Modelling spatial/temporal characteristics separately. The results presented in Chap-

ter 4 indicated using a single set of parameters to represent the spatial and spatiotem-

poral characteristics of trajectories may compromise the separation of spatially-defined

trajectory classes in the resulting feature space. While this could be alleviated by using

a purely spatial representation, spatiotemporal characteristics are likely to be impor-

tant for classifying surveillance data: a potential solution to this problem is to model
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the spatial and temporal characteristics of trajectories separately.

In practical terms this would involve constructing two separate mixture mod-

els. One of these would encode the distribution of spatially-parametrised trajecto-

ries. A second model would encode the distribution of 1-dimensional distance-vs-

time curves. It is clear the spatial and temporal characteristics of trajectories are not

necessarily independent (eg. different temporal patterns may be expected on a road

vs a pavement). This issue could be resolved by maintaining a matrix representing the

correspondence between components in the spatial mixture model with those in the

temporal mixture model. Initially - before any component merging has taken place

- this would be an identity matrix encoding a one-to-one correspondence. The par-

ticular pairings of spatial and temporal mixture components that are updated when

each new example arrives would then be used to incrementally update this matrix,

thereby defining a separate prior distribution over temporal mixture components for

each spatial mixture component.

New trajectories would be classified with respect to the spatial mixture model, and

then with respect to a re-weighted version of the temporal mixture model correspond-

ing to the closest spatial component: a given trajectory would be classified as anoma-

lous if found to be anomalous with respect to either model. Indeed, this approach

could be extended to a range of other features (eg. pertaining to object appearance or

articulated motion).

Anomalous behaviour modelling. As noted in the preceding section, the learning

framework proposed in this thesis discards any trajectories that are deemed anoma-

lous by a human operator. However, the proposed framework could be extended

to incorporate anomalous examples in various different ways. One straight-forward

possibility would be to construct a second mixture model representing anomalous ex-

amples, in parallel to the one used to model normal examples. This model should

be separate for two reasons: 1) to prevent pairs of normal/anomalous components

being merged and 2) so that a large kernel width can be used in order to counteract

the sparsity of anomalous training examples. Furthermore, noting the wide range of

possible anomalous behaviours, the complexity (ie. number of mixture components)

of the anomalous behaviour model may need to be far greater than that of the normal

model. The ability to add new components to the mixture model, and determine when

it is necessary to do so, would be important in this case (see next item of future work).

Given a pair of mixture models representing both normal and anomalous behaviour,

new anomalous examples could be detected using a Likelihood Ratio Test (as adopted

by Xiang and Gong for this purpose in [166]) as follows, where Mn and Ma denote the
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mixture models (both constructed as described in Chapter 3) representing normal and

anomalous behaviour, and τ denotes a pre-specified threshold:

RL =
P(x|Mn)
P(x|Ma)

≥ τ → accept Hnormal

< τ → reject Hnormal

(6.1)

A key problem is choosing an appropriate threshold τ. If the prior probabili-

ties P(a) and P(n) were known this ratio could be formulated in terms of posterior

probabilities to give a decision boundary at P(x|Mn)P(n)
P(x|Ma)P(a) = 1, which leads to τ = P(a)

P(n) .

Given that P(a) may be very low this approach could inadvertently discount poten-

tially anomalous behaviour: incorporating a loss matrix (see eg. [12]) encoding the

relative risks Rn, Ra of misclassifying normal and anomalous behaviour then leads to

τ = P(a)Ra
P(n)Rn

. However, without any meaningful way to specify Rn and Ra this approach

still ultimately equates to specifying an arbitrary τ. In the absence of any prior knowl-

edge a simple choice, which assumes the risks of misclassification are proportional to

the rarity of each class, would be τ = 1.

