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Abstract

Many acoustic and phonetic studies attest to the value of the syllable as a unit
of linguistic description. Phenomena of coarticulation and assimilation often
occur within a syllable, and the acoustic realisation of some phonemes also
correlates with their position in a syllable. For example, stops are more often
released at the beginning of a syllable than at the end, and the clear allophone of
/1/ is also more often found at the beginning than the dark allophone. Despite
the prevalence of such studies, there have been relatively few attempts to apply
this knowledge in a speech recognition system. This is what is attempted here.

The matter is investigated by modifying a speech recogniser that was built
at the Centre for Speech Technology Research (csTR. The recogniser is not
based on syllables. It is a modular system, with a separate front end and back
end. The front end uses hidden Markov models to produce a phoneme lattice,
and the back end uses a dynamic programming algorithm to construct words
out of the lattice. Syllable information is incorporated in both the front and the
back end. Because the system is modular, the effects of incorporating syllables
can be studied independently.

The experiments in the front end centre on the choice of a set of allophones
that correlate well with their position in a syllable. Segmentation is then con-
strained to produce only those segment sequences that form valid syllables.
The experiments in the back end centre on specialising the confusion matrix for
syllable position. The confusion matrix contains statistics about the frequency
with which the front end confuses one phoneme for another, and it is used to
guide the back end in constructing words out of phonemes. The front end’s
confusions depend on the position of the phoneme in a syllable, and the exper-
iments aim to increase the back end’s intelligence by taking this into account.

The results, as we might expect, depend on the quantity of training data.
Even with limited training data, however, there are promising indications that

syllables have a role to play in future recognition systems.



Declaration

This thesis was composed by me and describes original work which was executed

by me.



Acknowledgements

I thank my supervisor Steve Isard for his enthusiasm and encouragement,
his patience during several barren years, and his forbearance in the penultimate
year during a foolish and, I am happy to say, temporary change of topic.

I thank Professor Mervyn Jack, the Director of the Centre For Speech Tech-
nology Research, for making available office space and computers while I com-
pleted this thesis.

I thank Fergus Mclnnes, who provided the front-end suite of programs. The
front end is comprehensive in scope, and conscientiously documented. I found
it a joy to use. The occasional shortcoming Fergus was quick to fix. Most of all
I appreciate his unfailing willingness to answer my questions.

I thank David McKelvie who provided the back-end suite of programs.
David became actively interested in how I was hacking his system, and made

many changes himself beyond the call of duty.



Contents

List of figures

List of tables
Abbreviations
1 Introduction
1.1 Imtroduction . . . . . . . . . . . i
1.2 Continuous speech recognisers . . . . . . . .. . ... ... ....
1.3 Acoustic-phonetic variation . .. ... ... ... .........
1.4 The syllable as conditioning environment . .. ... .......
1.5 Concluding remarks . . . . ... ... ...
2 Some Trends in Speech Recognition
2.1 Introduction . . . ... . .. i i e
2.2 ARPA speech understanding research . . . ... .........
DAL HATDY « o o5 wie s s mose & v e oo v % (5 w8 0w m & b e 8
222 Hearaall . iv e iawis s as aw dumian s ss
2.2.3 HWIM (Hear what Imean) . . .. ... ... ... ....
2.2.4 Assessment of ARPASUR. . ... .............
2.3 GETRE BMD ST v comeon: » « o o 5 & sor 5 5 50 0 % o & 5 S0 @
2.3.1 Discussion . . . . . . i e e e e e e e e e
24 PRHPEER o vooow s v e e v n e R E ReE B GO E S e B a6
25 Allerhand . .. . . . . . . . i e e e
28 SEHINE . wcvinvmevamsvs oW 5 9005 5% D% 50 ¢ 5 55 5§
2.7 Summary and diSCUSSION . . . . . . . . u . e e e e e e e .
3 The CSTR Recognition System
il INTTOAUCRIOn o o 5 6o 5 9 n 5o s w o wm e e B o e T e s s
38 ‘The COTR Bt Bald - oo 0 0 v o v o o o 5 a0 v 859 & & % s @ &
3.2.1 Signal Processing . . . .. .. ... ... ...,
3.2.2 Segmenter and Classifier . . . . . ... ...........
3.2.3 Demi-diphones . .. ... .. ... ... .. .. ......
324 Syllable NetworksS s w s es 6 &5 6695w
3.3 Entropy as a measure of front end performance . . ... ... ..
94 TheBack oRd i v 5.0 64 fn 65 8 %, 8 88 @ 8 85 b m o mom o @ wom s
341 Eiror Cofrection oo s v iow wn e e e v mEE R G R 8



CONTENTS 6

3.4:2. Finding fhe best mateh .« . « o o a6 w6 v 6 ome v 5 wow o 5 54
343 Theconfusion MALTIX &0 v 66 5 5 8% 2s 6 8 50m 5 5 mus o o 55
Fl. ISTIEATE: o v v o oo v b m 5ot @ w8 Ber @ w s B B N B W m U @ e 56
3.4.5 Implementationdetails . . . . ... ... .......... 57
3.5 Modular and integrated systems . . ... ............. 58
3.6 SUMMATY . . . . v v v v e e e e e e e e e e e e 60
4 Syllables and allophones 62
4.1 Imtroduction . . . . . . . . . . . . i i i i i it it e 62
4.2 Introduction to terms and concepts . . . . . . . ... .. ... .. 62
4.3 Definition of thesyllable . . . .. .. ... ... .......... 66
4.3.1 Phonological theories . . . . . . .. ... .......... 66
4.3.2 Acoustic theories . . . .. .. ... ... ... ... ... 68
4.3.3 Articulatory theories . . . . . ... ... ... ... . ... 68
Respiratory theories . . . .. ... ... ... ....... 69
Motortheomies v vasswiiswis s uiamassmas 69
4.3.4 Discussion . . . . . . ..o i e e e e e e T
d4 SYNEBACEHON s c m s v s @S i s e Y S P e B SRR 71
4.5 Is the syllable necessary? . . . . . . . . .. . . . ... .. ..... 7
4.6 The syllable in speech recognition . . . . . ... ... ....... T4
4.6.1 ABRPASUR. ¢ o« oov v 9 mmm 6 m mie om0 w00 o040 50 0 60 00 o 74
4.7 The Convex Hull Algorithm . ¢ v o v v s v v vamev s s 76
4.8 Uhofch's SYEEEI. wow « o mom & 5 o085 & & S0 % 8 0500 # 8 WO 5 7 W i 7
49 SYLR s im0 @iimeds adss G ¥ 8 ne 79
4,10 Lexicnl shitdifs « o o v wme x5 om0 6 5 o 5 5w @ e s 4 e 5 79
4.11 Summary and discussion . . . . . . .. ..o e e ... 81
5 Syllable Experiments in the Front End 83
Bil Infroduchon « ¢z v 6 4 5 FF HI S 5 RS £ 8 UL B Y BT BB Bus 83
L T T R R N 85
D3 THeEApRBEES: & 5 s 55 46 8 5 5 0 5 s st & & b & &8s s s @ im o 87
b Measursser qQUalityie: v o wome s @ow oo mom w0 ow o @ o S s s G b 88
5.5 Recognition of different APUsets . . ... ... ... ....... 91
5.5.1 End-point differetices . « < « v s s v s a v w5 e 91
5.5.2 Oversegmentation . .. ... ................ 92
5553 ERtIopies s nas e s s @ s 85 @ s 85 0 6 %6 96
5.5.4 Classification results . . . . . ... ... ... ....... 98
5.6 Syllable-assisted segmentation . . . . . ... ... .. ... .... 100
5.6.1 Perplexities of Syllable Networks . . .. ... ... .... 103
5.7 Word-assisted segmentation . . ... ................ 107
5.8 Sagmantation PePAIr . « « o o o« win e w0 e v s e 6 o 109
5.9 Stop realisation and syllable position . . . ... ... ... .... 112
5.0 Sumtary and Concluglong . o « « ww v ow w0 o 5 4 w0n ¢ 0 60 0 0 5w s 114
6 Syllable Experiments in the Back End 116
6.1 JOtTO@NCEION o w5 w5 o0 o v @ e w w e W S G R G s 116

6.2 Measurement of Word String Quality . . . ... ... ... .... 118



CONTENTS 7

6.3 TheData . . . . . . . i ittt e e e e e e e 120
6.4 Syllable-conditioned Phoneme Lattices . . . . . ... .. ..... 121
6.5 Multiple Confusion Matrices . . . . . . . . ... ... ... .... 129
65 ‘Concliglons:  « v i3 s s s @i @ RS S BU s WU I ARG 132
7 Conclusions 134
Tl IDtroauction: s« o s 2w va 2 o 9 2 % 5 0 S i 5 & B R B o e B B &R 134
7.2 Summaryofresults . . . .. ... ... ... ... ... 134
7.3 Limitations of the use of syllables . . . . . ... ... ....... 136
74 Futurework . . . . . . . . . o e 137
Th TFinal Word o v s e i il imesimussmensn 138
References 139
A The machine-readable phonemic alphabet 145
B Entropy and Perplexity 147
Bl BOEEOPY o vunvm s s e v 5 o w @ 50w %5 o 5w 8 a8 w e W v 148
B2 Perplexity s « s cosnsssdisamb i i sumisameida 155
C Repair interval in Phoneme Lattices 157
D Operation of Hidden Markov models 159
DL SUDATOIRLY. o i im0 o0 0 o o s cmvts & & o s 30 0m oo ® o= st v ¥ G S w0 162
E Dynamic Programming 163
F Definitions of the extended apu sets 167
Ed ERH02 e v some s omomr v o 5 mew @ 5 508 8 8 BEGE 65 G & ¥ @00 S @ @ 168
F2 B3 i nmsinm iidme b sam e 3 Me S mma s beg b 4 o 177
e B N P g 186
Bl RS 5 2 i o w6 B S Rl R A Bl 5 8 Bedl 8 A Gl & By i 194
ES BRI wow v o wone v v si w6 5 o @ 5w ¢ 0 % @ W R B R 8 & ¥ % 201

F.6 ExtO7T ... .. . e .. 208
i o R R e Y R A AT LTIy 214



List of figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

E.1

F.1
F.2

Example of a phoneme lattice . . . . ... ... .......... 16
Demi-diphones for the phoneme /a/in ‘pat’ . . ... ....... 46
Network for the syllable ‘cat’. . . . . ... ... ... ....... 47
Combined network for the two syllables ‘cat’ and ‘can’.. . . . . . 47
Multiple segments produced by an internal stage of the segmenter. 48
Matching operations performed by lexical access . . ... .. .. 54
Substitutions performed by lexical access . . ... ........ 55
Graph of regular oversegmentation. ATR data . ......... 94
Graph of regular oversegmentation. Cyt data . . .. ... .. .. 95
Graph of syllable-assisted oversegmentation. ATR data . .. .. 104
Graph of syllable-assisted oversegmentation. Cyt data . . .. . . 105
Three stdp phoneme lattices for ‘preliminary report’ . .. .. .. 110
Back-end action on two phoneme lattices . . .. .. ... .... 124
Excerpt of back-end action on two phoneme lattices . .. .. .. 126
Back-end action on two more phoneme lattices . .. .. ... .. 127
A three-state Markovmodel . . . . . ... ... ... ..., .. 245
Representation of lexax operations along twoaxes . ... .. .. 260
Dynamic time warping algorithm . . . .. ... ... ....... 264



List of tables

1.1
1.2

2.1

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

5.22
5.23

Substitutions, insertions and deletions performed by lexical access 17

Statistics concerning stops in the ATR database. . . . . ... ... 21
Word accuracies of various versions of SPHINX . . . . .. ... .. 36
Agix-wordlexiconl v v i v Vv s GG NN ML E B F A Ve RE G 53
The first five ATR sentences . . . . . . . . .« v v v v u.n. 56
The effect of different grammars . . ... ... ... ....... 57
Onset, nucleus and coda of asyllable . . . . . ... ... ..... 63
SHHAbIS DS & v s v 0 v sover 5 0w i & o B0 9 B B S E 8 B W % 63
Database statistics for speaker Gsw. . . . ... ... ....... 85
Std transcriptions of ‘Some debris is present’ . . ... ... ... 87
Std and ext04 transcriptions of “The price range is smaller than

AN DL U BRPRCEEd? v o v v v v v e v W e e e e e N e e & e 89
[lustration of grouped results . . . . . .. .. ........... 90
Average end-point differences . . . . . .. .. ... L. 91
Percent oversegmentation. Speaker Gsw, ATR data.. . . . .. . . 92
Percent oversegmentation. Speaker Gsw, CYT data. . . ... .. 93
Percent oversegmentation. Other speakers, ATR data. . . ... .. 96
Percent oversegmentation. Other speakers, cyT data.. . . . . . . 97
Ranked entropies of std classifications. ATR data . . . . ... .. 97
Ranked entropies of std classifications. Cyt data . . ... .. .. 98
Classifications performed on a hand segmentation . . . . . .. .. 99
Classifications performed on a hand segmentation. Conflated

lattices . . . . . . L. e e e e 99
Classifications performed on a stdp segmentation. ATR data . . 101
Classifications performed on a stdp segmentation. Cyt data . . . 101

Percent oversegmentation with and without syllables. ATR data 102
Percent oversegmentation with and without syllables. Cyt data . 103

Ranked perplexities of syllable models. ATR data. . ... .. .. 106
Ranked perplexities of syllable models. Cyt data . . . ... ... 107
Comparison of three segmentation methods . . . .. ... .. .. 108
Percent oversegmentation after syllable sequencing with segmen-

tation TEPAIT . . . . v v v v v e e e e e e e e e e e e e e e 112
Std classification on repaired segmentations . . ... ....... 112
Randolph’s predictors of stop realisation. . .. ... ....... 112



LIST OF TABLES 10

6.1
6.2
6.3
6.4
6.5

6.6
6.7

Al

A2
B.1

B.2
B.3

D.1

Segment counts and phoneme entropies for front end lattices . . 120
Perplexities for two kinds of grammar. . . . .. ... .. ... .. 121
Performance of the baseline backend . . . . . ... ... ... .. 123

Back end performance using global and o-n-c confusion matrices 130
Back end performance on syllable-conditioned input, using global

and o-n-c confusion matrices . . . . . . . .0 v e 131
Phoneme statistics for ATR data. . . ... ............. 131
Back end performance after reduced training . ... ... .. .. 132

RP English phonemes, expressed in mrpa (machine readable
phonemic alphabet) and IPA symbols. . . ... ... ....... 146
Phoneme frequencies. Speaker Gsw, ATR data. . .. ....... 146

Eight equally probable messages and the binary encoding of their

selection . . . . . . .. e 149
Messages with unequal probabilities . . ... .. .. ....... 151
Eight messages of different and the binary encoding of their se-

Iechion v v v s B s s W EE G B E R A M PP AN AR SRR S R G 152

Words correct and repair interval for speaker Gsw produced by
the baseline back end, reading regular and syllable-sequenced
ERHICERY: 2 Sl s R R S A S B G B R B B B B e 5 e e 236



LIST OF TABLES

Abbreviations

Abbreviation Meaning

apu

ATR

CSTR

cyt

epd

HMM
indel
lexax

MRPA

O-N-C

Ip
vQ

acoustic-phonetic unit

Advanced Telecommunications Research

(speech database for)

Centre for Speech Technology Research

cytology

(speech database)
end-point difference
hidden Markov model
insertion and deletion
lexical access module
machine readable phonetic alphabet
millisecond(s)
onset-nucleus-coda
(confusion matrices for)
received pronunciation

vector quantisation

11

Introduced in

chapter 3

chapter 5

chapter 1
chapter 5

chapter 6
chapter 3
appendix A

chapter 6
chapter 1
chapter 3



Chapter 1

Introduction

1.1 Introduction

This thesis addresses a problem which occurs when a speech recognition system
chooses phonemes as its unit of recognition, which is that the realisation of
phonemes are affected by neighbouring phonemes, to such an extent that it is
sometimes difficult to recognise them. In the words rim and trim, for example,
the sounds represented by the letter r are very different, at least for some accents
of English. Such phonetic variation can be dealt with in various ways, and this
thesis describes one of them, namely, the use of syllables as a predictor of these
effects.

The rest of this chapter is organised as follows. The next section is a brief
introduction to continuous speech recognition, to introduce the reader to the
technical terminology used in the thesis. This is followed by a description of
the problem of phonetic variation, with an indication of how the problem has
been solved in the past. A short section describes how this thesis will tackle
the problem (namely, the use of syllables), and gives justifications for why this

approach was chosen.

1z
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1.2 Continuous speech recognisers

Continuous speech recognisers work on speech that is spoken more or less flu-
ently. They contrast with isolated word recognisers, which can recognise words
only when they are spoken one word at a time. The two kinds of system use
different techniques for recognition. Isolated word recognisers often have stored
patterns for the words that are going to be recognised; they are sometimes
called whole-word recognisers. A continuous speech recogniser does not usually
use whole-word recognition®. This is for a number of reasons. One is that in
continuous speech there are no breaks between the words, and the system needs
to discover where the words begin and end. The simple method of matching in-
put against stored word patterns, which isolated word systems use, is therefore
usually deemed unsuitable.

Another reason is that continuous speech recognisers usually have larger
vocabularies. These consist of at least a few hundred words, and often several
thousand. When the number of words is larger than a thousand or so, the
patterns become too similar and it becomes hard to distinguish between them
(Waibel, 1988). Another problem of large vocabularies is storage space. For
example, the continuous speech recogniser Tangora, which is described in the
next chapter, has a vocabulary of 20,000 words. The storage requirement for
this number of word models is about one gigabyte (Lee, 1988, p84). A third
problem is that it is difficult to find enough training data for vocabularies of
this size.

A third reason why continuous speech recognisers don’t use whole-word
patterns is that the pronunciation of words is much more variable in continuous
speech than in isolated words. Examples of this will be given in a later section.

For these reasons continuous speech recognisers use a unit of recognition
that is smaller than the word. This unit is usually the phoneme. A phoneme,
roughly speaking, are the sounds that make up a word, like the k, ¢ and ¢ sounds

in the word cat. Instead of stored patterns for words, continuous speech systems

'(Bridle & Brown, 1979) is one of the exceptions.
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have stored patterns for phonemes. There is a heavy price to pay in using this
smaller unit: it is very confusable. Lee cites Paul (Paul & Martin, 1988),
who reports a tenfold increase in error rate when word models are replaced by
phoneme models in an isolated word recogniser. However, some of the loss of
recognition accuracy at this pattern-matching level can be made up at later
stages of processing, as we will see.

The operation of a typical continuous speech recognition system is now
described. As usual, phonemes are written between slashes; thus /k a t/ for
the phonemes in cat. In this thesis phonemes are written in a machine readable
phonemic alphabet or MRPA. Appendix A lists the 44 phonemes found in the
British English accent of received pronunciation or RP, and their MRPA symbols.
RP is the main accent with which this thesis is concerned.

The stored phoneme patterns of a continuous speech recogniser need to be
trained. The training material is typically a set of sentences, which have been
segmented into their constituent phonemes. The system is trained on many
examples of each phoneme (thousands if possible, but not fewer than about
ten), and the result, for RP, is a set of 44 patterns, one for each phoneme?.

During recognition the system is presented with a phrase or a sentence.
The system discovers where the phonemes begin and end by trial and error,
by ‘sliding’ the patterns across the utterance, as follows. All the patterns are
matched against the beginning of the utterance, and the best n of these are
kept; n is usually an adjustable parameter. This yields n possible places from
which to match the second phoneme. All the patterns are now tried at each
of the n places, and the best n of each are kept. There are then n x n places
from which to start matching the third phoneme. If this were to continue until
the end of the utterance, we would soon end up with an impractical number of
possibilities. This is avoided by calculating cumulative scores, and keeping only
the best m paths at each stage. By using a dynamic programming algorithm,
no paths that are better than the m best ones are lost this way (dynamic

programming is described in chapter 3).

2More complicated arrangements will be mentioned later.
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The result at the end is a phoneme lattice. Figure 1.1 illustrates one for
the sentence The features suggest an acute inflammatory process. The sentence
is spanned by an unbroken chain of non-overlapping segments, each of which
has several phoneme hypotheses. The figure shows only the top-scoring five
hypotheses for each segment. There are three kinds of errors in the lattice.
The sentence as spoken contains 36 segments. The lattice is spanned by 45
segments. This oversegmentation is a typical problem, and the extra segments
are called insertion errors. A second kind of error is deletion errors, caused by
missing segments. The third kind are substitution errors, which arise when the
phoneme hypotheses of a segment do not match the transcription. All these
errors need to be repaired before the phonemes can be assembled into words.
This is usually done by the lezical module, also called lexical access or lexical
lookup.

The part of the recogniser described so far, which digitises the speech, en-
codes it, and recognises the phonemes, is called the front end. Lexical access
is the first stage of the rest of the system, called the back end. The task of
lexical access is to form words out of the hypotheses in the phoneme lattice. It
uses a lexicon to do this. The system can only recognise the words that are in
this lexicon, and its size is anything from several hundred to many thousands
of words. The lexicon relates phoneme strings to words. Under the head /k a
t/ is found the corresponding word cat, under /k eil/ is found kale, and under
the head /dh e@/ are found the homonyms their and there.

Lexical access repairs the three kinds of errors mentioned — substitution,
insertion and deletion errors — while it is matching the phonemes against the
various head entries. Table 1.1 shows how the lattice of figure 1.1 is turned into
the sentence The features suggest an acute inflammatory process. A substitution
error is corrected by substituting it with the correct phoneme. In the table even
correct phonemes are shown as obtained by substitution; these are identity
substitutions. Deletion errors are repaired by inserting the required segment,
and insertion errors are repaired by deleting the offending segment. In the

table ins and del refer to the repair and not to the error: an ins repairs a
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Phoneme lattice:

## dh dh @ £ ii ch @ [i @] s [i ...uh] [zh jh] e s @ [dh ...n]
Q@ k sh yuutdhdh [@i] [@iun] f1ad@

t [iiil prr [i ...ou] s @ e th s s ## ##

Operations:

1 the ##.del dh.dh dh.del Q.@

2 features ff iiii ch.ch @.del @Q.@ z.ins

3 suggest s.s uh.@ jh.jh e.e ss t.ins

4 an @.@ n.n

5 acute @.@ k.k sh.del yy uuuu t.t

6 inflammatory dh.del dh.del ii n.n ff 11 a.a m.ins @@

t.t r.ns i.i

7 process p-p r.r r.del ou.ou
s.s @.del e.e th.del s.del s.s ##.del ##.del

Table 1.1: Substitutions, insertions and deletions performed by lexical access to
turn the phoneme lattice of figure 1.1 into the sentence The features suggest an
acute inflammatory process. The phonemes in square brackets are alternatives
for the same segment, with the best-scoring ones first. Alternatives are shown
only where they are used in the operations.

missing segment and a del removes an unwanted segment. Twelve deletions,
four insertions, and 29 substitutions (most of which are identity substitutions)
are performed.

The result of lexical access is a word lattice, which, like a phoneme lattice,
has multiple paths through it. The word lattice can be cleaned up in a syntaz
module, which tries to construct grammatical phrases. This is done on the basis
of a grammar, which determines which sequences of words are grammatical and
which not. It is common to provide the system with a grammar of a subset of
the language, one that is specific to the domain of application. An example of
such a domain is that of a travel agent. A grammar for this domain would allow
sentences like ‘How much is the fare to London’ or ‘I want to fly to Nepal’, but
not sentences like ‘Wheat production has once again exceeded the targets of the
Five Year Plan’. Domain specific grammars like this are the main reason why

continuous speech recognition systems work at all: ‘System performances were
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found to be more closely associated with the branching factor® of the language
than with any other system variable.” (Lea & Shoup, 1979, p 21).

As described here a continuous speech recogniser falls in two halves, the
" front end and the back end. The front end generates phoneme hypotheses, and
the back end constructs words and phrases out of them. It is a modular system.
A modular speech recognition system is one in which some or all of the different
stages are run in succession. An earlier stage produces its output for the next
stage to use as input, and the later stages do not affect the processing of the
earlier stages. Most speech recognition systems are not modular, but integrated.
In an integrated system the later stages interact with the earlier stages in such
a way as to affect their processing. For example, it is common to couple the
phoneme recogniser with the lexical module in such a way that the phoneme
recogniser is constrained to produce only those phoneme sequences that form
words. In a modular system the phoneme recogniser works in an unconstrained
way, and initially produces many more phoneme hypotheses, which are then
later weeded out by the lexical module.

We shall return to the matter of modular and integrated systems in chap-

ter 3.

1.3 Acoustic-phonetic variation

When a word is spoken on different occasions, the signal is different each time.
Some of these differences are due to the differences between speakers, or, with
a single speaker, due to such factors as health, mood, and background noise.
These factors are the source of non-linguistic variations. They arise from causes
that lie outside the utterance. Linguistic variations are predictable from the
words that were spoken. They are usually classified as acoustic, phonetic,
phonemic and phonological, according to their origin. I shall simply call them

acoustic-phonetic, to indicate that sometimes the differences are perceptible and

®[My footnote] Branching factor is closely related to perplezity, which is defined in appendix
B. The quotation comes from the authors’ review of the ARPA SUR systems, which are surveyed
in chapter 2.
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sometimes not.

Acoustic-phonetic variations include the following phenomena.

Word reduction

Consider the following pronunciations of the word America.

Jamerik @/
/@merik @/

In the second pronunciation the first vowel has been reduced to schwa. Further

reductions are possible, e.g to
/@mer @k @/

and even to
/@merk @/

where one of the phonemes is deleted entirely. Other examples of phoneme

deletion are /s p oo t/ for support and /1 aa s n ai t/ for last night.

Coarticulation

In the words seen and soon, the quality of the /s/ is different. In the second
case it is spoken with the lips rounded, which are in this position in anticipation
of the following vowel. This makes a difference to the acoustics. Another
example is kit and cot, for which the /k/ is coloured differently by the following
vowel; broadly speaking, the mouth is more open during the pronunciation
of cot than kit. Coarticulation occurs when the gestures used to articulate
one phoneme persist in the articulation of the following phoneme, or when the
postures for a following phoneme are adopted in advance during the articulation
of its predecessor. It is a widespread phenomenon, and affects both vowels and

consonants.
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Assimilation
Consider the following two ways of pronouncing the word actually.

Jaktyuu 1i/
Jakchuuli/

In the second case the adjacent phonemes /t/ and /y/ have become as-
similated into a single phoneme /ch/. Another example is newspaper, which
becomes /ny uus p ei p @/: the /z/ at the end of the word news has become
devoiced because the following phoneme /p/ is voiceless. Assimilation can oc-
cur also across word boundaries, as when did you becomes /d i jh uu/, have to
becomes /h a ft uu/, and ten minutes becomes /teminits/.

Some of the articulation processes mentioned can occur in combination.
When bandwidth becomes /b a m w i d th/ for example, the /d/ is deleted and
the /n/ is assimilated to the following /w/ to become /m/. Another example

is handbag, which after deletion and assimilation becomes /h am b a g/.

1.4 The syllable as conditioning environment

The examples given above give the impression that the acoustic-phonetic varia-
tions that a phoneme undergoes are caused by the phoneme’s immediate neigh-
bours. While the neighbours are a large influence on the form the phoneme
takes, they are not the only influence. The realisation of a phoneme also de-
pends on the position of the phoneme in the syllable; see, for instance Gimson
(Gimson, 1980). Syllables will be discussed in detail later (see 4); for the mo-
ment let us agree that syllables are parts of words, as in the examples that
follow. There are two sylables in a word like de-tail, three in a word like syl-
la-ble, and four in a word like un-re-qui-ted. Syllables also influence the form
of a phoneme. It is well known, for example, that the clear allophone of the
phoneme /1/ occurs more often at the beginning of a syllable, while the dark
allophone occurs more often at the end.

Another example is the stop allophones. Stops at the beginning of a syllable

tend to be released, while those at the end are released less frequently. Table 1.2
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Released Unreleased Total

No %  No % No
Initial clusters 958 69.3 49 17.6 1007
Final clusters 425 30.7 230 824 655
Total 1383 100 279 100 1662

Table 1.2: Statistics concerning stops in the ATR database.

shows this effect. 200 sentences* at csTR were syllabified, and the distribution
of released and unreleased stops was calculated. We see that a released stop is
more than twice as likely to come from a syllable-initial cluster than a syllable-
final one, and that an unreleased stop is more than four times as likely to be in
the syllable-final cluster than in the syllable-initial cluster.

There have been many studies that show that English speech exhibits sta-
tistical regularities which can be conveniently stated in terms of syllables. Ex-
amples are (Rakerd et al., 1987), (Campbell, 1988), and (Randolph, 1989).

There have also been many studies to show that humans use information
like stop releases to decide how a word is syllabified, such as (Lehiste, 1960),
(Christie, 1974) and (Nakatani & Dukes, 1977). Christie showed that the pres-
ence of aspiration in the /t/ of the nonsense word /asta/ led to the perception
of /as-ta/, while its absence led to the perception of /a-sta/. The period of
silence in the /t/ also had an effect, but a smaller one. As the silence became
longer, there was a greater likelihood of perceiving /as-ta/. Nakatani and Dukes
used diphones, and discovered that glottalisation of vowels is a strong cue for
a boundary before them, and, like Christie, that aspiration in a stop indicates
a boundary before it.

Work on syllables in the field of speech technology seems to have been of two
kinds. One of them detects, or otherwise segments the speech into, syllables as
a preparation for more robust phoneme recognition (e.g (Mermelstein, 1975),
(Nakagawa & Jilan, 1986), (Mertens, 1987), and (Green et al., 1990)). The
other kind of work studies the properties of lexicons and the distribution of
allophones in them, to show that syllables are a useful unit for speech recognisers

(e.g (Church, 1983), (Waibel, 1988) and (Randolph, 1989)). We shall look at

*The ATR database, to be introduced in section 5.2.
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this work in chapter 4.

This thesis is a development of the above work, particularly Church and
Randolph. The aim is to exploit the conditioning effect of syllables in a speech
recognition system. In particular, it aims to show that statistically based speech
recognition will benefit from the use of an explicit syllable level of modelling
between phonemes and whole words. Appeal will be made to two kinds of

regularities.

Allophone distribution Many systems (e.g (Lee, 1988; McInnes et al., 1990))
improve their bottom-up phoneme recognition by creating different mod-
els for the acoustically distinguishable allophones of a phoneme, such as
clear and dark /1/. The distributions of some allophones correlate well
with their position in a syllable. Many speech recognition systems (al-
though not all; see for example (Russell et al., 1990a)) ignore this informa-
tion. When they recognise a particular allophone, it is taken as evidence
only for the presence of the corresponding phoneme. We will make use of

the distributional evidence also.

Phoneme confusions It is common for speakers to pronounce phonemes in-
distinctly or to omit them altogether. Usually this phenomenon is mod-
elled by considering only the left and right neighbours of a phoneme.
However, the position of the phoneme in the syllable is relevant as well.
For example, phoneme deletion is more common at the end of a syllable
than at the beginning. Some systems (e.g (Lee, 1988)) take account of
this fact, but only at the end of words. We will do so at word-internal

syllable-boundaries as well.

We will be testing these ideas on the speech recogniser at csTR (McInnes
et al., 1991), which is based on hidden Markov models. The benefits of the
proposed work will be looked for in two places: in improved scores in the

phoneme lattice and in improved word scores at the lexical level.
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1.5 Concluding remarks

We know that the realisation of phonemes in continuous speech varies greatly.
Some of the variation has been described as phenomena of reduction, coar-
ticulation and assimilation. The effects of these phenomena may be called
acoustic-phonetic variations. Recognisers of continuous speech need to take
these variations into account. Many of the variations can be conveniently de-
scribed by reference to the syllable. The thesis will take account of the variation
in syllable terms. There will be two points of focus: the use of syllables in the
front end, and introducing syllables as an extra level of organisation in the back
end.

In the next chapter a survey of continuous speech recognisers is given, which
outlines the development of the field from attention to linguistic units like syl-
lables in the early days, through their virtual eclipse in more recent times, to a

return to more linguistically motivated work today.



Chapter 2

Some Trends in Speech

Recognition

2.1 Introduction

There has been a great change in the way speech recognisers are built, from the
early decoding systems of the fifties, through the artificial intelligence influenced
years of ARPA SUR, to the hidden Markov systems of today. This chapter picks

out some of the landmarks.

2.2 ARPA speech understanding research

The Advanced Research Projects Agency of the US Department of Defense
initiated a five-year research effort into speech understanding in 1971. The aim
of the research was to build systems that would ‘accept connected speech from
many cooperative speakers, in a quiet room, using a good microphone, with
slight tuning for new speakers, accepting 1000 words using an artificial syntax
in a constraining task, yielding less than 10% semantic error’ (Klatt, 1977).
This initiative resulted in four systems, which are collectively known as ARPA
sUR. The following overview is based on (Reddy, 1975), (Klatt, 1977), (Lowerre
& Reddy, 1980) and (Lea & Shoup, 1979).

