
Using Expressive and Flexible AtionRepresentations to Reason about Capabilities forIntelligent Agent Cooperation
Gerhard J�urgen Wikler

T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Ph.D.University of Edinburgh1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429732751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AbstratThe aim of this thesis is to address the problem of apability brokering.A apability-brokering agent reeives apability advertisements from problem-solving agents and problem desriptions from problem-holding agents. The maintask for the broker is to �nd problem-solving agents that have the apabilities toaddress problems desribed to the broker by a problem-holding agent. Capabilitybrokering poses two problems: representing apabilities, for advertisements, andmathing problems and apabilities, to �nd apable problem-solvers.For the representation part of the problem, there have been a number ofrepresentations in AI that address similar issues. We review various logial rep-resentations, ation representations, and representations for models of problemsolving and onlude that, while all of these areas have some positive featuresfor the representation of apabilities, they also all have serious drawbaks. Wedesribe a new apability desription language, dl, whih shares the positivefeatures of previous languages while avoiding their drawbaks. dl is a deoupledation representation into whih arbitrary state representations an be plugged,resulting in the expressiveness and exibility needed for apability brokering.Reasoning over apability desriptions takes plae on two levels. The outerlevel deals with agent ommuniation and we have adopted the Knowledge Queryand Manipulation Language (kqml) here. At the inner level the main task is todeide whether a apability desription subsumes a problem desription. In dlthe subsumption relation for ahievable objetives is de�ned in terms of the logialentailment relation between sentenes in the state language used within dl. Thede�nition of subsumption for performable tasks in turn is based on this de�nitionfor ahievable objetives. We desribe algorithms in this thesis whih have allbeen implemented and inorporated into the Java Agent Template where theyproved suÆient to operationalise a number of example senarios.The two most important features of dl are its expressiveness and its exib-ility. By expressiveness we mean the ability to express more than is possible inother representations. By exibility we mean the possibility to delay deisions re-garding the ompromises that have to be made to knowledge representation time.The senarios we have implemented illustrate the importane of these featuresand we have shown in this thesis that dl indeed possesses these features.Thus, dl is an expressive and exible apability desription language thatan be used to address the problem of apability brokering.iii

iv

AknowledgementsThis work has been performed under a studentship funded as part of the O-Planprojet. The O-Plan projet is sponsored by the Defense Advaned Researh Pro-jets Ageny (darpa) and Air Fore Researh Laboratory (Rome), under grantnumber f30602-95-1-0022. The O-Plan projet is monitored by Dr. NorthrupFowler iii and Mr. Wayne Boso. The u.s. Government and the University ofEdinburgh are authorised to reprodue and distribute reprints for Governmentalpurposes notwithstanding any opyright annotation hereon. The views and on-lusions ontained herein are those of the authors and should not be interpretedas neessarily representing oÆial poliies or endorsements, either express or im-plied, of darpa, Air Fore Researh Laboratory, the u.s. Government, or theUniversity of Edinburgh.I am also very grateful for the supervision I have reeived during my workon this thesis. My prinipal supervisor was Austin Tate, who has overseen mywork for the whole period. Other supervisors inluded Alan Bundy, Louise Pryor,Julian Rihardson, and Brian Drabble, who were involved at various stages of thisthesis. Apart from my supervisors I have also reeived support from various otherpeople at the Department of Arti�ial Intelligene and the Arti�ial IntelligeneAppliations Institute at the University of Edinburgh. Amongst these, I ampartiularly grateful to Steve Polyak who, amongst other things, was the �rst toread and omment on this thesis. Needless to say, any remaining mistakes aremy own.

v

vi

DelarationI hereby delare that I omposed this thesis entirely myself and that it desribesmy own researh.

Gerhard WiklerEdinburghApril 28, 1999

vii

viii

Contents
Abstrat iiiAknowledgements vDelaration vii1 Introdution: Capability Brokering 11.1 The Problem of Capability Brokering 11.2 Capability Brokering in Context 71.3 Criteria for Suess . 122 Capability Brokering: A Literature Survey 152.1 Software Agents . 152.2 Modelling Capabilities with Logis 282.3 Ations in AI Planning . 392.4 Models of Problem Solving . 523 Senarios, Agents, and Messages 653.1 The Initial Senario . 653.2 Inter-Agent Messages . 723.3 More Complex Senarios . 794 A Capability Desription Language: dl 854.1 Problems for Capability Representations 854.2 Ahievable Objetives . 914.3 Performable Ations . 1064.4 Other Properties . 1144.5 Examples . 1175 Algorithms and Implementation of dl 1295.1 Basi Capability Evaluation . 1295.2 Extended Capability Evaluation 1405.3 Capability Retrieval in jat . 162ix

6 Further Experiments and Results 1796.1 Variations on the Expressiveness Senario 1806.2 Variations on the Flexibility Senario 1896.3 Performane Issues . 1967 Expressiveness of dl 2037.1 Why more Expressiveness? . 2037.2 Expressiveness of AR Languages 2097.3 dl: An AR1 Language . 2208 Flexibility of dl 2278.1 Why Flexible Ation Representations? 2278.2 De�ning and Implementing Flexibility 2349 Related Work and Evaluation 2459.1 Comparison with other Brokers 2459.2 dl: Expressiveness and Flexibility 2619.3 Other Domains . 27310 Conlusions 27910.1 Possible Extensions . 27910.2 Summary . 284

x

Chapter 1Introdution: CapabilityBrokering
The aim of this thesis is to address the problem of apability brokering.For this purpose we will de�ne a new apability desription languageand show that it has two desirable properties: it is expressive andhighly exible. The �rst step towards this goal must be a de�nition ofthe problem addressed in this thesis. The ontribution of this hapterwill be a haraterisation of the problem of apability brokering andits ontext, as well as riteria for a suessful solution.1.1 The Problem of Capability BrokeringIn this setion we will de�ne the problem of apability brokering forintelligent software agents, espeially those that may be based on AIplanning tehnology. This is the main problem addressed in this thesis.1.1.1 Rational Agents and CommuniationOne approah to ahieving arti�ial intelligene is the rational agent approah[Russell and Norvig, 1995, page 7℄. In this approah, the �eld of AI is viewed asthe study and onstrution of rational agents. But what is a rational agent? Un-fortunately there is no agreed answer to this question as yet. For example, Russell1

2 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERINGand Norvig desribe an agent as an entity that pereives and ats. Rationalitymeans that it ats to ahieve its goals, given its beliefs.A more preise haraterisation of what an agent is an be found in[Wooldridge and Jennings, 1995, page 116℄. They identify four neessary proper-ties of an agent whih most de�nitions of ageny seem to agree on:� autonomy� soial ability� reativity� pro-ativenessSoial ability, the property we will be most onerned with, means that anagent interats with other agents (possibly humans) via some kind of agent om-muniation language. Pro-ativeness means that an agent should be able to ex-hibit goal-direted behaviour by taking the initiative. Pro-ativeness orrespondsto rationality in Russell and Norvig's haraterisation above. Taken together,pro-ativeness and soial ability imply that an agent should ommuniate notwith just any other agent, but spei�ally with those agents that an help itahieve its goals. For an agent to ahieve this behaviour, it will be neessary to�rst �nd these other agents that an help it ahieve its goals. Finding suh agentsis part of the problem we are addressing in this thesis.This problem is very similar to what [Davis and Smith, 1983, page 76℄ havealled the onnetion problem in distributed problem solving. One assumptionthey are making is that the set of agents that exist is �xed. We will assumehere that an agent exists in a dynami environment with other agents. As theenvironment hanges new agents might ome into existene or existing agentsmight disappear. Agent autonomy means that an agent has to operate withoutthe diret intervention of humans, i.e. that it has to �nd out by itself about otheragents that exist, spei�ally, agents that an help it ahieve its goals.

1.1. THE PROBLEM OF CAPABILITY BROKERING 3[Genesereth and Kethpel, 1994, page 51℄ distinguish two basi approahesto the onnetion problem: diret ommuniation, in whih agents handle theirown oordination and assisted oordination, in whih agents rely on speial sys-tem programs to ahieve oordination. Only the latter approah promises theadaptability required to ope with the dynami environment we envisage.[Deker et al., 1997℄ have reently desribed a solution spae to the onne-tion problem based on assisted oordination. The speial system programs foroordination are alled middle-agents in their analysis. They identify nine di�er-ent types of middle-agents depending on whih agents initially know about ap-abilities and preferenes of agents. By a preferene they mean meta-knowledgeabout what types of information have utility for a requester. In a solution tothe onnetion problem in whih apabilities are initially known to the providerand the middle-agent only, and in whih preferenes are initially known to therequester and the middle-agent only, the middle-agent is what they all a broker.Capability brokering is the main problem addressed in this thesis.The best known work in AI on agent ommuniation is probably theKnowledge-Sharing E�ort [Fikes et al., 1991, Nehes et al., 1991℄. Part of thise�ort involved the development of the Knowledge Query and Manipulation Lan-guage (kqml), a high-level agent ommuniation language whih we will desribein more detail in setion 2.1.2.3. kqml, like most approahes to the onne-tion problem, advoates assisted oordination through failitators and mediators.While the support o�ered by kqml for this task is still an ative researh issue,espeially for more omplex agents [Kuokka and Harada, 1995b℄, the ommuni-ation protool outlined in the language de�nition does de�ne the basi behavioura broker must exhibit.1.1.2 De�ning the ProblemAhieving the basi broker behaviour is what the problem of apability brokeringis all about.

4 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERINGDe�nition 1.1 The task of apability brokering is to assist other agents in�nding agents that an solve a given problem.Capability brokering involves ommuniation between di�erent agents. Fora spei� instane of this problem we shall distinguish three di�erent types ofagents aording to the roles they play for this problem instane:1. The Problem-Solving Agents (psas): These agents provide the general ap-abilities that may be alled upon by other agents in order to solve theirproblems. A psa has to advertise its apabilities to the broker agent (seebelow) and apply these apabilities when requested to do so by other agents.2. The Problem-Holding Agents (phas): These agents have a problem thatthey wish to have solved by utilising the apabilities of the psas. For aninstane of the onnetion problem there is usually only one pha involved.A pha has to desribe the problem to the broker agent (see below) and waitfor the broker to reommend agents that an help.3. The Broker: The broker mathes the problems of the pha to the apabilitiesof the psas suh that the problems an be solved. It reeives apabilityadvertisements from the psas and stores them. On reeipt of a problemdesription from a pha it will use the stored apability desriptions toretrieve one or more psas that an solve the given problem. Finally, thebroker has to either inform the pha about the psas found or manage thesolution of the problem for the pha by interating with the psas diretly.The basi exhange of messages between the di�erent agents that has to takeplae for apability brokering is illustrated in �gure 1.1. Sine apabilities aremeant to be known by the psa and the broker initially, it is neessary that thepsas �rst advertise their apabilities to the broker. Only one a apability hasbeen advertised to the broker an it be used to address the problem of some pha.At the time of brokering, problems are meant to be known by the pha and the

1.1. THE PROBLEM OF CAPABILITY BROKERING 5
broker PHA

PSA PSA PSA PSA

1. capability
descriptions

2. problem
description

3. agent names (PSAs)

4. use capbilities

Figure 1.1: Basi message ow in apability brokeringbroker and thus, the pha has to inform the broker about its problem as it arises.If a apability has been advertised to the broker that an be used to addressthe given problem then the broker should retrieve this apability and inform thepha about this apability and the agent that has it. Finally, the pha an usethe information from the broker to ask the psa with the neessary apability totakle its problem.As far as the broker is onerned, there are two relatively independent sub-problems to apability brokering desribed in the above message exhange:� Capability Storage: The broker has to store the apability desriptionsreeived by the psas. The most important question here is how apabilitiesan be desribed or represented in a way that is useful to the broker.� Capability Retrieval: The broker has to �nd psas that have the apab-ilities required to solve the given problem. The most important questionhere is how apability desriptions an be reasoned about.Not all of the messages outlined above neessarily have to our in this order.The broker should reeive at least some apability advertisements from psasbefore it reeives a problem from a pha, but this is not a neessary ondition.In fat, apability advertisements from new psas ould be sent at any time,

6 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERINGi.e. they need not be ordered with respet to the other messages. The remainingmessages, the problem desription, the reply by the broker, and the utilisation ofthe apability by the pha, have to be synhronised though.To summarise, the problem of apability brokering as de�ned in de�nition 1.1is to ahieve the behaviour of the broker outlined in the message exhange shemaabove.

1.2. CAPABILITY BROKERING IN CONTEXT 71.2 Capability Brokering in ContextIn this setion we will haraterise several types of ontext for apab-ility brokering; we will look at the various ombinations of these typesand evaluate eah in turn to ome up with the ontext for apabilitybrokering that will be used in this thesis. This disussion will larifywhat the problem of apability brokering is.1.2.1 Types of ContextCapability desriptions only make sense in some ontext. Firstly, there needsto be an agent whih has a apability that one wants to desribe, even if thisagent is only an abstration in some ases. Capability desriptions are aboutertain entities. Seondly, there needs to be an agent that wants to evaluate thisapability desription, be it the desribed agent for reetive purposes or anotheragent. We have alled these two groups of agents psas and phas respetively.The di�erent agents are not the only ontext for a apability desriptionthough. We will now look at additional kinds of ontext in whih apabilitydesriptions an be found.1.2.1.1 Common Languages and ExpressivenessWe will make the assumption here that it is a neessary prerequisite for agents tobe able to ommuniate with eah other in order to be able to work together. Ifthe pha and the psa \speak" a ommon language then ommuniation is possiblein priniple. A more general ondition ould be to require them to speak equallyexpressive languages and to neessitate the existene of a translator. We see theability to ommuniate in a ertain language as (a trivial) part of a apabilitydesription.

8 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING1.2.1.2 Compile-Time vs. Run-Time EvaluationSuppose the pha is looking for a psa that it wants to use in future to solvea ertain type of problem, i.e. the searh is done only one. We will all theevaluation of apability desriptions in this ontext evaluation at ompile-time.If the pha is seeking a psa every time is has a problem then we will all thisevaluation at run-time.This distintion has two major e�ets on the apability desription required.Firstly, for evaluation at run-time there is a spei� problem instane available.To make use of this in the evaluation proess the apability desription mustinlude suÆient detail and an be expeted to use mainly domain terminology.A apability desription intended for evaluation at ompile-time might have adi�erent emphasis, i.e. it might ontain more general information. Seondly,the eÆieny with whih one expets the desription to be evaluable an bevery di�erent. Evaluation at ompile-time may be slow as it is only done one.Evaluation at run-time may, for example, need to be faster than the average timeit takes for the psa to sueed or fail in an attempt to solve the problem at hand.1.2.1.3 Agents with or without Domain KnowledgeAnother distintion has to be made aording to the type of psa the apabilitydesription desribes: agents with or without domain knowledge. For example, ageneral diagnosti agent does not have any domain-spei� knowledge whereas amedial diagnosti agent does.The di�erene we would expet to see in the respetive apability desriptionsfor agents with or without domain knowledge is linked to the terminology used.Desriptions of agents with domain knowledge will ontain domain terminology;they will fous on what problems the agent an address. Desriptions of agentswithout domain knowledge annot inlude domain terminology; they will fouson how the problem is being solved.

1.2. CAPABILITY BROKERING IN CONTEXT 91.2.1.4 Coarse-Grained vs. Fine-Grained AgentsFinally, a psa may be apable of solving the given problem ompletely. Thisis what we all a oarse-grained agent as the problem grain-size it deals with isthe whole problem. If the agent only ontributes a small step towards a solutionwe will all this a �ne-grained agent, as the problem grain-size it deals with isvery small. For example, an AI planner deals with a planning problem all atone whereas a temporal onstraint manager only deals with some part of thisproblem. Notie that grain-size depends on the atual problem.We expet to see that the main e�et of this distintion in apability desrip-tions lies again in the eÆieny with whih an evaluation is possible. Small stepsrequire relatively little time and the evaluation hene may need to be relativelyfast. But this is not the only e�et; apability desriptions of �ne-grained agentsmust also inlude information about expeted utility to aid the deision as towhether the agent should be applied or not.1.2.2 Combinations of the CriteriaWhat will a meaningful ontext for apability desription and assessment looklike in terms of the above riteria? To answer this question, we will look atdi�erent ways to ombine the values the above riteria an take. We will notonsider expressiveness as the values this dimension an take are not known.Grainedness is a dimension with a spetrum of values from omplete problemsolvers to primitive inferene ations and we will mainly onsider these extremes.� Evaluation at ompile-time:{ Choosing from oarse-grained agents:Whether or not the agent has domain knowledge is not important here.The ontext here is that we are trying to selet a problem solver froma set of agents that an all individually deal with the type of problem

10 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERINGwe expet to have. This seletion is to be made only one, i.e. for anumber of future problems.Why do we need formal apability desriptions in this ontext? Firstly,it seems questionable to develop a formal apability model for an agentif this is only to be used for the initial hoie. Seondly, as the exatproblems to be dealt with are unknown at the time the apabilitydesription is evaluated, a realisti deision will often be based onrather subjetive riteria that are hard to model. We think that aformal apability desription in this ontext would o�er little bene�t.{ Choosing from �ne-grained agents:Again, the availability of domain knowledge is not important for theargument here. In this ontext, the aim is to assemble a system fromthe known apability omponents.In general this ontext resembles the task of automati programming.Whereas it is a very worthwhile aim for apability desriptions, itseems that it is also too ambitious at this point. Solving the problemof automati program generation is unlikely to be ahieved solely bydeveloping better apability desription languages. This ontext wouldonly be reasonable under ertain assumptions about the solution.� Evaluation at run-time:{ Choosing from agents without domain knowledge:We will immediately dismiss this ontext as it seems unlikely to us thatthere will be intelligent agents, be it omponents or omplete problemsolvers, that do not have at least some domain knowledge at run-time.{ Choosing from agents with domain knowledge:� Choosing from �ne-grained agents:The ontext here is that we have a pha with a problem at handand a psa that might potentially ontribute to the solution of this

1.2. CAPABILITY BROKERING IN CONTEXT 11problem. The aim of the apability desription at this point mustbe to aid in the deision as to whether this primitive infereneation should be applied next or not.This ontext very muh resembles the deision a searh ontrolleris frequently faed with. Unfortunately, it appears that only highlyrelevant and eÆiently evaluable apability desriptions would beuseful here. As a generi apability desription language is unlikelyto ful�ll these riteria, this ontext does not seem promising.� Choosing from oarse-grained agents:The ontext here is again that we have a pha with a problemat hand, but this time we want to use the apability desriptionof other agents to hose one of them that an solve our problemrather than just ontribute to the solution. We believe that this isa promising ontext for the development of a apability desriptionlanguage.The most fruitful ontext for the development of a apability desriptionframework by far seems to be the ontext in whih the evaluation of the apab-ility desription takes plae at run-time, the agents to hoose from have domainknowledge, and are oarse-grained, i.e. an solve the given problem.

12 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING1.3 Criteria for SuessIn this setion we will disuss what it means to suessfully addressthe problem of apability brokering. The riteria for suess desribedhere will be used for a ritial evaluation of the work presented in thisthesis in hapters 6 and 9.Addressing the problem of apability brokering means developing a brokeragent that shows the behaviour outlined above. That is, it has to proess ap-ability advertising messages and store desribed apabilities. Later, when a re-quest to reommend a psa for a given problem arrives, the broker has to searhthrough the apabilities previously advertised to �nd an appropriate apabilityfor the problem and forward this apability to the pha. To show that a brokeratually ahieves this behaviour, our �rst riterion for suess shall be that wean implement a working prototype of suh a broker.More spei�ally, we shall outline a number of senarios in hapter 3 thatdesribe the messages the broker has to proess and generate. We expet theworking prototype of the broker to be able to ope with all of these senarios.Furthermore, the broker should also be able to ope with at least a signi�antportion of variations of these senarios to show some degree of robustness. How-ever, we do not expet the prototype implementation to be fully debugged andtested or have a well developed user interfae.To be potentially useful in a realisti environment, it will be neessary for thebroker to satisfy ertain performane riteria. Most ritial here is the time ittakes the broker to respond to a request from a pha, i.e. the apability retrievaltime. The question is what a reasonable response time is. This depends on thetime the psa will take to solve the given problem. If the apability retrieval timeis at least an order of magnitude faster than the time the psa will take to solvethe problem, the response time should be adequate. This shall be our riterionfor suess regarding broker performane.

1.3. CRITERIA FOR SUCCESS 13The riteria for suess up to now have all been onerned with the pratialaspet of the work presented in this thesis. There is, however, a more theoretialside and riteria for suess in this respet need to be de�ned, too.The theoretial part of the work desribed in this thesis entres around the twoproperties we expet our apability desription language to have: expressivenessand exibility. Expressiveness is a property that has been de�ned in a number ofways for di�erent representations. To show that our apability desription lan-guage is expressive we thus need to ompare it to other knowledge representationlanguages that were designed for the representation of similar types of entities.Our riterion for suess here is that our language should be at least as expressiveas most other languages in its lass.The story is quite di�erent for the other property we laim our language tohave: exibility. As far as we know there has never been an attempt to formallyde�ne what is meant by exibility. In fat, there are very few languages that havethis property. The main problem here is not how to de�ne exibility though, buthow to implement a language that has this property. There are a number ofissues arising in this ontext and our riterion for suess here shall be that ourlanguage addresses these issue in a way that ompares favourably with otherexible languages.Finally, we need to say a few words about the brokering mehanism. We havealready de�ned one related riterion for suess: performane, but this shall notbe enough. We also want to ompare our broker with other generi brokers andwe expet that our broker should o�er at least those features o�ered by the otherbrokers that are required for apability brokering and our senarios. This shallbe our �nal riterion for suess.

14 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

Chapter 2Capability Brokering: ALiterature Survey
At this point the general problem of apability brokering that is to beaddressed in this thesis has been desribed and disussed. Our aimis to address this problem with a new apability desription languagethat will be expressive and highly exible and an be used to reasonabout apabilities. The next step towards this goal will be to investigatehow previous approahes to representing generi apabilities attemptedto do so. The ontribution of this hapter will be a broad review ofapproahes to representing and reasoning about knowledge similar tothe apability knowledge we need to represent.2.1 Software AgentsIn this setion we will look at work in the wider area of intelligent soft-ware agents and, more spei�ally, at approahes to apability broker-ing found there.An overview of this setion, whih provides a oneptualisation of the rela-tionships between the di�erent sub-�elds and approahes/systems desribed inthis setion, is given in �gure 2.1. The �gure also ontains ross-links to otherareas. The most important work for this thesis reviewed in this setion inludes:15

16 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

subfield
system/approach
related work
important

2.1.2 Intelligent Software Agents
(micro-level)

2.1.2.1 Languages 2.1.2.1 Architectures 2.1.2.1 Theories

2.1.2.2 Communication

2.1.2.2 CYC 2.1.2.2 KSE

2.1.2.2 KIF 2.1.2.2 KQML

2.1.1 Classical DAI

2.1.3 Brokering

2.1.3.3 InfoSleuth

2.1.3 Search engines 2.1.3 Knowledge-based brokers

2.1.3.2 SHADE2.1.3.1 ABSI facilitator

2.1.1 CONTRACT NET 2.1.1 ETHER

2.1.1 DAI

1.1.1 Connection problem

5.1 JAT

2.3 Planning

2.2.2 Modal logics

2.2.3 Meta-Knowledge

2.3.2 Ontologies

2.2.1 FOPL

2.1.2

2.1.1

2.1.3

(macro-level)

Figure 2.1: Overview of this setionthe onnetion problem de�ned in the work on the ontrat net; the generiagent ommuniation language kqml; and the brokers desribed at the end of thissetion. These areas are also highlighted in �gure 2.1 to stress their importane.2.1.1 Distributed AIIntelligent software agents are often seen as part of a wider area of DistributedArti�ial Intelligene (DAI) [Bond and Gasser, 1988, Chaib-Draa et al., 1992,Jennings, 1996℄, whih motivates us to briey onsider this area �rst. DAI isthe sub�eld of AI that is interested in onurreny in AI omputations. Its mainonerns have been distributed problem solving, i.e. how the task of solving a par-tiular problem an be divided amongst a number of available problem solvers,and multi-agent systems, i.e. how a olletion of autonomous intelligent agentsan oordinate their knowledge, goals, skills, and plans jointly to take ation orto solve problems.DAI has not been very onerned with the problem of apability brokering. Aspointed out in [Wooldridge and Jennings, 1995, page 142℄, the lassial emphasisin DAI has mostly been on the maro-level, i.e. on soial phenomena and theemergent behaviour of a group of problem solvers. This level is of little interest

2.1. SOFTWARE AGENTS 17to us in this thesis. Researh in intelligent software agents emphasises the miro-level, i.e. the arhiteture and theories of individual agents. The latter is wherethe problem of apability brokering has been addressed previously and at whihwe will look in setion 2.1.2.Two arhitetures that grew out of DAI are worth mentioning here. Firstly,there is the ontrat net [Smith, 1977, Davis and Smith, 1983℄. In the on-trat net arhiteture a given problem is �rst deomposed into sub-problems.These sub-problems are treated as ontrats and a proess onsisting of on-trat announement, bidding, and ontrat awarding is used to distribute prob-lem solving. This proess of negotiation, i.e. the extensive and expliit use ofommuniation to distribute the problem (f. setion 2.1.2.2), was an importantontribution of this work. Another ontribution was the de�nition of the onne-tion problem [Davis and Smith, 1983, page 76℄ whih is essentially the problemwe are addressing in this thesis (f. setion 1.1.1).Seondly, there is ether [Kornfeld, 1979, Kornfeld, 1981℄, a pattern-diretedinvoation formalism for parallel problem solving. ether provides a planner-like language where proedure invoation is driven by pattern mathing. Unlike inprevious approahes, ontrol over the distribution is not in the hands of the user.Instead, the patterns are used to distribute the problem-solving proess. Thebasi mehanism for the distribution is by broadasting of patterns. Nowadaysvirtually all generi brokers use patterns to distribute the problem-solving proess(f. setions 2.1.3 and 9.1), but the spei�s of ether are not used anymore whihis why we will not look at it any further.2.1.2 Intelligent Software AgentsIntelligent software agents have reently reeived a lot of attention within AI[Russell and Norvig, 1995, Bradshaw, 1997, Huhns and Singh, 1998℄. However,the de�nition of agent is elusive, i.e. there is still onsiderable lak of onsensuson what exatly an agent is or what the researh questions are that need to be

18 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYaddressed. An overview of possible de�nitions of ageny and a omprehensivestruturing of the �eld has been presented in [Wooldridge and Jennings, 1995℄and we shall mostly adopt their approah. They distinguish agent theories, agentarhitetures, and agent languages as the three major sub�elds of agent researh.2.1.2.1 Languages, Arhitetures and TheoriesFirstly, the sub�eld of agent languages is mainly onerned with tools that al-low one to program hardware or software omputer systems using the oneptsdeveloped in agent theories as outlined below. Suh tools inlude, for example,the Agent Behaviour Language [Wavish, 1992℄, the agent-oriented programmingparadigm [Shoham, 1993℄, or Conurrent MetateM [Fisher, 1994℄. As this areais not onerned with the representation of and reasoning about apabilities, weshall not dwell on it here. We have, however, hosen the Java Agent Template(jat) to implement the agents to be presented in this thesis and we will desribejat in setion 5.3 in only as muh detail as neessary. The partiular hoie ofjat is of little relevane as none of the tools mentioned above support brokeringof apabilities in any way.Seondly, the sub�eld of agent arhitetures is onerned with issues sur-rounding the onstrution of omputer systems that satisfy the properties spe-i�ed by agent theories (below). The lassial approah in AI is the deliber-ative arhiteture based on the physial symbol system hypothesis, i.e. an ar-hiteture that ontains an expliitly represented, symboli model of the world[Newell and Simon, 1976, Russell and Norvig, 1995℄. The main alternative to thedeliberative approah is the reative approah based on the so-alled subsump-tion arhiteture [Brooks, 1986, Brooks, 1991℄. Finally, a number of hybrid ap-proahes to agent arhitetures have also been attempted. However, none of thesearhitetures expliitly supports apability brokering. Sine deliberative agentswill need to take well-planned ations it is often assumed that suh an agentshould be based on AI planning tehnology [Wooldridge and Jennings, 1995, page

2.1. SOFTWARE AGENTS 19131℄. We will look at AI planning more losely in setion 2.3 and at existing agentsusing a planner spei�ally in setion 2.3.4.Finally, formal agent theories are essentially spei�ations for agents wherean agent is desribed as an intentional system that has beliefs, desires, et.[Seel, 1989℄. Agent theories an be seen as representational frameworks forsuh attitudes. The dominant approahes are based on modal logis (f. se-tion 2.2.2) and meta-languages (f. setion 2.2.3). The former lead to the ad-option of the possible worlds semantis whih has been used to de�ne whatit means for an agent to know something and to reason about knowledge andbelief [Hintikka, 1962, Kripke, 1963℄. Various alternatives were also developedto avoid the problem of logial omnisiene [Levesque, 1984, Konolige, 1986℄.Similarly, but to a lesser extent, there have been logis of goals or desires[Cohen and Levesque, 1990, Wooldridge, 1994℄. Although these approahes haveaddressed many attitudes of agents, there remains the problem of integratingthem into one framework for an all-embraing agent theory. The issue in agenttheories we shall be most onerned with here is that of agent ommuniationwhih also addresses the onnetion problem.2.1.2.2 Agent CommuniationAt least two major e�orts are urrently under way whih both assume knowledgesharing to be the key to suessful agent ommuniation and ooperation.The �rst e�ort addressing the agent ommuniation problem is the Cy pro-jet [Guha and Lenat, 1990, Guha and Lenat, 1994, Lenat, 1995℄. The basi ideahere is that agents need to have a large amount of ommonsense knowledge be-fore they an intelligently work together. Sine the Cy researhers believe thatommonsense knowledge annot be learned automatially without having a largebody of it in the �rst plae, most of the work in Cy has been on hand odingsuh knowledge and on developing large ontologies using miro-theories. We shallreturn to the issue of ontologies in setion 2.3.2.

20 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYThe seond major e�ort addressing the agent ommuniation problem isthe ARPA Knowledge Sharing E�ort [Fikes et al., 1991, Nehes et al., 1991,Genesereth and Kethpel, 1994℄. They envisage a generi agent ommuniationlanguage as onsisting of three parts: the voabulary, the inner language whiharries the ontent that is being ommuniated, and the outer language whihrepresents mainly the speeh at that this message represents. The voabularyis to be de�ned within one or more ontologies that will be shared by the ommu-niating agents [Gruber, 1993b, Gruber, 1993a, Farquahar et al., 1996℄. Again,we shall return to the issue of ontologies in setion 2.3.2. A generi knowledgerepresentation language alled kif [Genesereth, 1991, Genesereth et al., 1992℄ toand from whih all other ontent languages should be translatable has been sug-gested for the ontent to be ommuniated, inluding the ontent of messagesabout apabilities (f. setion 2.1.3).2.1.2.3 The Knowledge Query and Manipulation LanguageResearh on the outer language mentioned above (setion 2.1.2.2) has resultedin the de�nition of the Knowledge Query and Manipulation Language (kqml)[Finin et al., 1992, Finin et al., 1997, Labrou and Finin, 1997℄. All the agents de-sribed in this thesis use kqml for inter-agent ommuniation and, hene, it isneessary to desribe kqml in some detail at this point.The syntax of kqml is simply based on a balaned parenthesis list. The �rstelement in this list represents the performative of this message1. The performativeindiates the type of speeh at this message is. For example, the performativeask indiates a question being asked and the performative tell indiates a state-ment being made. For eah performative in kqml there is also a protool thatde�nes with whih type of messages other agents should reply to this message,if any.2 For example, there should always be a reply to an ask-message and the1 In the literature on kqml and speeh ats the term performative is sometimes also used torefer to the whole message.2 There is urrently no agreed formal semantis for kqml available [Cohen and Levesque, 1995℄.

2.1. SOFTWARE AGENTS 21performative of this reply message should be tell. Although there is a set ofprede�ned performatives in kqml it is not meant to be binding. Agents mayhoose to use this set or invent their own performatives. They may also hoosenot to implement ertain prede�ned performatives. However, if a prede�ned per-formative is used it should be used with the protool for this performative de�nedin the kqml spei�ation.The performative is followed by a number of keyword-value pairs. Again,there is a number of prede�ned keywords like :sender or :ontent that all havea fairly obvious meaning. For example, the value following the keyword :sendershould be the name of the agent sending this message and the value followingthe keyword :ontent should be the atual ontent of the message. The ontentof a kqml message is meant to be opaque to the message, i.e. an interpreter isnot supposed to inspet the ontent while interpreting the message. However,in interpreting a kqml message it is neessary to deide where the ontent endsand thus, it is neessary to look at the ontent at least for this. There are alsoa number of fairly obvious onstraints between the di�erent parts of a kqmlmessage. For example, if the language �eld names a spei� ontent languagethen the ontent should be in this language.kqml, like most approahes to the onnetion problem, advoates assistedoordination through agents alled failitators and mediators. A failitator inkqml is an agent that performs various useful ommuniation servies. One of themain servies o�ered by a failitator is to help other agents �nd appropriate lientsand servers. How lient and server agents an �nd the failitators is a problemto whih kqml does not presribe a solution. Neither is the mehanism to beused by the failitators to �nd appropriate servers for lients spei�ed in kqml.However, there are a number of related performatives and protools for theseperformatives that an be seen as the de�nition of an interfae to the failitators.This interfae de�nition is one of the most important ontributions of kqml as faras apability brokering is onerned. Some of the most important performatives

22 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY
� advertise: With this performative the sender informs the reeiver(whih should be the failitator) that the sender is willing and ableto proess ertain messages. kqml spei�es that the proessable mes-sage being advertised is given as the ontent of this message, i.e. theontent is a kqml message again. Furthermore, the performative of theontent message should be one of a limited set and there are ertainbasi onstraints on the sender and reeiver of the advertisement andembedded message. No reply message is required.� subsribe: With this performative the sender informs the reeiver(whih should be the failitator) that it wants to be updated every timethat the would-be response to the ontent message is di�erent from thelast response to the sender of this message. Thus, like for advertisethe ontent must be a kqml message and similar onstraints apply. Inresponse, the failitator should send one reply to the embedded messageimmediately and further messages as they our.� reommend-one: With this performative the sender informs the re-eiver (whih should be the failitator) that it wants to know about oneagent that has advertised that it will proess the message given as theontent of this message. The expeted reply to this message is a mes-sage with the performative forward, the ontent of whih should be anadvertising message. The ontent of this reommend-one message andthe advertise message should be idential.� reommend-all: This performative is like reommend-one, only thatthe reply should name all the agents that have advertised to proess thegiven ontent message.� broker-one: Again, this performative is like reommend-one in its form.The di�erene is that with this performative the sender asks the failit-ator to �nd an agent that an proess the given message and then sendit the given message. If there will be a reply to this message, this replyshould be forwarded to the sender of the broker-one message.� reruit-one: Again, this performative is like reommend-one in itsform. The di�erene is that with this performative the sender asksthe failitator to �nd an agent that an proess the given message andthen send it the given message. The di�erene to broker-one is thatany reply should go diretly to the sender of the reruit-one messagerather than through the failitator.Table 2.1: kqml failitation performatives [Labrou and Finin, 1997℄

2.1. SOFTWARE AGENTS 23for brokering in kqml are desribed in table 2.1. As mentioned above, all theagents desribed in this thesis use kqml for inter-agent ommuniation and thus,many example messages using these performatives will follow in the remainder ofthis thesis.One issue worth noting at this point is that kqml requires the ontent of anadvertisement to be idential to the ontent of the apability-seeking message.This is very restritive and, as we shall see, most existing brokers ignore this partof the kqml spei�ation and provide a more sophistiated mathing servie.2.1.3 Brokering AgentsReturning to the onnetion problem, whih is the main problem of apabilitybrokering, [Genesereth and Kethpel, 1994℄ distinguish two basi approahes tothis problem: diret ommuniation, in whih agents handle their own oordina-tion and assisted oordination, in whih agents rely on speial system programsto ahieve oordination. ether and the ontrat net, both desribed in se-tion 2.1.1, fall into the �rst ategory. The failitation approah de�ned in kqmlfalls into the seond ategory and this is urrently the dominant approah inintelligent agent researh.Before we turn to a survey of existing brokers that failitate assisted o-ordination, it is also worth noting that a kind of brokering has been per-formed on the Internet for some time now by searh engines [Witten et al., 1994,Howe and Dreilinger, 1997℄. However, most searh engines math requests, usu-ally only onsisting of a few keywords, to text pages on the Internet. The math-ing is essentially based on a reverse word frequeny ount algorithm3 and anhardly be alled knowledge-based. This is not the kind of brokering we are inter-ested in here.Various terms have been used for the speial system programs on whih as-sisted oordination relies, some of whih we have used in this review, e.g. fail-3 Atually, there are also other tehniques whih are being used in searh engines, but none ofthem is based on what an be onsidered an understanding of the retrieved doument.

24 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYpreferenesinitiallyknown by apabilities initially known byprovider only provider +middle agent provider +middle +requesterrequester only (broadaster) \front-agent" mathmaker/yellow-pagesrequester +middle agent anonymizer broker reommenderrequester +middle +provider blakboard introduer/bodyguard arbitratorTable 2.2: Middle-agent roles; from [Deker et al., 1997, page 579℄itator or broker. [Deker et al., 1997℄ have reently suggested a ategorisationof what they all middle-agents. They use the term middle-agent to mean anyspeial system program used in assisted oordination. They distinguish di�erentkinds of middle-agents aording to where preferene and apability knowledgeresides. Preferenes are meta-knowledge about what types of information haveutility for a requester and apabilities are meta-knowledge about what types ofrequests an be servied by a provider. The table summarising their ategorisa-tion is repeated here in table 2.2. Aording to this ategorisation, in a senarioin whih the apabilities of problem-solving agents are initially only known to theprovider and the middle-agent and the problem of the problem-holding agent areinitially only known to the requester and the middle-agent, the middle-agent isalled a broker.Brokers are the kind of middle-agent we are most interested in looking at inthis thesis. We shall now briey review some brokers that use expliit represent-ations as the basis for brokering. A detailed omparison of these brokers with thebroker developed in this thesis will follow in setion 9.1.

2.1. SOFTWARE AGENTS 252.1.3.1 The absi FailitatorOne of the earliest middle-agents that an be onsidered to be a broker inthe above sense is the Agent-Based Software Interation (absi) failitator[Singh, 1993a, Singh, 1993b℄. This broker is meant to be used in a system ofagents operating in the absi arhiteture [Genesereth and Singh, 1993℄ and isbased on a variant of an early spei�ation of kqml [Finin et al., 1993℄. For thefailitator to perform its brokering servie, agents must �rst notify the failitatorof the kqml messages they an proess, i.e. they must advertise their apabilities.One important restrition imposed by the absi failitator is that agents must notadvertise that they an handle a message whih they might subsequently fail toproess.The absi failitator provides performatives for pakage forwarding, informa-tion monitoring, and ontent-based routing. Content-based routing is basiallywhat we have alled apability brokering in setion 1.1.2. Of the kqml broker-ing performatives desribed in table 2.1, the absi failitator essentially supportsadvertise and broker-one. Capabilities are represented by kqml messages asde�ned in the kqml spei�ation. The ontent of these apability-representingkqml messages must be in kif. For apability retrieval, the ontent of aapability-seeking message and the apability advertisement need not be identialfor them to math, as the kqml spei�ation would require. Instead a kind of uni-�ation de�ned by meta-desriptions in the kif manual [Genesereth et al., 1992℄is used to math apabilities and preferenes. Additionally, a Prolog-based in-ferene engine an be used to evaluate additional onditions on the mathedmeta-variables.2.1.3.2 shade and oinsTwo other brokers based on the kqml protool are the shade and oins math-makers [Kuokka and Harada, 1995a, Kuokka and Harada, 1995b℄. These brokersare implemented entirely as a delarative rule-based program within the max

26 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYforward-haining agent arhiteture [Kuokka, 1990℄. As opposed to the absi fa-ilitator, it is assumed that shade and oins will make false positive and falsenegative mathes. Thus, part of the work on these brokers was on addressing theproblem of reovery after suh a false math.Both, shade and oins, support the full range of kqml performatives de-sribed in table 2.1 and more. The di�erene between shade and oins liesin the apability representations they an handle. In both ases, apabilitiesare represented as kqml messages, but shade works over a formal, logi-basedontent language and oins operates over free-text information. Thus, oinsis e�etively what we have alled a searh engine above. shade expets eitherkif [Genesereth et al., 1992℄ or max [Kuokka, 1990℄ augmented to support stringpatterns as terms for its ontent language. max is more appropriate for repres-enting highly strutured data suh as objets or frames. The atual mathing ofapabilities and preferenes is performed by a Prolog-like uni�ation algorithm.Advertisements and requests must math based solely on their ontent; there isno knowledge base against whih inferene is performed. Limited inferene forfuture versions is envisaged though.2.1.3.3 InfoSleuthThe aim of the InfoSleuth projet [Bayardo et al., 1997, Nodine and Unruh, 1997,Nodine et al., 1998℄ is to develop tehnologies that operate on heterogeneous in-formation soures in an open, dynami environment. To ahieve this exibil-ity and openness, InfoSleuth integrates agent tehnology, ontologies, informationbrokerage, and Internet omputing. InfoSleuth's arhiteture is omprised of anetwork of ooperating agents ommuniating in kqml. One of these agentsis the broker agent whih reeives and stores apability advertisements from allother InfoSleuth agents. The task of the broker agent is to provide a semantimath-making servie that pairs agents seeking a partiular servie with agentsthat an perform that servie.

2.1. SOFTWARE AGENTS 27Minimally, every agent must advertise to the broker its loation, name, andthe language it speaks. Queries must be in kqml using kif as the ontent lan-guage and \InfoSleuth" as the ontology. Mathing is performed as an intersetionfuntion between the user query and the data resoure onstraints in the apabil-ity advertisement. The way this works is that kif sentenes, that are the ontentof apability advertisements and user queries, are translated into the dedutivedatabase language ldl++ [Zaniolo, 1991℄ and maintained in suh a database.Most Important Issues Here� The work on the ontrat net desribed in setion 2.1.1 gave us theonnetion problem whih is basially the problem addressed in this thesis.� The inter-agent ommuniation language kqml desribed in setion 2.1.2.3is probably the most advaned language for this purpose and used for allagents developed in this thesis.� The kqml-based brokers desribed in setion 2.1.3 perform essentially thesame task as the broker that will be desribed in this thesis and a detailedomparison will follow in setion 9.1.

28 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY
2.2.1 FOPL

2.2.1 Situation Calculus

2.2.2 Non-monotonic 2.2.2 Modal 2.2.2 Dynamnic

2.2.2 Advanced logics

2.2.4 Terminological logics

2.2.4 Expressiveness2.2.1 Ability

2.4.1.2 ML2

2.1.2.1 Agent theories

2.1.2.2 KIF

2.3.1 Planning formalisms

6 Expressiveness of CDL

2.3.2 Ontologies

2.2.2

2.2.42.2.1

2.2.3.1 Typologies 2.2.3.1 Applications

2.2.3.2 Search control 2.2.3.1 Competence

2.2.3.2 Applications 2.2.3.3 Learning

2.2.3.3 Utility Problem

2.2.3 Meta-Knowledge

2.2.3

subfield
system/approach
related work
important

2.2 Logics

Figure 2.2: Overview of this setion2.2 Modelling Capabilities with LogisIn this setion we will look at how some logis have been or ould beused to represent the apabilities of intelligent agents.An overview of this setion, whih provides a oneptualisation of the relation-ships between the di�erent sub-�elds and approahes/systems desribed in thissetion, is given in �gure 2.2. The most important areas for our work introduedhere are: �rst-order logi whih an be seen as a generi knowledge representa-tion formalism and has been used to represent ations in the situation alulus;representations for meta-level knowledge and the losely onneted utility prob-lem; and the theory of expressiveness developed for terminologial knowledgerepresentations.2.2.1 First-Order Prediate LogiA generi knowledge representation formalism suh as �rst-order prediate lo-gi (fopl) [Chang and Lee, 1973, Loveland, 1978, Gallier, 1986℄ might well have

2.2. MODELLING CAPABILITIES WITH LOGICS 29turned out to be suÆient for representing and reasoning about apabilities,i.e. what we want to do in this thesis. Advantages of fopl inlude its well-de�nedsemantis and the fat that it is probably the best-researhed knowledge repres-entation formalism in AI and beyond. This is ertainly good enough a reason forus to begin our review of logis as apability representations with fopl. Further-more, kif (f. setion 2.1.2.2), whih is supported as a ontent language by mostbrokers (f. setion 2.1.3), is essentially a variant of fopl.Representations of apabilities in fopl have been attempted in early ap-proahes to reasoning about ations, e.g. [Green, 1969℄. One of these early ap-proahes is the situation alulus [MCarthy and Hayes, 1969, Shanahan, 1997℄whih has atually been an ative topi of AI researh for more than three deadesnow. However, its main onern has not been with reasoning about apabilitiesbut with reasoning about ations in general, whih an be seen as a muh broaderarea than reasoning about apabilities for brokering.Very briey, the ontology of the situation alulus is made up of situationswhih an be thought of as snapshots of some world; uents, whih take ondi�erent values in di�erent situations and an be thought of as time-varyingproperties; and ations, whih an be exeuted to hange the value of uents. Theatomi formula Holds(f; s) is used to denote that the uent f is true in situations. Note that the uent f , although it might look like an atomi formula, is aterm, i.e. it represents an objet in the domain represented. The funtion termResult(a; s) is used to denote the situation obtained by exeuting the ation ain the situation s. Sentenes in �rst-order logi alled e�et axioms an now bewritten to represent the e�ets and preonditions of ations.Unfortunately the e�et axioms alone turn out to be epistemologially in-adequate and further so-alled frame axioms are needed in the representation,leading to the frame problem in AI [Hayes, 1974, page 69℄, [Shanahan, 1997℄.Furthermore, the representation of uents as objets in the domain seems ounter-intuitive. In summary, the strong point of the situation alulus has traditionally

30 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYbeen the theoretial framework it provides for the representation of ations basedon a well-de�ned semantis.4 A number of more diret ation representationswhih also address the frame problem have been proposed in AI and we shall re-view some of them in setion 2.3.1. Still, the situation alulus remains a highlyexpressive ation representation with probably the learest semantis of any suhrepresentation.MCarthy and Hayes' original work was not limited to the representationof and reasoning about ations and their e�ets, but also inluded the generalonept of ability [MCarthy and Hayes, 1969, pages 470{477℄. In this work, theyhave attempted to formalise what it means for an agent to be able to do some-thing by de�ning a prediate an(p; �; s) meaning \agent5 p an bring about theondition � in situation s." The interesting result here is, as they point out,that it is not at all lear what this proposition means. However, although highlyrelevant for the epistemologial underpinnings of our work, we shall not go intothe philosophial problems entailed here.2.2.2 Advaned LogisSine we have mentioned the situation alulus and the frame problem, it isalso worth noting that there is a group of logis that have been mainly de-veloped to address this problem. These logis are referred to as nonmono-toni logis [Ginsberg, 1987, Brewka, 1991℄, [Davis, 1990, setion 3.1℄. Thelassi approahes here are Default Logi [Reiter, 1980℄ and Cirumsription[MCarthy, 1980b, MCarthy, 1980a℄. However, as these approahes address theproblem by hanging the inferene mehanism rather than fundamentally han-ging the representation, they are of little interest to us and we shall not look atthem further here.4 Reent work desribed in [Gruninger and Fox, 1994, Gruninger et al., 1997℄ addresses somepratial aspets of reasoning with a formal situation alulus.5 They are looking at a world of interating disrete �nite automata for whih we will use theterm agent here.

2.2. MODELLING CAPABILITIES WITH LOGICS 31Many approahes to agent theories (f. setion 2.1.2.1) are based on modal lo-gis [Chellas, 1980, Chagrov and Zakharyashev, 1997℄, [Davis, 1990, setion 2.7℄and the possible worlds semantis [Hintikka, 1962, Kripke, 1963℄ and thus, weshall have a look at these logis next. Agent theories are spei�ations of agents.These spei�ations an be used by agents to reason about other agents. Ouraim is to reason about the apabilities of other agents.A modal logi augments a alulus, e.g. prediate alulus, with a number ofoperators, alled modal operators, that take sentential arguments. Modal oper-ators are usually non-extensional, i.e. they do not ommute with quanti�ers, orare referentially opaque. The semantis of a modal language is based on Kripkestrutures whih onsist of a olletion of possible worlds, onneted by an aess-ibility relation. We say a possible world W1 is aessible from a possible worldW2 in a Kripke struture if they are onneted by the aessibility relation. Ineah possible world, a sentene in modal logi an be either true or false, i.e. asentene may have di�erent truth values in di�erent possible worlds.For example, in propositional modal logi the truth values of propositions anvary aross di�erent possible worlds. Propositions an be onneted with theusual onnetives (e.g. negation, onjuntion, disjuntion) to form more omplexsentenes. The only syntatial extension is the introdution of usually two new,dual types of sentenes: 2A (neessarily A) and 3A (possibly A), where A isagain a sentene in modal logi. The informal semantis is that 2A is true ina possible world W if and only if A is true in every possible world aessiblefrom W and that 3A is true in a possible world W if and only if A is true in atleast one possible world aessible from W. Other modal operators may also bede�ned.Modal logis have been used in agent theories mostly to reason about theknowledge of other agents [Wooldridge and Jennings, 1995, setion 2℄. This isdone by interpreting 2A as a modal knowledge operator, i.e. an agent knows A ifin every world that is onsistent with its knowledge, A is true. Reasoning about

32 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYknowledge using modal logis was probably �rst omprehensively integrated intoa framework for reasoning about ations by [Moore, 1985℄.A further extension of modal logis are dynami logis [Harel et al., 1982,Harel, 1984℄. Dynami logis were developed to reason about programs and theirexeutions. Syntatially, the only hange from normal modal logi is that 2A isreplaed by [�℄A and 3A is replaed by h�iA, where � is a program. A programimpliitly de�nes an aessibility relation, i.e. only those worlds are aessiblethat are possible states after the exeution of the program. [�℄A is then de�nedas true in W if and only if A is true in every possible world aessible from Wwith the aessibility relation de�ned by �, i.e. if A is neessarily true after theexeution of �.A program is a sequene of performable ations and thus, programs an beseen as apability desriptions. This means that dynami logis are the �rstlogis introdued here that expliitly inlude apabilities in the form of programsin their ontology. However, representing knowledge in and automated reasoningover dynami logis has proven not very pratial and thus, we shall not pursuethis path any further.2.2.3 Meta-Level KnowledgeExperiments in [Larkin et al., 1980, Chi et al., 1981℄, and other work desribed in[Barr, 1979, Anderson, 1981℄, have shown that experts in a �eld often do not havemore domain knowledge than novies, but instead they use this knowledge moreeÆiently; they have more meta-knowledge. Being an expert in a domain meansto be more ompetent in this domain or, to be more apable of solving problemsin this domain. Thus, there is a strong orrelation between the availability ofmeta-knowledge and apability or ompetene in a domain. Similar argumentsan be found in [Laske, 1986, Leoeuhe et al., 1996, VanLehn and Jones, 1991℄.We have argued in [Wikler and Pryor, 1996℄ that available meta-knowledge anbe re-used for ompetene assessment. The emphasis here is on the re-use aspet

2.2. MODELLING CAPABILITIES WITH LOGICS 33whih would make this approah very attrative to our aims as it ould save us alot of work. Thus, we shall now look at meta-knowledge and its representationsto see whether this knowledge an be re-used for apability brokering.2.2.3.1 Types of Meta-Level KnowledgeA number of lassi�ations of meta-level knowledge have been attempted. Forexample, an early lassi�ation by [Davis and Buhanan, 1977℄ distinguishesshemata for reasoning about objets, funtion templates for reasoning aboutfuntions, rule models for reasoning about inferene rules, and meta-rules forreasoning about strategies. In [Lenat et al., 1983℄ there is not so muh a ategor-isation of meta-knowledge, but instead they give a number of examples wheresuh knowledge is being used. These examples inlude meta-knowledge: for ruleseletion; to reord needed fats about knowledge; for rule justi�ations; to de-tet bugs; et. The last example they give onerns meta-knowledge to desribe aprogram's abilities. Unfortunately they do not desribe a representation for thistype of meta-knowledge. Similarly, [Maes, 1986℄ argues that meta-level know-ledge is needed for introspetion and lassi�es it by the tasks it is needed for,e.g. in assumption-based reasoning, in learning, in handling inonsistent, inom-plete, and unertain knowledge et. This shows that there is a need for expliitmeta-knowledge in knowledge-based systems.There are also a number of examples of systems that have used expliit meta-knowledge for a number of purposes. For example, [Filman et al., 1983℄ desribeseveral experiments using meta-language and meta-reasoning to solve problemsinvolving belief, heuristis, and points of view; [Attardi and Simi, 1984℄ desribea meta-language for reasoning about logial onsequene; [Ginsberg, 1986℄ de-sribes a meta-level framework for the onstrution of knowledge base re�nementsystems; [Haggith, 1995℄ desribes a framework for reasoning about onits inknowledge bases. Many other systems using expliit meta-knowledge do exist(f. [Maes and Nardi, 1988℄). This illustrates the availability of meta-knowledge

34 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYin knowledge-based systems.Of partiular interest to us is work on using meta-knowledge for ompeteneassessment [Vo� et al., 1990℄ as this is diretly related to apability retrieval.One of their aims was to develop a system that knows when it annot solve agiven problem without having to fail in an attempt to solve it. For this taskthey extended their problem solver with a number of reetive modules thatperformed some simple tests. The representation of knowledge in the reetivemodules is proedural rather than delarative though, and the modules work foron�guration tasks only. Furthermore, ompetene assessment was internal to thedeveloped system and no external broker-like agent ould perform the ompeteneassessment.Up to this point, there have been few approahes whih use meta-knowledge torepresent apabilities and ertainly no solution that ould be used for apabilitybrokering, as we had hoped.2.2.3.2 Searh Control KnowledgeAlthough many di�erent uses for meta-level knowledge have been suggested therehas been one area where the use of meta-knowledge has had the largest impat:searh ontrol [Davis, 1980, Bundy and Welham, 1981, George�, 1982℄. The ideahere is that spending some time on where one is going to searh in a large searhspae is more eÆient than just searhing. As mentioned above (page 32), expertsin a domain often distinguish themselves from novies not by having more relevantdomain knowledge, but by using it more eÆiently. This suggests that the kindof meta-knowledge that is strongly orrelated to apability knowledge as we needto represent it is, in fat, searh ontrol knowledge. Thus, we shall now lookat searh ontrol knowledge to see whether this knowledge an be re-used forapability brokering.There are a number of domains for whih searh ontrol knowledge has beenfound and employed. For example, [Bundy et al., 1979℄ desribe a system that

2.2. MODELLING CAPABILITIES WITH LOGICS 35uses meta-level inferene to solve mehanis problems; [Wilkins, 1982℄ uses meta-knowledge to ontrol searh in hess; [Minton et al., 1985℄ have used expliitsearh ontrol knowledge in parsing; [Murray and Porter, 1989℄ have used know-ledge to ontrol searh for onsequenes of new information during knowledgeintegration. Planning is of partiular interest to us (f. setion 2.3.1) and thereare a number of planners that use sophistiated searh ontrol tehniques6. Forexample, [Tate, 1975℄ desribes in his Ph.D. thesis how the struture of a givengoal and its sub-goals an be exploited to ontrol searh; [Croft, 1985℄ examinesin his work what exatly the hoie points are during planning and developsheuristis to ontrol searh at these points; [Fox et al., 1989℄ view planning as aonstraint satisfation problem and develop the onept of problem texture thatis meant to aid in ontrolling searh.Thus, there exists a large body of searh ontrol knowledge that mightbe re-usable as apability knowledge. However, a loser inspetion of the ap-proahes desribed above reveals that the searh ontrol knowledge is often builtinto the system to maximise eÆieny, i.e. it is represented only impliitly. In[Wikler and Pryor, 1996℄ we have attempted to re-use this impliitly represen-ted searh ontrol knowledge to assess ompetene. However, our aim here is anexpliit apability representation and the impliitness of the above searh ontrolknowledge is unlikely to provide us with insights as to how to represent apabil-ities.2.2.3.3 Learning Searh Control KnowledgeWhat we are looking for at this point are systems that ontain expliitly repres-ented searh ontrol knowledge that an be re-used for apability brokering. Mostsystems that learn searh ontrol knowledge belong to this group. This is beausetehniques from symboli mahine learning are often aimed at onstruting anexpliit representation of what they are trying to learn. If this learned searh6 To avoid onfusion here, the term meta-planning has been introdued by [Wilensky, 1981℄but does not refer to the use of expliit meta-knowledge to ontrol searh in planning.

