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Abstract  
 

Hypothermia is potently neuroprotective, but the molecular basis of this effect 

remains obscure and the practical challenges of cooling have restricted its clinical 

use.  This thesis was borne on the premise that considerable therapeutic potential 

may lie in a deeper understanding of the neuronal physiology of cooling.  Rodent 

studies indicate that hypothermia can elicit preconditioning wherein a subtoxic stress 

confers resistance to an otherwise lethal injury.  This cooling-induced tolerance 

requires de novo protein synthesis – a fundamental arm of the cold-shock response, 

for which data in human neurons is lacking.  Since cooling protects the human 

neonatal brain, experiments herein address the molecular effects of clinically-

relevant cooling using functional, maturationally-comparable cortical neurons 

differentiated from human pluripotent stem cells (hCNs).  Several core hypothermic 

phenomena are explored, with particular scrutiny of neuronal tau, since this protein is 

modified extensively in brains that are resistant to injury.  Mild-to-moderate 

hypothermia produces an archetypal cold-shock response in hCNs and protects them 

from oxidative and excitotoxic stress.   Principal features of human cortical tau 

development are recapitulated during hCN differentiation, and subsequently reversed 

by cooling, returning tau transcriptionally and post-translationally to an earlier foetal-

like state.  These findings provide the first evidence of cold-stress-mediated 

ontogenic reversal in human neurons.  Furthermore, neuroprotective hypothermia 

induces mild endoplasmic reticulum (ER) stress in hCNs, with subsequent activation 

of the unfolded protein response (UPR).  Reciprocal modulation of both tau 

phosphorylation and the ER-UPR cascade suggests that cold-induced 

hyperphosphorylation of tau and ER-hormesis (preconditioning) represent significant 
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components of hypothermic neuroprotection.  Cooling thus modifies proteostatic 

pathways in a manner that supports neuronal viability.  Historically, hypothermic 

preconditioning has been limited to the acute injury setting, and tau 

hyperphosphorylation is an established hallmark of chronic neural demise.  More 

recently however, preconditioning has been proposed as a target for 

neurodegenerative disease and neuroprotective roles of phospho-tau have emerged.  

To date, hypothermia has protected hCNs against oxidative, excitotoxic and ER 

stress, all of which have been implicated in traumatic as well as degenerative 

processes.  This ‘cross-tolerance’ effect places exponential value on the molecular 

neurobiology of cooling, with the potential to extract multiple therapeutic targets for 

an unmet need.   
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Chapter 1: Introduction        
    
1.1   Cooling and neuroprotection 

 

Clinical application of neuroprotective hypothermia dates back to 1942 in 

Philadelphia, where it was successfully used to treat patients with severe head trauma 

(Fay et al., 1943; Mayer and Sessler, 2005).  Over the decades, interest in therapeutic 

hypothermia (TH) has waxed, waned, and waxed again as complications of deep 

cooling emerged, and were then superseded by a deluge of studies demonstrating the 

remarkable efficacy of mild hypothermia (Mayer and Sessler, 2005).  The current 

status quo is ironically ‘luke warm’ – i.e. TH has become routine for a select group 

of patients but otherwise lacks a firm evidence base to support its use in man (Choi et 

al., 2012; Nielsen et al., 2013).  Irrespectively, mild hypothermia remains the single 

most effective brain-protecting agent known (Barone et al., 1997; Mayer and Sessler, 

2005; Dietrich et al., 2009; Choi et al., 2012; Yenari and Han., 2012; Wang et al., 

2014), and there is a sense that the true reach of cooling may have been overlooked.  

Tapping into cellular programmes recruited by TH may unearth the molecular targets 

needed to reap the benefits of cooling - without cooling the patient.       

 

1.1.1  The importance of brain temperature 

Human brain temperature itself has been debated, largely because of difficulties in its 

measurement (Childs et al., 2005; Harris et al., 2012; Harris and Andrews, 2014).  

The current gold standard requires placement of an intracranial probe, retrieving data 

from only a single focal point in the brain parenchyma, and typically in patients 

already undergoing neurosurgery (Mellergard et al., 1990; Childs et al., 2005; Kuo et 
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al., 2011).  With the advent of non-invasive methods such as magnetic resonance 

spectroscopy (MRS) (Childs et al., 2007; Thrippleton et al., 2013), we can now 

obtain a global picture of brain temperature in healthy subjects, in real time.  As 

predicted from its high blood flow and rapacious oxidative metabolism (Maier and 

Chan, 2002; Hlatky and Robertson, 2005), average human brain temperature sits 

slightly above (0.2-0.8⁰C) that of the core (Childs et al., 2007; Harris, 2010; 

Kiyatkin, 2010; Wang et al., 2014).  However, brain temperature is not fixed; it 

varies by brain region, and with neural activity, physical exercise, state of 

consciousness and pathology (Czeisler et al., 1980; Walter et al., 1986; Moser et al., 

1993; Hlatky and Robertson, 2005; Kiyatkin, 2010; Harris and Andrews, 2014; 

Wang et al., 2014).  Elevated brain temperature associated with trauma, epilepsy, 

stroke and drug abuse is well documented and predicts a poorer prognosis (Schiff 

and Somjen, 1985; Busto et al., 1987; Azzimondi et al., 1995; Reith et al., 1996; 

Ginsberg and Busto, 1998; Rumana et al., 1998; Henker et al., 1998; Corbett and 

Thornhill, 2000; Hajat et al., 2000; Kammersgaard et al., 2002; Dietrich et al., 2009; 

Kiyatkin, 2010; Harris and Andrews, 2014; Schubert et al., 2014; Wang et al., 2014).  

At the cellular level hyperthermic insults increase resting membrane potential (RMP) 

and calcium levels, reduce pH and incite oxidative stress (Klose et al., 2008).  This 

supports the rationale for therapeutic cooling - to minimise the cascade of secondary 

events that perpetuate and extend neuronal damage after an initial insult (Northington 

et al., 2001a; Northington et al., 2001b; Bramlett and Dietrich, 2004; Weil et al., 

2008; McKee et al., 2009; Kim et al., 2013).  Such is the importance of brain 

temperature, that it has been proposed as a driver for hominid evolution and brain 

function (Kunz and Iliadis, 2007; Harris, 2010; Wang et al., 2014).        
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1.1.2  Mechanisms of hypothermic neuroprotection 

The neuroprotection afforded by cooling is multifaceted, as outlined in recent 

reviews (Mayer and Sessler, 2005; van der Worp et al., 2007; Faridar et al., 2011; 

Yenari and Han, 2012; Choi et al., 2012; Perman et al., 2014).  These protective 

benefits are well characterized in rodents and other model systems in the context of 

both spinal cord and brain injury (Busto et al., 1987; Huh et al., 2000; van der Worp 

et al., 2007; Chip et al., 2011; Ballesteros et al., 2013; Grulova et al., 2013).  

Undoubtedly, hypothermia reduces cerebral oxygen consumption (Richards et al., 

1963; Busija and Leffler, 1987) - but this cannot account entirely for the protective 

effect of mild cooling, since active cell metabolism continues at 32⁰C (Fujita, 1999; 

Ginsberg and Belayev, 2005).  In cerebral ischaemia, recognised mechanisms of 

hypothermic neuroprotection include (1) effects on cerebral blood flow, 

excitotoxicity and metabolism in the acute phase, followed by (2) effects on 

apoptosis, inflammation and the blood-brain barrier (BBB) and finally, (3) more 

delayed effects on neuroglial differentiation and synaptogenesis (Karibe et al., 1994; 

Zhao et al., 2007; Liu et al., 2008; Silasi and Colbourne, 2011; Yenari and Han, 

2012; Xiong et al., 2013).  In the context of acute axonal severance, cooling has even 

diminished the rate of Wallerian degeneration (Sea et al., 1995).  Although primary 

insults in spinal cord injury (SCI), traumatic brain injury (TBI), focal and global 

cerebral ischaemia are diverse, these disorders share secondary pathways that lead to 

cell death (Bramlett and Dietrich, 2004).  Some studies argue for a straightforward 

hypothermic downregulation or delay of cellular death programmes (Bossenmeyer-

Pourie et al., 2000).  Others have shown that cooling elicits a far more complex set of 

events, not befitting to a simple linear model or anything that resembles a molecular 
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‘off-switch’ (Fujita, 1999; Yenari et al., 2008; Lleonart, 2010; Yenari and Han, 

2012).   

 

Common secondary neurotoxic mechanisms inhibited by cooling include those 

arising from oxidative and excitotoxic stress (Maier and Chan, 2002; Ginsberg and 

Belayev, 2005; Weil et al., 2008; Hardingham and Bading, 2010; Yenari and Han, 

2012; Campos et al., 2012).  ‘Excitotoxicity’ describes the neuronal death or 

dysfunction resulting from overactivation of excitatory neurotransmitter receptors 

(Olney, 1969; Greenwood and Conolly, 2007).  Brain ischaemia and neurotrauma 

invariably lead to ATP depletion, energy failure, and loss of RMP (Bramlett and 

Dietrich, 2004; Weil et al., 2008; Khatri and Man, 2013).  Consequently, 

depolarization induces the release and extracellular accumulation of excitatory amino 

acids (EAAs) – of which glutamate predominates.  EEAs can also build up if 

released from intracellular stores during traumatic and/or necrotic cell death or if 

clearance mechanisms are compromised (Greenwood and Conolly, 2007).  Excess 

extracellular glutamate leads to inappropriate NMDAR activity, elevated intracellular 

free Ca
2+

, overwhelmed mitochondrial buffering capacity and disrupted calcium 

homeostasis (Rothman and Olney, 1986; Choi and Rothman, 1990; Lipton and 

Rosenberg, 1994; Werner and Engelhard, 2007; Greenwood and Connolly, 2007; 

Hasel et al., 2014).  Excitotoxicity ensues and is an important cause of neuronal 

death in many acute neurological conditions and neurodegenerative disorders (Lipton 

and Rosenberg, 1994; Hardingham and Bading, 2010; Hasel et al., 2014).  

Hypothermia can modify the synthesis, release and reuptake of EAAs (Fig.1.1) and 

has a U-shaped impact on EAA toxicity (Busto et al., 1989; Huang et al., 1993; 
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Globus et al., 1995a; Baker et al., 1995; Thoresen et al., 1997; Tymianski et al., 

1998; Li et al., 1999; Ginsberg and Belayev, 2005).  Interestingly, this reciprocates 

the original ‘bell-shaped curve’ depicted by neuronal health in relation to NMDAR 

activation (Lipton and Nakanishi, 1999; Hardingham and Bading, 2003).  More than 

90% of excitatory synapses in the mammalian CNS terminate on dendritic spines 

which are thus highly susceptible to excitotoxic damage (Harris and Kater, 1994; 

Hasel et al., 2014).  In response to hypothermia and other sublethal stresses there is a 

reversible dendritic swelling and spine loss (Ikegaya et al., 2001; Arendt et al., 2003; 

Kirov et al., 2004; Roelandse and Matus, 2004; Gisselsson et al., 2005; Yang et al., 

2006; Popov et al., 2007; Greenwood and Connolly, 2007).  Upon rewarming (or 

recovery), dendritic varicosities disappear and spines faithfully re-emerge without 

disruption of synaptic contacts, suggesting that these morphological transitions 

protect neurons from excitotoxic stress (Ikegaya et al., 2001; Arendt et al., 2003; 

Hasbani et al., 2001; Kirov et al., 2004; Gisselsson et al., 2005; Yang et al., 2006; 

Greenwood and Connolly, 2007).  Acute excitotoxicity induces similar dendritic 

beading and spine loss (Greenwood and Connolly, 2007; Hasel et al., 2014).  

Although its pathological significance is unknown, this ‘circuit-breaking’ strategy 

may serve as an early homeostatic defence against excitotoxic insults (Ikegaya et al., 

2001).  Clearly in the long term, these adaptive features cannot prevent neuronal 

death.  
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Oxidative stress incurs its damage via free radical oxidation of nucleic acids, proteins 

and lipids (Maier and Chan, 2002; Bramlett and Dietrich, 2004; Papadia et al., 2008; 

Kanamaru et al., 2015).  Age-associated oxidative stress is an important factor in 

neurodegenerative disease and results from an excess of reactive oxygen species 

(ROS), linked to impaired antioxidant capacity (Maier and Chan, 2002; Kanamaru et 

al., 2015).  Protective synaptic activity can enhance antioxidant defences (Papadia et 

Figure 1.1 Hypothermia inhibits glutamate release.  Changes in striatal microdialysis perfusate 
levels of glutamate (nmol/ml) in rats subjected to 20 min global forebrain ischaemia by four-vessel 
occlusion at 3 different intraischaemic brain temperatures.  In normothermic rats (36⁰C), ischaemia 
triggered a massive extracellular release of glutamate, whereas in hypothermic animals (33⁰C or 
30⁰C), glutamate release was almost entirely suppressed.  *p<0.01.  Figure reprinted (with 
permission) and legend adapted from Busto et al., 1989.  
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al., 2008), whilst excitotoxicity-associated mitochondrial impairment exacerbates 

ROS production (Singh et al., 2003; Hasel et al., 2014).  This increase in oxidative 

species is inhibited by cooling (Globus et al., 1995a; Globus et al., 1995b; Kil et al., 

1996; Kumura et al., 1996; Lei et al., 1997, Sakamoto et al., 1997; Si et al., 1997; 

Thoresen et al., 1997; Guven et al., 2002; Han et al., 2002; Maekawa et al., 2002; 

Maier and Chan, 2002; Dietrich et al., 2009) and may be critical to the protective 

reversibility of morphological changes in cooled hippocampal slices (Kirov et al., 

2004; Greenwood and Connolly, 2007).  Hypothermia also increases activity of the 

antioxidant enzyme superoxide dismutase (SOD) (Lei et al., 1994; Dekosky et al., 

2004).  As well as attenuating ROS-mediated neuroinflammation (Han et al., 2012), 

mild cooling preserves base-excision DNA repair after ischaemia-reperfusion-driven 

oxidative damage (Mayer et al., 1987; Ji et al., 2007; Luo et al., 2007; Zhao et al., 

2007).  Depending on insult severity, the final mode of excitotoxic or oxidative 

neuronal loss may comprise autophagy, apoptosis, necrosis, or necroptosis 

(programmed necrosis) - mild hypothermia can apparently defeat them all 

(Colbourne et al., 1999; Phanithi et al., 2000; Yenari et al., 2002; Bramlett and 

Dietrich, 2004; Degterev et al., 2005; Zhao et al., 2007; Cheng et al., 2013; 

Neutelings et al., 2013; Nikoletopoulou et al., 2014; Vieira et al., 2014).  Ultimately, 

mechanisms of neurotoxicity and hypothermic protection will be determined by (1) 

the duration and intensity of the primary insult (Soriano et al., 2006), (2) the 

vulnerability of specific neuronal populations and different neuronal compartments 

(Minamisawa et al., 1990; Hosie et al., 2012; Hasel et al., 2014), and (3) the depth 

and timing of cooling (Tymianski et al., 1998; Bramlett and Dietrich, 2004; Ginsberg 

and Belayev, 2005; Han et al., 2012). 
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1.1.3  The limits of clinical cooling 

Clinical efficacy of TH has been demonstrated in man, for neonatal hypoxic-

ischaemic encephalopathy (NHIE), open-heart surgery and acute global cerebral 

insults after cardiac arrest (The Hypothermia After Cardiac Arrest Study Group, 

2002; Bernard et al., 2002; Gluckman et al., 2005; Shankaran et al., 2005; Faridar et 

al., 2011; Arrich et al., 2012; Jacobs et al., 2013; Perman et al., 2014).  Despite this, 

cooling has failed to translate into wider clinical use for stroke and TBI (Clifton et 

al., 2001; O’Collins et al., 2006; Hutchison et al., 2008; Harris et al., 2012; Wang et 

al., 2014).  In part, this reflects conflicting or inconclusive trial data (Marion et al., 

1997; Clifton et al., 2001; Harris et al., 2012; Nielsen et al., 2013), complicated by 

adverse effects of whole-body cooling in addition to its practical challenges 

(application, patient selection and effective timing) (Faridar et al., 2011; Choi et al., 

2012; Harris and Andrews, 2014; Perman et al., 2014).  Furthermore, much of the 

cellular and molecular physiology affected by temperature reduction remains 

unexplored and poorly understood (Chip et al., 2011).  In effect, clinical use has been 

advocated on the evidence base that ‘hypothermia can work’, rather than addressing 

‘why’.  This strategy risks neglecting mechanisms that might be more easily targeted 

pharmacologically (Blackstone et al., 2005).  It could further yield a poor patient 

outcome, through as yet unknown deleterious consequences of brain or whole-body 

cooling.  Several neurotoxic pathways are common to both acute and chronic 

neuronal injury, thus understanding the molecular pathways that mediate cellular 

responses to hypothermia could reveal novel therapeutic targets for degenerative 

(Baxter et al., 2014) as well as traumatic neurological conditions.     
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1.2 The cold shock response 

 

1.2.1 Physiological and cellular cold-shock 

A distinction must be drawn between the ‘cold shock response’ in physiological 

terms (at the organism level) and that pertaining to temperature-dependent processes 

within cells.  The former is defined as: 

 

‘a pattern of reflexes driven by cutaneous cold thermoreceptors, and characterised 

by sympathetically mediated tachycardia, a respiratory gasp, uncontrollable 

hyperventilation, peripheral vasoconstriction and hypertension’ (Tipton, 1989; 

Shattock and Tipton, 2012).   

 

 

Cellular ‘cold-shock’ is somewhat slower, requiring profound but adaptive molecular 

changes that equip the cell for endurance at low temperatures (Fujita, 1999).  

Mammalian cells thus respond to cold-stress by switching from a state of growth and 

division to one of ‘adaptation and survival’ (Al-Fageeh et al., 2006).  This involves 

cell-cycle arrest and shut-down of gene transcription and protein translation (Burdon, 

1987; Wassman et al., 1998; Sonna et al., 2002; Al-Fageeh et al., 2006; Roobol et al, 

2009; Hofman et al., 2012).  Conversely, a subset of highly conserved
 
(Derry et al., 

1995) ‘cold-inducible’ RNA chaperones, including RNA binding motif 3 (RBM3) 

and cold-inducible RNA binding protein (CIRBP) are specifically upregulated in 

response to hypothermia (25-33⁰C)
 
(Nishiyama et al., 1997a; Nishiyama et al., 

1997b; Fujita, 1999; Sonna et al., 2002).  These glycine-rich binding proteins 

perform several important functions under stress conditions, including stabilisation 

and facilitated translation of essential mRNAs (Burd and Dreyfuss, 1994; Danno et 

al., 1997; Nishiyama et al., 1997a; Nishiyama et al., 1997b; Fujita, 1999; Phadtare et 



35 
 

al., 1999; Chappell et al., 2001; Sonna et al., 2002; Dresios et al., 2004; Smart et al., 

2007; Durandy et al., 2008; Wulhfard, 2009; Pilotte et al., 2009; Lleonart, 2010; Liu 

et al., 2013).  As such, cold-shock proteins have received attention in oncology, since 

they are associated with proto-oncogenesis through apoptotic inhibition (Kita et al., 

2002; Sureban et al., 2008, Sakurai et al., 2006; Saito et al., 2010; Ferry et al., 2011), 

promotion of an undifferentiated  ‘stem cell’ phenotype (Saito et al., 2010), and 

increased proliferation (Sureban et al., 2008; Wellmann et al., 2010; Lleonart, 2010; 

Matsuda et al., 2011; Grupp et al., 2013).  Predictably, several of these features 

might be useful for neuroprotection and repair.  Indeed, protective roles for RBM3 

and CIRBP have been established in rodent neurons (Chip et al., 2011; Li et al., 

2012; Peretti et al., 2015) and CIRBP is upregulated in hypothermic rat cortex (Liu et 

al., 2010).  Although RBM3 and CIRBP transcripts are induced in various human 

cell lines at 32⁰C (Danno et al., 2000), there is currently no published data addressing 

cold-shock protein expression in human neurons.   

 

1.2.2 Hypothermic preconditioning 

A particularly sparse literature relates to the preconditioning effect of hypothermia 

(Nishio et al., 2000; Yuan et al., 2004; Stetler et al., 2014).  Preconditioning 

describes the ‘delayed tolerance’ achieved against an intensively toxic insult by 

subjecting cells or tissue to a brief period of sublethal stress (Nishio et al., 2000; 

Rejdak et al., 2001; Soriano et al., 2006; Rodgers et al., 2007; Bell et al., 2011; 

Stetler et al., 2014).  It can be effected by many and varied stimuli, the best known of 

which is ischaemia (Kato et al., 1991; Kitigawa et al., 1991; Jäättelä, 1999; Bell et 

al., 2011; Stetler et al., 2014).  Such homeostatic priming is critically important at the 
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level of neural circuitry; extreme hypo- or hyperthermia re-calibrates neuronal 

circuits so that they can better withstand future temperature shifts (Money et al., 

2004; Robertson and Money, 2012).  For example, hyperthermic preconditioning at 

the Drosophila neuromuscular junction (NMJ) preserves synaptic transmission and is 

thought to involve heat shock 70 kDa protein (Hsp70) regulation of intracellular 

calcium levels (Barclay and Robertson, 2003; Klose et al., 2008).  These studies 

introduce the importance of chaperones in maintaining neuronal homeostasis under 

stress conditions (Rejdak et al., 2001).  Since preconditioning requires de novo 

protein synthesis, it has a relatively slow onset and persists over many days (Kato et 

al., 1991; Nishio et al., 2000; Klose et al., 2004; Gong and Golic, 2006).  An 

advantage of hypothermia as a preconditioning stimulus over say, hypoxia, heat 

shock or epileptiform activity, is that it would potentially have a broader therapeutic 

margin (Nishio et al., 2000; Rejdak et al., 2001; Kapoor et al., 2014).  Practically 

however, there are no instances in which preconditioning of any type could be timed 

optimally for acute or progressing conditions.  Given that cold-shock and 

hypothermic preconditioning both engage a protective molecular programme (Fujita, 

1999; Nishio et al., 2000; Chip et al., 2011), it seems likely that they are part of the 

same phenomenon or at least share mechanistic features.  The question raised is 

provocative: if we identify the key players in these pathways, might they provide 

potent neuroprotective drug targets across multiple stages of neuronal compromise?        

 

1.2.3 Cold-induced ontogenic reversal 

Another possible outcome of cold-stress is reverse development (RD).  RD was first 

described more than a century ago and within the animal kingdom, it is thought to be 
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unique to Cnidaria (Piraino et al., 2004; De Vito et al., 2005; Schmich et al., 2007).  

RD is an extreme adaptive response to unfavourable environmental conditions and, 

epigenetically, it can be induced by starvation, temperature or salinity changes 

(Piraino et al., 2004; Schmich et al. 2007).   An alternative (endogenous) route 

enables RD to proceed through a genetic programme at the onset of senescence or 

sexual maturity (Piraino et al, 2004; Schmich et al., 2007).  These sublethal stresses 

disturb the structural or functional integrity of one or more cell types including 

neurons, producing extensive tissue and cell rearrangements (Schmich et al., 2007).  

Like metamorphosis, RD requires apoptotic removal of redundant cells, a process 

that may be selectively regulated by cold-shock proteins (Fujita, 1999; Schmich et 

al., 2007).  Whilst such dramatic morphological transitions are inconceivable in the 

mature mammalian brain, more subtle effects on cell cycle and differentiation state 

might be accomplished with cooling (Saito et al., 2010; Silasi and Colbourne, 2011).  

Indeed, in both C.elegans and Drosophila, stress response pathways can determine 

developmental fate and are acutely sensitive to temperature shift (Walker et al., 

2003).  RBM3 and CIRBP expression is developmentally regulated under 

normothermic conditions and both may play a role in neuronal differentiation (Fujita, 

1999; Pilotte et al., 2009; Zeng et al., 2013).  Their induction in cooled, mature 

neurons might thus drive a primordial post-transcriptomic profile.  Very mild 

hypothermia (35⁰C) can also inhibit hPS differentiation (Belinsky et al., 2013), 

suggesting that some aspects of cold stress-regulated development are conserved in 

man.  Perhaps a modest response, insufficient to induce trans-or de-differentiation, 

but enough to retrieve an earlier (and more plastic) ontogenic state could provide a 
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degree of protection in cooled human neurons (Piraino et al., 2004; Arendt and 

Bullman, 2013).   

 

 

 

1.3 Comparative tau biology 

 

1.3.1 Tau function and isoform expression 

Neuronal axons must be maintained for the lifetime of the organism – and this 

critically depends on the microtubule cytoskeleton (Prokop, 2013).  The microtubule-

associated protein tau is encoded by a single gene (MAPT) that sits within an 

inversion polymorphism on human chromosome 17q21.1 (chromosome 11 in the 

mouse), and consists of 16 exons (Neve et al., 1986; Himmler et al., 1989; Andreadis 

et al., 1992; Friedhoff et al., 2000; Spires-Jones et al., 2009; Trabzuni et al., 2012).  

As its namesake suggests, tau is upregulated during neuronal differentiation 

alongside tubulin (Drubin and Kirschner, 1986); it is abundant in CNS axons, and 

functions to regulate the dynamics of microtubule assembly (Weingarten et al., 1975; 

Cleveland et al., 1977a; Cleveland et al., 1977b; Lindwall and Cole, 1984; Binder et 

al., 1985).  Emerging evidence however points to an increasingly pleiotropic nature 

of tau, with roles in synaptic and nucleic acid homeostasis, signal transduction, 

neurite outgrowth, establishing neuronal polarity, interaction with the actin 

cytoskeleton and plasma membrane, anchoring of protein kinases and phosphatases, 

and regulation of intracellular vesicle transport (Mandelkow and Mandelkow, 1998; 

Friedhoff et al., 2000; Biernat et al., 2002; Ittner et al., 2010; Mondragon-Rodriguez 

et al., 2012; Pooler et al., 2012; Pooler et al., 2013; Chesta et al., 2014; Frost et al., 

2014).  Interspecies differences in cortical complexity (Hill and Walsh, 2005), 
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cellular and molecular biology have compounded the failure to translate 

neuroprotective strategies from pre-clinical models to man.  With regard to tau, a 

potentially significant species difference lies in the developmentally-regulated 

expression of its multiple isoforms, generated by alternative splicing (Goedert et al., 

1988; Goedert et al., 1989; Goedert and Jakes, 1989; Janke et al., 1999; McMillan et 

al., 2008, Fig.1.2 and 1.3).  In particular, only tau isofoms containing 4 microtubule 

binding repeats (4R tau) are expressed in the adult rodent brain and this may result 

from the lack of a stem loop structure in the intron following exon 10 (Higuchi et al., 

2002).  Tau isoform expression is also region and cell-specific (McMillan et al., 

2008; Trabzuni et al., 2012) and the relative abundance of these isoforms determines 

tau function in both the normal and pathological brain (Trojanowski and Lee, 1995).  

Tau isoform balance might thus be subject to change under conditions that influence 

neuronal survival, such as hypothermia.  Whilst there is little evidence for this in in  

vivo models of TH (Stieler et al., 2011), several core human tau isoforms are absent 

in the adult rodent brain and may be required to evaluate true human tau  function 

and dysfunction (Janke et al., 1999; Andorfer et al., 2003).  In addition, the tau 

haplotypes that have been associated with disease in man do not appear to exist in 

rodents (Stefansson et al., 2005; Trabzuni et al., 2012).  Together these findings 

provide a strong rationale for exploring tau in the context of TH in a physiologically 

relevant human system. 
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ISOFORM  3R0N 3R1N 3R2N 4R0N 4R1N 4R2N 

HUMAN       

BOVINE       
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GOLDEN 
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Figure 1.2 Species-specific expression of tau isoforms in the adult brain.  Expression of tau 
isoforms in the brain tissue of 12 different mammalian species according to 2D-
electrophoresis (adapted from Janke et al., 1999).  Note that none of the commonly used 
laboratory mammals express the full complement of human tau isoforms.  Dark aqua = strong 
isoform expression, light aqua = isoform present, grey = isoform hardly detectable or absent. 
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1.3.2 Tau structure 

Tau represents more than 80% of available MAPs (Wang and Liu, 2008).  In vitro, 

tau is absolutely required for the assembly of microtubules – a function regulated by 

the state of tau phosphorylation (Weingarten et al., 1975; Lindwall and Cole, 1984).  

The entire tau structure has eluded definitive analysis by xray crystallography and 

magnetic resonance; these and other methods generally report a natively disordered 

Figure 1.3 Tau isoforms in the human brain.  Six major tau isoforms are generated in the CNS from 
a single gene (MAPT) by alternative splicing (Goedert et al., 1989; Himmler et al., 1989).  Exons 9-
12 code for the C-terminal microtubule-binding repeat domains.  Splicing is developmentally 
regulated such that all six isoforms are found in the adult brain, but only the shortest 352aa 
(htau23, 36.7 kDa, 3R0N or ‘foetal tau’) isoform is found in the foetal brain (Bramblett et al., 1993; 
Goedert et al., 1989; 1993).  Variable inclusion of exon 10 determines the expression of tau 
isoforms with either 3 (‘3R tau’) or 4 (‘4R tau’) microtubule binding repeats, whereas variable 
inclusion of exon 2 (with or without exon 3 (Andreadis et al., 1995)) determines the length of the 
N-terminal extension.  Approximately equal proportions of 3R and 4R tau are found in the healthy 
adult human brain, but the presence of 0, 29 or 58 amino acid N-terminal inserts varies according 
the percentages shown in aqua.  Largely in the peripheral nervous system, inclusion of exon 4a 
generates a larger isoform known as ‘big tau’ (Couchie et al., 1992; Goedert et al., 1992).  Other 
minor isoforms have been described (Andreadis, 2006; Mandelkow and Mandelkow, 2012).   
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protein with short elements transiently adopting α-helix or β-sheet conformation 

(Schweers et al. 1994; Mukrasch et al., 2009; Mandelkow and Mandelkow, 2012; 

Hyman, 2014) (Fig.1.4).  This random, flexible structure is consistent with the high 

solubility of tau and the fact that its microtubule stabilising activity survives heat, 

denaturants and acids (Friedhoff et al., 2000).  More permanent ‘misfolded’ 

conformations of tau are found in the diseased brain (Hyman, 2014).  Tau is 

primarily composed of hydrophilic and charged residues, with an acidic N-terminal 

region followed by basic domains (Friedhoff et al., 2000).  The imperfect 

microtubule binding repeats of 31-32 amino acids are located in the C-terminal half 

of the protein – the ‘assembly domain’ - flanked by proline-rich motifs (Steiner et al., 

1990; Higuchi et al., 2002; Mandelkow and Mandelkow, 2012).  The positive charge 

of this region is strongly attracted to the net negative charge of the outer surface of 

microtubules (Friedhoff et al., 2000).  In healthy neurons tau is substoichiometric 

relative to tubulin (~1 μM versus ~20-40 μM) (Cleveland et al., 1977a; Cleveland et 

al., 1977b; Hiller and Weber, 1978; Mandelkow and Mandelkow, 2012).  Thus in 

vivo, tau readily associates with tubulin but is most concentrated at the distal end of 

the axon where it facilitates cargo offload (Dixit et al., 2008; Spires-Jones et al., 

2009; Amos, 2014).  The negatively charged N-terminal ‘projection domain’ 

facilitates microtubule spacing and interactions with the plasma membrane 

(Hirokawa et al., 1988; Brandt, 1996; Chen et al., 1992; Amos, 2014). 
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1.3.3 The importance of functional tau 

Tau expression is ubiquitous in immature neurons and becomes progressively axonal 

as they mature (Mandelkow and Mandelkow, 2012).  In the chick embryo, tau was 

found to participate in growth cone collapse – a key event in axonal guidance and 

retraction (Nakayama et al., 1999).  The importance of tau in neuronal development 

and function is illustrated by tau knockout models.  Originally, mice lacking tau were 

found to have only subtle phenotypes and this was attributed to the partial 

redundancy of various MAPs within the mammalian brain (Harada et al., 1994; 

Figure 1.4 Tau domains and structural components.  Schematic adapted from Mandelkow and 
Mandelkow (2012) shows the putative secondary structure of tau (top) deduced from nuclear 
magnetic resonance (NMR) spectroscopy (Mukrasch et al. 2009).  Most of the peptide chain is 
unfolded (dark grey line), with a few short, transient elements of secondary structure (α-helix, 
aqua; β-strand, dark grey; poly-proline helix, light grey).  The region of the two hexapeptide motifs 
responsible for tau aggregation are highlighted by an aqua rectangle.  Tau domain subdivisions are 
shown in the middle panel (following Gustke et al., 1994).  The C-terminal half promotes 
microtubule assembly whilst the N-terminal half projects out from the microtubule surface.  
Approximate interaction sites with other proteins are indicated at the bottom.  PI3K = 
Phosphatidylinositol-4,5-bisphosphate 3-kinase.  Src = proto-onocogene tyrosine kinase.  Hsp70 = 
heat shock 70 kDa protein. 
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Dawson et al., 2001; Ke et al., 2012; Bolkan and Kretschmar, 2014).  Flies on the 

other hand express a smaller range of MAPs – ubiquitous reduction of tau in 

Drosophila is lethal, whilst neuron-specific deletion either at an early stage of 

development or in adulthood leads to progressive neurodegeneration (Bolkan and 

Kretschmar, 2014).  This phenotype can be partially rescued by the transgenic 

expression of the wild-type human foetal tau isoform 3R0N, indicating functional 

conservation of this protein from fly to man (Bolkan and Kretschmar, 2014).  More 

recent work in tau knockout mice reveals an age-dependent brain atrophy, cognitive 

deficits and parkinsonism, indicating a protective role of this protein in the mature 

brain (Lei et al., 2012; Ma et al., 2014).  This loss-of-function phenotype is 

remarkably similar to patients carrying mutations in the tau gene.  

 

 

1.4 Tau modulation in health and disease 

 

1.4.1 Tauopathies 

The balance of tau isoforms, their secondary modifications and interactions with 

binding partners dictates the role of tau in health and disease (Trojanowski and Lee, 

1995; Fig.1.4).  For example, overexpression of wild-type human 4R tau in mouse 

neurons produces a severe disruption of axonal transport, axonopathy and 

neurodegeneration due to excessive binding of 4R tau to microtubules (Spittaels et 

al., 1999; Wang and Liu, 2008).  Tau is also the most commonly misfolded protein in 

human neurodegenerative disorders (Goedert and Spillantini, 2011).  Tauopathies are 

progressive, neurodegenerative and ultimately fatal diseases defined by the 
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intracellular accumulation of abnormal filamentous tau (Trojanowski and Lee, 2000; 

Garcia and Cleveland, 2001).  They include Pick’s disease, progressive supranuclear 

palsy (PSP), corticobasal degeneration (CBD), fronto-temporal dementia (FTD) and 

Alzheimer’s disease (AD) – in which extracellular deposits of amyloid beta are a co-

existing pathognomonic feature (Trojanowski and Lee, 2000).  These disorders are 

classified by the distribution, morphological and biochemical characteristics of the 

tau inclusions found at post-mortem (Braak and Braak, 1991; Hyman, 2014) 

(Fig.1.5).  For example in AD, neurofibrillary tangles (NFTs) are found in the 

somatodendritic compartment of affected neurons, whilst neuropil threads (NT) are 

found in distal dendrites and axons – these protein aggregates are principally 

composed of tau (Alzheimer, 1907; Brion et al., 1985; Grundke-Iqbal et al., 1986; 

Kosik et al., 1986; Wood et al., 1986; Lee et al., 1991; Friedhoff et al., 2000; 

Mandelkow and Mandelkow, 2012; Goedert et al., 2014).  Tau pathology is also 

recognised in a broader spectrum of degenerative disorders, including prion disease, 

amyotrophic lateral sclerosis (ALS)/Parkinsonism-dementia complex (PDC) and 

C9ORF72-associated FTD (Spillantini and Goedert, 2013).  Furthermore, the 

characteristic NFTs in AD are likewise typical of chronic traumatic encephalopathy 

(CTE) (McKee et al., 2009) and trauma is a risk factor for AD, ALS and Parkinson’s 

disease (PD) (Smith et al., 1999; Ikonomovic et al., 2004; McKee et al., 2013).  Tau 

isoform contribution, inclusion type and cell vulnerability vary with disease state 

(Gasparini et al., 2007; McKee et al., 2009).  Hallmark tauopathic features however 

comprise tau hyperphosphorylation, aberrant folding, aggregation and reduced 

solubility (Lee et al., 1991; Iqbal et al., 2009; Spillantini and Goedert, 2013).   
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Figure 1.5 Classification of tauopathies.  Sporadic and familial tau-associated disorders have been 
classified in the composite table above according to the tau isoforms found within insoluble 
inclusions in the brain at post-mortem.  MAPT-associated pathologies are designated an ‘E’ 
number corresponding to the exon or intron within which they are located.  Mutations are 
numbered according to the longest human tau isoform.  Aqua font depicts pathology affecting 
both neurons and glia, otherwise tau inclusions are found within neurons only.  Italic font depicts 
PHF conformation; other filamentous forms of tau can include straight#, twisted@ and random 
filaments or twisted ribbons*.  Within neurons tau filaments can aggregate into classic NFTs, 
neuropil threads, dystrophic neurites, neuritic plaques (dystrophic neurites associated with 
amyloid plaques), Pick bodies.  Within glia, filamentous tau appears as tufted astrocytes or coiled 
bodies within oligodendrocytes.  In patients carrying the P364S mutation, striking composite 
neuronal tau inclusions (CNTI) are seen with 3R isoforms at the core of the lesion and 4R tau at 
the periphery.  Functional mutations either reduce MT assembly or increase filament formation, 
whilst splicing mutations (underlined) influence the inclusion of exon 10 and thus alter the ratio of 
3R:4R tau isoforms. Some mutations have both properties (ΔK280, N296H, N410H).  Most 
mutations are point, missense mutations.  Deletion mutations are shown with ‘Δ’.  Silent 
mutations are obvious from their unchanged amino acid composition.  Mutations listed outwith 
the table are yet to be fully characterized; most of them are considered to be non-pathogenic or 
only affect the risk of AD.  (G213R, V224G), others are associated with FTD (V75A, G273R, G335V, 
V363I, G366R).  For A239T, the FTD is thought to derive from a mutation in the granulin (GRN) 
gene.  A227A is associated with the H2 haplotype and decreased expression of tau.  L284R and 
D285N are associated with PSP.  S352L is associated with respiratory failure in youth.  V363I and 
D285N show incomplete penetrance.  DS = Down’s syndrome, GSS = Gerstmann-Sträussler-
Scheinker syndrome, NPiDC = Niemann-Pick disease type C.  Table compiled from multiple 
sources including: Forman et al., 2002; Ingram and Spillantini, 2002; Avila et al., 2004, Sergeant 
and Buee, 2005; Goedert and Spillantini, 2011; Dujardin et al., 2014, Garcia and Cleveland 2001, 
Higuchi et al., 2002, Bieniek et al., 2013; King et al., 2013; Di Fonzo et al., 2014; Popovic et al., 
2014, http://www.alzforum.org/. 
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1.4.2 Tau mutation 

Around 5% of FTD cases result from mutations in MAPT (89 mutations have been 

described to date, some of which are non-pathogenic, see Fig.1.5 and 1.6) (Goedert 

and Spillantini, 2011).  At least 51 of these mutations are sufficient to cause 

accelerated forms of dementia, described as autosomal dominant FTD and 

parkinsonism linked to chromosome 17 (FTDP-17) (Wilhemsen et al., 1994; Hutton 

et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998; Goedert et al., 2011 

Spillantini and Goedert, 2013).  This landmark discovery, alongside disease 

associations with various tau haplotypes and the absence of amyloid plaques in most 

sporadic tauopathies (Myers et al., 2007; Iqbal et al., 2009; Wade-Martins, 2012; 

Trabzuni et al., 2012) (Fig.1.7) underpins the importance of tau in neuronal health 

and neuropathogenesis.  Controversy prevails however over the tau species (or 

intermediate) that might propagate neural demise, impeding development of 

effective, tau-targeted treatments.  To complicate matters, evidence for tau-mediated 

neuroprotection is growing.  For example, Esclaire et al. (1998) observed that the 

resistance of rat cortical neurons to glutamate-induced apoptosis was directly related 

to increased tau transcription.  Currently, the consensus seems to be that filaments 

and fibrils are neither necessary nor sufficient for tau-induced toxicity, whilst soluble 

tau oligomers, promoted by tau cleavage, appear to be most toxic (Bretteville and 

Planel, 2008; Rocher et al., 2010; Crimins et al., 2011, 2012; Crespo-Biel et al., 

2012; Flach et al., 2012; Kopeikina et al., 2012; Cowan and Mudher, 2013; Crimins 

et al., 2013).  Whether tau pathology arises from loss of normal protein function 

(Cash et al., 2003), a gain of toxic function via oligomerization or tangling (Iqbal et 
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al., 2009; Feuillette et al., 2010) a combination of these factors or as a bystander 

effect remains inconclusive – even in FTDP-17 (Bolkan and Kretzschmar, 2014).   

 

 

 

 
 
 
 
 
 

 

 

 

 

Figure 1.6 MAPT mutations found in cases of FTDP-17.  The schematic is adapted from Spillantini 
and Goedert (2013) and displays 42 coding region mutations along with 9 intronic mutations 
flanking exon 10 (highlighted by aqua ring).  Some exonic mutations act primarily at the protein 
level, reducing the ability of tau to bind to microtubules and/or promoting the assembly of tau 
into filaments.  Other exonic mutations and the intronic mutations act at the RNA level and alter 
the splicing of tau pre-mRNA thus disrupting the balance of 3R to 4R tau isoforms. 
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1.4.3 Tau phosphorylation 

Tau is a phosphoprotein containing 85 potential phosphorylation sites, largely at 

serine and threonine residues (Spires-Jones et al., 2009; Buee et al., 2010).  Around 

45 of these epitopes have been fully elucidated, many of them flanking the 

microtubule binding domains (Fig.1.8) (Higuchi et al., 2002; Hanger et al., 2009; 

Iqbal et al., 2009).  These sites are variably phosphorylated depending on 

developmental age, neuronal health and physiological state (Spillantini and Goedert, 

Figure 1.7 Tau haplotypes. The MAPT locus has two principal genetic haplotypes: the directly 
oriented H1, and H2, which has an inverted chromosomal sequence of ~ 970 kb (Stefansson et al., 
2005; Wade-Martins, 2012).  H1 is more common; it associated with increased inclusion of exon 10 
(Caffrey et al., 2007) and increased risk of sporadic tauopathy (PSP and CBD, odds ratio, OR ~ 5) 
and idiopathic Parkinson’s disease (PD, OR ~ 1.7) (Wade-Martins, 2012; Spillantini and Goedert, 
2013).  A single nucleotide polymorphism (SNP) produces the H1 subhaplotype H1c which is 
strongly associated with PSP (Hӧglinger et al., 2011).  By contrast, the underrepresented H2 is 
linked to increased expression of exon 3 in grey matter, most prominently in cortical regions 
(Trabzuni et al., 2012).   This is thought to be protective against the formation of tau tangles and 
decreases the risk of developing PSP, CBD and PD (Caffrey et al., 2008; Trabzuni et al., 2012; Zhong 
et al., 2012).  It is worth noting that the rodent sequence sits in the H2 orientation (Stefansson et 
al., 2005; Trabzuni et al., 2012) which may explain the lack of spontaneous NFT development in 
these species.  
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2013).  A handful of these phospho-epitopes were originally assigned specifically to 

the diseased brain, however, over the last two decades this list has progressively 

diminished as equivalent sites have been identified in human foetal or healthy adult 

biopsy-derived brain samples (Goedert et al., 1993; Bramblett et al., 1993; Brion et 

al., 1993; Derkinderen et al., 2005; Matsuo et al., 1994; Seubert et al., 1995).  What 

remains is largely a distinction in terms of quantity; tau in the AD brain carries 6-8 

moles of phosphate per mole of protein, compared to approximately 4 in normal 

foetal brain and about 1.9 in normal adult brain (Ksiezak-Reding et al., 1992; Kopke 

et al., 1993; Sergeant et al., 1995; Mandelkow and Mandelkow, 2012).  This 

hyperphosphorylated tau sequesters normal tau and other MAPs, and the increased 

phosphorylation state prevents tau binding to microtubules thus leading to 

microtubule disassembly (Iqbal et al., 1986; Bramblett et al., 1993; Alonso et al., 

1996).  Hyperphosphorylation also reduces tau turnover, and promotes its misfolding 

and subsequent aggregation into NFTs (Bancher et al., 1989; Yoshida and Ihara, 

1993; Iqbal et al., 2009; Spillantini and Goedert, 2013; Fig.1.9).  On the contrary, a 

collection of studies have shown that phosphorylation can protect tau against PHF 

formation (Schneider et al., 1999; Friedhoff et al., 2000).  Also, by comparison, 

polyanionic cofactors such as sulphated glycosaminoglycans and RNA can stimulate 

tau aggregation far more efficiently than phosphorylation (Friedhoff et al., 2000; 

Mandelkow and Mandelkow, 2012).  Thus, whether hyperphosphorylation is 

required to produce filamentous tau remains to be unequivocally established 

(Sergeant and Buee, 2005; Cowan and Mudher, 2013; Spillantini and Goedert, 2013).  

Several other biochemical modifications of tau including proteolytic cleavage, 

ubiquitination, oxidation, O-GlcNac glycosylation, N-glycosylation, nitration, 
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glycation, deamidation, sumoylation and acetylation have been described (Avila et 

al., 2004; Wang and Liu, 2008; Spires-Jones et al., 2009; Mandelkow and 

Mandelkow, 2012).  Many of these appear to be disease-associated, disease-specific 

or even disease-stage specific (Wang and Liu, 2008) and may have equivalent or 

even more significant roles to play than phosphorylation en route to tau aggregation.   
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Figure 1.8. Tau phosphorylation sites.  The longest human tau isoform (4R2N) is depicted 
together with 85 known phosphorylation sites numbered beneath, adapted from the Hanger lab 
table (http://cnr.iop.kcl.ac.uk/hangerlab/tautable).  These include tyrosine (Y), serine (S) or 
threonine (T) residues.  Filled boxes refer to sites phosphorylated in PHF-tau from Alzheimer’s 
disease brain.  Only one of the two closely phosphorylated sites at T414 or S416 are 
phosphorylated.  Light grey filling refers to sites that have been detected by antibody 
immunoreactivity only, whereas light aqua filling hjghlights sites that have been directly 
demonstrated by mass spectrometry or Edman degradation.  Epitopes outlined in dark grey are 
also phosphorylated in normal adult brain tau; note that only 2 of 3 closely phosphorylated sites at 
S412, S413 and T414 are phosphorylated.  Epitopes labelled in dark aqua are also known to be 
phosphorylated in human foetal brain tau (Goedert et al., 1993; Bramblett et al., 1993; Brion et al., 
1993; Derkinderen et al., 2005; Matsuo et al., 1994; Seubert et al., 1995).  Asterisks denote sites 
for which a kinase has not yet been identified.  Boxes above the peptide sequence refer to the 
classic complement of antibodies directed against phospho-epitopes to detect PHF-1 tau in 
pathological samples.  Most of these antibodies also detect phospho-tau in human foetal post-
mortem brain tissue and human adult biopsy-derived brain (Goedert et al., 1993; Bramblett et al., 
1993; Brion et al., 1993; Derkinderen et al., 2005; Matsuo et al., 1994; Seubert et al., 1995).  A 
notable exception is AT100 which is thought to be specific for pathological tau (Matsuo et al., 
1994).  AT8 recognises tau phosphorylated at both S202/T205 epitopes (Goedert et al., 1995), 
AT100 = S212/T214 recognises tau phosphorylated at both S212 and T214.  AT180 detects tau 
phosphorylated at both T231 and S235 with weak recognition of phosphorylation at T231 only.  
AT270 recognises tau phosphorylated at T181 (Shahani et al., 2006).  PHF-1 recognises the epitope 
around S396 and S404 sites.  Alz50 supposedly detects a misfolded conformation of tau; the 
epitope includes amino acids 2-10 and 312-342.  MC1 is another conformation-dependent 
antibody whose reactivity depends on both amino acids 7–9 and 313–322.  MC6 recognizes tau 
phosphorylated at S235 (Hanger et al., 2009).  Other than 12E8 and MC1 (which have not been 
tested), all of these antibodies detect phospho-tau in cultured hCNs (dark aqua labels).   
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Hyperphosphorylation of brain tau is also observed during development, mitosis, 

hibernation, hypothermia, anaesthesia, starvation and experimental diabetes mellitus 

(Mawal-Dewan et al., 1994; Yanagisawa et al., 1999; Planel et al., 2001; Arendt et 

al., 2003; Ikeda et al., 2007; Wang and Liu, 2008; Ke et al., 2009; Stieler et al., 2011; 

Chen et al., 2014).  The implication is that this facet of tau is functionally significant 

and likely a prerequisite for neuronal growth, network formation and synaptic 

integrity.  Tau phosphorylation is transiently high in early development and 

reversibly increases during hibernation and experimental cooling (Goedert et al., 

Figure 1.9 Neurofibrillary tangle pathology in Alzheimer’s disease. Low-power view of a descending 
transentorhinal layer pre-α neuron immunostained with phospho-tau specific antibody AT8 then de-
stained and re-stained with Gallyas silver impregnation for neurofibrillary changes.  Densely stained 
fibrillary bundles represent the transition from an intracellular (left) to an extracellular (right) NFT 
(‘early’ ghost tangle), scale bar = 20 μm.  The NFT is the most common type of tau aggregate found in 
neurodegenerative disorders.  NFTs are composed of paired helical filaments (PHF) of 
hyperphosphorylated tau.  The image is reprinted (with permission) and legend adapted from Braak 
and Braak, (1994).  
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1993; Mawal-Dewan et al., 1994; Arendt et al., 2003; Planel et al., 2004; Yu et al, 

2009; Stieler et al., 2011; Fig.1.10).  Increased tau phosphorylation and missorting 

can also proceed independently of tau aggregation (Eckermann et al., 2007).  These 

discoveries have sequentially eroded the dogma of what constitutes ‘pathological 

tau’.  Despite this, the persistence of a hyperphosphorylated state is clearly linked to 

aggregation; in Drosophila, NFT formation requires co-expression of tau kinases 

alongside human tau (Jackson et al., 2002; Chau et al., 2006).  In the human brain, 

phosphorylation of soluble tau at the AT8 epitope decreases rapidly after death – thus 

residual AT8 staining reflects the presence of tau inclusions (Braak and Del Tredici, 

2011; Matsuo et al., 1994; Goedert et al., 2014).  The phosphorylation state of 

neuronal proteins is strictly regulated by the balanced activity of protein kinases and 

phosphatases (Fig.1.11) (Chan and Sucher, 2001).  Protein phosphatase 2A (PP2A) is 

a multisubunit enzyme complex forming one of the major serine-threonine 

phosphatases expressed in the brain (Strack et al., 1998).  A large body of evidence 

converges on the importance of PP2A in determining tau phosphorylation state; 

PP2A expression increases during development and deteriorates in AD (Gong et al., 

1993; Vogelsberg-Ragaglia et al., 2001; Yu et al., 2009), whilst PP2A activity is 

disproportionately inhibited in the hypothermic brain (Planel et al., 2004).  This 

offers insight into the dynamic modification of tau both in nature and in the context 

of neural demise.    
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Figure 1.10 PHF-like tau phosphorylation is physiological and reversible. Upper panel: 
immunohistochemical detection of PHF-like phosphorylated tau by the phospho-tau 
dependent antibody AT8 in the brain of a mammal that undergoes natural hibernation cycles 
(European ground squirrel, Spermophilus citellus).  Left = non-hibernating euthermic animal, 
middle =  animal after long torpor, right = animal after long arousal.  Torpor results in strong 
immunoreactivity in the entorhinal cortex (arrowheads), hippocampus, cortex, hypothalamic 
and epithalamic nuclei which is completely reversed within hours after arousal.  Scale bar, 1 
mm. Lower panel: PHF-like tau (AT8) in the hippocampus during hibernation (right) as 
compared to a euthermic animal (left), scale bar = 30 μm.  Images reprinted (with permission) 
and legend adapted from Arendt et al., (2003). 
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1.4.4 ‘Spread’ of tau pathology 

Recent emphasis has been placed on the ‘prion-like spread’ of tau pathology between 

anatomically-connected regions within the brain (Prusiner, 1984; Clavaguera et al., 

2009; Frost et al., 2009; Kim et al., 2010; Guo et al., 2011; de Calignon et al., 2012; 

Hall and Patuto, 2012; Liu et al., 2012a; Clavaguera et al., 2013).  Transmission of 

tauopathies between human patients has never been demonstrated (Goedert et al., 

Figure 1.11 Microtubule dynamics. Binding of tau to microtubules is regulated by its 
phosphorylation state.  Whilst there are many kinases that phosphorylate tau (major kinases are 
shown on the right; GSK3 has been most intensively studied), there are relatively few enzymes that 
dephosphorylate tau (Hanger et al., 2009).  Kinases are broadly divided into two groups 
(Morishima-Kawashima, 1995): (1) proline-directed (e.g. extracellular signal-related kinase, ERK1/2; 
cyclin-dependent kinase 5, Cdk5) and non-proline-directed (e.g. calcium- and calmodulin-
dependent protein kinase II, CamKII; protein kinases A and C, PKA/C; glycogen synthase kinase 3β, 
GSK3β) (Wang and Liu, 2008).  The putative role of ERK1/2 in tau phosphorylation has recently 
been contested using a mouse model and human neuroblastoma cell line (Noël et al., 2015).  PP2A 
accounts for more than 70 % of phosphatase activity in the brain (Liu et al., 2005).  Image entitled 
‘Tauopathy’ authored by Resident Mario (talk) 17:27, 9 January 2012 (UTC) and adapted under a 
Wikimedia Commons Creative Commons Attribution-Share Alike 3.0 Unported license. 
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2014; Sanders et al., 2014).  However, sporadic tau pathology typically advances in a 

hierarchical and time-dependent manner along functionally-related neuronal tracts.  

