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MODULES OF GENERALIZED FRACTIONS, DIRECT SYSTEMS 
OF DETERMINANTAL MAPS AND OTHER TOPICS IN 

COMMUTATIVE ALGEBRA 

by 

GAVIN JARVIS GIBSON 

Summary 

In this thesis we are mainly concerned with the theory of the 

modules of generalized fractions of Sharp and Zakeri, which is a 

generalization of the well-known concept of localization in Commutative 

Algebra. In Chapter I we give a brief description of the formation and 

properties of modules of generalized fractions, and we summarise the known 

results concerning such modules which we shall require for the later work 

of the thesis. 

In Chapter II we focus our attention on the role of matrices in 

modules of generalized fractions. We show that it is not necessary to 

consider only lower triangular matrices when making identifications in such 

modules and we identify a larger set of matrices from which we are free to 

choose. Moreover, in this chapter we consider the situation where M is an 

A-module and x 1  .....x,, and Vi .....y, are M-sequences with the property that 

xA4 V4  We demonstrate that, for this situation, the map !V1/xM • M/yM 

induced by Cramer's rule is injective, thereby dispensing with the finiteness 

conditions present in previous versions of the result. 

Chapter III is concerned with the connections between Kersken's 



theory of denominator system complexes and complexes of modules of 

generalized fractions. We show that the two concepts are equivalent and, 

by making use of some ideas present in Kersken's theory, we obtain a 

description of an arbitrary module of generalized fractions as the direct limit 

of a system of localized quotient modules. Using this approach, we 

investigate the connections between Cousin complexes and generalized 

fractions and obtain results concerning the flat dimensions of certain 

modules of generalized fractions. 

In Chapter IV we investigate conditions necessary and/or sufficient 

for the vanishing of certain modules of generalized fractions and show how 

modules of this form can be expressed as a homomorphic image of an 

ordinary module of fractions. We then employ this description to express 

certain cohornology modules as modules of generalized fractions. The final 

part of this chapter relates the length of certain quotient rings to the 

lengths of cyclic submodules of generalized fractions, for the situation 

where the base ring is a generalized Cohen-Macaulay ring. We then apply 

this approach to the situation of an arbitrary Noetherian ring of low 

dimension. 

The final chapter, Chapter V, deals with the relationship between the 

properties of seminormality and F-purity in 1-dimension )al Noetherian local 

rings, and we investigate conditions under which the two properties are 

equivalent in the 1-dimensional case. 

Whilst chapters are numbered by upper case Roman numerals in this 

thesis we use Arabic numerals when referring to an individual section of a 

chapter. Thus, for example, "3.2." refers to the second section of Chapter III. 
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CHAPTER I 

1. Preliminaries 

Throughout this thesis all rings considered will be commutative with 

a non-zero multiplicative identity, but will not be assumed to be either 

Noetherian or local unless explicitly stated. A will always denote such a 

ring. Ideals of A will be denoted by lower case Gothic letters such as a, 

and the set of all prime ideals of A will be denoted by Spec A. The set of 

all maximal ideals of A will be denoted by Maxspec A. 

Let M be an A-module. The support of M, i.e. the set of all primes 
( MottksCa, st&c±ens) 

3ZI GSpec A for which M *0, will be denoted by SuppAM, and/A55 AM will 

denote the set of associated primes of M For a ring A. the (Km/I) dimension 

of A, written dim A. is defined to be the length of the longest chain of 

primes in Spec A, if this exists, and w otherwise. For a non-zero A-module 

M, the (IC-u/I) dimension of M, written dimAM,  is defined to be the length of 

the longest chain of primes in SuppAM,  if this exists, and otherwise. We 

shall adopt the convention whereby the dimension of the zero module is 

defined to be -1. For frSpec A, the height of written ht, is defined to 

be dimA 

The set of all integers will be denoted by the symbol 7, the set of all 

positive integers by IN, and the set of all nonnegative integers by lN 1 . For 

neff'1, A n  will denote the Cartesian product of n factors of A, M(A) will 

denote the set of all n x n matrices with entries in A, and D(A) will denote 

the set of all n x n lower triangular matrices with entries in A. For Hc M(A), 

the determinant of H will be written IHI, and matrix transpose will be denoted 
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by T  Whenever we can do so without ambiguity, we will denote (111 .....u) 

by u and the matrix [u1 ... u ]T by UT,  together with obvious extensions of 

this notation. For ncR a sequence x 1  .....x of elements of A will be called an 

[ti-sequence if, for each 1=1 ,..,n 

i-I 	 i-i 
(I) (Ø 	= x 1 M):x 1 ) 

1 	
jxjM 

with the obvious interpretation when 1=1, and 

P1 

(ii) x 1 M + M. 
I 

A sequence  which satisfies condition (i) will be referred to as a poor 

M-sequence. 

2. Triangular subsets of A n  and modules of generalized 
fractions 

The localization of an A-module M with respect to a multiplicatively 

closed subset S of A is a fundamental concept in Commutative Algebra. In 

[351 Sharp and Zakeri describe a process which generalizes this idea 

whereby they construct modules known as modules of generalized traction's 

in their terminology. Moreover, in subsequent papers [36.371 they have 

demonstrated that this concept has various wide-ranging applications in 

Commutative Algebra. In this section we give a brief description of the 

construction of modules of generalized fractions and outline some of their 

important properties, which we shall frequently employ throughout this 

thesis. 
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Let nEIN. A non-empty subset U of A
n  is a triangular subset if 

(I) for all (u 1  .....u) 6 U and a 1  ..... CE IN, (u1  ....u') €U, and 

(ii) for all u=(u 1  .....u) and v=(v 1  .....v)€ Where exist w(w 1 ,...,w)6 U, and 

H,KE D(A) such that 

HuT = w  = Ky T . 

For an A-module M and a triangular subset U of A, we can construct 

the module of generalized fractions as follows. Let U be a triangular subset 

of A, and let M be an A-module. We define a relation - on M x U as 

follows: for a,b cM and u,v eU, we write (a,u) (b,v) if and only if there exist 

w€U and H,Ke D(A) such that HuT = W
T = Ky T, and IHIa-IK cwM. In [35] it 

is shown that - is an equivalence relation on M x U and from now on we 

shall denote by a/u the equivalence class of (a,u), and let UM stand for the 

set of equivalence classes of '-. Furthermore, UM can be furnished with 

an A-module structure under the following operations: 

a/s + b/t = (IHIa + IKIb)/u 

for a,b€M, s,tcU and any choice of utU and H,KeD(A) such that 

H5T = U T  = KyT, and 

r.(a/s) = ra/s 

for acM, scU and rtA. The A-module U_TiM  is known as a module of 

generalized fractions 
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The main difficulties in proving that 	is an equivalence relation and 

that U 11 M has an A—module structure lie in demonstrating that - is 

transitive and that the addition defined above is unambiguous. Whilst we do 

not give explicit proofs of these properties in this thesis, we include the 

following two results from [351 which are of central importance therein, and 

which will be employed elsewhere in our work. 

1.2.1. Lemma 135, 2.21. Let u;vcu and suppose that there exists 

H--D(A) such that Hut = v. (Then 

/H/ueAv for all i7,...,n. 

Proof The result follows in a straightforward manner from the fact 

that adj(K).K = Kll for any KcM(A) (Cramer's rule). 

1.2.2. Lemma [35, 2.31. Let u,vdu and suppose that there exist 

H,KcD(A) such that HuT = vT  = Kut . Then 

/OH/ - /OK/EjAvj 2  

where D is the diagonal matrix diag(v1 ,..., v). 

Proof Let H = [h 1 ] and .1K = [k 1 ]. Set 

1 ifi=O 

H 1  = 

IIn jj  if 1 !9i !9 n, 

K 1  = 

n 
flkif 0 !&i C n 

1.1 1J' 

1 , if i = n. 
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Let 1 !g i < n. Then by hypothesis, (h - k 1 )u 1  cAu ; thus 

- 1h1uj) € 
i'1 	1 

It follows from 1.2.1 that 

	

i-i 	i-I 
- k)(v - 	€ Av 1 . 

Therefore DIH1_i(h1 - kjj)Kj €IAv  that is 

IDI(H.K - H_ 1 K 1 ,) cAv. 

n 	 fl-I 	2. 

	

Hence Dl(H1K - H_ 1 K_1) 	which gives the required result. 

In the following proposition we list some of the most important 

properties of modules of generalized fractions which are necessary for many 

of our calculations. 

1.2.3. Proposition 135. 361. Let m6 M, and let u,v c U be such that 

= HuT for some HE D(A). Then, in u,v, 

rn/u = /H/m/v; 

if rn €u M then rn/u = 0; 

(ii,) [36, 2. 1] if u rn/u = 0 then rn/u = 0. 

Proof Parts (i) and (ii) are immediate from the construction of 
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U"M. To prove (iii), suppose that um/u = 0 in U"M. Then there exist w € U 

and H = [h11]€D(A) such that H U T = w   and IHlum cwM. Hence 

n-i 	 n-i 	 n-I 
(flh1J(w - Xhu)m € 

1 	 1 

It follows from 1.2.1 that 

(flh 1 )wm c W i M 

hence by (ii) 

(rrh)wm/(w1 ....w_ 1 ,w) = o
n 

in U"M. It follows from (i) that 

(7 h,)m1(w 1  ....w_ 1 ,w) = 0 

and the result follows on applying (i), since HUT = w T . 

Suppose now that x = ( x1 .....x) € A n  and set 

U(x)((x3.,x?'flICi .....csc1No, 	 n) 

where xti = 	1 	if 	a i 	= 0. 	Then 	it is 	easily 	seen 	that 	U(x)n 	is 	a 	triangular 

subset 	of A", 	and 	given 	an A-module M we can 	form 	the 	module 	of 

generalized fractions 	U(x)"M. For 	simplicity 	of notation we will 	denote a 

typical 	element 	rn/(xF' .... x" ) by m/xa  where stands 	for 	(ct 1  .....a)c 	(N 1 ' 

along with obvious extensions of this notation. 	We have the following result 
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due to Zakeri, which we state without proof. 

1.2.4. Proposition [39, Chap.lL 2.21. lnLJ(x),M, alX01 = b1x 8  if and 

	

only if there exists a positive integer 	~, a, B. 7 :9 i n, such that 

	

x.4"a _x?' ¶..xfBnib 	)xYM. 

(ii) The endomorphism of U(xj' M induced by multiplication by x is 

an automorphism. 

Modules of generalized fractions of this form play an important role 

in Chapter IV where the connections between generalized fractions and local 

cohomology are examined. Furthermore, the following results demonstrate 

that the study of such modules is central to the theory of arbitrary modules 

of generalized fractions. 

Let U be an arbitrary triangular subset of 
An.  We can define a 

relation ~g on U in the following manner. For u,v€U we say that u _-e, v if 

and only if there exists H € D(A) such that v = H UT.  Clearly 15 is a 

quasi-order on U and (US) is a directed set. 

1.2.5. Proposition [35]. Let x,yeu be such that HXT = VT for some 

H €0 (A). 	Then given x 	€ U(x). there exist , ' y5 	U(y) and K ED (A) such 

CL that (y 8)T = •K(x )T .  Furthermore, there is induced an A -homomorphism 

M-  U(Y) 
n  n M under which m/x is mapped to 1K/rn/v 8  and m/x to 

/H/m/y for all m  M. 

It is easily seen that (U(x)"M I xU ) becomes a direct system under 

these homomorphisms and we have the following result. 
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1.2.6. Theorem [35, 3.51. I/rn 	 UM under the canon/cal 

rcu 
map. 

3. Saturation and restriction 

A familiar concept in the usual theory of the localization of an 

A-module M with respect to a multiplicatively closed subset S of A is the 

notion of saturation. For such an S. we define the saturation of S to be 

S= C x€A I xycS for some yEA}. 

We say that S is saturated precisely when S = S. and we recall that there is 

a natural equivalence of functors S • In [281 Riley introduced the idea 

of the saturation of an arbitrary triangular subset U of A' 1, which has 

properties analogous to the situation described above and which coincides 

with the usual notion of saturation when n1 and U is a multiplicatively 

closed subset of A. Whilst Riley gives several equivalent characterisations of 

saturation, the following definition is the one which we shall use most 

frequently throughout this thesis. 

1.3.1. Definition • [28. Chap.l, 2.21. Let ncIN and let U be a triangular 

subset of A". Then the saturation of U, denoted U, is defined to be the set 

ye A'1  I there exist HE D(A) and u EU such that HyT = u  }. 

U will be called saturated if U = 0. 

It is a straightforward matter to show that 0 is itself a saturated 



triangular subset of A and that, in the case where n=1 and U is a 

multiplicatively closed subset of A, U coincides with the usual definition. 

The following result due to Riley will be employed on numerous occasions 

throughout this thesis. 

1.3.2. Theorem [28. Chap.], 2.91. Let no  and let U be a triangular 

subset of A. Let M be an A-module. Then the natural homomorphism 

U'M- ThM, such that 

M 	= rn/u 

for all meM, ueU, is an isomorphism. 

Proof it is straightforward to verify that $M  is a well-defined 

homomorphism. Suppose now that m& M and u cU. From the definition of 

U there exist HE D(A) and ye U such that HUT = v 1 . Applying 1.2.3.(i) we 

have 

m/u = HIm/v = 4M(tHIm/v) 

and so $M  is surjective. Suppose now that M(m/u) = 0. Then there exist 

ye0 and HE D(A) such that JHjmEjv j M. Since veU, there exist we U and 

n-I 

KE D(A) such that Ky T  = w 1 , and it follows from 1.2.1. that IKIIHIm C 

Therefore IKHIm/w = 0 in UM by 1.2.3(u), and hence m/u = 0 in UM by 

1.2.3.( i), showing that $M  is injective. 

The significance of 1.3.2. is that it allows us to assume that the 

triangular subset with which we are working is saturated without any loss of 

generality. This assumption will be particularly valuable in Chapter II, where 
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the rôIe of matrices in a module of generalized fractions is examined in 

more detail; and also in Chapter III, where Kersken's denominator system 

theory is recast in the setting of the theory expounded in this chapter. On 

the other hand, if U is a triangular subset of A
n  and m is a positive integer 

such that 1 < m < n, then the set 

U rn ) I (ul,---,Un)6 U, for some Um4l  ,..,u 	A) 

is a triangular subset of An  which we will call the restrict/an of U to Am. 	If 

U is saturated then it is a simple matter to show that the restriction of U to 

Am is also saturated, and this is left to the reader as an exercise. 

For a triangular subset U of A" we set 

U[1] = C (u1 ..... u,1) I (u ,...,u)6U I- 

Clearly U[1I is a triangular subset of A" 1 , and we shall denote a typical 

element (u1 .....u,1) by (u,1). As will become apparent in Chapter IV, 

triangular subsets of this form play an important role in the theory of local 

cohomology, and we shall encounter them in various settings throughout 

this thesis. In [261, O'Carroll shows that for a triangular subset U of A
n  and 

an A—module M, the module of generalized fractions U[I]
-
" 1 M can be 

exhibited as the direct limit of a system of quotients of M in the following 

fashion. Let u,vcU be such that HuT = v  for some HCD(A). Then by 1.2.1. 

there is a homomorphism uH:M4uM • M4vM such that 

CH(m + uM) = Him + 
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For simplicity we will abbreviate 1u j M to uM, and we shall use obvious 

extensions of this notation. The map CM  will be known as the determinantal 

map induced by H and will be studied in some depth in Chapter II. Under 

these maps the set (M/xM I x U) forms a direct system (see Appendix I) 

and we have the following result due to O'Carroll. 

1.3.3. Theorem [26, 2.4.1. I/rn M/xM = LJ[7J" 1  M. 
xcU 

Prod! 	Let L denote lirn M/xM, and for each x,,_ U, let 
U 

M/xM + Ut1F'M. be the map such that 

4J(m+xM) = rn/(Xj). 

It is clear from 1.2.3.(ii) that qj, is a well-defined homomorphism. Given 

x,y € U with y  = H xT where He D(A), we have that 

[y 1]T 	= 1H 01 Ix ill 

Lo ii. 

Hence applying 1.2.3.(i) to U[1]-1 M, it follows that m/(x/l) = Hm/(y,1) so 

that iP, = tyh where ct m  is the determinantal map induced by H, and hence 

the family of maps ( 4i I xcU) induces a homomorphism i: L + U[11 - " 1 M. 

It is straightforward to verify that ip is surjective and so it remains to prove 

that Ker4J = 0. 

Let k Keri. Then there exist yEU and m+yM C M/yM such that 

19(m + yM) = kt and iP(m + yM) = 0. Therefore m/(y,1) = 0 in U[11 . ' 1 M, so 

that 	there 	exist KCDJA) 	and (z,1)U[1] 	such 	that 	K[y 1]T = [z 
1]T 	and 

IKIm € zM. Now if H is the top n x n-submatrix of K, it follows from Cramer's 

CS 
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rule that 

1(1. 1  E I1-11.1 + zA, 

so that IHime zM. Since z  = Hy T , H(m  + yM) = 0. Hence 

k = e(m + yM) = BZ(aH(m + yM)) = 0. 

In Chapter III we will give a proof of a generalization of 1.3.3., again 

due to O'Carroll, which extends the ideas of 1.3.3. to modules of generalized 

fractions with respect to arbitrary triangular subsets. - 

4. Complexes of modules of generalized fractions 

Some of the most important applications of modules of generalized 

fractions in Commutative Algebra involve certain complexes of such 

modules. For example, in [39] Zakeri demonstrates that the minimal injective 

resolution of a Gorenstein module can be exhibited as a complex of modules 

of generalized fractions. Furthermore, certain types of modules such as 

balanced big Cohen—Macaulay modules can be characterised by the 

exactness of such complexes. Our chief interest in these complexes in this 

thesis stems from their connections with complexes of Cousin type and the 

denominator system complexes of Kersken, both of which are examined in 

Chapter III. We first review the construction of a complex of modules of 

generalized fractions. 
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The symbol U will denote a family of sets 
( U, I kIN 

 ) 
such that 

(I) U j  is a triangular subset of A' for all ie(N; 

whenever (u 1  .....u)e U, with i>1, then (u 1  .....u,_i)c U,_1; 

whenever (u 1  ,...,ujc U , then (u 1  ..... u,,1)c U, 1 ; 

(1)6U 1 . 

In view of 1.3.2., which allows us to assume (iii) and (iv) with no loss of 

generality, we can replace (ii), (iii) and (iv) with the single condition 

for all kIN. U, is the restriction of U, +1  to A'. 

Let U be such a family of triangular subsets on A, and let M be an 

A-module. We can construct a complex C(U ,M) of A-modules and 

A-module homomorphisms, given by 

CU,M:O+M.UM 	UrMi Ui M...  

where d 0(m) = m/(1) and d(m/(u 1  .....u,)) =m/(u 1  ..... u,,1). The family 21 is called 

a chain of triangular subsets on A and CU,M)  is known as the associated 

complex. 

Let (x i  I kIN) be a sequence of elements of A. Then we can form a 

chain of triangular subsets (U(x), I iciN), denoted by Z.L(x), where U(x) is 

formed from the truncated sequence x 1  .....x in the manner described after 

13 



1.2.3.. Given an A-module M. we may then form the complex C (ZL(x),M) 

associated with U(x). 

if U is an arbitrary chain of triangular subsets on A we can define T 

to be the set of all sequences x = (x1 I iE!N) of elements of A such that 

(i) x i  = 1 for all sufficiently large n, and 

(H) (x 1  .....x)G U for all n - 1. 

Now T is a directed set under the following relation: for x,ye T we say that 

xy precisely when V  = h1xT for some infinite lower triangular matrix H, and 

given x and y in I with x!9y,  there is induced a morphism of complexes 

C (LL(x),M) • (jj.(y),M) which restricts to the corresponding 

homomorphism in the direct system described in 1.2.5.. Analogously to 

1.2.6., we have the following result. 

1.4.1. Proposition [25, 2.11. 	C(2L(x),M) = C(ZLM). 
Xe T 

In [251 O'Carroll gives a universal characterisation of the complex 

C (ZL(x)M) in the manner described below. 