Even given an appropriate value for τ that correctly classifies the types of exam-

ples observed thus far, it is important to take into account the possibility that a future

- unprecedented - example of anomalous behaviour may have a parameter vector that

has a higher likelihood with respect to the normal behaviour model. The only way

to identify such instances, therefore, is to retain the existing anomaly detection rules

adopted in this thesis and use these in conjunction with the preceding two class ap-

proach. An intuitive strategy would be to employ a winner-takes-all rule, so that a

new example is deemed anomalous if either classification approach suggests this.

It is interesting to consider the role that the anomalous behaviour model would

play. If the two class classification boundary does not overlap with the one-class

boundary describing normal behaviour, then the anomaly model does not provide

any direct benefit for classification. If the boundaries did overlap, however, then the

WTA rule would constrict the resulting classification boundary in regions closer to

the observed anomalies: this could be achieved by drawing samples from the normal

behaviour model, and choosing a value of τ that causes the two-class decision bound-

ary to overlap with the one-class boundary so that a certain proportion of the normal

samples are misclassified.

In addition to directly refining the classification boundary, another important role

for the anomalous behaviour model would be to prevent the classification bound-

ary from growing inappropriately during self training. This could be achieved by

measuring the change in the overlap between components of the normal/anomalous

behaviour models each time the normal behaviour model is updated: if the overlap
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between the updated component and any component from the anomalous model (this

could be calculated using maxi

(´
GN∗(x)GA(i)(x)dx

)
where GN∗ is the updated nor-

mal component and GA(i) is the ith anomalous component) increases beyond a thresh-

old then the self-training update should be discarded.

Noting the potential scarcity of anomalous examples, and the fact that an arbitrary

degree of overlap between the one- and two-class boundaries can be achieved, the

principal advantage of having an anomaly model would - in many cases - lie in pre-

venting inappropriate expansion of the classification boundary due to self-training.

Online model complexity adjustment. As discussed earlier, a key criticism of the

learning algorithm proposed in Chapter 3 is that does not provide a means to increase

the maximum number of mixture components to cope with new data. Currently the

addition of a new component requires an existing pair to be merged, and only occurs

if the relative cost (based on KL divergence - see Chapter 3) of the latter is lower than

that of updating an existing component with the latest training example. However,

even if merging a pair of existing components incurs the lowest relative cost it may

lead to undesirable over-generalisation.

In such circumstances, it would be desirable to assess the cost of merging a pair

of existing components in absolute rather than relative terms, so that if the cost were

deemed “too high” no merging would occur and the model complexity would be

increased by one component. Given the set of training examples for which a given pair

of components is responsible, it would be possible to evaluate a complexity-penalised

likelihood criterion (eg. BIC or AIC [20, 12]) for 1) the unmerged components and

2) their merged counterpart: if this criterion favours the unmerged components, then

the proposed merge should not take place. In the proposed framework, however,

no examples are stored: to address this issue the expected likelihood given the number

of examples represented by the two components could be calculated. This quantity

is straightforward to calculate, and has previously been applied to resolve split-vs-

merge decisions for Gaussian mixture models by Arandjelovic and Cipolla in [5].

In a similar vein, this approach could also be used to provide an absolute criterion

for choosing whether and how to reduce the number of components in the model.

Given that an over-fitted model is preferable to an underfitted one in the case of outlier

detection, the AIC criterion (which favours more complex models [12]) is likely to be

preferable to BIC: future experiments could explore how these strategies would affect

classification performance. Nonetheless, the intuitive strategy adopted in this thesis -

to initially fit an overcomplex model to unknown data - seems a sensible starting point

for any subsequent model complexity adjustment.



Appendix A

Derivations

In this chapter we provide a derivation of the formulae for merging two mixture com-

ponents used in Chapter 3, and use this to show how the kernel covariance matrix

(which accompanies each new example added to the model) manifests itself in the

parameters of the resulting mixture model. Finally, we provide a brief theoretical jus-

tification for the merging cost function adopted in Chapter 3.

A.1 Merging formulae for two Gaussian mixture components.

