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MODULES OF GENERALIZED FRACTIONS, DIRECT SYSTEMS
OF DETERMINANTAL MAPS AND OTHER TOPICS IN
COMMUTATIVE ALGEBRA

by

GAVIN JARVIS GIBSON

Summary

In this thesis we are ma.inlv concerned with the theory of the
modules of generalized fractions of Sharp and Zakeri, which is a
generalization of the well~known concept of localization in Commutative
Algebra. In Chapter | we give a brief description of the formation ar!Id
pfoperties of modules of generalized fractions, and we summarise the known
resuits concerning such modules which we shall require for the later work

of the thesis.

in Chapter I we focus our attention on the role of matrices ‘in
modules of generalized fractions. We show that it is not necessary to
consider only lower triangular matrices when making identifications in suc;h
modules and we identify a larger set of matrices from which we are free to
choose. Morebver, in this chapter we consider the situation where M is an
A-module and x;..X, and yi..y, are M-sequences with the property that
xAZ2yA. We demonstrate that, for this situation, the map M/xM -+ M/yM
induced by Crame‘r’s rule is injective, thereby dispensing with the finiteness

conditions present in previous versions of the result.

Chapter Il is concerned with the connections between Kersken's
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theory of denominator system complexes_ and compiexes of modules of
generalized fractions. We show that the two concepts are equivalent and,
by making use of some ideas present in Kersken's theory, we obtain a
description of an arbitrary moduie of generalized fractions as the direct limit
of a system of localized quotient modules. Using this approach, we
investigate the connections between Cousin complexes and generalized
fractions and obtain results concerning the flat dimensions of certain

modules of generalized fractions.

in Chapter IV we investigate conditions necessary and/or sufficient
for the vanishing of certain modules of generalized fractions and show how
modules of this form can be expressed as a homomorphic image of an
ordinary module of fractions. We then erhplov this description to express
certain cohomology modules as modules of generalized fractions. The final
part of this chapter relates the length of certain quotient rings to the
fengths of cyclic submodules of generalized fractions, for the situation
where the base ring is a generalized Cohen-Macaulay ring. We then apply
this approach to the situation of an arbitrary Noetherian ring of low

dimension.

The finai chapter, Chapter V, deals with the relationship between the
properties of seminormality and F-purity in 1-dimension ,al Noetherian tocal
rings, and we investigate conditions under which the two properties are

equivalent in the 1-dimensional case.

Whilst chapters are numbered by upper case Roman numerals in this
thesis we use Arabic numerals when referring to an individual section of a

chapter. Thus, for example, “3.2." refers to the second section of Chapter Il



CHAPTER |

1. Preliminaries

Throughout this thesis ail’ rings considered will be commutative with
a non-zero multiplicative identity, but will not be assumed to be either
Noetherian or local unless explicitly stated. A will always denote such a
ring. ldeals of A will be denoted by lower case Gothic letters such as B,
and the set of all prime ideals of A will be denoted by Spec A, The set of

all maximal ideals of A will be denoted by Maxspec A

Let M be an A-module. The support of M, i.e. the set of all primes

. (#n Nottharam Sibuations)

FGSpec A for which MP £0, will be denocted by SuppsM. and)(AssAM will
denote the set of associated primes of M, For a ring A, the (Kruil) dimension
of A, written dim A, is defined to be ;he length of the.!ongest chain of
primes in Spec A, if-this exists, and « otherwise. For a non-zero A-module
M, the (Krull) dimension of M, written dim M, is defined to be the length of
the longest chain of primes in Supp,M, if this exists, and « otherwise. We
shall adopt the convention whereby the dimension of the zero module is

defined to be -1. For R&Spec A, the height of ja, written htb':t, is defined to

be dimAF.

The set of all integers will be denoted by the symbol Z the set of all
positive integers by N, and the set of all nonnegative integers by Ny For
neN, A" will denote the Cartesian product of n factors of A, M (A} will
denote the set of all n x n matrices with entries in A, and D,(A) will denote
the set of all n x n {ower trianguiar matrices with entries in A.- For He M,{A).

the determinant of H will be written |H|, and matrix transpose will be denoted



T

by Whenever we can do so without ambiguity, we will denote (u,,...,un)'

by u and the matrix [u; .. u,,]T by u'

, together with obvious extensions of
this notation. For nelN, a sequence Xq,..x, of elements of A will be called an
M-sequence if, for each i=1,..n

i-1 i1
(i) ((;le\/l):xi) = lzxjrv:

with the obvious interpretation when i=1, and
n
(i) JxM # M.
1

A sequence which satisfies condition (i) wil be referred to as a poor

M-sequence.

2. Triangular subsets of A" and moduies of generalized
fractions

The localization of an A-module M with respect to a multiplicatively
closed subset S of A is a fundamental concept in Commutative Algebra. In
[35] Sharp and Zakeri describe a process which generalizes this idea
whereby they construct modules known as modules of generalized fractions,
in their terminology. Moreover, in subsequent papers [36,37] they have
demonstrated that this concept has various wide-ranging applications in
Commutative Algebra. In this section we give a brief de;cription of the
construction of modules of generalized fractions and outline some of their
important properties, which we shall frequently employ throughout this

thesis.



Let neIN. A non-empty subset U of A" is a triangular subset if
(i) for all (uq,...u,) € U and a,4,..0,eMN, (u?‘,‘...,u,?‘")eu, and

(ii) for al u={uq,...,u,) and v=(vq,..v,)€ Uthere exist w={w,,.,w,)e U, and

H.K€ D,(A} such that

For an A-module M and a triangular subset U of A", we can construct
the moduie of generalized fractions as follows. Let U be a triangular subset
of A", and let M be an A-module. We define a relation ~ on M x U as
follows: for a,beM and u,\)er, we write {a,u) ~ (b,v) if and only if there exist
weU and H,KeD,(A) such that Hu' = w' = Kv', and |H|‘a-|f<|b enzlwiM. In [35] it
is shown that ~ is an equivalence relation on M x U and from now on we
shall denote by a/u the equivalence class of {a,u), and let U "M stand for the
set of equivalence classes of ~. Furthermore, U™"M can be furnished with

an A-module structure under the following operations:
a/s + b/t = (Hla + |K|b)/u

for abeM, steU and any choice of uel and HKeD,{A) such that

HsT = uT = Kv', and
r{a/s) = ra/s

for aeM, seU and re A. The A-module U "M is known as a module of

generalized fractions



The main difficulties in proving that ~ is an equivalence relation and
that U™ has an A-module structure lie in demonstrating that -~ is
transitive and that the addition defined above is unambiguous. Whilst we do
not give explicit proofs of these properties in this thesis,' we include the
followmg two results from [38] which are of central importance therein, and

which will be employed elsewhere in our work,
1.2.1. Lemma [35, 2.2} (et uvell and suppose that there exists

HeD (A} such that HS' = V. Then

[Hlu € ;Av for all i = 1...n. ' ‘ .

Proof The result follows in a straightforward manner from the fact

that adj{K).K = [K|l, for any KeM,(A} (Cramer’s rule).

1.2.2. Lemma [35 2.3]. Llet uvel and suppose that .there exist

HKe D, (A) such that Hu' = =kJ. Then

JOH[ - [DK] € {

1
where D is the diagonal matrix aﬂf}frg(v1 A g

Proof Let H = [h;] and K = [k;] Set

1 ifi=0 Hk“,:fOsi<n

i



i=1
Let 1 < i < n. Then by hypothesis, (h; - kju; € }Au; ; thus
1

ki) (v - Eh,; u;) € ZAu
It follows from 1.2.1 that
Hi-1(hyi — kid(vi = Zh., u;) € ZAv

i=1
Therefore [DH;_;(h;; - ki)K; € JAVY that is
1

-1

2

IDI(HK; = Hi-1Ki-1) € JAV] .
1

n n-1
Hence lDIZ(HiKi - H1Ki-y) € ):Av";', which gives the required resuit.
i i

in the following proposition we list some of the most important
properties of modules of generalized fractions which are necessary for many

of our calculations.
1.2.3. Proposition [35, 36l Ler meM and let uve U be such that

vT =HuT for some He D (A). Then, in UM,

(i) m/u = [Him/v
n-1

(i) if me }uM then m/u = 0,
f

(iii) [36, 2.1] if u m/iu = a then m/u = 0.

Proof Parts (i) and (i) are immediate from the construction of



U™"M. To prove (iii), suppose that uym/u = 0 in U™™M. Then there exist we U
n-1

and H = [h;]€D,(A) such that Hu' = w' and |Hlu,m ¢ ZW-,M. Hence
1

n-1 n-1 ri-i
(]';Ihll)(wn - Zhn|u|)me ZWiM.
1 1

It follows from 1.2.1 that

n=1 =1
(Th;jw,m ¢ ”ZWiM ;
1

hence by (ii)
r 2
(I;Ih“)wnm/(w1,...,wn_1,w“) =0
in UT"M. It follows from (i) that

N
(I;Ihii)m/(W],...,Wn_],Wn) =0,

and the result follows on applying (i}, since Hu' = w'.

Suppose now that x = {Xy....x,) € A" and set
Ux), = { (xla,'...,xr?“) | @)n@n g Ng. 1 €1 <0}

where x?‘i = 1if a, = 0. Then it is_easily seen that U(x), is a triangular
subset of A", and given an A—module M we can form the module of
generalized fractions U(x),"M. For simplicity of notation we wiil denote a
typical element m/(xfl‘,...,xna“) by m/x® where a ‘stands for (Qq,...0,)€ MNg

along with obvious extensions of this notation. We have the following result

o\



due to Zakeri which we state without proof.

1.2.4. Proposition [39, Chap.ll, 2.2]. /n Ui, "M, ax® = bxB if and

only if there exists a positive integery 2 o;, B, 1 <7/ < n, such that

' -1
-0y YO - -B "
x}f '...XI g -x;( B‘...xx nbe Z,X?{M.
(ii) The endomorphism of U(x}r" "M induced by multiplication by X s

an automarphism.

Modules of generalized fractions of this form play an important role
in Chapter IV where the connections between generalized fractions and local
cohomology are examined. Furthermore, the following results demonstrate
that the study of such moduies is central to the theory of arbitrarv modules

of generalized fractions.

Let U be an arbitrary triangular subset of A". We can define a
relation € on U in the following manner. For uvel we say that u < v if
and only if there exists He€D,(A) such that vl = Hu'. Clearly < is a

quasi-order on U and (U,.<) is a directed set.

1.2.5. Proposition [38]. Let xyel be such that HxT = yT for some
\He Dn(A). Then given x-ueU(x)n, there exist” yBe U(y)n and K eDn (A) such
that (yB)T =-K(x-°‘)T. Furthermore, there is induced an A-homomorphism
Ux) "M~ Uly)"M under which m/x® is mapped to /K/m/yB and m/x to

[H[msy for all me M.

It is easily seen that {U(x). "

"M | xeU } becomes a direct system under

these homomorphisms and we have the following result.



1.2.6. Theorem [35, 3.5] /m U(x}n'“M = U™"M under the canonical

xel
mag.

3. Saturation and restriction

A familiar concept in the usual theory of the localization of an
A-module M with respect to a muitiplicatively closed subset S of A is the

notion of saturation. For such an $, we define the saturation of S to be
g = { xeA | xye S for some y €A}

We say that S is saturated precisely when S = §, and we recall that there is
a natural eqguivalence of functors s '+ 51 In[28] Riley introduced the idea
of the saturation of an arbitrary triangular subset U of A", which has
' p;operties analogous to the situation described above and which coincides
with the usual notion of saturation when n=1 and U is a mulitiplicatively
closed subset of A. Whilst Riley gives several equivalent characterisations of
saturation, the following definition is the one which we shall use most

frequently throughout this thesis.
1.3.1. Definition [28, Chap, 2.2]. Let ncMN and let U be a triangular

subset of A". Then the saturation of U, denoted U, is defined to be the set

{ ve A" | there exist He D {(A) and ue U such that HvT = u' ).

~

U will be called saturated if U = U.

It is a straightforward matter to show that U is itself a saturated



trianguiar subset of A" and that, in the case where n=1 and U is a
multiplicativeiy closed subset of A, U coincides with the usual definition,
The following result due to Riley wiil be empioyed on numerous occasions

throughout this thesis.

1.3.2. Theorem [28, Chap.l, 2.8]. Let nelN and let U be a triangular
subset of A". Let M be an A-module. Then the natural homomorphism

b - UM UM such that
dp(mu) = m/u

for all meM, uel, is an isomorphism.

Proof 1t is straightforward to verify that ¢, is a well—defihed
homomaorphism. Suppose now that me M and uel. From the definition of
U there exist He D,{A} and velU such that Hu' = vT. Applying 1.2.3.(i) we

have
m/u = [Him/v = $pHm/v)

and so ¢, is surjective. Suppose now that ¢M(m/u) = 0. Then there exist’
veU and He D,(A) such that |H|men):lvM Since veU, there exist we U and
Ke D, (A} such that Kv' = w', and it follows from 1.2.1. that |K||H|mc{w|v|
Therefore |[KHim/w = 0 in U "™ by 1.2.3.(n), and hence m/u =0 in U ”M by

1.2.3.(i), showing that ¢,, is injective.

¢

The significance of 1.3.2. is that it allows us to assume that the
triangular subset with which we are working is saturated without any loss of

generality. This assumption wiil be particularly valuable in Chapter Il, where

-



the rdle of matrices in a module of generalized fractions is examined in
more detail, and also in Chapter lll, where Kersken's denominator system
.theorv is recast in the setting of the theory expounded in this chapter. On
the other hand, if U is a triangular subset of A" and m is a positive integer

such that 1 < m < n, then the set
{(uq,..uq) | (Up,ly)6 U, fOr SOME Ugaq,liné Al

is a triangular subset of A" which we will call the restriction of U to A™. If
U is saturated then it is a simple matter to show that the restriction of U to

A™ is also saturated, and this is left to the reader as an exercise.

For a triangular subset U of A" we set
U1l = { (uy..oup 1) | (Uqgu)€U 3

Clearly U[1] is a triangular subset of A" and we shall denote a typical
‘element {uq,...u,1) by (ul). As will become apparent in Chapter IV,
triangular subsets of this form play an important role in the theory of local
cohomology, and we shall encounter them in various settings throughout
this thesis. In [26], O'Carroll shows that for a triangular subset U of A" and
an A-module M, the module of generalized fractions U[11™™'M can be
exhibited as the direct limit of a system of quotients of M in the floliowing
fashion. Let uwvelU be such that Hu' = vT for some HeD,(A). Then by 1.2.1.

n
there is a homomorphism aH:M/):uiM > M/iviM such that
1 1

n n
au(m + Yu;M) = [Him + JvM.
] i

10



For simplicity we will abbreviate guilvl to uM, and we shall use obvious
1

extensions of this notation. The map oy will be known as the determinantal

map induced by H and will be studied in some depth in Chapter Il. Under

these maps the set {M/xM | er}' forms a direct system {see IAppendix I)-

and we have the following result due to Q'Carroil.

1.3.3. Theorem [26, 2.4.1 fim MM = U1 M.
xel/

Proof Let L denote lim M/xM, and for. each xeU, Ilet

xel)

Y, 1 M/xM > U{11""" "M be the map such that
P, (m+xM) = m/(x,1).

It is clear from 1.2.3.(ii) that Yy, is a well-defined homomorphism. Given

x,yeU with y' = Hx' where He D_(A), we have that

Iy 117 = [H o] x 117 .
0o 1]

Hence applying 1.2.3.()) to UL M, it foliows that m/(x,1) = {HIm/{y,1) so
that {, = \byaH wheré ay is.the determinantal map induced by H, and hence
the family of maps { ¥, | xeU} induces a homomorphism y: L + Ul 'm.
It is straightforward to verify that ¢ i§ surjective and so it remains to prove

that Kery = 0.

Let keKery. Then there exist yeU and m+yMe M/yM such that
8,(m + yM) = kTand P (m + yM) = 0. Therefore m/(y,1) = 0 in U[1]™""'M, so
that there exist KGDH;'(A) and (z,1)€U[1] such that Kly 117 = [z 117 and

[Kjme zM. Now if H is the top n x n-submatrix of K, it follows from Cramer's
frwkw’. 93: M/{fM — L 3 ﬂmna@aﬂ map

11



rule that
K1 € [HL1 + zA,
so that [Hime zM. Since z' = Hy', ay(m + yM) = 0. Hence

k = Gy(m + yM) = B (ay{m + yM)} = 0.

In Chapter lll we will give a proof of a generalization of 1.3.3., again
due to O'Carroll, which extends the ideas of 1.3.3. t0 modules of generalized

fractions 'with respect to arbitrary triangular subsets.

4. Complexes of moduies of generalized fractions

Some of the most important applications of modules of generalized
fractions in Commutative Algebra involve certain complexes of such
modules. For example, in [39] Zakeri demanstrates that the minimal injective
resolution of a Gorenstein module can be exhibited as a complex of modules
of generalized fractiéms. Furthermore, certain types of moduies such as
balanced big Cohen—Macaulay maodules can be characterised by the
exactness of such complexes. Qur chief interest in these complexes in this
thesis stems from their connections with éomplexes of Cousin type and the
_denominator system compliexes of Kersken, both of which are examined in
Chapter I We first review the construction of a complex of modules of

generalized fractions.

12



The symbol U will denote a family of sets { U; | ieN } such that

(i) U; is a triangular subset of Al for all ieWN;

(ii} whenever (uq,..u;)e U; with i>1, then (uq,.uj-1)eU;_q;
(iii) whenever {u;....u;}e U , then (uq,..u, 1) e U,y

{(iv) {1Ye U,.

in view of 1.3.2., which allows us to assume (iii) and (iv) with no loss of

generality, we can replace (ii), {(iii} and (iv) with the singie condition

(v) for all ieM, U, is the restriction of U;,; to A"

Let Il be such a family of triangular subsets on A, and let M be an
A-module. We can construct a complex C(Z[,M) of A-modules and
A-module homomorphisms, given by

4’ n

d° . ,
CUM:0>M>U™MS > UM S UM -

i+

where do(m) = m/(1) and di(m/(u1,...,ui)) =m/(u,,...u; 1). The family Z[ is called
a chain of triangular subsets on A and C(U,M) is known as the associated

complex.

Let {x;| ieN} be a sequence of elements of A Then we can form a
chain of triangular subsets {U(x); | ie/N}, denoted by u(x), where U(x), is

formed from the truncated sequence Xi...X, in the manner described after

13



1.2.3.. Given an A-module M, we may then form the complex C(Z[(x),M)

associated with U(x).

If U is an arbitrary chain of triangular subsets on A we can define T

to be the set of all sequences x = {x; | i¢N} of elements of A such that
(i) x; = 1 for all sufficiently large n, and
(i) (Xq,-..%x5)e U, foralin =2 1.

Now T is a directed set under the féllowing relation: for x,ye T we say that
X<y precisely when VT = HxT for some infinite lower triangular matrix H, and
given x and y in T with X<y, there is induced a morphism of complexes
CUem > E(lv)M)  which  restricts to  the  corresponding
homomorphism in the direct system described in 1.2.5. Analogously to
1.2.6., we have the following‘ result.

