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Abstract 

 

The thesis deals with the modification of salicylaldoxime-based reagents used in 

hydrometallurgical extraction, addressing rational ligand design to tune copper(II) 

extractant strengths and also the development of reagents which are capable of 

transporting transition metal salts.   

 

Chapter 1 reviews current solvent extractant technology for metal recovery, 

including the limited knowledge of the effect of substituents on extractive efficacy.  

Advances in leaching technology have led to systems wherein increases in process 

efficiency could be obtained using reagents which can transport both a transition 

metal cation and its attendant anion(s), and the potential advantages of metal salt 

extractants are discussed.  The problems encountered when trying to extract 

hydrophilic anions selectively into organic media are also considered. 

 

Chapter 2 discusses techniques used in industry to tune reagent properties, many of 

which depend on the importance of H-bonding in non-polar solvents.  Synthesis of a 

series of 5-alkyl-3-X-2-hydroxybenzaldehyde oximes (X = a range of substituents) is 

described and copper extraction experiments are reported.  3-Substitution is found to 

alter reagent strength by two orders of magnitude, with 3-bromo-5-tert-butyl-2-

hydroxybenzaldehyde oxime the strongest extractant.  An analysis of X-ray 

structures of several ligands and copper(II) complexes is given in an attempt to 

establish whether trends in the solid state structures can account for variations in 

extractant strength.  A more detailed analysis of the hydrogen bonding in 

salicylaldoximato copper(II) complexes and ligand dimers is carried out in Chapter 

3, with the aim of defining how substituent effects could be used to design reagents 

with appropriate extractive behaviour.  3-X-2-Hydroxybenzaldehyde oximes with no 

5-alkyl substituent are synthesised and subjected to a detailed study by X-ray 

crystallography and computational techniques, which, alongside evidence provided 

by CID-MS experiments, suggest that the dominant substituent effect in determining 

extractant strength is the ability to “buttress” the pseudomacrocyclic hydrogen 

bonding motif involving the oximic hydrogen and phenolic oxygen.  Ligands with 3-
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substituents capable of accepting H-bonds were found to be stronger extractants than 

those which could not, and the steric hindrance afforded by bulky substituents made 

3,5-di-tert-butyl-2-hydroxybenzaldehyde oxime the weakest extractant.  Ligand 

acidity is also noted to have a significant effect on reagent strength, with electron-

withdrawing substituents lowering the pKa of the phenolic proton and increasing 

extractive efficacy. 

 

Chapter 4 focuses on metal salt extraction, and the development of selective, robust 

and hydrolytically stable reagents.  Six novel extractants, based on a salicylaldoxime 

scaffold with a pendant dialkylaminomethyl arm, are described.  Only 5-tert-butyl-3-

dihexylaminomethyl-2-hydroxybenzaldehyde oxime and 3-tert-butyl-5-

dihexylaminomethyl-2-hydroxybenzaldehyde oxime have sufficient solubility to be 

effective reagents.  The former extracts CuCl2 and ZnCl2 in a highly efficient 

manner, with one mole of metal salt extracted per mole of ligand, twice the expected 

capacity.  X-ray structure determination of complexes of the related ligand 5-tert-

butyl-2-hydroxy-3-piperidin-1-ylmethylbenzaldehyde oxime defines the binding 

mode, with the chloride anions bound to the inner sphere of the metal cations.  

Loading and stripping experiments show it to be an extractant with potential 

commercial application.  Cation and anion selectivity of the two extractants defined 

above is the focus of Chapter 5, which begins with an overview of techniques and 

attempts to attenuate the Hofmeister bias, the main factor in the selective extraction 

of hydrophilic anions into organic media.  pH loading profiles show the 3-

dihexylaminomethyl isomer to be an effective CuCl2 and CuSO4 extractant, but the 

cation extractive efficacy of the 5-isomer is hampered by the 3-tert-butyl group.  

Both ligands are found to be selective for Cl- > SO4
2-, following the Hofmeister bias.  

Further information on anion binding is provided by solid state structures of copper 

salt complexes, showing that in all cases the copper(II) cation interacts in some way 

with the anion.  Cation extraction is affected significantly by the anion present, with 

FeIII selectively extracted against CuII in the presence of SO4
2- which is consistent 

with cation-anion interactions having great influence on the overall stability of the 

ligand-metal salt assembly. 
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1.1 Thesis Aims 

 

The underlying principle of the thesis is the modification of simple phenolic oximes 

to affect their functionality, in order to widen their applicability in the field of metal 

extraction.  Two main themes are investigated: the tuning of copper extraction 

strength of phenolic oximes by introduction of substituents in the 3-position, and the 

inclusion of an anion binding site to yield polytopic ligands capable of extracting and 

transporting both a metal cation and its attendant anion(s) across a 

hydrometallurgical circuit.  This chapter gives an introduction to the chemistry and 

uses of copper, the current methods of recovering copper from its constituent ores, 

details the various reagents involved in its recovery and the principles behind metal 

salt extraction. 

 

 

1.2 Copper 

 

Copper is the 29th element of the periodic table, is a metal and is often found in its 

native form.  Copper has a relative abundance of 68 ppm in the Earth's crust, and 

approximately 50% of copper is found as the ore chalcopyrite, CuFeS2.  A ductile, 

malleable and corrosion resistant metal, copper has many properties which make it 

attractive to human usage, e.g. it has an electrical conductivity second only to that of 

silver.1  Copper also forms many useful alloys with other metals, for example bronze 

(with tin) and brass (with zinc) which are harder and more durable materials than the 

pure metal.2 

 

Artefacts dating from over 10,000 years ago are known, with early copper use based 

around ritual and decorative items and also currency.1, 3  The discovery of 

pyrometallurgical processes to liberate copper from its ores approximately 6000 

years ago is accompanied by an increase in the copper concentrations of ice cores 

from Greenland, and these values can be used to estimate global copper production 

until the present.4  A steady increase in production through the Bronze Age (3000-

500 BC) is noted, with subsequent peaks corresponding to the Roman Empire (250-
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350 AD) and the Sung Dynasty of China (960-1127 AD).  A massive increase occurs 

with the advent of the industrial revolution, which is sustained until the present day 

(Figure 1.1).5 

 

 

 

Figure 1.1:  Copper production from 5500 years ago until the present day.5 

 

In the modern age, copper is used extensively in its pure form in electrical 

applications, due to its high electrical conductivity.  As a major component of alloys, 

it is a vital part of modern day infrastructure, and is used in piping, major industrial 

installations, transport and as coinage.  Compounds of copper also find application as 

catalysts and fungicides.2, 6 

 

In the 21st Century the demand for copper has experienced an extraordinary 

resurgence, and prices reached record highs in 2007.  The rapid increase in value of 

copper and other metals has resulted in a burgeoning criminal trade in the material, 

with thefts of large quantities of copper, lead, aluminium and steel becoming 

common.  Thieves have even attempted to steal live electrical cables, but were 

fortunate enough to be unsuccessful.7  15 million tonnes of copper were produced in 

2006, falling short of the global consumption of 17 million tonnes, with demand 

fuelled by the growing industrialisation of China and India.2, 8  This demand has led 

to the commencement of many new projects around the world, and global copper 

supply is expected to meet demand within the decade and so stabilise the price of 

copper.8 
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Clearly, copper is of great importance to the continuing development of the human 

race, and the economies of scale dictate that any improvements in the efficiency of 

copper processing may result in considerable increases in profits. 

 

 

1.3 Extractive Metallurgy 

 

In their natural state, metals are found as low concentration, mixed metal ores.  Early 

Earth’s atmospheric conditions involved an abundance of SO2 and CO2, and 

consequently metal ores formed as sulfidic ores.  The advent of plant life and 

photosynthesis 2.5 bn years ago lead to oxygen becoming a major component of the 

atmosphere.  Exposed metal sulfides were therefore oxidised to metal oxides, leaving 

metal deposits with three layers: a superficial oxidic layer, a mixed oxide/sulfide 

middle layer (transition ore) and an inner sulfidic layer.4, 9  

 

In order to purify the metals of value, four steps must be taken: 

 

• concentration of the metals of value, 

• separation from the unwanted metals of the ore, 

• reduction of the oxidised metals of value, and 

• refinement to a purity suitable for commercial use. 

 

These four steps comprise extractive metallurgy,10 a technique which, in the case of 

copper, is known to have existed over 6000 years ago.4, 9  

 

 

1.4 Pyrometallurgy 

 

Pyrometallurgy is defined as the technique of separating metals from their ores by 

oxidative and reductive processes under the application of heat.11  Dating back to 

4000 BC,4, 9 the technique originally involved heating ore to a high temperature in 

the presence of a reducing agent, often carbon, to generate the pure metal.  Formation 
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of a thermodynamically stable by-product during the reduction, e.g. CO or CO2, is 

the driving force behind the reaction.  When processing sulfidic ores, in some cases 

roasting the metal sulfides in air produces metal oxides and SO2, driving forward the 

reaction due to the enthalpic favourability of its formation: 

 

Equation 1.1   MS + 3/2 O2  MO + SO2 

Equation 1.2   MO + C   M0 + CO 

 

The oxides are then smelted in the presence of carbon to give the metal.9  In some 

cases, heat alone is enough to liberate the metal.  

 

Modern pyrometallurgical applications are massive scale, profitable operations 

which have benefited from years of technological refinement and subsequent 

reductions in operation costs.12  The recovery of copper from sulfidic ores (e.g. 

chalcopyrite) is an example of this (Figure 1.2).   

 
Figure 1.2:  Flowsheet for the extraction of copper from sulfidic ores by pyrometallurgy. 

 

Firstly, the ore is mined and crushed, then milled with water to produce ore particles 

approximately 0.25 mm in diameter.3  These particles are subjected to a 

concentration process known as froth flotation, which separates the sulfide mineral 

particles from the silicate waste minerals, or gangue.  Froth flotation involves the use 

of collectors or flotation agents, which attach themselves to the desired hydrophilic 

ore particles and turn them into hydrophobic solids.  Rapid agitation of the mixture 

produces an oily froth containing these metal-bearing particles, which is removed 
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from the separator, and the wetted gangue materials are drawn off from the bottom of 

the tank.10 

 

This copper concentrate is removed and subjected to a two stage smelting process at 

1300 °C.  A copper "matte" is generated in the first step, by heating the concentrate 

with sand (flux) and air in a blast furnace to yield Cu2S, a dense solid which is drawn 

off from the base of the furnace.  Addition of flux removes iron as a silicaceous slag, 

which floats to the surface of the mixture, and sulfur dioxide is vented at the top of 

the smelter:13 

 

Equation 1.3  2CuFeS2 + 2O2           Cu2S + 2FeO + 2SO2 

Equation 1.4  2FeO + SiO2          2Fe2SiO4 

 

The second step involves further heating, converting the copper matte by controlled 

oxidation with air, producing further sulfur dioxide.3 

 

Equation 1.5  Cu2S + O2              2Cu0 + SO2 

 

The product is known as "blister copper", which is 98% pure, contains impurities 

such as silver and gold and must be further refined by electrochemical methods.  

"Blister anodes" are cast and purified in an electrolytic cell with an acidic copper 

sulfate electrolyte and a stainless steel cathode.  On application of current copper is 

oxidised and dissolved at the anode, reduced at the cathode, where it is deposited, 

and the cathodes can be sold directly.  The redox equations for the process show its 

simplicity:   

 

Equation 1.6  Cu0     Cu2+ + 2e-  (anode) 

Equation 1.7   Cu2+ + 2e-    Cu0  (cathode) 

 

Any impurities present in the blister copper fall to the bottom of the cell beneath the 

anode, and are known as anode slimes.  These slimes contain economically important 

metals (Ag, Au) which can be recovered and processed separately.3 
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While pyrometallurgy is an important and relevant technique for the processing of 

copper ores, there are reasons to pursue alternative methods, including: 

 

• The capital cost of smelting is very high, at $3000-5000 per annual ton of 

copper smelted. 

• Smelters are poor in treating concentrates containing deleterious impurities. 

• Precious metal by-products are often floated with copper, and their 

separation by pyrometallurgy is often slow and costly.14 

 

Hydrometallurgy is a modern alternative to pyrometallurgy which may overcome 

many of these issues, and is discussed in detail in the next section. 

 

 

1.5 Hydrometallurgy 

 

Hydrometallurgy can be defined as “the use of wet (aqueous) chemistry for the 

recovery of metals”.15  The process involves leaching metal ions from the ore into 

solution, followed by separation and purification by precipitation, cementation, 

electrowinning, reverse osmosis, ion exchange methods or solvent extraction.16  

 

In contrast to pyrometallurgy the technique is relatively modern, with its first major 

industrial application the purification of gold by the cyanidation process dating from 

1887.15, 17  The dissolution of gold depends on its oxidation, which is favourable 

when it is complexed with the cyanide ligand, CN-: 

 

Equation 1.8          2Au (s) + O2 + 4CN- + 2H2O           2[Au(CN)2]
- + H2O2 + 2OH- 

 

As the undesired silicate materials in the surrounding material do not dissolve, 

filtration and separation yields a solution of the pure gold complex, and the gold can 

be precipitated with another reactive metal, for example zinc,9 or purified by 

electrolysis (electrowon).18 
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Further advances in the field include the Bayer process for recovering alumina 

(Al2O3) by pressure leaching of bauxite with sodium hydroxide followed by 

crystallisation of Al(OH)3 and calcining to alumina (1892), and also the introduction 

of leach/electrowinning processes for the recovery of copper in Chile in 1912.  This 

involved the leaching of copper from weathered pyrite ore and its subsequent 

purification by electrolysis, an important precursor to the current hydrometallurgical 

extractive processes for copper.15 

 

The development of solvent extraction techniques prompted a massive increase in 

industrial hydrometallurgical applications.  Solvent extraction is based on a two 

phase, liquid-liquid equilibrium and is used to separate and concentrate species from 

mixtures.10  Since its introduction in the 1940's for uranium extraction19 it has proved 

to be a robust yet flexible technique for recovery of metals from aqueous acidic leach 

solutions, including thorium, uranium,19 platinum group metals (PGMs),20 zinc,21, 22 

nickel and cobalt,23 but particularly copper.16  A typical flowsheet for a 

hydrometallurgical process is detailed in Figure 1.3. 

 

 
Figure 1.3:  A typical flowsheet for the hydrometallurgical recovery of metals. 

 

The metals of value are released from the ore into an aqueous media by the leaching 

process, which generates a mixed metal aqueous solution known as the pregnant 

leach solution (pls).  Selective binding agents in organic media are introduced to the 

pls, with the target species binding to the extractant, moving into the organic phase 

and regenerating the leachant, also known as the raffinate.  On separation of the 

phases, the target species is then stripped from the extractant into a concentrated, 
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separate aqueous phase, the advanced electrolyte, and the extractant solution is 

subsequently reused.  Electrolysis produces pure metal cathodes and the depleted 

electrolyte is reused to strip further cycles of loaded extractant.10  The extractants 

used in the separation and concentration step have varying structures and functions 

but can be sub-divided into three distinct groups: solvating reagents, anion exchange 

reagents and cation exchange reagents.10, 15 

 

Solvating reagents are neutral species which impart stability and organic phase 

solubility to metal salts via the displacement of water molecules in the coordination 

sphere.10  An example with major commercial relevance is the extraction of uranyl 

nitrate by tri-n-butylphosphate (TBP), which occurs by the equilibrium: 

 

Equation 1.9  UO2(NO3)2 + 2TBP (org)  [UO2(NO3)2(TBP)2] (org) 

 

Both the TBP extractant and the nitrate anion address the inner coordination sphere 

of the UIV cation, and the extraction equilibrium can be manipulated by careful 

control of the aqueous phase nitrate concentration.10, 19 

 

Anion exchange extractants are capable of binding to a metal anion, e.g. a 

chlorometallate, and extracting it into organic media.11  Tetraalkylammonium salts 

can extract metal anions by an ion pair mechanism, e.g. FeCl4
-: 

 

Equation 1.10  FeCl4
-  + R4NCl (org)  [R4NFeCl4] (org) + Cl-  

 

Trialkylamine reagents are used industrially in the recovery of platinum group metals 

(PGMs) as their chlorometallate anions from acidic media, which occurs via a pH-

dependent extraction equilibrium: 
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Equation 1.11   PtCl6
2- + 2R3N (org) + 2HCl  [(R3NH)2PtCl6] (org) + 2Cl- 

 

The kinetic inertness of PGMs ensures chloride ligand substitution does not occur, 

however, the dearth of information on actual industrial processes means design of 

selective extractants to be utilised in this area is challenging.20 

 

Cation exchange extractants address the inner coordination sphere of the metal to 

generate neutral complexes which are soluble in water-immiscible media.  Acidic 

ligands are normally employed which generate conjugate bases capable of binding to 

metal cations: 

 

Equation 1.12  nLH (org) + Mn+  [MLn] (org) + nH+ 

 

As protons are released in the binding of the metal cation, the extraction equilibrium 

can be controlled by pH.  Phenolic oxime cation exchange reagents are used 

extensively in the recovery of copper from oxidic ores,16 and shall be detailed in the 

next section. 

 

 

1.6 Copper(II) Recovery by Phenolic Oxime Extractants 

 

1.6.1 Copper(II) Extraction from Oxidic Ores 

 

Between 20%8 and 30%24 of the world’s copper is recovered using 

hydrometallurgical methods involving phenolic oxime extractants.  A simplified 

flowsheet detailing the hydrometallurgical production of copper from oxidic ores is 

shown overleaf in Figure 1.4.  The leach step involves the dissolution of copper with 

sulfuric acid, achieved by passing the acid through a “heap pad” of oxidic ore.  This 

transfers most of the metals in the ore into the aqueous pls in which CuII is present at 

concentrations of usually 3-10 gL-1, along with high concentrations of FeII and FeIII.10   
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• Leach:  CuO (s) + H2SO4  CuSO4 + H2O 

• Extract: CuSO4 + 2LH (org)  CuL2 (org) + H2SO4 

• Strip:  CuL2 (org) + H2SO4  CuSO4 + 2LH (org) 

• Electrowin: CuSO4 + H2O   Cu (s) + ½O2 (g) + H2SO4 

 

• Overall: CuO (s)   Cu (s) + ½O2 (g) 

 

Figure 1.4:  Recovery of copper from oxidic ores by hydrometallurgy. 

 

A cation exchange reagent is utilised in the extraction step, which imparts stability 

and solubility of the CuII ion in the organic phase, normally kerosene,15 by forming a 

neutral metal-ligand complex: 

 

Equation 1.13  Cu2+ + 2LH(org)     [CuL2](org) + 2H+ 

 

As the equilibrium is pH-dependent, with the acidic extractant LH loaded at higher 

pH and stripped at lower pH values, it is termed a “pH-swing” process.  By 

contacting the organic phase with a low pH aqueous sulfate solution, the CuII ions are 

stripped into the aqueous phase as a pure copper sulfate electrolyte, and the 

extractant is regenerated in the organic phase for continuous load/strip cycles.  

Subsequent electrowinning generates conductivity grade copper cathode products 

and sulfuric acid to be reused in the stripping stage.16 

 

The equations in Figure 1.4 illustrate the excellent materials balance of the process.  

This balance ensures both its commercial and environmental success as a method for 

recovering copper.24   
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1.6.2 Phenolic Oxime Extractants 

 

The extractants used in the process described in Section 1.6.1 are based on phenolic 

oximes, the commercial variants of which are detailed in Figure 1.5. 

 

R R’ R’’ Commercial Name 

C9H19 H H P50 

C9H19 C6H5CH2 H P17 

C9H19 CH3 H LIX84 

C12H25 C6H5 H LIX64 

C9H19 C6H5 H HS-LIX 65N 

C9H19 C6H5 Cl LIX70 

C12H25 H H LIX860 

 

Figure 1.5:  Structures of some phenolic oximes used commercially. 

 

The highly branched alkyl groups located in the R-position impart solubility in the 

hydrocarbon diluents preferred in industry, whilst the groups in the R' position can 

tune the strength of the reagent; ketoximes are slightly weaker extractants than 

aldoximes and so operate at higher temperatures and pH values.24  The group in the 

R'' position can also have an effect on extraction strength,25 and this will be discussed 

in detail in Section 1.7.  Deprotonation of the phenolic group allows metal 

complexation via the “pH swing” controlled extraction equilibrium shown in 

Equation 1.13. 

 

The strength and selectivity of CuII extraction by phenolic oximes arises from 

features seen in the structures of the neutral 2:1 complexes formed.  CuII complexes 

of phenolic oximes show a square planar coordination environment containing a 14-

membered pseudomacrocyclic hydrogen bonded array (Figure 1.6), with the H-bonds 

between the oximic H and phenolate O atoms thought to impart additional stability to 

the complex.26  Some phenolic oximes display this H-bonding array in solution when 

no copper is present, demonstrating their preorganisation for binding (Figure 1.6).27 

R

R''
R'

NOHOH
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Figure 1.6:  Preorganisation of phenolic oximes for pseudomacrocyclic CuII complex formation.  The 

smaller inner ring defined by H-bonding in the free ligand dimer is defined28, 29 by the graph set 

descriptor ( )104
4R . 

 

Their selectivity for CuII is thought to arise from the goodness-of-fit of the cavity 

size (the mean distance of the donor atoms to the metal centre) for the CuII ion.  

Determination of the strength and selectivity of extractants is achieved by 

measurement of the pH0.5 – the pH at which half the ligand in the organic phase is 

loaded with the appropriate metal ion during extraction.16  Plotting pH against the 

percentage of copper in the organic phase gives a characteristic graph, known as an 

S-curve due to its shape, and will yield the pH0.5 value.  Typically, CuII extractants 

have pH0.5 values of 0-230 which are ideal for optimum extraction from oxidic ores, 

where heap leaching generates aqueous solutions which usually have pH 1.5-2.3.16  

Figure 1.7 illustrates the selectivity of the industrial extractant P50 (2-hydroxy-5-

nonylbenzaldehyde oxime)  with the higher pH0.5 values for other metals enhancing 

CuII selectivity.16 
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Figure 1.7:  pH loading profiles for a range of metals using P50 in kerosene.16 

 

The properties of phenolic oximes discussed in this section ensure that they are very 

successful and are almost ideal technocommercially for the processing of oxidic 

copper ores. 

 

 

1.6.3 The Benefits of Hydrometallurgy in the Processing of Copper 

 

The massive increases in copper production in the 20th century (Section 1.2) have led 

to the necessity of processing lower grade ores, i.e. those with less copper content, in 

order to satisfy demand.  In the Middle Ages, the copper content of exploited ores 

averaged 8%, whereas by the mid 1990s this value had decreased to an average of 

0.9% copper content.16  Hydrometallurgy is well suited to processing lower grade 

ores, depending on the leach technique, and so it is preferable to pyrometallurgy 

which requires large amounts of energy to melt and remove the gangue minerals.13, 31   

 

A recent article on metal stocks and the sustainability of metal production by Graedel 

et al
6 highlights the importance of recycling metals to ensure future supplies meet 

demand, with an estimated 34% of the copper mined in the 20th Century now in 

landfill.  Pyrometallurgical treatment of complex metal sources, such as alloys and 
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other recycled materials, is not suitable or economically viable and so 

hydrometallurgy is becoming increasingly important in the production of copper 

from such sources.  Graedel also estimates that ~18% of the copper mined in the 20th 

century was lost as tailings and other wastes during milling and smelting,6 indicating 

not only the inefficiency of some pyrometallurgical installations but the potential 

sources of copper for hydrometallurgical plants, which are suited to the processing of 

wastes such as slags,32 tailings,33 post-flotation waste and mine waters.16 

 

Further advantages originate in the versatility and intelligent flowsheet design of 

hydrometallurgical plants.13, 31  The materials balance attained when processing 

oxidic ores (Section 1.6.1) dramatically reduces the consumption of raw materials 

such as SiO2 (flux) associated with smelting, whilst also ensuring that the generation 

of wastes such as slag, toxic heavy metals and SO2 is kept to a minimum.  However, 

sulfur dioxide can be fixed as sulfuric acid and new technology is leading to a large 

decrease in emissions, with ~20% of the sulfur consumed globally originating as 

sulfuric acid from base metal smelters.8  Hydrometallurgy is also much less energy 

intensive, lowering both costs and the emission of greenhouse gases.15  

Hydrometallurgical installations are also much smaller, allowing in situ processing of 

the metals in close proximity to the mine site, reducing transport costs and 

emissions.10, 15 

 

Both the increased energy efficiency and reduced levels of waste make 

hydrometallurgy a much more attractive proposition than traditional 

pyrometallurgical methods.  In a world increasingly concerned with "green" 

technologies and environmental safety, the development of newer, cleaner processes 

is paramount for both ecological and economical reasons.  Economic factors also 

ensure that hydrometallurgy, with its versatility in processing both low grade copper 

ores and recycled materials, has long-term commercial viability.24 
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1.7 Substitution Effects on Copper(II) Binding Strength 

 

Currently, the tuning of the extraction strength of a phenolic oxime formulation is 

achieved by reagent blending and “modification”,16 which will be discussed in 

Chapter 2.  There have been few systematic studies on the effects of benzene-ring 

substitution on strength and selectivity.  The work presented in Chapters 2 and 3 

deals with 3-substitution (X in Figure 1.8). 
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Figure 1.8:  5-Alkylsubstituted salicylaldoximes derivatives used in copper recovery, showing 

potential interaction with a 3-substituent (X). 

 

Burger et al
34 showed in a spectrophotomeric study of 5-substituted salicylaldoximes 

that a nucleophilic (i.e. potentially electron-donating) substituent increases both the 

pKa of the phenol group and overall complex formation constant, thought to be due 

to the effect of the substituent on the ligands’ �-donating abilities.  This electronic 

effect is expected to persist when similar substituents are located in the 3-position.  It 

is also possible to vary extractive efficacy by substitution in the 3-position; 3-nitro-2-

hydroxy-5-nonylbenzophenone oxime (R = C9H19, R’ = C6H5, X = NO2 in Figure 

1.8) operates in a lower pH range than its unsubstituted analogue.  In this study, 

Parrish et al
35 concluded that substituents affect ligand properties in many ways, 

which makes prediction of extractant strength difficult.  

 

In 1971, General Mills introduced the LIX70™ extractant, with the active 

component being 3-chloro-2-hydroxy-5-nonylbenzophenone oxime (R = C9H19, R’ = 

C6H5, X = Cl in Figure 1.8).  The 3-chloro group resulted in high extractant strength, 
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providing a reagent for copper recovery from highly acidic and chloridic media.36  In 

practise, the reagent has only been used as a component of extractant blends.37-40 

 

To date, an empirical approach has been used within the industry to study the effect 

of substitution on extractant strength, giving the overall view that increasing phenol 

acidity of phenolic oxime ligands enhance their extractive efficiency.25  These 

conclusions have been made without a systematic study and without consideration of 

other substituent effects. 

 

In addition to influencing the electronic properties of the donor atoms which bond to 

the copper atom, substituents in the 3-position could also have a significant effect on 

the interligand hydrogen bonding (Figure 1.8) which is thought to contribute to the 

stability of resulting pseudomacrocyclic complexes.41  X-groups with H-bond 

accepting properties could promote formation of bifurcated H-bonds which are 

expected to stabilise the complex,42 but bulky groups could also weaken the oximic 

H to phenolate H-bond by steric interference.  Chapters 2 and 3 consider each effect 

and attempt to elucidate their significance in copper extraction. 

 

 

1.8 Extraction of Metal Salts 

 

1.8.1 Extraction of Copper from Sulfidic Ores 

 

An area where pyrometallurgy still holds key advantages over hydrometallurgy is the 

processing of sulfidic copper ores.  Pyrometallurgical processing of these ores can 

still be more economical and carried out in larger scale than hydrometallurgical 

methods,16 and the materials balances obtained in hydrometallurgical circuits are not 

as advantageous as in the processing of oxidic ores.  Conventional sulfuric acid 

leaching does not effectively leach sulfidic copper and so an oxidative leaching 

process is used to generate a copper sulfate pls.  When this solution is extracted with 

a cation exchange reagent, such as a phenolic oxime, one mole of sulfuric acid is 
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generated per mole of copper extracted and is not consumed in the leach stage 

(Figure 1.9).   

 

 

 

• Leach:  CuS (s) + 2O2 (g)    CuSO4 

• Extract: CuSO4 + 2LH (org)   CuL2 (org) + H2SO4 

• Strip:  CuL2 (org) + H2SO4   CuSO4 + 2LH (org) 

• Electrowin: CuSO4 + H2O           Cu (s) + ½O2 (g) + H2SO4 

 

• Overall: CuS (s) + 3/2O2 (g) + H2O  Cu (s) + H2SO4 

 

Figure 1.9:  Sulfuric acid build up in the front end of the circuit during hydrometallurgical processing 

of sulfidic copper ores. 

 

This acid build up in the front end of the circuit means either an expensive acid 

recovery process, or neutralisation, which generates a salt waste that must be 

removed, is required.  These are undesirable and expensive, and the detrimental 

effect on the materials balance makes the process uneconomical.43  

 

To overcome this problem, the sulfuric acid could be transported across the circuit in 

the form of sulfate.  Polytopic ligands containing separate cation and anion binding 

sites can extract both a metal cation and its attendant anion(s), i.e. a metal salt, into a 

water-immiscible solvent.  Combining a deprotonatable cation binding site with a 

protonatable anion binding site gives a polytopic ligand capable of binding a metal salt 

in a zwitterionic form, allowing both cation and anion binding to be controlled by pH 

(Figure 1.10).44  
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Figure 1.10:  Schematic diagram showing metal salt extraction and sequential stripping of a ditopic 

ligand. 

 

As with the conventional “pH-swing” reagents, sulfuric acid could be used to strip the 

cation, producing an aqueous solution of pure metal sulfate (Scheme 1.1).  Anion-

stripping would utilise an aqueous base (B), generating a salt [BH]2SO4 which, with 

appropriate systems-engineering, could be removed as a saleable by-product.  Finally, 

electrowinning would produce electrical grade copper and sulfuric acid, to be reused in 

the stripping stage. 

  

Leach:  MS (s) + 2O2 (g)    MSO4 

Extract: MSO4 + L (org)    [MLSO4] (org)  

Cation Strip: [MLSO4] (org) + H2SO4   MSO4 + [LH2]SO4 (org) 

Anion Strip: [LH2]SO4 (org) + 2B   L (org) + [BH]2SO4 

Electrowin: MSO4  + H2O           M (s) + ½O2 (g) + H2SO4 

 

Overall: MS (s) + 3/2O2 (g) + H2O + 2B  M (s) + [BH]2SO4 

 

Scheme 1.1:  Materials balance for copper recovery with a metal salt extractant 
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The overall materials balance for this flowsheet is much enhanced, and solves the 

problem of sulfuric acid build-up in the front end of the circuit, provided a 

commercially available sulfate salt is generated.45  Some examples of metal salt 

extractants are detailed in Chapter 4. 

 

 

1.8.2 Leaching Sulfidic Ores 

 

Improvement of leaching techniques for sulfidic copper ores such as chalcopyrite has 

received much attention in recent years, with a number of new leaching processes 

currently in commercial operation or in the final stages of development,46 and such 

processes generate feeds which are suited to processing by metal salt extractants. 

 

The Total Pressure Oxidation47 process is currently in operation at the Bagdad plant 

in Arizona and involves high temperature and pressure oxidation conditions, which 

oxidise all sulfides to sulfates and sulfuric acid: 

 

Equation 1.14  CuFeS2 + O2 + 2H2SO4   CuSO4 + FeSO4 + 2H2O + 2S 

 

Around 16,000 tonnes of copper per annum are leached in this way at the 

installation, which also generates sulfuric acid to be used in alternative leach 

processes: 

 

Equation 1.15  S + H2O + 3/2O2   H2SO4 

 

Bioleaching is finding a niche in the leaching of copper-gold concentrates which 

have high arsenic levels and no nearby heap leach sites available for excess acid 

consumption.46  The BioCOP™ process developed by BHP Billiton uses 

thermophilic bacteria to oxidise sulfidic minerals to metal sulfates at temperatures of 

65-80 °C.48   
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The redox chemistry is similar to that of ferric ion oxidation in acidic solutions: 

 

Equation 1.16  CuFeS2 + 4Fe3+   5Fe2+ + Cu2+ + 2S 

 

The microbes catalytically oxidise the ferrous ion back to the ferric ion, regenerating 

the oxidant whilst oxidising sulfur to sulfate: 

 

Equation 1.17  2Fe2+ + 2H+ + ½O2    2Fe3+ + H2O 

Equation 1.18  2S + 3O2 + 2H2O    2H2SO4 

 

Commercial application of this process at the Chiquicamata mine in Chile produces 

20,000 tonnes of copper per annum, from a leach solution containing 25 gL-1 copper.  

An excess of sulfuric acid is again produced, but less is available for secondary use 

due to necessary neutralisation during the process.49 

 

The ferric/ferrous ion redox couple is also utilised in the oxidative ferric leach stage 

of the CUPREX process,50 which will be discussed in detail in Chapter 4.  Elemental 

sulfur is precipitated and removed in the leach stage, which generates an aqueous 

copper chloride leach liquor: 

 

Equation 1.19  4FeCl3 + 2Cu2S (s)    2CuCl2 + 4FeCl2 + S (s) 

 

These novel leach processes tend to generate51 high tenor (high [Cu2+]) leach 

solutions, with copper concentrations ranging from 30-90 gL-1.  Metal salt extractants 

are much better suited than conventional cation exchange reagents to process these 

high tenor feeds, as protons are not released during the extraction step (Scheme 1.1).  

Metal extraction by cation exchange reagents is limited by the release of protons 

during extraction (Figure 1.9) and the subsequent acidification of the raffinate to pH 

values below the operating range of the extractant before significant copper loading 

can occur.  As metal salt extractants can remove this acid in the form of bound 

anion(s), loading is potentially only hindered by the solubility of the metal salt 

complex in the diluent.  The prevalence of these new leaching techniques makes the 
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development of metal salt extractants, to transport copper and either sulfate or 

chloride, imperative.52 

 

 

1.8.3 Anion Binding 

 

The coordination chemistry of anions is a fast growing area of supramolecular 

chemistry.  Cations have traditionally dominated the field of coordination chemistry, 

but the importance of anions in modern day applications such as biology, medicine, 

catalysis and the environment has ensured its rapid development.53  Designing anion 

receptors is much more challenging than designing cation receptors, for a number of 

reasons.  Table 1.1 illustrates the differences in ionic radii of isoelectronic anions and 

cations, with the greater size of anions meaning they have a much lower charge to 

radius ratio and thus are less efficiently bound by electrostatic interactions.54 

 

Cation Radius / Å Anion Radius / Å 

Na+ 1.16 F- 1.19 

K+ 1.52 Cl- 1.67 

Rb+ 1.66 Br- 1.82 

Cs+ 1.81 I- 2.06 

 

Table 1.1:  Ionic radii of selected isoelectronic anions and cations.54 

 

Further difficulties are encountered when considering the protonation of anions, 

which results in a decrease in charge as the pH is decreased.  Receptors must be 

designed to operate at a specific pH range to maximise the potential interaction with 

the anion.   

 

The solvation of anions is very important, especially when extracting anions into 

non-polar solvents.  In 1888, Franz Hofmeister ranked the ability of a series of 

anions to precipitate a mixture of hen egg white proteins, concluding the ordering 
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stemmed from their "water attracting capacities", listed below from strongly hydrated 

anions on the left to weakly hydrated anions on the right:55   

 

Citrate3- > SO4
2- = tartrate2- > HPO4

2- > CrO4
- > OAc- > HCO3

- > Cl- > NO3
- > ClO4

- 

 

This ranking has huge implications in the field of anion extraction and can generally 

predict why anions such as ClO4
- are extracted from aqueous solutions into non-polar 

solvents with much greater ease than anions such as SO4
2-.  Sulfate is much more 

hydrated than perchlorate, so has a greater hydrophilicity, and is therefore harder to 

extract from an aqueous medium.  This results in the more facile extraction of larger, 

more charge-diffuse anions, and it is often possible to predict distribution 

coefficients from the Gibbs free energies of solvation.53, 56  Moyer et al
57 proposed 

that the term Hofmeister bias be used to describe the effects of anion solvation on 

extraction, to avoid confusion with the original series.  In the liquid/liquid extraction 

of anions, the following series is usually observed, with the best extracted anions on 

the left and the poorly extracted anions on the right:53 

 

ClO4
- > I- > SCN- > NO3

- > Br- > Cl- >> SO4
2- > CO3

2- > PO4
3- 

 

A further factor which introduces complexity into the design of anion receptors is 

their varying geometries, some examples of which are displayed in Table 1.2.  This 

design complexity is, however, a double edged sword, as the variations in anion 

geometry allow some selectivity to be inbuilt into receptors.58 

 

Each geometry illustrated in Table 1.2 has examples of anions which are of interest 

to extractive metallurgists, underlining the need for the principles of supramolecular 

chemistry to be uppermost in the mind of metallurgists during the rational design of 

new reagents.  However, the metal salt extractants synthesised in this project contain 

very simple, protonatable tertiary amine anion binding sites, as the aim was to 

establish proof-of-concept of anion binding.  Previous work within the group 

indicates that the main factor in influencing anion selectivity in two phase solvent 

extraction experiments is the relative solvation of the anions, rather than complex 
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receptor design.43  For this reason, anion coordination is not investigated in further 

detail, although the interested reader is directed to an excellent recent review by Beer 

and Gale.58  

 

Anion Structure Geometry Examples 

 
Spherical F-, Cl-, Br-, I- 

 Linear N3
-, SCN-, OH- 

 
Trigonal Planar CO3

2-, NO3
- 

 
Tetrahedral PO4

3-, SO4
3-, CoCl4

- 

 
Octahedral PdCl6

2-, PtCl6
2- 

 

Table 1.2:  Typical anion geometries and examples of each relevant to hydrometallurgy.58  

 

 

1.9 Thesis Outline 

 

Chapter 2 discusses the synthesis and characterisation of the 3-substituted phenolic 

oxime ligand series L1-L9 alongside their copper(II) complexes, with the aim of 

studying the effect of the 3-substituent on the extractive efficacy of the ligands.  A 

review of substituent effects on copper extraction by phenolic oximes and methods to 

tune extraction strength precedes the synthesis and characterisation of nearly all 

ligands and complexes by X-ray diffraction.  The effects of 3-substitution on solid 

state architectures are discussed, and the relative copper(II) binding strengths 

measured by solvent extraction, with striking differences observed. 
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Chapter 3 aims to rationalise these differences in extractive efficacies by subjecting 

the ligands and complexes to various analytical techniques, including EPR, DFT 

calculations, solid state analysis and CID MS, which are discussed in the opening 

section.  Further ligands are synthesised (L10-L16) to investigate the effect of the 3-

substituent on cavity sizes in the solid state, and a tentative model for predicting the 

effect of substitution is formulated. 

 

Chapter 4 establishes that simple modification of phenolic oximes gives ligands 

capable of bind a metal cation and its attendant anion, i.e. a metal salt.  Ligands L17-

L22 are synthesised and proof-of-concept solvent extraction studies reveal 

unexpectedly efficient loading of CuCl2 and ZnCl2 by L17 and L18, with the mode 

of binding revealed by X-ray crystallography.  Experiments to determine the 

commercial viability of this ligand type are reported. 

 

Chapter 5 scrutinises the anion selectivity of L18 and L20, and shows L18 has the 

potential for commercial development as a metal salt extractant, with 

crystallographic evidence of the binding motifs of various anions presented.  Cation 

selectivity experiments show competition with FeIII may be problematic, and 

potential ways to overcome this are discussed in the conclusions of Chapter 6. 
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2.1 Introduction  

 

2.1.1 Aims 

 

As explained in the introduction, this chapter deals with the use of substituent effects 

in salicylaldoxime ligands to tune their strength and selectivities to meet 

requirements of new metallurgical flowsheets whilst functioning as cation exchange 

reagents: 

 

Equation 2.1  2L (org) + M2+    [M(L-H)2] (org) + 2H+ 

 

In this chapter and subsequently in Chapter 3, particular attention is paid to the 

consideration of interligand hydrogen bonding and its contribution to the extractive 

properties of ligands.  The objective of the work in this chapter was to consider the 

effects of 3-substitution of salicylaldoximes on copper(II) extractive efficacy, and the 

chapter includes: 

 

• the synthesis of a coherent series of 3-substituted salicylaldoxime ligands 

with the aim of tuning their copper(II) binding strengths, 

• the characterisation of the ligands and their copper(II) complexes via X-ray 

crystallography, 

• a discussion on the effects of 3-substitution on the supramolecular 

architectures formed in the solid state structures of bis-salicylaldoximato 

copper(II) complexes, and 

• the study of the copper(II) binding affinity of the series via solvent extraction. 

 

Discussion of structure activity relationships associated with incorporation of 

substituents in the 3-position is deferred to Chapter 3.  A short review of the 

importance of supramolecular hydrogen bonding in extractive chemistry and 

methods to tune the extractant strength of phenolic oximes follows. 
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2.1.2 The Importance of Supramolecular H-Bonding in Extraction 

 

Liquid-liquid extraction using phenolic oxime reagents (Figure 2.1) accounts for 

between 20%1 and 30%2 of the global production of copper metal.  In the high 

boiling hydrocarbon solvents preferred by industry intermolecular forces between 

extractants, particularly hydrogen bonding, contribute very significantly to the 

stability of any complexes formed in the water-immiscible phase.  Historically, both 

aromatic and aliphatic hydroxyoximes have been utilised as selective copper 

extractants,3 but this chapter focuses solely on salicylaldoxime reagents (R = alkyl, 

R’ = H in Figure 2.1).  Their strength and selectivity of extraction, coupled with the 

excellent materials balances achieved in the processing of oxidic ores have led to 

their commercial success.4  Each hydrometallurgical circuit has unique properties, 

particularly the composition and acidity of the pregnant leach solution, and requires 

an extractant formulation suited to its specific needs.  Information on reagent 

properties is provided by suppliers, allowing metallurgists to design the circuit and 

choose an appropriate extractant blend.5   
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Figure 2.1:  5-Alkyl-substituted salicylaldoxime derivatives used in copper recovery, showing 

potential interaction of intracomplex H-bonding with a 3-substituent (X). 

 

Solid state structures of copper(II) complexes of phenolic oximes show the formation 

of square planar coordination environments containing a 14-membered 

pseudomacrocyclic hydrogen bonded array (Figure 2.1) with the H-bonds between 

the oximic H and phenolate O atoms thought impart additional stability to the 

complex.6   
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Extraction by organophosphorus acids, e.g. by the commercial reagent di-(2-

ethylhexyl)phosphoric acid (D2EHPAH), is often associated with retention of strong 

interligand H-bonding and the formation of 8-membered pseudo-chelate rings, as in 

Figure 2.2.4, 7   
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Figure 2.2:  Formation of 8-membered pseudo-chelates by phosphoric acid diesters, LH, such as 

D2EHPAH in “pH-swing” extractions 2nLH(org) + Mn+  [MLn(LH)n](org) + nH+. 

 

Consequently, unusual anti Irving-Williams8 orders of stability of divalent 1st row 

transition metal complexes are observed,7 and D2EHPAH shows selectivity for 

dications favouring tetrahedral geometry.  Plants using D2EHPAH for the recovery 

of zinc have been opened recently, including Anglo American's massive Skorpion 

zinc installation in Namibia.9  Processing 150,000 tonnes of zinc per annum by SX-

EW, it is the world's 8th largest zinc mine and yields very high purity (>99.995%) 

zinc cathodes at very low costs.10 

 

 
 

Figure 2.3:  The Anglo American Skorpion Zinc installation in Namibia.11 
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2.1.3 Tuning Extractant Strength 

 

There are different ways to tune the extractive ability of a reagent formulation.  

Many aldoxime extractants (R’ = H in Figure 2.1) are “strong extractants”, loading 

copper even at low pH, and require modification to facilitate stripping.12   Modifiers 

are usually hydrogen bond donor/acceptor molecules which are thought to disrupt the 

stabilising intracomplex hydrogen bonds, allowing the copper to be removed more 

easily.13 

 

By varying the amount of modifier relative to the oxime, it is possible to optimise the 

formulation strength to match circuit conditions/needs and maximise net copper 

transfer.  A large number of compounds are used (Figure 2.4) and the choice and 

amount of modifier (or modifier blend) is critical to the metallurgical and physical 

properties (e.g. viscosity) of the reagent.  