Let x be an infinite sequence of elements of A and define another 

associated 	complex C(x,M) = 	j n ~r-1} 	of A-modules 	and 	A-module 

homomorphisms as follows. Set M 111  = 0, M 10 	= M 	and let f 1 : M( -1 ) ~ M 10  

be the canonical map. 	Suppose that for iL>O. the A-modules M' 11  and M 1 ' 1  

and the map f 1  have been defined. 	Let N' 1 	= Coker f', let 	= 
It' 

(localization 	with respect 	to 	x1+1 ), 	and 	let 	f':M' 1  ~ M 1 ' 	be 	the 	canonical 

homomorphjsm. It 	is 	clear that 	f' 	of' = 0, 	so that 	C (x,M) 	is 	indeed 	a 
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complex. We have the following important result. 

1.4.2. Theorem [25, 2.2]. There is an isomorphism of complexes 

E) C1'x,ivv-.- Ci'21(x),M) with S 
= (0" / n~ - 7) such that 0 0  is the identity 

map on M. 

Proof. 	The definition of 9 	is obvious. 	Now let 0 0  be the identity 

map on M, and define 81:  M 	- U(X)[M by 8 1 (a/x) = a/(xF): 	It is a simple 

matter 	to 	show that 8 1 	is 	a 	well-defined isomorphism and 	that 

= 8 1  of0 . Now let 	i;;t1, 	and suppose 	that we 	have 

defined, for -1 	:9 j < 	i, A-isomorphisms O:M 1 	-+ U(x). 1 M such 	that 

8 j-1 	= 	0JofJ1• Now 

Im d c Ker d, 

so that there is induced a surjective A -homomorphism x':N' 	-. Im d', 

and by 1.2.4(u), x'1 in turn induces a surjective A-homomorphism 

elti :  M 111  - U(x) '+T' 1 1 M, 

such that d' 08' = 8' ° f'. It remains to prove that Ker 8+1 = 0. 

For this it suffices to consider an element in Ker 
i+1  of the form b/i, 

where B is the canonical image of b in N 11. Now 8(b) = a/(x ....x), say, 

and a/(xa l  ....x.,i) = 0 in U(x) 1 M. By  1.2.4(i), there exists a positive integer1+1  

y ~! a,
, 

1 5, j ~ i, such that 

IlxXrx 1 a €xXM. 
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Let c = 	 Ch ia. Then 

x y 
I xM 

and W(b) = a/(x' 	 x''l') .....x 	) 
= c/(.....xj 	in U(x)'M, by 1.2.3.0), If we write 

X~ j c =  

where m1€M, 1 ~5 j s i, then 

8(x)' b) = x 1  c/(x 
4.j 

= 	 by 1.2.3.(i1) 

= m1/(x .....x,i) by 1.2.3(i) 

€ Im 

It follows that x'1  b 	In f', hence xJ1  .b = 0 in N 1 ' 11 .Therefore b/i = 0 in 

= and the result follows. 

Because -ØAM commutes with ordinary localization, the taking of 

quotients and direct limits, a direct consequence of 1.4.1. and 1.4.2. is the 

following result, originally proved by Zakeri by direct calculation. 

1.4.3. Corollary [39, Chap.lI, 2.12]. Let U be an arbitrary triangular 

subset of An  and let M be an A-module. Then U"M U"A 8A M under 

the obvious map. 
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CHAPTER II 

1. Matrices and modules of generalized fractions 

In Chapter I we have seen how the module of generalized fractions 

UM can be constructed from an A-module M and a triangular subset U of 

A. in the first section of this chapter, we focus our attention on a 

particular property of such modules, of which we have already made 

considerable use in the previous chapter, namely 1.2.1(i), which we now 

recall: if u,vc U and He D(A) are such that HUT = v 1  then, in UM, 

m/u = HIm/v , for all me M. 	 (*) 

As (4 provides a rule frequently employed in calculations involving modules 

of generalized fractions, it is clearly of interest to investigate the extent to 

Which (4 can be generalized to encompass a wider class of matrices than 

D(A). The motivation for this programme of research is provided by the 

following result, originally proved by Riley by a computational method, and 

which is stated here without proof. In view of the fact that M(A) and D(A) 

coincide when n=1 we restrict our attention to triangular subsets of 

ncfN. 

2.1.1. Proposition [28. Chap.I, 3.11. Let neW and let U be a triangular 

subset of A n+1,  Suppose that for any permutation a of (7....n), whenever 

(u......u 	)CU, 	then 	(u 
1 	n+1 	 a w't' 	

,u 	)EU. 
afr) 	n+1 

Let iv! be an A-module, mgM, 

(ci...... 
1 

u n1  )CLI, and let a be a permutation of (1,...,n). Then in U 1  M, 
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= (sgnaJ1(u1 )F...Ua( n )/Un +lJ 

Triangular subsets with the properties of that considered in 2.11. 

occur frequently in the known examples (see, for example, 2.1.6.). We 

remark that for a given permutation of (1 .....n}, a, sgna = 1131 1  where PcM(A) 

is the permutation matrix associated with a. Furthermore, if a is non-trivial, 

then P ~ D(A). and likewise P'.D +1 (A), where 

P , = 1P 0 

Lo 1 

Now P'[u1 ... u+i]T  = [ua(1) ... Uy(!,) u n+1 IT, and it follows that P' satisfies (*) 

since P1 = 

Our primary aim is to obtain a generalization of 2.1.1. which allows us 

to replace the matrix P by any element of M(A). In order to achieve this we 

shall require the following two preliminary lemmas. 

2.1.2. Lemma. Let U be a triangular subset of A 1  and let u,vd U be 

such that u 	v 	and 	Av çAu. Then there exist wU, 
n+1 	n+1 	 1 	 1 

H = [k]EV 
n
, 1  (4) and K = fkJeD 

n 
1  (A) such that h1 

n1 	n+i 
and 

Hu T  w1 KvT. 

Proof 	By the properties 	of 	triangular subsets 	there exist wd U, 

H' = C D ~ 1 (A) and K' = [k1] e D +1 (A) 	such that H'uT = wT = K'v T . This 

implies that 

n+1 

= 	k+1  jvj 
i-I 
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ri 

+ k1 +iu+i 

= j h j u j + k +1  

for hc A, 1 ~ I ~ n , since u 1  = v1 and Av 	Au 1  

Now let K = K', and let H be the matrix obtained from H' by replacing 

with h. 1 	15 :5 n, h'+1 n+1 	with k'+1 n+1'  and leaving the first n rows 

unchanged. 	Then HuT = w 	= KVT 	and h+1 n1 = k'+1 n1 = k+1 n+1 	as 

required. 

The following result is of considerable importance both here and at 

other places in this thesis, as it provides a relationship between the action 

of arbitrary matrices and the r8le played by lower triangular matrices in a 

module of generalized fractions. 

	

2.1.3. 	lemma [O'Carroll, 	26, 3.31. 	Let a = (u1 ,...,u)eA' 	and 

V = (v1 ,.., 	 and let KcM(A), HcD(A) satisfy Ku 1  =  VT = HUT. Set 

VO  11v. Then 

- /K/)c 

Proof Let H=[h1]. lft=O let H[1L and if1:5t15n let Hbe 

the top left t x t-submatrix of H. Let K = [k]. If t = n let Kt  = [1] , and if 

0 :!9 t C n let K  be the bottom right (n-t) x (n-t)-submatrix of K . Let us 

further suppose that i is a fixed integer such that 1 ' <-  i < n. Then 

v i  = jh j j u j = k1u 

	

1-1 	j'.l 
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so that 

(h11 - k 11 )v 1 CAu 1  + h 11 ( 	k 1 uØ. 	 (t) 
I 	 Jt •I,1 

Now H1_1[u1 	u1i = [v1 ... v1_11, so by Cramer's Rule and (t), and noting 

that IH_ 1 1(h) = IHI, it follows that 

i-I 

- k)v 1  e Av + IHI( 

(We will use a similar argument below.) Thus 

(IHIIKIHH_iIkIKDv €Av1  + IHIIKI( I ku). 	(t t) 

Now K[u + 1 ... u 1)T  = 	
... wff where 

Wi = v i  - 	 , i1< j :5 .n, 
ks 

so by Cramer's Rule, for i+1 :5 i :5 n, 

n 
IKlu C XAvt + Au -  uilKi, DI 

1+1 

where 	is K with its (j-i) "' column replaced by [k1 + 1 i ... 

As before, it follows that for i1 :g j ~g n. 

IHIIK 1Iu C jAvt - H_ 1 hju . 

ttl 

i-i 	 i•-1 
Since h ij ui e  v + jAu t  and IH i - I lu t  E jAv., 1 C t 	i1, we deduce that for 

I 	 1 

ORUI 



i+1 7!~ j < n 

HjIKIu € 	AVt - jH 1 _ 1  IIK'v 
	 (ttt) 

Taking (ttt) together with (tt), it follows that 

( J H jj jKjj 
- 	 ... 	 - 

k11K?I ) )v 1  6 

ji+1 	 t#i 

so that 

(Il-l11K11 - H_ i  IIK_1Dv e 
	

Av 

t#i 

Hence 

(IHUKI - H1 IIKi Dy0 € 	Av. 

The result follows on summing over i 

There is an obvious similarity between 2.1.3. and 1.2.2. and it is 

reasonable to ask whether 2.1.3. can be "strengthened" by replacing 	with 

in its statement. However the following elementary example demonstrates 

that this cannot be done in general. 

Suppose that A = Z n=2, u=v(3,2), and let 

HJ'l 01 and K=[3 -3 

[p 	ii [2 -2 
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Then HuT = VT = Ku t, but vivz(IHI - IKI) = 6 91 

Equipped with the preceding two results, we are now in a position to 

present our first main result, which is a generalization of 2.1.1.. 

2.1.4. Theorem. Let U be a triangular subset of Anti  and let u,veU 

be such that 0+1 = Vntl and Tv1 ... vjT = 0101 ... ti]1  for some QCM(A). 

Then in 

rn/u = 101rn/v, for all rn e M. 

Proof. We first note that [v1 ... 	 = Q[u1 ... u,]' for some Q E M(A) 

if and only if 	Av 	Au 1  , so that the conditions of 2.1.2. are satisfied. 

Thus there exist w e U, H = (li] € D 1 (A) and K = [k 1 ]& D 01  (A) such that 

- 	 _ 
- k1 n-H  and Hu T 	1 _ 

- w - Ky I  

Let H' and K' be the top left n x n-submatrices of H and K 

respectively, let w 0  = Rw , and let D 6 D +1 (A) be the diagonal matrix 

diag(w 1  .....w+). We note that IDI = w 0w 1  . In UM, 

m/(u 1 .....u+) - QIm/(vi.... 

= IHIm/(w 1  ....w +1 ) - IKIIQIm/(w i .....w +1 ) , by 1.2.3(i) 

= (lIlt - IKIIQDm/(wi.... 

= IDI(1HI - IKIIQI)m/(w,w ....w ~ 1) 	by 1.2.3(i) 

= h +1 +1 w+i wo(IH'l - IK'IIQI)m/(ww' .... 
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Since H'[u1 ... u.,ff = [ w1 ... w] T = K'Q[u1 ... 	and We D(A), 

rl  wo(IH'! - KIIQI) € 	, by 2.1.3.. 

Therefore, in U 1 M, 

h + 1 +1 w+ i wo (IH'I - IK'IIO.l)m/(wt.... w4 1 ) = a 

by 1.2.3.(ii), so that 

u+i) = 

We can see from Theorem 2.1.4. that if u,v c U and HE D +1 (A) are 

such that v = Hu T,  then (*) will hold whenever the matrix H is of the form 

1<1 
L o ii, 	where K6M(A) 

Indeed our next result, by making use of the notion of saturation discussed 

in Chapter I, demonstrates that (*) continues to hold for a still larger class of 

matrices. 

2.1.5. Theorem. Let U be a triangular subset of A 1  and let M be an 

A-module. Suppose that there exist uv6 U and K = [k..Jc M 1  (A) such that 

ki n1 a 1 _<i_<n, and Ku  = v T . Then in U 1 M, 

= /K/m/(v1 ,..., v 1 ), 

23 



for a/I m 6 M. 

Proof Let K' denote the top left n x n -submatrix of K and let I 

denote the n x n identity matrix. Then 

[v1 ... v+i]T = rK' 	01 ri 	0 ... 

L 	1jLk+1 1 	k1 ni 

j 

	

[u1  

= 
 L

rK' 0] [u1 ... u, 

0 	1 

By the properties of triangular subsets there exist w 4E U, HE D +1 (A) 

and J e 0 +1 (A) such that Hu T  = 	= JvT, so that 

w +1  € Av + 

This implies that 

Au + 

since Av 1  ç IAu , so that 

n 

Wn+i = tu 1  + t,., 1 v +1 	tcA , 1 < i -~,- ni-i 

Let H' be the matrix obtained from H by substituting t for h 1  

1 	j 	ni-i, and leaving the first n rows unchanged. Then 

F 
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[w1 ... w,+] T  = l-1'1u 1  ... u, 

At this point we recall the remarks made in Chapter I following 1.3.2., 

which allow us to assume without loss of generality that U is a saturated 

triangular subset of Since H'6 D +1 (A), it follows that (u 1  .....u,v+i) C U. 

Thus 

m/(u 1  ..... 	= k +1 	+1 m/(u 1  .....u,v +1 ) , by 1.2.3.(i) 

= IK'lk +i +1 m/(v 1  .....v,v +1 ) , by 2.1.4.. 

= IKIm/(v i .....v +1 ). 

We have now reached the stage when we can say that (*) holds 

whenever H€M(A) (n>1) is of the form 

IR' 	0 

L h 1 ... 	hnn 

where the top left (n-i) x (n-1)-submatrix H' can be any element of M_ 1 (A). 

However the following example demonstrates that (4 need not hold if we do 

not enforce this restriction on the matrix H. 

2.1.6. Example. Let A be a Noetherian local ring of dimension n>1 

with maximal ideal nj. We let the abbreviation 'sop.' stand for 'system of 

parameters'. Now let 
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W = 	. u,) € A 	u 1  ,...,u,, form an s.o.p.}. 

In (36, §31 it is shown that W is a triangular subset of An,  and that 

W[11
- " 1 A = H&.(A) 0 

where HJA) is the n 1 local cohomology module of A with respect to the 

maximal ideal 14. It is straightforward to show that 

u,,) = 0 in WA 	m/(u1 .....u,1) = 0 in W(11 -" 1 A 

and so we deduce that WA 0 Suppose now that 

u) # 0 in WA 

Then by 1.2.3.(iii) 

urn/(u 1  .....u) # 0 

Now let a be the permutation of (1 .....ii) which interchanges 1 and n, 

and let P be the n x n permutation matrix associated with a . We remark 

that P does not belong to the class of matrices described after 2.1.5.. Then 

P[u1 ... u,.]1  = [u u2 ... u_1 ui]T 

and (u,u2..... u_1,u1) E W since it is an sop.. However 
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IPIum/(u,u z  . u_ 1 ,u 1 ) = 0 	by 1.2.3.(i1) 

so that (*) does not hold in this case. 

2. Poor M-sequences and determinantal maps 

Throughout this section we shall be concerned with the 

determinantal maps which were first discussed in Chapter I and whose 

definition we now recall. Let M be an A-module and let x=(x1 .....x)€A and 

r(Vi .....y)EA1' be such that 

[vi ... 
y]T = H[x1 ... 

I, 	 fl 

for some H€M(A). It follows from Cramer's Rule that HI(Ax1) 	Ay 1 , so 
•1 

that, in the notation of 1.3.3., there is a well-defined homomorphism 

H.M/XM • M/yM , such that 

cz N (m+XM) = IHImtvM 

In particular we shall be concerned with the situation where x 1  .....x and 

Vi .....y, are poor M-sequences, and it is our ultimate aim to prove that the 

map aH  is injective in this case. Indeed, it is already known that CH  is 

injective under certain restrictions on the ring A, the module M, and the 

matrix H. We first give a brief summary.of the various situations where CH  is 

known to be a monomorphism. 

2.2.1. Theorem [25, 3.2]. Let A be a ring, let M be an A-module and 
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let x1 ,...,x and v-i, (denoted x and v  respectively') be poor M-sequences 

such that vT=HxT  for some b/eO(A). 	Then 	the 	determinantal 	map 

aM :M/xM + fL/I/jiM such that 

czH(m#xM) = /H/m#VM 

is a monomorphism. 

The next result gives an important property of poor M-sequences, 

and is required for the proof of 2.2.3.. 

2.22. Lemma [39, Chap.11, 3.111. Let M be an A-module and let 

be a poor M-sequence. Then x12' ..... x,7" 	is a poor M-sequence for all 

positive integers a 1  .....a,. 

2.2.3. Theorem (cf.[26, 3.71) Let M be an A-module, and let x1 ,...,x and 

y1 ,..., ji be poor M-sequences such that y = HXT for some HE M(A). 

Suppose further that there exists a sequence z = Zi#...,Zn of elements of A, 

and J,KED(A), such that 21 ,...,Z is a poor M-sequence and JxT=zT=KvT. 

Then the determinantal map aM  :M/xM + M/yM is a monomorphism. 

Proof Let DED n (A) be the matrix diag(z 1 .....z) and let z 2  denote the 

sequence ..........so that z2 is a poor M-sequence by 2.2.2.. It follows from 

2.1.3. that 

IDI(IJI - IHIIKI) € 	AzT 

so thit a0j  = aDKH where OLDJ ,  aoxH:M/xM + M/?M are the determinantal 

maps associated with DJ and DKH respectively. 
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Now %j is injective, by 2.2.1. so that CDKH  is likewise injective. 

Expressing aDKH  as the composition COKCH,  it follows that CM  is a 

mono morphism. 

An immediate corollary of 2.2.3. is the following result due to 

O'Carroll. 

2.2.4. Corollary [26, 3.71. Let A be a Ivoetherian ring and let M be a 

finitely generated A -module. Suppose that 	and y1 ,..., y are poor 

M-sequences and that y = Hx T  for some I-i € M'A). 	Then the 

determ/nantal map CM  :M/xM + M/yM is a monomorphism. 

Proof By [39, Chap.11, 3.15] and 2.2.2. above, the poor M-sequences 

of length n form a triangular subset of A" so that the conditions of 2.2.3. are 

satisfied; the result is then immediate. 

Let us now consider the situation where A is a ring (not necessarily 

Noetherian), and MA. Pertaining to this situation, we have the following 

result from [14]. The method of proof employed in [14] is adapted in this 

thesis to prove the main result of this section, 2.2.12., (which generalises 

2.2.4. to an arbitrary A-module). 

2.2.5. Theorem [14, p.690]. Let A be a ring and let x1 ....,x and y1 ,..., y 

be A-sequences such that y  = Hx T  for some H c M(A). Then the 

determinantal map aM  .A/xA-. A/yA is a monomorphism. 

In 2.2.1. and 2.2.1-2.25 we see that the map CM  is known to be 

injective in a variety of situations. Indeed, in this section we shall prove that 

CH continues to be a monomorphism in the absence of all the conditions on 

ring, module or matrix, required in the proofs of these previous results. This 



will be achieved in Theorem 2.2.12.. 

Our original intention was to obtain a "direct" proof of 2.2.12. by 

reducing the general situation, where A is an arbitrary ring and M is any 

A-module, to the case where A is Noetherian and M is finitely generated, 

and then to use 2.2.4. to show that cth  is injective. Unfortunately, this 

approach, although initially appealing, did not yield a proof of the general 

result. However, the case where n=2 is tractable by this method, and we 

include a proof of this ,special case (2.2.6.) as it involves some interesting 

ideas concerning poor M-sequences, and identifies the problems 

encountered if we attempt to generalise the approach to higher values of n. 

2.2.6. Theorem. Let A be a ring and let M be an A-module. Suppose 

that x1 ,x2  and yl ,y2  are poor M-sequences such that 	= HXT for some 

,q=[17 1C M2 'A). Then the determinantal map ctH:M/XM-.  M/yM is a 
ii 

monomorp h/sm. 

Before giving the proof of 2.2.6. we shall require a few preliminary 

results which are of some interest independent of their role in the solution 

of this problem. In addition we must make the following simplification in 

the statement of 2.2.6.. 