1.4.1. Proposition [25, 2.11.  /im (2 x)M) = C(U.m).

xe T

in [28] O'Carroll gives a universal characterisation of the complex

CC (1L ()M) in the manner described below.

Let x be an infinite sequence of elements of A and define another
associated compiex Cix,M) = {Ivl‘"l | n>=-1} of A-modules and A-module
homomorphisms as follows. Set M&Y = 0, M = M and let M0 > MmO
be the canonical map. Suppose that for i 20, the A-modules M1 ang M
and the map f~' have been defined. Let N'*! = Coker ", tet M{*V = N,(fi::’

(localization with respect to x.;), and let f:M" » M1 pe the canonical

homomorphism. It is clear that #*1ofl = 0, so that C(x,M) is indeed a

14



complex. We have the following important resuit.

1.4.2. Theorem (25 2.2) There is an isomorphism of complexes
9 e C:(Z[(x),M) with © ={8" [ n>-1} such that 8° is the identity

map on M.

Proof. The definition of 87! is obﬁious. Now let 6 bg the identity
map on M, and define- 6 NIK,—> U(x),’]M by 61(a/x?) = a/(x?).' it is a simple
matter to show that 8' is a well;defined isomorphism and that
d%8% = 9100, Now let i>1, and suppose that we  have
defined, for -1 < j < i, A-isomorphisms  6:m‘) » U(x?jij such  that

di"legi™! = glofiTl. Now
oittm £71) = Im d"' < Ker d',

so that there is induced a surjective A-homomorphism ' N > m d',

and by 1.2.4.(ii), xi” in turn induces a surjective A-homomorphism
ei*T: M‘i*‘ﬂ - U(K)i:_i;1M,

such that d'e8' = 871°f [t remains to prove that Ker 8'*' = 0.

For this it suffices to consider an eliement in Ker 8" of the form b/1,
where b is the canonical image of b in N Now 8'(b) = a/(x®..x%¥), say,
~and a/(x?}...,x-,aij) =0 in U(x)-'i'1M. By 1.2.4.(i), there exists a positive integer

1+1

Y 2z Q 1 < j < i, such that

i
x ¥~ x Y~ %xY,a € ;x;(M.

15



and 8'(b) = a/(xM ..x) = c/(x)...xY) in U™, by 1.23.(i). If we write
|
ch = zx;{mj
1

where meM, 1 < j < i, then

Oitxgl b) = xi; ¢/(x" ..., xff)
= x-lYnjli/(x:{,...,x-tY) by 1.2.3.(ii)
= my/(T ], 1) by ;|.2.3.(i)
elm d ",

It follows that xY,be im f7', hence xJ, b =0 in N'"V Therefore B/1 =0 in

4]

M = Nﬁji:”, and the result follows.

Because -®,M commutes with ordinary localization, the taking of
quotients and direct limits, a direct consequence of 1.4.1. and 14.2 is the

following result, originaily proved by Zakeri by direct calculation.

1.4.3. Corollary [39, Chapll, 2.12]. Let U be an arbitrary triangufar
subset of A" and let M be an A-module. Then U "M =U"A 8, M under

the obvious map.
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CHAPTER 1l

1. Matrices and modules of generalized fractions

In Chapter | we have seen how the moduie of generalized fractions
U™"M can be constructed from an A-module M and a tfiangulaf subset U of
A" In the first section of this chapter, we focus our attention on a
barticular property of such modules, of which we have already made.
considerable use in the previous chapter, namely 1.2.1.(i), which we now

recall: if uvelU and He D (A} are such that Hu' = v' then, in UT"M,
m/u = |[Him/v , for all me M. - (=)

As (:) provides a rule frequently employed in caiculations in-volving moduies
of generalized fractions, it is clearly of interest to investigate the extent to
which (<} can be generalized' to ‘encompass a wider ‘class of matrices than
D,(A). The motivation for this programme‘of rasearch is pr-ovided by the
following result, originally proved by Riley by a computational method, and
which is stated here without proof. In view of. the fact that M (A) and'Dn(A_)
coincide when n=1 we restrict our attention to triangular subsets of A””,

neN.

2.1.1. Proposition {28, Chapl, 3.1] (Let neWN and let U be a triangular
subset of A"”. Suppose that for ény permutation_ o of (1..n} whenever

(u '“"”n+1)€U' then (u JEU. Let M be an A-module, meM,

gt Y n) Yn+1

(u,..u_,. JeU, and let o be a permutation of {1..n}. Then in U m
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m/Au ""'”n+1) = (sgn c)/(”cn)""'”c(n)'”n+1)'

Triangular subsets with the properties of that considered in 2.1.1.
occur frequently in the known examples (see, for example, 2.1.8.). We
remark that for a given permutation of {1...n}, o, sgno = |P|, where P& M (A}
is the permutation matrix associated with o. Furthermore, if ¢ is non-trivial,

then P¢ D (A), and likewise P'¢ D,.1(A), where

Now Pluq ... Upeql” = lugi1) - Ugial u,1]%, and it follows that P’ satisfies ()

since |P'] = |P|.

Our primary aim is to obtain a generalization of 2.1.1. which allows us
to replace the matrix P by any element of M,{A}. In order to achieve this we

shail require the following two preliminary lemmas.

2.1.2. Lemma. Let U be a triangular subset of A" and let uve U be
n . n
such that u . =v.,., and JAv ©)Au. Then there exist wel,
n+l n+1 I i 0 i .
H = ['hij]e:Dn)f1 A} and K = [kliJJEDn+1 (A) such that h . . =k . . and

Hu ' = WT =KVT‘

Proof By the properties of triangular subsets there exist we U,
H' = [0l € Dpar(A) and K’ = [Kj] € Dpuq(A) such that HuT = w' = K. This

implies that

n+1
Wnet = _Ekhﬂ'jVj
j=1

18



n

. ’ ’

= Tkoer Vi * Knet netlne
jat

= Thiu + Knep netlnsd
=1

n n
for hje A, 1 < j £ n, SiNCe Upyq = Vpuy and ZAvi E_ZAU-, .
i 1

Now let K = K, and let H be the matrix obtained from H’ by replacing
' hpe1j With hy 1. < <0, 0oeq e with K +1 n+1. and leaving the first n rows
unchanged. Then HuT = w' = KvT and Noeq ner = Kn#1 ne1 = Knel ne1 @S

required.

The following result is of considerable importance both here and at
other places in this thesis, as it provides a relationship between the action
of arbitrary matrices and the rdle played by lower triangular matrices in a

module of generalized fractions.

213. Lemma [O'Carroll, 26, 33l let u =(u..u)eA" and
V= (v, )EA™ " and let KEM,(A), HED (A) satisfy Kul =vT =HuT. Set

vy =ilv. Then

..‘.:‘:

oMl - [Kl) € r;‘Av,-z.

Proof Let H = [h;]. If t =0 let H ={1] and if T £t < n let H be
the top left t x t-submatrix of H. Let K = [k;]. f t =n let K, =[1], and if
0 €t < n let K, be the bottom right {n-t) x (n-t)j-submatrix of K . Let us

further suppose that i is a fixed integer such that 1. < i < n. Then

Vi Zhu u; zku Uj .
1=1 j=1
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so that

{hy = Ki)v; € ZAu + hyd Z Kij;)- ()
‘ J= el

Now H;_q[u; .. uql’ = vy vi_71T, so by Cramer's Rule and (1), and noting

that |H;_;|(h;;} = [Hi. it follows that

lHi-1|(h|| k“)\l ézAV + IH l( z k‘] i

i+l

(We will use a similar argument below.) Thus

(HIK = IHi kKDY, ezAv + |HillKil¢ Z kiju;). (++)

Jzial
: T T
Now Kiluicq ... uyd’ = [wisq . w,] where

i
Wi = V= ) KUy i1 S
ta1

IA
>

so by Cramer’s Rule, for i+1 £ j

A
=]

|-
Ky, & E/twt + ZAut - ki

(1|

where K is K, with its (j-i)!" column repiaced by [Kiy1 - kil

As before, it follows that for i+1 < j < n,
|H|“K|Iu| € ZAVt - IHi—'llhiiui . |K{i”"
t¥i

1= 1
Since h;u; e v; + ZAUt and [H,_qju, & ZAV 1 <t < i-1, we deduce that for
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i+tT g <n,

iHiliKily; € XAVt - IHi—1”K(i“‘Vi . {(t++)
t4i

Taking (T++) together with (++), it follows that

CIHIK = Hilkalkil = 3 kK9 ) e TAvg
' jniel t&i

s0 that

(Il = Hi- K-l e EAVt .
t#i

Hence

n
(MK = Hi-lKicahve & TAVE .
1

The resuit follows on summing over i .

There is an obvious similarity between 2.1.3. and 1.2.2. and it is

n -1

L]
reasonable to ask whether 2.1.3. can be “strengthened” by replacing Z with z
H []

in its statement. However the following elementary example demonstrates

that this cannot be done in general.

Suppose that A = Z n=2, u=v=(3,2), and let

H=[1 o] and -K=[3 -é]
0 1 2 -2
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Then Hu' = vT = Ku', but vqv,(H-|K) = 6 ¢ 9Z.

Equipped with the preceding two resuits, we are now in a position to

present our first main result, which is a generalization of 2.1.1..

2.1.4. Theorem. Let U be a triangular subset of A" and let uvel/

_ T _ T
be such that u . =Vv. and [v] vn] = O[u1 un] for some Q& M (A).

Then in U™ 'm,

msu = [Qfmv ., for all me M.

Proof. We first note that [v; .. v,1T = Qlu; .. u,]” for some Q &€ M,(A)
. n 0

if and only if ZAyig‘,EAui, so that the conditions  of 2.1.2. are satisfied.
1 1

Thus there exist we U, H =[h]€ D,.i(A) and K = [kjle D,+1(A) such that

T 2 T . T
hn+] a+tl = kn+1 n+1 and Hu' =w' = Kv'.

tet H and K be the top left n x n-submatrices of H and K
1]
respectively, let wg = IlIwi . and flet Deg D,.1(A) be the diagonal matrix
diag(Wq,..W,41). We note that |D| = wow,.q . In U™ M,
m/(U1,...,Un+1) - IQ'm/(V],...,Vn+1)
= [HIm/AWq,.Wpep) = KIQIM/ (W1, Wai) o By 1.2.3.00)

= (H} = KO/ (w1 .. Wqen)

IDIGH| - [KlIQhm /WS wE,... Whq) by 1.2.3.(i)

’ B 2 2 .
= hpeq ne1WheWollH] = [KlIQDMmAWE WS, W2ay) .
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since Hluy .. un)™ = [wq .. w,]T = KQlug ... u,]", and H' & D(A),
i 2
wolH1 - IKllQ) € JAwS , by 2.1.3.
B |
Therefore, in U™""'M,
et ne1Wae1WollHY| = [KIQYM/(WT..whe) = 0,277
by 1.2.3.(ii), 50 that

m/A{Uy,...Unsq) = [QIM/ (V1.0 Vqa).

We can see from Thecrem 2.1.4. that if uve U and HE D, (A} are

such that v' = Hu, then {) will hold whenever the matrix H is of the form

[K 0
0 14. where K & M (A) .

Indeed our next result, by making use of the notion of saturation discussed

in Chapter |, demonstrates that (.) continues to hold for a still larger class of '

matrices.

2.1.5. Theorem. let U/ be a triangular subset of A" and tet M be an
A-module. Suppose that there exist uve U and K = [kij le M. . (A) such that

k =0 1<i<n andku" =v'. Theninu™'Mm,

i n+l

M sty 1) = KA V1)

23



for all me M.

Proof Let K denote the top left n x n-submatrix of K and let
\

denote the n x n identity matrix. Then

[Vy o Vop) = [K' o][l 0 ] [ug o upsql”
0 1 kn+T 1 kn+'| n+1

= I:K‘ 07 luy — up vauerl™ .

0 1

By the properties of triangular subsets there exist we U, HéE Dm,;(A)

and J € D,;1{A) such that HuT = wT = Jv7, so that
n
Wi € ZAvi + AV, .
1
This implies that
n
Woat € JAU; + AV
1

n
since JAv, € JAu;, so that
]

=[~-13

n
Wahet = ztiui + t e 1Vaet tiEA 1< i< n+l,
1

Let H' be the matrix obtained from H by substituting t; for h .

1 £ j < n+1, and leaving the first n rows unchanged. Then
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T _
[wq oo Wil = Hluq oy Vaerll .

At this point we recall the remarks made in Chapter | following 1.3.2.,
which allow us to assume without loss of generality that U is a saturated
triangular subset of A" Since H'€ D,+1(A), it follows that {uq,..U,Vae) € U

Thus

m/(U1,...,Un+]) = kn+1 n+1 m/(U1,...,Un,Vn+1) . bv 123(|) .

K Knat qaiM/(V1VnVaer) . bY 2.1.4,

= |KIm/(vq,...¥q41)-

We have now reached the stage when we can say that (+) holds

whenever HE M_(A) (n>1} is of the form

where the top left (n-1) x (n~1}-submatrix H can be any element of M _;{A).
However the foliowing example demonstrates that (+) need not hold if we do

not enforce this restriction on the matrix H.

2.16. Example. Let A be a Noetherian local ring of dimension n>1
with maximal idea-l #. We let the abbreviation 's.o.p.’ stand for ‘system of

parameters’. Now let
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W = {(uq,...u,) EA" | ug,...u, form an s.o.b.}.
In {36, §3] it is shown that W is a triangular subset of A", and that
WA = HY(A) # 0,

where H&(A) is the n™ local cohomology module of A with respect to the

maximal ideal 1. It is straightforw‘ard_ :to show that
m/(Uq,...uy) = 0 in WA >m/(uq,..up,1) = 0 in w[1]‘""A ,
and so we dedﬁce that W "A £ 0 . Suppose now thét
m/{Uq,..uy} # 0 in WA |
Then by 1.2.3.(iii) ,

u,m/(uq,..u,) ¥ 0.

and let P be the n x n permutation matrix associated with ¢ . We remark

that P does not belong to the class of matrices described after 2.1.5.. Then
Pluy .. u)T = [u, Up o Upeq uql”

and (u,Usp,...U,-1,Uq) € W since it is an s.o.p.. However
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|Plu,m/Auqug,.uq-q.uy) = 0, by 1.2.3.(ii) .
so that («) does not hold in this case.

2. Poor M-sequences and determinantal maps

Throug:;hout this section "we shall be concerned with the
determinantal maps which were first discussed in Chapter | and whose
definition we now recall. Let M be an A-moduile and iet x=(xq,...x,)€A" and
y=(y1,..¥n) EA" be such that

[\[1 Vn]T = HEX] anT

n n

for some HeM_(A). It follows from Cramer's Rule that {Hl{(}Ax)< ] Ay, so
7 T

that, in the notation of 1.3.3., there is a weli-defined homomorphism

ay:M/xM > M/yM , such that
ap{m+xM) = [Him+yM .

In particular we shall be concerned with the situation where x..x, and
Y1...¥, are poor M-sequences, and it is our ultimate aim to prove that the
map ay is injective in this case. Indeed, it is already known that ap is
injective under certain restrictions on the ring A, the module M, and the
matrix H. We first give a brief summary.of the various situations where ay is

known to _be a monomorphism.

2.2.1. Thecrem [25, 3.2). Llet A be a ring let M be an A-module and
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fet XX, and Yy ¥,y (denoted x and y respectively) be poor M~sequences
such that 1/T=:'-sfxT 'for some HéE D’n (4). Then the determinantal map

oy MM+ MyM such that
ay(m+xM) = [Him+yM

is @ monomorphism.

The next result gives an important property of poor M-sequences,

and is required for the proof of 2.2.3.

2.2.2. Lemma [39, Chap.il, 3.11]. Ler M be an A-module and let x,,...x

177 *

be a poor M-sequencs. Then x1°“ o X 00

n is a poor M-sequence for all

positive integers 0q,...0%,.

2.2.3. Theorem (cf.[26, 3.7]) Let M be an A-module, and /et XX and
Yy ¥, be poor M-sequences such tha‘r yT = Hx' for some Heg Mn(A).
Suppose further that there exists a sequence Z =2 - of elementsr of A,
and J,KeDr“(A), such that z...z is 8 poor M-sequence and JxT=zT=KyT.

Then the determinantal map oy MM~ M/yM is a monomorphism.

Proof Let DeD,{A) be the matrix diag(zy,...z,) and let z? denote the

sequence z:..2% so that Z'is a poor M-sequence by 2.22. It follows from

2.1.3. that
. n 2
IDI(MI - HIK]) € 1ZAZ,-

so that ag; = Opgxy where 0p), Opy:M/XM > M/z’M are the determinantal

maps associated with DJ and DKH respectively.
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Now @py is injective, by 2.2.1. so that apgy is likewise injective.
Expressing Qpgy as the composition ageay, it follows that ay is a

monomorphism.

An immediate corotlary of 2.2.3. is the following result due to

O’'Carroll.

2.2.4. Corollary [26, 3.7]. {Let A be a Noetherian ring and fet M be a
finitely generated A-module. Suppose that x..x and y,...y are poor
M-sequences and that ' yT = Hx" for some HEe Mn(A). Then the

determinantal map ay.-M/xM > M/yM is a monomorphism.

Proof By [39, Chap.l, 3.15] and 2.2.2. above, the poor M-sequences
of length n form a trianguiar subset of A" so that the conditions of 2.2.3. are

satisfied; the result is then immediate.

Let us now consider the situation where A is a ring (not necessarily
N-oetherian), and M=A. Pertaining to this situation, we have the following
resuit from [14]. The method of proof employed in [14] is adapted in this
thesis to prove the mai'n result of this section, 2.2.12., {which generalises

2.2.4. to an arbitrary A-maodule).

2.2.5. Theorem [14, p.690]. Let A be a2 ring and let x. —— and Vyo¥y
be A-sequences such that yT = Hx" for some H e:Mn (A). Then the

determinantal map oy A/XxA > A/yA is a monomorphism.

In 2.2.1. and 223.-228 we see that the map Qy is known to be
injective in a variety of situations. Indeed, in this section we shall prove that
oy continues to be a monom'orphism in the absence of all the conditions on

ring, module or matrix, required in the proofs of these previous results. This
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will be achieved in Theorem 2.2.12..

Qur original intention was to obtain a “direct” proof of 2.2.12. by
reducing the general situation, where A is an arbitrary ring and. M is any
A-module, to the case where A is Noetherian and M is finitely generated,
and then to use 2.2.4. to show that ay is injective. Unfortunately, this
approach, although initially appealing, did not yield a proof of the general
result. However, the case where n=2 is tractable bv‘ this method, and we
inciude a proof of this special case (2.2.6.) as it involves some intereéting
ideas 'concerning poor M-sequences, and identifies the problems

encountered if we attempt to generalise the approach to higher values of n.