In AD, NFTs originate in layer II of the entorhinal cortex (EC-II) and then appear to 

progress via the perforant pathway to the hippocampus and neocortex, as categorised 

by Braak stages I-VI (Hyman et al., 1984; Braak and Braak, 1991).  Cell type 

vulnerability must also play a role since some neurons in this pathway are 

comparatively resistant to the development of intracellular tau inclusions (Hyman et 

al., 1984).  Later it was shown that brain extracts from mice expressing mutant 

human tau (P301S) could ‘seed’ neuronal NFTs in mice expressing wild-type human 

tau (Clavaguera et al., 2009) and that extracellular tau fibrils can be internalized by 

cultured neurons, inducing normal tau to form NFT-like inclusions (Frost et al., 

2009; Guo and Lee, 2011; Guo and Lee, 2013).  These works inspired an elegant set 

of experiments in which mutant human tau (P301L) was transgenically expressed in 

a specific set of EC-II neurons in the mouse brain - equivalent to the starting point of 

AD tau pathology (de Calignon et al., 2012; Liu et al., 2012a).  Insoluble, 

hyperphosphorylated tau aggregates progressed from this area to neurons 

downstream in the synaptic circuit – neurons that did not express the human 

transgene.  Additional key findings from the study by de Calignon and colleagues 

(2012) were that human tau co-aggregated with endogenous mouse tau and that early 

tau pathology in EC-II was associated with age-dependent axonal degeneration, 

followed by synaptic and neuronal loss as seen in AD.  Together, these studies have 

provided compelling evidence that tau aggregates can ‘seed’ their own self-

propagation, and ‘spread’ from neuron to neuron through synaptically-linked 

pathways.  They do not however confirm trans-synaptic spread of tau, as claimed by 
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others using a similar mouse model (Liu et al., 2012a), primary cortical cultures 

(Pooler et al., 2013) or perhaps more convincingly a microfluidic culture system 

(Dujardin et al., 2014).  Whilst Clavaguera et al. (2009) confirmed NFT formation 

using ultrastructural analysis and immunoreactivity at AT100 (a phospho-epitope 

that can only be generated by sequential phosphorylation of tau at particular sites and 

is considered highly specific for pathological tau (Friedhoff et al., 2000; Higuchi et 

al., 2002)), de Calignon and co-workers relied on biochemical characterization of tau 

aggregates using antibodies that were designed to detect hyperphosphorylated or 

‘pre-tangle’ tau (Alz50, PHF-1, AT180) (Friedhoff et al., 2000).  Pathologically this 

pre-tangle stage is distinguished by accumulation and somatodendritic relocalization 

of tau without PHF formation (Bancher et al., 1989; Bretteville and Planel, 2008).  

Thus the inclusions observed in the second study could not be described as ‘AD-like’ 

NFTs.  Interestingly de Calignon et al. (2012) noted an age-dependent decrease in 

co-expression of the human transgene and abnormal tau protein within cells, whilst 

Liu et al. (2012) found the opposite.  The former group interpreted this as protein-

only replication of the ‘seed’, whilst the latter suggested upregulation of tau 

transcript in response to loss of normal protein function within aggregates.  Neither 

study considered the possibility that transcriptional and/or translational control may 

have been impaired by the mutation, or that in the case of de Calignon et al. (2012), 

tau transcription might be suppressed to counteract the build up of inclusions.  

Regardless of their differences, these in vivo studies all required overexpression of 

mutant human tau within neurons and it is well established that (1) tau mislocalises, 

becomes hyperphosphorylated and forms aggregates in a concentration-dependent 

manner (Eckermann et al., 2007) (overexpression of wild-type murine tau in mice is 
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sufficient to cause tauopathy (Adams et al., 2009)), (2) tau mRNA expression 

remains unchanged in AD (Mah et al., 1992), and (3) tau is not mutated in the vast 

majority of tauopathies (Goedert et al., 2010).  Thus there are fundamental concerns 

with translating findings in rodent models to sporadic human disease, since their 

physiological relevance is undermined by more than just the species barrier.  In 

addition, most of the transgenic models of human FTDP-17 produce severe spinal 

cord pathology with a motor neuron phenotype that does not replicate the prominent 

cortical predilection in human patients (Garcia and Cleveland, 2001).  Modelling 

these rare inherited forms of tauopathy are a particular challenge due to 

clinicopathological heterogeneity, even between patients carrying the same mutation 

(Yasuda et al., 2000). 

 

Despite this, the ‘prion-like’ hypothesis has attracted further endorsement through 

the inoculation, spreading and passage of human sporadic tauopathy aggregates in 

mice expressing wild-type human 4R tau (Clavaguera et al., 2013).  Critically, using 

non-transgenic mouse recipients, this study also demonstrated that overexpression of 

human tau is not required for inclusion formation and spreading since homogenates 

from AD, PSP, tangle-only dementia (TD) and argyrophilic grain disease (AGD) 

induced the assembly of mouse tau.  This also confirmed the absence of a tauopathic 

‘species barrier’ that is characteristic of classic prion diseases (Hyman, 2014).  It was 

however clear that overexpression of wild-type human tau in the recipient mice 

promoted the formation of tau inclusions.   Aggregate spread was further enhanced 

by sequence similarity between the ‘seed’ and recruitable endogenous tau, suggesting 

a degree of ‘strain-specificity’ (Colby and Prusiner, 2011).  Similar to their earlier 
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work (Clavaguera et al., 2009), neurodegeneration was not observed within the time 

course of the study (18 months) (Clavaguera et al., 2013).  Intriguingly, the study by 

de Calignon and colleagues (2012), also reported no evidence of neurodegeneration 

in association with human/mouse tau co-aggregates (at least not by 24 months).  This 

raises the question of whether this hybrid aggregate retained the ‘toxicity’ of its 

founder, or whether it represented an evolved ‘strain’ with diluted mutant properties.  

Of paramount importance is that in stark contrast to the characteristic neuronal loss 

of the original P301S model (Allen et al., 2002), no neurodegeneration was observed 

in the mice that received P301S extract injections (Clavaguera et al., 2009).  As 

highlighted by the authors, it is possible that the wild-type human tau background 

delayed the degenerative changes, or that different tau species are responsible for 

transmission and toxicity (Clavaguera et al., 2009; Clavaguera et al., 2013).  An 

alternative hypothesis is that NFT formation shields the cell from more toxic 

oligomeric intermediates by rendering them inert (Bretteville and Planel, 2008; Tai et 

al., 2012; Walther et al., 2015), and that it is this protective process which is 

overwhelmed or defective in the P301S mouse.  This is supported by the fact that 

wild-type human tau seeds are more efficient than P301S human tau seeds at 

promoting spread of wild-type aggregated mouse tau (Clavaguera et al., 2013).  It 

might also explain the late expression of AD, and that many NFT-bearing neurons 

remain intact at post-mortem even in the non-demented elderly, having survived 

these inclusions for several decades (Bancher et al., 1989; Morsch et al., 1999; 

Castellani et al., 2008).  Perhaps the 4
th
 microtubule binding repeat domain, by 

nature of its extra cysteine residue, enhances a protective aggregating function of tau 

in the mature brain via the formation of disulfide bridges (Friedhoff et al., 2000) – 
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this is consistent with in vitro data showing that AD phospho-tau preferentially 

sequesters 4R tau isoforms (Alonso et al., 2001).  A mutation within this domain 

could simultaneously impair the normal microtubule binding and aggregating 

functions of tau (exposing the cell to soluble mutant species) whilst generating a 

toxic form of aggregate, thus massively accelerating disease.  Accordingly, FTDP-17 

mutations that alter tau exon 10 splicing increase the level of 4R tau in both soluble 

and insoluble fractions – this unifies quite disparate genetic aberrations (Fig.1.5-1.6) 

into a group that invariably increase the pool of unbound tau (Hong et al., 1998; 

Garcia and Cleveland, 2001).   

 

1.4.5 A protective role for tangled tau? 

NFTs and synaptic loss make the best direct correlates with dementia, but NFT 

numbers far exceed neuronal death (Arriagada et al., 1992; Gomez-Isla et al., 1997; 

Friedhoff et al., 2000).  In the P301S mouse, tau hyperphosphorylation and synapse 

loss precedes NFT formation (Yoshiyama et al., 2007).  Expression of a ‘pro-

aggregant’ tau mutation in mice produced pre-tangles and considerable synaptic loss 

(40% within 13 months), but no neuronal death (Eckermann et al., 2007).  A 

separation of NFT accumulation and neuronal death was also noted in aged mice 

transgenic for all wild-type human tau isoforms (htau) and those expressing human 

P301L tau (Andorfer et al., 2005; Santacruz et al., 2005).  Thus, the consistent 

finding of tau inclusions in tauopathies does not preclude the possibility that these 

aggregates exert a protective function (Andorfer et al., 2005; Alonso et al., 2006; 

Wang and Liu, 2008; Cowan and Mudher, 2013).  Indeed, formation of tau 

aggregates can abolish the toxicity of soluble phosphorylated tau (Alonso et al., 
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2006; Wang and Liu, 2008).  Compared to AD, tissue loss is greater in FTDP-17 and 

there are 10-fold fewer NFTs - this might explain the accelerated phenotype of these 

patients (Shiarli et al., 2006; Bretteville and Planel, 2008).  Treatment of 3xTg AD 

mice (expressing tau, APP and presenilin 1 mutations under the murine Thy1.2 

promoter) with pyruvate increases the deposition of hyperphosphorylated tau and 

prevents age-related cognitive decline (Isopi et al., 2014).  Another recent study 

using the rTg4510 mouse that overepxresses P301L confirmed that NFT-bearing 

neurons were functionally intact, had a stable resting calcium level and were capable 

of integrating into cortical circuits (Kuchibhotla et al., 2013).  Lastly, an unbiased 

review of human brains aged 1 to 100 years revealed that post-mortem tau-related 

neuronal changes appeared much earlier than amyloid deposition and often in the 

absence of amyloid (Braak et al., 2011; Krstic and Knuesel, 2012).  This not only 

weakens the ‘amyloid cascade hypothesis’ (purporting that NFT pathology is driven 

by Aβ), it suggests that tau aggregation is a natural corollary to ageing.  Perhaps the 

closest approximation of a mouse model to FTDP-17 has come from the P301L 

mutation expressed under the mouse prion promoter (Lewis et al., 2000).  Whilst this 

approached a near-physiological level of tau expression and induced age-dependent 

NFT pathology in the brain, there were 3 main caveats: (1) a strong motor phenotype 

prevailed alongside behavioural deficits, (2) selective neuronal vulnerability differed 

from the human condition and (3) the transgene included only the shortest human 4R 

tau isoform (4R0N) thus ignoring the contribution of exon 2 and 3-contaning mutant 

4R tau in human patients (Lewis et al., 2000).  
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1.4.6 The elusive ‘toxic tau species’ 

Conformationally distinct disease-associated ‘strains’ of tau have since been isolated 

from human patients with different tauopathies and stably propagated both in vitro 

and in vivo (Sanders et al., 2014; Holmes and Diamond, 2014).  This infers a core 

‘prion-like’ feature of morphological variants of tau inclusions that may underpin the 

clinical variability between tauopathies and also between individuals with the same 

disease, since several conformers can co-exist simultaneously in any given patient 

(Sanders et al., 2014).  If templated spread of pathological tau does indeed occur 

between synaptically-connected neurons, the molecular identity of this tau species 

remains mysterious, although it is likely to be soluble and dephosphorylated 

(Dujardin et al., 2014; Pooler et al., 2013; Goedert et al., 2014).  Heat shocked cells 

release more extracellular tau than normothermic cells (Karch et al., 2012) thus 

cooling cells down may prevent the spread of putative toxic tau species by increasing 

their phosphorylation state.  Tau is actively secreted into the extracellular space, and 

can be internalized via heparin sulphate proteoglycans (Holmes et al., 2013), but it is 

unclear whether it stays in solution during cell-cell transmission or whether it is 

transported via exosomes (Karch et al., 2012; Pooler et al., 2013; Goedert et al., 

2014).  It has even been proposed that transmission in vitro and in vivo may depend 

on neuronal activity (Pooler et al., 2013; Dujardin et al., 2014; Holmes and Diamond, 

2014; Yamada et al., 2014).  An activity-related shift in intracellular calcium would 

increase the release of extracellular tau and thus may be responsible for the increase 

in CSF tau levels in AD (Karch et al., 2012; Sokolow et al., 2015).  Interestingly, 

FTDP-17 mutations appear to reduce the secretion of cellular tau, prevent its spread 

to other neurons and more rapidly induce neuronal death (Karch et al., 2012; 
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Dujardin et al., 2014).   This might explain the lack of spreading tau pathology along 

neural networks in these patients (Dujardin et al., 2014) and may have important 

implications for the retention of toxic tau species within the cell – especially if their 

aggregation into insoluble inclusions is impaired as discussed above (Simon et al., 

2012).  Along a similar vein, Yamada et al. (2011) found that soluble monomeric tau 

is a normal constituent of brain interstitial fluid (ISF) in mice and is dramatically 

reduced in the presence of insoluble tau driven by the P301S mutation.  They 

propose an equilibrium between intracellular and extracellular tau that promotes 

sequestration of ISF tau by intracellular aggregates in tauopathy (Yamada et al., 

2011).  Although tau is not overexpressed in any tauopathies, increased cytosolic 

concentrations of tau due to hyperphosphorylation or microtubule loss in a given 

neuron might be sufficient to cause aggregation – in healthy neurons microtubules 

are effectively ‘chaperones’ that prevent tau misfolding (Hall and Patuto, 2012; 

Mandelkow and Mandelkow, 2012).  However, there appears to be no relationship 

between microtubule loss and PHF-tau in AD, and with a shorter half-life than 

tubulin, tau should be rapidly degraded upon microtubule disassembly (Drubin et al., 

1988; Cash et al., 2003; Lee et al., 2005).  Alternatively, if secretion were 

compromised but translation retained, local tau levels would increase.  This 

imbalance would however require failure or dysfunction of protein homeostasis 

within the cell, allowing tau production to continue in the face of protein overload.  

Such mechanisms have been proposed to underly the specific cell-type vulnerability 

in a number of neurodegenerative disorders and ageing as discussed later (Morimoto 

and Cuervo, 2009; Koga et al., 2011).  Accordingly, caspase or calpain cleavage 

(thought to mediate Aβ-induced tau toxicity) would create tau fragments both with 
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and without the N-terminal extension needed to interact with lipid membranes for 

secretion (Brandt et al., 1995; Johson et al., 1997; Park and Ferreira, 2005; Kim et 

al., 2010; Lee et al., 2011; Hall and Patuto, 2012; Bright et al., 2014).  Fragments 

lacking the N-terminal extension would be retained intracellularly and may not be 

sensed by normal proteostatic feedback pathways - thus they might escape 

degradation and accumulate unchecked (Bright et al., 2014).   This would explain the 

presence of N-terminal fragment tau in CSF (Johson et al., 1997) alongside 

intracellular NFTs in AD (Kim et al., 2010).  It is also supported by a recent study 

using iPS-derived cortical neurons from AD patients, which secreted only N-

terminally truncated tau species (Bright et al., 2014).  This extracellular tau induced 

neuronal hyperactivity and increased Aβ secretion, both of which are thought to 

enhance secretion of truncated tau resulting in a toxic feed-forward loop (Bright et 

al., 2014).  The late and modest appearance of cleaved tau in NFTs may represent 

unsuccessful attempts at turnover (Iqbal et al., 2009) or it may provide a vital clue as 

the true ‘toxic species’ in AD – perhaps a cytosolic C-terminal fragment that serves 

as a poor substrate for aggregation.  Supporting this hypothesis is the recent finding 

that relative to controls, a higher percentage of AD pre-synaptic terminals contain 

truncated tau which can be released during post-mortem depolarization (Sokolow et 

al., 2015).  

 

Although distinct from other tauopathies in terms of distribution, the NFT stages of 

CTE progress slowly, and this continues long after the repetitive trauma has ceased 

(McKee et al, 2009; McKee et al., 2013).  The fact that an environmental trigger 

early in life can manifest in clinical symptoms many years later, suggests that (1) 
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non-familial tauopathy takes a long time to develop – possibly owing to neural 

reserve, or a limited capacity for endogenous repair (2) neuronal demise continues 

after the inciting cause is removed – implying involvement of secondary toxic 

mechanisms or ‘replicative seeding’ of a primary injurious factor and (3)  protective 

cellular processes are ultimately outweighed by toxic ones, or they themselves 

become toxic.  Extracellular ‘ghost tangles’ in late-stage AD are thought to represent 

the remnants of degenerated NFT-containing neurons, thus eventually, any protective 

function of this aggregate must be overwhelmed (Lee et al. 2005).  Unlike AD, tau 

inclusions in CTE begin with a patchy, perivascular distribution at the depths of the 

sulci and are prominent in astrocytes as well as neurons (McKee et al., 2009; McKee 

et al., 2013).  The neuropathological staging is again suggestive of transneuronal 

spread, although glia may also be involved in propagating tau pathology, as 

suggested in other disorders (McKee et al., 2013; Spillantini and Goedert, 2013 ).   

Since CTE is frequently associated with ALS, PD and AD, and NFTs partially co-

localise with TAR DNA binding protein (TDP-43) deposits, it has even been 

suggested that NFTs may ‘cross-seed’ the aggregation of  other neurodegeneration-

associated proteins (Morales et al., 2010; McKee et al., 2013).  Nevertheless, the 

neuropathological overlap between classic neurodegenerative disorders and CTE 

suggests that environmental factors in early life may be important in regulating 

disease progression.   

 

1.5   Hypothermic tau and neuroprotection 

Given that most neurons in AD are lost independently of abnormal tau 

phosphorylation, it is reasonable to conclude that neither tau nor tau phosphorylation 
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per se is toxic (Lee et al., 2005).  How then might physiological changes in this 

protein offer neuroprotection?  A number of recent reviews discuss the putative 

protective roles of tau, focussing chiefly on tau aggregates and hyperphosphorylated 

tau (Arendt, 2004; Lee et al., 2005; Wang and Liu, 2008; Bretteville and Planel, 

2008; Buee et al., 2010; Morris et al., 2011; Arendt and Bullmann, 2013).  What 

follows is a selective synopsis of evidence underpinning a role for tau modulation in 

neuroprotective hypothermia.    

 

1.5.1 Cold-induced cytoskeletal plasticity 

Coupled with reduced metabolism and protein synthesis, mammalian cells undergo 

cytoskeletal changes in response to cold (Stapulionis et al., 1997; Al-Fageeh et al., 

2006).  In a microarray study of 3T3 cells, a temperature shift from 37⁰C to 32⁰C 

altered the expression of many cytoskeletal genes (Beer et al., 2003) and several 

other studies have shown reversible disassembly of the microtubular network with 

cooling (Roth, 1967; Tilney and Porter, 1967; Rodriguez Echandia and Piezzi, 1968; 

Weisenberg, 1972; Stapulionis et al., 1997; Fujita, 1999).  Repolymerization of 

microtubules observed in the toad sciatic nerve during re-warming is independent of 

cellular integrity – it does not require new protein synthesis (Rodriguez Echandia and 

Piezzi, 1968).  Highly conserved morphological changes in the neuronal cytoskeleton 

thus occur rapidly and passively with temperature shift, and do not serve as a useful 

readout of neuronal health.  They may however play a critical role in dictating 

neuronal survival during cooling and recovery.  Ca
2+

 influx during intense excitatory 

stimulation, though tempered by hypothermia, would augment microtubule 

disassembly (Weisenberg, 1972; Tymianski et al., 1998).  It follows that an 
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undesirable situation might exist in the acutely injured brain, where temperature is 

raised (favouring microtubule stability) and dendrites may be unable to retract, 

leaving them more exposed to highly toxic substances (excitotoxins, ROS and 

inflammatory components).  This lack of cytoskeletal plasticity or ‘deficient 

dynamism’ might be a converging feature of neurons harbouring FTDP-17 mutations 

that increase the relative expression of 4R tau.  Such neurons would not only be 

predisposed to injury, they would be less able to respond physically to a toxic milieu.     

 

1.5.2 Tau and hibernation 

Intuitively then, retaining plasticity is an effective strategy for avoiding stressful 

insults - and nowhere is this more obvious than in the hibernating brain (Arendt, 

2004; Boerema et al., 2012; Peretti et al., 2015).  Hibernation is an overwintering 

behaviour observed in a variety of species across several mammalian orders that 

includes a radical decrease in basal metabolic rate (BMR), body temperature, 

cardiorespiratory parameters and neuronal activity (Wang, 1978; Daan et al., 1991; 

Arendt and Bullman, 2013).  These reversible changes minimize energy expenditure 

under challenging environmental conditions (Krauchi and Deboer, 2010).  Despite a 

dramatic cerebral ischaemia followed by rapid reperfusion, most animals emerge 

from torpor neurologically intact (Hindle and Martin, 2013).  In ground squirrels, 

contacts between mossy fibres and hippocampal pyramidal neurons undergo a 

striking regression during hypothermic torpor followed by re-afferentation during 

euthermic arousal (Popov et al., 1992; Popov and Bocharova, 1992; Popov et al., 

2007; Ruediger et al., 2007).  This involves both dendritic spine transformation and 

temporary synaptic loss (Arendt and Bullmann, 2013).  Associated changes in the 
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cortical transcriptome are indicative of remodelling and synaptic plasticity (Schwartz 

et al., 2013), whilst the forebrain proteome reveals a temperature-dependent 

modulation of cytoskeletal proteins and their regulators (Hindle and Martin, 2013).  

This periodic denervation and re-innervation is rapid; dendrite extension during 

arousal occurs much faster than that observed during neuronal development or 

environmental enrichment (Dave et al., 2012).  Importantly, these ultrastructural and 

morphological changes are directly paralleled by fully reversible phosphorylation of 

synaptic membrane proteins and tau (Shchipakina et al., 1995; Arendt et al., 2003; 

Hartig et al., 2007; Su et al., 2008).  Tau thus becomes hyperphosphorylated during 

torpor in a ‘PHF-like’ manner throughout the entorhinal cortex, hippocampus and 

isocortical areas - but without forming fibrils (Arendt et al., 2003; Su et al., 2008; 

Arendt and Bullmann, 2013).  This enhanced phosphorylation depends primarily on 

the drop in body temperature and involves inhibition of PP2A activity (Su et al., 

2008).  Hence, chemical inhibition of protein phosphatases is sufficient to remodel 

dendritic spines and reduce synaptic number in rat hippocampal cultures (Malchiodi-

Albedi et al., 1997).  At the transcript level at least, tau splicing also appears to be 

shifted in favour of 3R tau isoforms (Stieler et al., 2011).  The hibernating brain is 

also highly resistant to injury, placing this ‘foetal-like’ tau at the very heart of a 

neuroprotective adaptation (Ihara, 2001; Zhou et al., 2001; Arendt, 2004).  Whether 

these changes simultaneously prevent proteolytic cleavage of tau and reduce its 

microtubule binding capacity remains to be unequivocally demonstrated (Litersky 

and Johnson, 1992; Arendt, 2004; Su et al., 2008).  However, a hypothermia-induced 

preservation of tau dynamic function during ‘vita minima’ is an attractive postulate 

(Arendt, 2004; Su et al., 2008).  It would appear that arousal-induced re-connection 
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is faithful, explaining why torpid neuronal phenomena do not confer residual 

cognitive deficits, and that mechanisms (potentially recruiting phospho-tau) must 

exist to orchestrate this complex regenerative process (Arendt, 2004).  Although the 

brain clearly tolerates hibernation (in some cases to near-freezing temperatures), 

there are short-term effects on recent (but not remote) memory that are replicable in 

laboratory models of hypothermia (Arendt and Bullmann, 2013).   

 

Perplexingly, the parts of the brain ‘switched off’ during hibernation are those which 

retain the highest neuroplasticity in adulthood – an obligatory feature for the 

evolution of higher cognitive function (Rapoport, 1999b).  In AD, both the course of 

neurofibrillary degeneration and decline in mental capacity progress along an inverse 

hierarchy of cortical connectivity (Pearson et al., 1985; Arendt, 2004).  In this ‘last 

in-first out’ model, the latest-maturing regions are least myelinated and structurally 

most plastic (Flechsig, 1920; Brun and England, 1981; Kapfhammer and Schwab, 

1994; Arendt et al., 1995a,b,c; 1998a).  This plasticity comes at a price; it imparts 

vulnerability to pathological changes and its failure may give rise to 

neurodegeneration as seen in AD (Arendt, 2004; Peretti et al., 2015).  In this slowly 

manifesting disorder, aberrant sprouting precedes tangle formation and neuronal 

death (Ihara, 1988; Arendt and Bruckner, 1992; Su et al., 1993).  Hypometabolic 

states occur even in pre-symptomatic stages and they predict cognitive decline 

(Stieler et al., 2011).  Early adaptive and reversible down-regulation of synaptic 

contacts turns into marked and irreversible synaptic loss (Rapoport, 1999a).  By 

contrast, the brain of a ‘perfect hibernator’ (in which torpor is interrupted by frequent 

inter-bout euthermic arousals (Drew et al., 2001)) offers an elegant solution to 
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cerebral metabolic compromise through repeated synaptic regeneration.  However, 

Alz50-positive pre-tangles are detected in the brain of the American black bear 

(Ursus americanus) – an ‘imperfect’ but obligatory hibernator that undergoes 

prolonged, continuous periods of torpor (Stieler et al., 2011).  Thus, the reversibility 

of torpid tau modulation may be limited, reflecting the higher temperature at which it 

must operate (and its extended duration) in larger mammals and/or the differing 

profile of tau isoforms and their site-specific phosphorylation in the adult brain 

(Janke et al., 1999; Su et al., 2008; Stieler et al., 2011; Tøien et al., 2011; Leon-

Espinosa et al., 2013).  The development of NFT pathology in aged bears supports 

this hypothesis (Cork et al., 1988; Stieler et al., 2011), but (as discussed previously) 

this is not proof of a maladaptive response.   

 

1.5.3 Adaptive neuronal plasiticity  

Even though the human sleep-wake cycle involves circadian fluctuations in brain 

temperature (Landolt et al., 1995; Baker et al., 2001; Krauchi and Deboer, 2010; 

Archer et al., 2014) its analogy to hibernation is questionable; sleep is required in 

rodents during arousals from torpor - which are metabolically expensive and exceed 

the BMR (Daan et al., 1991; Su et al., 2008; Avila et al., 2012; Krauchi and Deboer, 

2010; Boerema et al., 2012).  Likewise in man, sleep can be thought of as a recurrent 

plastic state for remodelling neural circuits and is an active process (Wang et al., 

2011).  Indeed, sleep has been likened to an ‘abridged version’ of neurodevelopment, 

rehearsing the activity-dependent pruning and refining of synaptic contacts that must 

occur after an increase in synaptic density (Wang et al., 2011).  The early-onset sleep 

disorders noted in AD and other neurodegenerative diseases could thus derive from, 
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as well as exacerbate, synaptopathy (Gemignani et al., 2005; Gagnon et al., 2006; De 

Cock et al., 2007; Compta et al., 2009; Fotuhi et al., 2009; Wang et al., 2011).  The 

importance of tau to sleep quality is evident in tau knockout mice which demonstrate 

similar sleep disruptions to AD patients including reduced slow wave sleep (SWS) 

time (Cantero et al., 2010).  Rapid eye movement (REM) sleep deprivation also 

produces region-specific changes in rat brain tau, most notably in the hippocampus 

(Rodriguez-Vazquez et al., 2012).  Unsurprisingly, the neurogenic properties of 

melatonin are mediated through cytoskeletal rearrangements; through its influence on 

kinase-phosphatase balance this hormone can attenuate tau hyperphosphorylation 

and may have therapeutic potential in AD (Wang and Wang, 2006).  Moreover, sleep 

quantity is highest in newborn mammals where, like tau, sleep is critical for 

maturation of neuronal networks (Wang et al., 2011).  These studies further support a 

role for tau in adaptive neuroplasticity-associated neuroprotection in hibernating 

mammals.  The repeatable nature of tau changes during torpor followed by their 

resolution also lends itself to the concept of preconditioning.  Biochemically, the 

brains of hibernators have been likened to a ‘pre-conditioned state’, associated with 

reprogramming of the cytotoxic cellular response (Stenzel-Poore et al., 2003; Dave et 

al., 2012).  However, ischaemia tolerance pathways are chronically active in 

euthermic hibernators which circumvents the need for a sublethal stimulus (Dave et 

al., 2012).  In summary, studies of the hibernation cycle confirm that reversible tau 

hyperphosphorylation is a fundamental characteristic of the hypometabolic state 

rather than a sentinel of impending pathology (Stieler et al., 2011).   
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1.5.4 Modelling hypothermic tau modulation 

Hypothermia-induced tau hyperphosphorylation has been replicated in a multitude of 

model systems from cell cultures to brain slices and live rodents – including those 

carrying tau mutations (Bretteville et al., 2012; Maurin et al., 2014; Ahmadian-Attari 

et al., 2015).  Cooling has even been proposed as a tool to screen for tau kinase and 

protease inhibitors and as a standard positive control for tau hyperphosphorylation 

(Bretteville et al., 2012; Nikkel et al., 2012; Petry et al., 2014).  Moreover, 

hypothermia is routinely used to improve the viability of cultivated organotypic brain 

slices, even those harvested from P301S mice (Mewes et al., 2012).  The hibernation-

associated spine regression, changes in post-synaptic density and reversible tau 

hyperphosphorylation can thus be mimicked using cooling paradigms in laboratory 

rodents and brain slices (Arendt and Bullmann, 2013; Peretti et al., 2015).  Tau 

phosphorylation is exquisitely sensitive to temperature, roughly increasing by 80% 

for every degree Celsius drop below 37⁰C in mice (Planel et al., 2007a; Papon et al., 

2011; El Khoury et al., 2014).  However, the problem with exploring tau-mediated 

hypothermic protection in animal models of neuronal injury is that anaesthesia may 

confound the data (Planel et al., 2007a; El Khoury et al., 2014).  In the critical care 

setting, patients are not anaesthetised prior to neuronal injury and anaesthetics not 

only induce hypothermia, they have direct effects on tau phosphorylation state (Ikeda 

et al., 2007; Planel et al., 2007a; Whittington et al., 2011; Chen et al., 2014).  This 

has raised concern about a potential link with post-operative cognitive dysfunction in 

geriatric medicine (Baranov et al., 2009; Planel et al., 2009; Spires-Jones et al., 2009; 

Run et al., 2010; Tan et al., 2010; Hudson and Hemmings, 2011; Papon et al., 2011; 

Dong et al., 2012; Menuet et al., 2012; Xu et al., 2012; Hussain et al., 2014).  Tau 
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hyperphosphorylation may be responsible for anaesthetic interference of neuronal 

polarity in developing cortical neurons, the age-dependent impact of propofol on 

dendritic spine density in the rat cortex and propofol-induced reorganization of the 

neuronal cytoskeleton (Oscarsson et al., 2001; Briner et al., 2011; Mintz et al., 2012).  

Moreover, it might explain the acute neuroprotective benefits of propofol in the 

context of hyperthermia, oxygen-glucose deprivation and ischaemia (Yamaguchi et 

al., 1999; Adembri et al., 2006; Iijima et al., 2006; Zhao et al., 2009).  The 

relationship of brain temperature to anaesthesia is however not straightforward, since 

some compounds increase intracranial temperature relative to body temperature 

(Mellergard, 1992).  Arguably this might worsen cognitive outcome in individuals 

that are already compromised - potentially manifesting in delirium (Poljak et al., 

2014).  In turn, poor temperature control can complicate the investigation of tau 

phosphorylation in other contexts (El Khoury et al., 2014).  Co-morbid synergy has 

been proposed to link diabetes mellitus and AD wherein insulin-mediated 

hypothermia leads to tau hyperphosphorylation and NFT deposition (Planel et al; 

2004; Planel et al., 2007b; Ke et al., 2009; El Khoury et al., 2014).  These and other 

studies support the idea that endocrine and thermo-dysregulation serve as age-

associated risk factors for dementia (Avila and Diaz-Nido, 2004; El Khoury et al., 

2014; Maurin et al., 2014).  However, it is important to note that direct and indirect 

routes to hypothermia may produce tau hyperphosphorylation via distinct 

mechanisms that could influence whether the outcome is beneficial or deleterious 

(Planel et al., 2004; Schubert et al., 2004; Avila and Diaz-Nido, 2004) 
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Post-translational modifications of several proteins have been reported under 

hypothermic conditions and linked to neuroprotective effects (Han et al., 2012).  

Mild, neuroprotective hypothermia reduced NMDAR phosphorylation and oxidative 

carbonyl modification of cytosolic proteins in a piglet model of hypoxia-ischaemia 

(HI) (Mueller-Burke et al., 2008).  The authors hypothesised that soluble cytoskeletal 

proteins such as tau were the target of carbonyl modification during HI and that 

cooling renders them resistant to this change.  Hyperphosphorylation – by far the 

most widely explored tau modification at low temperatures – releases tau from 

microtubules and is the likely mechanism for hypothermic microtubule disassembly 

(Higuchi et al., 2002).  This microtubule dynamism may be highly neuroprotective, 

as suggested by the resistance of tau knockout hippocampal neurons to Aβ-induced 

neurodegeneration (Rapoport et al., 2002).  Microtubules invade dendritic spines on 

an activity-dependent basis and may be critically involved in memory (Hu et al., 

2008; Gu and Zheng, 2009; Fanara et al., 2010).  Furthermore, it is now accepted that 

tau directly plays a role at the synapse under both physiological and pathological 

conditions (Hoover et al., 2010; Ittner et al., 2010; Chen et al., 2012b; Crimins et al., 

2013).  The presence of both tau and PP2A within synaptosomal fractions was 

described some years ago (Yamamoto et al., 1990), and  more recently high levels of 

tau have been reported in 75% of normal and AD synapses (Sokolow et al., 2015).  

Excitatory synaptic activation induces translocation of dendritic tau into the post-

synaptic density (PSD) and this response is disrupted by exposure to Aβ oligomers 

(Frandemiche et al., 2014).   Oligomeric and hyperphosphorylated tau co-localises 

with Aβ in synapses of both AD patients and mouse models of this disease (Fein et 

al., 2008; Takahashi et al., 2010; Henkins et al., 2012; Tai et al., 2012; Tai et al., 



76 
 

2014) and injection of pre-filamentous tau oligomers into wild-type mice reduces 

hippocampal spine density (Lasagna-Reeves et al., 2011).   Other studies in tau 

transgsenic mice have likewise implicated soluble rather than fibrillar tau in synaptic 

dysfunction, spine loss and impairment of neuronal circuitry (Rocher et al. 2010; Fox 

et al., 2011; Crimins et al., 2013).  Amyloidogenic and missorted tau can clearly 

precipitate dendritic spine and synaptic loss (Eckermann et al., 2007; Zempel and 

Mandelkow, 2011) and mutant tau can produce pre-synaptic pathology (Harris et al., 

2012).  However these changes were not originally found to cause neurodegeneration 

or cognitive deficits in mice (Eckermann, 2007; Harris et al., 2012).  This may have 

been because the hyperphosphorylation of tau and its relocation into dendritic spines 

is a very early change that precedes the loss of neurons, and even synapses (Hoover 

et al., 2010).  Compensatory increases in synapses in unaffected neurons may mask 

cognitive change and artificially buffer total synapse numbers in the initial stages of 

disease (Kopeikina et al., 2012).    This is evident in the rTg4510 cortex where 

neurons undergo structural and functional compensation in response to degeneration 

(Crimins et al., 2011, 2012, 2013).  From a recent study of human post- mortem AD 

tissue, it is apparent that the presence of AT8 or PHF-1 positive tau is not necessarily 

associated with the loss of dendritic spines, even in the intermediate stages of 

neurofibrillary pathology (Merino-Serrais et al., 2013).  This is consistent with the 

notion that tau hyperphosphorylation is not immediately toxic and may be reversed 

prior to the development of tangles.  In P301L mice, redistributed tau does impair 

cognition but this may be due to disrupted recruitment of glutamate receptors in 

intact synapses (Hoover et al., 2010).  Using the same transgenic model, Hunsberger 

et al. (2014) found an increase in glutamate release and concomitant decrease in 



77 
 

glutamate clearance mechanisms that manifested in hippocampal hyperexcitability.  

Such a mechanism might explain the apparently critical role for tau in epilepsy 

(Holth et al., 2013).  More detailed analysis of the ‘pro-aggregation’ mutant mice 

revealed neuronal loss as well as NMDAR-dependent LTP and memory impairment 

in line with NFT formation (Mocanu et al., 2008; Sydow et al., 2011).  After turning 

off the transgene, memory and LTP recovered, despite the persistence of aggregates, 

suggesting that expression of amyloidogenic tau rather than aggregates themselves 

disrupted cognition (Sydow et al., 2011).  Further support for tau involvement in 

plasticity comes from its interaction with other dendritic spine components including 

F-actin (Arendt and Bullmann, 2013).  Moreover, tau was found to be necessary for 

BDNF-induced spine remodelling in rat hippocampal cultures (Chen et al., 2012b).  

The association of tau with neuronal membranes is both phosphorylation- and fyn 

tyrosine kinase-dependent (Pooler et al., 2012).  Interaction of tau with fyn and 

PSD95 is regulated by selective phosphorylation of tau in response to NMDAR 

activation, which may represent a tau-mediated homeostatic feature that prevents 

‘over excitation’ (Mondragon-Rodriguez et al., 2012).  However, in the presence of 

Aβ or reduced PP2A activity, this cooperation of tau with glutamate receptors could 

become the very conduit of neurotoxicity (Roberson et al., 2007; Ittner et al., 2010; 

Ittner et al., 2011; Ke et al., 2012; Larson et al., 2012; Lee et al., 2012; Sun et al., 

2012; Kamat et al., 2013; Nakanishi et al., 2013; Miller et al., 2014).  Under 

physiological conditions, Arendt and Bullmann (2013) have proposed that by 

targeting the protein to subsynaptic sites, phosphorylation enables tau to act as a 

‘master switch’ regulating NMDAR-driven synaptic gain.  Such a mechanism may 

be permissive for torpor entry, through reducing the metabolic demands of the brain 
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(Boerema et al., 2012); its persistence early in the course of AD may be an attempt to 

counter excitatory-inhibitory imbalance (Morris et al., 2011; Arendt and Bullmann, 

2013).  Together these studies indicate that early and subtle effects of tau modulation 

at the level of the cell, or the neuronal network may be clinically very important, and 

potentially tractable to therapy (Morris et al., 2011).    

 

1.5.5 Phospho-tau-mediated neuroprotection 

In cultured rodent neurons, glutamate-mediated Ca
2+

 influx can modulate dendritic 

outgrowth, synaptogenesis and degeneration – it also increases tau mRNA expression 

and produces NFT-like tau phosphorylation (Mattson et al., 1988; Mattson et al., 

1989; Mattson, 1990; Esclaire et al., 1998).  PHFs can also be observed in cultured 

human foetal spinal cord neurons exposed to high concentrations of glutamate (De 

Boni and McLachlan, 1985).  Several other excitotoxins including NMDA and 

quinolinic acid (QA) can produce similar hyperphosphorylation of tau in human 

neurons and QA can even induce dendritic beading (Rahman et al., 2013).  This 

beading is associated with NFTs in AD and typically features disrupted microtubules 

(Greenwood and Connolly, 2007).  Mattson (1990) correlated ubiquitin and phospho-

tau immuoreactivity with degenerative morphology in hippocampal neurons that 

were susceptible to glutamate toxicity.   However, he also noted that post-

translational changes in tau occurred very rapidly at subtoxic doses of glutamate in 

neurons that showed no signs of degeneration; phospho-tau immunoreactivity was 

highest in the distal axon – the compartment least susceptible to excitotoxic injury 

(Mattson, 1990).  In the study by Rahman and colleagues (2013), the effect of QA on 

tau was associated with a decrease in PP2A expression and activity, and was 
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completely abrogated by memantine – a non-competitive NMDAR channel blocker 

that at low doses selectively blocks extrasynaptic NMDARs and has potential 

disease-modifying benefits in AD (Reisberg et al., 2003; Li et al., 2004; Hardingham 

and Bading, 2010).  Further studies linking tau phosphorylation to neuroprotection 

include the exposure of primary rat cortical cultures to NMDA, serum deprivation 

and brefeldin-A; neurons expressing AT8 were more resistant to induced apoptosis 

than those expressing dephosphorylated tau (Lesort et al., 1997; Yardin et al., 1998).  

Others have found that PP2A-mediated tau dephosphorylation is required for 

apoptotic execution and that phospho-tau mediates early apoptotic escape in the 

brain, thus enabling a slower, degenerative neuronal death (Mills et al., 1998; Li et 

al., 2007; Wang and Liu, 2008; Wang et al., 2014).  This phospho-tau mechanism 

might underlie the relative absence of classical apoptotic features in AD and other 

tauopathies (Wang and Liu, 2008).  Accordingly, overexpression of GSK3β 

increased tau phosphorylation but prolonged survival in P301L mice (Crespo-Biel et 

al., 2014).  Tau phopshorylation has also been proposed as a protective response to 

oxidative stress; oxidative damage is one of the earliest events in AD and has an 

inverse relationship with progressing NFT formation (Nunomura et al., 2001; Smith 

et al., 2002; Lee et al., 2005; Castellani et al., 2008; Wang and Liu, 2008; Bonda et 

al., 2011; Povatello et al., 2013). Oxidative stress also enhances tau phosphorylation 

and embryonic neurons that survive oxidant exposure have relatively high phospho-

tau immunoreactivity (Gomez-Ramos et al., 2003; Lee et al, 2005; Wang and Liu, 

2008).  These findings are difficult to align with previous literature linking tau 

phosphorylation to neuronal death (Cowan and Mudher, 2013); it might be that 

distinct tau phosphorylation events mediate protection and toxicity (Povellato et al., 
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2013).  Together, the literature suggests that in the earliest stages of excitotoxic or 

oxidative stress, tau phosphorylation increases in susceptible neurons.  If the insult is 

sublethal, phospho-tau may be involved in preconditioning this cell to tolerate further 

insults.  If the insult is too great, the effect of tau is overridden and the cell 

degenerates.  Degeneration over a protracted period would enable irreversible 

modification of tau into insoluble forms that, in a compromised cell, would be non-

degradable.   

 

1.5.6 Modelling human tau physiology 

Currently, there is no in vivo model system that permits the study of wild-type 

amyloid plaques alongside wild-type NFTs (Clavaguera et al., 2013).  No naturally-

evolving counterpart to AD has yet been fully described elsewhere in the animal 

kingdom, despite overlapping clinicopathogenesis for other neurodegnerative 

disorders between man and other mammalian species (Iqbal et al., 2009; Darusman 

et al., 2014).  The latest ‘3D in vitro model of AD’ (Choi et al., 2014) typifies the 

aspiration to replicate neuropathological mechanisms in human cell culture systems.  

Beside the fact that these systems cannot faithfully express key symptomatic features 

of dementia, they have almost exclusively focused on reproducing post-mortem 

observations, often by overexpressing the proteins of interest (Choi et al., 2014).  

Moreover, these studies frequently lack quantitative assessment of tau modulation 

and any physiological relevance of such findings in terms of neuronal and glial 

functional properties (Shi et al., 2012a; Choi et al., 2014).  The exploitation of hPS 

technology to better approximate human neuroglial biology is both rational and 

worthwhile.  However, despite the large body of evidence supporting an early and 
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clinically-relevant role for tau and other proteopathic oligomers in synaptic 

dysfunction (Warmus et al., 2014), there remains an unfortunate preoccupation with 

generating inclusions (Choi et al., 2014 ).  The same criticism could be made of 

recent in vivo models (Clavaguera et al., 2009; de Calignon et al., 2012; Liu et al., 

2012a; van Eersel et al., 2015; Boluda et al., 2015).  What is missing is real-time 

analysis of the basic functionality of these disease-associated proteins in human brain 

cells.  What is needed is a methodical approach to understanding human tau biology.        

 

 

1.6     ER stress, the UPR and tau proteostasis 

 

1.6.1 Mechanisms of proteostasis 

Protein aggregation is the most unifying pathological feature of adult-onset 

neurodegeneration and is intimately linked to age-related dysfunction of cellular 

quality-control pathways and protein homeostasis or ‘proteostasis’ (Holmes and 

Diamond, 2014).  In eukaryotic cells, proteome integrity is continually monitored 

and maintained by an elaborate network of molecular chaperones and protein 

degradation factors (Chen et al., 2011).  Depending on the severity of protein 

misfolding, there are 3 strategies that can refold, degrade or sequester misfolded 

polypeptides (Powers et al., 2009).  Although these parallel mechanisms may be 

spatially separated, they are interlinked by a core set of chaperones that ‘triage’ the 

aberrant protein and guide it to the appropriate pathway (Chen et al., 2011a).  These 

strategies each carry advantages and relative risks (Fig.1.12); failure of one or more 

pathways will thus perturb proteostasis and mobilize cellular stress responses such as 

the UPR (Chen et al., 2011b).  Overexpression of chaperones, activation of 
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autophagy and/or the proteasome have all mitigated the symptoms of disease-related 

protein aggregates, confirming that toxic aggregates impair quality control pathways 

required for proteostasis (Chen et al., 2011).   

 

 
 
 
 

 

 

 

1.6.2 ER stress and hyperphosphorylated tau 

Accumulation of misfolded proteins initially triggers the induction of heat shock 

proteins (Hsps) – these molecular chaperones can assist in refolding the protein and 

thus restoring its normal biological function, whilst preventing its aggregation (Dou 

et al., 2003; Richter-Landsberg and Goldbaum, 2003).  If the misfolding events are 

irreversible, these chaperones target the substrate either to the ubiquitin-proteasome 

Figure 1.12 Cellular strategies for proteostasis.  Each strategy presents advantages and drawbacks.  
Misfolded proteins can be refolded, degraded, or chaperoned to distinct quality control 
compartments that sequester potentially toxic species.  Molecular chaperones ensure the system 
remains balanced.  A failing in any of these strategies disrupts proteostasis and impairs cell 
viability.   Figure and legend adapted from Chen et al. 2012. 
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system (UPS) (for soluble species) or the autophagy-lysosomal pathway (for 

aggregates) (Chen et al., 2011).  Together these represent the major routes for 

clearance of damaged, misfolded and aggregation-prone proteins (Schwartz and 

Ciechanover, 1999; Wang and Liu, 2008).  These degradation pathways are 

functionally related, with impairment of one inducing compensatory activation of 

another (Chen et al., 2011).  For example, secretory proteins that fail to fold in the 

ER can be retrotranslocated into the cytosol for UPS degradation – this is termed ER-

associated degradation (ERAD) (Wong and Cuervo, 2012).  Inhibition of the UPS 

blocks retrotranslocation and leads to a back-up of unfolded proteins in the ER and 

thus ER stress (Wong and Cuervo, 2012).  Since the proteolytic core of the 

proteasome can be clogged up by PHF-tau, ERAD impairment has been suggested as 

a means by which accumulated tau leads to UPR activation (Keck et al., 2003; 

Abisambra et al., 2013).  Lastly, as an ATP-dependent proteolytic system the UPS is 

energetically demanding, thus under conditions of metabolic compromise, this 

pathway may become malfunctional (Hoglinger et al., 2003; Jellinger, 2010).  