36 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYontrol knowledge ould be re-used for apability brokering it would have theadded advantage that we would not even have to �nd the knowledge ourselves.Thus, we shall now look at systems that learn searh ontrol knowledge.Two general problem-solving arhitetures have been used to investigatethis possibility: soar [Laird et al., 1987, Rosenblum et al., 1993℄ and prodigy[Minton et al., 1989, Carbonell et al., 1992, Veloso et al., 1995℄. The basi learn-ing algorithms in soar are hunking and learning from outside guidane[Golding et al., 1987℄. In prodigy explanation-based learning has been appliedto learn expliit searh ontrol rules [Minton and Carbonell, 1987℄. Explanation-based learning is a tehnique that has also reently been applied to learn-ing searh ontrol rules for a snlp-like planner [Kambhampati et al., 1996℄.The results desribed there are rather promising as far as the speed-up oversnlp ([MAllester and Rosenblitt, 1991℄, f. setion 2.3.1.2) is onerned. Sim-ilarly, [Ihrig and Kambhampati, 1997℄ desribe the suessful appliation ofexplanation-based learning to a ase-based planner. Indutive learning ofsearh ontrol rules has been desribed in [Lekie and Zukerman, 1991℄, and[Eskey and Zweben, 1990℄ desribe their work on leaning searh ontrol know-ledge for the losely related sheduling problem. This shows that there is suÆ-ient work in this area to provide a large body of expliit searh ontrol knowledgethat might be re-usable as apability representations.However, the fat that expliit searh ontrol knowledge an slow downproblem-solving has not gone unnotied [Etzioni and Minton, 1992℄. The moresearh ontrol rules have been learned, the more time it takes to evaluate all ofthem. Early approahes to this utility problem have just ounted how often aspei� searh ontrol rule was �red and deleted it if the suess-rate went be-low a ertain threshold [Minton et al., 1987℄. Later approahes attempted to ap-proximate the learned searh ontrol knowledge to save time [Chase et al., 1989℄.[Wefald and Russell, 1989℄ have even tried to theoretially de�ne when a searhontrol rule has no bene�t. [Kambhampati et al., 1996℄ have avoided the utility

2.2. MODELLING CAPABILITIES WITH LOGICS 37problem by only learning provably orret rules, whih are not very many.As far as apability desriptions are onerned, forgetting or approximat-ing searh ontrol knowledge means having a less aurate apability desription.Considering the advantages of this approah, i.e. no need for a new representationor the manual development of new knowledge, this inauray seems aeptable.However, there are more worrying results that question the usefulness and thus,the availability of expliit searh ontrol knowledge in the long term. Spei�-ally, [Ginsberg, 1996a℄ has looked at a number of problems to whih AI systemshave been applied and found that, onsistently, the most eÆient approahes userelatively uninformed searh. Why this is the ase is not of muh interest to ushere, but this problem, whih is ultimately rooted in the utility problem, has leadus to abandon the re-use approah argued for in this setion.2.2.4 Terminologial KR LanguagesBy a terminologial knowledge representation language we mean any formalismfor de�ning and reasoning about onepts in the mould of [Brahman, 1979℄ andkl-one [Brahman and Shmolze, 1985℄. Suh systems are of little diret relev-ane here as there has not been a omprehensive attempt to represent apabilityknowledge in suh a formalism. That is not to say that it is not possible though.The reason why we want to mention these languages here is that these formalismsprovide the framework for the de�nition of ontologies to whih we will return insetion 2.3.2. For example, Ontolingua [Gruber, 1992℄ an be seen as rooted interminologial KR languages.A �nal word onerns the expressiveness of terminologial KR languages. Asexpressiveness is a laim we would like to make for the apability desriptionlanguage we will introdue in this thesis, it is worth noting that there has beena formal attempt to de�ne the expressiveness for terminologial KR languages in[Baader, 1996℄. Baader even laims that this kind of approah is generalisable toother types of KR languages and we shall return to this work in hapter 7.

38 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYMost Important Issues Here� The apability desription that we will present in this thesis uses �rst-order prediate logi to desribe states and the situation alulus is animportant ation representation that ould be used in kif-based brokers(f. setion 9.1).� Although reusing meta-knowledge initially looked like a very promising ap-proah to apability representations beause it potentially allows the re-useof a large existing body of knowledge, reent results related to the utilityproblem disussed in setion 2.2.3.3 indiate that this approah is not de-sirable. However, apability knowledge is still meta-knowledge and thus,this area is still important.� Finally, the formalisation of a notion of expressiveness in [Baader, 1996℄ isrelevant to our own laim that the apability desription language presentedin this thesis is expressive.

2.3. ACTIONS IN AI PLANNING 39
2.3 Actions in planning

2.3.1.1 Situation calculus 2.3.1.5 Real world planners

2.3.1.4 Contingencies 2.3.1.6 Shared action representations

2.3.1.3 SAT 2.3.1.3 Refinement

2.3.1.4 Warplan-C 2.3.1.4. Cassandra

2.3.1.4 CNLP

2.3.1.5 SIPE 2.3.1.5 O-Plan

2.3.1.6 SPAR 2.3.1.6 PDDL

2.3.1.2 Classical representations

2.3.1.2 STRIPS 2.3.1.2 Complexity

2.2.12.3.1 Action representations

2.3.2 Ontologies

2.3.2 Ontolingua 2.3.2 Foundations

2.3.2 Concepts

2.3.3 Processes

2.3.3 QPT 2.3.3 Process Handbook

2.3.3 IDEF3

2.3.4 Planning agents

2.3.4 UWL

2.3.1.2 STRIPS assumption

2.3.1.2 Semantics 2.3.1.2 Planners

2.3.1.2 ADL

2.3.1.2 UCPOP

2.2.1 FOPL 2.1.2.2 Knowledge Sharing 2.1.2.3 KQML

2.3.2 2.3.3 2.3.4

3.3.2 Flexibility Scenario

4.3 Performable Tasks

4.2.1 Capabilities

2.4.1.3 Planning PSM 2.3.2 Ontologies

system/approach
related work
important

2.3.4 PHOENIX

2.3.4 Plan execution

subfield

2.3.1.3 Disjunctive representations

Figure 2.3: Overview of this setion2.3 Ations in AI PlanningIn this setion we will review approahes to ation representations inAI planning, the area we see most losely related to apability model-ling.An overview of this setion, whih provides a oneptualisation of the rela-tionships between the di�erent sub-�elds and approahes/systems desribed inthis setion, is given in �gure 2.3. The �gure also ontains ross-links to otherareas. The most important areas reviewed here are: lassial non-hierarhialation representations, inluding the strips representation and adl, on whihour apability desription language will be based; exible representations for theommuniation about ations suh as spar and pddl; work on ontologies ofations whih provides the basis for the representation of apabilities as perform-able ations; and work on existing agents based on AI planning tehnology as ourbroker will also use a planner.

40 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY2.3.1 Ation Representation FormalismsThere are two reasons why ation representations as used by AI planners are ofpartiular importane for our work. Firstly, a primitive ation, one of the inputsto the lassial planning problem [Tate et al., 1990, page 28℄, an be interpretedas the representation of a apability (f. setion 4.2.1). The seond reason for ourinterest in ation representations and AI planning is more omplex. As pointedout before, intelligent agents are often assumed to use a planner to determine aourse of ation that ahieves a given objetive [Wooldridge and Jennings, 1995,page 131℄. Thus, it is plausible to assume that, for a given objetive to beahieved, there exists a planning problem that has a solution if the agent believesit is apable of ahieving this objetive. This planning problem is haraterisedby the objetive to be ahieved, the initial state of the world as pereived by theagent, and the ations the agent believes it an perform. Under this assumption,the problem of apability assessment for an agent may be redued to the planexistene problem.2.3.1.1 First-Order Logi and the Situation CalulusThe planning problem was �rst addressed in AI e.g. in [Green, 1969℄ and inthe situation alulus [MCarthy and Hayes, 1969, Shanahan, 1997℄.7 Both ofthese approahes did not devise a new representation for ations but used �rst-order prediate logi to represent world states, ations, and their e�ets. Using�rst-order logi led to a number of problems, most notably, the frame problem[Hayes, 1974, page 69℄, [Shanahan, 1997℄. Although there has been onsiderableprogress towards representations of ations in �rst-order logi that avoid theframe problem, it an by no means be onsidered solved. Sine we have alreadydisussed �rst-order logi as a apability representation in setion 2.2.1, we shallnot go into more detail at this point.7 The earliest AI system addressing this problem was probably gps [Newell and Simon, 1963℄.

2.3. ACTIONS IN AI PLANNING 412.3.1.2 Classial Non-Hierarhial RepresentationsOne of the earliest systems in AI to address the planning problem using atask spei� representation was the strips system [Fikes and Nilsson, 1971,Fikes et al., 1972℄. The strips representation of ations basially onsists of:� an ation pattern: the identi�er of the ation and some variables desrib-ing the parameters;� a preondition formula: a formula that must be true before this ationan be applied;� an add list: a list of formulae that will be true as a result of this ation;and� a delete list: a list of formulae that will no longer be true as a result ofthis ation.In the original de�nition of the strips representation, the di�erent formulaein the representation were allowed to be full �rst-order logi and a resolutiontheorem prover was used to reason about world states. However, in a later de-sription [Nilsson, 1980, hapter 7℄ only onjuntions of literals are permitted,whih greatly simpli�es the planning proess. This later version is what is nowgenerally referred to as the strips representation. The signi�ant advane ofthis representation over the situation alulus is the strips assumption: onlywhat is mentioned in the representation hanges when an ation is performed,i.e. anything that is not listed in the add or delete list will not hange.One interesting aspet of the strips representation is that there was noformal semantis de�ned for strips for a rather long time. In a lassi pa-per, [Hayes, 1974℄ pointed out that many representations in AI su�ered from thisproblem, and that formalisms that have no semantis should not be onsideredrepresentations. Still, it was not until [Lifshitz, 1986℄ that a semantis for strips

42 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYwas formally de�ned. Lifshitz also illustrates how the �rst intuitive approahesare not always quite the right de�nitions. It has to be said, though, that thestrips representation proved to be an extraordinarily suessful ation repres-entation. There are still planners being developed today that use exatly thisrepresentation.The strips planner on the other hand su�ered from many problems thatwere addressed in a number of subsequent systems, mostly following the stripsapproah [George�, 1987, Allen et al., 1990, Tate et al., 1990℄. The �nal inarn-ation of a planner in the mould of strips is probably the partial-order ausal-linkplanner snlp [MAllester and Rosenblitt, 1991℄. However, there has been no sig-ni�ant advane in the representation of ations used by these systems, and thisis the aspet we are most interested in here.One of the more serious limitations of the strips representation is its express-iveness. For example, the situation alulus is onsidered a muh more expressiverepresentation. It was not until [Pednault, 1989℄ that a serious attempt at ex-ploring the middle ground between these two approahes was made. The resultof this work was the new ation desription language (adl) that ombined theexpressiveness of the situation alulus with the strips assumption to retain thebest of both worlds. The underlying idea in adl was to exploit the fat that e�etaxioms in the situation alulus all more or less have the same syntatial format.Pednault used this pattern to de�ne adl and how adl expressions should be ex-panded into situation alulus formulae. In this way, the semantis of adl wasgrounded in the situation alulus but the syntax looked muh more like stripswith preondition, add, and delete formulae.What Pednault did not do was design a planner for adl. Although oneould translate the representation into �rst-order logi and reason about it witha theorem prover, this was learly not the intention. The �rst planner thatwas based on a restrited version of adl was upop [Penberthy and Weld, 1992,Barrett et al., 1995℄. The basi extension of upop's version of adl over the

2.3. ACTIONS IN AI PLANNING 43strips representation was the introdution of onditional e�ets. E�ets arethe union of add and delete lists and onditional e�ets are e�ets that onlyour if ertain seondary preonditions hold before the ation is exeuted. Also,onditional e�ets an our any number of times with di�erent instantiations fora given ation instane. By restriting the domains of all variables to known, �nitedomains it was possible to extend the basi snlp algorithm to handle onditionale�ets.Complexity of strips Planning As we have mentioned above, one of thereasons why we are interested in AI planning is beause the apability assessmentproblem may be redued to the plan existene problem. [Bylander, 1994℄ hasshown that the problem of determining whether a given instane of the planningproblem has any solution is, even for propositional strips, a pspae-ompleteproblem. Thus, assessing apability via plan existene is not a promising routeas far as apability retrieval is onerned.An investigation into whether and why di�erent types of planning algorithmsare more eÆient than others an be found in [Barrett and Weld, 1994℄. In theourse of this work, they de�ned the omplexity of a planning problem. We ouldpotentially use suh a omplexity measure to estimate whether a plan will befound within given resoures, i.e. to address the plan existene problem. However,the omplexity of the benhmark problems they used was given in terms of thelength of the shortest plan solving them, i.e. in general, the omplexity was onlyknown one the problem was solved.2.3.1.3 Disjuntive RepresentationsIn [Kautz and Selman, 1992℄ a new approah to planning has been suggested.Instead of re�ning a partial plan through searh they have reformulated the plan-ning problem as a satis�ability problem to whih they applied their stohastihill limbing algorithm gsat [Selman et al., 1992℄. The diÆult task here is thereformulation. [Blum and Furst, 1995℄ independently found suh a reformulation

44 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYthat led to a signi�ant inrease in performane over onventional planners asdemonstrated by their planner, Graphplan. This new formulation was later im-proved and ombined with Walksat, an evolution of gsat, to give even betterresults [Kautz and Selman, 1996℄.Why is it that these satis�ability planners ould so drastially outperform alldedutive partial-order ausal-link approahes? This question has been addressedin [Selman, 1994, Kambhampati, 1997℄ and they suggest that the essential di�er-ene lies in the fat that the representations used by satis�ability planners are ap-able of representing a new kind of disjuntion in plans, i.e. sets of plans that on-tain disjuntions of ations to be inluded in the �nal plan. As a response to this�nding there are now some dedutive planners that also use disjuntive represent-ations, e.g. Cops [Ginsberg, 1996b℄, upop-d [Kambhampati and Yang, 1996℄,or Desartes [Joslin and Pollak, 1996℄. However, they do not seem to have theperformane of satis�ability planners yet.As far as ation representations are onerned, these new planners an beonsidered a step bakwards rather than forward. All the ations the satis�abilityplanners an reason about are stritly propositional, a limitation that stems fromthe satis�ability algorithm used. Thus, this work is of little interest to us. Theabove planners do however reason about disjuntion in plans and, as far as planrepresentations are onerned, this presents a signi�ant advane. This is not anissue here though.2.3.1.4 ContingeniesAn interesting extension of the strips-based ation representations presentedthis far has been introdued in ontingeny planning. Essentially, the idea here isthat ertain ations may have several alternative outomes. The �rst planner toaddress this problem was Warplan-C [Warren, 1976℄. The representation used byWarplan-C was again based on the strips representation. The major di�erenewas that several alternative sets of e�ets an be spei�ed for an ation, eah

2.3. ACTIONS IN AI PLANNING 45of whih is given a ontingeny label. Eah set of e�ets was represented as anadd and a delete list, as it would be for a normal strips ation. The numberof ontingenies was assumed to be small and not all ations were expeted tolead to ontingenies. There has also been some work on extending O-Plan (seebelow) to deal with ontingenies [Seker, 1988℄, but the urrent version does notontain any suh extension.A more reent ontingeny planner is nlp [Peot and Smith, 1992℄, whih isbasially a non-linear version of Warplan-C. The underlying ation representationdid not hange from Warplan-C though. A variant of nlp's algorithm has beenused in the Cassandra planner [Pryor and Collins, 1996℄ whih, like upop, alsohandles onditional e�ets. In Cassandra's ation representation the di�erentontingenies were represented as onditional e�ets, where the ontingeny labelan be seen as a seondary preondition of the di�erent e�ets in the di�erentontingenies.E�etively, ontingenies an be seen as introduing disjuntions into e�ets,thus signi�antly extending the expressiveness of the representation. Thus, theserepresentations are of great interest to us.2.3.1.5 Real World PlannersMost of the planners mentioned this far are researh vehiles and have not beenapplied to realisti domains. However, there are at least two planners thathave been used outside a researh environment: O-Plan [Currie and Tate, 1991,Tate et al., 1994, Tate, 1995℄ and sipe [Wilkins, 1988℄. Both these systems arequite similar in that they support a very rih representation to support planningin realisti domains.The O-Plan planner essentially onsists of: a set of knowledge soures whihan address di�erent types of aws or issues in a plan; a set of onstraint man-agers to evaluate di�erent types of onstraints in a plan; and a ontroller forthese modules. The openness of O-Plan means new modules an be added

46 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYto the planner without too muh e�ort. The representation used by O-Planis based on the <i-n-ova> onstraint model of ativity [Tate, 1996a℄ whihviews a plan as a set of onstraints on possible behaviour. The atual ationrepresentation language used in O-Plan is alled O-Plan Task Formalism (tf)[O-Plan tf, 1997, Tate et al., 1998℄. O-Plan tf is primarily based on a hierarh-ial model of ation expansion. The representation of primitive ations, the aspetwe are most interested in, has a great degree of rihness, allowing for a numberof onstraint types in the representation, e.g. omplex temporal onstraints, re-soure onstraints, et. The ability to add new onstraint managers as requiredgives O-Plan the high exibility needed for realisti domains. Another interest-ing aspet of the O-Plan planner is that is has been modelled as a Commonkadsproblem-solving method [Kingston et al., 1996℄ (f. setion 2.4.1.3).When it omes to modelling realisti domains, the rihness o�ered by therepresentations of these real world planners presents a signi�ant advane overthe earlier strips-based representations. However, our aim in this thesis is not todevelop a broker for an extremely rih domain whih might require the featureso�ered by O-Plan tf or sipe's representation in its apability representations.What we are aiming for is expressiveness and exibility and whether more rihnessneessarily means more expressiveness is an open question. The most interestingaspet of these planners for our work is the openness of O-Plan whih gives it itsexibility.2.3.1.6 Shared Ation RepresentationsPart of the urrent movement towards knowledge sharing and shared represent-ations (f. setion 2.1.2.2) involves the development of shared ation representa-tions. In setion 2.1.2.3, we have already looked at kqml whih an be onsideredone suh language, as a kqml expression represents an ation. At least two othere�orts with the aim of standardising a ommon ation representation that fail-itates knowledge sharing are urrently under way. We will look at these next.

2.3. ACTIONS IN AI PLANNING 47One of the latest proposals is the Shared Planning and Ativity Representation(spar) [spar, 1997, Tate, 1998℄. The prinipal sope of spar is to represent past,present, and possible future ativity and the ommand, planning, and ontrol pro-esses that reate and exeute plans meant to guide or onstrain future ativity.It an be used desriptively for past and present ativity and presriptively forpossible future ativity. The way spar aims to failitate knowledge sharing is notonly through a language with an open syntax, but also by providing an ontologyof fundamental onepts for representing and reasoning about ations. A brieflook at the spar ontology will follow in setion 2.3.2.Another shared ation representation is the Planning Domain De�nition Lan-guage (pddl) that was developed as a ommon format for all ompetitors in theAIPS'98 planning ompetition [Ghallab et al., 1998℄. The sope of pddl is farmore limited than spar: pddl was only aiming for a representation that oversthe representations used by ompeting planning algorithms. One of the interest-ing features of this language is that it ontains expliit ags for di�erent exten-sions to the basi language that have to be set in a problem desription if theaording extension is used. A planner not supporting these extensions an thensimply hek these ags to see whether it an generate plans for the desribedproblems.Both representations are only meant as an interlingua and not as representa-tions whih are reasoned over diretly. Still, both these languages, and kqml, aswell, o�er very interesting features that our apability representation must alsohave, suh as spar's openness and exibility.2.3.2 Ontologies of AtionsA logi only de�nes the syntax and semantis for a representation, but it is theontology that de�nes the voabulary. Approahes to knowledge sharing thereforeagree on the need for shared ontologies (f. setion 2.1.2.2). Thus, we too willneed a shared ontology of ations to represent and reason about apabilities

48 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY(f. setion 4.3). One of the best known languages for de�ning sharable ontologiesis Ontolingua [Gruber, 1992℄, whih has been de�ned as part of the knowledgesharing e�ort. Methodologial issues for developing ontologies are disussed in[Gruber, 1993a, Fern�andez et al., 1997, G�omez-P�erez, 1998℄.Foundations for sharable ontologies of ations are desribed in [Tate, 1996b℄.Aording to Tate, an ontology an be omposed of four major parts. Firstly,there is the meta-ontology whih ontains fundamental ontologial elements usedto desribe the ontology itself. Seondly, there is the top level ontology whihis the minimal ontology used as a framework by all detailed ontologies. Thirdly,there is a library of shared ontologial elements whih may be shared arossa number of detailed ontologies but need not be inluded. Finally, there arethe detailed ontologies whih build on the top level ontology and may inludeontologies from the library.A fundamental question is whih onepts the di�erent parts of a shared on-tology of ations should ontain. There are a number of suh ontologies thathave suggested di�erent onepts, mostly for the meta-ontology and the toplevel ontology. For example, ontologies of ations were de�ned in the ProessInterhange Format (pif) [Lee et al., 1996, Lee et al., 1998℄, the Enterprise on-tology [Ushold et al., 1996, Ushold et al., 1998℄, the Core Plan Representation(pr) [Pease and Carrio, 1997℄, the Shared Planning and Ativity Represent-ation (spar) [spar, 1997℄, and reently in work on models of problem solving[Gennari et al., 1998℄ (f. setion 2.4.2). The spar ontology, for example, de�nesonepts for entities, environments, ativities, ations, events, time points, ob-jets, agents, loations, alendars, relationships, ativity onstraints, world mod-els, plans, proesses, objetives, issues, et. Conepts are related to eah other ina semanti network style representation and eah onept is de�ned by a semi-formal desription.Although we believe an ontology of ations to be a onsiderable aid for therepresentation of apabilities, the development of suh an ontology is beyond the

2.3. ACTIONS IN AI PLANNING 49sope of this thesis. Our apability desription language does, however, providea framework for the representation of and reasoning about ontologies of ations(f. setion 4.3).2.3.3 Proess ModellingOne of the drawbaks of strips-based ation representations, as desribed above,is that they are insuÆient for reasoning about proesses. This is beause theyonly refer to two states, the one just before the desribed ation and the one justafter the ation has been ompleted. Proesses annot be desribed adequatelyin this way. A �rst attempt to reason about simultaneous, interative proesses,haraterised by a ontinuum of gradual hange, that may be ativated involun-tarily, and that take up time, was proposed in [Hendrix, 1973℄. This line of workultimately lead to the Qualitative Proess Theory (qpt) [Forbus, 1984℄. Not onlydoes qpt handle all the above diÆulties, it also an be used to ome up withuseful onlusions even when not all the quantities for a given proess are given.The idef3 proess apture method has been used to model proesses of a dif-ferent kind [Mayer et al., 1992, Lydiard, 1996℄. idef3 is part of the idef familyof methods funded by the US Air Fore to provide modelling support for sys-tems engineering and enterprise integration. The idef3 method allows di�erentuser views of temporal preedene and ausality relationships assoiated withenterprise proesses to be aptured. The information is presented in a series ofdiagrams and text, providing both a proess-entred view of a system, via theProess Flow Network, and an objet-entred view of a system via the ObjetState Transition Network. This method an tolerate inomplete and inonsistentdesriptions and is exible enough to deal with the inremental nature of theinformation aquisition proess.[Malone et al., 1997℄ desribe a novel theoretial and empirial approah totasks suh as business proess redesign, enterprise modelling, and software devel-opment. The projet involves olleting examples of how di�erent organisations

50 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYperform similar proesses, and organising these examples in an on-line proesshandbook. The handbook is intended to help people redesign existing organisa-tional proesses, invent new organisational proesses, learn about organisations,and automatially generate software to support organisational proesses. A keyelement of the work is an approah to analysing proesses at various levels ofabstration, thus apturing both the details of spei� proesses as well as the\deep struture" of their similarities.Although the above approahes to proess modelling present various interest-ing ideas, we have hosen not to inlude a model of proesses in our apabilityrepresentation as the senarios we envisage do not require suh an extension.2.3.4 Agents Planning with CapabilitiesAlthough it has been argued that deliberative agents should be based on AIplanning tehnology [Wooldridge and Jennings, 1995, page 131℄, most existingagents are not. The earliest agents based on a planner are probably found in[Cohen et al., 1989℄'s phoenix system whih inludes planning agents that oper-ate in the domain of situated forest �re management.We have argued at the beginning of this setion (page 40) that the apabilityassessment problem may be redued to the plan existene problem under ertainassumptions. One of these assumptions was that there will be no problems duringthe exeution of a plan, but we know that this assumption is overly optimisti.Early work that an be seen as the foundation for a planning agent's arhite-ture is presented in [Ambros-Ingerson and Steel, 1988℄, whih desribes ipem, alear and well-de�ned framework for the integration of planning, plan exeution,and exeution monitoring. More reent work in the area of plan exeution andopportunity reognition with referene features is desribed in [Pryor, 1996℄.Probably the most noteworthy agents that do use a planner are the intel-ligent softbots developed at the University of Washington [Etzioni et al., 1993,Weld, 1996, Etzioni, 1997℄. One of the most interesting aspets of this work for us

2.3. ACTIONS IN AI PLANNING 51is the ation representation used by the softbots. They found that strips-basedrepresentations lak ertain essential features that they needed for their Internetsoftbots. The ation representation language they have developed to model op-erating system ommands, uwl [Etzioni et al., 1992℄, has two major extensionsover onventional languages. Firstly, it allows the modelling of information gath-ering through goals of the type (find-out literal). Seondly, one an speify forertain onditions to remain unhanged by an ation with a (hands-off on-dition) goal expression. Arguably, the former is subsumed by reasoning aboutknowledge as disussed in setion 2.1.2 and the latter is a side e�et of having torefer to objets by their properties.Although the agents presented in this thesis will use a planner to reasonabout their ations, our main onern is with the apability reasoning performedby the broker, prior to the assignment of tasks to problem-solving agents. Hene,problems ourring during plan exeution are not addressed in this thesis.Most Important Issues Here� Primitive ations in lassial non-hierarhial ation representations (se-tion 2.3.1.2) like strips and adl form the basis for the apability desrip-tion language presented in this thesis (f. hapter 4).� Furthermore, our apability desription will be open like the O-Plan rep-resentation giving it exibility (f. hapter 8), it will allow for the repres-entations of ontologies of ations like the spar ontology (f. setion 4.3),and it will allow for the agging of language properties similar to pddl(f. setion 4.4).� A planner is used by the psas to determine a ourse of ation, but theresulting issues onerning plan exeution are not addressed in this thesis.A planner is also used by the broker to ombine apabilities of various psasto solve a given problem (f. setion 3.3.2).

52 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

2.4.1.4 Early approaches

2.4.1.4 Indexing

2.4.1.2 PSM descriptions2.4.1.1 Library of PSMs2.4.1.1 Layers

2.4.1.1 Models of expertise (PSMs)

2.4.1 KADS

2.4.1.1 Knowledge acquisition

2.4.1.5 Brokering PSMs

2.4.1.2 Conceptual description

2.4.1.5 IB 2.4.1.5 IBROW2.4.1.4 Suite of problem types

2.4.1.3 Planning PSM

2.4.13 Knowledge roles

2.4.2 PROTEGE

2.4.2 PSM descriptions2.4.2 Methods

2.4.1.3 Task decomposition 2.4.3 [Doyle, 1997] 2.4.3 [Aitkin et al., 1998]

2.4.3 PSM descriptions

2.4.3 HPKB

2.4 Models of PS

2.3.2 Ontologies of Actions2.3.1 Action Representations

2.4.1 2.4.2

2.4.3

2.4.2 PSM selection

system/approach
subfield

related work
importantFigure 2.4: Overview of this setion2.4 Models of Problem SolvingIn this setion we will review approahes to modelling problem-solvingmethods.An overview of this setion, whih provides a oneptualisation of the relation-ships between the di�erent sub-�elds and approahes/systems desribed in thissetion, is given in �gure 2.4. The most important areas reviewed here are thevarious representations used to desribe problem-solving methods whih an beseen as reasoning apabilities and the approahes to the indexing problem whihresembles the apability retrieval problem. Furthermore, we shall return to thebrokers for problem-solving methods in setion 9.1.2.4.1 kads-Based ApproahesWe were interested in models of problem solving to investigate whether these mod-els an be seen as apability models and thus, an be used for apability brokering.One of the largest and longest-running projets that deals with the modellingof problem-solving methods is the kads projet [Wielinga and Breuker, 1986,

2.4. MODELS OF PROBLEM SOLVING 53Breuker and Wielinga, 1989, Wielinga et al., 1992℄.8 Therefore, we shall nowlook at the kads representation of models of problem-solving.2.4.1.1 The kads MethodologyThe kads methodology is a tool for knowledge aquisition and the building ofknowledge-based systems (kbss). Knowledge aquisition is a onstrutive proessin whih the knowledge engineer uses data about the behaviour of an expert tomake design deisions regarding a kbs to be built. In this view, a kbs is anoperational model that is the result of knowledge aquisition. The proess ofknowledge aquisition onsists of knowledge eliitation, knowledge interpretation,and formalisation.The kads methodology's �rst priniple is that the knowledge aquisition pro-ess should result in a number of intermediate models. These are: the organisa-tional model, the appliation model, the task model, the model of ooperation,the model of expertise, the oneptual model, and the design model. The or-ganisational model and the appliation model are models of the environment thekbs is meant to be used in and the problem it is meant to address. The taskmodel spei�es how the funtion of the system is to be ahieved and ontainsthe task deomposition. The model of ooperation assigns tasks and sub-tasks toagents. The model of expertise spei�es the problem-solving expertise required toperform the problem-solving tasks assigned to the system at the knowledge-level[Newell, 1982℄. The oneptual model is an abstrat desription of the objetsand operations the kbs should know about. Finally, the design model is a high-level spei�ation of the kbs, the operationalisation of whih should be the kbsitself.The model that we are most interested in here, as it appears to be the losestto a apability model, and that has reeived the most attention within the kadsommunity is the model of expertise. kads suggests a deomposition of this8 The title of the projet was hanged to Commonkads in later years.

54 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYmodel aording to the types of knowledge it ontains into several layers:� The domain layer: The domain knowledge embodies the oneptualisa-tion of the domain for a partiular appliation in the form of the domaintheory. It ontains onepts, properties, and relations between oneptsand their properties.� The inferene layer: The inferene knowledge embodies primitive infer-ene ations over the domain knowledge, also referred to as the knowledgesoures. Domain knowledge is mapped into the meta-lasses or knowledgeroles that represent the generi input and output of the inferene ations bythe domain view. The inferene struture desribes the ow of knowledgebetween the inferene ations similar to a data ow diagram.� The task layer: The task knowledge embodies the ontrol knowledgeneeded to perform reasoning at the inferene layer. This inludes knowledgeof how the overall task is to be deomposed into subtasks.� The strategi layer: The strategi knowledge determines what goals arerelevant to solve a partiular problem. However, this layer was dropped inkads-ii/Commonkads.One of the key issues in the kads methodology is that it strongly advo-ates the re-use of knowledge, whih is to be ahieved through a library of suhknowledge. The library is divided into two parts: the domain division, whih isonerned with generi and re-usable domain knowledge, and the task division,whih ontains the desription of the interpretation models or models of problem-solving. An interpretation model is a model of expertise with an empty domainlayer, i.e. it is a domain-independent desription of a problem-solving method(psm) [Benjamins et al., 1997℄. These are exatly the models we are interestedin.

2.4. MODELS OF PROBLEM SOLVING 552.4.1.2 Desriptions of psmsThe kads library ontains a number of generi psms that represent the ex-periene gained in many years of knowledge engineering [Breuker et al., 1987,Breuker and Van de Velde, 1994℄. The desription of eah psm in the libraryonsists of three parts: a verbal desription, a oneptual desription, and aformal desription. The verbal desription is a desription in natural language.The oneptual desription uses a frame-like language derived from the Conep-tual Modelling Language ml [Wielinga (ed) et al., 1994, hapter 3℄. The formaldesription whih exists only for a few psms is given in ml2 (see below).For eah psm the oneptual desription de�nes funtions whih are essentiallythe primitive inferene ations, funtion strutures whih are more or less theinferene strutures, and a ontrol struture whih is the ontrol regime appliedin this psm. The oneptual desription of a funtion onsists of a desriptionof the dynami input and output knowledge roles of this funtion, the statiknowledge roles it aesses, its goal, a spei�ation of the relation between inputand output, and an operation type whih is the type of primitive inferene thisfuntion performs. The funtion struture is a olletion of the funtions thisstruture is omposed of. The ontrol struture is a spei�ation of the ontrolow over these funtions inluding how the overall task aomplished by this psmis to be deomposed.Although the oneptual desription ontains the right kind of knowledge tobe onsidered a apability representation, it also allows for informal ontent inmany plaes. Thus, it an not be used as is for automated brokering, but itprovided us with insights for designing our own apability representation.Formal Spei�ations of Models of Expertise ml2 is a formal spei�ationlanguage based on kads models of expertise [van Harmelen and Balder, 1992,Aben, 1995℄. It allows di�erent levels of formalism for domain, inferene, and tasklayer. The domain layer is to be spei�ed essentially in typed �rst-order logi.

56 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYThe inferene layer extends this by allowing the rei�ation of expressions, i.e. aform of meta-expressions, and reetive reasoning about these named expressions.Finally, the spei�ation of the task layer is to be de�ned in Quanti�ed DynamiLogi (f. setion 2.2.2). While this formalism is ertainly powerful, it has been\laimed that highly trained mathematiians are needed to write, to understandand to verify a formal spei�ation" [Aben, 1995, page 20℄.2.4.1.3 Planning as a psmAs we have pointed out in setion 2.3.1, planning is one area of partiular interestto us beause the ability to generate a plan to solve a given problem an beinterpreted as the apability of solving this problem. Thus, we will have a brieflook at the psm for planning desribed in the Commonkads library of psms now[Valente, 1994, Valente, 1995, Barros et al., 1996℄.The �rst step in the desription of a psm is the identi�ation of the know-ledge roles. For the planning task, four dynami and two stati roles have beenidenti�ed. The dynami knowledge roles are the urrent state, the goal, the plan,and the onits. The urrent state is a desription of the initial state of theworld, and the goal is a set of onditions to be ahieved in a future state of theworld. The plan onsists of a set of plan steps, ordering onstraints, variablebindings, and ausal links (f. setion 2.3.1). The onits represent the disrep-any between the onditions in the goal and what the plan ahieves. The statiknowledge roles are the world desription and the plan desription. The worlddesription onsists of the state desription, e.g. uents in the situation alulus(f. setion 2.2.1), and the state hanges, e�etively the possible ations in thedomain. The plan desription omprehends the optional plan struture, a hier-arhial deomposition of the ations, and the plan assessment knowledge usedto evaluate plans.The task deomposition for the planning psm is summarised in �gure 2.5.Tasks are represented by ellipses in this �gure and psms are represented by boxes.

2.4. MODELS OF PROBLEM SOLVING 57
causal-link
based

select
linear

select
hierarchical

select
smart

select
random

select
smart

select
goal-driven

goal-test
current-state

goal-test
MTC-based

propagation
constraint

based
causal-link

based
MTC-

interactionconsistency
unachieved
test for

critique critique
goals

select
operatorgoal

select

MTC-based selection
orderingpropose I critique I

expansion
critiquepropose

plan
modify
plan

Propose-Critique-Modify

planning

Figure 2.5: Task-Method Deomposition; from [Barros et al., 1996, page 15℄For example, the planning task an be addressed with a propose-ritique-modifypsm whih leads to three sub-tasks: propose expansion, ritique plan, and modifyplan that have to be performed in this order. Eah of these tasks an again beaddressed by some psm until no further deomposition is possible.It has been shown that this psm desription does desribe, at the knowledgelevel, the problem-solving behaviour of many modern planners. However, it isdiÆult to see how this desription an be used to deide whether a planner willbe able to �nd a solution for a given planning problem, i.e. how this desriptionan be used to assess apability.2.4.1.4 Indexing psms in the LibraryDuring the knowledge aquisition proess the knowledge engineer might identifya psm from the Commonkads library [Breuker and Van de Velde, 1994℄ as ap-propriate for the task at hand and then use the respetive model from the lib-rary to fous the knowledge aquisition proess, e.g. by attempting to eliit do-main knowledge to �ll relevant knowledge roles and by de�ning the domain view[Brazier et al., 1995℄. Thus, the retrieval of an appropriate model from the lib-

58 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYrary, also referred to as the indexing problem, is an important step in the kadsmethodology, just as it is for apability brokering. However, it is also expetedthat the model from the library will need further re�nement before it an betransformed into the design model. This re�nement proess is alled knowledgedi�erentiation in kads. It is worth noting at this point that the resulting model,the design model, is not meant to be operational in kads.One approah to the indexing problem in kads was the de�nition of a tax-onomy of generi tasks whih is supposed to help the knowledge engineer toidentify an appropriate psm in the library [Breuker and Van de Velde, 1994, page59℄. The idea was for the knowledge engineer to follow one path down a hier-arhy that ends in the most spei� psm suitable for the task at hand. How-ever, in pratise this turned out not to be so simple. Another approah triedin the kads projet was the indexing of psms in the library with task features[Aamodt et al., 1993℄ for whih they have suggested a quite elaborate list of suhfeatures. However, this approah also proved insuÆient for ertain types ofproblems.The latest insight seems to be to take a more indiret approah. The basiargument in [Breuker, 1997℄ is that one is given a problem and di�erent kindsof psms might be able to solve this problem. The psm seletion mehanismshould reet this by providing a suite of problem types and assoiating a numberof psms with eah problem type. The seletion amongst these ould then beby assumptions made by the psm, by the domain, or by the depth with whihthe psm has been modelled. Another, reent ritiism of the original indexingmehanism is that it is based only on yes/no distintions and does not allowgradual re�nement [van Harmelen and ten Teije, 1998℄.Sine we an not use the kads representation for psms to represent apab-ilities, we also an not use their indexing. However, we have tried to take intoaount the lessons learned from their work, spei�ally, the approah to indexingpsms by the problems they solve.

2.4. MODELS OF PROBLEM SOLVING 592.4.1.5 Brokering for psmsThere are urrently at least two approahes in progress that attempt to addressthe indexing problem with a broker. Naturally, we are interested in this work asthe problem addressed is very similar to our problem.ib, the Intelligent Broker [Fensel, 1997, Deker et al., 1998℄, urrently underresearh at the University of Karlsruhe is one suh broker. The aim of thisbroker is not to failitate agent ooperation, as it is for the brokers desribed insetion 2.1.3, but to �nd a psm for a given task on the Internet. Unlike most otherbrokers reviewed in this hapter, ib is not based on kqml. The approah assumesthe availability of an ontology of psms whih is used for the desription of psmsand whih the broker an use for its searh. The ontology of psms they envisagedoes not yet exist but might well be based on the taxonomy of psms desribed inthe kads library of expertise models [Breuker and Van de Velde, 1994, page 59℄.The language in whih they intend to desribe psms and on whih their ontologywill be based is not �nished yet. This language will be alled the Uni�ed Problem-solving Method desription Language (upml), but only a draft spei�ation exists[Fensel et al., 1998a, Fensel et al., 1998b℄. Another task envisaged for this brokeris the adaption of the seleted psm to the atual task whih requires mappingentities in the given problem to the roles of the psm.Another projet that is losely related to the work on ib is the esprit-funded projet ibrow3 that started in January 1998 [Benjamins et al., 1998,Armengol et al., 1998℄. The aim here, too, is to develop a broker that an selet,on�gure, and adapt knowledge omponents from large libraries on the Internet.For seleting a problem-solving method from a library, the broker will reasonabout harateristis of the psm, in partiular about their ompetene and re-quirements. For this purpose psms will have to be desribed in some language.Although no suh language has been seleted or proposed yet, it is envisagedthat an ontology will be at the heart of the approah. Furthermore, as the peopleinvolved with the ibrow3 projet are largely the same as for the ib framework

60 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYit is quite possible that the two systems and psm desription languages will bevery similar.2.4.2 Prot�eg�eThe Prot�eg�e system [Musen, 1989, Eriksson et al., 1995℄ addresses a problemvery similar to the problem addressed in kads and thus, we are interested inProt�eg�e for very similar reasons.Prot�eg�e provides a knowledge engineering environment in whih a developeran speify tasks and selet psms from a library of re-usable methods. Developersmust identify, at least partially, the task of the system they are designing beforethey an selet and ustom tailor preexisting methods. This task-analysis leadsto a system-role desription in terms of the domain for the system, whih servesas the basis for the seletion of psms that aomplish the task and for the on-�guration of the seleted methods for the task instane. In Prot�eg�e, methodsare ations that aomplish tasks. Methods an delegate problems as subtasksto be solved by other methods. They use the term \mehanism" for primitivemethods that annot be deomposed. In addition to supporting the developmentof problem solvers for knowledge-based systems, Prot�eg�e generates domain-spei� knowledge aquisition tools that eliit the expertise required by the psmsto perform the latter's task.For psm seletion, they believe that it will be diÆult to make a omprehensivelist of fators to onsider. However, they do identify a set of reurring fators thatare appliable to most tasks. This list of ommon fators inludes the input andoutput of the task, the domain knowledge available, the solution quality required,the omputational time and spae omplexity, and the exibility of the method.One a method has been seleted it needs to be on�gured. This is largely amatter of seleting mehanisms or methods for a method's subtasks and de�ningthe mapping between method terms and domain terms.An essential part of the method desription language developed in Prot�eg�e

2.4. MODELS OF PROBLEM SOLVING 61is the method ontology whih inludes de�nitions of all the objets required by thepsm. Ideally, developers of psms would share a framework for de�ning inputs andoutputs. [Gennari et al., 1998℄ have begun to develop a \foundation ontology"for developers of psms. In this ontology, a psm must have a name and a textualdesription. Furthermore, it ontains ontology frames for input and output, alist of subtasks, and a list of onstraints aross the inputs and output but notamong inputs or outputs. The latter are loated inside the ontology frame forinputs and outputs, together with key lasses and funtions in this frame, andthe API used whih ontains information about the ways in whih the psm makesrun-time queries for additional information. Subtasks again ome with a textualdesription, inputs, outputs, onstraints between those, and information as towhether this subtask is required and whether it has a default implementation.The lowest level of detail in their method desription language is the hoie ofa formal language for expressing the axioms that represent the requirements ofthe method. The urrent suggestion is that this language will be based on kif[Genesereth, 1991, Genesereth et al., 1992℄.To summarise, not only are the problems addressed by kads and Prot�eg�every similar, but so are the approahes. Methods in Prot�eg�e orrespond tomodels of expertise in kads. Both approahes are based on a library of psms andthe desription languages they use are essentially informal. Furthermore, bothapproahes address the indexing problem and suggest that an ontology will bethe key to the solution. Thus, virtually all of our omments on kads also applyto Prot�eg�e.2.4.3 The hpkb ProgramThe DARPA-funded High Performane Knowledge Bases (hpkb) program is aresearh programme to advane the tehnology of how omputers aquire, rep-resent and manipulate knowledge [Cohen et al., 1998℄.9 The approah taken in9 f. http://www.teknowledge.om/HPKB/

62 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYhpkb is quite similar to the approah in kads again. One of its aims is tospeed up the development of knowledge-based systems signi�antly. One way toahieve suh a goal is through the enablement of knowledge reuse, inluding thereuse of psms. This might ultimately lead to the fully automated on�gurationof knowledge-based systems. For this purpose they are interested in developing alanguage for desribing psms and a number of groups are urrently working on aproposal for suh a language. For example, the latest work on Prot�eg�e is oneof the inputs to the hpkb e�ort.[Doyle, 1997℄'s proposal for a psm desription language was one of the earli-est ontributions for the hpkb program. Aording to his proposal, a apabilitydesription should inlude: the task addressed by the method; the method onto-logy; the ontextual properties; the behavioural properties; the ognitive proper-ties; relationships to other methods; relationships to implementations; and otherannotations. However, as this proposal was still an early draft we shall not gointo detail here.Another interesting input to this part of the hpkb program is the languageproposal desribed in [Aitken et al., 1998℄. They suggest that a psm an be viewedas a proess or ation. In this ase proess or ation representations from AI plan-ning might also work for psms. We have reviewed proess modelling tehniquesin setion 2.3.3 and we have looked at ation representations in setion 2.3.1. Asa result of this view, the language they propose haraterises a psm or apabilityin three parts. Firstly, there is the ompetene of the apability. This inludesthe goal or objetive, the problem type the psm addresses, a generi solution, thesolution omponents (onlusion, argument struture, and ase model), solutionproperties, and the rationale whih an be a textual desription of when and whythe psm might be used. Seondly, there is the on�guration of the apability.This inludes the method ontology, the domain theory onsisting of �eld, onto-logy/mapping, and representation, and the sub-methods. The third and last partis the psm proess whih inludes the environment, the resoure onstraints, the

2.4. MODELS OF PROBLEM SOLVING 63ator onstraints, various world onstraints, and sub-ativities.Compared to kads or Prot�eg�e, hpkb is still in its infany. The languageproposals are all draft and indiate types of knowledge to be represented ratherthan de�ning atual languages. Thus, we an only take these initial ideas intoaount when designing our own apability desription language.Most Important Issues Here� Knowledge engineering with models of problem solving is often based ona library of psms. This library ontains at least semi-formal desriptionsof psms and it is the desription languages suggested by the di�erent ap-proahes we are most interested in.� Espeially kads and kads-related work has been onerned with the in-dexing problem for their library. The indexing problem is losely related tothe apability retrieval problem and thus, we must learn from their work.

64 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEYSummaryIn this hapter we reviewed various approahes to representing and reasoningabout apabilities. In setion 2.1 we looked at software agents, the area in whihmost of the work on brokering has taken plae to date. This area has beenmostly onerned with the reasoning aspet of apability brokering. This workintrodued us to the agent ommuniation language kqml that all agents de-veloped for this thesis will use. The senarios presented in the following hapterwill illustrate our use of kqml.The remaining setions in this hapter desribed approahes whih weremostly related to the representation aspet of apability brokering. In setion 2.2we looked at the way various logis ould have been used to represent apabilityknowledge. In setion 2.3 we looked at how representations of ations, whihare very similar to apabilities, have been enoded in AI systems. Finally, insetion 2.4 we looked at models of problem solving methods to see whether thesemodels represent apability information, and if so, how it was represented.In hapter 4 we shall desribe our apability desription language. In se-tion 4.1 we shall identify several harateristis whih we want our apabilitydesription language to have. We will then evaluate the approahes we reviewedin this hapter with respet to these harateristis before proeeding with thede�nition of our own language.

Chapter 3Senarios, Agents, and Messages
At this point the general problem of apability brokering has been de-sribed and previous approahes to representing generi apabilitieshave been disussed. Our aim is to de�ne a new apability desrip-tion language that will be expressive and highly exible and an beused to reason about apabilities. The next step towards this goal willbe to de�ne several senarios that illustrate the expeted behaviour ofthe di�erent agents involved. The most interesting of these senarioswill be presented in setion 3.3. The ontribution of this hapter willbe a lear de�nition of the expeted problem-solving behaviour and aharaterisation of the knowledge that needs to be represented in themessage exhanges desribed.3.1 The Initial SenarioIn this setion we will present an example domain and a simple, ini-tial senario involving several agents that play di�erent roles. Thisdomain and senario will reour throughout the thesis.3.1.1 The Domain: Pai�aBefore we desribe our example domain it is worthwhile saying what we meanby domain and senario. By a senario we mean a reasonably short outline of65

66 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

PP

EC

H1

H2

Delta

Calypso

Barnacle

Abyss

Exodus

Pacifica

Figure 3.1: A Map of Pai�aan episode in the life of several agents. The environment in whih these agentsexist is what we all the domain. In other words, a senario is a kind of informalsript and its domain are the surrounding onditions.Almost all the senarios presented in this thesis take plae on an island alledPai�a1 whih onstitutes the domain for our senarios. Figure 3.1 gives a basimap of Pai�a. The initial agents that exist on Pai�a (represented by EC,H1, H2, and PP) will be desribed in setion 3.1.2 below.There are �ve ities on Pai�a whih are alled Abyss, Barnale, Calypso,Delta, and Exodus for simpliity. All �ve ities are onneted by one major roadwhih goes through all the ities and makes up the infrastrutural bakbone ofthe island. Aording to this road Barnale an be seen as entral and Delta andExodus as the remote extremes on the island.1 The idea to use Pai�a as a sample domain has been inspired by the PRECiS Environment[Reee et al., 1994℄ where this imaginary island state proved to be a very illustrative domain.

3.1. THE INITIAL SCENARIO 673.1.2 Agents on Pai�a3.1.2.1 The Problem-Solving AgentsWe will �rst desribe those agents on Pai�a that play the role of problem-solvingagents (psas) in the initial senario, i.e. agents that provide the general apabil-ities that may be used by other agents to solve their problems (f. setion 1.1.2)2.These agents are all real agents in the real world. In our senarios every realagent will have an equivalent software agent that represents the real agent andats towards other software agents as if it had the apabilities of the real agent.This mehanism simpli�es the integration of real agents into an eletroniallybrokered world.Now, there are three psas on the island based in di�erent ities (f. �gure 3.1).These are:1. an engineering ompany represented by the e-agent,2. a hospital represented by the h1-agent, and3. a seond hospital represented by the h2-agent.The �rst psa is a hypothetial engineering ompany that is based in Barnaleand marked as EC in the map. The engineering ompany employs two engineersthat have a truk available that they an use to drive to the other plaes on theisland. One at a given loation with their truk they an repair any type ofmahine.The software agent representing the engineering ompany, the e-agent, knowsthe basi map of the island desribed above. It also knows its own apabilitiesand that the other agents on Pai�a exist. However, it does not know whatthe apabilities of the other agents are. The e-agent uses a planner to planthe ations neessary to omplete a given task. Figure 3.2 desribes the ations2 Further psas shall be introdued for the more omplex senarios as we need them.

68 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESshema drive_to;;;; go to the plae where something is to be repaired:vars ?plae = ?{type Plae}, ?plae2 = ?{type Plae};expands {drive_to ?plae};onditionsonly_use_for_query {Has Loation ECTruk ?plae2} = true;;;; add reahability ondition hereeffets{Has Loation ECTruk ?plae2} = false,{Has Loation ECTruk ?plae} = true;end_shema;shema repair;;;; repair a mahine:vars ?mahine = ?{type Mahine}, ?plae = ?{type Plae};expands {repair ?mahine};onditionsonly_use_for_query {Has Loation ?mahine ?plae} = true,ahieve {Has Loation ECTruk ?plae} = true;effets{Is ?mahine Broken} = false;end_shema; Figure 3.2: Ations available to the e-agentavailable to the planner used by the e-agent in O-Plan-tf3 [O-Plan tf, 1997℄.Note that this desription indiretly desribes the apabilities of the e-agent.The next psa to be desribed here is the �rst hospital whih is based inCalypso and marked as H1 in the map. This hospital employs several dotorsand the usual support sta�. The hospital also has an ambulane that an be usedto drive to the other plaes on Pai�a to feth injured people. Only one theinjured people are at the hospital an their injuries be treated.The software agent representing this psa, the h1-agent, knows the basi mapof Pai�a, its own apabilities, and that the other agents exist. It is not aware oftheir apabilities though. Like the e-agent the h1-agent uses a planner to plan3 There are alternative ways of representing these ations and our representation is not meantto be the most eÆient.

3.1. THE INITIAL SCENARIO 69shema feth_patient;;;; drive an ambulane to wherever the patient is, load the;;; patient, and return to h1:vars ?patient = ?{type Person}, ?plae = ?{type Plae};expands {feth ?patient};onditionsonly_use_for_query {Has Loation ?patient ?plae} = true;;;; add reahability ondition hereeffets{Has Loation ?patient ?plae} = false,{Has Loation ?patient H1} = true;end_shema;shema treat_patient;;;; treat a patient that is at the hospital:vars ?patient = ?{type Person};expands {treat ?patient};onditionsahieve {Has Loation ?patient H1} = true;effets{Is ?patient Injured} = false;end_shema; Figure 3.3: Ations available to the h1-agentits ations and �gure 3.3 desribes the ations available to it in O-Plan-tf.The �nal psa desribed here, the seond hospital represented by the h2-agentis almost idential to the �rst hospital exept for that it is based in Abyss. It hasknowledge equivalent to the h1-agent's knowledge and the apabilities of thesetwo agents are virtually the same. Thus, we will omit the desription of theations available to its planner here.3.1.2.2 The BrokerAs we have mentioned in the desriptions of the psas above, none of these agentsatually knows the apabilities of the other psas. The broker is the agent thathas the knowledge about the apabilities of the di�erent psas and, on request, itan �nd a psa that an solve a given problem. This is all the broker needs to do

70 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESin our senarios.The broker an be seen as a psa, too, but we prefer to use the term psaonly for agents that solve problems at the domain level like the agents desribedabove. The broker solves a problem at the meta-level, the problem of apabilitybrokering.3.1.2.3 The Problem-Holding AgentThe �nal agent for the initial senario is the power plant on Pai�a. The powerplant is loated in Delta and marked as PP on the map. The power plantsupplies the island with eletriity. It has a number of generators that generatethe eletriity and employs a few people that look after the generators duringnormal operation.The power plant is represented by the pp-agent. It might be a psa in othersenarios but for the initial senario disussed here it is the problem-holdingagent (pha), i.e. the agent that has a problem it wants solved by utilising theapabilities of the psas (f. setion 1.1.2). Thus, there is no need to desribe theapabilities of the pp-agent here in detail.3.1.3 Sript for the Initial SenarioNow, suppose that there has been an aident at the power plant in whih a gasketon one of the generators broke and let steam esape. Unfortunately an employeeof the plant had been near the generator while this happened and su�ered someburns. So there are two problems to be dealt with here:� a person has su�ered burns and needs treatment; and� a generator is now malfuntioning and needs to be repaired.The sript for the initial senario is as follows:

3.1. THE INITIAL SCENARIO 71Example 3.1 (Initial Senario) Like the psas, the pp-agent does not knowthe apabilities of the other agents on the island. However, it does know thatother agents exist and spei�ally, that the broker an �nd psas that an dealwith a given problem. Thus, the �rst thing that has to happen is that the pp-agent ontats the broker to ask for agents that an deal with its problems. Notethat this assumes that the broker somehow already knows the apabilities of thedi�erent psas.Now the broker has to look through its data base of agents and apabilities to�nd psas with suÆient apabilities to solve the problems desribed by the pha.If the broker manages to �nd suh psas it has to inform the pha about theseagents. In the initial senario the broker will �nd that the e-agent an repair thegenerator and that the h1-agent an deal with the injured person.4With the knowledge of whih psas an solve the pha's problems the pp-agentan now ontat the e-agent and the h1-agent and ask them to atually solvethe problems.Finally, the e-agent and the h1-agent an go ahead and solve the given prob-lems. For this initial senario we shall assume that there were no further om-pliations and all the psas have to do after ompleting their tasks is to reportsuess bak to the pha.As mentioned above, for the senarios we will desribe in this thesis the powerplant shall be our pha. The problem that this agent has will be largely the samefor all the senarios that are going to be presented. The main di�erenes betweenthe di�erent senarios will be in the apability desriptions for the di�erent agents.
4 Alternatively, the broker ould reommend the h2-agent to deal with the injured person, butonly one agent is required to address this part of the problem.

72 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES3.2 Inter-Agent MessagesIn this setion we will show what the messages look like that the dif-ferent agents will need to exhange. These messages are expressed ina high level ommuniation language. We have hosen kqml for thispurpose. This setion will also show what knowledge the messageswill need to ontain, i.e. what needs to be represented in apabilitydesriptions.As pointed out in setion 1.1.1, soial ability is one of the key features of anintelligent agent. Hene, we will now have a loser look at the di�erent mes-sages the agents desribed in setion 3.1.2 will need to exhange to ahieve thebehaviour desribed in the initial senario.We feel that the ommuniation between software agents has to be in someformal language and we have hosen kqml as the high-level agent ommuniationlanguage (f. 2.1.2.3). This is mainly beause: kqml is one of the best under-stood languages for this purpose; it is very general by allowing arbitrary ontentlanguages; and there is software available that embeds kqml into a number ofenvironments.3.2.1 Capability Advertisement MessagesThe starting point for the message exhange is a situation in whih all agentsare on-line, i.e. ready to ommuniate with eah other, but they do not knowabout most of the other agents. Spei�ally, they do know about the broker, butthey do not know about the problem-solving apabilities of the psas. Hene, asa �rst step the psas have to tell the broker about their apabilities. Here arethe messages we would expet the psas to send to the broker advertising theirapabilities:

3.2. INTER-AGENT MESSAGES 73(advertise:sender e:reeiver ANS:ontology apabilities:language KQML:ontent (ahieve:reeiver e:ontology OPlan:language CDL:ontent (<mahine fully funtional>)))(advertise:sender h1:reeiver ANS:ontology apabilities:language KQML:ontent (ahieve:reeiver h1:ontology OPlan:language CDL:ontent (<injured people treated>)))(advertise:sender h2:reeiver ANS:ontology apabilities:language KQML:ontent (ahieve:reeiver h2:ontology OPlan:language CDL:ontent (<injured people treated>)))Message ontents desribing apabilities are informal here and are only meantto illustrate what kind of knowledge needs to be represented in our apabilitydesription language. The omplete messages will be desribed in setion 4.2.5together with our apability desription language dl.Let us �rst look at the outer part of these kqml messages. The performativeof all these messages must be advertise. With a message with this performativethe sender tells the reeiver that it is apable of proessing messages of a ertaintype. The sender in eah ase must be the respetive agent that is advertisingthe apability with this message. The reeiver must be the Agent Name Server

74 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES(ans). This is beause we envisage the broker as an extension of an ans thatsupplies agent addresses not only by name but also by apability.For the agents to share knowledge about apabilities they must have at leastone shared ontology whih has to be named in the kqml message.5 The ontologyin our examples in alled apabilities. The ontent language is again kqml,i.e. there is a kqml message inside a kqml message. This inner kqml messageis given in the ontent �eld.The spei�ation for kqml presribes that the ontent �eld in an advert-isement message should ontain the kqml message the advertiser ommits toproessing with this advertisement, i.e. the ontent of the advertisement and anyfuture message to be proessed must be idential [Labrou and Finin, 1997, page19℄. This approah is extremely limited and most existing brokers have extendedit to allow the ontent of the advertisement to be a generalisation of the atualmessages the psa ommits to proessing.The performative of the inner message is ahieve in all three ases.6 Withmessages of this type the sender asks the reeiver to make something true in itsphysial environment. Thus, the apability of making a given ondition true iswhat is being advertised here. There is no sender spei�ed in the inner messageas this will be the agent requesting the ahievement at some later stage. Thereeiver must be the advertising agent, i.e. the sender of the outer message. Theontology spei�ed in the inner messages is OPlan for all of our psas. This is onlybeause all of our psas use the O-Plan planner to plan their ations. In generalany ontology the psa knows about an be spei�ed here.We have hosen to allow for a new apability desription language that appearsin the ontent of the inner message of the apability advertisement. This languageis alled dl and will be desribed in hapter 4 in detail. At this point we are5 The Java Agent Template whih is the basis for the implementation of our agents makes arather unusual use of the ontology �eld in a kqml message. The details will be explained insetion 5.3.6 An extension that allows a seond performative \perform" in the inner message will bedesribed in setion 4.3.