The four systems were concerned with speech understanding, as opposed

24
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to the speech recognition task with which this thesis is concerned. Speech
understanding has a slightly different focus from speech recognition. In speech
understanding the aim is to produce an appropriate response to the spoken
input. In speech recognition the aim is to produce a faithful transcription of
the input. In understanding a complete transcription is not always necessary.
Suppose the application is a telephone-ordering service, and the caller says
“I"d like to order three bath towels in midnight blue.” The important words
in that sentence are ...three bath towels ...midnight blue. The order will be
filled correctly even if the other words I’d like to order ...in ... are garbled or
missing. In speech recognition, on the other hand, the correct transcription of
every word is wanted. This makes recognition a harder task than understanding,
in some respects. In practice, however, there is little difference in the techniques
used in the different kinds of systems, and the material below on the ARPA SUR
systems is fully applicable also to speech recognition.

The four ARPA systems were demonstrated in September 1976. Only two
were worked on for the full five years: Hearsay-1I, developed at Carnegie-Mellon
University (cMU), and HWIM, developed at Bolt, Beranek and Newman (BBN).
A third system, Harpy, was developed as part of a PhD thesis at cMU in the
record space of a year. A fourth project at the Stanford Research Institute and
System Development Corporation (SDC) was not completed for non-technical
reasons.

The three successful projects are famous, and although they were aimed at
speech understanding, almost every system for continuous speech recognition
since then has taken them as a starting point.

All systems had an initial segmentation into broad manner of articulation

classes, followed by refined categorisation (Lea & Shoup, 1979, p 78).

2.2.1 Harpy

Harpy is claimed to be the first demonstrated continuous speech understanding
system with a vocabulary of over 1000 words (Lowerre, 1976, p 332). It is the

only system which met the ARPA design goals. The application for which it was
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developed is document retrieval. An example sentence is “How many articles on
psychology are there?”. It performed successfully mainly because of the small
set of sentences it could recognise, and not for any interesting reason of system
design.

The approach is essentially incremental template matching for whole sen-
tences. The system contains a network of states in which the whole repertoire
of sentences it can recognise is encoded. A state corresponds to a ‘segment’,
which is a short passage of acoustically similar material, according to some
measure of similarity. Segments correspond roughly to allophones, and there
were 96 of them. The segments are encoded as autocorrelation values and LPC
coefficients. Each state contains an idealised template for a segment, and also
bears phonetic, lexical and durational information. The network also contains
word-juncture information. A state is linked to several following states. An
unknown utterance is processed by matching its segments against states on a
path, starting at the first state. The matching is done using the Itakura dis-
tance measure (Saito & Itakura, 1966). Network traversal is constrained by
beam search.

The vocabulary was 1011 words, and the syntax was restricted English with
a low number of function words (Klatt, 1977, p 118). The number of hypotheses
per input word was 33.

The system recognised 42% of phonetic segments in top choice, and 65% in
top three. This is the worst performance of all the systems at this level. Even
the sDC system recognised phonetic segments correctly 50% of the time. At the
sentence level, of course, Harpy performed best. For five speakers, male and
female it achieved 90% sentence accuracy, and 94.3% word accuracy.

The success of Harpy encouraged speech work using dynamic time warping
and hidden Markov models, which have dominated practical system building,

including the csTR system that is used in this thesis.
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2.2.2 Hearsay-II

Hearsay-1I was developed from the earlier Hearsay-I, for the same application
as Harpy. It is the darling of the ARPA systems in the Artificial Intelligence
community, because of its blackboard model, which has found widespread dis-
cussion (if not use) there. Hearsay was written in the SAIL language, which was
used for several Al systems. The blackboard is a central repository of informa-
tion, around which cluster parts of the program called knowledge sources (Kss).

The operation of the model is well described by Reddy, (1975).

The blackboard model conceives of each Ks as an information gath-
ering and dispensing process. When a KS generates a hypothesis
about the utterance that might be useful for others, it broadcasts
the hypothesis by writing it on the ‘blackboard’ - a structurally uni-
form global data base. The hypothesis-and-test paradigm ...serves
as the basic medium of communication among KSs. The way Kss
communicate and cooperate with each other is to validate or reject
each other’s hypotheses. The KSs are treated uniformly by the sys-
tem and are independent (i.e anonymous to each other) and there-
fore relatively easy to modify and replace. The activation of a Ks is
data driven, based on the occurrence of patterns on the blackboard
which match the templates specified by the Ks. ...The blackboard
consists of a uniform multilevel network ...and permits generation
and linkage of alternative hypotheses at all levels. A higher level
KS can generate hypotheses at a lower level and vice versa. It is
not necessary for the acoustic processing to be bottom-up and the

language model to be top-down.

The interaction between knowledge sources can be uncontrolled or con-
trolled, and if controlled, then controlled according to various schemes. After
initial attempts at uncontrolled interaction, Hearsay settled for a tightly con-
trolled one. The blackboard had speech represented at various levels. At the

lowest level the signal was represented as LPC coefficients. Another level was
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a broad or midclass syllable type, such as ‘STOP FRONT-VOWEL FRICATIVE’
for the syllable bif. The syllables were obtained from the signal by template
matching, using the Itakura distance. Sentences were predicted by a syntactic
knowledge source, and verified by a lower level knowledge source.

The vocabulary was 1200 words, and the syntax restricted English. The
number of hypotheses per input word was 46. Hearsay understood 74 out of
100 sentences in the standard ARPA test.

The uncontrolled nature of the interaction between Hearsay’s different com-
ponents (the knowledge sources) have often been quoted as its lack of success.

See, for example, (Thompson, 1984).

2.2.3 HWIM (Hear what I mean)

Poorest performing of the big three ARPA systems, it was developed to demon-
strate a ‘travel budget management assistant’, which through dialogue allows
the user to plan trips. Example sentence: “What is the plane fare to Ottowa?”
The response consisted of synthesised speech. This is a pioneering example of
the use of both speech input and output in one system.

The signal was represented as frame vectors, which encoded formant in-
formation and other acoustic features. These were constructed into ‘phonetic
units’, of which there were 71 different kinds. The correct phonetic unit was
recognised 52% of the time, and 80% of the time in the top three. Words
were originated either bottom-up or top-down. In the bottom-up case, avail-
able phonetic units trigger the construction of seed words. They are verified
by synthesising the word out of signal parameters, and comparing against the
input pattern. In the top-down case words were predicted from the syntax of
expected sentences. These top-down hypotheses are verified through analysis-
by-synthesis as before.

The vocabulary was 1000 words, stored as a ‘lexical decoding network’, a
tree structure. The words are spelled in phonetic units, with several versions
for continuous speech phonology. The syntax was English-like, and stored as

an augmented transition network (ATN). The system generated 196 hypotheses
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per input word, and recognised 44 out of 100 sentences in the standard ARPA

test.

2.2.4 Assessment of ARPA SUR

Lea and Shoup sum up the contribution of these systems as follows (1979, p

21).

A primary contribution of the ARPA SUR project was its simplify-
ing of the recognition task by constraining it markedly via syntac-
tic, semantic, and task constraints. This is comparable to lexical
constraints in a small-vocabulary isolated-word recogniser. Because
continuous speech recognition is such a multiple-dimension problem,
it can be constrained in many ways, and one question addressed by
ARPA SUR work concerned which constraints were most effective in
improving performance . System performances were found to be
more closely associated with the branching factor of the language
than with any other system variable, Harpy thus cannot be unequiv-
ocably appraised as ‘winner’, since its task was (on one measure)

almost an order of magnitude easier than that undertaken by awim.

2.3 CSTR’s RM2 system

The material in this section is based on personal knowledge.

RM2 was a continuous speech recognition system developed at Edinburgh

University’s then new Centre for Speech Technology Research, between 1985

and 1988. The approach was knowledge-based (there was almost no statistical

training), and there was a uniform data structure processed by a chart parser.

In a deliberate departure from the opportunistic control structure offered by a

blackboard system, RM2’s control flows in only one direction, from bottom to

top.

The signal was divided into 5ms frames, and processed to produce acoustic

parameters like formant values, energy values in frequency bands, voicing, etc.
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Acoustic features were then found by threshold and similar tests on the signal
parameters. The acoustic features were parsed into phonemes, under the control
of rules like ‘stop = silence followed by burst release’. The rules constituted
a phoneme grammar. The grammar, stored as a set of rewrite rules, defined
phonemes as strings of feature groups. Available phonemes triggered a search
of a lexicon, matching phonemes left to right. Available words triggered the
construction of word strings, under the control of a grammar that gave the
probabilities of one word class’s following another. A beam search found the
best n strings, usually a screenful.

The vocabulary consisted of 5000 words, spelled phonemically and stored
in a tree structure. The lexicon included reduced forms like /s 1is t @/ for
solicitor. Interword assimilations for continuous speech could be produced on

demand, and such forms greatly expanded the effective size of the lexicon.

2.3.1 Discussion

Despite the ten years that lay between them, RM2 did not perform as well as the
ARPA SUR systems. The HEARSAY and RM2 systems were consciously based on
the techniques of Artificial Intelligence (AI). Speech recognition was an active
topic for research in Al then, mainly due to ARPA work, and a few famous
Al techniques originated from there, like blackboards. The goal of Al is to
make the computer exhibit intelligent behaviour. Recognising speech may well
qualify as intelligent behaviour, but work in this area based on that approach,
like HEARSAY and RM2 has been discouraging.

These days the major projects in speech recognition look less to AI than
to statistical methods. Two such projects will be described below, TANGORA

(Averbuch et al., 1987) and sPHINX (Lee, 1988).

2.4 Tangora

Tangora is a class of recognition systems developed over a number of years at

1BM Research at Yorktown Heights in New York State.
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The systems are named for Albert Tangora, listed by the Guinness
Book of World Records as the fastest keyboard typist, who could
sustain rates of 147 words per minute for one hour (Averbuch et al.,

1987, p 701).

The aim of the project is to develop a speech workstation at which docu-
ments can be created by voice. The task domain is business correspondence.
Several versions of the system have been produced. The systems run on IBM PC
machines with extra speech processing cards. The systems recognise isolated
words, with degraded performance for continuous speech.

The approach taken is expressly non-linguistic, in favour of a statistical
approach. Whereas systems like Hearsay incorporated the explicit expertise of
linguists like phoneticians and phonologists, the 1BM team took the attitude
that linguistic information of the kind provided by experts is best obtained by
training. An idea of this attitude can be obtained from the following quotation,
which concerns a precursor of Tangora. It is from (Lea & Shoup, 1979, pp

30-1).

Originally the acoustic processor performed phonemic classification
of individual spectra and then the speech was segmented into pho-
nemes for the final output. More recently, the phone segmentation
and labelling was eliminated; instead, a sequence of centisecond la-
bels from a 33-phone alphabet is outputted to the linguistic decoder.
The advantages given for the centisecond-level models are that in-
formation related to phone length is made available in a form usable
by the models in the linguistic decoder, that more of the important
information is preserved, and that the segmentation and labelling
decisions are delayed until decisions can be made by the linguistic

decoder.

A phonetician would prefer to see a segmentation into phonemes, because that
is the raw material of his science. For the 1BM team, however, this smacks
of vagueness, and if they can do without them, so much the better. Linguistic

regularities should not be incorporated explicitly, but acquired through training.
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The system works by first performing a fast acoustic match between the
signal representation and the lexicon. This yields a list of candidates which are
then subjected to more detailed matching. The linguistic decoder includes a
statistical language model of the domain. Tangora-5, a version with a vocabu-
lary of 5000 words, covered 92.5% of the task domain, i.e 92.5% of the words
found in business correspondence are among the 5000 words in the lexicon.
Tangora-20, with 20,000 words, covered 97.6% of the domain. The system is
speaker dependent, and new speakers need to go through a period of training
when they enrol. It is not necessary to train all 20,000 words. Training on
700 distinct words is enough for the Tangora-20 system. The error rates of

Tangora-5 and Tangora-20 were 2.9% and 5.4% respectively, on isolated words.

2.5 Allerhand

An intriguing system that combines statistical and knowledge-based schemes
was described by Allerhand (1987).

As we’ve seen in section 2.2.2, a knowledge-based system is one which recog-
nises speech in stages, where each stage draws on a different ‘domain of con-
straint’, such as the acoustic-phonetic domain, the phonological domain, and
the syntactic domain. Each stage, or component, produces data which it hands
on to the next component. Thus the acoustic-phonetic component takes the
digitised signal and passes an acoustic-phonetic description of it to the phono-
logical component. The phonological component turns this into a phonolog-
ical representation, and so on, until the last component produces a string of
words. For ‘domains of constraint’ read ‘fields of knowledge’, whence the term
‘knowledge-based’. We could also call this the divide and conquer strategy.

Allerhand outlines the problems of this approach as follows (1987, p10).

Each domain contributes partial evidence, which leads to the gener-
ation of hypotheses, and every set of hypotheses is of course larger
than it need be. In combination, the constraint domains generally

compound the number of plausible hypotheses, leading to the char-



CHAPTER 2. SOME TRENDS IN SPEECH RECOGNITION 33

acteristic combinatorial explosion. Under this effect the number of
plausible hypotheses races ahead of the constraints which can be
usefully applied to contain them, so that the search problem grows
dynamically, producing excessive demands on execution time and

mMemory space.

Allerhand’s system was produced for his PhD thesis, and so only addresses
part of the speech recognition problem, that of turning the signal into a se-
quence of broad class phonemes. There are nine broad classes, which contain a
classification of the phonemes of the language. The problem is divided into two
stages: classifying the time-domain vectors of the signal into acoustic symbols,
and parsing the acoustic symbols into broad classes. The first uses vector-space
pattern recognition and the second uses syntacting pattern recognition. The
first is based on statistically trained, quantitative information, and the second
is based on structural information obtained from observation. These are the

two parts of Allerhand’s hybrid system.

The ideas presented ...are a tentative exploration of the ways in
which a simple grammatical representation of the structural con-
straints inherent in speech and language can be used to improve
the descriptive adequacy and the performance of pattern-matching

speech recognition models. (Allerhand, 1987, p15).

2.6 SPHINX

At the time of its appearance SPHINX (Lee, 1988) was greatly superior in per-
formance to any other system. It was developed by Kai-Fu Lee as part of his
PhD at Carnegie-Mellon University, and the work was funded by DARPA, the
successor to ARPA. As with ARPA, DARPA funded rival projects, and SPHINX
was one of them. SPHINX is a speaker-independent system, and its results were
better than the speaker-dependent results of some rival systems (Lee, 1988,

pl6). In the same place Lee goes on to say
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By utilising perceptual knowledge and stochastic modelling, by in-
tegrating knowledge and learning, and by fully utilising abundant
training, the sPHINX Speech Recognition System has bridged the

gap between speaker-dependent and speaker-independent systems.

The success of SPHINX is due to a number of factors, many of which became
possible because Lee had a large amount of training data available to him. Ta-
ble 2.1 lists some of the factors and the difference they made to the performance
of the system*.The first two of these factors concerns vector quantisation (vQ)
of the speech signal. Vector quantisation is a way of encoding the digitised
speech, and involves dividing the signal into fixed-length frames (20ms in the
case of SPHINX), and translating the speech in each of the 20ms intervals by one
of a fixed number of codes. The number of codes is usually 256, as it is here,
and they are looked up in a codebook that has been trained in advance. The
many-to-one mapping defined by the codebook introduces distortion, which can
be reduced by using more than one codebook (Gupta et al., 1987). Using three
codebooks instead of one means each frame is encoded with three vqQ symbols
instead of one.

The next factor is the duration modelling of words. SPHINX models words
and phonemes in a three-level EMM network (Hidden Markov models, or EMMs,
are described in D). At the highest level the network consists of word models,
arranged according to the grammar. The word models consist of their phonetic
pronunciations, and each of these is a phone model in the usual way. While
the phone models embody duration information for the phonemes themselves,
when they are put together in a word model, they do not reflect the length of
the word very well. Lee introduced a separate mechanism for modelling word
durations, and obtained the results given in the table.

The next four factors in the table relate to the training of models. SPHINX is
first trained on context-independent phones, i.e on phones independent of their

setting. Next context-dependent models are trained on the basis of these. There

!The table refers to a later version of the system (Lee, 1989), and not the one developed

for his PhD thesis.
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are four kinds of context. The first kind of context is provided by function words,
abbreviated fn-word in the table. As described in chapter 1, function words
are greatly distorted in continuous speech. Because function words occurred
frequently enough in his training data, Lee was able to train special models
for phones that came only from these (a set of 42 functions words gave rise to
105 phones, and each of these was given a separate model (Lee, 1989, p150)).
This specificity was next extended to function phrases. Lee observed that the
phones in phrases like is the, that are and of the are even more distorted than
in function words by themselves.

The third kind of context dependency is reflected in the generalised triphone.
A triphone is a phoneme whose identity is determined not only by itself, but
by its left and right neighbours. Thus pro and ¢ra define two triphones for
the phoneme /r/; a 45-phoneme set like SPHINX’s gives rise to 45% = 91125
triphones. Not all of these are legal for English, but even the number that
remains is too large to be trained: it would be difficult to find enough training
data for all of them. Lee’s solution to this is the generalised triphone, which in
effect is a class of triphones with similar contexts. Thus pro and ¢ra might be
collapsed into a single class, because in both cases the /r/ has a stop consonant
on its left and a vowel on its right. A fourth kind of context-dependency was
taken into account when the triphones were defined also across word boundaries.

The last factor in the table, corrective training, refers to the optimisation
variable in the training of the hidden Markov models. The corrective training
algorithm is an alternative to the usual forward-backward training algorithm.
Both algorithms train models incrementally in an iterative procedure. Dur-
ing the iteration the forward-backward algorithm maximises the probability
that the models will generate the training data, while the corrective training
algorithm tries to maximise the recognition rate on the training data. Lee’s
implementation of it is an extension of the one described in (Bahl et al., 1988).

As can be seen from the table, the greatest improvement in the word ac-
curacy (nearly 20%) came from using three codebooks instead of one. It is

SPHINX’s 20ms frame size that makes multiple codebooks necessary. The CSTR
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Version No grammar | Word pair
1 codebook 25.8% 58.1%
3 codebooks 45.3% 84.4%
+Duration 49.6% 83.8%
+Fn-word 57.0% 87.9%
+Fn-phrase 59.2% 88.4%
+Gen-triphone 72.8% 94.2%
+Between-word 77.9% 95.5%
+Corrective 81.9% 96.2%

Table 2.1: Word accuracies of various versions of SPHINX. Reproduced from
(Lee, 1989, p152). Word accuracy is the percentage of words correct, not count-
ing insertions.

system, described in the next chapter, has a frame size four times smaller (5ms),
and so suffers less vqQ distortion. In fact, with only one codebook it has more
vQ symbols per 20ms than SPHINX with multiple codebooks (4 vs 3).

The next largest improvement (more than 13%) comes from generalised
triphones. Triphone models capture most of the assimilation effects mentioned
in chapter 1. Lee was not the first the introduce triphone modelling; he cites
(Bahl et al., 1980) as the original proposal. Triphones lead to a large number
of poorly trained models, and this is overcome by interpolating them with
context-independent models. Lee’s contribution was to note that many left and
right contexts were sufficiently similar that they could be merged. He gives
the example of the labial stops /b/ and /p/, which have similar effects on the
following vowel (Lee, 1988, p88). The triphones with shared contexts were
called generalised triphones, and the immediate benefit is in the larger number
of training examples that become available. The extent to which triphones
need to be collapsed to produce generalised triphones depends on the quantity
of training data. One version of sSPHINX had 500 generalised triphones (Lee,
1988, p96). We will see in the next chapter that generalised triphones are not
a possibility in the CSTR recognition system.

We may note in passing two interesting points from table 2.1. One is that the
use of a grammar makes a very big difference to recognition accuracy. Whereas
the greatest improvement in word accuracy came from using three codebooks

instead of one, as I've already drawn attention to, adding a grammar to the
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one-codebook case makes a much bigger difference: more than 32% compared
to nearly 20%. This fact has been noted widely (a reference to it was made in
section 1.2), and we will meet it again in chapter 6. The grammar makes such
a big difference that gains obtained without it become much smaller after it
is added. This brings us to the other interesting point. Using a grammar can
partly reverse improvements made without it. The addition of word duration
modelling improved the word accuracy by about 4% when no grammar is used,
but the accuracy went down slightly with the use of a grammar. We will see

effects like this also in the CSTR system, in chapter 6.

2.7 Summary and discussion

The concern of artificial intelligence is to implement on a computer tasks for
which no algorithm exists, or for which an existing algorithm is computationally
impractical®>. One way of achieving this is to represent the knowledge of experts
at the task, and, usually, to run some kind of rules on the resulting information
structures.

This kind of thinking was a heavy influence on the builders of the ARPA SUR
systems. The task was speech recognition, the experts were phoneticians and
phonologists, and the rules were grammatical rules which expressed such facts
as conditions under which assimilation takes place. The schemes for this were
not always implemented, and in the end the hopes were not realised. The best
performing of the ARPA systems, Harpy, owed little to knowledge engineering
and much to the rigorous control over the number of possibilities that could be
generated by the acoustic matcher.

A swing away from knowledge engineering then took place, in favour of
systems that relied on the training of statistical models. The various Tangora

systems are the best example of this. These systems work better than early

?Every computer program embodies an algorithm, but sometimes only in the trivial sense
of producing its output from its input. However, not every program is an algorithm for the
problem it is supposed to solve. Chess-playing programs may be mentioned as an example.
Such programs do not have an algorithm for the problem ‘win every game’. We know this
because such programs occasionally lose. These programs are an example of the case where
an algorithm exists but is (currently) infeasible to run.
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rule based efforts like Hearsay, EWIM and KEAL (Vaissiére, 1989), even though
from a theoretical linguistic point of view they are less sophisticated. The false
conclusion has then often been drawn that statistics are a preferable alternative
to linguistic theory in the design of speech recognisers. However, statistics and
linguistic theory need not be mutually exclusive. The progression from the
use of whole words as the basic unit of recognition in early statistical systems,
to context-dependent allophones in systems such as SPHINX, would seem to
vindicate the use of traditional linguistic categories where sufficient data can
be gathered to characterise them statistically.

SPHINX’s triphones can be seen as a response to the facts of assimilation.
The use of syllables in the work proposed here is a response to the fact that
acoustic-phonetic variation occurs on a scale larger than triphones. We have
seen some encouraging figures that this approach is justified. At the end of the
last chapter we saw that a released stop is more than twice as likely to be in
the initial cluster of a syllable as in the final cluster. Such observations have of
course often been made, but they have not often found effective expression in
speech recognisers.

One person who strove to do so is Kenneth Church. It is appropriate here
only to quote his proposals, in order to show the way forward. His work will
be discussed in more detail in chapter 4. Church’s PhD thesis advocated us-
ing allophonic information rather than ignoring it (Church, 1983). Previously,
allophonic processes were regarded as obscuring the signal, and the resulting
allophonic variations as a nuisance. In evidence Church quotes Klatt (Klatt,

1979):

In most systems for sentence recognition, such modifications [the
different realisations of a phoneme in different contexts| must be
viewed as a kind of ‘noise’ that makes it more difficult to hypothesise

lexical candidates given an input phonetic transcription.
Church argues, on the other hand, that allophonic information is useful:

...allophonic constraints provide an important source of infor-

mation which should be exploited to the fullest possible extent by a
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of.

speech recognition device. Despite the fact that allophonic variation
can occasionally obscure certain cues, allophonic variation should
not be viewed as a source of random noise. Allophonic variation is
the result of very predictable processes. These processes provide im-
portant cues for the determination of syllable boundaries and stress
assignment. This information will (often) compensate for whatever

segmental cues may be occasionally obscured. (1983, p 16)

We will see in subsequent chapters how this information can be made use



Chapter 3

The CSTR Recognition
System

3.1 Introduction

The syllable experiments were performed on a modified version of the csTr
speech recognition system. Describing that system is the purpose of this chap-
ter. The system was produced at the Centre for Speech Technology Research
(csTr) in Edinburgh. It was developed at CSTR as part of the UK’s Alvey
Information Technology Initiative. The Alvey Initiative funded several large
demonstrator projects, of which the cSTR system was one. The system was
built mainly by Yasuo Ariki, Fergus McInnes, David McKelvie and Steve Hiller,
with contributions also from others. The description below is based on personal
experience, conversations with the above, and on (McInnes et al., 1991).

The ¢STR recognition system consists of an acoustic-phonetic front end and
a lexical and syntactic back end. The front end processes the signal and pro-
duces acoustic-phonetic units (apus). Apus are phonemes and in some cases
allophones of phonemes. The back end accepts apus and produces phrases or
sentences. The two operate independently: the front end produces apus with-
out regard to lexical and syntactic considerations, and the back end produces
phrases without influencing the acoustic processing.

The front end itself also consists of separate stages: a signal processing

40
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stage and a segmentation and classification stage. The signal processing stage
takes the digitised speech signal and produces an acoustic representation of it.
The segmentation and classification stage accepts this acoustic description and
produces a lattice of scored apus.

This modularity of the system has advantages and disadvantages. The dis-
advantages follow from the denial to some components of information from
other components. For example, in an integrated system in which the clas-
sifier has access to lexical information, the classifier need produce only those
hypotheses that form words. This restriction on the number of hypotheses has
two consequences. One is improved performance: there is a limit on the number
of hypotheses the classifier can produce, and if these are lexically constrained
then we are sure of only getting the good ones. The other is that an integrated
system can use techniques which in a modular system are computationally in-
tractable. An example is the use of triphones, which the modular system at
CSTR cannot use, because there are too many combinations. This matter will
be discussed later in this chapter.

The advantages of a modular system come from the fact that attention can
be focused on one component at a time during development. The advantages

include the following.

1. Variants of the front end can be constructed and tested without having
to develop a corresponding vocabulary and language models for the back
end. Similarly, different versions of the back end can be tried without

each time repeating the front end processing.

2. The performance of the csTR front end is measured in terms of the entropy
of the apu lattice (this measure is described later). An entropy measure is
more general than a measure based on utterance or word recognition rates.
It is also more sensitive to small differences in front end performance,
which allows statistically significant results to be obtained on smaller

databases.

3. Causes of difficulty in the front end, such as an adverse choice of allo-
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phones for a particular phoneme, can be discovered more easily from the
apu lattices generated by the front end than from the words and phrases

produced by an integrated system.

3.2 The CSTR Front End

As stated above, the front end consists of a signal processing stage that takes
in the speech waveform and produces an acoustic description of it, and a seg-
mentation and scoring stage that takes this acoustic description and produces

a lattice of probability-scored apus.

3.2.1 Signal Processing

The signal processing stage includes end-point detection on the utterance, vec-
tor quantisation and computation of acoustic feature vectors from the waveform.

The technical details are as follows (Mclnnes et al., 1991).

The input speech is passed through a lowpass filter with a cutoff
frequency of 4.75kHz, and sampled to 16-bit precision at a frequency
of 10kHz. The start and end points of the utterance are located by
an algorithm based on that of Lamel et al (Lamel et al., 1981), in
which provisional start and end points are found using thresholds on
signal magnitude (the sum of absolute sample values, taken over a
10ms frame), and these may be extended to include regions of high
zero-crossing rate so as not to cut off initial or final weak fricatives
or final stop bursts. The signal magnitude thresholds for locating
the start and end points are adapted during non-speech intervals
according to the background noise level (McInnes, 1988), pp 158-
161.

After preemphasis (with a factor of 0.97), a 14th-order linear
predictive analysis is performed in a 20ms Hamming window every
5ms, and the first 10 cepstral coefficients are derived (Markel &
Gray, 1986) ...
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The result of the processing so far is a vector of acoustic fea-
tures (cepstral coefficients and optionally log formant frequencies)
every Sms. A concatenation operation and a discriminant transfor-
mation may be applied at this stage ... After this, a vector quanti-
sation (vQ) operation is applied, in which each input feature vector
is mapped to the nearest vector (as determined by a Euclidean dis-
tance calculation) from a codebook of 256 prototype vectors derived
by a clustering analysis, and the sequence of vectors is replaced by
a sequence of vQ indices which are integers in the range from 0 to
255. It is this sequence of vQ indices which forms the acoustic rep-
resentation of the speech which is passed to the segmentation and

classification component.

3.2.2 Segmenter and Classifier

Segmentation and classification are separate operations. Both use discrete-
output hidden Markov models (HMMs) to represent the apus (HMMs are de-
scribed in D). Each apu is represented by a three-state model, with no skip
transitions. Segmentation uses a connected Viterbi algorithm (Forney, 1973) to
find the globally best sequence of models that match the input. This sequence
does not necessarily contain the best scoring segment at each point; it is the
sequence that is optimal. The sequence of segments covers the input so that
there are no overlaps or gaps. Only the start and stop times of the segments
are kept, ready for the next stage.

A classification run now uses the same Viterbi algorithm to match each
model against each segment, and obtains a probability score for each. The
classification run would seem to repeat the work of the segmenter, but this
is not strictly true. The best-scoring apu for each segment produced by the
classifier is the same as the best-scoring apu produced by the segmenter; but the
segmenter’s second-best apu may not be for ¢this segment, but for one that partly
overlaps this one. The classifier therefore repeats the work of the segmenter,

but only on the best-scoring segments. The purpose of the classification run is
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to obtain correct scores for the lower-ranking apus for each segment.

For each segment, the classifier produces a scored match for each apu in
the system. These log probability scores are derived from the Viterbi scoring
algorithm, and normalised for segment duration by dividing by the length of
the segment in 5ms frames. They are intended to be proportional to P(acoustic
datalapu). The sum of the scores over all the apus is taken to be @, the ‘overall
probability’. The scores are then normalised to sum to 1. An extra ‘apu’ called
DELETE is now appended, and given a score Q¢, where d is a constant. The
probabilities of the other apus are adjusted by multiplying by Q¢, where z is
also a constant. If z is made greater than d, then the probability of deleting the
segment is greater than the scores for the apus if the overall score () is poor.
The values of @ and d are established by trial and error over several runs.

The DELETE apu is intended as a guide to the back end when it matches
segment sequences against words in the lexicon; a segment with a high DELETE
score will be more likely to be deleted than a segment of good quality. Back

end operations are described in a later section.

3.2.3 Demi-diphones

It is now time to describe the mechanism that is used for modelling syllables
at the front end. Syllable modelling is done using the context-modelling mech-
anism of the existing csTR front end. The mechanism is used unmodified for
the syllable work.

Considerable improvements in speech recognition performance have been ob-
tained in recent years by modelling triphones (Lee, 1988; Russell et al., 1990b;
Wood & Pearce, 1990). A triphone is a phone as defined by the phones on its
left and right. It does not actually include the left and right phones (the word
‘triphone’ is misleading in this respect). As we saw in chapter 2, the realisation
of a phoneme is heavily affected by the surrounding phonemes, and triphone
modelling recognises this effect by creating many models for each phoneme: one
for every phonemic setting in which it is found. The improvement in perfor-

mance is substantial. On a thousand-word system with no grammar, Lee (Lee,
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1989) reports an improvement in word accuracy from 59.2% to 72.8%:.

Triphone modelling is only feasible in an integrated system, where the lexi-
con and the grammar can constrain the generation of triphone hypotheses. As
we saw in section 2.6, the number of triphones is large. The cSTR classifier
would need to generate this number of hypotheses for every segment. In an in-
tegrated system the number of hypotheses is much smaller, because in sequence
they must form legal words in legal syntactic combinations. The cSTR front
end, however, cannot restrict the number of hypotheses in this way, and the
number is too large for practical computation.

The csTR system does employ a more limited kind of context modelling,
in the form of demi-diphones (McInnes et al., 1991). A demi-diphone is a unit
which extends from a phone boundary to a phone nucleus, and from a nucleus
to a boundary. A left demi-diphone is specific to the phoneme on its left, and
a right demi-diphone is specific to the phoneme on its right. For rRP this gives
45? = 2025 demi-diphones of each kind, making 4050 in all. Segmentation and
classification works as follows. The signal is first segmented into demi-diphones.
Left and right halves are then matched to produce segments of whole phonemes,
which are annotated with the left and right contexts of the respective halves of
the pair. The matching is done in accordance with a set of transition networks,
which specify which left half goes with which right half, and their left and right
contexts. The result looks like a triphone segmentation, but is not, because
the left context and the right context do not together define the phone between
them.