Let R be the Noetherian ring 7 [X 1 ,X 2 ,H 11 ,H 1 2,H21,H22] where 

i,j=1,2 are indeterminates. Now M can be given an R-module structure by 

restriction of the scalars, where the restricting ring homomorphism f:R • A 

is such that f(X 1)x 1  and f(H 1 )=h 1  . Let H'6 M 2(R) be the matrix of 

indeterminates [H 1 ], and let 

i-l'1X 1  X2 ]T = [y1 Y2 
]T.  
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It 	is clear that f(Y) = y, that XX 1 ,X2 and YY 1 ,Y 2  are poor M-sequences, 

and that the determinantal (R-module) map clH.:M/XM • M/YM is 	injective 	if 

and only if the corresponding A-module map OtH  is injective. Therefore, in 

the statement of 2.2.6., we can assume that the ring A is Noetherian without 

any loss of generality. 

Unfortunately, in general we cannot reduce the statement of 2.2.6. to 

the case where M is finitely generated. However, as will be apparent later, 

the following result does enable us to replace M with a module possessing 

the properties required for our proof of 2.2.6.. 

2.2.7. Proposition. Let A be a ring, not necessarily Noetherian, let M 

be an A-module and let x ,x2  be a poor M-sequence. 

(0 For any submodule M'SM, the unique smallest submodule N such 

that M'CN and x,,x2  is a poor N-sequence is given by 

N = [U(M.x1k) in [U(Mx) I = U(MI") 
k. I 	 ktl 	 k-I 

where 1-'x1 ,x2 )A. 

(ii) If Z1 -Z2 
is a poor M-sequence such that x  = Hz t  for some 

HEM2  (A), then z ,z is a poor N-sequence where N is the submodule defined 

in (i). 

Proof (I) We first show that x 1 ,x2  is a poor N-sequence. Since x 1  

acts as a non-zerodivisor (n.z.d.) on M, it clearly acts as a n.z.d. on 

N. Suppose now that 

x 2 m € x 1 N 
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for some m€ N. Since x 1 N g  x 1 M and x 1 ,x2 is a poor M-sequence, it follows 

that m € x 1 M so that m = x 1 t for some t €. M. Now me (M':x') for some 

p€IN, from the definition of N, so that 4m6 M' . 	It follows that xr1t 	M', 

which implies that 

t E(M':x) . 	 (*) 

Now 

X2rfl 6 x 1 N 

zt x2(x1t) E x 1 N 

* x 1 (x2t) exiN 

* x2t G N since x 1  acts as a n.z.d. on M, 

S x 2t 6  (M':x) for some q€ IN. 

t 6 (M':xf 1 ). 	 (t) 

It follows from (*), (t) and the definition of N, that t€N. This implies that 

m x 1 N, so that x 1 ,x2  must be a poor N-sequence. 

Suppose now that L is a submodule of M which contains M' but 

which does not contain N. Since N 	L  there exist mEN such that mL, and 

a,be IN such that xm 	M' and xm e M' from the definition of N. Since x 1  

acts as a n.z.d. on M, x 	acts as a n.z.d. on M, and it follows that xm 	xçL 

since mA L 

However 

32 



4(xçm) = xkm) 

This implies thatis not a po 	 2. or L-sequence, and it follows from 2.2.  

that x 11x 2  is not a poor L-sequence. Therefore N is the unique smallest 

submodule of M containing M' such that x 1 ,x2 is a poor N-sequence. 

It remains to show that N = U(M':I"), where I = (x 1 ,x 2 )A. 

Let ME N. Then there exist a,bcIN such that 4mM' and 4me M'. 

Let t 1at Then it is an easy exercise to verify that t can be written as a 

sum of terms in x 1  and x 2 , each of which contains either 4 or  4. It follows 

that tm E M', and hence m e (M : I 8 ), so that N c U(Mt:Ik). 
¼"? 

Now suppose that me (M':i) for some re IN. Then m €(M':x [) and 

M (M':xk), so that m &N. This completes the proof of (i). 

(ii) As before it is clear that z1 acts as a n.z.d. on N. It therefore 

remains to show that 

2 2mez 1 N,m€N r*mez j N. 

Let MEN be such that z2m € z 1 N. Then m€ z 1 M, since z 1 ,z 2  is a poor 

M-sequence, so that m = z 1 t, for some t€M. 

Since m€. N, it follows that 1km  M',for some ice (N, so that 1 1'z 1 t M'. 

Now z 1  acts as a n.z.d. on M, so that z 2m = z 2 z 1 tez1N implies that 

z 2t€N. It follows that I"z 2tM' for some n€IN. Let p=max(k,n}. Then 
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lz 2t M' and lz 1 t G M' 

so that 

x 1 l't 	M' and x 21t g M 

since x = Hz1 . Therefore 

(c 1 x 1  + c 2x2)l°t € M' 

for any choice of c 1 ,c 2 €A, and it follows that 

lrY*l t  cM 

This implies that tEN. 	Thus m = z 1 tcz 1 N, so that z 1 ,z 2  is a poor 

N-sequence. 

In addition, we shall require the following result, due to Zakeri, for 

our proof of 22.6.. 

2.2.8. Lemma [39, Chap.Il, 3.141 Let A be f'Joetherian and let M be an 

A -module. Suppose that x1 ,...,x and yl ,._yn~ j  are poor 114-sequences. Then• 

Ay ?' for all JcAssAM4xM,). 

Proof of 2.2.6.. Let M, x 1 ,x2, y 1 ,y2, H €M 2(A) and CH  be as defined in 

the statement of Theorem 2.2.6.. We assume without loss of generality that 
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A is Noetherian. Suppose that 

aH(m + xM) = 0 . for some m E M, 

so that 

Him = y 1 m1 + y2m2 . for some m 1 ,m 2€ M 

Let M' = Am + Am 1  + Am2. Then M' is a Noetherian A-submodule of M. Now 

consider the submodule N = KW(M.U# where I = ( y 1 ,y2)A. Then x 11 x2 and Y1tV2 

are poor N-sequences by 2.2.7.. Applying 2.2.8. to the poor N-sequences 

x 1 y 1  and y1,y2 it follows that, for each E'Ass A(N/xlylN), there exists we I 

such that w P. 

Let 	e AssA(N/xlVlN). Then 	= (x 1 y 1 N t), for 	some 	t E N \ x 1 y 1 N. 

Now consider re 	. Then r t = x 1 y 1 n for some n € N. Since w 	I, 	it follows 

that there exists a positive integer k r  such that wteM' and wkrnGM. 	From 

the choice of w, it follows that wt4x i v,N. hence wkrt f x 1 y 1 M'. 

Now 

r(wt) = wx 1 y 1 n € x 1 y 1 M' 

since wkn  e M', so that r € (x 1 y 1 M' wt). 

At this point we recall our assumption that A is Noetherian, so that 

the ascending chain of ideals ((x1v1M' wt) I qeiN) has an upper bound, 

(x 1 y 1 M' w"t), for some positive integer k. It therefore follows that 

(x1y1M' wkt). 
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Now let r' e (x 1 y 1 M':w 1't). Then 

r#wkt E x 1 y 1 M' 

so that 

rwkt c x 1 y 1 N 

It follows that r'w 1'C P , which implies that r6p, since 	Therefore 

= (xiyiM:wkt) € A55A(M'/xlylM') 

which implies that 

Ass4(N/x 1 y 1 N)g AssA(M'/xlylM') 

Hence AssA(N/xlylN) is a finite set of primes, since M' is Noetherian. Since, 

by 2.2.8., 	for all 	€AssA(N/xlylN), it follows from the above that 

I 	U, ?6As5AAlvl 

Hence there exists z€ I such that x 1 y 1 ,z forms a poor N-sequence. Now 

I = (y 11 y2)A c.(x 1 ,x2)A, so that we can construct J,Kt0 2(A), such that 

J[x1 X2 ]T = [x1y1 z]T = KEy1 Y2 ]T 

It follows from 2.2.3. that a':N/xN-*N/yN is a monomorphism. where C1.1 is 

36 



the determinantal map associated with H. By assumption, 

IHIm = y1ml + y2m2 

which implies that m e xN Q xM. Therefore H:M/xM • M/yM must be 

injective, and the proof is complete. 

If we attempt to generalise our proof of 2.2.6. to the situation where 

the M-sequences are of arbitrary length, we quickly experience difficulties, 

which we now describe. 

A crucial step in the proof of 2.2.6. involves the identification of the 

smallest submodule N, containing a given submodule, for which V1V2  is a 

poor N-sequence. This is effected by 2.2.7.(i), and it follows that any poor 

M-sequence x 1 ,x 2  for which (y 1 ,y2)Ac (x 1 ,x 2)A, is automatically a poor 

N-sequence, by 2.2.7(H). 

Unfortunately we are unable to obtain a result corresponding to 

2.2.7.(i) for the case where the poor M-sequences in question are of length 

3. Indeed, even if it were possible to identify the smallest submodule N, 

containing a given submodule, for which a poor M-sequence V1,V2,V3  is also 

a poor N-sequence, the following example demonstrates that the analogue 

of 2.2.7(u) need not be true. 

Example [20, p.102, Ex.71. Let k be a field and let M=k[x,y,z], 

where x.y and z are indeterminates over k. Now let u=x, v=y(1-x) and 

w=z(1-x). If we set Q = (localization at the maximal ideal (x,y,z)), and 

let R=k[u,v,wl, then R cM c-Q, so that M and Q are naturally R-modules. 

Now it can be shown that u,v,w is a -poor Q-sequence. Since Q is a 
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Noetherian local ring, and u,v and w are contained in its maximal ideal, it 

follows from [20, Theorem 1191 that w,v,u is also a poor Q-sequence. In 

addition, it can be shown that u,v,w is a poor M-sequence. If the analogue 

of 2.2.7.(i1) were true for sequences of length 3, we should expect v,w,u to 

be a poor M-sequence also, since (u,v,w)R=(v,w,u)R. However, 

yw = yz(1-x) = zv 

but y vM. It follows that v,w,u is not a poor M-sequence. 

This inability to identify •a submodule with suitable propárties leads to 

a breakdown of the proof of 2.2.6. when the poor M-sequences considered 

have length greater than 2. Moreover, efforts to generalize 2.2.6. by the 

technique of induction, in the manner of [25, 3.2] where lower triangular 

matrices are considered, have proved fruitless, so that we are forced to 

adopt a quite different approach in order to prove the result in its full 

generality. 

In [14], Theorem 2.2.5. is proved by way of an argument which 

involves the use of the Koszul complex and the Ext functor, and we modify 

these ideas in this thesis to prove the main result of this section, Theorem 

2.2.12.. Before presenting 2.2.12., we require the following three results, all 

of which play a central part in its proof. 

2.2.9. Lemma [20, p.1001. Let A be a ring, let C and 0 be A-modules 

and suppose that there exists an element n A such that x acts as a n.z.d. 

on 0 and xc = 0. Then HomA(CO) = 0. 

2.2.10. Theorem [20, p.101]. Let S and T be A-modules. Suppose that 
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the elements x1 ,...,x constitute an S-sequence and that x T = 0. Then 

Ext, (T,S) 'HomA(TS /xS). 

2.2.11. Lemma [17. p.1038, Prop.211. Let X be a Noetherian ring and let 

be elements of X. Let grade(s1 ,...,$) = g and let K be an m x  matrix 

of indeterminates [lc.J over X with m g Then t is an X[k.]-sequence, 

where 

It1 ... t] =K[s1 	
5]T 

We are now in a position to present the main result of this section. 

2.2.12. Theorem. Let A be a ring and let M be an A-module. Suppose 

that there exist M-sequences x1 ,...,x and y1 , .... y, and H = [h.JE M(A), such 

that 

Hx T  

Then the determinantal map ctH:  M/xM . M/yM defined by 

H(m#xM) = /H/m#yM 

Is a monomorphism. 

Proof Let R = 2 [X1 	 where the elements X 1  
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and H i j  are all indeterminates over Z' Let f,: R -. A be the ring 

homomorphism such that 

f(X 1 ) = x 	1 5 I < n 

f(H 1 ) = h 11 	1 tg I ~-. n , 1 .5 j < n 

Then M can be given an 	R-.module 	structure 	by defining r.m to 	be f(r)m 

where r€ R, mc M. 

Let [V1 ... 	 = [H111[X1 ... X,]T. For any mc M, 

V.m = f( HX) m 

= (h 11x)m 

= ym , 1 t~ i < n 

Similarly, I[H]I . m = H]m. Therefore X1 .....X and V 1  .....Y, are M-sequences. 

In addition, X 1  .....X is an R-sequence since the elements X i  are all 

indeterminates over Z We now apply 2.2.11. to the situation where 

X= Z[X1 .....)ç]. s 1 =X 1, K=[H11 ]and g=n=m,to show that Y 1  .....Y is also 

an R-sequence. 

For simplicity of notation we identify elements of S with their images 

in A and relabel X 1  as x, Y j  as yj and H 1  as h i j, 1 ~ i,j 15 n. From this point 

forward, a : M/xM • M/yM will denote the R-module determinantal map 

induced by the matrix HcM(R) , which is injective if and only if the 

corresponding A-module determinantal map, CH,  is injective; 
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Now consider the short exact sequence of R-modules 

T 
0 + xR/yR .. R/yR -. R/xR • 0 

where i is the inclusion map and it the canonical projection map. This 

yields the exact sequence 

C 

Ext 1 (xR/yR.M) 	Ext(R/xR,M) -. Ext(R/yR,M) 

By 2.2.10. 

Ext (xR/yR,M) Hom(xR/yR,M4yM), 

and 

Hom(xR/yR,M/yM) = 0 

by 2.2.9.. Thus the map from Ext(R/xR,M) to Ext(R/yR,M) induced by the 

projection map it is injective. By making use of the Koszul complex we now 

calculate this induced map. The reader is referred to [14, pp.687-6921. 

Since x 1  .....x and y1,...,v are R-sequences, the Koszul complexes 

K'(x,R) and K(y,R) provide projective resolutions of R/xR and A/yR 

respectively. 

As in [14], we obtain the following morphism of exact complexes; 

41 



K(x,R):O • A 	$R -. ... 	 OR  -. A ~ R/xR • 0 
I 	 I 

I 	11 	10 	I IT  
K(y,R):0 • A -. ®A -  ... 	 SR.' A -. A/yR -0 

where (0 0  is the identity map and 	(r) = Hjr . 

Applying Honi(-,M) gives, in particular, 

-' 4 
n 

HomR(SR,M) t Hom(R,M) • 0 

I AIt 
n-1 

	

n 	0n 
Hom R ((DR,M) + F-4orn R(RM) .' 0 

We note that there is an isomorphism 8: HomR(R,M) - Lvi such that 

8(f) = f(1) 

n 	 * 
Now let fE Horn R(GR,M). Then, by the definition of 3, 

(9,f)(1) = f3(1) 

= f((x1 9 -x2.....(-1)" 1 x)) 

	

= 	1 )" 1 x 1f(e 1 ), 

	

= 	xf(1) 
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where e1 is the ith  basis vector of AR and f ill) = (- 1)' 1 f(e) 	It therefore 

follows that 

it 	
V1 

3(f) € xHomR(R,M) = xHom R (R,M) 

so that Im3, ç xHomR(R,M) 

The argument can be reversed to show that xHom(R,M) lm3 
or 
 so 

that Im9= xHom(R,M) in K(x,R) The same proof shows that 

lm3= yHomR(R,M)  in K(y,R) 

We have the following commutative diagram 

13 

Hom R (R,M) 	M 

'3 

Hom R (R,M) 	M 

where 4' is the homomorphism induced by 4. Now 4(f) = f 	= 	Hit 	so 

that 	4' must 	likewise 	be 	multiplication by HI. Since Im 	= xHom R (R,M) 

(resp. yHom(R,M)), we have the following commutative diagram, where a is 

the map induced by multiplication by HI and • the map induced by it: 

Ext(R/xR,M) 2Z  M/xM 

I 	lot 

Ext(R/yR,M) Z M/yM 
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It has already been shown that $ is injective, so that the map a must be 

injective also, and the result follows. 
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CHAPTER III 

1. Denominator systems and chains of triangular subsets 

Our purpose in this section is to investigate the connection between 

chains of triangular subsets on a ring A, as described in 14., and the 

denominator systems described by Kersken in [21]. In the following section 

we shall show that the denominator system complexes of Kersken are 

identical to the complexes of modules of generalized fractions of 1.4.. It 

follows that, in this respect, the notions of a denominator system and a 

chain of triangular subsets are essentially equivalent. We begin by recalling 

from [211 the definition of a denominator system over a ring A. 

3.1.1. Definition 1211. A set LIG UAI of sequences in A (where 40  4jSj 

is a denominator system over A if it satisfies the foowing conditions: 

.1 	(i)Y#Ø; 

if (f 1  .....f0)€ y  = y n A,  then (f 1  .....fØc Y 	for all j such that 

0 -~5 I -5~ p; 

if f = (f 1  .....f) € Y , then 

S(f) = {f, 1 € A I (f 1  .....f,f+,)G 7 } 

is a•multiplicatively closed subset (m.c.s.) of A; 

if f,gE f P are such that gA GfA, then 

S(g)S(f)G(S(g) + fA) 
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where 	(S(g) + fA) 	is 	the saturation of 	the 	m.c.s. (S(g) + fA). 	We further 

assume that 
)0 

contains the empty sequence 0 and sequences of l's 	of 

arbitrary length. 

A direct consequence of condition (iv) is the following result, which 

will be used on numerous occasions throughout this chapter. 

3.1.2. Proposition [211. Let )° be a denominator system over A, let M 

be an A-module and let p6 1/V. Suppose that f,gc Y  are such that gA fA. 

Then 

(M/ffv)51 	" (M/fM)s If) 

under the canonical homomorphism. 

Proof It is straightforward to show that 

(A/fA) s(g)  = (A/fA)(s( g ) +fA) = (A/fA)(s(Y)+fA(' 

so that (A/fA)s (g)  = (A/fA)s(f) by 3.1.1.(iv). The result then follows on applying 

We recall from Chapter I that if 	U 	is a triangular subset of A, and 

U,V€ U, 	then, by definition, there exists 	wcU 	such that 

w 1 c(u 11 ...,u)An(v 1  .....v)A, 	1 	j 	:5 p. In 	view 	of 	this fact the 	next 	result 

concerning denominator systems is strongly suggestive of a connection with 

triangular subsets. 

3.1.3. Lemma [21, (1.1)]. Let Y be a denominator system over A and 

let f,g be sequences in 7 of length pc 1/V. Then there is a sequence hc )°P 



such that /i.e (f1  , 	 A, 1 :5'J c P. 

Proof By 3.1.1(111), the lemma is true for sequences of length 1. 

Suppose now that j > 1, f,g € )° J and that the lemma has been proved for 

sequences of length j-1. It follows that there exists (h 1  .....h_1)c yr-1  such 

that hk € (f 1  .....f k)A.(gl .....g)A, 1 k j-1. Now 

f j  € S(f 1  .....f_ 1 ) S (S(h 1  .....h_1) + (f 1  .....f_ 1 )A) 

by 3.1.1 .(iv), so that there exist a1 e A and t1c S(h .....h_ 1 ) such that 

a l f j  a t 1 mod(f 1  .....f...1)A. which implies that t1c (f 1  .....fØA. 

Similarly there exists t2€ S(h 1  .....h_1)n (g 1  .....gØA. If we let h = t 1 t2, it 

follows from 3.1.1.(iii) that h i  C S(h 1  .....hi). Clearly 

(h, .....h)A s (f 1  .....f1)A.(g 1 .....g)A 

and the result follows by induction. 

Let t. be an ideal of A and let M be an A-module. The .1-height of 

fl, denoted .7 -hta- is given by 

Li- = sup{ it IN, I a. contains a sequence in 	of length i 

The )°-height of M. denoted )°-htm M, is given by 

-htm M = inf( ,f-ht(AnnAx)  I xc M ) 

The following result summarises several important properties of the 1-ht of 
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an ideal, all of which are easily verifiable from 3.1.3.. 