3.2. INTER-AGENT MESSAGES 75only interested in illustrating how this language �ts into kqml and how it anbe used to make the initial senario work. Thus, the message ontents desribingapabilities are only given informally here.At the heart of this ontent must be a desription of the ondition the psaan make true. For example, the ontent of the inner message of the apabilityadvertisement of the e-agent must say that it an ahieve the ondition thata mahine is fully funtional. It will also often be neessary to qualify suh anahievable ondition with an appliability ondition and we will allow this in dl.For example, the engineering ompany an only ahieve fully funtional states formahines. Ahievable onditions amended with appliability onditions will bethe ore of apability desriptions in dl.Another important issue arises from a omment made in setion 3.1.2, namelythat operators available to a psa's planner already provide an indiret apabilitydesription for this agent (f. setion 2.3.1). However, this might not desribethe apabilities the agent wants to advertise. For example, a hospital with anambulane surely an drive a person from one plae to another besides bakto the hospital but will normally not want to provide this apability to otheragents (i.e. a hospital is apable of providing a taxi servie but will not atuallyo�er to do so). Thus, apability desriptions will not neessarily desribe atualapabilities, only seleted advertised apabilities.3.2.2 Messages for the Initial SenarioAfter reeiving the above messages the broker will be aware of these three agents'apabilities. This is the starting point for the initial senario. The next step is thepower plant informing the broker of the problem at hand and asking for agentsthat an deal with this problem. kqml has a number of performatives that allowfor this kind of message. We shall only look at one of those here: reommend-one.With this type of message an agent asks the broker to �nd exatly one agent thatan deal with the problem desribed in the ontent of this message. For our

76 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESexample 3.1 there will be two messages desribing the two parts of the problem:(reommend-one:sender pp:reeiver ANS:ontology apabilities:language KQML:ontent (ahieve:sender pp:language CDL:ontent (<generator fully funtional>))(reommend-one:sender pp:reeiver ANS:ontology apabilities:language KQML:ontent (ahieve:sender pp:language CDL:ontent (<injured person treated>))The performative of the outer message is reommend-one and the sender isthe pp-agent, the pha in the initial senario. The reeiver is the ans whihis the brokering agent as explained above. As in the apability advertisementmessages the ontology spei�ed in the outer message is apabilities and theontent language is kqml.The inner message in the ontent �eld is the message the pp-agent wantsa psa to proess. The performative is ahieve beause the pp-agent wantssome ondition to be made true. The sender given in the inner message mustbe the same agent that is sender in the outer message, i.e. the agent seekingthe apability. Finally, the ontent language is dl and the ontent must be adesription of the ondition to be ahieved in dl.The ontent of the inner message is basially a desription of the problem.Where the dl expression in the apability advertisement ontained an ahiev-able ondition, the dl expression in the apability seeking message ontains theondition to be ahieved. For example, the power plant wants the ondition in

3.2. INTER-AGENT MESSAGES 77whih its generator is fully funtional to be made true. There is also the equival-ent of quali�ation here. Namely, onditions whih are required by the apabilityseeker to be true an be used as appliability onditions in the apability advert-isement (e.g., requiring that the objet is a generator that is to be made fullyfuntional). Conditions to be ahieved, amended with onditions provided willbe the ore of problem desriptions in dl.The next step is for the broker to �nd a apability of a psa that mathesthe given task desription. How exatly this �nding and mathing work will bedesribed in hapter 5. For now, let us assume that the broker found the e-agentand the h1-agent as psas apable of dealing with the desribed problems. Thebroker should now forward the apability desriptions of these agents to the phaas follows:(forward:sender ANS:reeiver pp:ontology apabilities:language KQML:ontent (ahieve:reeiver e:ontology OPlan:language CDL:ontent (<mahine fully funtional>)))(forward:sender ANS:reeiver pp:ontology apabilities:language KQML:ontent (ahieve:reeiver h1:ontology OPlan:language CDL:ontent (<injured people treated>)Forwarding of messages in kqml is done with the forward performative. Thesending and reeiving agents should be obvious and ontology and language are asbefore. The ontent �eld should be the ontent of the message that advertised the

78 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESapability in the �rst plae. Note that it is neessary to inlude in this messagethe name of the psa so that the pha will be able to �nd it subsequently.Now the pp-agent should be able to use the forwarded apability advertise-ments to formulate messages to the respetive psas asking them to perform theirapabilities on its problems. The aording messages should look as follows:(ahieve:sender pp:reeiver e:ontology OPlan:language CDL:ontent (<generator fully funtional>))(ahieve:sender pp:reeiver h1:ontology OPlan:language CDL:ontent (<injured person treated>))There is very little protool for what should happen next in kqml and wedo not intend to fully speify it here. Muh of the following message exhangeobviously depends on the exat nature of the problem and how the psas get onwith solving it.

3.3. MORE COMPLEX SCENARIOS 793.3 More Complex SenariosIn this setion we will introdue some more interesting agents andsenarios that will be used in the thesis to highlight the usefulnessof the two properties of the apability desription language: express-iveness and exibility. This setion onstitutes a major part for themotivation for the work desribed in this thesis.3.3.1 Expressive Capability DesriptionsThe two hospitals on Pai�a are based in Calypso and Abyss and their apabilitydesriptions for the initial senario are virtually idential. One way of addingomplexity to the initial senario to make it more interesting is to divide theisland suh that one hospital deals with problems in one part and the otherhospital deals with problems in the other part of Pai�a. The map of Pai�a(�gure 3.1) suggests that the �rst hospital should deal with ases in Calypsoand Delta and the seond hospital should deal with ases in Abyss and Exodus.Barnale lies between the two hospitals and may be served by both.Suh a hange would not show in the ahievable onditions in the apabilitydesriptions of the two hospitals. It would, however, alter their quali�ations, theonditions for appliability of their advertised apabilities. For example, the dlexpression in the apability advertisement for the �rst hospital should representthat it an ahieve states in whih injured people in Barnale, Calypso, or Deltahave been treated. In terms of expressiveness, this apability desription requiresdl to be able to handle disjuntions in onditions whih were not neessary inthe initial senario. Disjuntions require a greater expressiveness of dl.To make the senario even more omplex, suppose that Pai�a is somewhereo� the oast of Ieland where the weather is often inlement. The �rst hospitalhas an ambulane, but if there is snow or ie on the roads then snow hainsneed to be �tted to the ambulane before it an feth injured people. Thus, one

80 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESappliability ondition for the �rst hospital's apability is to have snow hains.This ondition is itself onditional, and its ondition is disjuntive.7 If we wantthe apability desription for the �rst hospital to reet this additional onditionwe need even more expressiveness in dl.For the following senario, let the problems at the power plant be as before:a broken generator and an injured person. Also, let the broker know that theweather is bad, i.e. there may be ie or snow on the roads, and that the �rsthospital's ambulane has snow hains. Then the sript for the expressivenesssenario is as follows:Example 3.2 (Expressiveness Senario) The �rst thing that has to happenis that the pp-agent ontats the broker to ask for agents that an deal with itsproblems.Now the broker has to look through its data base of agents and apabilities to�nd psas with suÆient apabilities to solve the problems desribed by the pp-agent. As before, the engineering ompany an deal with the broken generator.For the injured person the two hospitals are potential psas. However, theseond hospital does not serve Delta where the power plant is based. The �rsthospital does, and sine its ambulane has snow hains its apability is appliable.Thus, the broker �nds the �rst hospital as apable of dealing with the injuredperson. Aording messages will be sent to the pp-agent.With the knowledge of whih psas an solve the pha's problems the pp-agentan now ontat the e-agent and the h1-agent and ask them to atually solvethe problems.Finally, the e-agent and the h1-agent an go ahead and solve the given prob-lems.Obviously, a number of variations an be generated from this senario byvarying the road onditions and availability of snow hains to the �rst hospital's7 The formal representation of this apability in dl will be shown in setion 4.5.1.

3.3. MORE COMPLEX SCENARIOS 81ambulane, or by dropping the splitting of the island between the two hospitals.The senario above is one of the most interesting ases, sine the onditionalappliability ondition has to be evaluated, but whih part of the disjuntiveondition holds, ie or snow on the road, is unknown. The expressiveness of dlwill be disussed in hapter 7. The way that some of the approahes desribedin hapter 2 would have represented the �rst hospital's apability and performedin this senario will be disussed in hapter 9 in detail.3.3.2 Flexible Capability DesriptionsFor the following senario let us ignore the engineering part of the problem of thepower plant and just look at the injured person. The psas that an deal withthis problem in priniple are the two hospitals. For this senario we shall hangetheir apabilities slightly and introdue a new psa: an ambulane servie. Theseagents will advertise the following apabilities:� the �rst hospital/h1-agent: The main apability of this hospital is that itan treat injured people. However, it does not have an ambulane in thissenario and thus, an appliability ondition is now that the injured peopleto be treated must be at the hospital. The hospital is in Calypso.� the seond hospital/h2-agent: The main apability of this hospital is alsothat it an treat injured people. It has an ambulane to transport injuredpeople from Abyss, Barnale, or Exodus to the hospital in emergenies.Delta and Calypso are onsidered too far away and the ambulane annotbe spared for suh a long time.� the ambulane servie/as-agent: The main apability of this agent is that itan transport injured people; it annot treat them. The ambulane serviehas an ambulane that an be used only to transport people between anytwo plaes. The ambulane is based in Delta.

82 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESWhat is interesting in this senario is that the di�erent psas require di�erentexpressiveness in their apability desriptions. The seond hospital has a dis-juntive appliability ondition: injured people must be in Abyss, Barnale, orExodus. The �rst hospital and the ambulane servie do not need disjuntionsand thus, require a less expressive apability representation.Let us look at the broker next. The broker aepts and stores apabilitydesriptions from the psas. On reeipt of a request from a pha it will try to�nd agents the apabilities of whih it knows about to solve the given problem.Suppose the broker has two options here:1. Find a single agent that an solve the problem. The broker heks for allpsas whether they alone have the required apability. Inferenes over theapability desriptions are limited and thus the broker an do this for anyagent.2. Find a sequene of agents that an solve the problem. Suppose that thebroker has a simple planner built in that it an use to generate partial-order plans involving the apabilities desribed to it. However, this planneran only handle simple apability desriptions in dl that do not involvedisjuntive onditions.The fat that the broker has two di�erent ways of �nding a solution to thegiven problem is ruial for this senario. With these two options the brokerhas the exibility to exploit the inferenes it an make about less expressiverepresentations.The �nal hange onerns the way the pha wants the problem handled. Forthis senario it will ask the broker to manage the solution of its problem ratherthan reommending a psa the pha has to ontat itself. The sript for theexibility senario is as follows:

3.3. MORE COMPLEX SCENARIOS 83Example 3.3 (Flexibility Senario) The �rst thing whih happens is that thepp-agent ontats the broker to ask it to deal with its problem, the injured person.Now the broker has to look through its data base of agents and apabilities to�nd psas with suÆient apabilities to solve the problems desribed by the pp-agent. It will �rst look for single agents that an deal with the problem. Thebroker works out that the h1-agent annot help beause it requires the injuredperson to be at the hospital. Similarly, the h2-agent does not have the neessaryapabilities beause its appliability onditions state that the injured person mustbe at Abyss, Barnale, or Exodus. Finally, the as-agent annot treat people atall. Hene the broker has failed with its �rst option to �nd a single agent that isapable of solving this partiular problem.The broker will now try its seond option, �nding a plan involving the ap-abilities of several agents. In the example this means the broker will exlude theh2-agent from its planning attempt to �nd agents to solve the problem beauseof the disjuntion in its appliability ondition, i.e. beause this apability orres-ponds to an operator with a disjuntive preondition whih annot be handled bythe broker's planner. Only the h1-agent and the as-agent remain and the brokershould be able to work out that their ombined apabilities suÆe to solve theproblem.The broker an now ontat the di�erent psas involved in this plan and mon-itor the exeution. The as-agent and the h1-agent an go ahead and solve thegiven problem. Finally the broker reports suess to the pp-agent.This senario illustrates the exibility of dl beause the broker knows whatkinds of inferenes it will want to make and an look at the dl desriptionsto see whether the inferenes are supported. Thus apability desriptions mayuse di�erent levels of expressiveness whih will restrit the inferenes the brokeran make. This trade-o� is not surprising. The exibility of dl stems fromthe fat that it allows arbitrary expressiveness in its desriptions and works out

84 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGESwhat inferenes it needs to make and whether this is possible only when this isrequired.This senario ould be extended to one where the broker has several moreplanning algorithms (or other methods) available whih ould be applied de-pending on the inferenes supported by the expressiveness used within the dldesriptions of di�erent agents, e.g. a planner whih ould ope with disjuntivepreonditions.It is also worth noting that in the above senario the availability of the h1-agent is ruial for the suessful solution of the problem. Due to the disjuntionin the apability desription of the h2-agent the broker annot generate plansinvolving this agent, i.e. it annot ombine the as-agent and the h2-agent to solvethe given problem. This ould be easily �xed though if the h2-agent advertisedthe additional apability to treat patients that are at this hospital.Obviously, a number of further variations an be generated from this senarioby hanging the apability desriptions of the three psas. The senario above isone of the most interesting ases though as it involves di�erent levels of express-iveness for the di�erent agents' apability desriptions, resulting in a problemthat illustrates the need for a exible apability desription language. The exib-ility of dl will be disussed in hapter 8. The way that some of the approahesdesribed in hapter 2 would have performed in this senario will be disussed inhapter 9 in detail.

Chapter 4A Capability DesriptionLanguage: dl
At this point we have looked at the knowledge we need to represent inthe messages exhanged during apability brokering and several areasof AI that need to represent similar knowledge. Our aim is to de�ne anew apability desription language that will be expressive and highlyexible and an be used to reason about apabilities. In the next steptowards this goal we will de�ne our new apability desription lan-guage, dl, that will be used for apability brokering. The ontributionof this hapter will be the de�nition of the di�erent aspets of dl,inluding its syntax and various examples to illustrate the language.4.1 Problems for Capability RepresentationsIn this setion we will look at problems with approahes to representingapabilities, desribed in hapter 2, when they are used for apabilitybrokering. We will also highlight ruial ideas that we will adopt forour apability desription language. This setion sets the frame forthe apability language that follows.In the previous hapter we outlined a number of senarios that involve therepresentation of and reasoning about the apabilities of various problem-solving85

86 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLagents (psas). Furthermore, we have desribed how the broker we envisage issupposed to respond to various messages from other agents (f. setion 3.2). Whatwe have omitted in this desription is a de�nition of the format of the apabilityrepresentations whih are the ontent of the apability advertisement messages.The new Capability Desription Language, dl, presented in this thesis providesthis.4.1.1 Desirable Charateristis for dlThe �rst step towards a new apability desription language must be a hara-terisation of the properties or attributes we want this language to have.The two most important properties we want our apability desription lan-guage to have are expressiveness and exibility. These are exatly the proper-ties the expressiveness senario (example 3.2) and the exibility senario (ex-ample 3.3) are meant to illustrate and thus, dl must have these properties toallow for the realisation of these senarios.Our aim is to use dl for brokering. When designing a knowledge represent-ation language it is important to take into aount what kind of reasoning onewants to perform over this language. Thus, another harateristi we would likedl to have is that it is similar to languages whih have been used for apabil-ity brokering suessfully, as this would indiate that dl, too, an be used forbrokering. Likewise, sine apabilities an be seen as ations one an perform(f. setion 4.2.1), we would also expet dl to be similar to representations thathave been used to represent and reason about ations.As we expet the broker to perform its servies autonomously, it is importantthat the apability representations are in some formal language; dl must havethis attribute. Finally, every representation must have a semantis to qualify asa representation in the �rst plae [Hayes, 1974℄, so we shall pay attention to thisproperty as well.

4.1. PROBLEMS FOR CAPABILITY REPRESENTATIONS 872.1 brokers 2.2 logis 2.3 ation reps. 2.4 models of psmsexpressive medium high medium highexible (yes) no some nobrokered yes no (yes) (yes)ations no no yes (yes)formal yes yes yes (no)semantis (yes) yes (yes) noTable 4.1: Properties of di�erent approahes4.1.2 Preliminary EvaluationGiven this haraterisation of desirable properties for dl, we an now evaluatethe approahes desribed in hapter 2 to identify whih of them have the aboveproperties. The results of this preliminary evaluation are summarised in table 4.1.For simpliity, we have only listed the four general areas desribed in setions 2.1to 2.4. Eah of these areas omprises a number of approahes and the tableobviously over-generalises and thus, should be seen as a table of general trendsrather than an exat evaluation. A more detailed omparison of dl with otherapproahes will follow in hapter 9.The highest expressiveness an be found in logis and models of problem solv-ing.1 Classial �rst-order prediate logi [Chang and Lee, 1973, Loveland, 1978,Gallier, 1986℄ has been used to represent many di�erent kinds of knowledge andan thus be onsidered an expressive representation. However, many other logiso�er still more expressiveness to allow the representation of highly omplex ir-umstanes (f. setion 2.2.2). Models of problem solving often allow natural lan-guage as at least an aspet of their representation whih aounts for their highexpressiveness (f. setion 2.4.1.2). Most ation representations (setion 2.3.1)have only restrited expressiveness as they were designed to be used in forma-tion of plans whih in itself is a very omplex proess. There are, however, someation representations that o�er more expressiveness, e.g. adl [Pednault, 1989℄.The representations used by the brokers we have desribed in setion 2.1.3 are1 A more elaborate disussion of the expressiveness of dl will follow in hapter 7.

88 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLmore diÆult to lassify as they are vague on what exatly the representation ofapabilities they use will look like. Closer inspetion reveals that, although theymostly allow kif [Genesereth, 1991, Genesereth et al., 1992℄ as at least one pos-sible ontent language, the restritions imposed are rather severe (f. setion 9.1).The highest exibility of the representations we have looked at an be foundin brokers and in some ation representations2. Most brokers are based on kqml(f. setion 2.1.2.3) whih spei�es that apabilities are to be desribed as kqmlmessages that an be proessed. Thus, the apability desription language iskqml, a language designed to have an opaque ontent whih is expressed in alanguage spei�ed at the wrapper level. In pratise though, most brokers onlyallow a very limited range of languages that an be used as ontent in apab-ility desriptions in kqml (f. setion 2.1.3). Most ation representations (se-tion 2.3.1) have very little exibility, but there are a few noteworthy exeptions,e.g. spar [spar, 1997, Tate, 1998℄. Like kqml, these languages allow the plug-ging in of di�erent ontent languages whih gives them their exibility. Logis(setion 2.2), although they provide a wide range of formalisms do not individu-ally have this exibility. Finally, models of problem solving (setion 2.4) usuallyallow for some parts of their representations to be natural language desriptionsand thus, annot be onsidered exible.The next aspet we have looked at is whether the representation has beenused for brokering. Obviously, the kqml-based representations desribed in se-tion 2.1.3 satisfy this riterion, but they are not the only ones. Ation represent-ations (setion 2.3.1), in fat, an also be seen as having been used for brokering,as a planner that uses these representations at some point also needs to retrievean ation that an ahieve a given e�et. This is essentially the task performedduring apability retrieval. A similar ase ould be made for the situation alulus(setion 2.2.1) whih is based on �rst-order logi, but it is really the ontology ofthe situation alulus that failitates brokering, not the underlying representation.2 A more elaborate disussion of the exibility of dl will follow in hapter 8.

4.1. PROBLEMS FOR CAPABILITY REPRESENTATIONS 89Thus, we are inlined to say that logis have not been used for brokering, allowingfor exeptions. Models of problem solving (setion 2.4) are again a borderline aseas there are now several projets underway that are aimed at building brokersfor problem-solving methods (psms) (f. setion 2.4.1.5). However, neither theirrepresentations nor their brokering mehanisms are de�ned yet.The obvious representations that have been used for representing and reason-ing about ations are, of ourse, the ation representations (setion 2.3.1). Modelsof problem solving (setion 2.4) have also been used to represent and reason aboutations, but the ations are usually restrited to the reasoning ations performedby some expert system. Still, reasoning about ations is what these represent-ations were designed for. Brokering representations (setion 2.1.3) and logis(setion 2.2) both have also been used to represent and reason about ations, butthis is not what they were spei�ally designed for.As for the formality of the representation, the only area that does not qualifyhere are models of problem solving (setion 2.4) beause they usually allow fornatural language as one aspet of their representation. As usual, there are exep-tions, e.g. ml2 (f. setion 2.4.1.2). However, ml2 is so heavily logi-based thatone ould well ount it into this area anyway. Closely related is the question ofsemantis. The area that has been most onerned with formal semantis is logis(setion 2.2) in whih almost every formalism has a well-de�ned formal semantis,otherwise it does not qualify as a logi. The semantis of ation representations(setion 2.3.1) and kqml (setion 2.1.2.3) have also been de�ned to some degree,but there remain questions [Kuokka and Harada, 1995b℄ and desriptions are of-ten informal. Finally, models of problem solving (setion 2.4) whih are based onnatural language fail here.For the apability desription language desribed in this hapter we want toretain the ideas behind these approahes that made them perform well in ertainrespets. In summary, we want our representation:� to preserve the struture found in ation representations;

90 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL� to bene�t from the expressiveness of highly powerful logis and the well-de�ned formal semantis that omes with them;� to retain the exibility of kqml by allowing for opaque ontent languagesand to use the ommuniation approah to brokering;� to be formal to allow for autonomous brokering.

4.2. ACHIEVABLE OBJECTIVES 914.2 Ahievable ObjetivesIn this setion we will de�ne the ore of our apability desriptionlanguage. This will inlude basi onepts, syntax, and examples toillustrate the language.Sine we want to base our apability desription language dl, whih is tobe presented in this hapter, on the struture found in ation representations asused for AI planning, it is probably worth �rst asking what the di�erene betweenan ation and a apability is.4.2.1 Capabilities and AtionsMost ation representations in AI are representations that desribe how the stateof the world hanges when an ation is performed and what needs to be truebefore that ation an be exeuted. Capability desriptions need to onvey verymuh the same knowledge, i.e. what hanges a apability an bring about andwhat needs to be true for that apability to be appliable. There are two majordi�erenes though:� Level of desription: An ation is less abstrat than a apability in thesense that we would expet all its parameters to be instantiated for its ex-eution. However, AI planning systems use operator shemata rather thaninstantiated ations as input, i.e. they e�etively use apability desriptions.� Modality: A apability is an ation that an be performed (in theory),i.e. it has a di�erent modality. But this is impliitly what an AI plannerusually assumes when it generates a plan; that the operator shemata itinstantiates and inserts into the plan represent apabilities of some agent(f. [MCarthy and Hayes, 1969, pages 470{477℄).Despite these di�erenes, the knowledge ontained in ation representationsand apability desriptions is very similar beause both representations basially

92 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLrepresent the same types of entities. Thus, the language for representing suhentities should be very similar, too, and we have already mentioned that dl willinherit the struture of ation representations.However, there are some further di�erenes between ations and apabilit-ies. For example, apability desriptions, as we envisage them, do not requirehierarhial deompositions whih are used in many modern planners (f. se-tion 2.3.1.5) unless the desription is meant to also express how to perform aapability. Thus, we will base dl mostly on non-hierarhial ation representa-tions (f. setion 2.3.1.2). Another di�erene is that the representations used byAI planners are usually not only onerned with ations, but also with represent-ing plans of ations. dl will not be onerned with the representation of plans.Other di�erenes ome with the requirements onneted to the intended usage ofthe representation. Propositional strips planning is already a pspae-ompleteproblem [Bylander, 1994℄ and thus, a more omplex ation representation is notpratial for planning. Other tasks like apability retrieval or assessment have adi�erent omplexity and thus, allow for di�erent omplexity in the representation.The exibility of dl is meant to address this issue.4.2.2 The Knowledge in Capability RepresentationsWe are now in a position to desribe the knowledge ontained in a dl apabilityrepresentation. The ore dl representation for ahievable objetives is based ona lassial, non-hierarhial operator desription (f. setion 2.3.1.2) and onsistsof the following parts:� Inputs: This part of the apability representation spei�es the objets anagent possessing this apability reeives as inputs to this apability. Howthese inputs will be used is unspei�ed here. This part of the representa-tion will be a syntatially de�ned expression ontaining symboli variableswhih the atual inputs will have to math.

4.2. ACHIEVABLE OBJECTIVES 93� Outputs: This part of the representation spei�es the objets that will bethe outputs this apability generates. Again, this will be a syntatiallyde�ned expression ontaining symboli variables the atual outputs willhave to math.� Input Constraints: This part of the apability representation de�nes theonstraints that are expeted to hold in the situation before this apabilityan be performed, i.e. the onstraints for the apability to be appliable.Free variables in these onstraints an only be from the syntati expressionwhih desribes the inputs.� Output Constraints: This part of the representation de�nes the on-straints that are expeted to hold in the situation after this apability hasbeen performed. Free variables in these onstraints an be from the syn-tati expressions whih desribe the inputs or outputs.� Input-Output Constraints: This part of the representation de�nes theonstraints aross input and output situations that must hold. Free vari-ables in these onstraints an be from the expressions desribing the inputsor outputs.The �rst di�erene between this representation and lassial non-hierarhialrepresentations for operators like the strips representation is that there is noidenti�er for the apability. We believe that the introdution of suh an ationname at this point would not be epistemologially adequate as desribed by theknowledge representation hypothesis [Smith, 1982℄: the ation name might helpa human reader of a apability desription to understand the apability but is notneessary for reasoning about the apability. We will, however, introdue ationidenti�ers into dl at a later stage when we have a reason to do so (f. setion 4.3).The next di�erene between apability desriptions in dl and strips-likeoperator desriptions is that dl distinguishes two types of parameters: inputsand outputs. Parameters are essentially the objets involved in the performane

94 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLof a apability and must all be instantiated for the exeution of a spei� ationinstane. dl distinguishes input objets, i.e. objets that exist in the situationbefore the apability is applied, and output objets, i.e. objets that exist onlyin the situation that results from the appliation of this apability in the inputsituation. Output objets do not exist in the input situation, but input objetsmay or may not exist in the output situation. The reason for introduing thisdistintion in dl is that it simpli�es the mathing of apabilities and problemsslightly (f. setion 5.1.2.2).For example, onsider the apability of sorting the elements in a list. The listitself is an input objet to this apability. If the sorting is performed by modifyingthe given list then there is no output objet to this apability. Otherwise therewill be an output objet, namely the new, ordered list that exists in the outputsituation only.Input onstraints in dl diretly orrespond to the preondition formula inlassial non-hierarhial ation representations. In aordane with modernplanning formalisms (f. setion 2.3.1.5) we prefer to view the preondition for-mula as a onstraint on the situation in whih the apability an be applied.Notie that input onstraints may only mention objets from the inputs as theseare the only objets that exist in this situation. Output onstraints in dl or-respond to a ombined add and delete list, i.e. to the e�ets of an ation, andrepresent onstraints on the situation that results from the appliation of thisapability. Postonditions that would our in the delete list in a strips-likerepresentation will be negated in the output onstraints in dl. Finally, outputonstraints may mention objets that exist in the output situation, i.e. objetsfrom inputs or outputs.For example, in the list sorting apability mentioned above, the fat that allelements of the given list to be sorted must be elements of the domain of theordering relation used is a onstraint on the input situation, and the fat thatthe output list is ordered is a onstraint on the output situation.

4.2. ACHIEVABLE OBJECTIVES 95The �nal set of onstraints mentioned above are the input-output on-straints whih orrespond roughly to seondary preonditions and e�ets inadl [Pednault, 1989℄ or upop [Penberthy and Weld, 1992, Barrett et al., 1995℄.These onstraints do not refer to only one situation like the input and output on-straints but are onstraints aross both of these situations. This type of onstraintallows one to refer to objets that have di�erent properties in di�erent situationsand to expresses a ondition on the properties in these di�erent situations.Returning to the list sorting example where sorting is performed by modifyingthe original list, one onstraint that one must express is that input and outputlists ontain the same elements. If we sorted by generating a new list we mightbe able to express this onstraint as separate input and output onstraints, butif we modi�ed the list this onstraint annot be expressed by referring to onesituation only. In the input situation we an only refer to the unsorted list andin the output situation we an only refer to the now ordered list.34.2.3 Deoupling the RepresentationAt this point we know what the knowledge is we need to represent in dl. Thenext obvious question is what language to use to express the di�erent onstraintsin. As mentioned above, our aim is to inherit the expressiveness and well-de�nedsemantis of logis (setion 2.2) in dl, but we also want to retain the exibilityof kqml (f. setion 2.1.2.3).4.2.3.1 Integral Ation RepresentationsAt heart, many knowledge representation languages are state representation lan-guages, i.e. they impliitly assume the world to be in exatly one state or situationat any given time. That is, unless otherwise stated, a set of sentenes in suh a3 Input-output onstraints are not required in our example senarios and thus, we shall onlyreturn to them in setion 5.2.1 where a slightly modi�ed version of the initial senario willbe introdued.

96 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLlanguage is assumed to refer to the same impliit situation. Knowledge repres-entation languages usually also assume that there exist a number of objets inthis impliit situation and that ertain relations hold between these objets inthis situation. The logis desribed in setion 2.2 mostly fall into this ategory ofknowledge representation languages with the notable exeption of dynami logi[Harel et al., 1982, Harel, 1984℄. Thus, these logis would qualify as languageswhih an be used to express onstraints on single situations.Using state representation languages to reason about ations has proven dif-�ult. The most ommonly used knowledge representation language that makesthe above assumptions is �rst-order logi [Chang and Lee, 1973, Loveland, 1978,Gallier, 1986℄. It is possible to represent and reason about ations in �rst-orderlogi as demonstrated by the situation alulus (f. setion 2.2.1), but this leadsto a number of problems; most prominently the frame problem. Hene the devel-opment of spei� ation representation languages suh as the strips representa-tion, whih avoids the frame problem by making the strips assumption, i.e. noth-ing hanges that is not mentioned in the operator desription [Tate et al., 1990,page 37℄. By adopting the struture of suh ation representations we have alsoadopted this onvenient approah to the frame problem.In most onventional ation representation languages suh as strips, the staterepresentation language is an integral part of the overall representation language.We shall all suh languages integral ation representations. For example, strips[Nilsson, 1980, hapter 7℄ only allowed onjuntions of positive literals in the inputand output onstraints of its representation. However, it is relatively trivialto extend the state language to allow for more omplex formalisms, e.g. hornlauses, full �rst-order logi, modal logis, et. However, with an integral ationrepresentation we have to ommit to one of these languages and every new staterepresentation language de�nes a new ation representation. It is this inexibilitythat we seek to avoid in dl as it is not lear whih would be the right statelanguage for desribing arbitrary agent apabilities.

4.2. ACHIEVABLE OBJECTIVES 974.2.3.2 Deoupled Ation RepresentationsTo allow the arbitrary ombination of ation and state representation we willde�ne the ation representation language independent from the state represent-ation language. We shall all this a deoupled ation representation, i.e. a fullation representation onsists of a deoupled ation representation ombined witha state representation language. Syntatially, deoupling will be ahieved usingan approah similar to the way kqml allows ontent expressions to be in some in-dependent ontent language (f. setion 2.1.2.3), i.e. by having a �eld that namesthe ontent language and one that holds exatly one expression in this languageas a sub-expression of the wrapper. dl will also allow the nomination of astate language in whih the di�erent types of onstraints are to be expressed,exept that there will be several sub-expressions in the named ontent languagein dl. By deoupling the ation from the state representation, dl will ahievethe same, high exibility that kqml provides.The obvious advantage of suh a deoupled ation representation over itsonventional, integral ounterpart is that it allows one to plug di�erent staterepresentation languages into the same deoupled ation representation language,i.e. it has exibility. Thus, whether we are using dl for states with onjuntionsof literals or with full �rst-order logi plugged in, we are still using the samedeoupled ation representation. Deoupling of ation representations also allowsus to ompare ation representations at two di�erent levels. For example, adeoupled version of strips would be a di�erent ation representation from dleven with the same state representation language, as strips does not allow forinput-output onstraints.De�ning a deoupled ation representation language in this kqml-like way isnot the diÆult part though. The problem is how to reason over suh a ombinedlanguage, e.g. with a broker. We shall return to the question of how to reasonabout dl in hapter 5 and some problems with the implementation of deoupledlanguages shall be disussed in hapter 8.

98 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL<dl-desr> ::= (apability:state-language <name>:input (<param-spe>+):output (<param-spe>+):input-onstraints (<onstraint>+):output-onstraints (<onstraint>+):io-onstraints (<onstraint>+)<param-spe> ::= (<name> <term>)<term> ::= <onstant> | <variable> |(<onstant> <term>+) |<variable> ::= ?<name><onstant> ::= <name><onstraint> ::= << expression in state-language >>Figure 4.1: Syntax of ore dl in bnf4.2.4 Syntax of the dl CoreWe are now in a position to de�ne the syntax of the ore of the apability desrip-tion language dl. A number of extensions of this syntax will be desribed in thefollowing setions. The syntax will be based on a kqml-like balaned parenthesislist and the bnf of dl is given in �gure 4.1.A apability desription in dl begins with an open braket \(", whih isfollowed by the word apability, indiating that this is the desription of aapability held by some agent. This is followed by a number of keyword-valuepairs as in kqml. The keyword :state-language must be followed by a statelanguage identi�er. Although the bnf does not indiate this, all but the �rstkeyword-value pair are optional in dl. Even the state language spei�ationould be omitted if there were no onstraints spei�ed for this apability, but thisdoes not appear to be a useful apability. The remainder of the dl desriptionspei�es the keyword-value pairs for the inputs, the outputs, and the various

4.2. ACHIEVABLE OBJECTIVES 99types of onstraints explained above.Both inputs and outputs are lists of parameter spei�ations similar to theparameters of a strips-like operator desription. A parameter spei�ation indl is a pair onsisting of an identi�er <name>, and a term. The identi�erspei�es whih role [Brahman, 1979℄ this parameter plays for this apability. Theterm spei�es the objet that will �ll this role. In apability desriptions theseterms will usually be variables or funtion terms ontaining variables. Thus, thespei�ation of the role �ller in a parameter spei�ation in dl is not dissimilarfrom the spei�ation of the arguments in the de�nition of a Prolog prediate.The main di�erene is that arguments are expliitly named by the role name.This allows one to speify the parameters to this apability in an arbitrary order.For example, the spei�ation :input ((BrokenMahine ?mahine)) for theinputs of the apability of the engineering ompany in the initial senario spei�esthat there is just one input parameter to this apability, that this parameter playsthe role of the BrokenMahine for this apability, and that the objet that will�ll this role is represented by the variable ?mahine in the onstraints of thisapability desription.Finally, the bnf of dl spei�es that the various types of onstraints in theapability desription will in fat be lists of onstraint expressions, but it does notde�ne the syntax for them. Of ourse, this is beause this is the point where dlallows the plugging in of an independent state desription language, i.e. the syntaxof dl is open at this point beause dl is a deoupled ation representation.The only indiation of what the onstraints will look like is given as the valueof the state-language �eld whih names the language in whih all onstraintshave to be expressed. Thus, the syntax of dl is desribed ompletely at thispoint.However, to be able to atually write apability desriptions in dl it is, ofourse, neessary to de�ne at least one state language that an be used to representthe onstraints in a dl desription. For the apability desriptions in the initial

100 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL<formula> ::= (<quant> <-form>) | <-form><quant> ::= (<quantifier> <varspe>+)<quantifier> ::= forall | exists<varspe> ::= <variable><-form> ::= <literal> |(not <formula>) |(and <formula> <formula>+) |(or <formula> <formula>+) |(implies <formula> <formula>) |(iff <formula> <formula>) |(xor <formula> <formula>) |<literal> ::= <onstant> |(= <term> <term>)(<onstant> <term>+)
Figure 4.2: Syntax of fopl in bnfsenario we have implemented a language that is essentially �rst-order prediatelogi [Chang and Lee, 1973, Loveland, 1978, Gallier, 1986℄. The syntax of thislanguage resembles a subset of kif [Genesereth, 1991, Genesereth et al., 1992℄and is given in �gure 4.2. We shall not desribe the meaning of the di�erentsyntatial ategories here as they are all fairly intuitive.One aveat here is that the syntax of the state language refers bak to thesyntax of dl for the de�nition of terms. This is beause we allow terms in theparameter spei�ations of dl desriptions and in the ontent language. Thus,terms are shared aross the wrapper and the ontent level of dl. However,the underlying assumption made by dl at this point is that the state languagewill onsist of expressions that relate objets to eah other and these objets aredesribed by sub-expressions alled terms. We believe this to be very reasonablesine most knowledge representation languages are based on a semantis that

4.2. ACHIEVABLE OBJECTIVES 101satis�es this assumption. An exeption is propositional logi and it is not learto us what the parameter spei�ation in a propositional ation representationould mean. Thus, we believe the sharing of terms between dl and its ontentlanguage to be aeptable.However, the above de�nition of dl and its ontent language requires morethan the state language to onsist of expressions that relate objets to eah other,it requires a shared syntax for terms. This problem ould easily be addressed byde�ning a separate term de�nition language that has to be plugged into the de-oupled ation representation just like the state language. Although this wouldallow for even greater exibility in the ation representation, we believe that theadded omplexity in the expressions is not worth the e�ort beause most know-ledge representation languages have epistemologially very similar term spei�-ations anyway. Hene we have hosen to implement dl with a shared syntaxfor terms as desribed above.4.2.5 Examples from the Initial SenarioNow that we have de�ned the ore of dl it is time to look at some simpleexamples that illustrate how apabilities an be represented in dl. All theexamples in this setion are the ontent of kqml messages required for the initialsenario as desribed in setion 3.2. Further examples will follow in setion 4.5.4.2.5.1 Capability AdvertisementsThe �rst group of messages required for the initial senario are the apabilityadvertisement messages with whih the problem-solving agents (psas) informthe broker of their apabilities. We have already desribed these kqml messagesat the wrapper level in setion 3.2.1. The ontent desribing the atual apabilitywas only given informally at this point simply beause dl was not yet de�ned.Now we are in a position to speify the ontent formally. The �rst psa we present

102 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLwhih advertises a apability is the engineering ompany represented by the e-agent. The ontent of its apability advertisement in dl is as follows:(apability:state-language fopl:input ((BrokenMahine ?mahine)):input-onstraints ((elt ?mahine Generator)(Is ?mahine Broken)(Has Loation ?mahine Paifia)):output-onstraints ((not (Is ?mahine Broken))))This dl expression represents a apability and uses the ontent languagefopl to represent onstraints on states. It expets just one objet as input whihplays the role BrokenMahine for this apability. To be able to apply this ap-ability three onstraints must hold in the situation before the apability an beperformed: the objet represented by the variable ?mahine must be a gener-ator: (elt ?mahine Generator); it must atually be broken: (Is ?mahineBroken); and it must be on Pai�a: (Has Loation ?mahine Paifia). Asa result of the appliation of this apability the given ?mahine will no longer bebroken: (not (Is ?mahine Broken)), i.e. this onstraint will hold in the stateafter the apability has been performed. This dl expression does not speifyany outputs or input-output onstraints.Similarly, the ontent of the kqml message that is the apability advertise-ment of the h1-agent will be expressed as:(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person Paifia)):output-onstraints ((not (Is ?person Injured))))This apability desription also uses the ontent language fopl and it ex-pets one input whih plays the role InjuredPerson. Furthermore, three on-

4.2. ACHIEVABLE OBJECTIVES 103straints must hold in the input situation: the objet represented by the variable?person must be a person: (elt ?person Person); the person must be injured:(Is ?person Injured); and the person must be on Pai�a: (Has Loation?person Paifia). After the appliation of this apability the person will notbe injured: (not (Is ?person Injured)). The seond hospital represented bythe h2-agent advertises an idential apability and there is no need to repeat thismessage here.4.2.5.2 Messages for the Initial SenarioThe �rst pair of messages in the initial senario are the messages with whih thepower plant represented by the pp-agent asks the broker to reommend psas thatan solve its problem. The problem itself onsists of two parts, a broken generatorand an injured person. Hene the pp-agent has to send the two messages alreadydesribed in setion 3.2.2 to the broker. As before, the ontent was left informalat this point in the desription and shall be given here. However, the ontentsof these messages are not apability desriptions but problems. We will use dlto represent problems, too, only that these have to begin with the word taskinstead of apability. Thus, the message that desribes the engineering part ofpower plant's the problem is expressed as:(task:state-language fopl:input-onstraints ((elt generator1 Generator)(Is generator1 Broken)(Has Loation generator1 Paifia)):output-onstraints ((not (Is generator1 Broken))))This dl expression desribes a problem using fopl as the state desrip-tion language. There are three onstraints given that hold in the input situ-ation: generator1 is a generator: (elt generator1 Generator); it is broken:(Is generator1 Broken); and it is on Pai�a: (Has Loation generator1

104 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLPaifia).4 The only onstraint on the situation that should hold after thesought for apability has been applied is that generator1 should no longer bebroken: (not (Is generator1 Broken)).Notie that, the input and output onstraints in this problem are almostidential to the ones in the apability advertisement of the e-agent. The reasonfor this is simply that, here, we are trying to illustrate what dl expressionslook like, not how the mathing works. More interestingly, notie that problemspei�ations in dl usually do not speify any parameters. In this example, itis the task of the broker to work out that generator1 has to play the role of theBrokenMahine for the e-agent's apability to be appliable to this problem.The ontent of the message desribing the seond part of the pp-agent's prob-lem is quite similar to the above:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Paifia)):output-onstraints ((not (Is JohnSmith Injured))))Again, the state language is fopl and the input onstraints speify thatJohnSmith is a person, injured, and on Pai�a. The only output onstraintthe seeked apability has to satisfy is that JohnSmith must not be injured afterthe appliation of the apability.The next set of messages in the initial senario are from the broker to the pp-agent. kqml spei�es that these messages forward the apability advertisementfrom the psa that an solve the desribed problem to the problem-holding agent(pha). Thus, the ontent that has again been informal in setion 3.2.2 is, in fat,exatly the same as in the apability advertisements desribed in setion 4.2.5.1.4 We are aware that this representation might not be epistemologially adequate, but as anillustrative example for dl it will do for now.

4.2. ACHIEVABLE OBJECTIVES 105Finally, the pha, the pp-agent in the initial senario, an send messages tothe psas asking them to solve the two parts of the problem. Again, the neessarykqml messages have been desribed with an informal ontent in setion 3.2.2.The ontent of these messages is the same problem desription that was originallysent to the broker, but as this part of the ommuniation is not stritly part ofthe apability brokering proess, other message formats are oneivable at thispoint.

106 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL4.3 Performable AtionsIn this setion we will extend dl to allow for the representation ofperformable ations whih will be based on the desription of ahiev-able objetives. This will inlude basi onepts, syntax, and examplesto illustrate the language.4.3.1 Ahieving Objetives or Performing Ations?Every apability an be desribed as ahieving an objetive or as performing anation. For example, the sorting apability mentioned before an be desribedas ahieving a state in whih the elements of the given list are ordered. Altern-atively, it an be desribed as sorting the list, i.e. the performane of an ationof type sorting on the given list. The former desription an be regarded as anobjetive-entred desription and the latter is an ation-entred desription. Nat-ural language allows us to desribe every apability in both ways, although somedesriptions might sound awkward to us. Performing an ation an be desribedas ahieving a state in whih the ation has been performed. Ahieving an ob-jetive an be desribed as performing an ation of type ahieving for the givenobjetive. Thus, both desriptions are e�etively equivalent.In the ore of dl desribed above we have hosen to represent apabilitiesthrough objetives they an ahieve. Now is the time to briey reet on thisdeision.Capabilities and ations are usually desribed by verbs in natural languagebeause these are things we an do. In fat, most verbs desribe ations. Thefat that we use this major syntati ategory to ommuniate about apabilitiesand ations is beause it usually is the way we think about these entities. If thisis the ase then an ation-entred desription of apabilities an be onsidereda more diret representation. This in turn an be interpreted as evidene thatwe should have based dl on performable ations. However, in lassial non-hierarhial ation representations the verbs desribing the ations usually take

4.3. PERFORMABLE ACTIONS 107the plae of the ation name, but in setion 4.2.2 we have argued that suhan ation name does not add to the representation of an ation in terms ofits objetives. Furthermore, in [Hayes, 1974, setion 2℄ it was argued that theso-alled diretness of a representation is a questionable onept that does notindiate whether a representation is adequate or not.However, there is further evidene that we should have based our apabilityrepresentation on performable ations rather than ahievable objetives: mostmodern planners (f. setion 2.3.1) do not use expliit goals in the statement ofa planning problem. Instead, they aept an inomplete plan as input, i.e. aomplex desription of an ation. The task for the planner is to re�ne the givenplan until it ontains no more aws. Thus, at this level of desription there isno mention of objetives at all. Objetives do however our in plans as the pre-onditions of ations or as aws. Thus, modern planners use an ation-entredrepresentation. While this representation is onvenient for the planning pro-ess itself, it does require a rather awkward spei�ation of a planning problem[Tate et al., 1990, page 28℄: every plan ontains at least two dummy steps at thevery beginning and end whih do not represent atual ations that are part ofthe plan. Thus, the reason for the ation-entred view in planning lies in theplanning proess and not in the epistemologial adequay of this view.If every ation an be desribed in both ways, we still need to explain why wehave hosen to base our apability representation on ahievable objetives.One answer is that we have hosen to adopt the deliberative agent arhiteture(f. setion 2.1.2.1) whih assumes that every ation performed by an agent is goal-direted, i.e. �rst there is the objetive, then there is the ation. Furthermore, it issometimes meaningful to talk about objetives for whih there are no apabilitiesthat will ahieve them, but ultimately every apability of an agent an be assumedto have some objetive, even if this objetive or motive is diÆult to pin downas it is for altruisti ations. Thus, we onsider ahievable objetives as morefundamental than performable ations and have based apability desriptions in

108 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLdl on objetives.A seond argument for ahievable objetives as the basis of dl an be foundin work on the indexing problem for libraries of psms (f. setion 2.4.1.4). Theindexing problem is very similar to the apability retrieval problem faed byour broker and thus, the experiene gained there is relevant to our work here.The initial approah to the indexing problem was to form a hierarhy of psms[Breuker and Van de Velde, 1994, page 59℄. Nodes in this hierarhy are labelledwith ations that haraterise the apability this lass of psms performs. Thus,this approah an seen as based on an ation-entred representation. This ap-proah turned out to be inadequate for the indexing problem though. A laterapproah was to assoiate psms with the problems they an solve [Breuker, 1997℄.The problem to be solved was desribed in terms of objetives that need to beahieved. Thus, this improved approah an be seen as based on an objetive-entred representation and is now onsidered more appropriate for a problem verysimilar to the problem addressed in this thesis.Partially, the problem is that natural language is misleading when it is used toexpress tasks with verbs. For example, when we want our generator to be repairedand give this as the ation to be performed to the engineering ompany, we donot really mean that we want the agent to neessarily perform an ation of typerepairing. What we are really interested in is getting the generator into a fullyfuntional state, i.e. this is our objetive. Thus, we have deided to base apabilityrepresentations in dl on ahievable objetives as desribed in setion 4.2, butwe shall provide for a apability desription based on performable ations, too.4.3.2 Extending the SyntaxTo think of apabilities in terms of performable ations as opposed to ahievableobjetives has one major advantage: one an de�ne a new apability in terms ofother, more primitive apabilities. For example, suppose the broker knew thedesription of a general sorting ation. If a new agent now wants to advertise

4.3. PERFORMABLE ACTIONS 109the apability that it an sort lists of integers, and this new agent is aware of thebroker already knowing about the desription of a sorting ation, then the newagent ould advertise its integer sorting apability based on the desription of thesorting ation already known to the broker. All the new agent needs to do in thisase is refer to the broker's existing desription of a sorting ation and modify itby stating the additional onstraint that the elements of the given list must allbe integers.The knowledge the broker would need to ahieve this kind of behaviour ise�etively an ontology of ations (f. setion 2.3.2). It is oneivable that abroker knowing about a number of primitive ations in an ontology would bemuh easier to ommuniate with, as it would not be neessary to representevery new apability ompletely from srath. In fat, the two brokers for psmsdesribed in setion 2.4.1.5 both onsider an ontology of ations to be at the heartof their brokering mehanism.Thus, we shall now extend dl to allow for the representation of performableations. If the broker has an ontology of ations and another agent wants tode�ne a new apability in terms of an ation in this ontology, it needs to be ableto refer this ation in the ontology in some way. For this purpose we need tointrodue two new keyword-value pairs into the apability representation in dl:� a apability identi�er: this �eld allows the spei�ation of a uniqueation name for a apability, i.e. exatly what we have argued as beingepistemologially inadequate above; and� a apability inheritane link: this �eld allows the naming of an ationfrom whih this apability will inherit the desription.The extended syntax of dl that inludes these �elds is given in �gure 4.3. Thesyntati ategories not mentioned there have not hanged from the de�nition in�gure 4.1. The :ation �eld is used to speify the name of this ation, i.e. thename that an be used in future to refer to this ation desription, e.g. to inherit

110 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL<dl-desr> ::= (<type>:state-language <name>:ation <name>:isa <name>:input (<param-spe>+):output (<param-spe>+):input-onstraints (<onstraint>+):output-onstraints (<onstraint>+):io-onstraints (<onstraint>+)<type> ::= apability | taskFigure 4.3: Syntax of dl inluding performable tasks in bnfits desription. The :isa �eld is used to speify from whih ation this ationinherits, i.e. of whih ation it is a speialisation.When a new apability desription inherits from an ation desription in thebroker's ation ontology, the desription of the new apability is e�etively a de-sription of how to modify the inherited ation desription inherited from to ob-tain the new apability desription. We shall all a dl expression that desribesa apability by inheriting from some ation a modi�ation desription. Withoutfurther extending the syntax, three prinipal types of modi�ation possible are:� New parameters: The modi�ation desription an speify additionalparameters for input and output in the inheriting apability desription.� Instantiated parameters: The modi�ation desription an give valuesfor parameters de�ned in the desription inherited from, i.e. these paramet-ers are instantiated in the inheriting desription.� New onstraints: The modi�ation desription an speify additionalinput, output, or input-output onstraints involving all the new parametersas well as inherited parameters.

4.3. PERFORMABLE ACTIONS 1114.3.3 ExamplesTo illustrate modi�ation desriptions and the inheritane mehanism outlinedabove we shall now look at some simple examples. The following examples rep-resent a minor extension of the initial senario desribed in example 3.1. The�rst thing we need is an ontology of ations known to the broker. For simpliity,we shall desribe only one ation in this ontology: a moving ation. This ationwill be desribed as follows:(apability:ation move:state-language fopl:input ((Thing ?thing)(From ?p1)(To ?p2)):input-onstraints ((Has Loation ?thing ?p1)):output-onstraints ((not (Has Loation ?thing ?p1))(Has Loation ?thing ?p2)))The three parameters are the objet that is to be moved (?thing), the plaefrom where it is to be moved (?p1), and the plae to whih it is to be moved(?p1). The sole onstraint on the input situation is that the thing to be movedis at the plae from where it is to be moved: (Has Loation ?thing ?p1). Theoutput onstraints state that ?thing will not be at the initial loation anymoreafter the ation has been performed: (not (Has Loation ?thing ?p1)); andthat it will be at the loation it was to be moved to: (Has Loation ?thing?p2). The name of this ation is given as move. We shall now assume thatthis ation desription is known to the broker before it reeives any apabilityadvertisements.Now, suppose the seond hospital also wants to advertise the apability that itan move patients to the hospital. Of ourse, this ould be done by simply de�ninga new apability, but it an also be desribed as a modi�ation of the movingation already known to the broker. Thus, the h2-agent ould send a seondapability advertisement message to the broker with the following ontent:

112 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL(apability:isa move:state-language fopl:input ((To Hospital2)(Ambulane ?a)):input-onstraints ((elt ?thing Person)(Is ?thing Injured)))This dl desription �rst states that it inherits from the move ation in thebroker's ation ontology. This ation is modi�ed by instantiating the input para-meter (To ?p2) to Hospital2, i.e. the apability an only move objets to thishospital. The desription also adds one more input parameter, the Ambulanethat is to be used in the appliation of this apability. Thus, the three input para-meters of the new apability desribed here are the objet to be moved (i.e. thepatient) and the plae it is to be moved from, both inherited from the moveation, and the ambulane with whih the patient is to be moved. The apabil-ity desription also extends the input onstraints, speifying that the objet tobe moved must be a person: (elt ?thing Person); and that this person mustbe injured: (Is ?thing Injured). It also inherits the input onstraint, (HasLoation ?thing ?p1), and the �rst output onstraint, (not (Has Loation?thing ?p1)), from the move ation. The seond output onstraint, however,is modi�ed to (Has Loation ?thing Hospital2) beause the input parameterTo, whih is represented by the variable ?p2 in the desription of move, has beeninstantiated to Hospital2 in the input of the modi�ation desription.The new apability an be mathed against problems by the broker just likeany other apability. For example, a request to reommend an agent that andeal with the following problem would result in the retrieval of this apability:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Paifia)):output-onstraints ((Has Loation JohnSmith Hospital2)))

4.3. PERFORMABLE ACTIONS 113Modi�ation desriptions not only apply to new apabilities but also to taskdesriptions. It is possible in dl to de�ne tasks by inheriting from ations inthe broker's ontology. Thus, another way of speifying the above problem wouldbe the following:(task:isa move:state-language fopl:input ((Thing JohnSmith)(From PowerPlant)(To Hospital2)):input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)))This dl expression states that the pha is looking for an agent that an moveJohnSmith from PowerPlant to Hospital2 where JohnSmith is a person: (eltJohnSmith Person); and he is injured: (Is JohnSmith Injured).As an be seen from these examples, the spei�ation of a problem by inherit-ing from an ation usually involves the spei�ation of at least some of the inputparameters. Previous problems had been desribed in terms of input and outputonstraints only, and it was the task of the broker to �ll the di�erent roles of aapability to deide whether the desribed apability an solve the given prob-lem. While this seems to ompliate the desription of a problem, inheritanedoes in fat simplify the desription by inheriting the onstraints that ome withthe spei�ed ation. The way that di�erent types of problems and apabilitieswill be mathed against eah other will be desribed in setion 5.2.3.

114 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL<dl-desr> ::= (<type>:state-language <name>:ation <name>:isa <name>:properties (<name>+):input (<param-spe>+):output (<param-spe>+):input-onstraints (<onstraint>+):output-onstraints (<onstraint>+):io-onstraints (<onstraint>+)<type> ::= apability | task<param-spe> ::= (<name> <term>)<term> ::= <onstant> | <variable> |(<onstant> <term>+) |<variable> ::= ?<name><onstant> ::= <name><onstraint> ::= << expression in state-language >>Figure 4.4: Final syntax of dl in bnf4.4 Other PropertiesIn this setion we will show how an agent advertising its apabilitiesan be represented in dl and we desribe additional properties whihare required to aomplish this.The �nal extension of dl onerns the fat that there are a number of simpleproperties that an agent might have and whih it might want to inlude in theapability desription. For example, an agent might want to advertise that itsproblem-solving behaviour is omplete, i.e. that, if there is a solution to a problem,this agent will �nd it. This information an be added to a apability desriptionin dl simply through a list of propositional symbols attahed to the apabilitydesription. Syntatially this extension leads to another, optional keyword-value

4.4. OTHER PROPERTIES 115pair with the keyword :properties. This keyword must be followed by a non-empty list of propositions. The omplete and �nal syntax of dl inluding thisextension is given in �gure 4.4.To illustrate this feature of dl let us reonsider the new apability of theseond hospital desribed in the previous setion, namely that it an move pa-tients to the hospital. It also advertises the original apability desribed in theinitial senario, namely that it an treat injured people. Now, the h2-agent an-not be ertain that its original apability will have the desribed result, i.e. thatthe person the apability has been applied to will no longer be injured. How-ever, the h2-agent might be ertain that it an at least get an injured person tothe hospital, i.e. it might onsider its problem-solving behaviour omplete withrespet to this apability. To state this in its apability advertisement, the h2-agent ould use the properties feature. The modi�ed apability desription forits seond apability would thus look as follows:(apability:isa move:properties (omplete):state-language fopl:input ((To Hospital2)(Ambulane ?a)):input-onstraints ((elt ?thing Person)(Is ?thing Injured))))Note that the properties are properties of the psa and thus, they should notbe expressed as part of the input or output onstraints. Task desriptions in dlan also mention properties, and there the properties are interpreted as propertiesthat the psa for the desribed problem must have. For example, the followingtask desription would require the apability desribed above:(task:isa move:properties (omplete):state-language fopl:input ((Thing JohnSmith)(From PowerPlant)(To Hospital2)):input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)))

116 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLProperties an be used to express various fats about the psa. In the aboveexample they have been used to represent the ompleteness of the problem-solvingbehaviour of the psa. Other useful information the property list may onvey isthe ontent languages the psa an handle. Although dl would detet a psanot being able to handle a given problem anyway, the properties are a far moreeÆient way of testing this. There is also a ertain similarity between this featureof dl and the expliit naming of used extensions in pddl [Ghallab et al., 1998℄.However, the property list introdued here refers to properties of the agent whilethe named extensions in pddl refer to properties of an expression in pddl. Thisis handled automatially in dl as the reasoning that an be performed over agiven state language will automatially determine the reasoning the broker anperform.

