
T h e U s e o f P r o o f P l a n s t o S u m S e r i e s *

Toby Walsh Alex Nunes Alan Bundy

Department of AI, Edinburgh University

Abs t r ac t

We describe a program for finding closed form solutions to finite sums. The
program was built to test the applicability of the proo]planning search control
technique in a domain of mathematics outwith induction. This experiment was
successful. The series summing program extends previous work in this area
and was built in a short time just by providing new series summing methods
to our existing inductive theorem proving system CLAM.

One surprising discovery was the usefulness of the ripple tactic in summing
series. Rippling is the key tactic for controlling inductive proofs, and was
previously thought to be specialised to such proofs. However, it turns out to
be the key sub-tactic used by all the main tactics for summing series. The only
change required was that it had to be supplemented by a difference matching
algorithm to set up some initial meta-level annotations to guide the rippling
process. In inductive proofs these annotations are provided by the application
of mathematical induction. This evidence suggests that rippling, supplemented
by difference matching, will find wide application in controlling mathematical
proofs.

1 I n t r o d u c t i o n
In [2] we introduced proof planning, a new technique for controlling the search for a
proof by using the common structure of a family of similar proofs as a guide. The
application of proof planning to the control of inductive proofs is described in [3]
whilst rippling, a key tactic in inductive proofs, is described in [4]. Proof planning
has been implemented in the Oyster/CLAM system [3].

This paper explores the usefulness of proof planning, in general, and rippling,
in particular, in a non-inductive domain: the discovery of closed form solutions to
finite series. We describe several methods for summing series and show how they
can be represented in the proof plans formalism. They. have all been implemented
in the Oyster~CLAM system and tested on a wide range of series problems. Most
of these methods make use of rippling as a key submethod. In order to use rippling
in non-inductive domains it is necessary to supplement it with a special matching
algori thm called difference matching (see [5] in this volume for details).

The mathemat ica l problem we address is to derive closed form solutions for finite

*The research reported in this paper was supported by SERC grant GR/F/71799, a SERC
PostDoctoral Fellowship to the first author and a SERC Senior Fellowship to the third author. We
would like to thank the other members of the mathematical reasoning group for their feedback on
this project.

326

series like:
n

Z s(i).a i
i = O

where a is a constant and s is the successor function, i.e. s(i) = i + 1. By 'derive
a closed form solution' we mean find an expression, equal to the finite sum, that
is free of the summation operator. In this example, for a r 1, such a closed form
solution would be:

s(n).a Kn) a s(n) - 1

a - 1 (a - 1) 2

There has been limited research into this domain. Some researchers have tack-
led the topic as a verification problem, [9, 7]; both these teams use mathematical
induction to prove that a series is equal to a user supplied closed form. In the work
reported below, the closed form solution to a series is simultaneously synthesised
and verified. None of our solution methods uses induction for either the synthesis
or the verification task.

Another approach is to use a decision procedure, like Gosper's algorithm, [8],
to compute closed form solutions. Such decision procedures have the drawback of
being "black-boxes" of only being applicable to a narrow class of series. The work
reported here is applicable to a much wider class of series and the solutions produced
can be understood by mathematicians. Indeed our solution methods are modelled
on those used by mathematicians.

2 Proof Planning
A brief description of the ideas and concepts involved in proof planning follows in
order to set the background for what is to come. A more detailed account is given
in [2, 3].

The notion of explicit proof plans as a technique for guiding an automatic theorem
prover in its search for a proof by mathematical induction originated in a project
to develop automated search in the Oyster program synthesis system, a reimple-
mentation in Prolog of the Cornell Nuprl system, [6]. Oyster is an interactive proof
editor for a logic based on Martin-L6f's Intuitionistic Type Theory. Following LCF,
the search for a proof in Oyster can be guided by programs called tactics. Oyster's
tactics for inductive proofs are written in Prolog; they are based on and extend ideas
in the Boyer-Moore theorem prover, Nqthm, [1].

To control the application of tactics, the CLAM plan formation program analyses
the current theorem and constructs a special-purpose super-tactic to prove it. To
enable CLAM to do this, every tactic is (partially) specified by giving preconditions
for its a t tempted application and some of the effects of its successful application.
This partial specification is called a method. Methods are described in a recta-
logic, whose domain of discourse is mathematical expressions and which describes
syntactic properties of these expressions, e.g. the number and location of particular
subexpressions.