Conceivably, this may be one route through which hypothermia might trigger ER 

stress . 

 

The ER is important for the synthesis, folding and post-translational modification of 

transmembrane and secreted proteins (Jellinger, 2010).  Factors that perturb ER 

function and contribute to ER stress include increased protein synthesis, the 

expression of mutant or misfolded proteins, misfolding rates that exceed chaperone 

capacity, disturbances in calcium homeostasis or redox balance, and nutrient/glucose 

deprivation (Kaufman et al., 2002; Tabas, 2011).  ER stress contributes to a number 
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of neurological disorders including AD, PD, cerebral ischaemia and acute and 

chronic neuronal injury after TBI (Larner et al., 2006, Begum et al., 2014).  The UPR 

(or ER stress response) is directed by 3 ER membrane-associated signal transducers: 

inositol requiring enzyme 1α (Ire1α), protein kinase R (PKR)-like ER kinase (PERK) 

and activating transcription factor 6 (ATF6) (Malhotra and Kaufman, 2011).  Under 

basal conditions, these transducers are held in an inactive state by their interaction 

with Hsp70 protein 5 (otherwise known as binding immunoglobulin protein or 78 

kDa glucose-regulated protein (BiP/GRP78)) – BiP is the principal sensor of ER 

stress (Bertolotti et al., 2000).  Upon binding to the exposed hydrophobic domains of 

misfolded proteins within the ER lumen, BiP releases the 3 proximal transducers, 

thus triggering a tripartite signalling cascade (Malhotra and Kaufman, 2011).  The 

UPR has several outcomes that are coordinated to restore proteostasis including 

reduced translation, mRNA degradation, transcriptional upregulation of chaperone 

genes and (if required after prolonged or excessive ER stress), programmed cell 

death (Taylor and Dillin, 2011).  The downstream effectors of the UPR are 

summarized in Fig.1.13 and are discussed in further detail in Chapter 6.  The ability 

to mount this response as well as the heat shock response varies according to cell 

type (even neuronal subtype) and declines with age (Cleveland et al., 2001; Batulan 

et al., 2003; Mayer and Bukau, 2005; Taylor et al., 2007; Ben-Zvi et al., 2009; 

Hashimoto-Torii et al., 2014).   
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As an unfolded soluble protein, tau may be degraded by the core (20S) of the 

proteasome, operating independently of ubiquitin (David et al., 2002; Wang and Liu, 

2008).  In its unbound state, tau directly associates with Hsp70 and 90, which 

promote tau solubility and microtubule binding and reduce tau phosphorylation (Dou 

Figure 1.13 ER stress and the UPR.  Misfolded proteins are detected by the ER which triggers the 3 
main pathways of the UPR.    BiP = binding immunoglobulin protein, fATF6 = full length activating 
transcription factor 6, cATF = cleaved ATF6, IRE1α = inositol requiring enzyme 1α, JUN = c-Jun 
(proto-oncogene), XBP1u = unspliced x-box binding protein-1, XBP1s = spliced XBP1, PERK = protein 
kinase R (PKR)-like ER kinase, eIF2α = eukaryotic initiation factor 2α, ATF4 = activating transcription 
factor 4, CHOP = C/EBP homologous protein (otherwise known as DNA damage-inducible transcript 
3, DDIT3), ERAD = ER-associated degradation.  ‘P’ symbols within aqua circles represent 
phosphorylated versions of each element. 
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et al., 2003).  Beyond this, there is debate over whether tau is degraded by 

proteasomal or autophagic pathways – perhaps it may both, depending on its 

conformational state (Pritchard et al., 2011; Mandelkow and Mandelkow, 2012).  

Certainly the repeat domain of tau contains motifs that could target it for autophagy 

(Wang et al., 2009).  However in AD, hyperphosphorylation acts as a recognition 

signal for the carboxyl terminus of heat-shock cognate (Hsc)70-interacting protein 

(CHIP) (a ubiquitin E3 ligase) that together with Hsp70 targets tau to the proteasome 

(Petrucelli et al., 2004; Sahara et al., 2005; Shimura et al., 2004; Dickey et al., 2007; 

Wang and Liu, 2008; Mandelkow and Mandelkow, 2012).  The Hsp70-CHIP 

complex binds to the same tau motif (VQIVYK) that is responsible for β-sheet 

propensity and aggregation and is important for the regulation of tau turnover 

(Petrucelli et al., 2004; Sarkar et al, 2008; Mandelkow and Mandelkow, 2012).  This 

appears to be protective, since ubiquitination by CHIP can rescue cells from tau-

induced cell death (Wang and Liu, 2008).  However, the Hsp70-CHIP-tau interaction 

is vulnerable to ER stress in tauopathies and the capacity of the UPS to handle 

phosphorylated tau may be further dictated by the specific kinases involved in tau 

phosphorylation (Blard et al., 2006; Sakagami et al., 2013).  Indeed, the presence of 

polyubiquitinated tau within NFTs suggests that this aggregated tau accumulates due 

to a deficit in proteasome activity (Braak and Braak, 1991; Keller et al., 2000; 

Goldbaum et al., 2003; Cripps et al., 2006; Williams et al., 2006; Wang and Liu, 

2008).  This is also true of the synaptic compartment in AD, where 

hyperphosphorylated tau oligomers are associated with increased ubiquitinated 

substrates and proteasome components (Tai et al., 2012).  In vitro, PHF-tau binds to 

and inhibits the proteasome, suggesting that hyperphosphorylated and aggregated tau 
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accelerates its own production (Keck et al., 2003; Wang and Liu, 2008).  Such a 

mechanism may underlie the feed-forward cycle described by Ho et al. (2012) when 

they inhibited PP2A in rat cortical neurons, and it could also explain the ‘trans-

synaptic’ spread of tau pathology if toxic soluble species transduced a cycle of ER 

stress into adjacent cells (Stoveken, 2013).  Moreover, substrates or UPS components 

can translocate into and out of the synapse in an activity-dependent manner and the 

sequestration of ubiquitin by multiple protein aggregates may thus impair the 

housekeeping function of the UPS within the synapse (Bingol and Schuman, 2006; 

Tai and Schuman, 2008; Gillingwater and Wishart, 2013).  At this point, it is worth 

noting that enhanced re-synthesis of ubiquitin may contribute to hypothermic 

neuroprotection – this is consistent with the finding that cooling blocked protein 

ubiquitination in the PSD of the rat brain following hypoxic asphyxia (Yamashita et 

al., 1991; Capani et al., 2009).  Furthermore, in transgenic mice, overexpression of 

Hsp70 causes a reduction in tau (Petrucelli et al., 2004; Iqbal et al., 2009), there is an 

inverse relationship between levels of CHIP, Hsp70/90 and aggregated tau in AD 

brains, (Dou et al., 2003; Sahara et al., 2005) and in human neuroglioma cells, CHIP 

can rescue the pathological effects of tau overexpression (Saidi et al., 2014).  

Together, these studies suggest that a deficit in first-order protein maintenance exists 

in tauopathy.   

 

1.6.3 UPR activation in tauopathy 

Evidence for a link between tau accumulation and the UPR comes from several 

studies showing that pre-tangle neurons and glia from tauopathies such as AD, PSP 

and FTD have increased levels of phospho-PERK (Hoozemans et al., 2009; Nijholt 
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et al., 2012; Halliday and Mallucci, 2014).  In addition, a genome-wide association 

study identified a single nucleotide polymorphism within intron 2 of the PERK gene 

as a risk factor for PSP (Hoglinger et al., 2011).  Moreover, sustained ER stress with 

UPR activation was associated with an increase in phosphorylated tau in a rat model 

of TBI (Begum et al., 2014).  The induction of ER stress by exposure of cells to Aβ 

oligomers is Ca
2+

-mediated and correlates with the induction of tau phosphorylation 

(Resende et al., 2008).  ER stress can also promote tau hyperphosphorylation through 

BiP-mediated enhancement of GSK3β binding to tau, (Fu et al., 2010; Liu et al., 

2012b).  However, BiP maintenance may contribute significantly to neuronal 

survival - BiP protected rat hippocampal neurons against excitotoxicity and apoptosis 

via suppression of oxidative stress and stabilization of calcium homeostasis (Yu et 

al., 1999).  Furthermore, the metabolic stress-induced activation of the UPR seen in 

torpor increases tau phosphorylation – and this is thought to be part of an adaptive 

response (van der Harg et al., 2014).  During normal metabolism a fraction of 

endogenous human tau is actively released from cells via a non-conventional 

secretory pathway that is calcium dependent but does not involve the ER (Karch et 

al., 2012).  However, missorted hyperphosphorylated tau associates with the 

dendritically located rough ER and may lead to protracted ER stress and neural 

demise (Kim et al., 2008; Conde and Caceres, 2009; Iqbal et al., 2009).  On the 

contrary, hyperphosphorylated tau was shown to attenuate ER-stress-induced 

apoptosis through upregulation of the UPR (Liu et al., 2012c).  Interestingly, the 

phospho-tau inducing compound DMSO was also shown to increase Hsp70 and 

decrease NFκB expression in a rat model of haemorrhagic shock (Bini et al., 2008).  

With regard to tauopathies, it has been proposed that the UPR is activated at the pre-
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tangle stage and could initially be protective, but if persistent, would promote further 

tau hyperphosphorylation and neurodegeneration (Kohler et al., 2014).  A 

challenging question is whether the UPR acts up- or downstream of tau pathology 

(Hoozemans and Scheper, 2012) – and yet the loop-like nature of proteostatic 

responses renders this question obsolete.  Together the literature suggests that 

phospho-tau resides at the intersection of neuronal survival and death pathways and 

is thus an ideal candidate to participate in hypothermic preconditioning.   

 

1.6.4 Proteostasis under hypothermic conditions 

Protein synthesis is the most energy-consuming process in the cell, and the high 

metabolic rate of the neuron places substantial burden on protein synthesis 

machinery (Buttgereit and Brand, 1995; Bottley et al., 2010; Hofman et al., 2012).  

Since cold-shock reduces metabolic turnover, translational suppression is a 

prerequisite for survival under hypothermic conditions (Roobol et al., 2009; Hofman 

et al., 2012).  In mammalian cells this occurs via several partially-redundant 

pathways (Hofman et al., 2012).  Passive mechanisms include enzymatic and 

mitochondrial inhibition along with a fall in ATP levels (Hofman et al., 2012).  

Active mechanisms involve regulation of adenosine monophosphate-activated 

protein kinase (AMPK), target of rapamycin complex 1 (TORC1) and PERK-

dependent phosphorylation of eukaryotic initiation factor 2α (eIF2α) (Hofman et al., 

2012).  The last of these suggests activation of the UPR, which might derive from ER 

stress triggered by cooling (Harding et al., 1999; Hofman et al., 2012; Mollereau, 

2015; Rzechorzek et al., 2015).  In the context of ischaemic preconditioning, the 

primary stress needs to be sufficient to induce Hsps (Kitigawa et al., 1991).  It 
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follows then that to elicit preconditioning, hypothermia should also upregulate these 

chaperones.  Cold-shock can certainly induce unfolding, dissociation and inactivation 

of cellular proteins (King and Weber 1986; Liu et al., 1994; Fujita et al., 1999).  

Thus, counter-intuitively, the cold-shock response in human cells also upregulates 

Hsps and a specific increase in Hsp70 may contribute to the neuroprotective effect of 

hypothermia (Jones and Inouye, 1994, Fujita, 1999; Terao et al., 2009).  

Accordingly, restoration of BiP is one mechanism by which hypothermia can protect 

the ischaemic brain (Aoki et al., 2001; Shintani et al., 2010).  Deep hypothermia is 

also known to disrupt the cell secretory pathway (Saraste et al., 1986) which would 

result in misfolded or unfolded proteins in the ER (Kim et al., 2008; Begum et al., 

2012).   

 

1.6.5 The UPR as a therapeutic target 

Several animal models of neurodegeneration display upregulation of ER stress 

markers including rTg4510 mice, mice expressing 5 AD linked mutations (5x FAD), 

mutant SOD1 mice and mutant Huntingtin mice (Halliday and Mallucci, 2014).  

UPR activation in tauopathies occurs at an early stage of neurofibrillary pathology; it 

is intimately connected with the accumulation of soluble phosphoryated tau before 

inclusions form and is independent of Aβ, since it occurs in PSP, PiD and FTDP-17 

(Nijholt et al., 2012; Hoozemas and Scheper, 2012; Stutzbach et al., 2013).  It also 

appears to be unrelated to ageing since it arises in relatively young FTDP-17 patients 

(Nijholt et al., 2012; Ferreiro and Pereira, 2012).  Sustained UPR activation can 

exacerbate tau phosphorylation and neurodegeneration (Hoozemans et al., 2009).  

Unsurprisingly therefore, various disease models have shown that alleviating ER 
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stress can be neuroprotective (Begum et al., 2014).  Salubrinal - a specific inhibitor 

of eIF2α phosphatases – increases phospho-eIF2α levels, thereby decreasing new 

protein synthesis and reducing protein load into the ER (Boyce et al., 2005; Drexler, 

2009).  This compound can protect against oxidative and excitotoxic stress in 

cultured neurons and temporarily renders motor neurons resistant to hypoxia-induced 

injury (Sokka et al., 2007; Lewerenz and Maher, 2008; Zhu et al., 2008).  Salubrinal 

can also ameliorate the cellular response to Aβ and has a profound positive effect on 

cell tolerance to cold storage (Lewerenz and Maher, 2008; Corwin et al., 2014).  

Even in the context of chronic ER stress induced by α-synuclein aggregates, 

salubrinal can prevent accumulation of toxic α-synuclein oligomers (Colla et al., 

2012).  However, the same compound exacerbated neurotoxicity and reduced 

survival in prion diseased mice (Moreno et al., 2012).  This is because misfolded 

prion protein (PrP) causes persistent UPR-mediated translational repression of global 

protein synthesis, leading to the loss of key synaptic proteins and thus 

neurodegeneration (Moreno et al., 2012).  Using this prion disease model, Moreno et 

al. (2012, 2013) showed that PERK inhibition or overexpression of growth arrest and 

DNA damage 34 (GADD34) could promote translational recovery by reducing 

phospho-eIF2α levels.  This not only prevented neurodegeneration, it improved 

clinical outcome later in the disease course despite continued accumulation of 

misfolded PrP.  The authors suggested that similar benefits might be achievable in 

other proteinopathies and indeed, inhibiting eIF2α phosphorylation has rescued TDP-

43 toxicity in ALS disease models and synaptic plasticity in the APP/Presenilin 1 AD 

model (Kim et al., 2014; Ma et al., 2013).  PERK haploinsufficiency also rescued 

memory deficits and cholinergic neurodegeneration in 5 x FAD mice and 
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pharmacologically reversing the effects of eIF2α phosphorylation improved spatial 

and fear-associated learning (Sidrauski et al., 2013; Devi and Ohno, 2014).  This is 

consistent with the literature reporting that stimuli which increase synaptic strength 

simultaneously decrease the phosphorylation of eIF2α (Halliday and Mallucci, 

2014).  Notably, a study in mice suggested that a decrease in eIF2α phosphorylation 

was critical for gene induction leading to long term synaptic changes required for the 

formation of memories (Costa-Mattioli et al., 2007).  Interestingly, whilst ER stress 

markers are prominent in AD, activated PERK pathway components are not seen in 

human prion disease unless neurofibrillary pathology is present, suggesting a critical 

role for tau in UPR induction (Unterberger et al. 2006).  Although GADD34-

mediated reactivation of translation can be beneficial, if too aggressive, it will lead to 

C/EBP homologous protein (CHOP)-induced cell death.  This was demonstrated in a 

mouse model of Charcot-Marie Tooth disease (CMT) where restricting GADD34 

activity improved myelination of peripheral nerves (D’Antonio et al., 2013).  

Similarly, inhibiting eIF2α dephosphorylation with guanabenz improved motor 

performance, attenuated motor neuron loss and improved lifespan in a mouse model 

of familial ALS (Jiang et al., 2014).  The latest generation of GADD34 inhibitors, 

Sephin 1, recently demonstrated therapeutic potential in mouse models of both CMT 

and ALS in a single study (Das et al., 2015).  Lastly, the compound described by 

Sidrauski et al. (2013) reduced cell viability in the face of chronic ER stress.  

Therefore, the correlation of GADD34 immunostaining with ischaemic damage in 

the human hippocampus after cardiac arrest could equally represent a pro-survival or 

pro-death response (White et al., 2004).   These paradoxical results highlight the 

delicate balance that must be achieved by the UPR in order to safeguard proteostasis.  
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Although misfolded protein aggregates are central to a range of debilitating 

disorders, the sequestration of toxic intermediates into insoluble inclusions can 

reduce their toxicity and even reverse proteasomal dysfunction (Arrasate et al., 2004; 

Bodner et al., 2006).  Indeed, the concentration of soluble misfolded proteins to 

enhance their refolding or degradation may be more treacherous, given that 

aggregation is largely concentration-dependent (Eckermann et al., 2007; Chen et al., 

2011).  Despite the cognitive advantages achieved in vivo through UPR manipulation 

(Halliday and Mallucci, 2014), it is almost inconceivable that simply perpetuating 

protein load on the one hand, or inhibiting protein synthesis on the other would be 

beneficial in the long term.  Either of these approaches might be improved by 

simultaneously targeting chaperones, such as BiP (Morris et al., 1997; Jin et al., 

2000; Moreno et al., 2013).  Strictly speaking, chaperones ‘neutralize’ the toxic 

intermediate rather than actually preventing inclusion formation (Chen et al., 2011).  

For example, BiP binds to mutant PrP and targets it to the proteasome for 

degradation (Jin et al., 2000).  Overexpressing Hsp70 suppresses the toxicity 

associated with Aβ, tau, α-synuclein, SOD1 and poly-Q expanded Huntingtin 

(Muchowksi and Wacker, 2005).  This chaperone can also protect neurons and 

astrocytes from experimental stroke and stroke-like insults through a variety of 

mechanisms including suppression of apoptosis and microglial activation (Yenari et 

al., 2005).  This is consistent with an earlier report showing that pharmacological 

activation of the heat shock response could delay disease progression in ALS mice 

(Kieran et al., 2004).  In a Drosophila model of tauopathy, the chaperone 

nicotinamide mononucleotide (NAD) synthase nicotinamide mononucleotide 

adenylyltransferase (NMNAT) interacted with hyperphosphorylated tau,  promoted 
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the ubiquitination and proteasome-mediated clearance of toxic tau oligomers and 

suppressed age-dependent neurodegeneration (Ali et al., 2012).  Enhancing 

chaperone function early in disease, prior to UPR activation may present an even 

more effective and readily translatable strategy.  Kudo et al. (2008) showed that pre-

treatment with a BiP inducer could mitigate ER-stress-induced apoptosis in 

neuroblastoma cells and reduce infarction area in a mouse model of focal cerebral 

ischaemia.  As discussed previously, the cytoskeleton participates in activity-

dependent processes underlying synaptic plasticity and is one of the earliest and most 

sensitive targets of thermal stress (Dalle-Donne et al., 2001; Klose et al., 2004).  

Hyperthermic preconditioning increases the upper temperature limit of nervous 

system operation and involves an acquired synaptic thermotolerance mediated by 

interactions of the cytoskeleton with Hsps (Klose et al., 2004).  In Drosophila 

motorneurons this thermotolerance can be enhanced with overexpression of Hsp70 

(Xiao et al., 2006).  Similarly, in the rat brain, Hsp70 is rapidly recruited to the 

synapse in response to heat shock (Bechtold et al., 2000).  Proteasome inhibition can 

induce thermotolerance via the induction of Hsps and ER chaperones (Bush et al., 

1997), thus the effect of phospho-tau on the proteasome should elicit a similar 

response.  In a rat model of ischaemia-reperfusion, pre-cooling increased BiP 

expression and reduced CHOP expression and apoptosis (Liu et al., 2013).  It follows 

then that hypothermic preconditioning could bring about an adaptive UPR by 

increasing tau phopshorylation.  As will be discussed further in Chapter 6, the UPR 

itself can be harnessed to precondition the ER and favour cell survival (Tabas, 2011).  

Overall, these studies have established the UPR as a potentially valuable target 
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across a wide spectrum of neurological disorders - and it is thus worthy of further 

investigation in the context of neuronal tau and thermal stress.       

 

1.7 Hypothesis and statement of aims 

Against this background, several hypotheses were derived: 

(1) That mild-to-moderate cooling would protect human cortical neurons against 

common neurotoxins including oxidative and excitotoxic stress 

(2) That mild-to-moderate cooling would elicit a classic cold-shock response in 

human cortical neurons 

(3) That human cortical neuronal tau protein development would be recapitulated 

in vitro and subsequently reversed by cooling 

(4) That hypothermic protection of human neurons would be mediated in part by 

cooling-induced changes in tau in concert with proteostatic pathways. 

The aims of this thesis were as follows: 

(1) To establish a human in vitro model of TH using hCNs 

(2) To characterize the cold-shock response in hCNs 

(3) To determine the effect of cooling on microtubule-associated protein tau in 

hCNs 

(4) To explore potential mechanisms of hypothermic preconditioning in hCNs 

that might incorporate tau and the UPR.  
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Chapter 2: Materials and methods 

 

2.1 Human brain tissue 

 

Human post-mortem brain samples were included as controls for tau and cold-shock 

protein expression; these are developmentally-regulated proteins in the human cortex 

(Miller et al., 2014 and The Allen Institute for Brain Science).  Tissue was obtained 

under full ethical/Institutional Review Board approval of the University of 

Edinburgh.  Written informed consent was obtained for each sample.  Adult frontal 

cortical samples (3 healthy controls, aged 17, 44 and 75 y and 3 Alzheimer’s disease 

patients, aged 60, 61 and 81 y, Braak stages 5-6, post-mortem interval (PMI) 1-4 d) 

were provided by the MRC Edinburgh Brain & Tissue Bank as fresh-frozen tissue 

blocks (stored at -80 ⁰C).  Human foetal brain samples were procured after elective 

surgical abortion (PMI 4-48 h), with full ethics permission of the NHS Lothian 

Research Ethics Committee (REC 08/S1101/1).  These samples included intact 

cerebral hemispheres (gestational age 14 to 19 w) which, immediately after retrieval 

at post-mortem, were placed into 5-20 % foetal calf serum (FCS) in phosphate-

buffered saline (PBS) with 1% Pencillin-Streptomycin (Invitrogen) and transferred at 

4⁰C prior to further processing. 

 

2.2 Cell culture 

 

2.2.1 Generation of iPS lines 

Human iPS lines (IPS1 and IPS2, derived from the fibroblasts of healthy female 

control donors at 55 y and 40 y respectively) were reprogrammed in-house, after 
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obtaining written informed consent from each participant and ethics permission from 

the NHS Lothian Research Ethics Committee (REC/10/S1103/10).  Induction and 

characterization of these clones was performed as described previously (Bilican et 

al., 2012; Bilican et al., 2014; Livesey et al., 2014) with minor adjustments.  Briefly, 

this included reprogramming of fibroblasts by Sendai (Life Technologies) (IPS1) or 

retroviral (Vectalys) (IPS2) transduction introducing vectors expressing coding 

sequences for the Yamanaka reprogramming factors (octamer-binding transcription 

factor 4, OCT4; c-Myc, MYC; sex determining region Y-box 2, SOX2; Kruppel-like 

factor 4, KLF4) (Takahashi and Yamanaka, 2006).  Human embryonic stem cell 

(hES)-like colonies were selected and expanded.  Validation of iPS lines was 

performed by confirmation of pluripotency (Fig.2.1), demonstration of transgene 

silencing with upregulation of endogenous transcription factors and normal clonal 

karyotyping.  There is conflicting data regarding the influence of donor age and 

epigenetic memory on reprogramming efficiency, differentiation potential and 

replicative senescence of iPS lines (reviewed in Rohani et al., 2014).  Whilst the data 

below demonstrates a similar acquisition of pluripotency between the two iPS lines 

generated, more detailed analysis would be required to rule out potential donor-

related epigenetic factors on pluripotency and the neurons differentiated from iPS 

clones.  To minimise these effects, it was important to ensure that the control donors 

were of similar age and that conversion was performed within a short range of 

passage numbers.  A similar approach was taken when differentiating hCNs from 

explandible neural precursors; no obvious passage number effects were noted within 

the ranges used (see below).    
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Figure 2.1 Immunocytochemical validation of iPS lines. hES-like colonies from IPS1 and 
IPS2  were stained for pluripotency markers.  Representative flurorescent micrographs 
show results for Oct 4, Nanog and Sox2, scale bar = 50 μm.   
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2.2.2 Neural conversion of hPS lines 

hES lines (H9, female, WiCell, Madison, WI and Shef 4, male, UK Stem Cell Bank, 

designated HES1 and HES2 respectively) were obtained under full 

ethical/Institutional Review Board approval of the University of Edinburgh.  All hPS 

lines were maintained on CF-1 irradiated mouse embryonic fibroblasts, with 

Advanced DMEM/F12, 20% Knockout Serum Replacement, 10 ng/ml fibroblast 

growth factor-basic (FGF2), 1 mM L-glutamine, 100 μM 2-mercaptoethanol and 1 % 

Penicillin-Streptomycin.  hPS colonies underwent neural conversion in suspension at 

20 % O2 under feeder-free conditions as described previously (Bilican et al., 2014).  

Briefly, colonies cultured in chemically-defined medium (CDM) were lifted in a 1:1 

Dispase/Collagenase mix and suspended in neuralisation medium with continuous 

shaking to enable conversion to neuroectoderm (formation of embryoid bodies 

followed by neurospheres).  After 7 d, spheres were gradually switched to neural 

rosette medium to encourage rosette development over another 7-14 d.  Converted 

spheres were then plated onto 1 in 100 Laminin (Sigma)-coated Nunc plates for 2-3 d 

prior to mechanical isolation of rosettes and long-term expansion as anterior neural 

precursors (aNPCs; Bilican et al., 2014; Livesey et al., 2014).  

 

2.2.3 Expansion of aNPCs 

Cryopreservation, maintenance and expansion of aNPCs was performed using aNPC 

expansion medium and freezing medium as described (Bilican et al., 2014), with the 

exception that thawed aNPCs were plated onto 1 in 100 Laminin (Sigma) for the first 

two passages.  Thereafter, aNPCs were routinely maintained on 1 in 100 Matrigel®-

coated Nunc plates.  For immunocytochemical analysis of aNPC markers (Fig.2.2), 
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cells were plated as described below, but in plating medium containing FGF2 

(Peprotech).  Cells were fixed at 100% confluence. 

 

 

 

 

 

 

Figure 2.2 Validation of aNPCs. (a) Representative fluorescent micrographs (HES1) 
demonstrate co-expression of NPC marker Nestin and mosaic expression of various early 
dorsal telencephalic markers in green, cells counter-stained with DAPI, scale bar = 50 μm.  
(b) Left: karyograph showing G-banding of HES1-derived aNPCs (HES1) at passage 25 
confirming that a normal karyotype is retained (original image published in Bilican et al., 
2014).  Right: normal karyograph of IPS1-derived aNPCs.  
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2.2.4 Differentiation of aNPCs into hCNs 

hCNs were differentiated from aNPCs as described previously (Bilican et al., 2014; 

Livesey et al., 2014), with minor alterations.  Briefly, confluent aNPCs were lifted in 

aNPC plating medium (passages 17 to 39) and plated in 12 or 24-well plates (Nunc) 

at approximately 1 x 10
5 
cells cm

-2
 onto glass coverslips coated with Poly-L-

Ornithine (1 in 1000, Sigma), Laminin (1 in 100, Sigma), Fibronectin (10 μg/ml, 

Sigma) and Reduced growth-factor Matrigel® (1 in 200, BD Biosciences).  

Differentiating aNPCs were cultured in default media at 3 % O2, 5 % CO2, 37⁰C.  

For KCl stimulation experiments aNPCs were differentiated in Matrigel® (1 in 100)-

coated 6-well plates at the same density.  Cultures were fed twice weekly until 21 d, 

after which more mature cultures required feeding every other day.  For hypothermia 

experiments incubation temperature was the only environmental adjustment.
  

Periodic testing using a PCR-based detection kit (Minerva Biolabs) confirmed that 

both precursor and differentiated cultures were Mycoplasma-free.  For 

developmental characterization, samples were harvested at aNPC stage and 14, 28, 

42 and 49 d after plating for differentiation. 

 

2.2.5 hPS-derived glia  

hPS-derived astroglial progenitors efficiently differentiate into a highly pure (>90 %) 

monolayer of functionally mature astrocytes within 14 to 21 d (see details in Serio et 

al., 2013).  Briefly, astroglial progenitors (derived from IPS2) were expanded in 

maintenance medium (Advanced DMEM F12, 1 % Anti-Anti-Antibiotic 

Antimycotic, 1 % Glutamax, 1 % N2, 0.1 % B27, 10 ng/ml FGF2, 20 ng/ml 

epidermal growth factor (EGF, R&D Systems) in six-well Nunc plates coated in 1 in 
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80 Matrigel® and passaged at 60 % confluence as required.  Progenitors were 

maintained at 37⁰C, 5 % CO2, 20 % O2.  For differentiation, progenitors (passages 7 

to 14) were lifted with Accutase® and plated at 10
6
 per well in six well plates.  

Differentiation media comprised Neurobasal Medium containing 1 % Anti-Anti-

Antibiotic Antimycotic, 1 % Glutamax, 1 % Minimum Essential Medium Non 

essential amino acids (MEM NEAA), 0.2 % B27, 0.1 % recombinant human ciliary 

neurotrophic factor (hCNTF, R&D Systems).  Astroglia were harvested at 0, 2 and 5 

w after removal of FGF and EGF.  For immunocytochemistry, astroglia were lifted 

with TrypLE™ Express Dissociation Reagent and re-plated at 20,000 cells per 13 

mm coverslip (pre-coated with Poly-L-Ornithine and 1 in 80 Matrigel®) in 24-well 

Nunc plates.  Cells were incubated for 3 d at 37⁰C, 5 % CO2, 3 % O2 prior to fixing. 

 

2.2.6 Primary culture 

Mixed neuronal cultures (n=4) and neurospheres (n=1) were isolated from post-

mortem human foetal brains (gestation 14, 15, 16 and 19 w), adapting published 

protocols (Busciglio et al., 1995; Chandran et al., 1998; Deshpande et al., 2008; 

Pelsman et al., 2003; Fig.2.3 and 2.4).
  
Briefly, cerebral hemispheres were gently 

freed from their meninges at 4⁰C.  After sectioning cortical tissue for protein 

extraction, dorsal and ventral telencephalic regions (for immediate plating and 

neurosphere expansion respectively) were roughly minced and incubated at 37⁰C for 

20 min with Trypsin- ethylenediaminetetraacetic acid (EDTA) (0.25 %).  Samples 

were mechanically dissociated into a single-cell suspension using gentle passage by 

glass pipette and spun at 2500 rpm for 2.5 min.  Pellets were resuspended in primary 

plating medium containing Trypsin Inhibitor (0.05 %, Sigma) and DNase (0.001 %, 
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Worthington) and incubated at 37⁰C for 5 min.  After one wash, cells were either 

plated into coated 24-well Nunc plates (dorsal telencephalic cells) at ~1 x 10
5
 cells 

cm
-2

 in plating medium or seeded into T75 flasks (ventral telencephalic cells) at 2 x 

10
5
 per ml in neurosphere medium.  Cultures were incubated at 20 % O2, 37⁰C, 5 % 

CO2.  After 4 d, plates were washed once and FCS was removed for maintenance (to 

bias the culture towards a neuronal phenotype).  Thereafter, cultures were fed every 

3-5 d by 50 % media changes and terminated after 3 w.  Samples from plates were 

harvested for RNA, protein or immunocytochemistry as described below.  T75 flasks 

were gently agitated daily and supplemented after 4 d with recombinant human 

platelet-derived growth factor (rhPDGF-AA, 20 ng/ml, R&D Systems), insulin-like 

growth factor 1 (IGF-1, 10 ng/ml) and triiodothyronine (T3, Sigma).  Neurospheres 

were mechanically passaged every 28 d by manual chopping.  Mixed glial cultures 

were periodically prepared by dissociating spheres into a single cell suspension 

before removal of mitogens and plating in 24-well plates.  Mixed glial cultures were 

terminated after 3 w.  Coverslips were stained at various time points for astroglial 

and oligodendroglial markers. 
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Figure 2.3 Primary human cultures. (a) Phase contrast micrographs of early 
differentiating primary cortical neurons (left and middle; 14 w foetus) as compared to 
HES1-derived hCNs (right), scale bar = 50 µm.  (b) Phase contrast micrographs of 
expanding primary neurospheres (19 w foetus), upper scale bar = 500 µm, lower scale 
bar = 50 µm.  (c) Phase contrast micrographs of primary differentiating mixed glia (19 w 
foetus), scale bar = 50 µm.   
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Figure 2.4 Primary human glia and neurons. Fluorescent micrographs of primary mixed 
cultures (19 w foetus) stained for (in order from top left to bottom right): O4 (green), 3DIV; 
O4 (green), βIII-tubulin (white) and 3R tau (red), 10 DIV; O4 (white), GFAP (red) and total 
tau (green), 10 DIV; O4 (green), βIII-tubulin (white) and 3R tau (red), 25 DIV; O4 (white), 
PDGF receptor α (PDGFRα, green) and myelin basic protein (MBP, red), 25 DIV; βIII-tubulin 
(white) and 3R tau (red), 25 DIV.  All cells were counterstained with DAPI (blue).  
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2.3 Cooling paradigm 

 

For hypothermia experiments triplicate plates for each hCN batch were generated 

and maintained in normal differentiation media.  Hypothermia was induced at 5 w, 

prior to significant upregulation of glial transcripts (see Fig.3.1) and when >90 % of 

aNPCs have differentiated into hCNs, with >95 % of these neurons firing action 

potentials (Belinsky et al., 2013; Bilican et al., 2014; Livesey et al., 2014).  At this 

time point, triplicate plates were separated and cultured at 28, 32 or 37⁰C to simulate 

‘moderate hypothermia’, ‘mild hypothermia’ or ‘normothermia’ respectively 

(Fig.2.5).  These temperatures were selected to simulate the clinically-targeted 

temperatures oftherapeutic hypothermia (32-35⁰C) and suspended animation (28⁰C) 

(Choi et al., 2012; Yenari and Han, 2012), as well as depths of hypothermia that have 

been shown to induce a cold-shock response and neuroprotection in other model 

systems (Nishiyama et al., 1997b; Danno et al., 2000; Chappell et al., 2001; Saito et 

al., 2010; Wellmann et al., 2010; Chip et al., 2011; Ferry et al., 2011; Kaneko and 

Kibayashi, 2012; Li et al., 2012; Sumitomo et al., 2012; Tong et al., 2013).  Thermic 

period was calibrated with a sentinel culture plate containing the same media 

composition and volume as experimental plates.  Time zero was set when the media 

in the sentinel plate reached the desired incubation temperature, measured by digital 

thermometer (typically within 1 h).  RNA samples for early and late assessment of 

transcripts were lifted at 3 and 24 h respectively.  After 24 h additional cells were 

fixed for immunocytochemistry and harvested for protein.  For any media additions 

that were necessary during the hypothermic period (e.g. for stressor application), 

solutions were warmed to the respective temperatures before adding to the cultures.   
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2.4 Immunofluorescence and image acquisition 

 

Figure 2.5 Cooling and stress protocol. Sampling for transcript and protein analysis was 
carried out at early (3 h) and/or late (24 h) timepoints after the start of temperature shift.  
For injury experiments stressors were applied after 24 h of cooling for a duration of 24 h 
after which a multiplexed injury analysis was performed, providing paired viability and 
cytotoxicity data for each cell culture well.  For each culture plate, some coverslips were 
instead fixed for immunocytochemistry to perform confirmatory cell death counts (100 
μM H2O2 and 30 μM glutamate conditions only).    
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For staining of hCNs, hPS-derived astroglia and primary human neurons and 

astroglia, every step was carried out at room temperature.  Cells were fixed with 2 % 

(astroglia) or 4 % (hCNs) paraformaldehyde (PFA) for 10 min and permeabilized 

with 0.1 % Triton X for 10 min.  Cells were blocked in 3 % goat serum (Dako) for 45 

min, then incubated with primary antibodies (see below) overnight at 4⁰C.  

Coverslips were washed and all subsequent steps were performed in the dark.  

Secondary antibodies (Alexa Fluor® 488, 555 ± 647 diluted at 1 in 2000) were 

applied for 20 min, followed by washing and counter-staining with DAPI (0.2 µg/ml, 

Sigma®) for 3 min.  Primary (see Table M1) and secondary antibodies were diluted 

in 3 % goat serum.  Primary oligodendroglia were stained live for cell surface 

markers prior to fixing.  Primary antibodies were diluted in culture medium 

containing 20 % FCS and cultures were incubated at 37⁰C for 1 h.  Subsequent steps 

were performed at room temperature in the dark.  Media was removed and cells were 

fixed, washed and the secondary antibody applied for 30 min.  After washing and 

permeabilization in 0.2 % Triton X, primary antibody application for intracellular 

epitopes and subsequent steps were the same as for other cell types.  Negative control 

coverslips received no primary antibody.  Coverslips were mounted with 

FluorSave™ Reagent (Calbiochem) and slides were stored a 4⁰C in the dark prior to 

imaging.  All fluorescent images were acquired at room temperature using ZEN 2012 

software (Zeiss).  Widefield fluorescent micrographs were captured with a Zeiss 

Axiovert 200 microscope fitted with a High Resolution Microscopy Camera 

(AxioCam Mrm), using the following objective lenses: Plan-Apochromat 20 X, 

numerical aperture (NA) 0.8, Plan-Apochromat 63 X oil, NA 1.4.  Confocal 

micrographs were generated with a Zeiss LSM 710 Confocal inverted Microscope 
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using a Plan-Apochromat 63 X oil objective, NA 1.4.  Fluorescent images were 

processed and scale bars were added using ZEN lite 2012 (Zeiss). Phase contrast 

images of live cells were acquired with an EVOS® XL core Cell Imaging System, 

using an EVOS® LWD achromatic phase contrast 40 X objective, NA 0.65.  Cell 

counts were performed blind to the temperature variable.  Representative fluorescent 

and phase images were edited in Photoshop CS6 (Adobe).  Where necessary, 

brightness and contrast adjustments were applied to all pixels equally. 

 

 

2.5 Sample harvesting for RNA and protein 

 

hCN samples for RNA were incubated with Accutase® (Sigma) for 5 min, lifted 

with Advanced DMEM F12, spun at 2500 rpm for 2.5 min, resuspended in 

Dulbecco’s PBS and centrifuged at 3000 rpm for 5 min at 4⁰C.  Samples for protein 

were lifted from plates in ice-cold Tris-buffered saline (TBS) containing protease 

inhibitors (cOmplete ULTRA, Roche and 100 μM phenylmethanesulfonylfluoride 

(PMSF), Fluka Biochimika), and where necessary, phosphatase inhibitors 

(phosSTOP, Roche).  RNA and protein pellets were snap-frozen and stored at -80⁰C 

prior to further analysis.  Astroglial RNA samples were lifted with TrypLE™ 

Express, incubating for 15 min at 37⁰C, protein samples were lifted as for hCNs.  

Human post-mortem adult and foetal cortical samples for protein were divided into 

200-300 mg pieces at 4⁰C, snap-frozen and stored at -80⁰C prior to extraction. 
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2.6 Transcript analysis 

 

2.6.1 Validation of normalization factors  

Reference targets were determined using a combination of geNorm (qbase+, 

Biogazelle) and NormFinder (Excel) analysis (Vandesompele et al., 2002).  Six 

candidate targets were assessed for their stability with respect to the variables under 

test (differentiation from aNPC to 6 w post-plating, stimulation with KCl, exposure 

to hypothermia) (Fig.2.6).  Candidates included β-actin (BACT), glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), ribosomal protein L29 (RPL29), eukaryotic 

translation initiation factor 4A2 (EIF4A2), hypoxanthine phosphoribosyltransferase 1 

(HPRT1) and β2 microglobulin (B2M).  Analyses were applied to the expression 

data of 12 samples (extracted from 4 independent batches of hCNs (HES1) at 2, 4 

and 7 w post-plating), 10 samples (extracted from 4 batches (HES1) and 1 batch 

(IPS1) with and without stimulation) and 5 samples (extracted from 1 batch (HES1) 

after 0, 3, 6, 12, and 24 h culture at 32⁰C), to derive the most stable targets for each 

experiment.  geNorm analysis was also used to determine the optimal number of 

reference targets for each condition, determined by the geNorm V value.  The 

following reference targets were selected: for hCN differentiation, RPL29, GAPDH, 

BACT; for KCl stimulation, RPL29, GAPDH, EIF4A2 and for hypothermia, EIF4A2 

and GAPDH.   
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Figure 2.6 Establishing normalization factors for q-RT-PCR. NormFinder (a) and geNorm 
(b) stability results are presented for six candidate reference targets under the conditions 
indicated.  Note that the lower the stability value, the more stable the target.  Whilst this 
analysis suggested that BACT was unstable with respect to temperature change, this was 
not evident by Western blot for which BACT has previously been used as a loading control 
in the context of hypothermia (Chip et al., 2011).  
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2.6.2 Quantitative reverse transcriptase PCR 

For q-RT-PCR, RNA was extracted using the Qiagen RNeasy® Mini Kit, according 

to the manufacturer’s instructions, followed by DNA removal using the Ambion® 

RNA clean up kit (Invitrogen).  cDNA was synthesised from 250-500 ng RNA using 

the DyNAmo™ cDNA Synthesis Kit (Thermoscientific) using ‘no reverse 

transcriptase’ reactions as negative controls.  For human adult and foetal 

comparisons, cDNA was synthesised in triplicate from 500 ng commercially 

prepared RNA (Human Foetal Brain Total RNA, pooled from 59 spontaneously 

aborted human foetuses, gestation 20-33 w, and Adult Human Brain Cerebral Cortex 

Total RNA, pooled from 5 human adults (age 20-44 y), both from Clontech).  PCR 

reactions were performed in triplicate using a BioRad CFX96™ Real-Time PCR 

Detection System and ‘no template’ reactions were included as negative controls.  

Cycle conditions were: 95⁰C for 7 min, 95⁰C for 10 s, X⁰C for 30 s, repeated 40-44 

times, where X = the optimized annealing temperature for each primer pair.  Primer 

specificity was confirmed by gel electrophoresis.  Primer sequences are listed in 

Table M2. 

 

2.6.3 Qualitative RT-PCR 

cDNA was prepared as above.  PCR reactions were performed using Quick-Load® 

Taq 2X Master Mix (New England Biolabs) in a BioRad C1000 Thermal Cycler.  

Cycle conditions are described in Duff et al., (2000).  β-actin was included as a 

housekeeping target.  RT-PCR products were resolved on 1.9 % agarose gels run at 

110 V for 25 min.  Human tau exon spanning primer sequences were as follows 

(Andorfer et al., 2003): exons 1-5 forward TGAACCAGGATGGCTGAGC and 



113 
 

reverse TTGTCATCGCTTCCAGTCC; exons 9-11 forward 

CTCCAAAATCAGGGGATCGC and reverse CCTTGCTCAGGTCAACTG. 

 

2.7 Activity-dependent gene regulation 

 

An in-house quality control protocol to test hCN functionality by gene expression 

changes in response to KCl stimulation was conducted as described previously 

(Bilican et al., 2014) with a few minor adjustments.  Briefly, 12 h prior to 

stimulation, 5 w old hCNs were switched to an antioxidant- and glutamate-free 

minimal medium (MiM; Gupta et al., 2013).  Cultures were then stimulated with 50 

mM KCl in the presence of L-type voltage-gated calcium channel agonist FPL64176 

(5 μM, Tocris) and N-methyl-D-aspartate receptor (NMDAR) blocker MK-801 (10 

μM, Sigma).  Control wells received no KCl.  Samples were harvested for RNA at 2 

and 4 h post-stimulation.  Induction of FOS and brain-derived neurotrophic factor 

(BDNF) Exon IV transcripts was analysed by q-RT-PCR.  For each cortical batch, 

expression data was normalized to the geometric mean of 3 stimulation-stable 

reference targets and compared to matched, untreated controls.     

 

 

2.8 Biochemistry 

 

2.8.1 Soluble protein extraction and dephosphorylation 

Extraction of soluble protein was performed using a modified version of the protocol 

by Ishihara et al. (1999).  Cell pellets were homogenized in 2 vol. (v/w) 

radioimmunoprecipitation assay (RIPA) buffer (50mM Tris pH8, 150mM  NaCl, 1% 
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Triton-X 100, 5mM EDTA, 0.5% Na.deoxycholate (w/v), 0.1% sodium dodecyl 

sulphate (SDS)) containing protease inhibitors and incubated on ice for 30 min.  

Tissue samples required homogenization in a Precyllys®24 lysis and 

homogenization unit (2 x 15 s at 5000 rpm).  Lysates were then centrifuged for 20 

min at 50,000 x g, at 4⁰C in a Beckman ultracentrifuge.  To isolate nuclear and 

membrane-bound proteins, RIPA-insoluble pellets were further extracted for 20 min 

in high-detergent RIPA buffer containing 2 % SDS followed by a repeat 

ultracentrifugation.  For phospho-protein analysis only, phosphatase inhibitors were 

included at each extraction step.  Protein concentration was measured by 

bicinchoninic acid (BCA) assay (Pierce), with absorbance read at 584 nm, according 

to the manufacturer’s instructions.  To resolve tau isoforms, paired samples were 

incubated for 2 h at 37⁰C with or without 0.04 Uμg
-1

 alkaline phosphatase (AP) from 

E.coli (Sigma) in AP buffer (50 mM Tris pH 8.5, 50 mM NaCl, 1 mM MgCl2) prior 

to Western blot analysis. 

 

2.8.2 Western blot analysis 

Protein samples were boiled at 95-99⁰C for 10 min in 2X Laemmli buffer or in 

NuPAGE® LS Sample Buffer with NuPAGE® Reducing Agent prior to loading 

onto gels (10-20μg per well, depending on experiment).  Samples were run against a 

protein ladder (BioRad Precision Plus Protein™ All Blue Standards) by SDS-

polyacrylamide gel electrophoresis (PAGE) at 100-110 V in pre-cast gels (either 4-

20 % gradient or 10 % gels, Thermoscientific) in BupH™ Tris-4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)-SDS Running Buffer (Thermoscientific) 

using the XCell Sure Lock™ Gel system (Invitrogen).  Gels for tau isoform 
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resolution included a human recombinant tau ladder (rPeptide) containing equal 

quantities of the 6 major adult brain tau isoforms.  Human adult and foetal cortical 

samples and hPS-derived astroglial samples were included as controls where 

appropriate.  Proteins were subsequently transferred onto Immobilon®-FL 

polyvinylidene fluoride (PVDF) membranes (Millipore) for 1 h at 15 mA in Tris-

Glycine transfer buffer and blocked for 45 min at room temperature with Odyssey™ 

Blocking Buffer (LI-COR® Biosciences).  Membranes were incubated overnight at 

4⁰C with primary antibodies (Table M3).  After several washes with TBS-Tween®20 

(0.001 %) (TBS-T) membranes were probed for 1 h at room temperature with 

Fluorescent conjugated secondary antibodies (IRDye®680RD Goat (polyclonal) 

Anti-Rabbit IgG (H+L) and IRDye® 800CW Goat (polyclonal) Anti-Mouse IgG 

(H+L), LI-COR® Biosciences).  After further washes blots were exposed for 10 min 

per channel (700 nm and 800 nm) on a LI-COR® Odyssey Fc Dual-Mode Imaging 

System, with band intensities quantified in Image Studio, after subtraction of 

background fluorescence.  Where necessary, membranes were immediately reprobed 

or stripped with NewBlot™ PVDF Stripping Buffer (LI-COR® Biosciences) for 20 

min.  Stripping efficacy was confirmed by re-imaging on the LI-COR® Odyssey Fc 

prior to re-probing with primary and secondary antibodies.  For quantification, 

samples were run in triplicate to obtain an average intensity reading for each protein 

target for each independent hCN batch (after normalizing to loading control, or, in 

the case of phospho epitopes, after normalizing to total target expression).   
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2.9 Stress assays and multiplexed injury analysis 

 

Injury experiments were performed using hCNs at 5 w after plating (passages 22 to 

30).  12 h prior to induction of hypothermia, hCNs intended for oxidative stress 

experiments were switched to MiM (Gupta et al., 2013).  With regards excitotoxic 

stress, preliminary experiments demonstrated that hCNs had a high tolerance to 

exogenous glutamate (Fig.2.7).  For excitotoxicity experiments, pre-incubation in 

MiM thus commenced 5 d prior to induction of hypothermia (6 d prior to glutamate 

stress) to acclimatise endogenous glutamate uptake capacity.  During this extended 

pre-incubation, media was supplemented once with L-alanine-L-Glutamine 

(Glutamax, Invitrogen) to avoid compensatory neuronal upregulation of glutamine 

synthetase (Chen and Herrup, 2012).  After 24 h at respective temperatures, stressors 

were applied as follows: (a) H2O2 (Sigma) at 0, 50, 100 or 200 μM to induce 

oxidative stress or (b) L-glutamic acid (Sigma) at 1, 3, 10, 30 or 100 μM to induce 

excitotoxic stress in the presence or absence of NMDAR antagonists (i) 100 μM 

D(−)-2-Amino-5-phosphonopentanoic acid (D-APV, Sigma) or (ii) 10 μM ifenprodil 

(Sigma).  Stressors and antagonists were diluted in MiM and applied via 50 % media 

replacement.  Control wells received MiM with vehicle only.  After a further 24 h at 

the respective temperatures, culture media was extracted from each well for the 

cytotoxicity assay and cells then lysed for the viability assay.  Cytotoxicity was 

determined using the CytoTox-One™ Homogenous Membrane Integrity Assay 

(Promega), which determines lactate dehydrogenase (LDH) release from damaged 

cells, read fluorometrically on a plate reader with excitation at 560 and emission at 

590 nm.  Viability was quantified using the CellTiter-Glo® Luminescent Cell 
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Viability Assay (Promega), measuring adenosine triphosphate (ATP) produced by 

metabolically active cells, with luminescence measured on a luminometer (Promega 

Glomax).  Both assays were performed according to the manufacturer’s instructions, 

but adapted for 24-well plates.  These assays are compatible for multiplexed analysis 

and thus two values (viability and cytotoxicity) were obtained from each well of 

neurons.  ‘Injury’ was expressed as the ratio ‘cytotoxicity/viability’ in relative 

fluorescent units (RFU) divided by relative luminescent units (RLU), thereby 

removing any potential effect of inter-well variation in cell number.  Fluorescence 

and luminescence readings were taken in triplicate and averaged for each condition, 

after subtracting mean values obtained for MiM only (cytotoxicity) and no cell 

control (luminescence).  To confirm cellular identity and to obtain a direct 

quantification of cell death, wells for each batch and at each temperature condition 

were fixed for immunostaining with antibodies for βIII-tubulin, glial fibrillary acidic 

protein (GFAP) and 4’,6-diamidino-2-phenylindole (DAPI).  Assessment of nuclear 

morphology and cell counts were performed blind to the temperature variable.  Cell 

death was defined by either nuclear fragmentation or nuclear condensation with the 

absence of stained cellular processes.   
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2.10 Electrophysiology 

 

Whole-cell patch-clamp recordings were made from hCNs using an Axon 

Multiclamp 700B amplifier (Molecular Devices, Union City, CA).  Patch electrodes 

(~ 4 – 7 MΩ) were filled with an internal recording solution comprising (in mM): K-

gluconate 155, MgCl2 2, HEPES 10, Na-PiCreatine 10, Mg2-ATP 2 and Na3-

Figure 2.7 Baseline glutamate tolerance in hCNs. hCNs (N = 1, n = 3; HES1) were 
switched to glutamate-free MiM 12 h prior to temperature shift.  After a further 24 h, 
glutamate was applied at the concentrations indicated for 24 h followed by multiplexed 
injury analysis.  Note reduction in injury at lower temperatures at some concentrations 
of glutamate, but absence of a clear dose response at any temperature.  Data are 
presented as mean fold injury relative to untreated, normothermic hCNs ± standard 
error of the mean (SEM).  Asterisks refer to significant differences of mildly hypothermic 
(grey asterisks) or moderately hypothermic (aquaasterisks) cultures compared to 
normothermic cultures as determined by paired, two-tailed t-test.  
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guanosine triphosphate 0.3, pH 7.3 (300 mOsm).  Coverslips containing hCNs were 

super-fused with an extracellular solution composed of (in mM) NaCl 152, KCl 2.8, 

HEPES 10, CaCl2 2, glucose 10, pH 7.3 (320–330 mOsm) using a gravity-feed 

system at room temperature (20-23
⁰
C).  The recording solution was supplemented 

with glycine (50 μM), picrotoxin (50 μM), strychnine (20 μM), and tetrodotoxin (300 

nM).  Recordings were made at a holding potential of -74 mV (including liquid 

junction potential correction).  Series resistances (Rs) were generally less than 25 

MΩ. 