Figure 3.1 illustrates. It shows the phoneme /a/ in its context to form the
sequence /p at/. /a/is made up of two demi-diphones, which are denoted ‘p-a’
and ‘a-t’ in the figure. The sequencer which matches the left and right halves
takes due note of the contexts /p/ and /t/ when it produces the whole /a/.
Note that if this were a full triphone segmenter, there would be a full ‘p-a-t’

triphone; the /a/ would specific to both left and right contexts. Although the

3 .
Lee defines word accuracy as the percentage of words correct minus the percentage of
insertions.
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X-p p-a ! a-t t-X

left demi-diphone  right demi-diphone

Figure 3.1: Demi-diphones for the phoneme /a/ in ‘pat’. ‘x’ stands for the
unspecified neighbours of the /p/ and /t/ phonemes.

matched demi-diphone looks like a triphone (it has a left and right context), it
is not, because the /a/ is not specific to both contexts. Its left half is specific
only to /p/, and its right half is specific only to /t/.

Once a segmentation has been obtained, classification is performed using
models that are appropriate to the segment’s context. Besides the fact that
the segments are not a true triphone segmentation, there is another reason
why this scheme does not give the same performance as an integrated system.
This is that although the segment halves obey their respective left and right
contexts, the sequence of phonemes picked by the back end when it comes to
construct words, need not obey these contexts. In the example we've just seen,
the back end would see three segments /p/, /a/ and /t/. However, the /p/
segment will have other phoneme candidates as well, and the back end may
prefer them to the /p/. It might construct the word bat, for example, and this
would violate the left context of the first half of the /a/. Of course, the other
segments also have other candidates, and the back end could construct pad,
beck, or many other words. In an integrated system this situation cannot occur,
because segmentation and classification happen under control of lexical access.
The words that are constructed will contain phones that are fully determined

by their contexts.

3.2.4 Syllable Networks

The demi-diphone mechanism will be used for our own purposes in this thesis,
namely, to implement syllables. The demi-diphone transition networks specify
which left demi-diphone goes with which right demi-diphone to produce a full
phoneme. The networks are not in fact restricted to only two constituents; any

number of constituents can be specified. We shall use the transition networks,
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Figure 3.2: Network for the syllable ‘cat’.

_AY

Figure 3.3: Combined network for the two syllables ‘cat’ and ‘can’.

not to define phonemes in terms of demi-diphones, but to define syllables in
terms of apus.

A network for the syllable catf is shown in figure 3.2. The network consists
of three nodes, one for each phoneme. The nodes are connected by arcs, in
sequence. The last node has an arc which connects it with the first node again.
We shall see in a moment why this is so.

There is a network for every syllable, and for the sake of efficiency the
networks of the different syllables are combined together. If the syllables cat
and can are combined, for example, we get the network given in figure 3.3. The
common stem /k a/ is collapsed into a single initial sub-network, after which
the network branches to describe the different endings. Both branches loop
back to the starting node /k/.

All the syllables that can occur are combined together to form an integrated
network.Note the use of terminology: a network defines a single syllable. The
networks of different syllables are combined to form an integrated network.

The syllable networks (i.e the networks that belong to an integrated net-
work) are used at an internal stage of the segmenter. We shall call this stage the
sequencer. The segments that the segmenter produces are matched against the
networks so that the segments that are output form valid sequences of syllables.
The network is applied continuously, and that is why the ends of syllables point
to the beginning again. If the network illustrated in figure 3.3 were used, then

the segmenter could produce only a sequence of cats and cans, in whatever
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Figure 3.4: Multiple segments produced by an internal stage of the segmenter.

order is determined by the data.

The syllable-matching algorithm that is part of the segmenter works as
follows. Figure 3.4 shows part of a segmentation of an utterance that is obtained
by the segmenter before it has applied the syllable networks. The segments are
shown non-contiguously to make the figure easier to read. Many paths can be
traced out from the beginning, and the segmenter needs to choose the best one.
Without syllable networks the best path is the one whose constituent segments
have the highest score. The networks impose the additional requirement that
the sequence must form a valid concatenation of syllables.

Matching the segments against the syllable networks is done under the con-
trol of a dynamic programming algorithm?®, which finds the globally optimal
sequence of syllables that can be fitted to the segments. A beam search is used
to restrict the number of possibilities that are generated internally. The output
is a lattice of phonemes as before, with the difference that from left to right the
phonemes now define a string of legal syllables. The process of matching the
segments against a set of syllable networks to produce a cleaned-up segmenta-
tion, will be called syllable-assisted segmentation or syllable sequencing.

The syllable networks form the basis of the experiments to be performed in

chapter 5.

2Dynamic programming is explained in appendix E.1.
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3.3 Entropy as a measure of front end performance

In this section the use of entropy to measure front end performance is described.
Entropy in general is described in appendix B. The idea of using entropy in a
speech recogniser is due to Crowe (Crowe, 199?). The description below draws
on personal discussions with him and with Fergus McInnes.

In speech recognisers which produce a single string of phonemes or words
as output, the performance can be effectively measured as the percentage of
phonemes or words spotted correctly. The CSTR system, however, does not
output a single string of hypotheses, but a lattice of them. For such cases a
different performance measure is needed, and the measure adopted is entropy.

In appendix B it is shown that the entropy H of a symbol s drawn from a

distribution of many symbols is

H=-Y p,logp,

where p, is the probability of drawing the symbol. The logarithm is taken to
base 2. The entropy indicates how much information is needed to specify the
symbol, and it is measured in bits. With a phoneme lattice we are interested in
the information needed to specify the sequence of apus in the correct answer,
given the apus in the lattice. If the front end were 100% accurate, the apus in the
lattice would be the same as the ones in the correct answer, and the information
needed would be zero. In practice it is never zero, and the discrepancy between
lattice and correct answer determines the information that the back end must
supply in order to correctly identify the utterance.

The entropy that measures this information is based on the posterior (con-
ditional) probability of the correct answer, given the lattice. This probability
is not the same as the probability scores provided by the front end, which are
in the lattice. In order to obtain the posterior probabilities we need to compare
the lattice against the correct answer, and count the frequencies with which the
correct answer is predicted. The comparison is not a straightforward left-to-

right match between lattice and correct answer. Insertions and deletions may
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be necessary, and the lattice may be based on a multiple segmentation, in which
there is more than one segment for some of the correct answers. An alignment
procedure is therefore needed to establish the correspondence between lattice
and answer, and this procedure itself will produce more than one alignment for
any one segmentation. All these difficulties lead to the following formula for

the entropy of a phoneme lattice (the details are in (McInnes, 1993)).

Zcorrcct alignments Q(a)
Zaii’ alignments Q(G)

H = —log

where @(a) is the probability of an alignment between the lattice and the correct

answer. It is proportional to the posterior probability
P(recognition and alignment a | apu sequence).

By Bayes’ theorem this is proportional to
P(apu sequence)P(lattice and alignment | apu sequence).

The first factor is the prior probability of the apu sequence, that is, the
product of the relative frequencies of the apus in the corpus from which the
utterances are drawn. The second factor is the product of probabilities of
apu-to-segment matches, of segment deletions, and of segment insertions. The
probability of an apu-to-segment match is the bottom-up score provided by the
front end, that is, P(acoustic data in the segment | apu). The probability of
a segment deletion is the product of a similar bottom-up score, i.e the proba-
bility of the acoustic data in the segment given that there is no apu, and the
probability that a deletion is needed here. This probability, and the insertion
probability, are not bottom-up scores, and must be obtained separately.

If the lattice contains multiple segmentations, then different paths through
it may contain different numbers of segments. Paths with fewer segments will
have a higher probability than paths with more segments, since the probability
for a path is the product of individual probabilities that are less than 1. This
gives short paths an unfair advantage. To compensate for this, the probability

for each segment is raised to the power of the segment’s duration, expressed in
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units of a standard duration. The standard duration is chosen as 80ms. If this
compensation were applied to inserted segments as well, it would be nullified,
since inserted segments have a duration of zero: raising the insertion probability
to a power of zero would yield a factor of 1. Inserted segments therefore escape
the length compensation. This makes a path with insertions somewhat more
expensive than a path of the same length without insertions, because the former
contains extra terms, which have not been adjusted for duration. It is easiest to
see this in the log domain. In the log domain the score for the whole utterance
is the sum of the apu scores. Each apu score is multiplied by a duration factor.
The sum of the duration factors is proportional to the length of the utterance.
Consider now two segmentations of the same utterance, one with n segments
and one with n + 1 segments. Let neither of them contain inserted segments.
The score for the second segmentation is the sum of n+ 1 terms, but this is not
unfair because the terms have been adjusted with duration factors which are
slightly smaller than the ones for the first segmentation (the n + 1 factors still
add up to the same total duration). If, however, the extra segment in the second
segmentation is an inserted one, this is not true. Only n terms will be adjusted
for duration, the same as for the first segmentation. The (n + 1)th term, which
is in effect multiplied by a duration factor of 1, makes the second duration look
longer. This bias against segmentations with insertions is unavoidable. We
shall return to this matter in a later chapter.

The entropy is computed in two stages. The set of utterances on which the
entropy is to be calculated is divided into two equal-sized sets: the estimation
set and the evaluation set®. The estimation set is used to obtain alignments
between the phoneme lattices and the correct answers. The insertions and
deletions that were necessary to achieve these alignments are counted to ob-
tain estimates for the insertion probabilities, and the probability of a deletion.
The evaluation set is then used to compute the entropies. Alignments are con-

structed between the lattices and the correct answers, and the quantities Q(a)

>This is not to be confused with different sets of utterances for open and closed tests. To
compute entropy scores for an open test, for example, the open test set is divided into an
estimation set and an evaluation set.
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referred to above are computed. Both per-utterance and per-apu entropies are
calculated. The utterance entropies are used in comparisons between lattices

produced by different versions of the front end, as described later in this thesis.

3.4 The Back end

In the cSTR system the construction of word strings is performed by the lexical
access module. This module will be referred to as lezaz in what follows. The
construction of word strings involves both lexical lookup and parsing against a
grammar, in an integrated operation. For ease of explanation the two steps are
described separately, with lexical lookup first.

The task of lexical lookup is to match strings of phonemes in the input
against words in the lexicon, in the presence of errors in the input. As explained
in chapter 1, these errors are of three kinds, and need to be corrected in order
for a match to succeed. A missing segment is repaired with an insertion, and a
superfluous segment is repaired with a deletion. A mis-identification is repaired
with a substitution. Since for each segment the front end produces a scored
hypothesis for all the apus, so it might seem that the back end does not need
to bother with substitutions. Suppose for example that the back end is given
a sequence of segments whose top-scoring phonemes are /sh ou b @/, which it
wants to match against the word sober. The first apu has been mis-identified,
but we know that all the other apus are also present in the first segment (with
worse scores), and in particular the apu /s/ is there. The substitution s.sh
therefore seems unnecessary. However, this need not be so, because substituting
/s/ for a better-scoring /sh/ might be cheaper than using a worse-scoring /s/
unchanged.

An example of the insertion, deletion and substitution repairs necessary to

convert a phoneme lattice into a sequence of words was given in table 1.1.
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hard /haad/
heard /h @@ d/
hurt /h @@t/
weird /w i@ d/
what /wot/
word /w @Q d/

Table 3.1: A six-word lexicon

3.4.1 Error correction

The matching operation will be described in more detail with the help of an
example. Assume that the lexicon consists of the six words given in table 3.1.
The input string is compared against each word, and a score is calculated for
each comparison. The words are ranked according to their scores, and the top
five or so (the number is an adjustable parameter) are put forward for further
processing.

The score is calculated partly from the scores that were attached to the
phonemes during the pattern matching stage. These are frequently called the
bottom-up scores, because they come from an earlier stage of processing, which is
visualised as being at the bottom. In the CSTR system these scores are negative
logarithms of probabilities. Since a high score means a low probability, it follows
that these scores can be interpreted as costs. Lexax will prefer phonemes with
low costs to those with high costs.

If the input string is /h aa d/, so that it matches perfectly the phonemes
of the lexicon entry for hard, then the probability that it was hard that was
spoken is the product of the bottom-up probabilities. Because the logarithm of
a product is the sum of the logarithms of the multiplicands, the score for this
word is the sum of the bottom-up scores. In this simple case therefore we add
the phoneme scores to get the score for the word.

Where corrections are necessary for a match to take place — that is, where
the input string needs to be adjusted for substitution, insertion and deletion
errors — lexax needs to take this into account. The corrections incur penalties.
Suppose the input string is /w h @@/, and we are trying to match it against the

word hard. Figure 3.5 illustrates. The first phoneme of the string, the /w/, is
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W h @@ O lattice phonemes
>< h aa d lexical phonemes
\L = deletion C\l«) = insertion

Figure 3.5: Matching operations performed by lexical access, to construct the
word hard

an insertion and needs to be removed. We pay an insertion penalty by adding
it to the score (a high score indicates a poor match). The second phoneme,
the /h/, matches the first phoneme of the word, and no penalty applies. The
phoneme score is added as usual. The third phoneme, the /@@/, does not
match the /aa/ of hard. This is a substitution error, and a penalty is paid. The
last phoneme of hard has nothing to match against. This is a deletion error, and
again the appropriate penalty is paid. The resulting score is a sum of phoneme
scores and penalties. It will be higher than the score in the earlier example, to
indicate a poorer match.

The matching operation has been described as if the input is a single string
of phonemes. In actual fact the front end produces a lattice rather than a
string. This does not substantially alter the matching operation. Instead of
one candidate per segment, there are many. They are all considered, in all
combinations®. In the rest of this thesis I shall continue to talk as if lexax

receives a simple phoneme string as input.

3.4.2 Finding the best match

The above match was achieved by means of a deletion, an equality, a sub-
stitution and an insertion. It can be achieved also using a different series of
operations. Figure 3.6 shows how the same effect can be achieved with three

substitutions. There are in general many ways a match can be achieved, and

“This is not strictly true. See section 3.4.2 below.
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b

Figure 3.6: Substifutions performed by lexical access to construct the word
hard.

their scores are not the same. This is true of the other words as well; there
are several ways /w h aa/ can be matched against hurt, and against weird, and
against what, etc. For each word we will have several corresponding scores.
Which score shall we choose in each case? Since the score is used to decide
which of these words is the most likely to have been spoken, the matter is an
important one. A consistent choice is to use the lowest (best) score for each
word.

To find the lowest score for a word, it is not necessary to perform all its
matches first, and then choose the minimum. An algorithm called dynamic
time warping, based on the principle of dynamic programming, allows the best
match to be found with fewer operations. Dynamic programming is described

in appendix E.1.

3.4.3 The confusion matrix

The substitution, insertion and deletion penalties which are paid when a phoneme
sequence is matched against a word, come from a confusion matriz. This matrix
is trained in a separate session, using a Viterbi algorithm. During the training
the phoneme lattices produced by the front end are compared against hand
transcriptions, and the number of times that an /e/ needs to be substituted for
an /a/, or a /dh/ inserted, etc, are recorded in the matrix. The Viterbi algo-
rithm, a close cousin of dynamic programming, is needed to find the cheapest
combination of substitutions, insertions, and deletions to effect the match.

After the matrix has been trained, it can be used in normal recognition
runs. If a run is performed on the same data on which the matrix was trained,
it is a closed test. If it is performed on different data, it is an open test.

The confusion matrix is the chief instrument we use in making the back end
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1. The price range is smaller than any of us expected.
2. They asked if I wanted to come along on the barge trip.
3. Amongst her friends she was considered beautiful.

4. The smell of the freshly ground coffee never fails to entice me into the
shop.

5. I'm often perplexed by rapid advances in state of the art technology.

Table 3.2: The first five ATR sentences

responsive to syllables. In chapter 6 we shall train several confusion matrices,

according to the position of the phonemes in a syllable.

3.4.4 Syntax

In the description of the matching procedure, it was assumed that, in matching
phonemes against words from the lexicon, lexax could choose whichever words
it wanted. This is in fact not so. In common with many speech recognisers
(for example, SPHINX (Lee, 1988)), lexax is guided in its choice by a grammar.
This procedure reduces the number of words that needs to be tried, and greatly
improves the accuracy of the resulting word string.

The simplest and most effective grammar is simply a list of all the utterances
that are expected to be spoken. The ATR dataset, for example, consists of
200 sentences, and a simple grammar for this consists of just these sentences.
Table 3.2 gives the first five of them. Suppose the dataset consisted of only these
sentences. Guided by this grammar, lexax matches the initial phonemes of the
input only against the words the, they, amongst and i’m. In the full dataset
of 200 sentences there are 200 such words, not all of them distinct. Since the
whole ATR lexicon contains about 1240 words, this is a considerable reduction
in the number of possibilities. If now the first match yields the candidates the
and they, then the grammar determines that the second word must be price,
asked or smell, and so on through the remaining phonemes in the lattice.

The csTR back end allows different kinds of grammar. A grammar which
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i
=~

Phoneme string
iichiz@roo@soudkdhemt ii ng
t@zkrar=chth

No grammar
Itches are also camping scratch

Bigram grammar
Ttches are always served at the back and to scratch

Full grammar
Itches are always so tempting to scratch

Table 3.3: The effect of different grammars on the ATR sentence Iliches are
always so tempting to scratch. Sentence 22.

contains all and only the word strings that were spoken, as illustrated above,
is called full syntaz. Another option is to run the system with no grammar at
all, and this is called zero syntaz. A third option is a bigram grammar, which
consists of the word pairs in the dataset. A bigram grammar based on the
first five ATR sentences would determine the same starting set of words, namely
the, they, amongst and i'm. Following the, however, the possibilities then are
price, barge, smell, shop and art. Other grammar options are available, some
of which are based on word classes such as determiner, count nouns, and colour
adjectives.

Table 3.3 shows the effect of different syntax options on an example sentence.

A bigram grammar is less restrictive than a full grammar, and yields higher
error rates. The choice of grammar depends on the application. If the sentences
that will be spoken are not known in advance, then obviously a full grammar
is not appropriate. The experiments performed in this thesis were done using
three kinds of grammar: zero, bigram and full. The experiments are described

in chapter 6.

3.4.5 Implementation details

The details of the implementation of lexax are taken largely from (Mclnnes

et al., 1991). Lexax takes as its input a lattice of scored phonemes, matches
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them against a lexicon and a grammar, and produces as its output a list of scored
word strings. The matching is done using a two-level (word and sentence) dy-
namic programming algorithm which allows arbitrary insertions, deletions and
substitutions in the match between phoneme lattice and lexicon. This proce-
dure gives rise to an unacceptable number of word and sentence candidates,
even in the presence of the grammar. Their number is kept down by imposing
a limit, by means of beam searching: only those words, and those word strings,
are kept which fall within a specified distance from the cheapest word and word
string.

For efficiency the lexicon is tree structured. It is constructed by folding
together common initial substrings of word pronunciations. Several versions of
a word may be stored to represent common pronunciation variants.

The basic algorithm is implemented as a chart parsing operation. Chart
parsing (Thompson & Ritchie, 1984) is a flexible mechanism for implementing
different kinds of parsers. Lexax uses a modified version which incorporates the

dynamic programming algorithm and lookup in a lexicon.

3.5 Modular and integrated systems

With its separate front end and back end, the CSTR system is a modular system.
There are advantages and disadvantages to modular systems, as we have seen.
The main disadvantage is that an integrated system outperforms a modular
one. Mclnnes (September 1992) integrated the front end and the back end of
the CSTR system, and compared the performance with the unintegrated system.
In the integrated system the front end was constrained by the lexicon, and,
optionally, a word-pair grammar. In the unintegrated system the front end
produced the phoneme lattice unguided, and the phonemes were then matched
against the lexicon, again with and without a word-pair grammar.

The phoneme models in either case were trained on 600 DARPA training
utterances, and a standard phonemic lexicon was used with no variant pronun-
ciations. The performance was measured on 25 evaluation utterances, using

DARPA evaluation software, which measures word error rate. The word error
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rate measures the operations necessary to turn the words obtained into the
right answer. It is the sum of the substitutions, insertions and deletions of
words divided by the total number of words®. For the integrated system the
word error rate was 43.1% with no grammar, and 14.2% with the word-pair
grammar. For the unintegrated system the word error rate was 59.9% with
no grammar and 39.6% with the word-pair grammar. It is evident from these
figures that an integrated system, which is able to apply top-down (lexical)
constraints, performs much better than a modular one.

A disadvantage of integrated systems is the amount of retraining that is
necessary when, say, a larger vocabulary needs to be used. Many integrated
systems have unified statistical models with phonemes, words and phrases at
different levels (the SPHINX system described in chapter 2 is an example). When
such a system needs to accommodate new words, a large amount of retraining
is necessary, because the models at the phoneme and grammar levels need to
be retrained as well. A modular system does not have this disadvantage, but
of course it does not perform as well. It would be useful if we could separate
the front and back end sufficiently to give us the advantages of modularity,
while retaining the ability to apply top down constraints to the front end. This
possibility can be realised with the use of syllables.

When we constrain the front end to produce only those phonemes that form
valid syllables, we are applying top down constraints without sacrificing the
flexibility of a modular system. This is because the number of syllables is fixed,
and is not affected by changing requirements in the vocabulary or grammar. Of
course, using syllables as a source of constraint has a different effect from using
words, and this matter is investigated in detail in chapter 5.

We might call a system that uses syllables at the front end a loosely-coupled
system. A loosely-coupled system should have the flexibility of a modular sys-
tem and the performance of an integrated system. It is not the aim in this

thesis to spell out in detail how a loosely-coupled system might be designed.

® A similar measure is used to measure the performance of the cSTR back end, and examples
can be found in section 6.2.
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The intention is merely to explore the effects of having a syllable level as a
top-down constraint in the front end, in order to provide information for future
system-building efforts. A loosely-coupled system might have a separate level
at which syllables are represented explicitly, so that phonemes will form sylla-
bles and syllables will form words. On the other hand, it might be better to
have the syllables merely as a source of constraint, and retain phonemes until
the lexical stage. That is the option which this thesis uses by default, but it is
not meant to rule out other possibilities.

(This thesis also advocates the use of syllables as an extra level of organ-
isation in the back end. This is a separate matter, which is independent of

whether the system is modular, loosely-coupled, or integrated.)

3.6 Summary

The cSTR speech recogniser is a modular system, which makes it convenient to
determine the effects when different parts of the system are to be improved. In
particular the front end which produces the phoneme lattice and the back end
which produces the word strings, are separate operations.

The front end uses hidden Markov models to segment and classify the input,
and produces a phoneme lattice. It includes a mechanism for training apu mod-
els according to their context. This is the demi-diphone mechanism, which we
shall use for the purpose of syllable sequencing in chapter 5. The performance
of the front end is measured using entropy. It allows us to assess the quality of
the phoneme lattice independently of the words that can be recognised from it.
The entropy of the phoneme lattice is the negative log probability of finding a
correct path in the phoneme lattice. To obtain this measure, the correct path
must, of course, be known.

The back end, of which lexax is the main part, matches the phoneme lattice
against words in the lexicon. In doing so, lexax must repair insertion, deletion
and substitution errors in the lattice. A dynamic time warping algorithm is
used to find the optimum way of doing this. The costs of repairing insertion,

deletion and substitution errors are obtained from a confusion matrix. The
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confusion matrix is trained in advance.

Lexax is optionally guided by a grammar, which determines which words
from the lexicon are to be matched against the lattice. Different kinds of gram-
mars can be devised for different purposes.

The experiments to be performed in the front end and the back end concern
the use of the syllable. Before we turn to these experiments, we look at the

status of the syllable in language and speech.



Chapter 4

Syllables and allophones

4.1 Introduction

In its Greek origins (svAAafe¢) the word syllable means ‘taking together’, or a
combination. According to the ancient Greeks the combination was that of a
segment which could be sounded independently (roughly equivalent to a vowel)
and segments which could not. Later Greek writers called the latter sounds
cvupwra (symphona; consonantes in Latin) because they produced a sound
only when combined with vowels (Allen, 1973, p 32-3).

This chapter describes syllables in theory and in speech recognition practice.

4.2 Introduction to terms and concepts

Defining a syllable is not easy, and various definitions have been suggested.
These are best considered after some preliminary terms have been defined,
which is done in this section. The rival definitions of the syllable are considered
in the next section. The material below comes from many sources, the main
ones being (Abercrombie, 1967) and (Allen, 1973).

Although giving a definition is difficult, the intuitive understanding of sylla-
bles goes back to ancient times. Before speech can be written down, it needs to
be broken down into convenient units, and most writing systems that mankind

has devised use the syllable as this unit. (However, writing systems that use

62
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Onset Nucleus Coda

oh oh
go g o
oat 0a t
goat g oa t

Table 4.1: Onset, nucleus and coda of a syllable

Syllable Type

oh v
go c¢v
oat wvc
goat cvc

Table 4.2: Syllable types

derivatives of the Greek alphabet, such as the Latin alphabet used in English,
or the Cyrillic alphabet used in Russian, are not syllabic; they are phonemic).
In these systems there is a sign for every syllable. The users of these systems
have no difficulty dividing their speech into syllables.

Words consist of one or more syllables. Words with one syllable are mono-
syllables, and those with more than one are polysyllables. A syllable is divided
into three stages: an onset, a nucleus and a coda. Consider the English mono-
syllables oh, go, oat and goat (the example is Abercrombie’s (Abercrombie,
1967)). The three parts of the syllable are assigned to these words as given in
table 4.1. We see that oh consists only of a nucleus, go of onset and nucleus,
oat of nucleus and coda, and goat of onset, nucleus and coda. All these syllables
have a nucleus.

In these examples the nucleus consists of a vowel (symbolised as v), and the
onset and coda, when they are present, consists of a consonant (symbolised as
c). Go is said to be a cv syllable. Table 4.1 can be summarised as shown in
table 4.2.

English allows combinations of consonants at onset and coda, called conso-
nant clusters. The word spy has the consonant cluster sp in its onset. It is a
ccv syllable. QOops, a vcce syllable, has the consonant cluster ps in its coda.
The word streets has a cccvcece structure. The size of the cluster, and the

consonants that make it up, are restricted, for English as in other languages.



CHAPTER 4. SYLLABLES AND ALLOPHONES 64

The largest onset in English is ccc, which we have just seen in streets. The
largest coda in English is cccc, as in /s i k s th s/ sizths, and similar clusters
in ezempts and glimpsed*.

The structure of consonant clusters is also restricted. In English, the voiced
velar nasal at the end of hang cannot begin a syllable, and the voiceless velar
fricative at its beginning cannot end a syllable. Other languages do allow an
ng onset and a h coda. The cluster that ends the word oops cannot appear
in an onset (although some people pronounce the p in the trade mark ‘Psion
Organiser’). The cluster sris inadmissible in English, and in a ccc onset, the
first ¢ is always s (square, split, strong). These structural regularities will find
a use in the front end work described in chapter 5.

Not all sequences of consonants are clusters. In the word hatrack the con-
sonants ¢ and r belong to two syllables, whereas in tray they form a cluster. In
hatrack they are said to abut. The difference between clustered and abutting
consonants can often be heard. In most people’s pronunciation of tray the ris
a voiceless fricative, and in hatrack it is a voiced approximant.

The restrictions that apply to monosyllables do not apply, in English, to
polysyllables. For example, # is not allowed in the onset of a monosyllable?,
but it may appear as such in a polysyllable. In some people’s pronunciation of
Atlantic the [ is fricated, indicating that it is part of the release of the previous
t and therefore in the same syllable with it. The syllabification there is A-tlan-
tic. Other people, of course, do not fricate the /, and they syllabify the word as
At-lan-tic.

Some syllables do not have a vowel as a nucleus. In the pronunciation of
many people there is nothing between the ¢ and the n in button, or between
the t and ! in little. In the first case we have a syllabic n and in the second a
syllabic I. A syllabic m can be found in some pronunciations of botfom and a

syllabic r in number.

! Abercrombie (Abercrombie, 1967) quotes Whorf as suggesting that a cccec coda is pos-
sible in the last word of ‘thou triumphst!’, because some people insert a p between m and f
The cluster would be m-p-ph-s-t.

*For many accents of English. I have heard Yorkshire people say tlear instead of clear.
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The syllabic consonants raise a difficulty in the definition of vowels and
consonants. They are usually defined in phonetic terms, as I did too in chapter
2. Vowels were defined by Bloomfield (Bloomfield, 1933) as ‘modifications of
the voice-sound that involve no closure, friction, or contact between the tongue
and lips’. Anything else is a consonant. By this definition the y in yet and the
w in wet are vowels, but from the point of view of syllable structure they are
consonants. Conversely, as we saw in the previous paragraph, the consonant n
plays the role of a vowel in many pronunciations of button.

The usual solution is to call y and w semi-vowels, and to speak of syllabic
consonants in words like button. Pike (Pike, 1943) suggested a simple way of
looking at this problem, which separated the phonetic form of a segment from
its phonological role. Abercrombie (Abercrombie, 1967, p 80) describes it as

follows.

Pike introduced two new terms to replace the words vowel and
consonant when used with reference the phonetic form, without re-
gard to syllabic function: wvocoid, and non-vocoid or contoid. The
terms are very rigorously defined. A vocoid is a segment with a
stricture of open approximation, with or without velic closure, and
with central passage of the air-stream®. All other segments are
contoids. Pike then puts forward the term syllabic for a segment
representing a v element of syllable structure, and non-syllabic for
a segment represented a C element of syllable structure. The two
sets of terms when used together give us, for any segment in a given
utterance, its category in general phonetic terms and its place in
[syllable] structure. Thus we have, in English, a syllabic vocoid in
awe, a non-syllabic vocoid at the beginning of yet, a syllabic con-
toid in the second syllable if people, and a non-syllabic contoid at

the beginning of pet. The traditional terms vowel and consonant,

Pike suggests, can be used as synonyms of syllabic vocoid, and non-

*In Pike’s words (Pike, 1943, p 78) ‘A wvocoidis a sound during which air leaves the mouth
over the center of the tongue and without friction in the mouth.’
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syllabic contoid, respectively.

The interjections shh and mmm consist of syllabic contoids.

4.3 Definition of the syllable

Ancient Greek rules of syllabification were sometimes just concerned with where
to split the word on a line, and were based on a mixture of phonetic, phonolog-
ical and grammatical considerations (Allen, 1973, p 29). More modern theories
take greater care with how the units of vowel, consonant and syllable are de-
fined. Modern theories are of different kinds. Articulatory theories look at the
activity of the muscles of articulation, including the breathing muscles. Un-
der this head respiratory and motor theories may be distinguished. Acoustic
theories consider the pattern of harmonic and non-harmonic stretches in the sig-
nal. Auditory theories may count peaks of audibility and phonological theories

proceed from the combinatory possibilities of the sounds of a language.

4.3.1 Phonological theories

In phonological theories syllables may be defined in terms of vowels and con-
sonants, or vowels and consonants may be defined in terms of syllables. In the
latter case the syllable may for example be defined as a unit of accent place-
ment, and vowel and consonant may then be defined as its central and marginal
constituents. An example of the former is that of O’Connor and Trim (1953).
They begin by tabulating the numbers of common environments of the 34 dif-
ferent phonemes of rP*.For example, in word-initial position, /d/ and /oo/
have the common (right) environment /r/ in the words dream and aural; in
this position they found that /d/ and /oo/ have 3 common environments in all.
As a further example, consider the phoneme /p/. In all the positions studied
— not just word-initial — they found that /p/ has 42 and 41 environments in

common with /t/ and /s/, and 10 and 16 in common with /e/ and /@/. They

4This is rather fewer than the 44 std phonemes used for RP in this thesis, because, in order
not to prejudice their study, they define diphthongs like /ai/ in terms of their constituent
phonemes [aa/ and /ii/.
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also counted how many phonemes /p/ can be combined with. In word-initial
position /p/ occurs before 14 different phonemes. Let us call a phoneme in
a position a context; thus /@/ before /p/ and /@/ after /p/ constitute two
distinct contexts. To restate the foregoing, in word-initial position /p/ occurs
before 14 contexts; in all the positions studied, /p/ occurs with 46 contexts.
O’Connor and Trim then compared the common contexts with the total num-
bers of contexts. /p/ and /t/ occur with 46 and 52 contexts respectively, and
have 42 contexts in common. 42 is more than half of either 46 and 52. /p/
and /s/ occur with 46 and 59 contexts, and have 41 in common, again more
than half. /p/ and /e/ occur in 42 and 59 contexts, and have 10 contexts in
common; this is less than half of 42 or 59. Again, /p/ and /@/ occur with 42
and 79 contexts, and have 16 in common; this also is less than half. Comparing
/e/ and /@/, they find them occurring in 59 and 79 contexts, as we have seen
already, and they have 47 contexts in common; this once more is more than
half. Using this simple comparison — numbers of common contexts and half
the numbers of contexts altogether — they found that the phonemes fall into
two groups. /p/ and /t/ fall in the same group because they share more than
half the contexts with which either of them occurs separately. /e/ and /@/ also
fall in the same group. /p/ and /e/, however, do not fall in the same group,
and neither do /p/ and /@/, because they have fewer than half the contexts in
common. O’Connor and Trim called the members of the first group consonants
and the members of the second group vowels.