3 The Ripple Tactic
Since the ripple tactic plays a key role both in inductive proofs and in summing series,
we will illustrate the proof planning technique by describing it. This description will
be necessarily brief and superficial. For more details see [4].

327

Rippling is used during the step case of an inductive proof. Its job is to rewrite
the induction conclusion into a form in which it contains one or more subexpressions
which match the induction hypothesis. This enables the next tactic, fertilize, to use
the induction hypothesis to prove the induction conclusion.

To visualise how rippling works consider the following analogy. Some mountains
are reflected in a loch 1 in the valley below them. Someone throws a stone into
the loch, disturbing the reflection. The waves from the impact ripple outwards to
the shore of the loch leaving the reflection undisturbed again. The mountains are
the induction hypothesis, the reflection is the induction conclusion and the wave-
fronts are those parts of the induction conclusion which differ from the induction
hypothesis. The rippling is the selective application of rewrite rules of a suitable
form to move the wave-fronts out of the way.

Induction conclusions are necessarily similar to their induction hypotheses except
for the addition of some subexpressions, called wave-fronts, which are provided by
the form of induction rule used. For instance, in the standard inductive proof of the
associativity of +, the induction hypothesis is:

x + (y + z) = (x + y) + z

and the induction conclusion is:

[- ; ~ + (y + z) = ([7~-1+ y) + z (1)

The wave-fronts are those subexpressions enclosed in boxes less the subexpressions
that are underlined. In general, wave-fronts are terms with one or more wave-holes
in them. The part of the induction conclusion that is similar to the induction
hypothesis is called the skeleton.

To move these wave fronts outwards the ripple tactic applies wave-rules. These
are rewrite rules with the property that the left and right hand sides are identical
except for the addition of different wave fronts on each side. Furthermore, more
of the skeleton is in the wave-hole(s) on the right hand side than it is on the left
hand side. The wave-front on the right hand side can be empty. For instance, the
recursive definition of + and the substitution law for s provide two wave-rules.

v : v (3)

Wave-rule (2) can be applied to each side of the induction conclusion (1). This
causes both the wave-fronts to ripple outwards.

Wave-rule (2) can be applied again to the right hand side of the equality to produce:

At this point, the two wave-fronts can be eliminated by applying wave-rule (3) to
give:

x + (y + z) = (x + y) + z

] The Scot t ish word for lake.

328

which is identical to the induction hypothesis. The ,fertilize tactic is then used to
prove (trivially) the induction conclusion from the induction hypothesis. The proof
of the step case is then complete.

The reasons for the success of rippling are:

It involves little or no search since the wave-fronts in the goal must correspond
to wave-fronts in the wave-rule. The consequence of this is a very controlled
application of rewrite rules which in practice means very low branching rates,
typically one choice or none at all.

It terminates. Rippling always makes progress moving wave-fronts in some
direction; hence termination is guaranteed, even when applying rewrite rules
that would normally, without wave-front annotation, lead to loops.

It applies only "good" rewrites. As wave-rules are skeleton preserving, if rip-
pling terminates successfully, the hypothesis can be used to prove or simplify
the conclusion.

4 Difference Matching
A precondition of rippling is that wave-front annotations have been placed in the
formula to be rippled. In inductive proofs these are provided by the induction rule
in a natural way. In this paper we observe that rippling can be used by a wide
variety of theorem proving tactics provided wave-front annotations can be provided.
In particular, rippling is useful for rewriting a goal formula so that it contains a
subexpression that matches a hypothesis formula. Many proofs have hypotheses
and goals with shared structure. We conjecture that rippling will prove useful for
putting these goals into a form in which the hypotheses can be used to prove them.
This paper provides supportive evidence for our conjecture.

To annotate the goal formula with wave-fronts we use a di~erence marcher. The
difference matcher takes the goal, G, and hypothesis, H, as inputs. It returns G', a
copy of G annotated with wave fronts, and substitutions, a, such that the skeleton
of G ~ equals H under substitution tr. Although difference matching generalises first-
order matching, it is not just matching. It is an attempt to make two expressions
identical by both variable instantiation and structure hiding; the hidden structure is
the wave-front. Further details of an algorithm for difference matching can be found
in this volume [5].