4.5. EXAMPLES 1174.5 ExamplesIn this setion we will show how the senarios introdued in hapter 3and the agents involved in them an use dl to represent their ap-abilities. The ontent of the messages desribed in setion 3.3 will begiven in dl here.4.5.1 Expressiveness SenarioThe �rst senario we will look at is the expressiveness senario desribed in se-tion 3.3.1. The agents for this senario are the same as for the initial senario. Theomplexity of this senario essentially lies in the expressions required to representertain onstraints: The �rst hospital only treats patients from Barnale, Calypso,or Delta, and the seond hospital only treats patients from Abyss, Barnale, orExodus. Thus, both hospitals require disjuntions in their appliability ondi-tions. The apability desription of the seond hospital was ompliated evenfurther by the fat that it requires snow hains for its ambulane if there is snowor ie on the roads.The �rst messages of interest to us again are the apability advertisements.As the apability of the engineering ompany remains unhanged, so does itsapability advertisement message:(advertise:sender e:ontent(ahieve:reeiver e:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((BrokenMahine ?mahine)):input-onstraints ((elt ?mahine Generator)(Is ?mahine Broken)

118 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL(Has Loation ?mahine Paifia)):output-onstraints ((not(Is ?mahine Broken))))):ontology apabilities:reeiver ANS:language KQML)The next psa advertising its apabilities is the h1-agent. One way of express-ing the ondition that the person to be treated must be in Barnale, Calypso, orDelta, is simply to add this as a new disjuntive input onstraint. Sine we areusing �rst-order logi as the state language within the dl expression desribingthe �rst hospital's apability, this presents no problem. The omplete apabilityadvertising message for the h1-agent is expressed as:(advertise:sender h1:ontent(ahieve:reeiver h1:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or (Has Loation ?person Barnale)(Has Loation ?person Calypso)(Has Loation ?person Delta))):output-onstraints ((not(Is ?person Injured))))):ontology apabilities:reeiver ANS:language KQML)An alternative way of advertising this apability avoiding �rst-order logiwould be to desribe it as three separate apabilities, one for eah of the disjuntsin the disjuntive input onstraint (f. [Russell and Norvig, 1995, page 383℄).

4.5. EXAMPLES 119The next apability advertiser is the seond hospital. We will express theondition that the injured person must be in Abyss, Barnale, or Exodus witha disjuntive input onstraint, as we did for the �rst hospital. However, thereis one more ondition to represent for this hospital, namely that its ambulanemust have snow hains if there is snow or ie on the road. In �rst-order logi,this an be represented as an impliation with a disjuntion as its left hand side.The resulting apability advertisement message is shown here:(advertise:sender h2:ontent(ahieve:reeiver h2:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or (Has Loation ?person Abyss)(Has Loation ?person Barnale)(Has Loation ?person Exodus))(implies (or(on Road Ie)(on Road Snow))(have Ambulane SnowChains))):output-onstraints ((not(Is ?person Injured))))):ontology apabilities:reeiver ANS:language KQML)The next message in this senario omes from the power plant whih asksthe broker to reommend a psa that an deal with the engineering part of itsproblem. This message is the same as in the initial senario and the ompletemessage is shown below:(reommend-one:sender pp:ontent

120 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL(task:state-language fopl:input-onstraints ((elt generator1 Generator)(Is generator1 Broken)(Has Loation generator1 Paifia)):output-onstraints ((not(Is generator1 Broken)))):ontology apabilities:reeiver ANS:language CDL)As in the initial senario, in reply to this request the broker will forward theapability advertisement of the e-agent to the pp-agent. This is beause thiswas the only apability advertisement mathing the desribed problem. Note thatthe ontent of this message is generated from the internal representation of thebroker whih uses unique names for all variables. The omplete reply message isexpressed as:(forward:sender ANS:ontent(ahieve:reeiver e:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((BrokenMahine ?mahine_3)):input-onstraints ((elt ?mahine_3 Generator)(Is ?mahine_3 Broken)(Has Loation ?mahine_3 Paifia)):output-onstraints ((NOT(Is ?mahine_3 Broken))))):ontology agent:reeiver pp:language KQML)The more interesting part of the problem is, of ourse, the injured person.The next message from the pp-agent to the broker desribes this problem to

4.5. EXAMPLES 121the broker. There are two minor di�erenes between this message and the or-responding message in the initial senario. Firstly, the loation of the injuredperson is given as Delta here. This should render only the h1-agent apable ofsolving the problem for the pp-agent. Seondly, the performative for this messageis reommend-all, i.e. the pp-agent wants to know about all psas that an dealwith the desribed problem. We have made this hange to illustrate that only the�rst hospital has the desired apability. Thus, the omplete message is expressedas:(reommend-all:sender pp:ontent(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not(Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)In reply to this message the broker will �rst forward the apability advertise-ment of the h1-agent to the pp-agent, thereby indiating that this agent will beapable of solving the given problem. The omplete message is given below:(forward:sender ANS:ontent(ahieve:reeiver h1:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((InjuredPerson ?person_4)):input-onstraints ((elt ?person_4 Person)

122 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL(Is ?person_4 Injured)(OR (Has Loation ?person_4 Barnale)(Has Loation ?person_4 Calypso)(Has Loation ?person_4 Delta))):output-onstraints ((NOT(Is ?person_4 Injured))))):ontology agent:reeiver pp:language KQML)If the broker found the h2-agent also apable of solving the pp-agent's prob-lem, it should also forward its apability desription to the pp-agent at this point.However, sine the injured person is in Delta the seond hospital's apabilitydesription should not math the problem and thus, the apability desriptionshould not be forwarded. The �nal message from the broker to the pp-agent inreply to the desribed problem indiates that all the mathing apability desrip-tions have been forwarded at this point. This is done with the following simplekqml message:(eos:sender ANS:ontology agent:reeiver pp)While this onludes the expressiveness senario from the broker's point ofview, there remains the additional ondition of the seond hospital whih hasnot been used for this senario. Thus, we have deided to alter the problemdesription slightly to test the brokering for the h2-agent's apability. Althoughthe power plant is loated at Delta, we have moved the injured person in theproblem desription to Exodus. Furthermore, we have added the knowledge thatthere is ie on the road and that the ambulane has snow hains. The resultingproblem desription is given in the following message:(reommend-all:sender pp:ontent(task

4.5. EXAMPLES 123:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Exodus)(on Road Snow)(have Ambulane SnowChains)):output-onstraints ((not(Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)Sine this problem desription does satisfy all the seond hospital's inputonstraints the broker should forward the apability desription to the pha, thepower plant. The �rst hospital's apability is not appliable here beause of theinjured person's loation. Thus, there will be two reply messages from the brokerto the pp-agent whih will be expressed as:(forward:sender ANS:ontent(ahieve:reeiver h2:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((InjuredPerson ?person_5)):input-onstraints ((elt ?person_5 Person)(Is ?person_5 Injured)(OR (Has Loation ?person_5 Abyss)(Has Loation ?person_5 Barnale)(Has Loation ?person_5 Exodus))(IMPLIES (OR(on Road Ie)(on Road Snow))(have Ambulane SnowChains))):output-onstraints ((NOT(Is ?person_5 Injured))))):ontology agent:reeiver pp:language KQML)

124 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL(eos:sender ANS:ontology agent:reeiver pp)4.5.2 Flexibility SenarioThe seond senario we want to look at in this setion is the exibility senariodesribed in setion 3.3.2. For this senario we have deided to ignore the en-gineering part of the power plants problem. The omplexity of this senario liesin the fat that di�erent agents use di�erently expressive state languages. Withapabilities using the less expressive state language, the broker will still be ableto form plans involving those agents' apabilities. Otherwise the broker an onlydetermine whether an agent will be able to solve the given problem alone.The �rst messages we need to look at in this senario are again the apabilityadvertisements, beginning with that of the h1-agent:(advertise:sender h1:ontent(ahieve:reeiver h1:ontology OPlan:language CDL:ontent(apability:state-language lits:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person Hospital1)):output-onstraints ((not(Is ?person Injured))))):ontology apabilities:reeiver ANS:language KQML)There are two important hanges in the apability advertisement of the �rsthospital ompared to the previous senarios. Firstly, the injured person must

4.5. EXAMPLES 125be at the hospital for the apability to be appliable in this senario. This isreeted in the �nal input onstraint. The underlying reason for this restritionis the assumption that the �rst hospital has no available ambulane in this sen-ario. Seondly, the ontent language used within dl is spei�ed as lits in thismessage. The reason for this is that all the onstraints spei�ed in this apabilitydesription are literals only, i.e. there was no need for full �rst-order logi in thisapability desription. Whereas we have de�ned the syntax of �rst-order logi in�gure 4.2, we have not yet de�ned the language spei�ed in this message: lits.The broker will be in the position in whih it has never seen this language before.Thus, it will send a message to the sender of the original message ontaining theunknown language asking it where to �nd this language. This message will beexpressed as:(evaluate:sender ANS:ontent(ask-resoure:type language:name lits):ontology agent:reeiver h1:language KQML)Now, sine the h1-agent used this language in its apability advertisement wean safely assume that it knows the language in this senario. Thus, it an tellthe broker where to �nd this language with the responding message below:5(evaluate:sender h1:ontent(tell-resoure:type language:value (http://www.dai.ed.a.uk/students/gw/jat/lassesJavaAgent.resoure.fopl.LitLObjet):name lits):ontology agent5 The treatment of languages as resoures managed by an agent based on the Java AgentTemplate will be explained in setion 5.3.1 in detail.

126 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL:reeiver ANS:language KQML)The seond hospital still uses fopl as the ontent language in its dl ap-ability desription language, and, as for the previous senarios, we shall assumethat the broker knows where to �nd this language. The reason why the h2-agentstill uses �rst-order logi as its state language is the �nal input onstraint. Asin the expressiveness senario, this hospital will only transport injured peoplefrom Abyss, Barnale, or Exodus to the hospital for treatment. This is expressedas a disjuntion and thus, it requires �rst-order logi. The omplete apabilityadvertisement message of the h2-agent is shown here:(advertise:sender h2:ontent(ahieve:reeiver h2:ontology OPlan:language CDL:ontent(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or (Has Loation ?person Abyss)(Has Loation ?person Barnale)(Has Loation ?person Exodus))):output-onstraints ((not(Is ?person Injured))))):ontology apabilities:reeiver ANS:language KQML)The last apability advertisement omes from a new agent whih we haveintrodued for this senario: an ambulane servie. Essentially, the apabilitythe as-agent advertises is that it an transport injured people from any plae toany other plae. Sine this apability is again reasonably simple, it also is basedon lits as the state language within dl. The atual message looks as follows:

4.5. EXAMPLES 127(advertise:sender as:ontent(ahieve:reeiver as:ontology OPlan:language CDL:ontent(apability:state-language lits:input ((InjuredPerson ?person)(From ?p1)(To ?p2)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person ?p1)):output-onstraints ((not(Has Loation ?person ?p1))(Has Loation ?person ?p2)))):ontology apabilities:reeiver ANS:language KQML)Notie that on reeipt of this message the broker should not need to ask thesending agent where to �nd the state language lits, as it already knows where to�nd this language from the ommuniation following the apability advertisementof the h1-agent.Thus, the next message in this senario will be the problem desription fromthe pp-agent:(broker-one:sender pp:ontent(task:state-language lits:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not(Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)

128 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDLThis problem is essentially the same as in the previous senarios. The onlyimportant di�erene is the performative used here: broker-one. With this per-formative the pha does not ask the broker to reommend psas that an solve thedesribed problem as before, but to manage the solution of the problem for thepha.As desribed in setion 3.3.2, the broker atually has several mehanismsfor brokering available. The �rst mehanism, to �nd a psa that an solve thedesribed problem is the one we have used up to now. This is also the �rstmehanism the broker will try here. However, none of the psas the broker knowsabout have advertised a apability that mathes the desribed problem, i.e. noneof the psas has the apability to solve the desribed problem on its own. In thisase the broker will try its seond mehanism: �nding a plan. This mehanismwill only be invoked with the broker-one performative as a plan annot be thereply to a reommendation performative in kqml. In this example the brokerwill �nd a plan that involves �rstly, applying the as-agent's apability to movethe injured person to the �rst hospital, and seondly, applying the h1-agent'sapability to treat the patient.The messages to the psa to exeute this plan are not inluded here simplybeause the urrent implementation does not provide a plan exeution framework.Partially the reason for this is the fat that this would not add to the atualbrokering proess that is the fous of this thesis, and partially it is beause kqmland jat spei�ally do not provide suÆient support for suh a framework. Fora review of work on agents that exeute plans see setion 2.3.4.

Chapter 5Algorithms and Implementationof dl
At this point we have de�ned the apability desription language dlthat will be used to represent general apability knowledge. Our aimis now to show that dl an be used to reason about apabilities as il-lustrated in our senarios and that it is indeed expressive and exible.The next step towards this goal will be to show how spei� problemsan be evaluated against apability desriptions in dl. The ontri-bution of this hapter will be the desription of the algorithm used toperform this evaluation and its integration into the agent frameworkhosen for the implementation.5.1 Basi Capability EvaluationIn this setion we will show how simple apability desriptions in dlare represented internally and an be evaluated against simple taskdesriptions.5.1.1 Internal RepresentationThe broker and dl are both implemented in the objet-oriented programminglanguage Java [Ekel, 1997, Campione and Walrath, 1998℄. dl expressions are129

130 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLhandled as objets in this implementation. Thus, we will �rst have a brief lookat the struture of dl desriptions, i.e. what other objets onstitute a dldesription.De�nition 5.1 (dl Desription) A apability desription of a apability C indl is a tuple � AC; SC; idC; supC; IC; OC; CCI ; CCO; CCIO; P C � where: AC is theagent that has apability C; SC is the name of the state language used within thisapability desription; idC is the identi�er of this apability; supC is the identi�erof the ation from whih this ation inherits; IC is a set of iC input parameterspei�ations: fIC1 ; : : : ; ICiCg; OC is a set of jC output parameter spei�ations:fOC1 ; : : : ; OCjCg; CCI is a set of kC input onstraints: fCCI1; : : : ; CCIkCg; CCO is a setof lC output onstraints: fCCO1; : : : ; CCOlCg; CCIO is a set of mC input-output on-straints: fCCIO1; : : : ; CCIOmCg; and �nally, P C is a set of nC properties of apabilityC: fP C1 ; : : : ; P CnCg.The agent AC , whih has the apability C, is represented by its name aspart of the apability desription. The state language SC is an instane of thelass Language, a speial resoure provided by the Java Agent Template (jat)desribed in setion 5.3. Note that this feature of Java, the expliit representationof the lass of an objet as an objet itself, allows the reetive reasoning over thestate language within a dl expression whih is neessary to permit the pluggingin of arbitrary, opaque state languages (f. setion 4.2.3). The identi�er idC ofthis apability an be used to refer to this desription in future, and the identi�ersupC names the ation of whih this apability desription is a speialisation(f. setion 4.3.2). Both these identi�ers may be unde�ned.The inputs IC and outputs OC are both potentially empty sets of parameterspei�ations, where a parameter spei�ation onsists of a role name and aterm desribing the objet that will play this role for the desribed apabilityC (f. setion 4.2.4). The input onstraints CCI , the output onstraints CCO, andthe input-output onstraints CCIO are all sets of objets that belong to the lass

5.1. BASIC CAPABILITY EVALUATION 131spei�ed in SC, whih is, as mentioned above, a speialisation of the jat Languagelass. Any of the sets of onstraints may be empty. Finally, there is the set P Cof properties assoiated with this apability, as explained in setion 4.4, where aproperty is represented by a propositional symbol.This onludes the introdution of the internal representation used for dlexpressions and we will now turn to the problem of reasoning over dl.5.1.2 Capability EvaluationWe will �rst onsider the slightly restrited ase where apabilities are representedas ahievable objetives (f. setion 4.2) and are not allowed to have input-outputonstraints. Task desriptions shall only ontain input onstraints and outputonstraints here. Note that these restritions are not severe, as most other ap-ability and task desriptions an be redued to suh a representation. How thisan be done will be shown in the extensions of the basi apability evaluationalgorithm that will follow in setion 5.2.5.1.2.1 Basi Capability SubsumptionThe essential question the apability evaluation has to answer is whether a ap-ability represented by the dl desription C an be used to solve a problemrepresented by the dl desription T . We will say that apability C subsumestask T if this is indeed true, i.e. if the apability represented by C an be used tosolve the problem desribed by T . Now, apability C subsumes a task T if:1. in the situation that is the result of performing C, all the output onstraintsof T (CTO) are satis�ed, i.e. if the apability ahieves the desired state; and2. in the situation that preedes the performane of C, all the input onstraintsof C (CCI) are satis�ed, i.e. if the apability is appliable.

132 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLWe will refer to these onditions as the output math ondition and the inputmath ondition respetively. Both onditions rely on a notion of ertain on-straints being satis�ed in a given situation, but we annot say anything aboutthese onstraints sine we do not know the state languages in whih they areexpressed.To be able to formally de�ne what we mean by a apability subsuming atask (f. de�nition 5.2) we will thus make the assumption that there is a model-theoreti semantis de�ned for every state language we will enounter. As poin-ted out in [Hayes, 1974℄, knowledge representation languages that do not havea formal semantis do not really represent anything, and thus, we onsider thisassumption very reasonable. Assuming that there exists a model-theoreti se-mantis, we an easily assoiate models with situations and we have de�nedonstraints as expressions in the state language. Thus, we an de�ne that a on-straint is satis�ed in a situation if the model orresponding to the situation is amodel of the expression representing the onstraint.The next problem is that situations are never expliitly mentioned in theapability or in the task desription. However, a model-theoreti semantis es-sentially de�nes a mapping from expressions in a given state language into thepower set of models for this language. An expression in the language is mappedto the set of all models in whih this expression is onsidered true. Thus, the in-put onstraints CTI of the task T de�ne a set of models, one of whih orrespondsto the atual situation before the apability is to be applied. The input mathondition is obviously satis�ed if every model of the task's input onstraints CTIis also a model of the apability's input onstraints CCI . Similarly, the outputonstraints CTO of the task T de�ne a set of models, all of whih orrespondto situations in whih the objetive has been ahieved, and the output mathondition is obviously satis�ed if every model of CCO is also a model of CTO .For simpliity, one an de�ne the meta-relation j= between expressions as thesubset relation of the models of the related expressions. This meta-relation an

5.1. BASIC CAPABILITY EVALUATION 133
input constraints output constraints

capability description

outputinput match match condition

output constraintsinput constraints

task description

condition

Figure 5.1: Mathing Capabilities and Tasksnow be used to de�ne subsumption as illustrated in �gure 5.1 graphially. Notiethat this meta-relation, de�ned in this way, also relates expressions in di�erentlanguages as long as they have a model-theoreti semantis. However, the meta-relation j= has to be de�ned for eah state language individually. Most of theapability desriptions given as examples in this thesis use �rst-order prediatelogi (fopl) as the state language and a de�nition of the meta-relation j= forfopl will follow in setion 7.3.3.We are now in a position to formally de�ne when a restrited apability de-sription subsumes a task desription in dl:De�nition 5.2 (Subsumption for Ahievable Objetives (1)) Let C be aapability desription in dl ontaining: an input spei�ation IC ontain-ing the variables v1; : : : ; vh; input onstraints CCI = fCCI1; : : : ; CCIkCg; and out-put onstraints CCO = fCCO1; : : : ; CCOlCg. Let T be a task desription in dlontaining: input onstraints CTI = fCTI1; : : : ; CTIkT g; and output onstraintsCTO = fCTO1; : : : ; CTOlT g. We will say that C subsumes T if and only if thereexists a substitution � for the variables v1; : : : ; vh suh that:CTI j= �(CCI) (input math ondition)and �(CCO) j= CTO (output math ondition)

134 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLPerhaps a little surprising is the requirement of the substitution � in this de�n-ition. The substitution � aounts for the fat that apability desriptions in dlare parametrised, i.e. they ontain free variables in the input onstraints and inthe output onstraints. These variables must be delared in the input and outputspei�ation of the apability, e�etively rendering the apability desription anation shema. For the atual performane of the apability C these variablesmust be instantiated, and this is what the substitution � allows for. However,the de�nition does not require the variables to be mapped to ground terms by thesubstitution. This is to allow for reasoning about partially instantiated apabil-ities, i.e. this feature an be used to extend the above de�nition to apabilitiessubsuming other apabilities rather than tasks.Perhaps also surprising is the fat that only variables ourring in the inputspei�ation (v1; : : : ; vh) need to be substituted in the above de�nition. This isbeause variables ourring in the output spei�ation only play a role in theoutput math ondition. However, one ould easily extend the above de�nitionto also require the output spei�ation to unify with all the orresponding outputsin the task desription. It is not lear though what the bene�t of this would be,sine outputs in task and apability desription will usually be variables only. Asit stands, the output spei�ation allows one to introdue additional free variablesinto the output onstraints of the apability desription.One of the most important features of this de�nition is the fat that is doesnot mention whih state language is to be used in dl. It only requires ertaintypes of reasoning to be performable in the language SC: �rstly, one must beable to build onjuntions of expressions in this language and seondly, the meta-relation j= must be de�ned in the state language used. Virtually all knowledgerepresentation languages have onjuntions built in sine a sequene of assertionsis usually interpreted as the onjuntion of the asserted expressions. The meta-relation j= should also be de�ned as part of the semantis of the language asargued above.

5.1. BASIC CAPABILITY EVALUATION 135outKB new KnowledgeBase(SC)for 2 fCCO1; : : : ; CCOlCg doassert(outKB,)� evaluate(outKB, CTO1 ^ : : : ^ CTOlT , fv1; : : : ; vhg)if � is unde�ned thenreturn falseinKB new KnowledgeBase(SC)for 2 fCTI1; : : : ; CTIlT g doassert(inKB,)for 2 fCCI1; : : : ; CCIlCg doif not evaluate(inKB, �()) thenreturn falsereturn trueFigure 5.2: Subsumption algorithm (1)5.1.2.2 The Basi AlgorithmThe basi algorithm used to evaluate apability subsumption is a straightforwardimplementation of de�nition 5.2 above. The pseudo-ode version of this algorithmis given in �gure 5.2.The algorithm �rst attempts to reate an empty knowledge base, outKB, forexpressions in the state language SC. This is also the �rst point where reetivereasoning is neessary. If it annot be deided at this point whih the appropriateknowledge base lass for the state language SC is, or the reation of an emptyknowledge base of this type fails for any other reason, the apability will not beonsidered to subsume the task. Note that this is basially the mehanism forall funtion alls that involve reetive reasoning. The underlying assumption weare making here is that a ertain type of reasoning is needed for the apabilitysubsumption test and if this type of reasoning is not supported by SC then thetest has failed.The next step in the algorithm asserts all the output onstraints CCO1; : : : ; CCOlC

136 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLof apability C in the knowledge base outKB. It is assumed that every knowledgebase provides assertion in its funtionality and thus, this step does not requirereetive reasoning to test for the existene of this funtionality. The next stepis to evaluate the onjuntion of the output onstraints CTO1; : : : ; CTOlT of taskT . This step requires reetion again as it is not guaranteed that the requiredfuntion is de�ned. If it is de�ned it will attempt to derive the query (seondargument) from the knowledge base (�rst argument). If this sueeds it willreturn a substitution for the variables fv1; : : : ; vhg (third argument) as they needto be instantiated for the derivation. The next step in the algorithm tests whetherthe returned substitution � is de�ned, i.e. whether suh a substitution ould befound; if not, the test will fail.The algorithm up to this point implements essentially the output math ondi-tion. Assuming that the funtion evaluate used by the algorithm implements thedesired behaviour, we know that for the substitution �: �(CCO1)^ : : :^�(CCOlC) j=CTO1 ^ : : : ^ CTOlT beause this is exatly the substitution we have extrated fromthe derivation.The remainder of the algorithm implements the input math ondition and isquite similar to the test for the output math ondition. First an empty know-ledge base, inKB, for expressions in SC is reated. Next the input onstraintsCTI1; : : : ; CTIlT from task T are asserted in this knowledge base. Finally, the inputonstraints CCI1; : : : ; CCIlC of apability C are evaluated against inKB. However,as opposed to the output math ondition, the onstraints are evaluated one byone. The reason for this is that it simpli�es the ode slightly. Before the eval-uation the onstraints have to be instantiated with the substitution � to reetthe input math ondition. If there is an instantiated input onstraint �(CCIn) forn 2 f1 : : : lCg that annot be derived from inKB then the subsumption test hasfailed.Otherwise it sueeded and the apability C an be used to solve the problemdesribed by T .

5.1. BASIC CAPABILITY EVALUATION 137Soundness and Completeness It is fairly easy to see that this algorithm issound, assuming the soundness of the evaluation proedure for the knowledgebase for expressions in state language SC, i.e. that if the algorithm returns truethen the apability C subsumes task T as outlined in de�nition 5.2. However,it is not omplete beause it does not baktrak over the substitution �. Ifthe input math ondition part of the algorithm fails it might be possible toattempt a di�erent derivation leading to a di�erent substitution for the outputmath ondition, et. We have hosen not to implement this option for tworeasons: �rstly, it inreases the omplexity of the algorithm without bene�t inthe senarios we envisage, and seondly, it still requires the ompleteness of theevaluation funtion to make this algorithm omplete, whih is not the ase in ourimplementation. Furthermore, in some state languages the substitution is uniqueif one exists and thus, baktraking over the substitution would be superuous.5.1.2.3 An Example from the Initial SenarioIt is now time to look at an example illustrating the above de�nitions and thealgorithm. The apability and task desriptions in the initial senario all satisfythe restritions introdued above, i.e. that apabilities are represented as ahiev-able objetives without input-output onstraints and that tasks only onsist ofinput onstraints and output onstraints. For example, the apability advertisedby the engineering ompany was:(apability:state-language fopl:input ((BrokenMahine ?mahine)):input-onstraints ((elt ?mahine Generator)(Is ?mahine Broken)(Has Loation ?mahine Paifia)):output-onstraints ((not (Is ?mahine Broken))))The engineering part of the pp-agent's problem whih this apability desrip-tion must math was desribed as follows:

138 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL(task:state-language fopl:input-onstraints ((elt generator1 Generator)(Is generator1 Broken)(Has Loation generator1 Paifia)):output-onstraints ((not (Is generator1 Broken))))To test whether the e-agent's apability subsumes the desribed task, thealgorithm in �gure 5.2 will �rst reate a knowledge base (outKB) ontaining theoutput onstraints of the e-agent's apability:(NOT (Is ?mahine_3 Broken))In this example outKB ontains just this one onstraint. The index of thevariable ?mahine 3 is part of the internal representation of the broker again(f. setion 4.5.1). In the next step the onjuntion of all the output onstraintsof the task is evaluated against outKB to obtain the substitution �:(NOT (Is generator1 Broken))As there is just one output onstraint, the expression ontains just this oneonstraint. The third parameter in the all to evaluate is the set of variables inthe input parameter spei�ation of the e-agent's apability:[?mahine_3℄The variable ?mahine 3 is the only variable in the input spei�ation in thisexample. The all to evaluate sueeds and returns the substitution:[generator1->[?mahine_3℄℄The test whether this substitution is de�ned sueeds and ompletes the out-put math ondition, i.e. we have now established that under substitution �:(not (Is generator1 Broken)) j= (not (Is generator1 Broken))The next step in our algorithm generates the knowledge base for testing theinput math ondition (inKB) and initialises it with the input onstraints fromthe task:

5.1. BASIC CAPABILITY EVALUATION 139(elt generator1 Generator)(Is generator1 Broken)(Has Loation generator1 Paifia)Next the input onstraints from the e-agent's apability desription are oneby one instantiated with the substitution � and evaluated against inKB:(elt generator1 Generator)(Is generator1 Broken)(Has Loation generator1 Paifia)Sine none of the evaluations fails all the above onstraints will be tested and,as a result, the input math ondition under � is established:0B� (elt generator1 Generator)^(Is generator1 Broken)^(Has Loation generator1 Paifia) 1CA j=0B� (elt generator1 Generator)^(Is generator1 Broken)^(Has Loation generator1 Paifia) 1CAWith output and input math ondition suessfully veri�ed, we know nowthat the e-agent's apability subsumes the desribed task and the algorithmreturns true.

140 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL5.2 Extended Capability EvaluationIn this setion we will show how more omplex apability desriptionsontaining input-output onstraints, performable ations, and proper-ties an be evaluated against task desriptions in dl.5.2.1 Input-Output ConstraintsIn this setion we will onsider apabilities with input-output onstraints (f. se-tion 4.2.2), i.e. apabilities whih are represented as ahievable objetives and taskdesriptions whih shall only ontain input onstraints and output onstraints.5.2.1.1 Subsumption with Input-Output ConstraintsThe question the apability evaluation has to answer is still whether a apabilityrepresented by dl desription C an be used to solve a problem representedby dl desription T . In setion 5.1.2.1 we have used the input and outputmath onditions to de�ne what it means for apability C to subsume task T .Essentially, these onditions require the input onstraints to be satis�ed in theinput situation and the output onstraints to be satis�ed in the output situation,i.e. we had to evaluate onstraints on situations to test for subsumption.Ideally, we ould just extend the input and output math onditions to aountfor the input-output onstraints. However, whereas the input onstraints andthe output onstraints are onstraints on situations, the input-output onstraintsare onstraints aross situations, i.e. they are fundamentally di�erent from theonstraints disussed in setion 5.1.2. There we ould de�ne a onstraint to besatis�ed in a situation if the model orresponding to the situation was a modelof the expression representing the onstraint. Unfortunately this approah is notappliable here.To keep the de�nition of the subsumption relation independent from the statelanguage used within the apability desription, we want to retain the approah

5.2. EXTENDED CAPABILITY EVALUATION 141of using the model-theoreti semantis of the state language to de�ne the sub-sumption relation. However, input-output onstraints potentially ontain vari-ables from the output spei�ation whih represent objets that only exist inthe output situation. Hene, any model of the input situation will not mentionproperties or relations involving these objets. If we interpret models in the usualway, i.e. anything not mentioned is false, then the satis�ability of an input-outputonstraint may not depend on the relations mentioned in it. This is not what wewant. To address this problem we would need to be able to distinguish the partsof the input-output onstraint that refer to the input situation from the partsthat refer to the output situation.To illustrate this problem, let us revisit the list sorting apability L fromsetion 4.2.2. If ?list1 represents the list to be sorted in the input spei�ationIL and ?list2 represents the sorted list in the output spei�ation OL then oneinput-output onstraint we need to express in CLIO is:((forall ?x) (implies (member ?x ?list1) (member ?x ?list2)))This suggests that literals ontaining variables from IL refer to the inputsituation and literals ontaining variables from OL refer to the output situation,but this is not the ase in general. In fat, if the sorting apability L sorted bymodifying the given list, it beomes obvious that the above onstraint annot beinterpreted as intended without further assumptions. One solution would be toannotate parts of the onstraint with the situation they refer to, but this is againstthe spirit of a deoupled ation representation with an opaque state language.The approah we have hosen in dl assumes that every input-output on-straint onsists of two parts whih are onneted by an impliation. The left handside or preondition will be interpreted as a onstraint on the input situation andthe right hand side or onlusion will be interpreted as a onstraint on the outputsituation. Note that this is essentially also the way seondary e�ets are imple-mented in upop [Penberthy and Weld, 1992, Barrett et al., 1995℄. The advant-age of this approah is that it allows us to de�ne apability subsumption in terms

142 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLof models again. The disadvantage of this approah is that every input-outputonstraint has to be expressed as an impliation with the two sub-expressionsreferring to input and output situation respetively. With this approah we ande�ne apability subsumption as follows:De�nition 5.3 (Subsumption for Ahievable Objetives (2)) Let C be aapability desription in dl ontaining: an input spei�ation IC ontaining thevariables v1; : : : ; vh; input onstraints CCI = fCCI1; : : : ; CCIkCg; output onstraintsCCO = fCCO1; : : : ; CCOlCg; and input-output onstraints CCIO = fCCIO1; : : : ; CCIOmCg,eah of whih having the form LCn ! RCn for n 2 f1 : : :mCg. Let T be a taskdesription in dl ontaining: input onstraints CTI = fCTI1; : : : ; CTIkT g; andoutput onstraints CTO = fCTO1; : : : ; CTOlT g. We will say that C subsumes Tif and only if there exists a substitution � for the variables v1; : : : ; vh suh that:CTI j= �(CCI) (input math ondition)and �(CCO) ^ �(RC) j= CTO (output math ondition)and8n 2 f1 : : :mCg : if �(CCO) ^ (�(RC)� �(RCn)) 6j= CTO and �(CCO) ^ �(RC) j= CTOthen CTI j= �(LCn) (input-output math ondition)The input math ondition in this de�nition stays unhanged from de�ni-tion 5.2: the task's input onstraints have to make all of the apability's inputonstraints true. The output math ondition is hanged to reet that there arenow additional onstraints on the output situation desribed in the apability:the apability's output onstraints in onjuntion with the right hand sides ofall the input-output onstraints have to make the task's output onstraints true.The third ondition, the input-output math ondition, is new here. Essentially itsays that, if the right hand side of the nth input-output onstraint was neessaryto satisfy the output math ondition, then the task's input onstraints also haveto make the left hand side of the nth input-output onstraint true.

5.2. EXTENDED CAPABILITY EVALUATION 143for 2 fCCIO1; : : : ; CCIOmCg doassert(outKB, onlusionOf())Figure 5.3: Subsumption algorithm (2)for 2 fCCIO1; : : : ; CCIOmCg doif usedInProof(outKB, onlusionOf()) thenif not evaluate(inKB, �(premiseOf())) thenreturn falseFigure 5.4: Subsumption algorithm (3)5.2.1.2 The AlgorithmWe will now present the modi�ations to the algorithm desribed in �gure 5.2that are neessary to test for the extended onditions of the subsumption relationde�ned above (de�nition 5.3).1 As the input math ondition does not hange,no modi�ation of the algorithm is neessary for this ondition. The extendedoutput math ondition an be implemented by asserting the right hand sides ofall the input-output onstraints into outKB before the task's output onstraintsare evaluated. The additional pseudo-ode that implements these assertions isgiven in �gure 5.3.Note that this extension requires reetive reasoning again to extrat theright hand side or onlusion from an input-output onstraint. Of ourse, thiswill only be possible if the state language allows the representation of impliationsand provides a funtion to extrat the right hand side from the impliation. Ifextration of the onlusion fails, the apability will be onsidered not appropriatefor the task and return false.1 The omplete pseudo-ode for the apability subsumption test inluding all the extensionspresented in this setion will be given in setion 5.2.4.

144 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLThe input-output math ondition from de�nition 5.3 an be implemented asdesribed by the pseudo-ode in �gure 5.4. This ode has to be added after theinitialisation of inKB.For eÆieny reasons this is not a straight forward implementation of thede�nition of the input-output math ondition. The funtion assumes that theproof that was generated to verify the output math ondition is somehow re-tained in outKB. It also assumes there to be a funtion that an inspet this proofto �nd out whether a given expression that has been asserted in outKB has atu-ally been used in the proof. The funtion usedInProof(outKB, onlusionOf())in �gure 5.4 tests for eah input-output onstraint whether its onlusion hasbeen used in the proof. If so, the left hand side is evaluated against inKB to�nd whether it an be satis�ed. If it annot be satis�ed, the apability does notsubsume the task.As before we do not baktrak over the substitution generated from the outputmath ondition. Our implementation also does not extend the set of variablesin the substitution to allow for additional free variables in the input-output on-straints. Suh variables are allowed in upop's ation representation in the formof a possible universal quanti�ation over eah input-output onstraints. How-ever, the domains of these variables must be delared in the representation andthese domains must be �nite and all elements must be known, e�etively reduingthe expressiveness to the ground ase again.5.2.1.3 An ExampleNone of the original senarios desribed in hapter 3 requires input-output on-straints in the representation. Therefore, to illustrate the extension of the al-gorithm for this feature, we will desribe a slightly modi�ed apability for ahospital from the initial senario here.The apability of the new hospital has input onstraints idential to the twohospitals in the initial senario: the given parameter ?person must be a person;

5.2. EXTENDED CAPABILITY EVALUATION 145that person must be injured; and the loation of this injured person must be onPai�a. The sole output onstraint, too, is idential to that of the hospitals inthe initial senario: the given person will no longer be injured. The only newondition here is the input-output onstraint that states that if the injury is severethen the injured person will have to go to hospital:(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person Paifia)):output-onstraints ((not (Is ?person Injured))):io-onstraints ((implies(Is Injury Severe) (Has Loation ?person Hospital))))Note that the left hand side of this impliation, (Is Injury Severe), is a on-straint on the input situation and the right hand side, (Has Loation ?personHospital), is a onstraint on the output situation.Next we will need a problem that requires the input-output onstraint of thisapability:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Paifia)(Is Injury Severe)):output-onstraints ((not (Is JohnSmith Injured))(Has Loation JohnSmith Hospital)))In this problem desription the person John Smith is injured, on Pai�a, andmost importantly, the injury is severe. In the state desired by the problem holderJohn Smith should no longer be injured and he should be in hospital.

146 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLTo test whether the above apability subsumes the desribed problem, thealgorithm �rst reates an appropriate knowledge base for expressions in the statelanguage (f. �gure 5.2). Next the output onstraints of the apability will beasserted in this knowledge base. Now the right hand sides of the input-outputonstraints will also be asserted (f. �gure 5.3) before any evaluation takes plae.The resulting knowledge base looks as follows:(NOT (Is ?person_3 Injured))(Has Loation ?person_3 Hospital)The all to evaluate for the output math ondition takes three parameters(f. �gure 5.2). The �rst parameter is the knowledge base. The seond parameteris the query, the onjuntion of the output onstraints of the task, in this example:(AND (NOT (Is JohnSmith Injured)) (Has Loation JohnSmith Hospital))The third and �nal parameter is the list of variables from the input spei�-ation of the apability:[?person_3℄In this example, the all to evaluate sueeds and returns the following sub-stitution �:[JohnSmith->[?person_3℄℄As this substitution is de�ned, the output math ondition has now sueeded.The next step in the algorithm is to test the input math ondition. This beginswith the onstrution of a new knowledge base and initialising it with the task'sinput onstraints (f. �gure 5.2). In this example this knowledge base will ontainthe following statements:(elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Paifia)(Is Injury Severe)

5.2. EXTENDED CAPABILITY EVALUATION 147Now the input math ondition an be tested by evaluating all of the apab-ility's input onstraints against this knowledge base. These onstraints are:(elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Paifia)Sine none of these evaluations fails, the input math ondition sueeds.What remains to be tested is the input-output math ondition. In this examplethere is only one input-output onstraint, so the loop in �gure 5.4 will only haveone iteration. In this, the algorithm will �rst test whether the onlusion ofthe input-output onstraint has been used in the proof for the output mathondition. The onlusion is:(Has Loation ?person_3 Hospital)Sine this statement was neessary to satisfy the output math onditionthe algorithm will ontinue to evaluate the left hand side of the input outputonstraint against the knowledge base used for the evaluation of the input mathondition. The instantiated query for this example is:(Is Injury Severe)This evaluation will sueed and sine this was the only input-output on-straint to be tested and this ondition onludes the apability subsumption testin de�nition 5.3, the algorithm will return true.5.2.2 PropertiesThe next extension to the subsumption test is onerned with the properties ofagents desribed in setion 4.4. The representation of suh properties is quitesimple in dl as it only allows for a list of propositional symbols. In a apabilitydesription, these propositions are interpreted as true for the apability holdingagent, and in a task desription they are interpreted as propositions required

148 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLif P T 6� P C thenreturn falseFigure 5.5: Subsumption algorithm (4)to be true for the sought for agent. Thus, in both ases they are interpretedas onjuntions of propositions and the extension of de�nition 5.3 for apabilitysubsumption is straight forward:De�nition 5.4 (Subsumption for Ahievable Objetives (3)) Let C be aapability desription in dl ontaining an input spei�ation IC, input on-straints CCI , output onstraints CCO, input-output onstraints CCIO, and propertyspei�ations P C. Let T be a task desription in dl ontaining input onstraintsCTI ,output onstraints CTO , and property spei�ations P T . We will say that Csubsumes T if and only if C subsumes T (de�nition 5.3) and P C j= P T .The relation j= in the new ondition of this de�nition is the usual relation forpropositional logi. Thus, the algorithm that tests for apability subsumption anbe extended with the pseudo-ode desribed in �gure 5.5 to aount for propertiesof agents. This pseudo-ode an be added at the very beginning of the algorithmdesribed this far.Sine property lists in apability and task desriptions represent onjuntionsof properties, the test an be redued to a subset test at this point.For example, in setion 4.4 we have desribed an additional apability for theh2-agent in the initial senario: the h2-agent an move patients to the hospital.As opposed to the apability to treat patients, the h2-agent advertised its movingapability as omplete by speifying the properties::properties (omplete)

5.2. EXTENDED CAPABILITY EVALUATION 149The problem desription in setion 4.4 also ontains this property spei�ationin its desription, i.e. it an only be addressed by a psa with a omplete problem-solving behaviour. Obviously, the two property spei�ations math.5.2.3 Performable AtionsIn this setion we will look at performable ations as desribed in setion 4.3 andhow these an be integrated into the framework.5.2.3.1 Capabilities as Performable TasksOur aim is to design an algorithm that deides whether a apability represented bydl desription C an be used to solve a problem represented by dl desriptionT . Up to now we have assumed that the apability as well as the task aredesribed in terms of ahievable objetives (f. setion 4.2). Now we also wantto allow for apabilities or tasks to be desribed in terms of performable ations(f. setion 4.3). The most omplex and interesting ases here are the ones inwhih the representation is mixed, i.e. where a apability is desribed in one way,e.g. as a performable ation, and the task is desribed in the other way, e.g. asan objetive to be ahieved.In setion 4.3.1 we have already mentioned one example where this mixingof representations would be useful: suppose that in the initial senario, the pp-agent spei�ed the engineering part of the problem not as an objetive to beahieved, i.e. the generator must not be broken, but as an ation to be performed,i.e. repairing the generator. In this modi�ed example the broker would need tobe able to math the apability desribed by an ahievable objetive to a problemdesribed as an ation to be performed.An essential insight here is that even if the problem is spei�ed as an ationto be performed, the underlying problem is normally an objetive to be ahieved.For example, given the modi�ed problem above whih is desribed as an ationof type repairing by the pp-agent, the intended aim of this ation is surely not to

150 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL�nd another agent that an perform a repairing ation, but to have its generatorin a state where it is working as intended. Thus, a problem desription that isan ation to be performed need not neessarily be taken literally.Furthermore, if, for example, the generator was not broken but had run outof fuel, and the problem was desribed as a repairing ation to be performed, wewould surely expet any reasonable psa not to perform a repairing ation but arefuelling ation. Similarly, if the problem was a broken gasket then the ation wewant the psa to perform is a repairing of the generator, but it was not spei�edas a replaing of the gasket. Repairing and replaing are di�erent ations that,in general, do not subsume eah other. Thus, even if problem and apabilityare desribed as performable ations, it is not neessarily the ase that an ationaddressing the problem is neessarily of the type desribed in the problem.Thus, our approah to reasoning about apabilities and tasks represented asperformable ations will be to instantiate these representations into equivalentspei�ations of ahievable objetives by inheriting the parameter spei�ationsand onstraints from a desription of the ation in an ontology and modifyingthem, and then test for apability subsumption as desribed above.2 As desribedin setion 4.3.2, there are three ways in whih an inheriting apability desriptionan modify the apability it inherits from: it an bind parameters to values, itan add new parameters, and it an add new onstraints. To treat newly boundparameters we will need the following de�nition:De�nition 5.5 (Parameter-unifying substitution) Let PSC1 and PSC2 beparameter spei�ations of apabilities C1 and C2, i.e. they an be either input oroutput spei�ations. Let eah parameter spei�ation have the form � R;F �32 Note that this instantiation may lead to inappropriate behaviour of the psa, but so mayjust performing the spei�ed ation. The underlying problem here is that ommuniationassumes a shared model but there is no reasonable way to ensure that this is indeed the ase.The approah we would suggest is to equip the ommuniating agent with ommonsenseknowledge and user modelling failities to detet misunderstandings, but this is beyond thesope of this thesis.3 f. <param-spe> in �gure 4.1 and its explanation in setion 4.2.4

5.2. EXTENDED CAPABILITY EVALUATION 151where R is a role name and F is a term that desribes the role �ller. A substitu-tion � is a parameter-unifying substitution for PSC1 and PSC2 if and onlyif: 8R : (� R;F C1 �2 PSC1^ � R;F C2 �2 PSC2)) �(F C1) = �(F C2)Essentially, this de�nes a parameter-unifying substitution between two para-meter spei�ations as one in whih every role uni�es with all those terms thatare role �llers for this role. Our intention is to use a parameter-unifying substitu-tion between an ation's parameter spei�ation and its super-ation's parameterspei�ation to instantiate the ation. The following de�nition formalises thisnotion:De�nition 5.6 (Capability instantiation) Let C be a apability desriptionof a performable ation in dl. Let � be a parameter-unifying substitution forIC and IsupC as well as for OC and OsupC . Then the apability desription C 0 isthe instantiation of C if and only if AC0 = AC, SC0 = SC, idC0 and supC0 areunde�ned, IC0 = �(IC)[�(IsupC), OC0 = �(OC)[�(OsupC), CC0I = �(CCI)[�(CsupCI),CC0O = �(CCO) [�(CsupCO), and �nally CC0IO = �(CCIO) [�(CsupCIO).In this de�nition, the identi�er of the instantiated apability idC0 is unde�nedbeause its dl desription will only be generated for the subsumption test andis not available subsequently. The identi�er of the super-ation supC0 must beunde�ned beause the dl desription C 0 is no longer a modi�ation desriptionof the ation supC. The input and output parameter spei�ations of C 0 are theunions of the respetive parameter spei�ations of C and its super-ation supC,instantiated with the parameter-unifying substitution. By the instantiation of aparameter spei�ation � R;F � under substitution � we mean the parameterspei�ation � R; �(F) �. Note that, sine IC0 and OC0 are sets, and sineparameter spei�ations that our in IC and IsupC , or OC and OsupC, with thesame role name will be instantiated to the same parameter spei�ation under theparameter-unifying substitution �, eah role name an our only one in IC0 and

152 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLif supC is de�ned thenreturn subsumes(instantiate(C), T)if supT is de�ned thenreturn subsumes(C, instantiate(T))Figure 5.6: Subsumption algorithm (5)OC0. Finally, the various onstraints of C 0 are simply the union of the respetiveinstantiated onstraints of C and supC under the substitution �.5.2.3.2 The Instantiation AlgorithmNow we have to inorporate apability instantiation into the existing algorithm.This will be done by instantiating the given apability and task before the usualsubsumption test is performed. For this purpose, the pseudo-ode in �gure 5.6has to be inserted at the very beginning of the subsumption test, even before thetest for the properties.This pseudo-ode alls the funtion instantiate whih instantiates the givendl desription as shown above. The pseudo-ode for this funtion is given in�gure 5.7.This algorithm �rst tests whether the super-ation supC of the given apab-ility desription is de�ned. If this is not the ase, i.e. if the given apability isalready desribed in terms of ahievable objetives, a opy of the given apab-ility will be returned. Otherwise a new apability desription is initialised withthe instantiated super-ation of the given apability. This part of the algorithmdeals with ations that inherit from ations whih are themselves desribed as aperformable ation.Now, at this point C 0 is a opy of the apability desription of the super-ationsupC desribed in terms of ahievable objetives. The algorithm now modi�es C 0to obtain the instantiation of C. First, the apability holder is set to AC, the

5.2. EXTENDED CAPABILITY EVALUATION 153

funtion dl-desription instantiate(C)if supC is unde�ned thenreturn opy(C)C 0 instantiate(supC)AC0 ACsupC0; idC0 unde�nedP C0 P C0 [P C� empty substitutionamend(IC0; IC; �)amend(OC0; OC; �)CC0I �(CC0I) [�(CCI)CC0O �(CC0O) [�(CCO)CC0IO �(CC0IO) [�(CCIO)return C 0Figure 5.7: Capability instantiation

154 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLfuntion amend(PSC0; PSC; �)for � R;F C �2 PSCif 9 � R;F C0 �2 PSC0 then� unify(F C; F C0; �)PSC0 PSC0� � R;FC 0 �PSC0 PSC0+ � R; �(F C) �else PSC0 PSC0+ � R;F C �Figure 5.8: Amending parameter spei�ationsapability holder of C. Next the ation identi�er and the super-ation of C 0are delared unde�ned. Then the properties of C are added to the propertiesalready in P C0. Note how this part of the algorithm almost exatly mirrors theorresponding part of de�nition 5.6.The next part of the algorithm amends the parameter spei�ations and addsthe new onstraints. First, an empty substitution � is reated. This substitu-tion will be modi�ed to beome the parameter-unifying substitution mentionedin de�nition 5.6. This will be done in the funtion amend whih takes two setsof parameter spei�ations, PSC0 and PSC, and a substitution � as arguments.The substitution will be modi�ed to beome a parameter-unifying substitutionfor PSC0 and PSC and the �rst set of parameter spei�ations PSC0 will be mod-i�ed to beome �(PSC0) [�(PSC). After alling amend for the input and out-put parameter spei�ations the substitution � will be the parameter-unifyingsubstitution. Now this substitution an be used to instantiate and add all theonstraints to the respetive sets. Finally, the apability desription C 0 representsthe instantiation of C and an be returned.What remains to be desribed is the funtion amend. The pseudo-ode forthis funtion is given in �gure 5.8.This funtion loops over the parameter spei�ations in the seond given set

5.2. EXTENDED CAPABILITY EVALUATION 155PSC. For eah parameter spei�ation � R;F C � with role name R and role�ller term F C, the algorithm tests whether there is a parameter spei�ation� R;F C0 � in the �rst set PSC0, i.e. whether there is a parameter spei�ationfor the same role name. This represents the ase where a parameter from thesuper-ation is bound to a value. If so, the algorithm extends the given sub-stitution � suh that the two terms that are the role �llers, F C and F C0, areuni�ed under �. Then the old parameter spei�ation � R;FC 0 � is replaed bythe instantiated parameter spei�ation � R; �(F C) � in PSC0. If there was noparameter spei�ation with the same role name, the parameter is an additionalparameter for the inheriting ation. In this ase the new parameter spei�ation� R;F C � just has to be added to PSC0.This onludes the desription of amend and the algorithm for the apabilitysubsumption test.5.2.3.3 An ExampleWe will now illustrate the apability instantiation algorithm and how it is usedwithin the apability subsumption test with an example introdued in se-tion 4.3.3. In this example the broker knows about an ontology of ations. For ourillustration of the algorithm it will be neessary to de�ne this ontology �rst. Forsimpliity this ontology ontains only one ation, a moving ationM, representedby the following dl desription:(apability:ation move:state-language fopl:input ((Thing ?thing)(From ?p1)(To ?p2)):input-onstraints ((Has Loation ?thing ?p1)):output-onstraints ((not (Has Loation ?thing ?p1))(Has Loation ?thing ?p2)))Notie that this apability is spei�ed in terms of ahievable objetives, but itprovides an ation name, move, that an be used to inherit from this desription.

156 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLFor example, the seond hospital from the initial senario uses this apabilitydesription to desribe a apability C, the apability to move injured people tothe hospital:(apability:properties (omplete):isa move:state-language fopl:input ((To Hospital2)(Ambulane ?a)):input-onstraints ((elt ?thing Person)(Is ?thing Injured)))Now suppose the pp-agent sends the following problem desription T to thebroker, asking for an agent that an deal with this problem:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Paifia)):output-onstraints ((Has Loation JohnSmith Hospital2)))When the broker reeives this problem it will eventually test whether theapability C advertised by the h2-agent subsumes the task T . The algorithmthat tests for apability subsumption starts with the pseudo-ode in �gure 5.6,i.e. it will �rst test whether the super-ation of the apability supC is de�ned.In this example it is, and thus the algorithm will proeed by instantiating theapability desription of C.To instantiate C, the instantiation algorithm desribed in �gure 5.7 will �rsttest whether the given apability desription has a super-ation, i.e. whether it isindeed desribed as a performable ation. In our example, the super-ation isM,i.e. it is de�ned. Thus the algorithm will proeed by initialising the apabilitydesription C 0 with the instantiation ofM, whih is e�etively a opy ofM sinemove does not have a super-ation. Next, the agent, super-ation, ation name,and properties of C 0 will be modi�ed and a new, empty substitution is reated.

5.2. EXTENDED CAPABILITY EVALUATION 157In the next step the input parameter spei�ations of C 0 will be amended. Theseare:[(Thing ?thing_0), (From ?p1_1), (To ?p2_2)℄Note that in this example these are exatly the input parameter spei�ationsfrom the move ation M. These will be amended with the input parameterspei�ations from the h2-agent's apability desription C, whih are:[(To Hospital2), (Ambulane ?a_4)℄The �rst of these parameter spei�ations, (To Hospital2), is an exampleof a new binding that is introdued by C. The seond parameter spei�ation,(Ambulane ?a 4) represents an additional parameter introdued by C. Sinethere are no output parameter spei�ations in C or its super-ation M, theseond all to amend has no e�et. Thus, the parameter-unifying substitution is:[Hospital2->[?p2_2℄℄This substitution an now be used to instantiate onstraints from C andM forthe apability desription C 0, as desribed in �gure 5.7. The resulting, instantiatedapability desription is:(apability:properties (omplete):state-language fopl:input ((Thing ?thing_0) (From ?p1_1) (To Hospital2) (Ambulane ?a_4)):input-onstraints ((Has Loation ?thing_0 ?p1_1)(elt ?thing_0 Person)(Is ?thing_0 Injured)):output-onstraints ((NOT (Has Loation ?thing_0 ?p1_1))(Has Loation ?thing_0 Hospital2)))Note that this is a apability desription in terms of ahievable objetivesand this desription an now be used for the subsumption test outlined in se-tions 5.1.2 to 5.2.2.

158 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL
funtion boolean subsumes(C, T)if supC is de�ned thenreturn subsumes(instantiate(C), T)if supT is de�ned thenreturn subsumes(C, instantiate(T))if P T 6� P C thenreturn falseoutKB new KnowledgeBase(SC)for 2 fCCO1; : : : ; CCOlCg doassert(outKB,)for 2 fCCIO1; : : : ; CCIOmCg doassert(outKB, onlusionOf())� evaluate(outKB, CTO1 ^ : : : ^ CTOlT , fv1; : : : ; vhg)if � is unde�ned thenreturn falseinKB new KnowledgeBase(SC)for 2 fCTI1; : : : ; CTIlT g doassert(inKB,)for 2 fCCI1; : : : ; CCIlCg doif not evaluate(inKB, �()) thenreturn falsefor 2 fCCIO1; : : : ; CCIOmCg doif usedInProof(outKB, onlusionOf()) thenif not evaluate(inKB, �(premiseOf())) thenreturn falsereturn trueFigure 5.9: Final version of the subsumption algorithm

5.2. EXTENDED CAPABILITY EVALUATION 1595.2.4 The Subsumption AlgorithmThe �nal version of the apability subsumption test that inorporates all thefuntions desribed in the previous setions is given in �gure 5.9.5.2.4.1 Capability Evaluation in the Expressiveness SenarioBefore we turn to the integration of the apability subsumption test into a ap-ability retrieval algorithm (f. setion 5.3), we will look at one more example:the expressiveness senario (example 3.2). The most interesting apability in thissenario was advertised by the h2-agent: it an treat injured people from Abyss,Barnale, or Exodus, but if there is snow or ie on the road, the ambulane needssnow hains for this apability to be appliable. The dl desription for thisapability was given in setion 4.5.1 as follows:(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or(Has Loation ?person Abyss)(Has Loation ?person Barnale)(Has Loation ?person Exodus))(implies (or (on Road Ie) (on Road Snow))(have Ambulane SnowChains))):output-onstraints ((not (Is ?person Injured))))The problem desription we want to look at here has also been introdued insetion 4.5.1. It is the last problem desription there, but the one whih will besubsumed by the above apability desription. In this problem the injured personis in Exodus, there is snow on the roads, and the ambulane has snow hains.The problem desription in dl was:

160 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Exodus)(on Road Snow)(have Ambulane SnowChains)):output-onstraints ((not (Is JohnSmith Injured))))The apability subsumption test (f. �gure 5.9) begins with the instantiationof apability and task, but in this example, both are already desribed in terms ofahievable objetives, and thus, no instantiation needs to take plae. Next is thetest for properties whih sueeds beause neither apability nor task mentionany properties. The next step then is the output math ondition. To test thisondition, the algorithm �rst reates a knowledge base for the apabilities outputonstraints and the onlusions of any input-output onstraints. In this example,this knowledge base will ontain only one expression:(NOT (Is ?person_3 Injured))Next the query for this knowledge base is generated as the onjuntion of allthe task's output onstraints, and again there is only one in this example:(NOT (Is JohnSmith Injured))The third argument for the all to evaluate is the set of variables we want toknow the substitution for:[?person_3℄Now the query an be evaluated and the funtion evaluate returns the followingsubstitution with whih the query ould be derived:[JohnSmith->[?person_3℄℄

5.2. EXTENDED CAPABILITY EVALUATION 161The next part of the algorithm is for the input math ondition. For thispurpose, the algorithm reates another knowledge base and initialises it with thetask's input onstraints:(elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Exodus)(on Road Snow)(have Ambulane SnowChains)The apabilities input onstraints are now evaluated against this knowledgebase. The �rst two input onstraints from the apability desription are triviallytrue again as they are elements of the knowledge base:(elt JohnSmith Person)(Is JohnSmith Injured)The next input onstraint states that the injured person must be either inAbyss, Barnale, or Exodus:(OR(Has Loation JohnSmith Abyss)(Has Loation JohnSmith Barnale)(Has Loation JohnSmith Exodus))Again this evaluation sueeds beause the injured person is in Exodus in thisexample. Finally the onditional input onstraint of this apability remains tobe tested:(IMPLIES(OR (on Road Ie) (on Road Snow))(have Ambulane SnowChains))Again, it an be seen fairly easily that this follows from the input knowledgebase. Thus, as there are no input-output onstraints to be evaluated, the apab-ility subsumption test sueeds.