 

2.11 PP2A Enzyme activity 

 

PP2A activity was assayed using an Immunoprecipitation Phosphatase Assay Kit 

(Millipore) according to the manufacturer’s instructions, with a few minor 

adaptations (Fig.2.8).  Briefly, cell pellets from 5 w old hCNs were thawed on ice, 

solubilised in cold phosphate extraction buffer (20mM Imidazole-HCl (Santa Cruz), 

2 mM EDTA, 2 mM ethylene glycol tetraacetic acid (EGTA), protease inhibitors and 

100 μM PMSF) and sonicated for 10 s.  After centrifugation (2000 x g for 5 min at 

4⁰C), supernatants were collected and their protein concentration measured by BCA 

Assay (Pierce).  100 μg of each lysate was incubated (constant rocking for 1 h at 

4⁰C) with an antibody specific to the active subunit of PP2A (Anti-PP2A, C subunit, 

clone 1D6) and Protein A agarose slurry in pNPP Ser/Thr Assay Buffer.  Agarose 

beads were washed several times with TBS and Ser/Thr Assay Buffer before the 

addition of a Threonine Phosphopeptide (K-R-pT-I-R-R, final concentration 750 

μM).  Identical samples from each cortical batch were then incubated for 10 min on a 

shaking incubator under one of 4 conditions (28, 32 or 37⁰C or at 37⁰C in the 
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presence of 100 nM of fostriecin (CalBiochem), to provide specific inhibition of 

PP2A (Walsh et al., 1997).  After brief centrifugation, triplicate aliquots of each 

sample were transferred to a 96-well microtitre plate.  Malachite Green Phosphate 

Detection Solution was added to each well and the plate incubated at room 

temperature for 15 min.  Absorbance was measured on a spectrophotometer at 620 

nm.  Sample readings were compared to a 200-2000 pM Phosphate Standard Curve 

after subtraction of blank and negative control (fostriecin) values.  The specific PP2A 

activity (picomoles of phosphate released min
-1

μg
-1

 protein) was calculated for each 

sample.  Hypothermic sample values were then compared to their respective 

normothermic controls. 
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2.12 X-box binding protein 1 (XBP1) splicing assay 

 

RNA was harvested from hCNs cultured for 24 h at 28, 32 or 37⁰C (normothermic 

control).  As a positive control for XBP1 splicing, normothermic hCNs were treated 

for 24 h with Tm at 0.3 µg/ml to induce ER stress.  q-RT-PCR was performed as 

Figure 2.8 Schematic of PP2A enzyme activity measurement. After protein extraction, 
the cell pellet is discarded.  The remaining supernatant can be used for standard 
immunoblot analysis or immunopreciptation of PP2A.  
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above.  Conventional RT-PCR was performed using Quick-Load® Taq 2X Master 

Mix (New England Biolabs) and PCR reactions were performed in a BioRad C1000 

Thermal Cycler (cycle conditions: 95⁰C 300 s, 95⁰C 30 s, 60⁰C 30 s, 72⁰C 30 s, 

repeated 32 times).  GAPDH was included as a housekeeping target and MYC was 

included to confirm immediate early gene expression in response to cellular stress 

(cooling and Tm treatment).  RT-PCR products were resolved on 2.5 % agarose gels 

run at 120 V for 33 min. 

 

 

2.13 Electron microscopy 

 

For ultrastructural analysis hCNs were cultured on Thermanox™ coverslips.  At 

various time-points during differentiation, cultures were washed with ice-cold DPBS 

(Invitrogen) and fixed with 3% glutaraldehyde.   Sample processing included 

osmication, followed by embedding monolayers in Araldite epoxy resin, cutting 60 

nm sections and mounting onto Formvar/carbon-coated, copper slot grids.  Sections 

were stained with uranyl acetate and lead citrate prior to imaging on a Philips 

CM120 Biotwin electron microscope. 

 

 

2.14 Protein mass spectrometry 

 

RIPA-soluble, cytosolic protein samples extracted from a 19 w gestation human 

foetal cortex and 6 w hCNs (HES1) were separated by 10 % SDS-PAGE.  1D gel 

sections corresponding to approximate molecular weights 30-75 kDa for each sample 

were processed in a laminar flow cabinet, using in-gel trypsin digestion, in order to 
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minimise keratin contamination.  The digests were then extracted prior to analysis 

with nanoLC electrospray ionization (ESI)-MS/MS (Reverse Phase chromatography) 

using an Ultimate 3000 nano LC (Thermoscientific) coupled to an LTQ Orbitrap XL 

(Thermoscientific).  The resultant data was processed using Proteome Discoverer 

(Version 1.4) using the Mascot search engine (Version 2.3.2).  A Mascot generic file 

(mgf) was generated and used to search local IPI human peptide databases using a 

Mascot Server for Protein Identification.  

 

 

2.15 Statistical analysis 

 

Pairwise correlations were performed by two-tailed Pearson correlation.  All 

remaining analyses were performed using linear mixed models in Stata SE (Version 

9.2, Stata Corp, TX, USA) with random effects for intercept by batch, and where 

necessary, with random effects for coefficient by dose or time.  These multilevel 

statistical methods were employed to best accommodate nested data (Aarts et al., 

2014).  Nesting existed at multiple levels within the experiments described below, 

including nesting by culture batch, cell line, temperature, time, injurious stressor and 

compound exposure.  In each case, N denotes the number of individual cell lines 

used (all derived from wild-type cells) and n describes the total number of 

independently differentiated batches of hCNs, pooled from one or more cell lines and 

used as the statistical n for each experiment (the number of independent 

observations).    Unless otherwise stated, data are presented as standardized point 

estimates (SPE) + standardized estimated standard error (SESE) after normalizing to 

control values.  Control values refer to aNPC, normothermia (37⁰C) or untreated 
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cells for differentiation, hypothermia, KCl/FPL stimulation and pharmacological 

studies respectively.  Additional controls are described in the relevant figure legend 

as needed.  Where appropriate, asterisks denote significance of the test statistic as 

follows: *p<0.05, **p<0.01,***p<0.001,****p<0.0005. 

 

 

2.16 Media and supplements 

 

Media components were purchased from Invitrogen unless otherwise stated.  CDM 

comprised 50 % Iscove’s Modified Dulbecco’s Medium (IMDM), 50 % Advanced 

DMEM F12 Reduced Serum Medium, 5 mg/ml bovine serum albumin (BSA; 

Europa), 1 % CD Lipid 100X, 4 % Monothioglycerol (Sigma), 0.07 % Insulin 

(Roche), 0.05 % Transferrin (Roche) and 0.1 % Penicillin-Streptomycin.  

Neuralisation medium included CDM supplemented with 0.2 % N-Acetyl cysteine, 

0.1 % Activin Inhibitor (R&D Systems) and 100 μM LDN193189 (Stratech).  Neural 

rosette medium comprised Advanced DMEM F12 Reduced Serum Medium, 1 % 

Anti-Anti Antibiotic-Antimycotic, 1 % Glutamax, 1 % N2, 0.5 % B27 and 2.5 ng/ml 

FGF2.   aNPC expansion medium contained Advanced DMEM F12 Reduced Serum 

Medium with 1 % Anti-Anti Antibiotic-Antimycotic, 1 % Glutamax, 1 % N2, 0.1 % 

B27 and 10 ng/ml FGF2.  For freezing aNPCs, this medium was supplemented with 

10 % DMSO (Sigma).  aNPC plating medium comprised Advanced DMEM F12 

Reduced Serum Medium with 1% Anti-Anti Antibiotic-Antimycotic, 1 % Glutamax, 

0.5 % N2, 1 % B27, 2 μg/ml Heparin (Sigma) and 2.5 ng/ml FGF2.  Default medium 

comprised Advanced DMEM F12 Reduced Serum Medium with 1 % Anti-Anti 

Antibiotic-Antimycotic, 0.5 % Glutamax, 0.5 % N2, 0.5 % B27 and 2 μg/ml Heparin 
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(Sigma).  For aNPC differentiation, Forskolin (10 μM, Tocris) was added from 7-21 

d, and from 21 d onwards, media was supplemented with BDNF and recombinant 

human glial-derived neurotrophic factor (rhGDNF) (both at 5 ng/ml, Tocris).  From 

28 d onwards media was further supplemented with human insulin-like growth 

factor-1 (IGF-1, 10 ng/ml, Peprotech).    Primary plating medium comprised 

Advanced DMEM F12, 2 % B27, 1 % FCS, 1 % Anti-Anti Antibiotic-Antimycotic 

and 1 % Glutamax.  Neurosphere medium contained Advanced DMEM F12, 2 % 

B27, 1 % Anti-Anti Antibiotic-Antimycotic, 1 % Glutamax, 20 ng/ml FGF2 and 4 

μg/ml Heparin.  MiM (Gupta et al., 2013) for KCl stimulation and injury 

experiments comprised 90 % salt-glucose-glycine solution (SGG) (Bading et al., 

1993)
 
with 10 % Minimal Eagle’s Medium (+Earle’s, -Glutamine) and 0.5 % 

Penicillin-Streptomycin.  SGG contains 10 mM HEPES (pH 7.4), 114 mM NaCl, 

26.1 mM NaHCO3, 5.3 mM KCl, 1 mM MgCl2, 2 mM CaCal2, 30 mM glucose, 1 

mM glycine, 0.5 mM sodium pyruvate and 0.001 % phenol red (Sigma).  For 

oxidative and excitotoxic stress H2O2 and L-Glutamic acid were applied for a 

duration of 24 h, after 24 h of temperature shift.  Other media additives were applied 

from the start of the temperature shift (the preconditioning phase) by 50 % media 

replacement at the following concentrations: tunicamycin 0.3 µg/ml (Sigma), 

GSK2606414 500 nM (Calbiochem), fostriecin 100 nM (Calbiochem), TCS 2002 15 

μM (Tocris).  After 24 h, H2O2 was applied as above for the 24 h injury phase 

(compounds were thus diluted by 50 %).  In preliminary experiments to evaluate 

their baseline toxicity, each of these compounds were applied to hCNs at a range of 

doses under normothermic conditions, in the absence of H2O2.  hCNs were switched 

to MiM 12 h prior to a 24 h exposure, followed by multiplexed injury analysis.  
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Concentrations which sat within the effective dose range of each compound, but had 

no toxic effect under basal conditions were selected for the final oxidative injury 

experiments. 

 

 

 

Table M1.  Primary antibodies used for immunocytochemistry 

 

Antibody target Host species/type Dilution Source 

 

AT8 (pS202/pT205) 

 

Mouse monoclonal 

 

1 in 1000 

 

Pierce Brn2 C-20 Goat polyclonal 1 in 400 Santa Cruz 

βIII tubulin Mouse monoclonal 1 in 1000 Sigma 

CIRBP Rabbit polyclonal 1 in 200 Pierce 

Cux 1 (CUTL-1) Mouse monoclonal 1 in 500 Abnova 

GFAP Mouse Cy3 conjugate 1 in 500 Sigma 

hNanog Goat polyclonal 1 in 100 R&D Systems 

hOct3/4 (C-10) Mouse monoclonal 1 in 100 Santa Cruz 

hnRNP A1 (4B10) Mouse monoclonal 1 in 500 Santa Cruz 

hSox2 Goat polyclonal 1 in 200 R&D Systems 

MAP2 Rabbit polyclonal 1 in 1000 Abcam 

MAP2 Clone HM2 Mouse monoclonal 1 in 1000 Sigma 

MBP Rat monoclonal 1 in 50 Abcam 

O4 Mouse monoclonal 1 in 300 R&D Systems 

Pan-tau Rabbit polyclonal 1 in 200 Dako 

PDGFRα Rabbit polyclonal 1 in 200 Cell Signalling 

PP2A C subunit (Clone 1D6) Mouse monoclonal 1 in 250 Millipore 

PSD-95 Clone K28/43 Mouse monoclonal 1 in 500 UC Davis/NIH NeuroMab Facility 

RBM3 Rabbit monoclonal 1 in 1000 Abcam 

RBM4 Rabbit polyclonal 1 in 500 Pierce 

RD3 (Clone 8E6/C11) 3R tau Mouse monoclonal 1 in 100 Millipore 

Satb2 Mouse monoclonal 1 in 100 Abcam 

Sox2 Mouse monoclonal 1 in 100 Millipore 

Synaptophysin Mouse monoclonal 1 in 250 Millipore 

TIA-1 Mouse monoclonal 1 in 500 Abcam 

4R tau (Clone 5F9) Mouse monoclonal 1 in 50 Covance 
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Table M2.  Primer sequences used for q-RT-PCR 

Gene target Forward primer Reverse primer 

 

B2M 

 

GAGGCTATCCAGCGTACTCCA  

 

 

CGGCAGGCATACTCATCTTTT  

 

3R TAUa TTGCTCAGGTCAACTGGTTTGTA  

 

ACTGAGAACCTGAAGCACCA  

 4R TAU
a
 TGCAGATAATTAATAAGAAGCTGGA  

 

GTGTTTGATATTATCCTTTGAGC  

 ATF4
b
 TCAAACCTCATGGGTTCTCC GTGTCATCCAACGTGGTCAG 

BACTc GTTACAGGAAGTCCCTTGCCATCC 

 

CACCTCCCCTGTGTGGACTTGGG  

 BDNF Exon IVc TCCACTATCAATAATTTAACT  

 

AAACTCCCACACTCTATT  

 CIRBP TAGAGGAGGAGGGGACCGAG  

 

TCACTGTAGCCACCACTCTG  

 CTIP2 TCCAGCTACATTTGCACAACA 

 

GCTCCAGGTAGATGCGGAAG 

 CUX1 CCAAGCCGAAACCATAGCTCT 

 

AGGCTCTGAACCTTATGCTCA 

 DDIT3
d
 ACCAAGGGAGAACCAGGAAACG 

 

TCACCATTCGGTCAATCAGAGC  

 EIF4A2 GAAGCCTTCCGCTATTCAGCA  

 

CTTGGGTCTCCTTGAACTCAATC 

EMX2
e
 GCTTCTAAGGCTGGAACACG 

 

CCAGCTTCTGCCTTTTGAAC 

 ERN1d TGGGTAAAAAGCAGGACATCTGG 

 

GCATAGTCAAAGTAGGTGGCATTCC 

ETV1e CTGCCTGCAGTCAAGAACAG 

 

AGGGCCTCATTCCCACT 

 FOSc CTACCACTCACCCGCAGACT  

 

AGGTCCGTGCAGAAGTCCT  

 GADD34 CGACTGCAAAGGCGGC CAGGAAATGGACAGTGACCTTC 

GAPDHf GAGTCCACTGGCGTCTTCAC  

 

ATGACGAACATGGGGGCAT  

 GFAPg ATCGAGAAGGTTCGCTTCCTG 

 

TGTTGGCGGTGAGTTGATCG 

 GRIN 2A TGGCCTCACCGGGTATGATT 

 

CAATGCCGTCCCTCACTCTC 

 GRIN 2B GTCCCTGGACGATGGAGAT 

 

CAGTCAGCCCTACTGAGTT 

 GRP94 TTGGTGTCGGTTTCTATTCC 
 

GCTGGGTATCGTTGTTGTG 

HPRT1
h
 AATTATGGACAGGACTGAACGTCTTG

CT  

 

TCCAGCAGGTCAGCAAAGAATTTATAG

C  

 

HSPA5 (HSP70/BiP)i CATCACGCCGTCCTATGTCG 

 

CGTCAAAGACCGTGTTCTCG  

 IRX3e CCGTATGGCCAGTACCAGTT 

 

ATAAGCGTTTCCCTCCTCGT 

 JUNj TCGACATGGAGTCCCAGGA 

 

GGCGATTCTCTCCAGCTTCC  

 MAPT (Total tau)k CCAAGTGTGGCTCATTAGGCA  

 

CCAATCTTCGACTGGACTCTGT  

 MYC CCAGGCTTAGATGTGGCTCT  

 

CTCTGACCTTTTGCCAGGAG  

 NESTIN
l
 GGCGCACCTCAAGATGTCC 

 

CTTGGGGTCCTGAAAGCTG 

 PSD-95m ACAAGCGGATCACAGAGGAG 

 

CAGATGTAGGGGCCTGAGAG 

 RBM3
n
 CTTCAGCAGTTTCGGACCTA  

 

ACCATCCAGAGACTCTCCGT  

 RBM4 AAGACAAGACGGCAGCTGAG 

 

GTGCAGGTGGGACTGATGTT  

 REELIN ACATCTACAAGTGTTCAGGCATC 

 

TGGTTACCAAACTGGTGGTCA 

 RPL29 CAGTCCCGAAAATGGCACAGA  

 

GGCTTTACGAGGGCCTTGATA  

 S100βg TGGCCCTCATCGACGTTTTC 

 

CAGTGTTTCCATGACTTTCTCCA 

 TBR1
e
 ATGGGCAGATGGTGGTTTTA 

 

GACGGCGATGAACTGAGTCT 

 TBR2
e
 CACCGCCACCAAACTGAGAT 

 

CGAACACATTGTAGTGGGCAG 

 VGLUT1e GAAACTCATGAACCCCCTCA GGGAGATGAGCAGCAGGTAG 

 VGLUT2e ATTCCATCAGCAGCCAGAGT 

 

TTGCTCCATATCCCATGACA 

 XBP1
o
 TTACGAGAGAAAACTCATGGCC  

 

GGGTCCAAGTTGTCCAGAATGC 

 XBP1sp TGCTGAGTCCGCAGCAGGTG  

 

GCTGGCAGGCTCTGGGGAAG  

  

 

 

a(Deshpande et al., 2008), b(Li et al, 2014) c(Bilican et al., 2014), d(Lin et al., 2007), e(Espuny-
Camacho et al., 2013), f(Caradec et al., 2010), g(Serio et al., 2013) h(Ahn et al., 2008), i(Harvard 
primer bank), j(University of Twente), k(Zhao et al., 2014), l(Lee et al., 2013), m(Hibaoui et al., 2014), 
n(Wellmann et al., 2004), o(Samali et al., 2010), p(van Schadewijk et al., 2012). 
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Table M3.  Primary antibodies used for immunoblotting 

 

Antibody target Host species/type Dilution Source 

 

AT8 (pS202/pT205) 

 

Mouse monoclonal 

 

1 in 1000 

 

Pierce 4R tau (Clone 5F9) Mouse monoclonal 1 in 250 Covance 

ATF6 Mouse monoclonal 1 in 100 Abcam 

AT8 Mouse monoclonal 1 in 1000 Pierce 

Pierce AT100 Mouse monoclonal 1 in 1000 Pierce 

AT180 Mouse monoclonal 1 in 1000 Pierce 

AT270 Mouse monoclonal 1 in 1000 Pierce 

β-actin (Clone AC-74) Mouse monoclonal 1 in 20,000 Sigma 

Bax Rabbit monoclonal 1 in 2500 Abcam 

BiP (GRP78) Rabbit monoclonal 1 in 1000 Abcam 

CIRBP Rabbit polyclonal 1 in 500 Proteintech 

eIF2α Mouse monoclonal 1 in 1000 Abcam 

p-eIF2α Rabbit monoclonal 1 in 100 Cell Signalling 

GAPDH Mouse monoclonal 1 in 10,000 Calbiochem 

GFAP Rabbit polyclonal 1 in 500 Dako 

GSK3β total Rabbit monoclonal 1 in 1000 Cell Signalling 

GSK3β pS9 Rabbit polyclonal 1 in 1000 Cell Signalling 

GSK3β pY216 Rabbit polyclonal 1 in 100 Abcam 

hnRNP A1 (4B10) Mouse monoclonal 1 in 1000 Santa Cruz 

MAP2 Rabbit polyclonal 1 in 2000 Abcam 

Pan-tau Rabbit polyclonal 1 in 10,000 Dako 

PERK Rabbit monoclonal 1 in 100 Cell Signalling 

PHF-1 (pS396/S404) Mouse monoclonal 1 in 500 Peter Davies 

PP2A C subunit (Clone 1D6) Mouse monoclonal 1 in 500 Millipore 

pS404 (phospho-tau) Rabbit monoclonal 1 in 1000 Abcam 

RD3 (Clone 8E6/C11) 3R tau Mouse monoclonal 1 in 2000 Millipore 

RBM3 Rabbit monoclonal 1 in 100 Abcam 

RBM4 Rabbit polyclonal 1 in 500 Proteintech 
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Chapter 3: Hypothermic neuroprotection in hCNs 
 

3.1 Introduction 

 

Several groups have described in vitro generation of cortical neurons from hPS lines 

(Johnson et al., 2007; Zeng et al., 2010; Shi et al., 2012b; Espuny-Camacho et al., 

2013; Kadoshima et al., 2013; Bilican et al., 2014).  Recently, the Chandran group 

established a platform of cryo-preservable hPS-derived aNPCs that can be expanded 

long-term at physiological normoxia (3% O2), circumventing the need for de novo 

neuralization (Stacpoole et al., 2011; Bilican et al., 2014).  These aNPCs retain 

forebrain identity for many passages and, upon removal of exogenous mitogens, they 

differentiate into deep- and superficial-layer cortical excitatory neurons (hCNs) 

exhibiting activity-dependent gene regulation, with putative functional synapses 

(Bilican et al., 2014; Livesey et al., 2014).  hCNs display a temporal 

electrophysiological maturation profile, including transitions in both AMPA receptor 

subunit composition and GABAA receptor reversal potential
 
(Livesey et al., 2014).  

Functional assessment of the subunit composition of inhibitory ionotropic GABAA 

and glycine receptors in hCNs has also been reported (James et al., 2014).   

 

Owing to their large metabolic requirements and relatively low antioxidant levels, 

cortical neurons are highly susceptible to oxidative stress (Papadia et al., 2008; Weil 

et al., 2008).  These neurons are also vulnerable to glutamate–mediated 

excitotoxicity (Hardingham and Bading, 2010) which is an important contributor to 

neuronal death in several disease states and TBI (Werner and Engelhard, 2007; Weil 

et al., 2008; Campos et al., 2012).  Oxidative stress and excitotoxcity manifest during 
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the subacute phase of cerebral ischaemia, and both are inhibited by cooling in animal 

models of TH (Ginsberg and Belayev, 2005; Yenari and Han, 2012).  However, in 

vivo cooling paradigms (particularly in human clinical trials) have suffered from 

inadequate brain temperature monitoring (Mellergard et al., 1990; Childs et al., 2005; 

Kuo et al., 2011).  Regional differences in brain temperature also exist, fluctuating 

with neuronal activity and disease state (Wang et al., 2014).  Antonic et al. (2014) 

recently described mild hypothermic protection of hPS-derived neurons in vitro, but 

this study did not address excitotoxicity – one of the principal neurotoxic 

mechanisms in the brain.   This study was also limited to a single cell line, from 

which relatively immature (11 DIV) and mixed cultures were derived with no 

demonstration of functional neuronal capacity.  The primary aim of the experiments 

that follow was to establish a more robust and clinically-relevant in vitro model of 

TH using hCNs.  Cortical neurons were considered the most appropriate neuronal 

subtype for this study given (1) their vulnerability to both acute and chronic injury 

states, (2) their established ‘default’ differentiation from hPS lines (demonstrated 

reproducibly by several groups worldwide (see Bilican et al., 2014) – this is not the 

case for other neuronal subtypes such as hippocampal neurons for which few 

publications exist (Yu et al., 2014)) and (3) their use in key publications that have 

modelled glutamate toxicity, cooling-induced neuroprotection and cold-shock protein 

induction(Choi et al., 1987; Murphy and Baraban, 1990; Chip et al., 2011; Jantzie et 

al., 2013; Lee et al., 2014; Sato-Numata et al., 2014, Xu et al., 2014). 

 

 

3.2 Results 
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3.2.1 Validation of hCN generation and tolerance to cooling 

The derivation and electrophysiological characterization of hCNs was published 

recently together with quantification of cortical layer-specific markers at 5 w of 

differentiation (Bilican et al., 2014; Livesey et al., 2014; James et al., 2014).  Here, 

core elements of the differentiation protocol are replicated and extended to show that 

hCNs express an enriched cortical transcript profile (N=2; n=5;  Fig.3.1) and display 

axonal-dendritic polarization (Fig.3.2a).  Consistent with previous findings of 

miniature excitatory post-synaptic currents (Bilican et al., 2014) evidence of pre- and 

post-synaptic features (from 25 DIV) and putative spine morphology (from 35 DIV) 

can be observed in hCNs using transmission electron microscopy (TEM) (Fig.3.3a).   

During the first 6 w, cultures rapidly transform from a dense, nestin-positive aNPC 

population to a highly enriched βIII-tubulin- (86.1 ± 0.94 %), and MAP2 (95.0 ± 

0.12 %)-positive population.  Alongside the expression of various cortical layer 

markers (Fig.3.2b), a small percentage (<10 %) of GFAP-positive glia (N≥3; n≥5; 

Fig.3.2c) and rapid activity-dependent gene regulation (N=2; n=6; Fig.3.3b), these 

data confirm the regional specification, purity and functionality of the model system 

under test.  To investigate whether hypothermia is protective of hCN cultures, 2 

temperatures were selected (28⁰C, 32⁰C) and compared to control cultures at 37⁰C.  

After 24 h of temperature shift, neuronal viability was determined by 

immunocytochemical quantification of βIII-tubulin-positive cells containing intact 

nuclei (N=3; n=8; Fig.3.4a).  The proportion of viable neurons was comparable at 

each temperature confirming that cooling alone was well tolerated.  
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 aNPC  4 w  6 w  P-value Foetal Adult 

MAPT     ****    

3R TAU     ****    

4R TAU     **    

PP2A Bγ     ****    

Reelin     ****    

vGlut1     **    

Etv1     *    

Emx2     ****    

Irx3     ****    

Nestin     **  N/A  N/A  

vGlut2     ****  N/A  N/A  

PSD-95     **  N/A  N/A  

GRIN 2A     **  N/A  N/A  

GRIN 2B     ****  N/A  N/A  

Tbr1     **  N/A  N/A  

Tbr2     ****  N/A  N/A  

Cux1     ****  N/A  N/A  

Ctip2     *  N/A  N/A  

GFAP     N/S    

S100β     N/S    

 

 

Figure 3.1 Transcript analysis of hCNs.  A ‘heat map’ of fold changes in hCN transcript 
expression relative to aNPC level; asterisks denote statistical significance at 4 w (N=2; 
n=5).  Note upregulation of deep- and superficial-layer cortical (Tbr1, Ctip2; cut-like 
homeobox 1, Cux1) and excitatory (vesicular glutamate transporter 1 and2; vGlut1, 
vGlut2) transcripts alongside glial transcripts (GFAP and S100β) with concomitant 
downregulation of precursor (Nestin) and diencephalon (iroquois homeobox 3; Irx3) 
markers.  Glial transcripts did not increase significantly until 6 w.  Some transcripts were 
assessed in cDNA synthesised from commercially sourced human RNA (colour change 
refers to fold differences in adult cortex relative to foetal whole brain).  All transcripts 
were normalized to the geometric mean of 3 developmentally-stable reference targets.  
N/S = non-significant, N/A = not assessed.  
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Figure 3.2 Immunocytochemical validation of hCNs.  (a) Confocal fluorescent micrographs  
of hCNs developing axonal-dendritic polarity (HES1, 6 w; left, Map2 in green; middle, βIII-
tubulin in red; right, merged image), scale bar = 50 μm.  (b) Widefield fluorescent 
micrographs of differentiating hCNs co-expressing neuronal marker βIII-tubulin (green) 
with nuclear markers representative of various cortical layers (left, SATB homeobox 2, 
Satb2, IPS1 at 6 w, scale bar = 50 μm; right upper, POU class 3 homeobox 2, Brn2, HES1 at 
2 w, scale bar = 10 μm; right lower Cux1, HES1 at 2 w, scale bar = 10 μm). (c) Left: widefield 
fluorescent micrograph of hCN culture a 4 w showing highly enriched population of βIII-
tubulin expressing neurons (green) and a small proportion of GFAP-expressing glia (red), 
scale bar = 10 μm.  Right: mean % + SEM of DAPI-stained cells expressing cell phenotype-
specific markers at various stages of differentiation (N≥3; n≥5; data published in Livesey et 
al., 2014).  Note decrease in precursor marker Nestin alongside increase in βIII-tubulin with 
time in culture.  All cells were counterstained with DAPI (blue).  
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 Figure 3.3 Functional analysis of hCNs. (a) Left: transmission electron micrographs of hCNs 
(upper, scale bar = 0.2 μm, lower, scale bar = 0.5 μm).  Presynaptic vesicles (V), post-
synaptic density (P), red arrows indicate putative synaptic clefts.  Right: widefield 
fluorescent micrographs showing co-localisation of pre-(synaptophysin, Syn) and post-
(PSD-95) synaptic markers on MAP2-positive hCNs at 2 w post-plating, white arrows 
indicate putative synaptic puncta, cells counterstained with DAPI, scale bar = 10 μm.  (b) 
Activity-dependent gene regulation in hCNs (N=2; n=6) as determined by q-RT-PCR showing 
transcript responses (left, FOS; right, BDNF Exon IV) to KCl stimulation in the presence of 
FPL64176 and MK-801 (Bilican et al., 2014).  Expression was normalized to the geometric 
mean of 3 stimulation-stable reference targets. Raw data has been split by cell line (n=3 
batches for each) and is presented as normalized mean fold change over matched 
untreated control wells.  Multilevel statistical analysis was performed on pooled data (see 
Methods) and showed that FOS induction peaked at 2 h (N=2; n=6; P<0.0005, range 61.9 to 
157.6) whilst BDNF Exon IV peaked at 4 h (N=2; n=6; P<0.0005, range 1.45 to 12.9) post-
stimulation.  Asterisks denote significant increase relative to untreated control based on 
pooled data.  Note that the cell lines responded functionally in a similar manner.   
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Figure 3.4 hCN death in response to cooling and H2O2 (a) Left: cell counts of hCNs 
showing little to no effect of 24 h cooling on viability or the proportion of βIII-tubulin-
positive cells (N=3; n=8; P<0.05).  Right: cell death counts in response to 24 h oxidative 
stress after cooling (N=3; n=8).  Note that neurons incubated in MiM alone were 
unaffected by incubation temperature.  Counts are presented as mean % + SEM of 
DAPI-stained cells.  (b) Representative widefield fluorescent micrographs of hCNs after 
24 h incubation with 100 μM H2O2, scale bar = 10 μm.  Cells were co-stained for 
neuronal (βIII-tubulin), astrocytic (GFAP) and nuclear (DAPI) markers.  Note small 
number of GFAP-positive cells at each temperature, even at 37⁰C – a temperature at 
which H2O2 was highly neurotoxic.  
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3.2.2 Oxidative stress 

To avoid a confounding cellular stress by re-warming, hCNs were pre-cooled for 24 

h and then maintained at their respective temperatures throughout exposure to 

stressors (Lleonart, 2010; Chip et al., 2011; Neutelings et al., 2013).  The combined 

cooling and stress paradigm was summarized in Fig.2.4.  24 h treatment with 100 μM 

H2O2 produced temperature-dependent injury according to cell death counts (N=3; 

n=8) which reported a 14.6 % reduction in death at 32⁰C (P=0.013), and a 29.2 % 

reduction in death at 28⁰C (P<0.0005) (Fig.3.4a).  The protective effect of cooling 

was clearly evident by immunocytochemistry (Fig.3.4b) and live imaging (Fig.3.5a).  

Multiplexed analysis (Fig.3.5b-c) showed that oxidative injury was [H2O2]-

dependent and again that hypothermia was neuroprotective (N=2; n=9); injury in 

response to 100 μM H2O2 treatment was reduced by 36 % at 32⁰C (19.9 % versus 

31.3 % at 37⁰C, P=0.046) and 78 % at 28⁰C (6.9 % versus 31.3 %, P<0.0005).  
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Figure 3.5 Hypothermia protects hCNs from oxidative stress-mediated injury. (a) Phase 
contrast micrographs of hCNs taken before and after incubation for 24 h with 100 μM H2O2 
at the indicated temperatures, scale bar = 20 μm. (b) Multiplexed injury analysis with dose 
response curves for H2O2 (N=2; n=9).  200 μM H2O2 produced maximal injury at 37⁰C when 
compared to positive control (cell lysis with Triton-X).  Injury data are presented as point 
estimates (PE) ± estimated standard error (ESE) relative to normothermic control.  (c) Raw 
data from (b) has been split by cell line (n=5 batches for HES1 and n=4 batches for HES2) 
and is presented as mean fold injury (RFU/RLU) relative to untreated control at 37⁰C + 
SEM.  Note that each cell line responds to H2O2 and hypothermia in a similar manner, thus 
justifying pooling of data from these cell lines for statistical analysis. 
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3.2.3 Excitotoxic stress 

To determine whether cooling protected hCNs against a different type of neuronal 

injury the effect of hypothermia on glutamate–mediated excitotoxicity was examined 

(Gupta et al., 2013).  Given that 93 % of neurons in hCN cultures are 

electrophysiologically active and exhibit an excitatory profile (Bilican et al., 2014; 

Livesey et al., 2014), the prediction was that they would be susceptible to glutamate 

toxicity.  Preliminary experiments however suggested an almost complete tolerance 

of 5 w hCNs to glutamate (Fig.2.6).  Previous work had shown that hCNs express the 

glutamate uptake transporter vGlut1 (Bilican et al., 2014), which is upregulated in 

response to exogenous glutamate and directly controls pre-synaptic glutamate release 

(Murphy and Baraban, 1990; Wilson et al., 2005).  Since hCN culture medium 

contained relatively high glutamate levels, it was considered that long-term culture in 

these conditions might upregulate neuronal vGlut1 and thus increase hCN buffering 

capacity in response to exogenous glutamate.  Cells were thus switched to MiM for 

an extended period prior to stress application, to allow sufficient time for 

downregulation of glutamate buffering mechanisms.  This proved essential in 

revealing glutamate excitotoxicity in hCNs, sufficient to demonstrate a 

neuroprotective effect of hypothermia.  Although the cell death produced by 30 μM 

glutamate was much less than that caused by 100 μM H2O2, cooling was still 

protective (Fig.3.6).  According to absolute counts (N=3; n=8), cell death was 

reduced at 32⁰C (20.5 % versus 30.1 % death at 37⁰C, P=0.001), but not at 28⁰C 

(28.8 % death, P=0.654), suggesting temperature-specific hypothermic 

neuroprotection.  Multiplexed injury analysis (Fig.3.7b-c) confirmed that glutamate 

excitotoxicity increased with glutamate concentration in hCNs (N=2; n=9), but it also 
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revealed a temperature-dependent protective effect of cooling.  Cell injury following 

exposure to 30 μM glutamate was reduced by 25 % at 32⁰C and 56 % at 28⁰C (51.4 

% and 29.9 % injury respectively versus 68.6 % injury at 37⁰C, P<0.0005 for both 

comparisons).   
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 Figure 3.6 hCN death in response to glutamate.  (a) Cell death counts in response to 30 
μM glutamate are presented as mean % + SEM of DAPI-stained cells, showing a 31.8 % 
reduction in cell death at 32⁰C (N=3; n=8; P=0.001).  (b) Representative widefield 
fluorescent micrographs of hCNs after 24 h incubation with 30 μM glutamate, scale bar = 
10 μm.   
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Figure 3.7 Mild hypothermia protects hCNs from excitotoxic injury.  (a) Phase contrast 
micrographs of hCNs before and after treatment with 30 μM glutamate and incubated at 
the temperatures indicated, scale bar = 20 μm.  (b) Dose response curves for excitotoxic 
injury (N=2; n=9). Note that maximal injury is not achieved with 100 μM glutamate, 
suggesting residual glutamate tolerance at baseline. (c) Raw data from (b) has been split by 
cell line (n=5 batches for HES1 and n=4 batches for HES2) and is presented as mean fold 
injury (RFU/RLU) + SEM relative to untreated control at 37⁰C.  Note that each cell line 
responds to glutamate and hypothermia in a similar manner, thus justifying pooling of data 
from these cell lines for statistical analysis. 
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A role for NMDARs in glutamate-mediated excitotoxicity was recently demonstrated 

in hPS-derived neurons (Gupta et al., 2013).  To verify the physiological relevance of 

the excitotoxic response in hCNs, NMDAR antagonists were applied during 

glutamate exposure period (N=2; n=9).  Both D-APV and ifenprodil completely 

abrogated hCN excitotoxicity (P<0.0005; Fig.3.8a), confirming that glutamate injury 

was mediated predominantly through NMDARs composed of GluN1/GluN2B 

subunits (NR2B) at each temperature of interest.   This result was consistent with q-

RT-PCR analysis of subunit transcripts during hCN differentiation (N=2; n=5; 

Fig.3.8b) and baseline electrophysiological characterization of 5 w hCNs showing an 

80 % reduction in NMDA-mediated current in the presence of ifenprodil (Fig.3.8c).  

Interestingly, at 32⁰C, ifenprodil block slightly increased cellular injury at 1 μM 

glutamate (P=0.001). 
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Figure 3.8 Glutamate injury is NMDAR-dependent. (a) Glutamate injury curves in the 
presence of specific (ifenprodil) and non-specific (D-APV) NMDAR blockers (N=2; n=9).  
Note shift of each curve downwards with decreasing temperature and a shift upwards at 
32⁰C in the presence of 1 μM glutamate and ifenprodil (N=2; n=9; P=0.001), consistent 
with a protective effect of low exogenous glutamate (Hardingham et al., 2010). Both 
blockers prevented the toxic effect of high glutamate, confirming that excitotoxicity was 
GluN2B-mediated at each temperature.  (b) q-RT-PCR analysis of subunit-specific NMDAR 
transcripts during hCN differentiation relative to aNPC expression (N=2; n=5; GRIN 2A = 
GluN2A, GRIN 2B = GluN2B, GluN2A at 4 w P=0.003, other increases P<0.0005).  A 
significant increase was also observed between 4 w and 6 w for the GluN2A transcript 
(N=2; n=5; P=0.022).  Transcript data was normalized to the geometric mean of 3 
differentiation-stable reference targets.  (c) Representative current trace (left) of 5 w hCNs 
in response to NMDA (100 μM) in the presence of glycine (50 μM) at a holding potential of 
-74 mV.  Application of 3 μM ifenprodil produces approximately 80% block of NMDA-
mediated current, confirming that it is largely mediated by GluN1/GluN2B-containing 
NMDARs. The mean % NMDA receptor block ± SEM was equivalent across all cell lines 
investigated (right, HES1 n=14 cells from 4 independent batches, HES2 n=4 cells from 1 
batch, IPS1 n=4 cells from 1 batch). Injury data are presented as PE ± ESE relative to 
normothermic control.  
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3.3 Discussion  

 

In respect to the first aim of this thesis, the results above establish an in vitro model 

of TH using hCNs.  Initial findings validated previous work in these cultures (Bilican 

et al., 2014; Livesey et al., 2014)
 
and provided complementary data demonstrating 

that key developmental changes in vitro reflect transitions seen in the developing 

human cortex
 
(Livesey et al., 2014).  Mild-to-moderate cooling protects hCNs from 

both oxidative and excitotoxic injury.  Hypothesis (1) is thus accepted.  Intriguingly, 

hypothermic neuroprotection in these in neurons appears to operate in a temperature- 

and stress-specific manner, suggesting that mild cooling in particular is beneficial in 

the context of NR2B-mediated excitotoxicity.   

 

The first in vitro demonstration of hypothermic protection of human neurons used 

dorsal root ganglia and entailed a profound temperature shift to 15-20⁰C (Reyes et 

al., 2006).  This deep hypothermia protocol using adult spinal neurons cannot be 

reliably compared to TH in hCNs.  It did nonetheless demonstrate a synergistic 

benefit of combining cooling with another protective agent - a strategy advocated by 

others (Green et al., 1995; Dietrich et al., 1995; Dietrich et al., 1999; Pazos et al., 

1999; Adachi et al., 2001; Gao et al., 2014).  There are also fundamental differences 

between the design of hCN experiments and recent work by Antonic et al. (2014) 

including neuronal regional specification and purity, numbers of cell lines used, 

temperature and types of stressor applied.  Some of the limitations described by the 

authors have been addressed here including neuronal functional maturity and 

normalization for cell number.  Antonic et al. also demonstrated a benefit of inducing 
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hypothermia within 6 h post-injury – a point of relevance to acute cerebral insults.  

Since the focus of this thesis lies in the molecular pathways underpinning 

hypothermic neuroprotection, post-insult hypothermic induction and the effects of re-

warming were not addressed.  Whilst they found no protective benefit of 

hypothermia in the face of oxygen deprivation alone, Antonic et al., did not specify 

the relative hypoxia achieved compared to their ‘normoxic’ cultures.  Since hCNs are 

generated and maintained at 3% O2, results relating to oxidative stress are not 

directly comparable.  Interestingly, the small percentage of GFAP-positive astroglia 

in hCN cultures succumbed to high doses of H2O2, but demonstrated an increased 

resilience to oxidative stress relative to hCNs (Fig.3.4b).  This is consistent with the 

higher antioxidant capacity of astrocytes relative to neurons (Sebastià et al., 2004; 

Papadia et al., 2008).  Although the hCN platform reproducibly generates an  

enriched population of deep- and superficial-layer cortical neurons (Fig.3.1; Bilican 

et al., 2014), cellular elements that are absent from this system (including other glial 

and neuronal sybtypes) would likely impact upon the global response to injury and 

cooling in vivo.  Thus, although the findings above mirror those seen in animal 

models and in the clinic, the results are not directly translatable to the entire human 

cerebral cortex.          

 

One anomaly of the injury data above is that hypothermic protection from absolute 

glutamate-mediated cell death appeared temperature-specific, whereas that from 

glutamate-induced cellular injury (proportion dead divided by proportion live) was 

temperature-dependent.  Separating cytotoxicity and viability data (Fig.3.9), reveals 

that although there was a temperature-dependent decrease in LDH release with 



146 
 

hypothermia, ATP production was similar at both hypothermic temperatures.  That 

cell death counts were lowest at 32⁰C implies a discrepancy between these readouts.  

One interpretation is that moderate hypothermia affected lipid bilayer structure 

(Sonna et al., 2002; Al-Fageeh and Smales, 2006; Wang et al., 2014) in such a way 

as to falsely reduce LDH release.  However, viability may have also been 

underestimated at 28⁰C if this temperature affected enzymatic production of ATP 

(Rodriguez et al., 2012).  Despite metabolic suppression, one study found that 

hypothermia actually increased cellular ATP concentration in Chinese hamster ovary 

(CHO) cells, indicating more efficient consumption of glucose (Fogolin et al., 2004).  

If this were the case in cooled hCNs, it would falsely increase the viability 

component of the multiplexed analysis - and the magnitude of this effect might be 

temperature-dependent.  An alternative explanation is that cell death at 28⁰C was so 

rapid that LDH (with a half life of 9 h) partially dissipated before the 24 h 

measurement.  Another confounding factor might be increased or residual precursor 

proliferation at 32 and 37⁰C, but complete cell cycle arrest at 28⁰C which has been 

observed in primary cultures (Matijasevic
 
et al., 1998).  Given these technical 

difficulties, the injury data is considered to be complementary to, but distinct from 

quantification of cell death by counts.  Overall, the findings above concur with other 

literature in that short periods (4 – 48 h) of hypothermia have negligible effect on 

basal viability, but dramatically reduce cell injury in the face of oxidative stress 

(Yang et al., 2006; Yenari and Han, 2012; Antonic et al., 2014).  Cell death counts in 

response to glutamate mirror the ‘U-shaped’ curve described by Tymianski et al 

(1998) in mouse cortical cultures - although the nadir of this curve sits around 10⁰C 

higher in hCNs. 
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Figure 3.9 Cytotoxicity and viability of hCNs.  Injury data (N=2; n=9)has been resolved into 
its separate components: (a) viability measured as ATP production in RLU, (b) cytotoxicity 
measured as LDH release in RFU.  Note 10-fold difference in magnitude of LDH release 
between H2O2 and glutamate treatment.  Raw data are presented as mean ± SEM. The use 
of LDH release to assess cytotoxicity remains controversial (Chip et al., 2011) although it 
has reproducibly detected both necrotic and apoptotic neuronal death (Koh et al., 1987).  
In the context of neuroprotective hypothermia, LDH release is arguably superior to MTT 
analysis because it may be less vulnerable to biases incurred by temperature shift (Chip et 
al., 2011).  
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At the synaptic cleft, one released vesicle can increase local glutamate concentration 

to as high at 1 mM (Danbolt, 2001).  Thus, at first glance, the glutamate 

concentration range used above might appear conservative.  The objective was to 

simulate physiological levels of extracellular glutamate which (in the intact brain) sit 

at nano- to micro-molar concentrations due to rapid clearance by neuronal and 

astrocytic glutamate transporters (Khatri and Man, 2013).  The availability of these 

transporters in hCNs is evident by their punctuate vGlut1 staining (Bilican et al., 

2014), their basal resilience to extracellular glutamate (Fig.2.7), and the increase in 

vGlut1 and vGlut2 mRNA expression during hCN differentiation (Fig.3.1) (Ito et al., 

2013).  Enriched hPS-derived astrocytic monolayers can efficiently take up 

glutamate and they express the relevant transporter (excitatory amino acid transporter 

1, EAAT1) (Serio et al., 2013).  However, astrocytes comprise less than 10% of hCN 

cultures (Livesey et al., 2014) and their close interaction with neurons at ‘tripartite’ 

synapses in vivo were unlikely to be replicated under these conditions (Perez-Alvarez 

and Araque, 2013).  It was also important to consider the increased susceptibility of 

cortical neurons to glutamate in vitro (Choi et al., 1987) and the potential relevance 

of this work to chronic disorders in which extracellular glutamate concentrations 

might not reach the highest levels seen in acute injury.  Therefore, although 

extending the glutamate dose range in future experiments may yield informative 

data, that presented above fulfils the aim of this thesis.  The low glial content of 5 w 

hCN cultures does not preclude the possibility that astrocytic glutamate uptake (Serio 

et al., 2013) buffered the effect of glutamate on neurons.  However, GFAP-positive 

cells also succumbed to 30 μM glutamate exposure (Fig.3.4b) and regardless of 

temperature, an extended pre-incubation in MiM was required to reveal a neurotoxic 
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effect.  This implies that glial factors had a negligible impact on hypothermic 

neuroprotection in hCNs.  Confusingly, immature cortical neurons have been 

described as being comparatively resistant, or more vulnerable, to glutamate toxicity 

than their mature counterparts (Choi et al., 1987; Murphy and Baraban, 1990; Jantzie 

et al., 2013).  Among other developmentally regulated factors, this changeable 

sensitivity is attributed to temporal variation in NMDAR subunits (Brewer et al., 

2007; Jantzie et al., 2013).   However the time- and spatial distribution of receptors 

containing these subunits in the brain (as well as their functional significance) is far 

from clear cut (Hardingham and Bading, 2010).  Basal glutamate tolerance in hCN 

cultures may simply reflect an immature glutamate receptor profile (Brewer et al., 

2007); on the contrary, this very profile may underpin the excitotoxicity observed 

(Jantzie et al., 2013).  The only safe conclusion from these experiments is that 

glutamate injury in hCNs is GluN2B-mediated, and can be reduced by hypothermia.  