5 M e t h o d s for S u m m i n g Series
We now explain our methods for summing series. They are called: standard form,
perturbate, conjugate, telescope and closed form. The first four are substantive meth-
ods whilst the last is just a simplifier and a checker that the solution is in closed
form. Each of the first four method makes significant use of rippling augmented
with difference matching.

In the rest of the paper, we will adopt the following conventions: The letters i,
j and k will be used for indices of summation,/.e, bound variables of type natural
number. The letters l, m and n will stand for constants of type natural number,
/. e. they will not depend on any indices of summation. These will typically be used
for the bounds of summation. The letters a, b, c and d will stand for constants and
variables of type real, /.e. they will not depend on any indices of summation. The
letters u, v, w, x, y and z will stand for terms of type real, /.e. they may depend

329

on indices of summation. In ~ for instance, x may depend on i, but a and E i = 0 a . x ,
n do not.

5 .1 S t a n d a r d F o r m

The standard form method is the backbone of our methods. It does not find closed
form solutions from first principles but tries to reduce the current problem to one
which has already been solved. We illustrate this with an example.

n Consider the finite sum ~i=o b.i + c. We can use the standard form method to
break this into two sub-problems which match previously solved ones, namely the
following standard forms:

E i = n . (n - 1)
2 (4)

i=O
n

E a = s(n).a (5)
i = 0

This will be done by using difference matching to annotate the sum with wave-fronts
and then rippling to reduce it to the sub-problems. For the rippling, standard form
will use the following wave-rules:

n

n

, = m

Note that wave-rule (6) contains two wave-holes, one on the z and one on the y.
CL4M automatically creates the two weakened versions of this wave-rule which just
contain one wave-hole, eg :

i----rn

Note that wave-rule (7) requires a meta-level condition that a does not contain i.
Such meta-level conditions are readily handled by the proof planning mechanism.

First ~"~in=o b.i + c is annotated with wave-fronts by difference matching it with
the standard form (4). This gives the annotated sum:

i = 0

Rippling with wave-rule (8) gives:

I E,% + E,"_-0 c

and then with wave-rule (7) gives:

b n �9 ~ C �9 ~ i = o ' + ~ i = o

330

This is then be fertilized with standard form (4), to give:

b. n.(n - 1) n
2

i = 0

Since a summation sign is still present, the current problem is difference matched
with standard form (5) to give the new annotated sum:

+ E,% c

Since this is already fully rippled it is immediately fertilized with (5) to give:

b. n . (n - 1)
2 s(n).c

which is in closed form, as required.
The standard form method can be summarised as follows:

�9 Find a standard form which difference matches with the current problem and
add this as a hypothesis.

�9 Use difference matching to annotate the current problem with wave-fronts.

�9 Ripple these wave-fronts outwards.

�9 Fertilize with the hypothesis.

5 .2 P e r t u r b a t e

The perturbate method's proof strategy has many similarities to induction. From
the usual recursive definition of a sum we have the following equation:

'('~) f i
~ ui = ui +us(n)
i = m i=rn

Alternatively, we can strip off
equation:

4-)

i = m

Combining these two equations gives:

f i u ~ + u.(n)

terms from the other end to derive the following

u,-,, + 2-, u~(i)
i = r n

n

i ~ r n

The idea of perturbate is to rewrite y']~in=rn us(i) into a function of ~"]~in__,~ ul, say
f n n (~-'~i=rn Ui) using rippling. Therefore all occurrences of s(i) in ~-]~i=m us(1) are an-
notated with wave-fronts which are then rippled outwards, i.e. equation (9) is an-
notated to:

i----rn i = r n i-,--J i

331

We will call this equation the perturbation equation. The wave-fronts in the pertur-
bation equation are rippled outwards until it is in the form:

ui + us(n) = urn+ f(~n] i=m ~i)
i~m

This equation is then solved for ~i~=r~ ul using the equation solving tactics of
PRESS, [10]. There is a possibility of failure since the unknown, ~in_m ui, sometimes
cancels out.