162 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL5.3 Capability Retrieval in jatIn this setion we will show how the Java Agent Template was used toimplement the agents desribed in this thesis. We will also desribehow the broker reats to di�erent message types it may reeive andhow it retrieves apabilities.5.3.1 The Java Agent TemplateThe Java Agent Template (jat)4 is implemented as a library of lasses written inthe programming language Java [Ekel, 1997, Campione and Walrath, 1998℄ thatprovides the developer of software agents with a number of useful objets. Inpartiular, jat provides:� JavaAgent.agent: a number of lasses for the onvenient implementa-tion of software agents. These lasses inlude the agent template, severallasses for onurrent message sending, reeiving, and bu�ering, a resouremanager, and a speial agent alled the Agent Name Server (ans).� JavaAgent.resoure: a number of resoure lasses an agent might need.The most important resoure for us is the kqml message lass. Otherresoures inlude languages and interpreters whih an both be managedby the resoure manager that omes with an agent.� JavaAgent.ontext: a number of lasses that represent the ontext inwhih an agent is embedded. These lasses inlude the low level ontext in-terfae for ommuniation with other agents and various graphial interfaeobjets for the gui. These lasses are not of muh interest to us.All the agents presented in this thesis have been implemented using jat.Ideally, we would not have modi�ed the jat ode in order to improve the re-usability of the ode developed for this thesis. In fat, we have made a few4 jat is available on the WWW at URL: http://dr.stanford.edu/ABE/JavaAgent.html

5.3. CAPABILITY RETRIEVAL IN JAT 163modi�ations to jat, namely ones to remove bugs or to hange the interfaeslightly. Thus, our ode should still work, for the most part, with jat in itsstandard form. However, while jat is still available on the WWW, it is notsupported anymore and its suessor, JATLite5 is not ompatible with jat andit has not been tested with our agents.5.3.1.1 jat AgentsA jat agent has two groups of funtions it an perform: it an proess kqmlmessages (f. setion 2.1.2.3) and manage di�erent types of resoures.An agent an proess kqml messages in two ways. Firstly, it provides a fun-tion sendMessage whih takes a kqml message and transmits it to the reeivernamed in the message. Seondly, it starts a separate thread that onstantly mon-itors the soket assoiated with this agent for inoming messages. When the agentreeives a message it passes this message to an appropriate interpreter that andeal with it. Both, inoming and outgoing messages are bu�ered to make surethe agent will not be deadloked by the ommuniation with other agents. kqmlmessages are treated as resoures in jat and will be desribed in more detail insetion 5.3.1.2.Apart from sending and reeiving messages an agent also manages a set ofresoures. Any Java lass an be managed as a resoure by an agent. Theresoure manager of an agent will just assoiate the URL where this lass anbe obtained with the lass name. For some speial resoure lasses the resouremanager does more than this though. For example, a speial type of resoure isan interpreter that an deal with messages reeived by the agent. Other speialtypes of resoures are languages and addresses. Resoures will be desribed inmore detail below.When a jat agent is reated it �rst attempts to initialise itself. For thispurpose, it is given a �le as one of its parameters whih ontains a number5 See URL: http://java.stanford.edu/ for information on JATLite.

164 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLof kqml messages that the agent will load and interpret before it proesses anyother messages. These messages must provide the agent with all the information itneeds to proess future messages from other agents. For example, a message fromthe initialisation �le might inform the agent where to �nd a ertain interpreter forproessing messages. During the initialisation the agent will also automatiallysend a message to a speial failitation agent telling it this agent's name andaddress.One speial agent that is de�ned as part of jat is this failitation agent:the Agent Name Server (ans). The purpose of this agent is to assoiate agentaddresses with names and provide this information to other agents on request.5.3.1.2 jat ResouresOne of the most important resoure types managed by an agent is the inter-preter. When an agent reeives a kqml message it extrats the ontology slotvalue from this message and asks the resoure manager whether an interpreterfor this ontology is known. In other words, the ontology of a message determ-ines the interpreter this message will be passed on to in jat. Note that this isa rather unusual notion of ontology (f. setion 2.3.2). If the resoure managerknows of an interpreter lass that is assoiated with the given ontology then anew interpreter of this type will be reated in a separate thread, and the messagewill be given to this interpreter objet for proessing. For this purpose, everyinterpreter provides a funtion interpretMessage that takes a kqml messageand an agent, the reeiver of this message, as arguments. Note that by reatinga new interpreter as a separate thread for every message reeived, no messagean deadlok the agent. Unfortunately it also means that proessing of messageshappens in parallel, i.e. not neessarily in the order in whih they are reeived.One interpreter de�ned in jat whih is known to every agent by default isthe AgentInterpreter. Messages that name the ontology agent will be passedto this interpreter. The reason this interpreter must be provided to every agent

5.3. CAPABILITY RETRIEVAL IN JAT 165is simply due to the fat that all agents must be able to interpret messages fromthe initialisation �le. The messages this interpreter understands are all relatedto the management of resoures. Messages to this interpreter must have theperformative evaluate and the ontent language must be kqml. A numberof di�erent performatives are allowed for the ontent kqml message, the mostimportant is tell-resoure with whih the resoure manager of the reeivingagent an be informed of the name and loation of a new resoure, for example,an interpreter lass.Other types of resoures are addresses and languages. Addresses are assoiatedwith agent names so that kqml messages an just name the reeiver of themessage and the funtion sendMessage an retrieve the agent's address from theresoure manager. kqml messages also allow the naming of the language thatis used in the ontent of a message and languages are also resoures managedby an agent. Notie that dl uses the same mehanism and thus, an also usethe resoure manager to retrieve unknown languages. Every language provides afuntion parseString whih takes a string and parses it into an objet that isan instane of this language lass.6 Note that it is up to the interpreter to allthis funtion to parse the ontent of a given kqml message.One of the languages provided with jat is kqml (f. setion 2.1.2.3) andevery agent knows about this language by default, just like it knows about theAgentInterpreter for muh the same reasons. A kqml message in jat onsistsessentially of a performative and a number of �eld-value pairs. The performativean be an arbitrary name, i.e. it is not restrited to the prede�ned performatives inthe kqml de�nition [Labrou and Finin, 1997℄. Field names an also be arbitrary,but every omplete kqml message must ontain at least the following: :sender,:reeiver, :ontology, :language, and :ontent. The support for further �eldnames in jat's implementation of kqml is rather limited.6 Those who have used objet-oriented programming languages like Java will know that reatinga new objet in this way is not possible, and the implementation of this funtionality is infat rather messy.

166 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL5.3.2 The dl InterpreterIn our implementation the broker is an ans that knows about an interpreterthat deals with all apability brokering related messages, the dl interpreter. Injat inoming messages are passed on to an interpreter aording to the ontologynamed in the message. kqml messages that name the ontology apabilities arepassed to a new dl interpreter for proessing. A dl interpreter understandsmost of the kqml brokering performatives desribed in table 2.1. The onlydi�erene is that the ontent must be in dl rather than kqml.5.3.2.1 Loading an Ontology of AtionsOne additional performative provided by the dl interpreter is load-ontologywhih an be used to tell the broker about an ontology of ations. Desriptionsof apabilities and tasks as performable ations an inherit from this ontologyof ations one it has been loaded by the broker. Note that this ontology isnot an ontology in the jat sense, i.e. it is not an interpreter. The ontent of aload-ontology message should be the URL pointing to the ontology. On reeiptof this message the dl interpreter will open the URL and read a number ofdl expressions desribing apabilities. For eah dl expression read, the brokerparses this expression into an objet of type dl desription and assoiates thisobjet representing a apability desription with its ation name in a hash tablefor future referene.5.3.2.2 Capability AdvertisementsOne the broker is initialised and has loaded the ontology it is ready to reeivethe apability advertisements from the psas. Messages advertising apabilitiesmust be addressed to the dl interpreter by naming the ontology apabilities,and they must have the performative advertise. The ontent of suh a messagemust be a kqml message again, the message the advertising agent laims it anproess. The performative of this ontent must be either ahieve or perform

5.3. CAPABILITY RETRIEVAL IN JAT 167funtion reommendOne(A, T)for 2 V Cif subsumes(, T)sendMessage("forward ...")returnsendMessage("sorry ...")
Figure 5.10: Essential Capability Retrievaland its ontent must be a dl expression. The performative should be ahieveif the dl expression desribes a apability as an ahievable objetive, and itshould be perform if the dl expression desribes a performable ation. Notethat perform is not a standard kqml performative.On reeipt of suh a message the dl interpreter will extrat the dl ex-pression from the message, parse it into an objet of type dl desription, andadd it to the list of apabilities known to this broker. Storing apabilities in aat list is obviously ineÆient for retrieval. However, as it was beyond the sopeof this thesis to develop a large number of agents, we have hosen this simplerepresentation. Saling issues are disussed in setion 6.3.5.3.2.3 BrokeringThe brokering performatives provided by the dl interpreter are fairly similar.All of them provide essentially the funtionality assoiated with the performat-ive reommend-one. On reeipt of a message with this performative the dlinterpreter alls the funtion reommendOne whih is given as pseudo ode in�gure 5.10.This funtion takes two arguments: A, the agent seeking the apability; andT , the dl desription of the problem the apability is being sought for. Thefuntion reommendOne will go through the vetor of all the apability desrip-

168 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLtions that have been advertised previously, represented in the algorithm as V C,and tests for eah apability whether it subsumes the given task T . If so, a mes-sage forwarding the apability holding agent's apability desription will be sentto A. If no subsuming apability was found the funtion sends a message to Aindiating that no agent apable of solving the given problem was found.If the performative of the apability seeking message was reommend-allthen the funtion reommendAll will be alled by the dl interpreter. This is likereommendOne, only that it does not return after the �rst mathing apability hasbeen found. Instead it will keep forwarding all mathing apability desriptionsto A, followed by a message indiating the end of this stream of messages. If nomathing apabilities were found only one message to that e�et will be sent.In analogy to reommendOne and reommendAll the dl interpreter has twofuntions brokerOne and brokerAll whih are alled for messages with the per-formatives broker-one and broker-all respetively. Aording to the kqmlspei�ation, the only di�erene between reommending and brokering should bethat, instead of forwarding the apability desription to the apability seeker, thebroker manages the solution of the problem. This is done by sending the ontentof the mathing apability advertisement to the apability advertiser.Our implementation of brokerOne does more than the above though. If thebroker fails to �nd a single agent that has a apability that subsumes the giventask, the broker will attempt to �nd a plan involving the apabilities of severalagents that an address the desribed problem. The planner is a rather simple,snlp-like, partial-order, ausal link planner [MAllester and Rosenblitt, 1991℄,implemented in Java. The task's input onstraints and output onstraintsare used to speify the problem and apabilities are translated into operatorshemata. However, preonditions and e�ets of operators are limited to listsof literals and any apability desription from whih these annot be extrated,e.g. beause it uses a state language whih is too powerful, it annot be trans-formed into an operator shema.

5.3. CAPABILITY RETRIEVAL IN JAT 169The reason why this planning is only implemented for the broker-one per-formative is simply that reommendation-based performatives expet an agentapability as reply, not a plan. One a plan has been generated by the dl in-terpreter, the broker ould proeed by managing the exeution of this plan anddealing with various problems that might our during the exeution until thegiven problem has been solved. However, as this is beyond the brokering problemaddressed in this thesis, we have hosen not to implement the plan exeutionphase.75.3.3 An Example: The Flexibility SenarioWe will now look at the messages neessary to implement the exibility senario(example 3.3) to illustrate what was disussed above. All the messages listedare from the broker's perspetive and are taken from its trae. The �rst set ofmessages are the ones the broker reeives from its initialisation �le. The �rst ofthese messages is the same for all agents, telling them the �xed address of thebroker:(evaluate:sender init-file:ontent(tell-resoure:type address:name ANS:value hera.dai.ed.a.uk:5001):ontology agent:reeiver ANS:language KQML)This message is somewhat superuous for this agent, but it is sent all thesame in jat. The next message is more interesting, telling the broker the loa-tion of the Java lass for dl interpreters and assoiating them with the nameapabilities:7 For a brief review of work related to planning agents and plan exeution see setion 2.3.4.

170 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL(evaluate:sender init-file:ontent(tell-resoure:type interpreter:name apabilities:value (http://www.dai.ed.a.uk/students/gw/jat/lassesJavaAgent.resoure.dl.CDLInterpreter)):ontology agent:reeiver ANS:language KQML)Now the broker knows about the dl interpreter and an proess messagesthat mention the ontology apabilities. The next message, however, mentionsthe ontology agents, i.e. it is for the AgentInterpreter again, and tells the brokerwhere to �nd another resoure, namely the state language we have been using inmost dl expressions:(evaluate:sender init-file:ontent(tell-resoure:type language:name fopl:value (http://www.dai.ed.a.uk/students/gw/jat/lassesJavaAgent.resoure.fopl.FOPLFormula)):ontology agent:reeiver ANS:language KQML)The last message from the initialisation �le for the broker is atually a messageto the dl interpreter. With this message the broker is told to load an ationontology from the given URL:(load-ontology:sender init-file:ontenthttp://www.dai.ed.a.uk/students/gw/jat/s/ations.dl:ontology apabilities:reeiver ANS:language URL)The ontology that is being loaded ontains only one apability desription,the one for the moving ation mentioned above. As this apability desription

5.3. CAPABILITY RETRIEVAL IN JAT 171plays no role in the exibility senario, we will not repeat it here. However, itis worth noting that this apability uses the state language made known to thebroker in the previous message, i.e. this message was atually neessary at thispoint.Now the broker is ready to reeive apability advertisements from the variouspsas. The �rst agent to advertise its apability in this senario is the h1-agent,but before the apability advertisement is sent, it has to tell the broker its address:(evaluate:sender h1:ontent(tell-resoure:type address:name h1:value hobby.dai.ed.a.uk:38197):ontology agent:reeiver ANS:language KQML)This message is followed by the apability advertisement. The rather lengthyappearane of this message is due to the fat that this message ontains all wrap-per layers omitted in previous desriptions.(advertise:sender h1:ontent(ahieve:reeiver h1:ontology OPlan:language CDL:ontent(apability:state-language lits:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person Hospital1)):output-onstraints ((not(Is ?person Injured))))):ontology apabilities:reeiver ANS:language KQML)

172 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLNote that this apability advertisement names the state language as lits.When the dl interpreter gets this message, extrats the string representing thedl expression, and attempts to parse it, it will ask the resoure manager ofthe broker for this language. A language named lits, however, is unknown tothe broker at this point and thus, the broker will send a message to the agentadvertising the apability using this language value to inquire where to �nd thislanguage:(evaluate:sender ANS:ontent(ask-resoure:type language:name lits):ontology agent:reeiver h1:language KQML)Next the h1-agent, whih advertised the apability and thus presumablyknows where the language alled lits an be found, sends this language's URLto the broker:(evaluate:sender h1:ontent(tell-resoure:type language:value (http://www.dai.ed.a.uk/students/gw/jat/lassesJavaAgent.resoure.fopl.LitLObjet):name lits):ontology agent:reeiver ANS:language KQML)This onvenient handling of languages as resoures is one of the prime featuresof dl and ontributes to its exibility.The next messages are from the h2-agent informing the broker of this agent'saddress and advertising its apability. To keep this example short, we will onlyrepeat the ontent of the apability advertisement here:

5.3. CAPABILITY RETRIEVAL IN JAT 173(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or (Has Loation ?person Abyss)(Has Loation ?person Barnale)(Has Loation ?person Exodus))):output-onstraints ((not(Is ?person Injured))))The �nal agent to advertise its apability in this senario is the new agent,the ambulane servie. Again, we have omitted the message telling the brokerthe as-agent's address and give only the ontent of the apability advertisementhere:(apability:state-language lits:input ((InjuredPerson ?person)(From ?p1)(To ?p2)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person ?p1)):output-onstraints ((not(Has Loation ?person ?p1))(Has Loation ?person ?p2)))Next, the pp-agent tells the broker its address, and this message is followedby a request to manage the solution of the desribed problem:(broker-one:sender pp:ontent(task:state-language lits:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not(Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)

174 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLNote that the performative here is broker-one. When the dl interpretergets this message it will �rst try to �nd one agent that an solve the desribedproblem. For this purpose it will test for eah apability it knows about todetermine whether it subsumes the given task. The apability desription of theh1-agent will fail beause of its last input onstraint:(Has Loation JohnSmith Hospital1)This input onstraint annot be satis�ed by the input onstraints in the taskdesription. The next apability tested is that of the h2-agent. Again, thisapability fails on one of its input onstraints:(OR (Has Loation JohnSmith Abyss)(Has Loation JohnSmith Barnale)(Has Loation JohnSmith Exodus))The problem here is that John Smith, the injured person, is loated in Delta.The �nal apability tested is that of the as-agent whih fails on the output mathondition. Sine no apability subsuming the problem ould be found, the dlinterpreter will attempt to plan. The �rst step towards planning is the generationof operator shemata from the apability desription. The apability of the h1-agent an be transformed into the following operator:(op [?person_3℄:preonds [(elt ?person_3 Person),(Is ?person_3 Injured),(Has Loation ?person_3 Hospital1)℄:effets [(NOT (Is ?person_3 Injured))℄)The transformation of the h2-agent's apability into an operator fails beauseof its disjuntive input onstraints. Thus, the h2-agent's apability annot bepart of the plan. Finally, the transformation of the as-agent's apability into anoperator sueeds:

5.3. CAPABILITY RETRIEVAL IN JAT 175(op [?person_5, ?p1_6, ?p2_7℄:preonds [(elt ?person_5 Person),(Is ?person_5 Injured),(Has Loation ?person_5 ?p1_6)℄:effets [(NOT (Has Loation ?person_5 ?p1_6)),(Has Loation ?person_5 ?p2_7)℄)The next step is the generation of an initial partial plan from the problemdesription. This will sueed as the problem desription is straight-forward.This inomplete plan will then be ompleted by the snlp-like planner and again,this will be suessful. The resulting plan is the rather trivial ation sequene ofgetting the injured person to the seond hospital and then instruting the seondhospital to treat the injured person.5.3.4 Problems with jatWhile we feel that using jat for the implementation of our agents has savedonsiderable e�ort, it also brought with it some problems. This is only to beexpeted though as jat is only intended to be a researh vehile. One of theproblems with jat is rooted in the way the lass Language is implemented. Alllanguages managed by a jat agent's resoure manager must be derived from thislass. However, due to the non-abstrat implementation of this lass in Java, notevery lass an be derived from the jat Language lass. Ultimately this may leadto mismathes during brokering as the reetive reasoning may not �nd ertainfuntionality required in the subsumption test. We shall return to an examplewhere this problem atually ourred in setion 6.2.Another potential problem with jat lies in the way reeived messages areproessed. To prevent deadloks messages are proessed in parallel. However,there are situations when this is not desirable. For example during the initialisa-tion of an agent, it reeives several messages from the initialisation �le (f. se-tion 5.3.1.1). One of these messages tells it where to �nd a given interpreter and

176 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDLa subsequent message is direted to this interpreter. Proessing these messagesout of order would lead to failure, but with parallel message proessing there isno guarantee that these messages will be proessed in order. This never auseda problem during our experiments though.Another potential problem is the way the resoure manager loads Java lassesas resoures from remote hosts. This onstitutes a major seurity risk. Laterversions of jat are addressing this problem, but are not ompatible with theversion we have used. Finally, as already mentioned, jat is a researh vehileand the lak of robustness has aused oasional problems.

5.3. CAPABILITY RETRIEVAL IN JAT 177SummaryIn this and the previous hapter we desribed our apability desription languageand several algorithms to reason over this language. Basi apabilities are de-sribed in terms of ahievable objetives in dl (f. setion 4.2). The algorithmthat tests whether suh a apability an be used to address a problem is basedon the notion of apability subsumption as de�ned in setion 5.1. An alternativeto desribing apabilities in terms of ahievable objetives is to desribe them asperformable ations and an extension of dl to deal with this notion is desribedin setion 4.3. Reasoning over suh apabilities is performed through instanti-ation (f. setion 5.2.3). A �nal feature of the language onerns agent properties.Both, representation and algorithms have been extensively illustrated using theexamples from the senarios presented in hapter 3. Thus, the de�nition of dland desription of the algorithms used by our broker to reason about apabilitiesis now omplete.

178 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

Chapter 6Further Experiments and Results
At this point we have de�ned dl, an expressive and exible ationrepresentation that an be used to represent and reason about apabil-ities of intelligent agents. Our aim in de�ning this formalism was toaddress the problem of apability brokering. The next step will be toondut further experiments with the broker by exploring variations onthe senarios desribed in setion 3.3. The ontribution of this hapterwill be a summary of the pratial results ahieved in this thesis.Ideally, an evaluation of dl and our broker would involve the implementa-tion of a large number of di�erent senarios, with agents that have interestinglydi�erent apabilities and whih require a number of interestingly di�erent statedesription languages that the broker does not initially know. Furthermore, thebroker should not only be equipped with just the urrent mehanisms we de-sribed in this thesis to address given problems (�nding a single agent or �ndinga plan). Only if dl and our broker proved �t in suh a wide range of senariosould we laim that we have ahieved the goal of providing a generi apabilitydesription language and broker suitable for all possible eventualities. However,suh an e�ort is beyond the sope of this thesis. Furthermore, there are limita-tions to dl we are aware of, some of whih we have pointed out throughout thisthesis and some of whih we will disuss as possible extensions in setion 10.1.179

180 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSWhile an exhaustive evaluation of dl and our broker is not possible in thisthesis, we an modify the existing senarios to provide us with further interestingand relevant examples. Sine these variations were not diretly onsidered duringthe design and implementation of dl and the broker, they onstitute a limitedbut worthwhile evaluation of the generality and robustness of the language and thebrokering mehanisms. The initial senario was only meant to illustrate the basiommuniation and thus, we shall only onsider variations of the more interestingsenarios in this hapter, i.e. the expressiveness and exibility senarios.6.1 Variations on the Expressiveness SenarioIn this setion we will present further interestingly di�erent variationsof the expressiveness senario (example 3.2) to illustrate the generalityof our broker as well as some limitations.To keep the evaluation hallenging we will mainly look at minor variations ofthe problem desription in the expressiveness senario that should result in majorhanges in the behaviour of the broker, i.e. in failure or suess in retrieving anappropriate psa. The underlying assumption here is that, if the broker an opewell with minor di�erenes in the problems, then it will also be able to distinguishproblems with major di�erenes. In fat, the two parts of the problem in theinitial senario, the broken generator and the injured person, represent problemswith major di�erenes and our broker oped with these easily.In the expressiveness senario (f. setion 3.3.1) the two hospitals have di-vided the island suh that eah hospital only deals with emergenies in its half.Barnale, however, whih lies between the two hospitals, is served by both. Theseonditions are expressed as disjuntive input onstraints in the apability desrip-tions of the two hospitals. Additionally, the seond hospital has an input on-straint expressing that it needs snow hains if there is ie or snow on the roads.As the apability desription for this hospital is essential for this evaluation, it isrepeated here from setion 4.5.1:

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 181(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or (Has Loation ?person Abyss)(Has Loation ?person Barnale)(Has Loation ?person Exodus))(implies (or (on Road Ie)(on Road Snow))(have Ambulane SnowChains))):output-onstraints ((not (Is ?person Injured))))The part of the problem onerning the injured person was ommuniated tothe broker by the pp-agent with the following message (f. setion 4.5.1):(reommend-all:sender pp:ontent(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not (Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)This message asks the broker to reommend all agents that an deal with theproblem desribed. In this problem, there is an injured person to be treated, andthe loation of this person is Delta. In response to this message the broker will�rst reommend the h1-agent, whih is the only hospital dealing with patients inDelta, by forwarding its apability desription to the pp-agent.1 The seond mes-sage with whih the broker will reply to the above request is a message indiatingthat it will reommend no further agents:1 We will not inlude messages forwarding apability desriptions here as these are ratherlengthy and do not add to the evaluation.

182 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS(eos:sender ANS:ontology agent:reeiver pp)The performative eos is short for \end of stream", a standard kqml perform-ative, indiating that this is the last in a stream of messages.There are two relatively trivial variations on this problem we want to onsidernext. Firstly, we an ask the broker to reommend one agent that an solve theproblem but we omit the input-onstraint whih requires the person to atuallybe injured. This results in the following problem desription:2(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Has Loation JohnSmith Delta)):output-onstraints ((not (Is JohnSmith Injured))))In reply to this problem the broker only sends one message whih indiatesthat there is no problem-solving agent (psa) that an solve this problem:(sorry:sender ANS:ontology agent:reeiver pp)Like the eos performative, the sorry performative is a standard kqml per-formative. It is sent in reply to a request for whih no satisfatory answer ouldbe found. Here, it indiates that no psa with appropriate apabilities is known tothe broker. This reply might perhaps be a little surprising as the goal, JohnSmithnot injured, is easily ahieved given that he is not injured in the �rst plae. How-ever, both hospitals state as an input onstraint that the given person must beinjured and thus, their apabilities are not appliable.2 For brevity, we shall omit the outer part of the problem-desribing messages in this setion.The performative used will be mentioned in the paragraph preeding the problem desription.

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 183The seond rather trivial variation is one where we ask the broker to reom-mend one agent that an make the given injured person injured, i.e. we drop thenegation in the output onstraint:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((Is JohnSmith Injured)))Again, one might suspet that every agent should be apable of not ausinga hange, but no agent in this senario has advertised a apability that has amathing output onstraint and thus, the broker will reply with a sorry messageagain.Apart from these trivial variations, the most obvious interesting variation onthe expressiveness senario is the loation of the injured person. Due to the waythe island is split between the two hospitals, the plaes of interest are Calypso orDelta, whih are only served by the h1-agent, Abyss or Exodus, whih are onlyserved by the h2-agent, and Barnale, whih is served by both hospitals. Wehave already desribed the behaviour of the broker for the Delta ase. Thus, weshall move the injured person to Exodus next and ask the broker to reommendall agents that an deal with this problem. We shall also add input onstraintsto the problem to aount the e�et of the onditional input onstraint of theh2-agent's apability. The resulting problem desription is as follows:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Exodus)(on Road Snow)(have Ambulane SnowChains)):output-onstraints ((not (Is JohnSmith Injured))))

184 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSIn reply to this message the broker �rst forwards the apability desriptionof the h2-agent to the pp-agent, thereby indiating that this agent is apable ofsolving the given problem. The seond message from the broker is an eos messageindiating that no other psas with the desired apabilities ould be found. Aswe would expet, the �rst hospital is not mentioned in the replies as it does notdeal with patients in Exodus.The third interestingly di�erent option for the loation of the injured per-son in this senario is Barnale. Again, we shall inlude the input onstraintswhih aount for the onditional input onstraint of the h2-agent in the prob-lem desription and ask the broker to reommend all agents apable of solvingthis problem:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Barnale)(on Road Snow)(have Ambulane SnowChains)):output-onstraints ((not (Is JohnSmith Injured))))In reply, the broker �rst forwards the apability desription of the �rst hos-pital, then the apability desription of the seond hospital, and �nally, it sendsan eos message onluding its reply. Notie that the appliability of the �rsthospital's apability is not a�eted by the additional input onstraints in theproblem desription.The next group of interestingly di�erent variations onern the onditionalinput onstraint of the seond hospital. To begin with a simple example, let thepatient be at Exodus, let the ambulane have snow hains, and let there be both,ie and snow on the road. Now we an ask the broker to reommend one agentfor this problem:

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 185(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Exodus)(on Road Snow)(on Road Ie)(have Ambulane SnowChains)):output-onstraints ((not (Is JohnSmith Injured))))Our broker does not get onfused by the fat that both onditions of the h2-agent's onditional input onstraint are satis�ed and orretly reommends thisagent to the pp-agent.The next variation we have onsidered omits all information about the presentroad onditions, i.e. we have deleted the respetive input onstraints from theproblem desription to the broker. Thus, we have asked the broker to reommendall agents that are apable of addressing the following problem:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Barnale)(have Ambulane SnowChains)):output-onstraints ((not (Is JohnSmith Injured))))In this ase the broker �rst reommends the h1-agent whih serves Barnaleand is una�eted by the road onditions anyway. Next the broker reommendsthe h2-agent. The reason for this is simply that the availability of snow hainssuÆes to show that its onditional input onstraint will be satis�ed. Finally, thebroker sends the eos message as before. If we move the patient to Exodus andask the broker to reommend one psa, the broker orretly replies by forwardingthe h2-agent's apability desription only.As an alternative to omitting information about the road onditions, we shallnow onsider the ase where we do not provide snow hains to the ambulane.

186 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSThe problem desription does, however, mention that there is snow on the road.Again, we ask the broker to reommend all agents for the following problemdesription:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Barnale)(on Road Snow)):output-onstraints ((not (Is JohnSmith Injured))))For this problem the broker only reommends the h1-agent, followed by aneos message. The reason for this is that the onditional input onstraint ofthe h2-agent auses its apability to be inappliable for the problem desribed.Similarly, if we move the patient to Exodus and ask the broker to reommend oneagent that an address this problem, the reply by the broker is a sorry message.However, if we hange the road onditions by providing the information thatthere is neither ie nor snow on the road, i.e. if we negate the respetive inputonstraints in the problem desription, the broker will orretly reommend theh2-agent by forwarding its apability desription to the pp-agent.Finally, we shall return to the senario in whih we do not provide informationabout the road onditions in the problem desription, and neither do we mentionthe availability of snow hains. Thus, we will ask the broker to reommend allagents that an deal with the following problem:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Barnale)):output-onstraints ((not (Is JohnSmith Injured))))The reply by the broker to this request might seem a little surprising at �rst:it only forwards the apability desription of the h1-agent followed by an eos

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 187reommend loation snow hains other replyall Delta no no - h1, eosone Delta no no not injured sorryone Delta no no make injured sorryall Exodus yes yes - h2, eosall Barnale yes yes - h1, h2, eosone Exodus yes yes - h2one Exodus yes yes ie h2all Barnale no yes - h1, h2, eosone Exodus no yes - h2all Barnale yes no - h1, eosone Exodus yes no - sorryone Barnale no no no snow or ie h2all Barnale no no - h1, eosall Exodus no no - sorryTable 6.1: Variations on the expressiveness senariomessage. Similarly, if we move the patient to Exodus, the reply will be a sorrymessage. The reason for the inappliability of the h2-agent's apability is theonditional input onstraint: if no snow hains are available, the broker has toprove that there is neither snow nor ie on the road in order to show that theapability is appliable. This annot be shown here. The underlying reason forthis behaviour is that our implementation of the state language used, fopl, doesnot adopt the losed world assumption, i.e. the fat that we have not mentionedthat there is snow on the road only means that we do not know whether there issnow or not. Given that the weather onditions on our island are often bad thisbehaviour is appropriate.The variations on the expressiveness senario that have been desribed inthis setion are summarised in table 6.1.3 The �rst olumn indiates whetherthe performative was reommend-one or reommend-all. The seond olumngives the loation of the injured person. The third and fourth olumn indiatewhether (on Road Snow) and (have Ambulane SnowChains) were spei�ed as3 The order of the table rows reets the order in whih variations have been desribed in thissetion.

188 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSinput onstraints in the problem desription. The �fth olumn indiates any othervariations that might have been spei�ed, the details of whih were desribed inthe above disussion. The �nal olumn gives the replies by the broker, where\h1" stands for the forwarding of the h1-agents apability desription, et.In summary, it an be said that we were quite satis�ed with all the responsesgenerated by the broker. Furthermore, all of these messages were generated inone session, indiating some robustness of the implementation.

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 1896.2 Variations on the Flexibility SenarioIn this setion we will present further interestingly di�erent variationsof the exibility senario (example 3.3) to illustrate the generality ofour broker as well as some limitations.In the exibility senario (f. setion 3.3.2), the apability advertised by theh1-agent was hanged suh that the �rst hospital ould only treat patients atthe hospital, i.e. patients annot be transported to the hospital. The h2-agentstill only treats patients in Abyss, Barnale, or Exodus, but its onditional inputonstraint has been dropped for this senario. Finally, a new psa was introduedin this senario: the ambulane servie. The apability advertised by the as-agent is that it an transport patients from any plae on Pai�a to another, inpartiular, to a hospital.One of the most interesting message exhanges in this senario takes plaebefore the pp-agent asks the broker for any help, namely when the h1-agentadvertises its apability (f. setion 4.5.2):(advertise:sender h1:ontent(ahieve:reeiver h1:ontology OPlan:language CDL:ontent(apability:state-language lits:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person Hospital1)):output-onstraints ((not (Is ?person Injured))))):ontology apabilities:reeiver ANS:language KQML)

190 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSAt this point the broker sees the state language named lits for the �rst time.This is a very important point in this senario, as it illustrates the exibilityof dl. Sine the broker does not know this language it sends a message tothe apability advertiser, the h1-agent, asking it where to �nd the language inquestion; lits in this example:(evaluate:sender ANS:ontent(ask-resoure:type language:name lits):ontology agent:reeiver h1:language KQML)In reply to this request from the broker, the h1-agent supplies the Java lassthat orresponds to the state representation language lits, whih is managedas a resoure of type language by the h1-agent's resoure manager as explainedin setion 5.3.1. The atual message supplies the URL of the Java lass to thebroker:(evaluate:sender h1:ontent(tell-resoure:type language:value (http://www.dai.ed.a.uk/students/gw/jat/lassesJavaAgent.resoure.fopl.LitLObjet):name lits):ontology agent:reeiver ANS:language KQML)On reeipt of this message the broker will attempt to load the lass and thenontinue interpreting the apability advertisement of the h1-agent. To reatevariations of this senario that would result in a di�erent exhange of messagesat this point, it would be neessary to implement further state representationlanguages, as eah resoure will only be requested one by the broker. We have

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 191implemented only two di�erent state languages, so no interesting variations anbe generated at this point.We an, however, vary the problem desription as we did for the expressive-ness senario above. For example, up to now we have disussed only problemdesriptions based on the broker-one performative in the exibility senario.The reommendation performatives used in the other senarios also work here.For example, the following message from the pp-agent uses the performativereommend-one:(reommend-one:sender pp:ontent(task:state-language lits:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints((not (Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)The broker does not know of any single agent whih an deal with this prob-lem. This is mainly due to the loation of the patient at Delta and the inabilityof the broker to plan a solution, beause the performative used is reommend-one(f. setion 5.3.2.3). Thus, the broker has to reply with a sorry message:(sorry:sender ANS:ontology agent:reeiver pp)As for the expressiveness senario, we may generate variations of this problemby moving the patient to another loation. We have tested this variation withBarnale and Exodus, still using the reommend-one performative. In both asesthe broker orretly responds by forwarding the apability desription of the h2-agent to the pp-agent.

192 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSUsing the reommend-one performative is not very interesting as far as ex-ibility is onerned. Thus, we shall now return to the broker-one performativewhih opens the possibility for the broker to plan solutions. Only with thisperformative an we hope to illustrate exibility. As broker-one will be theperformative for all remaining messages we shall, as before, drop the outer partof the messages. Again, the �rst set of variations are onerned with the loationof the patient. This was Delta in our original example:(task:state-language lits:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not (Is JohnSmith Injured))))The reasoning proesses whih the broker will go through on reeipt of thismessage have been disussed and explained in detail in setion 5.3.3. Essen-tially, the broker fails in its attempt to �nd a single agent that an deal with thedesribed problem as is and thus attempts to generate a plan involving the apab-ilities of several agents. This sueeds and the plan onsists of �rst transportingthe patient to the �rst hospital and then treating him there.Loating the injured person at Barnale or Exodus results in quite di�erentbehaviour for the broker. In both of these ases the broker an �nd a singleagent that an solve the whole problem, the h2-agent. Thus, the broker will notattempt to �nd a plan to solve the given problem. Instead of forwarding theh2-agent's apability desription to the pp-agent, however, the broker now asksthe h2-agent to solve the given problem. This is due to the performative beingbroker-one, whih asks the broker to manage the solution of the problem, evenif there is a single agent apable of solving the whole problem. Thus, the brokersends the following message to the h2-agent:

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 193(ahieve:sender ANS:ontent(task:state-language lits:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Barnale)):output-onstraints ((NOT (Is JohnSmith Injured)))):ontology OPlan:reeiver h2:language CDL)As a �nal variation, we have onsidered the ase where the loation of theinjured person is Hospital1. The hardly surprising result of this hange is thatthe broker �nds the h1-agent as the problem solver apable of takling the givenproblem and sends it a message virtually idential to the one above, exept forthe loation of the patient and the reeiver.Another interesting variation of this senario whih was not explored in theexpressiveness senario is to hange the state language in the problem desription.In the original version of the problem only onjuntions of literals are used andthe aording state language spei�ed was lits. Sine this is a subset of �rst-order logi we may hange the spei�ation of the state language to fopl. Forthe original problem this results in the following desription:(task:state-language fopl:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not (Is JohnSmith Injured))))The result of this variation is rather interesting: the broker replies to thepp-agent with a sorry message, i.e. it fails to help with the desribed problem.Clearly, the broker annot �nd a single agent that an solve this problem as

194 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSperformative loation state language responsereommend-one Delta lits sorryreommend-one Barnale lits forward h2reommend-one Exodus lits forward h2broker-one Delta lits plan: as, h1broker-one Barnale lits h2broker-one Exodus lits h2broker-one Hospital1 lits h1broker-one Delta fopl sorrybroker-one Barnale fopl h2broker-one Exodus fopl h2broker-one Hospital1 fopl h1Table 6.2: Variations on the exibility senarioit is only the state language that has been hanged from the original problemdesription, not the problem itself. But in this version the broker subsequentlyfails to �nd the planned solution. Given that reetion is used to reason aboutwhether ertain inferenes over the state language expressions need to be madeor not, this result is perhaps surprising. Even a loser inspetion of the algorithmdoes not reveal why planning fails for this problem. In fat, the problem here liesin the implementation of jat, whih requires all languages whih are managedby a jat agent's resoure manager to inherit from a lass provided by jat. Theatual problem is rooted in the way this jat lass is implemented and annot behanged easily (f. setion 5.3.4).Less interesting or less surprising are the results of hanging the loation ofthe injured person to Barnale, Exodus, or Hospital1. In all of these ases theresponses by the broker are the same as those for the ase with lits as the statedesription language.The variations of the exibility senario that have been desribed here aresummarised in table 6.2. The �rst olumn indiates whether the performativewas reommend-one or broker-one. The seond olumn gives the loation of theinjured person. The third olumn names the state language spei�ed. The �nal

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 195olumn indiates how the broker responded to the given problem. Details aredesribed and disussed above.In summary, it an be said that we were again satis�ed with all the repliesgenerated by the broker. The only exeption was the example involving the statelanguage spei�ed as fopl and the patient in Delta, but the underlying problemis rooted in jat and is not indiative of a limitation in our thesis approah.

196 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS6.3 Performane IssuesIn this setion we will reet on some performane issues: how ex-pressiveness and exibility a�et broker performane and how our ap-proah might sale up if the number of problem-solving agents wasinreased drastially.The �rst question regarding performane issues we have to answer is, of ourse,how fast the broker atually replies to a request by the problem holder. Unfor-tunately this question is also rather diÆult to answer. We have implementedall the agents and senarios desribed in this thesis, but they are rather small innumber and thus, a generalisation might be questionable. However, developing alarge number of agents and senarios was beyond the sope of this thesis.For the senarios we have tested, the response times for the brokerto �nd an appropriate problem solver were virtually instantaneous inall examples.The broker, the problem-solving agents, and the problem-holding agent areall implemented in Java [Ekel, 1997, Campione and Walrath, 1998℄ using theJava Agent Template (f. setion 5.3.1). The broker was running on a Sun Sparstation 5 for all senarios and the various other agents were run on additional Sunson the same LAN. Thus, the response time of the broker inludes the time forommuniation between the di�erent mahines, the loading of new Java lassesat run time, and the atual retrieval of a apability performed by the broker.Of these, the apability retrieval time is the most interesting for us and we shallanalyse this in more detail next.6.3.1 Complexity of Capability SubsumptionAt the heart of apability retrieval is the apability subsumption test and thus,we shall now have a loser look at the omplexity of the algorithm performing

6.3. PERFORMANCE ISSUES 1971: outKB new KnowledgeBase(SC)2: for 2 fCCO1; : : : ; CCOlCg do3: assert(outKB,)4: � evaluate(outKB, CTO1 ^ : : : ^ CTOlT , fv1; : : : ; vhg)5: if � is unde�ned then6: return false7: inKB new KnowledgeBase(SC)8: for 2 fCTI1; : : : ; CTIlT g do9: assert(inKB,)10: for 2 fCCI1; : : : ; CCIlCg do11: if not evaluate(inKB, �()) then12: return false13: return trueFigure 6.1: Basi apability subsumption algorithmthis test. The most basi form of this algorithm, for apabilities desribed asahievable objetives, without input-output onstraints, inheritane, or proper-ties, was desribed in �gure 5.2 in setion 5.1.2.2 and is repeated here for easierreferene in �gure 6.1 with line numbers.The algorithm begins with the reation of an empty knowledge base for theapability's output onstraints (line 1). We will assume that this an be done inonstant time. Similarly, we will assume that the assertion of a single onstraintinto a knowledge base will take onstant time, whih may not always be the asebut is true for our implementation. Thus, asserting all onstraints (lines 2-3)takes linear time in the number of onstraints.In the next step, a sentene representing the onjuntion of the task's out-put onstraints is evaluated against the knowledge base (line 4). Obviously, theomplexity of this operation depends on the state language used and how theinterpreter for the state language performs this test. Normally, one would ex-pet this evaluation to be rather omplex, and thus, expensive. For example,

198 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSour implementation of �rst-order logi uses skolemization and resolution theoremproving [Loveland, 1978℄ to test whether a given sentene follows from the know-ledge base. This operation is so omplex that it annot even be analysed in termsof its time omplexity: the problem is undeidable. However, our implementationavoids this problem by generating only a limited number of lauses. What thismeans for the subsumption test is that there might be apabilities that ould beused to address a given problem, but due to their omplex desription the brokeris unable to show this. We believe this behaviour to be quite reasonable. For theomplexity of the evaluation this means that it an be performed in time expo-nential in the number of literals in the apability and task desription. This timemay be required for the transformation of a formula into skolemized onjuntivenormal form.The seond part of this algorithm is similar to the �rst. It onsists of thereation of a knowledge base (line 7) followed by the assertion of several sentenes(lines 8-9). Then eah of the apability's input onstraints are evaluated in turn(lines 10-12). Again the evaluation is the ruial step here. This gives us thefollowing omplexity result:Let be the number of onstraints involved in the evaluation of task Tagainst apability C. Let the evaluation of a single onstraint againsta knowledge base be O(e(L))4 where L is the language in whih theonstraints are expressed. Then the overall omplexity of the al-gorithm for the basi subsumption test desribed in �gure 5.2/6.1is in O(e(L)).The basi algorithm has been extended in several ways to aount for variousother features of dl. For example, the extension for input-output onstraintsis desribed in setion 5.2.1 and implemented by the algorithm extensions de-sribed in �gures 5.3 and 5.4. The �rst part asserts further onstraints in the4 Note that e(L) may be unde�ned as it would be for unrestrited resolution.

6.3. PERFORMANCE ISSUES 199output knowledge base and the latter performs further evaluations against theinput knowledge base. So far, this does not a�et the overall omplexity of thealgorithm. However, the seond part of the extension also inludes a test ofwhether a given onstraint has been used in the derivation of some sentene. Wewill make the additional assumption here that this test of whether a sentenehas been used in a derivation takes less time than the atual derivation. Thismeans the omplexity of the subsumption algorithm remains unhanged by theextension for input-output onstraints.The next extension onerns the properties whih are e�etively propositionsand thus, ould be handled as onstraints. The extension for the algorithm wasdesribed in �gure 5.5. The subset test mentioned an be performed in time linearin the number of properties. If we ount properties as onstraints, this extensionagain does not a�et the omplexity of the algorithm.The �nal extension deals with apabilities and tasks desribed as performableations. The extension to the basi algorithm was desribed in �gure 5.6 in se-tion 5.2.3. What this adds to the algorithm desribed thus far are two potentialapability instantiations. The algorithm for instantiation of dl desriptions,be they apabilities or tasks, was desribed in �gure 5.7. At the heart of thisalgorithm is the amending of sets of parameter spei�ations (f. �gure 5.8). Letthere be p parameter spei�ations, eah no longer than f symbols. Adding ordeleting parameter spei�ations from a set may take time linear in p and unify-ing two role �llers may require time f 2. Thus, the time omplexity for amendinga set of parameter spei�ations is in O(p(p + f 2)). For simpliity we shall nowassume that f is a onstant limiting the length of parameter spei�ations andthat there are more onstraints in a dl desription than parameter spei�a-tions. Thus, the omplexity for the funtion amend is in O(2) where is thenumber of onstraints involved. This is also the omplexity for instantiating adl desription from a single, other desription. However, in a hierarhy of ap-abilities of depth h a dl desription may inherit from up to h dl desriptions

200 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSdue to the single inheritane mehanism.This gives us the following result for the time omplexity of the �nal version ofthe apability subsumption test given in �gure 5.9 under the assumptions outlinedabove:Let be the number of onstraints involved in the evaluation of taskT against apability C. Let the hierarhy of apabilities on whih Tand C may be based be no deeper than h. Let the evaluation of asingle onstraint against a knowledge base be in O(e(L)) where L isthe language in whih the onstraints are expressed. Then the overallomplexity of the algorithm for the basi subsumption test desribedin �gure 5.9 is in O(e(L)+ 2h).6.3.2 Saling IssuesThe problem with the analysis thus far is that it is only for the performaneof a single subsumption test. We know, however, that suh a test is very fastin pratie and that the parameters that a�et its omplexity are not the onesthat will inrease in a more realisti senario. The parameter that will inrease,presumably by several orders of magnitude, in a more realisti senario is thenumber of problem-solving agents available, and thus the number of apabilitiesthe broker knows about.Our implementation is very ineÆient in this respet. Capabilities are storedin a linear list and when the broker attempts to �nd an agent apable of solving apartiular problem, it goes through this list one by one applying the subsumptiontest one for every apability in the list. For a apability desriptions this resultsin O(a) apability subsumption tests, whih is not satisfatory. The reason whywe have implemented suh a rather trivial algorithm at this point is simply dueto the fat that there are only very few apabilities whih have been desribed tothe broker in our senarios and developing large senarios where the number ofapabilities would make a di�erene were beyond the sope of this thesis.

6.3. PERFORMANCE ISSUES 201Furthermore, there are well known tehniques for addressing this problem,whih is losely related to the problem of memory organisation desribed in[Charniak and MDermott, 1985, page 396℄. The basi approah there is to �ndneessary riteria that an be easily evaluated and whih indiate whether aall to evaluate might sueed. One simple but highly eÆient tehnique is toextrat all the prediates from the output onstraints of a apability desrip-tion. We ould store these in a hash table that assoiates a prediate with allthe apability desriptions using this prediate in one of its output onstraints.Now, a task desription mentioning some prediates in its output onstraintsould only be addressed by a apability whih mentions at least one of theseprediates in its output onstraints. Sine hash table aess is very fast (de-pending on the hash funtion), this method would signi�antly improve theomplexity of our apability retrieval algorithm. Of ourse, there an still bea large number of apabilities mentioning a given prediate, but in this ase onean use the arguments to the prediate that are not variables to re�ne hashing(f. [Charniak and MDermott, 1985, setion 7.2.1℄).Another interesting question one might ask in this ontext is how the express-iveness used in the state language a�ets the performane of apability retrieval.It should be lear at this point that this does not depend on the number ofapabilities the broker knows but only a�ets the time for a single apabilitysubsumption test. Spei�ally, greater expressiveness in the state desriptionlanguage may only inrease the funtion e(L), i.e. the time taken up by the fun-tion evaluate. The exat amount by whih greater expressiveness inreases theomplexity of this funtion depends on the state desription languages in ques-tion. Thus, there is a prie to pay for expressiveness here, but this prie does notdepend on the number of apabilities known by the broker and is no worse thanin any other reasoning task involving the more expressive language.Similarly, we an ask how exibility a�ets the performane of apabilityretrieval. Again, it should be lear that this is not a saling issue as the number

202 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTSof apabilities is independent of their exibility. Flexibility does, however, a�etthe performane of a single apability subsumption test. This is beause ouralgorithm annot rely on the fat that ertain funtionality is atually providedby the state desription language, and thus, it uses reetive reasoning to testfor the existene of this funtionality every time it needs to use it. This takes upa onstant amount of time and is done for every all to evaluate, i.e. the overallost is O() and does not a�et the omplexity of the subsumption test. The onlytime when exibility may make a notieable di�erene in performane is whenthe broker reeives a new apability desription involving a new state languageand this language has to be loaded from a remote host. This may take some time,but obviously does not a�et the apability retrieval time.To summarise, expressiveness is a major fator a�eting the omplexity ofthe apability subsumption algorithm and thus, the apability retrieval time, butexibility auses hardly any inrease in this omplexity. The important parameterwe would expet to sale up is the number of apabilities known to the broker.However, the omplexity of the subsumption algorithm does not depend on thisparameter.

Chapter 7Expressiveness of dl
At this point we have desribed our apability desription languagedl whih an be used to represent the ontent of messages requiredfor apability brokering. We also have shown how dl an be used forapability retrieval. Our aim now is to show that dl has two desirableproperties: it is expressive and exible. The next step towards this goalwill be to desribe what we mean by expressiveness. The ontributionof this hapter will be a desription of our onept of expressivenessof ation representations and its appliation to dl. A omparisonof the expressiveness of dl with that of other ation representationswill follow in setion 9.2.1.7.1 Why more Expressiveness?In this setion we will disuss why expressiveness is one of the prop-erties we want in dl. We will use the more omplex senarios (fromsetion 3.3) to illustrate this point along with providing a more theor-etial argument.Up to this point we have simply assumed that expressiveness is a desirableproperty for our apability desription language. But learly, expressivenessomes at a prie: usually the omplexity of the algorithms required to reason203

204 CHAPTER 7. EXPRESSIVENESS OF CDLabout the language inreases with the expressiveness of the language. Thus, it isimportant to make sure that a language provides only as muh expressiveness asrequired for a given lass of problems in order to maintain heuristi adequay. Ofourse, it is equally important to provide suÆient expressiveness in order to beable to represent problems in this lass with epistemologial adequay. We willnow outline why we believe that apability desriptions of realisti agents requirean expressive ation representation language, like dl.7.1.1 The Expressiveness Senario RevisitedOne of the senarios introdued in setion 3.3 exatly addresses the question ofwhy we need more expressiveness; the expressiveness senario (example 3.2). Thevery idea behind this senario is to illustrate the need for an expressive apabilitydesription language. We will now look at this senario again to see whether wereally need this expressiveness.In the expressiveness senario, the fat that the �rst hospital only treats peoplefrom Barnale, Calypso, or Delta was represented as a disjuntive input on-straint. Expressing this onstraint in a less expressive representation, e.g. onethat allows only onjuntions of literals, would be possible by representing theapability as three separate apabilities, one for eah disjuntive ase. A seondappliability ondition in this senario was for the ambulane to have snow hainsif there is ie or snow on the roads. This ondition was represented as an inputonstraint that is an impliation with a disjuntive preondition. But an impli-ation an be rewritten as a disjuntion in �rst-order logi and thus, the sametehnique as before an be applied.This tehnique of replaing one apability desription with disjuntive inputonstraints by several apability desriptions raises problems though. Firstly, ifone kept splitting apabilities with disjuntive input onstraints then a apabilitydesription with k disjuntive preonditions, eah having n disjunts, would resultin nk separate apability desriptions. There is a seond, more worrying onern

7.1. WHY MORE EXPRESSIVENESS? 205in this example though: we only know that the weather is bad, meaning there iseither ie or snow on the roads, but we do not know whih. Given this knowledge,the splitting of apability desriptions aording to disjuntive input onstraints isnot epistemologially adequate, as the separate apability desriptions annot beapplied whereas the apability with the disjuntive input onstraint is appliable.1Thus, the expressiveness senario does indeed require at least the expressivenessof disjuntive input onstraints.Disjuntions in input onstraints are not the only reason why we need anexpressive apability desription language though. Looking at the apabilitydesription of the h1-agent in the initial senario (f. setion 4.2.5), the lastinput onstraint was given as:(Has Loation ?person Paifia)This only states that the injured person has to be on Pai�a. However, toatually apply the desribed apability the h1-agent will need to know whereexatly to �nd the injured person, i.e. it needs to know a more preise loationthan \on Pai�a." Thus, we ould easily argue that knowledge preonditions (inthis example the knowledge where to �nd the injured person) and thus the abilityto reason about knowledge are required here. Reasoning about knowledge anbe performed in modal logis (f. setion 2.2.2). Thus, one ould argue that theexpressiveness of modal logis is required in this senario, whih is greater thanwhat we have used this far.Furthermore, while the input onstraint whih states that the person hasto be on Pai�a is too general with respet to the person's loation, the inputonstraint that we need to know where exatly the injured person is, is too spei�.In fat the h1-agent only needs to know roughly where the injured person is, notexatly where. For example, within a ity an address may be suÆient as thepatient's loation; at the power plant we might need more spei� information1 Note that, for example, a ontingeny planner ould deal with this situation, but the resultingplan would be rather awkward with two idential branhes.

206 CHAPTER 7. EXPRESSIVENESS OF CDLdepending on the size of the plant. However, to apply its apability the h1-agentwill not need to know where exatly in a at with a given address the patient is.But what does that mean for dl? It means that the representation will have tobe expressive enough to somehow represent qualitative input onstraints on spae,i.e. it would require greater expressiveness again.It is not diÆult to think of further examples that require the representationof further di�erent kinds of knowledge whih, in turn, might require more ex-pressiveness. Thus, for a generi apability desription language to be able torepresent all of the above examples, we need expressiveness.7.1.2 Coniseness of Capability DesriptionsThe above examples have illustrated the need for a apability desription languageto be expressive. A property we expet of desriptions of apabilities in suh alanguage is oniseness. In this setion we will argue that the need for onisenessin a apability desription is a ontributing fator for the need for expressivenessin a apability desription language. The need for oniseness in a apabilitydesription has at least two reasons:� Coniseness of a apability desription implies a relatively short expressionrepresenting the apability. Shorter expressions mean less ommuniationoverhead and thus, may failitate more eÆient overall problem-solvingbehaviour.� Coniseness also means the desription should not ontain unneessary de-tail or redundant information. It is likely that suh an expression an bereasoned about more eÆiently, resulting in more eÆient overall problem-solving behaviour again.For example, let us look at an agent ating in the Bloks World with thefour basi apabilities desribed by the ations stak, unstak, pik-up, and put-down as de�ned in [Nilsson, 1980, hapter 7℄. Another apability of this agent

7.1. WHY MORE EXPRESSIVENESS? 207is to perform any sequene of these ations. While this presents a apabilitydesription for this agent, it is arguably not a onise desription. It is not shortbeause it ontains the full desriptions of all the primitive ations the agentan perform. It also ontains the information neessary to derive a sequene ofations neessary to ahieve a given goal whih is not neessary for brokering,i.e. it ontains redundant information.There are at least two prinipal ways of ahieving oniseness in a apabilitydesription: abstration in the desription and expressiveness in the language.Abstration has been employed in many areas of AI suh as planning, mahinelearning, or natural language understanding. [Russell and Norvig, 1995, page 62℄desribe abstration as the proess of removing detail from a representation. Notethat this is muh stronger than what we have desribed above: a onise repres-entation should not ontain unneessary detail or redundant information. Thus,abstration is a proess that an be used to ahieve oniseness in a representa-tion. For example, a more abstrat apability desription for the Bloks Worldagent mentioned above would be that it an ahieve a state in whih any blokis to be on top of another.Expressiveness of a language an be desribed as the potential to representertain irumstanes in this language that annot adequately be represented ina less expressive language. But expressiveness not only gives us the possibilityto say more, it may also give us the possibility to represent the same fats moreonisely. For example, a apability with a disjuntive input onstraint may bereplaeable by several apability desriptions that are idential exept for oneof their input onstraints. Even if this replaement does not lead to problemsas desribed above, the expression of the apability with a disjuntive inputonstraint is obviously more onise. Thus, a more expressive language an allowfor a more onise representation.While the above shows that expressiveness of a desription language is onepossible way of ahieving oniseness of representations in this language, it does

208 CHAPTER 7. EXPRESSIVENESS OF CDLnot mean that we neessarily need more expressiveness. However, if we want ourapability desription language to be generi, we have to provide for the aseswhere suh expressiveness is required.

7.2. EXPRESSIVENESS OF AR LANGUAGES 2097.2 Expressiveness of AR LanguagesIn this setion we will introdue a (fairly lightweight) theoretial frame-work that de�nes what we mean by the expressiveness of ation rep-resentation languages and allows for omparisons of suh formalisms.Up to now we have used the term expressiveness in a rather loose fashion.Thus, one of the main laims of this thesis, that dl is an expressive ationrepresentation, is rather ill-de�ned at this point. Perhaps surprisingly, there doesnot seem to exist an agreed de�nition of what it means for an ation representationto be expressive. Informally, one an de�ne expressiveness as follows:De�nition 7.1 (Expressiveness) A knowledge representation language is ex-pressive if it is possible to represent ertain irumstanes in this language thatannot be adequately represented in a less expressive language.This notion has been used in [Baader, 1996℄ to formalise the onept of ex-pressiveness for terminologial knowledge representation languages.2 Baader alsolaims that the underlying idea an be used to de�ne the expressiveness of otherrepresentation languages. Thus, we shall now have a brief look at his de�nitionof expressiveness.7.2.1 Expressiveness of KR LanguagesThe �rst step towards a formalisation of the above de�nition of expressiveness isthe de�nition of the knowledge representation languages one wants to onsider.To this e�et Baader de�nes the lass of KR1 languages as [Baader, 1996, page40℄:De�nition 7.2 (KR language based on �rst-order logi) Assume that wehave ountably many variable symbols and ountably many prediate symbols of2 By a terminologial KR language, Baader means any language based on Brahman's ideasabout onept struture suh as kl-one [Brahman, 1979, Brahman and Shmolze, 1985℄.