 

N
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OH
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11

OH
6

O

O

O

O

TXIB 
(2,2,4-trimethyl-1,3-pentanediol diisobutyrate)  

 

Figure 2.4:  Structures of described reagents and modifiers. 

 

The first use of modifier molecules involved the 8-hydroxyquinoline-based 

extractant Kelex 100™, which contained isodecanol.  Although never used 

commercially for copper extraction, the concept of extractant modification was 

subsequently developed by many companies.3  The Acorga P5000™ series of 

reagents contained 2-hydroxy-5-nonylbenzaldehyde oxime (R = C9H19, R’ = H in 

Figure 2.1) as the active component, with varying quantities of para-nonylphenol to 
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tune extractant strength.14, 15  Tridecanol was later introduced as a modifier, requiring 

only half the quantity compared with that of para-nonylphenol.2  Further advances in 

modifier technology came with the introduction of Cytec Industries Inc.’s highly 

branched esters (e.g. Acorga M5640™) which can also increase Cu/Fe selectivity 

and oxime stability.15-17  Esters, such as TXIB, have since become the SX industry’s 

most commonly used modifier.2 

 

Aldoxime reagents are stronger extractants than ketoximes (R’ = alkyl, aromatic in 

Figure 2.1)2 therefore blending ketoxime and aldoxime reagents allows the 

metallurgist to tailor further the properties of the extractant formulation.4  This 

concept was introduced commercially by Henkel in 1982 with the LIX 860™ series, 

which combined the advantageous properties of each type of reagent, and now these 

blends are used in many modern applications.2, 4  

 

Recent work by Cytec has shown that incorporation of selected modifiers into these 

blended reagents results in increased copper transfer.  These new formulations also 

show a significant improvement in Cu/Fe selectivity, which can result in lower bleed 

and copper reprocessing costs.18 

 

The mode of action of modifiers at the molecular level remains unclear, although it is 

known that extractants and modifiers interact via H-bonding in solution.3, 12  The 

enhancement of copper stripping is not accompanied by a significant decrease in 

copper loading, which is counterintuitive and suggests that many equilibria are 

present in the organic phase. 

 

The examples presented in Chapter 1 show that it is also possible to alter the strength 

of an extractant by introducing substituents in the 3-position, although the mode of 

action of the substituent is unclear and a rational study has not been carried out.  

Studying these effects requires a systematic series of ligands, and their design is 

described below. 
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2.1.4 Ligand Design 

 

To ensure comparability of data, a coherent series of ligands was required with 3-

substituents which affect the electronic, steric and hydrogen bonding properties of 

the extractant to varying degrees.  Substituents were chosen with electron-donating 

properties (Me, OMe, tBu) and electron-withdrawing properties (NO2, Cl, Br).  The 

steric interaction of X with the stabilising oximic H-bond donating group on the 

adjacent ligand was investigated using substituents with the potential to form 

attractive bifurcated hydrogen bonds (NO2, Cl, Br, OMe) or repulsive interactions 

with bulky groups (tBu).  The oximes L1-L9 used in solvent extraction experiments 

are detailed in Figure 2.5. 
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Figure 2.5:  3-Substituted salicylaldoximes studied in this chapter. 

 

The ligands are based on a 5-tert-butyl-2-hydroxybenzaldehyde oxime scaffold, 

which aids purification and characterisation and was found to favour crystallisation 

of copper(II) complexes, allowing structures to be determined by single crystal X-ray 

diffraction.  Whilst the 5-t-butyl groups ensure copper(II) complexes have good 

solubility in water-immiscible solvents, it was necessary to synthesise a “greasier” 

analogue of the NO2-substituted ligand (L4) due to the limited solubility of its 

copper(II) complex.  Changing the 5-alkyl group to t-octyl increased solubility whilst 

still allowing full characterisation of ligand L9.  An unsubstituted t-octyl analogue 
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(L8) was synthesised as a control, to ensure that changing the nature of alkyl chain 

had no effect on extractant strength. 

 

 

2.1.5 Measuring Copper(II) Binding Strengths 

 

As discussed in Chapter 1, solvent extraction experiments can be used to determine 

the cation selectivity of an extractant.3  The relative strengths of CuII extraction of 

L1-L9 could be measured in a similar fashion, by determining the concentrations of 

CuII extracted by each ligand over a pH range, provided conditions are kept constant 

throughout all solvent extraction experiments.   

 

To determine copper uptake into an organic phase, a robust, reliable detection 

method is required.  There are many methods of analysis for metal ions, including 

UV/Vis and atomic absorption spectroscopies, but ICP-OES (Inductively Coupled 

Plasma Optical Emission Spectrometry) was chosen as it can accurately analyse 

metal ion content from both organic and aqueous solutions with low detection 

limits.19  The sample is dissolved in solution and passed as an aerosol through a 

plasma at temperatures of over 6500 K.  This high temperature will atomise, vaporise 

and excite the sample into high-energy states.  The excited atoms and ions are 

virtually independent of one another, and emit energy as photons in the UV and 

visible range as they decay back to lower energy states.  The intensity of analyte 

emission is proportional to analyte concentration, so initial calibration of the 

spectrometer with known standard samples allows accurate detection of 

concentrations of many elements, in this case copper, but also other transition metals 

and sulfur later in the thesis.19 

 

 

2.2 Ligand Syntheses 

 

The oxime ligands L1-L9 were easily prepared from their salicylaldehyde 

precursors.  In the cases of L320 and L721 these precursors were commercially 
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available, but all other ligands were prepared from the appropriate 4-alkylphenol by 

literature methods.22-27  The synthetic strategy involved two steps, formylation and 

inclusion of the 3-substituent, with the method and order of these reactions 

dependent on the ligand (Scheme 2.1). 
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Scheme 2.1:  Synthetic routes to all the salicylaldoxime ligands prepared in this chapter. 

 

 

2.2.1 Incorporation of the 3-Substituent 

 

The synthetic strategy depended on where in the sequence of reactions to incorporate 

the 3-substituent.  If possible in a simple and efficient manner, this was carried out 

prior to formylation, to generate a 2-X-4-alkylphenol (route A in Scheme 2.1).  This 

was the case for the 3-halogenated ligands, where preparation of the phenols (1) and 

(2) involved simply stirring 4-tert-butylphenol with the appropriate halogenating 

agent, sulfuryl chloride24 or tetra-n-butylammonium tribromide.25  Both phenols were 

isolated in high yields and purity but discoloured when exposed to sunlight over 

periods of days, indicating possible photodegradation.  
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The introduction of a nitro group ortho to a phenolic OH unit can be achieved using 

nitric acid and glacial acetic acid.27  No simple, high yielding methods to synthesise 

4-tert-butyl-2-nitrophenol were seen in the literature, and as it was already known 

that nitration of salicylaldehydes is facile and high yielding28 incorporation of the 

nitro group was carried out after the formylation step, allowing a clean reaction with 

high yields (route B in Scheme 2.1). 

 

 

2.2.2 The Levin Method of Formylation 

 

Formylation could be achieved by one of two possible reactions.  When selective 

monoformylation was required and more than one site for incorporation of the HCO 

group is possible, the Levin22 method was chosen, which involved magnesium 

mediated ortho-formylation.  Magnesium bis-phenoxides are formed on addition of 

magnesium methoxide to alkyl phenols in methanol, and react with 

paraformaldehyde in toluene by the mechanism proposed by Levin et al in Figure 2.6 

to yield the product after an acidic work up.    
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Figure 2.6:  Proposed mechanism of the Levin synthesis.22 
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Control of methanol levels is required as high concentrations can result in 

competition with the phenoxides for magnesium coordination and hence it is an 

inhibitor.  This is a controlled reaction which yields primarily a monoformylated 

product and was successful in producing large quantities of the salicylaldehydes (3) 

and (4).  These are the precursors for ligands L1 and L8, but they can also be 

nitrated27 using nitric acid and glacial acetic acid to give (6) and (9), the precursors 

for L4 and L9. 

 

 

2.2.3 A Modified Duff Reaction for Formylation 

 

Preparation of the precursor aldehydes (5), (7) and (8) involved a modified Duff 

reaction, as described by Lindoy et al.23  In many cases this yields the 

salicylaldehyde without the need for further purification, and is a much simpler 

procedure than the Levin method.  The main disadvantage of the Duff reaction is the 

lack of regioselectivity in the formylation process.  Substitution can occur in both the 

ortho and para positions to the phenol, and diformylated products are common.23  

For this reason, the Duff reaction was used only when formylation could be restricted 

to the required ortho position, due to all other possible reaction sites being blocked. 

 

The reaction was carried out using hexamethylenetetramine (HMT) as reagent, and 

anhydrous TFA as solvent.  A large excess (4-5 equivalents) of HMT ensured 

complete reaction.  Following overnight heating, the reaction mixture was poured 

into 2 M HCl and after stirring for ~6 hr, in most cases the pure product precipitates 

in about 75% yield.  This did not occur for (5) and extraction into DCM was 

necessary, yielding a product which required purification by column chromatography 

before oximation. 
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2.2.4 Oximation 

 

The simplest method of oxime formation involves the addition of hydroxylamine to 

aldehydes or ketones.  The hydroxyimino-de-oxo-bisubstitution reaction proceeds by 

the mechanism shown in Figure 2.7. 
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Figure 2.7: Mechanism of oximation by reaction with hydroxylamine. 

 

The dehydration step is acid-catalysed and so the reaction rate is faster at lower pH, 

but this effect is countered as hydroxylamine molecules are converted to NH3OH+ 

ions in acidic conditions and so cannot react.  A balance between these factors results 

in an optimum pH 4 for reaction rate, while NMR studies have proven the existence 

of the zwitterionic reaction intermediate.29   

 

Hydroxylamine can decompose rapidly and dangerously in the presence of metal or 

metal ions, redox agents, at high temperatures or at high concentration.30  For this 

reason hydroxylamine was generated immediately prior to oximation by mixing the 

stable salt hydroxylamine hydrochloride and potassium hydroxide in ethanol.  This 

forms an insoluble precipitate of KCl which is removed by filtration to leave a 

solution of hydroxylamine in ethanol suitable for immediate use. 

  

The oximation step was found to be facile and high yielding, with yields of ~90% 

achieved after overnight reflux, and so pH control was not required.  A colour 

change is noted over the course of the reaction, from a yellowish aldehyde solution to 

a much paler oxime solution, although the 3-nitro ligands L4 and L9 remained bright 

yellow.  This change can sometimes be seen almost immediately with no reflux, but 

overnight heating was employed to ensure full conversion. 
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2.3 Ligand Characterisation 

 

2.3.1 NMR Spectroscopy 

 

All ligands and precursors were fully characterised by both 1H and 13C NMR 

spectroscopy.  During the oximation step, 1H NMR spectroscopy proved a very 

effective tool for indicating purity and monitoring conversion to the oxime, with the 

aldehyde proton having a characteristic signal at � ~10 and the oximino proton at � 

~8.  The spectra of L3 and its aldehyde precursor 3,5-di-tert-butyl-2-

hydroxybenzaldehyde20 are shown in Figure 2.8.   

 

 

Figure 2.8: 1H NMR spectra of L3 and its aldehyde precursor, showing the distinctive oximino H and 

aldehyde H peaks.  NB the phenol proton was often seen in aldehyde but not oxime spectra. 

 

 

2.3.2 Mass Spectrometry 

 

FAB MS was used to characterise all ligands and precursors.  For the ligands, 

appropriate peaks were seen for each molecular ion (MH+), indicating successful 

synthesis of each salicylaldoxime.  Each ligand peak has an intensity of > 80 % apart 

from L6 which has value of only 9 %, suggesting that it is less stable under the 
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ionisation conditions.  Analysis of the breakdown peaks reveals a distinct pattern 

which is present throughout the oxime series (Table 2.1), indicating that the major 

breakdown mechanism(s) are independent of the 3-substituent.   

 

 MH+ [M-16]H+ [M-32]H+ [M-56]H+ 

L1 194 (100%) 178 (93%) 162 (46%) 138 (21%) 

L2 208 (88%) 192 (100%) 176 (50%) 152 (19%) 

L3 250 (99%) 234 (93%) 218 (43%) 194 (22%) 

L4 239 (81%) 223 (61%) 207 (30%) 183 (8%) 

L5 228 (100%) 212 (83%) 196 (42%) 172 (22%) 

L6 273 (9%) 257 (37%) 241 (100%) 217 (0%) 

L7 224 (100%) 208 (99%) 192 (19%) 168 (15%) 

L8 250 (82%) 234 (34%) 218 (5%) 194 (1%) 

L9 295 (86%) 279 (45%) 263 (10) 239 (2%) 

 

Table 2.1:  The mass and relative intensities of the breakdown peaks seen in FAB mass spectra of L1-

L9. 

 

All ligands have significant breakdown peaks at [M-16]H+, [M-32]H+ and [M-56]H+, 

although the last is not seen for the t-octyl substituted ligands L8 and L9, indicating 

the mechanism involves the 5-t-butyl group present in L1-L7.  Proposed breakdown 

products are displayed in Figure 2.9.   
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Figure 2.9:  Proposed breakdown products formed during FABMS analysis of L1-L9. 
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Dealkylation is a known mechanism of breakdown in mass spec31 and loss of the 5-t-

butyl group would account for the peaks at [M-56]H+.  As this peak is not seen in the 

spectra of L8 and L9, which contain a t-octyl group in the 5-position instead of a t-

butyl group, it is highly likely this is the breakdown mechanism depends on the 

release of the stable t-butyl radical.  Loss of the phenolic hydroxyl group or 

conversion of the oxime to an imine could account for the peak at [M-16]H+, with 

the two alternative decomposition routes accounting for the high intensity of the peak 

with this m/z ratio.  A combination of the two routes results in the peak at [M-32]H+.  

Only L4 showed a small peak corresponding to a dimer, and the absence of such 

peaks is to be expected, as FAB ionisation breaks weak interactions e.g. hydrogen 

bonds.31   

 

 

2.3.3 X-Ray Crystallography 

 

Characterisation of L1-L9 by X-ray diffraction analysis was also successful.  The 

solid state structures of the ligands can be divided into 3 distinct types: 

 

• those which form 14-membered pseudomacrocyclic hydrogen bonded dimers 

(L2, L3, L5 and L6), 

• those which form infinite 1D hydrogen bonded ribbons (L1, L7 and L8), and 

• those which form 6-membered hydrogen bonded dimers at the oxime 

functionality (L4 and L9). 

 

Each type of structure is described below, with one sample illustration and a table of 

notable bond lengths for the remaining ligands. 

 

 

2.3.3.1 14-Membered Pseudomacrocyclic Dimers 

 

Salicylaldoximes can form 14-membered pseudomacrocyclic hydrogen bonded 

dimers via intermolecular H-bonds from oximic H atoms to adjacent phenolic O 
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atoms in the solid state (Figure 2.10).6  The cavity size or “hole size” in these dimers, 

defined as the mean distance of the donor N and O atoms from the centroid, may 

give information on the effects of substitution, with more favourable dimerisation 

expected to result in smaller hole size. 

 

N

O

O H

H

N

O

OH

H.
 

 

Figure 2.10:  Schematic formation of pseudomacrocyclic dimers in the solid state structures of some 

phenolic oximes.  Hole size of salicylaldoxime dimers is defined as the average distance from the 

donor atoms to the centroid, displayed in blue.6 

 

A review of the literature in 2000 by Tasker et al suggested that this dimerisation 

occurs only when monoatomic substituents are present on the benzene ring.6  The X-

ray crystal structures of L2, L3, L5 and L6 challenge this theory, as all form 

centrosymmetric dimers.  Figure 2.11 shows this dimerisation in the crystal structure 

of L2. 

 

The data presented reveal some interesting trends.  Cavity sizes seem to depend on 

the nature of the substituent, and their significance will be discussed in depth in 

Chapter 3.  The length of the intramolecular H-bond from the phenolic proton to the 

imine nitrogen seems to depend on the size of the substituent.  Larger 3-groups, in 

this case the tBu and Br substituents, seem to exert a steric influence on the phenol 

group, pushing it slightly closer to the oxime moiety.   
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 Hole Size / Å O1···N2 / Å 

L2 2.003(2) 2.603(2) 

L3 2.025(1) 2.578(1) 

L5[a] 1.973(8) 2.611(8) 

L6[a] 1.968(8) 2.599(7) 

 

Figure 2.11:  Crystal structure of L2 showing the 14-membered pseudomacrocyclic H-bonded 

dimeric assembly, with relevant contact distances for the dimers of L3, L5 and L6 listed.  Hydrogen 

atoms not involved in H-bonding omitted for clarity.  [a]Average of 4 crystallographically independent 

dimers. 

 

 

2.3.3.2 1D Hydrogen Bonded Ribbons 

 

A second previously described packing arrangement of salicylaldoximes involves the 

formation of 1D hydrogen bonded ribbons.6  An infinite 1D ribbon is formed by 

hydrogen bonds between the oxime proton of one molecule and the phenolic oxygen 

of the adjacent.  The intramolecular hydrogen bond between the phenol proton and 

the oximino nitrogen remains (Figure 2.12).6   
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Figure 2.12:  Schematic of the formation of 1D polymeric ribbons in the solid state of some phenolic 

oximes.6 

 

L1, L7 and L8 form this structure in the solid state, with L7 particularly interesting 

as the ribbon-forming H-bonds are bifurcated (Figure 2.13).  The methoxy group 

provides an additional H-bond acceptor adjacent to phenol oxygen, prompting the 

formation of the bifurcated H-bonds (Figure 2.13). 

 

 O1···N2 / Å O2···O1A / Å O2···O61A / Å 

L1 2.618(2) 2.762(2) n/a 

L7 2.630(2) 2.890(2) 2.950(2) 

L8 2.607(1) 2.769(1) n/a 

 

Figure 2.13:  Crystal structure of L7 showing the 1D H-bonded ribbon array, with contact distances 

associated with H-bonds shown in L7 and listed for the structures L1 and L8.  Hydrogen atoms not 

involved in H-bonding omitted for clarity.   
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Formation of bifurcated H-bonds in L7 (Figure 2.13) means the ribbon-forming H-

bonds are longer than in the structures of L1 and L8, as the donor oxygen atom is 

positioned between the two acceptor atoms. 

 

 

2.3.3.3 6-Membered Hydrogen Bonded Dimers 

 

The 3-NO2-substituted ligands L4 and L9 form a different type of solid state 

structure not seen previously in salicylaldoximes.  Introduction of the nitro group 

provides a second hydrogen bond acceptor site for the phenolic hydrogen and, as the 

nitro oxygen atom is a better H-bond acceptor than the oximino nitrogen atom, the 

intramolecular H-bond forms between the NO2 group and the phenolic proton.  This 

is further demonstrated in the length of the O1···O62 contacts in L4 and L9, which 

are shorter than the analogous intraligand O1···N2 contacts in the previous structures, 

indicating a stronger intramolecular H-bond in the 3-NO2-substituted structures.  The 

oxime group now has conformational freedom, and rotates 180° around the ArC-C 

bond to form a 6-membered hydrogen bonded dimer with an adjacent oxime moiety 

(Figure 2.14) while retaining the (E)-configuration seen in all previous structures of 

the series. 

 

 O62···O1 / Å O2···N22' / Å 

L4 2.587(1) 2.817(1) 

L9 2.579(2) 2.830(2) 

 

Figure 2.14:  Crystal structure of L4 showing the 6-membered H-bonded dimer, with relevant bond 

distances for the structures of L4 and L9 listed.  Hydrogen atoms not involved in H-bonding omitted 

for clarity.   
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Interestingly, this 6-membered H-bonded dimer structure has recently been observed 

in the high pressure polymorph salicylaldoxime-II.  Application of pressure to a 

single crystal of salicylaldoxime-I, a 14-membered pseudomacrocyclic dimer, results 

in a phase change at 5.93 GPa to this new type of structure.32   

 

 

2.4 Copper(II) Complex Synthesis and Characterisation 

 

Synthesis of the copper(II) complexes of L1-L9 was simple and was achieved by 

mixing stoichiometric amounts of the ligand and copper(II) acetate in methanol.  

Precipitation occurred over a period of up to 24 hr, and the pure complexes were 

collected by filtration (yields could be improved by reducing the volume of the 

filtrates to induce further precipitation).  All complexes were isolated successfully as 

brown solids, except [Cu(L4-H)2] and [Cu(L9-H)2] which were green in colour. 

 

 

2.4.1 Mass Spectrometry 

 

All copper(II) complexes were studied by FABMS and molecular ion peaks were 

seen in all cases, confirming their successful synthesis.  The most commonly 

observed breakdown peak was that of the free ligand, with intensities of both listed 

overleaf in Table 2.2. 
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 [Cu(L-H)2]H
+ LH+ 

L1 447 (100%) 194 (93%) 

L2 475 (36%) 208 (42%) 

L3 559 (24%) 250 (54%) 

L4 538 (16%) 239 (12%) 

L5 516 (66%) 228 (21%) 

L6 607 (7%) 273 (12%) 

L7 507 (100%) 224 (6%) 

L8 560 (42%) 250 (25%) 

L9 649 (11%) 295 (2%) 

 

Table 2.2:  The mass and relative intensities of the molecular ion and ligand peaks seen in FAB mass 

spectra of the copper(II) complexes of L1-L9. 

 

 

2.4.2 X-Ray Crystallography 

 

Attempts were made to crystallise all complexes, for characterisation and in the hope 

that solid state structures would provide information on substituent effects.  It was 

possible to obtain the structures of [Cu(L1-H)2], [Cu(L2-H)2], [Cu(L3-H)2], [Cu(L6-

H)2] and [Cu(L7-H)2], whilst [Cu(L4-H)2] could only be crystallised as a bis-

pyridine adduct.  Crystals of [Cu(L5-H)2] were isolated but were badly twinned and 

diffracted poorly, giving unsolvable data sets.  The complexes of the 5-t-octyl 

substituted ligands L8 and L9 are waxy solids, and as single crystals of the 

complexes of their 5-t-butyl analogues L1 and L4 were successfully isolated, 

attempts to crystallise them were not pursued.   

 

All structures contain the pseudomacrocyclic unit with interligand H-bonds typical of 

bis-salicylaldoximato copper(II) complexes.6  The 3-substituents impart a range of 

interesting and different structural characteristics, and they are described below.  The 

nature of interactions between [Cu(L-H)2] units varies considerably and is dependent 
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on the nature of the 3-substituent.  A comparison of relevant contacts and bond 

distances is presented at the end of this section in Table 2.4. 

 

 

2.4.2.1 [Cu(L1-H)2] 

 

The solid state structure of [Cu(L1-H)2] is dominated by axial contacts between CuII 

atoms and oxime O atoms of adjacent molecules (Figure 2.15), which results in three 

crystallographically independent half-molecules in the unit cell, each based around a 

centre of symmetry on the CuII atom.   

 
 

Figure 2.15:  Axial CuII contacts in the solid state structure of [Cu(L1-H)2].  Hydrogen atoms not 

involved in H-bonding omitted for clarity.    

 

Each copper atom has oxime O atoms from adjacent molecules in both axial 

positions, giving it an overall Jahn-Teller distorted octahedral coordination sphere.  

These axial interactions involve every copper atom and every oximic O atom, 

leading to an infinite 2D network arrangement, with 2D sheets parallel to the ab 

plane.  The network of copper, nitrogen and oxygen atoms can be seen clearly by 
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removing all C and H atoms in the structure and viewing down the c axis (Figure 

2.16). 

 

 

Figure 2.16:  Infinite 2D network of Cu, N and O atoms in the solid state structure of [Cu(L1-H)2] 

viewed down the c axis (C and H atoms removed for clarity). 

 

This ordering of the atoms on the microscopic scale manifests itself in the 

macroscopic properties of the solid, and crystals of [Cu(L1-H)2] grow as very thin, 

hexagonal plates.   

 

 

2.4.2.2 [Cu(L2-H)2] 

 

The most interesting feature in the solid state structure of [Cu(L2-H)2] is the way in 

which the [Cu(L2-H)2] units pack.  There are two independent molecules in the unit 

cell, which are positioned directly above each other at a rotation of 45°.  A 42 axis 

runs through the copper atoms, parallel to the c axis, generating a helical structure 

and an inversion centre in the middle of the cell generates a symmetry related, 

opposite handed helix.  The copper atoms within the helices (Figure 2.17) are 

separated by distances of 3.345(8) Å and 3.341(8) Å.  
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Figure 2.17:  Space-filling representation of the left and right handed supramolecular helices of 

[Cu(L2-H)2]. 

 

 

2.4.2.3 [Cu(L3-H)2] 

 

In comparison to the previously described complexes, the solid state structure of 

[Cu(L3-H)2] is relatively simple: there are no significant supramolecular interactions 

between complex units.  There are two independent molecules in the unit cell, one 

centrosymmetric and one not, and the former is displayed in Figure 2.18.   

 

 
 

Figure 2.18:  Solid state structure of the centrosymmetric molecule of [Cu(L3-H)2] with selected 

atom labels.  Hydrogen atoms not involved in H-bonding omitted for clarity.   
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The steric bulk of the 3-tBu group is evident, and its potential disrupting effect on the 

intracomplex H-bonding is discussed in Chapter 3.  It was also thought to be 

responsible for suppressing intermolecular contacts between the coordination spheres 

of complex units. 

 

 

2.4.2.4 [Cu(L4-H)2(py)2] 

 

Coordination in the CuII axial sites is not limited to atoms from other complex 

molecules.  [Cu(L4-H)2] is only soluble in the highly donating solvents THF, DMSO 

and pyridine, indicating that solubility is imparted by axial coordination of the 

solvent.  The crystal structure of [Cu(L4-H)2(pyridine)2] shows this axial 

coordination in the solid state (Figure 2.19). 

 
Figure 2.19:  Solid state structure of one of the two crystallographically independent centrosymmetric 

complexes, [Cu(L4-H)2(py)2] (py = pyridine), with selected atom labels.  Hydrogen atoms not 

involved in H-bonding omitted for clarity.   

 

There are two crystallographically independent half-complexes in the asymmetric 

unit, with the extent of axial coordination slightly different in each case.  One 

molecule has the pyridine nitrogen atom (N1) closer to the copper centre (Table 2.3) 

which causes the cavity size to be slightly larger, due to Jahn-Teller distortions.33 
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 Cu-N22 / Å Cu-O1 / Å Hole Size / Å Cu-N1(py) / Å 

Molecule 1 1.956(5) 1.926(4) 1.941(6) 2.483(5) 

Molecule 2 1.957(5) 1.911(4) 1.934(6) 2.560(4) 

 

Table 2.3:  The effect of axial pyridine coordination on the hole sizes of the crystallographically 

independent molecules in the unit cell of [Cu(L4-H)2(py)2] (py = pyridine). 

 

 

2.4.2.5 [Cu(L6-H)2] 

 

The solid state structure of [Cu(L6-H)2] is similar to that of [Cu(L3-H)2], in that 

there are no axial interactions with the centrosymmetric copper centre (Figure 2.20). 

 
 

Figure 2.20:  Solid state structure of [Cu(L6-H)2] with selected atoms labels.  Hydrogen atoms not 

involved in H-bonding omitted for clarity.   

 

 

2.4.2.6 [Cu(L7-H)2] 

 

As with [Cu(L3-H)2] and [Cu(L6-H)2], the solid state structure of [Cu(L7-H)2] 

contains no axial interactions.  The structure differs from both in that there is no 

centre of symmetry on the CuII atom (Figure 2.21). 
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Figure 2.21:  Solid state structure of [Cu(L7-H)2] with selected atoms labels.  Hydrogen atoms not 

involved in H-bonding omitted for clarity.   

 

 

2.4.2.7 Comparisons 

 

A comparison of some relevant bond and contact distances in the complexes may 

reveal some interesting solid state trends (Table 2.4). 

 

Contact / 

Bond (Å) 

[Cu(L1-

H)2]
[a] 

[Cu(L2-

H)2]
[b] 

[Cu(L3-

H)2]
[b] 

[Cu(L4-

H)2]
[b,c] 

[Cu(L6-

H)2] 

[Cu(L7-

H)2]
[d] 

Cu-N 1.943(3)  1.936(4) 1.923(8) 1.957(7) 1.954(3) 1.947(4) 

Cu-O 1.904(3) 1.881(3) 1.920(8) 1.919(6) 1.885(2) 1.871(4) 

Hole Size 1.924(4) 1.909(5) 1.922(11) 1.938(9) 1.920(4) 1.909(6) 

NO···OPh 2.583(5) 2.616(6) 2.625(10) 2.655(9) 2.627(4) 2.609(6) 

Cu-axial 2.579(4) 3.343(11) n/a 2.522(6) n/a n/a 

NO···X n/a n/a n/a 2.933(9) 3.722(2) 3.666(6) 

NOH···X n/a n/a n/a 2.305(6) 3.00(4)[e] 2.88(4)[e] 
[a]Values are average of 3 crystallographically independent half-molecules.  [b]Values are average of 2 

crystallographically independent half-molecules.  [c]Bis-pyridine adduct.  [d]Values are average of the 

two crystallographically halves of the molecule.  [e]From calculated H-positions. 

 

Table 2.4:  Some relevant bond and contact distances in the crystal structures of copper(II) complexes 

solved in this chapter. 
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Before the structures were solved it was hoped that determination of the "hole sizes" 

produced by the N2O2
2- donor sets would help define the effect of the 3-substituents.  

In practice, as the intermolecular interactions involving the copper coordination 

spheres varied significantly between the structures, this was unlikely to be the case.  

The observed cavity sizes are all relatively similar and do not show the variations 

seen in the hole sizes of the free ligand dimers (Section 2.3.3.1).  However, the 

cavity sizes do reveal the effect of axial coordination, with Jahn Teller distortions 

ensuring the largest hole sizes belong to the two complexes with the greatest axial 

interactions, [Cu(L1-H)2] and [Cu(L4-H)2(py)2]. 

 

 

2.5 Evaluation of Copper Binding Strength by Solvent Extraction 

 

Experiments were carried out to assess the relative “strengths” as copper(II) 

extractants of the ligand series (Figure 2.22).  Stoichiometric quantities of the ligand 

in chloroform and copper sulfate in water at different pH values were mixed 

overnight, separated, the copper content of the organic phase measured by ICP-OES 

(Section 2.1.4) and the pH of the aqueous phase measured (the equilibrium pH).   

 

 
 

Figure 2.22:  Solvent extraction protocols for the measurement of relative extractive efficacies of the 

extractant series. 

 

Plotting percentage copper in the organic phase against equilibrium pH gives 

characteristic S-curves, which define loading behaviour as described in Chapter 1.  

The pH0.5, the pH at which 50% loading of copper in the organic phase is achieved, 

was used as a measure of extractant strength.  As protons are liberated in the binding 

of copper and its transfer from the aqueous phase, the ligand with the lowest pH0.5 

STIR 

16hr 

0.005M CuSO4 

(H2O) 

0.01M Ligand 
(CHCl3) 

[Cu] via 
ICP-OES 

Measure pH 
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value is the strongest extractant.  A successful extraction will show a range of copper 

loadings from 0-100 % over the appropriate pH range.   

 

 
 

Figure 2.23:  Photograph of the organic phases of the extraction of copper(II) by L2, showing an 

ideal range of copper loading from pH 0-3.5. 

 

Figure 2.23 depicts the organic phases for the extraction of copper(II) by L2, with 

little colour on the left hand side showing very low copper loading, and the brown 

copper complex on the right hand side showing high loading.   

 

The relative strengths of copper(II) extraction were determined using the procedure 

outlined in Section 2.7.5.  It was not possible to determine the binding strength of L4 

due to the limited solubility of its copper(II) complex, but the effect of 3-nitro 

substitution was examined using L9, an analogue with a larger 5-t-octyl group to 

ensure solubility.  To ensure that changing the nature of the alkyl chain in the 5-

position had no effect on pH0.5, the binding strength of the unsubstituted 5-t-octyl 

analogue L8 was also investigated.  The pH loading profiles for all ligands are shown 

overleaf in Figure 2.24. 

 

Extraction strengths follow the order L6 > L9 > L5 > L7 > L2 � L1 � L8 > L3, or 

by substituent, Br > NO2 > Cl > OMe > Me � H > tBu.  The pH0.5 values for L1 and 

L8 are very similar, showing that changing the length of the alkyl chain in the 5-

position has little influence on extractive ability, in agreement with the literature.34  

3-Substitution clearly has a major influence on extractant strength, with the 

substituents changing the distribution coefficients for copper by two orders of 

magnitude.   
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L L1 L2 L3 L5 L6 L7 L8 L9 

pH0.5 1.68 1.67 2.64 0.91 0.42 1.09 1.73 0.70 

 

Figure 2.24:  pH loading profiles and pH0.5 values for loading of copper by 0.01 M chloroform 

solutions of L1-L9 from equal volumes of 0.01 M aqueous solutions of copper sulfate.  100% copper 

loading based on a 1Cu:2L ratio.. 

 

A rough trend can be seen, with electron-withdrawing groups tending to increase 

extraction strength, whilst electron-donating groups seem to have the opposite effect.  

One obvious deviation from this observation is the fact that L7 has an electron-

donating group but has increased extraction strength. 

 

Another trend is discernable.  Substituents that can act as H-bond acceptors, i.e. those 

with the potential to form bifurcated hydrogen bonds (Figure 2.1) increase extraction 

strength, while L3, with a bulky t-butyl group in the 3-position, is the weakest 

extractant.  Added to the fact that the 3-methyl group has very little effect on 

extractant strength, it would seem that the 3-substituent’s ability to interact with the 

stabilising intracomplex hydrogen bonding motif, both in a positive and negative 

fashion, has a large influence on extractive efficacy. 
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2.6 Conclusions and Future Work 

 

The syntheses of L1-L9 have shown that 3-substituted salicylaldoximes can be 

prepared on the gram scale using facile, high yielding methods.  The synthetic 

strategies employed have demonstrated the feasibility of large scale syntheses in 

order to further analyse these ligands and their copper(II) complexes. 

 

Characterisation of L1-L9 by X-ray crystallography has shown the effects of 3-

substitution on salicylaldoxime solid state assemblies, including the formation of a 

novel, 6-membered H-bonded dimer by the 3-NO2 substituted ligands L4 and L9.  

Crystallographic characterisation of copper(II) complexes of L1, L2, L3, L4, L6 and 

L7 has illustrated the wide variety of supramolecular architectures facilitated by axial 

interactions with the copper(II) centres, including infinite 2D networks and nano-

helices.  Further analysis of the solid state structures, with particular focus on the 

effect of 3-substitution on the cavity size of 14-membered pseudomacrocyclic 

dimers, is detailed in Chapter 3.   

 

Solvent extraction experiments have confirmed that L1-L9 are effective copper(II) 

extractants.  The first systematic study on a coherent 3-substituted salicylaldoxime 

ligand series has demonstrated that simply by changing the nature of the 3-

substituent, the extractive efficacies of the ligands can be tuned over a range of two 

pH units, or two orders of magnitude.  Strength is increased by substitution of groups 

with hydrogen bond acceptor properties and also electron-withdrawing groups, and 

vice versa. 

 

Having shown the effect of 3-substitution on copper extractive efficacy, experiments 

were devised to explain this phenomenon.  These experiments, alongside attempts to 

identify the prominent substituent effect and so form a tentative model for prediction 

of effects on the extractive behaviour of ligands, are described in Chapter 3. 
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2.7 Experimental 

 

2.7.1 Chemicals and Instrumentation 

 

All solvents and reagents were used as received from Aldrich, Fisher, Fluorochem 

and Acros.  1H and 13C NMR were obtained using a Bruker AC250 spectrometer at 

ambient temperature.  Chemical shifts (�) are reported in parts per million (ppm) 

relative to internal standards.  Fast atom bombardment mass spectrometry was 

carried out using a Kratos MS50TC spectrometer with a 3-nitrobenzyl alcohol 

(NOBA) or thioglycerol matrix.  IR spectra were collected on a JASCO FT/IR 410 

spectrometer in a glass cell.  Analytical data was obtained on a CE-440 Elemental 

Analyser by the University of Edinburgh Microanalytical Service.  ICP-OES analysis 

was carried out using a Perkin Elmer Optima 5300DV spectrometer.  The 

measurement of pH was carried out using a Fisher Scientific AR50 pH meter.  CHN 

analyses are not available for (1) and (2) due to their tendency to degrade. 

 

 

2.7.2 Ligand Synthesis 

 

4-tert-Butyl-2-chlorophenol (1).  4-tert-Butylphenol (5.00 g, 33.3 mmol) was 

dissolved in DCM (50 ml) and cooled to 0 °C in an ice bath.  Sulfuryl chloride (5.00 

g, 37.0 mmol) was added dropwise and stirred for 3 hr, after which MeOH (1.2 g, 

37.5 mmol) was added dropwise and the solution stirred overnight.  The solvent was 

removed in vacuo to give a cloudy oil, which was purified by silica-60 wet flash 

column chromatography (5% ethyl acetate in hexane eluent) to give a colourless oil 

(5.73 g, 93%).  1H NMR (250 MHz, CDCl3): �H (ppm) 1.15 (s, 9H, C(CH3)3), 6.85 

(d, 1H, ArH), 7.05 (d, 1H, ArH), 7.18 (s, 1H, ArH); 13C NMR (63 MHz, CDCl3): �C 

(ppm) 31.8 (3C, C(CH3)3), 34.6 (1C, C(CH3)3), 116.3 (1C, aromatic CH), 119.8 (1C, 

aromatic C), 125.7 (1C, aromatic CH), 126.4 (1C, aromatic CH), 145.0 (1C, 

aromatic C), 149.5 (1C, aromatic C); FABMS m/z 185 (MH+). 
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2-Bromo-4-tert-butylphenol (2).  4-tert-Butylphenol (5.140 g, 34 mmol) and tetra-

n-butylammonium tribromide (16.50 g, 34 mmol) were dissolved in dichloromethane 

(100 ml) and methanol (60 ml) and stirred for 30 min.  The solvent was removed in 

vacuo and the resulting orange oil partitioned between diethyl ether (100 ml) and 

water (100 ml).  The organic phase was separated, washed with saturated brine (2 x 

50 ml) and water (50 ml), dried over MgSO4 and the solvent removed to give a 

slightly pink oil which was purified by silica-60 wet flash column chromatography 

(2% ethyl acetate in hexane eluent) to give a colourless oil (5.82 g, 75%).  1H NMR 

(250 MHz, CDCl3): �H (ppm) 1.13 (s, 9H, C(CH3)3), 6.83 (d, 1H, ArH), 7.05 (dd, 1H, 

ArH), 7.32 (d, 1H, ArH); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.9 (3C, C(CH3)3), 

34.6 (1C, C(CH3)3), 110.4 (1C, aromatic C), 116.2 (1C, aromatic CH), 126.6 (1C, 

aromatic CH), 129.3 (1C, aromatic CH), 145.5 (1C, aromatic C), 150.4 (1C, 

aromatic C); FABMS m/z 230 (MH+). 

 

5-tert-Butyl-2-hydroxybenzaldehyde (3).  Magnesium turnings (20 g, 800 mmol), 

methanol (373 ml), toluene (160 ml) and magnesium methoxide (a few drops of 8% 

w/w methanol solution) were refluxed until all magnesium was dissolved and H2 

evolution stopped.  4-tert-Butylphenol (200 g, 1.3 mol) was added and refluxed for 1 

hr.  Toluene (333 ml) was added and the mixture distilled under vacuum to remove 

the methanol/toluene azeotrope.  A slurry of paraformaldehyde (120 g, 4 mol) in 

toluene (200 ml) was added slowly with continuous distillation, and heated for a 

further 2 hrs.  After cooling to room temperature, H2SO4 (20%, 800 ml) was added 

slowly with stirring and heated to 50 °C to dissolve all solids.  The product was 

extracted with toluene (2 x 400 ml), washed with H2SO4 (10%, 2 x 150 ml) and 

water (150 ml), dried over MgSO4 and the solvent removed in vacuo.  Purification by 

vacuum distillation (1 mm Hg, 120 °C) and silica-60 wet flash column 

chromatography (2% ethyl acetate in hexane eluent) yielded a bright yellow oil 

(144.2 g, 62.3%).  (Anal. Calc. for C11H14O2: C, 74.1; H, 7.9.  Found: C, 73.4; H, 

8.3%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.25 (s, 9H, C(CH3)3), 6.87 (d, 1H, 

ArH), 7.43 (d, 1H, ArH), 7.52 (dd, 1H, ArH), 9.81 (s, 1H, CHO), 10.80 (s, 1H, OH); 
13C NMR (63 MHz, CDCl3): �C (ppm) 31.5 (3C, C(CH3)3), 34.0 (1C, C(CH3)3), 

117.0 (1C, aromatic CH), 120.0 (1C, aromatic C), 129.5 (1C, aromatic CH), 134.5 
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(1C, aromatic CH), 142.5 (1C, aromatic C), 159.5 (1C, aromatic C), 197.0 (1C, 

ArCHO); FABMS m/z 179 (MH)+. 

 

2-Hydroxy-5-tert-octylbenzaldehyde (4).  Magnesium turnings (20 g, 800 mmol), 

methanol (373 ml), toluene (160 ml) and magnesium methoxide (a few drops of 8% 

w/w methanol solution) were refluxed until all magnesium was dissolved and H2 

evolution stopped.  4-tert-Octylphenol (268.2 g, 1.3 mol) was added and refluxed for 

1 hr.  Toluene (333 ml) was added and the mixture distilled under vacuum to remove 

the methanol/toluene azeotrope.  A slurry of paraformaldehyde (120 g, 4 mol) in 

toluene (200 ml) was added slowly with continuous distillation, and heated for a 

further 2 hrs.  After cooling to room temperature, H2SO4 (20%, 800 ml) was added 

slowly with stirring and heated to 50 °C to dissolve all solids.  The product was 

extracted with toluene (2 x 400 ml), washed with H2SO4 (10%, 2 x 150 ml) and 

water (150 ml), dried over MgSO4 and the solvent removed in vacuo.  Purification by 

silica-60 wet flash column chromatography (2% ethyl acetate in hexane eluent) 

yielded an off white solid (196.2 g, 64.5%).  (Anal. Calc. for C15H22O2: C, 76.9; H, 

9.5.  Found: C, 77.2; H, 9.9%); 1H NMR (250 MHz, CDCl3): �H (ppm) 0.68 (s, 9H, 

C(CH3)3), 1.30 (s, 6H, C(CH3)2), 1.66 (s, 2H, CH2), 6.85 (d, 1H, ArH), 7.42 (s, 1H, 

ArH), 7.48 (dd, 1H, ArH), 9.82 (s, 1H, ArCHO), 10.80 (s, 1H, ArOH); 13C NMR (63 

MHz, CDCl3): �C (ppm) 30.4 (2C, C(CH3)2), 30.8 (3C, C(CH3)3), 31.3 (1C, 

C(CH3)3), 36.9 (1C, C(CH3)2), 55.6 (1C, CH2) 116.0 (1C, aromatic CH),  119.0 (1C, 

aromatic C), 129.5 (1C, aromatic CH), 134.4 (1C, aromatic CH), 140.8 (1C, 

aromatic C), 158.4 (1C, aromatic C), 195.8 (1C, ArCHO); FABMS m/z 235 (MH+). 

 

5-tert-Butyl-2-hydroxy-3-methylbenzaldehyde (5). A mixture of 

hexamethylenetetramine (20.0 g, 142 mmol) and 4-tert-butyl-2-methylphenol (4.93 

g, 30 mmol) was heated in trifluoroacetic acid (60 ml) to 90˚C for 16 h under reflux.  

The mixture was poured still hot into 1 M HCl (200 ml), stirred for 6 h and extracted 

with DCM (3 x 150 ml).  The combined organic phases were washed with water, 

dried over MgSO4 and the solvent removed in vacuo.  The sticky orange solid was 

purified by silica-60 wet flash column chromatography (5% ethyl acetate in hexane 

eluent) to yield a pale orange solid (4.24 g, 73%).  (Anal. Calc. for C12H16O2: C, 
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75.0; H, 8.4.  Found: C, 74.3; H, 8.7%);  1H NMR (250 MHz, CDCl3): �H (ppm) 1.24 

(s, 9H, C(CH3)3), 2.20 (s, 3H, CH3), 7.28 (m, 1H, ArH), 7.37 (m, 1H, ArH), 9.79 (s, 

1H, CHO), 11.02 (s, 1H, OH); 13C NMR (63 MHz, CDCl3): �C (ppm) 15.7 (1C, CH3) 

31.7 (3C, C(CH3)3), 34.4, (1C, C(CH3)3), 119.8 (1C, aromatic C), 126.6 (1C, 

aromatic CH), 127.7 (1C, aromatic CH), 136.2 (1C, aromatic C), 142.6 (1C, 

aromatic C), 158.3 (1C, aromatic C), 197.4 (1C, ArCHO); FABMS m/z 192 (MH+). 