2.2.6. Theorem. Let A be a ring and let M be an A-module. Suppose
that x, X and y,.y, are poor M-segquences such that yT = Hx for some
H=lhn ] € My(A). Then the determinantal map Qg MxM> M/yM is a

monoemorphism.

Before giving the proof of 2.2.6. we shall require a few preliminary
results which are of some interest independent of their role in the solution
of this problem. In addition we must make the following simplification in

the statement of 2.2.6..

Let R be the Noetherian ring Z [X;,X3,Hq1.Hja.Ha9,Hao]l where X Hj,
i,j=1,2 are indeterminates. Now M can be given an R-module structure by
restriction of the scalars, where the restricting ring homomaorphism f:R » A
is such that f(X)=x; and f(Hij)=hij . Let H'eMy{(R) be the matrix of

indeterminates [H;l and let

HIX; X,)T = [Y; Yol
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It is clear that f(Y;}) = v, that X=X1,x2Aand Y=Y,Y5 aI;e poor M-sequences,
and that the determinantal (R~modu_le) map aM/XM > M/YM is injective if
and only if the corresponding A-module map &y is injective. Therefore, in.
the statement of 2.2.6., we can assume that the ring A is Noetherian without

any [oss of generality.

Unfortunately, in general we cannot reduce the statement of 2.2.6. to
the case where M is finitely generated. However, as will be apparent later,
the following resuit does enable us to replace M with a module possessing

the properties required for our proof of 2.2.6..

2.2.7. Proposition. Let A be a ring, not nebessarily Noetherian, let M

be an A-module and /et X% be a poor M-sequepce.

(/) For any submoduie MM, the unique smallest submodule N such

that M'eN and X, Xy is a poor N-sequence is given by
N = [H(Mtx,“) in [H(Mt-x;‘) Ji =H(M1~/“)

where /=(x,.x, )A.

T

(i) If Z,,2, is a poor M-sequence such that x = Hz1 for some

He M2 (A} then z,.2, is a poor N-sequence where N is the submodule defined

in (i)

Proof (i) We first show that x,x, is a poor N-seguence. Since x;
acts as a non-zerodivisor (n.z.d) on M, it clearly acts as a nzd. on

N. Suppose now that

Xome N,
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for some meN. Since x1N g x4M and x;,x; is a poor M-sequence, it follows
that m € x;M so that m = x4t for some t€M. Now me (M":x}) for some
pelN, from the definition of N, so that x’me M’ . It follows that x‘\’”te M,

which implies that
te(M:x3) . ()
Now

X;m ¢ xqN

2 Xa(xqt) € x9N

= x1(x2t)lex1N

= Xt eN since x e?cts as a n.z.d. on M_,

= Xt e (M":x3) for some q&N,

> te (M':xgﬂ). ()
It follows from (), (T) and the definition of' N, that teN. This implies that
m e x¢N, so that x;.x3 must be a poor N-sequence.

Suppose now that L is a submodule of M which contains M’ but
which does not contain N. Since N¢ L, there exist me N such that m£L, and
a,be IN such that x{me M’ and xgm& M’ froﬁ the definition (;'rf N Since x4
acts as a n.z.d. on M, x? acts as a n.z.d. on M, and it follows that x2m ¢ XL

since mgL

However

32



xg(x?m) = x?(xgm) € xiL .

This implies that x2x} is not a poor L-sequence, and it follows from 2.2.2
that xy,x; is not a poor L-sequence. Therefore N is the unique smallest

submodule of M containing M’ such that x;,x; is a poor N-sequence.
o
It remains to show that N = ]H(M':I"), where | = (X1.X2)A.

Let me N. Then there exist abeN such that xymeM’ and xsme M.

Let t € 1272, Then it is an easy exercise to verify that t can be written as a
sum of terms in x; and xp, each of which contains either x{ or xS, It follows

[~ -1
that tm € M’, and hence m & (M:12*®), so that N ¢ lEJI(I\J'I’:i“).

NoW suppose that me (M~=1") for some reMN. Then me (M x{) and

me (M x5 ), so that meN. This completes the proof of (i}.

(i)’ As before it is clear that 2y acts as a n.zd. on N It therefore

remains 1o show that

z2zmez;N, meN = me ;N

Let meN be such that zym € z;N. Then m € z;M, since 2,,z; is a poor

M-sequence, so that m = z;t, for some teM.
Since meN, it follows that 1m & M’ for some ke N, so that Ikz1t§M'.

Now z; acts as a n.zd. on M, so that z;m = 2521tezqN implies that

z,teN. It foilows that 1"zt <M’ for some neN. Let p=max{kn}. Then

33



Pzt =M’ and Pzire M’
S0 that
x11P1 € M’ and x!Pt &M,
since x' = Hz'. TherJefore
(C1xq + Caxx)IPt e M,
for any choice of c1,;:26A, and it follows that

Pl am .

This impiies that teN. Thus m = z;tez;N, so that 25z, is a poor

N-sequence.

in addition, we shall require the foilowing result, due to Zakeri, for

our proof of 2.2.6.. .

2.2.8. Lemma [39, Chap.ll, 3.141 Let A be Noetherian and let M be an

A-module. Suppose that x,....X and y,...y,,, are poor M-sequences. Then -

+1
. n}:Ayi 4:_ R . for all peAssA(M/zn)clM} . b
7 ‘ 7

Proof of 22.6. Let M, Xy X, Y1.¥2. HEM,{A) and oy be as defined in

the statement of Theorem 2.2.6.. We assume without loss of generality that
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A is Noetherian, Suppose that
ay{m + xM) = 0 , for some meM,
so that
[Him = yymy, 4 yomy , for some mqymy€é M .

Let M’ = Am + Am; + Am,. Then M’ is a Noetherian A-submodule of M. Now
consider the submoduie N ='H(M':lk), where | = (y1,y2)A. Then x;,x3 and vyy,y;
are poor N-sequences by 2.2.7. Applying 2.2.8. to the poor N-sequences
X1y; and yq.vp it follows that, for each 3 & Assa(N/xqyN), there exists wel

such that w¢ p

Let § e Assa(N/xgyN).  Then ’:f? = (XY N : 1), for some t e N\ xy N
Now consider reP. Then rt = xqy;n for some neN. Since wel, it follows
that there exists a positive integer k, such that wkrteM’ and w"rneM’. From

r

the choice of w, it follows that w**t4dx;y{N, hence wkrt f. X1y1M

Now

r(wk't) = w"'x1v1n € Xy M’

L
since w*ne M’, so that r € {x;y;M" : wkrt).
At this point we recall our assumption that A is Noetherian, so that
the ascending chain of ideals {{x;y;M": w9} | qelN} has an upper bound,
(xqy M wkt), for some positive integer k. It therefore follows that

RS Oqy M wkt).
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Now Iét re (x1v1M’:wkt). Then
rwt € Xy M,
50 that
rwt ¢ xqy N
It follows that r'w*e §y, which implies that r'e’p, since wi'p. Therefore
R = (v MiwkY) € Assa(M/xy M)
which impties that
© AssAN/X Y iN)E Assa(M/xqy M)

Mence Assa{N/x,y;N) is a finite set of primes, since M’ is Noetherian. Since,

by 2.2.8., ifitp', for all EFfeAssA(N/x1v1N), it follows from the above that

1 ¢ UR, PeassaN/xyiN).

Hence there exists zel such that xyyy.z2 forms a poor N-sequence. Now

zel = (y1.¥2)A & (x1.%X2)A, so that we can construct JK<D;y(A), such that
JIx x2]T = {x3v1 2} = Klv, YZ]T )

[t follows from 2.2.3. that o'\ :N/xN+N/yN is a monomorphism, where aQ'y is
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the determinantal map associated with H. By aésumption,
[Hlm = yymq + yomy .

which implies that m exN & xM. Therefore oy:M/xM - M/yM must be

injective, and the proof is complete,

If we attempt to generaiise our proof of 2.2.6. to the situation where
the M-sequences are of arbitfarv length, we quickly experience difficulties,

which we now describe.

A crucial step in the proof of 2.2.6. involves the identification of the
smallest submodule N, containing a given submodule, fpr which v,y is a
poor N-sequence. This is effected by 2.2.7.(i}, and it foilows that any poor
M-sequence xyx, for which (y,.v2)A< (x1.%3)A, is automatically a poor

N-sequence, by 2.2.7T(ii).

Unfortunately we are unable to obtain a result corresponding to
2.2.7.i) for t.he case where the poor M-sequences in question are of length
3. Indeed, even if it were possible to identify the smailest submodule N,
containing a given submodule, for which a poor M-sequence y,Y, Y3 is also
a poor N-sequence, the following exampie demonstrates that the analogue

of 2.2.7.(ii) need not be true.

= Example [20, p.102, Ex.7]. Let k be a field and let M=kixy,z],
where xy and z are indeterminates over k. Now let u=x, v=y(1-x) and
w=z(1-x}. If we set Q = M, ;) (localization at the maximal ideal_(x,y,z)). and

let R=k[u,v,w], then ReaM<.Q, so that M and Q are naturally R-modules.

Now it can be shown that u,v,w is a-poor Q-sequence. Since Q is a
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Noetherian local ring, and uv and w are contained in its maximal ideal, it
follows from [20, Theorem 118] that w,v.u is also a poor Q-sequence. In
addition, it can be shown that uv,w is a poor M-sequence. 'If the analogue
of 2.2.7.(ii) were true for sequences of length 3, we should expect v,w,u to

be a poor M-sequence also, since (u,v,w)R=(v,w,u)R. Howaver,
yw = yz(1-x) = 2v ,

but'y;é vM. it follows that v,w.u is not a poor M-sequence.

- This inability to identiW a submodule with suitable propérties leads to
a breakdown of the proof of 2.2.6. when the poor M-sequences considered
have length greater than 2. Moreover, efforts to generalize 2.2.6. by the
technique of induction, in the manner of [25, 3.2] where lower triangular
matrices are considered, ﬁave proved fruitless, so that we are forced to
adopt a quite different apprcach in order to prove the result in its full

generality.

in [14], T‘heorem 2.25. is proved by way of an argument which
involves the use of the Koszul complex and the Ext functor, and we modify
these ideas in this thesis to prove the main result of this section, Theorem
2.2.12.. Before bresenting 2.2.12., we require the following three results, all

of which play a central part in its proof.

2.2.9. Lemma (20, p.100]. Ler A be a ring let C and D be A-modules
and suppose that there exists an element xe A such that x acts as a nzd.

on D and xC = 0. Then HomA(C,D) =0

2.2.10. Theorem [20, p.101]. Ler § and T be A-modules. Suppose that
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- n
.
Ext (T.5) € Hom, (T.S /Z x5) .

2.2.11. temma [17, p.1038, Prop.21]. Let X be a Noetherian ring and let

) e S, be efements of X. Let graaﬁ.@(.s1 ,...,sn) =g and let K be an m xn matrix

of indeterminates [k|j] over X with m £ g. Then t,...t_is an X[k”. /-sequence,

where

ft, ..t 1" =Kkfls . sl .

We are now in a position to present the main result of this section.

2.2.12. Theorem. Let A be a ring and let M be an A-module. Suppose

that there exist M-sequences x,..x and y,..y. . and H =[hii]e M _(A), such

that

Then the dete}mr'nantal map oy M/xM - M/iyM defined by
ay(m+xim) = [Him+yM

/s a monomorphism.

Proof Let R = ZI[Xq..X,HiyHizeHij.Hool where the elements X
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and H;; are ail indeterminates over Z lLet f:R -+ A be the ring

homomorphism such fhat

fH)=h; 1<isgsn,1T<gj<sn.
Then M can be given an R-module structure by defining ' rm to be f(rim
where reR, me M.

Let [¥y .. Y, I = [H;l[X; ... X,]T. For any meM,

0
Yim = f(IH;X) . m
J=1

n
(Ehijxj)m
=

,=Tym .1 i< n.

Similarly, [[H;]l . m = |Hlm. Therefore X;...X, and Y,..Y, are M—sequences.
In addition, X4,...X, is an R-sequence since the elements X; are all
indeterminates over Z We now apply 2.2.11. to the situation where
X = Z[Xy,..Xa) 5= X, K=1[H;] and g = n =m, to show that Y,..Y, is also

an R-sequence.

For simplicity of notation we identify elements of R with their images
in A and relabel X; as x;, Y, as y; and H;; as h;; 1 < ij £ n. From this pqint
forward, a: M/xM » M/yM will dencte the R-module determinantal map
induced by the matrix He M,(R) , which is injective if and only if the -

corresponding A-module determinantal map, oy, is injective.
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Now consider the short exact sequence of R—modules
t T
0 » xR/yR - R/yR » R/xR » 0

wheaere i is the inclusion map and 7w the canonical projection map. This

yields the exact sequence
Exty ' (xR/YRM) + EXt2(R/XR,M) + EXta{R/YR,M) .
By 2.2.10.
n-i
Exty™ (xR/YRM) = Homgp(xR/yR,M/]y;M),
i
and
_1 .
Homg(xR/YRM/ § yiM) = 0
1
by 2.2.9. Thus the map from Extp(R/xR.M) to ExtR(R/yR.M) induced by the

projection map w is injective. By making use of the Koszul complex we now

calcuiate this induced map. The reader is referred to [14, pp.687-692].

- Since Xq..X, and vy,..¥, are R-sequences, the Koszul complexes
K*(x,R} and K°(y,R) provide projective resolutions of R/xR and R/yR

respectively.

As in [14], we obtain the following morphism of exact compiexes;
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. On n anq n nR
K{xR;:0 - R ~» @R—r T G?R + R -+ R/R -+ 0

(S S N A ¢

. ’énl’l C:)n-d n aI
Ki{yR):0 - R = ?R-*...—v ?R + R =+ R/YR » 0

where ¢4 is the identity map and ¢.(r) = [Hir.
Applying Homg{-.M} gives, in particular,
%

P}
n
.o HomR(@R,M) ->.n Homg(RM} - O

J"b:q L¢:

¥
n o
> Homg(BR.M) + Homgp(RM) + 0 .

We note that there is an isomorphism 8: Homg(R.M) + M such that
B(f) = (1) .

n
Now let fe Homp(@R.M). Then, by the definition of 7,

(FH(1) = £3,(1)

,,,,,

It
-y
o~~~
=
x

=
1
x
~
—
i
.
—_—
=
)
—I.
x
3
Dt
=

n N
Y1) xf(ey,
[}

n
= Y xfi(1)
1

42



where e, is the it" basis vector of %R and fi(1) = (—1)Hf(ei) . It therefore

follows that
& 4]
3a(f) € Jx;Homg(R.M) = xHomg(R,M)
1

so that Im3y, & xHomg(R,M).

n =

The argument can be reversed to show that -xHomR(R,M)glmB: 50
that Im6:= xHomg(R,M} in K'(x,R). Thé same proof shows that

Imay= yHomg(RM) in K*(y.R) .

We have the foilowing commutative diagram '

-
Homg(RM) = M
¢‘f,1 lw
B
Homg(RM) = M

where Yy is the homomorphism induced by cb:. Now d:i’::(f) = f¢, = |H|f. so
that ¥ must likewise be multiplication by |H|. Since Im a‘,:= xHomg{R,M)
('resp. yHomg(R.M)), we have the following commutative diagram, where o is

the map induced by multiplication by |H| and ¢ the map induced by T:

ExtR(R/XRM) = M/xM
| -
ExtR(R/YRM) = M/yM
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It has already been shown that ¢ is injective, so that the map & must be

injective also, and the result follows.
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CHAPTER 1ll

1. Denominator systems and chains of triangular subsets

Our purpose in this section ‘is to investigate the connection between
chains of triangular subsets on a ring A, as described in 1.4, and the
denominator -systems described by Kersken in [21]. in the following section
we shall show that the denominator system complexes .of Kersken are
identical to the complexes of moduies of generalized fractions of 1.4. It
follows that, in this respect, the notions of a denominator system and a
chain of triangular subsets are essentially equivalent. We begin by recalling

from [21] the definition of a denominator system over a ring A.

[ .
3.1.1. Definition [21]. A set J< LOIA' of sequences in A (where A° ={¢])

1
lowing conditions:

is a denominator system over A if it satisfies the fcr}L

iy P ¢t@

(i) if (F..fple PP = a AP, then (fi..fle ¥ for all j such that

0<i<€p

(ifi) it f = (fy,...f;) € F P then
S(f) = {fym€ A | (f..fofps)e S }

is a-muitiplicatively closed subset (m.c.s.)) of A;

(iv) if fge FP are such that gA &fA, then

S(g)c S(HS (S(g) + tA) ™,
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where (S{g) + fA)” is the saturation of the m.c.s. (S{(g} + fA). We further
assume that 3’ contains the empty sequence ¢ and sequences of 1's of

arbitrary length.

A direct consequence of condition (iv) is the foilowing result, which

will be used on numerous occasions throughout this chapter.

3.1.2. Proposition [21]. Let Jf be a denominator system over A, let M
be an A-module and let pelN. Suppose that £.g € F° are such that gAc rA.

Then

(M)

sty = (MM

under the canonical homomorphism.

Proof It is straightforward to show that

(A/fA)gigr = (A/fA)g(gpetar = (A/TANg(gieea™ o

s0 that (A/fA)gqg) {A/fA)g by 3.1.1.(iv). The result then follows on applying

‘“@AM.

We recall from Chapter | that if U is a triangular subset of AP, énd
uvel, then, b.\)r definition, there axists wel such that
wje(u1,.?_.,uj)An(v1 ..... VA, 1 < j < p In view of this fact, ;he next result
concerning denominator systems is strongly suggestive of a connection with

triangular subsets.

3.1.3. Lemma [21, (1.1)). Let O be a denominator system over A and

let £g be sequences in 7 of length pe IN. Then there is a sequence he J°
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such that hI & (f, ,...,JJf)A.(QT,...,_gi)A, 1 <75 p

Proof By 3.1.1(iii), the lemma is true for sequences of length 1.
Suppose now that j > 1, f,gej"j and that the iemma has been proved for

sequences of length j-1. It follows that there’ exists (h1,...,hj_1)ej’j'1 such

that h, € {fi.mes fk)A(g1 ..... gk)Af 1 <k < j-1. Now

fj [ S(f},...,fj.q) = (S(h1,...,hj_1) + (f-|,...,fj_1)A)~ .

by 3.1.1.(iv), so that there exist a;€A and t;&S(hq...h;—q) such that

a1f; = tymod(fy,...f;_1)A, which implies that tye (fy,...f)A.

Similarly there exists ty€ S(h1,...,hi_1)n (g1,...,gi}A. if we let hj ='t1t2, it

follows from 3.1.1.(iii) that h; € S(h1,...,hj)‘.l Clearly

and the result follows by induction.

Let 3. be an ideal of A and let M be an A-module. The J - height of
£, denoted .T-hta- is given by

j’—htﬂ- = sup{ ieNg | 21 contains a sequence in j’ of length i }.

The j—height of M, denated Jo-htm M, is given by
F-ntm M = inf{ JF-ht{Annsx) | xe M }.

\
The following result summarises several important properties of the j-ht of
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an ideal, all of which are easily verifiable from 3.1.3..