Having defined vowels and consonants (semi-vowels needed a more compli-
cated argument), they define the syllable as ‘a minimal pattern of phoneme
combination with a vowel unit as nucleus, preceded and followed by a conso-
nant unit or permitted consonant combination’ (O’Connor & Trim, 1953, p
259). This leaves the problem of how to syllabify polysyllabic words. In some
cases the point of division can be decided according to the structure of mono-
syllables: anger must be syllabified /a ng - g @/ and not /a ng g - @/ or /a
- ng g @/, because there are no monosyllabic words that end or begin in /ng

g/. In other cases like aster the example of monosyllables leave the point of
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division undetermined; we may have /a-st @/, /as-t @/ or /ast- @/.
Here the authors suggest using the statistics of unproblematic cases as a guide.

This aspect of their work has not found assent; see for example (Bell, 1970).

4.3.2 Acoustic theories

Acoustic theories revolve around the idea of ‘sonority’, which is usually con-
ceived of as the ‘audibility’ of sounds, and correlates reasonably well with the
level of acoustic energy. Peaks of sonority indicate syllable nuclei and troughs
indicate its margins. Vowels tend to have a high sonority and consonants a low
one, which agrees with the intuitive understanding of a syllable. A weakness of
the idea of sonority is its inability to rank sounds of low sonority. Fricatives, for
example, have a higher sonority than nasals, and a word like station, in which
the /sh/ is a syllable margin and /n=/ is a nucleus, makes nonsense of it. The
theory must deny that fricatives can ever be a syllable nucleus, a condition that

is contradicted by a word like pst/.

4.3.3 Articulatory theories

Articulatory theories were popularised by de Saussure (de Saussure, 1916). He
based his theory on the articulatory criterion of aperture. A syllable begins with
a sequence of sounds of increasing aperture, which constitute an ‘explosion’, and
ends with a sequence of decreasing aperture. A good example is the word drink,
which begins with a stop and its attendant release, carries on with a continuant,
then a vowel, in which the vocal tract is unobstructed, and comes to a close
with a nasal and a stop, in which first the oral tract is closed off, and finally the
nasal tract as well. However, the theory is straightaway contradicted by a word
like steps, in which the aperture of /t/ is more restricted than the preceding
/s/. Various ad hoc devices have been suggested to deal with such cases.
Under articulatory theories we may distinguish respiratory theories and mo-

tor theories.
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Respiratory theories

This theory describes the syllable in terms of the pulmonic air-stream mech-
anism, and is also known as the chest-pulse theory. According to this theory,
when air is released from the lungs during speech, it is not done in a continuous
movement, but in a series of puffs, which occur approximately five times per
second. Each of these puffs produces a syllable, and they are called chest-pulses,
breath-pulses, or syllable-pulses. Some of the pulses are stronger than others,
and these produce stressed svllables.

In this crude form the theory is easy to disprove. For example, the English
word better, although it consists of two syllables, can be uttered with only one

chest-pulse (Abercrombie, 1967, p 36).

Motor theories

The motor theory is a refinement of the respiratory theory, and is due to Stet-
son (Stetson, 1951). The respiratory theory is concerned with the abdominal
chest pulse, as caused by the opposed actions of the rectus abdominis and the
diaphragm muscles. As such the movement is controlled and slow, and respon-
sible for what Stetson called the ‘breath group’ and the ‘foot’. The ‘foot’ is
defined as a single stressed syllable or a stressed syllable together with a group
of unstressed ones. Stetson’s theory is concerned with a different chest move-
ment, as caused by the intercostal muscles. It is a ‘ballistic movement’, in that
it is initiated by muscular action, but uncontrolled until it is arrested at the end.
This rapid movement is responsible for the utterance of syllables. These small
movements are superimposed on the larger breathing movement like ripples on

a wave.

The syllable is constituted by a ballistic movement of the intercostal
muscles. Its delimitation is not due to a ‘point of sonority’, but to
the conditions which define a movement as one movement. In the
individuality of the syllable the sound is secondary; syllables are

possible without sound. Speech is rather a set of movements made
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audible than a set of sounds produced by movements. (Stetson,

1951, p 33).

The ballistic movement of the chest pulse begins with a release and ends
with an arrest. If the releasing is done by the intercostal muscles alone we have
a syllable that begins with a vowel. The release may be assisted or modified by
the articulators, in which case we have a syllable that begins with one or more
consonants. Similarly, a syllable is open or closed according to which muscles
are involved in the arrest: the intercostal muscles alone for open syllables, and
these assisted by the articulators for closed syllables.

Stetson’s theory gives the syllable primacy over consonants and vowels,
which is observed also in Abercrombie’s book.

His theory has been criticised by Ladefoged (1967), among others. Stet-
son’s experiments were performed in the 1920s, and modern electromyographic
studies have shown both that a single chest pulse can give rise to two or more
syllables, and that some monosyllables, like sport and stay, can be produced by
two separate bursts (Lehiste, 1970, p 109). Others, such as Fry, acknowledge
that the evidence for syllable action should be sought in movement, but find
his description of this movement too simple. ‘(T]he muscles used in speech are
so numerous, the interaction of the various systems so complex that we should
hardly expect to find syllabification controlled by a single muscle or even the
respiratory muscles alone’ (Fry, 1964, p 217).

Lehiste, after reviewing Ladefoged’s criticism concedes ‘However, in con-
nected speech the bursts of intercostal activity correlate fairly well with occur-
rences of the principal stresses of the utterances’ (Lehiste, 1970, p 109). She
goes on to cite studies which suggest that there are more general neuromuscular

correlates for linguistic units like syllables.

Lenneberg (1967) makes a good case for assuming that the rhythmic
structure of speech is ultimately related to the relatively constant
patterns of the electrical activity of the brain, one of which has
a frequency of approximately 6 cycles per second. It is surely no

accident that this frequency is very close to the frequency with which
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syllables are produced in speech (Lehiste, 1970, pp 155-6).

4.3.4 Discussion

This brief review of different attempts to define the syllable has left us no wiser.
I find myself unable to choose between them, and also unwilling. The attempts
described all seek to reduce the syllable to other terms, typically articulatory
or acoustic ones. Perhaps we shouldn’t try to. Perhaps we should regard it as
a purely phonological unit, which is defined by example. This is an unpopular
thing to do in modern scientific practice, but not unknown. In chemistry, for
example, the term valency refers to the tendency of atoms to bond with other
atoms. The valency of oxygen is 2 because it combines with two hydrogen
atoms to form water. Valency is usually explained by reducing it to physical
terms like electron hunger. This explanation is usually successful, but there are
circumstances where it doesn’t apply. This in no way limits the usefulness of
the concept.

Another example is the concept of monetary value in economics (the ex-
ample is Fodor’s (1968)). Monetary value cannot be reduced to a physical
phenomenon. Examples of things that hAave monetary value can be given, such
as currency, cheques, bags of sugar and motor cars, but the examples themselves
cannot even be characterised in a satisfactory way. Nevertheless this does not
stop monetary value from having a clear use in rigorous economic discourse.

It may be similar for the concept of a syllable. Our inability to find a physical
or other measurable correlate has not prevented the syllable from being a useful
linguistic unit, as the large literature on the subject testifies. It may well be

that such a correlate does not exsit.

4.4 Syllabification

The syllable is hard to define, as the variety of theories about it shows. Def-
inition aside, there is controversy also over how words should be syllabified,

particularly in English.
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In some cases syllabification follows the etymology of the word. Thus we
have bee-keeper but beef-eater, although the internal structure of both words is
-vCv-. Again, we have tea-tray but heat-ray (both -vccv-), and mouse-trap
but toe-strap (both -vcccv-). The syllabification shows how the words are
compounded. However, this is not always the case. Some people say war-drobe,
teas-poon, ea-chother, and even ignore word boundaries, as when they say a-
tleast for ‘at least’, a-tall for ‘at all’ and thi-safternoon for ‘this afternoon’.

The criteria for dividing English words into syllables are usually sought in
the permitted initial and final phoneme sequences of words. The word anger,
for example, must be syllabified as /a ng - g @/ because /ng/ is permitted at
the end of a word and /g/ is permitted at the beginning of a word, whereas
/a - ng g @/ is an incorrect syllabification, because there is no word (in RP)
which begins with the sequence /ng g/. However, words are not always a guide
to syllabification. The word eztra could be syllabified in three ways, depending
on the words chosen as models. Thus we could have /ek-str@/, Jeks-tr
@/ or /fekst-r @/ on the basis of back stroke, sex trial and next row.

The question becomes important in chapter 5, when we try to predict syl-
labic structure from phonetic clues like stop releases. The approach I have
taken is to rely on my phonetic intuitions. This is not entirely satisfactory,
because phonetic intuitions can be misleading. Also, different speakers vary in
the way they syllabify words. We have already seen that Atlantic, which is nor-
mally syllabified A¢-lan-tic, may have a fricated /1/, in which case it should be
be syllabified A-tlantic. The same applies to words like bedroom and beetroot,
which, besides their ‘traditional’ syllabification, can also appear as be-droom
and bee-troot when the /r/ is fricated.

A problem of a different kind is presented in words like hammer, bidding,
money and pony (the examples are Kahn’s (1976)). Isit /ha-m @/ or /h am
-@/,/bi-ding/or /bid-ing/? Few people have strong intuitions about
these, although they all agree that these are bisyllabic words. One answer is not
to insist on a definite boundary between the two syllables, and class the dividing

phoneme as ambisyllabic. Thus the /m/ in hammer is both syllable-final in the
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first syllable /h a m/, and syllable-initial in the second syllable /m @/. This
is not the solution I have adopted. I have chosen the arbitrary expedient of

syllabifying -ing words as in /bid - ing/ and words like pony as /p ou - n ii/.

4.5 Is the syllable necessary?

Although the syllable is a venerable concept in linguistics, the question does
arise whether it is necessary to a full understanding of the sounds that make
up a language. It might be that the sound pattern of a language can be fully
described without recourse to the notion of syllables at all. This would make
the syllable, theoretically at least, a redundant unit.

The best known modern attempt to do without syllables, and indeed without
any phonological units larger than a segment, is The Sound Pattern of English,
by Chomsky and Halle (1968). The title is usually abbreviated SPE.

Anderson sums up their motivation as follows (Anderson, 1982, p 546).

The ‘classical’ model of generative phonology (as presented in e.g
Chomsky & Halle ...) recognised only one sort of structural unit
in phonological and phonetic representations: the segment. There
was thus no explicit provision for syllables (or other units, such as
prosodic feet and the like) as significant elements contributing to the
organisation of speech. This was not, as some have suggested, sim-
ple oversight or failure of imagination, but rather a matter of prin-
ciple: while traditional phonetic descriptions of course frequently
refer to syllable structure, and many informal statements of pro-
cesses in Chomsky & Halle do so as well, the convenience of this
unit for ordinary language description does not ipso facto estab-
lish its linguistic significance. If it were to turn out that all the
statements we might want to make in terms of syllables were, when
expressed formally, representable simply in terms of (strings of ) seg-
ments, without important loss of generality, this would suggest that

the more parsimonious and restrictive theory which only allowed
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reference to such units was in fact essentially correct, and thus to
be preferred. It was the attempt to establish this programme that
lay behind the exclusion of syllable structure from the formalism of

early generative phonology.

However, the tide has turned against so spartan an approach. One of the
first post-SPE linguists to argue against this was Kahn (Kahn, 1976). He argued
that the syllable is an essential constituent for describing allophonic behaviour
like flapping, glottalisation, aspiration, and /r/ insertion and deletion. Since
then the position of the syllable and other units larger than the segment has
become well established. The work of Liberman and Prince, for example (1977),
uses units of the syllable and the foot (a unit of a stressed and an unstressed syl-
lable) to explain the tendency in English and many other languages for stressed

and unstressed syllables to alternate with each other.

4.6 The syllable in speech recognition

The concept of the syllable is as old as the study of language itself. Within the
infant field of speech recognition the syllable also makes an early appearance,
and work in this field has continued at a steady pace. The present section points
out some of the milestones.

As a prehistorical preliminary, so to speak, we may consider the Vicens
and Reddy system (Vicens, 1969). The front end used six acoustic parameters
to find six kinds of segments; vowels, fricatives, nasals, consonants, stops and
transitions. The lexicon was spelled in these terms. It was accessed one syllable
at a time — a syllable contained one and only one vowel. A prematch was made
against the lexicon using only fricatives and vowels. This yielded a subset of

words which were then matched further. The lexicon contained 16 words.

4.6.1 ARPA SUR

The achievements of the ARPA SUR systems have already been described, in

section 2.2. Here I will focus on their use of syllables and other higher-level
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cues. Much of this material comes from (Lea & Shoup, 1979).

Syllabic information was grouped with prosodic features, and their promise
was fully appreciated in the planning stages. The ArRPA Final Report, which
was the basic planning document, envisages phonological rules and stress and
intonation rules (Newell et al, 1973, p 24). Furthermore ‘[sJuprasegmental
features such as duration, pitch, and amplitude, exhibit different characteristics
if there is a word boundary between segments than if there is not (Lehiste 1970)’
(p 26). However, ‘[tJhe main difficulty with [this information] is that [it] is in
generative form and their analytic counterparts appear to be much harder to
formulate’ (p 26). Some of the suprasegmental features made it into the systems
that were built, and some did not.

The baby of the four ARPA systems, the sDC system, did achieve the detec-
tion of syllable nuclei. Mermelstein’s (1975) convex hull procedure was used.
This procedure could find 93% of these nuclei. Sperry Univac’s algorithm for

the same thing (Lea, 1976) located 91% of them. However:

Studies at sDC and SCRL suggested that syllable boundaries are too
difficult to reliably locate to be used in recognition schemes, and in
many phonological rules the syllable boundaries could be removed
or ignored without altering the effects of the rule (Hanson et al,
1976). We still await hard evidence that phonetic constraints are
less across syllable boundaries than within syllables, even though
such evidence, if available, would help justify syllables as units in

speech analysis (Lea & Shoup, 1979, p 77).

ARPA SUR yielded over 200 phonological rules. These were applied either
before lexical lookup, or after, or the rules were precompiled as in Harpy. Most
of the rules included boundary information for morphemes, syllables or words,
‘though studies were done to see which rules could be rewritten without bound-
ary considerations’ (Lea & Shoup, 1979, p 79).

Algorithms were available for phrase boundary detection (Lea, 1973a), stressed
syllable detection (89% of them) (Lea, 1973b; Lea & Kloker, 1975), and speech

rate detection (Bernstein et al., 1976). Also, ‘[pjrosodic aids to parsing [were]



CHAPTER 4. SYLLABLES AND ALLOPHONES 76

promising but largely untested additions’ (1979, p 76). However, Lea and

Shoup’s verdict is that the impact of these methods was small:

In general, while the acoustic data and parameter extractions were
available for determining important prosodic features within each
of the systems, prosodic features played only a minimal role in the

final systems’. (Lea & Shoup, 1979, p 81).

4.7 The Convex Hull Algorithm

Mermelstein’s syllable segmenter (Mermelstein, 1975), mentioned above, uses a
convex hull algorithm. Sufficiently deep local minima in energy are candidates
for syllable boundaries. These candidates then have to satisfy criteria of length,
loudness and degree of voicing. The results are 90% accurate according to
Mermelstein, but the syllables are not always the conventionally defined ones.
The segmenter has been incorporated in several systems, such as (Mertens,
1987), and also by Mermelstein himself, in (Hunt et al., 1983). He and his

co-authors state boldly,

The energy profile of a speech signal shows a modulation due to the
syllable structure. This may make syllables the only elements of
speech that can be consistently isolated independently of recognition

(Hunt et al., 1983, p 168).

By ‘independently of recognition’ the authors mean that it is possible that
syllables can be found on the basis of acoustic evidence alone, without the help
of lexical and syntactic processing. Even so they find that ‘the acoustic form of
a syllable is not independent of its context’. In their system, for example, the
words ninth October are syllabified ninth oct, nin thoct and ninth thoct. They
do not explain how the spurious candidates are removed without the help of
higher-level processing.

The system works as follows. It processes the signal to produce mel-scale
cepstrum coefficients. The syllables are defined in terms of these, and matched

left to right. A beam search is used with a beam width of 300. Such a large
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beam width only cost 20% more syllable matches than a beam width of 1, but
reduced the error rate five-fold. Syllable matching is done under the control of
a simple syntax. The syntax allows variant definitions. When a weak fricative
is omitted, for example, the system obtains nine oct for ninth oct. This is solved

by giving ninth a ‘deep structure’ of both ninth and nine.

4.8 Church’s System

Church’s advocacy of syllables in speech recognition has been reported al-
ready in chapter 2 (section 2.7). Instead of decrying allophonic variation in
the phoneme lattice, as many speech workers did, he welcomes it, because it
provides information about suprasegmental units like the syllable. Work had
been going on for many years in the field of human perception, to do with the
various phonetic and other cues to word and syllable boundaries (e.g (Nakatani
& Dukes, 1977)), and Church gave computational expression to it.

Church’s proposals are contained in his PhD thesis (Church, 1983). A large
part of Church’s thesis deals with theoretical issues in linguistics. He conceived
of allophones as arising from underlying phonemes by a phonological process
of alteration. He sought to describe these effects in terms of rules, which were

devised by a human expert. This was a deliberate policy:

[W]e will attempt to develop explicit models of allophonic processes,
rather than acquiring the rules through training. This has a number
of practical advantages (e.g speaker independence, reduced training,
scales up with the number of allophonic distinctions) as well as
the theoretic advantage of providing falsifiable models of grammar

(Church, 1983, p 32).

This concern for linguistic theory runs through most of the work. It causes
him, in my view, to overlook the difficulties that arise when it comes to im-
plementation, and his detailed proposals are impractical. However, the general
observation that allophones are useful and not a hindrance remains valuable,

and this thesis owes its existence to it.
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In outline, his system works as follows. The input consists of a string of
phones, drawn from an inventory of 45. In addition to identifying the parent
phoneme, the phones are marked with the following eight phonetic features

(Church, 1983, p 54).

stress glottalisation glide rounding

aspiration lengthening  nasalisation unrelease

The allophones are constructed into syllables using a chart parser with a

phrase-structure grammar. Typical rules of the grammar are (p 187):

/h/ is syllable-initial
unreleased stop is syllable-final
glottal stop is syllable-final

released stop is syllable-initial

The rules produce a lattice of syllables, ‘rarely more than four’ deep (p
43). Syllables are hierarchical structures, of which an important intermediate
level is the sylpart, a term which covers onset, peak and coda. The constituent
allophones in the syllables are then canonicalised to phonemes, after which the
structures are matched against a lexicon. The lexicon is organised on two levels,
with sylparts forming syllables, and syllables forming words.

Church’s proposals have not, to my knowledge, been implemented in a real
system. Church’s own software used hand transcriptions as input. There were
no multiple segmentations, and no multiple candidates per segment: just a
string of error-free allophones. Church recognised that this is unrealistic, and
devotes a separate chapter, ‘Robustness Issues’ to what needs to be done if the
phoneme lattice comes not from a hand transcription but from a recogniser.
However, the way he goes about it is to introduce a small number of deliberate
errors, which I find unconvincing.

I think Church was misled by his input into thinking that suprasegmental
units could be derived purely from bottom-up allophonic cues. In fact, he went

so far as to forego syntactic information altogether (p20). This thesis does not
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follow that approach. It uses allophonic cues and suprasegmental units (viz
syllables) too, but the syllables are not constructed bottom-up. In the front
end they are looked up in a repository of predefined syllables. The details are
given in the next two chapters.

Church makes the case for allophonic cues by pointing out that they can
be used to derive suprasegmental constituents. These are then looked up in a
lexicon spelt in these constituents. The question arises why this is a helpful
thing to do. Church does not answer it, but other people have, and we turn to

one of them in section 4.10.

4.9 SYLK

SYLK, which stands for ‘statistical syllabic knowledge’, aims to combine sta-
tistical matching with phonetic knowledge in a continuous speech recognition
system. It was developed at the University of Sheffield. The following brief
details are based on (Green et al., 1990) and (Green et al., 1992). SYLK uses
HMM models of onset types and coda types to do the initial segmentation and
labelling. Similar units are also used elsewhere: the Spanish work reported in
(no et al., 1989) and (Lleida et al., 1991) uses demisyllables. The difference with
SYLK is in their use of refinement tests of the spotted demisyllables; the tests
are based on knwledge-based techniques, and incorporate arbitrary phonetic

insights in a statistically admissible way.

4.10 Lexical studies

A different class of work looks at how syllables can reduce the search space dur-
ing lexical retrieval. When vocabularies become large, the words become more
confusable, and the space of words to be searched when the phoneme lattice
is matched against the lexicon grows. This leads to a reduction in recognition

accuracy. Waibel (1988) summarises the evidence as follows.

In a recent study, Lee, Silverman and Dixon (1984) have studied the

relationship betweeen the confusability of a vocabulary and its size.
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Their results indicate that there is a steady increase in confusabil-
ity with increases in vocabulary size. Particularly interesting was
the fact that confusability appears to grow more dramatically when
vocabulary size exceeds the 1000 word limit. Performance figures
by Smith (1977) show that the most dramatic drop in recognition
performance of large vocabulary recognition systems seems to occur

when vocabulary sizes increase to up to 8000 words.

Waibel himself performed various experiments with large vocabularies to
discover ways of reducing the search space. I review those that involve the use
of syllables.

The problem that the experiments address is that the phoneme lattice from
a typical front end is full of errors, and when a string of phonemes from it
is matched against the lexicon, many word candidates are obtained. If the
search can be confined to a subset of the lexicon, then the number of candi-
dates is reduced and the recognition accuracy improves. The experiments were
performed on the 20,000-word Webster’s dictionary, which is large by speech
recognition standards. The aim is to to reduce the number of words that needs
to be searched when the phonemes are matched. Suppose, for example, that in
addition to the phoneme string, the number of syllables in the string is known
as well. This extra information can be used to preselect from the dictionary
only those words that have the right number of syllables. Such a selection is
called a cohort. The size of the cohort will vary with the number of syllables;
for example, in the Brown corpus (Kucera & Francis, 1967) of one million words
almost 40% of the words are of two syllables, and only about 5% are of five
syllables. The expected cohort size EC'S is the average number of words in a

cohort selected in this way.

ECS =) si*py(si)

where s; ranges over the sizes of the possible cohorts, and p,(s;) is the prob-

ability of a word’s falling into a cohort of size s; (i.e the relative frequency of
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words in this cohort). The expected cohort size takes into account the probabil-
ity that any particular cohort size will occur. For the 20,000 word vocabulary
mentioned, the ECS for syllable counts is 5013, a reduction to 25%.

Another experiment looked at syllable durations. A syllable was considered
to stretch from vowel nucleus to vowel nucleus. This left some word-initial con-
sonant(s) stranded, and they were ignored. Word-final syllables, which tend to
be longer, were normalised by subtracting 90 msec from their length. This can
of course only be done with syllables that you know to be word-final. Sylla-
bles were now classified as long, medium and short for polysyllables, and long
and short for monosyllables. The syllables of the words in the dictionary were
labelled with the symbols H (high duration), M and L (low duration). 362
different patterns were found. The EC'S is 1249, or 6% of the dictionary.

A further study was done on the balance of voiced and unvoiced material in
a syllable. A syllable that was all voiced received the label H (high). Syllables
with both are labelled M (medium) or L (low) according as voicing preponder-
ates or not. A syllable like siz, which contains a lot of unvoiced frication, is

labelled L. The results are 352 cohorts, with an EC'S of 909 (4.5%).

4.11 Summary and discussion

Despite the lack of a rigorous definition, the syllable is a widely used unit in
linguistics. After a short period of obscurity in the wake of sPE, the syllable
and other large units are once more respectable theoretical units.

In speech technology also, interest in the syllable continues unabated. Syl-
lables have found two areas of application in speech recognisers: the front end
and the back end. Most front end work is concerned with the direct recogni-
tion of syllables from the input signal, or of aspects of them like their nuclei or
their number. In the back end we have looked at a study that tries to use this
information to reduce the lexical search space.

This thesis incorporates syllables in both the front end and the back end.
In both of these areas the approach taken is unconventional. In the front end

syllables are not recognised from the signal, but looked up in a store which con-
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tains all the syllable patterns which are expected to be spoken. It is phonemes
that are recognised from the signal, and these are matched against syllables in
order to remove sequences of phonemes that do not form valid syllables.

In the back end syllables are used to obtain better statistics about phoneme

confusions.



Chapter 5

Syllable Experiments in the
Front End

5.1 Introduction

We have seen in earlier chapters that the fundamental unit of recognition of a
continuous speech recognition system is the phoneme, but that the choice of
this unit is problematical because phonemes have different acoustic realisations
in different settings. The problem is usually addressed by considering phonemes
in their context. There are different ways of doing this, as we saw in chapter 2.
One way is to use triphones. Another way is to constrain the generation of
phonemes so that only those phonemes are generated which form part of valid
words. These two methods are normally combined, as in the SPHINX system
(Lee, 1988).

Integrated systems like SPHINX, which use high-level (i.e lexical and syn-
tactic) constraints at the front end, pay a price for doing so: loss of flexibility.
Phoneme, word and syntax models are all combined into a single multi-level
Markov model, and as these systems grow in vocabulary it becomes expensive
to add the new words and phrases.

The remedy proposed in this thesis is a loosely-coupled system, in which
high-level constraints can be applied at the front end without sacrificing flexi-

bility. The high-level constraints proposed here are syllables. Syllables, being

83



CHAPTER 5. SYLLABLE EXPERIMENTS IN THE FRONT END 84

fixed in number, offer a source of constraint that is not dependent on the fluc-
tuating contents of the lexicon. The lexicon and the grammar remain separate
in the back end, so that any change in these components does not disrupt the
whole system.

The use of syllables, and certainly their advocacy, is not new, as we saw
in chapter 4. One proposal was marked out for particular attention, and that
was the work of Church (Church, 1983). Section 4.8 described how the use
of allophonic information was to help with the location of syllable boundaries.
Church’s was a theoretical study, because he did not have a front end that was
good enough to provide him with the allophonic hypotheses he needed. One of
the subsidiary questions in this chapter is whether front ends are good enough
these days, and if they are, whether the expected benefits can be obtained.

The main question to be addressed is whether syllables are an effective
contraint on the phonemes that are generated at the front end, in the way
that words are in integrated recognition systems. This question is broken down
into several subsidiary questions, as follows. In order not to keep the reader in

suspense, I give abbreviated answers as well.

1. Can a modern front end using hidden Markov models provide allophones
of high quality? We shall see that in some cases an enriched allophone

set can give lattices of a better quality than a standard phoneme set.

2. Are the allophones effective in helping to locate syllable boundaries? The
answer is, only marginally better than a standard phoneme set, although

more training data may increase the difference.

3. What is the difference in performance, in a loosely-coupled system, be-
tween using syllables rather than words as a constraint on segmentation?

Given a loosely-coupled system, syllables give better results than words.

4. What is the effect of repairing the segmentation before syllable constraints
are applied? We shall find that segmentation repair, under the restricted
conditions of a loosely-coupled system, has an adverse effect on perfor-

mance.
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Database Phonemes Syllables Words  Phonemes per  Syllables Words
Syllable Word per utterance

atr 8714 3335 2601 2.61 3.35 16.7 13.0

cyt 5226 2009 1204 2.60 4.34 11.8 Tl

Table 5.1: Database statistics for speaker Gsw.
5.2 The Data

The experiments have been performed on two data sets for one male speaker,
with some results also for three more male speakers. The main speaker is
identified as Gsw, who speaks with an accent close to RP. The other three
speakers are HXB, PMS and JMR. The first two of these are from the north of
England, and the third is from the south.

The first data set consists of 200 phonetically balanced sentences. They
were originally recorded and labelled under contract to Advanced Telecommu-
nications Research Institute International, of Kyoto in Japan. The data are
used for academic research purposes by kind permission of the Institute. The
data set will be identified as ATR, and comprises just over 11 minutes of speech.
For Gsw the 200 sentences were hand-segmented and labelled to phonetic level
by qualified phoneticians. This data set was used for training models, and for
producing closed test results. The second data set, identified as cYT, consists
of 170 sentences and phrases used in a cytology laboratory, which comprises
just over 9 minutes of speech. This data was transcribed to phonemic level but
not segmented — that is, the phonemes that were spoken were written down,
but not their start times and end times. This means certain experiments could
not be performed on this data. It was used to provide the open test results for
most of the experiments.

Table 5.1 provides statistics on some of the linguistic units in the two
databases. Cytology has more phonemes per word because of the many long
medical words like bloodstained, epithelial and lymphocytes.

The vocabulary size for ATR is 1242 and for cYT is 242. Although vocabulary
size is commonly quoted as an indication of recognition difficulty, it is a less

important indicator than confusions among similar words. Unfortunately, no
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generally accepted measure exists for this.

The data for the other three speakers are less reliable. No segmentations or
transcriptions are available for these speakers. The data for them was obtained
as follows. A general transcription of the utterances was made first, based on
the transcription for Gsw. Table 5.2 shows the transcription of the sentence
‘Some debris is present’, which comes from the cytology data. The top line is
the sentence as spoken by Gsw, in an RP accent. A program converted this to a
general transcription, which allows multiple readings, and this is shown on the
lines below. The first vowel /uh/ is rendered as one of the vowels /uh, @, u/.
The possibility /@/ allows for the case where vowel reduction has taken place.
The possiblity /u/ is the vowel used in parts of the north of England for the
/uh/ of RP. Recall that speakers HXB and PMS have traces of a northern accent.
The second vowel also has two renderings in the general transcription, and these
are independent of the renderings of the first vowel. The /y/ in square brackets
is an optional glide between the neighbouring vowels of debris and is. The /z/
in present is rendered either as /z/ or as /s/.

The general transcription is then given to the segmenter, which segments the
utterance accordingly, using the models trained on Gsw. Where there are more
than one possibility for a segment, they are all tried, and the highest-scoring
one chosen. The outcome is a set of segmentations, which are declared to be an
accurate representation of what was spoken. They are clearly not as good as
the hand segmentations that are available for speaker Gsw, for several reasons.
We cannot be certain that they contain all and only the phonemes that were
spoken, because idiosyncracies of pronunciation and minor slips of the tongue
are not provided for. The segment boundaries — the start and stop times — are
also likely to be inaccurate, because they were obtained by models trained for
a different speaker. Finally, the segmentations are only at the phonemic level,
whereas the hand segmentations of GsW included indications of stop releases,
among other features.

The segmentations derived from the general transcriptions are used for

speech encoding and model training in the normal way.
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suhmdebrii izprez@nt
suhmdebrii [yJ]izpreze@nt
@ @ s

u

Table 5.2: Std transcriptions of ‘Some debris is present’. First line, transcription
for speaker Gsw. Subsequent lines, general transcription.

5.3 The apu sets

We saw in chapter 2 that the distributions of some allophones correlate well
with their position in a syllable. For instance, released stops and light /1/ more
often fall at the beginning of a syllable than at the end. To capitalise on this
fact a number of apu sets were designed whose members depend in various ways

on their position in the syllable. These sets are as follows.
std 45 apus. Standard RP phoneme set.

stdp 49 apus. As std, plus the four syllabic consonants /l=/, /m=/, /n=/,
fr=f,

ext02 128 apus. Syllable-conditioned consonants. This means consonants are
defined according to their position in the syllable. The /p/s in print and
sprint, for example, are defined as two different allophones, as are the
/s/s in spat and pats. Total 36 stop allophones, 10 /s/ allophones, 5 /z/

allophones, etc.

ext03 137 apus. Syllable-conditioned consonants as ext02, but stops further
divided into released and unreleased. We shall say that ext03 has syllable-
conditioned acoustic stops. Total 45 stop allophones (not 36 x 2 = 72 as
one might expect, because some classes had to be combined to obtain

enough tokens for training).

ext04 104 apus. Syllable-conditioned consonants as ext02, but instead of
syllable-conditioned stops, stops are divided into released and unreleased

only. We shall say that ext04 has acoustic stops. Total 12 stop allophones.
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ext05 79 apus. Syllable-conditioned stops only, identical to those in ext02.
Total 36 stop allophones. The difference from ezt02 is that the other apus

are not syllable-conditioned; they are as those in stdp.

ext06 55 apus. Stops divided into released and unreleased (not syllable condi-
tioned; another example of acoustic stops). Total 12 stop allophones. The
difference from ext04 is that the other apus are not syllable-conditioned;

they are as those in stdp.

ext07 65 apus. As ext05, but with some stop categories combined. 22 stop

allophones.

ext08 72 apus. As ext07, but with the stops recombined into new classes. 29

stop allophones.