 

5-tert-Butyl-2-hydroxy-3-nitrobenzaldehyde (6).  Nitric acid (70%, 7.0 ml, 160 

mmol) was added dropwise to a solution of (3) (25.2 g, 140 mmol) in glacial acetic 

acid (25 ml) at 0 °C.  The mixture was stirred at 55 °C for 16 h, cooled to room 

temperature and the thick mother liquors were decanted from the bright yellow solid, 

which was washed with 50:50 hexane: diethyl ether.  Recrystallisation from hexane 

yielded a deep yellow product (10.4 g, 33%).  (Anal. Calc. for C11H13NO4: C, 59.2; 

H, 5.9; N, 6.3.  Found: C, 58.7; H, 5.7; N, 6.4%); 1H NMR (250 MHz, CDCl3): �H 

(ppm) 1.33 (s, 9H, C(CH3)3), 8.12 (d, 1H, ArH), 8.31 (d, 1H, ArH), 10.38 (s, 1H, 

CHO), 11.22 (s, 1H, ArOH); 13C NMR (63 MHz, CDCl3): �C (ppm) 30.8 (3C, 

C(CH3)3), 34.4 (1C, C(CH3)3), 124.8 (1C, aromatic C), 127.8 (1C, aromatic CH), 

134.2 (1C, aromatic CH), 134.6 (1C, aromatic C), 143.3 (1C, aromatic C), 154.4 

(1C, aromatic C), 189.3 (1C, ArCHO); FABMS m/z 223 (MH+).  

 

5-tert-Butyl-3-chloro-2-hydroxybenzaldehyde (7).  A mixture of 

hexamethylenetetramine (14.0 g, 100 mmol) and (1) (4.00 g, 21.6 mmol) was heated 

in trifluoroacetic acid (60 ml) to 90˚C for 72 h under reflux.  The reaction mixture 

was poured still hot into 1 M HCl (200 ml) and stirred for 6 h.  A yellow precipitate 

was filtered, washed with water (3 x 50 ml) and redissolved in DCM (200 ml).  The 

organic phase was washed with water (3 x 100 ml), separated and dried over MgSO4.  

The solvent was removed in vacuo to yield a yellow solid which was used without 

further purification (3.23 g, 70%). (Anal. Calc. for C11H13ClO2: C, 62.1; H, 6.2.  

Found: C, 61.7 H, 6.2%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.24 (s, 9H, 

C(CH3)3), 7.40 (s, 1H, ArH), 7.58 (s, 1H, ArH), 9.82 (s, 1H, CHO), 11.23 (s, 1H, 

OH); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.5 (3C, C(CH3)3), 34.7, (1C, 

C(CH3)3), 121.2 (1C, aromatic C), 122.0 (1C, aromatic C), 128.9 (1C, aromatic CH), 
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135.0 (1C, aromatic CH), 144.1 (1C, aromatic C), 155.3 (1C, aromatic C), 196.7 

(1C, ArCHO); FABMS m/z 213 (MH+). 

 

3-Bromo-5-tert-butyl-2-hydroxybenzaldehyde (8).  A mixture of 

hexamethylenetetramine (9.1 g, 65 mmol) and (2) (3.00 g, 13.1 mmol) was heated in 

trifluoroacetic acid (50 ml) to 90˚C for 16 h under reflux.  The reaction mixture was 

poured still hot into 2 M HCl (150 ml) and stirred for 8 h.  An off-white precipitate 

was filtered, washed with water (50 ml) and vacuum dried over P2O5 to yield an off 

white powder (3.039 g, 90%).  (Anal. Calc. for C11H13BrO2.0.5H2O: C, 49.6; H, 5.3.  

Found: C, 50.0 H, 5.6%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.15 (s, 9H, 

C(CH3)3), 7.33 (d, 1H, ArH), 7.63 (s, 1H, ArH), 9.68 (s, 1H, CHO), 11.2 (br, 1H, 

OH); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.6 (3C, C(CH3)3), 34.7, (1C, 

C(CH3)3), 111.2 (1C, aromatic C), 121.0 (1C, aromatic C), 129.8 (1C, aromatic CH), 

138.0 (1C, aromatic CH), 144.6 (1C, aromatic C), 156.2 (1C, aromatic C), 196.7 

(1C, ArCHO); FABMS m/z 258 (MH+).  

 

2-Hydroxy-3-nitro-5-tert-octylbenzaldehyde (9).  (4) (5.22 g, 22.3 mmol) was 

dissolved in glacial acetic acid (50 ml) and cooled over an ice bath.  Nitric acid (70%, 

2.5 ml, 40 mmol) in acetic acid (5 ml) was added slowly with stirring to give a 

yellow solution, which was allowed to come to room temperature and stirred for a 

further 16 hr.  Water (50 ml) was added and the product extracted with hexane (3 x 

100 ml), washed with water and dried over MgSO4.  Removal of solvent gave a 

yellow oil which was purified by silica-60 wet flash column chromatography (5 % 

ethyl acetate in hexane eluent) to give a yellow oil (5.34 g, 86%).  (Anal. Calc. for 

C15H21NO4: C, 64.5; H, 7.6; N, 5.0.  Found: C, 64.1; H, 7.8; N, 5.6%); 1H NMR (250 

MHz, CDCl3): �H (ppm) 0.66 (s, 9H, C(CH3)3), 1.33 (s, 6H, C(CH3)2), 1.70 (s, 2H, 

CH2), 8.06 (d, 1H, ArH), 8.25 (d, 1H, ArH), 10.33 (s, 1H, ArCHO), 11.18 (s, 1H, 

ArOH); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.5 (2C, C(CH3)2), 32.3 (3C, 

C(CH3)3), 32.7 (1C, C(CH3)3), 38.8 (1C, C(CH3)2), 56.7 (1C, CH2), 125.2 (1C, 

aromatic C), 128.9 (1C, aromatic CH), 135.1 (1C, aromatic C), 135.3 (1C, aromatic 

CH), 143.2 (1C, aromatic C), 154.8 (1C, aromatic C), 189.8 (1C, ArCHO); FABMS 

m/z 280 (MH+).  
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Oximation General Procedure.  c1.2 equivalents of KOH and NH2OH.HCl were 

dissolved separately in EtOH, mixed thoroughly and a white KCl precipitate 

removed by filtration.  The filtrate was added to the precursor aldehyde, refluxed for 

3 hr and the solvent removed in vacuo.  The residue was redissolved in CHCl3, 

washed with water 3 times, dried over MgSO4 and the solvent removed in vacuo to 

yield the crude product.  

 

5-tert-Butyl-2-hydroxybenzaldehyde oxime (L1).  Hydroxylamine hydrochloride 

(3.89 g, 56 mmol), potassium hydroxide (3.19 g, 56 mmol) and (3) (10.20 g, 57 

mmol) were reacted according to the general procedure to give an off-white solid, 

which was recrystallised from hexane to yield white needles (7.13 g, 65.0%).  

Crystals suitable for XRD analysis were grown by slow evaporation of a 

hexane/chloroform solution.  (Anal. Calc. for C11H15NO2: C, 68.4; H, 7.8; N, 7.3.  

Found: C, 68.7; H, 8.1; N, 7.3%); �max/cm-1 (CHCl3) 3575 (free NOH), 3408br (H-

bonded NOH), 3221br (PhOH), 2966 (C-H), 1623 (C=N); 1H NMR (250 MHz, 

CDCl3): �H (ppm) 1.35 (s, 9H, C(CH3)3), 7.00 (d, 1H, ArH), 7.22 (s, 1H, ArH), 7.38 

(d, 1H, ArH), 8.30 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.8 (3C, 

C(CH3)3), 34.4, (1C, C(CH3)3), 116.1 (1C, aromatic C),  116.6 (1C, aromatic CH), 

127.7 (1C, aromatic CH), 129.0 (1C, aromatic CH), 143.0 (1C, aromatic C), 153.8 

(1C, ArCHN), 155.1 (1C, aromatic C); FABMS m/z 194 (MH+). 

 

5-tert-Butyl-2-hydroxy-3-methylbenzaldehyde oxime (L2). Hydroxylamine 

hydrochloride (1.73 g, 25.0 mmol), potassium hydroxide (1.40 g, 25.0 mmol) and (5) 

(4.00 g, 20.8 mmol) were reacted according to the general procedure to give an off 

white solid (2.76 g, 64%).  Crystals suitable for XRD analysis were grown by slow 

evaporation of a hexane/chloroform solution.  (Anal. Calc. for C12H17NO2: C, 69.5; 

H, 8.3; N, 6.8.  Found: C, 69.3; H, 8.0 ; N, 6.7 %); �max/cm-1 (CHCl3) 3574 (free 

NOH), 3416br (H-bonded NOH), 3200br (PhOH), 2965 (C-H), 1623 (C=N); 1H 

NMR (250 MHz, CDCl3): �H (ppm) 1.17 (s, 9H, C(CH3)3), 2.20 (s, 3H, ArCH3), 6.92 

(m, 1H, ArH), 7.10 (m, 1H, ArH), 8.13 (s, 1H, ArCHN); 13C NMR (63 MHz, 

CDCl3): �C (ppm) 15.0 (1C, ArCH3), 30.4 (3C, C(CH3)3), 32.9 (1C, C(CH3)3), 114.1 

(1C, aromatic C), 123.9 (1C, aromatic C), 124.0 (1C, aromatic CH), 128.9 (1C, 
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aromatic CH), 141.2 (1C, aromatic C), 151.8 (1C, aromatic C), 152.4 (1C, ArCHN); 

FABMS m/z 208  (MH+). 

 

3,5-Di-tert-butyl-2-hydroxybenzaldehyde oxime (L3). Hydroxylamine 

hydrochloride (1.42 g, 20.5 mmol), potassium hydroxide (1.15 g, 20.5 mmol) and 

3,5-di-tert-butyl-2-hydroxybenzaldehyde (4 g, 17.1 mmol) were reacted according to 

the general procedure to yield a light yellow microcrystalline solid (3.51 g, 82%).  

Crystals suitable for XRD analysis were grown by slow evaporation of a 

hexane/chloroform solution.  (Anal. Calc. for C15H23NO2: C, 72.3; H, 9.3; N, 5.6.  

Found: C, 72.5; H, 9.1; N, 5.5%); �max/cm-1 (CHCl3) 3577 (free NOH), 3443br (H-

bonded NOH), 3162br (PhOH), 2964 (C-H), 1624 (C=N); 1H NMR (250 MHz, 

CDCl3): �H (ppm) 1.24 (s, 9H, C(CH3)3), 1.36 (s, 9H, C(CH3)3), 6.94 (m, 1H, ArH), 

7.28 (m, 1H, ArH), 8.17 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 

29.9 (3C, C(CH3)3), 31.9 (3C, C(CH3)3), 34.6 (1C, C(CH3)3), 35.5 (1C, C(CH3)3), 

116.1 (1C, aromatic C), 126.0 (1C, aromatic CH), 126.6 (1C, aromatic CH), 136.9 

(1C, aromatic C), 141.8 (1C, aromatic C), 154.5 (1C, aromatic C), 154.7 (1C, 

ArCHN); FABMS m/z 250 (MH+). 

 

5-tert-Butyl-2-hydroxy-3-nitrobenzaldehyde oxime (L4).  Hydroxylamine 

hydrochloride (0.709 g, 10.2 mmol), potassium hydroxide (0.674 g, 10.2 mmol) and 

(6) (2.00 g, 9.00 mmol) were reacted according to the general procedure to yield a 

bright yellow solid (1.94 g, 90%).  Crystals suitable for XRD analysis were grown by 

slow evaporation of a DCM solution.  (Anal. Calc. for C11H14N2O4: C, 55.5; H, 5.9; 

N, 11.8.  Found: C, 55.4; H, 5.7; N, 11.8%); �max/cm-1 (CHCl3) 3575 (free NOH), 

3402br (H-bonded NOH), 3230br (PhOH), 2968 (C-H), 1633 (C=N), 1537s (NO2); 
1H NMR (250 MHz, CDCl3): �H (ppm) 1.26 (s, 9H, C(CH3)3), 7.93 (d, 1H, ArH), 

8.05 (d, 1H, ArH), 8.45 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.4 

(3C, C(CH3)3), 35.0, (1C, C(CH3)3), 122.1 (1C, aromatic C), 123.6 (1C, aromatic 

CH), 132.7 (1C, aromatic CH), 134.7 (1C, aromatic C), 143.7 (1C, aromatic C), 

146.5 (1C, ArCHN), 151.3 (1C, aromatic C); FABMS m/z 239 (MH+). 
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5-tert-Butyl-3-chloro-2-hydroxybenzaldehyde oxime (L5).  Hydroxylamine 

hydrochloride (0.709 g, 10.2 mmol), potassium hydroxide (0.674 g, 10.2 mmol) and 

(7) (2.00 g, 9.41 mmol) were reacted according to the general procedure to yield a 

white solid (1.95 g, 95%).  Crystals suitable for XRD analysis were grown by slow 

evaporation of a hexane/chloroform solution.  (Anal. Calc. for C11H14ClNO2: C, 

58.0; H, 6.2; N, 6.2.  Found: C, 57.6; H, 5.7; N, 6.1%); �max/cm-1 (CHCl3) 3568 (free 

NOH), 3433br (H-bonded NOH), 3172br (PhOH), 2967 (C-H), 1624 (C=N); 1H 

NMR (250 MHz, CDCl3): �H (ppm) 1.21 (s, 9H, C(CH3)3), 7.02 (s, 1H, ArH), 7.32 

(s, 1H, ArH), 8.16 (s, 1H, CHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.6 (3C, 

C(CH3)3), 34.6, (1C, C(CH3)3), 117.3 (1C, aromatic C), 121.3 (1C, aromatic C), 

126.3 (1C, aromatic CH), 129.3 (1C, aromatic CH), 143.8 (1C, aromatic C), 150.8 

(1C, aromatic C), 152.9 (1C, ArCHN); FABMS m/z 228 (MH+). 

 

3-Bromo-5-tert-butyl-2-hydroxybenzaldehyde oxime (L6).  Hydroxylamine 

hydrochloride (0.709 g, 10.2 mmol), potassium hydroxide (0.674 g, 10.2 mmol) and 

(8) (2.00 g, 7.8 mmol) were reacted according to the general procedure to yield a 

white solid (2.00 g, 94%).  Crystals suitable for XRD analysis were grown by slow 

evaporation of a hexane/chloroform solution.  (Anal. Calc. for C11H14BrNO2: C, 

48.6; H, 5.2; N, 5.2.  Found: C, 48.4; H, 5.0; N, 5.3%); �max/cm-1 (CHCl3) 3569 (free 

NOH), 3437br (H-bonded NOH), 3160br (PhOH), 2968 (C-H), 1625 (C=N); 1H 

NMR (250 MHz, CDCl3): �H (ppm) 1.20 (s, 9H, C(CH3)3), 7.06 (d, 1H, ArH), 7.48 

(d, 1H, ArH), 8.13 (s, 1H, CHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.7 (3C, 

C(CH3)3), 34.6, (1C, C(CH3)3), 110.6 (1C, aromatic C), 117.3 (1C, aromatic C), 

127.2 (1C, aromatic CH), 132.2 (1C, aromatic CH), 144.3 (1C, aromatic C), 151.7 

(1C, aromatic C), 152.6 (1C, ArCHN); FABMS m/z 273 (MH+). 

 

5-tert-Butyl-2-hydroxy-3-methoxybenzaldehyde oxime (L7).  Hydroxylamine 

hydrochloride (0.348 g, 5 mmol), potassium hydroxide (0.280 g, 5 mmol) and 5-tert-

butyl-2-hydroxy-3-methoxybenzaldehyde (0.501 g, 2.4 mmol) were reacted 

according to the general procedure to yield a white solid (0.51 g, 95%).  Crystals 

suitable for XRD analysis were grown by slow evaporation of an acetone solution.  

(Anal. Calc. for C12H17NO3: C, 64.6; H, 7.7; N, 6.3.  Found: C, 64.2; H, 7.6; N, 
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6.2%); �max/cm-1 (CHCl3) 3573 (free NOH), 3413br (H-bonded NOH), 3177br 

(PhOH), 2967 (C-H), 1624 (C=N); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.25 (s, 

9H, C(CH3)3), 3.85 (s, 3H, OCH3), 6.74 (d, 1H, ArH), 6.89 (d, 1H, ArH), 8.16 (s, 1H, 

CHN), 9.6 (br, 1H, OH); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.8 (3C, C(CH3)3), 

34.7, (1C, C(CH3)3), 56.7 (1C, OCH3), 111.9 (1C, aromatic CH), 116.2 (1C, 

aromatic C), 119.1 (1C, aromatic CH), 143.0 (1C, aromatic C), 145.1 (1C, aromatic 

C), 148.5 (1C, aromatic C), 153.4 (1C, ArCHN); FABMS m/z 224(MH+). 

 

2-Hydroxy-5-tert-octylbenzaldehyde oxime (L8).  Hydroxylamine hydrochloride 

(0.709 g, 10.2 mmol), potassium hydroxide (0.674 g, 10.2 mmol) and (4) (2.120 g, 

9.1 mmol) were reacted according to the general procedure to give a yellow oil, 

which solidified overnight.  This was recrystallised from hexane, yielding a white 

crystalline solid (1.375 g, 60%).  Crystals suitable for XRD analysis were grown by 

slow evaporation of a hexane/chloroform solution.  (Anal. Calc. for C15H23NO2: C, 

72.3; H, 9.3; N, 5.6.  Found: C, 72.6; H, 9.4; N, 5.7%); �max/cm-1 (CHCl3) 3575 (free 

NOH), 3393br (H-bonded NOH), 3221br (PhOH), 2957 (C-H), 1622 (C=N); 1H 

NMR (250 MHz, CDCl3): �H (ppm) 0.64 (s, 9H, C(CH3)3), 1.23 (s, 6H, C(CH3)2), 

1.58 (s, 2H, CH2), 6.80 (d, 1H, ArH), 7.01 (s, 1H, ArH), 7.20 (dd, 1H, ArH), 8.12 (s, 

1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.2 (2C, C(CH3)2), 31.2 (2C, 

C(CH3)3), 32.7 (1C, C(CH3)3) 38.3, (1C, C(CH3)2), 57.3 (1C, CH2), 115.9 (1C, 

aromatic C), 116.4 (1C, aromatic CH), 128.5 (1C, aromatic CH), 129.9 (1C, 

aromatic CH), 141.9 (1C, aromatic C), 153.9 (1C, ArCHN), 155.1 (1C, aromatic C); 

FABMS m/z 250 (MH+). 

 

2-Hydroxy-3-nitro-5-tert-octyl-benzaldehyde oxime (L9).  Hydroxylamine 

hydrochloride (0.709 g, 10.2 mmol), potassium hydroxide (0.674 g, 10.2 mmol) and 

(9) (1.380 g, 4.94 mmol) were reacted according to the general procedure to yield a 

bright yellow solid (1.14 g, 79%).  Crystals suitable for XRD analysis were grown by 

slow evaporation of a hexane/chloroform solution.  (Anal. Calc. for C15H22N2O4: C, 

61.2; H, 7.5; N, 9.5.  Found: C, 61.3; H, 7.7; N, 9.3%); �max/cm-1 (CHCl3) 3547 (free 

NOH), 3428br (H-bonded NOH), 3232br (PhOH), 2964 (C-H), 1633 (C=N), 1538s 

(NO2); 
1H NMR (250 MHz, CDCl3): �H (ppm) 0.67 (s, 9H, C(CH3)3), 1.31 (s, 6H, 
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C(CH3)2), 1.67 (s, 2H, CH2), 7.91 (d, 1H, ArH), 8.03 (d, 1H, ArH), 8.44 (s, 1H, 

ArCHN), 10.9 (br, 1H, ArOH); 13C NMR (63 MHz, CDCl3): �C (ppm) 31.6 (2C, 

C(CH3)2), 32.3 (3C, C(CH3)3), 32.8 (1C, C(CH3)3), 38.7 (1C, C(CH3)2), 56.8 (1C, 

CH2), 122.1 (1C, aromatic C), 124.1 (1C, aromatic CH), 133.2 (1C, aromatic CH), 

134.6 (1C, aromatic C), 143.0 (1C, aromatic C), 146.6 (1C, aromatic C), 151.1 (1C, 

ArCHN); FABMS m/z 295 (MH+). 

 

 

2.7.3 Copper(II) Complex Synthesis 

 

All copper(II) complexes of the ligands were synthesised using the following general 

procedure.  Stoichiometric amounts of the ligand and metal acetate (0.5 equivalents) 

were mixed in methanol (50 ml) for 24 h.  Colour changes due to complex formation 

occurred immediately, along with precipitation. Complexes were isolated by 

filtration and dried under vacuum. 

 

[Cu(L1-H)2]. Cu(OAc)2.H2O (0.301 g, 1.51 mmol) and L1 (0.582 g, 3.00 mmol) 

yielded a dark brown solid from the method above (0.529 g, 79%).  Crystals suitable 

for X-ray diffraction analysis were grown by slow evaporation of a CHCl3 solution.  

(Anal. Calc. for C22H28O4N2Cu: C, 59.0; H, 6.3; N, 6.3.  Found: C, 59.2; H, 5.9; N, 

6.2%); �max/cm-1 (CHCl3) 3167br (NOH), 2964 (C-H), 1609 (C=N); FABMS m/z 447 

(MH+). 

 

[Cu(L2-H)2]. Cu(OAc)2.H2O (0.522 g, 2.61 mmol) and L2 (1.071 g, 5.17 mmol) 

yielded  a light brown solid from the method above (1.040 g, 84%). Crystals suitable 

for X-ray diffraction analysis were grown by slow evaporation of a hexane/CHCl3 

solution.  (Anal. Calc. for C24H32O4N2Cu: C, 60.6; H, 6.8; N, 5.9.  Found: C, 60.3; H, 

6.8; N, 5.7%); �max/cm-1 (CHCl3) 3160br (NOH), 2965 (C-H), 1603 (C=N); FABMS 

m/z 475 (MH+). 

 

[Cu(L3-H)2]. Cu(OAc)2.H2O (0.281 g, 1.41 mmol) and L3 (0.701 g, 2.81 mmol) 

yielded a light brown solid from the method above (0.673 g, 81%).  Crystals suitable 
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for X-ray diffraction analysis were grown by slow evaporation of a CHCl3 solution.  

(Anal. Calc. for C30H44O4N2Cu: C, 64.3; H, 7.9; N, 5.0.  Found: C, 64.3; H, 7.7; N, 

5.0%); �max/cm-1 (CHCl3) 3224br (NOH), 2963 (C-H), 1604 (C=N); FABMS m/z 559 

(MH+). 

 

[Cu(L4-H)2]. Cu(OAc)2.H2O (0.460 g, 2.30 mmol) and L4 (1.011 g, 4.43 mmol) 

yielded a bright green solid from the method above (0.903 g, 73%).  Crystals of a 

bis-pyridine adduct suitable for X-ray diffraction analysis were grown by pressure 

diffusion of hexane into a pyridine solution.  (Anal. Calc. for C22H26O8N4Cu: C, 

49.1; H, 4.9; N, 10.4.  Found: C, 48.2; H, 3.3; N, 9.8%); �max/cm-1 (THF) 3257br 

(NOH), 2969 (C-H), 1631 (C=N), 1519s (NO2); FABMS m/z 539 (MH+). 

 

[Cu(L5-H)2]. Cu(OAc)2.H2O (0.240 g, 1.20 mmol) and L5 (0.501 g, 2.30 mmol) 

yielded a brown solid from the method above (0.541 g, 88%).  (Anal. Calc. for 

C22H26Cl2O4N2Cu: C, 51.1; H, 5.1; N, 5.4.  Found: C, 51.7; H, 5.4; N, 5.2%); 

�max/cm-1 (CHCl3) 3204br (NOH), 2966 (C-H), 1604 (C=N);  FABMS m/z 516 

(MH+). 

 

[Cu(L6-H)2].  Cu(OAc)2.H2O (0.100 g, 0.50 mmol) and L6 (0.270 g, 1.01 mmol) 

yielded a brown solid from the method above (0.284 g, 88%).   Crystals suitable for 

X-ray diffraction analysis were grown by slow evaporation of a MeOH solution.  

(Anal. Calc. for C22H26Br2O4N2Cu: C, 43.6; H, 4.3; N, 4.6.  Found: C, 43.9; H, 4.1; 

N, 4.5%); �max/cm-1 (CHCl3) 3216br (NOH), 2966 (C-H), 1602 (C=N); FABMS m/z 

607 (MH+). 

 

[Cu(L7-H)2].  Cu(OAc)2.H2O (22.4 mg, 0.11 mmol) and L7 (50.0 mg, 0.22 mmol) 

yielded a brown solid from the method above (45.8 mg, 82%).  Crystals suitable for 

X-ray diffraction analysis were grown by slow evaporation of a hexane/DCM 

solution.  (Anal. Calc. for C24H32O6N2Cu: C, 56.7; H, 6.4; N, 5.5.  Found: C, 56.6; H, 

6.1; N, 5.5%); �max/cm-1 (CHCl3) 3160br (NOH), 2964 (C-H), 1605 (C=N); FABMS 

m/z 507 (MH+). 
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[Cu(L8-H)2].  Cu(OAc)2.H2O (40.0 mg, 0.20 mmol) and L8 (99.5 mg, 0.40 mmol) 

yielded a brown powder from the method above (103.5 mg, 93%).  (Anal. Calc. for 

C30H44O4N2Cu: C, 64.3; H, 7.9; N, 5.0.  Found: C, 64.3; H, 8.0; N, 5.1%); �max/cm-1 

(CHCl3) 3175br (NOH), 2959 (C-H), 1606 (C=N); FABMS m/z 560 (MH+). 

 

[Cu(L9-H)2].  Cu(OAc)2.H2O (38.0 mg, 0.19 mmol) and L9 (108.7 mg, 0.37 mmol) 

yielded a bright green solid from the method above (119.0 mg, 96%).  (Anal. Calc. 

for C30H42O8N4Cu: C, 55.4; H, 6.5; N, 8.6.  Found: C, 55.2; H, 6.3; N, 8.0%); 

�max/cm-1 (CHCl3) 3241br (NOH), 2960 (C-H), 1603 (C=N), 1519s (NO2);  FABMS 

m/z 649 (MH+). 

 

 

2.7.4 X-Ray Structure Determinations 

 

All crystal structures were solved by Fraser White at the University of Edinburgh 

Crystallography Service.  Details of each solution, along with appropriate cif files, 

are located in appendix 7.2.1. 

 

 

2.7.5 pH Dependence of Copper(II) Loading from Sulfidic Media  

 

Experiments were carried out by contacting chloroform solutions (5 ml) of the 

ligands at concentrations of 0.01 mol dm-3, with aqueous solutions (5 ml) of 

copper(II) sulfate at concentrations of 0.01 mold m-3.  The aqueous solution was 

prepared from 4 ml of 0.0125 mol dm-3 copper(II) sulfate solution, to which was 

added 1 ml of 0.1 mol dm-3 sodium hydroxide/water or 1 ml of 2.5 mol dm-3 sulfuric 

acid/water solution to change pH.  After vigorous stirring for 16 h at room 

temperature, the mixtures were separated and 0.5 ml aliquots of the organic phase 

removed for copper analysis by ICP-OES.  The calculated percentage copper(II) 

uptake into the organic phase was plotted against the measured equilibrium pH of the 

aqueous phase to give s-curves.  pH0.5 values were calculated by plotting 

log([Cu]org/[Cu]aq) vs pH for intermediate values of copper loading, with the pH0.5 
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taken as the point where the linear fitted expression crossed the x axis.  All solvent 

extraction data are located in appendix 7.2.2. 
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3.1  Introduction 

 

3.1.1  Aims 

 

This chapter provides a more detailed analysis of the results reported in Chapter 2 on 

3-substituted salicylaldoximes and their copper complexes in order to understand the 

origins of the differences in the copper(II) binding strengths of the extractant series.  

The work involves: 

 

• the study of an analogous series of 3-substitued salicylaldoximes without 5-

alkyl groups by X-ray crystallography, 

• the introduction of analytical techniques to investigate the effect of the 3-

substituent on the buttressing of intradimer and intracomplex hydrogen 

bonding, 

• attempts to rationalise substituent effects and their relative importance, and 

• the formulation of a tentative model which describes and predicts the effect 

of substitution on extractive efficacy. 

 

A short review of methods to study hydrogen bond strengths and potential 

substituent effects in complexing agents and their copper(II) complexes follows. 

 

 

3.1.2  Solid Phase Techniques 

 

The solution of X-ray crystal structures provides an ever expanding bank of 

knowledge for the study of intermolecular interactions, of which H-bonding is the 

most important.1  The advent of the Cambridge Structural Database (CSD) has 

allowed detailed statistical analyses of these contacts in over 250,000 structures2 and 

continues to advance the understanding of the wide ranging interactions which fall 

under the “hydrogen-bonding” definition.  A recent review by Steiner highlights the 

varying nature of these contacts and their overlap with other interactions, but also 

draws attention to a major limitation in analysis of crystal structures: the inability to 
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extract values for the energy of bonds without computational calculations.1  Despite 

this, X-ray diffraction studies have proven unequivocally the presence of weak 

hydrogen bonds such as the C-H···� and C-H···F-C interactions,3 and will continue to 

enhance the understanding of H-bonding. 

 

A novel technique for the analysis of interactions energies within X-ray crystal 

structures is the PIXEL method of Gavezzotti, which models coulombic, 

polarisation, dispersive and repulsion contributions in the solid state.4, 5  The 

molecular charge density is calculated by standard quantum chemical methods using 

the program GAUSSIAN986 with the MP2/6-31G** basis set.  Using the OPiX4 

program, the charge density pixels are condensed to n x n x n blocks, and from these 

data the coulombic, polarisation, dispersion and repulsion energies are calculated, 

with the total interaction energy the sum of the contributions.5  PIXEL calculations 

are particularly suited to hydrogen bonded dimers, and have been tested over many 

different systems.  Results show good correlation with ab initio methods at a fraction 

of the computational cost.7 

 

 

3.1.3 Solution Phase Techniques 

 

In the solution phase, 1H NMR and IR spectroscopy are standard techniques for the 

study of hydrogen bonding.8  In the former, correlations between chemical shifts (�) 

of the hydrogen atom and the distance between donor and acceptor atoms have been 

established for many systems.1  The proton is deshielded to a greater extent by 

stronger H-bonds and so moves downfield, for example in the O-H···O hydrogen 

bond.9  Unfortunately, NMR spectroscopy cannot be applied to the study of 

copper(II) complexes due to the paramagnetism of the CuII ion, which broadens 

spectra and makes them unusable.10, 11 

 

In IR spectroscopy the frequency of the donor X-H stretching vibration, �(X-H), is 

easily studied due to its simplicity of identification and sensitivity to H-bond 

formation, with red shifting, broadening and intensification of the band common.1  
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For example, Gilli and Gilli12 have demonstrated the correlation between the O···O 

distance in O-H···O hydrogen bonds with �(O-H) (Figure 3.1). 

 

 

 

Figure 3.1:  Scatter plot of O-H IR stretching frequencies of O-H···O hydrogen bonds against solid 

state O···O distance (squares are acid/base combinations, filled circles are resonance assisted H-bonds, 

triangles are �-cooperative H-bonds and crosses are isolated H-bonds).12 

 

This correlation is present in other H-bond types, and Rozenberg et al
13 have 

proposed the expression: 

 

Equation 3.1    -
H = 1.3 (
�)0.5 

 

for calculation of H-bond enthalpies from IR spectra (
H in kJ mol-1, 
� is the 

difference in �(X-H) for the H-bonded and uncomplexed species in cm-1).  If the H-

bond acceptor is involved in an IR-active bond then it may also be investigated, for 

example in X-H···O=C interactions the O=C bond is weakened, subsequently 

lowering its stretching frequency.1 

 

Although copper(II) complexes are unsuitable for NMR analysis, their 

paramagnetism makes them ideal candidates for study by electron paramagnetic 

resonance (EPR) spectroscopy.  EPR spectroscopy is a technique which detects 
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chemical species containing an unpaired electron.  The magnetic moment of an 

unpaired electron is very sensitive to local magnetic fields, for example those of 

surrounding nuclei, and so EPR can yield detailed structural information of its 

locus.10 

 

By applying a strong magnetic field, B0, to the paramagnetic species, the magnetic 

moment of the unpaired electron aligns itself either parallel (Ms = -½) or antiparallel 

(Ms = +½) to the external field, generating separate energy levels which allows the 

absorption of electromagnetic radiation to occur (Figure 3.2). 

 

                      

 

Figure 3.2:  Variation of spin state energies as a function of the applied magnetic field. 

 

The energy gap between the two states is defined by the equation: 

 

Equation 3.2   
E = h� = g	BB0 

 

Where 
E is the energy separation, h is Planck's constant, � is the microwave 

frequency, g is the g-factor or spectroscopic splitting factor, 	B is the Bohr magneton 

and B0 the applied magnetic field.  The EPR experiment is run by scanning the 

magnetic field whilst keeping the frequency constant, and a signal is observed when 

the magnetic field is resonant with the energy gap.  To obtain structural information 

Ms = - ½ 

Ms = + ½ 

�E = h� = g�BB0 

Magnetic Field / B0 

E
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from the spectrum, hyperfine coupling constants are measured, which arise from the 

local magnetic field induced by interaction of the unpaired electron and any nuclei in 

the species, and split the EPR spectrum.  To predict the expected peak splitting, the 

following formula is used; 

 

Equation 3.3   No of peaks = 2nI+1 

 

where n is the number of equivalent nuclei and I is their spin quantum number.14  

Therefore, in EPR spectra of bis-salicylaldoximato copper(II) complexes, we expect 

to see the signal split into four lines, resulting from interaction with the copper(II) 

ion (I = 3/2), and each line split into five further lines by interaction with two 

equivalent nitrogen nuclei (I = 1).10 

 

The suitability of copper(II) for examination by EPR has resulted in the large volume 

of research in the area.  In the field of copper extraction, a series of papers by 

Thornback and O’Brien15-17 has shown that during extraction the reagents SME 529 

(5-nonyl-2-hydroxyacetophenone oxime) and P50 (5-nonyl-2-hydroxybenzaldehyde 

oxime) form 2:1 complexes with copper(II) of the type discussed in Chapter 2 

(Figure 3.3). 
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Figure 3.3:  Solution structures of copper(II) complexes formed in extraction, alongside mono- and 

bis-amine adducts, all studied by EPR.15-18 
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The coordination of axial ligands can also be studied by EPR, with mono- and bis- 

pyridine adducts identified in solution by the technique (Figure 3.3).15-18 

 

 

3.1.4 Gas Phase Techniques 

 

Hydrogen bonding has long been a target area of molecular modelling calculations, 

in particular in the analysis of the water dimer.  Calculations reveal1 the varying 

extent of interaction in H-bonds, with enthalpies of bonding varying from 

approximately 1 kJ mol-1 to ~165 kJ mol-1.  Early calculations involved simple 

Hartree-Fock wavefunctions with small basis sets, and provided important 

information about the nature of H-bonds.19  As computational power and thus the 

complexity of calculations increased, detailed description of H-bonding became 

dependent on the method employed, with a study by Del Bene et al
20 in 2001 

illustrating these variations in the length and energy of the hydrogen bond in the 

water dimer.  Of the ab initio methods studied, MP2/6-31+G(d,p) was recommended 

as the minimum level of theory for studying H-bonded systems.  

 

Density Functional Theory (DFT) is also extensively applied in the computational 

study of H-bonds.  A cursory check of the literature reveals the extent of its use:  a 

search for “DFT hydrogen bonds” on SciFinder Scholar 200721 yielded 2568 hits.22  

There are many methods and basis sets available for use, with a comprehensive study 

by Riley et al
23 in 2007 covering 37 methods and 11 basis sets.  The review found 

that hybrid-GGA and hybrid-meta-GGA methods with Pople split valence basis sets, 

particularly 6-31++G(d,p) gave the best combination of accuracy and computational 

efficiency.  

 

Gas phase stabilities of complex ions can be measured by collision induced 

dissociation (CID) mass spectrometry.  This is a tandem MS technique, which 

involves isolating the precursor ions of choice and subjecting them to breakdown by 

collision with an inert species, usually a buffer gas such as helium, and analysing the 
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ratio of the resulting fragment ions to the precursor ion intensity.24  A simplified 

diagram of the process is shown in Figure 3.4. 

 
Figure 3.4:  Simplified diagram of a CIDMS set up. 

 

This versatile technique is used extensively in the sequencing of proteins, as the 

methods of ionisation developed for these species25 inherently involve little 

dissociation and so the use of collision induced dissociation offers a method to 

dissociate a species under controlled (known) conditions and thus collect a great deal 

of structural information.26  A particular advantage of this technique is the ability to 

vary the energy of the buffer gas in the ion trap whilst scanning the ratio of fragment 

ion peaks to the precursor ion peak, and in this manner produce a breakdown curve 

for a particular species.  If other conditions are kept constant, then the breakdown 

curve for each complex ion can be measured and the required collision energies 

could give information about the relative stabilities of the complex ions in the gas 

phase. 

 

 

3.1.5 Substituent Effects On Copper(II) Extraction 

 

In formulating a model for predicting the extractive efficacy of 3-substituted 

phenolic oximes, variation of the 3-substituent can be considered in relation to: 

 

• the acidity of the phenol,  

• the basicity of the conjugate phenolate,  

• the potential to form bifurcated hydrogen bonds in copper(II) complexes, and  

• steric clashes with the hydrogen bonds.   
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Ligands with higher phenol acidity are expected to be stronger extractants but this 

effect may be countered by the lower basicity of the phenolate conjugate ion, which 

will be a poorer �-donor.27 

 

The electronic effects of the substituent will also affect the intracomplex hydrogen-

bonding, which helps stabilise bis-salicylaldoximato copper(II) complexes.28  

Altering the donor properties of the phenolate oxygen will change the energies of the 

hydrogen bond, with previous work by Burger et al
29 indicating the H-bonding is 

weakened as the donor ability of the phenolate is weakened.  The steric properties of 

the 3-substituent may also influences the hydrogen bonding arrangement with large, 

bulky groups disrupting the stabilising hydrogen bonding motif.  It is also possible to 

introduce an additional hydrogen bond acceptor in the 3-position, to form a more 

stable, bifurcated hydrogen bond with the oximic proton28 and thus possibly increase 

extractant strength.   

 

 

3.2 Effect of Ligand pKa on Copper(II) Extraction 

 

As described in Chapter 2, the current consensus regarding substituent effects on 

salicylaldoxime extractive efficacy is that the more acidic the ligand, the stronger the 

extractant.30, 31  To investigate the role of ligand acidity on extractant strength, pKa 

values for the phenolic proton need to be determined.  The pKa values of the ligands 

could not be measured by pH titration, due to their tendency to hydrolyse in low pH 

solutions.32  Values were calculated by Daniel Tackley at Intertek ASG on behalf of 

Cytec Industries UK Ltd, using ACD/Labs pKa predictor v10.01.  Calculated pKa 

values for L1-L9, alongside their relative extractive efficacies, are shown overleaf in 

Table 3.1.   

 

The calculated pKa values vary in a similar fashion to the pH0.5 values, suggesting 

that acidity of the phenol is more important than the basicity of the conjugate 

phenolate.   
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22

2
2

]][[
]][[

LHCu

HCuL
K e +

+

=

Ligand Substituent Calculated pKa pH0.5 

L1 H 9.32 ± 0.48 1.68 

L2 Me 9.66 ± 0.50 1.67 

L3 t-Bu 10.68 ± 0.50 2.64 

L4 NO2 6.58 ± 0.40 n/a[a] 

L5 Cl 7.84 ± 0.50 0.91 

L6 Br 7.77 ± 0.50 0.42 

L7 OMe 9.31 ± 0.50 1.09 

L8 H[b] 9.33 ± 0.50 1.73 

L9 NO2
[b] 6.60 ± 0.40 0.70 

[a]Could not be measured due to poor solubility of the CuII complex, as described in Chapter 2.  
[b]These ligands have a t-octyl group in the 5-position, replacing the t-butyl groups of L1 and L4. 

 

Table 3.1:  Calculated pKa values for L1-L9 alongside pH0.5 values measured in Chapter 2. 

 

If we consider the pH dependent equilibrium for formation of the neutral complex in 

a single phase, the equilibrium constant Ke is defined by: 

 

Equation 3.4  Cu
2+ + 2LH  [CuL2] + 2H

+  

 

The two step replacement of water ligands and the overall equilibrium constant, ß2, 

are represented by: 

 

Equation 3.5  Cu
2+ + 2L

− [CuL2]  

 

As the formation of the anionic form of the ligand LH is defined by the acid 

dissociation constant Ka, 

 

Equation 3.6  LH L
− + H

+ 
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by rearranging the expression for Ka and substituting the value for [H+] into the 

expression for Ke, we obtain: 

 

Equation 3.7  Ke = β2Ka

2  

 

The square dependence of Ke on Ka suggests that the phenol acidity has a greater 

effect on Ke than the phenolate basicity, but this may be an oversimplification in that 

two phenolates must coordinate to form the neutral complex.   

 

Electron-withdrawing substituents (e.g. Cl, Br and NO2 in L5, L6 and L9) which 

increase Ka have a beneficial effect on “strength”, but the most acidic ligand (L9) is 

not the strongest extractant (L6).  These substituents may also have a beneficial 

effect on intracomplex H-bonding by forming bifurcated H-bonds, “buttressing” the 

stabilising motif.  L7, which contains a substituent with slightly electron-donating 

properties, is a much stronger extractant than its unsubstituted analogue L1.  This 

suggests that the effect of the electronic properties of the substituent on the phenol 

group may not be as important as the ability to buttress the intracomplex H-bonding 

and provide a positive contribution to complex stability.  Consequently, a 

comprehensive study of the H-bonding in the ligands and their copper(II) complexes 

was undertaken in this chapter to determine which substituent effect is dominant. 

 

 

3.3 Hole-Sizes 

 

Both salicylaldoxime dimers and their copper(II) complexes form a 

pseudomacrocyclic, H-bonded cavity in the solid state, the size of which can be 

defined as the mean distance from the N and O donor atoms to the centroid of the 

cavity.  The "hole sizes" of dimers and complexes could give information to the 

strength of the H-bonding and thus extractive efficacy.  
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3.3.1 Copper(II) Complexes 

 

It might be expected that the N2O2
2- cavity, the “hole size” in solid state structures of 

copper(II) complexes of phenolic oximes similar to L1-L9, would relate to the 

“strength” of their ligands in extraction, with stronger extractants having smaller hole 

sizes.  The determination of the structures of [Cu(L1-H)2], [Cu(L2-H)2], [Cu(L3-

H)2], [Cu(L4-H)2(py)2], [Cu(L6-H)2] and [Cu(L7-H)2] (Chapter 2) has shown that 

several different supramolecular architectures arise in the solid state from axial 

contacts to the copper atom and from other packing effects.  Such architectures 

commonly result from face-to-face or edge-to-face association of [Cu(L-H)2] units, 

with phenoxide or oxime oxygen atoms lying in the axial sites of the planar CuO2N2 

units.  Whatever the nature of intermolecular association in the solid state through 

these axial sites, it will perturb the bond lengths in the coordination sphere via Jahn-

Teller distortions,10 and consequently, we would not expect and do not find a 

correlation between the hole size in the solid state and the stability of the complex in 

solution.  This is demonstrated by the data in Table 3.2 which show that the order of 

decreasing hole size does not correlate with increasing extraction strength.   

 

Ligand Substituent Hole Size pH0.5 

L6 Br 1.920(4) 0.42 

L4[a] NO2 1.938(9)[b] n/a[c] 

L7 OMe 1.909(6) 1.09 

L2 Me 1.909(5)[b] 1.67 

L1 H 1.924(4)[d] 1.68 

L3 t-Bu 1.922(11)[b] 2.64 
 

[a]Crystallised as a bis-pyridine adduct.  [b]Values are average of 2 crystallographically independent 

half-molecules.  [c]Could not be measured due to poor solubility of the CuII complex as described in 

Chapter 2, but a value of 0.70 was measured for the 5-t-octyl substituted analogue L8.  [d]Values are 

average of 3 crystallographically independent half-molecules. 