3.1.4. Corollary [21, (12)]. tet & and ki be ideals of A. Then
(i) F-ntmoti) = F-nenf =init T-nea, T-nk)
(i) if (q,...,z;)e JP. then _T—hr(;,‘ "5 ) 2> p for all £y ool 6 N

(i) let J-ntd =p, let k < p and suppose that (f,...f)eF* is a

sequence of elements of . Then there exist 1;+1,...,fpe &, such that

(%...f )€ FP.

We recall from Chapter || the advantages offered by working with

saturated triangular subsets. There exists a similar notion concerning

denominator systems which we now describe.

A denominator system f is said to be saturated if for all te 7,

S{f) = (S(f) + fA) ™ .

The following result provides a useful characterisation of saturated

denominator systems.

3.15. Corollary [21, (1.3)]. A denominator system J is saturated if

and only if whenever (f1,...,):))£a4p is such that;f-ht (f1 ..... tj’)A >i T </<p

then (fI,...J;)E 7.

Proof. Supbose that J is saturated and {fq.--.. fp)e;ﬂ‘«p is such that

J-ht(f,..5)A 2. 1 < j € p. Now it follows from the definition of a

Suppose that j>1 and

saturated denominator system that (f)€ 7.
weefj=1)-

(f1,.f.1) € P17 By 3.1.44iii), there exists ge (f;,..f)A such that ge S(f,
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It follows that
fi () (S(f",...,fj_]) + (f1,...,fj_1)A)w = S(f1,...,fj_‘|),

so that (fy...f)e 1.

Conversely, suppose that Jo contains all (fqy,...f )e AP peM, such that
D°—ht(f1,...,fj)A >i. 1<i<p Let feF®° where we now fix p, a;nd let
f'e(S(f) + fA)”. Then there exists geS(f) such that ge(f,..f f)A, so that
ja—ht (f1..fo.f)A 2 p+1. It follows that e S{f), so that DD must be

saturated.

For a denominator system :f we_ define the saturation of j

L . o .
denoted J ., to be the set of sequences (fy..f,}€ LoJA', for which
F -ht (.. £)A 2 i, 1 < | < p. It can easily be shown that J is the smallest

saturated denominator system which contains j

3.1.6. Example [21, (1.7)}(a}]. Let A be a Noetherian ring and let M be a
finitely generated A-module. Then the set of all poor M-sequences forms a

saturated denominator system over A,

Now, in the situation of 3.1.6., it is known that the poor M-sequences
. form a chain-of triangular subsets on A so that the above exampie provides
further evidence of the tie~up between denominator systems and chains of

triangular subsets. The next result investigates this connection expiicitly.

3.1.7. Proposition. Let j be a saturated denominator systemf over A
and let U = U”, ieN. Then Z[ = {Ui [ iemN } forms a chain of saturated

triangulfar subsets over A
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Proof et f=(f..f)eU, It follows from 3.1.4i) that

contained in (fy..f)An(gq... g)A we can clearly construct two lower

triangular matrices HK over A such that
HIfy - £,17 = [hy . h]7 = Klgy ... g,)".

Hence U, is a triangular subset of AP, for all peN. It remains to show that
U, is a saturated triangular subset and that U, is the restriction of U-pﬂ to

AP, peN.

Suppose that ve AP is such that HVT=UT, for some uel, and
p p

HEDD(A). Since (Uq....s uj)A S (Vi VA, 1<) <p, it follows that
j-ht Vi VA 2 1S5 0p. Therefore vel,, since J is a saturated
denominator system, and it follows that U, is a saturated triangular subset

of AP,

By 3.1.1.(ii) it is clear that the restriction of U, to AP is contained in
U, Now consider (uj..,uy)€U,. It follows from 3.1.5. that (u;..u,1)eUqy,

s0 that Up is indeed the restriction of Upﬂ to AP, and the result follows.

We now prove the co'nyerse to 3.1.7.. This result has been proved
independently by Hamieh and Zakeri in [16, 2.5] by a method essentially

similar to that which is employed below.

3.1.8. Proposition. (et ZL ='1’Ui ] ieN} be a chain of saturated
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o]
triangular subsets over A. Then D’ = L1] q is a saturated denominator system

over A.

Proof We first show that Dp is a denominator system by verifying
3.1.1.(i)-(iv). Clearly J’ # ¢ so that (i) is true. Property (ii) is obviously true

since Z[ is a chain of triangular subsets.

to verify (iii), we must show that S{f) is a m.c.s. of A.

Suppose that fp+1,f’p+163(f). Since Up+1 is a triangular subset of A"”,

there exist (g1,...,gp+1)eup+{ and H,KE D,.¢{(A), such that
H[f1 fp+1]T = [91 gp+1]T = K[f-| f'p+1 ]T .
tn addition, {g.--. ggﬂ)eupﬂ. Now, in an obvious notation,

P P
9ae1 = (LNper ifj + Npe p+1fp+1)(jz)kp+l ifi ¥ Kpe1 prifpan)

i*1
P

= ijfj + mp+1(fp+1f'p+1) ,
=1

for some my,...mp. €A If we denote by H'€ Dj,1(A) the matrix formed from H
by replacing the (p+1)"‘ row by (my..m_.) and leaving the other rows

unchanged, then

H'[f1 fp fp+1f'p+1]T = [91 gzp+1]T,

which implies that (fy,..fofo.qf o) € Ugey = P77, since U, is a saturated




S(fq,...f;) must be a m.c.s. of A as required.

It now remains to verify 3.1.1.(iv). Suppose that f = (f;..f,) and

9 = (g1...9,) are elements of U, such that gAg fA If (g1,8p+1)€Ug ey we

can use the argument of the proof of 2.1.5. to show that (fi..f,.9,.+1)&Up

also. It follows that S(g) < S{f}.

Now suppose that fp+1eS(f), 50 that (f1,...,fp+1)eUp-+1. Since, in
addition, (g....dp+1)€ Ug+y, there exist (hy,...h,.)eUp. and S,KeD,.1(A) such

that
S[f-] fp+-|]T = [h1 hp.H]T = K[g1 gp+1]T‘

It is easily seen that (91,...,gp,hp+1)eup+1. Now, in an obvious notation,'

Pt
hoer = 1Spe1 ifi € TA + 851 purfpan,
=1

and it follows that s, prpHES(g) + fA, since theS(g). Therefore
f,+1€(S(g) * fA)~. which implies that

sl (S(g) + fA) ™,

as required.

o
Thus, 3.1.1.(i)-(iv) are verified for j’ = L1Jui and it follows that Da is a
denominator system over A. In order to complete the prbof we must show

that f is a saturated denominator system.

Let pelN and let fe PP. Suppose that f'e (S{f}+fA) ", so that
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e
hf = fo * Z:hifi

for some f 1€ S{f), h'hy..hpeA It follows that
p
foe1 = "Zhjfj *ht
s0 that it is a simple matter to construct a matrix He Dp+1(A) such that
Hfy o fp 117 = [fy o fy £

Since U, is a chain of saturated triangular subsets, it follows that
(f1,...,fp,f’)‘éf, so that fe S{f). Therefore S(f) = (S(f)+fA) ., so that T is a i

saturated denominator system.

it" is clear from 3.1.7. and 3.1.8 that there exists a 1-1
con‘-espond‘ence between saturated denominator systems’ and chains of
saturated triangular subsets. In the following section we will investigate the
connections between the respective compiexes constructed using these
cbjects, namely denominator system compiexes and complexes of moduies

of generalized fractions.

2. Denominator system complexes and complexes of moduies of
generalized fractions

Let A be a ring. in [21] Kersken constructs, from an A-module M and
a -denominator system :f’ a complex 5'( J:M). We remark that in [21],
('f'(j’;M) is referred to as a Cousin complex a term which is used in a

different sense in this thesis. For this reason, we shall refer to T ( J;M) as
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a denominator system complex In this section, we give.a brief description
of the construction of denominator system complexes, ahd we show that
these complexes are identical to the complexes of modules of generalized
fractions which were discussed in 1.4.. The equivalence of these two
structures has also been demonstrated in [16], by Hamieh and Zakeri, whose

method of proof differs from that empioyed in this thesis.

Before describing the construction of the denominator system

complex 5’( D';IVI}, we require some preiiminary resuits and definitions.

3.2.1.Lemma (21, (2.1)]. Let F be a denominator Sysrem, let pelNN and
fet M be an A-module such that jvht(AnnAM) > p. Then, if fge J®° are

sequences in Ann, M, Msm z—MS(g]'

Proof By 3.1.3. there exists h€ Y P such that hA & fAngA. 't follows

now follows since fM = 0 = gM.

The above result leads to the following definition. Let J° and p be as
in 3.2.1.. For a finitely generated A-module N, such that ffhtm N = p, we
define C (FP:N) to be the module Ngy, for any sequence fe FP such that

fAc AnngN. By 3.2.1. this is uniquely specified up to isomorphism.

Suppose now that M is an A-module such that j—htm M > p. Then
it is left to the reader as a simple exercise to show that
{ C{F PN)| NeM, N finitely generated } is a direct system under the maps
induced by inclusion and localization at an appropriate S5(f}, and we defina
C( 3"_";M) to be the direct limit of this system. Furthermore, since M is the
direct limit of its finitely generated submoduies, the system of canonical

maps { €y : N » C(FPN) } induces a map gy : M » C{SP:M). it is shown in
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[21] that j—htm {Coker gy} = p+1. a fact which is important for the
construction of the denominator system complex. We now give this

construction in the following theorem, which we state without proof.

3.2.2. Theorem {21, (2.4)]. Let M be an A-module and let S be a
denominator system over A. There is, up to isomorphism, precisely one

complex

— - 8.
CrIm : e S > TV S

with the following properties:
(&S m =08 =0 fori <-1
(i) ST M) = M
i) SP(TM) = C{jp,' Cokéré P2, and §°' .is the composition of

the canonical homomorphisms

PV M) > Coker 8P 2+ CP(T . M), p > 0.

The following result is important for our purposes, as it allows us to

work with saturated denominator systems without any loss of generality.

3.2.3. Proposition [21]. Let M and ’ be as in 322, and let '~
denote the saturation of j Then there is an isomorphism of complexes

CYSm» CYYP™ M) which restricts to the identity map on c _? M)

Proof For fej’,? let §(f) = {fou1 | (Frfper) € j~}: It is clear that
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~ o~ —
(S{f+fA) " & S(f). Now suppose that feS{f). Then (fi..f,.f)e 7. so that
7-ht {f1...f,f)A = p+1, by the definition of saturation. By 3.1.4.iii), there
exists  f . e(fy..fof)AnS(f). It follows that fe(S{f)}+fA)", so that

S(f) = (S(f+fA) ™.

Now let X be an A-module such that P -htm X = p. It is easily
saen that'this condition is equivalent to f—htmx > p. For a finitely
generated submodule N X there therefore exists he P such that

hA ¢ Anny N. Since he f7, it follows that
C(Y TPiN) = Ngg, = Niginyenar™ = Ngimy = C(TFPN) .

Therefore C{ Y 7 X) = C(FP:;X), and the result foilows immediately from the

construction of the denominator system compiex.

As a consequence of 3.2.3, we can work exciusively with saturated
denominator s\;stems, in a fashion similar tb that in which 1.3.2. aliows us to
consider only chains of saturated triangular éubséts without any loss of
generality. i’he reader wil! recall from the previous section that saturated
denominator systems are identical to chains of saturated triangular subsets
in an obvious way, and we shall now demonstrate that the respective
~ complexes associated with these objects are also identical. Before
proceeding with the main result of this section, 3.2.7., we require some
preliminary results concerning complekes of modules of generalized

fractions.

3.2.4. Proposition. fet i = % JiciN} be a chain of triangular

subsets on A. Let M be an A-module and /et 30 { ZLM) be the complex
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[+ 1

€ -1, 8 i, i
g+ M Uy M> > UM+ U, M~

1

as was described in 14.. Then Coker e ' = Un[ 177"V M under the natural

map, for ail nell.

Proof The complex f(Z{,,M) is the direct limit of the direct system of
complexes { C{ZL(x).M}}, (with corresponding maps e,), as described prior to
1.4.1.. It is an easily - verifiable consequence of 1.4.2. that

Coker e " 2 U,(x)[11 " 'M, under the naturai map. The resuit follows on-

passing to the direct limit and applying 1.26. to the direct system

{ U™ ™M | xeU, )

. 3.25. Lemma. Let Ll and M be as in 3.2.4. and let nel. Suppose that
- " -n—=1 . -
m/(uT — 7} =0 in U, M Then there exist (v,..v. ., Je U , and HeD (A4)

n
T _ T
such that Hlu, .. u ] =[v, .. v ] andv _ [Hlme 12 VM.

Proof Let m/uq..u,,1)=0 in ;2{1M. Then there  exist
(W1, W) EUp 4y and KED,y(A) such that K [uy ... u, 1 7 = wy . Wn+1]T and

u} .
Klm € EwiM . Let H’ be the top left nxn—submatrix of K. By Cramer’s Ruile,

1

) n ——

K1 € [Hwaey + Jwik,

1
n n
so that |Hlw,.im e);wiM, since [Klm & Jw;M. Setting H=H and v;=w;
. . .

1 < i< n+1, the result follows.

3.2.6. Proposition. Let {/ be a chain of saturated triangular subsets of-
A, let M be an A-module and let neN. Then, for any submodule N =M and

v = {u ,...,un)EUn,
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NAwT) = mAu,.u L T) [ me N} . and
NAuS(w) = { mAu,...u s) [ meN, seSu)}

are submodules of U [ 177" M ana Ul M respectively, where Stu) has the

same meaning as its denominator system analogue. Furthermore,

INu 1)L 2 NAuS(u)

Stu)

under the natural map.

Proof It is straightforward to show that N/(u.1) and N/(u,S{u)) are
submodules of Un[ll'“'1M and U;':"Nl respectively and this is left to the
reader. For simplicity of notation, we dencte typical elements of N/(u,1} and

N/(u,S{u)) by m/(u.1) and m/{u,s) respectively.

Now let ¢ : [ N/(u,1))gy, + N/(u,S(u)) be defined by
é¢{(m/(u,1))/s} = m/{u,s) .

We must first show that ¢ is well-defined.

Suppose that (mq/(u,1))/sq = (My/(u,1))/s3 in [N/{u1)]g,) Hence there

exists teS(u) such that

0 in U1 m,

t{somq/(u,1) = 8;my/(u,1))

0 in U1 M,

= t(Szm'l - S1m2)/(u,1)

> t{s;mq - s;mMy)/(u,1) 0 inU'M .
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By 1.2.3.(iii), it follows that

_ﬂ_1M ,

t(s,my - s1m2)/(u,ts‘1sz) =0in Uy,

which implies that my/{u,sq} = my/(u.s;) by 1.23.(i). Therefore ¢ is

well-defined.

It is clear that ¢. is a surjective A-homomorphism, so that the proof
is complete on verifying that ¢ is injective. Suppose that m/{u,s) = 0 in
N/{(u,S{u}). Then m/{u,1) = 0 in N/{u,S(u)) by 1.2.3.(iii), and it follows from 3.2.5.
that there exist ve U,,; and HeDn(A) such that Hluq .. u,]" = [vq .. v,]7 and
Vhe1|HlM egviM. This implies that vh.;m/uq..us,1) =0 in U117 M, by
1.2.3.()). Maoreover, v, ,1€S(u) so that m/{u,1) = 0 in [N\/(u,‘l)]s(u,. It now

follows that ¢ is injective.

We are now in a position to present the main resuit of this section
which has also been proved by Hamieh and Zakeri in [16] by 8 computational

method.

3.27. Theorem. Let [[={ U /i€ N } be a chain of saturated triangular
subsets on A, /et J = l1) U' be the corresponding saturated denominator
system and let M be an A-module. Then there is a degree | isomorphism

of complexes & - C (LM Cll.m such that ¢ - M> M is the

identity map.

Proof Let p e Ng and suppose that there already exist isomorphisms
¢', i < p-1, such that ¢~' is the identity map and the following diagram is

commutative.
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o 1 P-1
e -1 e e _
0 - M > UM » . > UPM

T fer e for

-1 [} 2 P-1

- & - é .
o™ 2.3 Pl m) > CP(FM) .

By 3.2.2., CP(Y:M) = C(FP;Coker 8P72). Now ¢° ! induces an isomorphism
¥: Coker §P72 » Coker e, and Coker e = Up[1]'°‘1M by 3.2.4.. It follows
that 1] in turn induces an isomorphism
C(Y *;Coker 6°7%) C(YPU,1I7P7'M).  Any finitely genérated submodule of
‘ Up[1]""1M can be writtén, in the notation of 3.2.6., as N/{u,1), where N is a
finitely generated submodule of M and ueU, Now u is clearly a sequence
in Anng(N/(u,1)) by 1.2.3.(ii), so that C{ FPN/(u,1)) = [N/{u,1)]g,. it therefore

follows that
CI%UL1TPTIM) = lim{IN/(u, Dlgy) | N/(u,1) a f.g. submodule of U [117P7'M 3,

where the map tN1/(u1,1)]S(u1, > {NZ/(UZvn]S(uz)r with N,/(uq. 1) = Ny/(uz,1), is
the homomorphism induced by localization at S{up) compbsed with the
isomorphism of 3.2.1. By 3.2..6., we can identify each [N/(u,1)]5(u, with its
isomorphic image N/{u,S(u)) in U;f{]M. It is teft as an exercise to verify that
the map [NI/(U1'1)]SCU|J > [Nz/(uz,1)]s(u1,, where Ni/(uy, 1) &Ny/{uy 1), induces
the inclusion map N;/(uq.5(uq)) = Np/(u; 8{us)) under this identification. Itl
follows that

t

PP IM) = lim {N/{u,S(u)) | N/(u,1) a f.g. submodule of U [1]7"" '™ },

a direct system of submodules of U;E{‘M under inclusion maps. It is now
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easily seen that
CLYPU TP M) S U8 M

so that ¥ induces an isomorphism ¢P:C( FP:Coker 8773 » U;f,'1M. It is clear
from the above construction that eP$P™' = $P8P', and the result follows by

induction,

It follows from 3.2.7. that the concepts of a denominator system
complex and a complex of modules of generalized fractions are equivalenf.
We conclude this section by employing some of the ideas encountered in
the proof of 3.2.7. to prove a generalisation ;of 1.3.3.. This result.was

originally proved by O'Carroll in [10] by an alternative metﬁod.

Let U be .a saturated triangular subset of A" et U, be the
restriction of U to A" and let M be an A-module. We racall from 1.3. that for
xyeU, such that vy’ =Hx', HeED(A), there is a homomorphism
M/xM -+ M/yM which is induced by multiplication by |H|. If we subsequently
localize at S{y}) and compose the resultant map with the isomorphism' of

3.1.2., we obtain a map
cbxy: (M/XM)S()() > (M/VM)S(Vl )
Now under these these homomorphisms { (M/xM)g,,, | xeU, } forms a direct.

system (see Appendix I}, and we have the following generalisation of 1.3.3,

originally due to Q‘Carroll.