3.1.4. Corollary [21. (1.2)]. Let a- and b be ideals of A. Then 

(0 )°-ht(an&) = 7 -lit/3M = /nf( 1-17t4, )-ht'47); 

'f(f1,...,f)e f, then )°-/it((' 	frP) 2 p. for all
13 

 let 7-ht 4 = p, let k :5 p and suppose that (f1 ,.., Qc 
yk is a 

sequence of elements of LL. Then there exist ,j € Z, such that 

(f..,i)E )OP 

We recall from Chapter II the advantages offered by working with 

saturated triangular subsets. There exists a similar notion concerning 

denominator systems which we now describe. 

A denominator system I is said to be saturated if for all ft )°, 

S(f) = (5(f) + fA) 

The following result provides a useful characterisation of saturated 

denominator systems. 

3.1.5. 	Corollary 	[21, (1.3)]. A denominator system J°  is saturated if 

and only if whenever (f1 ....f)eA P  is such thatf-ht  (f1 ...yA _> i < isiz 

then (f1 ,...,f)e7. 

Proof Suppose that 7 is saturated and (f j ,...,f P)6AP is such that 

)°-ht (f 1  .....f)A 	1 	5 	j 	15 	p. Now 	it follows from 	the 	definition of a 

saturated 	denominator 	system that 	 . Suppose 	that 	j>1 and 

(f l , ... 	 By 	3.1.4.(iii), 	there exists 	gC (f 1  ,...,f)A such that geS(f 1  ..... 
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It follows that 

f1  E (S(f1 .....f 1 _ 1 ) + (f 1  .... 1 f_ 1 )A) 	= S(f 1  ..... 

so that (f 1  r .1t j)E J. 

Conversely, suppose that ..7 contains all (f 1  .....f) A, peiN, such that 

-ht(f1 .....f)A _> j, 1 :9 j t~ p. Let f € 	where we now fix p, and let 

f'e (S(f) + fA) 	. 	Then 	there  exists 	g € S(f) such 	that g € (f 1  ,...,f pi')Av  so that 

-ht (f 1  .....f,f')A 	a 	p+1 	It follows 	that f'e S(f), so 	that must be 

saturated. 

For a denominator system J,  we define the saturation of 
00 

denoted  J' , to be the set of sequences (f 1  .....f)€ UA', for which 

-ht (f 1  ..... f)A > j, 1 < i < p. It can easily be shown that Y° is the smallest 

saturated denominator system which contains  1. 

3.1.6. Example [21, (1.7)(a)]. Let A be a Noetherian ring and let M be a 

finitely generated A-module. Then the set of all poor M-sequences forms a 

saturated denominator system over A. 

Now, in the situation of 3.1.6., it is known that the poor M-sequences 

form a chain-of triangular subsets on A so that the above example provides 

further evidence of the tie-up between denominator systems and chains of 

triangular subsets. The next result investigates this connection explicitly. 

3.1.7. Proposition. Let .1 be a saturated denominator system  over A 

and let U = icily. Then U = { U / iflv) forms a chain of saturated 

triangular subsets over A. 
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Proof 	Let 	f = (f 1  .f)€ U i,. 	It 	follows 	from 	3.1.4(H) 	that 

i )A > j, 1 < i S p, for all choices of positive integers r 1  .....r, so 

that (f[',...,f7)eU' by 3.1.5.. 

Now suppose that g = (g 1  .....g) eU,. By 3.1.3. there exists (h 1  ..... 

such that h c(f1 .....f)A.(g1 .....gØA, 1 	j 	p, and since (f 1  .....f 1 )A.(g 1  .....g 1 )A is 

contained in (f 1  .....f)An (g, .....g)A we can clearly construct two lower 

triangular matrices H,K over A such that 

f]T = [h1 ... h]T  = KE91 

Hence U p 
 is a triangular subset of A, for all p€ IN. It remains to show that 

1J is a saturated triangular subset and that U p  is the restriction of U p,, to 

A, peN. 

Suppose that vc A P  is such that HvT = uT, for some uc u and 

f4cD 2 (A). Since (u1 ..... u)A ç(v 1  .....v)A. 1 	::%~ 	j :5 	p, it follows 	that 

,f - ht (v 1  ,....v)A a j, 1 	:~ j < P. 	Therefore vc U, since Y is 	a 	saturated 

denominator system, and it follows that U is a saturated triangular subset 

of A. 

By 3.1.1.(ii) it is clear that the restriction of U p,, to A'3  is contained in 

U. Now consider (u1 .....u)CU. It follows from 3.1.5. that (u1 ..... 

so that U p  is indeed the restriction of U p ,, to A' 3 , and the result follows. 

We now prove the converse to 3.1.7.. This result has been proved 

independently by Hamieh and Zakeri in [16, 2.5] by a method essentially 

similar to that which is employed below. 

3.1.8. Proposition. Let U = ,'ti / isff'/) be a chain of saturated 
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triangular subsets over A. Then Y =  U ti is a saturated denominator system 

over A. 

Proof We first show that Y is a denominator system by verifying 

3.1.1.(i)-(iv). Clearly  , so that (I) is true. Property (ii) is obviously true 

since It is a chain of triangular subsets. 

Now let f = (t 1  .....f 2) € U, and let 5(f) =Cfo,l I (Li .....f+1 )E U. 1 ). In order 

to verity (iii), we must show that S(f) is a m.c.s. of A. 

Suppose that f +1 ,f' +1  C S(f). Since 	is a triangular subset of 

there exist (g 1  .....g+1) U 4 1 and H,K€ D +1 (A). such that 

H[f1 ... fptl 
	

= [Qi ... g]T  = K[f1 ... 
f 1 1 ]T 

In addition, (Qi ..... g,1)Cu+1. Now, in an obvious notation, 

P 	 p 

= (h +1 j f j  + h +1 	+1 f +1 )(k +1.  jfj + k1 +1 f' +1 ) 

j'1 	 in 

P 

= Lmf; + 
Jill 

for some m 1  .....m +1 cA. If we denote by WE D. 1. 1 (A) the matrix formed from H 

by replacing the (p+1)th row by (m 1  .....m +1 ) and leaving the other rows 

unchanged, then 

H'[f 1  ... f, f,1f1,41]T = [g1 ... 9
2 
 p+i' 

which implies that (t 1 	 E U,..1 = )
O P1 since 	is a saturated 

triangular subset of 	It therefore follows that f +1 f', 1  £S(f 1  .....f r). so that 
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S(f1 . f) must be a m.c.s. of A as required. 

It now remains to verify 3.1.1.(iv). 	Suppose that f = (f1 .....f) and 

g = (gi ..... g) are elements of U, such that gAfA. If 	(Gi .....g.1)€U+1 	we 

can use the argument of the proof of 2.1.5. to show that 	(f 1  .....f.g +1 )6U +1  

also. It follows that 5(g) G 5(f). 

Now suppose 	that 	f 1  c S(f), so that 	(f 1  .....f + 1) EU 1 . 	Since, 	in 

addition, 	(g1 ..... g + 1)cU + 1, there exist (h 1  ..... h,1)cU + 1 and S.KED +1 (A) such 

that 

S[f1 ... f + i]T  = [h1 ... h +1  ]T = KEg1 
... 

It is easily seen that (gi 
.....

g,h1)CU2,1. Now, in an obvious notation, 

P4.1 

h+1 = 	Sp+i 1f € fA + 5 p-.i p-.-ip-*is 

and it follows that 5p+1  +1 f 2+1  C S(g) + IA, since h +1  C S(g). 	Therefore 

f 1 E(S(g) + fA), which implies that 

S(f)ç(S(g) + fA) 

as required. 

Thus, 3.1.1.(i)-(iv) are verified for 	= YU j  and it follows that 	is a 

denominator system over A. In order to complete the proof we must show 

that ..7 is a saturated denominator system. 

Let ptlN and let fe 	Suppose that f'€ (S(f)+fA), so that 
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P 

h'f' = f + 1 + Jhifj 

for some f 0 1E 5(f), h',h 1  .h€A. It follows that 

fP+J= 
	

+ h'f' 

so that it is a simple matter to construct a matrix HE D +1 (A) such that 

H[f1 ... f f91T = [f 1 	f f +1  ] T . 

Since U is a chain of saturated triangular subsets, it follows that 

(f 1  .....ff')é 'f , so that f'c S(f). Therefore 5(f) = (S(f)+fA), so that I is a 

saturated denominator system. 

It is clear from 3.1.7. and 3.18. that there exists a 	1-1 

correspondence between saturated denominator systems and chains of 

saturated triangular subsets. In the following section we will investigate the 

connections between the respective complexes constructed using these 

objects, namely denominator system complexes and complexes of modules 

of generalized fractions. 

2. Denominator system complexes and complexes of modules of 
generalized fractions 

Let A be a ring. In [21] Kersken constructs, from an A-module M and 

a 	denominator system Y, a complex C( J;M). We remark 	that 	in 	[21], 

'(J;M) 	is 	referred to as a Cousin complex a term which 	is 	used 	in 	a 

different sense in this thesis. For this reason, we shall refer to C( J;M) as 
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a denominator system complex In this section, we give a brief description 

of the construction of denominator system complexes, and we show that 

these complexes are identical to the complexes of modules of generalized 

fractions 	which 	were 	discussed in 	1.4.. 	The 	equivalence of these two 

structures has also been demonstrated in [16], by Hamieh and Zakeri, whose 

method of proof differs from that employed in this thesis. 

Before describing the construction of the denominator system 

complex C( ';M), we require some preliminary results and definitions. 

3.2.1.Lemma 121, (2.1)1. Let Y be a denominator system, let pc/N and 

let M be an A-module such that )°-ht(AnnA M) ? p. Then, if f,ge YP are 

sequences in AnnA M. Ms(f, M51g1 

Proof By 3.1.3. there exists hE f P such that hA 	fAfl gA. It follows 

from 3.1.2. that (M/fM) 5(f) 	(M/fM) s(h)  and (M/gM) (9) 	(M/gM) 5() . The result 

now follows since fM = 0 = gM. 

The above result leads to the following definition. Let Y and p be as 

in 3.2.1.. For a finitely generated A-module N, such that ) °- htm N a. p, we 

define C ( ;N) to be the module Nsu,  for any sequence f 6 J°  such that 

fAAnnAN. By 3.2.1. this is uniquely specified up to isomorphism. 

Suppose now that M is an A-module such that f-htm M >_ p. Then 

it is left to the reader as a simple exercise to show that 

( C( y° ;N) N M, N finitely generated } is a direct system  under the maps 

induced by inclusion and localization at an appropriate S(f), and we define 

C( ;M) to be the direct limit of this system.  Furthermore, since M is the 

direct limit of its finitely generated submodules, the system of canonical 

maps ( CN N • C( Y;N) ) induces a map CM : M -. C(,)° ;M). It is shown in 
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[211 that J°-htm (Coker EM) ~ p1, a fact which is important for the 

construction of the denominator system complex. We now give this 

construction in the following theorem, which we state without proof. 

3.2.2. Theorem (21, (2.4)]. Let M be an A-module and let Y be a 

denominator system over A. There /s, up to isomorphism, precisely one 

complex 

.... à(M)4 1(y;M) 

with the following properties: 

(J)à'(YYM)z0,6 =O, for i<-7; 

&(Y;M) =M; 

Y,-M) = C(.7; Cokerd P2)  and op -  i /5 the composition of 

the canon/cal homomorphisms 

-1 (-Y,-A4) Coker 	&P  (J',M), p .> C. 

The following result is important for our purposes, as it allows us to 

work with saturated denominator systems without any loss of generality. 

3.2.3. Proposition [21]. Let lvi and )° be as in 3.2.2., and let 0 

denote the saturation of 1. Then there is an isomorphism of complexes 

+ 5'y;M) which restricts to the identity map on 

Proof For f € Y,  let g(f) = (f  P +1 I (f 1  .....f + 1)c 	It is clear that 
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(S(f)+fA)'c 5(f). Now suppose that f'G S(f). Then (f 1  .f,f') 	, so that 

)° -ht (f 1  .....f,f')A > p+1, by the definition of saturation. By 3.1.4.(iii), there 

exists f +1  €(f1 .....f,f')An S(f). It follows that f'e (S(f)+fA), so that 

§(f) = (S(f)+fA) 

Now let X be an A-module such that 	-htm X Zt p. It is easily 

seen that this condition is equivalent to Y-htrn X 2! p. For a finitely 

generated submodule N X there therefore exists he ,fP  such that 

hA AnnA  N. Since he it follows that 

C(f P;N) = 	
= Ni 	 = NS(h) = C( )° ;N) 

Therefore C( ) ° ;X) = C()° ;X), and the result follows immediately from the 

construction of the denominator system complex. 

As a consequence of 3.2.3, we can work exclusively with saturated 

denominator systems, in a fashion similar to that in which 1.3.2. allows us to 

consider only chains of saturated triangular subsets without any loss of 

generality. The reader will recall from the previous section that saturated 

denominator systems are identical to chains of saturated triangular subsets 

in an obvious way, and we shall now demonstrate that the respective 

complexes associated with these objects are also identical. Before 

proceeding with the main result of this section, 3.2.7., we require some 

preliminary results concerning complexes of modules of generalized 

fractions. 

3.2.4. Proposition. Let 21 = (LA / /6/N) be a chain of triangular 

subsets on A. Let M be an A-module and let 	 be the complex 
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eO 	-1 	e 	 -. 	 e' 	•... 

0 • M - U, M 	... ~ Uj'M 	Uj M ~ 

as was described in 1.4.. Then • Coker en- 1    U[1] 1  M under the natural 

map, for all neW 

Proof The complex t4 ,M) is the direct limit of the direct system of 

complexes { t° (tL(xLM)), (with corresponding maps e3, as described prior to 

1.4.1.. It is an easily verifiable consequence of 1.4.2. that 

Coker er1  U(x)[lF 1 M, under the natural map. The result follows on 

passing to the direct limit and applying 1.2.6. to the direct system 

{ tJ(x)[1fl'M I x€Uj. 

3.2.5. Lemma. Let U and M be as in 3.2.4. and let n&Tt'/. Suppose that 

= C in U,'M. Then there exist (v1 ,.., v 41 )e U .1  and HcD(A) 

such that I-I [u1  ... uf = 	... vi and v fbi/rn E V
I
M.n .1 

Proof 	Let 	m/(u 1  .....u,1) = 0 	in 	'' 1 M Then 	there 	exist 

(w 1  .....w n+i)EU n +i and KiW +1 (A) such that K [u 1  ... u,, 1 IT = 1w 1  ... w +1  ] T  and 

Kim € wM . Let H' be the top left nxn-submatrix of K. By Cramer's Rule, 

IK1.1 C IH'Iw +i  + 

III 	 n 
so that H'Iw+1m C wiM, since IKIm C XwiM. Setting H = H' and v 1  = w, 

1 < i S n+1, the result follows. 

3.2.6. Proposition. Let it be a chain of saturated triangular subsets of 

A, let M be an A-module and let n'DV. Then, for any submodule N M and 

U = (u1 ,.., u)EU, 
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N/(1,1) = {m/(u1 ,.,u,7)/mefll} ,and 

N/(u,S(u)) = {m/(u1 ,...,u,$)/mcN, scs(u)) 

are submodules of 	 M and U' M respectively, where S(u) has the 

same meaning as its denominator system analogue. Furthermore, 

[N/(u, 	_7  

under the natural map. 

Proof It 	is 	straightforward 	to show that 	N/(u,1) and N/(u,S(u)) are 

submodules of U41i 1 M and U,-n-1 M respectively 	and this is 	left 	to the 

reader. For simplicity of notation, we denote typical elements of N/(u,1) and 

N/(u,S(u)) by m/(u,1) and m/(u,$) respectively. 

Now let 	[ N/(u,1)Js(U) -. N/(u,S(u)) be defined by 

= m/(u,$) 

We must first show that $ is well-defined. 

Suppose that (m 1 /(u,1))/s 1  = ( m 2 /(u,1))/s 2  in [N/(u11)]scj.  Hence there 

existst'S(u) such that 

t(s 2m 1 /(u,1) - s 1 m 2/(u,1)) = 0 in U[1]'"1 M, 

t(s 2 m 1  - s 1 m 2)/(u,1) 	= 0 in U[1]"' 1 M, 

* 	t(s 2m 1  - s 1 m 2)/(u,1) 	= 0 in U1M 



By 1.2.3.(iii), it follows that 

t(s2m 1  - s 1 m 2)/(u,ts 1 s 2) = U in U4 1 M ni 

which implies that m 1 /(u,s 1 ) = m 2/(u,s 2 ) by 1.2.3.(i). 	Therefore 	is 

well-defined. 

It is clear that 	is a surjective A-homomorphism, so that the proof 

is complete on verifying that 	is injective. Suppose that m/(u,$) = U in 

N/(u,5(u)). Then m/(u,1) = 0 in N/(u,S(u)) by 1.2.3.(iii), and it follows from 3.2.5. 

that there exist ye U,,. 1  and He D(A) such that H[u1 ... u,] T  = [v1 ... v1T and 

v.1IHIm 4vM. 	This implies that v +1 m/(u 1  .....u,1) = 0 in U[1]1  M, by 

1.2.3(i). 	Moreover, v 4. 1 € S(u) so that m/(u,1) = 0 in [N/(u.1)]s(U). 	It now 

follows that $ is injective 

We are now in a position to present the main result of this section 

which has also been proved by Hamieh and Zakeri in [16] by a computational 

method. 

3.2.7. Theorem. Let U = { U / /6 IN } be a chain of saturated triangular 

subsets on A. let I = U Li be the corresponding saturated denominator 

system and let M be an A -module. Then there is a degree 7 isomorphism 

of complexes 5(JtiM). C(ZLM) such that M-. M is the 

identity map. 

Proof Let p e NO and suppose that there already exist isomorphisms 

i 	p-i, such that 4(1  is the identity map and the following diagram is 

commutative. 
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GT 	
P1 e 

0 -* M - 	U 1 M ~ ... -. u p  2 M 

1$ 2  141 	10 
a 

• M 
fi 

0(M) i... 	
2 

	CM). 

By 3.2.2., 	(f;M) = C(Y;Coker 5r2).  Now 4 P- 
I  induces an isomorphism 

4': Coker 	• Coker 	and Coker e 	U 2 [1]-1 M by 3.2.4.. It follows 

that 	14.' 	in 	turn 	induces 	an 	isomorphism 

C( i' 2;Coker 522) C( ,y;u 2[i]-- ' M). Any finitely generated submodule of 

u 2 [1] -n l M can be written, in the notation of 3.2.6., as N/(u,1), where N is a 

finitely generated submodule of M and ucU 2. Now u is clearly a sequence 

in AnnA(N/(u,1)) by 1.2.3.(ii), so that C( °2;N/(u,1)) = [N/(u,1)]s( U ). It therefore 

follows that 

C(;U2[11-1M) = hm([N/(u, 1 )]s( u ) I N/(u,l) a f.g. submodule of U 2E1F 1 M }, 

where the map {Ni/(ui,1)]sc - {N 2/(u 2 ,1)1 1  with N 1 /(u 1 ,1) c N 2/(u 2,1), is 

the homomorphism induced by localization at S(u 2) composed with the 

isomorphism of 3.2.1.. By 3.2.6., we can identify each [N/(u,1)]s(U)  with its 

isomorphic image N/(u,S(u)) in Ue 1 M. It is left as an exercise to verify that PI 

the map [Nl/(ul,1)]S() • [N2/(u2,1)]S( U ). where N 1 /(u 1 ,1) .N 2/(u 2,1), induces 

the inclusion map N 1 /(u 11 S(u 1 ))cN 2/(u 2 ,S(u 2)) under this identification. It 

follows that 

C( y2;u21i j1  M) = Hm (N/(u,S(u)) I N/(u,1) a f.g. submodule of U 2[1 F 1  M }, 

a direct system of submodules of 	under inclusion maps. It is now 
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easily seen that 

C( f";U 2[1F 1 M) Z u; 1 M 

so that 4' induces an isomorphism 4?:C( 	°";Coker 6P2) 
-. U 1 M. It 	is clear 

from the above construction that 	= and the result follows by 

induction. 

It follows from 3.2.7. that the concepts of a denominator system 

complex and a complex of modules of generalized fractions are equivalent. 

We conclude this section by employing some of the ideas encountered in 

the proof of 3.2.7. to prove a generalisation of 1.3.3.. This result was 

originally proved by O'Carroll in [10] by an alternative method. 