The number of apus in each case includes the silence symbol. ‘Ext01’ was a
first attempt at an apu set whose design was embarrassingly inept, and which
has been omitted from the thesis. In all the other sets the vowels and diphthongs
are the standard ones used in RP. Full definitions of the apu sets can be found

in appendix B.2.

5.4 Measures of quality

The results that follow report the outcomes of the following kind of experiment.
First the ATR data are labelled with a new apu set. This was done mainly by
computer, by translating the std hand segmentation into the appropriate new
symbols. Table 5.3 below shows the std and ext04 transcriptions of the sentence
‘The price range is smaller than any of us expected’. The std transcription
comes from the hand segmentation, and the ext04 transcription was produced
by a program, which replaced one symbol by another, paying due regard to the
syllables in which the original symbols appear. For example, /r2/ is the post-
stop allophone of /r/ in the ext04 set, and /u-k/ is a post-vocalic unreleased
/k/. /#+#/ is the silence symbol.
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## dh @p r ais r ein jh iz s m ool @
## dhl @ p1 r2 ai s65 r1 el n6 jh3 i z2 s4 ml oo 11 @

the price range is smaller

dh @n en i@v @s @k s p ek t id
dhi @n2 enl i @ v2 @ s5 @ k1 s2 pl e u-k t1 i 41

than any of us expected

Table 5.3: Std (first line) and ext04 (second line) transcriptions of ‘The price
range is smaller than any of us expected’. Notice how the std phoneme dh
corresponds to the ext04 allophone dhi, and so on.

Next HMM models are trained on the newly labelled data. The segmenter is
run with the new apu set, for both closed and open test. Next the classifier is
run on the computer segmentations, with this or another apu set. There are a
few variations on this theme, which are best explained when we come to them.

Three measures are used to assess the quality of the segmentation and the

classification. These are as follows.

End-point differences (epds)

The segmenter can be asked to segment according to the hand transcription.
In this operation the segmenter is given a list of the apus that were spoken, in
order. Its task is to match the relevant models against the speech signal and
discover the start and end points of the segments. It produces exactly the same
number of segments as are in the hand transcription. The only models used
during the segmentation are the ones it has been given, and there is no effect
due to the number of models in the set. The segments produced from such
a run are compared with the hand segmentation, and the absolute differences
between their end-points, measured in milliseconds, are accumulated.

This measure can be used only on the ATR data, because we have no hand

segmentation for cytology.
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apu set 1 group 1
apu set 2 group 1
apu set 3 group 1
apu set 4 group 2
apu set 5 group 2
apu set 6 group 2
apu set 7 group 2

Table 5.4: Ilustration of grouped results. Rankings within a group are not
statistically significant. Across groups the rankings are significant.

Oversegmentation rate

The segmenter always produces more segments than the number that were
spoken; that is, it oversegments. The oversegmentation rate is the percentage

of extra segments over the hand segmentation that the segmenter produces.

Entropy

The entropy of a classification run, using a variety of apu sets. The concept of
entropy in general is discussed in appendix B, and its application to phoneme

lattices is described in chapter 3.

The results of the experiments to be reported have been tested for signifi-
cance using the ‘t’ test, and are presented in tables. The lines of the tables are
given in rank order and are indented to show groups whose results are different
to a statistically significant degree (90% confidence level). Table 5.4 illustrates
what is meant. The indentations show that the results fall in two groups. The
three sets in group 1 are ranked in order, with the best set at the top. However,
none of the sets in the group is significantly different from the others. Likewise
the sets in group 2 are not different to a statistically significant degree among
themselves. Across groups the difference is significant; some members of group
1 are significantly better than some members of group 2. This is not necessarily
true of every member. It could be, for example, that apu set 3 and apu set 4,
which are closest in rank across the groups, are not statistically significant from
each other. What is true is that set 3 is closer to set 2 than to 4, and 4 is closer

to 5 than to 3.
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Set epd (ms) No of apus
ext03 346 137
ext02 354 128
ext04 367 104
ext05 386 79
ext08 389 72
ext07 394 65

ext06 400 95

stdp 414 49

std 420 45

Table 5.5: Average end-point differences (epd) between hand segmentations,
and machine segmentations given the transcription. Speaker Gsw, ATR data.

5.5 Recognition of different apu sets

5.5.1 End-point differences

Table 5.5 gives the average end-point differences between the hand segmenta-
tions and the segmentations the machine produces when it is given the tran-
scriptions. The results are from a closed test run on the ATR data. Consider
the last line in the table, which is for the std apu set. This apu set contains
45 symbols, which is given in the last column. For each of the 200 utterances
the segmenter is given the transcription; thus, for the first utterance it knows it
must produce segments to correspond with ## dh @ p r ai s r ei n jh i
Zzsmool@dh@neni@v@sQ@kspektid/(the price range
is smaller than any of us ezpected). Under this arrangement the segmenter
produces exactly the right segments for each utterance, except that they begin
and end at slightly different times. The interval by which each machine seg-
ment is offset from the hand segment is calculated (it is reckoned as a positive
number), and the total reported for each utterance. The number in the table
is the average of the 200 utterance totals, and in the case under discussion is
420 ms.

The results correlate perfectly with the number of apus. Ext03, with the
largest number of apus, has the smallest average end-point difference, i.e its
segments align most closely with the hand segments. The more apus there are,

the more accurate is the segmentation. This is because a large set has more
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Set % oversegm  No of apus
stdp 3.1 49
std &b 45
ext07 6.1 65
ext06 6.3 55
ext08 6.5 72
ext05 7.1 79
ext04 9.5 104

ext(02 9.6 128

ext03 10.7 137

Table 5.6: Percent oversegmentation. Speaker GSW, ATR data.

specific models. What is called /t/ in std, for example, is called any of /t t2
t3 t4 t5 t6 t7 t8 u-tl u-t2 u-t3 u-t4/ in ext03. This is encouraging in a small
way. It means that the apu sets are not badly chosen, and that for the purpose
of this exercise there is enough training data to adequately train at least 137
models. However, we could wish for a more sensitive indicator of performance.
We know that the sets were chosen according to incompatible criteria. For
example, ext03 has syllable-conditioned acoustic stops, and ext04 and ext06
have acoustic stops only. If these different criteria lead to different effects, they
do not show up here. The most important factor is the number of models.
End-point differences for the other speakers cannot be obtained, because

there are no hand segmentations to compare against.

5.5.2 Oversegmentation

Tables 5.6 and 5.7 show the oversegmentation rates for the different apu sets
for gsw, for closed test and open test conditions respectively.

The results correlate approximately inversely with the number of apus. This
is the opposite of what we obtained with end-point differences above. There
larger sets gave good results, and here larger sets give worse results. The
smaller sets do better because fewer apus are less competition for each other,
which results in less fragmentation. However, there is an interesting exception.
Std has fewer models than stdp, but performs significantly worse than stdp.

The extra models in stdp are the syllabic consonants, and for this speaker at
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Set % oversegm  No of apus
stdp 16.8 49
std 17:5 45
ext06 20.0 55
ext07 20.4 65
ext08 21.0 72
ext05 221 79
ext04 24.0 104

ext02 25.6 128

ext03 26.8 137

Table 5.7: Percent oversegmentation. Speaker GSw, CYT data.

least are worth it.

Figures 5.1 and 5.2 show graphs of the oversegmentation data. As can be
seen, ext06 and ext04 also perform worse than the general trend suggests. The
poor performance of ext06 is particularly obvious in the case of ATR: it has
fewer models than ext07, its nearest competitor, yet performs worse. Ext06
and ext04 both have acoustic stops. That these should cause adverse behaviour
is an interesting result, which will be explored in section 5.9 below.

The oversegmentation rates for the other speakers are not very illuminat-
ing. Recall from section 5.2 that the data for these speakers were not hand
segmented, and a machine segmentation made from a general transcription was
used for training models. The accuracy of the models must suffer accordingly.
Another consequence is that not all the apu sets can be obtained for these
speakers, since some of them rely on fine phonetic transcriptions to the level
of stop releases, which cannot be reliably obtained by machine. Only four apu
sets could be defined, namely std, stdp, ext02 and ext05.

Tables 5.8 and 5.9 give the closed-test and open-test oversegmentation rates
for the other speakers. The trend which shows that the oversegmentation rate
increases for apu sets with more models, is confirmed. For the closed test the
oversegmentation rates are worse than Gsw for every apu set for every speaker,
which confirms that the models are of a poorer quality. In the case of open test,
however, the results for speaker pMs are better than for Gsw. I do not know
why this is so.

We see that although stdp was a significantly better set than std for gsw,
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Size of apu set versus oversegmentation. ATR data
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Size of apu set versus oversegmentation. Cyt data
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Set % oversegm No of apus
hxb
std 6.8 45
stdp 6.7 49
ext05 8.3 79
ext02 11.7 128
pms
std 4.9 45
stdp 5.3 49
ext05 7.7 79
ext02 10.2 128
jmr
std 9.9 45
stdp 10.2 49
ext05 12.6 79
ext02 15.6 128

Table 5.8: Percent oversegmentation. Other speakers, ATR data.

this is not so for any of the other speakers. In the case of HXB this can perhaps
be explained by the small number of training examples for stdp’s extra apus,
which are the syllabic consonants /l= m= n= r=/. It has only 14 of these
consonants, whereas GSw has 68. However, the other two speakers have 80 and
92 respectively, and so in their case this is not the answer. The explanation

probably lies in the poor quality of the models.

5.5.3 Entropies

A further indication of the quality of a segmentation might be obtained by
running classifications on it. Tables 5.10 and 5.11 show the results of performing
classifications on the different segmentations. To ensure a fair comparison, the
same apu set, std, is used for the classifications.

Although the results for ATR and cYT look different, what can be discerned
is that the apu sets which oversegment worse have a better entropy, and those
which oversegment better have a worse entropy. Sets ext05, ext06, and ext07 all
lower their rank when we go from segmentation quality to entropy. Sets ext02,

ext03 and ext04 all increase in rank: they segment well but classify poorly
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Set
hxb
std
stdp
ext05
ext02

pms
std
stdp
ext05
ext02

jmr
std
stdp
ext05
ext02

97

% oversegm  No of apus

27.5
27.5
29.7
34.2

16.5
16.6
18.9
23.0

21.2
21.3
24.7
28.2

45
49
79
128

45
49
79
128

45
49
79
128

Table 5.9: Percent oversegmentation. Other speakers, cYT data.

Set

ext02
ext04
ext03
stdp
std
ext07
ext08
ext06
ext05

Ph Entropy

2.78
2.78
2.79
2.81
2.81
2.83
2.83
2.84
2.84

No of apus

128
104
137
49
45
65
72
55
79

Oversegmentation
ranking
stdp
std
ext07
ext06
ext08
ext05
ext04
ext02
ext03

Table 5.10: Ranked entropies of std classifications on different segmentations.
The right hand column shows the ranking according to the oversegmentation
rate, for comparison. Speaker Gsw, ATR data.



CHAPTER 5. SYLLABLE EXPERIMENTS IN THE FRONT END 98

Set Ph Entropy No of apus Quersegmentation
ranking

std 3.30 45 stdp

stdp 3.31 49 std

ext04 332 104 ext06

ext06 3.34 55 ext07

ext03 3.36 137 ext08
ext02 3.36 128 ext05
ext08 3.36 72 ext04
ext05 337 79 ext02
ext07 3.37 65 ext03

Table 5.11: Ranked entropies of std classifications on different segmentations.
The right hand column shows the ranking according to the oversegmentation
rate, for comparison. Speaker Gsw, CYT data.

(ext08 stays the same for ATR and lowers its rank for cyT). We see that extra
segments in the lattice boost the entropy. For ATR, std and stdp also do worse
on the entropy score, but for cyT this is not so. I cannot discover a reason for
this.

The reason why oversegmentations do better on the entropy scores has to
do with the way the entropy is calculated. Recall from section 3.3 that lat-
tices which need insertions tend to be more expensive (have a higher entropy)
because they contribute terms to the entropy expression which are outside the
duration adjustment. An oversegmented lattice needs fewer insertions, and that
is why the more heavily oversegmented lattices have a better entropy. This is
an unfortunate effect, because it makes entropy an inappropriate measure for

comparing the quality of different segmentations.

5.5.4 Classification results

The previous section considered the effectiveness of the different apu sets for
segmentation. We now turn to their effectiveness for classification. We inves-
tigate this by performing different classifications on a fixed segmentation. In
the case of ATR both the hand segmentation and a machine segmentation using
stdp were chosen for this, and for cyT, in the absence of a hand segmentation,

only a stdp machine segmentation was chosen. As we saw in section 5.5.2, stdp
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Set Ph entropy No of apus
std 1.86 45
stdp 1.88 49
ext06 1.95 55
ext07 2.02 65
ext08 2.05 72
ext05 2.09 79

ext04 287 104

ext02 2.49 128

ext03 2.52 137

Table 5.12: Classifications performed on a hand segmentation. Speaker Gsw,
ATR data.

Set Ph Entropy No of apus
ext05c 1.84 79
ext08c 1.84 72
ext07c 1.84 65
ext06¢ 1.85 55
ext02c 1.85 128
stdpce 1.85 49
std 1.86 45
ext03c 1.86 137
ext04dc 1.86 104

Table 5.13: Classifications performed on a hand segmentation. Lattice conflated
to std phonemes. Speaker Gsw, ATR data.

provides the best segmentation that can be obtained by machine.

Table 5.12 shows different classifications performed on a hand segmentation.
The results correlate perfectly with the number of symbols. This is not an
interesting result, because we are seeing an effect that is due to the number of
apu targets. There is more to go wrong when the number of targets is large,
and so the small apu sets have an unfair advantage.

We can compensate for the number of targets by conflating the phoneme
lattices down to the standard set. We first classify using the full apu set. Then
the lattice is collapsed down to the std set. Thus, in the case of ext03, /t1 t2
t3 t4 t5 t6 t7 t8 u-t1 u-t2 u-t3 u-t4/ in the lattice are collapsed down to just
/t/, and so also for the other apus. Next the entropy is calculated. The scores
in the lattice are adjusted accordingly, and the entropy calculation is done with

reference to the std set.
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Table 5.13 gives the results, again for a hand segmentation. Broadly speak-
ing, the larger apu sets do better than the smaller ones. The exceptions are
the three largest sets. They should be at the top of the table, but they are not.
Presumably this is because there is not enough training data to train so many
models. Of the three exceptions, two of them — ext03 and ext04 — actually
do worse than the smallest set. They both have acoustic stops. There seem to
be two effects at work here: the size of the apu set, and the type of its stop
consonants. The type of stop is the lesser factor, because the small set ext06,
although it also has acoustic stops, is in its right place in the table.

When we move away from a perfect segmentation, and use machine seg-
ments, the picture changes between open and closed test. Table 5.14, which is
also on the closed-test data, is broadly similar to the hand segmentations. The
top, middle and bottom three sets are the same, apart from the groupings. The
open test results, which are given in table 5.15, are however very different. The
small sets all do better than the big sets. Among the small sets the one with
the acoustic stops is the best, and the same goes for the big sets.

In all cases stdp is better than std, although not always to a statistically
significant extent.

The conclusion seems to be that under favourable conditions, such as those
of a closed test, there is some reason for choosing an elaborated apu set. Under
realistic conditions, however, large numbers of apus are a disadvantage. This
disadvantage may be due to the amount of training data, as a comparison

between stdp and std suggests.

5.6 Syllable-assisted segmentation

We will next investigate the use of syllables at the front end. Syllables will be
used to constrain the segmenter, and the effect, as we will see, will be to reduce
the number of segments that it produces. The mechanism that is used for this
is called the sequencer, and it was described in sections 3.2.3 and 3.2.4.

The results of syllable-assisted segmentation for the different apu sets are

now given.
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Set Ph Entropy No of apus
ext07c 2.79 65
ext08c 2.79 72
ext05¢c 2.79 79
ext02c 2.80 128
ext06¢c 2.80 55
stdpc 2.80 49
ext03c 2.80 137

std 2.81 45
ext04c 2.81 104

Table 5.14: Classifications performed on a stdp segmentation. Lattice conflated
to std phonemes. Speaker Gsw, ATR data.

Set Ph Entropy No of apus
ext06¢ 3.30 55
stdpc 3.31 49
std 3.31 45
ext07c 3.31 65
ext08c 3.31 72
ext05¢c 3.32 79
ext04c 3.32 104
ext03c 3.33 137
ext02c 3.33 128

Table 5.15: Classifications performed on a stdp segmentation. Lattice conflated
to std phonemes. Speaker Gsw, cYT data.
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Set Oversegmentation % reduction No of apus
without with syllables
std_syll 3.5 0.3 3.0 45
stdp_syll 3.1 0.4 3.0 49
ext06syll 6.3 1.3 4.7 55
ext08_syll 6.5 1.9 4.3 72
ext07 syll 6.1 2.1 3.8 65
ext05syll Toil. 2.1 4.6 79
ext04 syll 9.5 2.3 6.6 104
ext02_syll 9.6 2.6 6.4 128
ext03syll 10.7 2.7 7.2 137

Table 5.16: Percent oversegmentation. Speaker Gsw, ATR data, with and with-
out syllables. Using syllables reduces the oversegmentation rate, to the extent
shown in the third column of figures.

Tables 5.16 and 5.17 give the oversegmentation results for the case when
syllable networks are used. The first table is for the ATR data, and the second
is for cYT data. For convenience the oversegmentation rates without syllables
(from the corresponding tables 5.6 and 5.7) are repeated in the first column.
The use of syllables reduces the rate of oversegmentation, and this is indicated
in the column headed % reduction. In the first line of the first table we see that
syllable-assisted segmentation produces 3% fewer segments than unassisted seg-
mentation. The reduction comes about because some of the spurious segments
are lost in making the segments conform to a legal sequence of syllables. Since
the lengths of the utterances remains the same, a small number of segments
per utterance must consist of longer segments than a large number of segments.
On the whole the lost segments are therefore short ones. As before the results
correlate roughly inversely with the number of apus. Although the syllables
reduce the oversegmentation more for the large sets than the small ones, the
disadvantage that large sets have during segmentation remains after syllable
processing.

Figures 5.3 and 5.4 show graphs of the oversegmentation data. The second
of these, for the cytology data, is strikingly similar to the graph given earlier for
ATR, 5.1. Ext06 and ext04, the sets with the acoustic stops, perform worse than
expected. Stdp does unusually well. These trends are visible also in figure 5.3,

but less clearly.
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Set Oversegmentation % reduction No of apus
without with syllables
stdp_syll 16.8 13.9 17.3 49
std_syll 17.5 15.0 14.3 45
ext08_syll 21.0 14.7 30.0 72
ext05_syll 22.1 14.8 33.0 79
ext07syll 20.4 15.0 26.5 65
ext06 syl 20.0 15.2 24.0 55
ext02_syll 25.6 16.7 34.8 128
ext04 syll 24.0 16.8 30.0 104
ext03_syll 26.8 17.5 34.7 137

Table 5.17: Percent oversegmentation. Speaker Gsw, cYT data, with and with-
out syllables. The syllables reduce the oversegmentation rate, to the extent
shown in the third column of figures.

We notice from the oversegmentation tables that syllables reduce the over-
segmentation rate more for cYT than for ATR. The reason for this lies in the

bushiness of the syllable networks, a topic to which we must now turn.

5.6.1 Perplexities of Syllable Networks

The perplexity of a network measures its bushiness. Perplexity is the antiloga-
rithm of the entropy of the phoneme sequences that make up the network; see

appendix B. The perplexity of the network
k-a-t

is 1.

Table 5.18 gives the perplexities of the different syllable networks, for the
ATR data. The third column gives the number of syllable types in the data.
Notice that for the apu sets with acoustic stops, the number of syllable types
is larger. This is because some syllables with stops appear in two forms. The
syllable pan, for example, might appear twice, once with a released stop and
once with an unreleased stop. This is because the manner of articulation —
released or unreleased — of stops is not completely determined by syllable
position. We saw in chapter 1 that although a majority of released stops occur
in initial clusters, they do also appear in final clusters (roughly 70% versus 30%

for the ATR data). Similarly unreleased stops, although mostly in final clusters
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APU set No of apus No of syllables Perplexity
ext02 128 1377 71.50
ext03 139 1437 74.15
ext05 79 1377 96.50
ext08 72 1377 108.16
ext04 104 1437 124.15
ext07 65 1377 129.69
ext06 55 1437 204.29
stdp 49 1377 222.56
std 45 1377 208.34

Table 5.18: Ranked perplexities of syllable models. Speaker Gsw, ATR data.

(82%), also appear in initial clusters (18%). The effect of this is that a syllable
like pluck, with initial and final stops, may appear more than once in the three
sets with acoustic stops, in released and unreleased versions.

We see that, in general, the perplexity goes up as the number of apus de-
creases. This is because a more general apu belongs to more syllables. Consider
an apu set in which phoneme /t/ is represented by both its post-vocalic allo-
phone /tp/ and by its allophone as it appears in clusters /tc/. Then /tp/
appears in syllables like pat and kit, and /tc/ appears in syllables like print and
fast. A smaller apu set with just the phoneme /t/, would have /t/ appearing
in all the syllables mentioned: pat, kit, print and fast. The network of which
/t/ is part is therefore more bushy than one in which /tp/ and /tc/ are part.
A small apu set has fewer allophones, and those that it has are more general.

The perplexities of the cytology networks are given in table 5.19. The
three sets with acoustic stops are separated out, because their syllables have
been constructed on a different principle from the ATR case. Because the hand
transcription of the cytology data was only done at the phonemic level, there is
no indication of whether a stop was released or not. Thus cat is transcribed only
as /kat/,and we do not know whether it was spoken with released or unreleased
k, or released or unreleased ¢ In order not to miss the version that was spoken,
networks were created with the stop allophones systematically varied; thus cat
appears four times, with released and unreleased appearing independently in

the two stop positions. This gives rise to more syllables than are present in
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APU set No of apus No of syllables Perplexity
ext02 128 368 53.25
ext05 79 368 69.07
ext08 72 368 76.79
ext07 65 368 90.51
stdp 49 368 158.67
std 45 368 160.53
ext03 139 560 62.31
ext04 104 560 102.47
ext06 55 560 152.32

Table 5.19: Ranked perplexities of syllable models. Speaker csw, cyT data.
The syllables in the second group do not reflect real data (see text).

the database, and explains why the acoustic sets have more syllables than the
others.

The fact that the three apu sets which have acoustic stops have a less eco-
nomical arrangement of syllables than the apu sets with syllabic stops, provides
another reason why the acoustic sets do worse. We saw above that these sets
oversegment worse than the syllabic sets. We saw above that two of them at
least also oversegment worse with syllable assistance. Their larger set of sylla-
bles provides a weaker constraint during segmentation than that provided by
a smaller set of syllables. This effect is additional to their poor performance
during unassisted segmentation.

The matter of acoustic stops and syllabic stops is explored further in sec-

tion 5.9 below.

5.7 Word-assisted segmentation

If, as we have seen so far, syllables reduce oversegmentation, we might wonder
whether the use of words would reduce it even further. Being larger units, words
impose stronger sequence restrictions than syllables, and so should winnow out
more of the excess segments that the segmenter is prone to produce. Table 5.20
shows that this is not so. The table compares oversegmentation in the two

cases already considered — unassisted segmentation, and syllable-assisted —
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Database Set % Oversegmentation
Unassisted With syllables With words

atr stdp 3.5 0.4 1.5

cyt stdp 26.9 13.9 17.8

cyt ext02 35.5 16.8 18.7

cyt ext05 31.9 14.8 19.0

Table 5.20: Percent oversegmentation, for a selection of apu sets. Comparison
of three segmentation methods: using no assistance, using syllable assistance,
and using word assistance.

with the case where word networks are used. We see that words do reduce the
oversegmentation rate, but not to the extent that syllables do. Figure 5.5 illus-
trates. It shows three lattices for the utterance preliminary report. The lattices
are respectively unassisted, word-assisted and syllable-assisted segmentation,
reading from bottom to top. The oversegmentation becomes less from bottom
to top (the example chosen is representative of the general trend in table 5.20).

One thing about the figure is puzzling at first. It shows sequences of pho-
nemes that do not form legal syllables or words. The middle segmentation has
the sequence /r r r r/, for example. These are the best-scoring hypotheses for
their respective segments. The explanation is that the sequencing is performed
to produce the globally optimum path. In some cases this means not using the
locally best-scoring hypothesis. The words and the syllables that were formed
are not visible in the figure, and indeed are not reported by the algorithm.

The reason why word segmentation is worse than syllable segmentation is
related to the size of the sequencing unit — syllables or words — and seg-
mentation accuracy. It is clear that segmentation errors undo the work of the
sequencer. Errors of deletion omit segments that the sequencer should have
seen, and errors of insertion produce spurious segments that it should not have
seen. Where the sequencing unit is large, this is more likely than when the
sequencing unit is small.

This can be demonstrated as follows. Recall the discussion in chapter 3
about the operation of lexical access. The segmentation errors mentioned oc-
casion lexical access to perform insertion and deletion repairs in the lattice

(substitution errors only affect the identity of the apus, and not the quality of



CHAPTER 5. SYLLABLE EXPERIMENTS IN THE FRONT END 109

the segmentation). Appendix C describes a study of the insertion and deletion
repairs performed by lexical access. We see there that the error-free interval in
the lattice, which we may define as the distance between successive insertions
or deletions, is 4.36 phonemes for ATR and 3.29 phonemes for cytology. Recall
from table 5.1 that the average syllable size is about 2.6 phonemes and the
average word size is about 3.5 phonemes. Syllables are considerably smaller
than either of the error-free intervals, whereas words are closer in size to them.
This shows that syllable sequencing is less likely to be undone by errors in the
segmentation.

Aside from the fact that, with current segmentation accuracies, words are
too large a unit for safely sequencing a segmentation, they would not be a
desirable unit to use in a loosely-coupled system. The reason for using syllables
for sequencing segmentations is that their number is limited, which makes them

immune to changes of vocabulary and grammar.

5.8 Segmentation repair

We have just seen that the raw segmentation that forms the input to the se-
quencing procedure suffers from the drawback that it contains errors. These
errors of insertion and deletion mislead the sequencer, and as we saw the ex-
tent to which this happens depends on the size of the sequencing unit (syllable
or word). We might ask whether it is worth repairing the errors of the raw
segmentation before sequencing it. We shall find in this section that it is not.

Insertion and deletion errors in the segmentation are normally repaired in
the back end, by lexical access. The lexical access module of the CSTR system
was described in section 3.4, and for convenience it was referred to as ‘lexax’.
We could graft lexax into the front end, between the segmenter and the se-
quencer, in order to effect the repair. Of course we do not want to bring in
the whole of lexax, complete with lexicon and grammar, because that would
defeat our purpose of designing a front end that is stable in the face of changing
requirements in vocabulary and syntax. Instead, we shall use a stripped-down

lexax which uses syllables rather than words, and which operates without the
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Figure 5.5: Three stdp phoneme lattices for preliminary report, using, from
bottom, unassisted, word-assisted and syllable-assisted segmentation. All three
lattices suffer from oversegmentation. The repairs that lexax had to make on
the worst lattice are indicated with crosses for deletions and an arrow for the
insertion.
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assistance of a grammar.

The details of the implementation are as follows. The segmenter produces
a regular segmentation, on which is performed a classification to produce a
normal phoneme lattice. The stripped-down lexax runs, using a syllabicon and
no grammar. The output file shows the sequence of phonemes that produced
the output string; this sequence was obtained from the phoneme lattice, with
insertions and deletions duly made. Lexax has repaired the segmentation, and
has at the same time performed a syllable sequencing. The sequence has no seg-
ment boundaries, because lexax cannot know where the inserted segments begin
and end. This sequence of phonemes is therefore presented to the segmenter
to produce a resegmentation. This procedure is the same as that described in
section 5.4 above. The resegmentation replaces the original segmentation, and
the rest of the system runs as normal. The resegmentation will be called a
repaired segmentation below.

Table 5.21 gives the oversegmentation rates of repaired segmentations. The
negative numbers indicate an undersegmentation: the repaired segmentations
contain fewer segments than the hand transcription. The percentages are quite
high: between a fifth and a quarter of the segments are missing. Table 5.22
shows the entropy results after std classifications have been performed on these
segmentations. As we might expect, the entropies for the repaired segmenta-
tions are significantly worse than for the regular (unrepaired) ones.

We see that segmentation repair produces worse results than unassisted
segmentation. Syllables are short units, which leads to a high rate of deletion.
It is worth repeating that the conditions under which the segmentation repair
took place were restricted: we chose syllables rather than words for lexax to use,
and lookup was done without the guidance of a grammar. These restrictions
are of course in line with the aim of this research, which is to investigate the
behaviour of a front end which is not liable to changes of vocabulary and syntax.

With these restrictions, segmentation repair is not a good idea.
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Set  Dbs % oversegm
stdp atr -24.13
cyt -19.43

Table 5.21: Percent oversegmentation after syllable sequencing with segmenta-
tion repair. The negative numbers indicate that fewer segments are produced
than are present in the hand segmentation. Speaker Gsw.

Set  Dbs Ph Entropy Conf
Regular  Repaired

stdp  atr 2.8 3.3 100%

eyt 3.3 3.8 100%

Table 5.22: Std classification on stdp segmentations, with and without lattice
repair. The confidence column indicates the probability that the repaired lattice
gives worse results. Speaker Gsw

5.9 Stop realisation and syllable position

In sections 5.5 and 5.5.4 above we noted that apu sets with acoustic stops per-
form worse than apu sets whose stops are defined according to their position
in the syllable. These results are interesting because they corroborate find-
ings elsewhere. The work of Mark Randolph (Randolph, 1989) is particularly
relevant.

In a study of American English, he investigated the effects of phonetic and
prosodic context on stop realisation. In his study a stop could be realised
as released, unreleased, flapped, deleted, or glottalised. Table 5.23 shows his

proposed predictors of these realisations. Affiz-1 is the first phoneme of an

Predictor Values

place labial, alveolar, velar

voicing voiced, unvoiced

prev context affricate, fricative, glide, nasal, stop, vowel
foll context the same i
/s/-stop cluster yes, no

syllable pos’n onset, coda, affix-1, ambisyllabic

stress high, low, rising, falling

Table 5.23: Randolph’s predictors of stop realisation.
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affix. Affixes were defined in chapter 3 above. The values of the stress variable
are defined according to the preceding and following vowel. If both of them are
non-reduced, the stress environment is ‘high’. If both of them are reduced, it is
‘low’. If the preceding vowel is reduced and the following vowel is non-reduced,
the stress environment is ‘rising’. In the remaining case it is ‘falling’.
Randolph performed a regression study between the predictors in the table
and the different stop realisations. The regression was done by growing a binary
tree, in which the predictor variables (the distinctive features) are correlated
with a response variable (the stop realisation). The data consists of a set of

vectors, of which this is an example:

(place = labial, voicing = voiced, syll posn = onset, ...,

realisation = released)

The final element of the vector is the response variable, and the earlier
elements are the predictor variables. Initially all the data are placed at the root
node of the tree. An attribute is then chosen for partitioning the root’s sample
of data. Once the choice is made the sample is split into two subsamples, and
these are placed at the root’s two daughter nodes. This procedure is continued
until (this is the most important reason) all the samples at a node are ‘pure’,
that is, contain acoustic realisations of only one type. The choice of attribute on
which to split is made by maximising the mutual information of a subsample.
Mutual information is also used to report the performance of the tree at the end.
Mutual information is the a priori entropy of an acoustic realisation, reduced
by a weighted sum of entropies corresponding to the individual terminal nodes.

Randolph found that the most significant influence on stop realisation is
syllable position, and the next most significant was following context. Voicing
and /s/-stop cluster have almost no influence. The oversegmentation results
for ext06 and ext04 support this finding, because the other apu sets, which
have syllable-conditioned stops, segment better. Ext03 also has acoustic stops,
just like ext06 and ext04, but does not show up clearly as performing worse.
This could be because its released and unreleased stops are themselves syllable-

conditioned.
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5.10 Summary and Conclusions

To retain the benefit of constrained generation of phonemes, I propose the use
of syllables.

We have investigated the possibility of using enriched apu sets in the front
end of a speech recogniser. Different apu sets were tried for both segmentation
and classification. The apu sets were chosen according to their positions in
syllables, and syllable networks were used to assist during segmentation. The
results were measured in three ways, using end-point differences, oversegmen-
tation rate, and entropies.