 

Table 3.2:  Comparison of solid state cavity sizes in copper(II) complexes of L1, L2, L3, L4, L6 and 

L7 with their respective pH0.5 values measured in Chapter 2. 
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3.3.2 Ligands 

 

As the solid state structures of the copper(II) complexes were deemed inappropriate 

for assessing ligand:ligand association, the X-ray crystal structures of the free ligands 

were investigated.  Salicylaldoximes are known to dimerise in the solid state,33 and it 

is expected that 3-substituents will “buttress” the hydrogen bonding in these dimers 

and so affect hole size (Figure 3.5).  Groups which are capable of accepting a H-bond 

should stabilise the dimer by forming a bifurcated H-bond, the result of which is 

expected to be a smaller cavity size (defined as the mean distance from the donor 

atoms to the centroid of the dimer).  Bulky groups will clash sterically with the H-

bonds, and so weaken the dimer and increase cavity size. 
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Figure 3.5:  The interaction of the 3-substituent (X) with the pseudomacrocyclic hydrogen bonding 

motif of a salicylaldoxime dimer. 

 

As described in Chapter 2, only ligands L2, L3, L5 and L6 formed 

pseudomacrocyclic dimers in the solid state, meaning a comprehensive hole-size 

study could not be undertaken.  It is thought that bulky groups in the 5-position (R in 

Figure 3.5) inhibit dimerisation due to their steric influence on crystal packing.33  For 

those ligands which did dimerise, the hole sizes are displayed in Table 3.3.  The 

cavity size of the solid state dimers is smaller for L5 and L6, which may be able to 

form bifurcated H-bonds, and larger for L3, which has a bulky t-butyl group.  L2 has 

an intermediate hole size value due to the methyl substituent's small size and 

inability to accept H-bonds.  This provides tentative evidence of the effect of the 3-

substituent on interligand hydrogen bonding, suggesting that the substituent can 

buttress the H-bonding and so possibly stabilise (or indeed weaken) salicylaldoxime 

dimers.   
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Ligand Substituent Hole Size / Å pH0.5 

L6 Br 1.968(8)[a] 0.42 

L5 Cl 1.973(8)[a] 0.91 

L2 Me 2.003(2) 1.67 

L3 t-Bu 2.025(1) 2.64 
[a]Average of 4 crystallographically independent dimers. 

 

Table 3.3:  Solid state hole sizes of L2, L3, L5 and L6 and their pH0.5 values measured in Chapter 2. 

 

Cavity sizes also decrease as the extractive efficacy of the ligands increase, 

suggesting that this stabilisation may also occur in copper(II) complexes during 

solvent extraction.  The hole sizes also roughly follow the pKa values, although L6 is 

a stronger extractant than L5 despite having substituents with similar electronic 

properties.  To examine the hypothesis that H-bond buttressing may be mainly 

responsible for the strength of ligand:ligand association and hence copper(II) 

extraction strength, a more extensive range of free ligand dimers were prepared and 

studied.  These have no 5-substituents as this appears to favour dimer formation in 

the solid state.33 

 

 

3.3.3 Salicylaldoximes 

 

Salicylaldoximes L11-L16 (Figure 3.6) were synthesised from their salicylaldehyde 

precursors by the oximation process outlined in Chapter 2 (L10, salicylaldoxime 

itself, was available commercially).  L11-L15 were prepared in high yields and 

purity, and, along with L10, were successfully characterised by X-ray 

crystallography.  The purification and crystallisation of 3-nitrosalicylaldoxime, L16, 

was hampered by the low solubility of the compound.   
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Figure 3.6:  Potential interaction of the 3-X-substituent with the intradimer 14-membered 

pseudomacrocyclic H-bonding in the salicylaldoxime dimers L10-L16. 

 

It may be expected that L16 would not form 14-membered pseudomacrocyclic 

dimers in the solid state, as the previously characterised 3-nitrosalicylaldoximes L4 

and L9 show an alternative arrangement with 6-membered oxime dimers, described 

in Chapter 2.  For these reasons no further attempts were made to purify L16.  

 

The crystal structures of L10-L15 show the expected 14-membered 

pseudomacrocyclic dimeric arrangement, and the interaction of the 3-substituent with 

the H-bonding is evident in the structure of L15 (Figure 3.7).   

 

 
 

Figure 3.7:  Interaction of the 3-OMe group with intermolecular hydrogen bonding in the solid state 

structure of L15 (with selected atoms labels, hydrogen atoms not involved in H-bonding omitted for 

clarity). 
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The structures of L10 and L15 have been reported previously,34,35 but were 

determined and refined again at Edinburgh under conditions identical to the rest of 

the series to ensure comparability of data with the other ligands.  Interestingly, a 

novel polymorph of L10 was also crystallised which does not show dimer formation.  

1D H-bonded ribbons, similar to those seen in the structures of L1, L7 and L8, are 

present.36 

 

Cavity sizes were measured for the dimers of L10-L15, and are listed alongside the 

relative extractive efficacies of their 5-alkyl substituted analogues (L1, L2, L3, L5, 

L6 and L7) in Table 3.4. 

 

Substituent Ligand pH0.5 Ligand Hole Size / Å 

H L1 1.68 L10 2.0048(15) 

Me L2 1.67 L11 2.0237(18) 

t-Bu L3 2.64 L12 2.0367(19) 

Cl L5 0.91 L13 1.9837(12) 

Br L6 0.42 L14 1.9726 (53) 

OMe L7 1.09 L15 1.9492(19) 

 

Table 3.4:  Comparison of extractive efficacy of 3-X-5-alkyl-substituted ligands with the cavity sizes 

of the related 3-X-salicylaldoximes. 

 

The cavity sizes follow the order L15 (OMe) < L14 (Br) < L13 (Cl) < L10 (H) < 

L11 (Me) < L12 (tBu).  The radii of the cavities are significantly smaller in the 

dimers of L13, L14 and L15 which have hydrogen bond accepting 3-substituents and 

larger in L12 which has a bulky 3-substituent, suggesting that buttressing of the 

hydrogen bonding by the 3-substituent is a dominant factor in stabilising the 

assembly.   

 

The extractive efficacies of the 5-alkyl-substitued analogues L1-L9 follow a similar 

trend.  It is generally assumed (Section 3.2) that lowering the pKa of the acidic 

groups in “pH-swing” extractants leads to an increase in strength.30,31  If this were the 
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major influence in the series then the incorporation of an electron-releasing group 

such as OMe in L7 would raise the pKa of the phenol group relative to that in the 

unsubstituted ligand L1 and weaken the extractant.  This is clearly not the case, 

although the electron-releasing properties of the methoxy group may account for L7 

being a slightly weaker extractant than its chloro- and bromo- analogues, L5 and L6.  

Overall, analysis of the data in Table 3.4 suggests that the effects of the 3-

substituents on H-bond buttressing or on sterically hindering the formation of the 14-

membered pseudomacrocycle are an important feature of ligand design to tune 

extractant strength. 

 

 

3.3.4 Analysis of Intradimer Forces by PIXEL 

 

Interaction energies within the dimers in the solid state (Table 3.5) were analyzed by 

the PIXEL method, which models coulombic, polarisation, dispersive and repulsion 

contributions.4,5  Calculations were carried out by Dr Peter Wood and Professor 

Simon Parsons at the University of Edinburgh (Section 3.9.4).  The calculations were 

based on the geometry of the ligand observed in the crystal structure; the differences 

listed in Table 3.5 were found by repeating the calculation with the same geometry, 

but with the substituent replaced by an H atom, and subtracting the initial values.  

This ensured the energies were not influenced by subtle crystal packing effects. 

 

 
L15 

(OMe) 

L14 

(Br) 

L13  

(Cl) 

L10  

(H) 

L11 

(Me) 

L12 

(tBu) 

Ecoulombic / kJ mol-1 -4.8 -2.2 -0.5 0.0 +0.2 +2.1 

Erepulsion / kJ mol-1 -0.4 +0.7 0.0 0.0 +0.6 +6.2 

Epolarisation / kJ mol-1 -1.0 -1.4 -1.0 0.0 -0.8 -2.7 

Edispersion / kJ mol-1 -0.8 -1.3 -1.5 0.0 -1.5 -5.8 

ETOTAL / kJ mol-1 -7.0 -4.2 -3.0 0.0 -1.5 -0.2 

 

Table 3.5:  Interaction energies between the halves of each of the 3-substituted dimers relative to their 

unsubstituted analogues, as estimated by the PIXEL method. 
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Again the ligands with H-bond acceptor substituents, L13, L14 and L15, show the 

most favourable ligand-ligand attraction.  The coulombic term, Ecoul, is favourable in 

all three cases, indicating formation of stabilising bifurcated H-bonds.  The term is 

much larger for the OMe-substituted ligand L15, due possibly to its closer proximity 

to the hydrogen bonding or its properties as a good H-bond acceptor,37 and the term 

is larger for the Br substituted ligand than the Cl substituted ligand.  This suggests 

that the larger size of the Br atom either provides a better H-bond acceptor than the 

Cl atom, or is closer to the oxime proton and so a stronger interaction is possible.   

 

A large repulsion term (Erep) is seen for the tBu substituted ligand L12, which may 

explain both its large hole size and poor extractive efficacy.  This is further evidence 

of destabilising steric clashes between the bulky group and the H-bonding. 

 

However, the method also suggests that there is a slightly stronger net attraction 

between the two halves of the Me and tBu substituted dimers, [L11]2 and [L12]2, 

than in the unsubstituted system [L10]2.  Both have large, favourable dispersion 

terms, Edisp, due to the number of electrons in the substituents, and it is possible that 

this may be over estimated as it is the most parameterised.38 

 

 

3.3.5  H-Bond Buttressing in Copper(II) Complexes 

 

The results from Sections 3.3.3 and 3.3.4 suggest that the 3-substituent can interact in 

both a positive and negative manner with the intradimer hydrogen bonding in 

salicylaldoxime dimers.  Despite the unsuitability of the copper(II) complexes for 

cavity size analysis (Section 3.3.1), the solid state structures can still be examined for 

evidence of interaction between the 3-substituent and the intracomplex hydrogen 

bonding motif. 

 

A space filling diagram of one of the crystallographically independent molecules 

found in the crystal structure of [Cu(L3-H)2] (Figure 3.8) shows the 3-t-butyl group 

and the oximic proton adopting a staggered conformation, to minimise disruption of 
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the hydrogen bonding without distorting the coordination sphere of the copper 

centre. 

 

 

Figure 3.8:  A space-filling diagram of the centrosymmetric molecule of [Cu(L3-H)2] from its solid 

state structure, showing interaction of the 3-t-Bu substituent with the intracomplex hydrogen bonding 

motif. 

 

In the solution phase, it is expected that free rotation of the tBu group would disrupt 

the stabilising hydrogen bonding motif, and this may be the reason that L3 is the 

weakest extractant. 

 

The formation of bifurcated hydrogen bonds in the uncomplexed salicylaldoxime 

dimers of L13-L15 (Section 3.3.3) have been shown to decrease cavity sizes and so 

stabilise the dimer.  The solid state structure of [Cu(L4-H)2(py)2] (py = pyridine, 

Figure 3.9) clearly illustrates the formation of bifurcated hydrogen bonds in the 

copper(II) complex, which are expected to stabilise the molecule29 and may explain 

the high extraction strength of L4.   

 

 

Figure 3.9:  Bifurcated hydrogen bonds in the crystal structure of [Cu(L4-H)2(py)2]. Hydrogen atoms 

not involved in H-bonding and pyridine molecules removed for clarity. 
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3.4 Computational Chemistry 

 

The experimental evidence to determine substituent effects has, to this point, been 

based on solid state structures and their comparison with binding strengths 

determined using solvent extraction, a solution technique.  The gas phase may be 

seen as a similar medium to the non-polar solvents used in industrial processes, 

where complexes are likely to be poorly solvated.  Consequently, ab initio and DFT 

calculations were carried out to determine if buttressing of interligand hydrogen 

bonding occurs in the gas phase.   

 

All calculations were performed on the EaStCHEM Research Computing Facility 

using Gaussian 0339 with the assistance and guidance of Dr Andrew Turner (Section 

3.9.5).  Various methods were assessed, including Hartree-Fock (HF), second order 

truncated Moller Plesset (MP2)40-45 and the DFT exchange function of Tao, Perdew, 

Staroverov and Scuseria (TPSSTPSS).46  The 6-31G basis set47-53 was used and in 

some cases polarisation and diffuse functions were included.54  To estimate basis set 

superposition errors in dimerisation calculations, the counterpoise correction was 

utilised.55,56   

 

 

3.4.1 HF/6-31G 

 

The first set of calculations was run at the HF/6-31G level, a simplified but fast 

method with a limited basis set which allows initial results to be determined and 

studied quite quickly, and is a good starting point on which to base higher level 

calculations.20  Dimerisation enthalpies, alongside cavity sizes from the solid state 

structures and the optimised gas phase structures are listed in Table 3.6.  Calculated 

enthalpies for dimerisation approximately follow the order predicted by the solid 

state hole sizes.  The results show a good comparison between solid state and gas 

phase cavity sizes, however the calculated hole size for 3-Me-salox (L11) is smaller 

than the unsubstituted compound L10.  This difference is not reflected in the 
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calculated dimerisation energies, with salicylaldoxime having a more favourable 

dimerisation enthalpy than 3-Me-salox.   

 

 
Hole Size / 

Å (XRD) 

Hole Size / 

Å (calc) 

Difference 

% 

�Edimerisation 

/ kJ mol-1 

Corrected 

to H-Salox 

L15 (OMe) 1.9492 (19) 1.9802 1.57% -66.4 -17.8 

L14 (Br) 1.9726 (53) 1.9799 0.38% -54.0 -5.4 

L13 (Cl) 1.9837 (12) 2.0073 1.18% -54.7 -6.1 

L10 (H) 2.0048 (15) 2.0242 0.96% -48.6 0.0 

L11 (Me) 2.0237 (18) 2.0219 0.09% -47.0 1.6 

L12 (tBu) 2.0367 (19) 2.0436 0.34% -34.7 13.9 

 

Table 3.6:  Enthalpies of dimerisation and geometry minimised hole sizes calculated at the HF/6-31G 

level. 

 

Also, the hole size calculated for 3-Br-salox (L14) is slightly smaller than that of 3-

MeO-salox (L15) but has a significantly smaller dimerisation enthalpy, which is 

slightly less than that for 3-Cl-salox (L13).  The PIXEL calculations reported earlier 

suggest that solid state dimerisation should be more favourable for L14 than L13, 

and as these results are contradictory, it was assumed that a more accurate method 

was required.   

 

Despite these problems, the initial results were encouraging, as, apart from L14, they 

show the expected trend between the enthalpy of dimerisation and the cavity size.  It 

should also be noted that the solid state hole sizes may be influenced by subtle 

crystal packing effects, which are absent in the gas phase geometries calculated by 

Gaussian03. 
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3.4.2 HF/6-31++G(d,p) 

 

The second set of calculations was run using the same Hartree-Fock method but with 

the larger basis set 6-31++G(d,p), which includes diffuse and polarisation functions 

for light and heavy atoms.  This added functionality is essential for accurate 

modelling of the H-bonding which is prevalent in the dimers.23  The results are listed 

in Table 3.7. 

 

 
Hole Size / 

Å (XRD) 

Hole Size 

/ Å (calc) 

Difference 

% 

�Edimerisation 

/ kJ mol-1 

Corrected 

to H-Salox 

L15 (OMe) 1.9492 (19) 2.0375 4.34% -40.2 -11.4 

L14 (Br) 1.9726 (53) 2.0493 3.75% -33.9 -5.1 

L13 (Cl) 1.9837 (12) 2.0632 3.85% -34.1 -5.3 

L10 (H) 2.0048 (15) 2.0853 3.86% -28.8 0.0 

L11 (Me) 2.0237 (18) 2.0842 2.90% -28.1 0.7 

L12 (tBu) 2.0367 (19) 2.1301 4.38% -18.7 10.0 

 

Table 3.7:  Enthalpies of dimerisation and geometry minimised hole sizes calculated at the HF/6-

31++G(d,p) level. 

 

Dimerisation enthalpies again follow the trend predicted by the solid state cavity 

sizes, with the magnitudes of the energy differences less than in the first set of 

calculations.  However, geometry optimised hole sizes are considerably larger than 

the solid state structures, and again L11 has a smaller hole size than L10.  The 

calculated hole size for L14 is now larger than that for L15, mirroring the trend seen 

in the crystal structures, but again the dimerisation enthalpy is not as favourable, 

being similar to that of L13. 

 

The addition of extra functionality to the basis set with the intention of improving the 

results has had the opposite effect, taking the values further from experimental 

observations.  However, the trends predicted by this method are more similar to those 

observed experimentally, suggesting that the larger basis set can aid accuracy.  The 
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initial results using HF/6-31G appear to be the consequence of a combination of a 

simplified method and a small basis set giving seemingly good values which are not 

scientifically sound.  For this reason, it was decided to investigate an alternative ab 

initio method. 

 

 

3.4.3 MP2/6-31G 

 

A third set of calculations was carried out using truncated second order Moller-

Plesset (MP2) theory, which improves on the Hartree Fock method by taking into 

account electron correlation effects.40-45  This method was expected to give a better 

description of the H-bonding in the systems.  Calculations were run using the basis 

sets 6-31G and 6-31++G(d,p), but those involving the latter required very large 

computational power, and in most cases did not converge.  This observation is 

consistent with other studies, and a debate exists regarding the reliability of the 

method for high order calculations.57 
 

Due to this computational problem, results could only be attained for MP2/6-31G 

calculations, and are displayed in Table 3.8. 

 

 
Hole Size / 

Å (XRD) 

Hole Size 

/ Å (calc) 

Difference 

% 

�Edimerisation 

/ kJ mol-1 

Corrected 

to H-Salox 

L15 (OMe) 1.9492 (19) 1.9581 0.46% -75.1 -15.4 

L14 (Br) 1.9726 (53) 1.9572 0.78% -65.9 -6.2 

L13 (Cl) 1.9837 (12) 1.9873 0.18% -66.3 -6.6 

L10 (H) 2.0048 (15) 2.0081 0.16% -59.7 0.0 

L11 (Me) 2.0237 (18) 2.0033 1.01% -58.5 1.2 

L12 (tBu) 2.0367 (19) 2.0144 1.10% -49.5 10.2 

 

Table 3.8:  Enthalpies of dimerisation and geometry minimised hole sizes calculated at the MP2/6-

31G level. 
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The dimerisation enthalpies show a similar trend to the HF calculated values, and 

have energy differences of similar magnitude.  The similarity of solid state and gas 

phase cavity sizes is encouraging, but the MP2 method has also calculated the hole 

size of 3-Me-salox (L11) to be smaller than salicylaldoxime (L10).  The calculated 

hole size for 3-Br-salox (L14) is again close to that of 3-MeO-salox (L15), but the 

dimerisation enthalpy is similar to 3-Cl-salox (L13).  These issues are common to 

both ab initio methods.  Del Bene et al
20 recommend MP2/6-31+G(d,p) as the 

minimum level of theory for studying hydrogen bonded complexes, and as MP2 

calculations using the larger basis set failed, DFT methods were considered. 

 

 

3.4.4 TPSSTPSS/6-31++G(d,p) 

 

TPSSTPSS is a pure DFT functional, and was chosen as it was claimed to be a fast 

method to accurately model H-bonding without being computationally 

demanding.46,58  Initial tests using this method with the 6-31++G(d,p) basis set 

confirmed these claims, running smoothly and converging appropriately, and so 

calculations with the smaller 6-31G basis set were not undertaken.  The results are 

displayed in Table 3.9. 

 

 
Hole Size / 

Å (XRD) 

Hole Size 

/ Å (calc) 

Difference 

% 

�Edimerisation 

/ kJ mol-1 

Corrected 

to H-Salox 

L15 (OMe) 1.9492 (19) 1.9715 1.13% -50.2 -9.5 

L14 (Br) 1.9726 (53) 1.9657 0.34% -45.2 -4.5 

L13 (Cl) 1.9837 (12) 1.9881 0.22 % -45.7 -5.0 

L10 (H) 2.0048 (15) 2.0049 <0.01% -40.7 0.0 

L11 (Me) 2.0237 (18) 2.0074 0.80% -39.3 1.4 

L12 (tBu) 2.0367 (19) 2.0452 0.42% -29.1 11.6 

 

Table 3.9:  Enthalpies of dimerisation and geometry minimised hole sizes calculated at TPSSTPSS/6-

31++G(d,p). 
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The correlation between solid state cavity size and gas phase dimerisation enthalpy is 

again present, with similar energy differences to the previous calculations.  The 

predicted binding energies are similar to the H-bonding enthalpies measured 

experimentally by IR spectroscopy (to be discussed in Section 3.7), indicating the 

method gives good theoretical representation of experimental observations.  The 

calculated cavity sizes give the best match with the solid state hole sizes of all the 

methods investigated, and the problem involving L11 having smaller calculated hole 

sizes than L10 in the ab initio methods has been resolved.  However, the hole size of 

L14 is again smaller than L15, which may indicate the ability of the 3-Br group to 

buttress the intermolecular H-bonding, but this is not reflected in the dimerisation 

enthalpy values.  Despite this, the results show the best correlation with observed 

values, suggesting that the DFT method with the TPSSTPSS functional is the most 

appropriate for calculating the binding enthalpies for salicylaldoxime dimers. 

 

 

3.4.5 Comparisons & Conclusions 

 

Some interesting conclusions can be drawn when studying the results of the 

computational studies.  It has been assumed so far that the differences in 

salicylaldoxime cavity size result from the variations in enthalpic favourability of the 

dimerisation process and, with the exclusion of the results obtained for 3-Br-salox 

(L14), this appears to be the case.  Plotting the cavity sizes from the energy 

minimised geometries versus the calculated dimerisation energies gives an 

approximately monotonic relationship between calculated hole size and dimerisation 

energy, with the only deviation from this trend resulting from the 3-

bromosalicylaldoxime hole size problem described previously. 
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Figure 3.10:  Comparison of calculated cavity sizes with calculated dimerisation energies for L10-

L15. 

 

The relationship becomes close to linearity when the basis set 6-31++G(d,p) is used, 

suggesting that the increased functionality models the system in a more accurate 

fashion.  The issue may be resolved by further increasing the complexity of the 

calculations, but this is expected to be time-consuming and is outwith the remit of 

this project.  Comparing the calculated dimerisation enthalpies with observed cavity 

sizes (Figure 3.11) further illustrates the good correlation obtained between theory 

and experiment, with the values again related in an approximately monotonic 

fashion.   
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Figure 3.11:  Comparison of observed solid state cavity sizes with calculated dimerisation energies 

for L10-L15. 
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The dimerisation enthalpy calculated for L14 seems to better fit the trend of observed 

hole sizes rather than that of the theoretical hole sizes, suggesting that the smaller 

values obtained during calculations may be slightly inaccurate. 

 

Overall, the gas phase calculations have proven very useful as a method of 

interpreting results depending on variations of ligand:ligand intermolecular 

interactions.  A large basis set is essential for accurate modelling of the intradimer 

hydrogen bonding and the DFT functional TPSSTPSS was the most appropriate 

method of the four tested.  The calculations have demonstrated that the order of 

dependence of observed cavity sizes on the nature of the 3-substituent correlates with 

the calculated enthalpy of association of the dimer, providing further evidence for 

buttressing of the intradimer hydrogen bonding motif by H-bond accepting 

substituents.  L13, L14 and L15 have substituents capable of forming bifurcated H-

bonds, and so dimerisation is more favourable and the cavity sizes are smaller than in 

the unsubstituted compound L10.  L11 has a substituent which can only slightly 

interact with the H-bonds and so has a very similar hole size and energy to L10.  L12 

contains a bulky group which disrupts the H-bond motif via steric clashes, and so has 

the least favourable dimerisation energy and the largest hole size of the series.   

 

 

3.5  Using FTIR to Probe Intradimer H-Bonding 

 

Section 3.1.3 described the sensitivity of IR stretching frequencies of X-H bonds 

involved in H-bonding interactions.  This phenomenon manifests itself in the IR 

spectra of salicylaldoximes, giving rise to characteristic bands in the O-H region of 

such spectra.  IR spectra of salicylaldoximes in solution show three distinct O-H 

bands, at ~3600 cm-1, ~3400 cm-1 and a broad signal at ~3200 cm-1 respectively, as 

seen in the spectrum of L6 (Figure 3.12) which is typical. 
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Figure 3.12:  IR spectrum of a 0.05 M CHCl3 solution of L6. 

 

The three bands have previously been assigned to the free NOH stretch (~3600 cm-1), 

the H-bonded NOH stretch (~3400 cm-1) and the phenolic OH stretch (~3200 cm-1).59  

As the peaks for both the free and H-bonded species are observed in the same 

spectrum, it is possible to estimate the enthalpy change associated with the solution 

H-bonding arrangement using the expression described by Rozenberg et al
13 (Section 

3.1.3).  Table 3.10 lists the peaks for the free and H-bonded oxime IR stretching 

vibrations alongside the estimated H-bond enthalpy and dimerisation enthalpy, which 

is twice the H-bond enthalpy as there are two H-bonds per dimer. 

 

The dimerisation enthalpies do not follow any noticeable trend, and also show 

discrepancies between values for the 3-NO2 substituted analogues L4 and L9.  They 

do not follow the pattern predicted by the calculations described in Section 3.4.4, but 

they are of similar magnitude, which, alongside previous literature reports, indicates 

that the IR technique is appropriate.   
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 Free NOH 

Stretch / cm-1 

H-Bonded NOH 

Stretch / cm-1 

�HH-bond / 

kJmol-1 

�HDimerisation / 

kJmol-1 

L1 3574.9 3407.6 -16.8 -33.6 

L2 3574.4 3416.3 -16.3 -32.7 

L3 3576.8 3442.8 -15.0 -30.1 

L4 3575.4 3401.8 -17.1 -34.3 

L5 3568.2 3433.2 -15.1 -30.2 

L6 3569.1 3436.5 -15.0 -29.9 

L7 3573.5 3412.9 -16.5 -32.9 

L8 3574.9 3392.7 -17.5 -35.1 

L9 3547.4 3427.9 -14.2 -28.4 

 

Table 3.10: Frequencies of NOH stretching vibrations and estimated H-bonding enthalpies for L1-L9. 

 

It may be that the different types of solid state assemblies of L1-L9, detailed in 

Chapter 2, persist in solution and account for to the differences between theory and 

experiment, particularly in the 3-NO2 substituted ligands L4 and L9.  This does not 

explain the differences seen in the values of these two analogous ligands, and it may 

be that the broad nature of the O-H stretching band makes accurate measurement 

difficult.  For these reasons, IR spectroscopic techniques were not investigated 

further. 

 

 

3.6 CIDMS Studies on Copper(II) Complexes 

 

Collision Induced Dissociation Mass Spectrometry (CIDMS) was assessed as a 

technique to compare the relative gas-phase stabilities of the copper(II) complexes of 

L1-L7, with the assistance and guidance of Dr Bridgette Duncombe and Christopher 

Brooks.  All data analysis was carried out by Dr Bridgette Duncombe (Section 3.9.7).  

Negative ion spectra were collected of the mass isolated precursor anion 

corresponding to the copper(II) complex exposed to varying intensities of collision-

inducing buffer gas.  Results are shown in the form of breakdown curves; normalised 
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plots of the ratio of precursor anion intensity to total ion current vs. the relative 

intensity of the buffer gas (Figure 3.13). 
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Figure 3.13:  CIDMS breakdown curves for the gas phase anions [Cu(L-H)(L)]- of the copper(II) 

complexes of L1-L7. 

 

Figure 3.13 clearly shows the difference in the energy of the buffer gas required to 

induce breakdown of each complex, indicating the differing stabilities of the 

complexes in the gas phase.  However, the relative stability order of the series is 

almost the opposite to that of the extractant strength order, with the CuII complex of 

the strongest extractant, L6, being the least stable in the gas phase.  A comparison of 

the two illustrates their similarities: 

 

Extractant strength (strongest first):  Br > NO2 > Cl > OMe > Me � H > tBu 

Gas-phase anion stability (lowest first): Br < NO2 < Cl < OMe � H < tBu < Me 

 

Electron-withdrawing groups and good hydrogen bond accepting groups appear to 

lower the stability of the gas phase anions.  Formation of the mono-anion is likely to 

involve loss of one of the oximic protons, giving an area of negative charge within 

the H-bonded pseudomacrocycle represented by the red circle in Figure 3.14.   
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Figure 3.14:  The potential effect of deprotonation on H-bonding and complex stability in the 

copper(II) complexes of L1-L7. 

 

It is reasonable to expect that 3-substituents which buttress intracomplex H-bonding 

in the neutral complexes will have the opposite effect on negative ions.  H-bond 

acceptors with well defined areas of partial negative charge lying in the plane of the 

complex will experience greater coloumbic repulsion and destabilise the complex.  In 

the representation in Figure 3.14, the destabilisation caused by X in the upper region 

of the complex for which the proton has been lost is expected to exceed the 

stabilisation of the lower region with the bifurcated H-bond.  Attempts to confirm 

this hypothesis will involve a more extensive range of experiments, including: 

 

• extending the work to positive-ion mode, 

• analysis of 5-substituted salicylaldoximes, which will only show the 

electronic effect of substitution on complex stability, 

• analysis of salicylaldoxime dimers, allowing a simpler analysis of the effect 

of substitution on H-bonding, and 

• DFT calculations to investigate the likely sites of protonation and 

deprotonation. 
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This work forms the basis of a new PhD studentship at the University of Edinburgh 

in collaboration with CYTEC Industries UK Ltd.  Initial work has focussed on 

refining the experimental technique to ensure that comparability of data is not 

compromised by varying conditions inside the mass spectrometer.  Optimisation of 

the method has shown that the same order as Figure 3.13, and thus the same 

substituent effects, persist and so further work will examine the gas phase substituent 

effects as described above.60 

 

 

3.7 EPR Spectroscopy 

 

The CuII ion in a square planar environment has a d9 electron configuration, with its 

paramagnetic nature making it suitable for analysis by EPR spectroscopy.10  

Parameters measured in a copper(II) EPR spectrum can give information on the 

bonding and donor environment of the unpaired electron: the copper and nitrogen 

hyperfine splitting constants, ACu and AN, can be used to predict the location of the 

unpaired electron in the system and the spectroscopic splitting factor, g, will vary 

from the value associated with a free electron, ge = 2.0023, depending on the 

coupling environment.10   

 

Spectra were recorded for the CuII complexes of L1-L9 at concentrations of 0.01 M 

in CHCl3, but the spectrum of [Cu(L4-H)2] could not be recorded due to its low 

solubility.  The simulated61 spectrum of [Cu(L3-H)2] is shown in Figure 3.15, and is 

typical of the spectra of each complex. 

 

The signal is split into four lines, consistent with coupling to the CuII centre which 

has the nuclear spin quantum number ICu = 1.5.  Each of these four lines is split into 

five further lines with relative intensities of 1:2:3:2:1, consistent with coupling to two 

equivalent nitrogen atoms (one from each salicylaldoxime ligand) as nitrogen has a 

nuclear spin quantum number IN = 1.62  These spectra are similar to many reported in 

the literature.15-18 
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Figure 3.15:  Simulated61 EPR spectrum of [Cu(L3-H)2], based on the experimentally determined 

hyperfine splitting constants and spectroscopic splitting factor. 

 

Hyperfine coupling constants and spectroscopic splitting factors for all complexes 

studied, measured using WinEPR SimFonia,61 are listed in Table 3.11. 

 

Complex ACu (G) NCu (G) g 

[Cu(L1-H)2] 90 18 2.0987 

[Cu(L2-H)2] 91 17 2.0977 

[Cu(L3-H)2] 90 18 2.0987 

[Cu(L5-H)2] 91 18 2.0987 

[Cu(L6-H)2] 91 18 2.0977 

[Cu(L7-H)2] 92 18 2.0957 

[Cu(L8-H)2] 91 17 2.0977 

[Cu(L9-H)2] 91 17 2.1007 

 

Table 3.11:  EPR parameters from experimental spectra. 

 

The data in Table 3.10 shows that there are no significant differences in the EPR 

spectra of the CuII complexes.  All show coupling of the unpaired electron to the 

copper centre and two identical nitrogen atoms, with similar hyperfine coupling 

Magnetic Field /G 3000 3500 



Chapter 3: Analysis of 3-Substituted Salicylaldoximes 

115 

constants, and have g > ge, indicating the electron is coupling to filled orbitals.  The 

data confirm that the solid state structure persists in solution, but the technique is not 

sensitive enough to give information about any differences in the environment of the 

CuII centre in the complexes. 

 

ENDOR (Electron Nuclear DOuble Resonance) spectroscopy is a more sensitive 

technique and may give further information on solution structure around the 

paramagnetic CuII ion.63   

 

 

3.8  Conclusions and Future Work 

 

Analysis of the solid state cavity sizes of L2, L3, L6, L7 and L10-L15 has shown the 

effect of 3-substitution on the stability of the pseudomacrocyclic H-bonded dimer 

assembly.  Measurement of H-bond enthalpies by FTIR demonstrated the complexity 

of the substituent effects and of solution structures of the ligands.  Pixel and DFT 

calculations on L10-L15 have confirmed that the 3-substituent can buttress the H-

bonding, with substituents capable of accepting H-bonds significantly stabilising the 

dimer.  This stabilisation correlates well with the relative extraction strengths of L1-

L9 measured in Chapter 2, which indicates that H-bond buttressing is a major 

contributing factor to the differences in the extractive efficacies of salicylaldoxime 

ligands induced by 3-substitution.  However, it is also evident that the electronic 

effect of the 3-substituent on the acidity of the ligand is an important factor in the 

design of new reagents. 

 

Despite the unsuitability of the solid state structures of the copper(II) complexes for 

cavity size analysis, the interaction of the 3-substituent is apparent in the crystal 

structures of [Cu(L3-H)2] and [Cu(L4-H)2(py)2].  Attempts to study the cavity sizes 

in solution by EPR spectroscopy showed the similarities in solution structure of the 

complexes, and the technique is not sensitive enough to detect the minor changes in 

the CuII coordination sphere. 
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Gas phase stabilities of the complexes were investigated by CID mass spectrometry, 

and initial tests showed a gas phase stability order which was approximately the 

reverse of the extraction strength order.  This was thought to be due to the effects of 

ionisation on complex stability, alongside the prominence of electronic effects in the 

gas phase. 

 

Having established the ability of 3-substituents to buttress the interligand hydrogen 

bonding in salicylaldoxime dimers and CuII complexes, the next logical areas of 

study are to investigate the effect with alternative ligands and transition metals.  

Salicylaldehyde hydrazones could potentially form complexes with divalent metal 

cations with a very similar pseudomacrocyclic H-bonding arrangement to phenolic 

oximes (Figure 3.16). 

 

O

N O

N

N

NH

H

M

R

R
OH

N

NH

R
+ M2+2

+ 2H+

X
X

X
R'

R'

R'  

 

Figure 3.16:  Potential buttressing of H-bonds in metal complexes of salicylaldehyde hydrazones. 

 

These ligands are poor CuII extractants,64 and so buttressing the H-bonding may 

sufficiently strengthen them to allow commercial application. 

 

Pyrazolone oximes and 3-(2-hydroxyphenyl)-pyrazoles can both form complexes 

with divalent metal cations which show similar pseudomacrocyclic H-bonded arrays.  

Previous studies59 within the group have shown that their copper(II) extraction 

strengths are unsuitable for industrial use (too high and too low respectively) and so 

H-bond buttressing (Figure 3.17) may be appropriate in tuning extraction strength 

and fulfilling the commercial potential of these ligands. 
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Figure 3.17:  Potential buttressing of H-bonds in metal complexes of 3-(2-hydroxyphenyl)-pyrazoles 

(1) and pyrazolone oximes (2). 

 

Phenolic oximes are unsuitable as CoII extractants due to the spontaneous oxidation 

of the metal cation to CoIII to form octahedral complexes, which makes stripping at 

practicably low pH impossible.30  However, it has been found that salicylaldoximes 

with a 3-NO2 group stabilise the CoII cation, and crystal structures of two DMSO-

capped, octahedral CoII complexes have been reported.65  The origin of the effect is 

thought to lie in the weakening of the �-bond donating property of the 

salicylaldoxime due to the inclusion of an electron-withdrawing substituent in the 

ortho position, giving a weaker-field ligand which favours CoII stabilisation.  

However, it may be possible that the buttressing of the H-bonding and subsequent 

reduction in cavity size afforded by the 3-NO2 group is a significant contributing 

factor, and a comprehensive study is required. 

 

 

3.9 Experimental 

 

3.9.1 Chemicals and Instrumentation 

 

All solvents and reagents were used as received from Aldrich, Acros, Apollo and 

Fisher.  1H and 13C NMR were obtained using a Bruker AC250 spectrometer at 

ambient temperature.  Chemical shifts (�) are reported in parts per million (ppm) 



Chapter 3: Analysis of 3-Substituted Salicylaldoximes 

118 

relative to internal standards.  Fast atom bombardment mass spectrometry (FABMS) 

was carried out using a Kratos MS50TC spectrometer with a thioglycerol or 3-

NOBA matrix.  Elemental analysis was carried out on a Carlo Erba CHNS analyser 

at the University of St Andrews. 

 

 

3.9.2 Ligand Synthesis 

 

X

OH NOH

Ha

Hb

Hc

 
Figure 3.18:  Numbering scheme for 1H NMR interpretation 

 

Oximation General Procedure.  c1.2 equivalents of KOH and NH2OH.HCl were 

dissolved separately in EtOH, mixed thoroughly and a white KCl precipitate 

removed by filtration.  The filtrate was added to the precursor aldehyde, refluxed for 

3 hr and the solvent removed in vacuo.  The residue was redissolved in CHCl3, 

washed with water 3 times, dried over MgSO4 and the solvent removed in vacuo to 

yield the crude product.  

 

Salicylaldoxime (L10).  Purchased from Acros and recrystallised from petroleum 

ether (b.p. 60-80) to give fine white needles.  A colourless block suitable for x-ray 

diffraction was grown by slow evaporation of a hexane/chloroform solvent. 

 

3-Methylsalicylaldoxime (L11).  Using the general procedure, 3-

methylsalicylaldehyde (1.000 g, 7.4 mmol) was reacted with KOH (0.425 g, 7.6 

mmol) and NH2OH.HCl (0.530 g, 7.6 mmol) to yield a white powder, which was 

recrystallised from hexane to give an off white solid. (0.889 g, 80%).  A colourless 

rod suitable for x-ray diffraction was grown by slow evaporation of a 
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hexane/chloroform solvent.  (Anal. Calc. for C8H9NO2: C, 63.6; H, 6.0; N, 9.3. 

Found: C, 63.2; H, 6.0; N, 9.4%); 1H NMR (250 MHz, CDCl3): �H (ppm) 2.20 (s, 

3H, ArCH3), 6.75 (t, 1H, ArHb), 6.95 (dd, 1H, ArHc), 7.08 (dd, 1H, ArHa); 
13C NMR 

(63 MHz, CDCl3): �C (ppm) 14.5 (1C, Ar-CH3), 115.0 (1C, aromatic C), 118.5 (1C, 

aromatic CH), 125.0 (1C, aromatic C), 127.5 (1C, aromatic CH), 132.0 (1C, 

aromatic CH), 152.5 (1C, Ar-CHN), 154.5 (1C, aromatic C); FABMS m/z 152 

(MH)+, 83%. 

 

3-tert-Butylsalicylaldoxime (L12).  Using the general procedure, 3-tert-

butylsalicylaldehyde (2.500 g, 14.0 mmol) was reacted with KOH (1.347 g, 24.0 

mmol) and NH2OH.HCl (1.418 g, 20.4 mmol) to yield a white powder, which was 

recrystallised from hexane to give white needles (2.341 g, 87%).  A colourless block 

suitable for X-ray diffraction was grown by slow evaporation of a hexane/chloroform 

solvent.  (Anal. Calc. for C11H15NO2: C, 68.4; H, 7.8; N, 7.3. Found: C, 68.4; H, 8.3; 

N, 7.4%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.34 (s, 9H, C(CH3)3), 6.78 (t, 1H, 

ArHb), 6.95 (dd, 1H, ArHc), 7.22 (dd, 1H, ArHa); 
13C NMR (63 MHz, CDCl3): �C 

(ppm) 29.5 (3C, C(CH3)3), 35.5 (1C, C(CH3)3), 117.0 (1C, aromatic C), 119.5 (1C, 

aromatic CH), 129.5 (1C, aromatic CH), 130.0 (1C, aromatic CH), 138.0 (1C, 

aromatic C), 154.5 (1C, Ar-CHN), 157.0 (1C, aromatic C); FABMS m/z 194 (MH)+, 

100%.  

 

3-Chlorosalicylaldoxime (L13).  Using the general procedure, 3-

chlorosalicylaldehyde (0.431 g, 2.8 mmol) was reacted with KOH (0.169 g, 3.0 

mmol) and NH2OH.HCl (0.209 g, 3.0 mmol) to yield a white powder (0.376 g, 80%).  

A colourless plate suitable for X-ray diffraction was grown by slow evaporation of 

DCM.  (Anal. Calc. for C7H6ClNO2: C, 49.0; H, 3.5; N, 8.2. Found: C, 49.4; H, 3.1; 

N, 8.0%); 1H NMR (250 MHz, CDCl3): �H (ppm) 6.78 (t, 1H, ArHb), 7.05 (dd, 1H, 

ArHa), 7.30 (dd, 1H, ArHc), 8.15 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C 

(ppm) 117.0 (1C, aromatic C), 121.0 (1C, aromatic CH), 122.0 (1C, aromatic C), 

129.5 (1C, aromatic CH), 132.0 (1C, aromatic CH), 153.0 (1C, Ar-CHN), 154.0 (1C, 

aromatic C); FABMS m/z 172 (MH)+, 100%. 
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3-Bromosalicylaldoxime (L14).  Using the general procedure, 3-

bromosalicylaldehyde (0.499 g, 2.5 mmol) was reacted with KOH (0.280 g, 5.0  

mmol) and NH2OH.HCl (0.348 g, 5.0 mmol) to yield a white powder which was 

recrystallised from chloroform to give colourless needles (0.420 g, 78%).  A 

colourless rod suitable for X-ray diffraction was grown by slow evaporation of 

toluene.  (Anal. Calc. for C7H6BrNO2: C, 38.9; H, 2.8; N, 6.5. Found: C, 39.1; H, 

2.4; N, 6.2%); 1H NMR (250 MHz, MeOD): �H (ppm) 5.24 (t, 1H, ArHb), 5.65 (dd, 

1H, ArHa), 6.87 (dd, 1H, ArHc), 6.64 (s, 1H, ArCHN); 13C NMR (63 MHz, MeOD): 

�C (ppm) 110.0 (1C, aromatic C), 118.8 (1C, aromatic C), 120.4 (1C, aromatic CH), 

129.6 (1C, aromatic CH), 133.8 (1C, aromatic CH), 150.6 (1C, Ar-CHN), 154.0 (1C, 

aromatic C); FABMS m/z 217 (MH)+, 35%. 

 

3-Methoxysalicylaldoxime (L15).  Using the general procedure, 3-

methoxysalicylaldehyde (3.000 g, 19.7 mmol) was reacted with KOH (1.347 g, 24.0 

mmol) and NH2OH.HCl (1.418 g, 20.4 mmol) to yield an off-white powder, which 

was recrystallised from H2O to give white needles (2.612 g, 79%).  A colourless 

block suitable for X-ray diffraction was grown by slow evaporation of chloroform.  

(Anal. Calc. for C8H9NO3: C, 57.5; H, 5.4; N, 8.4. Found: C, 57.4; H, 5.6; N, 8.6%); 
1H NMR (250 MHz, CDCl3): �H (ppm) 4.12 (s, 3H, OCH3), 7.08 (m, 3H, 3 x ArH), 

8.42 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 56.5 (1C, OCH3), 113.0 

(1C, aromatic CH), 117.0 (1C, aromatic C), 120.0 (1C, aromatic CH), 125.0 (1C, 

aromatic CH), 146.5 (1C, aromatic C), 147.5 (1C, aromatic C), 153.0 (1C, Ar-

CHN); FABMS m/z 168 (MH)+, 91%. 