Let 	U 	be 	a saturated triangular 	subset 	of A°1 , 	let 	U 	be 	the 

restriction of U to A O  and let M be an A-module. We recall from 	1.3. that for 

x,yeU, 	such 	that y 	= Hx T , H€D(A), 	there is 	a 	homomorphism 

M/xM • M/yM which is 	induced by multiplication by JHJ. If we subsequently 

localize 	at S(y) 	and compose the resultant map with the 	isomorphism 	of 

3.1.2., we obtain a map 

•: (M/xM)sk, • (M/yM)5 1  

Now under these these homomorphisms { (M/xM) 	j xcU, } forms a direct. 

system (see Appendix I), and we have the following generalisation of 1.3.3., 

originally due to O'Carroll. 

3.2.8. Theorem . Let U and M be as above. Then 
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( (M/xM) ) L/ 1  M. 

x a U,, 

Proof Let 	L = tim {(M/xM)s()} 	and let 	( u X :(M/xM)s(,) • L } 	be 	the 
- 	X6LJ,, 

corresponding natural maps. 	Now 	it is 	known 	from 1.3.3. 	that 

lim ( M/xM } = U[11 . '" 1 M, with natural maps X,, say. Let xeUJ We first 

show that Ker ja 	(Ker X X)s(). 

Suppose that 	(m+xM)/s € Ker p, 	so that 	there 	exist ycU, 	and 

H € D(A) 	such that 	y 
T = HxT  and xv( (m+xM)/s 

) = 0. 	Since 

(m+xM)/s = (m'+xM)/s', where rn'e M and s'cS(y), by 3.1.2., it follows that 

there exists v6S(y) such that vIHm'eyM, so that vrn'xMc Ker X, <. Therefore 

(m+xM)/s = (m'+xM)/s = (vm'+xM)/s'v e (Ker 

Similarly it can be shown that (Ker X,js(x)  ci Ker 

It therefore follows that 

Im 	[ (M/xM)/Ker X]s(.) Z [M/(x, 1 )]sk 

in the notation of 3.2.6.. Now [(M/(x,1)15() 	M/(x,S(x)), by 3.2.6.. If y c U, and 

HeD(A) are such that HXT = v  it can easily be shown that the inclusion 

map tm MGIm  p induces the inclusion map M/(x,S(x)) M/(y,S(y)) under 

this identification. Therefore 

L = U Im 	U(M/(x,S(x)) = U 1 M 
XE15,, 
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as required. 

3. Complexes of Cousin type and complexes of modules 
of generalized fractions 

In this section, we make use of some of the ideas and results of the 

previous section to give a simplified account of the connection between 

complexes of Cousin type and complexes of modules of generalized 

fractions, originally investigated by Riley, Sharp and Zakeri in [281 and [29]. 

We begin by giving some definitions. Throughout this section, A is a 

Noetherian ring. 

3.3.1. Definition [33, 1.11. A sequence Sz° = C Fj I i e [N o) of subsets of 

Spec A is called a filtration of Spec A if, for each iE N O, F j  2 F +1  and if each 

member of F \ F 11 , which set is denoted DF, is a minimal member of F j  with 

respect to inclusion. Furthermore, we say that a filtration I admits M if 

SuPPAM GF0. 

3.3.2. Definition [28, Chapter III, 2.1.1. 	Let )° = { F j  iglN 0 ) be a 

filtration of Spec A which admits M. A complex X = ( x Ii ;2: -2 } of 

A-modules and A-homomorphisms is said to be of Cousin type with respect 

to hf it has the form 

a-2. 
	-i 	 a 

0 • M • X0  • 	• X 

and satisfies the following conditions, for each n E  [NO: 

(i) SIJPPAX c F,,; 
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SuppA(Coker  d' 2 ) 

SuppA(Ker  d 1  / IM dr 2 ) 	F,, 1  and 

the natural A-homomorphism 	x + 	ED(X"), , such that for 

xcX" and €3F, the component of 1 (x) in the summand (X') is x/1 (it 

follows from (i) and (32. 2.2 and 2.31 that such an A-homomorphism exists), 

is an isomorphism. - 

Suppose now that U = ( Ui  I kIN ) is a chain of triangular subsets 

on A. Given an A-module M, we can form the complex 

60  

o -. M 	 •. -* I.JM 	UjM 

Put GO = SuppA M and, for i c IN, define 

= { 'ESUPPA M I there exists (u j ,...,u j)eU j  with 	Au 1  

The family 	= { G i  I i € D'J 0} of sets of primes of A is called the sequence 

(of sets of primes) induced by IL and 44 It is a straightforward matter to 

show that the chain of saturated triangular subsets consisting of the 

saturations of the U j  induces the same sequence as it , and so we may 

assume without loss of generality that U is a chain of saturated triangular 

subsets. 

Let us suppose that U is a chain of saturated triangular subsets on 

A, M is an A-module and that the sequence q induced by It and M is a 

filtration of Spec A. It is shown in [28, Chapter III, 	ill that, when this is the 

case, the complex CU,M 	is of Cousin type  with respect to 	9. In this 
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section, we give a proof of this result which makes use of the material of 

the previous section to avoid some of the technical manipulations of 

generalized fractions present in [28]. Before proceeding with the main 

result, 3.3.4., we make some observations and give a preliminary result. 

Consider f = (f 1  .....f)€U and, as in the previous section, let 

S(f) = C f +1  CA I (f 1  .....f..1)e U.1 ). Then S(f) is a saturated m.c.s. of A and 

its complement in A is therefore the union of the prime ideals which do not 

intersect it. The following proposition provides a useful relationship between 

this set of primes and the primes of . For simplicity of notation, Spec A5 (f)  

is identified with its homeomorphic image in Spec A, whenever the context 

demands it 

3.3.3. Proposition. Let U, 7 and f be as above. Then 

SuppA(M/fM) 

Spec A5(f)fl SuppA(M/fM)c  3 

Spec AS(f)fl SuppA(M/fM)  consists of minimal members of 

SUPPA (M/fM). 

Proof (i) If 	€ SuppA(M/fM), then fA g and PE SuPPAM. Therefore 

eG o . 

(ii) Let 	6 G,., . 	Then there exists (9 1  .....g1)eU 1  such that 
ntl 

gA G 	For 	any 	f +1  € S(f), 	there 	exist 	H,K C D +1  (A) 	and 

(w1 .....w+1)cU+  such that 

H[f1 ... f]T = [w1 ... w+1]T = KEg1 
... 
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so in particular w r .1 E. Denoting (w 1  .....w) by w, we have wAfA so that 

by 3.1.1.(iv), 	S(w)c S(f) . Thus 	w r .1 eS(f), 	so 	that si 5(f) # 	. 	Hence 

Spec A5(f) , and the result follows from (i). 

(iii) This is immediate from (i) and (ii) since 	is a filtration of 

Spec A. 

We can now present the main result of this section which was 

originally proved by Riley in [28]. 

3.3.4. Theorem [28, Chapter III, 1.8 and 1.111. Let U = u /16(N) be 

a chain of saturated triangular subsets on A, let M be an A -module and 

suppose that the sequence of sets of primes 9 = I C / iE No  1, induced by 

U and M, is a filtration of Spec A which admits M. Then the complex 

C (1/ ,M) is of Cousin type  for M with respect to (where, in the notations 

given above, X and d correspond to 	M and e 1 +1  respectively). 

Proof We must verify properties (i)-(iv) of 3.3.2. (for all n c (N 0 ), 

taking into account the various small changes in notation given above: 

Let 	n€O'J 0 , 	and consider 	€ SUPPAM where 	G, Let 

E 	. 	Since G, 	uA 	; hence 	u1 
?? 

for some 

i€{1 .... n}. 	Now 	u 1 m/(u 1  ..... u +1 ) 	 = 0, 	by 	1.2.3.(ii), and 	it 	follows that 

= 0. Hence SUPPA(U 	'M) cG, so property (i) of 3.3.2. is verified. 

By 3.2.4., Coker d' 2 	U[1f' 1 M. Property (ii) of 3.3.2. now follows 

by the preceding argument. 

As for property (iii) we first remark that it is a straightforward 

consequence of 3.2.4. that 



Ker e"/ Im e 1 	Ker 4) 

where 4) U[1FM • U[ 1 M is the natural map. Consider 4€ SUPPAM, 

where !f3 4o,,+, and consider an arbitrary element m/(u 1  ..... u,1) of Ker 4). 

Then m/(u 1  ..... u,1) = 0 in U11M.  Hence, by 3.2.5., there exist HeD(A) and 

(v 1  .....v + 1) U1 such that 

H[u1 ... u,f 	[v1 ... v]T, v+i jHIm € v 1 M 

Thus in U[11- '" 1 M, IHIm/(v i .....v,1) is annihilated by v, + 1. In addition it is 

annihilated by 	v, I 	i 15 	n. 	Since 	G + 1, there exists j 	such that 

1 	< j C n+ 1, with v 	. Hence 1Htm/(v 1  .....v,1) rn/(u1 ..... u,1) has the zero 

element as image in (Ker 4)), so (Ker 	= 0. Thus property (iii) of 3.2.2. 

holds for the complex C( lL,M). 

In order to prove that the final property holds, we recall that, by 

3.2.8., U[ M is the direct limit of the family ( (M/uM)s( U ) I u € U ), under 

homomorphisms obtained from localization of determinantal maps. Fix 

f 	= 	(f 1  .....f) e Un,  and consider the module (M/fM)sw; 	if 	is in 	its support 

then fAr, so 	€ G. 	In 	this 	situation [32, 	2.2 	and 	2.31 guarantee the 

existence of the natural homomorphism 

(M/fM) 5(f)  + ® [(M/fM)s(f)]p 

Since fA c 	and 	e 3G imply that S(f)nj2 = 01 it is clear that there is a 

natural isomorphism. 

9 [(M/fM)5(f)],., 	9 	(M/fM),  

"a Gn r)PC 'äGfln5uI1pAM/;fl 	r 
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Now consider qe Spec Ag(f).  If  q SuppA(M/fM), then the localization of i4 

	

at LT is trivially an isomorphism. 	If 	E SuppA(M/fM), then by 3.3.3.(i1), 

G, (I Supp4(M/fM). Now for 	e 3G,n Supp4(M/fM) 

(M If M) Cf 

[(M/fM)p] q. = 

0 
	

if 	, by 3.3.3.(iii). 

Therefore it follows immediately from (*) that the localization of 'P f  at such a 

is an isomorphism. Thus, 1p f  is an A5 (f) -isomorphism (and therefore an 

A-isomorphism), and the result follows on passing to the direct limit (see 

Appendix I). 

Now in [29], Riley, Sharp and Zakeri examine the situation where M is 

an A-module with the property that Ass 4M has only finitely many members 

and I = { F j  jie IN 0 1 is a filtration of Spec A which admits M. In this case it 

was shown [29, 2.3] that the family U = U, I n e IN ), where 

U = C (u ,.,u)€A" for each i = 1 ..... 

Au 1  0 for all P € DF. 1  n SuppAM ), 

is in fact a chain of triangular subsets on A. 

We now show that the main result of [29] can be derived in a direct 

way from 3.3.4.. 

3.3.5. Theorem [29, 2.5]. Let M be an A-module such that A5SAM  has 

only finitely many members, let 7 be a filtration of Spec A which admits M, 

and let II = ( u / a c IV ) be the chain of triangular subsets defined above. 

M. 



Then the complex C(11,M) is of Cousin type for M with respect to 77. 

Proof Consider the filtration q =  (G i  I iEIN0 ) where G 1  = Fn SUPPAM; 

Clearly it suffices to prove the result for 	in place of 	Now let 

C ft j i€ 11%) be the sequence of sets of primes induced by U and 

M. In view of Theorem 3.3.4., it is enough to show that fJ= ç. 

Now H 0  = G 0  = SuppAM. Assume that ne IN and that H 1  = G 1  for 

= 0.....n-1. Let 	s H,1 . Then there exists (u 1 .....u) C U,, such that AuC 	, 

so 	@G i  for i = 0.....n-1 . Hence 	so 	G,,. 

Conversely let 	E G. Then 	6 G,,, since 0 n 	 so r 4 H,,_ 1  

by the induction hypothesis. Therefore there exists (u 1  .....u,, 1 ) C U,,_ 1  such 

that 	Au 1  C . Now by [29, 2.11 there are only finitely many members of 
I 	 n-I 

3G,,_ 1  which contain 	Au ; denote these by q ......, say. If P QUq j  

then 	 for some m, which gives a contradiction since 	3,,. 

Therefore there exists u n e lO such that u,,# G for j = 1,...,r . Hence Au 1  

for all £E 3G_ 1 . This implies that (u 1  ..... ii,,) EU,,, so P e H . Thus H,, 	0,,, 

so 	= 	by induction, and the result follows. 

& Direct limits and flat dimension of 
generalized fractions 

In this section we return to the situation where A is an arbitrary ring. 

For an A-module M, we define the flat dimension of M, denoted flatdim.M, to 

be the largest integer k such that there exists an A-module X with 

Tork(M,X) # 0, if such a k exists, and otherwise. Now if S is an m.c.s. of A, 

then it is well-known that 



S 1 Torm (M,X) = Tor m(S MX) 

for any A-module X and rn€N 0, and from this it easily follows that 

flatdim.S'M 	flatdim.M 

for any m.c.s. SCA. In view of the fact that the formation of modules of 

generalized fractions with respect to triangular subsets of A l  is equivalent to 

ordinary localization, it is of obvious interest to investigate whether any 

analogous relationship exists between flatdim.M and flatdim.U'"M, where 

n ~t 2. This has already been done by Riley in [28], and de Chela in [71 for 

the case where M is an A-module and U is a triangular subset of An  such 

that u1 .....u_ 1  is a poor NI-sequence for all (u 1  .....u)€U, and it is this 

situation with which we are concerned in this section. 

Now Theorem 3.2.8. provides us with a description of an arbitrary 

module of generalized fractions U"M as the direct limit of a system of 

localized quotients of M. By adopting this approach to the calculation of flat 

dimension, we prove a generalization of a result of Riley, from which one of 

the main results of [7] follows in a straightforward manner. Indeed the main 

result of this section 3.4.5., demonstrates that a very concrete relationship 

exists between the flat dimension of UM and the flat dimension of the 

modules in the direct system for the situation described above. 

We shall make considerable use of the following result which 

involves direct systems and the To r functor. 

3.4.1. Proposition. [28, Chapter IV, 5.4; see also Appendix I]. Let 

•)X,Y A be a direct system  of A -modules and A -homomorphisms. 

70 



Let keff%and let Xbean A-module. Then 

(roçM1xh' " A xv x.Y€  

forms a direct system where $' . . ToçjM,X) ~ Toç(MX), x,ycA, is the map 

induced from 4, by Toçj-,X). Furthermore, under these homomorphisms. 

Tor (lim M ,X) 	urn Tor (M ,X) 
k-- x 	 -. k  x - 

'ceA 	XeJ 

Until further notice, let M be an A-module such that flatdim.M = 

k e N0, and U is a triangular subset of 	n € IN, with the property that 

u, is a poor M-sequence for all (u 1  .....u + )e U. As before, U will denote 

the restriction of U to A. We have the following corollary to 3.4.1.. 

3.4.2. Corollary. Let m 	and let X be an A-module. Then 

Tor (LJ 1 M,X) = I/rn Tor 	M1xM I X) 
XE LJ 

under the maps induced by Torm  (-,X) from those in the direct system of 

3.2.8.. 

Proof This immediate from 3.2.8. and 3.4.1.. 

Our first aim is to give a simplified proof of a result of Riley, for 

which we require the following lemma from folklore. 

3.4.3. 	Lemma. 	Let x1 ,...,x 	be 	an 	M-sequence. 	Then 

flatdim.M/xM < n'k (and hence fIatdim.(M/xM) !~' n#k for any m.c.s. SCA). 
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Proof By induction it suffices to prove the result for an M-sequence 

of length one. The proof in this case is entirely standard. 

3.4.4. Proposition [Riley, 28, Chapter IV, 5.51. Let U, ii, M, and k be as 

described above. Then flatdim. U 1  M < kn. 

Proof This is immediate from 3.4.2. and 3.4.3.. 

We now present the main result of this section which examines in 

more detail the relationship between flatdim.U" 1 M and the flat dimensions 

of the individual modules in the direct system ( (M/uM)S( U ) I u€ U. ). 

3.4.5. Theorem. Let U, 114, ii and k be as before. Then 

fIatdim.U" 1  M = sup (f/atdim.(M/uM) 	). 5(u) 

WtJ4a*& 	,rL U 
Proof LBV 3.4.3., sup ( flatdim.(M/uM)S( U ) } = s for some SE (N, so that 

Ut Ui1  

there exists x = (x 1  .....x)eU 	such that fIatdim.(M/xM) 5()  = 5 . It is clear 

from 3.4.2. that flatdim.U 1 M !~ 5 . Now suppose that H = [h]E D(A) and 

yeU are such that V T  = Hx T  and let $ (M/XM)s( X ) .* (M/yM)s( V) be the 

corresponding homomorphism in the direct system of 3.2.8.. 	Since 

flatdim.(M/xM) S()  = s, there 	exists an A-module 	X 	such 	that 

TorS ([M/xM]S( X ),X) + 0. Furthermore we have a map 

Tor S ([M/xM]S( X ),X) 	Tor S ([M/yM]S( Y ),X) 

induced by . By 3.4.2. and the properties of direct systems, it suffices to 

show that $' is injective in order to show that Tor(U 1 M,X) # 0. 

72 



We will denote by He D(A), 1 <— I :5 n, the matrix whose 1 °' row is 

the ith  row of H and whose other rows are those of the nxn identity matrix. 

In addition, (x 1  .....x_ 1 ,y 1 .....y,,) € A n  will be denoted by (x,y) 1, 1 i S  n. Since 

- 	
- 	 U 	is saturated, it follows that (x,y) €U, 

1 :!-~ I !~ n, and we also note that H1[x v][ +i = [x y] and that IHI = h 1 . 

The map 	can be expressed as the composition 0 1 0 0 2 0  ...  O fl  where 

1M/(x,y)+1M151 	-* [M/(x.y)M]s(xV)i 

is the map from the direct system of 3.2.8.. Therefore ' can be expressed 

as the composition 	 where 

Tor5 ([M/(x,y) +1  M]s(xV). ,X) 	Tor S ([M/(xy)M]S( flV ). ,X) 

is the map induced by 	. To show that 	' is injective it suffices to 

demonstrate that 4' is injective, 1 :g i :!~ n. 

Since x 1  .....x,y 1  .....y, and x1 .....x_1,yi.....y,  are both poor M-sequences 

by [25, 3.21, it follows frorn2.2.1. that the determinantal map 

M/(x,y). 1 M 	M/(x,y)M 

is injective. Now Coker i = M/(x,y)M+hM, and since yM 	xM + 

Coker i = M/(x 1  .....x_1h,y +1  .....V)M , here denoted M/(x,h,y)M. It is a simple 

exercise to construct a matrix KeD(A) such that K[x h ij  y]T = VT, 50 that 

(x,h 1 ,y)eU since U is saturated. We therefore have the exact sequence 

73 



0 - M/(x,y) +1 M 	M/(xy)M -* M/(x,h 1 ,y)M -.. Q 

Now localizing at S(y) and employing 3.1.2. gives the exact sequence 

o -. [N1 /(x,y)j+lMls(. y ) 	-. [M/(xy)jM]s( flV ). 

• [M/(xhIfv)M]s( X h.) -.. 0 

In the long exact sequence induced, by Tor(-,X) we have 

+ Tor S +1([MI(x,hI.y)M]s(h 1  ,v ),X) 	TorS([M/(xy)I+lM]s( XY),x) 

01 
~ TorS([M/(x,y)IM]s(. V),x) -. 

Since (x,h 1 ,y)U, TorS#1UM/(xhII , y)M]s(.h.. V ),X) = 0 by the definition of s. 