210 CHAPTER 7. EXPRESSIVENESS OF CDLany arity. In addition we assume that we have a binary prediate symbol forequality whih has to be interpreted as equality in all models. Let FO denotethe set of all �rst-order formulae that an be built out of these symbols. A KR1language (KR language based on �rst-order prediate logi) L onsists of:1. A subset L of the power set of FO, i.e. a set of sets of formulae.2. A model-restrition funtion ModL that maps eah set � 2 L to a sublassModL(�) of all �rst-order models of �.Aording to this de�nition, a KR1 language basially onsists of a languagein whih every expression must be a set of �rst-order formulae and a model-restrition funtion that maps expressions in this language into their models.In terminologial logis, the languages Baader is interested in, a set of oneptdesriptions � 2 L is often alled a T-Box.In this de�nition every expression � in the language L of a KR1 languageL must be a set of formulae in �rst-order prediate logi (fopl). Allowing thesyntax of fopl only here might seem rather restritive at a �rst glane. However,one way of de�ning the semantis for a new knowledge representation language L0is to de�ne an equivalene semantis [Winston, 1992, page 20℄. This de�nes howa sentene in the new language an be transformed into another language whihalready has an aepted semantis, thus indiretly adopting the semantis of thisother language for the new language L0. Any language that has an equivalenesemantis based on fopl an thus be onsidered a language of a KR1 language.Languages that annot be transformed into fopl are exluded though.The seond part of a KR1 language, the model-restrition funtion ModL,de�nes the models of an expression � 2 L. It maps an expression � to only asublass of all �rst-order models of � to allow for T-Boxes that ontain ylesand require a �xed-point semantis [MDermott and Doyle, 1980℄.Now, given this de�nition of the languages one wants to onsider, the nextstep towards a formalisation of de�nition 7.1 is to de�ne when an expression in

7.2. EXPRESSIVENESS OF AR LANGUAGES 211L1 \represents ertain irumstanes that annot be adequately represented" byan expression in L2. The basi idea in Baader's work now is to de�ne that twoexpressions �1 2 L1 and �2 2 L2 express the same irumstanes, or onepts inthe ase of terminologial logis, if they have the same models. Baader's atualde�nition is more general than this though, allowing for the renaming of prediatesymbols and the presene of auxiliary prediates in L2 [Baader, 1996, page 41℄:De�nition 7.3 (Model equality modulo -embedding) For an element �of FO let Pred(�) denote the set of all prediate symbols ourring in �. Assumethat we have a mapping : Pred(�1) �! Pred(�2), and models M1, M2 of�1, �2 respetively. The elements of Pred(�2) that are outside the range of areauxiliary prediate symbols. We say that M1 is embedded inM2 by (M1 � M2)i� all R in Pred(�1) satisfy RM1 = (R)M2.3 Equality of lasses of models modulo -embedding is de�ned by extensionality, i.e. ModL1(�1) = ModL2(�2) i�� for allM1 inModL1(�1) there existsM2 inModL2(�2) suh thatM1 � M2,and� for all M2 in ModL2(�2) there exists M1 in ModL1(�1) suh that M1 � M2.4This de�nition tells us what it means for two sets of models to be equivalent.Essentially, it de�nes two models as equivalent if they are equal subjet to afuntion renaming the symbols and subjet to the omission of auxiliary prediates.One an now use the model-restrition funtion that maps expressions into sets ofmodels to de�ne when two expressions represent the same irumstanes, namelyif their models as de�ned by the model-restrition funtions are equivalent. Thisan be formalised as follows [Baader, 1996, page 41℄:3 Although not de�ned in Baader's paper, it is fairly obvious that RM is intended to denotethe extension of the prediate R in the model M .4 Note that Baader's de�nition of = is not symmetri.

212 CHAPTER 7. EXPRESSIVENESS OF CDLDe�nition 7.4 (Expressive power of KR1 languages) Let �1 2 L1 and�2 2 L2 for KR1 languages L1 and L2.1. �1 an be expressed by �2 i� there exists : Pred(�1) �! Pred(�2) suhthat ModL1(�1) = ModL2(�2).2. L1 an be expressed by L2 i� for any �1 2 L1 there exists �2 2 L2 suh that�1 an be expressed by �2|i.e. i� there is a mapping � : L1 �! L2 suhthat �1 2 L1 an be expressed by �(�1).3. L1 and L2 have the same expressive power i� L1 an be expressed byL2 and vie versa.The �rst part of this de�nition formalises when two expressions in di�erentlanguages express the same irumstanes. The seond part then generalises thisnotion for languages: one language an be expressed in another if every expressionin the former language an be expressed in the latter. Notie that if L1 an beexpressed by L2 then L2 is at least as expressive as L1. Finally, the third partof this de�nition de�nes when two KR1 languages are equally expressive. Notiethat this de�nition does not de�ne an absolute measure of the expressiveness ofa KR language. It does, however, group KR1 languages into equivalene lassesand de�nes a partial order on those. The limit is �rst-order logi itself whih isthe most expressive language in this framework.7.2.2 Expressiveness of Ation RepresentationsBaader's de�nition of expressiveness is only appliable to KR1 languages. Inessene, these languages are what we have alled state representation languages insetion 4.2.3.1. Ation representations are usually not desribed as languages that�t into this ategory (f. setion 2.3.1). Hene, the de�nition of expressivenessfor KR1 languages is not appliable to ation representations diretly.

7.2. EXPRESSIVENESS OF AR LANGUAGES 213In this setion we will present our de�nition of expressiveness for ation rep-resentations. The �rst step towards this de�nition must be a de�nition of thelass of ation representations we want to onsider:De�nition 7.5 (AR1 language) An AR1 language (Ation Representationbased on �rst-order prediate logi) L is a quadruple (A; S;ModS; RelA) where:� A is the (deoupled) ation desription language of L;� S is the state desription language of L;� the model-restrition funtion ModS maps eah state desription s 2 S toa set ModS(s) of �rst-order models;� the ation de�nition funtion RelA maps eah ation desription a 2 A toa binary relation RelA(a) on state desriptions, i.e. RelA(a) � S � S.This de�nition reets our view of deoupled ation representations presentedin setion 4.2.3.2, i.e. an ation representation onsists of a deoupled ationdesription language (A in the above de�nition) and a state desription language(S). Note that the above de�nition does not de�ne what either language has tolook like.The state desription language S together with the model-restrition funtionModS is almost idential to a KR1 language. The only di�erene is that expres-sions in S do not have to be sets of formulae in fopl. However, the funtionModS has to map every expression in S into a set of �rst-order models. Thus,while the form of the state desription language of an AR1 language is not de�nedin the above de�nition, we do require that the semantis of this language has tobe de�nable in terms of �rst-order models.The deoupled ation desription language A is the language that allows us todesribe ations. Note that in general an expression a 2 A is intended to de�ne a

214 CHAPTER 7. EXPRESSIVENESS OF CDLset of ations, not just a single ation.5 The underlying idea here is that ationstransform one state into another.6 Thus, the ation desription language A anbe used to de�ne a binary relation on states, where states are desribed in thestate desription language S. The ation de�nition funtion RelA de�nes how toobtain this relation from a desription of a set of ations a 2 A. Note that thisde�nition does not impose any restritions on the ation desription languageitself other then the fat that it an be used to de�ne a binary relation on states.To illustrate the above de�nition we shall now informally desribe a proposi-tional version of the strips representation as de�ned in [Nilsson, 1980, hapter7℄ as an AR1 language strips = (As; Ss;ModSs; RelAs):� An expression in the ation desription language As is a set of stripsoperators. Eah operator onsists of an ation identi�er, a set of variablesspeifying parameters, a preondition expression, an add expression, and adelete expression. Eah of these expressions must be an expression in thestate desription language Ss.� An expression in the state desription language Ss is a set of funtion-freeliterals over a given set of prediate, onstant, and variable symbols. Anexpression in the state desription language whih ours inside an operatormay only ontain variables from this operator's parameters.� The model-restrition funtion ModSs maps an expression in Ss, i.e. a setof literals, into the models of the onjuntion of the literals in the set.� Finally, the ation de�nition funtion RelAs de�nes two states as related ifthere is an operator suh that the preondition expression is a subset of the�rst state and the �rst state modi�ed by the add and delete expressions isa equal to the seond state.5 Thus, we shall use the term \set of ations" to refer to an ation desription a 2 A", i.e. anexpression in the ation desription language A.6 We shall use the term \state" to refer to a state desription s 2 S", i.e. an expression in thestate desription language S.

7.2. EXPRESSIVENESS OF AR LANGUAGES 215This gives us a formal de�nition of an AR1 language. The basi idea nowis to say that two ation desriptions in di�erent AR1 languages express thesame ations if and only if for every state in one language there is a somehowequivalent state in the other language and the states that an be reahed withineah representation are again somehow equivalent.To formalise this notion we �rst need to de�ne what we mean by two states intwo di�erent state desription languages being somehow equivalent. As mentionedbefore, state desription languages together with their model-restrition funtionsare quite similar to KR1 languages and thus, we an use the de�nition of modelequality for sets of models (de�nition 7.3) to de�ne the equivalene of states whihare mapped to sets of models by the model-restrition funtion.This leaves us a need to formalise the onept of state reahability beforewe an de�ne the expressiveness of ation representations. Intuitively, a state isreahable from another state if there is an ation or a sequene of ations thattakes us from one to the other.De�nition 7.6 (Reahability in L) Let L = (A; S;ModS; RelA) be an AR1language, s 2 S a state desription, and a 2 A a set of ations. Then the setR1(s; a) of all states reahable in one step from s through a is the set of allstates s0 for whih (s; s0) is in RelA(a). The set R(s; a) of all states reahablefrom s through a is the union of R1(s; a) and all states s00 for whih there is astate s0 that is known to be in R(s; a) and (s0; s00) is in RelA(a).The set R(s; a) is the set of all states that an be reahed from the states by performing a sequene of ations, where eah ation in the sequene mustbe desribed in a. Thus, R(s; a) is the possibly in�nite state spae of all statesreahable from s through a. If two sets of ations de�ne the same state spaefrom a given state then these sets of ations an be onsidered equivalent in thisstate. If they are equivalent in all states then we an say that they express thesame set of ations.

216 CHAPTER 7. EXPRESSIVENESS OF CDLWe are now in a position to formally de�ne when two sets of ations repres-ented in two di�erent AR1 languages represent the same ations:De�nition 7.7 (Expressive power of AR1 languages) Let a1 and a2 be twosets of ations desribed in ation representations A1 and A2 for AR1 languagesL1 and L2 respetively. Then:1. a1 an be expressed by a2 if and only if for all states s1 in S1 there existsa state s2 in S2 and a funtion : Pred(s1) �! Pred(s2) suh that:� ModS1(s1) = ModS2(s2) and� R(s1; a1) = R(s2; a2).2. AR1 language L1 an be expressed by AR1 language L2 if and onlyif for any set of ations a1 desribed in A1 there exists a set of ation a2desribed in A2 suh that a1 an be expressed by a2|i.e. if there is a mapping� : A1 �! A2 suh that a1 an be expressed by �(a1).3. L1 and L2 have the same expressive power i� L1 an be expressed byL2 and vie versa.The �rst part of this de�nition just formalises what we have said informallybefore: that two sets of operator desriptions express the same ations if for everystate in one language there is an equivalent state in the other language and thestates that an be reahed within eah representation are also equivalent. Theseond part of this de�nition extends this onept to AR1 languages, i.e. an AR1language an be expressed by another if every set of ations expressible in the�rst language an also be expressed in the seond. Finally, if two AR1 languagesan express eah other they have the same expressive power.

7.2. EXPRESSIVENESS OF AR LANGUAGES 2177.2.3 Polynomial TransformabilityAn alternative de�nition of expressive equivalene of planning formalisms an befound in [B�akstr�om, 1995℄. We shall now have a brief look at this de�nition tosee how it ompares with our onept of expressiveness as desribed above.B�akstr�om de�nes expressive equivalene based on the general planning prob-lem and its solutions [B�akstr�om, 1995, page 24℄:De�nition 7.8 (General planning problem) Given a planning formalism X,the (general) planning problem in X (X-GPP) onsists of a set of instanes,eah instane � having an assoiated set Sol(�) of solutions.A solution to a given planning problem in a given formalism needs to bede�ned for every formalism individually. Based on this onept of a generalplanning problem expressive equivalene is de�ned as follows [B�akstr�om, 1995,page 25℄:De�nition 7.9 (Expressive equivalene) Given two planning formalisms Xand Y, we say that X is at least as expressive as Y with respet to plan existeneif Y-GPP �p X-GPP, i.e. Y-GPP polynomially transforms7 into X-GPP.Further, X and Y are equally expressive with respet to plan existene i� bothX-GPP �p Y-GPP and Y-GPP �p X-GPP.Essentially, this de�nition states that two planning formalisms are equallyexpressive if every instane of a planning problem expressed in X polynomiallytransforms into an instane of a planning problem expressed in Y and vie versa.Furthermore, every problem in X must have a solution if and only if the orres-ponding problem in Y also has a solution.An interesting aspet of this de�nition is that it is based solely on plan ex-istene, i.e. it does not require the plans in Sol(�) to be somehow equivalent. It7 See [Garey and Johnson, 1979, setion 2.5℄ for a de�nition of polynomial transformability ingeneral.

218 CHAPTER 7. EXPRESSIVENESS OF CDLonly matters whether the set Sol(�) is empty or not for expressive equivalene.This is onsistent with our de�nition of expressive equivalene (f. de�nition 7.7).The lassial planning problem [Tate et al., 1990, page 28℄ is given as an initialstate desription, a goal state desription, and a set of operator shemata. Asolution is a sequene of operator instanes that transforms the initial state intothe goal state. It is easy to see that suh a solution exists (as required for de�n-ition 7.9) if and only if the goal state is reahable (f. de�nition 7.6) from theinitial state. Thus, both de�nitions of expressiveness do not plae any onstraintson the sequene of operators required to reah the goal state.One di�erene between the two de�nitions of expressiveness lies in the require-ment of a formal semantis for an AR1 language in our de�nition. In ontrast,B�akstr�om only requires the set of solutions Sol(�) for a given planning prob-lem to be de�ned. While this broadens the appliability of his de�nition8 it alsoprovides little insight as to what exatly an ation representation is. For ex-ample, the onept of a deoupled ation representation annot be inorporatedinto de�nition 7.9.The most interesting di�erene between B�akstr�om's de�nition of expressive-ness and our own is that he requires instanes of planning problems to poly-nomially transform into eah other. The transformation that is impliit in thisrequirement orresponds to the mapping � : A1 �! A2 of de�nition 7.7, only thatwe did not require this mapping to be omputable in polynomial time. The inten-sion behind our (and presumably Baader's) de�nition of expressive equivalene isthat two languages are equally expressive if one an say the same things in bothlanguages, however ompliated the translation proess might be. B�akstr�om'sargument for this additional requirement is that polynomial transformability im-plies that transformaion does not hange the omplexity lass of the underlyingproblem. This seems sensible, and it is questionable whether an expression thatgrows exponentially in the translation proess should still be onsidered as ex-8 B�akstr�om applied his de�nition of expressiveness to ompare the expressiveness of variousvariants of propositional strips.

7.2. EXPRESSIVENESS OF AR LANGUAGES 219pressing the same ontent.Therefore, we shall retain our de�nition of expressiveness as given in de�ni-tion 7.7, but add the following extension:De�nition 7.10 (Poly-expressive equivalene) Let a1 and a2 be two sets ofations desribed in ation representations A1 and A2 for AR1 languages L1 andL2 respetively. Then:1. AR1 language L1 an be poly-expressed by AR1 language L2 if andonly if for any set of ations a1 desribed in A1 there exists a set of ationa2 desribed in A2 suh that a1 an be expressed by a2|i.e. if there is amapping � : A1 �! A2 suh that a1 an be expressed by �(a1) and � isomputable in polynomial time.2. L1 and L2 are equally poly-expressive i� L1 an be poly-expressed by L2and vie versa.

220 CHAPTER 7. EXPRESSIVENESS OF CDL7.3 dl: An AR1 LanguageIn this setion we will present a formal semantis for dl that an beused to ompare its expressiveness to that of other ation representa-tion languages. Suh a omparison will follow in setion 9.2.1.7.3.1 The State Desription LanguageOne of the omponents of an AR1 language as de�ned in de�nition 7.5 is thestate representation language S. We have desribed dl in hapter 4 as a de-oupled ation representation language, i.e. as an ation representation languageinto whih arbitrary state representations an be plugged to form a omplete a-tion representation. To de�ne dl as an AR1 language it is neessary to desribeat least one state language that an be used within the deoupled ation repres-entation and, as before, we shall use �rst-order logi for this purpose. This hoiealso allows us to view the state representation together with the model-restritionfuntion as a KR1 language.A syntax of fopl has already been de�ned in �gure 4.2. This formalism willbe the basis of the �rst-order language that we will use as the state representationS here. The only hange we need to make in the syntax onerns the prediate,funtion, onstant, and variable symbols of the language: these need to be de�nedin a KR1 language (f. de�nition 7.2). Sine our de�nition of expressivenessallows for the embedding of models with a funtion that e�etively renamesthese symbols, the names of these symbols in the de�nition of the syntax do notmatter. The revised syntax of fopl whih will be used as state representationfor dl in this hapter is given in �gure 7.1.Note that in this de�nition of the state representation we have de�ned thesyntatial ategory of terms as part of the state desription language, whereasit was de�ned as part of the ation desription language in hapter 4. This isneessary to de�ne the state language independent from the ation representation.

7.3. CDL: AN AR1 LANGUAGE 221
<formula> ::= (<quant> <-form>) | <-form><quant> ::= (<quantifier> <varspe>+)<quantifier> ::= forall | exists<varspe> ::= <variable> |(<variable> <onstant>)<-form> ::= <literal> |(not <formula>) |(and <formula> <formula>+) |(or <formula> <formula>+) |(implies <formula> <formula>) |(iff <formula> <formula>) |(xor <formula> <formula>) |<literal> ::= <prediate> |(= <term> <term>)(<prediate> <term>+)<term> ::= <onstant> | <variable> |(<funtion> <term>+) |<prediate> ::= P1 | P2 | P3 | ...<funtion> ::= f1 | f2 | f3 | ...<onstant> ::= 1 | 2 | 3 | ...<variable> ::= ?v1 | ?v2 | ?v3 | ...Figure 7.1: Syntax of the state representation S

222 CHAPTER 7. EXPRESSIVENESS OF CDL<dl-desr> ::= (<type>:state-language fopl:ation <name>:isa <name>:properties (<name>+):input (<param-spe>+):output (<param-spe>+):input-onstraints (<onstraint>+):output-onstraints (<onstraint>+):io-onstraints (<onstraint>+)<type> ::= apability | task<param-spe> ::= (<name> <term>)<term> ::= <onstant> | <variable> |(<funtion> <term>+) |<funtion> ::= f1 | f2 | f3 | ...<onstant> ::= 1 | 2 | 3 | ...<variable> ::= ?v1 | ?v2 | ?v3 | ...<onstraint> ::= <formula>Figure 7.2: Syntax of the ation representation A7.3.2 The Ation Desription LanguageThe next step towards the de�nition of dl as an AR1 language is the de�nitionof the ation desription language A. Again, the syntax of the A an be basedon the syntax of dl desribed in hapter 4. The syntax is repeated in �gure 7.2here for onveniene. Note that it ontains the same modi�ation as the statelanguage: the funtion, onstant, and variable symbols are now de�ned in thesyntax.Also, the syntatial ategory of terms is now de�ned as part of the stateand as part of the ation representation. Both de�nitions are idential, based onthe same set of funtion, onstant, and variable symbols. This is not atuallyneessary as terms in the ation representation may, and usually will, only use

7.3. CDL: AN AR1 LANGUAGE 223a subset of the symbols listed in the state representation. However, to keep thede�nition simple we have de�ned them with the same sets of symbols.A further di�erene between this de�nition of the ation representation andthe syntax of dl desribed in �gure 4.4 is that the state language fopl is now�xed in the language: the value following the keyword :state-language is fopland the syntatial ategory <onstraint> is de�ned as being a <formula>,i.e. an expression in the state desription language fopl as desribed above.7.3.3 The Model-Restrition FuntionThe model-restrition funtion ModS maps eah state desription s 2 S to aset ModS(s) of �rst-order models, thus e�etively de�ning the semantis of thestate desription language. The hoie of fopl as our state representation in dlmakes the de�nition of ModS relatively straight forward. We shall only desribethe semantis briey and informally here based on a more formal de�nition in[Shanahan, 1997, setions 2.2 and 2.3℄.The semantis of fopl is based on the onept of an interpretation. Aninterpretation onsists of a non-empty set D of objets that is the domain forthis interpretation. An interpretation also onsists of two funtions F and P. Fmaps all onstant and variable symbols into elements in D and all n-ary funtionsymbols into funtions from Dn to D. P maps all n-ary prediate symbols to theextension of this prediate whih is a subset of Dn. For an interpretation M onean then de�ne the following abbreviations:� if x is a prediate symbol, onstant symbol, or funtion symbol, let M[x℄ beP(x), F(x), or F(x) respetively;� if f is a funtion symbol and t1; : : : ; tn are terms, then let M[(ft1 : : : tn)℄ beM[f ℄(M[t1℄, : : :, M[tn℄).In other words, M maps every term into the domain objet it stands for and

224 CHAPTER 7. EXPRESSIVENESS OF CDLprediates to their extension. Based on the above, one an de�ne the satisfationrelation between an interpretation M and a well-formed formula in S as follows:� M satis�es (P t1 : : : tn) if hM[t1℄, : : :, M[tn℄i 2 M[P ℄ for prediate symbol Pand terms t1; : : : ; tn;� M satis�es (= t1 t2) if M[t1℄ = M[t2℄ for terms t1 and t2;� M satis�es (not F) if M does not satisfy F for formula F ;� M satis�es (and F1 : : : Fn) if for all i 2 f1 : : : ng M satis�es Fi for formulaeF1 : : : Fn;� M satis�es (or F1 : : : Fn) if there exists i 2 f1 : : : ng suh that M satis�es Fifor formulae F1 : : : Fn;� M satis�es (implies F1 F2) if M satis�es F1 implies that M satis�es F2 forformulae F1 and F2;� M satis�es (i� F1 F2) if M satis�es F1 if and only if M satis�es F2 forformulae F1 and F2;� M satis�es (xor F1 F2) if either M satis�es F1 or M satis�es F2, but notboth, for formulae F1 and F2;� M satis�es ((forall vs1 : : : vsn) F) where vsi is either vi or (vi i), if for allinterpretations M' that agree with M exept possibly in the interpretationof v1 : : : vn, M' satis�es F and maps all variables vi spei�ed as (vi i) todomain objets of type i;� M satis�es ((exists vs1 : : : vsn) F) where vsi is either vi or (vi i), if thereis some interpretations M' that di�ers from M only in the interpretationof v1 : : : vn, M' satis�es F and maps all variables vi spei�ed as (vi i) todomain objets of type i;

7.3. CDL: AN AR1 LANGUAGE 225This allows us to �nally de�ne the model-restrition funtionModS that mapseah state desription s 2 S to the set ModS(s) of interpretations M that satisfys. These interpretations are also alled the models of s.7.3.4 The Ation De�nition FuntionThe last omponent of an AR1 language that remains to be de�ned for dl is theation de�nition funtion whih maps a set of apability desriptions a in dlto a binary relation on states RelA(a) � S � S. To de�ne this relation we wille�etively use the math onditions as desribed in de�nition 5.3: apability Csubsumes task T if and only if there exists a substitution � suh that:CTI j= �(CCI) (input math ondition)and �(CCO) ^ �(RC) j= CTO (output math ondition)and8n 2 f1 : : :mCg : if �(CCO) ^ (�(RC)� �(RCn)) 6j= CTO and �(CCO) ^ �(RC) j= CTOthen CTI j= �(LCn) (input-output math ondition)We will say that a pair of state desriptions is related by a set of ations,i.e. (s1; s2) 2 RelA(a), if there is a apability desription in a that an be instan-tiated to C (f. de�nition 5.6) suh that the apability C subsumes the task Tthat orresponds to the state transition (s1; s2).The task T that orresponds to the state transition (s1; s2) an be de�ned as adl desription that ontains exatly one input onstraint, namely s1, i.e. CTI =fs1g, and exatly one output onstraint, namely s2, i.e. CTO = fs2g. Thus, Tdesribes the task of transforming the state desribed by s1 into a state in whihs2 is true.Finally, the math onditions outlined above are based on the relation j=between states rather than the funtion ModS that we have de�ned above. How-ever, we have already pointed out in setion 5.1.2.1 that the relation j= an be

226 CHAPTER 7. EXPRESSIVENESS OF CDLde�ned as the subset relation between models, i.e. e1 j= e2 for state desriptionse1; e2 2 S if and only ifModS(e1) � ModS(e2). Thus, the de�nition for apabilitysubsumption an be used to de�ne the ation de�nition funtion RelA as outlinedabove.This onludes our de�nition of expressiveness and the appliation of thisframework to dl. A omparison of the expressiveness of dl with that of otheration representations will follow in setion 9.2.1.

Chapter 8Flexibility of dl
At this point we have desribed our apability desription languagedl whih an be used to represent the ontent of messages requiredfor apability brokering. We have also shown how dl an be used forapability retrieval. Our aim is to show that dl has two desirableproperties: it is expressive and exible. The next step towards thisgoal will be to de�ne what we mean by exibility in ation represent-ations. The ontribution of this hapter will be a disussion of howexibility has been ahieved through deoupled ation representations.In partiular, we will be highlighting the issues involved in implement-ing this approah in dl. A omparison of the exibility of dl withthat of other representations will follow in setion 9.2.2.8.1 Why Flexible Ation Representations?In this setion we will argue why we need a exible ation represent-ation for apability desriptions. This argument will be based on asenario presented earlier in this thesis (in setion 3.3).As for expressiveness, we have simply assumed up to this point that exib-ility is a useful property of our apability desription language. However, whileexpressiveness an be extremely ostly, exibility has less of an impat on the227

228 CHAPTER 8. FLEXIBILITY OF CDLpotential deline in performane (f. setion 6.3.2). General performane issueshave already been disussed in setion 6.3. In this setion we will disuss whyexibility is a desirable property.8.1.1 The Flexibility Senario RevisitedOne of the senarios introdued in setion 3.3 addresses the question of whywe need more exibility; the exibility senario (example 3.3). The very ideabehind this senario was to illustrate the need for a exible apability desriptionlanguage. We will now look at this senario again to re-evaluate this need forexibility.8.1.1.1 Restating the SenarioIn the exibility senario, our fous was on three problem-solving agents: twohospitals and an ambulane servie. The �rst hospital does not have an ambu-lane in this senario and thus, an only treat patients that are at the hospital.This hospital advertises the following apability desription to the broker (f. se-tion 4.5.2):(apability:state-language lits:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person Hospital1)):output-onstraints ((not(Is ?person Injured))))Note that the state language plugged into dl is given as lits, whih onlyallows literals as its expressions. Sine lists of onstraints are interpreted as on-juntions in dl, this language e�etively orresponds to the strips representa-tion. Desribing the apability of the h1-agent in this rather simple representationdoes not present a problem in the senario.

8.1. WHY FLEXIBLE ACTION REPRESENTATIONS? 229The seond hospital has an ambulane, but does not want to spare it fortoo long. Driving the ambulane to Calypso or Delta is onsidered too far andthus, this hospital e�etively only treats patients who are in Abyss, Barnale, orExodus. The apability desription it advertises to the broker is represented as(f. setion 4.5.2):(apability:state-language fopl:input ((InjuredPerson ?person)):input-onstraints ((elt ?person Person)(Is ?person Injured)(or (Has Loation ?person Abyss)(Has Loation ?person Barnale)(Has Loation ?person Exodus))):output-onstraints ((not(Is ?person Injured))))The fat that patients an only be treated if they are at ertain loations onPai�a is expressed as a disjuntion. Thus, the state language required here needsto be more powerful than lits. The only state language we have implementedthat an express suh onstraints is fopl and this is the state language used inthis apability desription.Finally, the ambulane servie annot treat patients at all. It only transportsthem from any plae on Pai�a to a hospital, i.e. no restritions are imposedon the loation of the injured person to be transported. The ambulane servieadvertises the following apability desription to the broker (f. setion 4.5.2):(apability:state-language lits:input ((InjuredPerson ?person)(From ?p1)(To ?p2)):input-onstraints ((elt ?person Person)(Is ?person Injured)(Has Loation ?person ?p1)):output-onstraints ((not(Has Loation ?person ?p1))(Has Loation ?person ?p2)))

230 CHAPTER 8. FLEXIBILITY OF CDLAs for the �rst hospital, the apability desription is suÆiently simple to onlyrequire onjuntions of literals in its state language.The problem for this senario was to heal an injured person at the powerplant whih is loated in Delta. The task desription in dl is represented by(f. setion 4.5.2):(broker-one:sender pp:ontent(task:state-language lits:input-onstraints ((elt JohnSmith Person)(Is JohnSmith Injured)(Has Loation JohnSmith Delta)):output-onstraints ((not(Is JohnSmith Injured)))):ontology apabilities:reeiver ANS:language CDL)The apability desription of the seond hospital will not math this problemas the patient needs to be at Abyss, Barnale, or Exodus for this apability to beappliable. Similarly, the apability of the �rst hospital is not appliable beausethe injured person is not at this hospital. Finally, the ambulane servie is notapable of ahieving the right kind of objetive at all. However, a ombinationof the ambulane servie and the �rst hospital will solve the given problem andthis is the planned solution the broker �nds.8.1.1.2 Analysis of the Required FlexibilityWhat is interesting in this senario is that di�erent agents use di�erent staterepresentation languages in their apability desriptions that allow for di�erenttypes of reasoning, i.e. they exploit the exibility o�ered by dl. Our aim now isto show that this exibility in the apability desription language was neessary toadequately deal with this senario. To this end we will argue that the alternativesare not suitable, leaving only the exible representation as adequate.

8.1. WHY FLEXIBLE ACTION REPRESENTATIONS? 231The �rst alternative would be to simply hoose the most expressive state rep-resentation language used and make all agents desribe their apabilities usingthis state language. In the above example this would be �rst-order logi (fopl)and the re-expression of the apabilities of the �rst hospital and the ambulaneservie using fopl would not pose a problem. Note that in general there might notexist one language in a given senario that is more expressive than all languagesused in this senario.In the exibility senario, reasoning over a language as powerful as �rst-orderlogi for all agents auses a problem. Sine none of the single agents an solve theproblem at hand the broker will attempt to reate a plan involving the apabilitiesof several agents. However, our planner annot deal with apabilities desribedusing �rst-order logi. This limitation is not arti�ial but fairly ommon amongsturrent AI planners. Thus, if we allowed only fopl as a possible state desriptionlanguage here, the broker would not be able to ome up with a plan involvingthe ambulane servie and the �rst hospital, i.e. the broker would not be able to�nd a solution to the problem desribed.The seond alternative would be to only allow onjuntions of literals as statedesriptions within dl. The problem then is how to desribe the apability ofthe seond hospital, spei�ally, how to represent its disjuntive input onstraint.The approah of splitting the single apability desription into several desriptionshas already been disussed in setion 7.1.1. The problem with this approah isthat it may lead to a large number of separate apabilities.Another option that requires only onjuntions of literals in the apabilitydesription of the seond hospital would be to sari�e orretness and to dropthe disjuntive onstraint altogether. However, assuming there are equally manyinjuries in all �ve ities on Pai�a, dropping the disjuntive input onstraintwould lead to 40% false mathes during brokering. This may not be aeptable.To summarise, maximising the expressiveness of the state language to avoidthe need for exibility also means minimising the potential inferenes that an

232 CHAPTER 8. FLEXIBILITY OF CDLbe drawn. Minimising the expressiveness on the other hand leads to problemsin re-expressing apabilities that previously took advantage of a more expressiverepresentation. Any ompromise between these extremes is bound to lead tosome of these problems, too, and for the exibility senario whih is based ononly two ontent languages there is no suh ompromise. Thus, what is requiredto appropriately deal with the above senario is the exibility we have designedinto dl.8.1.2 Further State RepresentationsThe exibility senario illustrates the need for exibility in a apability desriptionlanguage by requiring two di�erent state desription languages: �rst-order logiand onjuntions of literals. The need for only two di�erent ontent languagesin this senario might be onsidered insuÆient to allow us to onlude that, ingeneral, di�erent senarios may require a whole spetrum of languages and thus,exibility. To address this onern, we will now look at some further possibleirumstanes that may need to be represented in di�erent senarios and whihrequire di�erent state state languages.� Agent Knowledge: Many ations not only hange the physial world butalso the knowledge states of agents. For example, to transport the patient toa hospital the ambulane servie needs to know where the patient is. This isa knowledge preondition not represented in the urrent exibility senario.Similarly, there ould be knowledge goals. Representations that an expresssuh irumstanes are presented e.g. in [Moore, 1985, Morgenstern, 1987,Lesp'erane, 1989℄. However, reasoning about knowledge in general is stillan open issue due the problem of logial omnisiene (f. [Fagin et al., 1995,hapter 9℄).� Existene: Many ations reate and/or destroy objets. dl allows for therepresentation of newly reated objets in its output parameters, but the

8.1. WHY FLEXIBLE ACTION REPRESENTATIONS? 233general problem is that urrent state desription languages do not providean adequate representation for existene. For a detailed disussion of theproblems assoiated with the representation of and reasoning about exist-ene see [Hirst, 1991℄.� Unertainty: Many ations are intrinsially unertain. For example, per-forming an operation always ontains the risk that the patient might die.This is an example of unertainty in the relation between states, i.e. un-ertainty in the outome of an ation. A seond type of unertainty isunertainty in single states. For example, if the information we have isonly of qualitative nature, like \the patient is heavy", we are dealing withunertainty in states.The state representations we have atually implemented to support our hosensenarios annot adequately handle any of these irumstanes. Thus, further,more expressive state representations would be neessary in senarios whih re-quired the representation of suh irumstanes. Therefore, the exibility of dlis required for a generi apability desription language that does not preludethe representation of knowledge that may be important for ertain apabilities.

234 CHAPTER 8. FLEXIBILITY OF CDL8.2 De�ning and Implementing FlexibilityIn this setion we will de�ne what we mean by exibility and disusssome of the problems involved in implementing exible representationssuh as dl through deoupled languages.8.2.1 A De�nition of FlexibilityWe will now de�ne what we mean by a exible knowledge representation language.Unlike for expressiveness, this will not lead to a formal framework that ould beused to develop a exibility hierarhy of di�erent representations. One reason forthis di�erene is the fat that we are not aware of any previous work on formalisingwhat we have alled exibility. Another reason is that the issues involved are notso muh problems of formalisation, but problems with the implementation ofexible representations to whih we will turn later in this setion.8.2.1.1 Flexibility and Trade-O�sIn the exibility senario the problem arises beause the problem-solving agentsrequire di�erent state representation languages within dl: �rst-order logi andonjuntions of literals. First-order logi is required beause it provides the ex-pressiveness needed by the seond hospital to represent its disjuntive input on-straint. Conjuntions of literals are required for the �rst hospital and the ambu-lane servie beause expressions of this type allow suÆiently eÆient reasoningto failitate planning. Thus, the underlying problem in the exibility senario isa lassi trade-o� that an be found in knowledge representation and reasoning:expressiveness versus eÆieny.Most onventional knowledge representation languages are designed as a om-promise with respet to this trade-o�, i.e. they o�er some degree of expressivenesswhih allows for some degree of eÆieny. For suh languages, a spei� om-promise has been hosen when the language was designed. dl is di�erent in

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 235that it does not presribe a �xed ompromise. This is exatly what we mean byexibility in a knowledge representation language:De�nition 8.1 (Flexibility) A knowledge representation language is exibleif it allows the knowledge engineer to hoose a ompromise regarding a ertaintrade-o� at the time of knowledge representation rather than having to adopt a�xed ompromise presribed by and designed into the representation.Note that this de�nition is not spei� to ation representations but an beapplied to knowledge representation formalisms in general. Note also that a om-promise regarding a given trade-o� has to be hosen in onventional as well asexible knowledge representation languages. The di�erene lies in when this om-promise has to be hosen. While this is at language design time in onventionalknowledge representation languages, exible knowledge representations allow oneto make this hoie later, i.e. at knowledge representation time, e.g. when a apab-ility needs to be represented. Thus, it is possible to hoose di�erent ompromisesfor every statement (e.g. a apability in dl) in a exible knowledge represent-ation, rather than having one �xed ompromise presribed by the language. Inthis sense, exible knowledge representations to some degree an be regarded asa least ommitment approah to knowledge representation.8.2.1.2 Language PropertiesThe trade-o� mentioned in the de�nition of exibility is a trade-o� between someproperties of a knowledge representation language, e.g. expressiveness and eÆ-ieny. During knowledge representation, a ompromise between suh propertieshas to be hosen. Up to now we have only looked at the ompromise betweentwo suh properties: expressiveness and eÆieny. The former has already beendisussed in hapter 7.Now we will briey look at some further properties that might ause trade-o�s during knowledge representation and thus might require exibility. By eÆ-

236 CHAPTER 8. FLEXIBILITY OF CDLieny we essentially mean the potential to perform fast reasoning over a form-alism; what has been alled heuristi adequay in [Wilkins, 1988, page 8℄ or[MCarthy and Hayes, 1969℄. Another way to view eÆieny is as usage of theresoure time, whih is to be minimised for time eÆieny. Similarly, other re-soures, like memory, an be minimised to result in di�erent kinds of eÆieny in alanguage, e.g. memory eÆieny. Another language property we have onsideredin the design of dl is the formality of a language (f. setion 4.1.1). Yet otherproperties that might ause trade-o�s inlude generality, i.e. the ability to sup-port generi rather than task spei� reasoning, rihness [Polyak and Tate, 1998℄,explainability [Swartout, 1983℄, and delarativeness [Ginsberg, 1993, page 9℄.To summarise, exibility in a knowledge representation language, like dl,allows one to hoose a trade-o� between several properties at the time of know-ledge representation. In a dynami world of agents this exibility is required ina apability desription language to allow eah agent to hoose an appropriateompromise in its apability desription, as illustrated in the exibility senario.8.2.2 Flexibility through DeouplingFlexibility is ahieved in dl through its implementation as a deoupled ationrepresentation. Thus, we shall now briey disuss deoupled ation representa-tions and how they provide exibility.8.2.2.1 Integral Ation RepresentationsAs we pointed out in setion 4.2.3.1, many knowledge representation languages arestate representation languages at heart, i.e. they assume the world to be in exatlyone state. That is, unless otherwise stated, a set of sentenes in suh a languageis assumed to refer to the same state. The most ommonly used knowledgerepresentation language that makes the above assumptions is �rst order logi. It ispossible to represent and reason about ations in �rst order logi as demonstratedby the situation alulus (f. setion 2.2.1), but this leads to a number of problems;

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 237most prominently the frame problem. Hene the development of spei� ationrepresentation languages (f. setion 2.3.1).In onventional ation representation languages the state representation lan-guage is an integral part of the overall representation. We have alled suhlanguages integral ation representations in setion 4.2.3.1. For example, the�rst (integral) ation representation language was the strips representation[Nilsson, 1980, hapter 7℄. In strips-like languages an ation is represented asa statement that ontains several sub-expressions in what an be onsidered thestate representation language. This state representation is an integral part of theation representation.Thus, integral ation representations are not exible beause the integratedstate representation language presribes a �xed ompromise that has been hosenwhen the language was designed.8.2.2.2 Deoupling Ation RepresentationsTo allow the arbitrary ombination of ation and state representation one needsto de�ne the ation representation language independently from the state rep-resentation language. We have alled this a deoupled ation representation insetion 4.2.3.2. Thus, a full ation representation onsists of the ombination ofa deoupled ation representation with a state representation language.The most important di�erene between a deoupled ation representation andits onventional, integral ounterpart is that it allows one to plug di�erent staterepresentation languages into the same deoupled ation representation language.This feature of the language results in the exibility of the ation representationas desribed in de�nition 8.1. This exibility is what is needed to address theproblem in the exibility senario: we an ombine an appropriate deoupledation representation (dl) with an appropriate state representation (e.g. foplor lits) for eah agent's individual representational needs.Deoupled ation representation languages are exible beause plugging in

238 CHAPTER 8. FLEXIBILITY OF CDLdi�erent state languages hanges, for example, the expressiveness of the overalllanguage as well as the eÆieny with whih we an reason over this language.In this way, deoupled languages allow ompromises between these properties tobe hosen at knowledge representation time and thus, they provide exibility.8.2.3 Implementing Deoupled LanguagesAs opposed to expressiveness, the implementation of a exible knowledge repres-entation turns out to be quite hallenging. We will now disuss some problemsenountered during the implementation of dl as a deoupled ation represent-ation. Some of these problems are spei� to deoupled ation representations,but most problems need to be addressed in any deoupled knowledge represent-ation. We will return to these problems in setion 9.2.2 where they will form thebasis for our evaluation of the exibility of dl as ompared to other deoupledlanguages.8.2.3.1 Problems with Deoupling the LanguagesThe �rst group of problems we have enountered during the implementation ofdl as a deoupled ation representation is related to the implementation of theinternal representation of a statement in the language itself.How to Allow for Arbitrary Content Languages Our implementation ofdl as a deoupled language follows the example of kqml (f. setion 2.1.2.3).kqml allows ontent expressions to be in some arbitrary ontent language byhaving a �eld that names this language and one that holds exatly one expressionin this language as a sub-expression of the kqml message. dl, too, allows forarbitrary ontent languages by having a �eld that names the ontent language tobe used, namely the state-language �eld. Requiring the ontent language to beexpliitly named permits the plugging in of arbitrary ontent languages.There are someminor di�erenes between kqml and dl though. As opposedto kqml, there are several �elds that ontain expressions in the ontent language

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 239in dl: the input onstraints, the output onstraints, and the input-output on-straints. Furthermore, eah of these �elds ontains a list of expressions in thenamed language rather than just one expression as in kqml. Another di�erenebetween kqml and dl lies in the meaning of the expressions. The outer part ofa kqml message represents the speeh at that is performed with this messageand the inner part onveys the ontent of the message. An expression in dlrepresents an ation; either a apability that an be performed or a task thatneeds to be performed. Content expressions within a kqml message have to beinterpreted with respet to the performative in whih they are embedded whereasontent expressions in dl always represent onstraints on states.Where to Deouple the Languages One of the issues arising in the design ofa deoupled representation is where to deouple the language, i.e. where to makethe ut between inner and outer language. Looking at the syntax of an integralknowledge representation, one an, in priniple, reate a deoupled representationby replaing any non-terminal symbol with a named language. However, suh ar-bitrary deoupling an hardly be expeted to result in useful deoupled languages.As there urrently exist only a handful of deoupled representations, it is diÆultto generalise where suh languages should be deoupled. In our limited experienethe ut should be made suh that the di�erent languages represent fundamentallydi�erent entities. For example, in kqml the outer expression represents a speehat and the inner expression is a statement of some kind.In dl, the outer expression represents a binary relation between states andthe inner expressions represent onstraints on states, i.e. the ut is between a-tions and states. This ut is meaningful only for ation representations though.As suggested in setion 4.2.4, a seond ut that ould oneivably be made in dlwould be to allow a separate language for terms. Again, these represent a fun-damentally di�erent olletion of entities, namely objets in the domain. Thus,suh a ut ould be useful but has not been made in dl in order to simplify thisimplementation.

240 CHAPTER 8. FLEXIBILITY OF CDLHow to Parse Deoupled Languages Another problem with the implement-ation of deoupled languages is the parsing problem. There are basially two ap-proahes to parsing a sentene in a deoupled language. Firstly, the parser anread and parse the sentene aording to the syntax of the outer language upto the point where it expets a sub-expression in the ontent language. Then itan extrat this expression as a separate string and ontinue parsing after theend of this sub-expression, aording to the syntax of the outer language. Afterthe omplete outer part of the sentene has been parsed the inner expression anbe dealt with. The problem with this approah is that the parser for the outerlanguage needs to be able to deide where the expression in the inner languageends. dl as well as most implementations of kqml assume that this is possible,usually by requiring the inner language to be enlosed in parentheses and to onlyontain balaned pairs of parentheses.A seond approah to parsing a deoupled language is to start parsing theexpression aording to the syntax of the outer language up to the point whereit expets a sub-expression in the ontent language. At this point the parserswithes to the syntax of the inner language, parses the ontent, and returns tothe outer language afterwards. However, in general the parser will need to readat least one more token at the end of the inner language to deide whether thisexpression is atually omplete. If the inner expression was omplete, this tokenwill not be de�ned in the syntax of the inner language and the behaviour ofthe parser is unde�ned at this point. Even worse, the token following the innerexpression might have meaning in the syntax of the inner and outer language.Again, this an onsiderably ompliate parsing.8.2.3.2 Problems with Reasoning over Deoupled LanguagesDe�ning the internal representation of a deoupled ation representation lan-guage is not the only group of implementation problems though. The seondgroup of problems we have enountered during the implementation of dl as a

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 241deoupled ation representation is related to the implementation of the reasoningmehanisms for deoupled languages.How to Determine What Inferenes an be Drawn To reason over adeoupled language, virtually any reasoner will need to make expliit inferenesover the inner language. In dl, for example, we have evaluated whether a ap-ability subsumes a task by performing ertain inferenes over expressions in thestate desription language (f. hapter 5). That is, we have redued inferenesover the outer language to inferenes over the inner language. But we have notonly drawn inferenes within the inner language, we have also drawn inferenesabout the inner language. Sine the inner language ould be an arbitrary know-ledge representation, we have to work out whih inferenes are supported by thislanguage. The inferenes supported by the inner language then determine whihinferenes an be performed over the outer language. Reasoning about the in-ner language to determine whih inferenes are supported is a kind of reetivereasoning (f. setion 2.2.3.1).We shall illustrate this using an imaginary deoupled version of strips. Inthe strips representation state expressions are used to desribe preonditions, anadd-list, and a delete-list. Initial and goal states are also represented as expres-sions in the state language. The strips planner basially works by deomposinggoals, testing whether an expression is true, and by regressing goals through op-erators. The latter is mainly a ombination of retration and assertion of stateexpressions to generate new states. Thus, the strips planner ould, in priniple,work with any state representation language that de�nes these operations (deom-position, expression evaluation, assertion, retration) in its interfae. However,a deoupled strips planner would not only need to perform these inferenes, itwould also need to reet on whether they are de�ned in the atual state languageused. Similarly, a deoupled plan-spae planner requires a state representationlanguage that supports deomposition, test for entailment (an the ation bringabout some goal state), and test for inonsisteny (test for lobbering).

242 CHAPTER 8. FLEXIBILITY OF CDLHow to De�ne available Inferene Mehanisms The problem with reet-ive reasoning as required for the implementation of deoupled languages is thatit is hardly supported in Java and other programming languages. Reetion inJava primarily allows one to �nd a funtion that has a given name and takes er-tain parameters. If there is a funtion that performs the right kind of infereneover the state language, but this funtion has a di�erent name from the one thereetive algorithm is looking for, it will not be found. We have addressed thisproblem in dl by introduing what we all optional funtions. These funtionsare de�ned in the API of the lass Language from whih every state languagemust inherit. However, rather than enforing the implementation of these fun-tions through the normal inheritane mehanism, these funtions are optional,i.e. they may or may not be implemented in a lass inheriting from the lassLanguage. The idea behind optional funtions is that they onstitute the de�ni-tion of an interfae for ertain funtionality in ase this funtionality is provided.With suh an interfae the interpreter for the outer language an easily reet onwhether some funtionality of the inner language is available.When a reasoner like our broker attempts to perform ertain inferenes overexpressions in the outer language it has two options for testing whether the fun-tionality required in the inner language is available. Firstly, the reasoner ouldreet on whether all the required funtionality in the inner language exists be-fore attempting to reason over the outer language. If this is not the ase, thereasoning attempt over the outer language is immediately abandoned. Seondly,the reasoner ould only test for funtionality when it is required. This is howwe have implemented brokering for dl. The advantage of this approah is thatfuntionality that may be used in an algorithm but is not neessarily used willonly be tested if it is atually used. The disadvantage is that the test will beperformed every time the funtionality is used, leading to a slight ineÆieny.How to Control the Reasoning Proess Another, potentially more severeproblem is the fat that the reasoner over the outer language has to pass ontrol to

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 243a reasoner over the inner language when it uses the funtionality o�ered there. Forexample, to test for apability subsumption our broker needs to evaluate whethera set of sentenes in the state language entails another. We have used �rst-orderlogi as the state language in most of our examples and entailment is tested viaresolution theorem proving. This proess is not guaranteed to terminate. Thus,when the broker passes ontrol to the theorem prover, it might never re-gainontrol. This behaviour is highly undesirable. In our implementation we haveaddressed this problem by limiting the number of lauses that will be generated,but in general the problem remains.How to Reat to an Unknown Language Finally, a problem arises when thereasoner over the outer language attempts to perform an inferene and disoversthat it does not know the named inner language. In this ase Java and jatprovide the support needed to address the problem (f. setion 5.3.3). E�etivelywhat happens in this ase is that the reasoner automatially ontats the senderof the message ontaining the unknown inner language. It is reasonable to assumethat the sender knows the language whih it is using to ommuniate. Thus, thisagent is asked where the Java lass orresponding to this language an be found.When this information is made available to the reasoner, it will attempt to loadthis lass from the spei�ed loation and then perform the reetive reasoningover this language as outlined above. With this mehanism, the outer languagean be ompletely deoupled from the inner language.SummaryIn this setion we have de�ned what we mean by a exible knowledge representa-tion language and how this exibility an be ahieved in an ation representationthrough its implementation as a deoupled language. We have also disussed anumber of problems that arise in the implementation of deoupled languages.We shall return to these problems when we evaluate the exibility of dl by

244 CHAPTER 8. FLEXIBILITY OF CDLomparing the solutions to these problems with those adopted in other exiblerepresentations (f. setion 9.2.2).

Chapter 9Related Work and Evaluation
At this point we have de�ned dl, an expressive and exible ationrepresentation that an be used to represent and reason about apabil-ities of intelligent agents. Our aim in de�ning this formalism was toaddress the problem of apability brokering. The next step will be toompare dl to the more losely related work desribed in hapter 2.The ontribution of this hapter is an evaluation of dl, spei�allyits expressiveness and exibility, through a omparison with relatedwork. It will also use a range of examples from other domains todemonstrate the generality of our approah.9.1 Comparison with other BrokersIn this setion we will present a omparison of our dl broker withseveral other brokers desribed in setion 2.1. Our fous will be on theapability desription languages and mathing algorithms used by thedi�erent systems.9.1.1 Capability Desription LanguagesThe �rst aspet of the di�erent systems we shall be looking at is the apabilitydesription language used. The languages supported by the di�erent systemslimit the apabilities that an be represented. Furthermore, the two properties245

246 CHAPTER 9. RELATED WORK AND EVALUATION(<brokering-performative>...:language KQML:ontent(<performative>...:language <language>:ontent (<apability-desription>)))Figure 9.1: General format of brokering messages in kqmlwe are most onerned with, expressiveness and exibility, are properties of theapability desription language. Thus, these languages are our initial fous. Later(setion 9.1.2) we shall be looking at the inferene mehanisms utilised by thedi�erent brokers to put the languages in perspetive.9.1.1.1 Languages UsedAording to the kqml spei�ation [Labrou and Finin, 1997℄, the ontent ofmost messages related to brokering should be another kqml message, i.e. thegeneral format of these messages is as given in �gure 9.1.The brokering performative in the outer part of this message desribesthe brokering ation to be performed with this message, e.g. advertise orreommend-one. The most important kqml performatives related to brokeringwere summarised in table 2.1 in setion 2.1.2.The ontent of the outer message is again a kqml message, the inner kqmlmessage, whih ontains a performative and some ontent. The meaning of theinner message depends on the brokering performative in the outer message. In oursenarios all apabilities are physial ations on the environment of the agents.kqml provides only one performative that ould be used as the performative ofthe inner message to represent suh apabilities: ahieve. All other perform-atives only deal with reasoning ations. Note that all brokers using kqml for

9.1. COMPARISON WITH OTHER BROKERS 247inter-agent ommuniation should adhere to the message format desribed thisfar, i.e. they should be indistinguishable at this level.The ontent of the inner message represents the apability in the message.kqml does not speify or suggest a language to be used for the ontent of theinner message, i.e. the language for desribing apabilities is unde�ned. This iswhere the apability desriptions supported by the various brokers di�er. Thus,our omparison of apability desription languages o�ered by the di�erent brokersonentrates on the ontent languages of the inner message. One possible ontentlanguage is, of ourse, dl and this is exatly the way we have used kqml in thisthesis. In the remainder of this setion we shall briey review the di�erent ontentlanguages used for apability desriptions before turning to their evaluation.The absi failitator (f. setion 2.1.3.1 or [Singh, 1993a, Singh, 1993b℄) isbased on an early kqml spei�ation [Finin et al., 1993℄ and supports only kif[Genesereth et al., 1992℄ as the ontent language to desribe apabilities.The shade and oinsmathmakers previously desribed in setion 2.1.3.2 (orf. [Kuokka and Harada, 1995a, Kuokka and Harada, 1995b℄) support free textdesriptions in the ase of oins, and kif and max in the ase of shade. max(Meta-reasoning Arhiteture for \X") [Kuokka, 1990℄ is a strutured logi rep-resentation. In max all knowledge is delaratively stored in logi frames (orlframes). Eah lframe denotes a possible \state" by representing the onjuntionof a set of prediate logi literals. Lframes may be omposed of other lframes,and may have loal variables.Like the shade mathmaker, the InfoSleuth broker (f. setion 2.1.3.3or [Bayardo et al., 1997, Nodine and Unruh, 1997, Nodine et al., 1998℄) supportstwo ontent languages for apability desriptions and again, the �rst supportedlanguage is kif. The seond supported language is the dedutive database lan-guage ldl++ [Zaniolo, 1991℄ whih has a semantis similar to Prolog, but whihsupports transparent aess to external databases as well as its own fat base.Brokers for problem-solving methods (psms), e.g. the Intelligent Broker (ib)

248 CHAPTER 9. RELATED WORK AND EVALUATION[Fensel, 1997, Deker et al., 1998℄ and the ibrow3 broker [Benjamins et al., 1998,Armengol et al., 1998℄ an be desribed as being in their early stages whih meansthat they are not yet implemented and important design deisions remain to betaken. For example, the language in whih psms are to be desribed is notyet de�ned. There is, however, a draft proposal for a psm desription languagethat is mostly based on kads models of expertise, the oneptual modellinglanguage ml [Wielinga (ed) et al., 1994, hapter 3℄, and ml2 (f. setion 2.4.1.2).This new language will be alled the Uni�ed Problem-solving Method desriptionLanguage (upml) [Fensel et al., 1998a, Fensel et al., 1998b℄.The �nal broker we will have a look at here is the Objet Request Broker ofthe Common Objet Request Broker Arhiteture (orba) [Orfali et al., 1997,Baker et al., 1997, orba V2.2, 1998℄. This broker is not based on kqml andwas intended for the brokering of objets rather than agent apabilities. Thelanguage in whih objets and their interfaes have to be desribed to the brokeris alled the Interfae De�nition Language (idl) [orba V2.2, 1998, hapter 3℄.idl allows the spei�ation of lasses of objets in terms of their ingredients andinterfae, i.e. the funtionality an instane of this lass will o�er to other objets.To summarise, we an distinguish three types of languages for apability de-sriptions supported by the di�erent brokers:� Free text is supported by the oins mathmaker and is used in most psmdesription languages, e.g. upml.� kif, a logial language based on �rst-order prediate logi, is supportedby the absi failitator, the shade mathmaker, and the InfoSleuth broker.� Objet desription languages (max, ldl++, and idl) are supportedby the shade mathmaker, the InfoSleuth broker, and the Objet RequestBroker.