 

Physiological brain temperature fluctuations of 1-3⁰C have been reported in various 

animal models (Moser et al., 1993; Wang et al., 2014).  Temperature shifts of this 

size can radically alter neural function since most (if not all) neurophysiological 

properties are temperature-dependent (Kiyatkin, 2010).  The hypothermic 

temperatures applied to hCNs would thus be expected to affect RMP, action potential 

dynamics, conduction velocity, refractory period and synaptic transmission (Hodgkin 

and Katz, 1949; Hodgkin et al., 1952; Ritchie and Straub, 1956; Frankenhaeuser and 

Moore, 1963; Paintal, 1964; Katz and Miledi, 1965; Davis et al., 1975; Lowitzsch et 

al., 1977; Ludin and Beyeler, 1977; Westerfield et al., 1978; Borg, 1980; Schiff and 

Somjen, 1985; Thompson et al., 1985; Louis and Hotson, 1986; Denys, 1991; Moser 
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et al., 1993; Burke et al., 1999; Masino and Dunwiddie, 1999; Volgushev et al., 

2000; Kiernan et al., 2001; Rutkove, 2001; Lee et al., 2005; Kiyatkin, 2010; Wang et 

al., 2014).  Indeed, moderate-to-deep cooling reversibly inactivates neural activity 

and has been used in laboratory animals to study cortical function (Coomber et al., 

2011).  Several of these phenomena could explain hypothermic neuroprotection in 

hCNs, although the slow rate of cooling in this system may have offset any putative 

impact on excitability (Kiernan et al., 2001; Moldovan and Krarup, 2004).  

Temperature effects can also vary considerably by species; the squid axon ceases to 

conduct at the optimal temperature for mammalian nerve conduction (Hodgkin and 

Katz, 1949).  Hypothermia has been shown to affect both pre- (Yang et al., 2005) and 

post-synaptic physiology (Katz and Miledi, 1965; Thompson et al., 1985; Volgushev 

et al., 2000), presenting a challenge to interpretation of electrophysiological 

recordings made at room temperature (Hardingham and Larkman, 1998).  Cooling 

can also stabilise brain potassium homeostasis (Rodriguez et al., 2012) and a related 

mechanism is thought to underlie the preconditioning effect of heat shock - which 

promotes clearance of extracellular potassium (Rodgers et al., 2007).  Using the 

squid giant axon, Hodgkin and colleagues (1952) found that the rate at which ionic 

current changed with time had a temperature coefficient (Q10) approximating to 3.  

Conceivably, in hCNs, hypothermia may have impacted on numerous ionic factors in 

addition to passive membrane properties (Frankenhaeuser and Moore, 1963; Louis 

and Hotson, 1986; Schwarz, 1986; Schwarz and Eikhof, 1987; Kiyatkin, 2010; Wang 

et al., 2014).  Finally, cooling results in depolarization (Moldovan and Krarup, 

2004).  In the anaesthetized rat, this places barrel cortex pyramidal neurons in an ‘up 

state’ at 28⁰C relative to physiological normothermia (36⁰C), which paradoxically 
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reduces their excitability (Sachdev et al., 2004; Kalmbach and Waters, 2012).  Wang 

et al. (2014) have implicated this phenomenon in cooling-induced neuroprotection – 

a plausible hypothesis in the face of excitotoxic stress.  Testing this theory would 

nevertheless require measurable network activity – a feature which remains to be 

demonstrated both in hCNs, and more generally in hPS-derived neuronal systems.    

 

The ‘bell-shaped curve’ of neuronal responses to NMDAR activity has since been 

updated to a model in which the relative stimulation of synaptic- versus 

extrasynaptically located NMDARs determines the nature of the outcome (protective 

versus toxic) (Hardingham et al., 2002; Papadia et al., 2008; Okamoto et al., 2009; 

Hardingham and Bading, 2010).  Temperature-insensitive components of NMDAR-

mediated excitotoxicity can be demonstrated in mouse cortical cultures using 

prolonged glutamate exposure (Tymianski et al., 1998).  Potentially, this could relate 

to a temperature-resistant stimulation of extrasynaptic NMDARs (Hardingham et al., 

2002; Hardingham and Bading, 2010) that may evade cooling-induced changes in 

dendritic morphology (Greenwood and Connolly, 2007).  It must be emphasised that 

at present, evidence of dendritic spine architecture in normothermic hCNs is limited.  

One study of post-ischaemic cooling in gerbils indicated that electrophysiological 

properties could remain stable under mild hypothermic conditions (Dong et al., 

2001).  In hCNs however, 32⁰C provided protection against NR2B-mediated 

glutamate toxicity which may reflect a temperature-specific effect on synaptic 

transmission.  Without direct evidence that excitotoxicity was synaptically-mediated 

in hCNs, such a conclusion is merely speculative; indeed an inhibitory effect at 

extrasynaptic NMDARs might be more likely given the predominant NR1/NR2B 
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phenotype of immature extrasynaptic NMDARs, the subunit composition of hCN 

NMDARs, and the beneficial effect of cooling in this system (Tovar and Westbrook, 

1999; Hardingham et al., 2002; Hardingham and Bading, 2010).  In addition, the 

majority of synaptic NMDARs can be remarkably dynamic within the neuronal 

membrane, interchanging between synaptic and extrasynaptic pools (Tovar and 

Westbrook 2002).  Since cooling affects membrane composition, the location, 

anchorage and accessibility of these receptors might be altered by temperature shift 

(Sonna et al., 2002; Tovar and Westbrook, 2002).  Further and more detailed studies 

are required to assess basal synaptic function in hCNs, and how this is modified by 

hypothermia.     

 

The effect of ifenprodil on excitotoxic injury in hCNs is interesting in light of its 

pharmacological properties.  Ifenprodil, a non-competitive NR2B antagonist, 

produces an activation-dependent block, whilst simultaneously increasing receptor 

affinity for glutamate site agonists (Kew et al., 1996).  Ifenprodil thus potentiates the 

effect of low [glutamate] but blocks the effect of very high [glutamate].  The 

beneficial blocking effect at 100 μM glutamate was evident at each temperature in 

hCNs, however, at 32⁰C, ifenprodil block over the 1-3 μM range appeared to 

increase neuronal injury compared to glutamate alone.  Explanations might be that 

mild hypothermia (i) shifts the threshold at which exogenous glutamate 

concentrations become protective or toxic, (ii) alters the binding properties of 

ifenprodil such that it binds non-activated receptors with higher affinity, (iii) reduces 

the impact of ifenprodil on agonist binding properties or (iv) induces downregulation 

of NMDARs.  In this regard, (i) and (iv) seem most likely, given the effect of 
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hypothermia on the glutamate curve in the absence of blockers.  Nonetheless, the 

shape of the ifenprodil curve at 32⁰C suggests a protective effect of low exogenous 

glutamate, consistent with earlier studies (Hardingham et al., 1997; Hardingham, 

2009; Hardingham and Bading, 2010).  Intuitively, it would seem appropriate for 

hypothermia to increase neuronal tolerance to glutamate, if only to dampen the 

energy consuming process of excitatory transmission when metabolic turnover is 

low.   

 

Glutamate is the most prevalent excitatory neurotransmitter in the vertebrate CNS 

and is a major instigator of secondary neuronal injury (Fonnum, 1984; Weil et al., 

2008).  It must be borne in mind however that other glutamate receptors (e.g. 

AMPA) and non-glutamatergic mechanisms contribute to excitotoxicity and also to 

hypothermic protection (Lyeth et al., 1993; Newell et al., 1995; Tymianski et al., 

1998; Li et al., 1999; Ginsberg and Beyalev, 2005).  Similarly, other ROS and 

reactive nitrogen species (RNS) participate in the milieu of free radicals that create 

havoc during neurotrauma, ischaemia and degeneration (Dietrich et al., 2009; 

Rodriguez et al., 2012).  CNS glia (astrocytes, oligodendrocytes and microglia) as 

well as other neuronal subtypes are also vulnerable to excitotoxic injury and play 

fundamental roles in regulating both excitotoxic and oxidative stress in vivo (Weil et 

al., 2008; Dietrich et al., 2009).  The reductionist hCN system employed above could 

not address these effects, although the procedural and analytical techniques could be 

applied to test the impact of cooling on other stressors and hPS-derived cellular 

components in future work. 
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In conclusion, these experiments provide the first demonstration that hypothermia 

protects human cortical neurons in vitro from glutamate-mediated excitotoxicity.  

Together with the oxidative stress results, these findings emphasise the potency of 

cooling to protect neurons from multiple, clinically-relevant neurotoxic insults. 
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Chapter 4: The cold shock response in hCNs 
 

 

4.1 Introduction 

 

Having established that cooling protects hCNs from common neurotoxic stressors, 

the next step was to dissect the molecular pathways that are modified by hypothermia 

in these cultures to identify potential mediators of its protective effect.  Since 

hypothermia is a recognised physiological stressor (Sonna et al., 2002), both general 

and more specific, temperature-dependent stress responses were anticipated.  

Hypothermic induction of cold-inducible proteins RBM3 and CIRBP has been 

demonstrated in rodent hippocampal slices (Tong et al., 2013) and human cell lines 

in vitro
 
(Wellmann et al., 2010).  These markers have also been intensely studied in 

human tumors, including astrocytoma, in which their proto-oncogenic roles are of 

primary interest (Lleonart, 2010; Zhang et al., 2013).  To date, the expression of 

RBM3 and CIRBP in cultured human neurons in response to cooling remains 

untested.  Given the high sequence homology between human and rodent RBM3 and 

CIRBP (Wellmann et al., 2004), it was hypothesised that cooled hCNs would 

respond in a similar manner to hypothermic rodent neurons.   

 

 

4.2 Results 

 

4.2.1 Immediate early markers  

Evidence for a general physiological stress response in cooled hCNs was sought 

using q-RT-PCR analysis.  Immediate early transcripts (FOS and JUN) were 
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measured from RNA samples harvested at both early and late time points during the 

cooling period (N=3; n=14).  Hypothermic induction of these transcripts was time- 

and temperature-dependent; FOS increased at 28⁰C (3 h P<0.0005, 24 h P=0.002) 

whilst JUN increased early at both hypothermic temperatures (32⁰C P=0.01, 28⁰C 

P=0.021) and later, at 28⁰C (P<0.0005) (Fig.4.1a).  
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4.2.2 Cold-inducible markers 

Transcript changes in cold-shock markers were assessed in independently 

differentiated batches of hCNs (N=3; n=14) after 3 and 24 h incubation at the 3 

Figure 4.1 hCN transcripts in response to cooling.  q-RT-PCR data from 5 w hCNs after 3 
and 24 h incubation at the temperatures indicated (N=3; n=14).  For each time point, 
transcript data was first normalized to the geometric mean of two temperature-stable 
reference targets (GAPDH and EIF4A2) and then to 37⁰C control.  (a) Immediate early 
genes.  (b) Cold-shock transcripts. 
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temperatures of interest (Fig.4.1b).  After 3 h, there was a significant 1.7-fold 

increase in RBM3 transcript at 32⁰C P=0.011, and a 1.8-fold increase at 28⁰C 

P=0.003, relative to normothermic control.  This rose further to 4.2–fold and 3.2–

fold respectively at 24 h P<0.0005.  The CIRBP transcript response occurred later, 

but robustly at 24 h at both hypothermic temperatures (2.5-fold increase at 32⁰C and 

2.4–fold increase at 28⁰C P<0.0005).  Late RBM3 and CIRBP transcript expression 

correlated significantly at each temperature (Fig.4.2; Pearson correlation at 37⁰C 

P=0.001, 32⁰C P=0.012, 28⁰C P<0.0005), suggesting co-regulation in response to 

hypothermia. 

 

 

 

 
Figure 4.2 Relative transcript expression in hypothermic hCNs.  Significant two-tailed 
Pearson correlation of RBM3 and CIRBP transcript expression after 24 h at each 
temperature (N=3; n=14).  
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At each temperature, after 24 h, both RBM3 and CIRBP displayed a nuclear 

expression pattern on immunocytochemistry (Fig.4.3 and 4.4).  There were 

significant increases in both markers at both hypothermic temperatures according to 

cell counts (N=3; n=6; RBM3, 32⁰C P=0.001, 28⁰C P=0.039; CIRBP, 32⁰C 

P<0.0005, 28⁰C P<0.0005; Fig.4.5a).  CIRBP and RBM3 are highly expressed in 

human foetal brain (Danno et al., 1997) and thus post-mortem foetal samples were 

included as a positive control for Western blot analysis.  When quantified (N=3; n≥4; 

Fig.4.5b), RBM3 expression was greatest at 28⁰C (P=0.002) whilst CIRBP 

expression peaked at 32⁰C (P<0.0005).  Fractionation of cytosolic (RIPA-soluble) 

and nuclear (high detergent) cell fractions confirmed the subcellular location of both 

cold-inducible proteins and their responses to cooling (Fig.4.6).  
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 Figure 4.3 RBM3 expression in hCNs.  Representative widefield fluorescent 
micrographs of hCNs co-stained for nuclear and neuronal markers (DAPI and βIII-
tubulin respectively) and RBM3 after incubation for 24 h at the indicated temperatures, 
(a) scale bar = 50 μm, (b) scale bar = 10 μm.    
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 Figure 4.4 CIRBP expression in hCNs.  Representative widefield fluorescent micrographs of 
hCNs co-stained for nuclear and neuronal markers (DAPI and βIII-tubulin respectively) and 
CIRRBP after incubation for 24 h at the indicated temperatures, (a) scale bar = 50 μm, (b) 
scale bar = 10 μm.    
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Figure 4.5 A nuclear cold-shock response in hCNs.  (a) Cell counts for cold-shock 
protein-positive nuclei after 24 h incubation at the respective temperatures (N=3; 
n=6).  Cell count data is presented as mean % of DAPI-stained nuclei + SEM.  (b) 
Quantitative Western analysis of cold-shock markers in hCNs (N=3; n≥4), normalized to 
loading control and then normothermic control. 
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Figure 4.6 Cold-shock protein expression in hypothermic hCNs.  (a) Representative 
Western blots showing subcellular expression of RBM3 and CIRBP at each temperature, 
compared with human foetal (16 w) and adult (17 y) cortex.  Fractionation of cytosolic 
and nuclear compartments is depicted by differential expression of loading controls 
(GAPDH and heterogenous nuclear ribonucleoprotein (hnRNP) A1 respectively).  (b) 
Representative widefield fluorescent micrographs confirm subcellular location of hnRNP 
A1 in 5 w hCNs; top left, DAPI; top right, hnRNP A1; bottom left, βIII-tubulin; bottom 
right, merged; scale bar = 10 μm.  Whilst hnRNP A1 is structurally related to RBM3 and 
CIRBP, its expression is considered to be stable under mild hypothermic conditions 
(Danno et al., 1997).  
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4.3 Discussion 

 

In respect to the second aim of this thesis, the archetypal response to cooling has 

been successfully characterized in hCNs.  These cultures respond robustly to 

hypothermia with upregulation of key stress transcripts including FOS and JUN, 

predominantly at 28⁰C.  Mild-to-moderate cold-induction of RBM3 and CIRBP was 

anticipated and subsequently confirmed using molecular and biochemical techniques.  

Hypothesis (2) is thus accepted.   

 

FOS and JUN unite as a heterodimer within the activator protein 1 (AP-1) complex 

which binds to DNA as a transcription factor, regulating gene expression in response 

to various cellular stimuli (Chiu et al., 1988; Angel and Karin, 1991).  Since JUN is 

intronless and AP-1 activation does not require do novo protein synthesis, the 

response can occur within minutes (Angel and Karin, 1991).  Synaptic NMDAR 

activity can enhance AP-1 driven induction of neuroprotective pro-antioxidant genes 

including sulfiredoxin (Papadia et al., 2008).  Immediate early gene induction thus 

provides an efficient cellular defence against oxidative stress (Soriano et al., 2009).  

These immediate early genes are rapidly upregulated during heat shock exposure of 

HeLa cells and other human cell lines (Sonna et al., 2002), and FOS in particular is 

upregulated in an activity-dependent fashion in hCNs (Fig.3.3).  Induction of 

immediate early genes during ischaemia-reperfusion is biphasic and also occurs 

faster in the presence of hypothermia, which may enhance neuronal recovery 

(Kamme et al., 1995).  Akaji et al. (2003) found that FOS expression was increased 

within 3 h during reperfusion at 30⁰C compared to 40⁰C, whilst JUN was apparently 

unaffected by hypothermia.  Unfortunately, very few studies have addressed 
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immediate early gene expression in the context of cooling alone, making it difficult 

to delineate the effects of hypothermia and reperfusion.  In a rat model of cryogenic 

brain injury, Katano et al. (1997) observed an increase in both FOS and JUN 

transcripts, peaking within 1 h and returning to baseline with 24 h.  In cooled hCNs, 

RNA samples were harvested at 3 h and 24 h in an attempt to capture both immediate 

and putative late phase responses.  Interestingly, very little (if any) change was noted 

in either transcript at the early time point – only a 6-fold increase in FOS was 

observed at 28⁰C (Fig.4.1a).  This was in stark contrast to the effect of hCN 

depolarization at 37⁰C which produced an approximate 100-fold induction in FOS 

transcript within 2 h, decaying to around 30-fold after 4 h (Fig.3.3).  Based on these 

results, it is possible that the early peak was missed, although they may simply 

reflect the relatively benign nature of the cooling paradigm implemented.  

Nevertheless, and at odds with the rat data (Katano et al., 1997), higher fold-

inductions of FOS and JUN (9- and 3-fold respectively) were noted at 24 h, but only 

with moderate hypothermia (Fig.4.1a).  Overall these results suggest that hCN 

cooling gave rise to a modest and rather sluggish immediate early gene expression, 

which increased both with duration of cold exposure and depth of hypothermia.  This 

level of induction is unlikely to be activity-dependent, but it may have contributed to 

the hypothermic protection of hCNs against oxidative stress (Soriano et al., 2009).  

Finally, it is worth mentioning that although cJun:cFos heterodimers have optimal 

DNA binding activity and potent transactivation capacity at 37⁰C, cJun:cJun 

homodimers can exist at temperatures below this and may be active within the cell 

(Smeal et al., 1989; Angel and Karin, 1991).  FOS mRNA also has a faster turnover 

rate than JUN, thus whilst heterodimers likely initiated the AP-1 response to cooling, 
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cJun homodimers may have sustained this response throughout the hypothermic 

period (Angel and Karin, 1991).         

 

In the developing mouse cortex, RBM3 is highly expressed in the early post-natal 

period, then decreases with maturity, residing largely in adult neural stem cell niches 

(Chip et al., 2011).  Dynamic developmental regulation of RBM3 has also been 

noted in rat brain (Pilotte et al., 2009) and is echoed among other RBPs
 
(Markus et 

al., 2009).
  
The subtle protein-level changes in response to hypothermia in hCNs, 

whilst suggestive of ontogenic reversal, may also reflect some degree of culture 

immaturity at 37⁰C.  Note however that, in the study by Chip et al. (2011), both 

juvenile and adult neurons demonstrated RBM3 upregulation at 32⁰C.  Other 

possibilities include build up of ROS and other metabolites or temperature-variable 

oxygen solubility (Schiff and Somjen, 1985; Ohsaka et al., 2002; Al-Fageeh et al., 

2006; Lleonart, 2010) which may have incurred a ‘relative’ and unavoidable stress at 

baseline.  Finally the transcript analysis suggested that RBM3 had a more acute onset 

in response to hypothermia than CIRBP which is consistent with the differing 

induction kinetics of these cold-shock markers reported previously (Spriggs et al., 

2010).  In 3T3 cells, maximal expression of CIRBP occurred between 6-24 h of 

exposure to 32⁰C (Nishiyama et al., 1997b), although peak protein expression in 

cooled hCNs may have been missed by sampling at 24 h.   

 

Unlike RBM3, CIRBP is ubiquitously expressed in many tissues that are not exposed 

to cold (Artero-Castro et al., 2009; De Leeuw et al., 2007; Brochu et al., 2013) and it 

responds to other stresses including hypoxia, ultraviolet (UV) light, cisplatin and 
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arsenite (Brochu et al., 2013).  The subcellular location of CIRBP is specific to the 

stressor applied; the protein remains nuclear under hypothermic conditions but 

translocates to the cytoplasm under UVC, and to stress granules in the presence of 

oxidative stress, osmotic stress, ER stress and arsenite (Yang et al., 2001; Yang et al., 

2006; De Leeuw et al., 2007; Yang et al., 2010; Brochu et al., 2013).  The nuclear 

expression of CIRBP at each temperature in hCNs is consistent with previous 

literature, and indicates that ROS levels in the culture media were relatively stable 

across this temperature range.  However, although a cytoplasmic function for CIRBP 

has been linked to preservation of specific mRNAs required for survival, its specific 

role within the nuclear compartment is yet to be determined (Brochu et al., 2013).  

Of direct relevance to neuroprotection, CIRBP can antagonize the effects of 

oxidative damage thus permitting bypass of senescence (Artero-Castro et al., 2009; 

Lleonart, 2010)
 
which might explain hypothermic protection from H2O2 stress in 

hCNs.  However, hypothermia, CIRBP and RBM3 also regulate circadian gene 

expression (Nishiyama et al., 1998; Vallone et al., 2006; Morf et al., 2012; Li et al., 

2010; Liu et al., 2013; Archer et al., 2014; Lopez et al., 2014; Costa et al., 2015).  

Because most mammalian cells contain autonomous circadian clocks (Bell-Pedersen 

et al., 2005), timing of hypothermia induction in these experiments could have 

affected entrainment of, or indeed been subjected to endogenous clock mechanisms.  

In the absence of a master clock, autonomous clocks in vitro might be entrained to 

the feeding cycle or brief exposure to environmental oxygen during cell feeding 

(Archer et al., 2014).  Culture temperature was carefully controlled and monitored 

during cooling which was commenced at the same time in the 24 h cycle, and with 

respect to cell feeding for all cortical batches.  For these reasons, interference from 
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autonomous ‘cortical clocks’ is unlikely to have affected temperature-dependent 

changes in CIRBP or RBM3.   

 

Several studies have addressed the temperature-dependent kinetics of synaptic 

transmission (Katz and Miledi, 1965; Thompson et al., 1985; Hardingham et al., 

1998; Masino and Dunwiddie, 1999; Volgushev et al., 2000; Lee et al., 2005; Yang 

et al., 2005; Kiyatkin, 2010; Wang et al., 2014) but few have considered whether 

cold-inducible pathways have a subacute influence over synaptic mechanisms.  In 

nature, reversible regression of synaptic contacts during torpor have been linked with 

synaptic protection in hibernating mammals (Arendt et al., 2003).  Similar 

observations have been made in laboratory models of hypothermia and rewarming, 

as discussed in the introduction.  This suggests that temporary, hypothermia-

mediated synaptic plasticity may be ultimately protective (Arendt et al., 2003).  If 

cold-inducible RBPs were also involved in this process, they might be attractive 

candidates for euthermic manipulation in disease states involving aberrant synaptic 

development or permanent synaptic loss.  Accordingly, RBM3 is upregulated in  

hibernating and experimentally-cooled brains
 
(Williams et al., 2005; Peretti et al., 

2015).  Involvement of RBPs in both NMDA- and metabotropic glutamate receptor 

(mGluR)-dependent synaptic plasticity has already been demonstrated (for review 

see
 
Ule and Darnell, 2006).  Fragile X mental retardation protein (FMRP), a notable 

example, is proposed to play a key role in synaptic development by locally inhibiting 

translation of cytoskeletal elements (Brown et al., 2001; Lu et al., 2004; Zhang and 

Broadie, 2005).  It has also been proposed that RBM3 may regulate local dendritic 

translation, in a manner opposing to FMRP and involving translation initiation 
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factors including eIF2α (Smart et al., 2007).  Overexpression of RBM3 also 

preserves RMP in staurosporine-stressed myoblasts (Ferry et al., 2011) – 

hypothermic induction of this protein might thus prevent excitotoxicity under 

ischaemic conditions.  Interestingly, RBM3 is an NMDA-responsive gene (Hsu et al., 

2005) and NMDA stimulation of primary cortical neurons in turn causes post-

translational modification of RBM3 (Smart et al., 2007).  If CIRBP were also subject 

to such regulation, it might participate in the thioredoxin-mediated antioxidant effect 

of synaptic NMDAR activity (Papadia et al., 2008).  In line with this hypothesis, 

CIRBP has been shown to regulate thioredoxin expression in human colon carcinoma 

cells (Yang et al., 2006). 

 

In summary, these experiments have provided the first exploration of cold-shock 

protein induction in human neurons, establishing that hCNs respond in a predictable 

fashion to cooling.  hCNs thus provide a suitable model with which to further explore 

the molecular basis of hypothermic preconditioning.   
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Chapter 5: Hypothermic modulation of human tau  
 

5.1 Introduction 

 

Human brain tau development involves an initial rise in total tau protein, 

commencing with expression of a highly phosphorylated foetal tau isoform 

containing 3 microtubule binding repeat domains (3R tau) and no N-terminal 

extensions (Tau 352 also known as 3R0N, Fig.1.3) (Goedert et al., 1989a).  Post-

natally alternative splicing of MAPT generates further isoforms with variable N-

terminal lengths and 4 microtubule binding repeats (4R tau) – a feature which 

increases microtubule binding capacity (Goedert et al., 1989a; Goedert and Jakes, 

1990; Mandelkow and Mandelkow, 2012).  The result is a profile of 6 major tau 

isoforms in the adult brain with approximately equal levels of 3R and 4R tau 

(Goedert et al., 1989b; Goedert and Jakes, 1990).  Concomitantly, tau becomes 

progressively dephosphorylated, which increases its affinity for microtubules (Gong 

et al., 2000; Mandelkow and Mandelkow, 2012) and is attributed to increased 

expression of PP2A – the principal tau phosphatase in the human brain (Yu et al., 

2009, Fig.1.7).  This transition, both in tau isoform ratio and tau phosphorylation 

status, reflects the need for early developmental plasticity, followed by maturational 

stability as neuronal networks develop and synaptic contacts are formed (Arendt and 

Bullmann, 2013). 

 

A few studies have addressed human in vitro tau development and/or pathology 

(Busciglio et al., 1995; Deshpande et al., 2006; Deshpande et al., 2008; Iovino et al., 

2010; Shi et al., 2012a; Israel et al., 2012; Iovino et al., 2013; Fong et al., 2013; 
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Mertens et al., 2013; Choi et al., 2014; Moore et al., 2015).  These have provided 

useful data on the effects of tau mutation (Iovino et al., 2010; Iovino et al., 2013; 

Fong et al., 2013), tau overexpression (Mertens et al., 2013) or specific disease states 

(Busciglio et al., 1995; Shi et al., 2012a; Israel et al., 2012; Choi et al., 2014; Moore 

et al., 2015), but have been limited in terms of source material (Busciglio et al., 

1995; Deshpande et al., 2008; Moore et al., 2015), regional non-specificity of 

differentiated neurons (Iovino et al., 2010; Israel et al., 2012; Iovino et al., 2013; 

Fong et al., 2013; Mertens et al., 2013) 
 
and demonstration of functional maturity 

(Deshpande et al., 2008; Iovino et al., 2010; Iovino et al., 2013; Fong et al., 2013; 

Mertens
 
et al., 2013; Moore et al., 2015).  hPS-derived systems also enable high 

throughput investigation of real-time human biology under physiological protein 

expression - an application that has been poorly exploited with respect to tau.   

Brain tau protein in rodent models and hibernating mammals becomes increasingly 

and reversibly phosphorylated with decreasing temperature (Mawal-Dewan et al., 

1994; Arendt et al., 2003; Stieler et al., 2011).  The nature of this phosphorylation 

has been likened to that seen in neurodegenerative disease (Planel et al., 2004; Stieler 

et al., 2011), but also to the developing brain (Mawal-Dewan et al., 1994), suggesting 

that hypothermia exerts an increase in tau plasticity, by recapitulating a ‘foetal-like’ 

state.  A disproportionate inhibition of tau phosphatase activity (relative to tau kinase 

activity) is thought to underlie this hypothermic increase in tau phosphorylation 

(Planel et al., 2004).  The primary objective of the following experiments was to 

examine whether hypothermia could produce changes in hCN tau phosphorylation 

status that have been described in other systems, including human neuroblastoma 

lines (Bretteville et al., 2012).  In addition it was hypothesised that the human tau 
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isoform ratio might shift in favour of 3R tau under hypothermic conditions, thus 

contributing to reacquisition of an earlier ontogenic phenotype.    

 

5.2 Results 

 

5.2.1 Tau isoforms during differentiation and hypothermic challenge  

To determine whether hCN differentiation reflects normal developmental changes in 

tau, in vitro tau development was examined from aNPC stage up to 7 w of 

differentiation.  Early human tau development was recapitulated at transcript level 

(N=2; n=5; Fig.5.1a).  There were significant increases in total, 3R and 4R tau 

expression (fold changes at 6 w relative to aNPC were 30.2 ± 5.48, 36.6 ± 6.99 and 

9.38 ± 1.34 respectively; 4R tau at 4 w P=0.005, other increases P<0.0005; Fig.5.1a).  

There was also a shift in the 3R:4R ratio between 4 w and 7 w (N=1; n=5; 

P<0.0005), mimicking the transition from human foetal to adult brain (Fig.5.1b).  To 

determine whether hypothermia modifies tau dynamics, tau isoform ratio was 

evaluated in 5 w hCNs (by which point 4R tau transcript could also be visualized by 

qualitative RT-PCR;  Fig.5.1c), following hypothermic incubation for 24 h (N=3; 

n=14).  Total tau transcript expression remained stable across temperatures, however 

an increase in the 3R:4R tau ratio was observed with cooling, most notably at 32⁰C 

(P<0.0005), but also at 28⁰C (P=0.012; Fig.5.2a).  This shift in isoform ratio 

reflected a significant increase in 3R tau transcript at both 32⁰C (P=0.007) and 28⁰C 

(P=0.001), and a reduction in 4R tau transcript at 32⁰C (P=0.009, Fig.5.2a-b).  

Pearson correlations supported a tendency towards dissociation of 3R and 4R tau 

transcripts at 32⁰C (28⁰C P<0.0005, 32⁰C P=0.012, 37⁰C P<0.0005; Fig.5.3).   
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 Figure 5.1 Tau transcripts in differentiating hCNs. (a) q-RT-PCR analysis of total tau and 
different tau isoform transcripts from aNPC stage to 6 w. Asterisks denote statistically 
significant difference relative to aNPC level (N=2; n=5).  (b) Shift in 3R:4R tau isoform ratio 
between 4 w and 7 w mimics transition from human foetal to adult brain (triplicate cDNA 
synthesised from commercially pooled RNA).  Transcript data was normalized to the geometric 
mean of 3 differentiation-stable reference targets then presented as SPE + SESE relative to 
aNPC expression (for hCNs) or mean of triplicates + SEM (for pooled human brain).  Asterisks 
denote statistically significant difference between ratio at 4 w compared to ratio at 7w (N=1; 
n=5; P<0.0005).   (c) Qualitative RT-PCR analysis of 5 w hCNs using primers that span tau exons 
9-11, thus amplifying transcripts with or without tau exon 10 (4R or 3R tau respectively).  Note 
roughly equal expression of 3R and 4R tau species in human adult brain and predominance of 
3R tau species in both hCNs and human foetal brain.  Note that the ratio of 3R to 4R expression 
in these hCNs approximates to 8:1, which is consistent with that predicted from the q-RT-PCR 
results in (b).  β-actin serves as a housekeeping target. 
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Figure 5.2 Tau transcripts in hypothermic hCNs. (a) q-RT-PCR analysis of transcripts in 5 w 
hCNs after 24 h temperature shift showing no significant change for total tau but a significant 
increase in 3R tau at both hypothermic temperatures (N=3; n=14). Note also a late decrease 
in 4R tau expression.  At 24 h this produces a shift in the tau isoform ratio.  (b)  Qualitative 
RT-PCR products generated with tau exon spanning primers from 3 independent batches of 
hCNs (left to right; HES1 n=2; HES2 n=1) after 24 h culture at 3 different temperatures, as 
compared to human foetal and adult brain.  Upper panel shows products obtained with 
primers that span tau exons 1 to 5, thus amplifying transcripts of variable N-terminal length.  
Note predominant expression of 0N transcripts in both hCNs and foetal brain with low 
expression of 1N isoforms, and approximately equal expression of 0N and 1N transcripts in 
adult brain with low expression of 2N species.  No obvious effects of temperature shift on N-
terminal length are noted.  Lower panel shows products obtained with primers that span tau 
exons 9-11.  There is a clear increase in 3R transcript expression at hypothermic 
temperatures, consistent with q-RT-PCR results.  This increase saturates the signal, thus 
making it difficult to visualise the very low expression of 4R tau in hCNs at any temperature 
(compare with Fig.5.1c).   
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At protein level, immunocytochemistry confirmed high enrichment of tau-expressing 

neurons in hCN cultures; total tau increased during differentiation (N=3; n≥4; 

P<0.0005) and was predominantly of the 3R isoform type (Fig.5.4, 5.5 and 5.6a).  4R 

tau was detectable from 4 w but was restricted to the cell soma and dendrites 

(Fig.5.5).  According to Western blot analysis, tau was not detected in neural 

precursors (Fig.5.6b).  Dephosphorylation of soluble cell lysates prior to SDS-PAGE 

produced a clear shift in electrophoretic mobility and resolved the tau signal at 4 w 

and 6 w into a single band, corresponding to the foetal isoform 3R0N (Goedert et al., 

1989b) (Fig.5.6b).   4R tau was detectable at low levels by 7 w (Fig.5.6c) and mass 

Figure 5.3 Dissociation of tau isoform transcripts in hypothermic hCNs.  Two-tailed 
Pearson correlation illustrates tendency towards dissociation of relationship between 3R 
and 4R tau transcripts at 32⁰C (N=3; n=14).  Transcript data was normalized to the 
geometric mean of 2 temperature-stable reference targets then to normothermic control.  
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spectrometry of gel sections in the 30-75 kDa range identified tau-specific peptides 

in cytosolic extracts from both a 6 w HES1-derived culture sample and 19 w human 

foetal cortex (Fig.5.7).  Importantly, tau was not detected in negative control samples 

(primary human and hiPS-derived GFAP-positive astroglia) but was identified 

immunocytochemically in both neurons and oligodendroglia (Lopresti et al., 1995) 

within mixed primary cultures derived from human foetal cortex (19 w; Fig.5.8).  

With cooling, quantitative Western blot analysis confirmed an increase in hCN 3R 

tau protein expression at 28⁰C (N=3; n=6; P=0.011), alongside a hypothermic 

decrease in electrophoretic mobility, but no detectable change in tau solubility 

(Fig.5.9a-b).  Quantitative immunostaining revealed a 35.1 % reduction in 4R tau-

positive cells at 32⁰C (N=2; n=4; P=0.017; Fig.5.9b-c).   
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Figure 5.4 Co-expression of tau and βIII-tubulin in hCNs.  Confocal fluorescent 
micrographs of hCNs (HES1) at 4 w showing co-expression of total tau (red, top right), 
βIII-tubulin (white, bottom left) and merged image (bottom right).  Note that few 
Nestin-positive cells (green, top left) remain at this stage of differentiation.  Cells co-
stained for DAPI, scale bar = 50 μm.  
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Figure 5.5 Tau isoform expression in hCNs.  (a) Representative widefield fluorescent 
micrographs of hCNs (IPS1) at 4 w, co-stained for DAPI, neuronal markers (microtubule-
associated protein 2 (MAP2) and βIII-tubulin) and tau (pan-tau, 3R- or 4R-specific).  
Somatic-axonal distribution of 3R and total tau reflects developing polarity, scale bar = 
10 μm.   (b) Representative widefield fluorescent micrographs of hCNs at 53 DIV 
showing more extensive 4R tau staining (bottom left) with a similar distribution to 
MAP2 (top right) in βIII-tubulin- (top left) positive neurons.  Merged image is shown 
(bottom right), all cells co-stained with DAPI, scale bar = 10 μm.  
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Figure 5.6 Human cortical tau expression. (a) Immunocytochemical quantification of hCN 
protein expression, asterisks denote significant changes in each marker relative to 2 w 
post-plating (N=3; n≥4).  Cell counts are presented as mean + SEM.  (b) Western blot of 
soluble tau during hCN differentiation, run by 10% SDS-PAGE with (+) or without (-) prior 
dephosphorylation with AP.  Blot was probed with pan-tau antibody (upper image) 
recognising all tau isoforms irrespective of phosphorylation status. Positive control 
includes recombinant human tau protein ladder (RT) containing 6 human brain tau 
isoforms. Membrane was re-probed with 3R tau-specific antibody RD3 (lower image). β-
actin = loading control.  ‘Pan-tau’ antibody recognises all isoforms of tau irrespective of 
phosphorylation status.  (c) Comparison of soluble 4R tau expression in mature hCNs (7 w) 
and human foetal cortex (F1, F2, F3 at 14, 15 and 16 wk gestation respectively) and 
primary cultures derived from these samples (C1, C2, C3 respectively).  Note signal in both 
hCN and some foetal samples.  
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Figure 5.7 Human cortical mass spectrometry.  Entire peptide sequences of the 6 major 
adult human brain tau isoforms.  Orange underlined sequence depicts tryptically 
digested peptide detected in soluble cytosolic protein extracts from both 19 w post-
mortem human foetal brain and 6 w hCN sample (HES1) as determined by mass 
spectrometry. Grey underlined sequence denotes a second tau-specific peptide 
identified in foetal brain sample only.  Note that both highlighted sequences are 
common to all tau isoforms.  
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Figure 5.8 Human glial tau expression. (a) GFAP expression in hPS-derived astroglial 
progenitors (A0) and mature astroglia at 2 w and 5 w post-plating (A2, A5) compared to 5 
w hCNs at 3 different temperatures (28, 32 and 37⁰C respectively) and human post-
mortem cortical samples (foetal, F; adult control, A; Alz, Alzheimer’s disease patient).  
Note low GFAP expression in hCNs and F, and high expression in Alz, reflecting the 
inflammatory astrocytic reactivity of this disease.  (b) Confocal fluorescent micrographs of 
hPS-derived astrocytes (left, IPS2), positive for GFAP (green) but negative for tau (red), 
scale bar = 10 μm.  Confocal fluorescent micrographs of hPS-derived oligodendrocytes 
(middle and right) stained for O4 (red) and either pan-tau (green, middle) or 3R tau (RD3, 
green, right), scale bar = 50 μm.  Note presence of 3R tau in cell soma and major 
processes.  (c) Widefield fluorescent micrographs of astrocytes (top) and oligodendroglia 
(bottom) in mixed primary cultures derived from 19 w post-mortem foetal ventral 
telencephalon.  Note somatic 3R tau (RD3, red) expression in O4-positive (green) 
oligodendroglia but absence of total tau expression (red) in GFAP-positive (green) 
astroglia, scale bar = 50 μm.  
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Figure 5.9 Tau isoform expression in hypothermic hCNs.  (a) Western blot depicts 
upward mobility shift of 3R tau in hypothermic cultures.  3R tau solubility was unaffected 
(3R tau found in RIPA-soluble fraction (R) but absent from high detergent fraction (H); β-
actin and hnRNP A1 serve as cytosolic and nuclear loading controls respectively.  (b) 
Western blot quantification (left) confirmed that 3R tau expression increased slightly at 
28⁰C when normalized to total tau (N=3; n=6).  Cell counts (right) show a reduction in 4R 
tau expression at 32⁰C (N=2; n=4).  Cell counts are presented as mean % of DAPI-stained 
cells + SEM.  (c) Widefield fluorescent micrographs depicting a reduction in 4R tau 
expression at 32⁰C, merged images show co-staining for DAPI and βIII-tubulin, scale bar = 
10 μm.  
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5.2.3 Tau splicing regulator RBM4 

Given the differential effect of hypothermia on tau isoform transcripts, an effect of 

cooling on tau splicing regulators seemed inevitable.  One such factor, RNA binding 

motif 4 (RBM4), is expressed at high levels in foetal brain and is also present in adult 

cerebral cortex and hippocampus (Bernert et al., 2002; Kar et al., 2006).  RBM4 

promotes the inclusion of tau exon 10, thus resulting in more 4R tau transcript (Kar 

et al., 2006).  Accordingly, disruption of foetal RBM4 expression has been 

associated with Down’s syndrome (Bernert et al., 2002) - a syndrome resulting in 

early-onset 3R-dominant tauopathy (Shi et al., 2008).  Considering earlier findings, it 

was expected that RBM4 expression might be reduced at 32⁰C.  Surprisingly, mild 

hypothermia had no effect on RBM4 transcript and moderate hypothermia actually 

produced a small increase in RBM4 mRNA after 24 h (P=0.01, N=3; n=14; 

Fig.5.10a).  Interestingly this fold change was similar to that seen between human 

foetal and adult brain.  Fractionated Western blot analysis showed that RBM4 

expression was barely detectable in human adult cortex but was highly expressed in 

the nuclear fraction (co-localising with hnRNP A1) of human foetal cortex 

(Fig.5.10b).  In hCNs, RBM4 was present in both cellular compartments at each 

temperature with a slight increase in total expression at 28⁰C (N=3; n=6; P=0.046; 

Fig.5.10b).   
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With immunocytochemistry there was an increase in the number of RBM4-positive 

nuclei at both hypothermic temperatures (32⁰C P<0.0005, 28⁰C P=0.008, N=3; n=8; 

Fig.5.11 and 5.12).  However, cooling also resulted in a greater proportion of hCNs 

containing RBM4-positive somatic puncta (32⁰C P=0.031, 28⁰C P=0.037; 

Figure 5.10 Human cortical RBM4 expression.  (a) q-RT-PCR analysis of RBM4 transcripts 
(left) showing significant increase after 24 h at 28⁰C (N=3; n=14).  This trend mimics the 
reverse developmental transition from human foetal to adult brain (right).  Transcript data 
for pooled human brain samples is presented as mean + SEM.  (b) Quantification by 
Western blot (left) of total RBM4 expression in 5 w hCNs (N=3; n=6).  Total expression was 
normalized to GAPDH and then normothermic control.  Representative Western blot (right) 
showing subcellular expression of RBM4 at 3 culture temperatures, as compared to human 
foetal (19 w) and adult (17 y) cortex.  hnRNP A1 and GAPDH serve as compartment-specific 
loading controls.  
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Fig.5.12b).  RBM4 can undergo nucleo-cytoplasmic shuttling in response to cell 

stress (Lai et al., 2003; Lin et al., 2007a) and under these conditions can be found 

localised to stress granules.  Some of the RBM4-positive somatic puncta in hCNs co-

stained with the stress granule marker T-cell intracytoplasmic antigen 1 (TIA-1, 

Fig.5.12c), consistent with a re-localisation of RBM4 into stress granules in response 

to cooling (Lin et al., 2007a; Hofman et al., 2012).  In summary, the response of 

RBM4 to hypothermic stress in human neurons is a novel finding that manifests in a 

change in quantifiable RBM4 protein expression and subcellular redistribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



186 
 

 

 
Figure 5.11 RBM4 expression in hypothermic hCNs.  Representative widefield 
fluorescent micrographs of hCNs co-stained for nuclear and neuronal markers (DAPI and 
βIII-tubulin respectively) and RBM4 after incubation for 24 h at the indicated 
temperatures, (a) scale bar = 50 μm, (b) scale bar = 10 μm.  
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Figure 5.12 Hypothermia redistributes RBM4 in hCNs.  (a) Enlarged central portion of 
merged 32⁰C image from Fig.5.9b showing somatic RBM4-positive puncta (white arrow), 
scale bar = 10 μm.  (b) Cell counts showing a significant increase in the percentage of 
RBM4-positive nuclei with hypothermia and an increase in the proportion of cells with 
RBM4-positive somatic puncta (SP) (N=3; n=8).  Cell count data is presented as mean % of 
DAPI-stained cells + SEM.  (c) Widefield fluorescent micrographs of hypothermic hCN 
showing RBM4-positive somatic puncta that co-stain for stress granule marker TIA-1, scale 
bar = 10 μm.  
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5.2.3 Tau phosphorylation during differentiation and hypothermic challenge 

As has been described for human foetal brain (Goedert et al., 1993), tau 

phosphorylation in 4 w hCNs was more similar to Alzheimer’s disease cortex (Braak 

stage 6) than to normal adult cortex (age 17 y) at post-mortem, and was seen even at 

epitopes that were classically assigned as ‘disease-specific’ (Grundke-Iqbal et al., 

1986) (Fig.5.13a-b).  There was a decrease in soluble tau phosphorylation (at all 

epitopes tested) between 4 w and 6 w (Fig.5.13a-b), suggesting some maturation of 

tau phospho-status.  Tau phosphorylated at AT8 and PHF-1 epitopes was noted in 

hCNs, human foetal brain and Alzheimer cortex, but was completely absent from 

normal adult cortex (Fig.5.13b).  Even at later time points, hCN tau was more 

phosphorylated than that extracted from human adult and foetal cortical tissue 

samples (Fig.5.13c-d).  Comparison of phosphorylation status in post-mortem 

samples and hCNs could however be confounded by post-mortem interval (PMI), 

during which residual PP2A activity can take effect (Matsuo et al., 1994).  In support 

of this, tau phosphorylation was reduced in foetal human post-mortem cortices 

relative to primary cultures derived from these samples, which exhibited a similar tau 

electrophoretic profile to 7 w hCNs (Fig.5.13d).  Despite a considerable PMI, tau 

extracted from adult human pathological samples remained hyperphosphorylated 

(Fig.5.13c), likely due to reduced PP2A expression (Vogelsberg-Ragaglia et al., 

2001; Fig.5.17b) or shielding of phospho-epitopes within multimeric tau species.   
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Figure 5.13 Phospho-tau expression in hCNs.  (a) Soluble phospho-tau expression during 
hCN differentiation. The blot shows total tau in aNPCs and hCNs at various points during 
differentiation (2, 4 and 6 w post-plating) as compared to a foetal cortical sample at 19 w 
gestation, adult control cortex, and Alzheimer’s disease cortex (Alz). Note expression in 4 w 
hCNs is greater than at 6 w and in foetal and adult samples but is similar to Alz. Foetal 
sample sits at much lower molecular weight than hCN samples even in the absence of AP 
treatment, suggesting lower phosphorylation status.  (b) Western blots probed with 
antibodies specific for tau phospho-epitopes; AT8 (S202/T205), AT270 (T181), pS404 and 
PHF-1 (S396/S404). Note decrease in signal at every tested epitope between 4 w and 6 w of 
hCN differentiation, weak signal in normal adult human cortex (age 17 y) and prominent 
signal in Alzheimer’s disease (Alz)-affected cortex (age 60 y, Braak stage 6).  (c) Soluble tau 
expression in human post-mortem cortical tissue samples. Upper blot: 3 independent adult 
control samples (A1, A2, A3 ages 17, 44 and 75 y respectively) - note presence of multiple 
tau isoforms and absence of tau mobility shift upon treatment with AP. RL = recombinant 
human tau ladder. Lower blot: 3 independent Alzheimer disease samples (Alz1, Alz2, Alz3 
ages 60, 61 and 81 y and Braak stages 6, 5 and 6 respectively), note tau ‘smears’ indicating 
tau oligomerization with reduced solubility compared to control samples, also unaffected by 
AP treatment.  (d) The membrane from Fig.5.4c was originally probed for pan-tau before 
being stripped and reprobed for 4R tau.  Blot image here shows comparison of soluble tau 
expression in mature hCNs and human foetal cortex. Upper blot: 3 independent foetal 
cortical samples (F1, F2, F3 at 14, 15 and 16 w gestation respectively) and primary cultures 
derived from these samples (C1, C2, C3 respectively).  7 w = hCNs at 7 w post-plating.  Note 
mobility shift between tissue and culture samples, indicative that PMI allows continued 
dephosphorylation of tissue samples prior to processing.  Note that 7 w hCN tau aligns with 
primary culture tau.  ‘Pan-tau’ antibody recognises all isoforms of tau irrespective of 
phosphorylation status.  
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Post-translational effects of cooling were first assessed using immunocytochemistry 

(Fig.5.14) and quantitative Western blot analysis (Fig.5.15) of tau phosphorylation at 

the AT8 epitope (pSer202/pThr205).  AT8 is a key site that is heavily 

phosphorylated in the foetal and diseased adult human brain, as well as hypothermic 

rodent models (Planel et al., 2007a).  At 24 h there was a temperature-dependent 

increase in AT8 expression with cooling according to both Western analysis (N=3; 

n=6; 32⁰C P=0.004, 28⁰C P<0.0005; Fig.5.15a-b) and cell counts (N=3; n=6; 32⁰C 

P=0.008, 28⁰C P<0.001; Fig.5.15b).  A similar increase in phosphorylation was seen 

at other pivotal phospho-tau epitopes typically associated with pathological tau (N=3; 

n=6; PHF-1 P<0.05, AT180 P<0.01, AT270 P<0.0005; Fig.5.16a) including AT100 

(N=3; n=5; P=0.001; Fig.5.16b). 
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Figure 5.14 AT8 expression in hypothermic hCNs.  Representative widefield fluorescent 
micrographs of hCNs co-stained for nuclear and neuronal markers (DAPI and βIII-tubulin 
respectively) and AT8 after incubation for 24 h at the indicated temperatures, (a) scale 
bar = 50 μm, (b) scale bar = 10 μm.  
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Figure 5.15 Hypothermia increases AT8 phosphorylation in hCNs.  (a) Western blot 
showing increased phospho-tau (AT8) with hypothermia. β-actin = loading control, for 
multiplexed image AT8 and β-actin were imaged in the 800 nm channel (green) and total 
tau in the 700 nm channel (red).  As evidenced by the loading control, the Alzheimer 
sample was loaded at a lower total protein concentration to prevent oversaturation of 
the AT8 signal, ensuring that hCN AT8 signals could be quantified.  This proved to be 
unnecessary for the soluble fraction due to post-mortem delay, as addressed in the 
discussion.   (b) Western blot quantification of AT8 expression, normalized to total tau 
and quantification by cell count (mean % of DAPI-stained cells + SEM).  Significant 
increases by immunoblot and immunocytochemistry were noted after 24 h (N=3; n=6).  
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Figure 5.16 Hypothermic phosphorylation at other tau epitopes. (a) Immunoblots 
depicting significant increases in tau phosphorylation at 3 other epitopes with cooling and 
associated quantification (N=3; n=6). Phospho-tau expression was first normalized to total 
tau, then 37⁰C control.  (b) Western blot (left) and associated quantification of soluble tau 
(right; N=3; n=5) phosphorylated at the ‘disease-associated’ epitope AT100 (S212/T214), 
normalized to total tau expression (HES2).   Note that soluble (sAT100) expression was 
much less than other phospho-epitopes and, unlike other phospho-tau antibodies, AT100 
detected products of very high molecular weight (largely in hypothermic samples) that 
may have represented insoluble protein (iAT100) that did not run through the gel.  The 
insoluble protein fraction was not specifically examined.  
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5.2.4 Tau phosphatases and kinases in hCNs 

As might be predicted from the literature (Yu et al., 2009), and from the decreasing 

tau phosphorylation state during hCN differentiation, there was a significant increase 

in PP2A-Bγ transcript expression compared to aNPC levels (N=2; n=5; P<0.0005; 

Fig.5.17a).   This echoed the transition seen between human foetal and adult brain.  