The results are variable. Under favourable conditions (known transcription
during segmentation, and a closed test set during classification), the large sets
do better than the small ones. Under realistic conditions, the large sets do
worse, although this is not an absolute rule. Where stdp is different from std,
it does better. An important factor in this is the quality of the segmentation
for training. Where a high-quality hand segmentation is available, as it was for
speaker GSW, stdp indeed does better than std. Where the training data consists
of a machine segmentation, as it did for the other speakers, the advantage that
stdp enjoys over std disappears. This advantage, in the case of Gsw, suggests
that some of the larger sets might not do so poorly if more training data were
available.

The use of syllables reduces oversegmentation, as one would expect. Even
with syllable assistance the large sets are at a disadvantage compared to the
small ones: they still oversegment worse. The use of words rather than syllables
to assist segmentation was shown to be ineffective. So was the attempt to repair
the segmentation before sequencing.

Sets with acoustic (released and unreleased) stops are shown to be worse
than sets with syllable-conditioned stops: they oversegment worse than their
size would suggest. This applies to both unassisted and syllable-assisted seg-
mentation. Sets with acoustic stops also have less efficient syllable networks:
compared with the other sets they need more syllables to describe the same

data.
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At this point we may recall Church’s recommendation, which was that the
identification of allophones (enriched apu sets) would help recognition accuracy.
With the amount of training data available at CSTR, and with the syllable mech-
anism used in this thesis, his recommendation is not borne out by experience.

The lessons learnt for the builders of loosely-coupled systems are as follows.
The constraint provided by using syllables to sequence the segmentation can
be enhanced by a judicious choice of apu set. The stdp set is a better choice
than the std set, for example. It is possible that with more training data some
of the other apu sets will come into their own. Sets with acoustic stops are to

be avoided.



Chapter 6

Syllable Experiments in the
Back End

6.1 Introduction

We saw in the previous chapter that syllables improve the performance of the
front end and we now investigate the effect they have in the back end.

In chapter 3 the CSTR recognition system was described. It is a modular
system, in which the front end and the back end are separate stages. As we saw,
this enables variations of the system to be tested easily, and their effect mea-
sured independently of other factors. This approach is not free of difficulties,
as we shall see in this chapter, but it is convenient for experimentation.

The aim in this chapter is to use syllables somehow to improve the perfor-
mance of the back end. Given that syllables lie halfway between phonemes and
words, one possibility is to use them as an intermediate data structure: that is,
to produce syllables out of phonemes, and then look up the syllable strings in
a special lexicon which spells words in terms of syllables. However, I could not
see any obvious gain from this approach, and did not use it. Another possibility
is to use syllables to get better statistics for phoneme confusions, and this is
the approach of this chapter. Recall from chapter 3 that lexical access matches
apu strings against words by performing substitutions, insertions and deletions.

This is done on the basis of a confusion matrix which has been trained in ad-

116
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vance. In the unmodified lexical access there is a single confusion matrix. In
the approach taken in this chapter, multiple confusion matrices will be used, to
to reflect the different behaviour of phonemes in different positions of a syllable.

This approach can be justified as follows. We know that it is common
for speakers to pronounce phonemes indistinctly or to omit them altogether.
Usually this phenomenon is modelled by considering only the left and right
neighbours of a phoneme. However, the position of the phoneme in the syllable
is relevant as well. For example, phoneme deletion is more common at the end
of a syllable than at the beginning. Some systems (e.g (Lee, 1988)) take account
of this fact, but only at the ends of words. A small experiment indicates that
this is worth doing at word-internal syllable-boundaries as well.

The 200 ATR sentences were run through the csSTR recogniser and the num-
ber and places where the phoneme /d/ was deleted were counted. We expect
the deletions to occur particularly at the ends of words and syllables, either
because speakers don’t say them or say them so indistinctly that the recog-
niser misses them. The experiment bears this out. A count of /d/ deletions
shows that of 115 deletions, only 12 were not in the syllable coda. Of the 103
syllable-final deletions, nearly a quarter (25) were word-internal.

Multiple confusion matrices allow us to take account of this fact. With a
single matrix, phoneme deletions are corrected in a way that depends only on
the identity of the phoneme, and not on its position in the word or sentence.
By introducing multiple matrices, one for each appropriate position in a sylla-
ble, the correction of phoneme deletions can be done in accordance with their
frequency of occurrence in the different parts of the syllable.

Multiple confusion matrices are the main concern of this chapter, but before
we get there a preliminary question is addressed, one which is raised by the

previous chapter.

¢ Syllable-assisted segmentation is better than an unassisted segmentation,
as we saw in the last chapter. Does this improvement make itself felt also
in the back end? We shall see that the answer is no, for reasons that are

probably related to redundancy in the lattice.
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The main question of this chapter is

¢ Can we improve back-end performance by making lexical access aware of
the positions in a syllable that the phonemes in the lattice occupy? We
shall see that the answer is yes, but the performance can go down as well

as up.

6.2 Measurement of Word String Quality

We measure the quality of the word strings produced by the back end by cal-
culating a weighted error which shows how many substitutions, insertions and
deletions it takes to turn the top scoring word string into the correct answer.

weighted error = no of substitutions + ( no of indels / 2)

An indel is an insertion or a deletion. Note that in calculating this mea-
sure the substitutions, insertions and deletions are made on words, unlike the
operation of the back end itself, where these operations are performed on pho-
nemes. The substitutions and indels are done under the control of a dynamic
programming algorithm, and are the cheapest that can be obtained.

Here are some examples.

Example: Cytology sentence number 150
Correct sentence:  Pleural aspirates.
Back end produces: needle aspirates

Weighted error: 1 (one substitution, pleural for needle)

Example: Cytology sentence number 85
Correct sentence:  The specimen contains superficial squames.
Back end produces: specimen contains superficial squames

Weighted error: 0.5 (one insertion, the)

Example: Cytology sentence number 14

Correct sentence:  Microscopy shows scanty material with occasional
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groups of epithelial cells.

Back end produces: microscopy shows scanty material with occasional

groups of epithelial cells with a clot

Weighted error: 1.5 (three deletions, with a clot)

As is obvious from the formula, the error function is such that an indel
scores 0.5 and a substitution scores 1.0. The deletion of an incorrect word
followed by the insertion of the correct one would therefore score the same as
the straightforward substitution of the incorrect word by the correct one. For
a perfect answer the weighted error is zero.

Occasionally the weighted error gives scores that are intuitively wrong.

Example: Cytology sentence number 69

Correct sentence:  Microscopy shows very scanty epithelial cells.
Back end version 1: microscopy shows scanty epithelial cells
Weighted error: 0.5 (one insertion, very)

Back end version 2: microscopy shows a scanty epithelial cells

Weighted error: 1 (one substitution, very for a)

The second version has a worse score than the first one, but it is arguable
that it is a better recognition. The two versions differ on only one word, aq,
which is missing in the first version. The word is in fact wrong (it should be
very), but at least the second version has given us the right number of words.
Despite this occasional misbehaviour, the weighted error is widely used. The
DARPA word error rate described in section 3.5 is an example.

Once the back end has run, the weighted error is calculated for every utter-
ance. To compare the results of two runs, a ¢ test is performed on the weighted
errors of the two runs. For ATR this means comparing 200 weighted errors from

one run with 200 weighted errors from another run.
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Database Segm Seg count Conf Ph entropy Conf

atr reg 9020 2.88

syll 8752 100% 2.75 100%
cyt reg 6622 3.37

syll 5947 100% 3.26 100%

Table 6.1: Segment counts and phoneme entropies for the front end lattices
of speaker Gsw, using stdp segmentation and classification. The Segm column
gives the type of segmentation: regular and syllable-assisted. The second line of
a pair gives confidence levels that it is significantly different from the previous
line.

6.3 The Data

Table 6.1 gives some statistics about the quality of the front end lattices that
are fed to the back end. It gives in summary form the sort of thing that was
presented in detail in chapter 5. The stdp apu set was used for both seg-
mentation and classification. Two kinds of segmentation are shown: a regular
segmentation without the use of syllables, and a syllable-assisted segmentation.
The table gives the number of segments and the average phoneme entropy of
the lattices. The lines should be read in pairs. The second line of the pair
gives the confidence level that it is different from the first line (the confidence
levels have been rounded to the nearest whole number). Recall from the pre-
vious chapter that because the segmenter oversegments, low segment counts
are better than high ones, and that for entropies also low is better than high.
We see from the table that for both ATR and cYT the use of syllables makes
a significant improvement both to the segment counts and to the entropies of
stdp classifications. Back end experiments will be performed on both kinds of
lattices.

The back end is run with one of three grammar options: zero grammar,
a bigram grammar, and a full grammar. We recall from section 3.4.4 that
grammars help to restrict the number of candidates that lexax needs to consider
when it is trying to make words out of the phoneme lattice. Zero grammar
means that the number of words is not restricted, and at every possible word
boundary in the phoneme lattice lexax needs to try to construct every word in

the lexicon. A bigram grammar consists of a list of word pairs. After the first
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Grammar Database Perplezity

Zero atr 1240
cyt 240
full atr 1.6
cyt 3.5

Table 6.2: Perplexities for two kinds of grammar.

word of an utterance has been constructed, the candidates for the second word
are drawn only from the pairs that start with the first word. Candidates for
the third word depend on the second word, and so on. A further restriction is
provided by a full grammar, in which only the sentences in the database can be
constructed.

The extent to which lexax’s choice of words is restricted is measured by
perplezity, a term which we used already in chapter 5. The perplexity gives
the average number of words that lexax needs to consider at any one point.
Table 6.2 gives the perplexities of two grammars, for the ATR and cyT data.

With the zero grammar the perplexities are simply the sizes of the ATR and
CYT lexicons. The perplexity of the full grammar for cYT is higher than for
ATR because, even though ATR has more words, it also has longer sentences (as
was shown in table 5.1). Long sentences have a larger number of predictable
words than short ones. The first few words are usually enough to identify a
sentence, and the remaining words can then be predicted with certainty. For
each of these remaining words, therefore, lexax has only one choice. These fixed
choices ensure a low perplexity, and since longer sentences have more of them,

the average perplexity for ATR is lower than for cYT.

6.4 Syllable-conditioned Phoneme Lattices

Before we look for improvements to make in the back end, we would like to
know how the lattices we produced with the help of syllables in the front end
fare in the existing back end. As we saw above the syllable-conditioned lattices
have a better entropy than the regular ones, and we expect them to do well in

the back end also.
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To answer the question two sets of runs were done with the baseline (unmod-
ified) back end: one set used regular phoneme lattices as input and the other
used syllable-conditioned ones. To give a fair comparison, the back end was
trained separately on the two kinds of input. For the regular runs, the back
end’s confusion matrix was trained on the 200 ATR sentences, using lattices
produced without syllable assistance. Lexax was then run on these files again
to produce closed-test results, and the run was repeated on the cytology data
to give open test results. For the other set of runs, the confusion matrix was
trained on the ATR sentences, using lattices produced with syllable-conditioned
segmentation. Closed and open test results were then produced for this option
as well. All the runs were performed three times over, for each of the three
grammar options.

The results are summarised in table 6.3. The lines in the table should be
read in pairs. The first line of the pair is for results produced from a phoneme
lattice prepared without the aid of syllables. The second line is for results
produced from a syllable-conditioned phoneme lattice. The results consist of
the word and sentence recognition rates achieved, together with the weighted
error. The weighted error was described in section 6.2, and is the average for
all the sentences in the set. The weighted error in the top line of the table
is 5.72: this means it takes about 6 word substitutions or about 12 indels
to turn a word string produced by the back end into the right answer. The
weighted error for cytology is on average less than that for ATR because the
cytology sentences are shorter (7.1 vs 13.0 words per sentence, as we noted
in section 5.2). The confidence level in the second line of each pair indicates
whether or not the weighted error is significantly different from the one in the
previous line. The confidence level derives from a ¢ test which is performed on
the weighted errors of the runs — 200 weighted errors for an ATR run and 170
errors for a cytology run. From the first two lines of the table, we see that we
are 60% sure that syllable conditioned lattices perform worse than regular ones.
I take a confidence of 90% as significant.

We see that syllable-conditioned phoneme lattices generally produce worse
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Grammar Database Segm % Words % Sents Error Conf

Zero atr reg 52.37 0.00 5.72
syll 52.14 0.00 5.75 60%

cyt reg 72.44 15.29  1.68
syll 70.55 13.53  1.79 95%

bigram atr reg 96.92 85.50  0.37
syll 95.84 79.50 0.50 91%

cyt reg 97.73 88.24 0.14
syll 97.87 90.00 0.13 62%

full atr reg 100 100  0.00
syll 99.63 99.50 0.05 84%

cyt reg 100 100  0.00
syll 99.71 99.41  0.02 84%

Table 6.3: Results for speaker Gsw produced by the baseline back end, reading
stdp lattices. The Segm column gives the type of segmentation: regular or
syllable-assisted. The second line of a pair gives the confidence level that it is
significantly different from the previous line.

results than the regular ones. In only one case does the syllable-conditioned
lattice produce better results (bigram syntax on the cytology data), but this
case is not significant, the confidence level being only 62%.

Given that the regular lattices themselves are worse than the syllable-
conditioned ones as measured by entropy (table 6.1), the fact that they can
give rise to better back-end results requires explanation. Figures 6.1 and 6.3
show two ways it can arise. Both figures show two fragments of phoneme lat-
tices, one from a regular lattice, and one from a syllable-assisted one. The
lattice is shown as a sequence of line segments, each labelled with an apu. Each
segment in fact has multiple candidate phonemes, but these are shown only in
a few cases, where it matters for the purpose of illustration. The second, third,
etc candidates are shown stacked vertically over the first. They are given in
score order, with the best candidate at the bottom. Below each lattice the pho-
nemes assigned to the segments by the back end are shown in bold. These are
called the lezical phonemes, and they are obtained from the phonemes in the
lattice (called in this context the surface phonemes) by means of substitutions
or insertions.

The first figure shows the lexical phonemes of the phrase deposit of epithelial

cells. All of them were obtained from the surface phonemes by means of substi-
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Figure 6.1: Back-end action on two phoneme lattices, using a bigram grammar.
‘deposit of epithelial cells’ and ‘deposit of *mesothelial cells’.

tution. In the regular segmentation they are all identity substitutions: lexical
/d/ was obtained from surface /d/, lexical /e/ from surface /e/, and so on.
The lexical /t/ was obtained from the third-best scoring surface phoneme, also
a /t/; the two better-scoring phonemes, /s/ and /z/, were not used. Multiple
candidates are only shown in the figures in order to show the surface phoneme
that lexax used to form the string. Segments that were skipped entirely (deleted
segments), are shown with a down-pointing arrow and a x. Inserted segments,
which lexax had to provide in order to form a word, are shown by up-pointing
arrows. The first figure has no inserted segments.

Consider now figure 6.1 in more detail. The illustrations are fragments
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from larger lattices'.The full lattice of the regular segmentation is worse than
that of the syllable-assisted segmentation: the utterance entropies are 219 and
206 respectively?. We can see the difference in quality even from the fragments
shown: the top lattice has needed seven deletions to form a phrase, while the
bottom lattice has needed only three. Nevertheless, the top lattice produces
the right answer, deposit of epithelial cells, while the bottom lattice produces
the incorrect phrase deposit of *mesothelial cells (the star indicates the incor-
rect word). The cause of the error is the arrowed segment. Its immediate
environment is shown in more detail in figure 6.2. The segments are shown
with their scores. The scores are identical where the segment boundaries are
the same. One boundary is different, however, which is shown by the dashed
arrow. The segment labelled /@, i, e/ in the top lattice is somewhat shorter
than its equivalent in the bottom lattice, and the next segment, labelled /v,
t, dh/, is somewhat longer. The difference gives rise to different scores on the
affected segments, and to the lexical:surface substitution p:t at the top and the
substitution s:dh at the bottom. From this follows epithelial at the top and
*mesothelial at the bottom.

A somewhat different case is illustrated in figure 6.3. These are fragments
from a lattice for the sentence microscopy shows scanty material with occasional
groups of epithelial cells (utterance number 14). The fragments show the tail
end of the lattice in the two cases. Here also the regular lattice is worse than
the syllable-assisted one (utterance entropies 206 and 177), although this is not
evident from the fragments shown. The top and bottom fragments are shown
aligned. The gaps that have been left in the top lattice are purely to make the
alignment graphically possible, and have no other significance (i.e there are no
breaks in the top lattice). Up to the end of the utterance, both lattices produce
the same words. At the end however, the top lattice ends with the word cells,

while the bottom lattice ends with cells *with *a *clot. This is despite the fact

!The full lattice is The specimen contains a scanty deposit of epithelial cells and inflam-
matory cells, utterance number 4.

“These utterance entropies are the sums of the entropies of the individual phonemes, nor-
malised for utterance length.
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regular segmentation
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Figure 6.2: Back-end action on two phoneme lattices, using a bigram grammar.
Excerpts from ‘deposit of epithelial cells’ and ‘deposit of *mesothelial cells.
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regular segmentation
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Figure 6.3: Back-end action on two phoneme lattices, using a bigram grammar.
‘...cells’ and ‘...cells with a clot’.

that the top fragment has ten segments and the bottom one only eight. The
difference is caused by a gross difference in the length of one segment. The
segment labelled /s, th/ in the bottom lattice corresponds to three segments in
the top (except for this one case, the segments are not drawn to scale). Three of
the eight phonemes in with a clot had to be inserted to construct these words.

In the first example (‘deposit of epithelial cells’) different word strings were
produced as a result of slightly different scores in the phoneme lattices. In the
second example (‘cells with a clot’) a shorter sequence of segments gave rise to

extra words because of a large difference in segment lengths. In both examples
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the entropy tells us that it should be easier to produce the right answer from the
syllable-assisted segmentation than from the regular one, but in both cases the
back end prefers the regular one. Of course we can tell nothing from isolated
examples like these. Isolated examples can always be found that contradict a
general trend. What is more important is that table 6.3 shows that the back
end almost always prefers the regular lattices, which have worse entropies.

One possible reason which may occur to the reader must be eliminated
from consideration. We know that the front end sequences its lattices against
syllables without guidance from a grammar. It is likely that in some cases it
will choose the wrong syllables, that is, syllables which are not in the correct
transcription. This will adversely affect the lattice. However, this is not enough
to lower the quality of the lattice below that of an unsequenced lattice, as we can
tell from the entropy scores. The entropy scores tell us that sequenced lattices
are of a higher quality than unsequenced ones, even though the sequencing is
prone to error.

The likely reason why the sequenced (syllable-conditioned) lattices do less
well at the back end lies with oversegmentation. We have seen (tables 5.16 and
5.17) that syllable-conditioned lattices are smaller by 3% in the case of ATR and
17% in the case of cytology. The back end prefers the regular, more heavily
oversegmented lattices. The front end evaluation program, which calculates the
entropies, penalises such profligacy. It does this in the light of the transcriptions,
which are not available to the back end. The back end needs to choose words
from the entire lexicon, or from such subsets as are suggested by the grammar.
It has a more difficult task than the front evaluation program. It may view the
extra segments not as misleading, but as a source of redundancy. The extra
segments seem to help the back end, rather than hinder it.

Aside from the fact that the back end prefers verbose lattices, we note two
further points concerning the difference between front end and back end perfor-
mance. The first point is specific to the CSTR system. The evaluation program
in the front end, which computes entropies, has different information available

to it from that available to the back end. The front end computes entropies
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according to a confusion matrix similar to the one used in the back end, but the
two confusion matrices are not the same. Recall from section 3.3 that the front
end calculates a confusion matrix according to a test set of utterances (namely,
the even-numbered utterances) which are not the same as the closed set of ut-
terances (namely, the ATR utterances) from which the back end calculates its
confusion matrix. We may therefore expect the back end to behave slightly
differently from what the front end suggests.

The second point concerning front end evaluation and back end performance
is more general. Because entropies are calculated in the light of the transcrip-
tions, which are not available to the back end, they reflect performance that
is closer to ideal than the back end can achieve. We may expect the back end
to fall short of what the front end predicts. The back end is a complicated
program, whose behaviour cannot always be foreseen. The cSTR system is not
alone in yielding surprises at the back end. It was mentioned in section 2.6
that in sPHINX, adding duration modelling for words leads to a higher word
accuracy, but not when a grammar is used.

The moral is that performance of the back end is not directly predictable
from that of the front end. In particular, table 6.3 shows that the back end

prefers verbose lattices, even though the front end considers them to be worse.

6.5 Multiple Confusion Matrices

We are now ready to run lexical access with multiple confusion matrices. Three
confusion matrices are used: one for the apus in the syllable onset, one for the
nucleus, and one for the coda. We shall call this set of confusion matrices the
0O-N-C madtrices.

Runs were performed on the two kinds of input — regular phoneme lattices
and syllable-assisted ones — and the results are given in two tables, 6.4 and
6.5. Each table shows the word and sentence recognition rates for two back end
runs: one with a single (global) confusion matrix, and one with 0-N-C matrices.
As before each run was done with three grammar options, and as before the

lines should be read in pairs, with the confidence level on the second line giving
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Grammar Database Matriz % Words % Sents Error Conf

zero atr global 52.37 0.00 5.72
O-N-C 50.73 0.00 5.92 100%

cyt global 72.44 15.29  1.68
O-N-C 72.49 1765 1.67 53%

bigram atr global 96.92 85.50  0.37
O-N-C 97.19 85.00 0.34 67T%

cyt global 97.73 88.24 0.14
O-N-C 98.45 91.76  0.09 96%

full atr global 100 100  0.00
0-N-C 98.17 97.50 0.22 99%

cyt global 100 100  0.00
0-N-C 96.13 93.53 024 99%

Table 6.4: Word and sentence recognition rates, using regular phoneme lattices.
Comparison of global and syllable-sensitive confusion matrices. 0-N-C stands
for onset-nucleus-coda

the probability that the two lines are different. For example, the first two lines
of the first table show that the global matrix has a word recognition rate of
approximately 52% and the 0-N-C matrices have a rate of approximately 51%.
The confidence level shows that the difference is not due to chance; we are 100%
certain that the global recognition rate is better than the 0-N-C one.

The tables show that the 0-N-C matrices by and large do worse than a global
matrix. Of the twelve results, the 0-N-C matrices do worse in seven cases, and
better in five. Seven of the twelve results are significant at the 90% level, and
of these the 0-N-C matrices do better in only two cases. However, an argument
can be made for excluding the full grammar runs. The full grammar contains
all and only the correct sentences, and can only be used in applications where
these are known in advance. In realistic applications this is not so, and the
other grammar options are the only ones that can be used. There are eight
results for these non-full grammar options. Of these, the 0-N-C matrices are
better in five cases, and worse in three. If only significant results are considered,
the comparison is better in two cases and worse in two cases. O-N-C matrices
are therefore worth considering, but more experiments are necessary to discover
exactly under what circumstances they are better.

In the runs under consideration 0-N-C is at a disadvantage because its train-
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Grammar Database Matriz % Words % Sents FError Conf

Zero atr global 52.14 0.00 5.75
0-N-C 51.21 0.00 5.86 96%

cyt global 70.55 13.53 1.79
0-N-C 71.57 1529 1.73 91%

bigram atr global 95.84 79.50  0.50
0-N-C 95.50 81.00 0.54 70%

cyt global 97.87 90.00 0.13
O-N-C 98.50 91.18 0.09 89%

full atr global 99.63 99.50  0.05
O-N-C 99.38 99.00 0.08 66%

cyt global 99.71 99.41  0.02
O-N-C 98.16 96.47  0.11 96%

Table 6.5: Word and sentence recognition rates, using syllable-conditioned
phoneme lattices. Comparison of global and syllable-sensitive confusion ma-
trices. 0-N-C stands for onset-nucleus-coda

No of phonemes in onset 3934
nucleus 3318

coda 2544
Average, onset and coda 3239

Table 6.6: Phoneme statistics for ATR data.

ing data is spread across three confusion matrices, compared to one for the
global case. We can compensate for this by training the global matrix on a
reduced set of utterances. The vowels get the same amount of training, but the
training data for the consonants needs to be cut down to be approximately the
same as the average of the number of onset consonants and coda consonants.
Table 6.6 shows that this average is approximately the same as the number of
vowels, and so the training regime is easy: use 200 sentences for training vowels,
and 100 sentences for training consonants.

Table 6.7 shows the results when the single matrix is given reduced training
in this sense. The first thing to note is that in two cases the reduced matrices
do better than the full matrices. If we compare the results for the global matrix
in table 6.4, where full training was used, we see that with reduced training the

word recognition rates are 0.04% better for ATR and 0.09% better for cytology,
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Grammar Database Matriz % Words % Sents Error Conf

zero atr reduced 51.71 0.00 5.80
0-N-C 50.73 0.00 592 95%

cyt reduced 72.44 14.71  1.68
0-N-C 72.49 1765 1.67 53%

bigram atr reduced 96.96 84.50  0.37
0-N-C 97.19 85.00 0.34 65%

cyt reduced 97.82 88.24  0.13
0-N-C 98.45 91.76  0.09 95%

full atr reduced 100 100  0.00
0-N-C 98.17 97.50 0.22 99%

cyt reduced 100 100  0.00
0-N-C 96.13 93.53 0.24 99%

Table 6.7: Word and sentence recognition rates, using regular phoneme lattices.
Comparison of a global confusion matrix with reduced training and syllable-
sensitive confusion matrices. 0-N-C stands for onset-nucleus-coda.

for the bigram grammar option (96.96% reduced versus 96.02% full for ATR
and 97.82% reduced versus 97.73% full for cytology). We expect matrices from
reduced training to be less robust than the fully trained ones. Perhaps this is
true in general, and the two cited cases are exceptions.

A comparison between table 6.7 and table 6.4 shows that the pattern of
results are the same. In each case, the six runs show the 0-N-C matrices to
be worse, better, better, better, worse and worse respectively than the single
matrix. In each case the 0-N-C matrices are significantly worse in three cases
and significantly better in one case. If the full grammar option results are
ignored, the 0-N-C matrices are significantly better once and significantly worse
once, again identically for full and reduced training. The conclusion is that any
disadvantages that the 0-N-C matrices have is not due to their having less

training data than the global matrix.

6.6 Conclusions

The results in this chapter show promise but call for further investigation before
firm conclusions are drawn. We have seen that the unmodified back end does
better on regular phoneme lattices than on syllable-conditioned ones — that is,

it does better on lattices that have a worse entropy. The reasons for this are
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not clear, but they could be related to redundancy in the lattice. A less heavily
oversegmented lattice like a syllable-conditioned one gets a better entropy score
at the front end, but the back end prefers fuller lattices. Fuller lattices seem to
be more tolerant of error than lean ones.

We performed further experiments, in which, following the hint that /d/
deletions occur more frequently at the end of a syllable than elsewhere, phoneme
confusions were made to depend on syllable position. This was achieved with
multiple confusion matrices, which were called 0-N-C matrices. In some cases
the multiple confusion matrices did better than the customary single confu-
sion matrix, and in some cases they did worse. There is some indication that
the multiple matrices are better in runs without a full grammar, but further

experiments are needed to confirm this.



Chapter 7

Conclusions

7.1 Introduction

A recent trend in continuous speech recognition systems has been to move
away from exclusive reliance on phonemes, words and syntax, towards a more
linguistically informed approach. An example of this trend is SPHINX, which,
with its triphone models takes account of the fact that the acoustic form of a
phoneme is affected by its neighbours.

The work described in this thesis is part of the trend towards linguistic
sophistication. It draws the environment of a phoneme wider than SPHINX,
to include the syllable. This was done in order to capture variations in the
phoneme that can be conveniently ascribed to its position in a syllable: a

phoneme’s neighbours are not the only influence on a phoneme.

7.2 Summary of results

The effect of using syllables in a continuous speech recognition system were
investigated. They were exploited in three ways: in two ways in the front end
of the recogniser, and in one way in the back end. The first way in the front
end was as a reference against which to define the apus to be recognised. The
form of some apus depends on their position in the syllable: an example is

stops: syllable-final stops are more likely to be released than stops in other

134
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syllable positions. Various sets of apus were defined; the smallest such set had
45 members and the largest had 137 members. The experiments were conducted
as a result of a suggestion of Church’s. He (Church, 1983) had proposed syllable-
defined apus as a way of improving recognition accuracy. The finding here is
that although syllable-defined apus are of some help, they are not as useful as
Church had hoped.

The second way syllables were exploited was as a top-down constraint on
the front end of a modular or loosely-coupled system. In speech recognisers
where the front end and the back end are closely coupled, segmentation and
classification normally take place under the control of lexical and syntactic
information. Such top-down information makes a big difference to recognition
accuracy. Modular systems like the one in use at CSTR suffer the disadvantage
that this information is not available to the segmenter and classifier. As a partial
remedy, this thesis offered syllable information to the segmenter and classifier.
The use of syllables leads to a better segmentation than what is possible without
them. In fact, the syllables give a better segmentation than words do, if a
grammar is not used. The use of syllables during segmentation is only a partial
remedy, because words plus grammar, as used in closely coupled systems, give
better results than the use of syllables (or words) without a grammar.

One discovery in the front end has been that it is better to define stop
allophones by their syllable position, than defining them as released and un-
released. It is true that released stops more often fall at the beginning of a
syllable than at the end, but there seems to be more to it than that. Defining
stops by syllable position leads to better phoneme lattices than defining them
as released and unreleased. This is true whether or not the lattices are prepared
with syllable-assisted segmentation.

The third way syllables have been exploited is in the back end. They were
used to specialise the confusion statistics which lexical access uses when it
matches the phoneme lattice against the lexicon. Usually the confusion statis-
tics are contained in a single, global matrix. On the strength of our knowledge

about phoneme deletion, which is that some phonemes are more often deleted at
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the end of a syllable than at the beginning, the confusion matrix was split into
three, with one matrix containing the confusion statistics for phonemes in the
syllable onset, another matrix for the phonemes in the nucleus, and the third
matrix for the syllable coda. The expectation is that these syllable-sensitive
confusion matrices will produce better results than a single confusion matrix.
The results however were equivocal. Syllable-sensitive confusion matrices per-
form worse when a full grammar is used, and better with a bigram or zero

gramimar.

7.3 Limitations of the use of syllables

This thesis has concentrated on the effect that syllable position has on the real-
isation of a phoneme. Syllables are not of course the only influence on phoneme
realisation. Some of the influences come from units smaller than the syllable,
and some from units that are larger. The former are readily seen in assim-
ilation, coarticulation and reduction effects, which are due to the phoneme’s
neighbours. These effects also occur when the neighbours fall across syllable
and word boundaries. Mention has already been made of the assimilation /d i
jh uu/ for did you, which goes across a word boundary.

Effects from units larger than the syllable include those due to words and
phrases. For example, the position of a phoneme in a word or phrase has an
effect on its duration: it tends to be longer at the end of a word, and there is
a further lengthening at the end of a phrase.

A large influence on phoneme realisation is stress. Stress often determines
whether a word is reduced or not. Stressed vowels are generally acoustically
more distinct than unstressed ones (Hieronymus et al., 1992).

None of these effects can be captured by means of syllables, but the mecha-
nisms by which they could be captured are not incompatible with syllables. It
would be possible to combine syllables with smaller or larger units, as the case

may be.
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7.4 Future work

As always in work which depends on statistical training, the first recommen-
dation is that the results be repeated on a larger set of training data. The
training data used here, the 200 ATR sentences, is smaller than I would wish,
particularly for the results on some of the larger apu sets. The front end results
indicated that the larger stdp set (49 apus) does better than the std set (45
apus). This result shows that stdp’s extra apus, the syllabic consonants /1=/,
/m=/, /n=/, and /r=/ are robust units. However, none of the sets that were
larger still (ext06 with 55 apus, for example) could exceed the performance of
stdp. It is possible that a larger training set could change this ranking, and
reveal further robust units.

The following is a list of specific things to be done.
In the front end:

Multiple segmentations The segmentations produced at the front end have
all been single segmentations, that is, the utterance is spanned by a single
chain of segments. In general, multiple segmentations improve the quality
of the lattice. It would be interesting to see what effect this has on syllable-

asssisted segmentation, and on segmentations using the other apu sets.

Probabilistic arcs The syllable networks used for the segmentation have no
probabilities on them. The use of probabilities would presumably lead to

a greater improvement than the one that has been obtained already.
In the back end:

Wider range of confusion matrices The multiple confusion matrices intro-
duced at the back end separated the confusion statistics for segments from
the syllable-initial cluster, from the nucleus, and from the syllable-final
cluster. Further investigation should elaborate this three-way split with
matrices for different syllable types like cvc, vce, etc. Such an investi-

gation would need a large amount of training data.
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Breakdown of benefits The results as presented in chapter 6 do not indi-
cate where the benefit of using multiple confusion matrices is coming
from. Does it make sense to separate the statistics for consonant clusters
between the initial and final parts of the syllable? Are some confusions

more prevalent in the initial part than the final part?