The merging formulae stated in Chapter 3 can be derived in a straightforward fash-

ion by hypothesising two separate sets of data X = {x1, . . . , xP} and Y = {y1, . . . ,yQ}
represented (using maximum-likelihood parameter estimates) by Gaussian distribu-

tions CX = {µX,SX} and CY = {µY,SY}, and showing that the parameters of a Gaus-

sian distribution CXY = {µXY,SXY} representing a combination of both sets of data

X ∪ Y = {x1, . . . , xP,y1, . . . ,yQ} can be expressed in terms of the parameters (ie. suffi-

cient statistics) of CX and CY.

Maximum likelihood parameter estimates for CX and CY

The maximum likelihood estimates for the parameters of CX and CY are expressed in

terms of {x1, . . . , xP} and {y1, . . . ,yQ} as follows:

CX :
{

µX = 1
P ∑P

p=1 xp, SX = ∑P
p=1(xp − µX)(xp − µX)T

}
CY :

{
µY = 1

Q ∑Q
q=1 yq, SY = ∑Q

q=1(yq − µY)(yq − µY)T
}

If CX and CY are components of a mixture model representing a total of N exam-

ples, their corresponding prior probabilities πX and πY are given by:

πX =
P
N

, πY =
Q
N

171
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Parameters of merged component CXY in terms of CX and CY

The prior probability πXY for the merged component is given by:

πXY =
P + Q

N
= πX + πY

The mean µXY of the combined set of examples X ∪ Y can then be expressed in

terms of µX,µY,πX,πY,πXY as follows:

µXY =
1

P + Q

(
P

∑
p=1

xp +
Q

∑
q=1

yq

)

=
P

P + Q
.

(
1
P

P

∑
p=1

xp

)
+

Q
P + Q

.

(
1
Q

Q

∑
q=1

yq

)

=
P

P + Q
.µX +

Q
P + Q

.µY

=
πX

πXY
.µX +

πY

πXY
.µY

Finally, the covariance matrix SXY for the combined set of examples X ∪ Y (now

calculated with respect to the combined mean µXY) can be expressed in terms of

SX,SY,µX,µY,µXY,πX,πY,πXY as follows:

SXY =
1

P + Q

[
P

∑
p=1

(xp − µXY)(xp − µXY)T +
Q

∑
q=1

(yq − µXY)(yq − µXY)T

]

=
P

P + Q
.

[
1
P

P

∑
p=1

(xp − µXY)(xp − µXY)T

]
+

Q
P + Q

.

[
1
Q

Q

∑
q=1

(yq − µXY)(yq − µXY)T

]

=
P

P + Q
.

[(
1
P

P

∑
p=1

xpxT
p

)
− µXYµT

XY

]
+

Q
P + Q

.

[(
1
Q

Q

∑
q=1

yqyq

)
− µXYµT

XY

]

=
P

P + Q
.

[(
1
P

P

∑
p=1

xpxT
p

)
− µXµT

X + µXµT
X − µXYµT

XY

]
. . .

+
Q

P + Q
.

[(
1
Q

Q

∑
q=1

yqyq

)
− µYµT

Y + µYµT
Y − µXYµT

XY

]

=
P

P + Q
.
[
SX + µXµT

X − µXYµT
XY

]
+

Q
P + Q

.
[
SY + µYµT

Y − µXYµT
XY

]
=

πX

πXY
.
[
SX + µXµT

X − µXYµT
XY

]
+

πY

πXY
.
[
SY + µYµT

Y − µXYµT
XY

]
=

πX

πXY
.
[
SX + µXµT

X

]
+

πY

πXY
.
[
SY + µYµT

Y

]
− µXYµT

XY
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A.2 Contribution of the kernel function to the final mixture
model.

Given the merging rule derived in the preceding section, we now analyse the impact

of the kernel covariance matrix in the Gaussian mixture model that results from the

learning algorithm proposed in Chapter 3. Specifically we show that once a given

mixture component represents multiple examples {z1, . . . zn} (ie. it is no longer just

a kernel function associated with a single data point), its covariance matrix S can be

expressed as

S = Cov({z1, . . . zn}) + K (A.1)

where Cov({z1, . . . zn}) is the maximum likelihood estimate for the covariance of

{z1, . . . zn}, and K is the kernel covariance matrix.