 

3-Nitrosalicylaldoxime (L16).  Using the general procedure, 3-nitrosalicylaldehyde 

(1.000 g, 6.0 mmol) was reacted with KOH (0.341 g, 6.0 mmol) and NH2OH.HCl 

(0.422 g, 6.0 mmol) to yield a yellow powder (0.827 g, 76%).  (Anal. Calc. for 

C7H6N2O4: C, 46.2; H, 3.3; N, 15.4. Found: C, 38.9; H, 2.5; N, 13.3%); 1H NMR 

(250 MHz, MeOD): �H (ppm) 7.12 (t, 1H, ArHb), 7.92 (dd, 1H, ArHa), 8.08 (dd, 1H, 

ArHc), 8.48 (s, 1H, ArCHN); 13C NMR (63 MHz, MeOD): �C (ppm) 121.5 (1C, 

aromatic CH), 124.0 (1C, aromatic C), 128.0 (1C, aromatic CH), 135.5 (1C, 
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aromatic CH), 138.5 (1C, aromatic C), 148.0 (1C, Ar-CHN) 153.5 (1C, aromatic C); 

FABMS m/z 183 (MH)+, 52%. 

 

 

3.9.3 X-Ray Structure Determinations 

 

The crystal structures of L10-L13 and L15 were solved by Dr Peter Wood and L14 

by Fraser White at the University of Edinburgh Crystallography Service.  Diffraction 

data were collected for each compound at ambient pressure and temperature on a 

Bruker APEX diffractometer with graphite-monochromated Mo-K radiation (� = 

0.71073 Å). The data were integrated using SAINT66 and corrected for absorption 

with SADABS67. The structures were solved using the program SIR-9268 and refined 

using the program CRYSTALS69. Information on the solutions, and appropriate cif 

files can be found in appendix 7.3.1. 

 

 

3.9.4 PIXEL Calculations 

 

PIXEL calculations were carried out by Dr Peter Wood and Professor Simon Parsons 

at the University of Edinburgh.  The geometry of the final crystal structure of each 

ligand was used to calculate the molecular electron density by standard quantum 

chemical methods using the program GAUSSIAN986 with the MP2/6-31G** basis 

set.  H-atom distances were set to standard neutron values (CH = 1.083 Å, OH = 

0.983 Å).  The electron density model of the molecule was then analysed using the 

program package OPiX4 which allow the calculation of dimer and lattice energies.  

The process was repeated in each case using the same geometry with the 3-

substituent replaced by a proton, allowing calculation of the difference in energy 

between substituted and unsubstituted compounds.  Dimer calculations were carried 

out for the pairs of molecules relating to the hydrogen bonded ring motif in each 

structure. The output from these calculations yields a total energy and a breakdown 

into its electrostatic, polarisation, dispersion and repulsion components.5 
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3.9.5 Ab Initio and DFT Calculations 

 

All calculations were performed on the EaStCHEM RCF using Gaussian 0339 with 

the assistance and guidance of Dr Andrew Turner.  Using the crystal structure 

geometries or previously optimised geometries of the dimer and the free ligand, 

structural optimisations of both the dimer and the monomer were carried out and the 

dimerisation enthalpy was calculated as, 

 

Equation 3.8   
Hdimer = ED – 2EM 

 

where ED is the minimised energy of the dimer and EM the minimised energy of the 

monomer.  This is a valid calculation as the dimer has the same number of electrons 

as two monomers.  To estimate the BSSE, a final counterpoise corrected calculation 

was run and the final enthalpy calculated as, 

 

Equation 3.9   
Hdimer = ED(C) - 2EM 

 

where ED(C) is the minimised dimer energy corrected for BSSE using the 

counterpoise command.  Calculated cavity sizes were measured from the geometry 

optimised structures of the dimers using ArgusLab 4.0.1.70  Calculation spreadsheets 

and results can be found in appendix 7.3.3. 

 

 

3.9.6 IR Conditions 

 

0.05 M solutions of L1-L9 in CHCl3 were prepared and their IR spectra collected on 

a JASCO FT/IR 410 spectrometer in a glass cell, using a CHCl3 background.  

Analysis of spectra was carried out using JASCO Spectra Manager version 1.53.00 

(Build 1).71  A spreadsheet of IR peaks for the OH groups of L1-L7 and bond 

enthalpy calculations is located in appendix 7.3.4. 
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3.9.7 CIDMS Conditions 

 

CIDMS experiments were performed in negative ion mode using a Finnigan liquid 

chromatograph quadrupole (LCQ) ion trap mass spectrometer.  40 	M solutions of 

the copper(II) complexes of L1-L7 in methanol were injected into the spray emitter 

with a Hamilton syringe at a rate of 35 	l min-1.  Ionisation was achieved with a 5.03 

kV potential difference between the spray emitter (5 kV) and heated capillary (-26 V) 

and a N2 backing gas pressure of 50 arbitrary units.  Droplet desolvation occurred in 

a stainless steel capillary that was heated to 443.15 K.  Molecular ions of the 

complexes were mass selected and breakdown was achieved by variation of the 

normalised collision energy (NCE). 

 

For each complex, spectra (average of 30 scans) were recorded over a range of 

normalised collision energies, and data analysed in Origin 7.5 SR6.72  Breakdown 

was calculated for each NCE by taking the precursor ion (PI) intensity and dividing 

by total ion current (TIC).  These values were normalised by dividing by the 

maximum observed PI / NTC value, and plotted against NCE to give an S-curve for 

molecular ion breakdown.  The curves for each complex are plotted in Figure 3.12 

and the data file located in appendix 7.3.5. 

 

 

3.9.8 EPR Conditions 

 

X-band EPR data were recorded on an X-band Bruker ER 200-D SRC spectrometer 

connected to a datalink 486DX desktop PC running EPR acquisition system version 

2.42.  0.01 M solutions in CHCl3 were run in a quartz flat cell.  The copper and 

nitrogen hyperfine coupling constants (ACu and AN) and the spectroscopic splitting 

factor (g) were measured using the program WinEPR SimFonia Version 1.25,61 

which was also used to simulate spectra.  Spectra are located in appendix 7.3.6. 
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4.1 Introduction 

 

4.1.1 Aims 

 

This chapter deals with the synthesis of a new class of metal salt extractants based on 

a salicylaldoxime scaffold, and an initial investigation into their ability to extract 

both a metal cation and its attendant anion(s) into a water-immiscible solvent.  The 

work involves: 

 

• the synthesis of six novel metal salt extractants, 

• the study of the loading of base metal sulfates and chlorides by the new 

extractants, 

• an investigation of the mode of action of extractants which show 

unexpectedly high loading of CuCl2 and ZnCl2, and 

• initial experiments to define the potential of these extractants for 

commercialisation. 

 

Like many other reagents, ligands capable of binding both a metal cation and its 

attendant anion(s) have the potential to perform the unit operations of concentration 

and separation in extractive hydrometallurgical circuits by transporting metal salts 

from the aqueous pregnant leach solution.1, 2  Until recently, there have been few 

attempts to distinguish mechanisms by which cations and their attendant anions can 

be transferred into a water-immiscible solvent.3  Several issues are considered in the 

sections below. 

 

A similar project ran in parallel with the research presented in Chapters 4 and 5.  Dr 

David K. Henderson was engaged in contract research at the University of 

Edinburgh, on behalf of Noranda Falconbridge, to identify reagents for the extraction 

of NiCl2 and CoCl2, and therefore considered variants of the ligands described in 

Section 4.1.4.     
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4.1.2 Solvating Metal Salt Extractants 

 

As in extraction using cation or anion exchange reagents (Chapter 1) the key to 

obtaining solubility of the metal-containing assembly in the water-immiscible solvent 

is that it should be charge neutral.  This can be achieved if the assembly contains the 

ions of the salt associated with a neutral extractant, and accounts for such reagents 

being termed “solvating extractants”.1  A major application is the extraction of uranyl 

nitrate by tri-n-butylphosphate4 described in Chapter 1.   

 

The CUPREX process5-8 for extracting CuCl2 utilises a pyridine dicarboxylic acid 

diester, CLX50, shown in Figure 4.1. 

 

N

ORRO

O O

R = iC10H21
N

N

N

N
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OO
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R = C13H27

CLX50
ZNX50

CH3H3C

 
 

Figure 4.1:  The solvating extractants CLX50 and ZNX50, which extract CuCl2 and ZnCl2 

respectively. 

 

CLX50 is a “chloride swing” extractant – it extracts at high chloride activity and can 

be stripped by aqueous solutions with low chloride activity.  Chloride activity, and 

hence the extraction equilibria, depend on the stability of the chlorometallate 

complexes in the feed solution.  A simplified flowsheet (overleaf in Figure 4.2) 

describes the CUPREX process. 

 

One of the main advantages of the CUPREX process follows from the oxidative 

ferric leach step which liberates sulfur.9  Removal of the sulfur content of ores in its 

elemental form rather than as sulfuric acid can avoid acid build up in the front end of 

the hydrometallurgical circuit, which is costly to neutralise and remove.10   
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• Leach:  4FeCl3 + 2Cu2S (s)   2CuCl2 + 4FeCl2 + S (s) 

• Extract:  2CuCl2 + 4L (org)  2CuL2Cl2 (org)  

• Strip:  2CuL2Cl2 (org)         2CuCl2  + 4L (org)  

• Electrowin: 2CuCl2     2Cu (s) + 2Cl2 (g)  

• Leach regen: 4FeCl2 + 2Cl2 (g)   4FeCl3  

 

• Overall: Cu2S (s)    2Cu (s) + S (s) 

 

Figure 4.2:  Flowsheet for CuCl2 extraction by the CUPREX process. 

 

However, chloride-based circuits can prove to be an engineering challenge.  The high 

chloride activity means corrosion is an issue and more expensive materials are 

needed to construct plants.  Electrowinning from chloride produces reactive copper 

granules rather than the copper sheets produced by traditional sulfate 

electrowinning.11  Despite these technical issues, the emergence of a number of new 

chloride leaching processes and recent advances in plant engineering technology 

suggest that any reagent with the capacity to extract a metal chloride selectively 

could find commercial application.1 

 

To overcome the problems associated with electrowinning copper from chloride, a 

reagent blend containing a solvating extractant (solvate) and a traditional phenolic 

oxime (chelate) has been proposed.12-15  During the extract stage the copper is bound 

                                                 
1 16 papers discussing chloride hydrometallurgy were presented at the recent International 
Copper/Cobre conference, Toronto, August 2007. 

4L 
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as a neutral CuCl2 complex [LSCuCl2] by the solvate ligand (LS in Scheme 4.1) e.g. 

CLX50.  Water stripping removes the chloride and transfers the copper to the chelate 

(LC in Scheme 4.1) e.g. P50, allowing conventional sulfuric acid stripping of the 

copper to generate a sulfate electrolyte.   

 

Extract:  CuCl2 + 2LC
(org) + LS

(org)    [LSCuCl2](org) + 2LC
(org) 

Cl strip:  [LSCuCl2](org) + 2LC
(org) + H2O   [Cu(LC-H)2](org) + LS

(org) + H2O + 2HCl 

Cu strip: [Cu(LC-H)2](org) + LS
(org) + H2SO4            CuSO4 + 2LC

(org) + LS
(org) 

E’win:    CuSO4 + H2O    Cu(s) + H2SO4 + ½O2(g)  

 

Overall: CuCl2 + H2O    Cu(s) + 2HCl + ½O2(g)  

 

Scheme 4.1:  Proposed flowsheet for CuCl2 extraction, with transfer of copper into a conventional 

sulfate electrolyte, by a reagent blend containing a solvating (LS) and a chelating (LC) extractant. 

 

The HCl generated could subsequently be recycled by using it in the leach stage.  

Important criteria for the design of the solvating reagents LS, such as CLX50, are that 

they should not readily protonate and form stable ion pair complexes with 

tetrachloroferrate, 

 

Equation 4.1  LS 
(org) + H+ + FeCl4

-  [(LSH)+(FeCl4)
-] (org) 

 

as this will lead to poor selectivity of CuII/FeIII transport from mixed feeds.16  A 

similar process has been proposed for ZnCl2 extraction.  The reagent ZNX5017, 18 

(Figure 4.1) shows high ZnII/FeIII selectivity due to the low basicity of the nitrogen 

donors, ensuring no transfer of Fe by such an ion pair mechanism: 

 

Equation 4.2  L (org) + FeCl3 + HCl  [LH]+[FeCl4]
- 

(org) 

 

Extraction of ZnCl2 with blends of ZNX50 and a chelating reagent have also been 

studied, and offer the same advantage of conventional sulfate electrowinning to the 

previously described processes for copper.12, 13, 19, 20 
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4.1.3 Zwitterionic Metal Salt Extractants 

 

As described in Chapter 1, polytopic ligands containing separate cation and anion 

binding sites can extract a metal salt into a water-immiscible solvent.  Substituted 

salicylaldimines, or "salens" have proven to be effective metal salt extractants, with the 

cis arrangement of the cation binding site forming a preorganised, doubly protonated 

anion binding site particularly suited to sulfate.3  A striking example is shown in 

Figure 4.3, the crystal structure of a morpholinomethyl-substituted "salen" ligand 

binding copper sulfate.21 

 

 

Figure 4.3:  The copper(II) sulfate complex of the ditopic ligand 2,2'-[1,2-
ethanediylbis(nitrilomethylidyne)]bis[4-(t-butyl)-6-(4-morpholinylmethyl)-phenol,  hydrogen atoms 
not involved in H-bonding omitted for clarity.21 
 

Tasker et al
21 describe the release of protons on binding of copper(II) and these protons 

can be accepted by the pendant amine arms to form the anion binding site.  It has been 

shown by X-ray diffraction analysis that binding of the metal preorganises the anion 

binding site by templation, and UV/Vis spectroscopy shows the separation of the sites.  

With this ligand and related derivatives,22, 23 both copper and sulfate can be 

sequentially loaded and stripped, showing potential for industrial use.  However, the 

ease of acid hydrolysis of the imine functionality24 renders them incompatible with 

most commercial solvent extraction applications which commonly use sulfuric acid 

concentrations of up to 150 gl-1 to strip the metal from the ligand.25 
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4.1.4 Ligand Design 

 

Conventional phenolic oxime cation exchange extractants account for between 20%26 

and 30%27 of the world’s annual production of copper, and have half lives of over 2.5 

yrs in kerosenes in contact with acid solutions.25  Incorporation of a pendant amine 

arm to this scaffold gives an anion binding site which, on protonation, offers the 

possibility of binding the conjugate anion via a combination of electrostatic, 

hydrogen and coordinate bonds, thus allowing the extraction of a metal salt (Figure 

4.4).   

But O

N tBuO

N

+NR2

O

OH

H

M

R2N
+ H

H

X-

-X

 

 

Figure 4.4:  Potential metal salt binding motif of a salicylaldoxime substituted in the 3-position with a 

pendant amine arm, showing H-bonding and electrostatic interactions. 

 

As salicylaldoximes bind base metal cations in a trans arrangement,28 the anion 

binding sites are expected to be separated, forming a tritopic binding motif which 

may favour the binding of two monoanions e.g. two chloride anions.  This is in 

contrast to the previously described “salen” ligands which bind base metals in a cis 

arrangement, preorganising the anion binding site into a doubly protonated pocket 

well suited to the sulfate anion.21-23 

 

Two different locations were chosen for incorporation of the anion binding site, 

based on the ease of synthesis and the potential effect of the location on the anion 

selectivity of the ligand.  Sites ortho and para to the phenol were chosen, which 

would yield ligands with pendant amine arms in the 3-position and 5-position 

respectively.  Figure 4.4 shows potential interactions of the anion with the metal 
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centre in the 3-substituted case, but in the 5-substituted ligands these interactions 

may be limited (Figure 4.5). 
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N O
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M +NR2
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H

H
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Figure 4.5:  Potential metal salt binding motif of a salicylaldoxime substituted in the 5-position with a 

pendant amine arm. 

 

Two separate amines were selected for incorporation into the molecule as anion 

binding sites.  Piperidine was chosen, as “salen” type ligands with pendant 

piperidinomethyl groups are known to give crystalline complexes of both transition 

metal dications21 and metal salts.29  Dihexylamine was also used as its 

hydrophobicity should increase solubility in non-polar solvents suitable for solvent 

extraction studies.  The target ligands are displayed in Figure 4.6. 
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Figure 4.6:  Salicylaldoxime based metal salt extractants with pendant dialkylaminomethyl arms in 

the 3- or 5-position. 

 

In the text below, the 3-aminomethylated oximes are referred to as the “3-

substituted” ligands and the 5-aminomethylated oximes are referred to as the “5-

substituted”.   
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4.2 Synthesis 

 

Synthesis of the target metal salt ligands involved a four-step procedure from the 

appropriate alkyl phenol: formylation to yield a salicylaldehyde, a two step addition 

of the pendant amine arm via a modified Mannich reaction and oximation to generate 

the final ligand.  The Mannich reaction involved firstly synthesising an N-

ethoxymethyldialkylamine precursor, which was then coupled to the salicylaldehyde 

scaffold.  The synthetic scheme listing all the compounds prepared in this thesis is 

shown in Scheme 4.2. 
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Scheme 4.2:  Synthetic routes to 3- and 5-substituted ligands.  (i) (CH2O)n, EtOH, K2CO3, 72 hr.  (ii) 

Mg(OMe)2, MeOH, (CH2O)n, toluene, H2SO4, 
, 2 hr.  (iii) various unsuccesful conditions.  (iv) 

MeCN, N2, 
, 72 hr.  (v) NH2OH.HCl, KOH, EtOH, 
, 16 hr.    
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4.2.1 Formylation of 2- or 4-Alkylphenols 

 

If ligands are to be used commercially as extractants, their syntheses must be cheap, 

robust and capable of being carried out on large scales.1, 25  The preparation of (1) by 

the Levin30 method has been described previously in Chapter 2, and the magnesium-

mediated reaction with magnesium methoxide and paraformaldehyde generates  

approximately 100 g quantities of the pure material. 

 

It was hoped that (10) and (11) could be prepared using an analogous route, starting 

from 2-alkylphenols.  It was found, however, that the Levin synthesis was 

unsuccessful in attempts to produce large quantities of 3-alkyl-2-

hydroxybenzaldehydes, giving mixed products in poor yields.  A modified Duff 

reaction31 was found to be a successful method in some cases in Chapter 2, but it too 

showed poor regioselectivity, and separation of the desired product was difficult.  

This is to be expected for the reasons outlined previously. 

 

Other preparative routes have been tried, including formylation over a clay catalyst32 

and an anhydrous synthesis involving MgCl2 and triethylamine,33 but all are 

unsuitable for the production of large quantities of the required salicylaldehydes.  

(10) and (11) are available commercially34 at a high cost, and so were purchased for 

the preparation of the 5-substituted ligands L19-L22, allowing proof-of-concept 

studies but precluding extensive analysis.   

 

 

4.2.2 Mannich Reaction 

 

Incorporation of the pendant amine arm to the salicylaldehyde scaffold was achieved 

by a modified Mannich reaction.  The Mannich reaction proceeds by reaction of a 

carbonyl functionality (usually formaldehyde) and an amine to generate a reactive 

iminium ion, which subsequently reacts with the substrate by Michael addition to 

generate the product.35-37  As the scaffold contains a carbonyl group, the possibility 

of unwanted side reactions between the amine and the salicylaldehyde occurs if a 
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conventional, one step Mannich reaction is carried out.  For this reason a reactive 

precursor was synthesised to ensure no side reactions could occur.   

 

The desired amine is firstly substituted in the N-position by an ethoxymethyl group, 

following the procedure of Fenton et al.38  Stirring the appropriate dialkylamine with 

paraformaldehyde in ethanol, with potassium carbonate desiccant, gave both (12) and 

(13) in good yields after purification by vacuum distillation.  Use of the N-

ethoxymethyldialkylamines ensures ease of formation of the reactive iminium ion 

intermediate thought to be involved in the Mannich reaction.36, 37  A proposed 

mechanism for the formation of (12) and (13) is outlined in Figure 4.7.   
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Figure 4.7:  Proposed reaction mechanism for the formation of the N-ethoxymethyldialkylamines 

(12) and (13). 

 

Coupling of the pendant amine to the salicylaldehyde is achieved by simply refluxing 

the reactants in acetonitrile under a N2 atmosphere.  In situ generation of the active 

iminium ion is followed by a conjugate Michael addition, which ensures 

regioselective reaction in the ortho or para position to the phenol (Figure 4.8).  In the 

preparations of the 3-substituted aldehydes (14) and (15) the reaction occurred 

exclusively in the ortho position, due to the tert-butyl group blocking the para 

position.  For the 5-substituted aldehydes (16-19) the reaction was limited to the para 

position.  All products were obtained in excellent yields (~80-90%) after appropriate 

purification, however it was noted that (19) appeared susceptible to degradation on 

the timescale of a few days, and so was used immediately upon isolation. 
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Figure 4.8:  Proposed reaction mechanism for the Mannich addition to form the 3-substituted 

compounds (14) (NR2 = N(C5H10)) and (15) (NR2 = N(n-hexyl)2). 

 

 

4.2.3 Oximation 

 

Oximation was carried out by the same procedure39 described in Chapter 2 and found 

to be facile and high yielding, with yields of ~90% achieved.  It was noticed that the 

solubilities of the 3-substituted ligands L17 and L18 in non polar solvents were 

generally better than that of their 5-substituted analogues L19-L22.  The 

piperidinomethyl substituted ligands L17, L19 and L21 were isolated as fine white 

powders, whereas the dihexylaminomethyl analogues L18, L20 and L22 were sticky, 

viscous oils.  The 3-substituted ligands L17 and L18 were isolated in good purity, 

but isolation of the 5-substited ligands proved problematic.  All were pure by 1H and 
13C NMR, however acceptable CHN analysis was only obtained for L20 and L21.  

The low solubility of L19 hampered attempts at purification, while L22 appeared to 

be prone to decomposition over the course of a few days, and so was prepared 

immediately prior to use in solvent extraction experiments. 
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4.3 Characterisation 

 

4.3.1  NMR Spectroscopy 

 

All ligands and precursors were fully characterised by both 1H and 13C NMR 

spectroscopy.  1H NMR spectroscopy was used to monitor conversion of the 

aldehyde to the oxime as described in Chapter 2.   

 

 

4.3.2 Mass Spectrometry 

 

FAB mass spectra of each of the ligands show a peak assignable to the free ligand, 

although no evidence of salicylaldoxime dimers28 analogous to those discussed in 

Chapter 3 was present.  Molecular ion peaks and intensities for all ligands, alongside 

common breakdown peaks are shown in Table 4.1.   

 

 [MH]+ [M-17]+ [M-diamine]+ 

L17 291 (100%) 273 (49%) 206 (77%) 

L18 391 (100%) 373 (24%) 206 (100%) 

L19 291 (91%) 273 (24%) 206 (100%) 

L20 391 (93%) 373 (40%) 206 (100%) 

L21 249 (94%) 231 (20%) 164 (95%) 

L22 349 (77%) 331 (49%) 164 (100%) 

 

Table 4.1:  Peaks and intensities seen in the FABMS spectra of L17-L22. 

 

The peak at [M-17]+ seen for each ligand is likely to involve the loss of a hydroxyl 

group, although the mechanism is unclear.  All ligands show peaks corresponding to 

loss of the pendant amine arm, to leave a resonance-stabilised benzylic carbocation 

(A, B and C overleaf in Figure 4.9). 
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Figure 4.9:  Benzylic carbocation breakdown products seen in the FAB mass spectra of L17-L22.  

 

All precursors were also studied by FABMS, with parent ion peaks present for all 

compounds other than the N-ethoxymethylamine compounds (12) and (13).  In each 

case strong peaks for the iminium ions (M – OEt)+ were noted, giving evidence for 

the ease of formation of these reactive species.  

 

 

4.3.3 X-Ray Crystallography 

 

The piperidinomethyl substituted ligands L17, L19 and L21 were analysed by X-ray 

crystallography and showed similar solid state structures.  Crystallographic analysis 

of L1-L9 in Chapter 2 detailed three types of solid state assemblies which phenolic 

oximes can adopt, two of which had been described previously.28  Incorporation of a 

pendant amine arm gives an extra H-bond acceptor site in the neutral ligands, 

allowing a novel, fourth type of assembly in the solid state (Figure 4.10).  An 

intermolecular hydrogen bond between the oxime proton of one molecule and the 

piperidino nitrogen of an adjacent molecule is present in each case, and the distances 

are listed overleaf in Table 4.2.  The H-bonds form infinite 1D chains which pack 

together to give the overall solid state structures.     
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Figure 4.10:  Formation of 1D chains by intermolecular H-bonding in solid state structures of L17, 

L19 and L21.  Hydrogen atoms not involved in H-bonding are removed for clarity. 

 

An intramolecular hydrogen bond between the phenol proton and the oxime nitrogen 

is present for all three ligands, as in nearly all the other X-ray structures of free 

ligands in this thesis (L4 and L9 are the only exceptions). 

 

 L17 L19 L21 

Intermolecular H-bond (Å) 2.723(2) 2.669(3) 2.662(2) 

Intramolecular H-bond (Å) 2.638(1) 2.578(3) 2.635(2) 

 

Table 4.2:  Comparison of H-bond distances in the solid state structures of L17, L19 and L21. 

 

The intermolecular H-bond is longer in the 3-substituted ligand L17, but is very 

similar for the 5-substituted ligands, suggesting that there is less steric hindrance 
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around the tertiary amine binding site and that anions may show closer approach to 

the binding site in these cases.  The intramolecular H-bond in L17 and L21 is similar 

to those reported for the ligand series L1-L9 in Chapter 2, but is shorter for the 3-t-

Bu substituted ligand L19, indicating that a large bulky 3-substituent induces 

pressure on the adjacent phenolic oxygen, pushing it slightly closer to the imino 

nitrogen atom.  This effect is also present in the crystal structure of the 3-t-Bu 

substituted ligand L3 (Chapter 2) which, within experimental error, has an 

intramolecular H-bond of the same length as L19. 

 

Differences in the crystal packing arrangements of the 1-D hydrogen bonded chains 

represent the most significant variations in the structures of L17, L19 and L21.  The 

chains of L17 molecules pack without any further intermolecular interactions, but �-

stacking interactions are present in the structure of L19.  Molecules form �-stacked 

dimers (Figure 4.11) with a distance of 3.335 Å between the planes of the benzene 

rings.  The piperidino groups of the dimers face away from each other and form the 

aforementioned intermolecular hydrogen bonds to an adjacent dimer, giving ribbons 

in the long range packing structure.  Each dimer has two hydrogen bonds to adjacent 

dimers. 

 
 

Figure 4.11: �-stacking in L19, with hydrogen atoms removed for clarity. 

 

These ribbons pack together to form the overall 3D structure, with chloroform 

solvate molecules filling voids. 
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Dimers are also seen in the structure of L21, formed by C-H…� interactions between 

the methyl group of one molecule and the benzene ring of an adjacent (Figure 4.12) 

with the distance between the centroid of the benzene ring and the methyl carbon 

atom (C61) 3.488(2) Å.  This interaction is reciprocal, giving two interactions per 

dimer, wherein the piperidino rings of each molecule face in opposite directions.  

This allows formation of intermolecular hydrogen bonds between dimers to give 

ribbons, which pack together to form the 3D structure. 

 

 
 

Figure 4.12:  C-H… � interactions in L21, with hydrogen atoms not involved in intermolecular 

interactions removed for clarity. 

 

 

4.4 Solvent Extraction 

 

The uptake of metal salts, via the equilibrium shown in Equation 4.3, was studied by 

solvent extraction. 

 

Equation 4.3:  2L (org) + MX2        [M(L)2X2] (org) 

 

Solvent extraction proved to be a simple and effective method to establish proof-of-

concept of metal salt binding, and was achieved by contacting a 0.01 M chloroform 

solution of each ligand with an aqueous (1 M) solution of the metal salt (Figure 

4.13). 
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Figure 4.13:  Solvent extraction experimental protocol to assess uptake of metal salts by L17-L22. 

 

The metal salts chosen were the chlorides and sulfates of nickel(II), copper(II) and 

zinc(II).  Metal and sulfate uptake were measured by ICP-OES spectroscopy and 

chloride uptake by back stripping the chloride ions into an aqueous phase, 

precipitating the chloride with a standard silver solution and measuring the remaining 

silver concentration by ICP-OES (Section 4.8.3.1).   

 

 

4.4.1 Metal Salt Loading by 3-Substituted Ligands 

 

The 3-substituted ligands L17 and L18 were tested initially, and it was thought that 

the potential for metal-anion interactions in their metal salt complexes (Figure 4.5) 

may make them more potent anion binders.  The extraction of metal salts by L17 is 

shown in Table 4.3, with percentage loading values calculated from Equation 4.3.  

Some precipitation of a white solid occurred when L17 was contacted with ZnCl2 

solutions.  Assuming this was the zinc chloride complex, the recorded concentrations 

of zinc and chloride in the chloroform solution do not represent the full uptake by the 

ligand. 

 

An obvious difference is seen in the loading values for metals from chloride versus 

sulfate media.  Metal extraction is much enhanced when chloride is the counter ion, 

and in the case of CuCl2 greatly exceeds the expected maximum loading values. 

 

 

 

STIR 

16hr 

1 M MX (H2O) 

0.01 M Ligand 
(CHCl3) 

Analysis 

Measure pH 
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 Metal Chloride Metal Sulfate 

Nickel 87 89 42 29 

Copper 189 200 60 34 

Zinc 70[a] 72[a] 3 4 

 

Table 4.3:  Extraction of base metal salts by 0.01 M chloroform solutions of L17 from equal volumes 

of 1 M aqueous solutions of metal salts.  100% metal salt loading calculated from Equation 4.3.  

[a]Precipitation of metal salt complex occurs 

 

This suggests that an alternative extractive mechanism is occurring which would 

allow a 1:1 ratio of metal salt:ligand, as shown in Equation 4.4.  

 

Equation 4.4:  L (org) + MX2        [MLX2] (org) 

 

L17 extracted NiCl2 to an efficiency of approximately 90%, and, as noted above, 

reached 70% ZnCl2-loading before precipitation of the metal salt complex occurs.  

Metal sulfate loading values are much lower, and in the case of ZnSO4 none was 

extracted.  The Hofmeister bias, described in Chapter 1, predicts that the more 

heavily hydrated sulfate anion will be harder to extract from an aqueous phase than 

chloride,40 and this may be one of the reasons for sulfate extraction being poorer than 

chloride.  Another is that chloride is a much better ligand for base metal cations than 

sulfate and consequently transport of chloride into the organic phase via an inner 

sphere assembly will be more favourable. 

 

It was expected that the solubility problems experienced with ZnCl2 complexes of 

L17 would be overcome using L18, which has a “greasy” pendant 

dihexylaminomethyl arm rather than a piperidinomethyl arm.  The extraction of 

metal salts by L18 is displayed in Table 4.4.  Again, metal salt extraction is more 

efficient from chloride media.  NiCl2 loading is slightly lower in comparison to L17 

while NiSO4 loading is slightly higher, but overall extraction from chloride media is 

still preferred.   
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 Metal Chloride Metal Sulfate 

Nickel 61 71 53 52 

Copper 175 160 100 91 

Zinc 138 143 10 18 

 

Table 4.4:  Extraction of base metal salts by 0.01 M chloroform solutions of L18 from equal volumes 

of 1 M aqueous solutions of metal salts.  100% metal salt loading calculated from Equation 4.3.   

 

CuCl2 was loaded to 160%, and although the loading values are again slightly lower 

than for L17, it is clear that the 3-substituted ligands can extract CuCl2 by an 

unexpected, highly efficient mechanism.  ZnCl2 loading reached approximately 

140% with no precipitation, indicating that L18 can also extract ZnCl2 by an 

unknown mechanism and that L17 may also be able to do so in more dilute solutions 

to prevent precipitation of the complex.  The highly efficient extraction of CuCl2 and 

ZnCl2 by the 3-substituted ligands L17 and L18 is discussed in more detail in 

Section 4.5. 

 

Metal sulfate loading values for L18 are all higher than for L17.  This may be 

attributable to the greasier ligand solubilising the sulfate anion more effectively than 

L17, leading to better phase transfer.  CuSO4 is loaded to approximately 95% 

efficiency, meaning L18, as well as being a highly efficient CuCl2 and ZnCl2 

extractant, is also an effective CuSO4 extractant, apparently operating in the expected 

mode to give a 1:2:1 assembly, [Cu(L18)2SO4]. 

 

 

4.4.2 Metal Salt Loading by 5-Substituted Ligands 

 

Extraction experiments involving the 5-substituted ligands L19-L22 were carried out 

under identical conditions to those involving the 3-substituted ligands L17 and L18 

to ensure comparability of data.  Accurate loading values for L19, L21 and L22 

could not be determined under these conditions due to the precipitation of complexes 

formed during extraction.  The very low solubility of the complexes of these ligands 
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prevented further study by solvent extraction.  L20, however, had the requisite 

solubility to perform a full series of extraction tests, with results shown in Table 4.5.   

 

By locating the anion binding site in the 5-position, a potential site for attaching 

“greasy” branched alkyl groups to solubilise the extractant is lost.  The location of 

such a group is restricted to the 3-position, and the findings of Chapters 2 and 3 

indicate that a 3-substituent can have a great effect on the copper binding strength of 

the salicylaldoxime extractant.  The 3-tert-butyl group of L20 affords the appropriate 

solubility to carry out solvent extraction tests but may have a negative effect on 

metal extraction on steric grounds, disrupting the stabilising intracomplex H-bond 

array.  It was hoped that the 3-methyl group of L21 and L22 would combine 

solubility with a minimal effect on metal binding but, as recorded above, the systems 

have insufficient solubility to allow extraction studies to be carried out.  

 

 Metal Chloride Metal Sulfate 

Nickel 63 57 8 3 

Copper 80 84 72 40 

Zinc 20 93 0 0 

 

Table 4.5:  Extraction of base metal salts by 0.01 M chloroform solutions of L20 from equal volumes 

of 1 M aqueous solutions of metal salts.  100% metal salt loading calculated from Equation 4.3.   

 

It is clear that the 5-substituted ligand L20 does not extract metal salts as well as its 

3-substituted isomer L18, and metal sulfates are again poorly extracted when 

compared to metal chlorides.  This may be due to the effect of the bulky 3-tert-butyl 

substituent, as explained previously, but more information on the modes of binding is 

required.  Loading of CuCl2 and ZnCl2 does not reach values higher than 100%, 

suggesting that the mechanism of extraction available to the 3-substituted ligands is 

not possible for the 5-substituted ligands.  CuCl2 is only loaded to ~80% of the 

ligand’s capacity, a value much lower than the ~160% figure seen for L18, and 

ZnCl2 loading is greatly reduced, with very little zinc but nearly 100% chloride 

extracted.  This disparity indicates that zinc and chloride are bound to separate parts 

of the molecule, and that the reagent is binding the metal salt in a tritopic fashion. 
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4.4.3 Summary of the Proof-of-Concept Studies 

 

The extraction experiments detailed above allowed an initial assessment of the 

suitability of the ligands for commercial application.  Problems with the solubilities 

of the metal salt complexes of L19, L21 and L22 meant that extraction data were 

only available for L17, L18 and L20.  Both L17 and L18 are suitable for solvent 

extraction experiments, but as they are differentiated only by the nature of the alkyl 

groups on their respective tertiary amine anion binding sites L18 was chosen as the 

3-substituted ligand to be tested further, due to the higher solubility of its metal salt 

complexes.   

 

The 3-substituted ligands L17 and L18 are better extractants than the 5-substituted 

ligand L20, particularly for CuCl2 and ZnCl2, where a 1:1 binding motif is possible.  

Extraction of CuCl2 seems to be the more favourable of the two, reaching higher 

loading values, and so this process is considered in more detail.  The remainder of 

Chapter 4 focuses on elucidating this mechanism and analysing the potential 

commercial application of the 3-substituted extractants, while Chapter 5 investigates 

the reasons for the differences seen in the loading profiles of L18 and L20.   

 

 

4.5 Efficient CuCl2/ZnCl2 Extraction by 3-Substituted Ligands 

 

Investigations into the mechanisms of CuCl2 and ZnCl2 binding by the 3-substituted 

ligands were focussed on two areas; characterisation by crystallographic analysis of 

isolated metal salt complexes of L17, and solvent extraction experiments using L18.  

It was hoped that solid state structural data could be used alongside solvent 

extraction results to suggest possible binding motifs in solution.  The solvent 

extraction experiments were carried out with CuCl2 only, as extraction appeared to 

be stronger than ZnCl2 and showed considerable commercial promise. 

 

The unexpectedly high loading of CuCl2 and ZnCl2 by the 3-substituted ligands L17 

and L18 can be explained by crystal structures obtained by Dr D. K. Henderson and 
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Dr J. E. Davidson as exemplification in a patent (confidential) relating to the 

analogous nonyl-substituted ligand for the recovery of metal(II) chlorides from 

chloride leach solutions.41  The structures of [Cu(L17)Cl2] and [Zn2(L17)2Cl4] both 

show a metal salt:ligand ratio of 1:1, but have notable differences. 

 

 

4.5.1 Crystal Structure of [Cu(L17)Cl2] 

 

Crystals of [Cu(L17)Cl2] were isolated from the residues of the extraction 

experiments described in Section 4.8.3.1.  The structure is shown in Figure 4.14.   

 

 
 

Figure 4.14:  Crystal structure of [Cu(L17)Cl2]. Hydrogen atoms not involved in H-bonding are 

removed for clarity. 

 

The mode of metal salt binding is different from that expected (Figure 4.5) with the 

anions bound in the inner coordination sphere of the copper(II) ion.  With the phenol 

oxygen deprotonated and the piperidine nitrogen protonated, the ligand is in a 

zwitterionic, neutral form which allows the 1:1 binding of ligand:CuCl2 to occur, 

generating a neutral assembly [Cu(L17)Cl2] which is soluble in chloroform. 

 

Intracomplex hydrogen bonding appears to stabilise the assembly, and may be the 

driving force behind its formation.  The piperidinium proton H-bonds to the 
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phenolate oxygen (N62···O1 = 2.754(3) Å) and may also form a long range contact 

with one of the chlorides (N62···Cl2 = 3.560(3) Å), giving a bifurcated hydrogen 

bond.  The oximic proton is involved in a contact with the other chloride anion, but 

at a much shorter distance (O23···Cl1 = 2.925(3) Å).  As the 5-substituted ligands 

L19-L22 did not form complexes with 1:1 ligand:CuCl2 ratios, it appears that this 

binding motif is only favourable when the protonated piperidinium arm is able to 

form a hydrogen bond with the phenolate oxygen and also interact with one of the 

chloride ligands. 

 

Complex molecules also associate via an axial copper contact with a phenolate 

oxygen atom of an adjacent molecule (Cu1···O1’ = 2.507(2) Å) and the copper tends 

towards an overall distorted trigonal bipyramidal coordination sphere (Figure 4.15). 

 

 

 

Figure 4.15:  Dimerisation in the solid state structure of [Cu(L17)Cl2]. Hydrogen atoms not involved 

in H-bonding are removed for clarity. 

 

Dimerisation has the effect of gathering some of the polar regions of two molecules 

together and leaving the non-polar sections exposed.  If this dimerisation were to 

persist in solution, the configuration could “shield” the polar regions from a non-

polar solvent, and may tentatively explain the high solubilities of the complexes in 

water-immiscible media. 
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4.5.2 Crystal Structure of [Zn2(L17)2Cl4] 

 

Colourless crystals were isolated from the chloroform phases of the ZnCl2 

extractions detailed in Section 4.8.3.1, and subsequently [Zn2(L17)2Cl4] was 

identified as a tetrakis-chloroform solvate.  As with [Cu(L17)Cl2], the compound 

also has chloride ligands in the inner coordination sphere of the metal centre (Figure 

4.16).  

 
 

Figure 4.16:  Solid state structure of [Zn2(L17)2Cl4] with chloroform solvent molecules and hydrogen 

atoms not involved in H-bonding are removed for clarity. 

 

A 1:1 ligand:MCl2 ratio is again present, but the structure is different from that of 

[Cu(L17)Cl2], with the phenolate groups forming similarly strong bonds to both zinc 

atoms (Zn1-O1A = 2.031(2) Å, Zn1-O1B = 2.109(2) Å, Zn2-O1A = 2.078(2) Å, 

Zn2-O1B = 2.021(3) Å).  The oximic N and two chloride ligands complete the 

distorted trigonal bipyramidal NO2Cl2
3- coordination sphere.  The piperidino arms 

are again protonated, giving a neutral complex with zwitterionic ligands.  

Intramolecular hydrogen bonds are formed between each oximic proton and a 

chloride ligand (O23A···Cl4 = 3.003(2) Å, O23B···Cl1 = 2.987(3) Å) and between 

the protonated piperidine group and the remaining chloride ligands (N62A···Cl3 = 

3.379(3) Å, N62B···Cl2 = 3.446(2) Å).  The intracomplex hydrogen bonds again 

appear to be integral to the stability of the complex, with no analogous 1:1 

ligand:ZnCl2 complexes seen for the 5-substituted ligands. 
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Comparison of certain bond lengths, angles and contact distances between the two 

structures reveals interesting similarities and also emphasises the main differences.  

A third structure of a related compound, isolated by the author whilst on secondment 

to Massey University, New Zealand and outwith the remit of this thesis, is also 

included for comparison.  Linking two salicylaldoxime moieties with 

CH2NR(CH2)nNRCH2 straps gives ligands capable of forming a 2:2 Cu:L assembly 

with a well defined cavity which can encapsulate anions (Figure 4.17).   
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Figure 4.17: Formation of anion-binding cavities by copper(II) complexes of phenolic oximes linked 

with CH2NR(CH2)nNRCH2 straps.42 

 

When such reagents are combined with CuCl2 in a 2:1 CuCl2:ligand ratio, structures 

similar to the [Cu(L17)Cl2]2 dimer are observed, and relevant distances and angles 

from the structure of a complex of a ligand with a C5 strap and N-benzyl groups, 

designated [Cu2(L’)Cl4], are included in Table 4.6.42   

 

The stability of the CuCl2 binding motif is implicit in the fact that both [Cu(L17)Cl2] 

and [Cu2(L’)Cl4] are observed in the solid state, rather than their conventional 2:1 

salox:CuII complexes.  The main differences in the two structures are the longer 

Cu···O1’ and Cu···Cu distances in [Cu2(L’)Cl4], which suggests that the C5 strap 

imposes a restriction to the approach of the two copper centres.  In both copper 



Chapter 4: Synthesis of Metal salt Extractants 

157 

structures, the large differences in the Cu-O1 and Cu···O1’ distances show that the 

geometry around the CuII atoms is essentially 4-coordinate, with a long range apical 

interaction facilitating dimerisation.   

 

Contact (Å) or 

Angle (°)[a] 

[Cu(L17) 

Cl2]
[b] 

[Cu2(L’) 

Cl4]
[b] 

[Zn2(L17)2 

Cl4] Zn1 

[Zn2(L17)2 

Cl4]Zn2 

M-O1 (Å) 1.933(2) 1.931(2) 2.109(2) 2.078(2) 

M-N22 (Å) 2.021(3) 2.002(2) 2.116(3) 2.121(2) 

M-Cl1 (Å) 2.269(1) 2.268(1) 2.372(1) 2.362(1)[c] 

M-Cl2 (Å) 2.268(1) 2.253(1) 2.268(1) 2.285(1)[d] 

M-O1’ (Å) 2.570(2) 2.680(3) 2.031(2) 2.021(3) 

M···M (Å) 3.370(1) 3.610(1) 3.162(1) 3.162(1) 

O1-M-O1’ (°) 81.69(8) 73.47(8) 77.90(7) 78.83(7) 

N22-M-O1’ (°) 99.34(10) 98.38(8) 121.19(9) 116.21(10) 

Cl1-M-O1’ (°) 93.49(5) 95.47(5) 94.79(5) 97.61(8)[c] 

Cl2-M-O1’ (°) 94.47(6) 105.44(5) 112.05(6) 114.54(6)[d] 
[a]Atoms labelled with a prime refer to the atom on the opposite side of the dimer.  [b]Each half of the 

dimer is related by a 2-fold axis in the b direction.  [c]Distance or angle refers to atom Cl4.  [d]Distance 

or angle refers to atom Cl3.   

 

Table 4.6:  Comparison of bond lengths, angles and contact distances in the coordination spheres of 

[Cu(L17)Cl2]2, [Zn2(L17)2Cl4] and [Cu2(L’)Cl4]. 