Vowels The three-way split of the confusion matrix affected only the conso-
nants of a syllable. The statistics for the nucleus were not affected by the
split. It is likely that the nucleus does have different characteristics in
different syllable types, particularly as between open and closed syHaBles.

This matter needs to be investigated as well.

Stress (Hieronymus et al., 1992) have found that stressed syllables are easier
to recognise than unstressed ones. Their investigation was focussed on
vowels: stressed vowels are more distinct than unstressed ones. Does this
effect hold also for the consonants of stressed syllables? If so, does it

depend on the position of the consonant in the syllable?

7.5 Final Word

It is well known that some verbal behaviour can be characterised by reference
to syllables. Our knowledge of this behaviour can find a use also in speech
recognition systems. Our understanding of how best to apply this knowledge
is limited. This thesis has described a couple of ways of doing so. The rec-
ommended work will improve our understanding and lead to better recognition
systems in the future. It is possible that on the way to this goal some general

linguistic principles will be illuminated as well.
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Appendix A

The machine-readable

phonemic alphabet

Table A.1 defines the machine-readable phonemic alphabet in use at CSTR.
Table A.2 gives the relative frequencies of std phonemes, based on Gordon

Watson’s pronunciation of 200 ATR sentences.
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mrpa IPA mrpa IPA mrpa IPA mrpa IPA
P p zh 3 y ] 00 2
t t f f W w o D
k k v v ii i aa a
b b th B i I ei el
d d dh 0 e £ al al
g g h h a a oi 21
ch i m m @ 9 ou oU
jh & n n @@ 3 au av
s s ng ) uh A i@ is
z z 1 1 uu u e@ €9
sh ¥ T '3 u ) u@ U9

Table A.1: RP English phonemes, expressed in mrpa (machine readable phone-
mic alphabet) and IPA symbols.

0.022952
0.012050
0.007804
0.004820
0.009525
0.008836
0.059100
0.012050
0.053133
0.004246
0.017787
0.002410

ai

el

ng
ou
sh
u@
w

0.110971
0.018706
0.033165
0.014574
0.059559
0.032017
0.008951
0.012164
0.008722
0.001148
0.024214

0.006312
0.006771
0.038100
0.021001
0.004361
0.042460
0.012623
0.022493
0.069084
0.012394
0.008263

0.014459
0.024329
0.021804
0.011361
0.030640
0.028230
0.003098
0.032821
0.007000
0.011820
0.031673

Table A.2: Phoneme frequencies. Speaker Gsw, ATR data.




Appendix B

Entropy and Perplexity

Most recognition systems report their performance as a hit rate of some kind.
Lee (Lee, 1989), for example, quotes a version of the SPHINX system as having
a 96.2% ‘word accuracy’, where word accuracy is defined as the percentage of
words in the sentence correct, less the percentage of (correct) words that had
to be inserted in the sentence by the parser. Lee’s is an example of a word
hit rate. Hit rates are an appealing measure of performance, and they will
probably be always with us. However, they can be misleading as well, because
they leave unsaid the number of hypotheses required to achieve the hit rate.
If a spoken sentence contains 20 words, the recogniser will typically generate
many more than just 20 words in an attempt to recognise it. To be quite sure of
getting it right, a 1000-word recogniser could generate all 1000 words at every
word position. Such a ‘recogniser’ achieves a 100% hit rate, but it in effect
does nothing for us, because it leaves us with the problem of identifying and
eliminating the enormous number of false alarms.

To cope with this and other problems the csir recogniser uses entropy as a
measure of recognition accuracy. Specifically, it is used to measure the quality
of the phoneme lattice. The following section introduces the concept in general,

and the one after that explains how it is applied to the phoneme lattice.
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B.1 Entropy

‘Entropy’ was first used in dynamical systems (physical systems that are in
motion) to express the degree of disorganisation in them. The mathematical
expression for entropy is very similar to that derived in information theory to
measure the amount of information in a signal. Consequently ‘entropy’ has
come to mean ‘amount of information’ as well. In this section the expression

for entropy

H=-Y pilogp; (B.1)

is derived. The discussion draws mainly on (Cherry, 1978) and (Shannon &
Weaver, 1949).

Information theory, which deals with the measurement of information, was
developed in the first half of this century, and was brought to its fruition by
Claude Shannon. See (Cherry, 1978) for a historical discussion. The theory
arose out of the problems of transmitting messages over telegraph wires.

Suppose two friends have an arrangement whereby one of them visits the
other most weeks, on the day that is convenient to the other. This person,
the sender, informs the receiver of which day he should come, by sending him a
message naming the day of the week. If the visit would be inconvenient, he sends
the phrase Don’t come. The receiver therefore expects one of eight possible
messages, namely, Sunday, Monday, ..., Saturday, Don’t come. Suppose he
receives the message Saturday. How do we measure the information in this
message? One factor that seems relevant is the number of possible messages.
Suppose the receiver knows he is to come at the weekend, and needs only to be
told which day. In this case he is expecting one of two possible messages, namely
Saturday, Sunday. Suppose he receives the message Saturday. We intuitively
feel that there is less information when this message is part of this new case
than the original one. In the new case he can expect one of two answers, instead
of one of eight. If the answers are equally likely, then the probability of the
message Saturday in the new case is 1, and in the original case is ;. The message

in the new case resolves less uncertainty. This is a key observation.
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000 Sunday
001 Monday
010 Tuesday
011 Wednesday
100 Thursday
101 Friday

110 Saturday
111 Don’t come

Table B.1: Eight equally probable messages and the binary encoding of their
selection

To carry the argument further let us now look at the signal instead of the
messages themselves. The signal encodes the messages. Suppose the signal is
transmitted over a wire as a sequence of binary digits, 0 and 1. One way of
encoding the messages is to associate Sunday with 1, Monday with 2, and so on.
Don’t come will be associated with 8. The message Saturday is associated with
7, which would be transmitted in binary form as 111. This is a very efficient
way of encoding the messages, as the next paragraph explains.

In the original example the receiver knows that the message will be one of
eight possibilities. A fruitful way of looking at the signal is as instructions to
select from this repertoire. The most efficient way to do this is by the method of
binary subdivisions. The sender first instructs the receiver to find the message
in either the first half or the second half of the repertoire. We can represent the
selection with a 0 for the first half — Sunday to Wednesday — and a 1 for the
second half — Thursday to Don’t Come. The number of possibilities has now
been reduced to four. The next instruction asks the receiver to select either the
first half or the second half of this new set. As before, we represent the selection
with a 0 or a 1. The number of possibilities is now two, and a final instruction
tells the receiver to select the first one or the second one. The receiver has
made three selections to arrive at the intended message, which can be written
as a sequence of three bits, such as 101, which selects Friday. Table B.1 shows
the binary encodings of the eight messages.

We shall say that the information in this repertoire of 8 messages is 3 bits.
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This is because 2°> = 8, or log8 = 3. (As elsewhere in the thesis, log means
logarithm to the base 2). Each bit halves the range of uncertainty of the receiver.
At first its range of uncertainty is 8. After the first bit its range of uncertainty
is 4, after the second bit it is 2, and after the third bit it is 1. 3 bits is also the
information for each sign. We have assumed that each sign is equally probable,
and each needs three binary selections to specify it. The information per sign
is usually given the symbol H;. i ranges between 1 and 8 in this case, and
H, = Hy = --+ = Hg = 3. Each sign has a probability of é of occurring. We

can express the information per sign also as
1
H; = —logg =—(-3)=3

bits per sign.

The choice of the logarithm of the number of messages as the information
measure can be justified further when we consider what happens when we install
a second channel (a second trasmission wire). We are to send messages down
the two channels simultaneously. The number of messages that can now be
sent is the square of eight, because while we are sending Sunday on the first
channel, we can be sending any of the other eight possibilities down the second
channel, and so also for Monday, Tuesday, etc. Our intuition tells us that adding
the extra channel doubles the information that can be sent at any time, and
this is reflected nicely in the addition rule for logarithms. With a repertoire of
8x8 = 64 messages, we have an information measure of log 64 = 6, which is 3+3.
Similarly, if we add a third channel, the number of messages is 8 x 8 x 8 = 512,
while the information is 3+ 3+ 3 = 9 = log 512.

The addition rule also applies when we consider messages that consist of
more than one sign. So far the whole message sent by the sender has consisted
of a single word, or sign, namely Sunday, Monday, etc. A more realistic message
contains a sequence of words or signs. We might think that the information
associated with a two-word message, a three-word message, etc, is just double,
treble, etc, the information of a one-word message, by the same argument we

used when we added extra channels alongside the original one. This is indeed so
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3 Sunday

1

3 Monday

75 Tuesday

= Wednesday
{—2 Tl}ursday
3]—2 Friday

35 Saturday

35 Don’t come

Table B.2: Messages with unequal probabilities

for the case where the different words don’t depend on each other. The number
of possibilities for a two-word message is again 8 X 8 = 64, and the information
associated with such a repertoire is 3 + 3 = 6.
In all these cases
H; = —log p;

So far the signs have been assumed to be equally probable. The signs all
had a probability of § of occurring. In any natural language some words occur
more frequently than others. Let us alter the example and give the messages

the probabilities shown in Table B.2.

d.

35> and of course they add up

Call these probabilities p;. Thus p; = %, ps =

to 1:

The probabilities have been carefully chosen for the argument to follow, but
we shall remedy this shortly. Instead of dividing the repertoire up into equal
groups as before, we now divide it into groups of equal probability. There are
four groups of different sizes. The first group has only one member, namely Sun-
day, because that is the only message with probability 3. The second group also
has one member, namely Monday, the third group has two members, namely
Tuesday and Wednesday, and the fourth group has the rest. With this arrange-
ment the bits of the signal once more halves the range of uncertainty each time.
If the first bit is 0 it selects the first group, whose probability is —_i- Ifitis 1 it

selects the other groups, the sum of whose probabilities is also 3. A signal of
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0 Sunday

10 Monday
1100  Tuesday
1101  Wednesday
11100 Thursday
11101 Friday
11110 Saturday
11111 Don’t come

Table B.3: Eight messages of different and the binary encoding of their selection

10 selects the second group, whose probability is %, and a signal of 11 selects
groups 3 and 4, the sum of whose probabilities is also ;. Table B.3 shows the
encoding of all the messages.

Notice that the more probable a message, the fewer selections are needed to
identify it, i.e the lower is its information content. This fact can be exploited in
the encoding. We obtain a more efficient encoding by using codes of different
lengths, and assigning short codes to the more frequent words. This is the basis
of Morse code, which uses a two-state code — dots and dashes — to encode
the letters of the Latin alphabet. The frequent letters e and ¢ have the codes -
and - respectively; rare letters like ¢ and z are — -+ — and — — --.

From the table we see that H, = 1 while H; = Hy = H; = Hg = 5. In
general

H,‘ = —logp,-

as before. The average information H per sign is

%o 2 3 % T % . x .1 1
T 92x1 4x2 16x4 16x4  32x5 32x5 32x5  32x5
= 2:125

The units are bits per sign. The general form of this is

H=- Zpilogps

bits per sign. This is the same as equation B.1.
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In the above argument the alphabet of signs conveniently divided into
equally likely subgroups. A more general case is now considered. Up to now
the examples have been chosen so that we could see the information content of
individual signs. In this more general case we will need to deal with averages
of signs. Suppose the alphabet consists of signs a,, as,...,a,. We assume once
more that the signs are independent. We need to estimate the probabilities p,,
Pay vy Pn, With which they occur. We do this by observing a sample of signs in
a message. The larger the sample we observe, the better our estimates will be.
This is actually only true if the signs are ergodic or statistically stationary. An
ergodic sequence is one which is regular in the following sense: its parameters
(the probabilities p; in this case) can be estimated by choosing the sample in
any way. If one sample consists of every even-numbered sign, for example, and
another of every odd-numbered sign, then the estimates of the probabilities
will, in the long run, still agree if the sequence is ergodic.

Consider now an ensemble of all the samples of length S that can be taken,
where S is a large number. The samples will differ from each other only in
the order of the signs within them. Call the number of samples N. They have
nearly equal probabilities, since the source is ergodic. Call this probability p(S5).
N =1/p(S). Since the samples are equiprobable, the information content H(S)

for each sample is

H(S)=logN = logﬁ = —logp(95)

Now p(S) is equal to the product of the probabilities of the signs making up the
sequence, since the signs are independent. The sequence consists of the signs
ay1,Qs,...,0,, each occurring a number of times. Since the probability of a, is

p1, @y will occur about Sp; times, and so also for the other signs. That is,

p(8) = pi™ X p3¥* X -+ X p3P™
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We now have

H(S) = —logp(S)
= —log(pi™ x p3™* X -+ X piP*)

= -5 Zp,- log p;,

by the addition rule for logarithms. The average information per sign is

H(S)
S
= —Zpelogps

H

This is the same expression as equation B.1.

We have obtained a more efficient encoding by taking into account the
probabilities with which words (or in the case of Morse code, letters) occur
in the English language. We have assumed that they occur independently of
each other, i.e we have considered only their a priori probabilities. This is not a
warranted assumption for English. We have assumed for example that the word
of or the word house occur with their a priori probabilities in any position of a
sentence. That is a false assumption. If a sentence starts with The, then the
next word is more likely to be house than of. The frequency with which house
follows the determines its conditional probability. This dependency extends over
more than just the immediately preceding word. Consider the word reason. It
may be followed by, among other words, that and why. The probabilities of these
words are not much different. After the phrase the reason, these probabilities
are not much changed. However, after the phrase for the reason, that is much
more likely than why, because for the reason why is unidiomatic.

A process that produces a sequence of words, letters, or any other signs,
in which their probabilities depend on foregoing signs, is called a stochastic
process. The derivation of the formula for the information associated with a
general stochastic process is beyond the scope of this appendix. The formula is

the same as equation B.1.
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B.2 Perplexity

As used in the front end, the syllable networks operate to restrict the segments
that can appear in the lattice. During segmentation the phonemes are at first
hypothesised independently of each other, and can therefore appear in any or-
der. When the segmenter operates without syllable networks, the string of
top-scoring phonemes determine the segmentation. When the segmenter oper-
ates with syllable networks, the networks rule out certain phoneme sequences
in the top-scoring string as illegal. Different phonemes, which are not in the
top-scoring string, are then brought forward to replace them. Only phoneme
sequences that form legal syllables appear in the final string. In this way the
syllable networks allow some phoneme sequences, while disallowing the rest.
We would like to measure the extent to which the networks do this.

The measure adopted in this thesis is perplezity, a concept first proposed
by Jelinek (Bahl et al., 1983). Jelinek used perplexity in connection with a
grammar of the English language. A grammar restricts the order in which signs
can appear in a string. It makes the signs more predictable than they would
be in a random selection, and so reduces their entropy. Consider for example
the ‘grammar’ imposed on letters and the interword space by written English
words. This grammar stipulates, for example, that the strings ‘anecdote’ and
‘noted ace’ are words, but ‘acdeenot’ is not. Without this grammar the signs
(26 letters plus space) are equiprobable, and their average entropy is —log 5= =
4.76 bits per letter. With the grammar, according to Shannon, the entropy is
approximately one bit per letter (Shannon, 1951).

A good idea of the organising power of a grammar can be therefore be got
from the entropy H per symbol of the strings that it allows. It follows from
equation B.1 above that strings with entropy H can be thought of as being

constructed from signs that are chosen equiprobably from an alphabet of size

1The fact that English text is about 80% redundant does not mean that four fifths of the
letters can be removed to leave an intelligible text. It means rather that other encodings of
the text can be found that are up to 80% more efficient.
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PP, where
PP =27

PP is called the perplezity of the grammar.

H can be expressed for syllable networks as follows.

Em,d" Prode 108 bnode

H= nodes
(2" Prode) — 1

where p,,q. is the probability of arriving at the node, understood as the product
of the transition probabilities up to this point. py, the probability of arriving

at the first node, is 1. bp,4e is the number of branches leaving this node.



Appendix C

Repair interval in Phoneme

Lattices

In section 5.7 the effect of sequencing the phoneme lattice with the help of
syllables and words is discussed. It is shown there that word sequencing does not
reduce the oversegmentation as much as syllable sequencing. The explanation
lies with the size of the sequencing unit — syllables or words — and how often
the segments that fall within the unit are likely to be wrong. This latter measure
is expressed as a repair interval, and this appendix calculates its size.

The repair interval is the distance between successive insertions or deletions
(indels), as performed later by lexical access when it is constructing words out
of the lattice. We recall from chapter 3 that lexical access needs to make three
kinds of repairs to the phoneme lattice: substitutions, insertions and deletions.
We may ignore substitutions, because they do not affect the sequencer; the
sequencer has all the phoneme identities available to it for each segment (this
fact is explained in section 3.2.2). On the other hand, insertions and deletions
affect the work of the sequencer directly: the sequencer will not have not seen
the inserted segments, and it should not have seen the deleted segments. The
more such repairs prove necessary, i.e the smaller the repair interval, the greater
is the extent to which the sequencer worked with incorrect segments.

Table C.1 is based on table 6.3 and shows the results of lexax runs using

three grammar options on two kinds of phoneme lattice, for each of ATR and
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Grammar Database Segm % Words Repair interval

1 zero atr reg 47.54 4.37
2 syll 49.77 5.10
3 cyt reg 66.54 3.77
4 syll 67.41 4.03
5 bigram atr reg 93.77 4.46
6 syll 92.25 5.04
7 cyt reg 97.15 3.61
8 syll 96.76 3.98
9 full atr reg 99.77 3.45
10 syll 99.23 3.76
11 cyt reg 99.52 2.12
12 syll 100 2.22

Table C.1: Words correct and repair interval for speaker GSW produced by the
baseline back end, reading regular and syllable-sequenced lattices.

cYT. The repair interval was calculated by counting the number of segments
between successive indels, and dividing by the number of indels. The repair
interval is consistently worse (smaller) for the cytology database, reflecting the
fact that it is the ‘open test’ case. Note, incidentally, that there seems to be
little correlation between words correct and the repair interval: the number of
words correct in line 5 is nearly twice as high as in line 1, but its repair interval
is only slightly lower.

The average repair interval for ATR is 4.36 and for cYT is 3.29.



Appendix D

Operation of Hidden Markov

models

In continuous speech recognisers, hidden Markov models are used in the stage
immediately before lexical lookup. It is a pattern matching stage that turns the
encoded speech signal into phonemes. This stage is a sequence comparison, of an
input string against stored strings, with the strings consisting of acoustic codes.
In the CSTR system these codes are vqQ indices (see section 3.2.1). The stored
strings are called models. There is in principle one model for every phoneme,
but in practice there are more than one, in order to model more accurately
phonetic and acoustic variants of a phoneme. We shall not be concerned with
such refinements in this appendix.

Consider a phoneme as a sequence of vQ codes. In the CSTR system a
relatively short phoneme of, say, 30 milliseconds, will consist of six codes, since
the frame length is 5 ms. The same phoneme spoken at a different time (i.e
a different token of the phoneme) will consist of a similar but not identical
sequence of codes, and will possibly be different in length. This is because
different tokens of the same phoneme are seldom identical. To match such
variants successfully against a model of the phoneme, we need to take into
account their statistical distribution.

The codes as they appear in the sequence are not statistically independent,

because the articulators (tongue, lips, and so on) move more slowly than the
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P P P

P P

Figure D.1: A three-state Markov model with self-transitions. The ps are
transition probabilities

encoding rate. This leads to the idea of a stochastic sequence, in which the
probability of a vQ code depends not only on the code itself, but also on earlier
codes. A sequence like this is produced by a stochastic process. A stochastic
process in which the dependence is only on the immediately foregoing code, and
not on the ones before that, is called a Markov process.

A Markov model consists of a sequence of states, normally three or five. In
the CSTR system each model has three states. The states are linked left to right
by means of transitions, and the states are usually also linked to themselves
by means of self-transitions. Figure D.1 illustrates. Each state emits several
codes, with different probabilities. Thus state 1 can emit several codes, each
with its own probability. State two can emit several codes as well, which may
be the same or different from the ones emitted by state 1. Each of the codes
emitted at stage two will also have its own emission probability, as it is called.
Similarly, stage 3 has its own set of codes and emission probabilities. Each
transition or self-transition also has a different probability associated with it,
called a transition probability.

An input phoneme, which consists of a string of codes, is recognised by
matching it against a model. The model is traversed from left to right in the
process, and a match score is calculated by multiplying the emission and tran-
sition probabilities. For concreteness, consider a stop phoneme, which consists
of a period of silence, a burst release and a period of aspiration. The silence
might be represented by the first three vQ codes, the burst by another code,

and the aspiration by two codes, making six codes altogether. The states of the
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model each have a probability distribution for all the legal vQ codes. The three
states of the model describe, respectively, the beginning, middle section, and
the end of the phoneme; we may assume here that the first state describes the
portion of silence, the second state the burst release, and the third state the
aspiration portion of the stop. The probabilities for silence codes in the first
state will therefore be high, and the probabilities for all the other codes will be
low.

Recognition begins with the first code of the phoneme, and at the first state
of the model. The probability of the first silence code is found, and becomes
the first factor in the score. Now there are two possibilities. The transition to
the second state can be taken, or the self-transition back to the first state can
be taken. In fact both possibilities will be tried, and the path that leads to
the highest probability will be chosen. This is likely to be the self-transition,
since the second code of the phoneme is also from the silence portion. The
transition probability is multiplied into the score, followed by the emission
probability of the second code. The third code of the phoneme is again from
the silence portion, and a further self-transition is taken, with its probability
multiplied into the score. After the emission probability of the third code has
been mulitplied in, the fourth code is considered. This code describes the burst
release. The transition to the second state is now taken, and the transition
probability multiplied in. The emission probability of the burst code is found
there and multiplied in. For the fifth code a transition is taken to state 3.
Processing continues until all the codes have been looked up. The final score
consists of the product of successive emission and transition probabilities.

It follows from the explanation above that a particular model can assign
different scores to the same input. Naturally we will want to use the best of
these scores when we come to compare it against the scores for the other models.
However, to try out all the different ways that the input can be matched, and
then pick out the highest-scoring one, would be prohibitively expensive. Luckily
this exhaustive procedure is not necessary. The Viterbi algorithm, which is

based on the principle of dynamic programming, will find the highest score
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without considering all the possibilities. Dynamic programming is described in
appendix D.1.

There remains to be discussed the way the models are obtained in the first
place. This is done in a special training session, which is performed once, in
advance of the recognition. Several examples of a phoneme are presented to the
training program. These examples will not be identical, but will show slight
variations. The training program needs to find the best way of assigning the
emission and transition probabilities in the face of these variations. The algo-
rithm that does this is called the forward-backward or Baum-Welch algorithm.

Further information about hidden Markov models can be found in (Rabiner

& Juang, 1986) and (Cox, 1988).

D.1 Summary

Speech is a progression of different sounds, which we can approximate as a
sequence of separate acoustic events. We can use standard pattern-matching
techniques to recognise unknown speech. But the events for a particular word
are not constant over different speakers or different performances of the same
speaker. This variability leads to partial matches, and hence goodness of fit.
The language of stochastic processes provides us with a mathematical descrip-

tion of a sequence, and an optimisation programme for training.



Appendix E

Dynamic Programming

Dynamic programming is an algorithm for finding the best sequence of opera-
tions from all the sequences that can be formed, without actually trying all of
them. This statement will become clear in the light of the example below. In
this thesis dynamic programming (DP) is used in both the front end and the
back end, as mentioned in chapter 3. The example below is from the back end,
and concerns matching the input phoneme string against words in the lexicon.
A particular string can be matched against a particular word in many different
ways, and the dynamic programming algorithm is needed to find the best way
of doing so. The DP algorithm is used several times like this, once for each word
that is tried, and at the end the word that gave the best match emerges as the
winner. The words in the lexicon are stored as strings of phonemes, and in this
application are often called templates. When dynamic programming is used in
template matching like this, it is called dynamic time warping (DTW).

In figure E.1 the input phonemes and the template phonemes have been
written against rectangular axes. The inpout phonemes are /w h @@/, and the
template phonemes are /h aa d/, for the word hard. Suppose we have started
with the first input phoneme. There are three possibilities. We may match it
against the first template phoneme, either directly or via a substitution. This
is shown by the diagonal line. Secondly, we may skip the input phoneme and
pay a deletion penalty; this is the horizontal line. Thirdly, we may decide to

hold the input phoneme over until the next template phoneme. In this case we
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template a
phonemes
d
aa
3 2
h
1
w h @@
input phonemes

Figure E.1: Representation of lexax operations along two axes. A horizontal
line denotes a deletion, a vertical line denotes an insertion, and a diagonal line
denotes a substitution. Different sequences of operations are shown by different
paths.

treat the current template phoneme as an insertion, and pay the appropriate
penalty. This is the vertical line. We arrive at one of the points 1, 2 or
3. We now continue from any of these points, variously matching input and
template phonemes, skipping an input phoneme because it needs to be deleted,
or accepting a template phoneme as an insertion in the input. Two such paths
are shown in the figure, both terminating at point a. (The reader may care to
refer back to chaoter 3. The path that passes through point 1 corresponds to the
operations in figure 3.5, and the path that passes through point 2 corresponds
to the operations in figure 3.6.). These are just two ways of reaching a; there
are many others, which are not shown in the diagram. How do we find the
shortest (lowest-scoring) path? One way would be to trace out all the paths,
compare their scores at the end, and pick the shortest. This would be be a
computationally intensive way of doing it. The bDTwW algorithm allows us to do
it more efficiently.

Consider another example, shown in figure E.2. Let point b lie along a path
to the end which is still under construction. We are trying to find the shortest
such path. The figure shows that point b has been reached in two ways. It
was reached via an insertion from 2 or via a match from 3. We need to retain

only the shorter of the two. If our shortest path to the end does lie along b,
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template
phonemes
d
b
aa
3 2
h
1
w h @@
input phonemes

Figure E.2: Dynamic time warping algorithm. In tracing a forward path
through the diagram, only the shortest path at each point needs to be kept.

it cannot include the longer piece, because then we would replace it with the
shorter one, and obtain an even shorter path. This is the principle of dynamic
programming, which was mentioned in chapter 1. It states that if a sequence
of operations is optimal, then any subsequence of it is also optimal'. As we
advance through the diagram, we need to keep only the shortest path for any
point that we reach. The longer routes we may discard; at the end the shortest
path cannot lie along them.

The computational complexity of this algorithm, that is, the minimum pos-
sible computation time that is needed, is proportional to n? (Sankoff & Kruskal,
1983, p 29), where n is the number of phonemes in the input.

Sequence comparison using dynamic programming is used in many fields
besides speech recognition. (Kruskal, 1983, pp 23-4) lists nine independent
discoverers of this method, in the fields of molecular biology, speech processing
and computer science. A good general description of its application to speech
can be found in Kruskal and Liberman (1983). A survey of the different refine-
ments can be found in (McInnes & Jack, 1988). Dynamic programming in the

wider context of combinatorial optimisation is treated in (Pierre, 1969, 1986)

!Bellman (1957) expresses it thus: ‘An optimal policy has the property that, whatever the
initial state and the initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision’ (for ‘policy’ read ‘sequence of
decisions’).
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and (Papadimitriou & Steiglitz, 1982).



Appendix F

Definitions of the extended

apu sets

The nine APU sets were informally described in chapter 5. The std and stdp
sets were completely characterised there. The others were sketched briefly. The
following gives complete definitions.

The first column gives the serial number of the apu, by which it is known
internally in the recognition system. The name in bold gives the apu name.
The identity of the parent phoneme is readily apparent from this name. The
first apu of the ext02 set is i-b1, for example. This identifies it as an allophone
of /b/. The body of the table shows which clusters this allophone appears in.
(x y — ) means a syllable-initial cluster and ( — x y) means a syllable-final
cluster. Look at apu i-b3. The clusters show that this is an allophone of /b/
that appears syllable-initially before an /1/ or a /y/. In the ATR training data
there were 11 examples where it appears before /I/ and 1 example where it

appears before /y/. This gives a total of 12 tokens for this apu.
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F.1 Ext02

128 apus, including silence. Syllable-conditioned consonants. Total 36 stop
allophones, 10 /s/ allophones, 5 /z/ allophones, etc.