To illustrate perturbate consider the example sum:

n

E i.a i
i = 0

Now, by the perturbation equation, (10), we have:

n n [' ~
E i'al + s(n)'aKn) = O'a~ + E ~ "a
i = 0 i = 0

To ripple this we need the wave-rules (8), (7) and:

Rippling first with wave-rule (11) gives:

(11)

(12)

i.a i + s(n).a "(n) = O.a ~ + y~ i.a + a*(i)
i = 0 i = 0

then with wave-rule (8) gives:

E i . a i +s(n).a "(n) = O.a ~ Ein-_oi.a + y~n=oaS(i)
i = 0

then with wave-rule (12) gives:

n

Z i'ai + s(n)'a'(n)
i = 0

and finally with wave-rule (7) gives:

o I

s + s(n) "a'(n) = O'a~ +la'~in=o i'ai + ~"~=0 a'(i)]
i = 0

332

This equation can be solved for ~"~{n__ o i.a { using PRESS's methods (provided a # 1)
n giving an equation for ~-~=0 i.ai in terms of ~-~i=0 ai+l The standard from method

is then called to replace)-~i~0 ai+l by a closed form expression. This gives:

n a s(n) -- a a'('*)-i
Z i.a i = " a-1

a - 1
i = 0

The perturbate method can be summarised as follows:

�9 Instantiate the perturbat ion equation to the current series.

* Ripple the wave fronts on the right hand side of the equation outwards.

�9 Solve the resulting equation, using PRESS tactics, treating the current series
as the unknown.

The perturbate method can be generalised so that it uses more complex forms
of per turbat ion equation based on more complex forms of the recursive definition of
summation. For instance, it could use the following two step perturbat ion equation:

ui + u~(, 0 + u~(~(,~)) = um + u~(.~) + us(s(i))
i=ra i = m

This is useful for series like:
n i 1

i=O

Analogously to mutual recursion, we can also perform mutual perturbations. This is
useful for series like)-~i~0 sin(i.0). These generalisations have yet to be implemented.
However, we do not envisage any significant difficulties in extending perturbate in
these ways.

5 . 3 C o n j u g a t e

The conjugate method transforms the finite sum of a term into the finite sum of its
conjugate, in the hope that it will be easier to find a closed form solution to the
conjugate sum than to the original sum. The conjugate can be one of several second
order operations, e.g. the differential or integral of the original term, or the mapping
of a tr igonometric series onto the real or imaginary part of a complex series. Thus
the conjugate method is a generic one covering a wide range of transformations.

The general idea can be understood as follows. Suppose we want to find a closed
form for ~ u. Let F be a second-order function with an inverse, F -1. Tha t is, there
is an equation of the form:

F (F - I (v)) = v (13)

Let us also assume that there exists a wave-rule which will ripple the function F
through the summation operator.

i F(zv) I 14)

333

Thus, combining these two equations we have

This new expression looks syntactically more complicated than the original but often
F - l (u) simplifies to some expression u', whereby ~ u' is easier to sum than ~ u.

In order to prevent conjugate being universally applicable or looping, it is nec-
essary to impose a constraint on it. We have adopted the constraint of a heuristic
postcondition that u ' must have a lower complexity than u. Complexity is measured
using a simple Knuth-Bendix term order.

For example, consider the sum mentioned in the introduction,

n

i=0

where a r 1. Let F be the differentiation operator and F -1 be integration. Now
differentiation ripples through summation:

And integrating s(i).a i with respect to the free variable a gives a "(i). Constants of
integration can be safely ignored since they will disappear on differentiation. Since
a s(i) is simpler than s(i).a i in our Knuth-Bendix order, conjugate can proceed. It
rewrites the sum to:

~ daB(i)

da
i=0

Wavefront annotations are added by difference matching against the standard result
for the sum of a geometric series,

n

Eo
j=O

This gives:

i=0

Rippling first with wave-rule (15) gives:

d ~ a ~
~"~i=0

And then with wave-rule (12) gives:

334

And finally with wave-rule (7) gives:

I d (a : ~ = 0 a')]

This is then fertilized with the standard form for a geometric series, to give:

d , a K ") - 1)
~aa [a" a - - T

The closed form method (described in w then differentiates this expression giving
the final answer:

n

B s(i).a' s(n).aK") a '(n) - 1
- a - 1 (a - 1) ~

i = 0

The conjugate method can be summarised as follows:

�9 Find a second order operator, F, that ripples through summation.

�9 Apply F -1 to the series term, u, and simplify the result to u'.