Scenario 1: Merging two Gaussian kernels, each representing one example.

As discussed earlier, the mixture model initially consists of a set of Gaussian kernel

functions. The parameters of a pair of Gaussian kernel functions C1and C2 represent-

ing single instances x1and x2 within a mixture representing a total of N examples are

defined as follows (where K is the kernel covariance matrix):

C1 : {π1 = 1
N , µ1 = x1, S1 = K}

C2 : {π2 = 1
N , µ2 = x2, S2 = K}

Applying the merging formulae from the previous section gives mean µ1,2 = 1
2 x1 +

1
2 x2 and prior probability π1,2 = 2

N for the merged component C1,2. The covariance

matrix S1,2 can then be expressed in terms of K, x1, x2 as follows:

S1,2 =
π1

π1,2
.
[
S1 + µ1µT

2

]
+

π1

π1,2
.
[
S2 + µ2µT

2

]
− µ1,2µT

1,2

=
π1

π1,2
.
[
K + x1xT

1

]
+

π1

π1,2
.
[
K + x2xT

2

]
− µ1,2µT

1,2

=
1
2
(x1xT

1 + x2xT
2 ) − µ1,2µT

1,2 + K

= Cov({x1, x2}) + K

Scenario 2: Merging a Gaussian kernel representing one example with a Gaussian
mixture component representing multiple examples.

In a similar vein, we now show that the covariance matrix SX,y resulting from merging

a Gaussian component CX representing a set of P ≥ 2 examples X = {x1, . . . xP} with a
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Gaussian kernel function Cy representing a single example y can still be expressed in

the form of Equation A.1:

SX,y =
πX

πX,y
.
[
SX + µXµT

X

]
+

πy

πX,y
.
[
Sy + µyµT

y

]
− µX,yµT

X,y

=
P

P + 1
.
[
Cov(x1, . . . , xP) + K + µXµT

X

]
+

1
P + 1

.
[
K + yyT

]
− µXYµT

XY

=
P

P + 1
.

[(
1
P

P

∑
p=1

xpxT
p

)
− µXµT

X + K + µXµT
X

]
+

1
P + 1

.
[
K + yyT

]
− µX,yµT

X,y

=
1

P + 1

(
P

∑
p=1

xpxT
p

)
+

1
P + 1

.yyT − µX,yµT
X,y + K.

= Cov({x1, . . . xP,y}) + K

Scenario 3: Merging two Gaussian components, each representing multiple exam-
ples.

Finally, following an identical logic, the covariance matrix SXY resulting from merging

two components CX and CY representing sets of multiple examples {x1, . . . , xP} and

{y1, . . . yQ} can also be expressed in the preceding fashion:

SXY =
πX

πXY
.
[
SX + µXµT

X

]
+

πY

πXY
.
[
SY + µYµT

Y

]
− µXYµT

XY

=
P

P + Q
.
[
Cov(x1, . . . , xP) + K + µXµT

X

]
. . .

+
Q

P + Q
.
[
Cov(y1, . . . ,yQ) + K + µYµT

Y

]
− µXYµT

XY

=
P

P + Q
.

[(
1
P

P

∑
p=1

xpxT
p

)
− µXµT

X + K + µXµT
X

]
. . .

+
Q

P + Q
.

[(
1
Q

Q

∑
q=1

yqyT
q

)
− µYµT

Y + K + µYµT
Y

]
− µXYµT

XY

=
1

P + Q

(
P

∑
p=1

xpxT
p +

Q

∑
q=1

yqyT
q

)
− µXYµT

XY + K.