With temperature shift, no difference was seen in PP2A-Bγ transcript (N=3; n=14; 

Fig.5.17a) or in protein levels of the active subunit of PP2A (PP2A-C) (N=3; n=6; 

Fig.5.17b).  Others have shown in rodent models that whilst kinase activity reduces 

in a linear order with temperature reduction, PP2A activity decreases exponentially 

over the same temperature range (Planel et al., 2004).  This bias has been proposed 

as the principal cause for increased tau phosphorylation under hypothermic 

conditions (Planel et al., 2004).  To evaluate phosphatase activity, PP2A-C was 

immunoprecipitated from 5 w hCNs and the ability of this isolate to release 

phosphate from a threonine phosphopeptide (K-R-pT-I-R-R) at the 3 temperatures of 

interest was measured over a 10 min period (Fig.2.8).  Phosphate release was 

compared to a phosphate standard curve.  As an additional negative control, a sample 

of isolated PP2A-C from each hCN batch was simultaneously incubated at 37⁰C in 

the presence of 100 nM fostriecin (a membrane-permeable specific inhibitor of PP2A 

(Walsh et al., 1997; Douglas et al., 2001), to determine and subtract background 

phosphate levels within the test lysates.  Both mild and moderate hypothermia 

produced a >60 % reduction in PP2A-C activity (N=2; n=8; 32⁰C P=0.041, 28⁰C 

P=0.034; Fig.5.17c).  In vitro, GSK3β is the most efficient kinase at phosphorylating 

recombinant tau (Wang et al., 2007).  Although tau kinase activity was not directly 

assessed in hCNs, quantitative Western blot analysis showed that the effect of 
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hypothermia on total GSK3β or its deactivated form (pS9) was negligible (N=3; n=4; 

Fig.5.17d).  Cooling had no effect on the expression of the activated form (pY216) of 

GSK3β (N=3; n=6; Fig.5.17d). 
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Figure 5.17 Tau kinases and phosphatases in hypothermic hCNs. (a) PP2A Bγ transcript 
changes in hCNs (N=2; n=5; asterisks denote significant difference relative to aNPC level) echo 
human brain development.  q-RT-PCR analysis of PP2A Bγ transcript in 5 w hCNs (right) 
showing no significant change after 24 h temperature shift (N=3; n=14). Transcript data was 
normalized to the geometric mean of 2 temperature-stable reference targets.  (b) Western 
blot quantification of PP2A-C.  Note lack of effect of hypothermia (N=3; n=6), prominent 
expression in normal human cortex (foetal and adult positive controls) and reduced 
expression in Alzheimer’s disease affected cortex (negative control).  (c) Hypothermic 
reduction of PP2A-C activity in hCNs (picomoles phosphate released min-1μg-1 protein; N=2; 
n=8).  Enzyme activity is presented as mean fold change relative to normothermic control + 
SESE, after subtraction of background phosphate in the presence of fostriecin (see Methods 
section 2.11 and Fig.2.8).  (d) Quantification by Western blot of total, activated 
(phosphorylated at Y216) and deactivated (phosphorylated at S9) GSK3β expression at 3 
temperatures (N=3; n≥4).  Total GSK3β expression was normalized to GAPDH, phosphorylated 
GSK3β was normalized to total GSK3β. GSK3β phosphorylates tau and is recognized as an 
apoptosis inducer. Note increase in the deactivated form at 28⁰C (P=0.018).  Representative 
blots for each epitope are provided, with GAPDH as a loading control beneath.   
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5.3 Discussion 

 

The hCN platform has been used to address tau biology in response to hypothermia, 

showing for the first time that human neurons in culture exhibit tau modifications in 

a manner similar to other systems (Planel et al., 2007a; Bretteville et al., 2012).  The 

third aim of this thesis has thus been met.  Cooling reversed key aspects of the tau 

developmental profile that had proceeded during cortical differentiation, namely tau 

isoform ratio and tau phosphorylation status.  Importantly, this increased 

phosphorylation state was associated with impaired functional activity of PP2A in 

hCNs, without any apparent change in tau solubility.   These results are consistent 

with a cooling-induced reversal of tau ontogenesis, without the oligomerization that 

is typically assigned to ‘pathological tau’ (Spillantini and Goedert, 2013).  

Furthermore, temperature shift altered the expression of the tau splicing regulator, 

RBM4, also known as LARK
 
(Kar et al., 2006; Markus and Morris, 2006).  Together 

these findings support the hypothesis that one aspect of hypothermic neuroprotection 

might involve recapitulation of early ontogenic tau plasticity (Arendt et al., 2003).  

Hypothesis (3) is thus accepted, with the caveat that full reversal from an ‘adult-like’ 

tau status cannot currently be demonstrated biochemically in hCNs, due to the 

absence of more mature tau isoforms.  

 

At transcript, protein and post-translational levels, tau modifications during 

differentiation of hCNs at 3% O2 recapitulated tau development of the human cortex 

in vivo.  Whilst mass spectrometry identified a tau-specific peptide within hCN 

extracts, this peptide is common to all brain tau isoforms (Fig.5.7), thus the exact tau 

species could not be determined by this method.  However, combined with 
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molecular, biochemical and imaging data it is highly probable that 3R0N was present 

from 2 w post-plating, with other isoforms including 4R0N appearing later.  This 4R 

tau emerged by 4 w, coinciding with electron microscopic observations of synaptic 

ultrastructure (Fig.3.3a), but it was barely detectable by Western blot until 3 w later 

(Fig.5.6c).  Together with the subcellular location of 3R tau (Fig.5.5a), these findings 

support an early developmental phenotype at the point of cooling (5 w).  This is 

consistent with the developing electrophysiological properties of hCNs (Bilican et 

al., 2014; Livesey et al., 2014; James et al., 2014).  Human corticogenesis proceeds 

over 70-100 days in vivo (Caviness et al., 1995), thus in the culture environment 

(bereft of full glial support, inhibitory neuronal input or maternally-derived hormonal 

factors), a mature tau profile is perhaps unrealistic within 7 w.  An unresolved 

challenge is to derive a protocol that efficiently and reproducibly generates human 

neurons with a mature tau profile – the current hCN system is clearly limited with 

respect to protein-level analysis of tau isoforms.  This is further complicated by 

sparse availability of reliable 4R tau-specific antibodies.  One possible explanation 

for the discrepancy between the immunocytochemical and biochemical readouts for 

4R tau protein in hCNs is that this target resided in a relatively insoluble fraction that 

was ineffectively extracted prior to SDS-PAGE.  Despite these caveats, the data 

presented above confirms that hCNs can be used to study aspects of developing 

human tau physiology in a clinically-relevant context.  Indeed, an immature profile 

may be particularly desirable for modelling TH – an intervention most widely used in 

practice to treat hypoxic ischaemic neonatal encephalopathy (Yenari and Han 2012; 

Jacobs et al., 2013).  
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The cooling-induced shift in the ratio of tau isoform transcripts at 32⁰C is of interest 

given that this temperature provided the most convincing protection against NR2B-

mediated glutamate toxicity and reduced 4R tau protein expression.  Stress granules 

accumulate under conditions where translation is limited, thus they would be 

expected to form in cooled hCNs (Ramaswami et al., 2013).  Based
 
on the 

preliminary observation that hypothermia altered RBM4 expression and subcellular 

location,
 
it is tempting to speculate that hypothermic shifts in tau isoform ratio may 

be mediated indirectly by modification or sequestration of RBM4 or other tau 

splicing regulators such as fused in sarcoma (FUS), serine/arginine-rich splicing 

factor 2 (SRp30b), dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A 

(Dyrk1A) or neuro-oncological ventral antigen 1 (Nova 1) (Andreadis, 2005; Qian et 

al., 2011; Andreadis, 2012; Orozco et al., 2012).  Indeed, a similar mechanism may 

operate in Down’s syndrome whereby the trisomy-driven increase in Dyrk1A has a 

knock-on effect on the phosphorylation of alternative splicing factor (ASF), causing 

its sequestration into nuclear speckles where it cannot promote tau exon 10 inclusion 

(Shi et al., 2008).  Interestingly, the ribonucleoprotein hnRNP K, which belongs to 

the Nova family of RBPs, is abundantly expressed in neurons and plays a role in 

axogenesis via post-transcriptional regulation of cytoskeletal elements including tau 

(Liu et al., 2011).  Curiously, several other transcripts that contain hnRNP K binding 

sequences include PP2A, Fyn and amyloid precursor protein (APP) (Liu et al., 2011), 

all of which are known tau interactors.  This implies a role for RBPs in tau 

modulation, something which might be exploited in the context of neuroprotection or 

neurodegeneration.  Indeed, RNP aggregates form in many neurodegenerative 

diseases including C9ORF72-related ALS/FTD, Huntington’s disease and some 
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sporadic AD cases (Ramaswami et al., 2013; Moschner et al., 2014).  Several RNPs 

can also alter the pattern of tau isoforms and induce neurite sprouting (Moschner et 

al., 2014).  Tau exon 10 splice site mutations that increase the inclusion of exon 10 

(and thus 4R to 3R ratio) produce a predominantly NFT pathology (Hutton et al, 

1998).  In Down’s syndrome foetal brain Dyrk1A expression is enhanced whereas 

RBM4 expression is reduced (Bernert et al., 2002; Shi et al., 2008) producing a 

relative increase in 3R tau.  These patients suffer from early onset Alzheimer-like 

dementia (Wisniewski
 
et al., 1985), supporting a role for RBPs and splicing 

regulation in tauopathy (Markus and Morris, 2009).  Results in cooled hCNs indicate 

that tau isoform balance may be of real (and immediate) significance to the 

hypothermic response of neurons and their ability to withstand excitotoxic insults.  If 

confirmed, this would argue for isoform-specific roles of tau in synaptic homeostasis 

and would reinforce the need for human modelling of neuronal injury, 

acknowledging the species differences in brain tau isoforms (Janke et al., 1999).   

 

Tau mobility shift post-AP treatment (Fig.5.6b) demonstrated that hCN tau was more 

phosphorylated than tau extracted from normal adult human cortex and even 19 w 

human foetal cortex (Fig.5.13).  This does not place hCN tau at a higher 

phosphorylation state than foetal tau in vivo – since post-mortem tau phosphorylation 

in these experiments was clearly affected by PMI.  Even if PP2A expression in foetal 

brain and hCNs was equivalent, PMI would enable some dephosphorylation of 

soluble tau.  The PMI effect was demonstrated directly, by comparing foetal cortical 

tau to tau extracted from primary cultures derived from these samples – where 

protein extraction in the presence of phosphatase inhibitors was performed 
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immediately at culture termination (Fig.5.13d).  Conversely, Alzheimer tau remained 

highly phosphorylated despite PMI.  This may reflect reduced PP2A activity in 

pathological samples
 
(Vogelsberg-Ragaglia et al., 2001)

 
or sequestration of phospho-

tau
 
into the insoluble fraction, which was not analysed.  It must be remembered that a 

significant proportion of tau in Alzheimer’s disease is both hyperphosphorylated and 

aggregated into NFTs (Grundke-Iqbal et al., 1986),
 
potentially

 
masking 

phosphoepitopes from enzymatic activity.  At first glance, the AT8 signal in 

Alzheimer samples on Western blot (Fig.5.13b and 5.15a) might appear to contradict 

the literature.  Note however that only soluble tau was assessed and AT8 is one of the 

earliest epitopes to become dephosphorylated during PMI, with PHF-1, AT100 and 

AT270 being affected with slower kinetics (Matsuo et al., 1994; Gartner et al., 1998).  

This explains the high signal for PHF-1 and AT270 relative to AT8 in pathological 

samples.  The phosphorylation state of foetal cortical samples was less than expected 

in the context of previous work, however the study of Bramblett et al. (1993) 

included foetal samples with a PMI of 10-12 h, whereas the average PMI in the 

experiments above was 24 h.  The detection of tau phosphorylated at the AT100 

epitope (Fig.5.16b) may reflect the early development of filamentous tau or tau 

aggregates – interestingly this did appear to increase with cooling in both the soluble 

and ‘insoluble’ fractions on Western blot.  However, in normal post-mortem rat brain 

the AT100 antibody picks up a nuclear-specific tau species that is not detectable on a 

Western blot of soluble protein (Gartner et al., 1998).  The standard extraction 

protocol used for hCNs (0.1% SDS) applied a homogenization procedure that would 

be expected to pull out a small proportion of nuclear protein.  Thus the blot in 

Fig.5.16b likely reflects minor ‘leakage’ of nuclear AT100-positive tau into the 
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cytosolic fraction, with the remainder sitting at high molecular weight in the 

‘insoluble’ fraction.  Overall, hypothermia pushed hCN tau towards an earlier post-

translational foetal-like state.  Tau thus became hyperphosphorylated with a 

significant reduction in PP2A activity at low temperatures.  This implicates 

hypothermic modulation of PP2A as a key determinant of increased hCN tau 

phosphorylation, outweighing hypothermic inactivation of tau kinases (Fig.5.17d), as 

described in other systems (Bretteville et al., 2012).   

 

Reduced 4R tau alongside increased tau phosphorylation might confer a more plastic 

cytoarchitecture – a likely prerequisite for repair or reorganisation, and a potential 

candidate for maintaining synaptic health.  Indeed, a bias towards juvenile MAPs has 

been proposed to confer an increase in cytoskeletal plasticity that protects neurons 

from toxic Aβ (Rapoport et al., 2002).  In the adult brain, granular cells of the dentate 

gyrus express only 3R0N tau transcript (Goedert et al., 1989) and this isoform is 

expressed transiently during adult neurogenesis (Bullman et al., 2007).  This 

indicates an ‘on-demand’ reacquisition of early neuronal plasticity that may be 

reflected in cooled hCNs (Goode and Feinstein, 1994; Wang and Liu, 2008).  

Moreover, a negative feedback loop has been described involving physiological tau 

phosphorylation in response to NMDAR activation and subsequent prevention of 

‘overexcitation’ (Mondragon-Rodriguez, 2012).  Protein phosphorylation is an 

established mechanism for regulating NMDAR function, which in turn plays a 

leading role in the induction of synaptic plasticity via LTP and LTD (Chan and 

Sucher, 2001).  The balance between kinase and phosphatase activity is 

homeostatically modulated by NMDAR activity because stimulation deactivates 

PP2A leading to increased phosphorylation of the receptor and LTP (Bliss and 



203 
 

Collingridge, 1993; Mulkey et al., 1993; Soderling and Derkach, 2000; Chan and 

Sucher, 2001).  Since cooling has a similar effect on kinase-phosphatase balance it 

may promote LTP and thus safeguard synaptic integrity.  As discussed in the 

introduction, the hypothermia-induced increase in hCN tau phosphorylation may 

have contributed to the protection of cooled neurons against oxidative stress 

observed in Chapter 3 (Castellani et al., 2008).  4R tau reduction might also be 

essential when phosphorylation state is high, minimising available sites for excessive 

phosphorylation and subsequent aggregation.  A mismatch between reduced PP2A 

activity and tau isoform shift, as might occur in hypometabolic states under 

euthermia (or in ‘imperfect’ hibernators) (Vogelsberg-Ragaglia et al., 2001; Tøien et 

al., 2011), could thus be severely cytotoxic.  Finally, the compartmental distribution 

of tau within the neuron may affect its exposure to different populations of kinases 

and phosphatases (Julien et al., 2012).  The order in which tau epitopes become 

phosphorylated or dephosphorylated might thus differ considerably in dendrites 

versus axons and this could also be affected by the extent of polarity in developing 

hCN cultures.  

 

In conclusion, the results presented in this chapter establish that hCNs provide a 

suitable platform with which to study human tau development and physiology, 

highlighting aspects of hypothermic tau modulation that can only be addressed in a 

human system. 
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Chapter 6: Hypothermic neuronal preconditioning 

 

6.1 Introduction 

 

Preconditioning occurs when a transient, subtoxic cellular stress confers resistance to 

what would otherwise be a lethal injury (Bell et al., 2011; Stetler et al., 2014).  This 

phenomenon has been described in response to various stressors in many species and 

in multiple organs including the human brain (Dirnagl et al., 2003).  Studies in 

rodents indicate that cold stress can also produce this state of neuronal adaptation, 

suggesting that ‘hypothermic preconditioning’ may be the key to hypothermic 

neuroprotection (Yuan et al., 2004).   Hypothermia can thus precondition neurons to 

withstand toxic insults (Yuan et al., 2004; Stetler et al., 2014).  This adaptive priming 

requires de novo protein synthesis and may derive from the cellular stress response to 

cooling (Nishio et al., 2000), for which data in human neurons is lacking.    

Conversely, there is evidence that inadequate stress responses (and thus impaired 

preconditioning) may underlie several neurodegenerative disorders (Bruening et al., 

1999; Sonna et al., 2002; Hetz and Mollereau., 2014; Texel and Mattson, 2011).  

Clearly, understanding the molecular mechanisms by which cold-inducible 

phenomena deliver preconditioning will widen their therapeutic potential.  In the 

following experiments, the hCN model of TH was used to further explore the 

molecular consequences of cooling and its putative neuroprotective mechanism in 

relation to preconditioning.    
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6.2 Results 

 

6.2.1 Endoplasmic reticulum stress and the UPR 

Preliminary transcript analysis in cooled hCNs highlighted upregulation of the 

immediate early marker JUN (Fig.4.1a).  Given that cold-shock can induce protein 

unfolding (Fujita, 1999) and activate PERK and JUN (both of which are components 

of the UPR), it was considered that cooling might trigger ER stress - the principal 

driver of UPR activity (Walter and Ron, 2011).  This was tested using tunicamycin 

(Tm) as a positive control for ER stress (Tm inhibits N-linked glycosylation in the 

ER) (Rutkowski et al., 2006; Lin et al., 2007b).  Further transcript analysis (N=3; 

n=22) showed a temperature-dependent induction of ER stress marker BiP; 32⁰C 

P=0.006; 28⁰C P<0.0005; Fig.6.1a), and the magnitude of this induction was much 

less than that produced by 24 h treatment with Tm (N=3; n=8; P=0.004, Fig.6.1a).  

At the protein level, BiP expression showed an increasing trend with cooling (N=2; 

n=3; 28⁰C P=0.051; Fig.6.1b).  Transcription of another key ER chaperone, 94 kDa 

glucose-regulated protein (GRP94) responded robustly to Tm but not cooling (N=3; 

n=7; 32⁰C P=0.432; 28⁰C P=0.473; Tm P<0.0005; Fig.6.1c) (Walter and Ron, 

2011). 
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ER stress simultaneously triggers the 3 main branches of the UPR – the 

evolutionarily oldest branch promotes phosphorylation and activation of Ire1α (Lin et 

al., 2007b; Tabas, 2011).  Activated Ire1α splices an intron from the mRNA of XBP1 

and spliced XBP1 (XBP1s) activates transcription of several ER-stress target genes, 

Figure 6.1 Mild ER stress in hypothermic hCNs.  (a) BiP transcripts after 24 h cooling (left; 
N=3; n=22) or Tm treatment (right; N=3; n=8).  (b) Total BiP protein expression after 24 h 
temperature shift (N=2; n=3), normalized to loading control and then normothermic 
control.  A representative blot image for BiP is provided in Fig.6.4  (c) GRP94 transcripts 
after 24 h temperature shift or Tm treatment (N=3; n=7).  
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whilst the unspliced form represses them (Yoshida et al., 2001; Tabas, 2011; Hetz 

and Mollereau, 2014).  After 24 h incubation, there was a significant upregulation of 

Ire1α transcript in hCNs at 28 and 32⁰C relative to 37⁰C (N=3; n=14; P<0.01; 

Fig.6.2a).  There was also a significant increase in stress-responsive transcripts MYC 

(N=2; n=5; P<0.01) and unspliced XPB1 (XBP1u, N=2; n=7; P<0.01) as determined 

by conventional RT-PCR (Fig.6.2b).  According to q-RT-PCR and gel analysis there 

was a mild but measurable increase in XBP1s transcript after cooling (N=3; n=22; 

28⁰C P=0.003; Fig.6.3a-b), again to a lesser extent than that elicited by Tm (N=3; 

n=8; P<0.0005; Fig.6.3a-b).  A second branch of the UPR involving cleavage of 

activating transcription factor 6 (ATF6) was also induced at 28⁰C (Hetz and 

Mollereau, 2014)
 
(Fig.6.4).  Within the third pathway, total PERK expression 

decreased slightly after 24 h cooling (N=3; n=5; P<0.05) and eIF2α was inactive at 

this time point according to biochemical analysis of its phosphorylated form 

(Fig.6.5a) (Rutkowski et al., 2006).  There was however a significant increase in 

their downstream targets, activating transcription factor 4 (ATF4), DNA damage-

inducible transcript 3 (DDIT3, or CHOP) and GADD34 (also known as protein 

phosphatase 1 regulatory subunit 15A) at hypothermic temperatures (Fig.6.5b-c and 

6.6).  The CHOP response was considerably less than that produced by Tm, whereas 

the ATF4 and GADD34 responses at 28⁰C were similar to Tm (N=3; n=7; ATF4; 

32⁰C P=0.215; 28⁰C P<0.0005; Tm P<0.0005; GADD34; 32⁰C P<0.0005; 28⁰C 

P<0.0005; Tm P<0.0005; Fig.6.5b-c). 
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Figure 6.2 UPR activation in hypothermic hCNs. (a) Induction of IRE1α transcript analysed 
by q-RT-PCR (N=3; n=14).  (b) Conventional RT-PCR analysis (gel band intensity) of 
transcripts (normalized to GAPDH then normothermic control), with significant increases 
for MYC (N=2; n=5) and unspliced XBP1 (N=2; n=7).  
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Figure 6.3 Mild XBP1 splicing in hypothermic hCNs.  (a) q-RT-PCR analysis of XBP1s 
transcript after cooling (left; N=3; n=22) or Tm-treatment (right; N=3; n=8).  (b) Gel 
images of RT-PCR products.  Faint bands at 263 bp confirm mild splicing of XBP1 in 
hypothermic hCNs relative to negative (37⁰C) and positive (Tm-treated) controls.  
GAPDH = reference target.   
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Figure 6.4 UPR protein products in hypothermic hCNs. Immunoblots of fractionated 
lysates (C=cytoplasmic, H=high-detergent) from hCNs after 24 h temperature shift.  Note 
increased BiP, full length (fATF6), and cleaved (cATF6) sitting in the high detergent 
fraction at 28⁰C.  This is consistent with nuclear translocation of cATF6 and upregulation 
of its target transcripts (BiP and unspliced XBP1).  Note also mild reduction in total PERK 
expression with cooling (quantified in Fig.6.5).   
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Figure 6.5 PERK branch activation in hypothermic hCNs.  (a) Quantitative Western 
analysis of total PERK expression (left) and phospho-eIF2α (right) after 24 h of 
temperature shift (N=3; n=5).  Corresponding PERK immuoblot is shown in Fig.6.2.  (b) 
qRT-PCR analysis (N=3; n=7;) of ATF4 transcripts (left) and GADD34 transcripts (right) 
after 24 h cooling or Tm treatment.  (c) qRT-PCR analysis of CHOP transcripts after 24 h 
cooling (left; N=3; n=22;; 32⁰C P=0.011; 28⁰C P=0.001) or Tm treatment (right; N=3; n=8; 
P<0.0005).  
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6.2.2 The UPR and ER-hormesis 

Mild ER stress leading to UPR activation inhibits apoptosis (Fouillet et al., 2012) and 

may pre-condition neurons to resist more stressful insults – an effect termed ER-

hormesis (Mendes et al., 2009; Fouillet et al., 2012).  To determine whether ER 

preconditioning could also account for hypothermic neuroprotection of hCNs they 

were treated with compounds that modify the ER-UPR cascade, during the pre-

Figure 6.6 Hypothermic hCNs upregulate all UPR pathways.  The principal branches of the 
UPR are depicted as in Fig.1.11, but with known regulatory feedback pathways added.  Grey-
filled boxes denote components induced at transcript and/or protein level in hCNs after 24 h 
cooling.  Phospho-PERK and phospho-IRE1α were not assessed.  Dotted black arrow denotes 
unknown mechanism by which cooling elicits ER stress in hCNs although protein unfolding 
has been described in response to deep cooling (4⁰C, King and Weber, 1986).  Orange 
connectors indicate elements of hormesis that resolve the UPR and increase ER resilience to 
stress by upregulating chaperones and ERAD proteins.   
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incubation phase of cooling.  The PERK inhibitor GSK2606414 was used to block 

the third branch of the UPR, whilst Tm was used to induce moderate ER stress.  

Initially, multiplexed injury analyses were run using dose response curves in 

normothermic hCNs to select concentrations for each compound that were non-toxic 

at baseline (without H2O2 exposure; GSK2606414 N=3; n=5; Fig.6.7a; Tm N=3; 

n=8; Fig.6.8a).  Multiplexed injury analysis was subsequently applied to hCNs that 

had been exposed to oxidative stress (increasing concentrations of H2O2), with or 

without pre-incubation for 24 h at 28⁰C.  Again, moderate hypothermia was 

protective of hCNs (Fig.6.7b and 6.8b).  However, PERK inhibition increased hCN 

injury at both 37⁰C and 28⁰C (P=0.016 and P<0.0005 respectively, N=3; n=3; 

Fig.6.7b) and abrogated the protective effect of cooling at all but the highest 

concentration of H2O2 (28⁰C remained protective only at 200 μM H2O2, P=0.023).  

Tm also exacerbated oxidative stress-mediated injury under normothermic conditions 

(N=3; n=7; P<0.0005), but this augmentative effect was attenuated by pre-

conditioning at 28⁰C (P=0.062, Fig.6.8b), thus directly demonstrating hypothermic 

induction of ER-hormesis.   
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Figure 6.7 The UPR is required for hypothermic preconditioning in hCNs.  (a) 
Independent batches of 5 w hCNs were treated with the various concentrations of PERK 
inhibitor (GSK 2606414) indicated for 24 h in MiM under normothermic conditions.  
Multiplexed injury analysis was then performed.  Injury ratio (RFU/RLU) data was 
normalized to untreated control and is presented as mean ± SEM.  No significant change 
in injury was noted at any of these concentrations of PERK inhibitor (N=3; n=5).  (b) 
Oxidative stress-mediated injury in the presence of PERK inhibitor (PI; N=3; n=3)).  Note 
log scale of y-axis.  
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6.2.3 A role for phospho-tau 

Figure 6.8 ER preconditioning in hypothermic hCNs.  (a) Independent batches of 5 w 
hCNs were treated with the various concentrations of Tm indicated for 24 h in MiM 
under normothermic conditions.  Multiplexed injury analysis was then performed.  Injury 
ratio (RFU/RLU) data was normalized to untreated control and is presented as mean ± 
SEM.  No significant change in injury was noted at any of these concentrations of Tm 
(N=3; n=8).  (b) H2O2 injury in the presence of Tm (N=3; n=7).  Note log scale of y-axis.  
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Quite how cooling precipitates ER stress in hCNs is currently unknown, but likely 

involves several factors (Rzechorzek et al., 2015).  One candidate considered here is 

hyperphosphorylated tau which is a prominent feature of hypothermic brains and 

may offer short-term protection by promoting UPR-mediated apoptotic escape  (Hetz 

and Mollereau, 2014; Liu et al., 2012c; Stieler et al., 2011; Wang et al., 2014).  Since 

hypothermia robustly increased tau phosphorylation in hCNs, it was postulated that 

this might contribute to its neuroprotective effect.  The first step was to determine 

whether neuroprotection could be achieved by inhibiting PP2A.  Fostriecin (a 

membrane permeable compound (Douglas et al., 2001) was applied to normothermic 

hCNs for 24 h, after which cells were immunostained, harvested for protein 

extraction or subjected to oxidative stress.  Fostriecin treatment produced a visible 

increase in axonal AT8 immunoreactivity (Fig.6.9) and a concentration-dependent 

increase in phospho-tau signal on Western blot (Fig.6.10).  At a concentration which 

effectively increased tau phosphorylation, but did not cause any neurotoxicity at 

baseline (N=3; n=8; Fig.6.10 and 6.11a), fostriecin produced a reduction in hCN 

injury in response to H2O2 (N=3; n=6; P=0.008; Fig.6.11b).  Culture at 28⁰C 

predictably reduced oxidative stress-mediated injury at each concentration of H2O2 

(P<0.0005), however the addition of fostriecin conferred no further benefit 

(P=0.907; Fig.6.11b).  Conversely, treatment with the brain-permeable kinase 

inhibitor TCS 2002 (highly specific for GSK3β (Saitoh et al., 2009)) produced a 

concentration-dependent decrease in phospho-tau signal as well as a prominent shift 

in electrophoretic mobility on Western blot (Fig.6.10).  Addition of an effective dose 

of TCS 2002 (causing hCN tau dephosphorylation but no toxicity at baseline, N=3; 

n=9; Fig.6.10 and 6.12a) increased hCN injury in response to H2O2 under both 
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normothermic and hypothermic conditions (P=0.002 and P=0.001 respectively, N=3; 

n=4; Fig.6.12b).  TCS 2002 abrogated the protective effect of moderate hypothermia 

at 50 μM H2O2; there was no significant difference between injury in untreated 

normothermic cultures and hypothermic cultures treated with TCS 2002 (P=0.348).  

Finally, immunostaining of hCNs for activated caspase-3 and AT8 showed that these 

markers were mutually exclusive, suggesting that phospho-tau positive neurons were 

indeed resistant to apoptosis (Li et al., 2007) (Fig.6.13a).  
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Figure 6.9 Fostriecin mimics cooling-induced tau phosphorylation in hCNs.  Inhibiting 
PP2A in normothermic hCNs increases tau phosphorylation as shown by enhanced AT8 
immunostaining in the presence of 100 nM fostriecin, scale bar = 50 μm.  
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Figure 6.10 Reciprocal manipulation of tau phosphorylation in hCNs.  Upper panel: 
fostriecin produces a concentration-dependent increase in AT270 and pan-tau signals 
on Western blot with decreased electrophoretic mobility.  Tau kinase (GSK3β) inhibitor 
TCS 2002 decreases tau phosphorylation in a concentration-dependent manner and at 
high concentrations resolves the protein into its dephosphorylated isoforms of lower 
molecular weight.  Lower panel: commonly used GSK3 inhibitors have an effect on 
normothermic tau, comparable to that of TCS 2002 (Bretteville et al., 2012). AR-
A014418 concentrations are in μM, those for LiCl are in mM.  AR-A014418 inhibits tau 
phosphorylation at a GSK3-specific site (S396) in an ATP-competitive manner (Bhat et 
al., 2003).  LiCl is a less specific but potent inhibitor of GSK3 (Zhang et al., 2003).  The 
pan-tau antibody recognises phosphorylated and non-phosphorylated tau, GAPDH 
=loading control.    
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Figure 6.11 Increasing tau phosphorylation protects normothermic hCNs from oxidative 
stress.  (a) Independent batches of 5 w hCNs were treated with the concentration range 
of fostriecin indicated for 24 h in MiM under normothermic conditions.  Multiplexed 
injury analysis was then performed. Injury ratio (RFU/RLU) data was normalized to 
untreated control and is presented as mean ± SEM.  No significant change in injury was 
noted at any of these concentrations of fostriecin (N=3; n=8).  (b) Fostriecin reduces 
H2O2-mediated injury but has no effect on injury when hCNs are incubated at 28⁰C (N=3; 
n=6).  Note log scale of y-axis.  
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Figure 6.12 Inhibiting tau phosphorylation abrogates hypothermic preconditioning in 
hCNs. (a) Independent batches of 5 w hCNs were treated with the concentration range 
of TCS 2002 indicated for 24 h in MiM under normothermic conditions.  Multiplexed 
injury analysis was then performed.  Injury ratio (RFU/RLU) data was normalized to 
untreated control and is presented as mean ± SEM.  No significant change in injury was 
noted at any of these concentrations of TCS 2002 (N=3; n=9).  (b) TCS 2002 increases 
H2O2-mediated injury at 37⁰C and 28⁰C (N=3; n=4).  Note log scale of y-axis.  
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Figure 6.13 Apoptotic escape of hypothermic hCNs.  (a) Widefield fluorescent 
micrographs of hCNs cultured at 28⁰C showing mutually exclusive staining of apoptotic 
marker activated caspase-3 (green, top left) and phospho-tau (AT8, red, bottom left).  
Cells were co-stained for DAPI (blue) and neuronal marker βIII-tubulin (white, top right).  
Merged image is shown (bottom right), scale bar = 10 μm.  (b) Quantitative Western 
analysis of apoptotic regulator Bax.  There was no significant change in Bax protein 
expression in response to cooling (N=3; n=6).  
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Discussion 

These experiments establish several molecular effects of TH in hCNs, modifying 

proteostatic pathways in a manner that supports neuronal viability.  Specifically, 

cooling triggers mild ER stress in hCNs, sufficient to activate all branches of the 

UPR.  Full hypothermic protection of hCNs against oxidative stress requires PP2A 

inhibition and an intact UPR in order to prime the ER against intensively toxic 

insults.  In combination with imaging data, these results suggest that both phospho-

tau and UPR-mediated ER-hormesis play a role in hypothermic preconditioning.  

The final aim of this thesis has thus been met, with acceptance of hypothesis (4). 

 

Surmounting the chronic, UPR-mediated translational repression that accompanies 

protein misfolding might prove useful in neurodegenerative disease (Moreno et al., 

2013).  However, for acute injury, mildly enhancing the UPR can rescue neurons 

from programmed cell death and instigate adaptive preconditioning that defends the 

ER from further insults (Hetz and Mollereau, 2014).  PERK inhibition worsened 

hCN injury in response to H2O2 and abrogated the protective effect of cooling.  A 

functional UPR is thus essential for hypothermic preconditioning of hCNs against an 

oxidative challenge.  Enhanced injury with PERK inhibition at 37⁰C may reflect a 

constitutive proteostatic function of the UPR in long-term culture – potentially 

through buffering oxidative processes (Cullinan et al., 2003).  It might also explain 

why hypothermic induction of some PERK branch-specific components was not 

observed, though these may be undetectable biochemically in the context of mild ER 

stress
 
(Rutkowski et al., 2006).  These components can also act independently of 

each other (Krishnamoorthy et al., 2014).  Equally, since PERK branch activity is 
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subject to homeostatic autoregulation by phosphatases (Lin et al., 2007b), 

hypothermic induction of GADD34 potentially resolved eIF2α activation by 24 h 

(Fig.6.5b and Fig.6.6) (Ma and Hendershot, 2003).  eIF2α phosphorylation does 

occur under deep hypothermic conditions (10⁰C) and contributes to the global 

suppression of protein translation in mammalian cell lines (Roobol et al., 2009; 

Hofman et al., 2012).  This inhibits translation initiation and stalled pre-initiation 

complexes accumulate in SGs, along with several RBPs (Kedersha et al., 2002; 

Hofman et al., 2012).  The fact that SGs were observed in cooled hCNs (in 

association with RBM4 and TIA-1) supports the notion that mild hypothermia is 

sufficient to activate eIF2α in human neurons. 

 

During an adaptive stress response the three UPR branches undergo considerable 

cross-talk and complex homeostatic self-regulation (Fig.6.6).  The 24 h ‘snapshot’ 

taken here cannot convey the dynamism of this response in hCNs but it intimately 

links UPR activation to neuronal preconditioning, since this was the point at which 

exogenous stressors were applied (Rzechorzek et al., 2015).  Whilst XBP1 splicing 

was mild at 28⁰C compared to Tm treatment, Ire1α activity might differ kinetically in 

response to Tm and hypothermia, thus comparing these treatments at 24 h may have 

under- or overestimated the effect of cooling on this pathway (Lin et al., 2007b).  

Irrespectively, the increases in both unspliced XBP1 and XBP1s mRNA (Fig.6.2b 

and 6.3) strongly suggest that Ire1α and ATF6 were active within the cooling period
 

(Hetz and Mollereau, 2014).  BiP and GRP94 are key chaperones that respond to ER 

stress and regulate protein folding and BiP is the most commonly used marker for 

UPR activation (Rutkowski et al., 2006; Walter and Ron, 2011).  Enhancing BiP is 
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neuroprotective and has been linked to hypothermia (Aoki et al., 2001; Terao et al., 

2009; Liu et al., 2013), whilst BiP deficiency has been implicated in 

neurodegeneration (Endres and Reinhart, 2013; Hetz and Mollereau, 2014).  GRP94 

suppresses oxidative stress-mediated neuronal death and stabilizes calcium 

homeostasis in the ER (Bando et al., 2003).  Moreover, the increase in BiP transcript 

after 24 h is consistent with activation of ATF6 and splicing of XBP1 prior to the 

oxidative injury assay (Walter and Ron, 2011; Hetz and Mollereau, 2014) (Fig.6.1; a 

subset of batches (N=3; n=14) demonstrated no BiP induction after 3 h of 

hypothermia).  The relative magnitude of the XBP1, XBP1s and BiP findings in 

combination indicates an adaptive UPR profile.  The protective roles of Hsps in 

hypothermic preconditioning are currently unknown (Shintani and Terao, 2012), but 

enhancing these chaperones improves outcome in models of ischaemic injury 

(Marber et al., 1995; Zheng et al., 2008) and ALS (Kieran et al., 2004), potentially at 

the level of the synapse (Ge et al., 2008).  The lack of GRP94 induction by cooling 

may reflect a short half-life, or the rather selective nature of this chaperone, whose 

client list is much shorter than that of BiP and contains several inflammatory proteins 

that would likely be suppressed under hypothermic conditions (Marzec et al., 2012).  

In particular, GRP94 is not induced at high temperatures (Marzec et al., 2012).  Mild 

CHOP induction (Fig.6.5c) is supportive of ATF6 activation since this transcription 

factor can induce CHOP (Tabas, 2011).  CHOP induction could also signify the 

duration limit of protective cooling; alternatively its knock-on GADD34-mediated 

negative feedback may be fundamental to hypothermic preconditioning (Fig.6.6, 

Halterman et al., 2010).  Accordingly, others have highlighted the protective role of 

CHOP in neuronal systems (Chen et al., 2012; Engel et al., 2013).  Moreover, it is 
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possible that hypothermia may have blocked CHOP-induced apoptosis by buffering 

cytoplasmic calcium (Tabas et al., 2011).  In support of this, cooling did not increase 

levels of the pro-apoptotic marker Bcl-2 associated X protein (Bax), as shown 

elsewhere (Yenari et al., 2002) (Fig.6.13b).  Although this protein has been variably 

affected by hypothermia in previous studies (Shintani and Terao, 2012), others have 

observed increased expression of anti-apoptotic proteins in hippocampal neurons at 

33⁰C (Zhang et al., 2001).  Prolonged ER stress leads to sequential activation then 

deactivation of Ire1α, ATF6 and PERK pathways respectively – this might explain 

the bias of UPR components towards the PERK arm after 24 h cooling (Tabas, 

2011).  Nevertheless, transcript analysis of hCNs captured distinctive patterns of 

UPR responses resulting from cooling and Tm.  BiP, GRP94, XBP1s and CHOP 

dramatically increased under Tm, whereas ATF4 and GADD34 induction were 

comparable between the two conditions.  Therefore, in contrast to models described 

elsewhere (Rutkowski et al., 2006), the negative regulation of eIF2α appears to take 

precedence over unloading the ER in cooled human neurons (Rzechorzek et al., 

2015).  This relief of translational repression may confer tolerance to a prolonged 

hypothermic state (Moreno et al., 2013; Peretti et al., 2015).   

 

In the clinic, ‘preconditioning’ is typically ascribed to a transient mild stress 

followed by a recovery interval (Nishio et al., 2000; Stetler et al., 2014).  Here the 

term is applied in its broadest sense – i.e. a subtoxic cellular stress that can lead to a 

protective state (Stetler et al., 2014) in order to account for the proteostatic priming 

observed during the pre-incubation phase of cooling.  This definition circumvents the 

need for a re-warming phase which would confound analysis of oxidative injury by 
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inducing relative hyperthermic and hypoxic stresses (Liu et al., 1994; Lleonart, 2010; 

Chip et al., 2011; Neutelings et al., 2013).  Hypothermic preconditioning may 

reconcile apparently conflicting data describing UPR modulation in neuronal health; 

first that ER stress can elicit UPR-mediated hormesis (Mendes et al., 2009; Fouillet 

et al., 2012), second that circumventing UPR-mediated translational repression 

promotes long-term survival (Moreno et al., 2013), and third that inhibiting eIF2α 

phosphatases resolves ER stress (Saxena et al., 2009; Kiskinis et al., 2014).  This 

highlights the importance of fine-tuning the entire network, rather than adjusting a 

single pathway or component (Rzechorzek et al., 2015).  A combined approach has 

been proposed for ALS (Kiskinis et al., 2014) and cooling has recently demonstrated 

some benefit in an in vivo model of spastic paraplegia (Baxter et al., 2014).  

Ultimately, disease stage and neuronal subtype would determine whether enhanced 

or prophylactic preconditioning could be useful in the context of neurodegeneration 

(Saxena et al., 2009).  Indeed, Peretti et al.
 
(2015) observed that neurodegenerative 

synaptic loss could be partially rescued through cooling-induced enhancement of 

RBM3 expression - but the benefit diminished if treatment was applied later in the 

disease course.  This temporal dependency might be explained if hypothermia-

mediated proteostatic priming were elicited prior to the build-up of a significant 

aggregated protein load (Rzechorzek et al., 2015).  Whether the hypothermic 

preconditioning described here may engage a cytoprotective mechanism that is 

synergistic with the preservation of synaptic plasticity in currently unknown (Peretti 

et al., 2015). 
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Finally, hypothermic neuroprotection was impaired at 28⁰C and mimicked at 37⁰C 

using compounds that reciprocally modify tau phosphorylation.  Earlier, it was noted 

that hypothermia had negligible impact on GSK3β expression despite a dramatic 

inhibitory effect on PP2A activity (Fig.5.17).  In support of this, TCS 2002 (but not 

fostriecin) impacted upon hCN injury at 28⁰C, suggesting a residual GSK3β (but not 

PP2A) activity at this temperature.  Injury was unchanged in the presence of 

fostriecin under hypothermic conditions.  This highlights the potency of cooling-

induced PP2A suppression and suggests that tau phosphorylation was already 

saturated at this temperature.  Concurrently, inhibiting tau phosphorylation had the 

opposite effect to fostriecin, preventing the protection that would have otherwise 

been achieved at 28⁰C.  These results provide evidence that PP2A inhibition is both 

necessary and sufficient to protect hCNs from oxidative stress, confirming that the 

major human tau phosphatase participates in the neuroprotective effect of 

hypothermia.  In Alzheimer’s disease hyperphosphorylated tau mislocalises to the 

somato-dendritic compartment and can be found associated with the rough ER
 
(Iqbal 

et al., 2009).  Since increased tau phosphorylation is conducive to neuroprotection in 

hCNs, and can attenuate ER-stress-induced apoptosis through upregulation of the 

UPR
 
(Liu et al., 2012c),

 
it may trigger this cascade during neuronal cooling, 

potentially through inhibiting ER-associated degradation (ERAD)
 
(Keck et al., 2003; 

Abisambra et al., 2013).  This is consistent with the hypothesis that tau modulation 

may serve a protective function early in the course of neurodegenerative disease, 

perhaps by inciting ER-hormesis.  Since the cooling paradigm above can be used to 

titrate UPR activation, it represents a simple method to address subtle effects 
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dictating adaptive versus maladaptive outcomes of this cascade in human neurons 

(Rzechorzek et al., 2015). 

 

In summary, this work establishes a role for the UPR in hypothermia-driven neuronal 

preconditioning (Rzechorzek et al., 2015).  Mild ER stress and UPR activation are 

critical features of the hypothermic response and contribute to its protective effect.  

Impaired stress responses underlie several neurodegenerative disorders (Hetz and 

Mollereau, 2014), and although hypothermic preconditioning originates from the 

traumatic setting, preconditioning in general is a proposed target for 

neurodegenerative disease (Stetler et al., 2014).  Further dissection of these pathways 

might thus reveal potent therapeutic targets for both acute and chronic brain injury.  
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Chapter 7: Discussion 

 

7.1 Review of key findings and future directions 

This thesis presents several novel elements of neurocryobiology within the context of 

hypothermic neuroprotection, including the first demonstration of a cold-shock 

response in human neurons.  With regards to tau, hypothermia induced changes at 

transcript, protein and post-translational levels in hCNs, consistent with reversal of 

the maturational transition in tau status observed during hCN differentiation. Using a 

human neuronal system has thus revealed that tau responses to cooling extend to 

alternative splicing of MAPT, in a manner that complements an increase in tau 

phosphorylation.  This may be an essential feature of hypothermic tau in human 

neurons that simultaneously permits cytoskeletal plasticity, whilst retaining tau 

solubility.  Critically, culture conditions which alter transcriptional and post-

translational features of tau also deliver human cortical neuroprotection in an injury- 

and temperature-specific manner.  Association of mild hypothermia, RBP induction, 

tau isoform regulation (Fig.7.1) and protection from NR2B-mediated excitotoxic cell 

death points to a convergence of these pathways in predicting neuronal survival.  

Since temperature can influence biomolecular and electrophysiological properties, 

including cell membrane fluidity (Sonna et al., 2002)
 
and Nernst potential (Kandel et 

al., 2000), dissecting the immediate physical effects of hypothermia from its 

downstream molecular effects will be essential to deciphering their relative 

importance in neuronal health. 
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As for all biochemical processes within living cells, cerebral processes are highly 

temperature-dependent (Rodriguez et al., 2012; Wang et al., 2014).  However, 

different indices of axonal excitability have variable thermal sensitivity, which also 

depends on neuronal subtype and state of health (Davis et al., 1976; Burke et al., 

1999; Kiernan et al., 2001; Howells et al., 2013).  A significant proportion of 

multiple sclerosis patients report that their symptoms are intensified by increased 

temperature, referred to as Uhthoff’s phenomenon (Guthrie and Nelson, 1995).  This 

is thought to be associated with a reversible conduction block of demyelinated fibres 

under hyperthermic conditions - although this specific mechanism has been contested 

(Rasminsky, 1973; Schauf and Davis, 1974; Guthrie and Nelson, 1995).  More 

Figure 7.1 RBP and tau correlates in hypothermic hCNs. Two-tailed Pearson correlations of 
RBP and tau isoform transcripts. Note close relationship between RBPs and 4R tau under 
normothermic conditions, and this relationship is highly significant for CIRBP and RBM3. In 
these cases, the greatest correlative dissociation occurs at 32⁰C, suggesting independent 
regulation of tau exon 10 splicing at this temperature (CIRBP 37⁰C P<0.0005, 32⁰C P=0.001, 
28⁰C P<0.0005; RBM3 37⁰C P<0.0005, 32⁰C P=0.026, 28⁰C P=0.004). Note loss of 
association between RBM4 and 4R tau with decreasing temperature, suggesting that 
RBM4-regulated inclusion of tau exon 10 is impaired under these conditions.  
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recently, it was shown that hyperthermia reduces inward rectification in healthy 

human subjects, and that motor and sensory axons were differentially sensitive to this 

effect (Howells et al., 2013).  This explains why patients with acute febrile infections 

have disrupted neuromuscular transmission (Friman et al., 1977).  The overall result 

of hyperthermia is a reduced safety margin for action potential generation and 

propagation, especially in axons that are already compromised (Howells et al., 2013).   

 

The brain is a metabolically demanding organ that produces considerable heat in the 

final stages of ATP hydrolysis (0.66 Jmin
-1

g
-1

 brain tissue) (Yablonskiy et al., 2000; 

Wang et al., 2014).  Despite being one of the most heat-sensitive tissues, the brain is 

remarkably tolerant to cooling and can endure temperatures that approximate to the 

lower limit of survival (Yang et al., 2006; Stieler et al., 2011; Wang et al., 2014).  

Nevertheless, hypothermia can profoundly influence neuronal biology, structure and 

function.  Through a dramatic reduction in neuronal activity, hibernators can save up 

to 90 % of the energy that would otherwise be required under basal conditions 

(Arendt and Bullman, 2013).  Electrophysiological studies in both hibernating and 

non-hibernating species show that gradual cooling of the brain produces a biphasic 

response in neuronal activity, with hyperexcitability followed by transmission block 

(Arendt and Bullman, 2013).  This initial hyperactivity is reminiscent of that seen in 

the pre-symptomatic stages of AD (Stargardt et al., 2015), but is probably distinct 

from the ‘burst suppression’ observed by electroencephalogram during deep 

hypothermia (Brandon Westover et al., 2015).  Predictably, a cooling-induced block 

impairs cognitive function; in humans, approximately 70 % of memory encoding is 

lost at a core temperature of 34-35⁰C – however recall of previously learned 
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information is untouched (Coleshaw et al., 1983).  Not only are these neuroplastic 

changes reversible, they appear to confer an advantage (Peretti et al., 2015) – the 

strengthening of cognitive function during sleep is testament that repeated cycles of 

cooling and re-warming are good for the brain (Wang et al., 2011).  Cooling also 

prolongs and changes the shape of the action potential (see Fig.7.2) and drugs that 

mimic this effect have been proposed to overcome conduction block in demyelinated 

nerves (Sherratt et al., 1980).   