Therefore the map 	is injective, 1 !!~ I :!~ n, and thus •' is injective. Hence 

Tor9(U''"1M,X) = !iia T0r S UM/uM]S( U ),X) # 0 
X E  UM  

since the map from Tor S ([M/xM}s(,),X) to the direct limit must also be 

injective, and so flatdim.U'" 1 M = 5 

The ma Cent Lt ncLtwj 	 ca, 	c.c e4 1&a cvjtd 
ii. t€44Ctv0 	tht ASn 

We can now deduce in a straightforward manner one of the main 

results of (7]. 

3.4.6. Proposition (Flores de Chela, 7, 391. Let U be a triangular 

subset of A n+1  such that u1 ,...,u is a poor A -sequence for all (q1  ,...,u 1  )e U. 

If U"A j C then flatdim.1J 1 A =n. 

Proof Suppose that U 1 A t 0, so that by 3.2.8. there exists xeU, 

74 



such that (A/xA)s(,) 	0. We show that flatdim.(A/xA)s(,) = n, and the result 

follows from 3.4.5.. Now 3.4.3., with k = 0, shows that flatdim.(A/xA)S(X) S n. 

To show that equality holds we consider the Koszul complex K(A;x 1  .....x) 

which provides a free resolution of A/xA: 

K(A;x 1  .....x):O-.A. 	SA •...- @A .A-0 

Tensoring with (A/xA)sj  gives in particular 

an  6 1 (2) 
0 • (A/xA)s(X) - 
	

¶ (A/xA)s(X) 4. 

Now Tor fl (A/xA.(A/xA)s( X )) = Ker301 = (A/XA)s( X ) # 0 . It therefore follows 

that flatdim.(A/xA)s(,) = n , and hence flatdim.U''A = n, by 3.4.5.. 

Our final result 	of this section 	demonstrates 	another 	situation 	in 

which 3.4.5. can be used to give a precise value for the flat dimension of a 

module of generalized fractions. 

3.4.7. Proposition. Let A be a Noet/ierian ring, let M be a finitely 

generated A -module of flat dimension k < w and let U be a triangular subset 

of A consisting of poor IV-sequences. If U(7T 1  M 0, then 

flatdim.U[71 1  M = n#k. 

Proof Consider x cU such that M/xM i 0. Since M/xM is finitely 

generated, flatdim.M/xM = proj.dim.(M/xM) by [3, p.122, Ex. 3(b) 1. By [22, 

p.129, Lemma 5 1, proj.dim.M/xM is equal to the supremum of 

proj.dim.(M/xM) ( as an A, -module) for the maximal ideals Ut- of A. Since 

M/xM # 0, there exists m€ Maxspec A such that (M/xM)m # 0. In this case 

x 1, considered as elements of A , form an M, -sequence. Therefore 
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applying 122, p.131. Lemma 61 and induction we have that 

roi.dm.4  (M/xM)m, = n+k 

Hence flatdim.M/xM = n+k for all xeU such that M/xM U, and the result 

follows from 3.4.5.. 
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CHAPTER IV 

1. Vanishing of modules of generalized fractions 

In this section we include some miscellaneous results concerning 

modules of generalized fractions and, in some particular cases, we 

investigate conditions necessary and/or 	sufficient 	for 	a 	module 	of 

generalized fractions to 	vanish. This 	problem 	has 	previously 	been 

investigated by Haniieh and Sharp in [15], the main result of which we now 

recall. 

4.1.1. Theorem 115, 3.21. Let M be an A-module such that dimAM = n. 

Than, if k 2~ n#2, LJM = C for any triangular subset UCA 1'. 

The following result, 	due to Zakeri, 	is of importance in the proof of 

4.1.1., 	which 	we 	do not 	include in this 	thesis, and 	also 	in the proofs of 

results which appear later in this section. 

4.1.2. Proposition [39. Chapter Ill, 4.51. 	Let nc/N, let LI be a triangular 

subset of A 	, 	 and let S be 	a multiplicatively closed subset of A. Let 

A As  denote the natural ring homomorphism, and set 

U 	(((u1 )....cf('u))/(u 1 ,...,u)cU). 

Then L4 is a triangular subset of (As) and there is an isomorphism of 

A5 -modules 4' (UM) 
- 

L'5 M5  which is such that, for mcM, (u1 ,...,u)c1J 

and s eS, 

* ([n7/(u,..., u)J7s) =  
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We now focus our attention on triangular subsets of the form U(x), 

previously discussed in 12., where x = (x 1 .....x)cA, and M is an A-module, 

and we examine conditions sufficient for the vanishing of U(x)'M The 

following result will prove useful when dealing with modules of generalized 

fractions of this form. 

4.1.3. Proposition Let x = (x / /e'7J ) be a sequence of elements of 

A, let M be an A-module and let kEIN. Denote by y = {y /16)7) the 

sequence of elements of A such that y = / /c IV. Then for all n Z  Ic 

U(4 114 = U(v)"t (U(X)ç  [7T 1  MI 

under the canonical map. 

Proof Let X denote the A-module U(x)k[1]_ k_i M, and consider the 

complex C(U(X),M: 

0 

4 

	

0 • M - U(x)M -. ... • U(x)'M 	U(X)M - U(x)M + 

It follows from 3.2.4. that X is naturally isomorphic to Coker d 1 , so that 

localization at Xk11 = Vi 	induces an 	isomorphism between 	U(y) 1 X and 

U(x)M by 1.4.2.. Furthermore, since 	d 	can be 	expressed as the 

composition 

U(x)M 	Coker d 1 	(Coker 

again 	by 	1.4.2., we have that Coker d o Z 	d 	where d:X - X, is 	the 

natural map. 	On localizing this isomorphism at '12 = xk+2 and applying 1.4.2., 
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it follows U(y) 2X and U(x) 2 M are naturally isomorphic. We therefore have 

the following commutative diagram 

Ie.t 
cc 

2 M 

	

k 	 U(x)k- +2. .1  

	

[IS 	 US 

U(y)('X 	U(V)2.  X 

and the result follows from 1.4.2., following the repeated formation of 

cokernels and localizations. 

The next result now follows in a straightforward manner from 4.1.2. 

and 4.1.3.. 

4.1.4. Theorem. Let x = (x1 ,...,x )EA ' and let M be an A-module. 

Then 

n-I U(,),- n M 
(fA 

LJ(x74 2 A)ø A &A M. 
A  

Proof By 1.4.3. the result is true when n=1, with the obvious 

interpretation in this case. Assume now that n>1 and that the result holds 

for all triangular subsets of the form U(y)_ 1  where y = (vi .....y1)eA". By 

4.1.3., 

- fl 
= 	

-4.  U(x2 .....x) 1  1 (U(x 1 ,1) 2 M) 

= U(x1,1)2A 0A  U(x2 .....x fl ) 1  A ®A  M, by 1.4.3., 

=n @ I 
U(x,1) 2A ) @ A A 0A  M 

79 



by the induction hypothesis. 

An immediate consequence of 41.4. is the following corollary which 

has also been verified independently by R.Y.Sharp. 

4.1.5. Corollary. Let a be a permutation of ( I ..... n-7 ) and let 

x -(x1 ,...,x)cA n and 	= (xQ(1) ... /x0( 1)/x)eA. Then 

U(X)n- n M =LJfrçM. 

Proof The result follows from 4.1.4. and the commutativity of the, 

tensor product. 

We remark at this point that 4.1.5. can be obtained in a 

straightforward way from 1.2.4.(i), from which result it follows that U(X),"M is 

the direct limit of the direct system 

C (MI X XF3  M) 	a .....n-i  ITsI } 

under the determinantal maps induced by matrices of the form 

diag(x1 	), Si .....S_ 	IN0. 

We now investigate conditions on the module M and the elements 

x,, which are sufficient for the vanishing of U(x)M. 

4.1.6. Proposition. Let x = (x1 ,...,x )EA " and let M be an A-module. 

Suppose that dimA  M <n-i. Then U(x M = 0. 

Proof By 3.2.4, and 1.4.2., 
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U(x)M = 

by 4.1.2., 

0 	by 4.1.1.. 

In the following corollary we make use of 4.1.5. to give a further 

condition sufficient for the vanishing of U(x)'M, which involves the 

elements x 1  ..... 

4.17. Corollary. Let x and M be as in 4.7.8.. Suppose that for some 

k <,j dimA  M <n-2. Then U(x)F"M = 0. 
Xk 'k 

Proof Let y be the element of A n 
 obtained from x by interchanging 

Xk and x_ 1 . 

Since d 1 mAX M X  C n-2, it follows from 4.1.6. that U(y) 1 M = 0. This 

implies that U(y)M = 0, and the result follows from 4.1.5.. 

Our next result provides a description of a module of generalized 

fractions of the form U(x)M which will prove most useful in the following 

section, where connections between modules of generalized fractions and 

local cohomology modules are investigated. 

4.1.8. Theorem. Let M be an A-module and let x-(x1  ,...,x )cA ". Then 

lvi 	/ 	it? 
Rl  ... xn 	

hi 

where A? A 	denotes the natural image of M 	in 44 x I ..xj..xn 	 x I ,.xj_.x n 	x,...xn 
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Proof Let : 	• U(x)M be defined by 

= m/(x 	' I ,...,xn  / 

It is a simple matter to show that • is a well-defined, surjective 

an A-homomorphism. Let us now fix j, where 1 	n-i, and let mixI..xf..x 

denote a typical element of 9X, M I 	Mn .  

$(m/x ..x?..xt') = m/(xF' ,..,i 	= 

fl  - I 

by 1.2.3(u). It is therefore clear that 	ici - 	Ker 4). xl  .x1 ..x 
31 

Conversely suppose that m/(x 	) = 0 in U(x)M, so that, by 

1.2.4(i), there exists y 2- 	,.., o,., such that 

€ 	 () 

Now it follows from (*) that there exist m 1  ,..., m_ 1  c M such that 

m/x?1..x" = x!..xr 	m/(x1...x) 1  

= 

= 

i-I 

E 

Therefore Ker4) = IM 	and the result follows. 

In the final part of this section we make use of 4.1.8. to determine 



necessary and sufficient conditions for the vanishing of a module of 

generalized fractions in some particular cases. The following result has also 

been verified by H. Zakeri, by a method which avoids the technical 

calculations of this account. 

4.1.9. Proposition. Let x = (x1 ,x2)eA 2  and suppose that x, is not 

nilpotent in A. Then 

(.Jj'4 2 A = C : 	is n//potent in8/x1  B, 

where B is the ring A/U (C.x k)  and x, x2  are identified with their canonical 

images in B. 

Proof We begin by noting that if x 1  is nilpotent in A, then A = 0 

and hence U(x)jj 2A = 0 trivially. 

Suppose that U(x) 2 A = 0. By 4.1.8., 	this implies that A 	
K2 'x2 = 0, 

which in turn implies that 1/x 1 x 2  e A,. Therefore there exist a€ A and ac IN 

such that 

1/x 1 x 2  = a/x in 

We therefore have a positive integer n such that 

(x1x2)(ax1x2 - x?) = 0 in A, 

which implies that 

X2 (ax1x2 - x?) = 0 in B. 



It now follows that x7 = axr1x1 in B, so that x 2  is nilpotent in B/x 1 B. A 

similar argument proves the reverse implication and the details of this are 

left to the reader. 

By making use of 4.1.8. in the manner of the previous result and 

insisting that the ring A be local we obtain the final result of this section. 

4.1.10. Proposition. Let A be a local ring and let x = (XI 'X2) eA2, 

where is not a unit in A. Suppose that A C and U(x)171-3 A = Ii 

Then x2  is a zero-divisor in B/x1  B, where B = A/U(O.x1 '). 

Proof By 4.1.8., U(x)2[1V 3A can be expressed, in the usual notation, 

as the quotient module A 1 /A i-An , and it follows that U(x) 2[11 3A = 0 

only if 

1/x1x2 = a/xF + b/x 	in 

for some abcA and a, S e ifM0. Furthermore, since U(x) 2A t 0, it follows 

from the proof of 4.1.9. that a>0. Let us further suppose that a is the 

smallest integer for which 1/x 1 x 2  can be expressed in the above manner, and 

assume without loss of generality that 5>1. We first consider the case 

where a>1. In 

1/x 1 x 2  = a/x + b/4 = (ax+bx)/x74 

There therefore exists a positive integer n such that 

(x1x2)'(x7x 	xix2(ax? + bx?)) = 0 

E!J 



This implies that 

(x1x2)n+1 (Xa-IXB-1 - ax - bxf) = 	02. 

'- 	x;t1(x1x_1 - axg - bxF) = 0 in B, 

* 	- ax , 	-= 0inB/x 1 B. 

Since U(x)7 2A # 0, x2  is not nilpotent in B/x 1 B by 419.. Suppose now that 

a = 0 in B/x 1 8. Then a = cx 1  + d, where cc,A and dCU(0:x 1 1 ), It now follows 

that 

a/x = (cxi4-d)/XF = c/x 1  , 

since d/x = 0. This clearly contradicts the minimality of a and so we 

deduce that a h 0 in B/x 1 B so that x 2  is indeed a zero-divisor in B/x 1 B. 

Finally, we consider the case where ct=1. By the argument used 

above, there exists a positive integer n such that 

n-1 	8-i (x 1 x2 ) 	(x2 	- ax - bx 1 ) = 0 

in A, from which it follows in a straightforward manner that 

- ax 2) = 0 

in B/x 1 B. This implies that x 2  is either a zero-divisor or a unit in B/x 1 8, since 

it cannot be nilpotent. Now, as previously stated, x2  is not a unit in A so 

that its image is likewise not a unit in B/x 1 B, since A is local and B/x 1 B is 



non-trivial. Therefore we can exclude the latter possibility and the result 

follows. 

2. Modules of generalized fractions and local cohomology 

In this section we shall concern ourselves with the connection 

between top local cohomology modules and modules of generalized 

fractions, If A is a Noetherian local ring, such that dim A = n, x 1  .....x is a 

system of parameters (henceforth denoted 's.o.p.') for A and M is an 

A-module, then it has been shown by Sharp and Zakeri in [36. 3.51 that the 

top local cohomology module H(M) is isomorphic to the module of 

generalized fractions U(x)[1]' 1 M, where x = (x 1  .....x)€A. The main result 

of this section, 4.2.2., is a generalization of this known theory which 

dispenses with the requirements that A is local and x 1  .....x form an s.o.p. for 

A. We firstly give an account of the calculation of local cohomology modules 

using the Cech complex. The main elements of the following description are 

to be found in [30, Chapter 3, pp.75 -791. 

Let A be a Noetherian ring and let x 1  .....x be elements of A. We 

consider the following complex, known as the Cec/i complex' 

0 4A-i 

C: 0 	CO 	... 	C' 	U 

where 

Ck = 	 Ax.x. 
Is i l C.< k 

M. 



and where 

dk :  C" -* C"4  

is defined on the component 

-. Ax. ...x II 	 Ji 	Jk..1 

to be 

- 	 I 

the natural map: Ax 1  Xj 	• Ax.x., 

if (i ...... ...Ci1 .... .J..Jk41} and 0 otherwise. It is a simple exercise to verify 

that Cis indeed a complex. 

4.2.1. Proposition cf.[30, Chapter 3, 2.3]. Let M be an A-module and let 

a =(x1 ,...,x)A. Then 

H4JM) H'(M@CO) 

for all i 

Proof By the corollary to Theorem 10 of Chapter 6 of [23], it suffices 

to show that 

the isomorphism holds when i0; 

a short exact sequence of A-modules gives rise to a long exact 

sequence of modules H'( - 0 C O ); 
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(iii) I-I'( Q ® C) = U for  > 0 if Q is iniective. 

Now 

H 0(M 0 C) = Ker(MOA -. M0(eAX ) 

= Ker( M + GM x ) 

= { me M I there exists kalN such that 

= 0, 1 < I < n } 

It is now straightforward to show that H 0 ( M 0 C) = H (M), and (i) follows. 

In order to verify (ii), we first of all note that Ck  is a flat A-module 

for all k, being a finite direct sum of localizations of A. Therefore, if 

0 • V • L + L" + 0 is a short exact sequence of A-modules, we have a 

short exact sequence of complexes 

U • L'ø C - L 0 C • V'® C • 0 

This gives rise to the required long exact sequence. 

To demonstrate that property (iii) holds, we make use of the structure 

theorem for injective modules (see [38, (2.32)]) and assume that Q = E(A/)O) 

for some prime 	, where E(-) denotes the 	injective hull. 	If aG, then for 

each j, 1 15 j !:-, n, E(A/p) is annihilated by some power Of x by [30, Chapter 

1, 3.41, so that E(A/) M . 	 = 0. This implies that E(A/.p) 0 C = 0, and therefore 

H(E(A/) 0 C) = 0, for all 	I > 0. 

Alternatively suppose that 110, so that there exists x such that 



P . Appealing once more to the proof of [30. Chapter 1, 3.41, it follows 

that multiplication by x is a bijection on E(A/lp For k —> 1 we can therefore 

define a homotopy sk:E(A/) 0 Ck .. E(A/) 0 C 1 , by the following relation: 

(1) re c E(A/ )xiJZ Xjk 	Hr 

0 if 	 (i 1  .....ik}. 

It is now a straightforward matter to verify that skd"1 + d'sk+l is the identity 

mapping, so that H'(E(A/.p) 0 C) = 0, for all i 2! 1, and the proof is 

complete. 

We now give the main result of this section. 

4.2.2. Theorem Let 	. x
1

....x n  fl / 	, M and C S as in 4.2.7. and let 

Then 

l-7M) ' LJ(x)[7]'M. 

Proof By 4.2.1., Ha (A) = H(M (D C) = Coker d 1 . It is easily 

seen that 

Im d1 = J1 Mx ll*xj..Xn 

in the notation of 4.1.8., so that 

I, 

H'(M) Mxx/ 



The result now follows from 4.1.8.. 

3. Generalized Cohen—Macaulay rings and lengths of 
generalized fractions 

Until further notice, we shall assume that A is a Noetherian local ring 

of dimension d with maximal ideal M . For such a ring A, we shall denote 

by U(A) C A' the set 

((xi.....xd,I) I Xl,---,Xd form an s.o.p. for Al. 

We recall from [361 that U(A) is a. triangular subset of A 	and that the top 

local cohomology module H&(A)  is isomorphic to U(A)A. In this section 

we shall be mainly concerned with the situation where A is a generalized 

Cohen—Macaulay ring, henceforth denoted g.c.m. ring, which we now define. 

For a more extensive study of 9cm. rings see [31, 121. 

4.3.1. Definition [31, 3.31 A ring A is a gc.m. ring if it satisfies the 

to//owing equivalent conditions: 

(,') for each I-C .... d- 7, the local cohomo/ogy module H,'A) has finite 

length; 

(ii) there exists a positive integer n such that, for each s.o.p. XJfXd 

(xA):x 

for each 1 7 _< i S d, with the obvious interpretation when / = 7. 
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Suppose now that A is a 9cm. ring. In [34], Sharp and Hamieh 

obtain a formula for the length of .a cyclic submodule of U(A' 1 A of the 

form A/(xr.....x,1)  (in the notation of 3.2.6.), which is valid whenever otl, .... CLd 

exceed a certain constant which they calculate. Furthermore, in [311, 

Schenzel, Ngô Viet Trung and Nguyen Tu Cuong derive a formula for the 

4 
length of the quotient ring A4xf'iA, which holds for all sufficiently large 

values of the positive integers n. Our aim in this section is to investigate 

the connections between these two areas of research, and by using the 

results of [34] in conjunction with known results concerning generalized 

fractions, to shed light on the range of values of the n for which the latter 

formula is valid. 

Before proceeding with the results, we require some preliminary 

definitions and description of notation, and we give some important 

properties of g.c.m. rings. 

For a Noetherian local ring A of dimension d, and an fl2 -primary ideal 

q, the multiplicity of J, denoted e(q), is an integer given by the formula 

e() = lim d! I(A/qfl)/ n d 
n_too 

Where l(-) denotes length. Whenever x 1  .....Xd form an s.o.p. for A, then 

e(x 1 .....xd)  denotes the multiplicity of the ideal (x 1 .....xd)A.  For a comprehensive 

account of the theory of multiplicities, see [241. 