 

In contrast, the Zn···Zn distance in [Zn2(L17)2Cl4] is much shorter and the Zn-O and 

Zn-O’ distances in the two crystallographically independent halves are very similar, 

with all the Zn-O’ interactions short enough to be described as bonds  The phenolate 

groups of each ligand bridge to both ZnII cations and the coordination geometry can 

be described as 5-coordinate, with a distorted trigonal bipyramidal coordination 

sphere.   
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4.5.3 Dependence of Cu-Loading of L18 on Chloride Concentration 

 

If the CuCl2 binding motif seen in the solid state persists in solution, then the 

concentration of chloride ions in an aqueous copper feed solution could affect the 

uptake of copper by the extractant.  Varying the concentration of anions in a solvent 

extraction experiment can affect the uptake of a metal by a conventional pH swing 

reagent, for example Lakshmanan et al found that increased sulfate concentration in 

an aqueous feed depressed extraction of copper by phenolic oxime reagents.43  This 

variation could be very pronounced in the extraction of CuCl2 by L18, shown in 

Equation 4.5, as the anion is bound in the inner coordination sphere of the copper 

centre.   

 

Equation 4.5:  L18 (org) + MCl2        [M(L18)Cl2] (org) 

 

To study this effect, extraction experiments were carried out with an equimolar ratio 

of L18:Cu (copper was added as CuCl2) and varying concentrations of chloride 

(added as NaCl, see Section 4.8.3.2) and the results are displayed in Figure 4.18. 
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Figure 4.18:  Dependence of CuII loading by L18 on chloride concentration when a 0.01 M 

chloroform solution of L18 was contacted with a 0.01 M solution of CuCl2, with [Cl-] adjusted by 

addition of NaCl.  Loading values are based on Equation 4.5, equilibrium pH values were measured 

and all fell in the range 2.6-2.9. 
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The dependence of copper extraction on chloride concentration is clear.  When the 

concentration of chloride is twice that of copper, i.e. equivalent to an aqueous feed 

containing an equimolar ratio of L18:CuCl2, then only 55% uptake of copper occurs.  

An increase in copper loading follows a gradual increase in the chloride 

concentration of the aqueous phase, with a maximum copper loading of 

approximately 90% reached at a chloride concentration of 0.8 M, which is an 80-fold 

excess of chloride.  This result is concomitant with the initial experiments of Section 

4.4, where copper loading reaches a similar maximum when the chloride 

concentration is 2.0 M.   

 

 

4.5.4 pH-Loading Profile of L18 vs. CuCl2 

 

The success of an extractant depends on its ability to load and strip the extracted 

species over a series of conditions, in our case over a pH range. To determine the 

CuCl2 pH-loading profile of L18, an extraction experiment (Section 4.8.3.3) was 

devised which would allow maximum loading to occur whilst being comparable with 

previous work10, 44 by having equimolar amounts of L18 and copper, but a constant 

excess of chloride (0.8 M).  The results are shown in Figure 4.19. 
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Figure 4.19:  pH-profiles for loading of copper (blue) and chloride (red) by 0.01 M chloroform 

solutions of L18 from equal volumes of aqueous solutions with metal concentrations of 0.01 M and 

chloride concentrations of 0.8 M.  100% CuCl2 loading based on a 1CuCl2:1L18 ratio. 
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Copper loading reaches approximately 90% over a pH range of ~0.5-3.0 (100% 

loading assumed to be a 1:1 L18:CuCl2 complex) with chloride loading generally 

slightly lower, at approximately 80%.  This is consistent with 80% of the ligand 

extracting copper as the [Cu(L18)Cl2] species and the remaining 20% extracting the 

species [Cu(L18-H)2], demonstrating the preference of L18 to extract copper as the 

1:1 species rather than the 1:2 species. 

 

 

4.5.5 Copper Stripping of [Cu(L18)Cl2] 

 

For an extractant to operate in an industrial process, it must be possible to reverse the 

extraction equilibrium and strip the metal cation back into an aqueous phase for 

electrowinning.45  As described in Chapter 1, CuCl2 complexes of polytopic, 

zwitterionic metal salt extractants, e.g. the "salen" types described in Section 4.1.3, 

could undergo a sequential stripping protocol to remove the chloride anions as a salt 

and generate a copper sulfate electrolyte, which is preferable to a chloride electrolyte 

due to its better suitability to electrowinning:16 

 

Equation 4.6: [CuLCl2] (org) + 2NaOH      [Cu(L-2H)] (org) + 2NaCl + 2H2O 

Equation 4.7: [Cu(L-2H)] (org) + H2SO4    L (org) + CuSO4  

 

This option was not considered for the new oxime ligands because the 1:1 

stoichiometry of the loaded ligand with copper chloride in the inner coordination 

sphere will not allow a neutral copper-only complex to form, because this has a 2:1 

ligand:Cu stoichiometry, [Cu(L18-H)2]. 

 

In conventional “pH swing” processes, stripping is achieved by contacting the loaded 

organic phase with a low pH aqueous phase, usually consisting of ~150 g L-1 H2SO4 

in copper recovery.25  It is also possible to recover copper by the electrolytic 

reduction of CuCl2.  Consequently, tests were undertaken (Section 4.8.3.4) to 

establish whether [Cu(L18)Cl2] could be effectively stripped with HCl: 
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Equation 4.8: [Cu(L18)Cl2] (org) + HCl      CuCl2 + [L18+H]Cl (org)  

 

A chloroform solution of L18 was contacted with aqueous 1 M CuCl2, as in Section 

4.4, to fully load the ligand and generate [Cu(L18)Cl2].  The loaded organic phase 

was separated, an aliquot taken for copper analysis, and the remainder contacted with 

aqueous HCl solutions of varying concentrations.  After overnight stirring and 

separation, an aliquot of the organic phase was removed for copper analysis by ICP-

OES, and the results are displayed in Table 4.7. 

 

[HCl] (g L-1) 

for strip 

% Cu 

loaded 

% Cu  

after strip 

% Cu 

transport 

55 92 8 84 

110 92 8 84 

165 92 7 85 

220 92 4 88 

 

Table 4.7:  Percentage copper transported by L18 when a 0.01 M chloroform solution is contacted 

with 1 M CuCl2, allowed to equilibrate, and then stripped with varying concentrations of HCl.  

Loadings based on 1CuCl2:1L18 ratio. 

 

Copper is readily stripped from L18 by HCl and net copper transport reaches values 

over 80% for each case, showing that L18 could operate as an effective copper 

extractant in a pH swing process.  Increasing the concentration of HCl used in the 

stripping step to 220 g L-1 does increase net copper transfer but only by a small 

amount, indicating that highly concentrated strip solutions would not be required.   

 

The efficiency of metal transport is measured by calculating the "mass transport 

efficiency", which corresponds to the mass of copper (in grams) transported by 1 kg 

of ligand.25  Under these conditions, L18 has an observed mass transport efficiency 

of 143 g kg-1 when stripped with 220 g L-1 HCl, which is a significant increase on the 

theoretical maximum copper transport efficiency of 121 g kg-1 calculated for the 

commercially available reagent P50 (5-nonyl-2-hydroxybenzaldehyde oxime).  This 
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increased efficiency of copper transport is another attractive property of L18 which 

indicates its suitability for use in a hydrometallurgical circuit, and potential 

flowsheets involving L18 are discussed in the section below. 

 

 

4.6 Potential Commercial Application of L18 

 

The extraction studies detailed in Section 4.5 indicate that L18 is capable of 

transporting CuCl2 from an aqueous feed solution to a purified electrolyte with 

excellent efficiency, and therefore could function as a metal salt extractant in 

commercial processes.  Further testing is required, but an evaluation of potential 

flowsheets may identify conditions in which the reagent will be expected to operate, 

and so guide the in depth assessment and development of the ligand.   

 

The CUPREX process, described in Section 4.1, uses an oxidative ferric chloride 

leach process to generate a CuCl2 pregnant leach solution.5-8  L18 or an analogous 

ligand could operate as a metal salt extractant, with separate cation and anion 

stripping stages generating a CuCl2 electrolyte and a NaCl salt by-product.  In the 

flowsheet (Scheme 4.3) a copper chloride pls is generated by the oxidative ferric 

leach process, eliminating elemental sulfur.   

 

Leach:  4FeCl3 + 2Cu2S (s)    2CuCl2 + 4FeCl2 + S (s) 

Extract: 2CuCl2 + 2L (org)   2CuLCl2 (org)  

Copper Strip: 2CuLCl2 (org) + 2HCl   2CuCl2  + 2[LHCl] (org)  

Chloride Strip: 2[LHCl] (org) + 2NaOH  2L (org) + 2NaCl + 2H2O 

Electrowin: 2CuCl2      2Cu (s) + 2Cl2 (g)  

Leach regen: 4FeCl2 + 2Cl2 (g)    4FeCl3 

 

Overall:  Cu2S (s) + 2NaOH + 2HCl   2Cu (s) + S (s) + 2NaCl + 2H2O 

 

Scheme 4.3:  Flowsheet for the processing of sulfidic copper ores, combining CUPREXTM technology 

with the metal salt extractant L18. 
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L18 or an analogue is used to extract CuCl2, and the subsequent copper and chloride 

stripping stages consume one mole of HCl and NaOH and produce one mole of NaCl 

for every mole of copper produced.  Copper is electrowon and the chlorine gas 

released is used to regenerate the ferric chloride leachant. 

 

The materials balance is poor and the consumption of HCl and NaOH undesirable, 

but these problems could be overcome by using the chloralkali process.  NaCl is 

electrolytically processed to give NaOH which can be reused in chloride stripping, 

and H2 and Cl2 which can be combined to give HCl for copper stripping.  Integrating 

these steps into the flowsheet (Scheme 4.4) gives an ideal materials balance, 

effectively splitting copper(I) sulfide ores into their component elements with the 

consumption of electrical power. 

 

Leach:  4FeCl3 + 2Cu2S (s)    2CuCl2 + 4FeCl2 + S (s) 

Extract: 2CuCl2 + 2L (org)   2CuLCl2 (org)  

Copper Strip: 2CuLCl2 (org) + 2HCl   2CuCl2 + 2[LHCl] (org)  

Chloride Strip: 2[LHCl] (org) + 2NaOH  2L (org) + 2NaCl + 2H2O 

Chloralkali: 2NaCl + 2H2O    2NaOH + 2H2 (g) + Cl2 (g) 

Strip regen: 2H2 (g) + Cl2 (g)    2HCl 

Electrowin: 2CuCl2     2Cu (s) + 2Cl2 (g)  

Leach regen: 4FeCl2 + 2Cl2 (g)    4FeCl3 

 

Overall: Cu2S (s)    2Cu (s) + S (s) 

 

Scheme 4.4:  Flowsheet for the processing of sulfidic copper ores, combining CUPREXTM technology 

and the Chloralkali process with the metal salt extractant L18. 

 

Conceptually, this is similar to the leach/solvent extraction/electrowinning process 

for the recovery of copper from oxidic ores (Chapter 1), generating copper and 

gaseous oxygen, which currently accounts for between 20%26 and 30%27 of the 

world’s copper production.  The use of a chloralkali cell to generate NaOH, Cl2 and 

H2 from a NaCl by-product has gained acceptance in extractive metallurgy, being an 

essential part of the HydroCopper® process.  Cu2O is precipitated from a purified 
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solution of CuICl with NaOH.  The resulting NaCl is routed to a chloralkali cell for 

conversion to NaOH to be reused in the precipitation stage, Cl2 gas which is used 

during leaching and H2 gas for the reduction of the purified CuI oxide to copper 

metal.46, 47   

 

To operate in a system such as this, the ligand must extract CuCl2 strongly and 

selectively from a feed with high FeII/FeIII content, high chloride concentrations and 

the subsequent high proton activity.  Selectivity of cation and anion extraction is 

imperative and is studied in detail in Chapter 5. 

 

 

4.7 Conclusions and Further Work 

 

Six novel ligands for use as metal salt extractants were easily prepared in high 

yielding syntheses on the gram scale.  Two basic architectures have been employed, 

based on 3- and 5-substituted aminomethyl ligands, of which the 3-substituted 

ligands were found to have higher solubility in non-polar solvents, a key property for 

any practicable solvent extractant.  The poor solubility of the metal salt complexes of 

L19, L21 and L22 precluded these ligands from study as extractants. 

 

The 3-substituted ligands L17 and L18 show similar extractive properties; extracting 

CuCl2 and ZnCl2 with unexpectedly high efficiency corresponding to a metal 

salt:ligand ratio of 1:1, and also showing useful levels of metal sulfate extraction, 

particularly the extraction of CuSO4 by L18.  CuCl2 and ZnCl2 uptake levels are 

explained by crystal structure determination of [Cu(L17)Cl2] and [Zn2(L17)2Cl4], 

which provide a plausible binding motif in solution.  Such a H-bond stabilised motif 

is available only to the 3-substituted ligands. 

 

A chloroform solution of the 5-substituted ligand L20 showed reasonable CuCl2 

loading but did not extract any metal salt to the same extent as its 3-substituted 

isomer L18.  This is consistent with the 3-tert-butyl group of L20 hindering metal 
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extraction, as described in Chapters 2 and 3, but this can only be confirmed by more 

detailed analysis, which will be discussed in Chapter 5. 

 

Further testing on the extraction of CuCl2 by L18 showed an expected dependence of 

loading on high chloride concentration, and also that L18 is a very strong extractant, 

loading to 90% capacity over a pH range from 1.0 - 3.0.  Copper can also be stripped 

by 55 gL-1 HCl, leading to high copper transport efficiency and suggesting that the 

ligand could act as a pH-swing reagent in hydrometallurgical circuits.   

 

Having established proof-of-concept metal salt extraction by L17, L18 and L20, 

further testing was required to evaluate their commercial applicability.  

Understanding the selectivity of metal salt uptake is key to developing new reagents, 

and so Chapter 5 details solvent extraction experiments to determine both anion and 

cation selectivities, alongside the preparation of copper salt complexes with a 

number of anions to examine the binding motif in the solid state.   

 

 

4.8 Experimental 

 

4.8.1 Chemicals & Instrumentation 

 

All solvents and reagents were used as received from Aldrich, Fisher and Acros.  1H 

and 13C NMR were obtained using a Bruker AC250 spectrometer at ambient 

temperature.  Chemical shifts (�) are reported in parts per million (ppm) relative to 

internal standards.  Fast atom bombardment mass spectrometry was carried out using 

a Kratos MS50TC spectrometer with a 3-nitrobenzyl alcohol (NOBA) or thioglycerol 

matrix.  IR spectra were collected on a JASCO FT/IR 410.  Analytical data was 

obtained on a CE-440 Elemental Analyser by the University of Edinburgh 

Microanalytical Service.  ICP-OES analysis was carried out using a Perkin Elmer 

Optima 5300DV spectrometer.  The measurement of pH was carried out using a 

Fisher Scientific AR50 pH meter.  X-ray crystal structures were obtained by the 

University of Edinburgh Crystallography service. 
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4.8.2 Ligand Synthesis 

 

Attempts were made30-33 to synthesise (10) and (11), but these did not achieve 

satisfactory yields, and so the compounds were purchased from Sigma Aldrich.34   

 

1-Ethoxymethylpiperidine (12).  Piperidine (27.42 g, 320 mmol) was added to a 

suspension of potassium carbonate (59.51 g, 430 mmol) and paraformaldehyde 

(12.10 g, 400 mmol) in ethanol (1.5 l) dropwise over 30 minutes and the mixture left 

to stir for 72 h in an ice/water/NaCl bath.  After filtration the solvent was removed in 

vacuo to give a colourless liquid, which was purified by vacuum distillation (19.8 g, 

43%).  (Anal. Calc. for C8H17NO: C, 67.1; H, 12.0; N, 9.8. Found: C, 66.4; H, 12.5; 

N, 10.2%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.15 (t, 3H, CH3), 1.31 (m, 2H, 

NCH2CH2CH2), 1.50 (m, 4H, 2 x NCH2CH2CH2), 2.50 (m, 4H, 2 x NCH2CH2CH2), 

3.72 (q, 2H, OCH2CH3), 4.00 (s, 2H, NCH2O); 13C NMR (63 MHz, CDCl3): �C 

(ppm) 17.5 (1C, OCH2CH3), 23.0 (1C, NCH2CH2CH2), 25.0 (2C, 2 x 

NCH2CH2CH2), 50.0 (2C, 2 x NCH2CH2CH2), 63.5 (1C, OCH2CH3), 88.5 (1C, 

NCH2O); FABMS m/z 99 (12-OEt)+. 

 

1-Ethoxymethyldihexylamine (13).  Dihexylamine (59.60 g, 320 mmol) was added 

to a suspension of potassium carbonate (85.53 g, 620 mmol) and paraformaldehyde 

(12.10 g, 400 mmol) in ethanol (1.5 l) dropwise over 30 minutes and the mixture left 

to stir for 72 h in an ice/water/NaCl bath.  After filtration the solvent was removed in 

vacuo to give a colourless liquid, which was purified by vacuum distillation (60.4 g, 

77 %).  (Anal. Calc. for C15H33NO: C, 74.0; H, 13.7; N, 5.8. Found: C, 74.8; H, 13.6; 

N, 6.7%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.15 (t, 6H, 2 x N(CH2)5CH3), 1.45 

(t, 3H, OCH2CH3), 1.55 (m, 12H, 2 x N(CH2)2C3H6CH3), 1.72 (m, 4H, 2 x 

NCH2CH2C4H9), 2.88 (t, 4H, 2x NCH2C5H11), 3.74 (q, 2H, OCH2CH3), 4.41 (s, 2H, 

NCH2O); 13C NMR (63 MHz, CDCl3): �C (ppm) 13.5 (2C, 2 x N(CH2)5 CH3), 15.0 

(1C, OCH2CH3), 22.5 (2C, 2 x N(CH2)4CH2CH3), 27.0 (2C, 2 x N(CH2)3CH2C2H5), 

28.0 (2C, 2 x N(CH2)2CH2C3H7), 32.0 (2C, 2 x NCH2CH2C4H11), 52.0 (2C, 2 x 

NCH2C5H11), 63.0 (1C, OCH2CH3), 85.5 (1C, NCH2O); FABMS m/z 199 (13-OEt)+. 
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5-tert-Butyl-2-hydroxy-3-piperidin-1-ylmethylbenzaldehyde (14).  (1) (10.01 g, 

57 mmol) and (12) (8.78 g, 61 mmol) were refluxed in acetonitrile (500 ml) for 72 h 

under an atmosphere of nitrogen.  The solvent was removed in vacuo and the 

resulting sticky yellow solid was recrystallised from hexane to give a light yellow 

solid (14.23 g, 92%).  (Anal. Calc. for C17H24NO2: C, 74.2; H, 9.1; N, 5.1. Found: C, 

74.4; H, 9.3; N, 5.2%); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.20 (s, 9H, 

C(CH3)3), 1.45 (m, 2H, NCH2CH2CH2), 1.60 (m, 4H, 2 x NCH2CH2CH2), 2.48 (m, 

4H, 2 x NCH2CH2CH2), 3.63 (s, 2H, ArCH2N), 7.19 (s, 1H, ArH), 7.58 (s, 1H, ArH), 

10.35 (s, 1H, CHO); 13C NMR (63 MHz, CDCl3): �C (ppm) 24.0 (1C, 

NCH2CH2CH2), 26.0 (2C, 2 x NCH2CH2CH2), 31.5 (3C, C(CH3)3), 35.0, (1C, 

C(CH3)3), 53.5 (2C, 2 x NCH2CH2CH2), 58.5 (1C, ArCH2N), 122.7 (1C, aromatic 

C), 123.1 (1C, aromatic CH), 124.3 (1C, aromatic CH), 132.8 (1C, aromatic C), 

141.9 (1C, aromatic C), 160.3 (1C, aromatic C), 190.5 (1C, ArCHO); FABMS m/z 

276 (MH)+. 

 

5-tert-Butyl-3-dihexylaminomethyl-2-hydroxybenzaldehyde (15).  (1) (15.01 g, 84 

mmol) and (13) (20.48 g, 84 mmol) were refluxed in acetonitrile (250 ml) for 5 days 

under an atmosphere of nitrogen.  The solvent was removed in vacuo and 10 g of the 

resulting dark red oil was purified by silica-60 flash chromatography (10% ethyl 

acetate in hexane eluent) yielding a bright yellow oil (8.56 g, 86%).  (Anal. Calc. for 

C24H41NO2: C, 76.8; H, 11.0; N, 3.7. Found: C, 76.9; H, 11.4; N, 5.0%); 1H NMR 

(250 MHz, CDCl3): �H (ppm) 0.80 (t, 6H, 2 x N(CH2)5CH3), 1.23 (s, 21H, C(CH3)3 + 

2 x N(CH2)2C3H6CH3), 1.48 (m, 4H, 2 x NCH2CH2C4H9), 2.48 (m, 4H, 2 x 

NCH2C5H11), 3.72 (s, 2H, ArCH2N), 7.20 (s, 1H, ArH), 7.60 (s, 1H, ArH), 10.35 (s, 

1H, CHO); 13C NMR (63 MHz, CDCl3): �C (ppm) 13.5 (2C, 2 x N(CH2)5CH3), 22.5 

(2C, 2 x N(CH2)4CH2CH3), 26.0 (2C, 2 x N(CH2)3CH2C2H5), 27.0 (2C, 2 x 

N(CH2)2CH2C3H7), 31.5 (3C, C(CH3)3), 32.0 (2C, 2 x NCH2CH2C4H11), 34.0, (1C, 

C(CH3)3), 53.5 (2C, 2 x NCH2C5H11), 57.0 (1C, ArCH2N), 121.1 (1C, aromatic C) 

122.0 (1C, aromatic CH), 123.5 (1C, aromatic CH), 132.0 (1C, aromatic C), 141.0 

(1C, aromatic C), 159.5 (1C, aromatic C), 190.5 (1C, ArCHO); FABMS m/z 376 

(MH)+. 
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3-tert-Butyl-2-hydroxy-5-piperidin-1-ylmethylbenzaldehyde (16). 3-tert-Butyl-2-

hydroxybenzaldehyde (3.31 g, 18.6 mmol) and (12) (2.93 g, 20.5 mmol) were 

refluxed in acetonitrile (25 ml) under nitrogen for 4 days.  The solvent was removed 

in vacuo to yield an orange-brown oil which was used without further purification 

(4.96 g, 97%).  (Anal. Calc. for C17H25NO2: C, 74.1; H, 9.2; N, 5.1.  Found: C, 70.1; 

H, 8.6; N, 4.1%); 1H NMR (CDCl3, 250 MHz): �H (ppm) 1.61 (9H, s, C(CH3)3), 1.57 

(2H, d, NCH2CH2CH2), 1.78 (4H, m, 2 x NCH2CH2CH2), 2.57 (4H, m, 2 x 

NCH2CH2CH2), 3.62 (2H, s, NCH2Ar), 7.60 (2H, s, 2 x ArH), 10.06 (1H, s, CHO), 

11.89 (1H, s, OH); 13C NMR (CDCl3, 63 MHz): �C (ppm) 24.3 (1C, NCH2CH2CH2), 

25.8 (2C, 2 x NCH2CH2CH2), 29.1 (3C, C(CH3)3), 34.7 (1C, C(CH3)3), 54.3 (2C, 2 x 

NCH2CH2CH2), 62.9 (1C, NCH2Ar), 120.2 (1C, aromatic C), 129.2 (1C, aromatic 

C), 131.9 (1C, aromatic CH), 135.2 (1C, aromatic CH), 137.7 (1C, aromatic C), 

160.0 (1C, aromatic C), 197.1 (1C, CHO); FABMS m/z 84 (100 %), 276 (MH)+ not 

observed. 

 

3-tert-Butyl-5-dihexylaminomethyl-2-hydroxybenzaldehyde (17).  3-tert-Butyl-2-

hydroxybenzaldehyde (4.84 g, 27.2 mmol) and (13) (7.18 g, 29.9 mmol) were 

refluxed in acetonitrile (25 ml) under nitrogen for 4 days.  The solvent was removed 

in vacuo to yield an orange oil which was purified by silica-60 wet flash column 

chromatography (2% ethyl acetate in PET40-60 eluent) to yield a bright yellow oil 

(9.39 g, 92%).  (Anal. Calc. for C24H41NO2: C, 76.8; H, 11.0; N, 3.7. Found: C, 77.6; 

H, 11.1; N, 4.2%.); 1H NMR (CDCl3, 250 MHz): �H (ppm) 0.92 (6H, t, 2 x 

N(CH2)5CH3), 1.29 (16H, m, 2 x NCH2(CH2)4CH3), 1.45 (9H, s, C(CH3)3), 2.43 (4H, 

t, 2 x NCH2C5H11), 3.53 (2H, s, NCH2Ar), 7.36 (1H, d, ArH), 7.56 (1H, dd, ArH), 

9.89 (1H, s, CHO), 11.64 (1H, br, OH); 13C NMR (CDCl3, 63 MHz): �C (ppm) 14.0 

(2C, 2 x N(CH2)5CH3), 22.6 (2C, 2 x N(CH2)4CH2CH3), 26.9 (2C, 2 x 

N(CH2)3CH2C2H5), 27.1 (2C, 2 x N(CH2)2CH2C3H8), 29.1 (3C, C(CH3)3), 31.6 (2C, 

2 x NCH2CH2C4H9), 34.7 (1C, C(CH3)3), 53.6 (2C, 2 x NCH2C5H11), 57.7 (1C, 

NCH2Ar), 120.1 (1C, aromatic C), 130.9 (1C, aromatic C), 131.3 (1C, aromatic 

CH), 134.9 (1C, aromatic CH), 137.6 (1C, aromatic C), 160.0 (1C, aromatic C), 

197.1 (1C, CHO); FABMS m/z 376 (MH)+. 
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2-Hydroxy-3-methyl-5-piperidin-1-ylmethylbenzaldehyde (18).  A mixture of 2-

hydroxy-3-methylbenzaldehyde (3.46 g, 25.5 mmol) and (12) (4.00 g, 28.0 mmol) in 

acetonitrile (ca. 15 mL) was heated under reflux under nitrogen for 5 days.  After 

cooling to room temperature the solvent was removed in vacuo to yield an orange-

brown oil which was used without further purification (5.93 g, 93%). (Anal. Calc for 

C14H19NO2: C, 72.1; H, 8.2; N, 6.0.  Found: C, 71.2; H, 8.2; N, 5.4%);  1H NMR 

(CDCl3, 250 MHz): �H (ppm) 1.56 (2H, d, N(CH2)2CH2), 1.75 (4H, q, 2 x 

NCH2CH2), 2.36 (3H, s, CH3), 2.47 (4H, br, 2 x NCH2CH2), 3.49 (2H, s, 2 x 

ArCH2N), 7.44 (2H, d, 2 x ArH), 9.96 (1H, s, CHO), 11.20 (1H, br, ArOH); 13C 

NMR (CDCl3, 63 MHz): �C (ppm) 14.8 (1C, CH3), 24.1 (1, N(CH2)2CH2), 25.7 (2C, 

2 x NCH2CH2), 54.2 (2C, 2 x NCH2CH2), 62.6 (1C, ArCH2N), 119.3 (1C, aromatic 

C), 126.2 (1C, aromatic C), 129.4 (1C, aromatic C), 131.3 (1C, aromatic CH), 138.7 

(1C, aromatic CH), 158.7 (1C, aromatic C), 196.5 (1C, CHO); FABMS m/z 234 

(MH)+. 

 

5-Dihexylaminomethyl-2-hydroxy-3-methylbenzaldehyde (19).  2-Hydroxy-3-

methylbenzaldehyde (4.98 g, 37 mmol) and (13) (9.00 g, 37 mmol) were refluxed in 

acetonitrile (250 ml) under nitrogen for 5 days.  The solvent was removed in vacuo 

to yield an orange oil which was purified by silica-60 wet flash column 

chromatography (5% ethyl acetate in hexane eluent) to yield a yellow oil (10.32 g, 

84%).  The product was found to decompose to a solid if left to stand and so no CHN 

data is available. 1H NMR (CDCl3, 250 MHz): �H (ppm) 1.03 (6H, t, 2 x 

N(CH2)5CH3), 1.44 (12H, m, 2 x N(CH2)2(CH2)3CH3), 1.62 (4H, m, 2 x NCH2CH2), 

2.45 (3H, s, ArCH3), 2.55 (4H, t, 2 x NCH2C5H11), 3.66 (2H, s, NCH2Ar), 7.52 (1H, 

s, ArH), 7.56 (1H, s, ArH), 10.05 (1H, s, CHO), 11.37 (1H, s, OH); 13C NMR 

(CDCl3, 63 MHz): �C (ppm) 13.4 (2C, 2 x N(CH2)5CH3), 14.4 (1C, ArCH3), 22.1 

(2C, 2 x N(CH2)4CH2CH3), 26.2 (2C, 2 x N(CH2)3CH2C2H5), 26.5 (2C, 2 x 

N(CH2)2CH2C3H8), 31.1 (2C, 2 x NCH2CH2C4H9), 53.1 (2C, 2 x NCH2C5H11), 57.0 

(1C, NCH2Ar), 119.0 (1C, aromatic C), 125.8 (1C, aromatic C), 130.4 (1C, aromatic 

CH), 130.5 (1C, aromatic C), 138.1 (1C, aromatic CH), 158.3 (1C, aromatic C), 

196.2 (1C, CHO); FABMS m/z 334 (MH)+.   
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5-tert-Butyl-2-hydroxy-3-piperidin-1-ylmethylbenzaldehyde oxime (L17).  

Potassium hydroxide (2.24 g, 40 mmol) and hydroxylamine hydrochloride (2.85 g, 

41 mmol) were mixed in ethanol (300 ml) and a white KCl precipitate was removed 

by filtration.  The filtrate was added to (14) (10.01 g, 36.4 mmol) in ethanol (1 l), 

stirred for 3 h and the solvent removed in vacuo to give a pale cream solid.  The solid 

was dissolved in DCM (200 ml), washed three times with water (50 ml) and the 

solvent removed in vacuo to give a white powder (7.81 g, 74%).  Crystals suitable 

for analysis by X-ray diffraction were grown by slow evaporation of a 

methanol/chloroform solution.  (Anal. Calc. for C17H25N2O2: C, 70.3; H, 9.0; N, 9.7. 

Found: C, 70.0; H, 9.1; N, 9.4%); � �max/cm-1 (nujol) 3416br (NOH), 3145br (PhOH), 

1613 (C=N), 1016 (C-N); 1H NMR (250 MHz, CDCl3): �H (ppm) 1.20 (s, 9H, 

C(CH3)3), 1.45 (m, 2H, NCH2CH2CH2), 1.60 (m, 4H, 2 x NCH2CH2CH2), 2.50 (m, 

4H, 2 x NCH2CH2CH2), 3.65 (s, 2H, ArCH2N), 7.20 (s, 1H, ArH), 7.57 (s, 1H, ArH), 

8.38 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 24.3 (1C, 

NCH2CH2CH2), 26.1 (2C, 2 x NCH2CH2CH2), 31.8 (3C, C(CH3)3), 34.4, (1C, 

C(CH3)3), 54.3 (2C, 2 x NCH2CH2CH2), 62.2 (1C, ArCH2N), 118.2 (1C, aromatic 

C), 122.2 (1C, aromatic C), 123.1 (1C, aromatic CH), 128.0 (1C, aromatic CH), 

141.8 (1C, aromatic C), 148.4 (1C, ArCHN), 154.8 (1C, aromatic C); FABMS m/z 

291 (MH)+. 

 

5-tert-Butyl-3-dihexylaminomethyl-2-hydroxybenzaldehyde oxime (L18).  

Potassium hydroxide (1.42 g, 25 mmol) and hydroxylamine hydrochloride (1.80 g, 

26 mmol) were mixed in ethanol (300 ml) and a white KCl precipitate was removed 

by filtration.  The filtrate was added to (15) (8.56 g, 23 mmol) in ethanol (1 l), stirred 

for 3 h and the solvent removed in vacuo to give a tarry yellow solid (7.57 g, 85%) 

which was used without further purification.  (Anal. Calc. for C24H42N2O2: C, 73.8; 

H, 10.8; N, 7.2. Found: C, 73.9; H, 10.5; N, 7.0%); � �max/cm-1 (CHCl3) 3581br 

(NOH), 3172br (PhOH), 1607 (C=N), 1028 (C-N); 1H NMR (250 MHz, CDCl3): �H 

(ppm) 0.80 (t, 6H, 2 x N(CH2)2CH3), 1.21 (m, 21H, C(CH3)3 + 2 x 

N(CH2)2C3H6CH3), 1.55 (m, 4H, 2 x NCH2CH2C4H9), 2.56 (m, 4H, 2 x NCH2C5H11), 

3.83 (s, 2H, ArCH2N), 7.20 (s, 1H, ArH), 7.40 (s, 1H, ArH), 8.33 (s, 1H, ArCHN); 
13C NMR (63 MHz, CDCl3): �C (ppm) 14.5 (2C, 2 x N(CH2)5CH3), 22.5 (2C, 2 x 
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N(CH2)4CH2CH3), 26.0 (2C, 2 x N(CH2)3CH2C2H5), 27.5 (2C, 2 x 

N(CH2)2CH2C3H7), 31.5 (3C, C(CH3)3), 32.0 (2C, 2 x NCH2CH2C4H11), 34.0, (1C, 

C(CH3)3), 53.0 (2C, 2 x NCH2C5H11), 58.0 (1C, ArCH2N), 117.6 (1C, aromatic C), 

122.0 (1C, aromatic C), 122.5 (1C, aromatic CH) 127.5 (1C, aromatic CH), 142.0 

(1C, aromatic C), 147.9 (1C, ArCHN), 154.6 (1C, aromatic C); FABMS m/z 391 

(MH)+. 

 

3-tert-Butyl-2-hydroxy-5-piperidin-1-ylmethylbenzaldehyde oxime (L19).  

Hydroxylamine hydrochloride (1.10 g, 15.9 mmol) and potassium hydroxide (0.89 g, 

15.9 mmol) were dissolved in ethanol (100 ml) and a white precipitate removed by 

filtration.  The filtrate was added to (16) (4.37 g, 15.9 mmol) and heated under reflux 

for 2 hours to give an orange solution.  The solvent was removed in vacuo to give a 

pale orange solid.  Dichloromethane (3 x 30 ml) was added to the flask and the 

resulting orange suspension filtered.  The solvent was removed from the filtrate in 

vacuo to yield a white solid (3.69 g, 80%).  Crystals suitable for study by X-Ray 

diffraction were grown by slow evaporation of a methanol/chloroform solution.  

(Anal. Calc. for C17H26N2O2.(CHCl3)0.5; C, 60.0; H, 7.6; N, 8.0.  Found: C, 61.6; H, 

7.9; N, 8.3%); � �max/cm-1 (KBr) 3420br (NOH), 3236br (PhOH), 2940 (C-H), 1614 

(C=N), 1024 (C-N);  1H NMR (CDCl3, 250 MHz): �H (ppm) 1.31 (9H, s, C(CH3)3), 

1.43 (2H, s, NCH2CH2CH2), 1.59 (4H, m, 2 x NCH2CH2CH2), 2.41 (4H, m, 2 x 

NCH2CH2CH2), 3.40 (2H, s, NCH2Ar), 6.97 (1H, d, ArH), 7.07 (1H, d, ArH), 8.10 

(1H, s, CHNOH), 10.32 (1H, s, OH); 13C NMR (63 MHz, CDCl3): �C (ppm) 24.0 

(1C, NCH2CH2CH2), 25.5 (2C, 2 x NCH2CH2CH2), 29.5 (3C, C(CH3)3), 35.0, (1C, 

C(CH3)3), 54.5 (2C, 2 x NCH2CH2CH2), 63.5 (1C, ArCH2N), 118.5 (1C, aromatic 

C), 130.0 (1C, aromatic C), 130.5 (1C, aromatic CH), 137.0 (1C, aromatic CH), 

140.5 (1C, aromatic C), 153.5 (1C, aromatic C), 158.0 (1C, ArCHN); FABMS m/z 

291 (MH)+. 

 

3-tert-Butyl-5-dihexylaminomethyl-2-hydroxybenzaldehyde oxime (L20). 

Hydroxylamine hydrochloride (1.64 g, 23.5 mmol) and potassium hydroxide (1.32 g, 

23.5 mmol) were mixed in ethanol (200 ml) and a white precipitate removed by 

filtration.  The filtrate was added to (17) (8.82 g, 23.5 mmol) and refluxed for 3 
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hours to give a yellow solution.  The solvent was removed in vacuo to give a highly 

viscous pale orange oil, which was used without further purification (9.17 g, 100%). 

(Anal. Calc. for C24H42N2O2: C, 73.8; H, 10.8; N, 7.2.  Found: C, 72.8; H, 10.8; N, 

7.7%); � �max/cm-1 (CHCl3) 3576br (NOH), 3156br (PhOH), 1611 (C=N), 1017 (C-N); 
1H NMR (CDCl3, 250 MHz): �H (ppm) 1.16 (6H, m, 2 x N(CH2)5CH3), 1.59 (16H, 

m, 2 x NCH2(CH2)4CH3), 1.69 (9H, d, C(CH3)3), 2.76 (4H, 2 x NCH2C5H11), 3.86 

(2H, s, NCH2Ar), 7.31 (1H, d, ArH), 7.53 (1H, d, ArH), 8.49 (1 H, d, CHNOH), 

10.80 (1 H, s, OH); 13C NMR (CDCl3, 63 MHz): �C (ppm) 13.9 (2C, 2 x 

N(CH2)5CH3), 22.4 (2C, 2 x N(CH2)4CH2CH3), 25.6 (2C, 2 x N(CH2)3CH2C2H5), 

27.1 (2C, 2 x N(CH2)2CH2C3H7), 29.2 (3C, C(CH3)3), 31.3 (2C, 2 x NCH2CH2C4H9),  

34.7 (1C, C(CH3)3), 53.1, (2C, 2 x NCH2C5H11), 57.5 (1C, NCH2Ar), 116.8 (1C, 

aromatic C), 127.0 (1C, aromatic C), 129.5 (1C, aromatic CH), 129.7 (1C, aromatic 

CH), 136.5 (1C, aromatic C), 152.4 (1C, ArCHN), 155.7 (1C, aromatic C); FABMS 

m/z 391 (MH)+. 

 

2-Hydroxy-3-methyl-5-piperidin-1-ylmethylbenzaldehyde oxime (L21).  

Hydroxylamine hydrochloride (1.56 g, 22.4 mmol) and potassium hydroxide (1.26 g, 

22.4 mmol) were mixed in ethanol (200 ml) and a white precipitate removed by 

filtration.  The filtrate was added to (18) (5.23 g, 22.4 mmol).  The solution was 

heated under reflux for 2 hours and a white precipitate formed immediately on 

boiling.  The suspension was cooled to room temperature and the solvent removed in 

vacuo.  Water (100 mL) and chloroform (150 mL) were added to the flask and a 

white solid was obtained on filtration (3.46 g, 62%).  (Anal. Calc. for C14H20N2O2: C, 

67.7; H, 8.1; N, 11.3.  Found: C, 67.0; H, 8.1; N, 10.5%);  � �max/cm-1 (KBr) 3440br 

(NOH), 3238br (PhOH), 2933 (C-H), 1616 (C=N), 1010 (C-N); 1H NMR (d8-THF, 

250 MHz): �H (ppm) 1.43 (2H, d, N(CH2)2CH2), 1.57 (4H, 2 x NCH2CH2), 2.19 (3H, 

s, CH3), 2.31 (4H, 2 x NCH2CH2), 3.30 (2H, s, ArCH2N), 7.00 (1H, s, ArH), 7.05 

(1H, s, ArH), 8.18 (1H, s, CHNOH), 10.21 (1H, s, ArOH); 13C NMR (d8-THF, 63 

MHz): �C (ppm), 15.9 (1C, CH3), 25.5 (1C, N(CH2)2CH2), 27.0 (2C, 2 x NCH2CH2), 

55.2 (2C, 2 x NCH2CH2), 63.8 (1C, ArCH2N), 117.0 (1C, aromatic C), 125.5 (1C, 

aromatic C), 129.3 (1C, aromatic CH), 130.1 (1C, aromatic C), 133.2 (1C, aromatic 

CH), 152.8 (1C, aromatic CH), 155.6 (1C, CHN), FABMS m/z 249 (MH)+. 
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5-Dihexylaminomethyl-2-hydroxy-3-methylbenzaldehyde oxime (L22).  

Hydroxylamine hydrochloride (1.10 g, 15.9 mmol) and potassium hydroxide (0.89 g, 

15.9 mmol) were dissolved in ethanol (100 ml) and a white precipitate removed by 

filtration.  The filtrate was added to (19) (3.33 g, 10.0 mmol) and refluxed for 3 

hours to give a yellow solution.  The solvent was removed in vacuo to give a highly 

viscous pale orange oil, which was used without further purification (3.23 g, 93%). 

The product was found to decompose to a solid if left to stand and so no CHN data is 

available.  � �max/cm-1 (CHCl3) 3576br (NOH), 3164br (PhOH), 1617 (C=N), 1015 (C-

N); 1H NMR (CDCl3, 250 MHz): �H (ppm) 1.06 (6H, t, 2 x N(CH2)5CH3), 1.51 (12H, 

m, 2 x N(CH2)2(CH2)3CH3), 1.62 (4H, m, 2 x NCH2CH2), 2.45 (3H, s, ArCH3), 2.75 

(4H, t, 2 x NCH2C5H11), 3.80 (2H, s, NCH2Ar), 7.16 (1H, s, ArH), 7.26 (1H, s, ArH), 

8.35 (1H, s, ArCHN), 9.8 (1H, br, OH); 13C NMR (CDCl3, 63 MHz): �C (ppm) 14.4 

(2C, 2 x N(CH2)5CH3), 16.1 (1C, ArCH3), 23.0 (2C, 2 x N(CH2)4CH2CH3), 26.0 (2C, 

2 x N(CH2)3CH2C2H5), 27.2 (2C, 2 x N(CH2)2CH2C3H8), 31.8 (2C, 2 x 

NCH2CH2C4H9), 53.6 (2C, 2 x NCH2C5H11), 57.8 (1C, NCH2Ar), 116.7 (1C, 

aromatic C), 125.7 (1C, aromatic C), 127.5 (1C, aromatic C), 129.7 (1C, aromatic 

CH), 133.6 (1C, aromatic CH), 152.2 (1C, ArCHN), 155.3 (1C, aromatic C); 

FABMS m/z 349 (MH)+. 

 

 

4.8.3 Solvent Extraction 

 

All solvent extraction data is available in appendix 7.4.1.  In all cases for metal and 

sulfur analysis an aliquot (0.5 ml) of the organic phase was removed, the solvent was 

removed in vacuo, the residue was dissolved in butan-1-ol (10 ml) and the 

concentration measured by ICP-OES.  Two methods of chloride analysis were 

utilised.  In the initial extraction of metal salts by the L17-L22 (Section 4.4), chloride 

concentration was measured by stirring a 2 ml aliquot of the organic phase with 10 

ml of 0.1 M HNO3 overnight, to strip all chloride ions into the aqueous phase. After 

separation, a 4 ml aliquot was contacted with 1 ml of a stock solution of AgNO3 

(0.02 M) to precipitate the chloride as AgCl.  The mixture was centrifuged and 

filtered through a 0.2 µm single-use syringe filter, and a 2 ml aliquot of the filtrate 
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was made up to 10 ml in a volumetric flask to measure the remaining silver 

concentration by ICP-OES.  Chloride loading values were calculated from the 

concentration of Ag+ ions remaining in solution, with each loading value an average 

of two runs and corrected from values obtained by blank solutions.   

 

This method proved to be time consuming and contained many potential sources of 

error.  For these reasons, a protocol involving a chloride sensitive electrode was 

developed in subsequent testing.  A 2 ml aliquot of the organic phase was again 

stirred overnight with 0.1 M aqueous HNO3 (10 ml), the aqueous phase extracted and 

a 5 ml aliquot made up to 10 ml with 0.1 M NaOH.  Chloride concentration of the 

solution was then measured with a chloride sensitive electrode.     