3.2.8. Theorem . let {/ and M be as above. Then
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, gl 3 ot ol
ﬂ’n ' (M/XM)Stx) }=u M.

x&l,

Proof Let L=)I‘_{_rL_1_ {{(M/xM}g,y3 and let { u . (M/xM)g,, >~ L } be the
P

corresponding. naturali nmaps‘ Now it is known from 133. that
lim { M/xM } = U [117""'M, with natural maps A, say. Let xeU,. We first
sx:;\r:v that Ker u, =" (Ker AJsin-

Suppose that {m+xM)/s e Ker u,, so that there exist yel, and
HeD,(A) such that VT = Hx' ana by (M+xM)/s ) = 0. Since
" (m+xM)/s = (m’+xM)/s’, where m'e M and s'€S{y), by 3.1.2., it follows that

there exists ve S(y) such that v|H|m'e yM, so that vm'+xM‘e Ker A,. Therefore
(M+xM)/s = (M +xM)/s’ = (vm'+xM)/s'v € (Ker X, Jgu

Similarly it can be shown that (Ker A )g € Ker .

It therefore follows that

im u, = [ (M/xMy/Ker Adspg 5 [IMAX Dgy
in the notation of 3.2.6. Now [(M/(x, 1)l £ M/(x,5(x)), by 3.2.6. If y €U, and
HeD,(A) are such that Hx' = yT it can eésilv be shown that the inclusion
map Im u,=Im p, induces the incilusion map M/(x.S(x))= M/(y,S(y)) under

this -identification. Therefore

L= Uimy, ¥ UM/(xS(x) =U" ™M,

xel, xely
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as required.

3. Complexes of Cousin type and complexes of modules
of generalized fractions

In this section, we make use of some of the ideas and resuits of the
previous section to give a simplified account of the connection between
complexes of Cousin type and complexes of modules ‘of generalized
fractions, originally investigated by Riley, Sharp and Zakeri in [28] and [29].
We begin by giving some definitions. Throughéut this section, A is a

Noetherian ring.

3.3.1. Definition [33, 1.1]. A sequence ¥ = { F,]|ie Ny} of subsets of
Spec A is cailed a fiftration of Spec A if, for each i€ INg, F, 2F,.; and if each
member of F; \ F,,, which set is denoted JF; is a minimal member of F, with
respect to inclusion. Furthermore, we say that a filtration_ -?' admits M if

SuppaM cFy.

3.3.2. Definition [28 Chapter HI, 2.1]. Let ¥ ={F | ieMNg} be a
filtration of Spec A which admits M. A complex X' ={ X |i = -2} of
A-modules and A-homomorphisms is said to be of Cousin type with respect

to Sfif it has the form

& Cd
> .. o+ X' - )'('+l > .

and satisfies the following conditions, for each ne MNy:

(i) SuppaX" < Fp;
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(i) Suppa(Coker d" 3 < F,, ;
(iii) Suppa(Ker "'/ Im d"") < F,, ; and

(iv) the natural A—-homomorphism £" : X" » X”)P, such that for

A
P &9k,
xeX" and R edF, the component of £™"(x) in the summand (X“)p is x/1 (it
follows from (i) and [32, 2.2 and 2.3] that such an A-homomorphism exists),

is an isomorphism. .

Suppose now that U ={ U | ieIN } is a chain of triangular subsets
on A Given an A~-module M, we can form the complex

! . i .
> UM S UM+

1+

. 0
e e
Clmy:0 » m > ui'™™m =
Put Gg = Suppa M and, for i e N, define
;
G, = {‘FeSuppA M | there exists (uq,..u;}el; with ZAuj _C_.}’.)}.
1

. The family g = { G;|i€MNg} of sets of primes of A is called the sequence
(of sets of primes) induced by U and M 1t is a straightforward matter to
show that the chain of saturated triangular subsets consisting of the
saturations of the U, induces the same sequence as Zl and so we may
_assume without loss of generality that U_is a chain of saturated triangular

subsets.

Let us suppose that u is a chain of saturated triangular subsets on
A, M is an A-module and that the sequence g induced by ll and M is a
filtration of Spec A. It is shown in [28, Chapter Ill, §1] that, when this is the

case, the complex C’(ZK,M) is of Cousin type with respect to C; In this
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section, we give a proof of this result which makes use of the material of
the previous section to avoid some of the technical manipulations of
generalized fractions present in [28] Before proceeding with the main

resuit, 3.3.4, we make some observations and give a preliminary result.

‘Consider f = (fy,..f,)€U, and, as in the previous section, let
S(f) = { fo1€A | (Fr...fhe1)EUL1 3. Then S(f) is a saturated m.c.s. of A and
its complement in A is therefore the union of the prime ideals which do not
intersect it. The following proposition provides a useful relationship between
this set of primes and the primes of g’ For simplicity of notation, Spec Ag
is identified with its homeomorphic image in Spec A, whenever the context

demands it.
3.3.3. Proposition. Let Z[ ;and f be as above. Then
{7 SuppA(M/fM) o= Gn,'

(ir) Spec A., N .S‘u,r:vpA (M) < 3 Gﬂ;

Sif)
(iii}  Spec Asmn SuppA(M/fM) consists of minimal members ,of

SuppA (M),

Proof (i) If *) € Supp,(M/fM), then fA C_:P and 1€ SuppaM. Therefore
#JeGn.

(i) Let %Qe Gnh+e1 - Then there exists (gq,...g,+1}€Un+; Such that

n+1 . . .
);giAc::p. For any f,.; € S{f), there exist HKegD. (A} and

(W1....Wn+1)e U4 such that

H[f1 fn+1]lT = [W1 Wn+1]T = K[g-] gn+1]T ,
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by 3.1.1.(iv), S{w)e S(f) . Thus w,.€S5(f}), so that !l:]n S(f)#ﬁs. Hence

#3 ¢ Spec Agin. and the result follows from (i).

{iiiy This is immediate from (i) and (ii) since g: is a fiitration of

Spec A

We can now present the main result of this section which was

originally proved by Riley in [28].

3.3.4. Theorem {28, Chapter Ill, 1.8 and 1.11]. Ller U = U [ieMN } be
a chain of saturated triangular subsets on A, fet M be an A-module and
suppose that the sequence of sets of primes ; ={ G‘I / i€ /NO } induced by
L and M Jis a filtration of Spec A which admits M. Then the compiex
'CP(Z[ M) is of Cousin type for M with respect to _(;' (where, in the notations

given above, X " and d' correspond to Ug:’ﬂ M and @' respeactively).

Proof We must verify properties (ij~(iv) of 3.3.2. (for all neg Ng),

taking into account the various smail changes in notation given above.

Let nelNg and consider EP € SuppaM  where P ¢Gn. Leat
-n-1 - .
m/(Uq...Une1) € U7y 'M . Since :F? ¢ G, iuiA O,i'F ; hence ¢‘p for some
; _
ie{1..n}. Now um/(uj...u,+«) =0, by 1.23(i), and it follows that

(U;,',‘,"M)? = 0. Hence SuppA(U;+"1'1M) &G, so property (i) of 3.3.2. is verified.

By 3.2.4., Coker d""2 T U_[11"""'M. Property (i) of 3.3.2. now follows

by the preceding argument.

As for property (iii}. we first remark that it is a straightforward

consequence of 3.2.4. that
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Ker e/ Im "' £ Ker ¢,

where ¢ : U 117" ™M » U,%"'™™ is the natural map. Consider & SuppaM,

n
Hiuq ... u,]” = vy .. v, IT, v HIm e ZviM .
1

Thus in U L1 "M, [HIm/(vy....v,,1) s annihilated by va.,. In addition it is
annihilated by v;, 1 <i < n. Since ,’p¢Gn+1, there exists j such that
1 <j < n+1, with vj¢§3. Hence [HImM/(vq,..v, 1) = m/{U;....u,, 1) has the zero
eleament as image in (Ker d:)*,, so {Ker ¢)P = 0. Thus property {iii) of 3.2.2.

‘holds for the complex Co( U,,M).

In order to prove that the final property holds, we recall that, by
328, U;,L‘T”M is the direct limit of the family { (M/uM)gy | ueU, }, under

homomorphisms obtained from localization of determinantal maps. Fix

then ng,p, 50 *)e G,. In this situation [32, 2.2 and 2.3] guarantee the

existence of the naturél homomorphism
e (M/FM) > B [(M/M)gpln -
£ S(F) }oeaen S{f) p

Since fA G ¥7 and 5}0& aG,, imply that S(f)n',‘p = ¢ it is clear that there is a

natural isomorphism.

o

® [(M/fM)gipl. = ® (M/fM),., . (x)
PeaGy % X € 3G Supp, M /2 ®
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Now consider q-“e Spec Agyy. |If q¢8uppA(M/fM), then the localization of Yy
at q‘ is trivially an isomorphism. If 0 & Suppa(M/fM), then by 3.3.3.(ii),

ge 3G,N Suppa(M/fM). Now for }peBGnn Supp(M/FM)

(M/M)g if p=q
[(lVI/fM)EP]q- =
0 L if Q£ by 3.3.3.iii),

Therefore it follows immediately from () that the localization of Py at such a’
q is an isomorphism. Thus, V¢ is an Agin-isomorphism {and therefore an
A-isomorphism), and the resuit follows on passing to the direct limit (see

Appendix 1).

Now in [29], Riley, Sharp and Zakeri examine the situation where M is
an A-maodule with the property that Ass,M has only finitely many members
and 7 = ¢ F; | i€ Ng} is a filtration of Spec A which admits M. In this case it

was shown [29, 2.3] that the family L = { U, | neiN }, where

U, = { (ug...uy)e A" [for each i = 1,..n,
ZAui OF“P for all R € 3F,_1 n SuppaM }.

r

is in fact a chain of triangular subsets on A.

We now show that the main resuit of [29] can be derived in a direct

way from 3.3.4..

3.3.5. Theorem {29, 25]. Let M be an A-module such that Ass, M has
only finitely many members, let 7 be a fittration of Spec A which admits M,

and tet L = u [ ne N } be the chain of triangular subsets defined above.
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Then the complex Cs (é! M) is of Cousin type for M with respect to }a .

Proof Consider the filtration g= {G; [ ielNy} where G; = F;n SuppaM:
Clearly it suffices to prove the result for (; in place of ?’ Now let
H = { H;|ie Ny} be the sequence of sets of primes induced by u and

M. In view of Theorem 3.3.4., it is enough to show that )’J= g

Now Hg = Gg = SuppaM. Assume that ne N and that H; = G; for

S0 %ancsi for i = 0,..n-1. Hence pee,,, so H,E G,

Conversely let }P € G,. Then ?IQ& Gp-1. since G,z Gy-1, 5O R € Hyg
by the induction hypothesis. Therefore there existé (Uq,-lpyq) € U7 such
that Ininui QF. Now by (29, 2.1] there are only finitely many members of
3G,-1 which contain "Z’ Au; ; denote these by T... %, say. If iPG qu
then fﬁgﬂ;m for some m, which gives a contradiction since ?? € G,.
Therefore there exists unep such that u.¢ q"- for j = 1,..r. Hence EAU;%“ q
for all €3G,_;. This implies that (uy,..u,) e:Un,.so QeH, . Thus H, =G,

50 H = g by induction, and the result follows.

4. Direct limits and flat dimension of
' generalized fractions

In this section we return to the situation where A is an arbitrary ring.
~ For an‘A-moduIe M, we define the flat dimension of M, denoted flatdim.M, to
be the largest integer k such that there exists an A-module X with
Tor, (M, X) '7J= 0, if such a k exists, and « otherwise. Now if S is an m.c.s. of A,

then it is well-known that
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S "Tor (M.X) = Tor (S™'M.X)
- for any A~module X and meMNg, and from this it easily follows that
flatdim.S™'M < flatdim.M

for any m.c.s. SCA. In view of the fact that the formation of modules of
generalized fractions with respect to triangular subsets of A1 is equivalent to
ordinary localization, it is of obvious interest to investigate whether any
analogous relationship exists between fIatdim.M and flatdim.U™"™M, where
n = 2. This has already been done hy Riley in [28], and de Chela in {7] for
the case where M is an A-module and U is a triangular subset of A" such
that u,,..u,-, is a poor M—seduence for ail {u;..u,) €U, and it is this

situation with which we are concerned in this section.

Now Theorem 3.2.8. provides us with a description of ‘an arbitrary
module of generalized fractions U™"M as the direct limit of a system of
localized quotients of M. By adopting this approach to the calculation éf flat
dimension, we prove a generalization of a result of Riley, from which one of
the main resuits of [7] follows in a2 straightforward manner. Indeed the main
result of this section 3.4.5, demonstrates that a very concrete relationship
exists between the flat dimension of U™"M and the flat dimension of the

modules in the direct system for the situation described above.

We shall make considerable use of the following result which

involves direct systems and the Tor functor.

3.4.1. Proposition. [28, Chapter IV, 5.4; see also Appendix 1]. (ler

(M, by, }w <\ be a direct system of A-modules and A-homomorphisms.
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let k€ ﬂ\gand let X be an A-module. Then

[ ro’L(Mx’X} ’ ¢ ;y }x,veA

forms a direct system where ¢ ;v : Tor; (MK,X} - 7’ork (MV,X}, xyel, is the map

induced from ¢xv by TOIL (~X). Furthermore under these homomorphisms,

Tor (tim M .X) = lim Tor, (M X} .
—_— Fe —_— k X
T xXEN xe N

Until further notice, let M be an A-module such that flatdim.M = k,
ke Ng, and U is a triangular subset of AT ne N, with the property that
uy,...U, i a poor M-sequence for all {uq,...u,+1}€ U. As before, U, will denote

the restriction of U to A". We have the following corollary to 3.4.1..

3.4.2. Corollary. Let me IN, and let X be an A-module. Then
-n-1 _ .
Tor (U MX) = lim Tor { { MM ]s(x,,X}
x& Uy

under the maps induced by 7'0rm (-X} from those in the direct system of

328.
Proof This immediate from 3.2.8. and 3.4.1..

Our first aim is to give a simplified proof of a resuit of Riley, for

which we require the following lemma from folklore.

3.4.3. Lemma. Let Xy X be an M-sequence. Then

flatdim.M/xM < n+k (and hence f!ardim.(M/xM)S < n+k for any m.c.s. SCA),
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Proof. By induction it suffices to prove the result for an M-sequence

of length one. The proof in this case is entirely standard.

3.4.4. Proposition [Riley, 28, Chapter IV, 5.5]. tet U n M and k be as

described above. Then flatdim. U™ " 'M < k+n.
Proof This is immediate from 3.4.2. and 3.4.3..

We now present the main result of this section which examines in
more detail the relationship between flatdim.U™ 'M and the flat dimensions

of the individual modules in the direct system { (M/uM)g, | ue U, }.

3.45. Theorem. [let U M n and k be as before. Thenk

flatdimU™""'M = sup { flatdim.MuM).,  } .

Stu)
uel,

We deal fist with the cate o, U 05 saturatid
Proof.LBv 3.43., useutj),.,{ flatdim.(M/uM)g(,, } = s for some se¢ N, so that
there exists X = {Xq,..Xx,) €U, such that flatdim.(M/xM)g,) = s . It is clear
from 3.4.2. that flatdimU™" M < s . Now suppase that H = [h;]e D (A} and
yel, are such that yT= Hx" anq let ¢ : (M/xM)g, +([VI/VM)SM be the
corresponding homomorphi.sm in the direct system of 3.2.8. Since

flatdim.(M/xM}g,, = 8. there exists an A-module X such that

Tor ([M/xMlg,).X) # 0. Furthermore we have a map

¢ Torg(IM/xMlg,).X) + Torg(IM/yMlg,,.X)

induced by ¢. By 3.4.2. and the properties of direct systems, it suffices to

show that ¢’ is injective in order to show that Tors(U"““1M,>() # 0.
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We will denote by H;eD (A}, 1 < i < n, the matrix whose i" row is

the it" row of H and whose other rows are those of the nxn identity matrix.

. - “§ u, is saturated, it follows that (xy) €U,

1 < i < n, and we also note that Hix yI%, = [x yI7 and that |H| = h;.

The map ¢ can be expressed as the composition ¢ 2¢d,°..0¢, where
P, : [M/(X'V)EHM]S(K,V)-M > [M/(X'V)iM]Stx.v)i

is the map from the direct system of 3.2.8.. Therefore ¢’ can be expressed

as the composition ¢, °¢5°...2¢7, where
¢,| X Tors([M/(X,V)i+1M]S‘x,v)}*l ,X) - Tors([M/(x,V)iM}S(xlv,_l ,X)

is the map induced by ¢;. To show that ¢’ is injective it suffices to
demonstrate that ¢;" is injective, 1 € i < n.

Since Xq,...X Yis1u¥n 8Nd Xq,..X21.Yi...¥, are both poor M-sequences
by {25, 3.2] it follows from 2.2.1. that the determinantal map

¥ M/ Y)aM > M/(xy)M

i-1

is injective. Now Coker § = M/(xy);M+h;M, and since y;M gz XM + hiM,
1

exercise to construct a matrix Ke€D_(A) such that K[x h; yl™ = yT, so that

(x.hjLy)€U, since U, is saturated. We therefore have the exact sequence
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0 > M/Axy)aM + MAxYEM > M/(xh,y)M > 0.
Now localizing at S(y) and employing 3.1.2. gives the exact sequence

0 > IM/cyhaMlgiey,, > IMAOGYIMIs),

> IMAchyMIgion > 0
In the long exact sequence induced by Tor(-X) we have

e T0r5+1([M/(X,hii,V)M]S(x_hi'. ’v),X) -»> TOFS([M/(X,\/)H.-|M]S(x‘v)‘.",X)

+ Torg(IM/(x y)}Mls ) X) > .. .

Since (xh;y)eU,, Torsﬂ([M/(x,h,-i,v)M]S(xlhﬁN,,X) = 0 by the definition of s.

Therefore the map ¢; is injective, 1 < i < n, and thus ¢’ is injective. Hence

TorgU™™ 'MX) = lim Torg([M/uMlg,, X) # 0,
XEUn
since the map from Tors([M/xMIS[K,,X) to the direct limit must aiso be

lnjective and S0 flatdlm u™ LL.M =5, = the o b,cl
cas.e, Cem Nowmd utcled Cace wie of 1.3.2 amd

We can now deduce in a straightforward manner one of the main

results of (7]

3.4.6. Proposition [Flores de Chela, 7, 3.9].. Let U be a triangular
subset of A "1 such that Uy el is a poor A-sequence for all (u. ,;..,un +1 JeU.

F U A £ 0 then flatdimU ™ 4 = p.