9.1. COMPARISON WITH OTHER BROKERS 2499.1.1.2 EvaluationThe most important question for this evaluation now is how these languagesompare to dl. The �rst group of languages mentioned above, languages basedon free text, are, of ourse, very powerful languages. Every apability desribedin dl an also be desribed in natural language, but presumably not vie versa.Similarly, sine kif is based on �rst-order prediate logi, it provides a highlyexpressive language. In fat, as we will argue in setion 9.2.1.2, fopl is a moreexpressive ation representation than dl. Finally, objet desription languages,or frame languages as they are sometimes alled, also provide a quite powerfulformalism. Thus, it appears that dl, the language supported by our broker,ompares rather unfavourably to the apability desription languages supportedby other brokers.While expressiveness is an important issue, it is not our only onern. Anotherimportant issue is the support o�ered by a framework for knowledge engineering,e.g. the task of desribing apabilities in a given formalism. Free text or kif do notprovide any support for this task and the knowledge engineer has to make a largenumber of hoies without any guidane. dl presents a signi�ant advane inthis respet: apabilities have to be represented as a olletion of di�erent objetsmanipulated by the apability and di�erent types of onstraints. Furthermore,our language failitates the implementation of an ontology of performable ationsfrom whih apability desriptions an be derived. We believe that suh an on-tology is a very e�etive means for the failitation of the knowledge engineeringtask, and although dl does not inlude an ontology, it does provide the rep-resentational basis for it. Thus, dl provides substantially more support for theknowledge engineering task than any of the languages used by other brokers.9.1.2 Reasoning Failities to Support BrokeringComparing just the languages results in an inorret piture. It is equally im-portant to ompare the inferene mehanisms employed by the di�erent brokers

250 CHAPTER 9. RELATED WORK AND EVALUATIONto reason over the languages they support. If a language has ertain features thatare not supported by the broker's reasoner then these features should not be on-sidered part of the representation. We will now review the reasoning mehanismsimplemented by the di�erent brokers. In the next setion we will re-evaluate thedi�erent apability desription languages, showing that they are not nearly asexpressive as they initially appeared.Brokers reason about apabilities on two levels. Firstly, they need to testwhether a given apability an be used to solve a given problem. This inferenean be seen as the essene of brokering. Seondly, brokers maintain a database ofapability desriptions on whih they an perform ertain operations, e.g. retriev-ing a apability for a given problem. Sine the interfae to a broker is de�ned inkqml, all brokers adhering to the kqml spei�ation should support the sameinferenes at this level. Note that this interfae orresponds to the outer part ofthe general format of brokering messages desribed in �gure 9.1. We shall lookat mathing of apabilities and problems in setion 9.1.2.2. But �rst we reviewthe interfae provided by the di�erent brokers for maintaining their database ofapability desriptions.9.1.2.1 Supported Performativeskqml only de�nes the behaviour a broker should exhibit on reeipt of the variousbrokering performatives, i.e. it de�nes what the result of the reasoning that hasto take plae in the broker should look like (f. table 2.1 in setion 2.1.2). kqmldoes not speify how this is to be implemented though.The only brokering performative expliitly provided by the absi failitator ishandles. Note that no suh performative is de�ned in the kqml spei�ation.The handles performative implements exatly the behaviour spei�ed for theadvertise performative in kqml, i.e. the absi failitator e�etively providesthis performative. The funtionality of another kqml brokering performative,namely broker-one, is only supported impliitly by the absi failitator. The

9.1. COMPARISON WITH OTHER BROKERS 251basi mehanism is that problems are sent to the failitator as if this agent wasthe one to solve the problem. The failitator then manages the solution of theproblem. The resulting behaviour orresponds to the broker-one performativein kqml. Thus, advertise and broker-one are the only brokering performativeswhih are (impliitly) supported by the absi failitator.The shade and oins mathmakers as well as the InfoSleuth broker supportall the kqml brokering performatives desribed in the spei�ation and thus,they ompletely adhere to the standard.The psm brokers and orba on the other hand annot be ompared to theother brokers in this respet as they do not provide a kqml interfae. The psmbrokers are still in an early phase of their development and suh an interfaemight well follow. For orba there are no plans to provide a kqml interfae,although suh an extension has been attempted [Beneh and Desprats, 1997℄.Finally, of the brokering performatives de�ned in kqml, the only one ourbroker does not support is subsribe. All other brokering performatives aresupported by our broker and onform to the kqml spei�ation.To summarise, amongst the kqml-based brokers there are several that sup-port all the brokering performatives de�ned in the kqml spei�ation. The onlyperformative not provided by our broker is subsribe. The broker supportingthe smallest number of performatives is the absi failitator whih only supportsadvertise and broker-one impliitly.9.1.2.2 Mathing of Capabilities and ProblemsAs mentioned above, brokers not only maintain a database of apability desrip-tions, they also have to test whether a apability an be used to address a givenproblem. How this inferene is performed in the di�erent brokers is the fous ofthis setion.kqml does not speify a ontent language for apability desriptions. It does,however, speify that mathing between apabilities and tasks is to be performed

252 CHAPTER 9. RELATED WORK AND EVALUATIONby omparing the respetive performatives and ontents of the two inner messages(f. �gure 9.1), and these math if they are equal [Labrou and Finin, 1997, page19℄. Note that this form of mathing is rather trivial.The mathing between apabilities and problems whih is performed by theabsi failitator is based on the mathing algorithm between kif expressions. Forthis mathing, the kif expression representing the generalised message ontentand the kif expression representing the atual message ontent are treated as Pro-log terms, and mathing is performed like a uni�ation with the Prolog equalityprediate. If this uni�ation sueeds, the additional onstraints will be evaluatedusing the variable bindings obtained in the uni�ation. If all the onstraints anbe satis�ed, the apability subsumes the problem.The mathing that is performed by the oins mathmaker is based ona onept vetor extrated from text employing an inverse doument fre-queny sheme, a tehnique often used in searh engines [Witten et al., 1994,Howe and Dreilinger, 1997℄. The mathing performed by the shade mathmakeris similar to the mathing of the absi failitator and based on the mathing of kifexpressions. The max representation is based on frames and slots and provideslittle more than the kif mather by providing a Prolog-like uni�er. Furthermore,advertisement and request must math solely based on their ontent and no ad-ditional prediates are allowed as for the absi failitator. Limited inferene forfuture versions is envisaged though.Although the �rst language supported by the InfoSleuth broker is kif, thestandard mathing method for kif used by the other brokers is not used here.Capability desriptions using kif are translated into ldl++ and the matheroperates on this language only. E�etively, the advertisement of a apabilityresults in an assertion to a database. This is quite similar to the way the absifailitator treated apability advertisements. Requests seeking apabilities arethen treated as normal database queries.The brokers for psms are, as mentioned before, still in an early phase of their

9.1. COMPARISON WITH OTHER BROKERS 253development. Not even the language they will use to desribe psms is �nalisedyet, and no desription of the mathing algorithm they will use is available.Finally, the mathing algorithm used in orba is fairly straightforward on-sidering that this is an objet broker. It will be roughly the same as the onefound in any ompiler for unifying parameter spei�ations.To summarise, most of the brokers employ a kif-based mathing algorithmthat is very similar to a simple uni�ation algorithm as desribed e.g. in[Robinson, 1965℄. Spei�ally, mathing between kif expressions whih is used byseveral brokers is de�ned in suh a way. The only signi�ant extension is providedby the absi failitator, where in addition to this uni�ation-like mathing theremay also be a number of Prolog prediates that must be evaluated. Note, how-ever, that these prediates annot be user de�ned. Other forms of mathing arethe equality test spei�ed in kqml and the keyword-based algorithm for oins.9.1.2.3 EvaluationMathing apabilities and problems is the essene of the reasoning the broker hasto perform. All the brokers we have looked at inluding our own provides at leastone brokering performative that is based on this mathing. Thus, we do not seea signi�ant di�erene in the brokering performatives supported by the di�erentbrokers. The reason for the omission of subsribe in our broker is that thetype of senario we were aiming to address is based on isolated problems whiha problem-holding agent (pha) experienes and seeks help with, i.e. apabilitiesare to be evaluated at run-time (f. setion 1.2.2). These problems largely tend tobe non-reurrent. The subsribe performative on the other hand is intended forreurrent problems and the posting of persistent requests. Thus, the implement-ation of the subsribe performative did not appear neessary for our broker andwe do not onsider its omission a de�ieny of our system.While there is no signi�ant di�erene in supported brokering performatives,the mathing algorithm implemented in dl and based on the notion of apability

254 CHAPTER 9. RELATED WORK AND EVALUATIONsubsumption (f. de�nition 5.4) is signi�antly more powerful than the mathingprovided by other brokers. It is fairly easy to see that the notion of apability sub-sumption is more powerful than the equality test spei�ed in kqml; if apabilityand problem desription are equal then the apability also subsumes the problem.Thus, our mathing algorithm (f. �gure 5.9) inludes, and in fat, surpasses thekqml spei�ation.The same is true for all mathing algorithms based on uni�ation; dl's sub-sumption test an be used to emulate this behaviour. One simple way to ahievethis is to de�ne a result variable as an output parameter to a dl apability andhave just one output onstraint stating that the result variable must be equalto the expression desribing the apability. The same proedure an be appliedto the problem desription. In this ase our apability subsumption test wouldattempt to unify the two expressions to test the output math ondition, and theresult of this test would determine whether the apability mathes the problem,sine there are no input onstraints. Thus, the result of our apability subsump-tion test depends solely on the result of the uni�ation, i.e. it emulates the otherbrokers' mathing behaviour.A slight extension of this proedure an be used to emulate the mathingperformed by the absi failitator, whih allows for additional onstraints on thevariables bound during the uni�ation. These onstraints must be spei�ed interms of prediates de�ned in the language, e.g. Prolog. Assuming our broker alsoknows this language and the prediates de�ned in it, these onstraints an simplybe spei�ed as input onstraints of the dl apability and they will be evaluatedas part of the input math ondition. Thus, our apability subsumption test analso emulate the mathing behaviour of the absi failitator. An example, of thisproedure for a apability used by the absi failitator is given in setion 9.3.1.This shows that the subsumption test de�ned in dl an indeed be usedto emulate the mathing performed by the other brokers. However, the rathersimple, uni�ation-based mathing used by these brokers annot emulate our

9.1. COMPARISON WITH OTHER BROKERS 255subsumption test. The reason for this is that kif-like uni�ation is essentially asyntati mathing whereas the subsumption test for dl is based on the ontentlanguage's semantis. For example, a kif sentene onsisting of the onjuntionof two propositions only mathes (uni�es with) an idential sentene, but bothonjunts as well as the sentene in whih the two onjunts have swapped pos-itions logially follow from the original sentene. The subsumption test used indl for mathing easily opes with this example, but mathing based on uni�a-tion must fail for it. Thus, dl's subsumption test is indeed more powerful thanthe mathing used by other brokers.A �nal onern worth mentioning here is that of eÆieny. It is true that thesubsumption algorithm used in dl will usually be less eÆient than a uni�ation-based algorithm. This is only to be expeted though as the problem it solves isfar more omplex than that solved by uni�ation. A detailed omplexity analysisof the apability subsumption algorithm an be found in setion 6.3.1. However,as pointed out in setion 6.3.2, the omplexity of the apability subsumptionalgorithm does not depend on the parameter we would expet to sale up, namelythe number of apabilities known to the broker. Thus, the omplexity of this testdoes not present a problem for our broker.9.1.3 Evaluating Expressiveness and FlexibilityIn this setion we will evaluate dl by omparing the usable expressiveness andexibility of the various apability desription languages supported by the di�er-ent brokers to that of dl. We will show that dl's usable expressiveness andexibility are higher than those o�ered by other languages and that these featuresare the right ones to onsider in the ontext of brokering.9.1.3.1 Usable ExpressivenessOur aim now is to show that, while the expressiveness of the apability desriptionlanguages o�ered by the other brokers appears high (f. setion 9.1.1.2), their

256 CHAPTER 9. RELATED WORK AND EVALUATIONusable expressiveness is in fat omparatively low.Charaterising Usable Expressiveness By the usable expressiveness of aapability desription language we mean the expressiveness of the language thatan be utilised in a apability desription and whih an be adequately handledby the broker based on this language. In other words, the usable expressive-ness of a language is the expressiveness of the subset of the language that anbe adequately handled by the broker. Note that this haraterisation of usableexpressiveness of a language depends on the existene of a broker that handlesapability desriptions in this language, i.e. usable expressiveness is only de�nedin the ontext of brokering.The key requirement here is that the broker needs to be able to adequatelyhandle apability desriptions. A broker handles apability desriptions by reas-oning about them. What apability desriptions an be adequately handled bya broker depends on the reasoning mehanisms employed by the broker to drawinferenes over the apabilities. Thus, the usable expressiveness of a language de-pends on the adequay of the reasoning mehanisms employed by the respetivebroker.Thus, our aim here is to show that the expressiveness whih an be adequatelyreasoned about by other brokers is lower than the expressiveness that an beadequately reasoned about by our broker. We have reviewed the reasoning meh-anisms implemented for the various brokers in setion 9.1.2.What remains to be spei�ed at this point is when the reasoning mehanismsemployed by a broker should be onsidered adequate. The essene of the reasoningperformed by brokers is the mathing between apabilities and problems, andthis is also where the brokers we reviewed di�er most from our dl broker. Wewill say that a broker's mathing is adequate if it minimises the number of falsemathes. By a false math we mean a situation in whih the broker believes aapability desription to subsume a problem, but in fat, the apability annot be

9.1. COMPARISON WITH OTHER BROKERS 257used to address the problem. Furthermore, an adequate mather will maximisethe probability that it �nds a apability to address a given problem if suh aapability is available.Comparing Usable Expressiveness In setion 9.1.1.1 we showed that thereare three types of languages for apability desriptions used by the brokers wereviewed. The �rst group is based on free text. The mathing performed by theoins mathmaker is based on a onept vetor extrated from text employing aninverse doument frequeny sheme. Suh keyword-based tehniques an neverbe guaranteed not to result in false mathes or to �nd a apability if there is oneavailable. The reason for this potential inadequay is that these tehniques relyon words in the textual apability desription whih are taken out of ontext andare usually ambiguous. Thus, this form of mathing will often be inadequate andthe usable expressiveness of free text is in general unde�ned.The other languages used by the di�erent brokers for apability desriptionsare kif and frame languages for objet desriptions. The limitation for the usableexpressiveness here is again the mathing performed by the di�erent brokers.This mathing is mostly based on uni�ation. Only the absi failitator has aslightly more powerful mather that allows for additional onstraints. As we haveargued in setion 9.1.2.3, the behaviour of suh algorithms an be emulated by thesubsumption algorithm implemented for dl. Thus, the usable expressiveness ofdl is at least as high as that o�ered by the languages used by the other brokers.A loser inspetion of the kif-like uni�ation-based mathing algorithms evenreveals that dl's usable expressiveness is higher. For example, uni�ation-basedmathing annot handle ases in whih the apability desription ontains om-mutative operators or in whih the apability annot be instantiated to the prob-lem desription solely by the binding of variables. In suh ases a uni�ation-based mather may fail to �nd the apability that an address the problem. Thus,the mathing is inadequate in these ases and the usable expressiveness of the

258 CHAPTER 9. RELATED WORK AND EVALUATIONlanguage does not inlude them. dl, however, an handle these ases, and thus,its usable expressiveness is higher than that of the languages used by the otherbrokers.Expressiveness or Usable Expressiveness? Evaluating dl by omparingits usable expressiveness to that o�ered by languages supported by other brokersallows for a more meaningful omparison than omparing the expressiveness ofthe various languages at fae value as we did in setion 9.1.1. In onsidering theusable expressiveness of a apability desription language we disregard apabilitydesriptions that an be written in a language, but whih annot be adequatelyreasoned about by the broker. Disregarding these apability desriptions doesnot hange the desired or intended behaviour of the broker. But the desired andintended behaviour is exatly what we are interested in and thus, in the ontext ofbrokering omparing the usable expressiveness of apability desriptions is moremeaningful.9.1.3.2 Usable FlexibilityThe seond property we are most onerned with in this evaluation of dl andour broker is exibility. Again, we should look at the exibility o�ered by thedi�erent systems in the ontext of the reasoning mehanisms supporting thisexibility, i.e. their usable exibility. This turns out to be unneessary though.Flexibility as we have de�ned it (f. de�nition 8.1) allows the knowledge engin-eer to hoose a ompromise regarding a ertain trade-o� at the time of knowledgerepresentation rather than having to adopt a �xed ompromise presribed by anddesigned into the representation.All the brokers we have reviewed provide either one �xed language for ap-ability desriptions or at most two alternative languages. Providing just onelanguage learly provides no exibility as there is no hoie to be made. Thebrokers o�ering two di�erent languages and thus some limited degree of exibilityare shade and the InfoSleuth broker.

9.1. COMPARISON WITH OTHER BROKERS 259ontent reasoning reasoning usable usablelanguage performatives mathing expressiveness exibilitykqml unde�ned all de�ned equality unde�ned unde�nedabsi kif handles/ uni�ation/ low nonebroker-one onstraintsshade/ kif/max all kqml uni�ation low lowoins free text performatives keywordsInfoSleuth kif/ all kqml uni�ation low lowldl++ performativespsms umpl | unde�ned unde�ned loworba idl | uni�ation low nonedl dl all exept subsumption high highsubsribe testTable 9.1: Comparison of di�erent brokersFor our broker, apabilities have to be desribed in dl. dl is not just onelanguage though. Through its plug-in mehanism for state languages it providesa framework for a whole set of languages, all based on the same top-level syntax.Eah language in this set may provide a di�erent ompromise regarding a ertaintrade-o� and by hoosing the state language the knowledge engineer an hoosethe required ompromise. The only aveat here is that we have only implementedtwo ontent languages that an be plugged into dl, but our implementation ofdl as a deoupled language allows for arbitrary ontent languages.Thus, dl in priniple o�ers a far greater degree of exibility than the apab-ility desription languages o�ered by the other brokers. Furthermore, sine thisexibility is fully supported by the reetive reasoning mehanisms, this highexibility also means a high usable exibility of dl.9.1.4 SummaryThe result of the omparison between our dl broker and other brokers is sum-marised in table 9.1.In this setion we have evaluated our broker and dl by omparing it to otherbrokers reviewed earlier in this thesis. For this purpose, we have �rst ompared

260 CHAPTER 9. RELATED WORK AND EVALUATIONthe apability desription languages supported by the di�erent brokers. At thispoint it appeared that the expressiveness o�ered by dl was inferior to thato�ered by other languages. The only advantage of dl revealed at this stage ofthe omparison was its better support for knowledge engineering.In the next stage of this evaluation we reviewed the reasoning mehanismsemployed by the di�erent brokers. The essential di�erene between other brokersand our dl broker found at this point was in the mathing algorithm used totest whether a apability and problem desription math: dl's subsumptionalgorithm an be used to emulate the mathing behaviour of the other brokersand, in fat, surpasses them.The fat that other brokers only have limited mathing algorithms also limitsthe usable expressiveness of the apability desription languages they provide.Thus, dl provides a higher usable expressiveness and we have shown that this isa more meaningful riterion than plain expressiveness in the ontext of brokering.Similarly, the fat that dl is implemented as a deoupled language gives it ahigher exibility than o�ered by the other broker's languages. Thus, dl andour broker an be used to represent and reason about all apabilities that an beadequately handled by other brokers and more.A question that remains at this point is whether we have ompared dl withthe right languages. dl is an ation representation and the languages usedby the other brokers are far more general. Thus, we shall now ontinue thisevaluation by omparing the expressiveness of dl to that of other languagesfor the representation of similar entities: ation representations. Note that weannot ompare the usable expressiveness here as there are no brokers for theselanguages. Similarly, we want to ompare the exibility of dl to other languagesthat are meant to o�er this property. This is what we will do in the followingsetion.

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 2619.2 dl: Expressiveness and FlexibilityIn this setion we will look at the two important properties of dlagain and show what has been ahieved and where there are still openissues.9.2.1 Expressiveness of dlExpressiveness of ation representation languages as we have de�ned it in de�ni-tion 7.7 is a relative measure, i.e. we an only formally show that one language ismore expressive than another, but we annot show that a language is expressivein an absolute sense. However, using a less formal notion of expressiveness, oneould say that a language is expressive if it is at least as expressive as most otherlanguages that are intended for the representation of similar entities and relations.This is what we mean by our laim that dl is an expressive ation represent-ation. Thus, we shall now ompare dl with other languages that are intendedfor the representation of similar entities and relations: ation representations.A formal omparison of dl with other ation representation languages wouldrequire these languages to be de�ned as AR1 languages, too, so that de�nition 7.7of the expressiveness of AR1 languages ould be applied. Needless to say, none ofthe ation representation languages mentioned in setion 2.3.1, whih are the rep-resentations we intend to ompare dl with here, are de�ned as AR1 languages.This means that the omparisons that will follow may only be informal.A �nal remark before we begin to ompare the expressiveness of dl with thatof other ation representations onerns the fat that AR1 languages are de�nedas deoupled ation representations. Looking at the �rst part of de�nition 7.7again, there are two onditions listed for a set of ations in one language tobe expressed by a set of ations in another language. Firstly, for every statedesription in the �rst language there must be a orresponding state desriptionin seond language. Seondly, the set of states reahable through the two sets

262 CHAPTER 9. RELATED WORK AND EVALUATIONof ations in their respetive representations must also orrespond to eah other.Thus, one ation representation an be more expressive than another beause itan represent more omplex states, i.e. the re-expression would fail on the �rstondition, or it an be more expressive than another beause it an represent moreomplex relations between states in its deoupled ations, i.e. the re-expressionwould fail on the seond ondition. Note how these two reasons for di�erenes inexpressiveness reet the distintion between states and ations in a deoupledation representation.9.2.1.1 Comparing State DesriptionsIn this setion we will look at the state desription languages used within the moreinteresting ation representations desribed in setion 2.3.1 and we will omparethem with fopl whih we have implemented as one of the state languages in dl.For this omparison we shall treat all representations as if they were de�ned asdeoupled ation representations and mostly ignore the part of the representationthat expresses relations between states. This part of the representation will bereviewed in the following setion. Here, we shall onentrate on the world statesexpressible in the di�erent representations.The �rst ation representation to be reviewed here is the situation alu-lus whih uses fopl as the underlying representation for ations and states[MCarthy and Hayes, 1969, Shanahan, 1997℄. Essentially, the prediate Holdsis used to represent that a fat is true in a given situation. The uent repres-enting the fat is tehnially a funtion term but it desribes fatual knowledgein the form of a positive literal. It is fairly easy to see that Holds ommuteswith various onnetives and thus allows the full expressiveness of fopl for statedesriptions.The next group of ation representations to be reviewed here are the lassialnon-hierarhial representations (f. setion 2.3.1.2). The original strips planner[Fikes and Nilsson, 1971, Fikes et al., 1972℄ was desribed as an extension of a

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 263resolution theorem prover and a state was represented as a set of lauses, thusinorporating the power of fopl for the state desription language. However, thetheorem prover was later dropped and only onjuntions of literals were allowedin the state representation, resulting in a far less expressive state representation,and a far more eÆient planner [Nilsson, 1980, hapter 7℄. Many planners arebased on this restrited version of strips.The middle ground between the strips representation with onjuntions ofliterals and the situation alulus was explored by [Pednault, 1989℄ and resultedin a new ation representation alled adl. This language suessfully ombinedthe expressiveness of the situation alulus with the strips assumption. Thus,states ould be represented using fopl. Interestingly, the language is desribedin a way that learly distinguishes state and ation representation. No attemptwas made to de�ne adl with a state desription other than fopl though. Theupop planner was the �rst planner that was based on a restrited version of adl[Penberthy and Weld, 1992, Barrett et al., 1995℄. However, one again states inthis version were restrited to onjuntions of literals and limited universal quan-ti�ation was only permitted over �nite domains so that they ould be replaedby a long onjuntion. The latest version of upop also allows disjuntions inplaes, thus allowing more expressiveness in states, but work on suh extensionsis still in progress.The representations used in ontingeny planners like nlp or Cassandra[Peot and Smith, 1992, Pryor and Collins, 1996℄ are essentially based on thestrips representation and world states are represented as onjuntions of literalsonly. However, looking at the ation representation, alternative sets of e�ets anbe spei�ed for an ation under di�erent ontingenies. This e�etively repres-ents a disjuntion between two possible outomes of an ation and thus, providesmore expressiveness than onjuntions of literals. On the other hand, it does notprovide the full power fopl by providing a limited form of disjuntion in states.Real world planners suh as O-Plan [Currie and Tate, 1991, Tate et al., 1994,

264 CHAPTER 9. RELATED WORK AND EVALUATION

STRIPS

SPAR
CDL

CNLP
Cassandra O-Plan TF

UCPOP-ADL

CDL with FOPLOriginal STRIPS

ADLSituation calculus

Figure 9.2: Expressiveness of state representationsTate, 1995℄ must be eÆient and thus essentially only allow onjuntions of liter-als in world states. However, these planners allow for a number of extensions suhas reasoning about resoures that, were they represented in fopl, would requiremore than just onjuntions of literals to represent. Thus, the e�etive express-iveness of the state desription language is higher than that of onjuntions ofliterals, but it does not provide the power of fopl.Finally, shared ation representations suh as spar [spar, 1997, Tate, 1998℄are designed as deoupled ation representations, although they are not de�nedas AR1 languages. Thus, states in spar ould be represented in any languageone hooses to plug in, inluding fopl. In this sense spar an be onsideredto be the language most similar to dl, allowing for the most expressive statedesription language.The result of this omparison of the expressiveness of the various state rep-resentations used in ation representations is summarised in �gure 9.2. Ationrepresentations allowing the most expressive state desription languages are at

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 265the top of the �gure.9.2.1.2 Comparing Ation DesriptionsIn this setion we will look at the deoupled ation desription languages usedwithin the more interesting ation representations desribed in setion 2.3.1 andompare them with dl. Note that the deoupled ation representation justdesribes the relation between states, not how states are to be represented. Asin the previous setion, we shall treat all representations as if they were de�nedas deoupled ation representations and we will mostly ignore the part of therepresentation that expresses states. This part of the representation was reviewedin the previous setion.As in the previous setion, we shall begin our review with the situation alulus[MCarthy and Hayes, 1969, Shanahan, 1997℄. However, a problem here is thatthe situation alulus does not provide a struture for the representation of anation. Any �rst-order sentene that mentions a spei� ation ontributes to thede�nition of this ation. Depending on the kinds of axioms one onsiders a situ-ation alulus representation, ations an be highly expressive. [Shanahan, 1997,setion 2.7℄ illustrates this point niely with a formalisation of a toggle ation.He uses the usual e�et axioms to de�ne the state after the ation has been per-formed in a given state, but �rst-order logi also permits an axiom that expressesthat the state remains unhanged after toggling a swith twie. Shanahan doesnot onsider suh axioms part of the situation alulus. Obviously the express-iveness of the deoupled ation representation of the situation alulus very muhdepends on what exatly is permitted in the representation.In the strips ation representation [Fikes and Nilsson, 1971, Nilsson, 1980℄an ation desription onsists mainly of three omponents: the preonditions,the add list, and the delete list. These de�ne the relation between states asoutlined in setion 7.2.2. The di�erene between the early and later version ofstrips lies only in the state representation.

266 CHAPTER 9. RELATED WORK AND EVALUATIONIn adl [Pednault, 1989℄ ations are essentially de�ned as a number of situ-ation alulus formulae. However, the syntax of adl resembles more that ofstrips and there is a preise de�nition of how to generate situation-alulus-likeformulae from an ation represented in adl. This de�nes the semantis of adlas an equivalene semantis based on the situation alulus, but it avoids theproblem with the situation alulus mentioned above: that it is not lear whihformulae should be onsidered situation alulus representations of an ation andwhih should not. As for the expressiveness of the deoupled ations in adl, therepresentation allows for preonditions, add list, and delete list, like the stripsrepresentation. An essential extension is that one an also speify onditional addand delete lists in adl. The same extension is implemented in the upop plan-ner [Penberthy and Weld, 1992, Barrett et al., 1995℄. The restritions imposedby this planner are solely on the state language and thus, upop's version ofadl is as expressive as adl as far as deoupled ations are onerned. In dl,onditional e�ets are represented as input-output onstraints.Contingeny planners di�er from onventional planners by allowing the spe-i�ation of various sets of e�ets in an ation to represent the various ontingen-ies that may our. However, as we have argued above, these ontingenies anbe seen as one disjuntive set of e�ets and thus, this feature does inrease the ex-pressiveness of the deoupled ation representation. Thus, the deoupled ationrepresentation of a nlp ation [Peot and Smith, 1992℄ is not more expressivethan strips, allowing only preonditions, add list, and delete list. Cassandra[Pryor and Collins, 1996℄ on the other hand implements ontingenies as ondi-tional e�ets and, as a by-produt, it an deal with ordinary onditional e�etstoo.Real world planners like O-Plan [Currie and Tate, 1991, Tate et al., 1994,Tate, 1995℄ need to be eÆient, as pointed out before, and thus, do not implementonditional e�ets but provide many other features important for planning. And�nally, the spar ation representation provides more like an ontologial de�nition

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 267

CNLP O-Plan TF

(original) STRIPS

CassandraCDL

ADL UCPOP-ADL

FOPL

Figure 9.3: Expressiveness of ation representationsof an ation, rather than a formalism. While this leads to a very open language,it also means there is nothing that annot be added to an ation by de�ning anew lass of ations that inherits from spar. Thus, it is not lear how one ouldompare the expressiveness of spar's deoupled ation representation to that ofdl.The results of this omparison are again summarised in �gure 9.3. Onlythree levels of expressiveness for deoupled ation representation are shown: basistrips-like languages, languages supporting adl-like onditional e�ets, and theunstrutured representation of fopl. dl falls into the middle ategory.9.2.2 Flexibility of dlUnlike expressiveness, exibility has been de�ned in setion 8.2.1 as a propertythat a knowledge representation either has or does not have. It may also bepossible to distinguish di�erent degrees of exibility, but we have not done so. Asfor expressiveness, our evaluation of the exibility of dl will be done througha detailed omparison with other representations. However, the result will not

268 CHAPTER 9. RELATED WORK AND EVALUATIONUnLang Ctl OpFn Re Pars a/s Contentkqml ok loal no no undef no arbitraryModal L. fail global no no �xed no limitedMeta-K. fail loal no yes �xed no arbitraryadl fail global no no �xed yes limitedO-Plan tf defer loal no yes undef yes arbitraryspar defer loal no yes undef yes arbitrarypddl fail global no no { no �xedml ok global no yes { no �xeddl load loal yes yes () yes arbitraryKey: UnLang: behaviour on enountering unde�ned ontent language; Ctl: ontrolover reasoning; OpFn: interfae uses optional funtions; Re: interpreter uses reet-ive reasoning; Pars: approah to parsing problem; a/s: language distinguishes ationsand states; Content: allowed ontent languagesTable 9.2: Comparison of exibilitybe a exibility hierarhy, but a lose inspetion of the solutions o�ered by otherlanguages to the implementation problems desribed in setion 8.2.3.The results of this omparison are summarised in table 9.2. In this tableeah row is labelled with a representation that an be onsidered exible andeah olumn is labelled with a problem that has to be addressed in a exiblelanguage.1 The �rst four olumns are onerned with reasoning aspets.The �rst olumn (UnLang) looks at the behaviour of an interpreter for therepresentation when it enounters an unknown language (f. setion 8.2.3.2). Inmany languages the parsing of an expression with an unknown ontent languagewould simply fail. This is beause, although the de�nitions of these languagesan be seen as deoupled, in pratise they are integral knowledge representationlanguages. There are some notable exeptions though. kqml (f. setion 2.1.2.3),for example, is meant to perform no reasoning over the ontent of a messageand thus, most kqml interpreters will ope with an unknown ontent language.However, a problem might well our at a later stage in the reasoning proess, asit would, for example, in the jat implementation of kqml. A di�erent approah1 By a language we mean a lass in the objet-oriented sense here, i.e. it inludes the funtion-ality provided for reasoning over this language.

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 269is taken in O-Plan tf (f. setion 2.3.1.5) and spar (f. setion 2.3.1.6). Bothlanguages allow for the spei�ation of onstraints in new languages. spar evenprovides a mehanism that allows one to speify the syntax of a new language.However, no example of this extension mehanism is atually implemented as faras we are aware today. The basi mehanism for reasoning over onstraints in anunknown language in O-Plan is to postpone evaluation of these onstraints untilan appropriate onstraint manager beomes available. ml (f. setion 2.4.1.2)is a speial ase as it allows free text as ontent whih inludes any language,i.e. there annot be an unknown language.Our language, dl, distinguishes itself from all other languages here by fa-ilitating the retrieval of an interpreter for an unknown ontent language whihmay be inorporated into a reasoning proess (f. setion 5.3.1.2), resulting in theexible behaviour of the broker.The seond olumn of table 9.2 (Ctl) analyses whether an interpreter for therepresentation passes ontrol to an external interpreter for the ontent language(f. setion 8.2.3.2) whih orresponds to loal ontrol; otherwise ontrol is on-sidered global. Passing ontrol to an interpreter for the ontent language anbe seen as a greater degree of deoupling in the language. For example, kqmldoes not speify how the reasoning over the ontent language is to be performed,but the implementation in jat, for example, maintains a number of external in-terpreters that perform this reasoning, i.e. ontrol is loal to eah interpreter.Similarly, most systems using expliit meta-level knowledge (f. setion 2.2.3),e.g. prodigy's searh ontroller, have independent modules to reason over meta-and objet-level knowledge. O-Plan also has a ontroller and onstraint-assoiatorto handle its meta-level reasoning. In dl ontrol is passed to an external inter-preter when apabilities are evaluated (f. setion 5.1.2).The third olumn of table 9.2 (OpFn) studies whether the proedural se-mantis of the language is de�ned in terms of optional funtions, i.e. funtionalitythat is de�ned for all languages but only provided for some (f. setion 8.2.3.2).

270 CHAPTER 9. RELATED WORK AND EVALUATIONAlthough optional funtions do not diretly indiate exibility in a language, wehave found them to be a very useful implementational mehanism for a deoupledlanguage. Of the languages listed in the table, dl appears to be the only lan-guage that supports this mehanism. An example of suh a funtion is evaluatein �gure 5.2.The fourth olumn of table 9.2 (Re) examines whether an interpreter forthe representation uses expliit reetive reasoning to determine how to reasonover the ontent expressions (f. setion 8.2.3.2). Interpreters for representationsusing meta-level knowledge almost by de�nition fall into this ategory. O-Planan also be desribed as employing reetive reasoning when it performs expliitreasoning over whih knowledge soure to �re next based on the open issues in apartial plan. ml is again a speial ase beause of its free text base. If there isany reasoning to be performed it almost has to be reetive to work out whihpart of the free text an be used for reasoning. dl uses reetive reasoning whenit performs a subsumption test as desribed in setion 5.1.2.2.The last three olumns of table 9.2 are onerned with solutions to imple-mentation problems of the individual representations. The �fth olumn (Pars)looks at the approah to the parsing problem (f. setion 8.2.3.1) in the di�er-ent representations. The only languages we are interested in here are, of ourse,those that do not have a �xed parser for the ontent language as this meansthe language is not really exible. kqml is a deoupled language, but the ap-proah to the parsing problem is unde�ned in the language. The most generiapproah to the parsing problem is probably that in spar and the latest versionof O-Plan tf, whih allows the spei�ation of a syntax as part of the language.How ambiguities are to be resolved is not lear though. pddl (f. setion 2.3.1.6)allows for various extensions in the language, but these are �xed and thus theparser is �xed, too. ml is a speial ase again, beause no attempt is made toparse the free text that is its ontent. dl is somewhat similar to some kqmlimplementations in that it requires expressions in the ontent language to be in

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 271brakets, and the ontent languages we have implemented adopt the Lisp syntax(f. �gure 4.4).The sixth olumn of table 9.2 (a/s) takes a look at the ut that is made in therepresentation, spei�ally, whether it distinguishes between ations and states(f. setion 8.2.3.1). Not all of the representations in the table are ation repres-entations and thus, it is not surprising that the only representations other thandl whih deouple ations from their underlying state representation are adl(f. setion 2.3.1.2), O-Plan tf, and spar. The deoupling of dl to distinguishations and states has been disussed in setion 4.2.3.Finally, the last olumn of table 9.2 (Content) examines whether the outerlanguage allows the plugging in of arbitrary ontent languages (f. setion 8.2.3.1).This is obviously one of the most fundamental features of a exible ation rep-resentation. kqml, meta-level knowledge representations, O-Plan tf, and sparall allow for arbitrary ontent languages. Modal logis (f. setion 2.2.2) alsoallow some degree of freedom but the range of language they have been usedwith is rather limited. Similarly, the de�nition of adl an be interpreted as thede�nition of a deoupled language, but the atual language was only spei�edfor one ontent language. dl allows one to plug in arbitrary ontent languages(f. setion 4.2.3.2).SummaryA language an be onsidered expressive if it is at least as expressive as otherrepresentations for similar entities and relations. Figures 9.2 and 9.3 illustrate theresult of our omparison of dl with other ation representations. dl togetherwith spar provide the most expressive state desription languages and only foplprovides a more expressive deoupled ation representation than dl. The latteris due to the generality of fopl whih essentially leads to the lak of methodologyproblem with other brokers mentioned in setion 9.1.Table 9.2 shows how the exibility of dl ompares to that of other languages.

272 CHAPTER 9. RELATED WORK AND EVALUATIONdl allows for plugging in of arbitrary ontent languages and uses reetivereasoning to test for apability subsumption. While this muh is true for theother exible languages reviewed here, dl is di�erent in the way it handlesunknown ontent languages and spei�es a proedural interfae to the ontentlanguages through optional funtions.Thus, dl is an expressive and exible ation representation.

9.3. OTHER DOMAINS 2739.3 Other DomainsIn this setion we will briey disuss and reet on the adequay ofdl if it was applied to ommon domains used in related systems andapproahes. It will demonstrate the generality of our approah.9.3.1 BrokersWe have already ompared our broker to some other generi brokers in setion 9.1.In this setion we will onsider some of the domains these brokers have been ap-plied to and we will demonstrate that our broker, too, ould handle these domains.The only limitation is the fat that our broker does not support the subsribeperformative. As explained in setion 9.1.2.3, the reason for the omission of thisperformative in our broker is not a ruial one, but simply that this performativewas not required in our type of senario. We believe that it would not be toodiÆult to extend our broker to support this performative though.Another remark onerns the brokers we have ompared our dl broker to insetion 9.1. These brokers were all developed as part of a larger agent system.The desriptions of the brokers ited in this thesis are in fat mostly desriptionsof these systems of whih the broker is just one agent. Thus, desriptions are briefand sometimes not illustrated with any example domains. As the most elaboratedesription is that of the absi failitator [Singh, 1993a, Singh, 1993b℄ we haveonentrated on the examples used to desribe the behaviour of this broker. Aswill be seen this is still a rather trivial domain.The domain hosen to illustrate the absi failitator is that of informationprovision, e.g. the omputation of fatorials. To make this domain interestingthey have implemented two psas for this task, one that omputes the fatorials ofeven numbers, and one that omputes the fatorials of odd numbers. The messagewith whih the �rst of these agents advertises its apability to the failitator isgiven as follows [Singh, 1993a, page 54℄:

274 CHAPTER 9. RELATED WORK AND EVALUATION(pakage:ontent'(stash (<= (handles efat-agent (list-of 'fatorial ?x))(= (denotation ?x) ?y)(even-integer ?y))):sender 'efat-agent:reply-with nil)The ontent of this apability-advertising message is fairly easy to under-stand: (list-of 'fatorial ?x) represents the format of the message theefat-agent advertises it an proess. This format expression is followed bytwo onstraints de�ned in terms of funtions known to the broker. The apabil-ity advertisement of the ofat-agent whih omputes fatorials for odd numbersis almost idential to the above.Now, the way the absi failitator is implemented requires phas to send theirproblems to the broker diretly, rather than having the failitator reommend apsa. For example, the failitator might reeive the following message:(pakage:ontent(fatorial 2)...)On reeipt of this message the failitator will attempt to math the ontentexpression to an expression in a previously reeived apability advertisement andevaluate the aording onstraints. On suess, the mathing psa will be askedto solve the problem, i.e. to perform the omputation, and the result will beforwarded to the pha.Capabilities of this type an be expressed quite easily in dl. Remember thata apability advertisement in dl must have the following format:(advertise ... (<performative> ... :ontent (<dl-expression>)))The performative must be the performative of the message the agent advert-ises it an proess and the dl-expression that is the ontent of this messagemust represent the apability. Returning to the example from the absi failit-ator, the performative to be used here is ahieve as the apability desription

9.3. OTHER DOMAINS 275that is the ontent of this message will desribe what an be ahieved with thisapability.The dl expression representing the above apability an be desribed asfollows: The only input objet is the argument of the funtion to be omputedand there is one new output objet that is the result of this omputation or thethe value of the expression to be evaluated.The format of the expression is expressed in an output onstraint by requiringit to be equal to the output parameter. Thus, the only input onstraint thatneeds to be expressed is the fat that the given integer must be even. This ouldbe done by speifying this prediate in �rst-order logi and using fopl as thestate language or by assuming a ontent language in whih suh a prediate isimplemented diretly. Assuming we have an aording ontent language alledabsiL, the above apability an be desribed in dl as follows:(apability:state-language absiL:input ((Argument ?x))):output ((Value ?y)):input-onstraints ((even-integer ?x)):output-onstraints ((== ?y (fatorial ?x))))This apability desription is suÆient to emulate the behaviour of the absifailitator. Thus, our dl broker an be used to implement the senarios usedto illustrate the behaviour of the absi failitator. However, the domain of theabsi failitator is onerned with information brokering rather than apabilitybrokering. This is not our primary interest. Therefore, we shall now turn toanother soure for relevant example domains.9.3.2 Planning DomainsAs we have argued in setion 4.2.1, apabilities and ations bear a lose similarity.Domains involving the representation of ations have been investigated in AIplanning, and these are the domains we shall onsider next.

276 CHAPTER 9. RELATED WORK AND EVALUATIONAs we shall argue, dl is perfetly adequate to represent many of the domainsdeveloped for AI planning senarios. This is not a oinidene but true beausewe have designed dl is suh a way that these domains an be represented indl. When we designed dl we �rst de�ned a set of properties we want this lan-guage to have (f. setion 4.1.1). We then performed a preliminary evaluation ofrepresentations reviewed in hapter 2 against these properties to determine whihformalisms possess the properties we desire (f. setion 4.1.2). One result of thisevaluation was that the knowledge we need to represent most losely resembles theknowledge represented in ation representations as used in AI planning. Thus, wedeided to base the struture of dl on that of these ation representations. Thisexplains why most of the domains that an be represented in these formalismsan also be represented in dl.There are two groups of domains that annot be represented in dl though.Firstly, there are the rih domains developed for real world planners suh asO-Plan or sipe (f. setion 2.3.1.5). These inlude rih representations for timeand resoure onstraints, for example. dl does not provide for suh rih domainsas it is. We believe, however, that this rihness is mostly found in the statelanguage and thus, this limitationmight be addressed by implementing a similarlyrih state representation language and plugging it into dl. Seondly, dl doesnot support hierarhial ation representations. The reason for this limitation isthat the representation of how to re�ne an ation is not the kind of knowledgewe wanted to inlude in a apability desription. Capabilities in dl are meantto represent an exterior view of a performable ation and not how this ationmay be performed or broken down into more primitive ations. Apart from theserestritions dl should be suitable for the representation of any ation from aplanning domain.To further substantiate this laim we have looked at the set of domains thatome with the upop planner.2 There are eleven di�erent domains ranging from2 The upop planner (version 4.1) and the domains are available on the Internet athttp://www.s.washington.edu/researh/projets/ai/www/upop.html.

9.3. OTHER DOMAINS 277rather simple domains like two di�erent formalisations of the Bloks World tomore omplex domains suh as the so-alled at-tyre domain with 14 di�erentoperators. Although we have not attempted to represent every operator de�nedin these domains in dl, it is fairly obvious that suh a translation would bequite straightforward.For example, the operator for removing a wheel is represented as follows inthe at-tyre domain:(define (operator remove-wheel):parameters ((wheel ?x) (hub ?y)):preondition (:and (:neq ?x ?y) (:not (on-ground ?y))(on ?x ?y) (unfastened ?y)):effets ((:effet (:and (have ?x) (free ?y)(:not (on ?x ?y))))))The parameters orrespond to inputs and outputs in dl. In this exampleboth parameters represent objets that exist in the input situation. Preonditionsand e�ets orrespond to input and output onstraints and only a hange of syntaxis required to translate them into the state language lits where only literals wereallowed. The resulting apability desription of the above operator in dl anbe given as follows:(apability:state-language lits:input ((wheel ?x) (hub ?y)):input-onstraints ((not (== ?x ?y))(not (on-ground ?y))(on ?x ?y)(unfastened ?y)):output-onstraints ((have ?x)(free ?y)(not (on ?x ?y))))SummaryTo summarise, dl an not only be used to represent apabilities in the Pai�adomain desribed in hapter 3, but it is also fairly straightforward to translate

278 CHAPTER 9. RELATED WORK AND EVALUATIONthe operators in domains of lassial, non-hierarhial planners into apabilitydesriptions in dl. Furthermore, our broker an also emulate the informationbrokering behaviour of other brokers reviewed in this thesis. Thus, dl an beonsidered a generi apability desription language.

Chapter 10Conlusions
At this point we have desribed and addressed the problem of apabil-ity brokering. We have de�ned a new apability desription languagethat an be used for this purpose. We also have demonstrated anddisussed two new and desirable properties of this language: its ex-pressiveness and exibility. The �nal step will be to summarise theargument presented in this thesis and reet on it.10.1 Possible ExtensionsIn this setion we will indiate how the senarios desribed in hapter 3ould be extended and how these extensions ould be realized in theframework desribed in this thesis. This will show the extensibility aswell as urrent limitations of our approah.The development of extensions to our apability desription language shouldalways be driven by the problems, agents, and apabilities the broker needs todistinguish between. Of ourse, generality of the desription language is one aim,but all features of the apability desription language should be demonstrable inexample senarios like the ones desribed in hapter 3 in this thesis. There aretwo prinipal ways in whih these senarios ould be extended.279

280 CHAPTER 10. CONCLUSIONSFirstly, we ould inrease the number of psas in the senarios. The brokerwould then have more psas and apabilities to hoose from, and di�erent agentswith di�erent apabilities may provide new hallenges. We would not expetsuh an extension to lead to more ommuniation between agents, apart fromthe advertisement messages of the additional agents. Thus, the basi frameworkdesribed in this thesis would remain. New psas and apabilities are most likelyto require an extended apability desription language. An extended languagein turn will require extended algorithms to reason over it. We believe that in-reasing the number of psas and apabilities in the senarios will be inevitablein developing extensions to dl.Seondly, our senarios ould be further ompliated by adding anotherproblem-holding agent, e.g. a dotor who has an ill patient in one of the townsthat requires hospital treatment. Depending on the time when this seond prob-lem arises the exat apabilities of the psas may have hanged. For example, theh1-agent's sole ambulane might be at the power plant and thus not available.Having several phas is a very realisti extension to the senarios and the brokershould be able to ope with it. However, often tasks do not interat, whih isessentially why the strips assumption is reasonable. In these ases the dl andthe broker desribed are suÆient and no extension is required. If tasks interatthrough hanging apabilities, one way of addressing the problem would be tosend messages to the broker updating apabilities. Another way would be toleave this detail to the psa and fail there.10.1.1 Extensions based on more psasWe believe that an inreased number of interestingly di�erent psas leads to moreinteresting problems. For example, the apability desriptions of the di�erentagents may be insuÆient to deide on whih one to reommend. With an in-reasing number of psas this is bound to happen at some point, e.g. if two agentsadvertise idential apability desriptions. In fat, the initial senario already

10.1. POSSIBLE EXTENSIONS 281illustrates this problem. The urrently implemented solution is to reommendthe �rst agent found apable of solving the given problem. While this solutionworks �ne in our senarios, it may be inappropriate elsewhere.Another option would be to forward the problem to all the psas found apableof addressing it and ask them to perform an assessment of their own apabilities,i.e. to ask them how likely they think they are to �nd a solution to the givenproblem. This option would not require an extension to dl and only a minorhange in the brokering algorithms. Sine we expet a apability desription to bean abstration of what an atually be done by a psa, the apability-possessingpsas may well have further detailed knowledge about their apabilities whih theyan use in a self-assessment. If the psas use searh to solve the problem thenusing tehniques based on inspeting a partial searh spae might help in hoos-ing a psa [Wikler and Pryor, 1996℄. However, suh a self-assessment annot beomparative as the psas will, in general, only be aware of their own apabilities.Thus, it may not help the broker to deide whih psa to reommend if only onepsa is to be reommended.Part of the problem here is that apabilities either subsume or do not subsumea given task in our framework. If apability evaluation was based on the notion ofhow well a apability an be used to address a given task, the broker ould alwaysreommend the best agent, whih is far less likely to lead to ambiguity than thesubsumption onept de�ned in this thesis. For example, the hospital loser toan emergeny is more likely to be reahed faster and thus, its apability betteraddresses the given task. In general, deiding how well a apability ould addressa given problem would require the broker to obtain knowledge about the solutionso�ered by the di�erent psas and the utility these solutions have for the pha. Theruial problem here is the representation of a utility funtion for the pha. Un-fortunately, the representation of generi utility funtions is not well understoodat present and some of the problems are disussed in [Russell and Norvig, 1995,pages 473{484℄.

282 CHAPTER 10. CONCLUSIONSA �nal problem that may arise in senarios involving a large number of agentsis related to the representation of apabilities and tasks. While the frameworkprovides di�erent types of parameters and onstraints for the representation ofapabilities, there is still a number of open representational hoies. Currentapproahes to knowledge sharing onsistently suggest the use of ontologies tonarrow these hoies. dl already provides a framework for the representation ofontologies of ations and their inorporation into the brokering mehanism, butfor the pratial use of the broker the ontology will need to be �lled in. Thisnot only allows for the onvenient expression of apabilities as performable a-tions, as desribed in this thesis, but also provides the psa with some voabularyto represent its apabilities. Without this voabulary di�erent agents may usedi�erent terminology to represent the same problems and apabilities, making itimpossible for the broker to perform appropriate mathing.10.1.2 Other ExtensionsApart from extensions arising through an inreased number of agents in the sen-arios, there are also some limitations to our broker we are aware of whih arerelated to the fat that it is a \proof of onept" rather than a omplete produt.For example, as we have pointed out in setion 4.5.2, our broker does not attemptto manage the solution of problems, and neither do the phas we have implemen-ted. However, we have also argued that apability desriptions usually annotbe guaranteed to be omplete or even sound. This may lead to problems duringthe appliation of a apability or during the exeution of a plan involving severalagents' apabilities. For example, if one psa fails to solve a problem, there isurrently no way the pha ould ask the broker to reommend another psa. Ifone or more agents fail in the performane of their apabilities while the brokermanages a plan to solve a given problem, the broker needs to re-plan. Perform-ane problems ould provide a very interesting set of extensions to the urrentsenarios.

10.1. POSSIBLE EXTENSIONS 283Another limitation of the urrent implementation is the way apabilities andproblems based on di�erent languages are handled. For example, a apability de-sribed in dl using fopl as the state language and a problem desribed in dlusing lits whih has to be evaluated against this apability will work beausethe two languages are based on the same abstrat Java lasses. A leaner solutionwould be to have the broker o�er an expliit translation servie to other agentsin whih they ould ask the broker to translate a given expression from one rep-resentation into another, if this is possible. The Enterprise Toolkit [Stader, 1997℄implements an approah to suh a servie. The broker itself ould use this expliitservie to translate problems into an appropriate representation before perform-ing the subsumption test. Currently the implementation of this translation israther ad-ho. We believe that the introdution of an expliit translation servieby the broker would add to the exibility, although suh a servie annot beonsidered to operationalise part of the brokering proess.In onlusion, while the broker and language presented in this thesis presenta omprehensive framework for the representation of and reasoning about apab-ilities of intelligent agents, there are also some pratial issues that remain to beresolved before the work an be embedded in a large, realisti senario. On theother hand, the framework provides a promising vehile for basi researh intoapabilities.

284 CHAPTER 10. CONCLUSIONS10.2 SummaryIn this setion we will summarise the results of the work presentedin this thesis. This will inlude what has been ahieved as well asproblems enountered.10.2.1 Introdution of the ProblemIn hapter 1 we introdued and desribed the problem of apabilitybrokering, the main problem addressed in this thesis.In this thesis we have addressed the problem of apability brokering whiharises when intelligent agents ommuniate and ooperate. Finding an agentthat an help one solve a given problem is at the heart of apability broker-ing. There are a variety of ontexts in whih apability brokering an take plaeand we have hosen to assume that: apabilities will be evaluated at run-time;problem-solving agents have domain knowledge; and problem-holding agents areinterested in �nding other agents that an solve the whole problem. To suess-fully address the problem of apability brokering we were aiming for a reasonablyrobust implementation of a broker and a apability desription language thatould be used to operationalise several senarios. Furthermore, we expeted theapability desription language to be expressive and highly exible.10.2.2 Relevant Work in the LiteratureIn hapter 2 we reviewed work relevant to the problem of apabilitybrokering in order to have an established foundation for our own work.The �rst step towards understanding the problem of apability brokering on-sisted of a literature survey. As the problem arises when intelligent agents om-muniate and ooperate, we have looked at approahes from this area �rst. Infat, the problem of apability brokering had been addressed as the onnetion

10.2. SUMMARY 285problem in Distributed AI. The most interesting ontributions for our work foundin researh into intelligent software agents were the generi agent ommuniationlanguages, spei�ally kqml, whih is highly exible, and whih a number ofbrokers were designed to utilise in reent years.The seond area we looked at are logis as apability representation form-alisms. The best known logi, �rst-order prediate logi, has been used in thesituation alulus to represent ations, but �rst-order logi is more naturally seenas a state representation language. We also reviewed some more advaned logisbut none of these o�ered itself for the representation of agent apabilities. Morepromising was the approah to re-use meta-level knowledge, but ultimately thisturned out to be inauspiious due to the utility problem. Terminologial logiswere interesting not so muh as apability representations but beause they havebeen used for the representation of ontologies and there is an interesting theoryof expressiveness de�ned for these logis.Representations geared more towards apabilities are ation representationsas used in AI planning, and this is the area we looked at next. A number ofation representations have grown out of this area and one that stands out as themost inuential is the strips representation based on the strips assumption.A more reent ontribution we have taken up in our work is the development ofontologies of ations, although our work only provides a framework rather thanan atual ontology. Proesses an be seen as re�ned models of ativity, but mostof the work in this area attempts to model interations between proesses whih isnot a problem that needs to be addressed for apability brokering. Similarly, theproblems addressed in work on agents that plan with apabilities, e.g. exeutionfailure and re-planning, were not our onern although they are relevant.A �nal area whih inspired us rather than provided results is onerned withthe modelling of problem-solving methods. These reasoning ations have beenanalysed mostly from a knowledge aquisition perspetive in two major e�orts:the kads and the Prot�eg�e projet. However, their models and guidelines for

286 CHAPTER 10. CONCLUSIONSmodelling are mostly based on informal representations. Currently the hpkbprogram is also aiming for models of problem-solving to greatly speed up theknowledge engineering proess, but few results are available yet.10.2.3 The SenariosIn hapter 3 we introdued a number of senarios whih de�nedthe target behaviour we wanted our broker to exhibit.Having looked at various areas that have represented knowledge similar toapability knowledge, we de�ned a number of senarios whih we wanted ourbroker and representation to handle. The �rst senario was rather simple and itwas aimed at introduing our domain, the island Pai�a with its agents, alongwith illustrating the basi exhange of messages we envisaged. Messages weredesribed in kqml and the ontent was only given informally to illustrate whatneeded to be represented. The initial senario was followed by two more omplexsenarios that were meant to motivate and exemplify the two properties we desiredfor our apability desription language: expressiveness and exibility.10.2.4 The Capability Desription LanguageIn hapter 4 we de�ned our apability desription language, dl,and illustrated this language with a number of examples from oursenarios.Given the work we reviewed on apability brokering and representations alongwith the senarios illustrating our aims, we were now in a position to evaluate pre-vious work and see whih ideas we ould utilise for our new apability desriptionlanguage. For this purpose, we desribed several desirable harateristis for ourlanguage. The main result of this preliminary evaluation was that we wanted:to preserve the struture found in ation representations; to bene�t from theexpressiveness of powerful logis; and to retain the exibility of kqml.

10.2. SUMMARY 287This gave us a suÆient foundation to design our new apability desriptionlanguage based on the onept of ahievable objetives. We �rst argued that ap-abilities are essentially ations and disussed the knowledge they ontain: inputand output parameters as well as several types of onstraints on the situationsbefore and after the apability has been applied. To implement a representationformalism for this knowledge we introdued the onept of a deoupled ationrepresentation language that separates states from ations. After the de�nitionof the syntax in bnf we used this language to omplete the messages from theinitial senario, thereby illustrating the language itself.Based on this ore language entred around the onept of ahievable objet-ives we developed and presented two extensions. The �rst of these was basedon the idea of performable ations. The idea here was to desribe an ation asa modi�ed desription of another ation, thus allowing one to build a omplexontology of ations. The desription of the syntax extension was again followedby examples from the initial senario. The seond extension was onerned withthe representation of properties of the problem-solving agents whih was ahievedthrough a set of propositions added to the representation. Finally, sine most ofthe examples used this far stemmed from the relatively simple initial senario, weshowed how dl ould be used to omplete the messages required for the moreomplex senarios, the expressiveness and exibility senario. Remember thatthese messages were desribed with an informal ontent initially.10.2.5 Reasoning over dlIn hapter 5 we de�ned and desribed the reasoning mehanismsand algorithms we implemented for apability brokering with dl.By de�ning the language we also de�ned the ommuniation that was to takeplae in the various senarios. However, equally important is the implementationof the language and the mehanisms that an be used to reason about it. Forthis purpose we have �rst formalised the internal representation in order to have

288 CHAPTER 10. CONCLUSIONSa preise de�nition of what a dl apability desription is. Next we introduedthe most basi version of an algorithm whih tests whether a given apabilitysubsumes a given task. The onept of apability subsumption has been de�nedin terms of the logial entailment relation through the input and output mathondition, and this de�nition provided the basis for the basi algorithm thatevaluated apability subsumption. The algorithm was given as pseudo-ode andapplied to an example.The basi algorithm su�ered from a number of limitations that we imposedon the apability and the task for whih subsumption was to be evaluated. Thenext step in our work was to relax these restritions and extend the algorithmto deal with the resulting apability and task desriptions. The �rst step wasto allow input-output onstraints in the apability desription whih ould behandled with an extension whih was very similar to the original algorithm. Nextwe dealt with apabilities and tasks desribed as performable ations. The ap-proah here was to translate a apability or task desribed as a performable ationinto one desribed in terms of ahievable objetives before applying the algorithmdesribed previously. This translation is e�etively an instantiation of the ap-ability or task. The last extension deals with agent properties. For all extensionswe have also extended our de�nition of apability subsumption and illustratedthe extensions with examples.The �nal part of the desription of our implementation of dl and the brokeronerned the embedding of our work into the Java Agent Template. After abrief desription of jat we desribed the dl Interpreter whih is e�etivelythe broker attahed to an agent name server. An interpreter is just one typeof resoure managed by a jat agent, and our implementation also made use ofanother type of resoure: jat languages. The mehanisms provided by jat formanaging resoures allowed an elegant implementation of dl as a deoupledlanguage. This was exempli�ed by traing the reasoning and messages generatedin the exibility senario.