 
 
 

 

 

 

 

 

The thermosensitivity of the axonal membrane potential can vary depending on prior 

thermal experience, and desensitization itself is temperature-sensitive (Janssen, 1992; 

A 

B 
C 

D 

E 

F 

Figure 7.2 The effect of temperature on the action potential.  Action potentials were recorded in 
the squid giant axon using an internal recording electrode.  Superimposed tracings are shown of 6 
spikes at temperatures labelled A-F as follows: 32.5, 20.2, 13.3, 9.8, 6.3, and 3.6⁰C.  With cooling, 
the wave of the action potential was slowed, but the amplitude was not altered greatly until above 
20⁰C, after which it was reduced in height.  The shift of these curves suggests that the rate of fall of 
the action potential has a higher temperature coefficient than the rate of the rise.  The resting 
potential was almost independent of temperature between 2 and 20⁰C, above which it diminished.  
All temperature effects were reversible as long as the temperature did not exceed 35⁰C.  The 
lowest temperature at which a recording could be made was 1⁰C.  Figure and legend adapted from 
Hodgkin and Katz (1949) with permission.  
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     Action potentials in the squid giant axon 
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Money et al., 2004; Klose et al., 2004).  Unsurprisingly, cold-shock can also have 

these preconditioning effects at the level of neural transmission.  However, in 

contrast to the transient stimulus required for preconditioning, chronic cold-stress 

exposure can sensitize neurons to further stimuli; this chronic stress-induced 

enhancement of neuronal activity has been implicated in human mood and anxiety 

disorders (Jedema and Grace, 2003).  Thus, several pharmacological targets might 

emerge from testing the thermal properties of human neurons derived from both 

healthy individuals, and those with neurological disease.  Whilst a few studies have 

addressed the effects of temperature on human peripheral nerve activity (Rutkove et 

al., 2001), none have directly analysed these effects in human cortical neurons.  

Acknowledging that this is extremely difficult in live patients, the hCN system 

provides a useful platform to explore changes in electrophysiological parameters as 

temperature increases or decreases.  A more detailed discussion of thermal influences 

on neurophysiological readouts is beyond the scope of this thesis, but is covered in 

depth elsewhere (Janssen, 1992).   

 

Inasmuch as temperature effects have clinical value, they can also hamper objective 

measurements of neural function in practice and may yet overturn established 

fundamental principles of neurobiology (Denys, 1991; Rutkove, 2001).  For 

example, network activity is affected by cooling (Kalmbach and Waters, 2012) and 

temperature-related effects have critically undermined interpretation of learning-

induced changes in field potential in freely moving animals (Moser et al., 1993).  

Likewise, intra- and inter-subject variability in limb temperature is a frequent cause 

of misdiagnosis in clinical electromyography (Denys, 1991).  This presents a ‘Catch-
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22’-like conundrum (Heller, 1961); we know that temperature determines 

electrophysiological properties (Kiyatkin et al, 2010), but how do we truly isolate 

them when the defining feature of a neuron (its function) itself produces heat?  

Current-clamp and voltage-clamp techniques are somewhat extraneous in the 

absence of a ‘thermal clamp’.  Recording neural activity at room temperature is, to 

all intents a purposes, an attempt to create such a clamp.  However, this cannot 

eliminate smaller temperature fluctuations occurring during nerve stimulation or as a 

result of uncoupling protein activity within axon terminals (Wang et al., 2014).  

Neither does it represent the physiological thermal properties of mammalian cells in 

vivo.  When applying Nernst or Goldman-Hodgkin-Katz functions, terms are usually 

simplified by fixing absolute temperature (Kandel et al., 2000).  For in vitro studies 

this equates to room temperature, whilst for in vivo extrapolation 37⁰C is often used 

to simulate core human body temperature.  These assumptions are clearly inadequate 

for modelling neural function in the dynamic healthy brain (McNaughton et al., 

1994), let alone one compromised by injury.  Indeed, the effects of temperature on 

neural conduction can change considerably in the diseased state (see Table D1) 

(Rasminsky, 1973; Rutkove et al., 2001).  The expansion of the stem cell field is an 

opportunity to revisit earlier works of eminent physiologists who first described the 

functional properties of the neuron, and re-apply these methods to human CNS 

neurons and glia under conditions of temperature shift. 
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Table D1 Effects of temperature on neurophysiology in the disease state (adapted 

from Rutkove et al., 2001; CMAP = compound motor action potential). 

Disease 
 

Effect of temperature 

 
Axonal loss 
   CMAP amplitude 
   Abundance of fibrillation potentials 
   Fasciculation potential amplitude 
   Fasciculation potential frequency 
 
Demyelinating lesions 
   Conduction velocity 
   Conduction block 
 
NMJ disorders 
   Myasthenia gravis 
   Lambert-Eaton myasthenic syndrome 

 
 
Increased sensitivity to cooling 
Decrease with muscle cooling 
Increase with muscle cooling 
Likely decrease with neuronal cooling 
 
 
Reduced effect of temperature 
Increases with heating 
 
 
Improvement in decrement with cooling 
Baseline amplitude increases with 
cooling 
 

 

Advances in stem cell technology have transformed our ability to track certain 

aspects of injury and disease in a reductionist setting.  The opportunity to derive 

multiple CNS cell types from patients with neurodegenerative, psychiatric and 

neurodevelopmental disorders is already offering powerful insight into molecular 

mechanisms of these disorders and potentially new routes to treatment (Bilican et al., 

2012, Donnelly et al., 2013; Serio et al., 2013; Brennand et al., 2014; Hibaoui et al., 

2014; Kiskinis et al., 2014; Devlin et al., 2015).  It is clear that the dramatic changes 

observed in human post-mortem samples do not reflect the earlier and more subtle 

changes leading to these events - particularly at the level of neuronal function 

(Devlin et al., 2015).  Thus there is a need to explore these functional impairments in 

a disease context.  As mentioned previously, these functional impairments can extend 

to the most fundamental and highly conserved stress responses within the cell – those 
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that safeguard proteostasis.  Validating these pathways in healthy human cells is 

critical: first it gives us a baseline for comparing proteostatic responses across 

various cell types and second, it identifies molecular cascades that might be 

harnessed for therapeutic benefit in disease.  For example, motor neurons 

demonstrate a high threshold for induction of heat shock (Batulan et al., 2003; Taylor 

et al., 2007)
 
which partly explains selective vulnerability of this cell population in 

ALS (Bruening et al., 1999).  It would be useful to determine whether ALS patient-

derived motor neurons respond poorly to hypothermia and whether this abrogates the 

protective effect of cooling.  On the other hand, enhancing the stress response in 

these cells may promote their survival (Bruening et al., 1999).  Thus, by stimulating 

ER hormesis, hypothermia might precondition these neurons to endure chronic 

protein misfolding, or else lower the threshold for a beneficial stress response against 

other toxins such as glutamate (Bruening et al., 1999; Cleveland and Rothstein, 

2001).  The cooling paradigm outlined in this thesis could thus be applied to a whole 

range of patient-derived cell lines, and targeted to various stages of the disease 

process.  Because of the ‘cross-tolerance’ conferred by cold-stress, the objective 

would be to define the optimal therapeutic window for preconditioning against 

multiple types of neuronal injury.  The influence of cooling on excitotoxicity opens 

up this approach to disorders where neural conduction, transmission and plasticity 

are deficient in the absence of protein misfolding.  These might include multiple 

sclerosis, schizophrenia and autism spectrum disorders.  Peretti et al. (2015) have 

provided the proof of concept that at least one element of the cold-shock response 

can be harnessed to rescue neuroplasticity.  The relationship of synaptic strength and 

eIF2α phosphorylation (Halliday and Mallucci, 2014) together with the findings 
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presented above suggest that the UPR may also have a role to play in temperature-

regulated synaptic function. Indeed, the differential effect of hypothermia on specific 

types of memory, may be borne out through a modulation of phospho-eIF2α (Costa-

Mattioli et al., 2007).  Whether there are additional effects on synapse-specific 

chaperones (as shown for Hsc70 at elevated temperatures) is yet to be determined 

(Tobaben et al., 2001; Gong and Golic, 2006).   

 

It is well-established that hypothermia induces tau hyperphosphorylation, akin to that 

seen in early-stage Alzheimer’s disease (Bretteville et al., 2012).  The experiments in 

Chapter 5 confirmed this phenomenon in hCNs (the first demonstration in human 

neurons), and extended its effect to a protein-level shift in tau isoform ratio, 

consistent with RD of tau.  In the context of previous studies (Keck et al., 2003; Iqbal 

et al., 2009; Liu et al., 2012b,2012c; Abisambra et al., 2013) and parallel findings 

(Chapter 6),
 
the derived postulate is that this ‘foetal-like’ tau is intimately involved in 

cooling-induced ER-hormesis (Fig.7.3).  This appears to contradict the findings of 

van der Harg et al. (2014) who proposed that UPR activation in the brain during 

torpor was upstream of tau hyperphosphorylation and was a specific outcome of a 

hypometabolic state - not passively related to temperature drop.  Importantly they 

found that simply cooling human neuroblastoma cells did not activate the UPR.  This 

conflict may relate to specific differences in experimental technique (e.g. cooling 

duration and depth, and several UPR targets analysed in hCNs were omitted thus 

potentially reducing sensitivity of UPR detection in neuroblastoma cells).  However, 

a more likely explanation is the use of an immortal cell line.  Unlike post-mitotic 

neurons, tumour cells are highly resistant to physiological stress – and their inherent 
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upregulation of molecular chaperones such as BiP allows them to evade 

chemotherapy (Abdel Malek et al., 2014; Cerezo et al., 2015).  As suggested in 

Chapter 6, van der Harg et al. (2014) also concluded that tau hyperphosphorylation 

might impair ERAD (Abisambra et al., 2013), but they linked this to perpetuation of 

a maladaptive UPR in tauopathies, rather than a hormetic stimulus that might offer 

neuroprotection.  Whilst alluring, there are several caveats to their hypothesis: (1) 

temperature drop produces a rapid increase in phosphorylation at many tau epitopes 

via PP2A inhibition (Planel et al., 2007a; Papon et al., 2011; El Khoury et al., 2014) - 

chronologically this post-translational change should happen in advance of any 

modification effected via the UPR and is supported by the fact that (2) the abnormal 

hyperphosphorylation of tau in AD makes tau more resistant to degradation by 

activated neutral proteases, calpains and the UPS (Iqbal et al., 2009) which would 

lead to ERAD impairment and then ER stress, (3) tau phosphorylation occurs to a 

much greater extent in cooled hCNs than in Tm-treated neuroblastoma cells 

suggesting that ER stress is a relatively weak stimulus for phosphorylation of tau, 

and (4) tangle-bearing neurons in tauopathies survive this state for many decades 

(Morsch et al., 1999), suggesting that the UPR activation seen alongside early tau 

hyperphosphorylation in AD brains imparts some resistance to protein misfolding 

and neuronal death (Hoozemans et al., 2009; Nijholt et al., 2012).  In AD, the ER has 

been highlighted as a regulatory site involved in neurodegeneration via perturbed Ca 

homeostasis and oxidative stress (Mattson and Guo, 1997).  Although this has largely 

been attributed to aberrant APP and presenilin processing, it could also result 

indirectly from functional loss of tau.  In murine neuroblastoma cells, tau 

overepxession caused pronounced contraction of the ER so that it no longer reached 
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the cell periphery and its density and branching decreased, consistent with the idea 

that transport along microtubules was perturbed (Ebneth et al., 1998).  This agrees 

with previous studies suggesting that PHF-tau disrupts the trafficking of various 

cellular organelles including mitochondria (Lee et al., 2005; Wang and Liu, 2008).  

Similarly, Shay and Gonatas (1973) noted clefts in the rough ER of cat spinal cord 

motor neurons and dendrites after 1-2 h of deep hypothermia (15⁰C).  Whether 

cooling also precipitates ER stress via changes in ER morphology or distribution in 

hCNs remains to be determined and will require detailed ultrastructural analysis by 

electron microscopy.  Irrespectively, once the UPR is underway, 

hyperphosphorylated tau could feature at several points in the cycle, operating both 

upstream and downstream of ER stress (Hoozemans and Scheper, 2012).  Halliday 

and Mallucci (2014) present an interesting theory to explain the paradoxical effects 

of salubrinal in different neurodegenerative disease models: that a ‘pure’ ER stress 

triggered by protein aggregates within the ER (mutant SOD1, mutant α-synuclein) is 

ameliorated by promoting translational suppression, whereas the ‘nonspecific 

proteostatic dysregulation’ caused by cytoplasmic aggregates (tau, PrP) benefits 

more from blocking chronic UPR activation.  This hypothesis is contestable because 

even if a ‘pure’ ER stress existed, it would be sufficiently created by impairing 

ERAD (Abisambra et al., 2013).       
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van der Harg et al. (2014) also argue that hibernation in tropical species is proof that 

a temperature drop is not required for UPR activation and subsequent tau 

phosphorylation (Dausmann et al., 2004; Stieler et al., 2011).  Notwithstanding that 

Figure 7.3 A proposed model for hypothermia-induced ER-hormesis and preconditioning of the 
UPR in hCNs.  The schematic from Fig.6.6 has been replicated but modified to indicate the putative 
enrolment of phospho-tau (which may impair ERAD by inhibiting the proteasome (Keck et al.,2003; 
Abisambra et al., 2013)) and potential points of cooperative preconditioning supported by cold-
shock proteins (aqua stars). Specifically, these chaperones might (1) ensure essential mRNAs escape 
translational suppression, (2) promote apoptotic inhibition and/or (3) be further upregulated by 
XBP1s.  Cooling-induced protein unfolding could be a primary trigger for ER stress (King and Weber, 
1986; Fujita, 1999), however this is less likely at the mild hypothermic temperatures used in the hCN 
cooling paradigm.  
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the extreme ‘ectothermic’ behaviour of torpid lemurs (Dausmann et al., 2004) may 

be unique amongst hibernating mammals, the body temperature measurements in 

these primates were calibrated to intraperitoneal temperature which may be wildly 

different from brain temperature (the difficulties of accurately assessing brain 

temperature have already been discussed in the introduction).  Finally, the authors 

claim that hypothermia impairs metabolic stress-induced UPR activation because 

they observed that PERK phosphorylation was abolished at 26⁰C (van der Harg et 

al., 2014).  Since the whole UPR cascade was not explored under their cooling 

paradigm, it is impossible to draw this conclusion – rather it suggests (as in hCNs) 

that certain components of the UPR were held in an adaptive hormetic state at this 

temperature via negative feedback (Fig.7.3).  Ultimately van der Harg et al. (2014) 

maintain that the initiating factor is hypometabolic UPR induction leading to tau 

hyperphosphorylation – they propose that this might conserve energy associated with 

axonal transport.  This fits well with the spatial predilection of tau pathology in 

metabolically demanding brain regions in AD, and the abnormal glucose metabolism 

in these patients (Janson et al., 2004; van der Harg et al., 2014).  However, whilst a 

hypometabolic state clearly increases tau phosphorylation, this is typically 

coordinated with reduced body temperature in ‘perfect hibernators’ (Drew et al., 

2001).  Therefore, the brain of an AD patient might resemble more closely that of a 

larger mammalian hibernator such as Ursus americanus, where metabolic 

suppression (25 %) is sufficient to modify phospho-tau, but hypothermia is perhaps 

too mild or slow to exert other neuroprotective changes (such as a shift in tau isoform 

ratio, dendritic morphogenesis or synaptic plasticity) (Vogelsberg-Ragaglia et al., 

2001; Tøien et al., 2011; Stieler et al., 2011; Dave et al., 2012).  Since 3R tau 
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isoforms are more readily secreted by cells than 4R tau isoforms, it might be that the 

increased 4R:3R ratio in the mature brain renders the cell more susceptible to retention 

of the protein and thus aggregation (Karch et al., 2012).  Although many of the genes 

overexpressed during hibernation are involved in neuroprotection (Chen et al., 2008), 

it is unclear which of these are upregulated due to metabolic suppression and which 

are induced as a response to hypothermic stress.  It would be of interest to know 

whether the ultrastructural synaptic changes observed in ground squirrels also 

occurred in black bears, and whether the NFT pathology observed in this species 

correlates with any cognitive decline (Cork et al., 1988).  Nonetheless, protein 

synthesis is more energetically demanding than axonal transport, thus UPR-mediated 

translational suppression would be expected in neurodegenerative disease, 

particularly in the presence of misfolded proteins (Hofman et al., 2012; Moreno et 

al., 2012).  Provocatively, by recruiting UPR-driven ER-hormesis, cooling would 

build proteostatic resistance at a lower energy cost (Fogolin et al., 2004).       

 

Against a vast backdrop of literature covering the cellular response to heat-shock, 

responses to cooling are relatively unexplored (Fujita, 1999; Phadtare et al., 1999; 

Sonna et al., 2002; Al-Fageeh et al., 2006).  To date around 20 genes have been 

reported to be induced by moderate hypothermia, compared to more than 100 

upregulated by heat stress (Sonna et al., 2002).  The Hsps previously reported to be 

upregulated by cooling were observed only during re-warming and did not include 

BiP (Sonna et al., 2002), thus the observed BiP induction in cooled hCNs may be an 

entirely novel finding.  RNASeq analysis of hCNs cultured at the 3 temperatures of 

interest is pending, and may reveal additional cold-specific targets.  Mammalian cells 
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can still proliferate at 32⁰C, below which proliferative capacity is greatly reduced – 

however cells can survive for extended periods at much lower temperatures and 

cryopreservation techniques rely on this cold tolerance (Fujita, 1999; Al-Fageeh et 

al., 2006).  Such remarkable adaptation to cold stress is exploited by industry; 

cultivating mammalian cells at subphysiological temperatures improves cell viability, 

enhances recombinant protein production and increases the efficiency of glucose 

conversion to ATP (Fujita, 1999; Fogolin et al., 2004; Al-Fageeh et al., 2006).  This 

improved metabolic efficiency could be of real benefit in neurodegenerative 

disorders, particularly within the dendritic compartment (Hasel et al., 2014) and 

when supportive glial functions are lost or diverted to a ‘reactive’ phenotype.  

Despite the potency of hypothermic neuroprotection, cooling must still be regarded 

as physiological stressor which, depending on its intensity, can trigger a stress 

response (as evidenced in this thesis), apoptosis or even necrosis (Sonna et al., 2002).   

 

Recently a link has been found between CIRBP expression and NF-κB signalling 

which suggests an inflammatory role for this cold-shock protein and further 

implicates it in UPR mechanisms associated with ALS (Brochu et al., 2013; Prell et 

al., 2014).  CIRBP has also been identified as a damage-associated molecular pattern 

molecule that is secreted by macrophages in response to hypoxia or 

lipopolysaccharide (LPS) and promotes inflammatory responses in haemorrhagic 

shock and sepsis (Qiang et al., 2013).  Since they derive from the same lineage, it 

would be interesting to test whether brain-resident macrophages (the microglia) can 

also secrete this protein and whether it plays a role in neuroinflammation.  Of note, 

Hsp70 expression in microglia appears to play an NF-κB-dependent anti-
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inflammatory role in acute ischaemic injury (Zheng et al., 2008).  An obvious 

limitation of the hCN system is the lack of full glial support, interneurons and 

inflammatory mechanisms that are paramount to most neurological disorders and are 

so profoundly affected by hypothermia (Weil et al., 2008; Yenari and Han, 2012).  

Future work will exploit advances in the differentiation of other brain cell types from 

hPS lines to address the effect of hypothermia in each of these alone and in 

combination with hCNs.  Last year, a US patent was obtained by The Fenstein 

Institute for Medical Research to use CIRBP inhibition as a means to treat human 

inflammatory conditions.  This highlights the increasing interest in cold-shock 

proteins as clinical targets for neuroinflammatory and even neuropsychiatric 

disorders (Zhou et al., 2014; Costa et al., 2015).  A recent study exploring forced 

desynchrony of sleep pattern in human subjects suggested that a resultant decrease in 

the amplitude of circadian fluctuations in body temperature was associated with 

transcriptomic changes in RBM3 and CIRBP (Archer et al., 2014).  Since these 

RBPs also regulate circadian gene expression, this raises the possibility that they 

critically balance thermoregulatory, endocrine and neuroplasticity cycles – all of 

which may go awry in dementia (Avila and Diaz-Nido, 2004; El Khoury et al., 2014; 

Maurin et al., 2014; Peretti et al., 2015). 

 

Although RBM3 exhibits many characteristics of a proto-oncogene (Lleonart et al., 

2010), its expression has also been associated with improved prognosis in several 

studies of malignancy (Jogi et al., 2009; Ehlen et al., 2010; Zeng et al., 2013).  Such 

discrepancy may result from a disease-stage-specific expression of this protein.  

Zeng et al. (2013) found this RBP upregulated in primary prostate cancer tissue but 
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downregulated in metastatic samples.  This suggests a role for RBM3 in disease 

initiation, followed by an inhibitory function in disease progression (Zeng et al., 

2013).  In the brain it points to a critical developmental window in which RBM3 

levels are coupled to translational demand; high nuclear expression enables rapid 

neural proliferation and differentiation, after which modest somatodentritic 

expression supports synaptic plasticity (Smart et al., 2007; Pilotte et al., 2009; Peretti 

et al., 2015).  It is possible that cooling re-opens this window whilst boosting local 

translation in a compartment that is highly vulnerable to environmental challenge 

(Smart et al., 2007).  However, the idea that RBM3 might be useful in the context of 

neurodegeneration is not new; Kita et al. (2002) found that overexpressing this 

protein inhibited apoptosis in PC12 cells transfected with mutant Huntingtin.  

Okamato et al (2009) reported than synaptic NMDAR activity-driven inclusions 

were neuroprotective in an in vitro model of Huntingdon’s disease, whereas 

exrasynaptic NMDAR activation reduced inclusion formation and rendered neurons 

more susceptible to glutamate-induced cell death.  Since Huntington’s disease is 

associated with increased extrasynaptic NMDAR activity and excitotoxicity 

(Hardingham et al., 2002; Fan and Raymond, 2007; Milnerwood et al., 2010; Hasel 

et al., 2014), the resistance of cooled hCNs to glutamate, alongside RBM3-mediated 

rescue of neuroplasticity in mice is particularly thought-provoking (Peretti et al., 

2015).  Interestingly, there was an apparent increase in the ratio of GluN2A to 

GluN2B transcripts in cooled hCNs, which according to preliminary statistical 

analysis was significant (28⁰C P=0.014; 32⁰C P=0.0005; data not shown).  Although 

several NMDAR subunits (including GluN2A and GluN2B) are downregulated in rat 

hippocampus during heat exposure (Le Grevès et al., 1997), their expression in cold-
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shocked neurons has not been assessed.  Given its granular, dendritic expression 

(Smart et al., 2007), it would be of interest to explore whether RBM3 alters the 

relative expression of EAA receptor subunits under cooled conditions, and whether 

this confers resistance to excitotoxicity. 

 

Neuronal polarity during differentiation is partially determined by local translation of 

specific mRNA molecules as dendrites and axons emerge (Atlas et al., 2007).  It is 

thus unsurprising that several RBPs interact with tau, since these can regulate the 

spatial and temporal translation of tau mRNA in a rapidly changing environment 

(Atlas et al., 2007; Moschner et al., 2014).  Since RBM3 promotes translation in 

dendrites (Smart et al., 2007), it will be important to determine whether this RBP 

contributes to tau isoform switch under hypothermic conditions, and further if this 

might drive cooling-induced dendritic morphogenesis (Greenwood and Connolly, 

2007).  Similar mechanisms may be needed for the advancement of growth cones 

during repair.  The application of individual-nucleotide resolution cross-linking and 

immunoprecipitation (iCLIP) (Modic et al., 2013) would determine whether cold-

shock RBPs interact with tau-isoform-specific pre-mRNAs and thus influence 3R:4R 

isoform ratio under cooled conditions.  Furthermore, RNA reprogramming using 

spliceosome-mediated RNA trans-splicing (SMaRT) could be used to modify tau 

splicing effects under hypothermic conditions to establish whether these contribute to 

the protective effect observed (Buee et al., 2010).  Preferential phosphatase inhibition 

under hypothermic conditions may also have an indirect effect on tau splicing 

through enhanced Dyrk1A activity and thence ASF phosphorylation leading to a 

relative increase in 3R tau (Shi et al., 2008).  Whether cooling may impact more 



248 
 

generally on ‘ribostasis’ in addition to proteostasis remains to be determined, 

although an interplay between RBP mutation and protein misfolding certainly 

features in neurodegenerative disease (Ramaswami et al., 2013).  In this context, the 

splicing factor SFPQ is worthy of further investigation, given its nucelo-cytoplasmic 

redistribution in AD, PiD and a cell culture model of P301L tauopathy (Ke et al., 

2012).  The dendritic spine effects of cooling can be observed in vitro using mature 

neurons where cooling-induced spine loss halts synaptic transmission (Kirov et al., 

2004).  Further development of the hCN system alongside super-resolution 

techniques will permit analysis of these dynamic effects both in dendritic spines, and 

at the level of the synapse.  It may however be necessary to cool to much lower 

temperatures in order to observe morphological changes (Yang et al., 2006).  

Combining these approaches with live cell imaging will allow real-time exploration 

of cooling-mediated protection in human neurons.   

 

Hofman et al. (2012) identified SG formation as one of the parallel strategies used by 

COS7 cells to inhibit protein synthesis and ensure survival under cold conditions 

(10⁰C).  These findings are in agreement with those observed in hCNs under milder 

hypothermic temperatures (see Chapter 5).  Again, caution must be taken when 

translating findings from immortal cultures to hCNs, but the fact that SGs did not 

form in COS7 cells at 30 or 20⁰C (Hofman et al., 2012) supports the concept of an 

increased resistance of these cells to physiological stress.  In several immortal cell 

lines, De Leeuw et al. (2007) observed redistribution of nuclear CIRBP into SGs in 

response to oxidative and ER stress.  CIRBP-positive SGs were not obvious at mild-

to-moderate hypothermic temperatures in hCNs (Fig.4.4) and there was no 
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appreciable increase in cytoplasmic expression of this protein (Fig.4.6).  However, 

the granular accumulation of CIRBP is thought to occur via a TIA-1 independent 

mechanism, and thus might not be detectable using the methods employed in hCNs 

(De Leeuw et al., 2007).  Nevertheless, this does not rule out a contribution of 

CIRBP to hypothermic protection of hCNs against oxidative stress, as demonstrated 

in rat cortical neurons treated with H2O2 (Li et al., 2012).  Conceivably, cold-shock 

proteins may temper activation of the PERK pathway, thereby relieving translational 

repression of critical mRNAs, whilst limiting CHOP-mediated apoptosis (Dresios et 

al., 2005; Saito et al., 2010).  Of note, RBM3 can inhibit the DNA damage response 

and might thus modify CHOP responses to DNA damage in stressed, hypothermic 

neurons (Sureban et al., 2008).  However, CHOP has also exhibited protective 

functions in the face of oxidative stress and impaired memory performance (Chen et 

al., 2012a; Cano et al., 2014) and it appears to be required for neuronal survival after 

seizures (Engel et al., 2013).  Clearly, a moderated level of CHOP expression would 

be needed for hormesis and this explains why the increase in CHOP in cooled hCNs 

was not associated with cell death.  Even this small bias in the outputs of proximal 

UPR transducers would have a critical impact on physiology, because of the strength 

of negative feedback within the circuit (Tabas, 2011).  Ultimately the role of cold-

shock proteins in hypothermic preconditioning requires molecular validation, since 

specific chemical inhibitors of RBM3 and CIRBP are not commercially available.  

Using a lentiviral-mediated siRNA approach, preliminary experiments suggest that 

RBM3 is required for hypothermic protection of hCNs against oxidative stress (data 

not shown).  Since chemical chaperones can enhance the adaptive capacity of the ER 
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(Ozcan et al., 2006), the prediction is that cold-shock proteins participate in cooling-

induced ER-hormesis. 

 

It would be remiss to overlook the profound similarities between hypothermia-

induced cellular transitions and those observed during oncogenesis; both use a 

molecular language that favours survival.  The power of this language underlies the 

‘cross-tolerance’ of TH (Parsell and Lindquist, 1993; Sonna et al., 2002; Rutkowski 

et al., 2006; Stetler et al., 2014), but also the highly resistive nature of some tumours.  

Decoding the crosstalk may deliver potently neuroprotective agents on the one hand, 

and novel cancer targets on the other (Kim et al., 2008; Martin et al., 2013; 

Mollereau, 2013).  For instance, chemotherapy-resistant cancer cells often express 

high levels of Hsps and their malignancy may be reduced by selectively diminishing 

their capacity to mount a stress response (Sonna et al., 2002; Mayer and Bukau, 

2005; Chakrabarti et al., 2011; Martin et al., 2013).  In the field of oncology, a useful 

adversary to ‘cross-tolerance’ is ‘collateral sensitivity’ in which acquisition of a 

drug-resistant phenotype confers sensitivity to another stressor, such as hypothermia 

(Cerezo et al., 2015).  Arguably, hypothermic preconditioning could render neurons 

vulnerable to other disease-associated processes such as necrotic cell death (Burattini 

et al., 2010) or tumorigenesis.  Indeed, cold-shock proteins have been associated with 

drug-resistant cancers (Lleonart et al., 2010; Zhang et al., 2013).  Thus, converting 

cold-inducible phenomena into treatments for chronic conditions must consider this 

potential drawback (Peretti et al., 2015), given that many of these patients will be at 

an increased age-associated risk for neoplastic disease.  The impairment of 

proteostatic responses in neurodegenerative conditions does however confirm a 
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deficit that needs addressing (Kim et al., 2008; Koga et al., 2011) – the early 

decrease in translocation of ER proteins in P301S mice shows how compounding this 

deficit might accelerate disease (Yoshiyama et al., 2007).   

 

Whilst hypothermia has largely neuroprotective benefits, anaesthetics have exhibited 

short-term protective and long-term neurodegenerative effects (Berns et al., 2009) or 

even no effect at all (Feiner et al., 2005).  This may reflect the divergent mechanisms 

by which these treatments alter tau phosphorylation; cooling and anaesthesia-induced 

hypothermia have their primary effect via PP2A inhibition (Planel et al., 2007a), 

whereas ether modulates tau kinases and propofol increases PP2A activity (Kingston 

et al., 2006; Ikeda et al., 2007).  NMDAR stimulation decreases PP2A activity which 

in turn enhances NMDA currents (Wang et al., 1994; Chan and Sucher, 2001).  This 

NMDAR-PP2A interaction has been proposed to signal the recent history of 

NMDAR activation and may thus help regulate synaptic plasticity and dendritic 

spine growth (Chan and Sucher, 2001).  By stimulating PP2A activity and thus 

inhibiting NMDAR phosphorylation, propofol inhibits LTP – although this may also 

require propofol-induced neuritic retraction (Takamatsu et al., 2005; Kingston et al., 

2006; Feng et al., 2007; Turina et al., 2008).  On the one hand this may be 

responsible for propofol-induced deficits in memory, but in the context of 

excitotoxicity, it may provide neuroprotection by suppressing intracellular calcium 

influx or by shielding synapses (Velly et al., 2003; Grasshoff and Gillessen, 2005; 

Feng et al., 2007; Bickler et al., 2012).  Also, whilst cooling can induce microtubule 

disassembly (Fujita, 1999), pentobarbital anaesthesia leaves microtubules intact even 

though it hyperphosphorylates tau in transgenic mice expressing all human tau 
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isoforms (Planel et al., 2008).  This is thought to be mediated by selective removal of 

3R tau, leaving 4R isoforms attached to the stabilized microtubules (Planel et al., 

2008).  Notably, anaesthetics can also act as a preconditioning stimulus (Wei and 

Xie, 2009; Wang et al., 2012).  The final experiments in Chapter 6 specifically 

demonstrated that PP2A inhibition was partially responsible for the neuroprotective 

effect of hypothermia in hCNs.  PP2A is ubiquitously expressed and plays a role in 

many fundamental cellular processes from DNA replication to cell growth, signal 

transduction and apoptosis (Chan and Sucher, 2001).  Therefore, the inhibition of this 

major brain phosphatase could contribute to hypothermic neuroprotection via several 

mechanisms irrespective of tau modulation.  The potential role of tau kinases is even 

less clear – in one study of hibernating ground squirrels, the change in GSK3β 

activity with cooling was biphasic, commencing with an increase in activity (Su et 

al., 2008).  Conditional knockdown or mutagenesis of cooling-associated tau 

phospho-epitopes (Hoover et al., 2010) at various temperatures would confirm 

whether increased tau phosphorylation has a specific role in the neuroprotective 

effect of cooling.     

 

The molecular mechanisms underlying hypothermic neuroprotection are ill-defined, 

although candidate pathways are implicated in other model systems and within the 

cyclical adaptation of some mammalian brains to hibernation (Arendt et al., 2003; 

Chip et al., 2011; Stieler et al., 2011; Yenari and Han, 2012; Tong et al., 2013).  The 

synaptic plasticity of hibernation has been linked to modification of tau, in a manner 

that closely resembles hypothermic transitions in hCNs (Arendt et al., 2003). This re-

acquisition of foetal-like tau could offer multiple benefits such as potentiation of 
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hCN tolerance to glutamate (Mondragon-Rodgriguez et al., 2012).  Direct effects of 

cooling on metabolic rate and synaptic transmission have been described previously, 

although indirect mechanisms as described above are clearly also important.  Both 

kinase-phosphatase asymmetry and ER-hormesis represent significant components of 

hypothermic preconditioning of human neurons and are essential to defend hCNs 

against an oxidative challenge.  In the context of previous literature, certain 

predictions can be made from observations in these cooled neurons.  RBM3 and 

CIRBP might inhibit pathways leading to programmed cell death, whilst promoting 

translation of core survival machinery and biasing the proteome towards a 

‘undifferentiated’ or proliferative phenotype (Saito et al., 2010).  Meanwhile, RD of 

key structural elements such as tau would not only increase neuronal resilience, but 

also prime neurons for repair.  This would include a dramatic shift in post-

translational properties that, at hypothermic temperatures, could trigger only an 

adaptive UPR: apoptotic outcomes would be overridden by inhibited synthesis of 

apoptotic proteins and activation of cold-shock chaperones.  Like other UPR 

components such as AT4 (Halliday and Mallucci, 2014), these chaperones can 

escape cooling-induced suppression.  CIRBP probably achieves this through 

transcriptional upregulation (the CIRBP promoter contains a cold-response element), 

whilst the RBM3 mRNA 5’ leader sequence contains an internal ribosome entry site 

that would improve the efficiency of its translation in a cap-independent manner 

(Chappell et al., 2001; Sonna et al., 2002).  These RBPs would then go on to stabilise 

essential transcripts needed for neuronal survival.  Via GADD34 feedback and BiP 

upregulation cooling-induced ER-hormesis would ensure the continued synthesis and 

appropriate folding of critical proteins, whilst the otherwise global hypothermic 
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suppression of transcription and translation would prevent ER overload.  Although 

definitive studies are needed to address the specific contribution of each of these 

phenomena to neuroprotection, their synchronous effects could substantially enhance 

the therapeutic potency of cooling.   

 

The comparison drawn between cooling, hibernation and neurodegeneration raises 

questions about the true role of tau in neuronal and glial pathology.  Tau 

hyperphosphorylation is similar in dividing and degenerating neurons suggesting that 

this increased tau phosphorylation state may induce ectopic cell cycle re-entry and 

activate regenerative signalling (Illenberger et al., 1998; Wen et al., 2004; Andorfer 

et al., 2005; Khurana et al., 2006; McShea et al., 2007; Wang and Liu, 2008; Frost et 

al., 2014).  This response might seem de rigeur in the face of neuronal loss, but it is 

considered too rudimentary to be effective (Wang and Liu, 2008).  Moreover, such 

aberrant mitosis is thought to precede NFT formation in AD (Wen et al., 2004).  It 

may however be fortuitous if the division is asymmetric and has a fixed polarity; 

protein aggregates can be partitioned into the newest progeny cell, thus rescuing the 

longer-lived daughter from cellular stress and apoptosis (Rujano et al., 2006; 

Fuentealba et al., 2008; Singhvi and Garriga, 2009; Tyedmers et al., 2010; Chen et 

al., 2012a).  Such a clearance mechanism has been demonstrated for Huntingtin 

aggresomes in HEK293 cells (Rujano et al., 2006).  This highly conserved alternative 

to autophagy could explain a build up of aggregates in the brain before any 

measurable neuronal loss (Rujano et al., 2006).  Interestingly, proteins which are 

specifically targeted for proteasomal degradation such as GSK3 appear to be 

preferentially inherited by one mitotic daughter during somatic cell division in a 
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microtubule-dependent manner (Fuentealba et al., 2008).  It is reasonable to consider 

that cell cycling aspects of ‘tauopathy’ are merely unguided attempts at neuronal 

repair (Wang and Liu, 2008) – although an alternative hypothesis is that newborn 

cells are generated for the deposition of tangles, or to compensate for tangle-bearing 

neurons.  The ‘propagation’ of tangle material by cell division is unlikely to be 

frequent enough in the mature brain to explain the ‘prion-like’ pattern of NFT 

spread, but it raises the possibility that certain neurons are sacrificed as garbage 

repositories so that others may be tangle-free.  In aged htau mice, markers of cell 

cycle re-entry do not exist in neuronal populations that bear NFTs – many of which 

appear morphologically ‘healthy’ (Andorfer et al., 2005).  The specific markers 

expressed suggest that cells are halted at G1/S and do not proceed to G2/M phase, 

implying that mitosis is incomplete (Andorfer et al., 2005).  This is consistent with 

the concept that NFTs afford some protective function, but it is also reminiscent of 

the cell cycle arrest that occurs during cold-shock (Fujita, 1999; Lleonart et al., 

2010).  Changes in microtubule function, as a result of early tau 

hyperphosphorylation may prevent cell cycle progression in a proportion of neurons 

that do not have the capacity to compartmentalize tau oligomers into insoluble 

aggregates (Andorfer et al., 2005).  Others have hypothesised that post-mitotic 

neurons redirect molecular pathways of the cell cycle towards maintaining synaptic 

plasticity and that synaptic loss in AD is misinterpreted as a loss of contact 

inhibition, thus triggering reactivation of the cell cycle (Arendt and Bruckner, 2007).  

Conceivably, a reduced capacity to upregulate RBM3 in neurodegeneration (Peretti 

et al., 2015) may facilitate this inappropriate divergence of plasticity mechanisms 

towards an archaic but stilted ontogenic programme.  Since cerebral ischaemia can 
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bring about cell cycle re-entry and Alzheimer-like tau phosphorylation, it seems 

likely that several types of physiological stress (including hypothermia) produce a 

similar response (Wen et al., 2004).  More recently, it was shown that pathological 

tau induces oxidative stress-mediated heterochromatin relaxation leading to a shift in 

the global genetic programme that promotes neuronal dedifferentiation (Frost et al., 

2014).  This effect may be compounded by loss of function of dephosphorylated tau 

that normally accumulates in neuronal nuclei in response to oxidative and heat stress 

and protects DNA from damage (Sultan et al., 2010).  Together with the ‘stem-like’ 

features promoted by CIRBP expression (Saito et al., 2010), these findings add to the 

weight of evidence that tau modulation and cold-shock protein induction during 

cooling cooperate to trigger RD.       

 

 

In response to cooling, hCNs displayed all the hallmarks of an adaptive, 

preconditioning UPR response: mild ER stress and activation of all 3 ER-stress 

transducers, a low level of CHOP induction that was insufficient to effect apoptosis, 

absence of detectable levels of phospho-eIF2α, and residual expression of key ER 

chaperones (Rutkowski et al., 2006; Tabas, 2011; Rzechorzek et al., 2015).  UPR-

mediated preconditioning has already shown therapeutic promise in a model of PD 

(Valdes et al., 2014), however, preconditioning critically depends on the duration and 

intensity of the primary stress (Klose et al., 2004; Tabas, 2011).  Hence these 

parameters, in addition to the rate of onset of hypothermic effects likely dictated the 

fate of cooled hCNs.  What has not been addressed here is the reversibility of these 

effects and the period over which they would remain protective – this is part of 
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ongoing work.  Indeed in human cells, proteasome-mediated turnover of GADD34 is 

critical for the orderly synthesis and folding of proteins in the ER and prolonged 

GADD34 function may actually lead to proteotoxicity (Brush et al, 2008).  Another 

recent study has highlighted the detrimental effects of chronic (2 w) cold water stress 

in vivo which precipitated Alzheimer-like pathology and associated cognitive deficits 

in the rat (Ahmadian-Attari et al., 2015).  In the clinic TH is necessarily transient, 

and must be tapered with extreme care to minimise the risks of re-warming (Choi et 

al., 2012).   

 

Proteasome inhibitors (such as MG-132), alternative inducers of ER stress (such as 

thapsigargin which, unlike Tm, blocks calcium reuptake into the ER lumen and does 

not require protein synthesis to take effect (Rutkowski et al., 2006)) and chemical 

chaperones (such as 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid 

(TUDCA) that effectively block the whole UPR) will help to determine the 

proportional contribution of ER-hormesis to hypothermic neuroprotection (Paschen 

et al., 2003; Ozcan et al., 2006; Engin and Hotamisligil, 2010; Begum et al., 2014; 

van der Harg et al., 2014).  In addition to salubrinal and guanabenz, valproate is a 

widely prescribed drug used to treat bipolar disorder and epilepsy (Hoozemans and 

Scheper, 2012).  Valproate can increase the levels of BiP and GRP94 and might be a 

useful experimental modulator of proteostatic priming in cooled hCNs (Bown et al., 

2000).  This drug can also inhibit GSK3 activity (Kim et al., 2005; Hoozemans and 

Scheper, 2012) and could help to tease out phospho-tau-UPR interactions in this 

system.  GSK3 inhibition can reduce CHOP activation, shifting the cell towards 

survival – a mechanism that could potentially manifest under hypothermic conditions 
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(Meares et al., 2011).  Finally, more specific modulators of UPR components such as 

Ire1α kinase-inhibiting RNase attenuators (KIRAs) that selectively enhance XBP1 

splicing are emerging and will promote future delineation of branch-dependent 

effects (Han et al., 2009; Engin and Hotamisligil, 2010; Bouchecareilh et al., 2011).  

In particular, the Ire1α-JUN pathway is required for activation of autophagy after ER 

stress (Hoozemans and Scheper, 2012) and thus could play a significant role in 

hypothermic preconditioning of patient-derived neurons against protein aggregates.  

Another extension of UPR-driven benefits beyond the ER might include PERK-

mediated upregulation of antioxidant responses via phosphorylation of nuclear factor 

(erythroid-derived 2)-like-2 (Nrf2) (Cullinan et al., 2003; Hoozemans and Scheper, 

2012).  The Nrf2 pathway is more active in astrocytes than neurons (Kraft et al., 

2004; Baxter, 2011), but can protect neurons if overexpressed in a cell-autonomous 

manner or if upregulated in astrocytes (Soriano et al., 2008; Vargas et al., 2008; 

Chen et al., 2009; Calkins et al., 2010; Baxter, 2011).  Such a mechanism reversed 

astrocytic neurotoxicty in the SOD1 mouse model of ALS (Vargas et al., 2008).  

Interaction of the UPR with these other stress pathways may be important to the 

‘cross-tolerance’ induced by cooling.  PERK-mediated Nrf2 activation may have 

specifically contributed to hCN defences against oxidative stress by a cell-

autonomous or indeed non-cell autonomous mechanism (given the small proportion 

of GFAP-positive cells in hCN cultures).   

 

7.2 Concluding statement 

 

Historically, increased tau phosphorylation has been associated with neural demise.  

By contrast, the data above indicates that real-time tau transitions under hypothermia 
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promote neuronal survival.  In addition, cold-stress upregulates key chaperone-driven 

pathways in a manner that favours cytoprotective outputs of the UPR.  Whilst 

hypothermia has been shown to activate a beneficial Hsp response in mesenchymal 

stem cells (Stolzing et al., 2006), PERK activation in COS7 cells at 10⁰C (Hofman et 

al., 2012) and consolidation of the UPR in torpid hamsters (van der Harg et al., 

2014), this thesis provides the first demonstration of a cold-stress induced UPR 

cascade in cells (Rzechorzek et al., 2015).  Furthermore, as far as the author is aware, 

this is the first report of cooling-induced ER-hormesis in any biological system.  

Future work will establish which of these cold-stress-induced changes are required 

for hCN protection, how they might interact and whether they can be targeted for 

therapeutic gain.  As others have intimated (Lee et al., 2005), therapeutic strategies 

aimed at reducing tau phosphorylation may inadvertently undermine critical neuronal 

stress responses that enable survival of a cell facing extreme and relentless metabolic 

pressure.  The work described herein starts to unpick the complex molecular circuits 

that integrate cooling-induced preconditioning with proteostasis, and re-invests the 

concept of tau as a guardian of neural integrity.  Prospects for realising ‘tau-driven’ 

rather than ‘tau-targeted’ therapies are thus a step closer.  To date, hypothermic 

preconditioning has protected hCNs against oxidative, excitotoxic and ER stress, all 

of which feature in traumatic as well as degenerative processes.  This ‘cross-

tolerance’ effect (Rutkowski et al. 2006; Stetler et al., 2014) highlights the potential 

of molecular neurocryobiology to yield innovative therapeutic targets for devastating 

disorders.  Overall, this thesis delivers mechanistic insight into hypothermic 

neuroprotection, in a system highly relevant to its clinical application.   
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Hypothermia is potently neuroprotective but poor mechanistic understanding has restricted its clinical use.
Rodent studies indicate that hypothermia can elicit preconditioning, wherein a subtoxic cellular stress confers
resistance to an otherwise lethal injury. The molecular basis of this preconditioning remains obscure. Here we
explore molecular effects of cooling using functional cortical neurons differentiated from human pluripotent
stem cells (hCNs). Mild-to-moderate hypothermia (28–32 °C) induces cold-shock protein expression and mild
endoplasmic reticulum (ER) stress in hCNs, with full activation of the unfolded protein response (UPR). Chemical
block of a principal UPR pathway mitigates the protective effect of cooling against oxidative stress, whilst pre-
cooling neurons abrogates the toxic injury produced by the ER stressor tunicamycin. Cold-stress thus precondi-
tions neurons by upregulating adaptive chaperone-driven pathways of the UPR in amanner that precipitates ER-
hormesis. Our findings establish a novel arm of neurocryobiology that could reveal multiple therapeutic targets
for acute and chronic neuronal injury.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Therapeutic cooling offers robust protection against ischaemic brain
damage, but its practical challenges and risks have limited its applica-
tion to specific patient groups (Choi et al., 2012; Yenari and Han,
2012). Advancing our insight into cooling-induced neuroprotection at
the cellular level could provide new molecular targets to bypass the
need for cooling—whilst expanding its therapeutic potential. Precondi-
tioning describes the tolerance achieved against an intensively toxic in-
sult by subjecting cells or tissue to a sublethal stress (Stetler et al., 2014).
Neuronal preconditioning can be effected by many and varied stimuli,
including hypothermia (Dirnagl et al., 2003; Yuan et al., 2004; Stetler
et al., 2014). In rodents, this cooling-induced tolerance requires de
novo protein synthesis (Nishio et al., 2000) — a fundamental arm of
the cold-shock response (Fujita, 1999), for which data in human neu-
rons is lacking. Depending on the depth of cooling, this response leads
cal Brain Sciences, University of
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to cell-cycle arrest with shut-down of transcription and translation
(Yenari and Han, 2012). Simultaneously, a subset of highly conserved
‘cold-inducible’ RNA chaperones including RNA binding motif 3
(RBM3) and cold-inducible RNA binding protein (CIRBP) is rapidly
upregulated (Lleonart, 2010). These ‘cold-shock’ proteins mediate
important survival functions including facilitated translation of essential
mRNAs and suppression of apoptosis (Lleonart, 2010; Saito et al., 2010).

Aside from induction of cold-shock proteins however, little is known
of other fundamental cellular stress pathways in relation to cooling and
their potential relevance to hypothermic preconditioning (Hofman
et al., 2012; van der Harg et al., 2014). Hypothermia can induce protein
unfolding and disrupt the cell secretory pathway (Saraste et al., 1986;
Liu et al., 1994; Fujita, 1999), both ofwhichwould result in endoplasmic
reticulum (ER) stress (Kim et al., 2008). However, mammalian cell lines
have produced conflicting data regarding the ability of cooling to trigger
ER stress and downstream events coordinated by the unfolded protein
response (UPR) (Hofman et al., 2012; van der Harg et al., 2014).
Although this may relate to the variable depths of hypothermia studied,
it likely also reflects the resistance of immortal cell types to physiologi-
cal stress (Abdel Malek et al., 2015; Cerezo et al., 2015). Furthermore,
the ER-UPR cascade as a whole has never been explored at clinically-
relevant hypothermic temperatures. Potentially, such a moderate level
of cold-stress might bring about an adaptive proteostatic response in
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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post-mitotic neurons (Mendes et al., 2009; Fouillet et al., 2012). Here
we test this hypothesis by characterizing the cold-shock response to
protective hypothermia in functional cortical neurons differentiated
from human pluripotent stem cells (hCNs) (Bilican et al., 2014),
using this model to explore the molecular basis of hypothermic
preconditioning.

2. Materials and Methods

2.1. Human Brain Tissue

Human post-mortem cortical brain tissue was obtained under full
ethical and Institutional Review Board approval of the University of
Edinburgh. Adult samples (healthy control, 17 y) were provided by
the MRC Edinburgh Brain & Tissue Bank. Foetal samples were procured
after elective surgical abortion (gestation 16w),with full ethics permis-
sion of the NHS Lothian Research Ethics Committee (REC 08/S1101/1).
Post-mortem samples were included as positive (foetal) and neg-
ative (adult) controls for RBM3 and CIRBP expression, which is
developmentally-regulated in the human cortex (Miller et al., 2014
and The Allen Institute for Brain Science).

2.2. Cell Culture

All culture experiments were performed using hCNs derived from
human pluripotent stem cell lines. Two human embryonic stem cell
(hES) lines (H9, female, WiCell, Madison, WI and Shef 4, male, UK
Stem Cell Bank, designated HES1 and HES2) were obtained under full
ethical and Institutional Review Board approval of the University of
Edinburgh. One human induced pluripotent stem cell (iPS) line (IPS1,
healthy female control) was reprogrammed in-house after obtaining
written informed consent and ethics permission (REC/10/S1103/10).
hCN differentiation and immunocytochemistry protocols are described
in Bilican et al. (2014). Primary antibodies (Abs) included: βIII-tubulin
(mouse monoclonal, Sigma), RBM3 (rabbit monoclonal, Abcam) and
CIRBP (rabbit polyclonal, Pierce). Cell counts were performed blind to
the temperature variable.