�9 If u' is simpler in the Knuth-Bendix ordering than u then sum the series ~ u '
giving an answer v '.

�9 Simplify F(v 0 and return this as the final result.

A major use of the conjugate method is for summing trigonometric series by
transforming them into the real or imaginary parts of exponential series. Consider,
for example:

n

B s i n (i . 8)
i = 0

This is solved by conjugate by rewriting it into:

~ i m (e dx-f-i-~
i = 0

This series can then be summed by difference matching against the standard form
for a geometric series and rippling. Other series which can be solved in a similar
way include ~ cos(i.0), ~ sin(i.0), cos(i.0), ~ sin2(i.0) and ~ cos2(i.O)

5.4 Telescope
The telescope method is based on the idea that if one part of the term in the series
can be cancelled against part of the next term then the sum can be collapsed like
a folding "telescope" into a hopefully simpler problem. The version of telescope
described here concentrates on a restriction of this strategy in which consecutive
terms of the series cancel each other out totally.

To give a more rigorous description of this technique we introduce the upper
difference operator:

/ ~ u i " - U i + l ~ ~ i

335

This operator has the useful property for summing series that:

A u, = (u,(~) - u.) + (~. - ~ _ ,) + . . .
~ = ~ . . . + (u~+2 - u , (~)) + (u,(m) - urn)

= u ~ (,) - u,~ (16)

We call this the telescope equation. It can be used by telescope provided that the
terms, vi, of the series being summed, ~ vi, can be rewritten into the form of an
upper difference, a ui. The telescope equation, (16), can then be used to reduce
the series to u , (,) - urn. At the moment, upper differences are supplied by the user.
Recently, however, we have proposed a higher order procedure for discovering upper
differences automatically.

To illustrate the telescope method consider:

Where:

Using the identity:

We get:

i = 0

(~) = n!

m!(n - m)!

s (n) n

i

(') = A s (m)

The series is therefore rewritten by telescope into the sum of an upper difference:

~ A .(m)
i----0

Using (16) as a standard form this is rewritten by the standard form method into:

(s (.)

The telescope method can be summarised as follows:

* Express the series term as an upper difference.

�9 Instantiate the telescope equation with this upper difference version of the
series.

The telescope method can sum a wide variety of series including any series like
i 3 which is polynomial in the index of summation.

336

5 .5 C l o s e d F o r m

The closed form method terminates all our proof plans by checking that any solutions
derived are in closed form. It uses the following definition of closed formedness:

Def in i t ion 1 (Closed formedness) : An expression, exp is a closed
form iff it is of the general form:

exp

constant
var
test

:= constant l vat I s(exp) l exp + exp l exp--exP l - -exPl
exp

ezp.exP l ~zp l ezP'~P I ln(exp)[log,~p(cxp) I

sin(exp) I cos(ezp) I if(test, exp, exp)
: = O l e
:= universally quantified variables

: = e~p > e~p I e~p < e~p I e~p = e~p I e~p _> exp I e~p _< e~p

This definition could be easily extended to include a larger set of constants, func-
tions and tests (one obvious extension would be the factorial if one were to reason
with products). Its most significant feature is what it leaves out, i.e. summation
operators, but also the differential, integral, real and imaginary operators.

Before checking that solutions are in closed form, closed form simplifies the solu-
tion. This has the effect of eliminating any functions that lie outside the closed form
grammar and which can be simply eliminated by evaluation. Note that the check
for closed formedness is essentially a meta-level operation, i.e. it is couched in terms
of the syntax of the expression rather than its semantics. This is easily handled by
the meta-logical language of the proof plan methods. It shows that some kind of
meta-level reasoning is essential in this domain.

6 I m p l e m e n t a t i o n a n d R e s u l t s
The five series summing methods described above have been implemented as meth-
ods in the CLAM system and tested successfully on a range of examples.

The problem of summing a series is represented as a logical theorem, i.e. to find
a closed form for the series ~-~i~m ul we get CLAM to plan the proof of the theorem:

n

Vm:nat .Vn:nat. 3S. S = E ui (17)
i = r n

As yet, we have not written the tactics necessary to execute the plans in Oyster; that
is, we only build plans and not their corresponding object-level proofs. However,
since the preconditions to our methods are complete specifications of the methods'
applicability, the successful execution of any plan is guaranteed. Indeed, the mapping
from plans to their corresponding proofs is purely mechanical.