= Cov({x1, . . . , xP,y1, . . . yQ}) + K

It is clear that any merging operation that could occur in the proposed learning

algorithm will correspond to one of the preceding scenarios, provided that the kernel

covariance matrix K remains constant once merging has commenced.
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A.3 Justification of Merging Cost Function

When merging a pair of mixture components it is desirable to minimise any decrease

in the likelihood of the underlying training data. However, in the proposed incremen-

tal learning scenario, it is assumed that historical training data is not retained and so

cannot be evaluated.

One way to address this problem is to compare the expected log-likelihood of a

point drawn from the original pair of components (ie. a two component GMM com-

posed of those components) when calculated with respect to 1) the original pair of

components and 2) the proposed merged component. The expected resulting decrease

in log-likelihood is captured by the KL divergence KL(P||Q) =
´

p(x) log p(x)
q(x) dx =´

p(x) (log p(x) − logq(x))dx, which for the proposed scenario corresponds to:

KL((wiGi + wjGj)||Gmerge(i,j)) (A.2)

Unfortunately there is not a closed form solution for this measure, leaving Monte

Carlo sampling as the only means of evaluation. In the proposed learning algorithm,

the pair of mixture components merged at a given step is chosen by minimising the

following alternative measure [47] which can be evaluated in closed form:

wiKL(Gi||Gmerge(i,j)) + wjKL(Gj||Gmerge(i,j)) (A.3)

This measure can be shown to be an upper bound on the desired measure, Equa-

tion A.2, as follows:

wiKL(Gi||Gmerge(i,j)) + wjKL(Gj||Gmerge(i,j))
?
≥ KL((wiGi + wjGj)||Gmerge(i,j))

wi

ˆ
Gi log

Gi
Gmerge(i,j)

+ wj

ˆ
Gj log

Gj

Gmerge(i,j)

?
≥
ˆ (

wiGi + wjGj

)
log

(
wiGi + wjGj

)
Gmerge(i,j)(x)

wi

ˆ
Gi log Gi + wj

ˆ
Gj log Gjdx

?
≥ wi

ˆ
Gi log

(
wiGi + wjGj

)
+ wj

ˆ
Gj log

(
wiGi + wjGj

)
ˆ

Gi log Gi −
ˆ

Gi log
(

wiGi + wjGj

)
≥ wj

wi

(ˆ
Gj log

(
wiGi + wjGj

)
−
ˆ

Gj log Gj

)
From Gibbs’ inequality [79] we have that

´
Gi log Gi ≥

´
Gi log

(
wiGi + wjGj

)
, which

implies that L.H.S. ≥ 0 and R.H.S. ≤ 0. The approximation wiKL(Gi||Gmerge(i,j)) +

wjKL(Gj||Gmerge(i,j)) is thus an upper bound on KL((wiGi + wjGj)||Gmerge(i,j)) , with

the two measures coinciding at 0 when Gi = Gj. When the two distributions are per-

fectly separated (so that Gi(x) = 0|∀x:Gj(x)>0 and vice versa) it is straightforward to

show that the two measures differ by a constant value of wi log(wi) + wj log(wj).

Minimising Equation A.3 thus minimises an upper bound on the expected de-

crease in log-likelihood when the chosen pair of components is merged. Nonetheless,
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it should be noted that there is no guarantee that the ordering of the merging costs for

a given mixture model provided by Equations A.3 and A.2 should be identical.



Appendix B

Publications

The research presented in this thesis has also formed the basis for several peer-reviewed

conference papers, listed as follows.

1. R. R. Sillito & R. B. Fisher. Incremental One-class Learning with Bounded Com-

putational Complexity. In Proceedings of the International Conference on Artificial

Neural Networks (ICANN), LNCS 4668, pp 58-67, 2007.

2. R. R. Sillito & R. B. Fisher. Semi-supervised Learning for Anomalous Trajectory

Detection. In Proceedings of the British Machine Vision Conference (BMVC), pp 1035-

1067, 2008.

3. R. R. Sillito & R. B. Fisher. Parametric Trajectory Representations for Behaviour

Classification. In Proceedings of the British Machine Vision Conference (BMVC),

2009.
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