10.2. SUMMARY 28910.2.6 Evaluation of the BrokerIn hapter 6 we presented the results of applying our broker to oursenarios and some variations on these whih onstitutes a pratialevaluation of our work.Having desribed the language and its implementation, it was time to evaluatewhat has been ahieved in pratise this far. The �rst question we had to addresswas how generi and robust the broker is. Extensive testing was beyond thesope of this thesis, but we used a number of variations of the expressivenessand exibility senario in order to evaluate broker performane. The result wasthat our broker performed well in virtually all ases. The next question thenwas how eÆient the broker is. Atual response times were virtually instant,but this might have been due to the small number of psas in our senarios. Adetailed omplexity analysis that followed essentially revealed that the omplexityof evaluating apability subsumption mainly depends on the underlying statelanguage used, but that this does not a�et saling issues. Thus, we showedthat our broker is reasonably generi and robust, and that it exhibits adequateperformane, i.e. we showed that our pratial riteria for suess have beenahieved.Next we turned to the more theoretial issues of expressiveness and exibility.10.2.7 Expressiveness of dlIn hapter 7 we de�ned and disussed a formal notion of express-iveness for ation representation languages whih ould be used toompare suh languages.Having met the pratial riteria for suess outlined in the introdution, allthat remained to be shown was that dl possessed the two properties we laimedit has. We �rst looked at expressiveness, a property laimed for many represent-ations but hardly ever formally de�ned. In fat, the �rst question we had to

290 CHAPTER 10. CONCLUSIONSanswer was why we need expressiveness in our apability desription language.The argument is mostly based on the expressiveness senario and the potential foroniseness o�ered by expressiveness. To de�ne what we meant by the express-iveness of an ation representation we have looked at a very general frameworkfor terminologial KR languages. Based on the ideas found there we de�ned whatit means for an ation representation to be more expressive than another. Whilewe were happy with this de�nition, an open question remains, namely whetherone should impose an additional ondition of polynomial transformability ontothe de�nition.The type of language for whih we have de�ned the onept of expressivenessis what we alled AR1 languages. The next step in our work was to de�ne dl assuh an AR1 language. This required the de�nition of a state desription languagefor whih we used �rst-order logi, although dl allows di�erent state languagesto be plugged in. Next we had to de�ne the deoupled ation representationlanguage whih expresses relations between states. The third omponent of anAR1 language is the model-restrition funtion whih de�nes the semantis of thestate language. The �nal omponent of an AR1 language, the ation de�nitionfuntion, then de�nes the semantis of the ations based on the semantis of thestate language. By de�ning dl as an AR1 language we e�etively also de�nedthe semantis of this language.10.2.8 Flexibility of dlIn hapter 8 we introdued our notion of exibility and disusseda number of problems that arise during the implementation of exiblelanguages.Flexibility turned out to be an entirely di�erent matter. To begin with, weagain had to answer the question of why we need exibility in our apabilitydesription language. The argument was based on the exibility senario and anumber of examples of further state representation languages one might want to

10.2. SUMMARY 291plug into dl in di�erent senarios. However, while expressiveness was a relat-ively well-understood onept, exibility is new. Thus, we did not even attemptto formalise it. One issue we disussed is the trade-o�s that exibility allows oneto resolve at a later time, and this is how we informally de�ned exibility. Themost interesting issues arose out of the question of how a deoupled knowledgerepresentation language an be implemented and we desribed how we addressedvarious problems in the implementation of dl, e.g. reetive reasoning or pars-ing. Finally, we have also argued that deoupled ation representations provideus with a deeper understanding of ations and their representations.10.2.9 Evaluation of dlIn hapter 9 we evaluated dl by omparing it to languages usedby other brokers and by omparing its expressiveness and exibilityto that of other relevant formalisms.Having de�ned expressiveness and exibility, the next step was an evaluationof dl in this respet. This has been ahieved though a omparison of dl andour broker with other brokers. There we showed that, while there is no signi�antdi�erene in supported brokering performatives, the mathing algorithm imple-mented in dl and based on the notion of apability subsumption (f. de�n-ition 5.4) is signi�antly more powerful than the mathing provided by otherbrokers. To evaluate expressiveness, we have ompared dl with various ationrepresentations whih are the formalisms for representing the same type of entity.For this omparison other ation representation were treated as if they were alsodeoupled languages. In summary, dl an be desribed as an expressive ationrepresentation. For exibility, we have ompared dl with languages that o�erat least some degree of this property. Again, the result of this omparison revealsthat dl is a highly exible language. Finally, we have demonstrated the gener-ality of our broker by applying to di�erent domains from AI planning and otherbrokers.

10.2.10 ConlusionsTo summarise, we have desribed and addressed the problem of apability broker-ing. To address this problem we have presented a new apability desription lan-guage that possesses two desirable properties: it is expressive and highly exible.These were two of the riteria for suess we set out, others being that our brokerbe reasonably robust and eÆient. As we have shown in hapters 6 and 9, ourbroker and dl do indeed meet all the riteria for suess set out in the intro-dution. We showed this in a number of representative senarios and omparedour work with other related work to show what we have ahieved and that dl isindeed the generi apability desription language that an be used for apabilitybrokering we set out to reate.

292

Bibliography[Aamodt et al., 1993℄ Agnar Aamodt, Bart Benus, Cuno Duursma, ChristineTomlinson, Ronald Shrooten, and Walter Van de Velde. Task features andtheir use in CommonKADS. Deliverable D 1.5, Free University of Brussels,Brussels, Belgium, January 1993.[Aben, 1995℄ Manfred Aben. Formal Methods in Knowledge Engineering. PhDthesis, University of Amsterdam, Amsterdam, The Netherlands, February1995.[Aitken et al., 1998℄ Stuart Aitken, Ian Filby, John Kingston, and Austin Tate.Capability desriptions for problem-solving methods. AIAI, University of Ed-inburgh, Edinburgh, Sotland (hpkb Deliverable), January 1998.[Allen et al., 1990℄ James Allen, James Hendler, and Austin Tate, editors. Read-ings in Planning. Morgan Kaufmann, San Mateo, CA, 1990.[Ambros-Ingerson and Steel, 1988℄ Jos�e A. Ambros-Ingerson and Sam Steel. In-tegrating planning, exeution and monitoring. In Pro. 7th AAAI, pages 83{88,Saint Paul, MN, August 1988. Morgan Kaufmann. Also in [Allen et al., 1990,pages 735{740℄.[Anderson, 1981℄ John R. Anderson. Tuning of searh of the problem spae forgeometry proofs. In Pro. 7th IJCAI, pages 165{170, Vanouver, Canada,August 1981. University of British Columbia, William Kaufmann.[Armengol et al., 1998℄ Eva Armengol, Rihard Benjamins, Stefan Deker, DieterFensel, Enrio Motta, Rudi Studer, and Bob Wielinga. State of the art deliv-erable. Deliverable D1.4, University of Amsterdam, Amsterdam, The Nether-lands, May 1998.[Attardi and Simi, 1984℄ Giuseppe Attardi and Maria Simi. Metalanguage andreasoning aross viewpoints. In Tim O'Shea, editor, Pro. 6th ECAI, pages413{422, Pisa, Italy, September 1984. North-Holland.[Baader, 1996℄ Franz Baader. A formal de�nition for the expressive power of ter-minologial knowledge representation languages. Journal of Logi and Com-putation, 6(1):33{54, February 1996.293

[B�akstr�om, 1995℄ Christer B�akstr�om. Expressive equivalene of planning form-alisms. Arti�ial Intelligene, 76:17{34, 1995.[Baker et al., 1997℄ Sean Baker, Vinny Cahill, and Paddy Nixon. Bridgingboundaries: orba in perspetive. IEEE Internet Computing, 1(5):52{57,1997.[Barr, 1979℄ Avron Barr. Meta-knowledge and ognition. In Pro. 6th IJCAI,pages 31{33, Tokyo, Japan, August 1979. William Kaufmann.[Barrett and Weld, 1994℄ Anthony Barrett and Daniel S. Weld. Partial-orderplanning: Evaluating possible eÆieny gains. Arti�ial Intelligene, 67:71{112, 1994.[Barrett et al., 1995℄ Anthony Barrett, Dave Christianson, Mar Friedman,Chung Kwok, Keith Golden, Sott Penberthy, Ying Sun, and Daniel Weld.UCPOP user's manual (version 4.0). Tehnial Report 93-09-06d, Universityof Washington, Seattle, WA, November 1995.[Barros et al., 1996℄ Leliane Barros, Andr�e Valente, and Rihard Benjamins.Modeling planning tasks. In Brian Drabble, editor, Pro. 3rd InternationalConferene on Arti�ial Intelligene Planning Sytems, pages 11{18, Edinburgh,Sotland, May 1996. AAAI Press.[Bayardo et al., 1997℄ R. Bayardo, W. Bohrer, R. Brie, A. Cihoki, G. Fowler,A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Ru-sinkiewiz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. Semantiintegration of information in open and dynami environments. In Joan M.Pekman, editor, Pro. ACM SIGMOD International Conferene on Manage-ment of Data, Tuson, AZ, May 1997. ACM Press.[Beneh and Desprats, 1997℄ D. Beneh and T. Desprats. A kqml-orba basedarhiteture for intelligent agents ommuniation in ooperative servie andnetwork management. In Pro. IFIP/IEEE InternationalConferene on Man-agement of Multimedia Networks and Servies, Montr�eal, Canada, July 1997.[Benjamins et al., 1997℄ Rihard Benjamins, Dieter Fensel, and B. Chandra-sekaran. PSMs do IT! In Pro. IJCAI Workshop on Problem-Solving Methodsfor Knowledge-Based Systems, Nagoya, Japan, August 1997.[Benjamins et al., 1998℄ Rihard Benjamins, Enri Plaza, Enrio Motta, DieterFensel, Rudi Studer, Bob Wielinga, Guus Shreiber, and Zdenek Zdrahal.IBROW3 | an intelligent brokering servie for knowledge-omponent reuseon the world-wide web. In Pro. 11th Workshop on Knowledge Aquisition,Modeling and Management, Ban�, Canada, April 1998.294

[Blum and Furst, 1995℄ Avrim L. Blum and Merrik L. Furst. Fast planningthrough planning graph analysis. In Pro. 14th IJCAI, pages 1636{1642,Montr�eal, Canada, August 1995. Morgan Kaufmann.[Bond and Gasser, 1988℄ Alan H. Bond and Les Gasser, editors. Readings inDistributed Arti�ial Intelligene. Morgan Kaufmann, San Mateo, CA, 1988.[Brahman and Levesque, 1985℄ Ronald J. Brahman and Hetor J. Levesque,editors. Readings in Knowledge Representation. Morgan Kaufmann, Los Altos,CA, 1985.[Brahman and Shmolze, 1985℄ Ronald J. Brahman and James G. Shmolze.An overview of the KL-ONE knowledge representation system. Cognitive Si-ene, 9(2):171{216, April 1985.[Brahman, 1979℄ Ronald J. Brahman. On the epistemologial status of se-manti networks. In Niholas V. Findler, editor, Assoiative Networks, pages3{50. Aademi Press, New York, NY, 1979.[Bradshaw, 1997℄ Je�rey M. Bradshaw, editor. Software Agents. AAAI Press/The MIT Press, Menlo Park, CA/Cambridge MA, 1997.[Brazier et al., 1995℄ Franes M. T. Brazier, Jan Treur, and Niek J. E. Wijn-gaards. Modelling interation with experts: The role of a shared task model.Tehnial Report IR-382, Free University of Amsterdam, Amsterdam, TheNetherlands, 1995.[Breuker and Van de Velde, 1994℄ Joost A. Breuker and Walter Van de Velde, ed-itors. CommonKADS Library for Expertise Modelling. IOS Press, Amsterdam,The Netherlands, 1994.[Breuker and Wielinga, 1989℄ Joost Breuker and Bob Wielinga. Models of ex-pertise in knowledge aquisition. In Giovanni Guida and Carlo Tasso, editors,Topis in Expert System Design, hapter 5, pages 265{295. Elsevier SienePublishers, Amsterdam, The Netherlands, 1989.[Breuker et al., 1987℄ Joost Breuker, Bob Wielinga, Maarten van Someren,Robert de Hoog, Guus Shreiber, Paul de Greef, Bert Bredeweg, Jan Wiele-maker, Jean-Paul Billault, Massoud Davoodi, and Simon Hayward. Modeldriven knowledge aquisition: Interpretation models. KADS Deliverable TaskA1, University of Amsterdam, Amsterdam, The Netherlands, 1987.[Breuker, 1997℄ Joost Breuker. Problems in indexing problem-solving methods.In Pro. IJCAI Workshop on Problem-Solving Methods for Knowledge-BasedSystems, Nagoya, Japan, August 1997.[Brewka, 1991℄ Gerhard Brewka. Nonmonotoni Reasoning: Logial Foundationsof Commonsense. Cambridge University Press, Cambridge, UK, 1991.295

[Brooks, 1986℄ R. A. Brooks. A robust layered ontrol system for a mobile robot.IEEE Journal of Robotis and Automation, 2(1):14{23, 1986.[Brooks, 1991℄ R. A. Brooks. Intelligene without representation. Arti�ial In-telligene, 47:139{159, 1991.[Bundy and Welham, 1981℄ Alan Bundy and Bob Welham. Using meta-level in-ferene for seletive appliation of multiple rewrite rule sets in algebrai ma-nipulation. Arti�ial Intelligene, 16(2):189{212, 1981.[Bundy et al., 1979℄ Alan Bundy, Lawrene Byrd, George Luger, Chris Mellish,and Martha Palmer. Solving mehanis problems using meta-level inferene.In Pro. 6th IJCAI, pages 1017{1027, Tokyo, Japan, August 1979. WilliamKaufmann.[Bylander, 1994℄ Tom Bylander. The omputational omplexity of propositionalSTRIPS planning. Arti�ial Intelligene, 69(1{2):165{204, September 1994.[Campione and Walrath, 1998℄ Mary Campione and Kathy Walrath. The JavaTutorial: Objet-Oriented Programming for the Internet. The Java Series.Addison-Wesley Longman, 2nd edition, 1998.[Carbonell et al., 1992℄ Jaime G. Carbonell, Jim Blythe, Oren Etzioni, YolandaGil, Robert Joseph, Dan Kahn, Craig Knoblok, Steven Minton, Aliia P�erez,Sott Reilly, Manuela Veloso, and Xuemei Wang. PRODIGY 4.0: The manualand tutorial. Tehnial Report CMU-CS-92-150, Carnegie Mellon University,Pittsburgh, PA, June 1992.[Chagrov and Zakharyashev, 1997℄ Alexander Chagrov and Mihael Zakharya-shev. Modal Logi. Clarendon Press, Oxford, UK, 1997.[Chaib-Draa et al., 1992℄ B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Mil-lot. Trends in distributed arti�ial intelligene. Arti�ial Intelligene Review,6(1):35{66, 1992.[Chang and Lee, 1973℄ Chin-Liang Chang and Rihard Char-Tung Lee. Sym-boli Logi and Mehanial Theorem Proving. Computer Siene and AppliedMathematis Series. Aademi Press, New York, NY, 1973.[Charniak and MDermott, 1985℄ Eugene Charniak and Drew MDermott. In-trodution to Arti�ial Intelligene. Computer Siene Series. Addison-Wesley,Reading, MA, 1985.[Chase et al., 1989℄ Melissa P. Chase, Monte Zweben, Rihard L. Piazza, John D.Burger, Paul P. Maglio, and Haym Hirsh. Approximating learned searh ontrolknowledge. In Alberto Maria Segre, editor, Pro. 6th International Workshopon Mahine Learning, pages 218{220, Ithaa, NY, June 1989. Cornell Univer-sity, Morgan Kaufmann. 296

[Chellas, 1980℄ Brian F. Chellas. Modal Logi: An Introdution. CambridgeUniversity Press, Cambridge, UK, 1980.[Chi et al., 1981℄ Mihelene T. H. Chi, Paul J. Feltovih, and Robert Glaser.Categorization and representation of physis problems by experts and novies.Cognitive Siene, 5(2):121{152, April 1981.[Cohen and Levesque, 1990℄ Paul R. Cohen and Hetor J. Levesque. Intention ishoie with ommitment. Arti�ial Intelligene, 42:213{261, 1990.[Cohen and Levesque, 1995℄ Philip R. Cohen and Hetor J. Levesque. Commu-niative ations for arti�ial agents. In Vitor Lesser, editor, Pro. 1st Inter-national Conferene on Multi-Agent Systems, pages 65{72, San Franiso, CA,June 1995. AAAI Press/The MIT Press.[Cohen et al., 1989℄ Paul R. Cohen, M. L. Greenberg, D. M. Hart, and A. E.Howe. Trial by �re: Understanding the design requirements for agents inomplex environments. AI Magazine, 10(3):32{48, Autumn 1989.[Cohen et al., 1998℄ Paul Cohen, Robert Shrag, Eri Jones, Adam Pease, AlbertLin, Barbara Starr, David Gunning, and Murray Bruke. The DARPA high-performane knowledge bases projet. AI Magazine, 19(4):25{49, Winter 1998.[orba V2.2, 1998℄ The Objet Management Group. The Common Objet Re-quest Broker: Arhiteture and Spei�ation, February 1998.[Croft, 1985℄ David Croft. Choie making in planning systems. In Martin Merry,editor, Pro. 5th Expert Systems Conferene, pages 125{141, Warwik, UK,Deember 1985. University of Warwik, Cambridge University Press.[Currie and Tate, 1991℄ Ken Currie and Austin Tate. O-Plan: The open planningarhiteture. Arti�ial Intelligene, 52(1):49{86, 1991.[Davis and Buhanan, 1977℄ Randall Davis and Brue G. Buhanan. Meta-level knowledge: Overview and appliations. In Pro. 5th IJCAI, pages920{927, Cambridge, MA, August 1977. MIT, William Kaufmann. Also in:[Brahman and Levesque, 1985, pages 389{396℄.[Davis and Smith, 1983℄ Randall Davis and Reid G. Smith. Negotiation as ametaphor for distributed problem solving. Arti�ial Intelligene, 20(1):63{109,1983. Also in: [Bond and Gasser, 1988, pages 333{356℄.[Davis, 1980℄ Randall Davis. Meta-rules: Reasoning about ontrol. Arti�ialIntelligene, 15(3):179{222, 1980.[Davis, 1990℄ Ernest Davis. Representations of Commonsense Knowledge. Mor-gan Kaufmann, San Mateo, CA, 1990.297

[Deker et al., 1997℄ Keith Deker, Katia Syara, and Mike Williamson. Middle-agents for the internet. In Pro. 15th IJCAI, pages 578{583, Nagoya, Japan,August 1997. Morgan Kaufmann.[Deker et al., 1998℄ Setfan Deker, Mihael Erdmann, Dieter Fensel, and RudiStuder. Reasoning with metadata: Ontobroker. University of Karlsruhe, Karls-ruhe, Germany, 1998.[Doyle, 1997℄ Jon Doyle. Problem-solving method language proposal. MIT, Cam-bridge, MA, Otober 1997.[Ekel, 1997℄ Brue Ekel. Thinking in Java. Prentie Hall, 1997.[Eriksson et al., 1995℄ Henrik Eriksson, Yuval Shahar, Samson W. Tu, Angel R.Puerta, and Mark A. Musen. Task modeling with reusable problem-solvingmethods. Arti�ial Intelligene, 79(2):293{326, Deember 1995.[Eskey and Zweben, 1990℄ Megan Eskey and Monte Zweben. Learning searhontrol for onstraint-based sheduling. In Pro. 8th AAAI, pages 908{915,Boston, MA, August 1990. AAAI Press/The MIT Press.[Etzioni and Minton, 1992℄ Oren Etzioni and Steven Minton. Why EBL produesoverly-spei� knowledge: A ritique of the PRODIGY approahes. In DerekSleeman and Peter Edwards, editors, Pro. 9th International Workshop onMahine Learning, pages 137{143, Aberdeen, Sotland, July 1992. MorganKaufmann.[Etzioni et al., 1992℄ Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper,Neal Lesh, and Mike Williamson. An approah to planning with inompleteinformation. In Bernhard Nebel, Charles Rih, and William Swartout, edit-ors, Pro. 3rd KR, pages 115{125, Cambridge, MA, Otober 1992. MorganKaufmann.[Etzioni et al., 1993℄ Oren Etzioni, Henry M. Levy, Rihard B. Segal, and Chan-dramohan A. Thekkath. OS agents: Using AI tehniques in the operatingsystem environment. Tehnial Report 93-04-04, University of Washington,Seattle, WA, April 1993.[Etzioni, 1997℄ Oren Etzioni. Moving up the information food hain. AIMagazine, 18(2):11{18, Summer 1997.[Fagin et al., 1995℄ Ronald Fagin, Joseph Y. Halpern, Yoram Moses, andMoshe Y. Vardi. Reasoning about Knowledge. The MIT Press, Cambridge,MA, 1995.[Farquahar et al., 1996℄ A. Farquahar, R. Fikes, and J. Rie. The Ontolinguaserver: A tool for ollaborative ontology onstrution. Tehnial Report KSL96-26, Stanford University, Stanford, CA, September 1996.298

[Fensel et al., 1998a℄ Dieter Fensel, Rihard Benjamins, Stefan Deker, MauroGaspari, Rix Groenboom, Enrio Motta, Enri Plaza, Guus Shreiber, RudiStuder, and Bob Wielinga. upml: The very high idea. University of Karlsruhe,Karlsruhe, Germany, 1998.[Fensel et al., 1998b℄ Dieter Fensel, Rihard Benjamins, Stefan Deker, MauroGaspari, Rix Groenboom, Enrio Motta, Enri Plaza, Guus Shreiber, RudiStuder, and Bob Wielinga. The uni�ed problem-solving method desriptionlanguage upml (version 1.0.7). University of Karlsruhe, Karlsruhe, Germany,July 1998.[Fensel, 1997℄ Dieter Fensel. An ontology-based broker: Making problem-solvingmethod reuse work. In Pro. IJCAI Workshop on Problem-Solving Methodsfor Knowledge-Based Systems, Nagoya, Japan, August 1997.[Fern�andez et al., 1997℄ M. Fern�andez, A. G�omez-P�erez, and N. Juristo. METH-ONTOLOGY: From ontologial art towards ontologial engineering. In Work-ing Notes of the AAAI Spring Symposium on Ontologial Engineering, Stan-ford, CA, Marh 1997. Stanford University, AAAI Press.[Fikes and Nilsson, 1971℄ Rihard E. Fikes and Nils J. Nilsson. STRIPS: A newapproah to the appliation of theorem proving to problem solving. Arti�ialIntelligene, 2(3/4):189{208, 1971. Also in: [Allen et al., 1990, pages 88{97℄.[Fikes et al., 1972℄ Rihard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learningand exeuting generalized robot plans. Arti�ial Intelligene, 3(4):251{288,1972.[Fikes et al., 1991℄ Rihard Fikes, Mark Cutkosky, Tom Gruber, and Je�rey VanBaalen. Knowledge sharing tehnology|projet overview. Tehnial ReportKSL 91-71, Stanford University, Stanford, CA, November 1991.[Filman et al., 1983℄ Robert E. Filman, John Lamping, and Fanya S. Montalvo.Meta-language and meta-reasoning. In Pro. 8th IJCAI, pages 365{369, Karls-ruhe, Germany, August 1983. William Kaufmann.[Finin et al., 1992℄ Tim Finin, Don MKay, and Rih Fritzson. An overviewof kqml: A knowledge query and manipulation language. Tehnial report,UMBC, Baltimore, MD, Marh 1992.[Finin et al., 1993℄ Tim Finin, Jay Weber, Gio Wiederhold, Mihael Genesereth,Rihard Fritzson, Donald MKay, James MGuire, Rihard Pelavin, Stu-art Shapiro, and Chris Bekauthor. Spei�ation of the kqml agent-ommuniation language. Tehnial report, The DARPA Knowledge SharingInitiative External Interfaes Working Group, June 1993.299

[Finin et al., 1997℄ Tim Finin, Yannis Labrou, and James May�eld. kqml asan agent ommuniation language. In Je�rey M. Bredshaw, editor, Soft-ware Agents, hapter 14, pages 291{316. AAAI Press/MIT Press, Menlo Park,CA/Cambridge, MA, 1997.[Fisher, 1994℄ M. Fisher. A survey of onurrent metatem|the language andits appliations. In D. M. Gabbay and H. J. Ohlbah, editors, Pro. 1st Inter-national Conferene on Temporal Logi, pages 480{505. Springer, 1994. LNAI827.[Forbus, 1984℄ Kenneth D. Forbus. Qualitative proess theory. Arti�ial Intelli-gene, 24:85{168, 1984.[Fox et al., 1989℄ Mark S. Fox, Norman Sadeh, and Can Baykan. Constraiedheuristi searh. In Pro. 11th IJCAI, pages 309{315, Detroit, MI, August1989. Morgan Kaufmann.[Gallier, 1986℄ Jean H. Gallier. Logi for Computer Siene. Harper and Row,New York, NY, 1986.[Garey and Johnson, 1979℄ Mihael R. Garey and David S. Johnson. Computersand Intratability. W. H. Freeman, New York, NY, 1979.[Genesereth and Kethpel, 1994℄ Mihael R. Genesereth and Steven P. Kethpel.Software agents. Communiations of the ACM, 37(7):48{53, 147, July 1994.[Genesereth and Singh, 1993℄ Mihael R. Genesereth and Narinder Singh. Aknowledge sharing approah to software interoperation. Report Logi-93-12,Stanford University, Stanford, CA, February 1993.[Genesereth et al., 1992℄ Mihael R. Genesereth, Rihard E. Fikes, Daniel Bob-row, Ronald Brahman, Thomas Gruber, Patrik Hayes, Reed Letsinger, Vla-dimir Lifshitz, Robert MaGregor, John MCarthy, Peter Norvig, RameshPatil, and Len Shubert. Knowledge interhange format version 3.0 referenemanual. Report Logi-92-1, Stanford University, Stanford, CA, June 1992.[Genesereth, 1991℄ Mihael R. Genesereth. Knowledge interhange format. InPro. 2nd KR, pages 599{600, Cambridge, MA, 1991. Morgan Kaufmann.[Gennari et al., 1998℄ John H. Gennari, William Grosso, and Mark Musen.A method-desription language: An initial ontology with examples. InPro. 11th Workshop on Knowledge Aquisition, Modeling and Management,Ban�, Canada, April 1998.[George�, 1982℄ Mihael P. George�. Proedural ontrol in prodution systems.Arti�ial Intelligene, 18(2):175{201, Marh 1982.300

[George�, 1987℄ Mihael P. George�. Planning. Annual Reviews in ComputingSiene, 2:359{400, 1987. Also in: [Allen et al., 1990, pages 5{25℄.[Ghallab et al., 1998℄ Malik Ghallab, Adele Howe, Craig Knoblok, Drew M-Dermott, Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins.PDDL|The Planning Domain De�nition Language. Yale University, NewHaven, CT, Marh 1998. Draft 1.0.[Ginsberg, 1986℄ Allen Ginsberg. A metalinguisti approah to the onstrutionof knowledge base re�nement systems. In Pro. 5th AAAI, pages 436{441,Philadelphia, PA, August 1986. Morgan Kaufmann.[Ginsberg, 1987℄ Matthew L. Ginsberg, editor. Readings in Nonmonotoni Reas-oning. Morgan Kaufmann, Los Altos, CA, 1987.[Ginsberg, 1993℄ Matt Ginsberg. Essentials of Arti�ial Intelligene. MorganKaufmann, San Franiso, CA, 1993.[Ginsberg, 1996a℄ Matthew L. Ginsberg. Do omputers need ommon sense? InLuigia Carlui Aiello, Jon Doyle, and Stuart Shapiro, editors, Pro. 5th KR,pages 620{626, Cambridge, MA, November 1996. Morgan Kaufmann.[Ginsberg, 1996b℄ Matthew L. Ginsberg. A new algorithm for generative plan-ning. In Luigia Carlui Aiello, Jon Doyle, and Stuart Shapiro, editors,Pro. 5th KR, pages 186{197, Cambridge, MA, November 1996. MorganKaufmann.[Golding et al., 1987℄ Andrew Golding, Paul S. Rosenbloom, and John E. Laird.Learning general searh ontrol from outside guidane. In Pro. 10th IJCAI,pages 334{337, Milan, Italy, August 1987. Morgan Kaufmann.[G�omez-P�erez, 1998℄ A. G�omez-P�erez. Knowledge sharing and reuse. InLiebowitz, editor, Handbook of Applied Expert Systems. CRC, 1998.[Green, 1969℄ Cordell Green. Appliation of theorem proving to problem solv-ing. In Donald E. Walker and Lewis M. Norton, editors, Pro. 1st IJCAI,pages 219{239, Washington, D.C., August 1969. Morgan Kaufmann. Also in:[Allen et al., 1990, pages 67{87℄.[Gruber, 1992℄ Thomas R. Gruber. Ontolingua: A mehanism to support port-able onotologies. Tehnial Report KSL 91-66, Stanford University, Stanford,CA, June 1992.[Gruber, 1993a℄ Thomas R. Gruber. Toward priniples for the design of on-tologies used for knowledge sharing. Tehnial Report KSL 93-04, StanfordUniversity, Stanford, CA, August 1993.301

[Gruber, 1993b℄ Thomas R. Gruber. A translation approah to portable ontolo-gies. Knowledge Aquisition, 5(2):199{220, 1993.[Gruninger and Fox, 1994℄ Mihael Gruninger and Mark S. Fox. An ativity on-tology for enterprise modelling. In Pro. Workshop on Enabling Tehnologies|Infrastrutures for Collaborative Enterprises. West Virginia University, 1994.[Gruninger et al., 1997℄ Mihael Gruninger, C. Shleno�, A. Knutilla, and S. Ray.Using proess requirements as the basis for the reation and evaluation ofproess ontologies for enterprise modeling. ACM SIGGROUP Bulletin SpeialIssue on Enterprise Modelling, 18(3), 1997.[Guha and Lenat, 1990℄ R. V. Guha and Douglas B. Lenat. Cy: A midtermreport. AI Magazine, 11(3):32{59, Fall 1990.[Guha and Lenat, 1994℄ R. V. Guha and Douglas B. Lenat. Enabling agents towork together. Communiations of the ACM, 37(7):127{142, July 1994.[Haggith, 1995℄ Mandy Haggith. A meta-level framework for exploring onitsin multiple knowledge bases. In John Hallam, editor, Hybrid Problems, HybridSolutions, pages 87{98. IOS Press, Amsterdam, The Netherlands, 1995.[Harel et al., 1982℄ David Harel, Dexter Kozen, and Rohit Parikh. Proess logi:Expressiveness, deidability, ompleteness. Journal of Computer and SystemSienes, 25:144{170, 1982.[Harel, 1984℄ David Harel. Dynami logi. In D. Gabbay and F. Guenthner,editors, Handbook of Philosophial Logi Vol. II, hapter 10, pages 497{604.D. Reidel Publishing Company, 1984.[Hayes, 1974℄ Patrik J. Hayes. Some problems and non-problems in represent-ation theory. In Pro. AISB Summer Conferene, pages 63{79, University ofSussex, 1974. Also in: [Brahman and Levesque, 1985, pages 4{22℄.[Hendrix, 1973℄ Gary G. Hendrix. Modeling simultaneous ations and on-tinuous proesses. Arti�ial Intelligene, 4:145{180, 1973. Also in:[Weld and de Kleer, 1990, pages 64{82℄.[Hintikka, 1962℄ J. Hintikka. Knowledge and Belief. Cornell University Press,Ithaa, NY, 1962.[Hirst, 1991℄ Graeme Hirst. Existene assumptions in knowledge representation.Arti�ial Intelligene, 49(1{3):199{242, May 1991.[Howe and Dreilinger, 1997℄ Adele E. Howe and Daniel Dreilinger. Savvy-Searh: A metasearh engine that learns whih searh engines to query. AIMagazine, 18(2):19{25, Summer 1997.302

[Huhns and Singh, 1998℄ Mihael N. Huhns and Munindar P. Singh, editors.Readings in Agents. Morgan Kaufmann, San Franiso, CA, 1998.[Ihrig and Kambhampati, 1997℄ Laurie H. Ihrig and Subbarao Kambhampati.Storing and indexing plan derivations through explanation-based analysis ofretrieval failures. Journal of Arti�ial Intelligene Researh, 7:161{198, Novem-ber 1997.[Jennings, 1996℄ Niholas R. Jennings, editor. Foundations of Distributed Arti�-ial Intelligene. Wiley, New York, NY, 1996.[Joslin and Pollak, 1996℄ David Joslin and Martha E. Pollak. Is \early om-mitment" in plan generation ever a good idea. In Pro. 13th AAAI, pages1188{1193, Portland, OR, August 1996. AAAI Press/The MIT Press.[Kambhampati and Yang, 1996℄ Subbarao Kambhampati and Xiuping Yang. Onthe role of disjuntive representations and onstraint propagation in re�ne-ment planning. In Luigia Carlui Aiello, Jon Doyle, and Stuart Shapiro, ed-itors, Pro. 5th KR, pages 135{146, Cambridge, MA, November 1996. MorganKaufmann.[Kambhampati et al., 1996℄ Subbarao Kambhampati, Suresh Katukam, andYong Qu. Failure-driven dynami searh ontrol for partial order planners: Anexplanation-based approah. Arti�ial Intelligene, 88(1{2):253{315, Deem-ber 1996.[Kambhampati, 1997℄ Subbarrao Kambhampati. Challenges in bridging plansynthesis paradigms. In Pro. 15th IJCAI, pages 44{49, Nagoya, Japan, August1997. Morgan Kaufmann.[Kautz and Selman, 1992℄ Henry Kautz and Bart Selman. Planning as satis�ab-ility. In Bernd Neumann, editor, Pro. 10th ECAI, pages 359{363, Vienna,Austria, August 1992. Wiley.[Kautz and Selman, 1996℄ Henry Kautz and Bart Selman. Pushing the envelope:Planning, propositional logi, and stohasti searh. In Pro. 13th AAAI, pages1194{1201, Portland, OR, August 1996. AAAI Press/The MIT Press.[Kingston et al., 1996℄ John Kingston, Nigel Shadbolt, and Austin Tate. Com-monKADS models for knowledge-based planning. In Pro. 13th AAAI, pages477{482, Portland, OR, August 1996. AAAI Press/The MIT Press.[Konolige, 1986℄ Kurt Konolige. A Dedution Model of Belief. Morgan Kauf-mann, San Mateo, CA, 1986.[Kornfeld, 1979℄ William A. Kornfeld. ether{a parallel problem solving sys-tem. In Pro. 6th IJCAI, pages 490{492, Tokyo, Japan, August 1979. WilliamKaufmann. 303

[Kornfeld, 1981℄ William A. Kornfeld. The use of parallelism to implement aheuristi searh. In Pro. 7th IJCAI, pages 575{580, Vanouver, Canada, Au-gust 1981. University of British Columbia, William Kaufmann.[Kripke, 1963℄ S. Kripke. Semantial analysis of modal logi. Zeitshrift f�urMathematishe Logik und Grundlagen der Mathematik, 9:67{96, 1963.[Kuokka and Harada, 1995a℄ Daniel Kuokka and Larry Harada. Mathmakingfor information agents. In Pro. 14th IJCAI, pages 672{678, Montr�eal, Canada,August 1995. Morgan Kaufmann.[Kuokka and Harada, 1995b℄ Daniel Kuokka and Larry Harada. On using kqmlfor mathmaking. In Pro. 1st International Conferene on Multi-Agent Sys-tems, pages 239{245, San Franiso, CA, June 1995. AAAI Press/MIT Press.[Kuokka, 1990℄ Daniel Kuokka. The Deliberative Integration of Planning, Exeu-tion, and Learning. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,1990.[Labrou and Finin, 1997℄ Yannis Labrou and Tim Finin. A proposal for a newkqml spei�ation. TR CS-97-03, University of Maryland Baltimore County,Baltimore, MD, February 1997.[Laird et al., 1987℄ John E. Laird, Allen Newell, and Paul S. Rosenblum. soar:An arhiteture for general intelligene. Arti�ial Intelligene, 33(1):1{64, 1987.[Larkin et al., 1980℄ Jill H. Larkin, John MDermott, Dorothea P. Simon, andHerbert A. Simon. Models of ompetene in solving physis problems. CognitiveSiene, 4(4):317{345, Otober 1980.[Laske, 1986℄ Otto E. Laske. On ompetene and performane notions in expertsystem design: A ritique of rapid prototyping. In Pro. 6th InternationalWorkshop Expert Systems and their Appliations, pages 257{297, Avignon,Frane, April 1986.[Lekie and Zukerman, 1991℄ Christopher Lekie and Ingrid Zukerman. Learningsearh ontrol rules for planning: An indutive approah. In Lawrene A.Birnbaum and Gregg C. Collins, editors, Pro. 8th International Workshopon Mahine Learning, pages 422{426, Evanston, IL, June 1991. NorthwesternUniversity, Morgan Kaufmann.[Leoeuhe et al., 1996℄ Renaud Leoeuhe, Oliver Catinaud, and CatherineGr�eboval-Barry. Competene in human beings and knowledge-based systems.In Pro. 10th Knowledge Aquisition for Knowledge-Based Systems Workshop,Ban�, Canada, November 1996. 304

[Lee et al., 1996℄ Jintae Lee, Miheal Grunninger, Yan Jin, Thomas Malone, Aus-tin Tate, Gregg Yost, and other members of the PIF Working Group. The PIFproess interhange format and framework version 1.1. Working Paper #194,MIT Center for Coordination Siene, Cambridge, MA, May 1996.[Lee et al., 1998℄ Jintae Lee, Mihael Grunninger, Yan Jin, Thomas Malone, Aus-tin Tate, and Gregg Yost. The Proess Interhange Format and framework.The Knowledge Engineering Review, 13(1):91{120, Marh 1998.[Lenat et al., 1983℄ Douglas B. Lenat, Randall Davis, Jon Doyle, Mihael Gene-sereth, Ira Goldstein, and Howard Shrobe. Reasoning about reasoning. InFrederik Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat, editors,Building Expert Systems, hapter 7, pages 219{239. Addison-Wesley, Reading,MA, 1983.[Lenat, 1995℄ Douglas B. Lenat. y: A large-sale investment in knowledgeinfrastruture. Communiations of the ACM, 38(11):33{38, November 1995.[Lesp'erane, 1989℄ Yves Lesp'erane. A formal aount of self-knowledge andation. In Pro. 11th IJCAI, pages 868{874, Detroit, MI, August 1989. MorganKaufmann.[Levesque, 1984℄ Hetor J. Levesque. A logi of impliit and expliit belief. InPro. 4th AAAI, pages 198{202, Austin, TX, August 1984. University of Texas,William Kaufman.[Lifshitz, 1986℄ Vladimir Lifshitz. On the semantis of STRIPS. In Mihael P.George� and Amy L. Lansky, editors, Pro. Workshop on Reasoning about A-tions and Plans, pages 1{9, Timberline, Oregon, July 1986. Morgan Kaufmann.Also in: [Allen et al., 1990, pages 523{530℄.[Loveland, 1978℄ Donald W. Loveland. Automated Theorem Proving: A LogialBasis. Fundamental Studies in Computer Siene Vol. 6. North-Holland, Am-sterdam, The Netherlands, 1978.[Lydiard, 1996℄ Terri Lydiard. Using idef3 to apture the air ampaign planningproess. AIAI, University of Edinburgh, Sotland, Marh 1996.[Maes and Nardi, 1988℄ Pattie Maes and Daniele Nardi, editors. Meta-Level Ar-hitetures and Reetion. North-Holland, Amsterdam, The Netherlands, 1988.[Maes, 1986℄ Pattie Maes. Introspetion in knowledge representation. In Pro. 7thECAI, Vol. I, pages 256{269, Brighton, UK, July 1986.[Malone et al., 1997℄ Thomas W. Malone, Kevin Crowston, Jintae Lee, BrianPentland, Chrysanthos Dellaroas, George Wyner, John Quimby, Charley Os-born, and Abraham Bernstein. Tools for inventing organizations: Toward ahandbook of organizational proesses. MIT, Cambridge, MA, 1997.305

[Mayer et al., 1992℄ R. J. Mayer, T. P. Cullinane, P. S. deWitte, W. B. Knappen-berger, B. Perakath, and M. S. Wells. Information integration for onurrentengineering (IICE) idef3 proess desription apture method report. ReportAL-TR-1992-0057, Armstrong Laboratory, Logistis Researh Division, 1992.[MAllester and Rosenblitt, 1991℄ David MAllester and D. Rosenblitt. System-ati nonlinear planning. In Pro. 9th AAAI, pages 634{639, Anaheim, CA,August 1991. AAAI Press/The MIT Press.[MCarthy and Hayes, 1969℄ John MCarthy and Patrik J. Hayes. Some philo-sophial problems from the standpoint of arti�ial intelligene. In BernhardMeltzer and Donald Mihie, editors, Mahine Intelligene 4, pages 463{502. Edinburgh University Press, Edinburgh, Sotland, 1969. Also in:[Allen et al., 1990, pages 393{435℄.[MCarthy, 1980a℄ John MCarthy. Appliations of irumsription to formaliz-ing ommonsense knowledge. Arti�ial Intelligene, 28:89{116, 1980.[MCarthy, 1980b℄ John MCarthy. Cirumsription|a form of nonmonotonireasoning. Arti�ial Intelligene, 13:27{39, 1980.[MDermott and Doyle, 1980℄ Drew MDermott and Jon Doyle. Non-monotonilogi i. Arti�ial Intelligene, 13:41{72, 1980. Also in: [Ginsberg, 1987, pages111{126℄.[Minton and Carbonell, 1987℄ Steven Minton and Jaime G. Carbonell. Strategiesfor learning searh ontrol rules: An explanation-based approah. In Pro. 10thIJCAI, pages 228{235, Milan, Italy, August 1987. Morgan Kaufmann.[Minton et al., 1985℄ Steven Minton, Philip J. Hayes, and Jill Fain. Controllingsearh in exible parsing. In Pro. 9th IJCAI, pages 785{787, Los Angeles,CA, August 1985. Morgan Kaufmann.[Minton et al., 1987℄ Steven Minton, Jaime G. Carbonell, Oren Etzioni, Craig A.Knoblok, and Daniel R. Kuokka. Aquiring e�etive searh ontrol rules:Explanation-based learning in the PRODIGY system. In Pat Langley, editor,Pro. 4th International Workshop on Mahine Learning, pages 122{133, Irvine,CA, June 1987. University of California, Morgan Kaufmann.[Minton et al., 1989℄ Steven Minton, Craig A. Knoblok, Daniel R. Kuokka,Yolanda Gil, Robert L. Joseph, and Jaime G. Carbonell. PRODIGY 2.0: Themanual and tutorial. Tehnial Report CMU-CS-89-146, Carnegie Mellon Uni-versity, Pittsburgh, PA, May 1989.[Moore, 1985℄ Robert C. Moore. A formal theory of knowledge and ation. InJerry R. Hobbs and Robert C. Moore, editors, Formal Theories of the Com-monsense World, hapter 9, pages 319{358. Ablex, Norwood, NJ, 1985. Alsoin: [Allen et al., 1990, pages 480{519℄.306

[Morgenstern, 1987℄ Leora Morgenstern. Knowledge preonditions for ationsand plans. In Pro. 10th IJCAI, pages 867{874, Milan, Italy, August 1987.Morgan Kaufmann.[Murray and Porter, 1989℄ Kenneth S. Murray and Brue W. Porter. Controllingsearh for the onsequenes of new information during knowledge integration.In Alberto Maria Segre, editor, Pro. 6th International Workshop on MahineLearning, pages 290{295, Ithaa, NY, June 1989. Cornell University, MorganKaufmann.[Musen, 1989℄ Mark A. Musen. Automated support for building and extendingexpert models. Mahine Learning, 4:349{377, 1989.[Nehes et al., 1991℄ Robert Nehes, Rihard Fikes, Tim Finin, Thomas Gruber,Ramesh Patil, Ted Senator, and William R. Swartout. Enabling tehnologiesfor knowledge sharing. AI Magazine, 12(3):36{56, Fall 1991.[Newell and Simon, 1963℄ Allen Newell and Herbert A. Simon. GPS, a programthat simulates human thought. In E. A. Feigenbaum and J. Feldman, editors,Computers and Thought, pages 279{293. R. Oldenbourgh KG, 1963. Also in:[Allen et al., 1990, pages 59{66℄.[Newell and Simon, 1976℄ Allen Newell and Herbert Simon. Computer siene asempirial enquiry. Communiations of the ACM, 19:113{126, 1976.[Newell, 1982℄ Allen Newell. The knowledge level. Arti�ial Intelligene,18(1):87{127, January 1982.[Nilsson, 1980℄ Nils J. Nilsson. Priniples of Arti�ial Intelligene. Tioga, PaloAlto, CA, 1980.[Nodine and Unruh, 1997℄ Marian Nodine and Amy Unruh. Failitating openommuniation in agent systems: The InfoSleuth infrastruture. In N. Singh,A. Rao, and m. Wooldridge, editors, Pro. 4th International Workshop onAgent Theories, Arhitetures, and Languages, pages 281{295, Providene, RI,July 1997.[Nodine et al., 1998℄ Marian Nodine, Brad Perry, and Amy Unruh. Experienewith the InfoSleuth agent arhiteture. In Brian Logan and Jeremy Bax-ter, editors, Pro. AAAI Workshop on Software Tools for Developing Agents,Madison, WI, January 1998. AAAI Press.[O-Plan tf, 1997℄ AIAI, University of Edinburgh, Edinburgh, Sotland. TaskFormalism Manual, January 1997. Version 3.1.[Orfali et al., 1997℄ Robert Orfali, Dan Harkey, and Jeri Edwards. Instantorba. Wiley, New York, NY, Marh 1997.307

[Pease and Carrio, 1997℄ R. Adam Pease and Todd M. Carrio. Core plan rep-resentation. Armstrong Lab Report AL/HR-TP-96-9631, Armstrong Laborat-ory, US Air Fore, January 1997. Objet Modeling Working Group.[Pednault, 1989℄ Edwin P. D. Pednault. ADL: Exploring the middle groundbetween STRIPS and the situation alulus. In Ronald J. Brahman, He-tor J. Levesque, and Raymond Reiter, editors, Pro. 1st KR, pages 324{332,Toronto, Canada, 1989. Morgan Kaufmann.[Penberthy and Weld, 1992℄ J. Sott Penberthy and Daniel S. Weld. UCPOP: Asound, omplete, partial order planner for ADL. In Bernhard Nebel, CharlesRih, and William Swartout, editors, Pro. 3rd KR, pages 103{114, Cambridge,MA, Otober 1992. Morgan Kaufmann.[Peot and Smith, 1992℄ Mark A. Peot and David E. Smith. Conditional nonlinearplanning. In James Hendler, editor, Pro. 1st International Conferene onArti�ial Intelligene Planning Sytems, pages 189{197, College Park, MD, June1992. Morgan Kaufmann.[Polyak and Tate, 1998℄ Stephen T. Polyak and Austin Tate. Rationale in plan-ning: Causality, dependenies, and deisions. The Knowledge Engineering Re-view, 13(3):247{262, 1998.[Pryor and Collins, 1996℄ Louise Pryor and Gregg Collins. Planning for ontin-genies: A deision-based approah. Journal of Arti�ial Intelligene Researh,4:287{339, May 1996.[Pryor, 1996℄ Louise Pryor. Opportunity reognition in omplex environments.In Pro. 13th AAAI, pages 1147{1152, Portland, OR, August 1996. AAAIPress/The MIT Press.[Reee et al., 1994℄ Glen A. Reee, Austin Tate, David I. Brown, Mark Ho�man,and Rebea E. Burnard. The PRECiS environment. University of Edinburgh,Sotland, Marh 1994.[Reiter, 1980℄ Raymond Reiter. A logi for default reasoning. Arti�ial Intelli-gene, 13:81{132, 1980.[Robinson, 1965℄ J. A. Robinson. A mahine-oriented logi based on the resolu-tion priniple. Journal of the ACM, 12(1):23{41, January 1965.[Rosenblum et al., 1993℄ Paul S. Rosenblum, John E. Laird, and Allen Newell,editors. The soar Papaers: Readings on Integrated Intelligene, volume I &II. MIT Press, Cambridge, MA, 1993.[Russell and Norvig, 1995℄ Stuart J. Russell and Peter Norvig. Arti�ial Intelli-gene: A Modern Approah. Prentie Hall, Upper Saddle River, NJ, 1995.308

[Seker, 1988℄ Judith A. Seker. Use of O-Plan for oil platform onstrutionprojet planning. AIAI-PR 22, AIAI, University of Edinburgh, Edinburgh,Sotland, June 1988.[Seel, 1989℄ N. Seel. Agent Theories and Arhitetures. PhD thesis, Surrey Uni-versity, Guildford, UK, 1989.[Selman et al., 1992℄ Bart Selman, Hetor Levesque, and David Mithell. A newmethod for solving hard satis�ability problems. In Pro. 10th AAAI, pages440{446, San Jose, CA, July 1992. AAAI Press/The MIT Press.[Selman, 1994℄ Bart Selman. Near-optimal plans, tratability, and reativity. InJon Doyle, Erik Sandewall, and Pietro Torasso, editors, Pro. 4th KR, pages521{529, Bonn, Germany, May 1994. Morgan Kaufmann.[Shanahan, 1997℄ Murray Shanahan. Solving the Frame Problem. MIT Press,Cambridge, MA, 1997.[Shoham, 1993℄ Y. Shoham. Agent-oriented programming. Arti�ial Intelligene,60(1):51{92, 1993.[Singh, 1993a℄ Narinder Singh. A Common Lisp API and failitator for absi.Report Logi-93-4, Stanford University, Stanford, CA, January 1993.[Singh, 1993b℄ Narinder P. Singh. Implementation details for the new absi fail-itator. Stanford University, Stanford, CA, April 1993.[Smith, 1977℄ Reid G. Smith. The ontrat net: A formalism for the ontrolof distributed problem solving. In Pro. 5th IJCAI, page 472, Cambridge, MA,August 1977. MIT, William Kaufmann.[Smith, 1982℄ Brian C. Smith. Reetion and Semantis in a ProaduralLanguage. PhD thesis, MIT, Cambridge, MA, 1982. Prologue in:[Brahman and Levesque, 1985, pages 32{39℄.[spar, 1997℄ DARPA/Rome Laboratory. Planning Initiative Shared Planningand Ativity Representation{spar, Otober 1997. Version 0.1.[Stader, 1997℄ Jussi Stader. A tool set for enterprise modelling. In Pro. 6thInternational Conferene on Interfaes, Montpellier, Frane, May 1997. EC2& Developpement, Paris, Frane.[Swartout, 1983℄ William R. Swartout. XPLAIN: A system for reating andexplaining expert onsulting programs. Arti�ial Intelligene, 21(3):285{325,September 1983. 309

[Tate et al., 1990℄ Austin Tate, James Hendler, and Mark Drummond. A reviewof AI planning tehniques. In James Allen, James Hendler, and Austin Tate,editors, Readings in Planning, pages 26{49. Morgan Kaufmann, San Mateo,CA, 1990.[Tate et al., 1994℄ Austin Tate, Brian Drabble, and Rihard Kirby. O-Plan2: Anopen arhiteture for ommand, planning and ontrol. In Monte Zweben andMark S. Fox, editors, Intelligent Sheduling, hapter 7, pages 213{239. MorganKaufmann, San Franiso, 1994.[Tate et al., 1998℄ Austin Tate, Stephen T. Polyak, and Peter Jarvis. TF method:An initial framework for modelling and analysing planning domains. InPro. Knowledge Engineering and Aquisition for Planning: Bridging Theoryand Pratie, Pittsburgh, PA, June 1998. Carnegie-Mellon University, AAAIPress.[Tate, 1975℄ Austin Tate. Using Goal Struture to Diret Searh in a ProblemSolver. PhD thesis, University of Edinburgh, Edinburgh, Sotland, 1975.[Tate, 1995℄ Austin Tate. Integrating onstraint management into an AI planner.Arti�ial Intelligene in Engineering, 9:221{228, 1995.[Tate, 1996a℄ Austin Tate. Representing plans as a set of onstraints | the <i-n-ova> model. In Brian Drabble, editor, Pro. 3rd International Conferene onArti�ial Intelligene Planning Sytems, pages 221{228, Edinburgh, Sotland,May 1996. AAAI Press.[Tate, 1996b℄ Austin Tate. Towards a plan ontology. AI*IA Notiziqe (QuarterlyPubliation of the Assoiazione Italiana per l'Intelligenza Arti�iale), 9(1):19{26, Marh 1996.[Tate, 1998℄ Austin Tate. Roots of SPAR|shared planning and ativity repres-entation. The Knowledge Engineering Review, 13(1):121{128, Marh 1998.[Ushold et al., 1996℄ Mike Ushold, Martin King, Stuart Moralee, and YannisZorgios. The enterprise ontology. Tehnial Report AIAI-TR-195, AIAI, Uni-versity of Edinburgh, Edinburgh, Sotland, August 1996.[Ushold et al., 1998℄ Mike Ushold, Martin King, Stuart Moralee, and Yan-nis Zorgios. The Enterprise ontology. The Knowledge Engineering Review,13(1):31{90, Marh 1998.[Valente, 1994℄ Andr�e Valente. Planning. In Joost Breuker and Walter Vande Velde, editors, CommonKADS Library for Expertise Modelling, hapter 10,pages 213{229. IOS Press, Amsterdam, 1994.[Valente, 1995℄ Andr�e Valente. Knowledge-level analysis of planning systems.SIGART Bulletin, 6(1):33{41, January 1995.310

[van Harmelen and Balder, 1992℄ Frank van Harmelen and J. R. Balder. (ML)2:A formal language for kads models of expertise. Knowledge Aquisition, 4(1),Marh 1992.[van Harmelen and ten Teije, 1998℄ Frank van Harmelen and Annette ten Teije.Charaterising problem-solving methods by gradual requirements: Overomingthe yes/no distintion. In Pro. 8th Knowledge Engineering: Methods andLanguages, Karlsruhe, Germany, January 1998. University of Karlsruhe.[VanLehn and Jones, 1991℄ Kurt VanLehn and Randolph M. Jones. Learningphysis via explanation-based learning of orretness and analogial searhontrol. In Lawrene A. Birnbaum and Gregg C. Collins, editors, Pro. 8thInternational Workshop on Mahine Learning, pages 110{114, Evanston, IL,June 1991. Northwestern University, Morgan Kaufmann.[Veloso et al., 1995℄ Manuela Veloso, Jaime Carbonell, Aliia Perez, Daniel Bor-rajo, Eugene Fink, and Jim Blythe. Integrating planning and learning: Theprodigy arhiteture. Journal of Theoretial and Experimental Arti�ial In-telligene, 7(1), 1995.[Vo� et al., 1990℄ Angi Vo�, Werner Karbah, Uwe Drouven, and Darius Lorek.Competene assessment in on�guration tasks. In Pro. 9th ECAI, pages 676{681, Stokholm, Sweden, August 1990. Pitman.[Warren, 1976℄ David H. D. Warren. Generating onditional plans and programs.In Pro. AISB, pages 344{354, Edinburgh, Sotland, July 1976. University ofEdinburgh.[Wavish, 1992℄ P. Wavish. Exploiting emergent behaviour in multi-agent sys-tems. In E. Werner and Y. Demazeau, editors, Pro. 3rd European Workshopon Modelling Autonomous Agents and Multi-Agent Worlds, pages 297{310. El-sevier Siene Publishers, 1992.[Wefald and Russell, 1989℄ Eri H. Wefald and Stuart J. Russell. Adaptive learn-ing of deision-theoreti searh ontrol knowledge. In Alberto Maria Segre, ed-itor, Pro. 6th International Workshop on Mahine Learning, pages 408{411,Ithaa, NY, June 1989. Cornell University, Morgan Kaufmann.[Weld and de Kleer, 1990℄ Daniel S. Weld and Johan de Kleer, editors. Read-ings in Qualitative Reasoning about Physial Systems. Morgan Kaufmann, SanMateo, CA, 1990.[Weld, 1996℄ Daniel S. Weld. Planning-based ontrol of software agents. In BrianDrabble, editor, Pro. 3rd International Conferene on Arti�ial IntelligenePlanning Sytems, pages 268{274, Edinburgh, Sotland, May 1996. AAAI Press.311

[Wikler and Pryor, 1996℄ Gerhard Wikler and Louise Pryor. On ompeteneand meta-knowledge. In Milind Tambe and Piotr Gmytrasiewiz, editors,Pro. AAAI Workshop on Agent Modeling, pages 98{104, Portland, OR, Au-gust 1996. AAAI Press, Menlo Park, CA.[Wielinga and Breuker, 1986℄ Bob J. Wielinga and Joost A. Breuker. Models ofexpertise. In Pro. 7th ECAI, Vol. I, pages 306{318, Brighton, UK, July 1986.[Wielinga et al., 1992℄ B. J. Wielinga, A. Th. Shreiber, and J. A. Breuker.KADS: A modelling approah to knowledge engineering. Knowledge Aquisi-tion, 4(1):5{53, Marh 1992.[Wielinga (ed) et al., 1994℄ Bob Wielinga (ed), Hans Akkermans, Heshem Has-san, Olle Olsson, Klas Orsv�arn, Guus Shreiber, Peter Terpstra, Walter Vande Velde, and Steve Wells. Expertise model de�nition doument. ReportKADS-II/M2/UvA/026/5.0, University of Amsterdam, Amsterdam, The Neth-erlands, June 1994.[Wilensky, 1981℄ Robert Wilensky. Meta-planning: Representing and usingknowledge about planning in problem solving and natural language under-standing. Cognitive Siene, 5(3):197{233, July 1981.[Wilkins, 1982℄ David E. Wilkins. Using knowledge to ontrol tree searhing.Arti�ial Intelligene, 18(1):1{51, January 1982.[Wilkins, 1988℄ David E. Wilkins. Pratial Planning. Representation and Reas-oning Series. Morgan Kaufmann, San Mateo, CA, 1988.[Winston, 1992℄ Patrik Henry Winston. Arti�ial Intelligene. Addison-Wesley,Reading, MA, 3rd edition, 1992.[Witten et al., 1994℄ Ian H. Witten, Alistair Mo�at, and Timothy C. Bell. Man-aging Gigabytes: Compressing and Indexing Douments and Images. Van Nos-trand Reinhold, New York, NY, April 1994.[Wooldridge and Jennings, 1995℄ Mihael Wooldridge and Niholas R. Jennings.Intelligent agents: Theories and pratie. The Knowledge Engineering Review,10(2):115{152, June 1995.[Wooldridge, 1994℄ Mihael Wooldridge. Coherent soial ation. In A. G. Cohn,editor, Pro. 11th ECAI, pages 279{283, Amsterdam, The Netherlands, August1994. Wiley.[Zaniolo, 1991℄ C. Zaniolo. The logial data language (ldl): An integrated ap-proah to logi and databases. Tehnial Report STP-LD-328-91, MCC, Aus-tin, TX, 1991. 312