For reasons of simplicity, the summation operator is represented in the meta-
level using a pseudo first order term, sum(i, O, n, ui). All manipulations of such
terms are checked to see that they are valid (eg that a bound variable is not being
instantiated in an unsound way). This guarantees soundness. We perform simple
first order matching on this representation; this looses us completeness since we can
only perform imitation (and not arbitrary higher order unification). So far, however,
this incompleteness has not proved a significant problem since our manipulations
have only required this very restricted form of matching; our methods have failed

337

to find closed form solutions but not because of this incompleteness. We eventually
intend to move to a full higher order representation.

In planning a proof, CLAM uses the methods in the following order: closed form
is considered first as it is the only terminating method; standard form is considered
second as it finishes many of the proofs begun by the other methods; conjugate and
telescope are considered next, in that order; and perturbate is considered last as (like
the induction method in inductive proof planning) it is nearly always applicable and
thus a strategy of last resort. Note that theorem (17) admits a trivial solution in
which the witness to S is ~-~i~m ui. However, this trivial solution is not found by
CLAM because its plans for summing series can only terminate with the closed form
method, which insists that S is in closed form.

These methods are successful at summing a large number'of series with lit-
tle search. Rippling does need to perform more search than in inductive theorem
proving. This is mostly a consequence of the greater number of difference matches
possible compared with the (usually) sole induction hypothesis in inductive theorem
proving. Rippling is still, however, very controlled as the absence of suitable wave-
rules usually terminates unsuccessful branches of the search quickly. Additionally,
we are currently developing heuristics for selecting between difference matches which
should help to eliminate some of this search.

Among the series that have been summed in this way are those shown in table 1.
Problems 8 to 10 are of particular interest as they fall outside the range of Gosper's
algorithm, and have not, as far as we are aware, been automatically synthesised
before.

No Problem
1 ~ i

3 ~ i + i 2
4 ~ a i

5 ~ i.a i

6 E (i + 1).a
7 ,i.--(rgU 1

8 >_?,Fi
9)'~ sin(i.0)

10 y~ cos(i.O)

11 ~ (m + i / ~ \

12 [s(i)

Closed Form
n.s~n t

2
2 .n3+3 .n2+n

6

a--1
s(n).a *(~)_a. .~(~_)1 - x

a--1
s (n) .a s(n) __ a ' (n) - i

n

+ --1
(cos O- 1). sin(s(n).O)-sin O(cos(s(n) .O)- 1)

(cos O- 1)2+sin ~ 0
(cos O- 1) , (cog(s(n) .O)- 1)+sin O. sin(s(n).O)

0

(. (s (.)
t, s(s(.,))) -,- t, s(m))

Main Method Used
telescope
telescope

standard form
perturbate

perturbate

conjugate
telescope
telescope
conjugate

conjugate

telescope

standard form

All sums are from 0 to n, a ~ 1, Fi is the ith Fibonacci number, and
cos(O) -~ 1. As well as the main method listed, each problem required the
use of difference matching, followed by rippling and fertilization. Each
plan was terminated by the closed form method.

Table 1: Some Series Summed by Our System

338

7 R e l a t e d W o r k
Previous work on summing series falls into two camps: verification and decision
procedures.

Verification
Sometimes we are given a closed form solution and a series, and we verify that they
are equal, usually by mathematical induction. This approach has been adopted
by ttutter, [9], and by Clarke and Zhao, [7]. Hurter has used the INKA inductive
theorem prover system to verify sums and to prove properties of them, e.g.

n 71 n n n

i = 1 i = 1 i = 1 i = 1 i = 1

Clarke and Zhao have used their Analytica theorem prover, built on top of Mathe-
matica, to prove2:

" 2 i 1 2 ' (")

E l + a 2~ = a - 1 + 1 - a 2"r
i = 0

They also sum series using Gosper's algorithm and the built-in Mathematica sim-
plifier.

In principle, it should be possible to adapt these verification methods to the
synthesis of closed form solutions by proving theorems of the form (17). However,
existing inductive theorem provers are weak at proving theorems containing exis-
tential quantifiers like (17). Moreover, like the methods described in this paper, the
methods used by humans and reported in mathematics textbooks often do not use
induction.