 

 

4.8.3.1  Extraction of Metal Salts 

 

All extractions were performed to the same general procedure.  0.01 M solution of L 

in chloroform (10 ml) was added to 1 M metal salt aqueous solution (10 ml) and 

stirred for 24 hrs.  The organic phase was extracted, a 0.5 ml aliquot taken to be used 

for metal/sulfur analysis and a 2.0 ml aliquot taken for chloride analysis by the AgCl 

precipitation method described above.  The residues of [Cu(L17)Cl2] were not 

sufficiently soluble in butan-1-ol for ICP-OES analysis, so were carefully dissolved 

in concentrated HNO3, diluted to 10 ml with deionised water and run as aqueous 

ICP-OES samples. 

 

 

4.8.3.2  Dependence of Cu-Loading of L18 on [Cl-] 

 

A 0.01 M solution of L18 in chloroform (5 ml) was contacted with an aqueous phase 

consisting of 1 ml of 0.05M aqueous CuCl2 and 4 ml of a mixture of aqueous 2M 

NaCl and water to vary the chloride concentration.  This ensured a 1:1 ratio of 

L18:Cu throughout the experiment.  The organic phase was extracted, a 0.5 ml 

aliquot taken for Cu analysis and the equilibrium pH of the aqueous phase measured. 
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4.8.3.3  CuCl2 pH-Loading Profile of L18  

 

A 0.01 M solution of L18 in chloroform (5 ml) was contacted with an aqueous phase 

consisting of 63 	l of 0.8 M aqueous CuCl2 solution and 4.937 ml of a pre-made 

mixture of 0.8 M NaCl and 0.8 M HCl of varying pH.  This ensured a constant 

chloride concentration of 0.8 M and copper concentration of 0.01 M in the aqueous 

phase, and a 1:1 ratio of L18:Cu throughout the experiment.  The organic phase was 

extracted, a 0.5 ml aliquot taken for copper analysis, a 2 ml aliquot taken for chloride 

analysis by a chloride selective electrode and the equilibrium pH of the aqueous 

phase measured. 

 

 

4.8.3.4  Stripping of Cu from Loaded Solutions of L18 

 

0.01 M solutions of L18 (5 ml) were stirred vigourously with a 1 M aqueous solution 

of CuCl2 (5 ml) overnight to fully load the ligand.  The phases were separated, a 0.5 

ml aliquot of the organic phase taken for copper analysis by ICP-OES, and the 

remainder contacted with aqueous solutions of HCl of varying concentrations.  The 

mixtures were stirred overnight to ensure equilibrium, the organic phase separated 

and a 0.5 ml aliquot taken for copper analysis by ICP-OES.   

 

 

4.8.4. X-Ray Structure Determinations 

 

Crystal structures were determined at the University of Edinburgh crystallography 

service. The structures of L19 and L21 were solved by Fraser White, the structure of 

L17 by Dr Stephen Moggach, the structure of [Cu(L17)Cl2] by Dr James Davidson, 

the structures of [Zn2(L17)2Cl4] by Professor Simon Parsons.  Details on the 

solutions and cif files are available in appendix 7.4.2. 
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5.1 Introduction 

 

5.1.1 Aims 

 

The aim of the work described in this chapter was to examine the selectivity of anion 

and cation binding of ligands L17-L20, with focus on potential commercialisation of 

kerosene-soluble analogues with multiply branched nonyl groups replacing the tert-

butyl substituents.  As described previously, the metal salt complexes of L21 and 

L22 were found to be poorly soluble in organic media and this precluded the ligands 

from study.  The work involved: 

 

• the synthesis and characterisation of “metal-only” complexes, where the 

cation binding site is filled and the anion binding site is vacant, to use in 

anion selectivity extraction experiments,  

• determination of the anion selectivities of L18 and L20 in the presence of 

copper and nickel by solvent extraction, 

• the isolation and characterisation of metal salt complexes of L17 to analyse 

binding motifs in the solid state, and 

• the assessment of the cation selectivity of L18 in solvent extraction 

experiments. 

 

A review of attempts to design selective anion extractants and of suitable anion 

detection techniques follows. 

 

 

5.1.2 Reversing the Hofmeister Bias 

 

The extractability of anions from an aqueous phase into a water-immiscible solvent 

is dominated by the level of solvation of the anion, with the Hofmeister bias, 

discussed in detail in Chapter 1, often able to predict the selectivity orders of anion 

binding.1  Larger, more charge-diffuse anions are more easily extracted as they are 

less hydrophilic, and it is often possible to predict distribution coefficients from the 
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Gibbs free energies of solvation.2, 3  In the liquid/liquid extraction of anions, the 

following series is usually observed, with the most readily extracted anions on the 

left and the least readily on the right:2 

 

ClO4
- > I- > SCN- > NO3

- > Br- > Cl- >> SO4
2- > CO3

2- > PO4
3- 

 

To achieve truly selective anion extraction, the Hofmeister bias must often be 

reversed, or at least attenuated in some way.  An extractant must bind the anion with 

sufficient "strength" to overcome the required dehydration in the transfer of the target 

species to the organic phase.   

 

Receptors containing electron deficient Lewis acid sites can form bonding 

interactions with anions by overlap of orbitals, and have found particular application 

in the field of ion selective electrodes.2, 4  Striking examples are the ion selective 

electrodes synthesised by Chandra et al
5, with ionophores based on organotin 

compounds.  The electrodes show entirely non-Hofmeister selectivity orders, with an 

example ionophore and its anion selectivity order displayed in Figure 5.1.  

 

Sn

N(Me)2

F

F

F Ph

_

F- > OAc-> Cl- > I- ~ Br- > ClO4
- > NO2

- > NO3
- > SCN-

 

 

Figure 5.1:  An organotin compound which shows a non-Hofmeister order for anion binding.5 

 

Hydrogen bond donors can provide favourable interactions with the bound anion, for 

example Sessler et al have developed calixpyrroles,6 some fluorinated,7 which 
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extract the caesium salts of smaller anions such as chloride and nitrate into 

nitrobenzene as effectively as caesium iodide (Figure 5.2). 

 

HNNH
H
N

N
H

R

R

RR

R

R

R R

R = H, F 

 

Figure 5.2: meso-Octamethylcalix[4]pyrolles for the binding of caesium salts.6, 7 

 

Increasing the cavity size and hydrogen-bond donor functionality of macrocyclic 

receptors can favour the extraction of larger, more complex anions, such as the 

octamethyl-octaundecylcyclo[8]pyrolle (Figure 5.3) designed by Moyer et al
8, which 

is the first reagent to selectively extract sulfate in the presence of high nitrate 

concentrations.  
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Figure 5.3: Octamethyl-octaalkylcyclo[8]pyrolle for the extraction of sulfate.8 

 

A highly organised, singly charged, steroid-based receptor with urea H-bond donors 

developed by Davis et al
9 has been shown to extract bromide and iodide more 
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strongly than hexafluorophosphate and perchlorate.  The complexity of the structure 

(Figure 5.4) illustrates the difficulties in synthesising receptors with appropriate 

geometries and H-bond donors to achieve selective anion transport against the 

Hofmeister bias. 
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Figure 5.4: Steroid based anion receptor of Davis et al.9 

 

Moyer et al
1 have also demonstrated that “dual host” systems, containing a cation 

binding species and an anion binding species, can extract anions against the 

Hofmeister bias.  A calix-crown cation host alongside a disulfonamide anion host 

show synergistic, anti-Hofmeister behaviour in the extraction of caesium salts.   

 

A novel tactic for overcoming the Hofmeister bias is to extract not only the anion, 

but also some of its hydration sphere into the organic phase.  Plieger et al
10 have 

described the solid state structure of a CuSO4 complex of a macrocyclic ligand based 

on a "salen" unit (described in Chapter 4) wherein the sulfate is bound as a water 

bridged dimer (Figure 5.5).  This solid state phenomenon may also be mirrored in 

solvent extraction experiments, as the ligand shows a greater strength of sulfate 

extraction compared to other, similar ligands.  This suggests that the extraction of 

partially hydrated anions may be key to achieving the selective transport of 

hydrophilic anions in a solvent extraction process.  
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Figure 5.5:  The solid state structure of a macrocyclic ligand binding CuII and partially hydrated 

sulfate anions.11  

 

The examples illustrated suggest that attenuating the Hofmeister bias is achievable 

using a number of strategies.  However, attaining a complete reversal of the series is 

very difficult and will probably require the use of highly complex, synthetically 

challenging receptors.12 

 

 

5.1.3 Techniques to Determine Anion Selectivity 

 

In order to measure accurately anion selectivity orders, a robust, reliable analytical 

technique must be employed.  Most literature techniques involve single phase 

measurements of the stability of anion complexation, with the most common being 

NMR spectroscopy.  Changes in the experimentally measured parameters, i.e. 

chemical shift and coupling constants, can give information not only on the strength 

of binding but solution structure.  The NMR sensitive nuclei which show the greatest 

perturbation in chemical shift can be identified as those most heavily involved in the 

binding of the anion, and in most cases the location of binding in solution can be 

confirmed.13  However, NMR techniques can show low sensitivity due to the 

relatively high concentrations of both the anion and the receptor required to attain 
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signals with appropriate intensities for use.14  The technique also suffers from its 

intolerance to some paramagnetic centres, rendering it unsuitable for experiments to 

determine the anion selectivities of metal salt extractants designed to bind the 

paramagnetic CuII ion alongside various anions.15 

 

Potentiometry, most often pH-metry, is a well defined method for measuring stability 

constants, usually in aqueous solutions.16, 17  The technique involves analysing the 

consumption or liberation of protons as the receptor binds the anion by measuring the 

pH of the solution.  It requires the basicity constants of the ligand and the anion(s) 

involved in the experiment to be determined previously, and subsequent pH titrations 

are carried out using a solution of the receptor, anion and protons to determine the 

effect on pH.  Stability constants can then be extracted from the data using computer 

programs.2  The technique depends on the understanding of all equilibrium processes 

in solution, and so the added complexities incurred when analysing cation and anion 

extraction (there are estimated to be over 11 species present in CuSO4/H2SO4 

aqueous solutions)18 preclude it from use in our case. 

 

In the field of anion sensing, the inclusion of transition metals in receptors makes it 

possible to take advantage of the optical and electrochemical properties conferred by 

the metal cation.  A recent review by Beer et al
19 describes the inclusion of ferrocene 

and cobaltocenium moieties to allow anion detection by cyclic voltammetry, and of 

ruthenium chromophores which facilitate anion detection by UV/Vis spectroscopy.  

Two examples are shown in Figure 5.6. 
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Figure 5.6:  Examples of metal-based anion receptors which allow measurement of anion binding by 

electrochemical and optical techniques.19 
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Fluorimetric analytical techniques are also becoming prominent in anion sensing, and 

employ the similar strategy of incorporating a fluorophore into receptor design.  

Gunnlaugsson et al
20 have recently reviewed the area, but these strategies require 

complexity of receptor design, which is not favourable in the development of ligands 

for use in extractive processes and so are not detailed further. 

 

Anion selective electrodes are becoming an increasingly popular and applied method 

for measuring anion concentrations in aqueous solutions.  Whilst the current range of 

detectable anions is low, halide-selective electrodes are commercially available and 

successful.2  Care must be taken when using such electrodes that interfering anions 

and cations are not present in the analytical solution, for example the presence of 

certain transition metal cations leads to the formation of chlorometallate anions, 

altering the chloride ion concentration and adversely affecting results through the 

equilibrium: 

 

Equation 5.1   Mx+ + yCl-  MCly
(x-y)- 

 

as anion selective electrodes only measure the free anion concentration.  The solvent 

extraction experiments described in this chapter focus on the selectivity of metal salt 

extractants for the commercially relevant anions Cl- and SO4
2- in the presence of CuII 

and NiII, which do not form chloro-complexes under extraction conditions.  For this 

reason, a chloride sensitive electrode was used to measure chloride uptake. 

 

As ICP-OES (Chapter 2) is used to measure metal ion concentration in extraction 

experiments, it would save time and effort if anion selectivity could be measured 

using this technique.  Unfortunately, most non-metallic elements cannot be analysed 

as their atomic and ionic emission spectra lie in the wrong region or have too low 

intensity for reliable detection.21  However, sulfur does have emission lines in the 

correct region, and so sulfate analysis was carried out alongside metal analysis using 

ICP-OES. 
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5.1.4 Anion Selectivity by Solvent Extraction 

 

As described in Chapter 1, it is possible to determine the relative cation binding 

strengths of a series of ligands by carrying out solvent extraction experiments under 

identical conditions to obtain S-curves, and subsequently measuring the pH0.5 value 

for cation binding.  It has been shown recently within the group that it is also 

possible to use solvent extraction experiments to obtain anion loading S-curves, and 

pH0.5 values for anion loading give information on anion selectivity.10, 22  As the 

anion binding site must be protonated to operate, anions associated with higher pH0.5 

values will be bound more "strongly", and so in a comparative experiment the 

extractant will be selective for the anion which shows the highest pH0.5 (Figure 

5.7).23   

 

           
Figure 5.7:  Loading S-curves for two different anions for pH-dependent uptake L(org) + H+ + X- 

 [LH.X](org). 

 

The difference in pH0.5 values for two anions provides a quantitative measure of 

selectivity.  In the scheme shown in Figure 5.7, the receptor binds anion Y at a higher 

pH than anion X, and so the receptor is selective for Y over X.   
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5.2 Synthesis and Characterisation of Metal-Only Complexes 

 

“Metal-only” complexes, [M(L-H)2], formed by the deprotonated salicylaldoxime 

units, can be used to study anion-uptake properties: occupying all cation binding sites 

allows focus on anion binding.  The preparation of metal-only complexes, by mixing 

ligands and metal acetates, proved simple and high yielding.  On complexation of the 

metal, the protons lost from the phenol groups were expected to react with the acetate 

anions to form acetic acid, which could be removed in vacuo.   

 

Equation 5.2:  [M(OAc)2] + 2L  [M(L-H)2] + 2AcOH 

 

An aqueous ammonia wash was also employed to ensure no acetate anions remained 

associated with the complexes.  Due to the solubility problems described in Chapter 

4, only the complexes of L17-L20 were studied. 

 

The physical properties of these highly coloured solids varied with the nature of the 

ligand and the metal.  Firstly, it was noticed that the brown CuII and green NiII 

complexes of the “5-substituted” ligands were less soluble in organic media than 

their “3-substituted” isomers.  Secondly, the piperidinomethyl substituted ligands 

gave complexes which were polycrystalline solids, while dihexylaminomethyl 

substituted ligands gave amorphous or waxy solid complexes with higher solubility 

in organic media.   

 

 

5.2.1 Mass Spectrometry 

 

Synthesis of the metal-only complexes was confirmed by FAB mass spectroscopy, 

with molecular ion peaks observed for each complex (Table 5.1).  Peaks 

corresponding to the ligands were common to all spectra, and no signals for 

complexes with associated acetate anions were present. 
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Complex MH+ Ligand 

[Cu(L17-H)2] 642 (100%) 291 (29%) 

[Ni(L17-H)2] 637 (28%) 291 (42%) 

[Cu(L18-H)2] 842 (6%) 391 (45%) 

[Ni(L18-H)2] 837 (6%) 391 (36%) 

[Cu(L19-H)2] 642 (24%) 291 (42%) 

[Ni(L19-H)2] 637 (59%) 291 (40%) 

[Cu(L20-H)2] 842 (21%) 391 (65%) 

[Ni(L20-H)2] 837 (18%) 391 (34%) 

 

Table 5.1:  Peaks and intensities seen in the FAB mass spectra of the metal-only complexes 

synthesised in this chapter. 

 

 

5.2.2 X-Ray Crystallography 

 

The X-ray crystal structures of [Ni(L17-H)2] and [Cu(L17-H)2] have been obtained 

by Dr D. K. Henderson and Dr J. E. Davidson to support exemplification in a patent 

(confidential) relating to the analogous nonyl-substituted ligand for the recovery of 

metal(II) chlorides from chloride leach solutions.24   

 

[Ni(L17-H)2] is a square-planar complex with the NiII atom lying on a 

crystallographic inversion centre.  The complex has a bifurcated hydrogen bond 

similar to that seen in the structure of [Cu(L4-H)2(py)2] (Chapter 3), as the piperidino 

nitrogen atom can act as a hydrogen bond acceptor (O23A···N62A’ = 2.831(2) Å).  

The hydrogen bond to the phenolate oxygen is the dominant bond with a smaller 

donor-acceptor distance (O23A···O1A’ = 2.564(2) Å).  The piperidine rings are 

located above and below the central NiN2O2 coordination plane, with the piperidino 

nitrogen atoms (N62 and N62A) of the rings displaced by 0.865 Å from the plane.   
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Figure 5.8:  X-Ray crystal structure of the centrosymmetric [Ni(L17-H)2] with selected atom labels.  

Hydrogen atoms not involved in H-bonding are omitted for clarity. 

 

A similar structure is seen for [Cu(L17-H)2] but there is no crystallographic 

inversion centre associated with the complex, so the two ligands are not 

symmetrically equivalent.  Bifurcated H-bonds are again present, and the distances 

between donor and acceptor atoms are larger than in [Ni(L17-H)2] for both the oxime 

oxygen to phenolate contact  (O1A···O23B = 2.656(2) Å, O1B···O23A = 2.766(2) Å, 

average = 2.711(3) Å) and the oxime oxygen to piperidino nitrogen contact 

(O23B···N62A = 2.851(2) Å, O23A···N62B = 2.972(2) Å, average = 2.912(3) Å). 

 

 

 

Figure 5.9:  X-Ray crystal structure of [Cu(L17-H)2] with selected atom labels.  Hydrogen atoms not 

involved in H-bonding are omitted for clarity. 
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The molecule is distorted slightly with respect to the square-planar nickel structure 

and the piperidine rings are now both above the plane, with the nitrogen atoms at 

distances of 0.518 Å (N62A) and 1.270 Å (N62B) above the plane.  This is due to the 

copper centre weakly interacting with phenolate oxygen atoms on a second complex 

molecule, forming an offset pseudo-dimer pairing (Cu1···O1A’ = 2.516(1) Å) and 

forcing both pendant arms to point upwards, away from the other molecule.  The 

dimer has an inversion centre at the centroid of the central Cu2O2 unit, shown in 

Figure 5.10, and the interaction is very similar to that seen in [Cu(L17)Cl2] which 

has a Cu···O contact distance of 2.507(2) Å (Chapter 4).     

 

 

 

Figure 5.10:  Schematic representation of the centrosymmetric dimer [Cu(L17-H)2]2 showing the 

orientation of the piperidine rings (black circles) relative to the Cu2O2 core.  

 

These axial, long-range copper-oxygen interactions suggest that copper-anion 

interactions are possible, which could enhance anion binding.  The structures also 

show the flexibility of the pendant amine arms, which are able to sit above or below 

the plane of the complex.  As they are free to move as the environment changes, their 

position could respond to the need to accommodate anions with different sizes and 

shapes. 

 

 

5.3 Synthesis of Metal Salt Complexes 

 

Metal salt complexes of L17 were synthesised and characterised 

crystallographically, to study the anion binding motif and to investigate the effects of 
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changing the anion on the complex and the mode of binding.  Complexes were 

prepared in two ways: by mixing the metal salt and L17 directly in methanol, or by 

contacting a chloroform solution of the metal-only complex with an acid containing 

the appropriate conjugate anion: 

 

Equation 5.3  [M(L17-H)2](org) + 2HX [M(L17)2X2](org) 

 

The isolation and characterisation of [Cu(L17)Cl2] and [Zn2(L17)2Cl4] has already 

been reported in Chapter 4. 

 

 

5.3.1 [Cu(L17)Br2] 

 

By mixing copper(II) bromide with L17 it was possible to isolate an analogue of 

[Cu(L17)Cl2], with bromide ligands taking the place of the chlorides.  The solid state 

structure of [Cu(L17)Br2] is very similar to its chloride analogue (Figure 5.11). 

 

 
 

 

Figure 5.11:  The solid state structure of [Cu(L17)Br2], with selected atom labels.  Hydrogen atoms 

not involved in H-bonding are omitted for clarity.  
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A comparison of the significant bonds and contacts in the two molecules (Table 5.2) 

reveals that the interactions in [Cu(L17)Br2] are longer than those in [Cu(L17)Cl2], 

which is to be expected as Br- is larger than Cl-.25 

 

Contact/Bond [Cu(L17)Cl2] [Cu(L17)Br2] 

Oxime OH···X1 O23···Cl1 = 2.925(3) O21···Br1 = 3.047(2) 

Amine H···phenol N62···O1 = 2.754(3) N62···O1 = 2.803(3) 

Amine H···X2 N62···Cl2 = 3.560(3) N62···Br2 = 3.642(3) 

Cu-X1 Cu-Cl1 = 2.269(1) Cu-Br1 = 2.403(5) 

Cu-X2 Cu-Cl2 = 2.268(1)  Cu-Br2 = 2.415(5) 

 

Table 5.2:  Selected contacts and bond distances (Å) in the solid state structures of the dichloro and 

dibromo complex of [Cu(L17)]. 

 

 

5.3.2 [Cu(L17)2(NO3)2] 

 

Direct combination of methanolic solutions of copper(II) nitrate and L17 yielded the 

metal salt complex [Cu(L17)2(NO3)2], which shows the expected tritopic metal salt 

binding motif (Chapter 4) with the metal cation and two nitrate anions in separated 

binding sites.   

 
 

Figure 5.12:  The solid state structure of [Cu(L17)2(NO3)2], with selected atom labels.  Hydrogen 

atoms not involved in H-bonding are omitted for clarity. 
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A crystallographic inversion centre is located on the CuII cation, which is complexed 

to two salicylaldoxime ligands in the 14-membered pseudomacrocyclic H-bond 

arrangement typical of bis-salicylaldoximato copper(II) species.  Protonation of the 

piperidine moieties has generated two equivalent anion binding sites and the nitrate 

anions occupy these, bound by a combination of electrostatic and H-bond 

interactions (N6···O7 = 2.842(2) Å), with the metal salt again binding to a 

zwitterionic form of the ligand L17.  One oxygen atom of each nitrate anion is 

located in a position axial to the copper(II) centre (Cu1···O5 = 2.722(2) Å) giving the 

copper an overall Jahn-Teller distorted octahedral coordination sphere.  If this type of 

metal-anion interaction persists in solution, it should enhance metal salt binding. 

 

 

5.3.3 [Cu(L17)2(BF4)2] 

 

[Cu(L17)2(BF4)2] was synthesised and isolated in a similar fashion to 

[Cu(L17)2(NO3)2] and has a comparable structure.   

 

 
 

Figure 5.13:  The solid state structure of [Cu(L17)2(BF4)2], with selected atom labels.  Hydrogen 

atoms not involved in H-bonding are omitted for clarity. 

 

The copper(II) ion is again bound to two salicylaldoxime ligands and the anions are 

located adjacent to the protonated piperidine groups (N62···F2S = 2.780(4) Å).  A 
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copper-anion interaction is again seen but at a shorter distance than in the nitrate 

structure (Cu1···F4S = 2.638(2) Å).  This may be a consequence of the BF4
- anion 

being larger than NO3
-.25  

 

 

5.3.4 [Cu(L17)2(CF3CO2)2] 

 

As [Cu(CF3CO2)2] is not commercially available, [Cu(L17)2(CF3CO2)2] was 

synthesised by mixing the metal-only complex [Cu(L17-H)2] in chloroform with an 

aqueous solution of trifluoroacetic acid and its sodium salt.  The structure of the 

resulting complex is shown in Figure 5.14. 

 

 
 

Figure 5.14:  The solid state structure of [Cu(L17)2(CF3CO2)2], with selected atom labels.  Hydrogen 

atoms not involved in H-bonding are omitted for clarity. 

 

Anion binding has induced major changes in the copper(II) coordination sphere.  The 

trifluoroacetate anion (TFA-) forms H-bonds with both the piperidinium proton 

(N6···O3 = 2.766(8) Å) and the oxime proton (O23···O3 = 2.700(6) Å) through one 

of the carboxylate oxygen atoms.  The interaction with the oxime proton causes a 

distortion of the 14-membered pseudomacrocyclic H-bond array around the CuII 

centre, with the oxime proton forming a bifurcated H-bond with the anion and the 

phenolate of the adjacent ligand (O23···O1’ = 2.878(6) Å).  This might be expected 

to significantly destabilise copper binding.  Weak copper-anion interactions are again 
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present, with the other carboxylate oxygen in the apical position relative to the 

copper ion (Cu1···O2 = 2.673(5) Å). 

 

The effect of trifluoroacetate anion coordination can be seen clearly by comparing 

relevant contact and bond distances (Table 5.3).  The three metal salt complexes of 

L17 that show the expected motif are analysed alongside the metal-only complex 

[Cu(L17-H)2]. 

 

Contact/Bond Cu(NO3)2 Cu(BF4)2 Cu(TFA)2 [Cu(L17-H)2]
[a] 

Cu-O 1.912(1) Å 1.919(2) Å 1.922(4) Å 1.896(1) Å 

Cu-N 1.946(1) Å 1.943(2) Å 1.975(5) Å 1.958(2) Å 

Hole Size (RH) 1.929(1) Å 1.931(2) Å 1.949(6) Å 1.927(2) Å 

Cu···X 2.722(2) Å 2.638(2) Å 2.673(5) Å 2.516(1) Å[b] 

Oxime OH···OPh 2.626(2) Å 2.604(2) Å 2.878(6) Å 2.564(2) Å 

Amine···X 2.842(2) Å 2.780(4) Å 2.766(2) Å n/a 
[a[Distances are the average of two crystallographically independent halves of the complex.  [b]X is the 

phenoxide oxygen of the adjacent complex molecule, described in Section 5.2.2, and only one of the 

axial sites is occupied.  All other examples have interactions at both axial sites.  

 

Table 5.3:  Selected bond and contact distances in the copper salt complexes and the copper only 

complex of L17. 

 

Some interesting solid state trends can be extracted from the data in Table 5.3.  If the 

species in the axial positions carried similar partial anionic charges, it might be 

expected that closer approach to the CuII would result in an increase in the CuII 

equatorial bond lengths due to Jahn-Teller effects.15  This does not appear to be the 

case, as the hole size trend does not follow the Cu···anion contact distances.  The 

hole sizes in all complexes are the same within experimental error, apart from the 

larger hole size of [Cu(L17)2(TFA)2], caused by the interaction of the trifluoroacetate 

anion with the H-bonding motif.  This interaction is also presumably responsible for 

the significantly larger OH to phenolate oxygen interaction.  It should be noted that 

the metal-only complex [Cu(L17-H)2] has both the closest axial interaction, from an 

adjacent complex molecule, and the smallest hole size, but only one of the axial sites 
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is occupied, and the CuII ion is in an approximately square-based pyramidal 

geometry.   

 

Another trend that can be seen is in the distance between the piperidinium N atom 

and the nearest atom in the anions, which follows the order NO3
- > BF4

- > TFA-. This 

appears to be related to the size of the anion,25 with the largest anion closest to the 

binding site. 

 

 

5.3.5 Mass Spectrometry 

 

FAB mass spectrometry could used to detect complex formation, with the loss of one 

of the bound anions providing a characteristic positive peak in each spectrum.  Other 

peaks seen include the free ligand and the metal-only complex, and are displayed for 

all synthesised complexes in Table 5.4. 

 

Complex MH+ (M-anion)+ Metal-only Ligand 

[Cu(L17)Cl2] 514 (0%) 434 (51%) 642 (16%) 291 (75%) 

[Cu(L17)Br2] 426 (0%) 390 (90%) 642 (51%) 291 (100%) 

[Cu(L17)2(NO3)2] 769 (0%) 707 (16%) 642 (62%) 291 (44%) 

[Cu(L17)2(TFA)2] 871 (0%) 758 (18%) 642 (65%) 291 (0%) 

[Cu(L17)2(BF4)2] 819 (0%) 731 (100%) 642 (96%) 291 (77%) 

 

Table 5.4:  Peaks and intensities seen in the FAB mass spectra of the metal salt complexes 

synthesised in this chapter. 

 

 

5.4 Anion Selectivity by Solvent Extraction 

 

The solvent extraction experiments described in this section were carried out under 

identical conditions, by contacting a 0.01 M chloroform solution of the metal-only 

complex [M(L-H)2] with a 0.8 M aqueous solution of the appropriate anion, which 
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was made up using HX and NaX (where X- is the anion) with the anion concentration 

being kept constant.  Varying the anion concentration in the aqueous phase of an 

extraction has been demonstrated to have a great effect on distribution coefficients 

(Chapter 4) and so keeping the concentration constant throughout the experiments is 

paramount if comparisons are to be made and anion selectivities inferred. 

 

By measuring the metal and anion content of the organic phase and plotting the 

percentage loading values against the equilibrium pH of the aqueous phase, it is 

possible to determine both the anion loading S-curve and the cation stripping S-

curve.  The percentages are calculated by assuming the extraction equilibrium is as 

follows: 

 

Equation 5.4  [M(L-H)2](org) + 2HX  [ML2X2](org) 

 

where 2HX is either 2HCl or H2SO4.  To compare selectivities the pH0.5 value is 

measured, which is the pH of the aqueous phase at which 50% of the theoretical 

maximum loading of the metal or anion is in the organic phase.  For metals, the 

lower the pH0.5 the stronger the binding, as explained in Chapter 1.  As the anion 

binding site must be protonated to extract an anion, the higher the pH0.5 for anion 

loading the stronger the binding. 

 

 

5.4.1 Anion Selectivity of [Cu(L18-H)2] 

 

Investigating the anion selectivity of [Cu(L18-H)2] is complicated by the formation 

of the unexpected metal salt complexes [Cu(L)X2] described previously (Chapter 4).  

The anion is bound directly to the metal centre and so is in a different environment 

from that expected, and complex formation requires complete reorganisation of the 

metal-only complex being studied.  The results of the experiment with chloride are 

displayed in Figure 5.15. 
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Figure 5.15:  Copper (blue) and chloride (red) loading of the organic phase when a 0.01 M 

chloroform solution of [Cu(L18-H)2] is contacted with 0.8 M aqueous chloride solutions of various 

pH values.  100% copper loading is based on a molar ratio of 1Cu : 2L18, and 100% chloride loading 

is based on a molar ratio of 2Cl : 2L18. 

 

A typical curve for pH-dependent copper loading is seen.  As the copper content of 

the organic phase is defined by the previously synthesised metal-only complex, it 

cannot reach a value greater than 100%.  The copper is stripped into the aqueous 

phase at pH � 1.5, with copper-loading having a pH0.5 of 0.6.   

 

Chloride loading reaches approximately 150%, indicating that the formation of 

[Cu(L18)Cl2] is occurring in the organic phase.  The flattening of the curve to give a 

plateau of 150% at lower pH values suggests both [Cu(L18)Cl2] and [L18.HCl] are 

present in this pH region; at pH 2 these species are present in approximately equal 

concentrations and equation 5.5 applies: 

 

Equation 5.5 [Cu(L18-H)2](org) + 3HCl  [Cu(L18)Cl2](org) + [L18.HCl](org) 

 

At pH values greater than 5.0 the chloride loadings are consistent with a mixture of 

[Cu(L18)Cl2] and [Cu(L18-H)2] being present in the organic phase.  This 

observation has important industrial implications, as it suggests that by contacting a 
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loaded organic phase containing [Cu(L18)Cl2] with a high pH aqueous phase, the 

chloride may be stripped and thus generate an organic phase containing only copper 

and the ligand.  Conventional copper stripping by sulfuric acid may then be possible, 

generating a sulfate electrolyte which is preferable to generating a chloride 

electrolyte by conventional cation stripping with HCl.26 

 

The pH profile for [Cu(L18-H)2] loading of sulfate is shown in Figure 5.16. 
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Figure 5.16:  Copper (blue) and sulfate (red) loading of the organic phase when a 0.01 M chloroform 

solution of [Cu(L18-H)2] is contacted with 0.8 M aqueous sulfate solutions of various pH values.  

100% copper loading is based on a molar ratio of 1Cu : 2L18, and 100% sulfate loading is based on a 

molar ratio of SO4: L18. 

 

At a pH value of 2.8 there is approximately 80% loading of CuSO4, confirming the 

observation in Chapter 4 that L18 is capable of loading CuSO4 to high levels.  The 

pH-profile for copper loading is broader than that observed with chloride, which may 

be due to the different species formed in the two experiments.  The pH0.5 value for 

Cu-loading of approximately 2.0 is considerably higher than in the chloride case, and 

with the pH0.5 for sulfur loading of ~3.8 being lower than that for chloride it is clear 

L18 is selective for CuCl2 rather than CuSO4 and that this selectivity is due to the 

favourable formation of [Cu(L18)Cl2].  At lower pH values sulfur loading exceeds 
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100%, and this is due to the extraction of the bisulfate anion, HSO4
-, which is 

prevalent in copper sulfate solutions at pH<1.18   

 

As attempts to examine the binding motif for CuSO4 via X-ray crystallographic 

studies were unsuccessful, further solvent extraction experiments were carried out to 

determine the influence of copper on anion binding, by contacting L18 with sulfate 

in the absence of copper under identical conditions. 
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Figure 5.17:  Loading of sulfate by in the organic phase when a 0.01 M chloroform solution of 

[Cu(L18-H)2] (red circles) or L18 (purple triangles) is contacted with 0.8 M aqueous sulfate solutions 

of various pH values.  100% sulfate loading is based on a molar ratio of SO4: L18. 

 

Figure 5.17 shows that sulfate loading by L18 is enhanced when copper is present, 

i.e. the copper(II) complex of L18 binds sulfate more strongly than the free ligand.  

The pH0.5 for sulfate loading by L18 only is ~2.8, compared to the value of 3.8 for 

[Cu(L18-H)2], indicating possible synergistic CuSO4 binding.  This phenomenon has 

been observed previously in the uptake of CuSO4 by the substituted salen ligands 

described in Chapter 4,22, 23 and is attributed to the preorganisation of the anion 

binding site for sulfate when copper is bound.  This is unlikely to be the case for L18 

as it binds copper in a trans configuration, and in the crystal structure of [Cu(L17-

H)2] the piperidino nitrogen atoms N62A and N62B are separated by 8.703(3) Å.  A 

more likely explanation is that there is an interaction between the copper(II) centre 



Chapter 5: Selectivity of Metal Salt Extractants 

204 

and the sulfate anion, expected to be similar to the apical Cu···O interactions seen in 

the crystal structures of [Cu(L17)2(NO3)2], [Cu(L17)2(BF4)2] and 

[Cu(L17)2(CF3CO2)2] (Section 5.3). 

 

 

5.4.2 Anion Selectivity of [Ni(L18-H)2] 

 

Ligands capable of transporting NiCl2 across a circuit could have major commercial 

applications in the hydrometallurgical recovery of nickel.27  Solvent extraction 

experiments were carried out using the nickel-only complex [Ni(L18-H)2] to 

determine if nickel salt transport was possible.  The pH profile for [Ni(L18-H)2] vs. 

HCl is shown in Figure 5.18. 
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Figure 5.18:  Nickel (green) and chloride (red) loading of the organic phase when a 0.01 M 

chloroform solution of [Ni(L18-H)2] is contacted with 0.8 M aqueous chloride solutions of various pH 

values.  100% nickel loading is based on a molar ratio of 1Ni : 2L18, and 100% chloride loading is 

based on a molar ratio of 2Cl : 2L18. 

 

L18 is a relatively weak extractant for nickel and at pH ~ 5.5 only 75% nickel 

loading is detected, demonstrating the selectivity of L18 for copper over nickel.  The 

pH0.5 of approximately 4.3 for nickel is nearly 3 pH units higher than for copper, i.e. 
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the binding of copper is three orders of magnitude higher.  Chloride loading reaches 

100% at lower pH values, when no nickel is present in the organic phase, and has a 

pH0.5 of ~5.3 which is similar to but slightly lower than the value when copper is 

present.  65% loading of NiCl2 occurs at pH 5, which illustrates that NiCl2 loading by 

these ligands is possible, but if they are to have any commercial application then 

loading efficiency will need to be improved significantly. 

 

There are again marked differences in the extraction of sulfate by [Ni(L18-H)2] 

(Figure 5.19) when compared to the extraction of chloride.  The pH0.5 value for 

nickel in the presence of sulfate (>5.5) is higher than that in the presence of chloride 

(4.3), suggesting that sulfuric acid will strip nickel from L18 more efficiently than 

hydrochloric acid.  As there is very little nickel in the organic phase the sulfate 

loading curve is very similar to that of the free ligand shown previously in Figure 

5.17, with both curves having a pH0.5 of approximately 2.8 for sulfate loading.  
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Figure 5.19:  Nickel (green) and sulfate (red) loading of the organic phase when a 0.01 M chloroform 

solution of [Ni(L18-H)2] is contacted with 0.8 M aqueous sulfate solutions of various pH values.  

100% nickel loading is based on a molar ratio of 1Ni : 2L18, and 100% sulfate loading is based on a 

molar ratio of SO4: L18. 
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Overall, the solvent extraction experiments using copper- and nickel-only complexes 

of L18 show the selectivity of the ligand for CuCl2, but also that chloride loading is 

more favourable than sulfate loading.  This is to be expected, as the salen ligands 

discussed previously show chloride over sulfate selectivity, despite having a 

preorganised binding pocket.22, 23  The Hofmeister bias1 also dictates that chloride 

anions will be extracted much more easily than sulfate anions, and this effect is 

amplified by the formation of [CuLCl2] complexes which favour chloride loading.  

The ligands are also selective for CuII against NiII, and this is predicted by the Irving 

Williams order.28 

 

 

5.4.3 Anion Selectivity of [Cu(L20-H)2] 

 

Proof-of-concept experiments described in Chapter 4 showed that the 5-substituted 

ligand L20 did not bind copper in the 1:1 L:CuCl2 ratio observed for the 3-

substituted ligands L17 and L18.  This observation was confirmed by the more 

detailed solvent extraction study involving L20 carried out in this chapter.   
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Figure 5.20:  Copper (blue) and chloride (red) loading of the organic phase when a 0.01 M 

chloroform solution of [Cu(L20-H)2] is contacted with 0.8 M aqueous chloride solutions of various 

pH values.  100% copper loading is based on a molar ratio of 1Cu : 2L20, and 100% chloride loading 

is based on a molar ratio of 2Cl : 2L20. 
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The copper and chloride loadings for [Cu(L20-H)2] in the presence of HCl are 

displayed in Figure 5.20.  Chloride loading reaches 100% and stays at this maximum 

value, showing that CuCl2 is likely bound in a 2:1 L:CuCl2 ratio, with a maximum 

metal salt loading of ~85% at pH = 4.  The pH0.5 for chloride loading is slightly 

higher than for L18, in the region of pH 6-7 and the pH0.5 value for copper uptake is 

higher (2.8) than for L18, which is expected due to the unfavourable steric effects of 

the 3-t-butyl group discussed previously in Chapters 2 and 3.  Although measured 

under different conditions, the pH0.5 for copper uptake of 2.8 is similar to that 

measured for copper loading by L3 (pH0.5 = 2.6), which also has a 3-t-butyl group.  
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Figure 5.21:  Copper (blue) and sulfate (red) loading of the organic phase when a 0.01 M chloroform 

solution of [Cu(L20-H)2] is contacted with 0.8 M aqueous sulfate solutions of various pH values.  

100% copper loading is based on a molar ratio of 1Cu : 2L20, and 100% sulfate loading is based on a 

molar ratio of SO4: L20. 

 

Comparison with the analogous sulfate experiment (Figure 5.21) reveals similar 

trends to those seen with [Cu(L18-H)2].  Again, copper stripping is more efficient 

when sulfuric acid is used compared to hydrochloric acid and the pH0.5 for copper 

uptake in the presence of sulfate is 3.7, nearly a whole pH unit higher than the 

chloride value.  The curve is also longer and flatter than the chloride curve.  Sulfate 

uptake is again poorer than chloride, as expected, but the pH0.5 for sulfate uptake 
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(4.0) is higher than the value for [Cu(L18-H)2] (3.8).  This is despite the probable 

lack of Cu···anion interactions in metal salt complexes of L20.  Attempts to confirm 

this by measuring the sulfate loading of L20 itself were hampered by the separation 

of a viscous third phase during solvent extraction experiments. 

 

The results suggest that, like L18, L20 is selective for CuCl2 against CuSO4.  

However, the binding of copper in these assemblies is less favourable for L20, which 

indicates that L18 is a stronger cation binder due to the steric influence of the 3-t-

butyl group in L20.  L20 appears to be a slightly better anion binder than L18, but 

this effect is negligible when compared to the destabilisation of cation binding. 

 

 

5.4.4 Anion Selectivity of [Ni(L20-H)2] 

 

The extent of nickel stripping from [Ni(L20-H)2] is again dependent on the anion 

involved.  In the presence of high chloride concentration the pH0.5 for nickel uptake 

in the organic phase is ca. 5.5 (Figure 5.22) whilst in the presence of sulfate it could 

not be recorded, as loading values did not reach above 20% up to pH ~ 5.5 (Figure 

5.23).  In all the studied examples in this section the cation is stripped more 

efficiently by sulfuric acid than hydrochloric acid, indicating that the mechanism of 

cation stripping involves the anion and possibly the anion binding site.   

 

pH dependence of chloride loading by [Ni(L20-H)2] is similar to that of the copper 

complex, and this is to be expected as the anion binding site is located in the 5-

position, precluding any metal-anion interactions.  Chloride loading has a pH0.5 > 6 

and does not exceed 100% in the pH range 0-6. 
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Figure 5.22:  Nickel (green) and chloride (red) loading of the organic phase when a 0.01 M 

chloroform solution of [Ni(L20-H)2] is contacted with 0.8 M aqueous chloride solutions of various pH 

values.  100% nickel loading is based on a molar ratio of 1Ni : 2L20, and 100% chloride loading is 

based on a molar ratio of 2Cl : 2L20. 

 

As already discussed, nickel is stripped very easily from [Ni(L20-H)2] by sulfuric 

acid.  As might be expected, the sulfate loading curve has a similar profile to that for 

[Cu(L20-H)2], because the sulfate uptake is essentially by the free ligand. 
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Figure 5.23:  Nickel (green) and sulfate (red) loading of the organic phase when a 0.01 M chloroform 

solution of [Ni(L20-H)2] is contacted with 0.8 M aqueous sulfate solutions of various pH values.  

100% nickel loading is based on a molar ratio of 1Ni : 2L20, and 100% sulfate loading is based on a 

molar ratio of SO4: L20. 
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It appears that by locating the anion binding site in the 5-position (L20), rather than 

the 3-position (L18), that the cation and anion binding sites are truly separate, and 

the cation has no influence on anion binding.  A comparison of the chloride loading 

curves for [Cu(L20-H)2], [Ni(L20-H)2] and L20 illustrates this (Figure 5.23). 
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Figure 5.23:  Chloride loading of the organic phase when a 0.01 M chloroform solution of L20 (red) 

[Cu(L20-H)2] (blue) or [Ni(L20-H)2] (green) is contacted with 0.8 M aqueous chloride solutions of 

various pH values.  100% chloride loading is based on a molar ratio of 2Cl: 2L20. 

 

The curves are, barring experimental error, superimposable, and in all cases have a 

pH0.5 value greater than 6.  A similar comparison of the sulfate loading curves of 

[Cu(L20-H)2] and [Ni(L20-H)2] shows the same feature, although this could not be 

wholly confirmed due to the problems encountered in measuring the sulfate loading 

of L20. 

 

 

5.4.5 Summary 

 

Solvent extraction has proved to be a very useful tool in the examination of the anion 

selectivity of ligands L18 and L20.  A summary of the pH0.5 data gathered from 

these extractions is presented in Table 5.5. 
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Compound Anion pH0.5 Metal pH0.5 Anion 

[Cu(L18-H)2] Cl- 0.6 5.8 

[Cu(L18-H)2] SO4
2- 2.0 3.8 

[Ni(L18-H)2] Cl- 4.3 5.3 

[Ni(L18-H)2] SO4
2- >5.5[a] 2.8 

L18 SO4
2- n/a 2.8 

[Cu(L20-H)2] Cl- 2.8 >6.0[a] 

[Cu(L20-H)2] SO4
2- 3.7 4.0 

[Ni(L20-H)2] Cl- 5.5 >6.0[a] 

[Ni(L20-H)2] SO4
2- >>5.5[a] 4.0 

L20 Cl- n/a >6.0[a] 

L20 SO4
2- n/a n/a[b] 

[a]Approximate values as higher pH values could not be reached.  
[b]Could not be measured due to precipitation. 

 

Table 5.5:  pH0.5 values for 50% loading of metal cation MII and of anions when 0.01 M chloroform 

solutions of [M(L-H)2] are contacted with 0.8 M aqueous solutions of NaCl or Na2SO4 at varying pH. 