2.3. Cooling and Multiplexed Injury Assays

Hypothermia was induced at 5 wwhen N90% of hCNs are functional
(Bilican et al., 2014; Livesey et al., 2014). Identical plates were cultured
at 28, 32 or 37 °C to simulate ‘moderate hypothermia’, ‘mildhypothermia’
or ‘normothermia’, respectively (Yenari and Han, 2012). Samples for
transcript analysis were lifted at 3 and 24 h, after which additional sam-
ples were processed for immunocytochemistry and biochemistry. For
oxidative injury experiments, neuronswere switched tominimalmedi-
um (MiM (Gupta et al., 2013)) containing no antioxidants 12 h prior to
temperature shift as above. After 24 h, H2O2 (diluted in MiM) was
applied at 0, 50, 100 or 200 μM via 50% media exchange. Control wells
received MiM with vehicle only. After a further 24 h at the respective
temperatures, culture media was harvested for the cytotoxicity assay
(CytoTox-One™, Promega), and cells lysed for the viability assay
(CellTiter-Glo®, Promega). LDH release (cytotoxicity) was read
fluorometrically (excitation 560 and emission 590 nm), whilst ATP pro-
duction (viability) was measured via luminescence (Promega Glomax).
Readings were taken in triplicate and averaged for each condition, after
subtracting values for MiM only (fluorescence) and no cell control
(luminescence). The derived ‘injury ratio’ (cytotoxicity in relative fluo-
rescent units (RFU) divided by viability in relative luminescent units
(RLU)) obtained for each well of cells adjusted for any potential inter-
well variation in cell number. To evaluate baseline toxicity of
tunicamycin (Tm) and protein kinase R (PKR)-like ER kinase (PERK)
inhibitor, neurons were switched to MiM 12 h before a 24 h exposure
to these compounds at 37 °C followed by multiplexed injury analysis
as above.
Please cite this article as: Rzechorzek, N.M., et al., Hypothermic Precond
EBioMedicine (2015), http://dx.doi.org/10.1016/j.ebiom.2015.04.004
2.4. Quantitative Real-Time PCR (qRT-PCR)

RNA extraction, cDNA synthesis and qRT-PCR were performed as
described (Bilican et al., 2014) using primers listed in Supplementary
Materials and Methods. Validation of reference target stability in hCNs
under hypothermic conditions was determined with a combination
of geNorm (qbase+, Biogazelle) and NormFinder (Excel) analysis
(Vandesompele et al., 2002). qRT-PCR reactions were performed in
triplicate and average target transcript expression was normalized to
the geometric mean of eukaryotic translation initiation factor 4A2
(EIF4A2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
expression for each sample.
2.5. Quantitative Western Analysis

Cell pellets were harvested in ice-cold Tris-buffered saline (TBS)
containing protease inhibitors (cOmplete ULTRA, Roche), and where
necessary, phosphatase inhibitors (PhosSTOP, Roche). Post-mortem
samples were divided into 200–300 mg pieces at 4 °C. Protein was
extracted on ice in radioimmunoprecipitation assay (RIPA) buffer
(50 mM Tris pH 8, 150 mM NaCl, 1% Triton-X 100, 5 mM ethylenedi-
aminetetraacetic acid (EDTA), 0.5%Na·deoxycholate (w/v), 0.1% sodium
dodecyl sulphate (SDS)) containing protease inhibitors (as above, plus
100 μM phenylmethanesulfonylfluoride (PMSF), Fluka BioChemika).
Tissue samples required homogenization (Precyllys®24). Lysates were
ultracentrifuged (20 min, 50,000 ×g, 4 °C, Beckman). RIPA-insoluble
pelletswere further extracted for 20min in 2% SDS RIPA followed by re-
peat ultracentrifugation to isolate nuclear proteins. Protein concentra-
tion was measured (BCA assay, Pierce) and samples boiled prior to
SDS-polyacrylamide gel electrophoresis (PAGE) (4–20% gradient gels,
Thermoscientific). Proteins were transferred onto Immobilon®-FL
polyvinylidene fluoride (PVDF) membranes (Millipore) and blocked
for 45 min at room temperature (Odyssey™ Blocking Buffer, LI-COR®
Biosciences). Membranes were incubated overnight at 4 °Cwith prima-
ry Abs: activating transcription factor 6 (ATF6 at 1:100, mouse mono-
clonal, Abcam), binding immunoglobulin protein (BiP; also known as
glucose-regulated protein, 78 kDa (GRP78) or heat shock 70 kDa
protein 5 (HSPA5) at 1:1000, rabbit monoclonal, Abcam), CIRBP
(at 1:500, rabbit polyclonal, Proteintech), eukaryotic initiation factor
2α (eIF2α at 1:1000, mouse monoclonal, Abcam), phospho-eIF2α
(p-eIF2α at 1:100, rabbit monoclonal, Cell Signalling), PERK (at 1:100,
rabbit monoclonal, Cell Signalling), RBM3 (at 1:100, rabbit monoclonal,
Abcam), GAPDH (at 1:10,000, mouse monoclonal, Calbiochem) or het-
erogeneous nuclear ribonucleoprotein (hnRNP) A1 (at 1:1000, mouse
monoclonal, Santa Cruz), then probed for 1 h at room temperature
with Fluorescent conjugated secondary Abs (IRDye®680RDGoat (poly-
clonal) Anti-Rabbit IgG (H + L) and IRDye® 800CW Goat (polyclonal)
Anti-Mouse IgG (H + L), LI-COR® Biosciences). Blots were exposed
for 10 min (at 700 nm and/or 800 nm, LI-COR® Odyssey Fc Dual-
Mode Imaging System), with band intensities quantified in Image
Studio. Samples for each independently plated batch of cells were run
in triplicate and average intensity readings were normalized to their
respective loading control expression or total eIF2α expression (for
p-eIF2α quantification).
2.6. XBP1 Splicing Assay

hCNs were treated for 24 h with hypothermia or Tm (0.3 μg/ml).
qRT-PCR was performed as above. Conventional RT-PCR was per-
formed using Quick-Load® Taq 2X Master Mix (New England Biolabs)
and a BioRad C1000 Thermal Cycler (annealing temperature 60 °C).
GAPDH and c-Myc (MYC) were included for reference and to confirm
a stress response respectively. Products were resolved on 2.5% agarose
gels.
itioning of Human Cortical Neurons Requires Proteostatic Priming,
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2.7. Media and Supplements

Components were purchased from Invitrogen unless otherwise
stated. hCN differentiation medium is described elsewhere (Bilican
et al., 2014; Livesey et al., 2014). MiM comprised 90% salt–glucose–
glycine solution (Bading et al., 1993) with 10%Minimal Eagle's Medium
(+Earle's,−Glutamine) and0.5% Penicillin–Streptomycin. Tm(0.3 μg/ml,
Sigma) and PERK inhibitor (GSK2606414, 500 nM, Calbiochem) were
applied from the start of the temperature shift (they were present at
these concentrations throughout the 24 h preconditioning phase and
were then diluted by 50% upon the addition of H2O2 for the 24 h injury
phase).

2.8. Statistical Analysis

Pairwise correlations were performed by two-tailed Pearson corre-
lation. Remaining analyses were performed using linear mixed models
in Stata SE (Version 9.2, Stata Corp, TX, USA)with random effects for in-
tercept by batch, andwhere necessary, random effects for coefficient by
concentration or time.N denotes the number of individual cell lines and
n describes the total number of independently differentiated batches of
hCNs used as the statistical n for each experiment (the number of inde-
pendent observations). The number (nline) of batches derived from each
cell line is then stated in parenthesis to show the contribution of each
biological entity to the pooled total. Unless otherwise stated, data
are presented as standardized point estimates (SPE) + standardized
estimated standard error (SESE) after normalizing to control values
(normothermic or untreated cells). Asterisks denote significance of
the test statistic: *P b 0.05, **P b 0.01, ***P b 0.001, ****P b 0.0005.

3. Results

3.1. Human Neurons Exhibit an Archetypal Cold-Shock Response

To confirm the utility of hCNs to study cryobiological phenomena –

and noting that hallmark cold-shock protein induction has not previ-
ously been reported in human neurons – we first tested their capacity
to elicit this response at mild-to-moderate hypothermic temperatures
(Danno et al., 1997; Fujita, 1999; Chip et al., 2011; Yenari and Han,
2012; Tong et al., 2013; Peretti et al., 2015). Within 24 h of cooling,
RBM3 and CIRBP transcripts were both increased in hCNs at 28 °C and
32 °C relative to 37 °C, with a concomitant increase in the proportion
of RBM3- and CIRBP-positive cells (Fig. 1A and B). RBM3 displayed a
more acute and robust response to hypothermia than CIRBP, and both
proteins exhibited a predominantly nuclear expression pattern
(Fig. 1C and D). Biochemical analysis confirmed upregulation of these
chaperones in response to cooling (Fig. 1E and F), and correlation of
RBM3 and CIRBP transcript levels at each temperature was supportive
of their co-regulation under hypothermic conditions (Fig. 1G). In addi-
tion, hypothermic hCNs exhibited a time- and temperature-dependent
induction of immediate early transcripts c-Fos (FOS) and c-Jun (JUN)
(Yenari and Han, 2012) (Fig. S1 available online). Together, these
findings are consistent with a physiological cold-shock response in
hCNs.

3.2. Cooling Induces ER Stress in Human Neurons with Activation of
All UPR Branches

Since cold-shock can activate PERK (Hofman et al., 2012) and JUN
(Fig. S1), both of which are components of the UPR, we postulated
that cooling could trigger ER stress— the principal driver of UPR activity
(Walter and Ron, 2011). We tested this using Tm as a positive control
(Lin et al., 2007). BiP and 94 kDa glucose-regulated protein (GRP94)
are key chaperones that respond to ER stress and regulate protein fold-
ing (Walter and Ron, 2011). We observed a temperature-dependent
induction of BiP transcript, at an order of magnitude less than that
Please cite this article as: Rzechorzek, N.M., et al., Hypothermic Precond
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produced by Tm (Fig. 2A), whilst GRP94 transcript was elevated at
24 h only in response to Tm treatment (Fig. S2A). BiP protein also
showed an increasing trendwith cooling (Fig. 2B and D). ER stress initi-
ates a tripartite signalling cascade via 3 ERmembrane-associated signal
transducers (Walter and Ron, 2011). Once activated by autophosphory-
lation, the first of these transducers (inositol requiring enzyme 1α
(Ire1α)) directs non-conventional splicing of its downstream target,
x-box binding protein-1 (XBP1) (Lin et al., 2007). Spliced XBP1
(XBP1s) regulates transcription of several UPR target genes including
chaperones and ER-associated degradation (ERAD) components which
serve to alleviate ER stress (Hetz and Mollereau, 2014). We found a sig-
nificant upregulation of total XBP1 and Ire1α (ERN1) transcripts at 28
and 32 °C relative to 37 °C (Figs. 2C and S2B). We also observed an in-
crease in XBP1s transcript after cooling, again to a lesser extent than
that produced by Tm (Fig. 2E and F). A second UPR pathway involving
cleavage of ATF6 was induced at 28 °C (Hetz and Mollereau, 2014)
(Fig. 2D). ATF6 activates transcription of ERAD genes and XBP1 (Hetz
and Mollereau, 2014). Within the third pathway, total PERK expression
decreased after 24 h cooling and eIF2α was inactive at this time point
according to biochemical analysis of its phosphorylated form
(Fig. S2C) (Rutkowski et al., 2006). There was however a significant in-
crease in their downstream targets, activating transcription factor 4
(ATF4), DNA damage-inducible transcript 3 (DDIT3, or CHOP) and
growth arrest and DNA damage 34 (GADD34) at hypothermic temper-
atures (Figs. 2G, H, and S2E). In summary, these findings demonstrate
a mild ER stress in cooled hCNs, sufficient to activate all branches
of the UPR. To our knowledge, this is the first description of a full UPR
cascade in cells under hypothermic conditions.

3.3. Hypothermic Preconditioning of Human Neurons Requires
UPR-Driven ER-Hormesis

Mild ER stress with UPR activation inhibits apoptosis (Rutkowski
et al., 2006) andpre-conditionsneurons to resistmore stressful insults—
an effect termed ER-hormesis (Mendes et al., 2009; Fouillet et al., 2012).
To determine whether ER preconditioning contributes to hypothermic
protection of hCNs we chemically modified the ER-UPR cascade during
the pre-cooling phase, prior to inducing a standard oxidative stress pro-
tocol. PERK inhibitor was used to block the third UPR pathway, whilst
Tmwas added to induce ER stress (Lin et al., 2007). First we determined
dose response curves for each compound in normothermic hCNs to
identify concentrations that were non-toxic at baseline (Fig. S3).
Multiplexed injury analysis (Materials and Methods) was then applied
to hCNs exposed to increasing concentrations of H2O2, after pre-
incubation at 28 °C or 37 °C, with or without PERK inhibitor or Tm. As
expected, moderate hypothermia was protective of hCNs (Fig. 3A and
B). However, PERK inhibition increased hCN injury at each temperature,
abrogating the protective effect of cooling at all but the highest concen-
tration of H2O2 (Fig. 3A). Tm exacerbated oxidative stress-mediated
injury at 37 °C, but this effect was attenuated by pre-conditioning at
28 °C (Fig. 3B), thus directly demonstrating cooling-mediated
ER-hormesis. These results confirm that full hypothermic neuroprotec-
tion requires an intact UPR to prime the ER against intensively toxic
insults. The influence of cooling on this proteostatic cascade in hCNs is
summarized in Fig. 3C.

4. Discussion

In acute injury, mildly enhancing the UPR can rescue neurons from
programmed cell death and instigate adaptive ER preconditioning
(Hetz and Mollereau, 2014). In hCNs, PERK activity was essential for
hypothermic preconditioning against an oxidative challenge. Mild
XBP1 splicing after 24 h of cooling, together with a substantial increase
in unspliced XBP1 mRNA (Figs. 2E, F, and S2B) indicate that Ire1α and
ATF6 were active within the cooling period (Hetz and Mollereau,
2014). Moreover, the increase in BiP transcript after 24 h is consistent
itioning of Human Cortical Neurons Requires Proteostatic Priming,
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Fig. 1.Mild-to-moderate hypothermia elicits a cold-shock response in hCNs. (A) RBM3 transcripts (left,N=3; n=14; nHESI =7, nHES2 =4, nIPS1 =3)with significant increases after 3 h
(32 °C P=0.011, 28 °C P=0.003) and 24 h (P b 0.0005). Cell counts for RBM3-positive nuclei (right,N=3; n=6; nHES1=4, nHES2=1, nIPS1=1,mean 37.2% (total 902 out of 2096 cells)
at 28 °C, P=0.039; mean 46.0% (total 1050 out of 2377 cells) at 32 °C, P=0.001; mean 20.8% (total 531 out 2062 cells) at 37 °C). For each independent hCN batch and temperature con-
dition, a minimum of 10 fields of view at 63× were counted (pooled from two replicate coverslips). Counts are presented asmean %+ standard error of themean (SEM). (B) CIRBP tran-
scripts (left,N=3; n=14; nHES1=7,nHES2=4,nIPS1=3, P b 0.0005 at 24 h) and cell counts (right,N=3;n=6;nHES1=4,nHES2=1,nIPS1=1,mean 48.9% (total 719 out of 1416 cells) at
28 °C; mean 52.3% (total 985 out of 1882 cells) at 32 °C; mean 13.1% (total 252 out of 1850 cells) at 37 °C, P b 0.0005). (C and D) Fluorescent micrographs of hCNs co-stained for neuronal
and cold-shock markers, scale bar = 10 μm. (E) Subcellular expression of RBM3 and CIRBP by immunoblot, alongside human foetal and adult cortex. GAPDH and hnRNP A1 are loading
controls. The stability of hnRNP A1 expression undermild hypothermic conditions in human cells has reported elsewhere (Danno et al., 1997). (F) QuantitativeWestern analysis of RBM3
and CIRBP (N=3; n≥ 4; nHES1≥ 2; nHES2=1, nIPS1=1). RBM3 expression was greatest at 28 °C (P=0.002); CIRBP expression peaked at 32 °C (P b 0.0005). (G) Correlation of RBM3 and
CIRBP transcripts (37 °C P = 0.001, 32 °C P = 0.012, 28 °C P b 0.0005). See also Fig. S1.
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with prior activation of ATF6 and splicing of XBP1 (Hetz andMollereau,
2014). Enhanced injury with PERK inhibition at 37 °C may reflect a
constitutive proteostatic function of the UPR in long-term culture —

potentially through buffering oxidative processes (Cullinan et al.,
2003). It might also explain why hypothermic induction of some PERK
Please cite this article as: Rzechorzek, N.M., et al., Hypothermic Precond
EBioMedicine (2015), http://dx.doi.org/10.1016/j.ebiom.2015.04.004
branch-specific components was not observed; eIF2α phosphorylation
does occur under deep hypothermic conditions (10 °C) and contributes
to the global suppression of protein translation in mammalian cell lines
(Roobol et al., 2009; Hofman et al., 2012), but it may be undetectable
biochemically in the context of mild ER stress (Rutkowski et al., 2006).
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Fig. 2.Hypothermia induces mild ER stress in hCNs with full activation of the UPR. (A) BiP transcripts after cooling (left,N=3; n=22; nHES1=11, nHES2 =6, nIPS1=5; 32 °C, P=0.006;
28 °C, P b 0.0005) or Tm treatment (right,N=3; n=8; nHES1=4, nHES2=2, nIPS1=2, P=0.004). (B) Total BiP protein expression (N=2; n=3; nHES1=2; nHES2=1; 28 °C, P=0.051).
(C) IRE1α transcripts (P b 0.01,N=3; n=14; nHES1=7, nHES2=4, nIPS1=3). (D) Immunoblots of fractionated lysates (C= cytoplasmic, H=high-detergent) fromhCNs. Note increased
BiP, full length (fATF6), and cleaved (cATF6) sitting in the high detergent fraction at 28 °C. This is consistent with nuclear translocation of cATF6 and upregulation of its target transcripts
(BiP and unspliced XBP1 — as shown in Figs. 2A, E, and S2B). (E) Gel images of RT-PCR products. Faint bands at 263 bp confirm mild splicing of XBP1 in hypothermic hCNs relative
to negative (37 °C) and positive (Tm-treated) controls. GAPDH= reference target. (F) qRT-PCR analysis of XBP1s transcript after cooling (left, N = 3; n = 22; nHES1 = 11, nHES2 = 6,
nIPS1 = 5; 28 °C, P = 0.003) or Tm-treatment (right, N = 3; n = 8; nHES1 = 4, nHES2 = 2, nIPS1 = 2, P b 0.0005). (G) CHOP transcripts after cooling (left, N = 3; n = 22; nHES1 = 11,
nHES2 = 6, nIPS1 = 5; 32 °C, P = 0.011; 28 °C, P = 0.001) or Tm treatment (right, N = 3; n = 8; nHES1 = 4, nHES2 = 2, nIPS1 = 2, P b 0.0005). (H) GADD34 transcripts (N = 3; n = 7;
nHES1 = 3, nHES2 = 2, nIPS1 = 2, 32 °C, P b 0.0005; 28 °C, P b 0.0005; Tm, P b 0.0005). See also Fig. S2.
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Equally, since PERK-mediated translational repression is subject to ho-
meostatic autoregulation by phosphatases (Lin et al., 2007), a resolving
influence of cooling on eIF2α activation is supported byhypothermic in-
duction of GADD34 in hCNs (Figs. 2H and 3C) (Ma and Hendershot,
2003). In this respect, rather than signifying the duration limit of protec-
tive cooling, the CHOP induction observed would be a pre-requisite for
GADD34-mediated negative feedback on eIF2α (Halterman et al.,
2010). Accordingly, others have highlighted the protective role of
CHOP in neuronal systems (Chen et al., 2012; Engel et al., 2013). The
Please cite this article as: Rzechorzek, N.M., et al., Hypothermic Precond
EBioMedicine (2015), http://dx.doi.org/10.1016/j.ebiom.2015.04.004
fact that 24 h cooling did not increase levels of the pro-apoptoticmarker
Bax (Fig. S2E) is in line with previous studies (Yenari et al., 2002) and
further supports our conclusion that this duration and depth of hypo-
thermia produced an adaptive UPR. Potentially, cold-shock proteins
may complement this cascade by relieving translational repression
of critical mRNAs (Peretti et al., 2015), and limiting CHOP-mediated
apoptosis (Saito et al., 2010).

During an adaptive stress response UPR branches undergo complex
homeostatic self-regulation (Fig. 3C). Thus the cross-sectional UPR
itioning of Human Cortical Neurons Requires Proteostatic Priming,
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Fig. 3.HypothermicUPR-mediated preconditioningof the ER protects hCNs against oxidative stress. (A)Oxidative stress-mediated injury is increased by PERK inhibitor (PI) (N=3;n=3;
nHES1=1, nHES2=1, nIPS1=1; 28 °C, P b 0.0005; 37 °C, P=0.016). Hypothermia remained protective only at 200 μMH2O2 (P=0.023). (B) H2O2 injury is increased by Tm (N=3; n=7;
nHES1=5, nHES2=1, nIPS1=1; 28 °C, P b 0.05; 37 °C, P b 0.0005). Hypothermia reduced the toxic effect of Tm (P=0.062). Note that log scalewas required to accommodatemagnitude of
injury changes acrossH2O2 concentrations in Fig. 3A andB. (C) Proposedmechanism of ER-hormesis in cooledhCNs. UPR pathways are depicted, togetherwith known regulatory feedback
pathways. Filled boxes denote components induced at transcript and/or protein level in hCNswith cooling. Phospho-IRE1α and phospho-PERKwere not assessed. Orange arrows indicate
hormetic elements that resolve the UPR and increase ER resilience to stress. See also Fig. S3. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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profile captured in our hCN system cannot convey the dynamic nature
of these pathways. However, our analysis at 24 h intimately links UPR
activation to neuronal preconditioning, since this was the point at
which H2O2 was applied, and it further indicates co-ordination of
ER-hormesis with cold-shock protein induction. The lack of GRP94
induction after 24 h cooling may reflect the half-life of its transcript or
the selective nature of this chaperone, whose client list is smaller than
that of BiP — in particular, GRP94 is not induced at high temperatures
(Marzec et al., 2012). Furthermore, prolonged ER stress leads to sequen-
tial activation then deactivation of Ire1α, ATF6 and PERK pathways
respectively — which might explain the bias of UPR components
towards the PERK arm at 24 h (Tabas and Ron, 2011). Nevertheless,
our transcript analysis revealed distinct patterns of UPR responses
resulting from two different stresses; whilst BiP, GRP94, XBP1s and
CHOP dramatically increased with Tm, ATF4 and GADD34 induction
were comparable between Tm and cooling. Therefore, in contrast
to models described elsewhere (Rutkowski et al., 2006), the negative
regulation of eIF2α appears to take precedence over unloading the ER
in cooled human neurons. This relief of translational repression may
Please cite this article as: Rzechorzek, N.M., et al., Hypothermic Precond
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confer tolerance to a prolonged hypothermic state (Peretti et al., 2015;
Moreno et al., 2013).

In the clinic, ‘preconditioning’ is typically ascribed to a transientmild
stress followed by a recovery interval (Nishio et al., 2000; Stetler et al.,
2014). Here we have applied this term in its broadest sense — i.e., a
subtoxic cellular stress that can lead to a protective state (Stetler et al.,
2014) in order to account for the proteostatic priming observed during
our pre-incubation phase of cooling. This definition circumvents the
need for a re-warming phase which would confound analysis of oxida-
tive injury by inducing relative hyperthermic and hypoxic stresses (Liu
et al., 1994; Lleonart, 2010; Chip et al., 2011; Neutelings et al., 2013).
Hypothermic preconditioningmay reconcile conflicting data describing
UPR modulation in neuronal health; (1) that ER stress can elicit UPR-
mediated hormesis (Mendes et al., 2009; Fouillet et al., 2012), (2) that
circumventing UPR-mediated translational repression promotes long-
term survival (Moreno et al., 2013), and (3) that inhibiting eIF2α phos-
phatases resolves ER stress (Kiskinis et al., 2014). This highlights the
importance of fine-tuning the entire network, rather than adjusting a
single pathway or component — such a combinatorial approach has
itioning of Human Cortical Neurons Requires Proteostatic Priming,
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been proposed for amyotrophic lateral sclerosis (Kiskinis et al., 2014).
Whilst hypothermic preconditioning originates from the acute injury
setting, impaired stress responses underlie several neurodegenerative
disorders (Hetz and Mollereau, 2014) and preconditioning in general
is a proposed target (Stetler et al., 2014). Cooling has recently demon-
strated some benefit in an in vivo model of spastic paraplegia (Baxter
et al., 2014) and Peretti et al. (2015) observed that neurodegenerative
synaptic loss could be partially rescued through early cooling-induced
enhancement of RBM3 expression. Conceivably, this temporal depen-
dency might relate to hypothermia-mediated proteostatic priming,
elicited prior to the build-up of a significant protein aggregate load.
Whether the hypothermic preconditioning described here is linked to
a cytoprotective mechanism that is synergistic with the preservation
of synaptic plasticity is worthy of further investigation (Peretti et al.,
2015). Ultimately, disease stage andneuronal subtypewould determine
whether enhanced or prophylactic preconditioning could be useful in
the context of neurodegeneration (Saxena et al., 2009).

In response to cooling, hCNs displayed all the hallmarks of an adap-
tive, preconditioning UPR response: mild ER stress and activation of all
3 ER-stress transducers, a low level of CHOP induction that was insuffi-
cient to effect apoptosis, absence of detectable levels of phospho-eIF2α,
and residual expression of key ER chaperones (Rutkowski et al., 2006;
Tabas and Ron, 2011). The reversibility of these effects and the period
over which they would remain protective is currently unknown and is
part of ongoing work. Since our cooling paradigm can be used to titrate
UPR activation, it represents a simple method to address subtle but
important effects dictating adaptive versus maladaptive outcomes of
this cascade in any cell type. We propose that ER-hormesis is an impor-
tant outcome of the cold-shock response that protects human neurons
from both ER and oxidative stress. This ‘cross-tolerance’ effect
(Rutkowski et al., 2006; Stetler et al., 2014) places exponential value
on the molecular neurobiology of cooling, which may deliver novel
therapeutic targets for an unmet need.
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Rodent-based studies have shown that neurons undergo major developmental changes to ion channel expression and ionic gradients that
determine their excitation-inhibition balance. Neurons derived from human pluripotent stem cells theoretically offer the potential to study
classical developmental processes in a human-relevant system, although this is currently not well explored. Here, we show that excitatory
cortical-patterned neurons derived from multiple human pluripotent stem cell lines exhibit native-like maturation changes in AMPAR compo-
sition such that there is an increase in the expression of GluA2(R) subunits. Moreover, we observe a dynamic shift in intracellular Cl� levels,
which determines the reversal potential of GABAAR-mediated currents and is influenced by neurotrophic factors. The shift is concomitant with
changes in KCC2 and NKCC1 expression. Because some human diseases are thought to involve perturbations to AMPAR GluA2 content and
others in the chloride reversal potential, human stem-cell-derived neurons represent a valuable tool for studying these fundamental properties.

Key words: GABA; glutamate; neurotransmitter; patch clamp; qRT-PCR; stem cells

Introduction
The ability to generate in vitro cortical neuronal populations
from human pluripotent stem cells (hPSCs) provides an experi-
mental resource for the investigation of human cortical physiol-
ogy and disease (Hansen et al., 2011). hPSCs have been used to
derive human excitatory cortical neurons (hECNs) in vitro that
appear to recapitulate aspects of in vivo cortical development
(Johnson et al., 2007; Zeng et al., 2010; Shi et al., 2012; Espuny-
Camacho et al., 2013). We have developed a protocol that enables
the generation of a propagatable pool of anterior neural precur-
sor cells (aNPCs) from human embryonic stem (ES) cell and
induced pluripotent stem cell lines (Bilican et al., 2014). aNPCs
can be efficiently differentiated as a monolayer of excitatory cor-
tical neurons that are representative of neuronal populations
present within native upper and lower cortical layers. Our recent
study (Bilican et al., 2014) demonstrated the ability of hECNs to

fire action potentials, express voltage-gated and ligand-gated ion
channels, and exhibit putative synaptic activity; however, there is
a need to identify specific physiologically postnatal/adult proper-
ties of such neurons to aid in vitro human studies of neurodevel-
opmental physiology and modeling of neurodevelopmental and
adult diseases (Yang et al., 2011; Sandoe and Eggan, 2013).

Here, we demonstrate that hECNs differentiated from
aNPCs exhibit native-like maturation shifts in AMPAR subunit
composition and in the relative expression of the Na�-K�-Cl�

cotransporter-1 (NKCC1) and K�-Cl� cotransporter-2 (KCC2)
subunits to reduce intracellular chloride concentration ([Cl�]INT),
which determine the nature of GABA receptor type-A (GABAAR)
function (Blaesse et al., 2009). Beyond a platform for the study of
maturation, these hECNs are of interest for studies of human dis-
eases in which AMPAR and [Cl�]INT regulation are disrupted
(Blaesse et al., 2009; Wright and Vissel, 2012).

Materials and Methods
In vitro hECN preparation. A detailed description of the derivation of
hECNs, including immunohistochemistry protocols, can be found in
Bilican et al. (2014) and is summarized in Figure 1A. The H9 (female),
hereafter referred to as ES1 (WiCell) and SHEF4 (male), referred to as
ES2 (UK Stem Cell Bank) human ES cell lines were obtained under full
ethical/Institutional Review Board approval of the University of Edin-
burgh. For IPS1 (male M337V mutant line 1; Bilican et al., 2012) and
IPS2 (female in-house control line) human IPS cell lines, written in-
formed consent was obtained from each participant.

hECN culture media supplements. Forskolin (10 �M) was present dur-
ing weeks 1–3 of differentiation. For AMPAR characterization, medium
was supplemented with BDNF and GDNF (both 5 ng/ml) from week 3
onward. For experiments to determine [Cl �]INT, BDNF and GDNF were
omitted unless otherwise stated. When cultures were maintained beyond
5 weeks, the culture medium was supplemented with IGF1 (10 ng/ml)
from week 4 of differentiation.
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qRT-PCR. Protocols were performed as described previously (Bilican
et al., 2014). Forward and reverse sequences (5�33�) of primers used
were as follows: GRIA1: TGCTTTGTCGCAACTCACAGA, GGCAT
AGACTCCTTTGGAGAAC; GRIA2: CATTCAGATGAGACCCGACCT,
GGTATGCAAACTTGTCCCATTGA; GRIA3: ACCATCAGCATAGGTG-

GACTT, GGTTGGTGTTGTATAACTGCACG;
GRIA4: TTCCGAGCAGCGTGCAAATA, GCA
TTGGGGCTGGTGTTATGA; SLC12A2: TG-
GTGGTGCAATTGGTCTAA, TCCCACTCCA
TTCCAGCTAC; SLC12A5: GGAAGGAAATGA
GACGGTGA, TCCCACTCCTCTCCACAATC.

Electrophysiology. Whole-cell patch-clamp re-
cordings were made from hECNs using an Axon
Multiclamp 700B amplifier (Molecular Devices).
AMPA-evoked currents were made at a holding
potential of �74 mV in the presence of picro-
toxin (50 �M), strychnine (20 �M), and TTX (300
nM). GABA-evoked currents were made at a
holding potential of �14 mV in the presence of
CNQX (5 �M), D-APV (50 �M), strychnine, and
TTX. Patch electrodes were filled with a so-
lution containing the following (in mM): 155
K-gluconate, 2 MgCl2, 10 Na-HEPES, 10 Na-
PiCreatine, 2 Mg2-ATP, and 0.3 Na3-GTP, pH
7.3, 300 mOsm, resistances 4 –7 M�. Cover-
slips containing hECNs were placed in the re-
cording chamber and perfused using gravity
feed with an extracellular solution composed
of the following (in mM): 152 NaCl, 2.8 KCl, 10
HEPES, 2 CaCl2, 10 glucose, pH 7.3, 320 –330
mOsm. Recordings were made at 20 –23°C.
The liquid junction potential (LJP) was calcu-
lated to be �14 mV (JPCalc; Clampex). Perfo-
rated whole-cell recordings were performed
using a gramicidin (50 –100 �g/ml) supple-
mented patch-pipette solution containing the
following (in mM): 145 KCl, 1 MgCl2, 0.1
CaCl2, 1 EGTA, 10 HEPES, pH 7.3, 320 –330
mOsm; the LJP was calculated to be �4.3 mV.
The progress of perforation in the voltage-clamp
configuration was monitored by the development
of capacitive transients. Abrupt rises in transients
indicated membrane rupture to the whole-cell con-
figuration and the experiment was terminated.
Once perforation stability was established, series re-
sistances were �40 M�.

Data analysis. Nonstationary fluctuation
analysis of slowly rising whole-cell currents
evoked by AMPA were used to estimate the AM-
PAR unitary single-channel current. The analysis
of AC and DC currents was performed as de-
scribed previously (Brown et al., 1998) with the
exception that the AC-coupled signal was filtered
with a 1–1200 Hz band-pass frequency. All other
recordings were low-pass filtered online at 2 kHz
and all recordings were digitized at 10 kHz and
recorded to computer hard disk using the
WinEDR V2.7.6 Electrophysiology Data Re-
corder (J. Dempster, University of Strathclyde,
United Kingdom; www.strath.ac.uk/Departments/
PhysPharm/). [Cl�]INT was calculated using
the Nernst equation in which extracellular
[Cl �] was converted into activity using an
activity coefficient.

Data are presented as mean � SEM. The
number of experimental replicates is de-
noted as n and N represents the number of de
novo preparations of batches from which n is
obtained.

Results
Developmental maturation of AMPARs in hECNs
Functional AMPAR expression was assessed, at weekly intervals,
by the ability of AMPA (50 �M) to elicit whole-cell currents. With

Figure 1. AMPAR maturation. A, Schematic representation of hECNs derived from OTX2 � and Nestin � aNPCs. Neuronal differentia-
tion is initiated by the removal of FGF2 and cultures are maintained in a 3% O2 atmosphere (Bilican et al., 2014). Immunocytochemistry for
neuronal (�3-tubulin) astrocyte (glial fibrillary acidic protein; GFAP) and aNPC (Nestin) markers indicates increasing neuronal differentia-
tion with time in culture and sparse astrocytes throughout. Bar graph displays cell marker counts as a percentage of DAPI-stained nuclei.
hECNs are also immunopositive for deep and superficial cortical layer markers CTIP2 and SATB2, respectively. B, Weekly percentage re-
sponse (orange) to AMPA and the mean AMPA-mediated current density (black). n � 22–35, N 	 3. C, Mean normalized mRNA fold
expression data for AMPAR subunits GluA1-GluA4 in week 2 and 5 cells as assessed by qRT-PCR. n�4 – 6, N�3, unpaired t test. Relative
expression of each subunit of one of the week 2 samples is set to 1 after normalizing to �-actin. D, Example nonstationary fluctuation
analysis of AMPAR-mediated whole-cell currents from a week 2 (orange) and 5 (black) neurons. E, Plot of the relationship between the
variance of the AC-coupled current and DC-current amplitude for the respective recordings of week 2 (orange) and week 5 neurons (black)
shown in D. Linear regression analysis of the relationships for week 2 and 5 data gave respective unitary single-channel current amplitude
estimates of �1 pA and �0.3 pA from which the unitary conductance was calculated. F, A decrease in mean conductance is observed in
otherhPSClines.n�4 –13,N�1–3,unpaired ttest. G,TheswitchtolowerconductanceAMPARswasnotpreventedbyantagonists.n�
5–9, N � 1–2, one-way ANOVA with post hoc Tukey’s test.
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time, hECNs displayed an increase in AMPAR-mediated current
densities together with an increase in the proportion of hECNs
that responded to application of AMPA. Five weeks after aNPC
plate-down, 
90% of all cells gave currents (Fig. 1B) that could
be blocked by CNQX. AMPARs are tetrameric assemblies of dif-
ferent combinations of GluA1, GluA2, GluA3, or GluA4 sub-
units. AMPAR composition in rodent and human excitatory
cortical neurons is developmentally regulated; GluA1/GluA4-
containing stoichiometry predominates in immature neurons,
whereas mature neurons have an increased expression of GluA1
and GluA2 subunits (Monyer et al., 1991; Talos et al., 2006a,
2006b; Orlandi et al., 2011). We assessed relative AMPAR subunit
mRNA expression levels at 2 and 5 weeks after aNPC plate-down
by qRT-PCR (Fig. 1C) and found significant increases in the
relative mRNA expression levels for each of the AMPAR
subunits.

GluA2 subunits are RNA edited, resulting in a gene-encoded
glutamine codon in the M2 reentrant loop region being replaced
by an arginine codon in 
99% of mRNA transcripts (for review,
see Wright and Vissel, 2012). Moreover, the biophysical proper-
ties of AMPARs are considerably influenced by the presence of
edited GluA2 [GluA2(R)] subunits that give rise to AMPARs that
possess low single-channel conductances, low Ca 2� permeabil-
ity, and insensitivity to polyamine-mediated channel block
(Traynelis et al., 2010). To assess whether AMPARs expressed by
hECNs show a developmental increase in the proportion of re-
ceptors containing GluA2(R) subunits, we performed nonsta-
tionary fluctuation analysis to estimate the mean unitary
conductance (�) of AMPARs at weeks 2 and 5 after aNPC plate-
down. Current-variance plots constructed from AC- and DC-
coupled components of whole-cell AMPAR-mediated responses
were used to estimate unitary conductances (Fig. 1D,E). Figure
1F illustrates that, for the ES1 cell line, the mean unitary conduc-
tance decreases at week 2 from 10.9 � 1.0 pS (n � 13, N � 2) to
4.5 � 0.4 pS at week 5 (n � 12, N � 3, p � 0.001, unpaired t test).
Significant decreases in conductance over this same period were
also observed in hECNs derived from a separate ES cell line (de-
noted ES2) and from two independent IPS cell lines (Fig. 1F).
The factors that control the developmental increase in the expres-
sion of GluA2(R)-containing AMPARs remain largely unknown
(Traynelis et al., 2010) and we found no evidence that this regu-
lation is mediated by excitatory or inhibitory neurotransmitter
action or is regulated by an activity-dependent process, because
pharmacological blockade from weeks 1–5 of AMPAR, NMDAR,
GABAAR, and glycine receptors by CNQX (15 �M), D-AP5 (25
�M), bicuculline (100 �M), and strychnine (400 �M), respec-
tively, and voltage-dependent Na� channels by TTX (1 �M) did
not prevent the decrease in conductance that occurs between
weeks 2 and 5 after aNPC differentiation (Fig. 1G). Furthermore,
media supplements (see Materials and Methods) are not impli-
cated in the reduction of conductance, because hECNs main-
tained in the absence of supplements displayed equivalent
estimates of conductance at week 2 (12.7 � 1.5; n � 11, N � 3)
and week 5 (5.0 � 1.1; n � 5, N � 1).

An increase in the proportion of AMPARs containing GluA2(R)
subunits was confirmed in hECNs by assessing the polyamine sensi-
tivity of AMPAR-mediated current to 1-naphthyl acetyl spermine
(NASPM), a selective antagonist of GluA2(R)-lacking AMPARs
(Koike et al., 1997). At week 2, NASPM (3 �M) strongly inhibited
(77 � 5%) AMPA-evoked steady-state whole-cell currents (Fig.
2A). The extent of this block is consistent with the expression of
AMPARs that lack GluA2(R) subunits. At week 5, NASPM gave
only modest inhibition (Fig. 2B,C). Overall, these data, together

with a development switch in unitary conductance of AMPARs,
are entirely consistent with a switch from a GluA2(R)-lacking to
a GluA2(R)-containing AMPAR population.

hECNs show a developmental reduction in [Cl �]INT

Functional GABAAR expression was assessed at weekly intervals
by the ability of GABA (100 �M) to elicit whole-cell currents. The
magnitude of steady-state GABA-evoked currents increased with
increasing periods of culture and, after 4 weeks of differentiation,
all cells responded to GABA (Fig. 3A) with robust currents that
were blocked by picrotoxin.

Fast depolarizing actions of GABA on neural precursor cells
and immature cortical neurons are well documented and are a
consequence of higher [Cl�]INT (
25 mM) due to the higher
relative expression level of NKCC1 over KCC2 (Ben-Ari et al.,
2007). In both rodent and human cortex, the postnatal expres-
sion levels of KCC2 increase (Dzhala et al., 2005), leading to a net
extrusion of Cl� from excitatory neurons and levels of [Cl�]INT

of 5–10 mM, which results in a net inward movement of Cl� and
a hyperpolarizing response in neurons at or near their resting
membrane potentials (Blaesse et al., 2009). Using gramicidin-
perforated current-clamp recording to prevent disruption of
[Cl�]INT (Kyrozis and Reichling, 1995), we assessed the nature of
the GABA response in hECNs when held at a potential of �60
mV. After 1 week of culture after aNPC plate-down, GABA elic-
ited a depolarizing response (Fig. 3B), whereas at later periods,
the response was hyperpolarizing (Fig. 3C). To determine the

Figure 2. NASPM block. Example recordings from week 2 (A) and week 5 (B) neurons dem-
onstrating NASPM inhibition of the steady-state current response evoked by AMPA. C, Mean
percentage block of AMPA currents by NASPM. n � 6 – 8, N � 2, unpaired t test.
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reversal potential for GABAAR-mediated responses (EGABA), per-
forated voltage-clamp recordings were made from hECNs at var-
ious time points after aNPC differentiation. Figure 3D illustrates
a series of GABA-activated current traces obtained from a week 5
hECNs and recorded at holding potentials that allowed EGABA to
be determined. Figure 3E summarizes the extent to which EGABA

changes with time in culture. At week 1, the mean EGABA is
�43.0 � 2.0 mV (n � 12, N � 3) and becomes progressively
more negative such that, at week 5, it is �59.2 � 1.5 mV (n � 11,
N � 2, p � 0.001). To examine the possibility that EGABA could
become more negative, we extended the culture period of hECNs
to 7 weeks, which necessitated the inclusion of IGF1 in the culture
media to improve cell viability (see Materials and Methods), and
observed a further decrease in EGABA to �70.3 � 0.7 mV (n � 13,
N � 3, p � 0.001). IGF1 was unlikely to have directly affected the
change in EGABA because hECNs at week 5 cultured in the
presence of IGF1 did not show any change in EGABA (�62.9 �
2.3 mV; n � 10, N � 2). In these experiments, BDNF and
GDNF were omitted because these neurotrophic factors have been
reported to cause alterations in Cl� transporter function and
expression (Blaesse et al., 2009). Indeed, although EGABA becomes
more negative in the presence of BDNF and GDNF, it remains

10 mV more positive than is observed for hECNs cultured in
the absence of neurotrophic factors (Fig. 3E).

Figure 3F illustrates the estimated
[Cl�]INT derived using the Nernst equa-
tion at each of the time points studied in
Figure 3E. At week 1, the mean [Cl�]INT is
23.5 � 1.9 mM and this decreases by week
7 to 7.9 � 0.2 mM. In the presence of
BDNF and GDNF, [Cl�]INT remains ele-
vated at weeks 5 and 7. A reduction in
[Cl�]INT was also observed in hECNs de-
rived from other hPSC lines (Fig. 4A). The
underlying regulation of native neuronal
NKCC1/KCC2/[Cl�]INT development is
controversial (Ben-Ari et al., 2012). We
have demonstrated that the reduction in
[Cl�]INT in hECNs cannot be prevented
by pharmacological blockade, from weeks
1 to 7, of ion channels and neurotransmit-
ter systems, as described previously for
AMPAR development (Fig. 4B). The re-
duction of [Cl�]INT in hECNs is therefore
activity-independent. Finally, using qRT-
PCR analysis, we examined whether
hECNs displayed shifts in NKCC1/KCC2
mRNA transcript levels. At week 1,
NKCC1 mRNA levels were 4.8-fold
higher than that of KCC2, but by week 7,
KCC2 mRNA levels were 3.1-fold higher
than NKCC1 (Fig. 4C). Such findings
are consistent with the change in the ex-
pression levels of NKCC1 and KCC2
that are observed in rodent neurons
when [Cl �]INT decreases during devel-
opment (Blaesse et al., 2009). In addi-
tion, hECNs cultured in the presence of
BDNF and GDNF, which resulted in a
smaller fall in [Cl �]INT, exhibited
smaller relative shifts in the expression
of KCC2 mRNA to that of NKCC1.

Discussion
We have demonstrated the ability of hECNs to functionally ex-
press mature GluA2(R)-containing AMPARs and exhibit a re-
duction in [Cl�]INT to adult-like levels. Importantly for the
interpretation of our results, differentiating aNPCs are likely to
be the predominate cellular phenotype at early culture time
points (weeks 1 and 2) and, by later time points (�week 4), the
cultures are predominantly of hECN identity (Fig. 1A; Bilican et
al., 2014).

We demonstrate that AMPAR single-channel conductance at
weeks 2 and 5 significantly reduces from 10.9 to 4.5 pS in accor-
dance with increased functional expression of the GluA2(R) sub-
unit that confers a lower conductance to the AMPAR complex.
Indeed, the conductance values at weeks 2 and 5 are directly
comparable to conductance measurements of AMPAR-mediated
events from rodent excitatory cortical neurons during a postnatal
developmental period involving the upregulation of the
GluA2(R) subunit (Brill and Huguenard, 2008). Furthermore,
week 5 data correspond well to those of recombinantly expressed
heteromeric GluA2(R)-containing AMPARs (Swanson et al.,
1997). A GluA2(R)-lacking to GluA2(R)-containing switch in
AMPAR subunits is confirmed by the observed high sensitivity of

Figure 3. Determining [Cl �]INT. A, Weekly percentage response (orange) to GABA and the mean GABA-mediated current
density (black; n � 20 –34, N � 1– 4). B, C, Example perforated current-clamp recordings, at �60 mV from week 1 (B) and week
7 (C) neurons in which either a depolarizing or hyperpolarizing response to GABA is observed. D, Representative voltage-clamp
recordings used to determine EGABA. E, The relationship between mean EGABA in the absence (n � 12–13, N � 2–3) and presence
of BDNF and GDNF (n � 4 –19, N � 1–3). F, Mean [Cl �]INT development. Data at week 7 were obtained in the presence of IGF1.
n � 12–13, N � 2–3.
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AMPAR-mediated currents at week 2, but not at week 5, to
GluA2(R)-lacking the AMPAR blocker NASPM.

The principal AMPAR composition in native cortical prepa-
rations has been described to develop from an immature GluA1/
GluA4-containing to an adult GluA1/GluA2-containing AMPAR
complex (Monyer et al., 1991; Talos et al., 2006a, 2006b; Orlandi
et al., 2011). Our data are consistent with an upregulation of the
GluA2 subunit from weeks 2 to 5, however, the mRNA data for
hECNs also demonstrate an equivalent upregulation of the
GluA4 subunit. Nevertheless, these data do not indicate the level
of functional protein. At week 2, the cultures contain a mixture of
neurons and aNPCs, so it is interesting that native primary hu-
man embryonic cortical NPCs express unedited forms of the
GluA2 subunit [GluA2(Q)] and, upon neuronal differentiation,
express the edited GluA2(R) subunit over an equivalent culture
period (Whitney et al., 2008).

The underlying mechanism of this AMPAR subunit shift has
not yet been described in native excitatory cortical neurons. Here,
we demonstrate that the reduction of AMPAR conductance is not

prevented by antagonists of neurotransmitter ligand-gated ion
channels and voltage-gated ion channels, indicating that the de-
velopmental upregulation of GluA2(R)-containing AMPARs is
activity-independent. Indeed, it has been reported that NPC dif-
ferentiation results in a large upregulation of the ADAR2 enzyme
responsible for the editing of the GluA2 subunit Q/R site (Whit-
ney et al., 2008).

We next investigated the regulation of [Cl�]INT. The under-
standing regarding the regulation, expression, and activity of Cl�

transporters and [Cl�]INT regulation is relevant to development
and disease associated with GABAAR (and other Cl� channel)
function (Blaesse et al., 2009). Perforated-patch clamp measure-
ments of EGABA from weeks 1 to 7 show that [Cl�]INT reduces
from 24 to 8 mM. This is directly comparable to studies examin-
ing the maturation of [Cl�]INT from NPCs to postnatal neurons
in the rodent cortex (Owens et al., 1996; Yamada et al., 2004). In
direct accordance with native mechanisms regulating [Cl�]INT, a
reduction in [Cl�]INT coincided with a switch in the relative
mRNA expression levels of the Cl� transporters NKCC1 and
KCC2 (Blaesse et al., 2009). This implies that the high [Cl�]INT

observed at week 1 is due to dominant NKCC1 activity and the
low [Cl�]INT observed at week 7 is a result of overriding KCC2-
mediated Cl� extrusion.

To obtain a reduction in [Cl �]INT, hECNs had to be cul-
tured for extended periods in the absence of BDNF and GDNF
but with IGF supplementation. IGF1 was shown not to have an
effect upon EGABA in week 5 hECNs, but has previously been
associated with an upregulation of KCC2 expression in rodent
hippocampal neurons (Kelsch et al., 2001). The inclusion of
BDNF and GDNF, however, appears to slow the developmen-
tal [Cl �]INT reduction. Neurotrophic supplements are com-
monly used in hPSC-derived neuronal cultures with little
regard for their potential impact on neuronal Cl � transporter
function (Blaesse et al., 2009) and receptor densensitization
(Frank et al., 1996). We thus advocate caution when using
these agents, particularly for functional studies.

The mechanistic control of neuronal of [Cl�]INT develop-
ment has received considerable attention and specific reports of
mechanisms of NKCC1 and KCC2 regulation have been contro-
versial (Ben-Ari et al., 2012). The inability to prevent the reduc-
tion of [Cl�]INT by chronic blockade of ion channel activity are in
agreement with an activity-independent mechanism in hECNs
that has been observed in native neuronal preparations (Ben-Ari
et al., 2007).

In summary, we show the ability of hECNs to functionally
express mature GluA2(R)-containing AMPARs. This enables in-
vestigation into disease mechanisms that may affect the editing at
the Q/R site. Furthermore, the ability of hECNs to exhibit a re-
duction in [Cl�]INT to adult levels enables homeostatic and dis-
ease studies that potentially affect Cl� transporter function.
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