Let L be an Artinian A-module. It is known that there exists a unique 

smallest submodule L3 Q L such that L/L 0  has finite length. Now m iL G L0  for 

some ic IN, and we define the stability index of L denoted s(L), to be the 

least integer with this property. We remark that if L is itself of finite length, 



then s = s(L) is the least integer for which tnSL = 0. The residual length of 

the A—module L, denoted l'(L), is given by the integer l(L/L 0). 

We now return to the situation where A is a g.c.m. ring and U(A) is 

the triangular subset described before 4.3.1.. Pertaining to this situation we 

have the following two results, due to Hamieh and Sharp. 

4.3.2. Proposition [34, 3.6.1 Let A be a g.c.m. ring and let 	form 

an sap. for A. Set 

t 	
([) 

s(HjA)). 

Let r eN Then 

( c 
U& 

-4-i 
 A 

mr) 9 A/(x1 r+tXd 	7) 

4.3.3. Theorem [34, 3.7.] Let A, xl/...?xd  and t be as described in 4.3.2.. 

Then for all positive integers n1,.., nd ~> t, we have 

1(A 1(x I t...xd 4 t 7)) = e(x1,...)n1 ... n ±f 
(9) /(H(A)). 

The reader will notice a similarity between 4.3.3. and the following 

result from [311, and it is the connection between these two results which 

concerns us in this section. 

4.3.4. Theorem [31, 3.3 & 3.71 Let A be a gam. ring and let 

form an s.o.p. for A. Then there exists a positive integer n such that 
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4 
/(A/ Xrh;A) = e(x.:xd)nl...nd 

whenever nlfl..nd ~> a. Furthermore, the value of a is independent of the 

choice of the S.O.P. 

At this point, we recall from 1.3.3. that the module of generalized 

fractions U(A)_d_1A  can be exhibited as the direct limit of the direct system 

{ A/uA I Ul,..-,Ud form an s.o.p. for A }, under determinantal maps. If X11  ...  Xd 

form an s.o.p. for A, n 1  .....n are positive integers and 

4) •A/x fi A U(A)_d_1A  is the natural map, then it is a simple matter to see 

that Im 4) is the the cyclic submodule A/(xll  ....  xd4,  1) G U(A)_dA: From this 

it follows that 

l(A/xA) = i(A/(x 1 lxdfld,1)) + l(Ker 4)) 

In view of this fact, we shall concern ourselves with the following two 

questions. Can l(Ker 4)) be computed in the absence of 4.3.4., so enabling us 

to deduce 4.3.4. from 4.3.32 Does this approach shed any light on the range 

of values of the integers n 1  for which the formula of 4.3.4. is valid? As we 

shall demonstrate, both these questions can be answered in the affirmative. 

However, before this can be achieved we require further auxiliary results. 

In some of the later proofs we will wish to reduce to the situation 

where the ring A has non-zero depth. To this end, the following proposition 

proves very useful. 

4.3.5. Proposition 	[34, 	2.1]. Let A be a Noetherian local ring of 

dimension d with maximal ideal it, let B = A/Hz (A) and let - .A • B denote 

the natural map. Then 
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(.9 B again has dimension d and, as A -modules, 

/-/(A) 	HjB) fore/hg/N; 

(I,) 	form an sap. for  if and only if J,...4 form an sap. for 

S. Furthermore eA(xl.../A) = 

(iii) The relation 	U(A) 	(A) • U(S) -d-1  (B) defined by 

i (a/(ul...ud4)) = 

is an isomorphism. 

In view of the notation which appears later in this section we shall 

henceforth identify xcA with its image ReB = A/H(A). An immediate 

corollary to 4.3.5. is the following result. 

4.3.6. Corollary [34]. Let A be a. g.c.m. ring of dimension d and let 

S = A 1H. (A). Then 

B is a gc.rn. ring of dimension d, 

(ii) lfxl....xd  form an s.ap. for A, then x is a n.zd. in B, 7 < i :! ~ d. 

Proof Both assertions follow in a straightforward manner from 4.3.1.. 

and 4.3.5.. 

In later proofs, we shall wish to use the technique of induction on 

the dimension of the ring in question. We shall therefore require the 

following result which provides very useful means of passing to a suitable 

ring of lower dimension. 
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4.3.7. Proposition [12, 341. Let A be a g.c.m. ring of dimension d and 

let a be a subset of a system of parameters (s.s.o.p.) for A. Then 

(I) [72, (2.6)(2)J there is an exact sequence 

C-. C:a-. H(A)2 Htg 	Htg  Ut 

• 

 

Hni 	H(A) HjA/aA) 

H.,fA)- H,(A)-* H,(A/aA) 

[72, (2.6)(3)J A/aA is a g. c.m. ring of dimension d-1; 

s(H (A/aA) :!~ s(H (A)) # s(l-/' (A)), 0 ~ / < d-2. 

Proof Assertions (I) and (ii) are proved in [12]. Assertion (iii) follows 

from [34, 3.41 and (i) above. 

As previously noted, 4.3.5. enables us to reduce to the situation of a 

ring of non-zero depth. Before we can make effective use of this, we must 

first deduce some facts concerning the ideal structure of the ring produced 

in this manner This is achieved in 4.3.9.. The following lemma, due to 

O'Carroll, is needed for the proof of 4.3.9.. 

4.3.8. Lemma. Let A be a g.c.m. ring and let xcA be an s.s.o.p. for A. 

Then, for alln€.ITV, 

xAflHjA) = x n H O  

95 



Proof It is clear that x"H(A) 	x"An H?(A). 

Since A is Noetherian, H&(A) = (O : mz) for some positive integer z. 

Suppose now that xa c H&(A),  a eA. Then xr)a fflZ = o, so that a2fl2  O:x". 

It now follows from 4.3.1(u) with i = 1, that there exists r e !N such that 

O:x" O:  Mr. Therefore am Z C  0: fur  which implies that a = 0, from 

which we deduce that a€H&(A).  The result now follows. 

The next result is of importance in the proof of the main theorem of 

this section, 4.3.11., and is also of some independent interest. 

4.3.9. Proposition. Let A be a g.c.m. ring of dimension d and let 
d- 1 

form an s.o.p. for A. Set t' = 	(7) s(H (A)) and suppose that 

> C men 

(ZxA  )fl  H(A) = C. 

Proof We first of all note that the result holds when the ring A is of 

dimension 0, trivially, and of dimension 1, by 4.3.8.. Suppose now that 

d > 1 and that the result has been proved for all g.c.m. rings of dimension 

less than d. Since t' ~ s(H 0 (A)), it follows from 4.3.8. that 
tw 

x 1 '1ø n H 0  (A) = 0. Therefore Ht,  (A) is naturally contained in A = A/x 1  

under the canonical projection map. Furthermore, under this map, the image 

of H (A) lies in H,,2  (A). (Due to the frequent changes of ring employed in 

the work of this section, the symbol  t*v will be used to denote the maximal 

ideal of all rings considered. We find this notation both efficient and 

unambiguous as all rings share a common residue field.) 
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Now A/x1 1" A is. a g.c.m. ring of dimension d-1, by 4.3.7(u), and it 

follows from 4.3.7.(iii) in a straightforward manner that 

4 - 2 
(d- 1) s(H (A)) 

~ 	
s(H (A)) = t'rct 

j=0 	 izo 

Since R2'••d  form an sop. for A it follows from the induction hypothesis 

that 

H (A) = 0. 

Let us now suppose that 	y  E (x 1' A)n H 0  (A). If y = 	, then 	by the 

above 	argument 	the image 	of 	y under 	the canonical 	projection 	map. 
4 

V = 	5.jn 
, is contained in 	H 	(A). tn It now follows from (*) that 	= 0 in A, 

2. 

which 	implies 	that ycx 1 1"A. Therefore y = 0, 	by 	4.3.8., 	since 

n 1  ~! t' > s(H 	(A)), and the proof is complete. 

4.3.10. Proposition [37, 2.4 & 2.71. Let A be a Noetherian local ring of 

dimension d and let x € A form an s.s.o.p. for A. Suppose that x ,  is a n.z.d. in 

A, and let A = A/x1  A. 	Then there exists an A -module homomorphism 

11: U(A) -dA. £J(A)A defined by 

=  81(x 1 ,y2 .... 

Furthermore, there is a commutative diagram 

Th 



77 u(  ,Z) 	- 	 £J(A)A 

tIc 	JIS 

d-I  H.
- t 

- 4(A), 

where f is the connecting homomorphism in the long exact sequence of 

local cOhOmOlOgY modules induced from the short exact sequence 

C 	A • A -. Alxl 	0. 

Consequently Kerr 	H 2 1  (A) / x H4' (A). 

We are now in a position to give the main result of this section. 

4.3.11. Theorem. Let A be a g.c.m. ring of dimension d and let 
4-1 

form an 5. o. p. for A. Set t' = 
	

s(H (A)), and suppose that n1,.., 
1d 

Then 

l(Ker) 
io 

4 
where 4,  A/) x ni A • U(A[dlA is the natural map. 

Proof The proof proceeds by induction on d. The result is trivial 

when d=O. Suppose that d=1 and x is an s.o.p. for A. Let t' = s(H (A)) and 
Ut 

assume that n > t'. Now x"H, 0 (A) = 0, so that x'Atif-L °(A) = 0 by 4.3.8.. 

Setting B = A/H °(A) and applying 4.3.5 .(iii) we can exhibit 4, as the 

composition 

4, 
A/x'1A -+ B/xB 	U(B) 1 B 	U(A) 1 A 
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where 4)8  is the natural map. Now x is a n.z.d. in B, which is therefore a 

Cohen-Macaulay ring. It follows from 1.3.3. and 2.2.3. that 4)5 is injective so 

that 

l(Ker 4)) = I(Ker it) = l(H(A)) 

since xAn H (A) = 0. Therefore the result holds when d = 1 

Now suppose that d > 1 and that the theorem has been proved for 

all g.c.m. rings of dimension less than d. As before, let B = A/H+ (A), let 

t' =4f(fl l(H(A)) and assume that n 1  .....n d  ~ t'. Once again, by 4.3.5.(Hi), we 

express 4) as the composition 

4 	 d 
A/xA 	B/x"B ? U(B)13 	U(A)_'_ 1 A 

By 4.3.9., l(Ker 11) = l(H(A)), so that 

I(Ker 4)) = I(Ker 4)) + l(H(A)) . 	(*) 

We therefore focus our attention on the ring B and the map 4). By 4.3.6., B 

is itself a g.c.m. ring and x 1  .....X d  form an s.o.p. for B, With each x i  a n.z.d. in 

B. Let = B/x 1  B and let :B . denote the natural map. Since x 1 I is a 

n.z.d. in B, there exists, by 4.3.10., a commutative diagram 

U(B) 	-. U(B) 	IB 

US 	US 

H 1 () .* 



A' 	d - 1 	n 	d-1 where Ker Ti H 	(8). In addition, we have the following 

commutative diagram: 

d 

1 x i n j  

.4 	.• 
U(B)-dB 	~ 

Now, by 43.5.(i), H 1 (8) ' H 1 (A) so that x 1 H 1 (B) = 0, from the definition 

of t'. It therefore follows that Ker r 	HS 1 (B). 

By 437(11), is a g.c.m. ring of dimension d-1 and, by 4.37.(iii), 	we 

have that s(H,C) s(HjB)) + s(H](B)); for 	all 	1 I d-2. This implies 

that 

,:(? ) - 	 s(H (fl)) 5 	: 

(d-1) s(H(B)) 
- 	 1=1 

4-2 

(d71) {s(H(B)) + s(H(B))} nt- 

d-2 

	

c 	
() 

s(H(B)) •+ (d-1)s(H 1 (13)) 
n1 

S t' - s(Hgj 1 (B)) 

It therefore follows that 

(d-2\ s(H 
(fl)) + s(Hj 1 (B))  

1:1 Li -ii 

4-1 
Now Ker r  is annihilated by m"t&8fl , so that, by 4.32. and (*), 

100 



	

- ..Jka 	t14 
Ker Ti Q B/(x 2 , 1) = IM $ 

We therefore have in (t) the exact sequence (with the obvious maps) 

0 	Ker 4i • Ker $ 	Ker n 	0 

so that 

l(Ker $8) = l(Ker 4i) + ((Ker n) 

= l(Ker $g) + l(Ker n) 

= 
: 

(d1' l(H(g)) + l(Ht1(B)) I -/ 

by (**) and the induction hypothesis. 

Now consider the short exact sequence 

xInr  

0 + B • B -. B/x 1 "B ~ 0 

This yields the long exact sequence in homology 

0 -. H 0  (B) 	
H:(B) 

-r H() 

x1 i 	 - 

U31H(B) -* HM' (B) -.' H1(B) 

	

x1 rll 	 - 

..- 	 H(B) 	H1, (B) • HjB) -i... 

Since n 1  ~! t', all the mas 4(induced by multiplication by x1are zero, and it 

follows that 
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i-41 l(H (fl)) = I(H (B)) + l(H 	(B)), 0 ~ i,S d-2 

Thus 

4-2 
I(Ker $B) = (d-1) I(H()) + I(H 1 (B)) 

= f(d-1) CI(H4(B)) + t(H(B))} + I(14 1 (B)) 
:0 

4-1 
= y (d) I(H ( B)) + d.l(H 1 (B)) 

U 
Ito 

= I (dl l(I-IjA)) 
1=1 

since H(B) 	HJA), I 	1, and HO(B) = 0. We recall from (.) that 

l(Ker cp) = I(Ker $,) + l(H,,(A)), so that 

i(Ker $) = 	() 
t(H (A)) 

izo 

as required. 

We can now restate 4.3.4. as a corollary to 4.3.11.. In addition, we can 

give information concerning the constant n which appears in the statement 

of 4.3.4.. 

4.3.12. Corollary. Let A, xl...txd  and t' be as in 4.3.77., and suppose 

that 	a t' Then 

4 	 4-i 
I(A/'A) 	e(xlfl..xd)n...nd -#. 

	(d.- 

 ) I(H(A)). 

Proof Let $: A/1x1 u iA ~ U(A)A be the natural map. Then 
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d 
l(A/x" A) = I(Ker $) + l(A/(x1 	...,x 

d  n! 1)). It is a simple matter to verify 

that t'>() s(H(A)), so that 

l(A/(x 1 ' .....Xd 	1)) = e(x 1  .....xd)nl...fld - 	
(dT) l(H 	(A)) 

by 4.3.3.. The result now follows in a straightforward manner from 4.3.11.. 

From now on we shall no longer insist that A is a g.c.m. ring. For 

the situations where A is a Noetherian local ring of dimension 1 and 2 

respectively we have the following two results. 

4.3.13. Proposition [34, 3.1.1 Let dim A = 7 and suppose that x is an 

s.o.p. for A. Then for all a 

l(A/(x'1 , 7)) = e(x)n 

4.3.14. Theorem [34, 3.2.1 Let dim A = 2 and suppose that x,,y2  form 

an s.o.p. for A. Let l(H 1 (A)) be the residual length of the Artinian module 

and let s be the stability  index of /4(A). Then, for all a1  ,n2  :~: 

l(A',x" 2 , 7)) 	e(x,x2 )n1 n2  - l'(hjA)). 

It is our intention to apply the ideas of the proof of 4.3.11. to the 

above result in order to investigate conditions under which l(A/(x 1 11 ',x2 Z)A) 

can be calculated, where A is a ring of dimension 2 and x 1 ,x2  is an s.o.p. for 

A. The following lemma will be of use. 
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4.3.15. Lemma. Let A be a Noetherian local ring Then for all 

sufficiently large n€i& 

Uf1flH(A) = C. 

Proof Since l(H,(A)) is finite, the descending chain of ideals 

{in n HO(A) I n € IN} becomes stationary. By  the Krull Intersection Theorem, 

[1, 10.201 (1tW' = 0, and the result follows. 

For the situation where dim A = 1, we have the following proposition. 

4.3.16. Proposition. Let dim A = 7, and let xeA form an s.ap. for 

A. Suppose that k is the least integer such that &aH(A) = 0. 	Then, 

whenever n 

l(A/xA) = e(x)n l(Hm°(A)). 

Proof Let B 	denote the 	ring 	A/1-10 (A). 	If 	n ~ k, 	then 

x'An H.(A) 	= 0, so that 

l(A/x"A) = l(B/x"B) + l(H.(A). 

Now B is a Cohen-Macaulay ring so that, by [24, p.3111 and 4.3.5(u), 

I(B/xB) = e(x)n and the result follows. 

We complete this section with the following result which deals with 

the case where dimA = 2. 
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4.3.17. Theorem. Suppose that dim A = Z and let X, IX2 form an s.o.p. 

for A. Let k be the least integer such that m" n H(A) = C and let 

s = max( k, s(Hi'A Di Suppose that n —> s is a fixed positive integer Then 

there exists ZEA such that, for all sufficiently large values of the integer n2 , 

(x1 I4z)A =(zxjz)A and 

1 4z )A) =  e( x)n  n # l(l-4 (A/zA)). 

Proof Let B = A/H(A), and let $B:13/(x1"  ,x)B + U(B) 3 B be the 

natural map. It follows from the proof of [34, 3.2.1 (with the roles of x 1  and 

X2 therein interchanged) that there exists  an element VEB with the following 

properties: 

(I) y is a n.z.d. in B; 

(ii) l( H 	(B)/y" Hs (B)  ) = l'(H 	(B)), the residual length of H 	(B); 

(Hi) (y"I,x2 )B = (x 1  ,x)8 and B/(x 1 ',x 	1) = B/(y',x$ 1)8; 

(iv) e(y,x2) = e(x 1 ,x 2 ). 

Now let B = B/y'B. By 4.3.10. we have a commutative diagram 

B/x2B 	' B/(y"I,x2 )B 

$4 	$6 

U( 2  2 	U(B)-3B 

where Ker 11 ' H(B)/y"H (B). 
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From our choice of y it follows that XZ  Ker rl = 0 whenever 

n 2  ~ s(H 1  (B)). Therefore, for sufficiently large values of n 2 , Ker rl çlm $, 

by [34, 2.81 and we have the following exact sequence of finite length 

modules: 

0 + Ker $g 	Ker $ ~ Ker i 	0 

This implies that 

l(Ker $B) = l(Ker $) + l(Ker rfl . 	 (t) 

For 	all 	sufficiently 	large values 	of n2, 	l(Ker $) = l(H(3)), 	by 	4.3.13. 	and 

4.3.16., so that by (t) and our choice of y, 

l(Ker $B) = l(HJ)) + l'(H. (B)) 

It now follows from 4.3.14. that 

l(B/(y'1I,xt)B) = e(yx 2 )n 1 n 2  + l(H.3)). 

By 4.3.15., for sufficiently large values of n 2 , (x1 1 ,x 2 )AnH(A) = 0, so that tu 

l(AJ(x1'I,xfl)A) = e(x 1 ,x 2 )n 1 n 2  + l(H.()) + l(H(A))tu  

by 4.3.5(H) and our choice of V. For such a value of n2, y r1 C  B is the image 

of a unique element ±E(x 1 01 ,xz)A, and it easily follows that 

(z,x 2"2. )A = (x 1 1'I,x$ 2-)A. It now remains for us to show that 
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I(H(A/zA)) 	l(H(A)) +Ut 

Now zAflH(A) = 0 and it follows that H(A) is naturally contained in 

H(A/zA). It therefore suffices to demonstrate that H(A/zA) is mapped 

onto  Ut under the canonical projection map. It is clear that the image of 

H(A/zA) lies in f-I 4 (B). Now suppose that x is an element of A whose 

image in 	R, 	lies in 	so that xtt CZA + H.(A), for some r 	IN. 	But 

H0(A) = O:ltVt for some t6 IN, which implies that xmc  zA. 	It now follows 

that R is the image of an element of H.(A/zA). 	Therefore 

l(H4.(A/zA)) = l(H(A)) + 

so that 

l(AJ(x 1 1'I,xfz)A) = e(x 1 ,x 2 )n 1 n 2  + I(H(A/zA)) 

as required. 
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CHAPTER V 

1. Seminormality and F-purity in local rings 

In this final chapter we consider the properties of seminormality and 

F-purity in Noetherian local rings, two properties which are closely related, 

especially in the 1-dimensional case. By  making use of this relationship, we 

obtain a simplified proof of a result due Goto and Watanabe [13], which 

describes the structure of a certain class of F-pure 1-dimensional rings. 