Proof Suppose that U™ 'A # 0, so that bv 3.2.8. there exists xeU,
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such that (A/xA)g( # 0. We show that flatdim.(A/xA)g,,, = n, and the result
follows from 3.45. Now 3.4.3, with k = 0, shows that flatdim.(A/xA)g,y < n.
To show that equality holds we consider the Koszul coﬁplex K'(A;x1,...,xn)
which provides a free resolution of A/xA: |

. . an (n:) anq (?) al
K (AX..x3) 0 +A > BA > > BA > A>0.
1 :

Tensoring with (A/xA)g,) gives in particular

0 + (A/xA)gy ? (A/xA)g(y

Now Tor,(A/xA,(A/xA)g,)) = Kerd 81 = (A/xA)g,y ¥ 0 . It therefore follows

that flatdim.(A/xA)g,y = n , and hence flatdim.U""'A = n, by 3.4.5.

Qur final result of this section demonstrates ancther situation in
which 3.4.5. can be used to give a precise value for the flat dimension of a

module of generalized fractions.

3.4.7. Proposition. let A bg a Noetherian ring, let M be a finitely
generated A-module of flat dimension k <« and let U be a triangular subset
of A" consisting of poor M-sequences. If Uf1] " 'm #0 then

fatdim.Ul1] " "M = n+k.

Proof Consider xeU such that M/xM # 0. Since M/xM is finitely
generated, flatdim.M/xM = proj.dim.(M/xM) by {3, p.122, Ex. 3(b) 1. By [22
p.129, Lemma 5 ] projdimM/xM is equal to the supremum of
proj.dim.(M/xM)m ( as an Ay -module) for the maximal ideals & of A Sincé
M/xM # 0, there exists ut € Maxspec A such that (M/xM) 4, # 0. In this case

X1y Xy considered as elements of Ay , form an My -sequence. Therefore
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applying {22, p.131, Lemma 6] and induction we have that
proi.dim.Am(M/xM)m = n+k .

Hence flatdim.M/xM = n+k for all xelJ such that M/xM £ 0, and the result

foilows from 3.4.5..
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CHAPTER IV

1. Vanishing of modules of generalized fractions

in this section we include some miscellaneous results concerning
modules of generalized fractions and, in some particular cases, we
investigate conditions necessary and/or sufficient for a module of
generalized fractions to vanish. This problem has--previously been
investigated by Hamieh and éharp in [15], the main resuit of which we now

recall.

4.1.1. Theorem [15, 3.2]. Let M be an A-module such that dimAM =

Then, if k 2 n+2, UM = 0 for any triangular subset U< A%,

The following result, due to Zakeri, is of importance in the proof of
4.1.1, which we do not include in this thesis, and also in the proofs of

results which appear later in this section.

4.1.2. Proposition [39, Chapter tll, 4.5]. Let neiN, let U be a triangular
subset of A", and let S be a multiplicatively closed subsaet of A. Let

d A~ AS denote the natural ring homomorphism, and set

Ug = {040 )d(u)) [ (Ut )eU } .
Then US is a triangular subset of (AS)” and there is an isomorphism of
A, -modules | - v M)+ US“"MS which is such that for meM, ...y JeU

and s €5,

b (ImAu g )] /s ) = ST/ ()bl ) ).
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We now focus our attention on triangular subsets of the form U{x),,
previously discussed in 1.2, where x = (x,..x,)€A", and M is an A-module,
and we examine conditions sufficient fon" the wvanishing of U(x);“M‘. The
following result will prove useful when dealing' with modules of generalized

fractions of this form.

4.13. Proposition Let x = {xi [ieN } be a sequence of elements of
A, fet M be an A-module and let kel Denote by'y = {yi /fsﬂ"\l} the

sequence of elements of A such that v =X

i+k /

ie N. Then for ali n > k
UM = U)K (77K

under the canonical map.

Proof Let X denote the A-module U(x)k[1]“k‘1l\/l, and consider the

complex (UL (x).M):

4 4 & 4 o

" -1 k+1 -k x k-1
O+M » UGTM > > UET™M > UM > Upgls™™

It follows from 3.2.4. that X is naturally isomorphic to Coker d¥', so that
localization at x.,q = vy; induces an isomorphism between U(y)1“1X and
U(x)?jﬂM by 1.4.2. Furthermore, since d¥ can be expressed as the

composition
-k k-1 k-1
Ux),'M =+ Coker dy ' + (Coker dy )xw,

-

again by 1.4.2, we have that Coker df,’ = Coker d¥ where d?:x + X, is the
}

natural map. On localizing this isomorphism at vy, = x4, and applying 1.4.2,

78



it follows U(v)z"zx and U(x);l‘_;_zl\/! are naturally isomorphic. We therefore have

the following commutative diagram

cl\‘Gbl
UMM Uk
(1S R b

dy

Uiy} T'X » Uy X

and the result follows from 1.4.2., following the repeated formation of

cokernels and localizations.

The next result now follows in a straightforward manner from 4.1.2.

and 4.1.3..

Then

n-1

Ug"M = (8, Ux.1)°A ) 8, A G

Proof By 1.43. the result is true when n=1, with the obvious
interpretation in this case. Assume now that n>1 and that the result holds
"

for all triangular subsets of the form U{y),-; where y = (v1,...,vn_1)£A”_1. By

413,

U, "M = U(xg,.. Xole " (U0¢q, 1)5,2M)

U(x1,1);2A @4 Uz ) "F1A @4 M, by 1.43,

n-1

n

n

n-1 _
(84 U(x1,°A) 82 A, 8, M
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by the induction hypothesis.

An immediate consequence of 4.1.4. is the following coroilary which

has also been verified independently by R.Y.Sharp.

4.15. Corollary. Llet o be a permutation of { 1...n-1} and let

. n = n
x-(x1,...,xn}€A and y (xom,...,xmn_”,xn}e,q . Then

Ul "M = Ufy) "M .

Proof The rasult follows from 4.1.4. and the commutativity of the

tensor product.

We remark at this point that 4.15. can be obtained in a
straightforward way from 1.2.4.(i), from which result it follows that U(x);.”l\ll is

the direct limit of the direct system
fl-'1a'
LM/ IxBMY, | i€ 3
]

under the determinantal maps induced by matrices of the form

diag(x B .. xBr1 ), By, Bp-18IN,.

We now investigate conditions on the moduie M and the elements

X1.--Xn Which are sufficient for the vanishing of U(x},"M.

4.1.6. Proposition. let x = (x,... xn)sA” and let M be an A~-module.

Suppose that ahr'nrr‘%n M _ < n-1. Then Uix), "M = 0.

Proof By 3.2.4 and 1.4.2,
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U{x)n"M (Ux)a-1£1]7"M),,

= (UK)o-1[1D M, by 412,

[}

0 byd41.1.

In the following corollary we make use of 4.1.5. to give a further
" condition sufficient for the vanishing of U(X);"M, which involves the

elements xq,.X,-1.

4.17. Corollary. Let x and M be as in 4.1.6.. Suppose that for some

k < n dim, M < n-2. Then Uix) "M = 0.
e X n

Froof. Let y be the element of A" obtained from x by interchanging

Xy and x,_.

Since dimAkaxk < n-2, it follows from 4.1.6. that U(v),.',__f]M = 0. This

implies that U(y),"M = 0, and the result follows from 4.1.5..

Qur next result provides a description of a modute of generalized
fractions of the form U(x);"M which will prove most useful in the following
section, where connections between modules of generalized fractions and

local cohomology modules are investigated.

4.1.8. Theorem. Let M be an A-module and let x=(x, X JEA". Then

K| ~Kp

upg,"M = M / IWKA ,

where M«
X, XK LK

denotes the natural image of M)" ~ in M
Y- J n 1 3

Ky X Ky Xy
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Proof. Let ¢: M, . =+ U(x)y"M be defined by
d(m/x_x3 = m/xX xS0y

it is a simple matter to show that ¢ is a well-defined, surjective
A-homomorphism. Let us now fix j, where 1 < | < n-1, and let m/x?‘f .xJ-U..xg‘”

denote a typical element of M, & .xy Then

d(m/x oQ.x) = m/xM, 1,08 = 0,

n-1

by 1.2.3.(ii}. It is therefore clear that Z My 5., & Ker 6.

Conversely suppose that m/(x,a‘ ,...,x,?") =0 in U(x)r"”M, so that, by

1.2.4.(i), there exists y = a@4,..,a, such that
— a -1
x?f ‘...x;f "m e in‘(M. {-)
Now it follows from (.} that there exist mq,..m, _;€ M such that

m/xMx30 = ) T YT ) Y

n-1
ijij/(xl...xn)Y
i=

n=1 .
):m /()(1..,\(1-..xn)Y

nM.
:“3'!"‘
)

x.

Therefore Kerd z A . and the result follows.

In the final part of this section we make use of 4.1.8. to determine
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necessary and sufficient conditions for the vanishing of a module of
generaiized fractions in some particular cases. The following result has also
been verified by H. Zakeri, by a method which avoids the technical

calcuiations of this account.

4.1.9. Proposition. [et x=(x1 ,)(2)€A2 and suppose that X, s not

nilpotent in A. Then
U(X)_«:ZA =0 x, Is nilpotent in"8/x, 8,

o0
where B is the ring A/ L‘J(O.uqk) and x,, X are identified with their canonical

images in B.

. Proof. We begin by noting that if x; is nilpotent in A, then A,(, =0

“and hence U{x); °A = 0 trivially.

Suppose that U(x);°A = 0. By 4.18., this implies that A /E"z = (,

Ay Xz

which in turn implies that 1/x,x; € E,(z. Therefore there exist ac A and ac iN

- such that
- "
1/%1%; = a/xy" in Ax‘,(z.
We therefore have a positive integer n such that
n B & T :
{x1%2)"(ax1%3 = x77) = 0 in A,

which implies that

X3 {axixp = x3) = 0 in B.
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it now follows that x3** = axJ*'x, in B, so that x, is nilpotent in B/x;B. A

similar argument proves the reverse implication and the details of this are

left to the reader.

By making use of 4.1.8. in the manner of the previous result and

insisting that the ring A be-local we obtain the final result of this section.

4.1.10. Proposition. (et A be a Jocal ring and let x =(x1,)c2)e,42,
where x,; is not a unit in A. Suppose that U(x)z'zA # 0 and Uty [ 17734 =0

Then x, is a zero-divisor in B/ B, where 8 = A/ (0.x).

Proof By 4.1.8, U(x)2[1]'3A can be expressed, in the usual notation,
as the quotient module A, xz/‘&xx +E\x2, and it follows that U(x),{1173A = 0
. “-only if

/X%y = a/x,a + b/xzB in Ay
for some abeA and o,B € Ng. Furthermore, since U(x)}_ZA £ 0, it follows
from the proof of 4.1.8. that a>0. Let us further suppose that o is the
smallest integer for which 1/x,x; can be expressed in the above manner, and
assume without loss of generality that 8>1. We first consider the case
where a>1. In A

Xy Ry

1/x1%y = a/x?‘ * b/x2B = (asz+bx,O‘)/’x?‘x2B .

There therefore exists a positive integer n such that

(x1x2)"(x?‘x_§ = x1x2(ax§ + bx?)) = {
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This implies that

A(x1)(2)"+1(x,o"'_]xzs"I - a><2B - bxtu') =0
= x;‘”(x?‘”xg_]' - ax2B - bxY) = 0in B,
B+n+1 _ .
=+ -axy .= 0in B/x.B .
Since U(x)l'ZA # 0, x, is not nilpotent in B/x,B by 4.1.9.. Suppose now that

a =20 in B/%;B. Then a = ¢x; + d, where ce¢ A and dellJ(D:x1k). It now follows

that
a/xit = (cx+d)/xd = e/,

since d/x{* = 0. This clearly contradicts the minimality of a and so we

deduce that a. £ 0 in B/xyB so that x, is indeed a zero-divisor in B/x,B.

Finally, we consider the case where a=1. By the argument used

above, there exists a positive integer n such that
o)™ BT - axf - bxy) = 0
in A, from which it follows in a straightforward manner that
x2+8(1 - ax;) = 0
in B/;<1B. This implies that x; is either a zero-divisor or a unit in B/xB, sinée

it cannot be nilpotent. Now, as previously stated, Xy iS not a unit in A so

that its image is likewise not a unit in B/x;B, since A is local and B/x;B is
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non-trivial. Therefore we can exclude the latter possibility and the result

follows.

2. Modules of generalized fractions and local cohomology

In this section we shall concern ourselves with the connection
between top local cohomology modules and modules of generalized
fractions. If A is a Noetherian local ring, such that dim A = n, xq,..%, is a
system of parameters (henceforth denoted 's.o.p.}-for A and M is an
A-module, then it has beeﬁ shown by Sharp and Zakeri in [36, 3.5] that the
top local cohomology module H“:(NI) is isomorphic " to the module of
generaiized fractions U(x)n[1]'""1M, where x = (x1,...,xn_)eA;‘. The main result
of this section, 4.2.2, is a generalization of this known theory which.
dispenses with the requirements that A is local and X1,...%, form an s.é.p. for
A. We firstly give an account of the calculation of local cohomology modules
using the Cech complex. The main elements of the following description are

to be found in [30, Chapter 3, pp.75-79].

Let A be a Noetherian ring and let xq..x, be elements of A. We

consider the following complex, known as the Cech co}nple)c'

Q
d
0+C°i...+C"i0

C:
where

k .
C - B Ax-
19, << ifg €1
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and where

d c* » ¢k

is defined on the component

Ay + A, .
Xip-e: Ky Xy X

to he

s

~1}8 .
(=1)* . the natural map: 1’3\,(i1 iy A"Jr"xfkvl'
if {i1.iet = {j1,...,j'\s ..... jxe17. and 0 otherwise. It is a simpie exercise to verify

that Cis indeed a complex.

4.2.1. Proposition cf.[30, Chapter 3, 2.3). Let M be an A-moduie and let

a4 =(x,.., Xn)A. Then

-~

Hy (M) 5 H(Mm@&C)

for alf ie /Nu'

Proof By the corollary to Theorem 10 of Chapter 6 of [23], it suffices

‘to show that
(i} the isomorphism holds when i=G;

(ii) a short exact sequence of A-modules gives rise to a long exact

sequence of modules H{ - ® C*);
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(i) H({Q ® C’) = 0 for i > 0 if Q is injective.

Now

. n
HYMm®C) Ker( M®A > M@ (8A,))

Ker(M > &M, )

{ me M | there exists keiN such that

It is now straightforward to show that HO( M C') = Hg_(IVI), and (i) follows.

In order to verify (ii), we first of all nbte that C* is a flat A-module
for aill k, being a finite direct sum of localizations of A. Therefore, if
0+LU>L~>L"+0 is a short exact sequence of A-modules, we have 3

short exact sequence of complexes
0 » L'OC > LQC" » L"'Q@C" + 0

This gives rise to the required long exact sequence.

To demonstrate that property (iii}) holds, we make use of the structure
theorem for injective modules (see [38, (2.32)]) and assume that Q = E(A/ )
for some prime 3, where E(-) denotes the injective huil. If asy, then for
each |, 1 €| < n, E(A/;F;) is annihilated by some power of x; by (30, Cﬂhapter
1, 3.4], so that E(A/#:),‘j = 0. This implies that E(A/.p) ® C' = 0, and therefore

H(E(A/%)® C) =10, foralli > 0.
f

Alternatively suppose that EL?E—P so that there exists x; such that
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x; ¢ ¥. Appealing once more to the proof of {30, Chapter 1, 3.4], it foilows
that multiplication by X; is a bijection on E{(A/p ). For k > 1 we can therefore
define a homotopy s,:E(A/R) ® C* > E(A/n) ® C*7, by the following relation:
i j=i,

(e < EAZD ) R .xi,

ec E(A/? )xii...x;k -

It is now a straightforward matter to verify that skd"'1 + dksm is the identity
mapping, so that Hi(E(A/p) @ C'})=0, for all i 2 1, and the proof is

complete.

We now give the main result of this section.

4.22. Theorem Let M X, B, ‘M and C*be as in 4.21 and fet

X = (x, ,...,xn)eA". Then

He (M) = U [177"7'm

Proof By 421, HZ(A) = H"M @ C') = Coker d"™. It is easily

seen that

13

Im d™! = My .
X.l..XJ..Kn

’

i=1

in the notation of 4.1.8., so that



The result now follows from 4.1.8..

3. Generalized Cohen—Macaulay rings and lengths of
generalized fractions

Until further notice, we shali assume that A is a Noetherian local ring
of dimension d with maximal ideal ®. For such a ring A, we shall denote

by U(A) € A9 the set
{0¢1,cXq, 1) | Xq,...x4 form an s.o.p. for A}.

We recall from [36] that U(A) is a.triangular subset of A% and that the top
local cohomology module HE (A) is isomorphic to U(A) @ A, In this section
we shall be mainly concerned with the situation where A is a ggneraiized
Cohen-Macaulay ring, henceforth denoted g.c.m. ring, which we now define.

For a more extensive study of g.c.m. rings see {31, 12].

4.3.1. Definition [31, 33] A ring A is a gcm. ring if it satisfies the

following equivalent conditions:

(i} for each i=0,..d-1, the local cohomology module H&(A} has finite

length;

(7i} there exists a positive integer n such that, for each s.o.p. x e Ky

-1 i-1
(LXxA): x o (] xA) m" ,
1 1

for each i, 1 <7 < d with the obvious interpretation when i = 1.
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Suppose now that A is a g.cm. ring. in [34], Sharp and Hamieh
obtain a formula for the length of .a cyclic submoduile of U_(A)—d"]A of the
form A/(x7"...x3%1) (in the notation of 3.2.6.), which is valid whenever oz1,..'.,ad
axceed a certain constant which they calculate. Furthermoré, in [31],
Schenzel, Ngo Viet Trung and Nguyen Tu Cuong derive a formula for the
iength of the quotient ring A/):xj“i/-\, which holds for all sufficiently large

1
values of the positive 'intege‘rs n;. Our aim in this section is to investigate
the connections between these two areas of research, and by using the
results of [34] in conjunction with known results concerning generalilzed
fractions, to shed light on the range of values of the n; for which the latter

formula is valid.

Before proceeding with the results, we require some preliminary
definitions and description of notation, and we give some important

properties of g.c.m. rings.

For a Noetherian local ring A of dimension d, and an W -primary ideal

q_, the multipiicity of E{ denoted e(q )}, is an integer given by the formula

e(g) = lim d! {A/1")/n?,
q ¢ e q

where (-) denotes fength. Whenever x;..xq form an s.o.p. for A, then
8(Xy,...xq) denotes the muitiplicity of the ideal (x;,...x4)A. For a comprehensive

account of the theory of multiplicities, see [24].

Let L be an Artinian A-module. It is known that there exists a unique
smallest submodule Lg& L such that L/Lg has finite length. Now miLt_Z_.Lc, for
some i€ N, and we define the stability index of L, denoted s(L), to he the

least integer with this property. We remark that if L is itself of finite length,
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then s = s(L) is the least integer for which w5L = 0. The residual /ength of

the A—module L, denoted I'{L), is given by the integer |{L/Ly).

We now return to the situation where A is a g.c.m. ring and U(A) is
the triangular subset described hefore 4.3.1.. Pertaining to this situation we

have the following two results, due to Hamieh and Sharp.