 

There are many conclusions that can be drawn from the work.  It has been shown 

unequivocally that L18 is a better extractant for copper and nickel than L20, with the 

3-t-butyl group of L20 destabilising its copper and nickel complexes by steric 

clashes within the pseudomacrocyclic H-bonding motif, as described in detail in 

Chapter 3.  Both L18 and L20 extract copper at low pH values and are better 

extractants for copper(II) than nickel(II), a result which was expected and can be 

explained by the Irving Williams order.28   

 

In the extraction of anions an overall selectivity trend has been established, with 

chloride being loaded at higher pH values than sulfate, indicating selectivity for 

chloride in all systems.  This is again expected, being a consequence of the 

Hofmeister bias1 (Chapter 1).  L20 is a slightly better anion extractant than L18, 

having higher pH0.5 values for both sulfate and chloride loading.  This is despite 

favourable metal-anion interactions in the extraction of CuCl2 and CuSO4 by L18, 

with solvent extraction showing its versatility by identifying both the presence and 
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the lack of these interactions.  Incorporation of the anion binding site in the 5-

position means it is too distant from the cation binding site for these interactions to 

occur.  Despite the better anion extraction properties of L20, L18 was thought to be 

the ligand most suited to commercial application as a metal salt extractant, due to: 

 

• the solubility of loaded and unloaded reagents in organic media, 

• its ability to extract metal cations at lower pH values, and 

• the highly efficient extraction of CuCl2. 

 

For these reasons, L18 was selected for further study. 

 

 

5.5 Cation Selectivity by Solvent Extraction 

 

The success of any extractant depends on its selectivity.  Phenolic oximes are known 

to be selective for CuII against FeIII and other base metals,29, 30 which was one of the 

main reasons for basing the metal salt extractants synthesised in this thesis on a 

salicylaldoxime scaffold.  To assess the impact on cation selectivity of the addition 

of the anion binding site, further solvent extraction experiments were carried out with 

L18, the extractant which had shown the most potential for commercial 

development.   

 

 

5.5.1 Loading of Metals by L18 from Sulfate Media 

 

To determine the cation selectivity of L18 with minimal influence of the anion, 

extractions were carried out under the same conditions as those used to determine the 

copper binding strengths of L1-L9 in Chapter 2, but using the sulfates and chlorides 

of manganese(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II).  This 

allowed the generation of S-curves for the loading of each metal, which provide 

information on the cation selectivity of the ligand (Section 5.7.6). 
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Figure 5.24:  Extraction pH-profiles for loading of base metals by 0.01 M chloroform solutions of 

L18 from equal volumes of 0.01 M aqueous solutions of metal sulfates.  100% metal loading based on 

a 1M:2L18 ratio. 

 

The cation selectivity of L18 in the extraction of base metals from sulfate solutions, 

under the conditions shown in Figure 5.24, is (with pH0.5 in brackets): 

 

FeIII (0.5) > CuII (1.3) > NiII (5.0) = CoII/III (5.0) > ZnII (7.6) > MnII (n/a) 

 

This potentially poses a problem should the ligand be developed for use as a copper 

extractant, as high CuII/FeIII selectivity is one of the main requirements for industrial 

use.29, 30  Iron loading occurs in two stages: a step in the loading profile at 

approximately 70% loading indicates the formation of a 3:1 L:FeIII complex at pH<2, 

and a second peak at 200% describes a 1:1 L:FeIII complex at a pH of approximately 

2.5.  At higher pH values, the loading values decrease due to precipitation of FeIII 

from the aqueous phase as iron oxyhydroxides.15  This result is very significant, 

potentially limiting commercial application of L18 and its analogues. 

 

Other interesting features of the loading profiles include the extraction of cobalt, 

which also occurs in two stages with a step at ~70% indicating formation of 3:1 

L:CoIII complexes in the organic phase.  The oxidation of CoII to CoIII during 
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extraction by phenolic oximes is well documented29 and appears to be occurring in 

the experiments.  At higher pH values further loading occurs by an unknown 

mechanism and reaches approximately 120%.  Nickel loading follows a very similar 

profile to that of cobalt but only reaches 75% loading, zinc loading only reaches 

approximately 50% at pH 8 and very little manganese extraction is observed. 

 

 

5.5.2 Loading of Metals by L18 from Chloride Media 

 

When chloride is used as counter ion rather than sulfate, there are some marked 

changes in the pH loading profiles for the base metals investigated (Figure 5.25). 
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Figure 5.25:  Extraction pH-profiles for loading of base metals by 0.01 M chloroform solutions of 

L18 from equal volumes of 0.01 M aqueous solutions of metal chlorides.  100% metal loading based 

on a 1M:2L18 ratio. 

 

The CuII/FeIII selectivity order has been reversed, although the pH0.5 values are very 

similar, and the overall selectivity trend is: 

 

CuII (1.1) > FeIII (1.3) > CoII/III (4.8) > NiII (7.5) ~ ZnII (7.6) > MnII (n/a) 
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FeIII loading does not reach higher than 100%, indicating formation of a 2:1 L:FeIII 

complex which is assumed to have associated anions to balance the charge.  Cobalt 

loading again shows formation of a 3:1 L:CoIII complex at lower pH and higher 

loading at higher pH values, and this is independent of the anion.  An interesting 

feature is the apparent depression of nickel loading when compared to the sulfate 

case, with a difference in pH0.5 of 2.5.  This is the opposite to the trend seen in the 

anion selectivity extractions of Section 5.4, and illustrates the need to further assess 

the cation selectivity of the ligand.  A summary of all the pH0.5 values for metal 

loading is given in Table 5.6. 

 

Metal Salt pH0.5 for M Loading 

CuCl2 1.1 

CuSO4 1.3 

NiCl2 ~7.5 

NiSO4 5.0 

CoCl2 4.8 

CoSO4 4.9 

ZnCl2 6.9 

ZnSO4 7.6 

FeCl2 1.3 

FeSO4 0.5, 2.2 

MnCl2 n/a 

MnSO4 n/a 

 

Table 5.6:  pH0.5 values for loading of base metals by 0.01 M chloroform solutions of L18 from equal 

volumes of 0.01 M aqueous solutions of metal sulfates or chlorides.  100% metal loading based on a 

1M:2L18 ratio. 

 

 

5.5.3 Competitive Extractions 

 

To confirm the selectivity orders described above, solvent extraction experiments 

were carried out with aqueous feeds containing a mixture of the metals Mn, Fe, Co, 
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Ni, Cu and Zn, with the concentration of each metal constant (Section 5.7.6.1).  

Extraction from metal sulfate solutions and metal chloride solutions was studied, and 

the results of extraction from the mixed metal sulfate feed are displayed in Figure 

5.26.   
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Figure 5.26:  Loading of base metals by 0.01 M chloroform solutions of L18 from equal volumes of 

an aqueous solution containing each metal sulfate shown at a concentration of 0.01 M.  100% metal 

loading based on a 1M:2L18 ratio. 

 

Iron is the dominantly extracted metal, as expected from the S-curves and pH0.5 

values measured in Section 5.5.1.  Small amounts of copper are also loaded, but 

copper uptake only starts to become significant in the pH range where iron is 

precipitated from aqueous solution (>2.5), meaning that all the iron remaining in the 

aqueous phase is being extracted by L18.  This can be confirmed by comparing the 

iron loading S-curve taken from the mixed metal experiment with the analogous 

curve from the extraction experiment in Section 5.5.1, where the aqueous phase 

contained only iron (Figure 5.27). 
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Figure 5.27:  Comparison of iron loading by L18 from a mixed feed solution and an iron-only feed 

solution, under the conditions used in extractions shown in Figures 5.24 and 5.26. 

 

The curves are very similar, with iron loading from the mixed metal solution only 

slightly lower than the values obtained from the iron-only feed.  As no other metals 

are extracted, this confirms that the ligand is selective for iron against the other base 

metals studied when extracting from sulfate solutions without an excess of anion. 

 

When investigating the selectivity of metal binding from chloride solutions, the 

results are quite different.  Section 5.5.2 described the similarity of the pH0.5 values 

for iron and copper, and these similarities are reflected in the loading behaviour of 

L18 (Figure 5.27, overleaf). 

 

In the pH region (0.5-2.0) expected for commercial feeds, both iron and copper are 

loaded to approximately similar levels, but as the pH increases it is copper which is 

favoured, although iron loading does still occur.  No other metals are loaded, 

showing that the ligand is selective for copper and iron over other base metals.  

Copper loading from chloride solutions is enhanced by increasing the anion 

concentration (Chapter 4), so similar experiments were carried out to investigate the 

effect of anion concentration of metal selectivity. 
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Figure 5.27:  Loading of base metals by 0.01 M chloroform solutions of L18 from equal volumes of 

an aqueous solution containing each metal chloride shown at a concentration of 0.01 M.  100% metal 

loading based on a 1M:2L18 ratio. 

 

 

5.5.4 Metal Loading by L18 from Excess Sulfate Media  

 

As CuII/FeIII selectivity is the most commercially significant and as these metal 

cations are the only two extracted by L18 from a mixed metal feed, S-curves were 

determined for these two metal ions only.  A 0.01 M solution of L18 in chloroform 

was mixed with an aqueous feed with a concentration of 0.01 M of the appropriate 

metal cation, but with a sulfate concentration of 0.8 M.  The pH was varied by using 

addition of Na2SO4/H2SO4 and careful control of the total sulfate concentration was 

ensured throughout.  The S-curves can be seen in Figure 5.28. 
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Figure 5.28:  pH-profiles for loading of CuII (black) and FeIII (green) by 0.01 M chloroform solutions 

of L18 from equal volumes of aqueous solutions with metal concentrations of 0.01 M and sulfate 

concentrations of 0.8 M.  100% metal loading based on a 1M:2L18 ratio. 

 

The effect of the increased sulfate concentration is to increase slightly the selectivity 

of L18 for FeIII:  the pH0.5 for FeIII loading of 0.3 is slightly lower for feeds with no 

added sulfate, whilst the pH0.5 for CuII loading of 1.5 is slightly increased.  Previous 

examples have observed an increase in pH0.5 for CuII loading by analogous phenolic 

oxime extractants when sulfate concentration in the aqueous phase is increased,31 but 

the decrease in pH0.5 for FeIII loading indicates that the metal salt complex being 

formed involves some kind of cooperative interaction between the FeIII cation and 

SO4
2- anion.  The other notable effect of increasing sulfate concentration is that 

plateaux at the loading stoichiometry of 3FeIII:1L18 persists to a higher pH, again 

indicating that the complex formed involves a favourable interaction with the sulfate 

anion.  

 

As the increase in sulfate concentration appears to favour FeIII extraction and 

disfavour CuII extraction, it was expected that, when extracting from a mixed metal 

feed, L18 would favour FeIII uptake.  This is confirmed by the data in Figure 5.29 

which shows that FeIII is extracted preferentially, with CuII extraction only occurring 

at pH values high enough for iron to be partially precipitated from the feed. 
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Figure 5.29:  Loading of base metals by 0.01 M chloroform solutions of L18 from equal volumes of 

an aqueous solution containing each metal sulfate shown at a concentration of 0.01 M, with sulfate 

concentration adjusted to 0.8 M by addition of Na2SO4/H2SO4.  100% metal loading based on a 

1M:2L18 ratio. 

 

 

5.5.5 Metal Loading by L18 from Excess Chloride Media 

 

Similar extraction experiments were carried out to determine the effect of excess 

chloride concentration on the extractive efficacy of L18.  This has been briefly 

investigated previously, in Chapter 4, and it was concluded that increasing chloride 

concentration increased the extractive efficacy of L18 for copper.  A 0.01 M solution 

of L18 in chloroform was mixed with an aqueous feed with a concentration of 0.01 

M of the appropriate metal cation, but with a chloride concentration of 0.8 M, and 

pH adjusted by HCl/NaCl (Figure 5.30).   
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Figure 5.30:  pH-profiles for loading of CuII (black) and FeIII (green) by 0.01 M chloroform solutions 

of L18 from equal volumes of aqueous solutions with metal concentrations of 0.01 M and chloride 

concentrations of 0.8 M.  100% metal loading based on a 1M:2L18 ratio. 

 

The S-curve for iron loading from chloride media also shows an improvement when 

the chloride anion is in excess.  Loading reaches approximately 90% at pH ~ 2 and 

the pH0.5 for FeIII loading is 0.9, compared to the value of 1.3 measured previously 

with equimolar amounts of chloride present.  This again indicates that a cooperative 

binding mechanism exists in the extraction of FeIII and Cl-.  Comparing the S-curves 

suggests that L18 may be selective for CuII over FeIII when extracting from 

concentrated chloride media.  This was investigated by contacting a 0.01 M 

chloroform solution of L18 with a mixed metal feed (each metal has a concentration 

of 0.01 M) with 0.8 M chloride concentration.  The results are displayed in Figure 

5.31, and show that L18 is not selective for CuCl2.    

 

Significant quantities of FeIII are extracted alongside CuII, which means that L18 will 

not be a suitable extractant for CuCl2 from a high [Cl-] feed.  A final extraction 

experiment was carried out to determine cation selectivity from an aqueous phase 

containing both chloride and sulfate in excess concentration. 
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Figure 5.31:  Loading of base metals by 0.01 M chloroform solutions of L18 from equal volumes of 

an aqueous solution containing each metal chloride shown at a concentration of 0.01 M, with chloride 

concentration adjusted to 0.8 M with NaCl/HCl.  100% metal loading based on a 1M:2L18 ratio. 

 

 

5.5.6 Metal Loading by L18 from Excess Mixed-Anion Media  

 

To ensure equal concentrations of chloride and sulfate anions in the feed solution, pH 

was adjusted by HCl/NaCl and H2SO4/Na2SO4 solutions, giving anion concentrations 

of 0.4 M each and a total ionic strength of 0.8 M.  Metal loadings are displayed in 

Figure 5.32. 

 

Again it is clear that L18 is not selective for either CuII or FeIII, but extracts a mixture 

of both metals.  CuII is favoured slightly, with loadings of approximately double that 

of FeIII over the pH range, but it seems the selectivity problem will persist while FeIII 

is present in the aqueous phase. 
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Figure 5.32:  Loading of base metals by 0.01 M chloroform solutions of L18 from equal volumes of 

an aqueous solution containing each metal shown at a concentration of 0.01 M, with chloride 

concentration adjusted to 0.4 M with NaCl/HCl and sulfate concentration adjusted to 0.4 M by 

addition of Na2SO4/H2SO4, giving a total ionic strength of 0.8 M.  100% metal loading based on a 

1M:2L18 ratio. 

 

 

5.6 Conclusions and Further Work 

 

Titration of metal-only complexes with anions has been used successfully in solvent 

extraction experiments to determine the pH loading profiles of both cations and 

anions by L18 and L20 for the sulfates and chlorides of copper and nickel.  L18 

extracts both CuCl2 and CuSO4 effectively, but the cation binding of L20 is 

adversely affected by its 3-t-butyl group for the reasons discussed in Chapters 2 and 

3.   Nickel-loading by both ligands is less favourable than copper, and occurs over 

higher pH ranges, showing the selectivity for copper predicted by the Irving-

Williams order, with L20 again less effective than L18.  In all cases chloride is 

extracted to a higher pH-range than sulfate. This selectivity for chloride is to be 

expected as a consequence of the Hofmeister bias.   
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The solid state structures of copper salt complexes of L17, the piperidinomethyl 

substituted analogue of L18, illustrate the importance of cation-anion interactions in 

metal salt extraction.  Such interactions are observed in all the structures obtained. 

 

The potential for commercial application of L18 as a highly efficient CuCl2 

extractant led to further experiments to ascertain its cation selectivity over a wider 

range of base metals.  Selectivity was greatly affected by the anion in the aqueous 

feed, with FeIII extracted preferentially in the presence of sulfate and a mixture of 

FeIII and CuII extracted in the presence of chloride or a mixture of the two.  This 

underlines the importance of cation-anion interactions during the extraction of metal 

salts.  Co-extraction of iron poses a real problem which must be solved if analogues 

of L18 are to find commercial application, particularly if an oxidative ferric chloride 

leach is employed. 

 

Implications of the introduction of anion binding groups on the coordination 

chemistry of salicylaldoximes are considered further in the final chapter of this 

thesis. 

 

 

5.7 Experimental 

 

5.7.1 Chemicals and Instrumentation 

 

All solvents and reagents were used as received from Aldrich, Fisher, Fluorochem 

and Acros.  1H and 13C NMR were obtained using a Bruker AC250 spectrometer at 

ambient temperature.  Chemical shifts (�) are reported in parts per million (ppm) 

relative to internal standards.  Fast atom bombardment mass spectrometry was 

carried out using a Kratos MS50TC spectrometer with a 3-nitrobenzyl alcohol 

(NOBA) or thioglycerol matrix.  Analytical data was obtained on a CE-440 

Elemental Analyser by the University of Edinburgh Microanalytical Service.  ICP-

OES analysis was carried out using a Perkin Elmer Optima 5300DV spectrometer.  

The measurement of pH was carried out using a Fisher Scientific AR50 pH meter. 
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5.7.2 Metal-Only Complex Synthesis 

 

“Metal-Only” Complex Synthesis, General Procedure.  Stoichiometric amounts 

of the ligand and appropriate metal acetate were mixed in methanol (150 ml) for 72 

h.  The solvent was removed in vacuo, the complexes dissolved in DCM (150 ml), 

washed with aqueous NH3 (3 x 150ml, pH 9) and the organic phase dried over 

magnesium sulfate.  The solvent was removed in vacuo to give the crude product 

[M(L-H)2].  Only the complexes of L17 could be purified by crystallisation, as the 

dihexylaminomethyl-substituted reagents L18 and L20 yielded amorphous 

complexes, and those of L19 were poorly soluble.  For this reason CHN analyses 

were poor in some cases, and complexes of L18 and L20 were used as synthesised in 

extraction experiments. 

 

[Ni(L17-H)2].  Ni(OAc)2.4H2O (0.45 g, 1.8 mmol) and L17 (1.03 g, 3.6 mmol) 

yielded a green crystalline crude product from the method above, which was 

recrystallised from hexane to give [Ni(L17-H)2] (0.41 g, 37 %).  (Anal. Calc. for 

C34H50N4O4Ni: C, 64.1; H, 7.9; N, 8.8. Found: C, 64.1; H, 7.8; N, 8.5 %); ��max/cm-1 

(CHCl3) 3075br (NOH), 2940 (C-H), 1623 (C=N), 1031 (C-N); 1H NMR (250 MHz, 

CDCl3): �H (ppm) 1.15 (s, 9H, C(CH3)3), 1.45 (m, 2H, NCH2CH2CH2), 1.50 (m, 4H, 

2 x NCH2CH2CH2), 2.15 (m, 4H, 2 x NCH2CH2CH2), 3.22 (s, 2H, ArCH2N), 6.90 (s, 

1H, ArH), 6.95 (s, 1H, ArH), 7.78 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3) �C 

(ppm) 24.0 (1C, NCH2CH2CH2), 25.0 (2C, 2 x NCH2CH2CH2), 31.5 (3C, C(CH3)3), 

33.5, (1C, C(CH3)3), 54.0 (2C, 2 x NCH2CH2CH2), 58.0 (1C, ArCH2N), 115.8 (1C, 

aromatic C), 126.5 (1C, aromatic CH), 127.3 (1C, aromatic C), 132.0 (1C, aromatic 

CH), 138.4 (1C, aromatic C), 147.3, (1C, ArCHN), 155.7 (1C, aromatic C); FABMS 

m/z 637 (MH+). 

 

[Cu(L17-H)2].  Cu(OAc)2.H2O (0.35 g, 1.8 mmol) and L17 (1.01 g, 3.5 mmol) 

yielded  a brown microcrystalline crude product from the method above, which was 

recrystallised from hexane to give [Cu(L17-H)2] (0.41 g, 37 %).  (Anal. Calc. for 

C34H50N4O4Cu: C, 63.6; H, 7.9; N, 8.7. Found: C, 63.8; H, 8.3; N, 7.3 %); ��max/cm-1 
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(CHCl3) 3125br (NOH), 2949 (C-H), 1624 (C=N), 1016 (C-N); FABMS m/z 642 

(MH+). 

 

[Ni(L18-H)2].  Ni(OAc)2.4H2O (0.46 g, 1.8 mmol) and L18 (1.42 g, 3.6 mmol) 

yielded a waxy green solid from the method above, crude [Ni(L18-H)2]  (1.04 g, 68 

%).  (Anal. Calc. for C48H82N4O4Ni: C, 68.8; H, 9.9; N, 6.7. Found: C, 67.3; H, 10.1; 

N, 6.5 %); ��max/cm-1 (CHCl3) 3180br (NOH), 2961 (C-H), 2935 (C-H), 1606 (C=N), 

1006 (C-N); 1H NMR (250 MHz, CDCl3): �H (ppm) 0.80 (t, 6H, 2 x N(CH2)5CH3), 

1.20 (m, 21H, C(CH3)3 + 2 x (CH2)2C3H6CH3), 1.40 (m, 4H, 2 x NCH2CH2C4H9), 

2.36 (m, 4H, 2 x NCH2C5H11), 3.40 (s, 2H, ArCH2N), 6.22 (s, 1H, ArH), 6.55 (s, 1H, 

ArH), 7.18 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3): �C (ppm) 13.5 (2C, 2 x 

N(CH2)5CH3), 23.0 (2C, 2 x N(CH2)4CH2CH3), 25.0 (2C, 2 x N(CH2)3CH2C2H5), 

26.5 (2C, 2 x N(CH2)2CH2C3H7), 32.0 (3C, C(CH3)3), 32.2 (2C, 2 x NCH2CH2C4H9), 

33.0, (1C, C(CH3)3), 54.5 (2C, 2 x NCH2C5H11), 58.5 (1C, ArCH2N), 115.4 (1C 

aromatic CH), 119.4 (1C aromatic CH), 125.3 (1C aromatic C), 129.9 (1C aromatic 

C), 134.3 (1C, aromatic C), 139.9 (1C, aromatic C), 154.1 (1C, ArCHN); FABMS 

m/z 837 (MH+). 

 

[Cu(L18-H)2].  Cu(OAc)2.H2O (0.41 g, 2.1 mmol) and L18 (1.58 g, 4.1 mmol) 

yielded a solid brown product from the method above, crude [Cu(L18-H)2] (1.42 g, 

82 %).  (Anal. Calc. for C48H82N4O4Cu: C, 68.4; H, 9.8; N, 6.7. Found: C, 66.5; H, 

10.0; N, 6.8); � �max/cm-1 (CHCl3) 3131br (NOH), 2962 (C-H), 2930 (C-H), 1622 

(C=N), 1017 (C-N); FABMS m/z 842 (MH+). 

 
 
[Ni(L19-H)2].  Ni(OAc)2.4H2O (0.45 g, 1.8 mmol) and L19 (1.02 g, 3.5 mmol) 

yielded a green crude product from the method above, which was used without 

further purification (0.71 g, 62 %).  (Anal. Calc. for C34H50N4O4Ni: C, 64.1; H, 7.9; 

N, 8.8. Found: C, 60.2; H, 7.1; N, 9.5 %); � �max/cm-1 (KBr) 3423br (NOH), 2937 (C-

H), 1613 (C=N), 1037 (C-N); 1H NMR and 13C NMR unavailable due to low 

solubility; FABMS m/z 637 (MH+). 
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[Cu(L19-H)2].  Cu(OAc)2.H2O (0.35 g, 1.8 mmol) and L19 (1.03 g, 3.6 mmol) 

yielded  a brown crude product from the method above, which was used without 

further purification (0.67 g, 58 %).  (Anal. Calc. for C34H50N4O4Cu: C, 63.6; H, 7.9; 

N, 8.7. Found: C, 65.9; H, 8.6; N, 7.7 %); � �max/cm-1 (nujol) 3418br (NOH), 2958 (C-

H), 2940 (C-H), 1610 (C=N), 1027 (C-N); FABMS m/z 642 (MH+). 

 

[Ni(L20-H)2].  Ni(OAc)2.4H2O (0.46 g, 1.8 mmol) and L20 (1.37 g, 3.5 mmol) 

yielded a waxy green solid from the method above, crude [Ni(L20-H)2]  (1.18 g, 78 

%).  (Anal. Calc. for C48H82N4O4Ni: C, 68.8; H, 9.9; N, 6.7. Found: C, 66.9; H, 8.4; 

N, 7.5 %); � �max/cm-1 (KBr) 3410br (NOH), 2956 (C-H), 2929 (C-H), 1607 (C=N), 

1028 (C-N); 1H NMR and 13C NMR unavailable due to low solubility; FABMS m/z 

837 (MH+). 

 

[Cu(L20-H)2].  Cu(OAc)2.H2O (0.36 g, 1.8 mmol) and L20 (1.38 g, 3.5 mmol) 

yielded a solid brown product from the method above, crude [Cu(L20-H)2] (1.29 g, 

85 %).  (Anal. Calc. for C48H82N4O4Cu: C, 68.4; H, 9.8; N, 6.7. Found: C, 67.1; H, 

9.0; N, 6.4); � �max/cm-1 (KBr) 3411br (NOH), 2957 (C-H), 2928 (C-H), 1607 (C=N), 

1028 (C-N); FABMS m/z 842 (MH+). 

 

 

5.7.3 Metal Salt Complex Synthesis 

 

[Cu(L17)Cl2].  CuCl2.2H2O (32.0 mg, 0.187 mmol) and L17 (51.5 mg, 0.177 mmol) 

were mixed in methanol (20 ml) for 16 hr and the solvent removed in vacuo to give 

crude [Cu(L17)Cl2] as a fine purple solid (70.5 mg, 94 %).  Crystals suitable for 

analysis by X-ray diffraction were grown by diffusion of diethyl ether into a 

methanol solution.  (Anal. Calc. for. For C17H26Cl2CuN2O2.CH3OH: C, 47.3; H, 6.6; 

N, 6.1.  Found: C, 47.4; H, 6.4; N, 5.8 %).  FABMS m/z 390 (M-Cl)+.  

 

[Cu(L17)Br2].  CuBr2 (42.2 mg, 0.189 mmol) and L17 (51.6 mg, 0.177 mmol) were 

mixed in methanol (20 ml) for 16 hr and the solvent removed in vacuo to give crude 

[Cu(L17)Br2] as a fine purple solid (85.1 mg, 94 %).  Crystals suitable for analysis 
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by X-ray diffraction were grown by diffusion of diethyl ether into a methanol 

solution and were noticed to decompose to an amorphous solid after ~1 week.  (Anal. 

Calc. for C17H26Br2CuN2O2.(C4H10O)0.5: C, 41.4; H, 5.7; N, 5.1. Found: C, 41.1; H, 

5.5; N, 5.1 %).  FABMS m/z 434 (M-Br)+. 

 

[Cu(L17)2(NO3)2]. Cu(NO3)2.3H2O (23.3 mg, 0.096 mmol) and L17 (52.0 mg, 0.179 

mmol) were mixed in methanol (20 ml) for 16 hr and the solvent removed in vacuo 

to give brown needles of [Cu(L17)2(NO3)2] (71.8 mg, 99 %).  Crystals suitable for 

analysis by X-ray diffraction were grown by diffusion of diethyl ether into a 

methanol solution.  (Anal. Calc. for C34H52CuN6O10: C, 53.2; H, 6.8; N, 10.9. Found: 

C, 53.6; H, 6.9; N, 10.3 %).  FABMS m/z 707 (M-NO3)
+. 

 

[Cu(L17)2(BF4)2].  Cu(BF4)2.6H2O (43.0 mg, 12.4 mmol) and L17 (52.5 mg, 0.181 

mmol) were mixed in methanol (20 ml) for 16 hr and the solvent removed in vacuo 

to give crude [Cu(L17)2(BF4)2] as a green solid (73.2 mg, 99 %).  Crystals suitable 

for analysis by X-ray diffraction were grown by diffusion of diethyl ether into a 

methanol solution.  (Anal. Calc. for C34H52B2CuF8N4O4: C, 49.9; H, 6.4; N, 6.9. 

Found: C, 44.1; H, 5.7; N, 5.8 %).  FABMS m/z 758 (M-BF4)
+. 

 

[Cu(L17)2(CF3CO2)2].  A solution of [Cu(L17-H)2] (64.1 mg, 0.1 mmol) in 

chloroform (10 ml) was mixed with an aqueous solution (10 ml) of NaCF3CO2 

(136.1 mg, 1 mmol) and CF3CO2H (0.02 M, aqueous) was added dropwise with 

stirring while not allowing the pH to drop below 3.  After approximately 10 ml 

addition [Cu(L17)2(CF3CO2)2] precipitated as a light green solid which was collected 

by filtration (61 mg, 70%).  Crystals suitable for analysis by X-ray diffraction were 

grown by diffusion of diethyl ether into a methanol solution.  (Anal. Calc. for 

C38H52CuF6N4O8.H2O: C, 51.4; H, 6.1; N, 6.3. Found: C, 51.1; H, 5.8; N, 6.1 %).  

FABMS m/z 731 (M-CF3CO2)
+. 

 

[Zn2(L17)2Cl4].  L17 (29.0 mg, 0.1 mmol) in CHCl3 (10 ml) and ZnCl2 (1.36 g, 10 

mmol) in water (10 ml) were stirred together for 16 hr, the phases separated and the 

organic phase slowly evaporated to give colourless crystals of 
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[Zn2(L17)2Cl4].4CHCl3.  The crystals were sensitive to solvent loss, and after 

exposure to air gave an off white solid which analysed as [Zn2(L17)2Cl4].2CHCl3 

(49.1 mg, 90 %).  (Anal. Calc. for [Zn2(L17)2Cl4].2CHCl3: C, 39.6; H, 5.0; N, 5.1. 

Found: C, 39.9; H, 5.1; N, 5.3; FABMS m/z 818 (M-Cl)+. 

 

 

5.7.4 X-Ray Structure Determinations 

 

Crystal structures were determined at the University of Edinburgh crystallography 

service. The structures of [Cu(L17-H)2] and [Ni(L17-H)2] were solved by Dr James 

Davidson, the structures of [Cu(L17)2(NO3)2], [Cu(L17)2(BF4)2] and [Cu(L17)Br2] 

by Fraser White and the structure of [Cu(L17)2(CF3CO2)2] by Dr Francesca 

Fabbiani.  Details on the solutions and cif files are available in appendix 7.5.1. 

 

 

5.7.5 Solvent Extraction – Anion Selectivity 

 

All extractions were performed to the same general procedure.  0.01 M [M(L-H)2] in 

chloroform (10 ml) was added to 0.8 M HX/NaX aqueous solution (10 ml) and 

stirred for 16 hrs.  The organic phase was extracted, a 0.5 ml aliquot taken to be used 

for metal/sulfur analysis and a 2.0 ml aliquot taken for chloride analysis.  For metal 

and sulfur analysis, the solvent was removed in vacuo, the residue was dissolved in 

butan-1-ol (10 ml) and the concentration measured by ICP-OES.  For chloride 

analysis, the aliquot was stirred overnight with 0.1 M aqueous HNO3 (10 ml), the 

aqueous phase extracted and a 5 ml aliquot made up to 10 ml with 0.1 M NaOH.  

Chloride concentration was determined via a chloride sensitive electrode.  The 

equilibrium pH of the aqueous phase was measured and plots of metal and anion 

loading against equilibrium pH were used to determine the selectivities.  All solvent 

extraction data from this chapter are available in appendix 7.5.2. 
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5.7.6 Solvent Extraction – Cation Selectivity 

 

5.7.6.1  Equimolar Anion Concentration 

 

Experiments were carried out by contacting chloroform solutions (5 ml) of L18 at 

concentrations of 0.01 mol dm-3, with aqueous solutions (5 ml) of the appropriate 

metal salt at concentrations of 0.01 mol dm-3.  The aqueous solution was prepared 

from 4 ml of 0.0125 mol dm-3 metal salt solution, to which was added 1 ml of 0.1 

mol dm-3 sodium hydroxide/water or 1 ml of 2.5 mol dm-3 sulfuric acid/water 

solution to change pH.  Where mixed metal solutions were used, the metal salt 

solution contained 0.0125 mol dm-3 of each appropriate metal salt.  After vigorous 

stirring for 16 h at room temperature, the mixtures were separated and 0.5 ml 

aliquots of the organic phase removed for metal analysis by ICP-OES.  The 

equilibrium pH of the aqueous phase was measured and plots of metal loading 

against equilibrium pH were used to determine the selectivity order. 

 

 

5.7.6.2  Excess Anion Concentration 

 

Experiments were carried out by contacting chloroform solutions (5 ml) of L18 at 

concentrations of 0.01 mol dm-3, with aqueous solutions (5 ml) of the appropriate 

metal salt at concentrations of 0.01 mol dm-3.  The aqueous solution was prepared 

from 1 ml of 0.05 mol dm-3 metal salt solution, to which was added 4 ml of a mixture 

of 0.99 mol dm-3 HX and 0.99 mol dm-3 NaX, altering pH and keeping anion 

concentration constant at 0.8 mol dm-3.  Where mixed metal solutions were used, the 

metal salt solution contained 0.05 mol dm-3 of each appropriate metal salt.  In the 

extraction from a mixed metal, mixed anion feed, the aqueous phase was prepared as 

described, but using half the volume of both a chloride and sulfate feed to give 5 ml 

of an aqueous phase with metal concentrations of 0.01 mol dm-3, and sulfate and 

chloride concentrations of 0.4 mol dm-3.  After vigorous stirring for 16 h at room 

temperature, the mixtures were separated and 0.5 ml aliquots of the organic phase 

removed for metal analysis by ICP-OES.  The equilibrium pH of the aqueous phase 
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was measured and plots of metal loading against equilibrium pH were used to 

determine the selectivity order. 
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6.1 Conclusions 

 

This thesis has two main aims involving the development of phenolic oxime 

extractants of the type used commercially, 

 

• to tune extractant "strength" by substitution on the benzene ring and in 

particular to improve our understanding of the major effects associated with 

changing the nature of the 3-substituent, and 

• to establish whether their mode of action can be changed from transporting 

metal cations to transporting metal salts by incorporating anion binding 

functionality in the form of a protonatable aminomethyl group in the 3- or 5-

position. 

 

Both objectives have been achieved.  Previous research into substituent effects on 

phenolic oxime extraction is limited and not systematic.  L1-L9, with a range of 

substituents in the 3-position, were readily prepared and showed a remarkable range 

of copper binding strengths which varied by two orders of magnitude from the 

strongest reagent L6 (3-Br) to the weakest L3 (3-t-Bu).   

 

The consensus in publications from industrial labs is that the electronic effect of a 3- 

or 5-substituent controls extractant strength; electron-withdrawing groups lower the 

pKa of the phenol, allowing copper binding to occur at lower pH and thus increase 

the reagent strength.  Initially, this appeared to be the case for L1-L9 but 

discrepancies in the pH0.5 values emerged which challenged this conclusion.  The 3-

OMe substituted ligand L7 would be expected to be a weaker extractant as a 

consequence of the 3-methoxy group's electron-donating properties, but, in fact, 

copper extraction is more favourable than for the unsubstituted ligand L1.  

Incorporation of an electron-donating 3-Me group into L2 has no effect on extractive 

efficacy, while the bulkier 3-t-Bu group of L3 dramatically weakens its copper 

binding. 
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The potential for the 3-substituent to interact with the stabilising H-bonding motif 

present in pseudomacrocyclic salicylaldoxime dimers and their copper(II) complexes 

was investigated.  Proof-of-concept work using collision-induced dissociation mass 

spectrometry showed that this may prove to be a powerful tool for measuring the 

relative gas phase stabilities of copper(II) complexes.  The proof-of-concept studies 

reported in this thesis have been incorporated into a new Industrial CASE PhD 

project at the University of Edinburgh with Cytec Industries, to further develop the 

technique.  Analysis of the crystal structures of the dimers of L10-L15 and 

comprehensive computational studies using DFT methods and PIXEL demonstrated 

that the ability of the 3-substituent to “buttress” the H-bonding motif is a major 

factor in controlling extractant strength (Figure 6.1).  Electronic properties also have 

a significant effect on metal uptake, and both factors should be considered in tuning 

the strength of new reagents. 
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Figure 6.1:  Buttressing of intracomplex H-bonding in bis-salicylaldoximato copper(II) complexes by 

a H-bond accepting 3-substituent (X). 

 

Buttressing of H-bonding is not expected to be limited to phenolic oximes; ligands 

which form similar H-bonded arrays around complexed metal cations could be 

susceptible to tuning of extractant strength by appropriate substitution.  

Salicylaldehyde hydrazones form a pseudomacrocyclic cavity when binding divalent 

metal cations analogous to that of phenolic oximes, and initial work at the University 

of Edinburgh indicates that their strength can be altered by 3-substitution.1  

Subsequent studies may focus on pyrazolone oximes and 3-(2-hydroxyphenyl)-

pyrazoles, whose extraction strengths are not suited to current circuits. 
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Overall, the first objective of the thesis has been met, and the implications will be 

considered in the design of phenolic oxime reagents for the extraction of metals for 

which the current reagents are too weak.  Salicylaldoximes are also at the forefront of 

transition metal cluster chemistry and the ease of incorporation of substituents onto 

the scaffold could allow the tuning of the magnetic properties of such polynuclear 

clusters.2-4  Research at the University of Edinburgh into single molecule magnets 

containing substituted phenolic oximes, including L10-L16, is ongoing in the 

Brechin research group. 

 

As part of the second objective, six novel reagents with the potential to extract metal 

salts were prepared and characterised.  These have a pendant dialkylaminomethyl 

arm in either the 3- or 5-position.  The expected formation of tritopic metal salt 

complexes was confirmed for certain copper salts, for example [Cu(L17)2(NO3)2].  In 

contrast, when contacted with chloride salts the 3-substituted ligand L18 showed 

unexpectedly high loading efficiency, corresponding to a 1:1 L:MCl2 ratio.  This 

could have considerable impact on the development of new flowsheets for the 

recovery of base metals from chloride leaching.  When L18 operates in this way it 

appears that the function of the pendant amine is not to provide a separate binding 

site for chloride on protonation, but rather to assist in the binding of chloride in the 

inner coordination sphere of the metal and to ensure that the overall assembly is 

charge-neutral and organic-soluble.  This assembly was confirmed in solid state 

structures of [Cu(L17)Cl2] and [Zn2(L17)2Cl4] in which the units dimerise through 

weak and strong O-M-O bridging respectively. 
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Figure 6.2:  The two observed modes of anion binding in copper(II) salt complexes of the 3-

substituted ligands:  inner sphere anion coordination (A, X = Cl-, Br-) and outer sphere anion 

coordination (B, Y = NO3
-, CF3CO2

- and BF4
-). 
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Crystal structures of copper complexes of L17 with various anions have illustrated 

the importance of cation-anion interactions, as every structure contains such 

interactions and the formation of the simple tritopic assembly is mediated by M···X 

contacts.  The consequences of this are very significant in terms of extractive 

metallurgy e.g. the cation selectivity of L18, which discriminates for FeIII over CuII 

in the presence of sulfate, but extracts a mixture when chloride or both anions are 

present.  Co-extraction of copper and iron is potentially a major problem if L18 or its 

analogues are to be commercialised as metal salt extractants.  Attempts to overcome 

this problem will benefit from a detailed understanding of the mode of binding of 

FeIII in the presence of both sulfate and chloride.  The FeIII coordination chemistry of 

the 3-substituted reagents is expected to be varied and interesting, particularly given 

the propensity for salicylaldoximes to form Fen clusters5 which have recently been 

shown to include sulfate anions.4 

 

L18 could be an excellent CuCl2 extractant from an iron-free feed, for example if the 

pH was raised above 3 to precipitate iron as its oxyhydroxides.  If the aqueous feed 

was of high chloride concentration, then FeIII may be extracted as its chlorometallate 

anion FeCl4
-.  If so, the FeCl4

- could potentially be removed in an anion stripping 

stage, allowing subsequent generation of a pure copper electrolyte.  During the 

research programme for this thesis advances in the field of chloride hydrometallurgy 

have become apparent.6  Novel leaching processes generate high tenor aqueous feeds 

with high chloride concentration, conditions which are ideal for extractants 

analogous to L18 which do not release protons in the extract step. 

 

An alternative to using reagents of the types L17-L22 in extracting metal salts is to 

employ mixtures of cation and anion extractants - the "dual host" strategy.7  This 

may be advantageous in that less elaborate receptors are required, lowering costs 

associated with synthesis, but this approach could remove the opportunity for the 

stabilising cation-anion interactions seen in metal salt complexes of polytopic 

ligands.  Work within the group has shown that using a dual host approach, with 

mixtures of P50 and trioctylamine as cation and anion extractants, is not as effective 
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in the extraction of metal salts as the 3-dialkylaminomethyl-substituted phenolic 

oximes, e.g. L18.8 

 

Metal salt extractants based on salicylaldoximes rather than the previously studied 

salicylaldimines ("salen" derivatives such as those described in Chapter 4) are much 

more stable to acid hydrolysis in two-phase systems, with 5-nonyl-substituted 

analogues of L18 showing no degradation when contacted with acidic solutions 

(pH<1).9  Hydrolytic stability is essential as acid-stripping is integral to flowsheets in 

extractive hydrometallurgy, and stripping of conventional phenolic oximes is 

achieved with 150 g L-1 sulfuric acid.   

 

Phenolic oximes have many properties which are fundamental to their success as 

copper extractants, with hydrolytic stability an excellent example.  The ease of 

incorporation of substituents is another, and the research presented in this thesis 

demonstrates the potential for further commercial application provided by 

substitution.  Both main thesis objectives have been achieved and additional uses for 

substituted salicylaldoximes identified, including the potential for connecting 

phenolic oxime moeities with a functionalised strap.  The properties of the strap 

could influence the nature of the complexes formed, with rigid spacers expected to 

allow control of the disposition of salicylaldoxime clusters which act as single 

molecule magnets. Ligands with straps of the type CH2NR(CH2)nNRCH2 are capable 

of forming 2:2 Cu:ligand assemblies with a well defined cavity capable of 

encapsulating anions, and these have been studied by the author while on 

secondment to Massey University, New Zealand.10  Such examples further 

demonstrate the versatility of phenolic oximes and the wide-ranging applications 

made accessible by their amenability to substitution. 
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Appendix 

 

The following files and information are located on the appendix CD. 

 

Chapter 1 

 

7.1.1 Diagrams and figures used in Chapter 1. 

 

 

Chapter 2 

 

7.2.1 Crystal structure data and cif files for L1-L9, [Cu(L1-H)2], [Cu(L1-H)2], 

[Cu(L3-H)2], [Cu(L4-H)2(py)2], [Cu(L6-H)2] and [Cu(L7-H)2]. 

7.2.2 Solvent extraction data for the extraction of copper(II) from sulfate solutions 

by L1-L9. 

7.2.3 Diagrams and figures used in Chapter 2. 

 

 

Chapter 3 

 

7.3.1 Crystal structure data and cif files for L10-L15. 

7.3.2 pKa calculations report. 

7.3.3 DFT files and calculation spreadsheets. 

7.3.4 Summary of IR spectra of L1-L9. 

7.3.5 Analysis of CID mass spectra for the copper(II) complexes of L1-L7. 

7.3.6 EPR spectra for copper(II) complexes of L1-L3 and L5-L9.  

7.3.7 Diagrams and figures used in Chapter 3. 
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Chapter 4 

 

7.4.1 Solvent extraction data for the extraction of metal salts by L17, L18 and L20, 

and detailed studied of the extraction of CuCl2 by L18. 

 7.4.2 Crystal structure data and cif files for L17, L19, L21, [Cu(L17)Cl2] and 

[Zn2(L17)2Cl4]. 

7.4.3 Diagrams and figures used in Chapter 4.  

 

 

Chapter 5 

 

7.5.1 Crystal structure data and cif files for [Cu(L17-H)2], [Ni(L17-H)2], 

[Cu(L17)Cl2],  [Cu(L17)2(NO3)2], [Cu(L17)2(CF3CO2)2] and 

[Cu(L17)2(BF4)2]. 

7.5.2 Solvent extraction data for the anion selectivities of L18 and L20 and the 

 cation selectivity of L18. 

7.5.3 Diagrams and figures used in Chapter 5. 

 

 

Chapter 6 

 

7.6.1 Diagrams and figures used in Chapter 6. 
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7.7.1 Published papers resulting from this thesis. 

 