D e c i s i o n P r o c e d u r e s

Decision procedures for summation are implemented in general-purpose computer
algebra systems like MACSYMA, MAPLE, Mathematica and REDUCE. Such de-
cision procedures are restricted to certain narrow classes of series. For instance,
Gosper's algorithm, probably the best decision procedure for summation [8], is re-
stricted to series where the ratio of consecutive partial sums is a rational function.
Our technique is not restricted in this way and several of the series listed in table 1
fall outside this class. Another advantage is that these method can be extended to
return answers which are not, strictly speaking, closed form (eg they can transform

. . . . n 1 " " certain sums into functions of the Itarmomc numbers, Hn =)'~4=1 7)" Additionally,
theses methods could equally well be used to reason about infinite absolutely con-
vergent series. Although some such series can sometimes be summed by a decision
procedure by considering the limit of a finite series (eg l i n~ r)-']4n__0 ~) , many
cannot as they have no finite closed form (eg ~i=on 7)'a

Another disadvantage of the decision procedure approach is that they are 'black-
boxes', providing no rational explanation of the answers they come up with. Our
technique produces proofs which are similar in structure to the methods used by
humans and reported in mathematics textbooks. They are, therefore, intelligible to
mathematicians.

2 N o t e t h a t t h i s r e s u l t i s i n c o r r e c t i n t h e c a s e a = 1. T h i s e r r o r a p p e a r s t o b e d u e t o u n s o u n d n e s s

i n t h e M a t h e r a a t i c a s i m p l i f i e r .

339

8 C o n c l u s i o n s
Our research in the domain of summing series has shown that the proof planning
search control technique is applicable not just to inductive proofs but also to a non-
inductive domain. Indeed, some of the tactics developed specifically for inductive
proofs are applicable to summing series. In particular, rippling, already shown to be
the key tactic for inductive proofs, turns out, remarkably, to be the key tactic in this
new domain. It is used as the main sub-tactic by all the major series summing tactics.
Outside inductive proofs, rippling must be supplemented by difference matching [5]
to set up the initial wave-fronts. With this addition, we predict that rippling will
be widely applicable in automated theorem proving. There is room for further
extensions to the tactics described to attack a greater class of series. New series
summing tactics could be constructed in the same vein.

The proof planning based technique we have described for summing series extends
previous techniques in this area. It can be used to synthesise solutions rather than
just verify them. It is not restricted to a small class of series. It was designed and
built within the space of a few months as an MSc project. It was a simple matter
to adapt our existing programs for inductive proofs to this new domain. Most of
the methods we have developed for summing series can be readily adapted to closely
related tasks e.g. finding closed form solutions to products and integrals. The above
observations provide evidence for the general applicability of the proof planning
formalism in controlling mathematical proofs.

R e f e r e n c e s
[1] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.
[2] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and

R. Overbeek, editors, 9th Conference on Automated Deduction, pages 111-120,
Springer-Verlag, 1988.

[3] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.
In M.E. Stickel, editor, lOth International Conference on Automated Deduction,
pages 647-648, Springer-Verlag, 1990.

[3] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. Journal of Automated Reasoning, 7:303-324, 1991.

[4] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the
rippling-out tactic for guiding inductive proofs. In M.E. Stickel, editor, lOth
International Conference on Automated Deduction, pages 132-146, Springer-
Verlag, 1990.

[5] D. Basin and T. Walsh. Difference Matching. In D. Kapur, editor, 11th Inter-
national Conference on Automated Deduction, Springer-Verlag, 1992.

[6] R.L. Constable, S.F. Allen, H.M. Bromley, et at. Implementing Mathematics
with the Nupri Proof Development System. Prentice Hall, 1986.

[7] E. Clarke and X. Zhao. Analytica - A Theorem Prover for Mathematica. Tech-
nical Report, Carnegie Mellon University, 1991.

[8] R.W. Gosper. Indefinite hypergeometric sums in MACSYMA. In Proc. MAC-
SYMA Users Conference, pages 237-252, 1977.

[9] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, lOth International
Conference on Automated Deduction, pages 147-161, Springer-Verlag, 1990.

[10] L. Sterling, A. Bundy, L. Byrd, R. O'Keefe, and B. Silver. Solving symbolic
equations with PRESS. J. Symbolic Computation, 7:71-84, 1989.