4.3.2. Proposition [34, 36} Let A be a g.c.m. ring and let Xy o X, fOrm

an s.o.p. for A Set
o d= g7 _
e = 1 (7)) s ean
121

Let relN. Then

g: . ) A LX)
4.3.3. Theorem [34, 3.7.] Let A, XX, and t be as described in 4.3.2.

Then for all positive integers 1y peees 11, >t we have

‘ d=1 ‘
HAAG™ o X 1)) = 0K X It -a-z‘ ( ’_d_"’) Ity (A))

The reader will notice a similarity between 4.3.3. and the following
result from [31], and it is the connection between these two results which

concerns us in this section.

4.3.4. Theorem [31, 3.3 & 3.7] Let A be a g.cm. ring and let L

form an s.o.p. for A. Then there exists a positive integer n such that
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d d-1 T
WA/Y X5 A) = elx..x)n.n + ) {‘{—“9/@; (A))
1 .- =0

whenever L 2 n. Furthermore the value of n is independent of the

choice of the s.0.p. x reree Ky

At this point, we recail from 1.3.3. that the module of generalized
fractions U(A) 97'A can be exhibited as the direct Iimit of the direct system
{ A/iuiA | uq,...uq form an s.0.p. for A }, under determinantal maps. If XX g

1
form-  an 5.0.p. for A, ny,..N4 are  positive integers and

d ,
i) :-A/in”‘A > U(A)“d'1A is the natural map, then it is a simple matter to see
1

that Im ¢ is the the cyclic submodule A/(x;™,.x, 1)< WA} 9 A; From this
d . v

- it follows that

. o
HA/TxMA) = HA/(X™,..xg™, 1)) + I(Ker ¢) .
1

In view of this fact, we shal conc‘em ourselves with the following two
questions. Can I{Ker ¢) be computed in the absence of 43.4., so enabling us
to deduce 4.3.4. from 4.3.3? Does this approach shed any light on the range
of values of the integers n; for which the formula of 4.3.4. is valid? As we
shall demonstrate, both these questions can be answered in the affirmative.

However, before this can be achieved we require further auxiliary results.

fn some of the later proofs we will wish to reduce to the situation
where the ring A has non-zero depth. To this end, the following proposition

proves very useful.

4.3.5. Proposition [34, 2.1] let A be a Noetherian local ring of
dimension d with maximal ideal W, let 8 = A/H‘g (A) and let A+ B denote

the natural map. Then
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() B again has dimension d and. as A~-modules,
Hy (A) 5 Hj, (B) Forall iem

{if) - form an s.o.p. for A if and only if x. )?d form an s.o.p. for

B. Furthermore eA(x e = & ()(1 ..... X )

(iii) The-relationy : UA) "%V (a) » UB) 3 (8) defined by

b (aty...u 1)) = 3G, 0,0)

is an isomorphism.

In view of the notation which appears later in this section we shall
henceforth identify xe A with its image ")?eB=A/Ht£(A). An immediate

corollary to 4.3.5. is the following result.

4.3.6. Corollary [34]. Let A be a g.c.m. ring of dimension d and let

B = A/H, (A). Then
() B is a g.c.m. ring of dimension d-
(if) if Xy e Xy form an s.o.p. for A, then X isanzd inB 1£i<d

Proof Both assertions follow in a straightforward manner from 4.3.1..

and 4.3.5..

In later proofs, we shall wish to use the technique of induction on
the dimension of the ring in question. We shall therefore require the
following result which provides very useful means of passing to a suitable

ring of lower dimension.
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4.3.7. Proposition [12, 34). Let A be a gc.m. ring _of dimension d and

let a4 be a subset of a system of parameters (5.5.0.p.) for A. Then

(i} (12 (2.6)(2)] there is an exact sequence

0> 0:a~> #2345 HEA)» 1l (asan)
> H)(A) S H)(A) > H (A/aA)
- m 1w

> HifA) > Hi(A)+ Ha(Asad) .. .

(ii) (12, (2.6)(3)] A/8A js a g.c.m. ring of dimension d-1,
(iii}) S(H (A/8A) < S(Hy, (A)) + S(HE (A), 0 < i < d-2

Proof Assertions (i} and (ii) are proved in [12]. Assertion (iii) foliows

from [34, 3.4] and (i) above.

As previously noted, 4.3.5. enables us to reduce to the situation of a
ring of non—zerb depth. Before we can make effective use of this, we must
first deduce some facts concerning the ideal structure of the ring produced
in this manner: This is achieved in 4.3.9.. The following lemma, due to

QO’'Carroll, is needed for the proof of 4.3.9..

4.3.8. Llemma. L[let A be a gc.m. ring and let xe A be an s.s.o.p. for A

Then for all ne.W,

x"An HY (A) = x"H (4).
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Proof It is clear that x“Hgn(A) S x"An H?m(A).

Since A is Noetherian, H&(A) = (0:m % for some positive integer 2.

Suppose now that x"aeHgi(A), aeA. Then x"amwt® = 0, so that am?g 0:x".
It now follows from 4.3.1.{il) with i = 1, that there exists refMN such that
0:x" & 0:M". Therefore am’> c 0: " which implies that am?"" = 0, from

which we deduce that aeH&(A). The result now foilows.

The next resuit is of importance in the proof of the main theorem of

this section, 4.3.11,, and is aiso of some independent interest.
*

4.3.9. Proposition. Let A be a gc.m. ring of dimension d and flet
d-1 .
X ...X, form an sop. for A Set t = Z ( ,d) s(Hn‘z (A)) and suppose that

1
i=0Q

sy 2 t” Then

d
(2: x4 ) H2 4) = 0.

Proof We first of all note that the result holds when the ring A is of
dimension 0, trivially, and of dimension 1, by 4.3.8. Suppose now that
d > 1 and that the resul; has been proved for all g.c.m. rings of dimension
less than d. Since t > s(H er(A)), it foliows from 4.38. that
XM 0 Hn?, {A) = 0. Therefore th?, (A} is naturally contained in A = A/xy™MA
under the canonical projection map. Furthermore, under this map, the image
of H,cg {A) lies in H‘g (A). (Due to the frequent changes . of ring employed in
the work of this section, the symbol #i will be used to denote the maximal
ideal of all rings considered. We find this notation both efficient and

unambiguous as all rings share a common residue field.)
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Now A/x,"*A is-a g.c.m. ring of dimension d-1, by 4.3.7.(ii), and it
foilows from 4.3.7.{iii) in a straightforward manner that

d-2 ] d-1 ]

DY) st m = 5(9)stian = v

i=0 iz0
Since X,..Xq form an s.o.p. for A it follows from the induction hypothesis

that

d
(%" A)n Ho (R) = 0. (=)
. 2 )
" d d
Let us now suppose that ye (in”‘ A)n Hm0 (A). If y= Zaixi"i, then by the
1 - 1
above argument, the image of y under the canonical projection map,

a;x;" , is contained in Htg (A). It now follows from (s} that ¥ = 0 in A,

P~

\‘/=
which implies that vyex;™A Therefore vy =0, by 438, since

n, >t > s(Htg, {A}}, and the proof is complete.

4.3.10. Proposition [37, 2.4 & 2.7]. Let A be a Noetherian local ring of
dimension d énd fet X, EA form ah s.5.0.p. for A. Suppose that X, s anzd in
A, and let A = A/x1A. Then there exists an A-module homomorphism
N UA) A ua) 9 A gefined by

n/( 5/(172,...,]'/'d)) = 3/ Yy Vy) -

Furthermore, there is a commutative diagram
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7
Ud)ia -~ )il

s 1S

o f
Hy'(A) > Hg(A),

where f is the connecting homomorphism in the Jong exact segquence of
local cohomology modules induced from the short exact sequence

»
Ll

. o .
0+A+’A+A/X1A+0.

Consequently Kern = H3'(4)/ X, Hygy ' (A).
We are now in a position to give the main result of this section.

4.3.11. Theorem. Llet A be a g.c.m. ring of dimension d and let Xy oo
. 4-1 .
form an s.op. for A Set t’ =‘Zo( ld) s(Ht& (A)}, and suppose that ey P
=
Then

d-t _
iker &) =} (F) iy 4)

120

' d
“where ¢ A/}: xI”iA > UA) %4 is the natural map.

-

Proof The proof proceeds by induction on d‘. The -result is trivial
when d=0. Suppose that d=1 and x is an s.o.p. for A. Let t' = s(Hng_ (A)} and
assume that n 2> t. Now x"H,J (A) = 0, so that x"AaHQ(A) = 0 by 4.3.8.
Setting B = A/Hﬂ?(A) and applying 4.3.5..(iii) we can exhibit ¢ as the
composition

m
~

A/x"A + B/x"B 2*’ ue)y 4 's T uwryla,
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where ¢g is the natural map. Now x is a n.z.d. in B, which is therefore a
Cohen-Macaulay ring. lt follows from 1.3.3. and 2.2.3. that dg is injective so

that
I(Ker ¢} = I(Ker T) = I(HD(A) ,

since x"An H.;g, {A) = 0. Therefore the resuit holds when d = 1.

Now suppose that d > 1 and that the theorem has been proved for

all gcm rings of dimension less than d. As before let B8 = A/Hm(A) et

130
express ¢ as the composition

d T d Os N
! 1

By 4.3.9, l(Ker 1) = I(H,J(A)). so that

I(Ker ¢) = I(Ker $g) + !(H (A) . (=)
We therefore focus our attention on the ring B and the map $¢g- By 436, B
is itself a g.c.m. ring and x,,..xy4 form an s.0o.p. for B, with each X; a nz2.d. in
B. Let B = B/x;™B and let ":B » B denote the natural map. Since x;™ is a
n.z.d. in B, there exists, by 4.3.10., a commutative diagram

WEAE jmdeT
-U(B)"B - u(B) B
s s

| HE B »  H(m),
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where Ker n & Hg';i(B)/xﬂ‘ Hg;(B). In addition, we have the following

commutative diagram:

d 4
B/Ix"B % B/Ix"B
3 VI ,
b5 ,ov | (+)
n

UB B +» uEYB
Now, by 4.3.5.(i), Hg, '(B) ¥ Hy; '(A) so that x;"HI; '(B) = 0, from the definition
of t'. It therefore follows that Ker n ¥ H{’;(B).

By 4.3.7.(ii)}, B is a g.c.m. ring of dimension d-1 and, by 4.3.7.(iii), we

have that s(Hy, (B)) < s(Hy (B)) + s(Hi'(B)). for all 1 < i < d-2. This implies

that
a-2 d-2
[d-2 i (g d-1 i (B
2 () st @ s T () st @)
4 d-1 i i+1

< (%) tstngen + seizlen
< diz (9) sH i () (d-1);(Hd'1(B))
Ty s w

< t - s(HE'(B) .

It therefore follows that

©d-2

L (972) st B+ seugten < € ()
i=1

‘ d-1
Now Ker n is annihilated by w58 5o that, by 4.3.2. and (..),
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= M _hy
Ker n < B/(X3,...Xg 1) = Im ¢g .
We therefore have in (*) the exact sequence (with the obvious maps)
0 » Kery + Ker ¢g = Kern » 0,

30 that

]

I(Ker ¢g) (Ker §) + K{Ker 1)

I(Ker ¢g) + I{Ker n)

2 |
1 (%) By + Hg @
i=0

by (-+) and the induction hypothesis.
Now consider the short exact sequence

x’n; .
0O -8B + B + B/X"B » 0.

This yields the long exact sequence in homology

M _
0 » HO(B) B Hy(B) » Hy(B)

f
1

’ x,M ' —
> Hyg (B) ¥ Hy (B) ~ Hy (B)
i " i (8
w > Hy (B) » Hy (B) = Hy (B) » ...
Jﬁc:ﬁ,‘..,d-']
Since n; = t, all the mapsAinduced by multiplication by x{"iare zero, and it

follows that
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i+1

I(He (B)) + I{H'(B)), 0 < i < d-2.

]

{Hy, (B))

Thus

1) iH B) + (HE; ()

I(Ker &g) |

N LR @) + M BN+ R T(B)
d-2 i

(9} 1)+ duHg By

1=2Q
d=1

(¢) g

i=1

since Hy (B) = Hy (A), i 21, and H,3(B)=0. We recall from (s) that
lker ¢) = iKer ¢g)+ I{HEI(A)), so that

d_
i(Ker ¢) = }

1 (9) 1(H, (A
0

as required.

We can now restate 4.3.4. as a corollary to 4.3.11.. In addition, we can
give information concerning the constant n which appears in the statement

of 434,

43.12. Corollary. Ler A, XXy and t” be as in 4311, and suppose

that oy =2 t. Then

g d=1 _
WA/ YK A) = efn x ., + 3 (O] w4y
1 =0 i )

d
Proof Let ¢: A/in“iA + UA)9'A be the natural map. Then
]
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A) = i(Ker ¢) + [(A/(™ ,...x™ 1} ). It is a simple matter to verify

d-1
d_l) s(H,ﬂ;(A)), so that

d
A/ XM
1
that t'> (i_‘

d=1 _
A/, x M 1)) Xginq..ng - Z (d:jf) '(Htclt (A)) .
i=1

by 4.3.3.. The result now follows in a straightforward manner from 4.3.11..

From now on we shall no longer insist that A is a g.c.m. ring. For

the situations where A is a Noetherian iocal ring of dimension 1 and 2
respectively we have the following two resuits.

4.3.13. Proposition [34, 3.1] Let dim A = ] and suppose that x is an

s.o.p. for A. Then for all ne N,

HAZ/x ", 1)} = e(x)n

4.3.14. Theorem {34, 3.2.] Let dim A = 2 and suppose that X, X form

an s.o.p. for A let I’(Hul(;d}) be the residual length of the Artinian modufe

m > 8,

H&(A}, and let s be the stability index of H.,Q‘(A). Then, for all n,,

HABL™ "2, 1) = el x)nn, = I({Hg(A).

It is our intention to apply the ideas of the proof of 4.3.11. to the
above result in order to investigate conditions under which I(A/{x;"™ x,"2)A)

can be calculated, where A is a ring of dimension 2 and x,x; is an s.o.p. for

A. The following lemma will be of use.
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43.15. Lemma. Let A be a Noetherian local ring. Then for all

sufficiently iarge nelN,

m" N Hua) = 0.

Proof Since I(Htg(A)) is finite, the descending chain of ideals
{"nH 0(A) n e [N} becomes stationary. By the Krull Intersection Theorem,
23 :

o
[1, 10.20], O‘ﬂ:&” = 0, and the resuit follows.
For the sitdation where dim A = 1, we have the following proposition.

43.16. Proposition. Let dim A = 1, and let xeA form an s.0.p. for
A. Suppose that k is the Jeast integer such that manng(A) =0 Then,

whenever n > k

HAX"A) = e(x)n + l{/-g (A)) .

Proof Let B denote the ring A/H&(A). f n =2k then

=

x"AnHJ(A) = 0, so that
I(A/x"A) = I(B/X"B} + I(HO(A).

Now B is a Cohen-Mécaulav ring so that, by [24, p.311] and 4.3.5.(ii),

I(B/x"B) = e{(x)n and the result follows.

We complete this section with the following result which deals with

the case where dimA = 2.
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4.3.17. Theorem. Suppose that dim A = 2 and /et X%, form an s.o.p.
for A. Let k be the /Jeast integer such that mkn Hug(A} =0 and let
s = max{ k,‘ s(Ht;(A))). Suppose that n 2sisa lﬁxed positive integer. Then
there exists zeA such that, forr all sufficiently large values of the integer n,,
(M2 JA = (2, )2 )A and

HAA ™ X2 )A) = efx x ). n, + I(Hng (A/zA)) .

Proof Let B = A/Hﬂg(A), and let ¢gB/(x," . x7%)B + U(B)'3B be the
natural map. It follows from the proof of {34, 3.2.] {with the roles of X1 and
X; therein interchanged) that there -exists an element ye B with the fallowing

properties:
(i} y is a n.z.d. in B;

(i) I{ Hyl (B)/Y™Hyl (B)) = [(Hy, (B)). the residual fength of Hyy (B);

(iii) (v .x32)B = (x;" x2'*)B and B/(x;",x$3 1) = B/y™xJz 1)B;

(iv) ey.xa) = e{xy.xz).
Now let B = B/y™B. By 4.3.10. we have a commutative diagram
B/x2B = B/(y™ X3% )B
¢§1 be
825 1 n)-3
U{By “B - U(B) "B

where Ker n < Hygy (BYY™ Hy, (B).
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From our choice of y it follows that x5* Kern =0 whenever
n, > s(Hn}_ {B)). Therefore, for sufficiently large values of Ny Ker ncim ¢g,
by [34, 28] and we have the following exact sequence of finite langth
modules:

0 + Ker¢g > Kerdg » Kern -+ 0.
This impiies that

I(Ker p) = HKer ¢g) + I(Ker n) . {+)

For all sufficiently large values of Ny, i(Ker ¢g) = I(Hug(ﬁ)), by 4.3.13. and

4.3.16., so that, by (+) and our choice of vy,
I(Ker g) = I{Hig(B)) + I'(Hy (B) .

it now follows from 4.3.14. that
'I(B/(y"',xz"‘?—)B) = e(y.x)nny + I(Hy (B)).

By 4.3.15, for sufficiently large values of n,, (x;™ ,xz"‘ﬂ JAN Hmo(A) = 0, so that
A/ " x"2)A) = e(xyxp)nin, + I(Hﬂ?(ﬁj) + I(Htg(A))

by 4.3.5.(ii) and our choice of y. _For such a value of Ny, y"'e B is the image

of a unique element ze(x;™xJ2)A, and it easily follows that

Z,X32)A = (x;™ x$2)A. It now remains for us to show that
2 1 X2
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I(Hy(A/2A)) = ‘l(HmO(A)) + [{Hya(B)).
Now zAnHmO(A)=0 and it follows that Hﬂf(A). is naturally contained in
H&(A/zA). It therefore suffices to‘demonstrate that Hﬁg(A/zA) is mapped
onto Htg(ﬁ) under the canonical proiectioh map. It is clear that the image of
Ha,g(A/zA) lies in Hy(B). Now suppose that x is an element of A whose
image in B, X, lies in Hu(,:('é), sO that xt" = zA + H.‘g(A), for some re IN. But

Hy (A) = 0:m' for some te IN, which implies that xm " g zA. it now follows

that X is the image of an element of Htg(A/zA). Therefore
HZA/ZA) = (HGA) + (B,

so that
A/ ™ xF2)A) = e(xyxoining + [(Hg(A/ZA))

as required.
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CHAPTER V

1. Seminormality and F—purity in local rings.

In this final chapter we consider the properties of seminormality and
F-purity in Noetherian local rings, two properties which are closely related,
especially in the 1-dimensional case. By making use of this relationship, we
obtain a simplified proof of a result due Goto and Watanabe {13], which
describes the structure of a certain class of F-pure 1-dimensional rings.
Finally, We investigate conditions under which the two propertie; are

equivalent in the 1-dimensional case.

From this point on, A will denote a reduced Noetherian local ring with
maximal ideal Wl. The classical ring of quotients of A will be denoted by

Q{A) and A will denote the integral ciosure of A in Q(A).