Finally, we investigate conditions under which the two properties are 

equivalent in the 1-dimensional case. 

From this point on, A will denote a reduced Noetherian local ring with 

maximal ideal M. The classical ring of quotients of A will be denoted by 

0(A) and A will denote the integral closure of A in 0(A). 

5.1.1. Definition (see [11, 1.1]).  A ring A is semiformal if it satisfies 

the following equivalent conditions: 

(i) if a €Q(A) and a 2 ,a 3 cA, then ac A; 

(H) if acQ(A) and there exists k € IN such that a t e  A  whenever t ~ k, 

then acA. 

In the particular case where dim A = 1, we have a further 

characterization of serninormality, namely: 

(iii) A is seminormal if UI = J(A), where J(A) denotes the Jacobson 

radical of A. 

5.1.2. Definition. Suppose that A is a ring of characteristic p, p a 
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prime, and let F:A - A be the Frobenius endomorphism of A. Let A' denote A 

when regarded as a A-module by F. Then A is said to be F-pure if, for all 

A-modules E, the map hE:E . A F @ A E, defined by hE(x) = 104x for all xeE, is 

injective. We say that F is finite when AF  is a finite A-module. 

It is evident from results already known that a connection exists 

between these two properties, and the following proposition from [13] 

enables us to examine this relationship more closely. Although we do not 

impose the same restrictions on the ring A that appear in [13], the proof 

whicM appears therein applies equally well to the more general situation 

which we consider in this thesis. 

5.1.3. Proposition [13, (2.2)]. Let A be an F-pure ring, let 0 = O(A), 

and let &,4:0/A -* 0/A be defined by the relation 

cA(x mod A) = x P mod A, 

for all x a 0. Then fa/ A is inject/ye. 

An immediate consequence of 5.1.3. is the following result, which 

provides a generalization of [18, 5.31]. 

5.1.4. Proposition. Let A be a ring of characteristic p. If A is F-pure, 

then A is seniinormaJ 

Proof Suppose that a € 0(A) and a 2 ,a 3c A. Then it easily seen that 

?cA, so that, by 5.1.3., aeA and the result follows. 

From now on we focus our attention on the situation where A is a 

1-dimensional ring. Concerning this situation we have the following result. 
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5.1.5. Theorem (cf.[13, (1.1)1). 	Let A be a sam/normal ring of 

dimension 7, and let 
,..., 4 be the minimal primes of A. Then, for each I, 

1 Cl Cr 

in= 	o n  Pi Iand 

 
t Jt• 

Proof Since A is reduced, the natural map A • W A/is injective, so 

that A can be regarded as a subring of WA/ a Q(A) under this map. Fix i, 

1 C i < n, let xettL, and consider (0,..,,..,0) eeA/, where R€ A/4 1 . Now 

r(?1.W.fl) = Ut, so that there exists a positive integer k, such that 

	

c. 'I1 Wfl fX whenever t 	k. It follows that for each t > Ic there exists 

U E fl 	such that xt - u € 	. This implies that (O,..,Rt,..,o)  A for all t >  k, so 
.J ~ i 

that (0,..,,..,0)€A by 5.1.1.(ii). There therefore exists an element v€ .flfi such 
Ji 

that x - ve 1 . so that x€ 1fl 	
, 

and (i) follows. 
.1*i 

To see that (ii) holds, observe that the above argument shows that 

*1 = 1tt, where t1 1  is, the image of lU- in A/rI.  1 < i < n. It follows from 

(i) that lU = t/4) 1 i C n, so that 
M

= (1 as required. 
Mi  

We now make use of 5.1.4. and 5.1.5. to prove a structure theorem 

for a certain class of 1-dimensional F-pure rings, originally proved by Goto 

and Watanabe. 

5.1.6. Theorem [13, (1.1)]. Let A be a 1 -dimensional ring of prime 

characteristic p. Suppose that the field k A/lit is algebraically closed. 

Then A is F-pure if and only if 

2 	k[[Xr..XJJ/(.XX .... 

110 



where A denotes the completion of A with respect to M. 

Proof We begin by noting that A is F-pure if and only if Â  is F-pure 

by the argument on p.466 of [6]. Now Z satisfies the conditions of the 

statement of the theorem, so that we can assume with no loss of generality 

that A is complete. It is is a straightforward consequence of [6, 1.12] that 

rings of the form k[[X1  ..... are F-pure. 

	

Let us now suppose that A is F-pure and that 	....... are the 

minimal primes of A. As in the proof of 5.1.5., we can consider A to be a 

subring of A/ 1 . Furthermore , by [2, Chap.V, 1.2], A = A7! i  so that we 

have 

Since A is complete, it follows that A/x1 is complete, 1 C i c n, so that 

each A/fz is a local ring with maximal ideal 41 j, say. By 5.1.4., A is 

seminormal so that by 5.1.1.(iii), 

lit = J(A) = 

so 	that 	the 	natural image 	of 	tU. 	in A/JfZ i 	is 	ti,. 	Moreover, 	since k 	is 

algebraically 	closed, it 	follows, 	that .(A,1A )/ttt 	= k, 	1 C i < n, 	so that 

A/ 	= A/ ri , and thus each A/ 	is integrally closed. 	It now follows from 

[1, 9.21 that ttt 	is a principal 	ideal, 	1 C i C n, 	so that, by 5.1.5., there exist 

elements Xj€ 1 < i < n, such that 
J #t 

Ui = ® Ax. 
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Since A is complete, it is possible to define a surjective k - algebra 

homomorphism 

f: k[[X 1  .....X]] • A 

such 	that 	f(X) = x, 	1 < i < n. 	It 	can 	easily 	be 	verified 	that 

Ker f = 	 so that 

A 	k[[X 1  .....X]]/( ..... 

as required. 

The following result demonstrates the close connection between 

seminormality and F-purity in the 1-dimensional case. At this point we 

remark that if A is a 1-dimensional ring of prime characteristic p. whose 

Frobenius endomorphism is finite, then it follows from [22, Th.108 and Th.78] 

that A is a finite A-module. We are therefore justified in replacing the latter 

condition, which appears in the original statements of 6.1.7. and 5.1.9., with 

the former condition which is more appropriate to the work of this chapter. 

5.1.7, Theorem [4, 931. Let A be a 1-dimensional ring of prime 

characteristic p. whose Froben/us endomorph/sm is finite. Suppose that the 

field k ZAIM is algebraically closed. Then A is sem/normal if and only if 

2 	k[[X1 ,...,XjJ/(.,,XX ...

11  

It is clear from 5.1.6. and 5.1.7. that a ring satisfying the hypotheses 
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of 5.1.7. is seminormal if and only if it is F-pure. It is our aim in the final 

part of this chapter to find weaker conditions under which the two 

properties continue to be equivalent. To this end we shall require the 

following auxiliary results. 

5.1.8. Lemma [27, 1.21. Let k be a field and let L be a reduced 

f'Ioetherian k-algebra of dimension 0. Then k # TL[T]is seminormal, where T 

is an indeterminate over L, and k - TL[T] is identified with a subring of LIT] 

in the natural way. 

5.1.9. Proposition [4, Cor.2, 27, 1.51. Let A be a- 1-dimensional ring of 

pr/me characteristic p. whose Frobenius endomorph/sm is finite. Thn the 

following conditions are equivalent: 

(.9 A is seminormal; 

(ii) 2 is seminorrna/; 

(ii,) Gr(A) is k-isomorphic to k + 11(177 where Gr(A) denotes the 

associated graded ring of A with respect to tU and K A/J(A). 

(iv) di(A) is reduced and seminormal, 

5.1.10. 	Lemma (cff18, 4.6]). 	Let kck' be fields of non-zero 

characteristic p, and suppose that k' is separable over k. Let H be a 

k-algebra such that H Ok  k' is F-pure. Then P is F-pure. 

Proof This follows in a straightforward manner from [18, 4.61 and 

5.1.2.. 

We now give the main result of this chapter, which shows that the 

properties of seminormality and F-purity are equivalent for a wider class of 
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rings than that considered in 5.17.. 

5.1.11. Theorem. 	Let A be a 7-dimensional ring of pr/me 

characteristic p. whose Frob en/us endomorph/sm is finite. Suppose that 

k 'A/W is a perfect field. Then A is F-pure if and only it A is seminormal. 

Proof If A is F-pure then A is seminormal, by 5.1.4.. Let us now 

suppose that A is semiformal so that by 5.1.9., 

Gr(A) 	k k + TK[T], 

where K = N/J(). Moreover, by 5.19, we can assume that A is complete, so 

that k CA, by [22, (28)PI. Now, if k denotes the algebraic closure of k, then 

(k + TK[T]) ®k 	= (k 0k 	® ( k ®k TK[T]) 

= 	k6T(Køki)[T]. 

We claim that, as "R-algebras, k S T(K 0k 1)[T] 15  Gr(A ®k 

Since 	k 	is integral and 	flat 	over 	k and 	since k cA økk it 	easily 

follows that k 0km =tU is the unique maximal ideal of A ®k  k 	We have the 

exact sequence of k-vector spaces 

-. 	
-3. 

tv_n + .ftjn,.4n*1 , 

which, on applying Okk,  yields the following exact sequence, 

0 • kOk 
Mn+l • k OkttF 	k Okflt/Ut 	-3. 0. 
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It now follows that, as k-modules, 

Ic 0k  'itfl 
mM 	(k økt )/(k 0k  ttW 1 ) = 	n,gn+1 

Therefore 

Ic e T(K ®k k)[T1 	j Ic Ok Gr(A) 	Gr(k ®k  A)  

Now K is a finite product of fields, each of which is a finite separable 

extension of k, since A is a finite A-module, by the remarks preceHding 

5.1.7., and since k is perfect. It follows from [19, 3.3.(iv)1 that the ring K ®k  k 

is reduced. In addition, K ®k  R is Noetherian and zero dimensional, so that 

by 5.1.8. and (*), Gr(A ®k  k) is reduced, as is easily seen, and seminormal. 

Now Ic CA SO that, by a straightforward adaption of the proof of 

[22, p.212, Cor.21, A is a finite k[[x]]-module, where x is an indeterminate 

over k. Hence A 0k is a finite module over k[[x]] Sk R. We now show that 

k[[x]1 0k  k is Noetherian. 

Let us first consider the domain k[[xJ]. Since an element Zk1x 	k[[xJJ, 

with k0 	0 is a unit in k[[x]J it is easily seen that the quotient field of k[[x]], 

denoted Q(k[[xJ]), consists of elements of the form kx', where d € Z and it 

4 
is now a simple matter to verify that Ic is algebraically closed in Q(k[[xJ]). 

This means that k is maximally algebraic in Q(k[[x]]), in the notation of 

[40, p.1961 so that, by [40, p.198, Cor.21, Q(k[[x]]) ®k k is a domain which in 

turn implies that k[[xl] ®k  k is also a domain, as k is flat over k. In addition, 

T is integral over k and it follows that •k[[x]] 0k k is a 1-dimensional local 

domain whose maximal ideal is generated by the single element x eki.  so 
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that, by [1. p.84, Ex. I], k[[x]] 0k kis Noetherian. This implies that A ®k . a 

finite k[[xJ] ®k  k-module, is itself Noetherian. We now have that A ®k  k is a 

1-dimensional Noetherian local ring of prime characteristic p. whose 

Frobenius endomorphism is easily seen to be finite, so that we can deduce 

from 5.1.9. that A ®k K is seminormal. Furthermore, since the residue field of 

A ®k  k is algebraically closed, it follows from 5.1.6. and 5.1.7. that A ®k  k is 

F-pure. Now k is perfect, so that R is separable over k, and we deduce from 

5.1.10. that A itself is F-pure. This completes the proof. 
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APPENDIX 1 

On direct limits 

We begin this appendix by recalling the definition of a direct system. 

Let I be a directed set let (M)id  be a family of A-modules indexed by I, and 

for each pair 	i,jE I with i 	< i 	let • M be an A-module homomorphism. 

Then we say that the modules M i  and the maps 4 ii  form a direct system 

if 

p ii  is the identity map on M 1  for all ie I and 

4i k = P jk W ijl whenever i < I !~ Ic. 

The direct limit of the system (M,u 1 ) is defined to be the A-module 

M = 	0 M/D, where D is the submodule of 
. 

M 1  generated by all elements 
'ci C 

of the form p(x) - x, where i,j €1, 	with 	i 	~5 	j, and 	x i  E Mi. Let p: 	M 1 	- M 
1?  

denote the natural projection map and, for all jE I, 	let 	P j 	: M 	• M be the 

restriction of p to M. 	Then it is known that if (Mi411} 	is a direct system 

then 	its 	direct 	limit 	M 	satisfies the 	following 	properties (see 	[1, 	Chap.2. 

Exs.14-16]). 

Every element xGM can be written as p(x) for some jcl and 

xcM. 

If x i eM i  is such that p(x) = 0 in M then there exists j 	i such 

that p(x) = 0 in M. 

If N is an A-module and 
{ 

a:M + N, i€ I 
} 

are A- module 

homomorphisms such that 	a i  = a j p i j 	whenever 	i :5 j, 	then 	there exists 	a 

unique A-module homomorphism cs:M -* N such that a1 = 	ap 1  for all i €1. 
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Now let U be a triangular subset of 	n € IN, let U be the 

restriction of U to A n  and let M be an A-module. Then U is a directed set 

and, as was seen in Chapter III, if U < v so that VT = Hu T  for some HE D(A), 

there exists a map - 

(M/vM)s11, 

induced by the matrix H. We have described the system 

{ (M/uM) U , 	} 	 (*) 

as a direct system and, at various places throughout this thesis, we have 

appealed to properties (1)-(3) listed above when considering the system (*). 

However, as the reader may have noted, the maps $ described above are 

not uniquely determined by u,vC U, but depend on the particular choice of 

matrix H. With this in mind, we now relabel the system (*) 

( (M/uM)c 	} 

where 0., denotes the set of all maps (M/uM)sl U ) • ( M/vM)s V ) which can be 

induced in the above manner. We shall now demonstrate that the direct 

limit of the system (**) possesses properties analogous to (1)-(3) of the 

direct limit of an ordinary direct system. 

Proposition 	1. Let / be a directed set and let ( M ) be a set of 

A -modules indexed by  I. Whenever i:5' / let denote a non-empty set of 

A-homomorphisms M -. /14, and suppose that the following conditions are 

satisfied: 	 - 
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O ij  contains the identity map on /14, for all it I; 

if i <j :!~ k then for all 	and ljkC jk' jkij 

(11/) ford// itt there exists! _> i and 	such that whenever k < / 

and O ki4 	k- then 	= 

Let 0 be the submodule of .$ 41 generated by all elements of the 

form(XI) -x, where i,/cI and xI  cM.I  Then the direct limit M = .e 114/0 of I 	
t6 

the system ( 41, 	) (with natural maps u Ic I,) possesses property (7,) 

above, and properties (29and (39 described below. 

(29 If xeM is such that p(x) = U in 41 then there exists j 2!/ and 

]etHsuch that $y(x) 0in1L4. 

(3) If N is an A-module and (o:M ± N, iEI) are A-module 

homomorphisms such that oti = 	whenever i _<J and $ cc, then there 

exists a unique A-module homomorphism crM • N such that aj = 	for all 

id. 

Proof (Cf. [3, VIII, 4.3 and 4.4]). If xc M then there exists a finite sum 

xe(D Mk, where each x 1 c M, such that x = p(x). Choose jc I such that 
kel 

j 	i for all i appearing in the above sum and, for each such U select a map 

~ jj cOjj. Then 

x = p(x) = uØ $(xj) = 

where x 
= 	+(x1) € M. as required. Thus property (1) is verified for M. 

Suppose now that x 1  6M j  and ii(x) = 0 in M. Then xi  is a finite sum of 

the form 
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($j(X) - x) 

Now choose tel such that t exceeds i and all j,ke I appearing in the above 

sum. Then by (iii), there exists m 2! t and tmE  (D tm  such that, whenever 

n :5 t and then 1Ptmnt = Ptm'nr Now 

Ptm4it(xi) = 4)tni4it(xi) - Xi + Xi 

= 1tJtm4tO(i) - x + 	: (Jk(xj) - x) 

Furthermore, for each term of the sum on the right, 

$lk(x) - x 1  = 1Ptmkt$jk(j) - x - (Ptm$kt(jk(<j)) - 

where kt€ Okv It follows that lPtm$it(xi)  can be written as a finite sum of the 

form 

0PtrnPstOs) - x) 

where each $ :5 t 5 m. From the choice of tm'  we can consider all the 

terms with a common s to be grouped into a single term. Since any 

relation on a direct sum is a consequence of relations on individual 

summands, 

= Z ( 1Ptmst(Xs) - x ) 

implies that x=Qifs#m. lfs=m, then s=t=m and we have that 
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1Pt m it(Xi) = 4 tm4st(xs) - x. 

From our choice of 4tm  and the fact that V 5  contains the ideptity mapping, 

it now follows that 

Pt m Pt m it(Xi) = 0 

as required, and so property (2') is verified. 

Suppose now that N is an A-module and let {c:M 	N} 61  be a set of 

homomorphisms such that = a 1 , for all $E 	, i4 E I with i 	< j. Define a 

map cz:M 	N as follows. For x€M let a(x) = a(x) for any choice of jEl and 

c M such that u 3 (x1 ) = x. We now show that a is well-defined. 

Suppose 	that 	.i 1 (x) = si(x1 ), 	and 	choose k L- Li $kC 	ik 	and 	jkC Dk. 

Then Pk(ikOQ) = I.Ik($jk(xø) so that, 	by property (2'), there exists t L> k and 

•kt € 	kt 	such that 	$ktIk(xl) = $ktJk(xj). 	It now follows that 	a 1 (x 1 ) = ct(x), so 

that a 	is a 	well-defined 	homomorphism. From the above 	construction, 

all i =  Ot i 	for 	all 	is I, 	so 	that property (3') 	holds for M, since 	uniqueness 	is 

clear. 

We shall use the term generalized direct system to describe a system 

which satisfies conditions (I)-(iii) in the statement of Theorem 1. Let us 

consider once more the system 

{ (M/uM) U 	I. 	(t) 

Then (t) is a generalized direct system, as we now demonstrate. That (t) 

satisfies (i) 	and 	(ii) 	is 	obvious. If we consider u = (u1 .....u)EU, and let u 2  
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denote (u 1 2 .u)CU 	and *J:(M/uM)s( U ) • (M/u 2 M) U 	denote the map 

induced by the matrix diag(u 1  ..... ti n), then it follows from 1.2.2. that 

= IP$tu 

whenever t < u and 4tu.'tue tu 	follows that the system (t) satisfies 

condition (iii) of Theorem 1, and is therefore a generalized direct system. 

We can now employ properties (1),(2') and(3') when dealing with its direct 

limit. This justifies the proofs of 1.3.3. and 3.2.8.. 

The final part of the proof of 3.3.4. assumes (employing an obvious 

notation) that, for a generalized direct system C M , 	) with direct limit M, 

lim C w (M)5 
A

'i' .-' AGA 	A €
9 (

t 	)SA} = e Ms \  
€1 	 A6A 

where the Sx  are multiplicatively closed subsets of A and ?A($jj)SA consists 

of mappings of the form 
A€A(i)s 	

where Vc . This can be verified in a 

standard fashion after noting that { M9 A 
	

) ( MØ 5 	( 	} is itself a generalized 
- 

direct system whose limit therefore satisfies (1), (2') and (3'). 

In 3.4. we consider the situation of a triangular subset UoA 1  and an 

A-module M, such that u 1  ..... u is a poor M -sequence for all 

u = (u 1  ..... u)CU. Consider now the generalized direct system 

{ (M/uM)s( U ) 	} 

and suppose that u,vU are such that u < v. Let 	 and, 

employing the usual notation, let 4' : ( M/vM)51 -i (M/v 2 M)s( V 2) be the map 
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induced by the matrix diag(v 1  .....v). Then, by 1.2.2., 

OUV =  

Since ip is injective by 2.2.1., it follows that 	= 	so that the set 

consists of a unique homomorphism. Therefore the generalized direct 

system above is a direct system of the ordinary type, so that we require no 

special analysis in this case. 
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