5.1.1. Definition (see [11, 1.1]). A ring A is seminormal if it satisfies

the following equivalent conditions:
(i} if aeQ(A) and a’.a3e A, then acA;

(i) if ae Q(A) and there exists ke N such that a'l¢ A whenever t > k

then aeA.

In the particular case where dim A =1, we have a further

characterization of seminormality, namely:

(iii} A is seminormal if W = J(A), where J{(A) denotes the Jacobson

radical of A.

5.1.2. Definition. Suppose that A is a ring of characteristic p, p a
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prime, and let F.:A + A be the Frobenius endomorphism of A. Let AF denote A
when regarded as a A-module by F. Then A is said to be F-pure if, for all
A-modules E, the map hgE + AT®,E, defined by hg(x) = 18,x for all xeE, is

injective. We say that F is finite when AF is a finite A-module.

It is evident from results already known that a conneétion exists
between these two properties, and the following proposition from [13]
enables us to examine this relationship more clos;aiv. Although we do not
impose the same restrictions on the ring A that appear in [13], the proof
whicéh appears therein applies equally well to the more general situation

“which we consider in this thesis.
5.13. Proposition (13, (2.2)l Let A be an F-pure ring, Jet Q = Q(A),
and fet ’::1/ A.‘O/A + QYA be defined by the relation

= ]
fO/A(x mod A} X ‘modA , .

for all xeQ. Then r.

s 1S infective.

An immediate consequence-of 5.1.3. is the following result, which

provides a generalization of [18, 5.31].

5.1.4. Proposition. Let A be a ring of characteristic p. If A is F-pure,

then A is seminormal.

Proof Suppose that aeQ{A) and az,a3e A. Then it easily seen that

aPeA, so that, by 5.1.3.,, ag A and the result follows.

From now on we focus our attention on the situation where A is a

1-dimensional ring. Concerning this situation we have the foliowing result.
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5.1.5. Theorem (cf[13, (1.1))). (Let A be a seminormal ring of
dimension 1, and fet 5}91%:}" be the minimal prr‘me.%‘ of A. Then, for each i

1<i<n

jpi T

() M= ?iepﬂ R, and

.. m= n ¥l
(i) W= @ (Np)

Proof Since A is reduced, the natural map A % AAPi is injective, so
that A can be regarded as a subring of é}A/’ﬂCO(A) under this map. Fix i,
1 <i<n let xewr, and consider (O,..,R,..,0)6§A/pj, where XeA/gy;. Now
r('lp*,”?'igli%) =M, so that there exists a positive integer k, such that
! é}}ﬁigjg Fj whenever t > k. It foillows that for each t > k, there exists
ue JQ'& such that x' ~ ue .'fbi. This implies that (0,..%'..0)¢A for all t > k, so
that (0...%,..0)€ A by 5.1.1.{ii). There therefore exis'ts an element ve_n‘?}» suéh

J#i

that x - ve "P;, so that xe ?i@ﬂ ??j, and (i) foliows.
JEi

To see that (ii) holds, observe that the above argument shows that

"M
W= GIBT:I:Li, where W, is the image of # in A/Fi, 1 i < n. it follows from

G A

(i) that #, = Tﬂ/ﬂpi = ﬂ',p,., 1 < i < n, so that m=i

Jxi 1

h

ﬂ . 85 required.
J.#EP, quired

We now make use of 5.1.4. and 5.1.5. to prove a structure theorem
for a certain class of 1-dimensional F-pure rings, originally proved by Goto

and Watanabe.

5.1.6. Theorem [13, (1.1)]. fet A be 3z 1-dimensional ring of prime
characteristic p. Suppose that the field k = A/l is algebraically closed.

Then A is F-pure if and only if

L

A MO X KX )
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where A denotes the completion of A with raespect to .

Proof We begin by no‘;ing that A is F-pure if and only if ﬁ is F—pure
by the argument on p.466 of [6]. Now A satisfies the conditions of the
statement of the theorem, so that we can assume with no loss of generality
that A is complete. it is is a straightforward consequence of [6, 1.12] that

rings of the form ki{X,... X /(.. XX;..};4; are F-pure.

Let us now suppose that‘ A is F-pure and that !]31 ..... 117,, are the
minimal primes of A. As in the proof of 5.1.5, we can consider A to be a
subring of 6:31 A/?i. Furthermore , by {2, Chap.v, 1.2], A = ?OA_/?, 50 that we
have

n n
ASO AR, AR,

Since A is complete, it follows that A/_Vt:ri is complete, 1 g'i < n, so that
each W; is a local ring with maximal ideai ®i;, say. By 5.14, A is

seminormal so that, by 5.1.1.(iii),

50 that the natural image of t in @i is 71:_1.,-. Moreover, since k is
algebraically closed, it follows. that .(m i)/t‘"i’—li =k, T <i<n so that
Wi = A/ 3&, and thus each A/%‘Ji ts integrally closed. It now follows from
[1, 9.2] that t—l‘li is a principal ideal, 1 < i < n, so that, by 5.1.5., there exist
elements xie_ﬂpj, 1 <1 < n, such that

J#i

n
m= ?AXI



Since A is complete, it is possible to define a surjective k-algebra

homomorphism
£ kl[X... X 01 - A,

such that f(X)=x, 1 <i<n It can easily be verified that

Ker f = (...XiXj..)igj, so that

-
"

KIDX oo X IV e XX i

as required.

The following result demonstrates the ciose connection between
seminormalitv} and F-purity in the 1-dimensional ca(se. At this point we
remark that if A is a 1-dimensional réng of prime Jéharacteristic p. whose
Frobenius endomeorphism is finite, then it follows from [22, Th.108 and Th.78]
that A is a finite A-module. We are therefore justified in }eplacing the latter
condition, which appears in the original statements of 5.1.7. and 5.1.9., with

the former condition which is more appropriate to the work of this chapter.

5.1.7. Theorem [4, §3). Let A be a TI-dimensional ring of prime
characteristic p, whose Frobenius endomorphism is finite. Suppose that the
field k = A/t is algebraically closed. Then A is seminormal if and only if

E A~

HEX, ...

X ]]/('"'Xin"")i#j :

~

It is clear from 5.1.6. and 5.1.7. that a ring satisfying the hypotheses
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of 5.1.7. is seminormal if and only if it is F-pure. It is our aim in the final
part of this chapter to find weaker conditions under which the two
properties continue 1o be equivalent. To this end we shall require the

following auxiliary results.

5.1.8. Lemma [27, 1.2]. Let k be a field and let L be a reduced
Noetherian k-algebra of dimension 0. Then k + TL{T] is seminormal, where T

is an indeterminate over L, and k + TL{T] is identified with a subring of L{T]

in the natural wav.

5.1.9. Proposition [4, Cor.2, 27, 1.5]. Let A be a- 1-dimensional ring of
prime characteristic p, whose Frobenius endomorphism is finite. Then the

foliowing conditions are equivalent:
(i) A is seminormal
-a ~ - ' .
(i) A is seminormal

(iif) GrfA} is k-isomorphic to k + TK[T] where Gr{A} denotes the

associated graded ring of A with respect to Wl and K = A/J(A).
(iv) Gr(A) is reduced and seminormal.

5.1.10. Lemma (cf{18, 46]). Let kc k' be fields of non-zero
characteristic p, and suppose that k' is separable over k Let R be a

k—algebra such that R @k k" is F-pure. Then R is F-pure.

Proof This follows in a straightforward manner from [18, 4.6] and

5.1.2.

We now give the main result of this chapter, which shows that the

properties of seminormality and F-purity are equivalent for a wider class of
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i

rings than that considered in 5.1.7..

51.11. Theorem. let A be a I-dimensional ring of prime
characteristic p whose Frobenius endomorphism is finite. Suppose that

k £ A/t is a perfect field. Then A is F-pure if and only if A is seminormal.

Proof If A is F-pure then A is seminormal, by 5.1.4. Let us now

suppose that A is seminormal so that, by 5.1.9,
Gr{aA) =, k + TK[T],

where K = BA/J(A). Moreover, by .5'1'9’ we can assume that A is complete, so

that k €A, by [22, (28)P]. Now, if k denotes the algebraic closure of k, then

(k + TKIT]) 8, k = (k 8, k @ (k ® TKIT])

k@ TK 8, R)T!.

We claim that, as k-algebras, k & T(K @, R)[T] ¥ Gr(A 8, K .

Since k is integral and flat over k and since kK GA ﬁkE, it easily
follows that k ® W =% is the unique maximal ideal of A 8, k. We have the
exact sequence of k-vector spaces

0 - mn+1 > " > mn/mnﬂ + 0

which, on applying -®J<, yields the following exact sequence,

"0 - ke, m™ - k@ W" > ke WM™ s o



It now follows that, as k-modules,

R

ke mymm T (ke mMyke my = W@

Therefore

k ® T(XK 8, KIT] % k & Gr(A)

o

T Grk 8 A) . ()

Now K is a finite product of fields, each of which is a finite separable
extension of k, since A is a finite A-module, by the femarks prece;}ding
5.1.7., and since k is perfect. It foilows from [19, 3.3.(iv}] that the ring K 8, k
is reduced. In addition, K 8, k is Noetherian and zero dimensional, so that

by 5.1.8. and {+), Gr(A &, k) is reduced, as_is easily seen, and seminormal.

Now ke A so that, by a straightforward adaption of the proof of
{22, p212, Cor2], A is a finite kllx]l-module, where x is an indeterminate
over k. Hence A ®, k is a finite module over k[[x]] 8 kK. We now show that

ki[x]] ®, k is Noetherian.

Let us first consider the domain k{[x]]. Since an etement ka € K[[x1],
with kg # 0 is a unit in k[[x]] it is easily seen that the quotient field of k[[x]],
denotgd Q(k[[x])), consists of elements of the form oikix, where_ deZ and it
is now a simple n‘1atter to verify that k is algebra;‘caliv closed in Q(k[[x1D.
This means that k is maximally algebraic in Q(k([x]]), in the notation of
[40, p.196] so that, by [40, p.198, Cor.2], Q(kI[x]]) &, k is a domainl which in
turn implies that k[{x]] ®, k is also a domain, as k is flat over k. In addition,

k is integral over k and it follows that -k[{x]l1 ®, k is a 1-dimensional local

domain whose maximal ideal is generated by the single element x ®k1, o]
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that, by [1. p.84, Ex.1] kl[xl] 8, k'is Noetherian. This implies that A 8, &k, a
finite k[[x]] 8, k-module, is itself Noetherian. We now have that A &, K is a
1-dimensional Noetherian local ring of prime characteristic p, whose
Frobenius endomorphism is easily seen to be finite, so that we can deduce
from 5.1.9. that A 8, k is seminormal. Furthermore, since the residue field of
A @,k is algebraically closed, it follows from 5.1.6. and 5.1.7. that A ], kis
F-pure. Now k is perfect, so that k is separable over k, and we deduce from

5.1.10. that A itself is F-pure. This completes the proof.
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APPENDIX 1

On direct limits

We begin this appendix by recalling the definition of a direct system.
Let | be a directed set, let {M;};; be a family of A-modules indexed by |, and
for each pair i,jel with i < j let WM, > M; be an A-module homomorphism_.
Then we say that the modules M; and the maps U form a direct system

{M;.uij} if
(i} Y;; is the identity map ‘on M; for all iel and
(i) wy = HiicHsjr whenever i < j <€ k

The direct limit of the system {I\/Ii,uij} is defined to be the A-~-module

"M = eaj M;/D, where D is the submodule of i?' M; generated by all elements
1€

of the form u;(x} - X, where ijel, with i < j, and x,éM, Let u: &M > M

denote the natural projection map and, for all je |, let Mj : M; >~ M be the '

)
restriction of u to M;. Then it is known that if {M;,uij} is a direct system
then its direct limit M satisfies the following properties (see [1, Chap.2,

Exs.14-16)).

(1) Every element xeM can be written as uj(xj) for some jel and
(2) If x;eM,; is such that px) = 0 in M then there exists | > i such

that u;0¢) = 0 in M,

(3) If N is an A-module and { a:M, > N, i€l} are A-module
homomaorphisms such that o, = a;u; whenever i < j, then there exists a

unique A-module homomorphism o:M +» N such that ; = ay, foralliel.
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n+1

Now let U be a triangular subset of A""' nelN, let U, be the
restriction of U to A" and let M be an A-module. Then U, is a directed set
and, as was seen in Chapter Ill, if u < v so that v| = Hu' for some He D,(A},

there exists a map
¢,v:(M/UM)g,) > (M/VM)gy).
induced by the matrix H. We have described the system

{ (M/uM)g(y) duy 3 (+)
as a direct system and, at various places throughout this thesis, we have
appealed to properties (1)-(3) listed above when considering the system ().
However, as the reader may have noted, the maps ¢ ,, described above are
not uniquely determined by u,ve€U, but depend on the particular choice of

matrix H. With this in mind, we now relabel the system (:)

{ (M/uM)gyy . Py T ()

where ¢, denotes the set of all maps (M/uM)g,, + (M/vM)g,,, which can be
induced in the above manner. We shall now demonstrate that the direct
limit of the system (..} possesses properties analogous to (1-(3) of the

direct timit of an ordinary direct system.

Proposition 1. Let / be a directed set and /et {M } be a set of
A-modules indexed by | Whenever i<j let ¢ii denote a non-gmpty set of
-A-homomorphisms M~ II/{ and suppose that the following conditions are

satfsﬁed'
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(i} ®,, contains the identity map on MI for all ie I’
(i} if i <f < &k then for all b€, and i€ Vi, Dby € D4y

(7iii} for all i€l thare exists f > i and ‘ngﬁ‘bij such that whenever k < i

and ¢y b 1 € Q. then Vidy; = U;d . -

Ltet D be the submodule of . 3 /‘I/I1 generated by all elements of the
i
form q:ij(xl) - X, where ifjel and )r|c£/l/lI Then the direct limit M = @} Mi/D of
. 1&
the system { M| @;j } (with natural maps u, i<l) possesses property {7}

above, and properties (27and (3) described below.

(2 If X eM is such that ui(xi J =0 in M then there exists [ > i and

bije ; such that ¢, ) =0in M.

(3) if N Js an A-module and (o.M + N, i€l } are A-module
homomorphisms such that Q; =aj¢>ij whenever i < j and d)ij é<bii, then there
exists a unique A-module homomaorphism o.M+ N such that o =Qu; for all

i€l

Proof (cf. [3, vIii, 4.3 and 4.4]). If xeM then there exists a finite sum
ineglek, where each x;€ M;, such that x = u{in). Choose jel such that
i . 1 .

j = 1 for all i appearing in the above sum and, for each such i, select a map

b e Then
X = W) = w(l dybal) = uiix)
1 1 .

where X; = z ¢i(%) € M;, as required. Thus property (1) is verified for M.

i
Suppose now that x; €éM; and p;(x;) = 0 in M. Then X; is a finite sum of

the form
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L (@udx) = %)

Now choose tel such that t exceeds i and all j kel appearing in the above
sum. Then by (iii), there exists m > t and Y,,,€ ¢, such that, whenever
NS tand ¢,,¢'né Onp then bimdny = Yynd'y. Now

Vim®irlxi} = Dimdiddx) = % + x;

= bim®ieb) =%+ ] (dplxg) - %)

Furthermore, for each term of the sum on the right,

Bl = X = VimPiadi) = X = Dy 5x)) = dyelc)) -

where ¢,.€ ¢,,. It follows that V.. ¢;(x;) can be written as a finite sum of the

form

L (Urm®arlXs) = Xs)
where each s €< t €< m. From the choice of V;m We can consider all the
terms with a common s to be grouped into a single term. Since any

relation on a direct sum is a consequence of relations on individual

summands,

Yem®ielti) = T ( Yim®srls) = Xs )

implies that x, = 0 if s Fm. If s=m, then s =t =m and we have that
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VimPikx;) = lj"tmd)«.:t(xs) = X

From our choice of ¥, and the fact that ¢ contains the identity 'ma_pping,

it now follows that

1b'cmwtmcbit()'(i) =0,

as required, and so property (2') is verified.

Suppose now that N is an A-module and let {o;:M; - N}, be a set of
homomorphisms such that a;¢;; = a; for all $,;€d; ijel withi < j. Define a
map a:M.+ N as follows. For xeM let o(x} = aj(xj) for any choice of j€l and

X;€ M; such that u}(xj) = x. We now show tHat a is well-defined.

Suppose that u,(x;) = u;(x;), and choose k 27 ii ¢;,e®;, and @ike ij.
Then p ¢, (%) = uk@jk(xj)) 5o that, by property (2), there exists t > k and
$ €0, such that ¢ P lx;) = biedjl®). It now follows that a(x;) = a;(x;), so
that a is a well-defined homomorphism. From the above construction,
au; = a; for all iel, so that propérty {3") holds fori M, since uniqueness is

clear.

We shall use the term generalized direct system to describe a system
which satisfies conditions (iy=(iii) in the statement of Theorem 1. Let us

consider once more the system

{ (M/uM)g() . @, + &)

Then (f) is a generalized direct system, as we now demonstrate. That (%)

satisfies (i) and (ii} is obvious. If we consider u = (uq,..,u,)eU, and let u?
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denote (u12,...,u§)€Un and tlJ:(M/uM)S(u,-»(M/uZM)S{uz, denote the map

induced by the matrix diag(uy,...u,}, then it follows from 1.2.2. that

Vo = o',

whenever t < u and ¢,,.9',€®,,. It follows that the system (t) satisfies
condition (iii) of Theorem 1, and is therefore a generalized direct system.
We can now employ properties (1),(2") and(3") when dealing with. its direct

limit. This justifies the proofs of 1.3.3. and 3.2.8..

The final part of the proof of 3.3.4. assumes (employing an obvious

notation) that, for a generalized direct system { M; , 0, } with direct timit M,

]I;_n:’_ {A?A_(Mi)s,\ 'A?l (®35)s,} =)2AMS’\ .
where the S are multiplicatively closed subsets of A and A?A(&‘)ii)SA consists
of mappings of the formﬁj\(«b”)s" » where ¢;e ¢ij. This can be varified in a
standard fashion after noting that {A?_I\(Mi)s:‘\ ‘,\?j\_(@ii)sa} is itsetf a generalized"

direct system whose limit therefore satisfies (1), (2') and (3).

In 3.4, we consider the situation of a triangular subset UcA™"! and an
A-module M, such that ug..u, is a poor M-sequence for all
u = (uy,..,u)€U,. Consider now the generalized direct system

{(MuM)gqy) . 9y 3,

and suppose that uvelU, are such that u < v. Let buv- b€ P, and,

employing the usual notation, let ¥ : (M/VM)g,,, ~ {M/VZM)S(VZ) be the map
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induced by the matrix diag(vy,...v,). Then, by 1.2.2,,

]'D¢UV = l'J¢’l.l\4f ‘

Since Y is injective by 2.2.1, it follows that ¢, = ¢',,. SO that the set ¢,
consists of a unigue homomorphism. Therefore the generalized direct
system above is a direct system of the ordinary type, so that we require no

special analysis in this case.

-
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