The naming convention for this set is / i-xn / for x in syllable-initial cluster,
and / f-xn / for x in syllable-final cluster. This convention was dropped in

later sets, when I had to combine some of the syllable-initial and syllable-final

definitions.
1 i-bl  Total 161
(b—) 161
2 i-b2 Total 11
br—) 11
3 i-b3 Total 12
(bl—) 11 by—) 1
49 f-bl Total 18
(—b) 18
50 {f-b2 Total 10
(—bd) 5 (—bz) 3 (—1b) 1
f=<Thd)y
4 i-dl1  Total 105
(d—) 105
5 i-d2 Total 10
@r—) 8  (@dw—) 1  (dy—) 1
51 f-d1 Total 109
(—d) 101 (—1d) 8
52 f-d2 Total 24
(—mnd) 21 (—md) 1 (—ngd) 1
(—1md) 1
53 f-d3 Total 16
(—vd) 8 (—=zd) 4 (—dhd) 2
(—mnzd) 1 (—1vd) 1
54 f-d4 Total 14
(—bd) 5 (—gd) 2 (—1bd) 1
(—3jhd) 4 (—1jhd) 1 (—mnjhd) 1
55 f-d5 Total 11
(—dz) 7 (—1dz) 2 (—mndz) 1
(—dst) 1

6 i-gl Total 53
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7 i-g2 Total 21
(gr—) 15
(gy—) 1
56 f-g1 Total 25
(—s) 19
( — ng g th s) 1
8 i-pl1 Total 86
P—) 86
9 i-p2 Total 26
(pr—) 126
10 i-p3 Total 13
(pl—) 13
11  i-p4 Total 15
(sp—) 9
(spr—) 2
57 f-p1  Total 35
(—p) 35
58 f-p2 Total 23
(—mp) 5
(—mps) 1
(—mpts) 1
(—spt) 1
(—pst) 1
12  i-t1 Total 256
(t—) 256
13 i-t2 Total 31
(tr—) 26
14 i-t3 Total 36
(st—) 28
259 f-t1 Total 142
(—8 12
60 f-t2 Total 27
(—mnt) 25
61 f-t3 Total 50
(—st) 24
(—ncht) 2
(—pst) 1
(—kst) 1
(—nst) 2
(—mpst) 1

(81—) 4
(—s2)
(spy—) 1
(spl—) 1
(—mpt)
(—mpfs)
(—1ps)
(—sps)
(—mpth)
(tw—) 4
(str—) 6
(—mt) 2
(—sht)
(—1lcht)
(—tst)
(—dst)
(—ngst)

(—1f¢)

3

(gw—) 1
(—sd) 2
py—) 2
1 (—ps)
1 (—mpst)
2 (—1p)
2 (—l1lpt)
1
(ty—) 1
(sty—)
3 (—cht)
1 (—ft)
1 (—1ltst)
1 (—1st)
1 (—mpts)
1 (—tht)

e = T T R )

e = =
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62

15

16

17

18

64

65

66

19

67

68

69

70

20

f-t4

f-t5

i-k1

i-k2

i-k3

i-k4

f-k1

f-k2

f-k3

i-z1

f-z1

f-z2

{-z3

f-z4

Total 13
(—kt) 7
(—spt) 1
(—ngkt) 1
Total 47
(—ts) 27
(—mts)
(—1ltst)
(—mnts)
(—tths)
Total 125
(k—) 125
Total 15
(kr—) 15
Total 18
(kl1—) 10
Total 14
(sk—) 10
Total 64
(—k) 64
Total 32
(—ks) 18
(—sks) 1
(—ngks) 3
Total 11
(—kt) 7
(—skt) 1
Total 32
(z—) 32
Total 189
(—z) 189
Total 22
(—nz) 15
(—=Ilmz) 1
Total 16
(—bz) 3
(—1dz) 2
Total
(—1z)

S 7

(—nzd) 1

i-zh1

Total 12
(zh—) 12

(—1pt) 1
(—skt) 1
(—tsh) 1
(—1¢) 7
(—fts) 1
(—tth) 1
(kw—) 5
(skr—) 2
(—1k) 2

(—kst) 1
(—mngkth) 1

(—1kt) 1
(—ngkt) 1

(—mz) 5

(—dz) 7

17
5 (—vaz)

(—=zd) 4

(—1kt)
(—mpt)
(—tst)
(—1ts)
(—sts)
(—mntths)
(ky—) 3
(skw—) 2
(—1ks)
(—ngk)
T
(—ngz) 1
(—eg2) 3
4
(—dhz)

- e e

1
5

(—1lvz)
1
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71

21

72

73

22

23

24

25

74

75

76

77

78

79

f-zh1

i-jh1

f-jh1

f-jh2

i-s1

i-s2

i-s3

i-s4

f-s1

f-s2

f-s3

f-s4

f-s5

f-s6

Total 9
(—zh) 7
Total 42
(h—) 40
Total 24
(—ijh) 24
Total 11
(— n jh) 4
(—njhd) 1
Total 140
(s—) 139
Total 48
(sp—) 9
(sk—) 10
Total 15
(spr—) 2
(skw—) 2
Total 17
(sw—) 6
(sm—) 5
Total 113
(—s) 113
Total 50
(—ps) 4
(—ks) 18
Total 42
(—st) 24
(—spt) 1
(—nst) 2
(—dst) 1
(—1ltst) 1
(—sts) 1
Total 11
(—ns) 9
Total 17
(—1ps) 2
(—mngks) 3
(—fts) 1
(—sts) 1
Total 12
(— ths) 3
(—1ths) 1
(—ntths) 1

(—nzh) 2

(hy—) 2

(—jhd)
(—1jh)

(sf—) 1

(spy—) 1

(str—) 6

(sty—) 2
(sl—) 4
(sn—) 1

(—sk)
(—tst)
(—ngst)
(—kst)
(—sps)
(—ms) 1
(—1ts)
(—nts)
(—mpts)
(—sks)
(—fs)
(—tths)
(—mpfs)

4

e

1
1 (—1fs)

(—1jhd) 1
(st—) 28
(skr—) 2
(spl—) 1
(sy—) 1
(—ts) 27
(—skt) 1
(—mpst) 1
(—1st) 2
(—pst) 1
(—sks) 1
(—1s) 1
(—1lks) 1
(—mts) 1
(—sps) 2
(—n ths)
(—nggths)
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26 i-shl1 Total 53

(sh—) 52
80 {f-shl Total 23
(—sh) 18
(—1sh) 1
27 i-chl Total 36
(ch—) 35
81 f-chl Total 32
( — ch) 24
(—nch) 2
28 i-vl Total 60
(v—) 55
82 f-vl1 Total 79
(—v) 79
83 f-v2 Total 16
(—vd) 8
(—1v) 1
29 i-dhl Total 301
(dh—) 301
84 {-dh1 Total 31
(—dh) 28
30 i-fi  Total 107
(f—) 107
31 i-f2 Total 28
(fr—) 19
(sf—) 1
85 ff1 Total 31
(—f) 31
86 f-f2 Total 17
(—ft) 4
(—mf) 3
(—1fs) 1
32 i-thl Total 18
(th—) 18
33 i-th2 Total
(thr—)

87 f-thl Total 17
(—th) 17

(shr—) 1

(—sht) 3 (—tsh) 1
(chy—) 1

(—cht) 2 (—ncht)
(—1lcht) 1 (—1ch)
(vy—) 3 (vr—) 2
(—vz) 4 (—1lvz) 2
(—1lvd) 1

(—dhd) 2 (—dhz) 1
(f1—) 5 (fy—) 3
(—fts) 1 (—1ft)
(—1f) 3 (—fs)
(—fth) 1 (—mpfs)
(thy—) 1 (thw—) 1
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35

89

90

91

92

04

37

38

39

40

f-th2

i-h1

i-11

i-12

f-11

f-12

f-13

f-14

i-rl

i-r2

i-r3

i-r4

Total
(— ths)
( — t th)

(—ntths)

( —1th)

(—n th)

Total 83
(h—) 82

17

[ - B R R o ]

(—tths)
(—nggths)
(—nths)

( — £ th)

( — m th)
(hy—) 1
ly—) 1
kl—) 10

(spl—) 1

(—1pt) 1
(—1k) 2
(—1bd) 1
(—1ts) 1
(—1lvz) 2
(—1lcht) 1
(—1jh) 1
(—1n) 1
(—1f¢t) 1
(—1s) 1
(—1ths) 1
(tr—) 26
(dr—) 8
(thr—) 7
(str—) 6

1 (—p th)
1 ( — ng k th)
1 (—1ths)
1 (—tht)
1
(bl—) 11
(f1—) 5
(—1¢) 7
(—1kt) 1
(—1d) 8
(—1ks) 1
(—1v) 1
(—1ch) 1
(—1m) 2
(—lmz) 1
(—1th) 2
(—1st) 2
(kr—) 15
(gr—) 15
(shr—) 1
(skr—) 2

b e
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93 f-r1 Total 26
(—r) 26
05 r= Total 2
(=) 2
41 i-ml1 Total 134
(m—) 127
94 f-m1 Total 79
(—m) 79
95 f-m2 Total 15
(—mp) 5
(—mpst) 1
(—mpfs) 1
(—1md) 1
96 f-m3 Total 13
(—mz) 5
( — m th) 1
06 m= Total 6
(m=) 6
42 i-n1 Total 111
(n—) 106
97 f-n1 Total 278
(—n) 278
98 f-n2 Total 51
(—nt) 25
(—ntths) 1
99 f-n3 Total 15
(—nz) 15
100 f-n4 Total 11
(—mns) 9
101 f-n5 Total 15
(—n jh) 4
(—nzd) 1
(—nths) 1
107 n= Total 34
(n=) 34
102 f-ngl Total 64
(—ng) 64
103 f-ng2 Total 14
(—ngk) 5
(—ngkt) 1
( — ng k th) 1
43 iyl Total 42
(y—) 42

(—mpt)
(—mt)
(—mps)

(—Ilmz) 1
(—ms) 1

(ny—) 4

(—nst) 2

(—nihd)
(—mncht)
(—n th)

(—ngd)
(—ngst)
(—ngz)

(my—) 2

1 (—mpts)

2 (—md)

1 (—mts)
(—mf) 3
(—1m) 2

(sn—) 1

21 (—nts) 3

1

1 (—nzh) 2

2 (—mnch) 2

1 (—1n) 1

1 (—ngks)

1 ( — ng g th s)

1

1

1

3
1
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44

45

46

47

48

108

109

110

112

113

114

115

116

118

119

120

i-y2  Total 12
(py—)
(ky—)
Ey—) 1

i-y3 Total 10
ny—) 4
(hy—) 1

i-y4 Total 9
fy—) 3
(hy—) 2

i-wl Total 191
(w—) 191

i-w2 Total 20
(tw—) 4
(gw—) 1
(thw —) 1

ii  Total 267
) 267

e Total 190
(e) 190

a Total 126
(a) 126

uu Total 103
(uu) 103

u Total 37
(u) 37

oo Total 105
(00) 105

o Total 110
(o) 110

aa Total 105
(aa) 105

i Total 519

(i) 519

@@ Total 55
(@@) 55

uh Total 108
(uh) 108

ei Total 127
(ei) 127

ou Total 106

(ou) 106

(spy—)
(by—)
(sty—)

(my—)

(thy —)
(chy—)

(kw—)

(sw—)

1
1

5
6

1
1

(ty—)

(dy—)

(vy—) 3
(sy—) 1
ly—) 1
(dw—)
(skw—)
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121 au Total 59
(au) 59
122 ai Total 163

(a) 163
123 oi Total 27
(oi) 27
124 i@ Total 38
(i@ 38
125 e@ Total 42
(e@) 42
126 u@ Total 10
(u@) 10

127 @ ‘Total 967
(@ 967
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F.2 Ext03

137 apus, including silence. Syllable-conditioned consonants as ext02, but stops
further divided into released and unreleased. Released /d/ called /d d2 d3/
etc. Unreleased /d/ called /u-d u-d1 u-d2/ etc. Total 45 stop allophones (not
36 x 2 = 72 as one would expect, because some classes had to be combined to

make up the numbers).
1 b Total 152

(b—) 152
2 b2 Total 10
(br—) 10
3 b3 Total 12
(bl—) 11 by—) 1
4 b4 Total 22
(—1b) 17 (—bd) 2
(—bz) 3
5 wu-b Total 15
(u-b—) 9 (—u-bd) 3 (—lub) 1
(— u-b) 1 (—1lubd) 1
6 d Total 85
(d—) 85
7 d2 Total 8
(dr—) 6 (dw—) 1 (dy—) 1
8 d3 Total 64
(—d) 59 (—1d) s
9 d4 Total 18
(—nd) 16 (—md) 1 (—mngd) 1
10 d5 Total 10
(—vd) 6 (—=zd) 3 (—nzd) 1
11 d6é Total 8
(—bd) 2 (—u-bd) 3 (—gd 1
(—ugd) 1 (—1lubd) 1
12 d7 Total 8
(—dz) 5 (—1dz) 2 (—ndz) 1
13 u-d Total 22
(u-d—) 20 (u-dr—) 2
14 u-d2 Total 51
(—u-d) 42 (—nud) 5 (—lmu-d) 1

(—1lud) 3
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15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

u-d3 Total 15
(— vu-d) 2 (—dhud) 2 (—zu-d) 1
(—lvud) 1 (—jhud) 4 (—1ljhud) 1
(—njhud) 1 (—u-dz) 2 (—udst) 1
g Total 51
(8—) 31
g2 Total 21
(gr—) 18 (E1—) 4 (gw—) 1
(gy—) 1
g3 Total 18
(—8) 13 (—s7) 3 (—gd 1
(—nggths) 1
u-g Total 9
(—ug) 6 (w-g—) 2 (—u-gd) 1
p Total 86
(p—) 86
p2 Total 26
(pr—) 26
p3 Total 13
(p1—) 13
p4 Total 14
(sp—) 9 (py—) 2 (spr—) 2
(spl—) 1
p5 Total 30
(—p) 30
p6 Total 18
(—mp) 5 (—ps) 4 (—mpst) 1
(—1ps) 2 (—1p) 1 (—sps) 2
(—1lpt) 1 (—pst) 1 (—pth) 1
u-p Total 9
( — u-p) 5 (—mu-puts) 1 ( — s u-p u-t)
(—mupfs) 1 (—mu-pt) 1
t Total 248
(t—) 248
t2 Total 30
(kr—) 25 (tw—) 4 (ty—) 1
t3 Total 31
(st—) 26 (str—) 4 (sty—) 1
t4 Total 60
(—t) 60
t5 Total 21
(—nt) 19 (—mt) 2

1
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32

33

34

35

36

37

38

39

40

41

42

43

44

t6

t7

t8

u-t

u-t2

u-t3

u-t4

Total
(—st)
(—1lcht)
(—1st)
(—mpst)
Total
(—kt)
(—1lkt)
(—ngkt)
Total
(—ts)
(—mts)
(—fts)

Total

(u-t —)

(u-t r—)
Total
(—u-t)

( — s u-p u-t)

Total
(—nu-t)
(—u-ts)

(—1lu-tsu-t)

Total
(— su-t)
( — sh u-t)

28
14

(— mu-pu-ts)

(—ksu-t)

k Total 123

k2

k3

k4

k5

ké

(k—) 123

Total 15
(kr—) 15
Total 18
(k1—) 10
Total 14
(sk—) 10
Total 54
(—k) 54
Total
(—ks)
(—k u-t)
(—sk)
(—ngk)

( — ng k th)

a8
18

L

(—sht) 2 (—cht) 2
(—ft) 3 (—pst) 1
(—udst) 1 (—ngst) 1
(—11ft) 1

(—ukt) (—1pt) 1
(—sukt) (—mupt) 1
(—tsh) 1 (—tsut) 1
(—1t) 3 (—1ts) 1
(—nts) 1 ( — t th) 1
(su-t —) (sutr—)
(suty—)

(—kut) 1 (— u-k u-t)
6 (—nu-ts) 2 (—1u-tsu-t)
8 (— u-t ths) 1 (—1u-t)
1 (—nutths) 1
22
10 (—nsut) 2 (—1lsu-t)
1 (—tsut) 1 (—su-ts)
1 (—fu-t) 1 (—nchu-t)
1 (—thut) 1
(kw—) 5 (ky—) 3
(skr—) 2 (skw—) 2
(—1k) 2 (—kt) 3
(—1kt) 1 (—1ks) 1
(—sks) 1 (—ksut) 1
(—mngkt) 1 (—ngks) 3

1

2
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45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

u-k

z

z2

z4

z5

zh

zh2

jh

jh2

jh3

5

s4

85

Total 17
(— u-k) 10
(—sukt) 1
Total 32
(z—) 32
Total 189
(—=z) 189
Total 22

(—nz) 15
(—1lmz) 1

Total 16
(—bz) 3
(—egz) 3
Total 17
(—1z) 5
(—nzd) 1
(— dhz) 1
Total 12
(zh—) 12
Total 9
(—=zh) 7
Total 42
(jh—) 40
Total 24
(—jh) 24
Total 11
(— njh) 4
(—1jhu-d) 1
Total 140
(s—) 139
Total 47
(sp—) 9
(sk—) 10
Total 15
(spr—) 2
(skr—) 2
(su-ty—) 1
Total 17
(sw—) 6
(sm—) 5
Total 113
(—s) 113

(—ukt)
(— ng u-k)

(—mz) 5

(—dz) 5

(—1dz) 2

(—vz) 4
(—=zd) 3

(—mnzh) 2

(hy—) 2

(— jh wd)
( — n jh u-d)

(sf—) 1

(st—) 26

(str—) 4
skw—) 2

(sl—) 4
(sn—) 1

2

(uk —)

(— u-ku-t)
(—ngz) 1
(—udz) 2
(—ndz) 1
(—1lvz) 2
(—zud) 1
4 (—1jh)

1

(s'wt—-]' 2

(sutr—)

(sty—)

(sy—) 1

1

1

180



APU set ext03

61

62

63

64

65

66

67

69

70

71

72

73

74

s6

s7

s9

s10

sh

sh2

ch

ch2

v

v2

v3

dh

dh2

Total 49
(—ps) 4
(—ks) 18
Total 42
(—st) 14
(—sukt)
(—mpst)
(—1st)

(— ks u-t)

B e e

(—sps)
Total 11
(—mns) 9
Total 17
(—1ps) 2
(—ngks) 3
(—mts) 1
(—sps) 2
Total
(— ths)
(—1lths)
(—nu-t ths)
Total 53
(sh—) 52
Total 23
( — sh) 18
( — t sh) 1
Total 36
(ch—) 35
Total 32
(— ch) 24
(— nch) 2

Total 60
(v—) 55

Total 79
(—v) 79
Total 16
(—vd) 6
(—1lvz) 2
Total 301
(dh—) 301
Total 31
(—dh) 28

(—dhud) 2

(—dhz) 1

(—ts) 19 (—uts) 8
(— s u-t) 10 (—sk)
(—suput) 1 (—tsu-t)
(—nsu-t) 2 (—ngst)
(—1su-t) 1 (—u-dst)
(—pst) 1 (—1lu-tsu-t)
(—su-ts) 1 (—sks)
(—ms) 1 (—1s) 1
(—1lts) 1 (—1ks) 1
(—nts) 1 (—nuts) 2
(—fts) 1 (—muputs) 1
(—suts) 1 (—sks) 1
12
3 (—fs) 2 (—nths)
1 (— u-t ths) 1 (— ng g ths)
1 (—mu-pfs) 1 (—1fs)
(shr—) 1
(—sht) 2 (—shut) 1
(—1sh) 1
(chy—) 1
(—cht) 2 (—nchut) 2
(—1lcht) 1 (—1ch) 1
(vy—) 3 (vr—) 2
(—wvud) 2 (—vz) 4
(—1v) 1 (—lvud) 1

[ ™

1
1
1
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75

76

77

78

79

80

81

82

83

84

85

86

87

f Total 107

(f—) 107

f2 Total 28
(fr—) 19 (f1l—) 5 fy—) 3
(sf—) 1

f3 Total 31
(—f) =2

f4  Total 17
(—1ft) 3 (—fut) 1 (—fts)
(—1ft) 1 (—mf) 3 (—11) 3
(—fs) 2 (—1fs) 1 ( — f th)
(—mu-pfs) 1

th  Total 18
(th—) 18

th2 Total 9
(thr—) 7 (thy—) 1 (thw—) 1

th3 Total 17
(—th) 17

th4 Total 17
( — ths) 3 (—u-tths) 1 (— p th)
(—t th) 1 (—nggths) 1 ( — ng k th)
( — nu-t ths) 1 (—nths) 1 (—1ths)
(—1th) 2 (— fth) 1 ( — th u-t)
(— n th) 1 ( — m th) 1

h Total 83
(h—) 82 hy—) 1

1 Total 136
(1—) 135 ly—) 1

12 Total 48
(pl—) 13 (k1—) 10 (b1—) 1
(g1—) 4 (spl—) 1 (f1—) 5
(sl—) 4

13 Total 98
(—1) 98

14 Total 29
(—1p) 1 (—1pt) 1 (—1t) 3
(—1lut) 4 (—lutsut) 1 (—1k) 2
(—1kt) 1 (—1u-b) 1 (—lubd) 1
(—1d) 5 (—1u-d) 3 (—1ps) 2
(—1ts) 1 (—1ks) 1 (—1dz) 2

e
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14
5
1
1

88 15 Total 18
(—1z) 5
(—1vu-d) 1
(—1jhu-d) 1
(—1mu-d) 1

89 16 Total 12
(—1f) 3
(—1sh) 1
(—1su-t) 1

90 1= Total 29
(=) 29

91 r Total 118

r—) 18

92 r2 Total 101
pr—) 26
(kr—) 15
(u-dr —) 2

93 r3 Total 29
(fr—) 19
(vr—) 2

94 r4 Total 10
(spr—) 2
(skr—) 2

95 15 Total 26
(—r) 26

96 r= Total 2

=) 2

97 m Total 134
(m—) 127

98 m2 Total 79

(—m) 79
99 m3 Total
(—mp)
(—mpst)
(—mu-pfs)
100 m4 Total 13
(—mz) 5
(—mth) 1
101 m=  Total 6
(m=) 6

102 n Total 111

(n—) 106

(—1vaz)
(—1lcht)
(—1jh)
(—1n)

[ N *

(—11t)
(—1s) 1
(—1fs)

fay

fary

(tr—) 25
(br—) 11
(gr—) 15

(—mupt)
(—mt)
(—mts)

(—Ilmz) 1

(—ms) 1

(ny—) 4

(—1v) 1
(—1ch) 1
(—1m) 2
(—1mz) 1
(—1th) 2
(—1st) 1
(—1ths) 1
(u-tr—) 1
(dr—) 6
(shr—) 1
(sutr—) 2
(my—) 2

1 (— mu-p u-ts)

2 (—md)

1 (—1mu-d)
(—mf) 3
(—1lm) 2

(sn—) 1

1
1
1
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103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

n2

n3

n4

ns

né

ng2

Yy

y2

¥3

y4

w2

i

Total 278
(—n) 278
Total
(—nt)
(—nu-d)
(—nu-t ths)
Total 15
(—nz) 15
Total 11
(—mns) 9
Total 15
(—njh) 4
(—nzd) 1
(—nths) 1
Total 34
(n=) 34
Total 64
(—ng) 64
Total
(—ngk)
(—ngks)
(— ng g th s)

Total 42

(y—) 42
Total 11
(py—) 2
(by—) 1
(sty—) 1
Total 10
(ny—)
hy—)
Total
(fy—)
(hy—)
Total 191
(w—) 191
Total 20
(tw—) 4

N W O o oa

(8w —) 1
(thw—) 1
Total 267
(i) 267

51
19

1

(—nut) 6
(—mnts) 1
(—ndz) 1
(—nsu-t) 2
(—njhud) 1
(—nchu-t) 2
( — n th) 1
(— ng u-k)
(—ngkt)
( — ng k th)
(ty—)
(dy—)
(suty—)
(my—) 2
(thy—) 1
(chy—) 1
(kw—) 5
(sw—) 6

(—nd)
(—nu-ts)
(—mnzh) 2
(—nch) 2
(—1n) 1
1 { —ngd)
1 (—ngst)
1 ( —ngz)
ky—) 3
(gy—) 1
(vy—) 3
(ay—3}) I
ly—) 1
(dw—) 1
(skw—) 2

16
2

1
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118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

e

uu

00

aa

i

uh

ei

ou

au

oi

i@

e@

u@

@

Total
(e)
Total
(a)

Total

(uu)
Total
(u)

Total

(00)
Total
(o)

Total

(aa)

Total

(i)

@@ Total
(@@)

Total
(ub)
Total
(ei)
Total
(ou)
Total
(au)
Total
(ai)
Total
(oi)
Total
(i@)
Total
(@)
Total
(u@)
Total
(@)

190
190
126
126
103
103
37
37
105
105
110
110
105
105

519
519

55
55
108
108
127
127
106
106
59
59
163
163
27
27
38
38
42
42
10
10
967
967
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F.3 Ext04

186

104 apus, including silence. Syllable-conditioned consonants as ext02, but in-

stead of syllable-conditioned stops, stops are divided into released and unre-

leased only. Unreleased /b/ is called /u-b/, etc. Total 12 stop allophones.

1

b

u-b

u-d

g

u-g

u-p

Total 196
b—) 152
by—) 1
(—bz) 3

Total 15

(ub—) 9

(— u-b) 1
Total 201
(d—) 85
(dy—) 1
(—nd) 16
(—vd) 6
(—bd) 2
(—ugd 1
(—1dz) 2

Total

(u-d—)

(—nu-d)

(— vud)

(—1vud)

( — n jh u-d)
Total 90
(g—) 51
(gw—) 1
(—g2z) 3

Total 9

(—ug) 6
Total 187
®—) 86
(sp—) 9
(spl—) 1
(—ps) 4
(—1p) 1
(—pst) 1

Total

(—u-p)

(—mu-pfs)

88
20

Ll S

9
5
1

(br—) 10 (bl1—) 11
(—b) 17 (—bd) 2
(—u-bd) 3 (—lub) 1
(—1lubd) 1
(dr—) 6 (dw—) 1
(—4d) 59 (—14d) 5
(— md) 1 (—ngd) 1
(—=zd) 3 (—nzd) 1
(— u-bd) 3 (—gd) 1
(—1lu-bd) 1 (—dz) 5
(—ndz) 1
(u-dr —) 2 (— u-d) 42
(—lmud) 1 (—1lu-d) 3
(—dhud) 2 (—zu-d) 1
(— jh u-d) 4 ( —1jhu-d) 1
(—u-dz) 2 (—udst) 1
(gr=3). 15 (g1—) 4
(8y—) 1 (—e) 13
(—ed) 1 (—nggths) 1
(w-g—) 2 (—ugd) 1
(pr—) 26 (pl—) 13
(pry—) 2 (spr—) 2
(— mp) 5 (—p) 30
(—mpst) 1 (—1lps) 2
(—sps) 2 (—1pt) 1
(— p th) 1
(—mu-puts) 1 (— s u-pu-t)

(—mupt)

1

1
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9

10

11

12

13

14

15

t  Total 457
{t—) 248
(ty—) 1
(sty—) 1
(—mt) 2
(—cht) 2
(—pst) 1
(—mngst) 1
(—kt) 3
(—1kt) 1
(—ngkt) 1
(— tsu-t) 1
(—1ts) 1
( — t th) 1

u-t Total
(u-t —)

(u-t r—)
(—ku-t)
( — n u-t)
(—u-ts)
(—1lu-tsu-t)
(—nsu-t)
(—tsu-t)
(—fut)
( — th u-t)

k Total 262
(k—) 123
(kw—) 5
(skr—) 2
(—ks) 18
(— ku-t) 1
(—sk) 1
(— ngk) 4
( — ng k th) 1

u-k  Total 17
(—uk) 10
(—sukt) 1

z  Total 32
(z—) 32

z2 Total 189
(—z) 189

z3  Total 22

(—nz) 15
(—1lmz) 1

145

T = D = TR S - R -]

(tr—) 25 (tw—) 4
(st—) 26 (str—) 4
(—t) 60 (—mnt) 19
(—st) 14 (—sht) 2
(—1cht) 1 (—ft) 3
(—1st) 1 (—u-dst) 1
(—mpst) 1 (—1ft) 1
(—ukt) 2 (—1lpt) 1
(—sukt) 1 (—mu-pt) 1
(—ts) 19 (— t sh) 1
(—mts) 1 (—1¢) 3
(—fts) 1 (—nts) 1
(su-t—) 2 (su-tr—)
(su-ty—) ¥ (— u-t)
( — u-k u-t) 1 ( — s u-p u-t)
(—nu-ts) 2 (—1lu-tsu-t)
(— u-t ths) 1 (—1u-t)
(—nutths) 1 (— s u-t)
(—1su-t) 1 ( — sh u-t)
(—su-ts) 1 (— m u-p u-t s)
( — n ch u-t) 2 (—ksu-t)
(kr—) 15 k1—) 10
ky—) 3 (sk—) 10
(skw—) 2 (—k) 54
(—1k) 2 (—kt) 3
(—1kt) 1 (—1lks) 1
(—sks) 1 (—ksut) 1
(—ngkt) 1 (—ngks) 3
(—u-kt) 2 (uwk—) 2

(—nguk) 1

(—mz) 5

(—ukut) 1

(—ngz) 1
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16

17

18

19

20

21

22

23

24

25

26

27

28

29

z4  Total 16
(—bz) 3
(—sg2) 3

z5 Total 17
(—12) 5
(—nzd) 1
(—dhz) 1

zh  Total 12
(zh—) 12

zh2 Total 9

(—=zh) 7

jh  Total 42
(h—) 40

jh2  Total 24

(—ijh) 24
jh3  Total 11
( — njh) 4
(—ljhud) 1
s Total 140
(s—) 139

s2 Total 47
(sp—) 9
(sk—) 10

s3  Total 15
(spr—) 2
(skr—) 2
(su-ty—) 1

s4  Total 17
(sw—) 6
(sm—) 5

s5 Total 113
(—s) 113

s6 Total 49
(—ps) 4
(—ks) 18

s7 Total 42
(—st) 14
(—su-kt) 1
(—mpst) 1
(—1st) 1
(—ksu-t) 1
(—sps) 2

(—dz) 5
(—1dz) 2
(—vz) 4
(—=zd) 3
(—mnzh) 2
(Ghy—) 2
(— jh u-d)
( — n jh u-d)
(sf—) 1
(st—) 26
(str—) 4
(skw—) 2
(spl—) 1
(sl—) 4
(sn—) 1
(—ts) 19
(— s u-t)

(— s u-pu-t)

(—nsu-t)

(—1su-t)
(—pst)
(—su-ts)

(—udz) 2
(—ndz) 1
(—1lvz) 2
(—zud) 1
4 (—1jh)
1

(sut—) 2

(su-tr—) 2
(sty—) 1

(sy—) 1

(—uts) 8

1

10 (—sk)

1 (—tsu-t)

2 (—mngst)

1 (—u-dst)

1 (—1lu-tsu-t)
1 (—sks)

L o T = S = S =
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30

31

32

34

35

36

37

38

39

40

41

42

43

44

s9

s10

sh2

ch2

v

v2

v3

dh2

f

Total
(E—)

Total 11
(—ns) 9
Total 17
(—1ps)

(—ngks)

(—mts)

B W

(—sps)
Total
(— ths)
(—1ths)
(—nu-tths)
Total 53
(sh—) 52
Total 23
( — sh) 18
( — t sh) 1
Total 36
(ch—) 35
Total 32
( — ch) 24
( —mnch) 2

Total 60
(v—) 55

Total 79
(—v) 79
Total 16
(—vd) 6
(—1lvz) 2
Total 301
(dh—) 301
Total 31
(—dh) 28
107
107

f2  Total 28

(fr—) 19
(sf—) 1

f3  Total 31

(—f) Bi

(—ms) 1 (—1ls) 1
(—1lts) 1 (—1ks) 1
(—nts) 1 (—nu-ts) 2
(—fts) 1 (—muputs) 1
(—suts) 1 (—sks) 1
12
3 (—1fs) 2 (—mn ths)
1 (— u-t ths) 1 (—ng gths)
1 (—mu-pfs) 1 (—1fs)
(shr—) 1
(—sht) 2 (—shut) 1
(—1sh) 1
(chy—) 1
(—cht) 2 (—nchut) 2
(—1lcht) 1 (—1ch) 1
(vy—) 3 (vr—) 2
(—vud) 2 (—vz) 4
(—1v) 1 (—lvud) 1
(—dhud) 2 (—dhz) 1
(f1—) 5 (fy—) 3

1
1
1
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45 f4
(—1f¢)
(—1ft)
(—fs)
(—mu-pfs)
46 th Total 18
(th—) 18

Total 9

(thr—) 7

Total 17

(—th) 17

Total

(—ths)

( —t th)

( —nu-tths)

(—1th)

( —n th)
Total 83
(h—) 82
Total 136
l—) 135
Total 48
(pl—) 13
(gl—) 4
(s1—) 4
Total 98
(—1) 98
Total 29
(—1p)
(—1u-t)
(—1lkt)
(—14)
(—1ts)
Total 18
(—1z) B
(—1vu-d) 1
(—1jhu-d) 1
(—1mu-d) 1
Total 12
(—1f) 3
(—1sh) 1
(—1su-t) 1
Total 29
(=) 29

47  th2

48 th3

49  th4

50 h

51 1

52 12

53 13

54 M

- e A

55 15

56 16

57

-
[l

Total 17

(thy—) 1

17

(—u-tths)
(—nggths)
(—mnths)

( —fth)
(— m th)

R - e T T

(hy—) 1

(ly—) 1

(kl—) 10
(spl—) 1

(—1pt)
(—lu-tsu-t)
(—1u-b)
(—1u-d)
(—1ks)

e

' (—1vz)

‘—\
|
et
&
Lad
e

H o - N

(—fts) 1
(—11) 3
(—fth) 1
(thw—) 1
1 (— p th)
1 ( —ng k th)
1 (—1ths)
1 ( — th u-t)
1
(bl—) 11
(f1—) 5
(—1t) 3
(—1k) 2
(—lubd) 1
(—lps) 2
(—1dz) 2
(—1v) 1
(—1lch) 1
(—1m) 2
(—1lmz) 1
(—1th) 2
(—1st) 1
(—1ths) 1

I~ B
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58

59

61

62

64

65

66

67

69

70

72

r

r2

r3

rd

r5

m2

m4

n

n2

n3

n4

n5

Total 118
r—) 118
Total 101
(pr—) 26
(kr—) 15
(u-dr —)
Total 29
(fr—) 19
(vr—) 2
Total 10
(spr—) 2
(skr—) 2
Total 26
(—r) 26
Total 2
(r=) 2
Total 134
(m—) 127
Total 79
(—m) 79
Total
(—mp)
(—mpst)
(—mu-pfs)
Total 13
(—ma2)
(— m th)
Total 6
(m=) 6
Total 111
(n—) 106
Total 278
(—n) 278
Total
(—nt)
(—nu-d)
(—nu-tths)
Total 15
(—nz) 15
Total 11

(—ns) 9

1 (—mu-pu-ts)

1 (—1mu-d)

(tr—) 25 (vt r—)
(br—) 11 (dr—)
(gr—) 15
(thr—) 7 (shr—) 1
(str—) 4 (sutr—)
(sm—) 5 (my—) 2
14
5 (—mu-pt)
1 (—mt) 2 (—md)
1 (—mts)
(—Imz) 1 (—mf)
(—ms) 1 (—1m)
ny—) 4 (smn—) 1
51
19 (—nut) 6 (—nd)
5 (—nts) 1
1 (—ndz) 1
(—nsut) 2

(—nu-ts)
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74

75

76

77

78

79

80

81

82

83

85

86

87

88

89

né Total 15
( —njh) 4
(—mnzd) 1
(—nths) 1

n=  Total 34

(n=) 34
ng Total 64
(—ng) 64
ng2 Total 14
(—ngk) 4
(—ngks) 3

(—nggths) 1
y Total 42

(y—) 42
y2 Total 11
ry—) B
by—) 1
(sty—) 1
y3 Total 10
ny—) 4
(hy—) 1
y4 Total 9
dy—) B
(hy—) 2
w  Total 191
(w—) 191
w2 Total 20
(tw—) 4
(gw—) 1
(thw —) 1
ii  Total 267
(ii) 267
e Total 190
(e) 190
a Total 126
(a) 126
uu Total 103
(un) 103
u Total 37
(u) 37

oo Total 105
(o0) 105

(—njhud) 1
(—nchut) 2
(—nth) 1

( — ng u-k)
(—ngkt)
( — ng k th)

(ty—) 1
(dy—) 1
(suty—) 1

(my—) 2

(thy—) 1
(chy—) 1

(kw—) 5
(sw—) 6

(—nzh) 2
(—nch) 2
(—1n) 1
1 (—ngd)
1 (—mngst)
1 (—ng2)
ky—) 3
(By—) A
(vy—) 3
(sy—) 1
@y—) 1
(dw—) 1
(skw—) 2

1
1
1
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90

91

92

93

94

95

a7

98

99

100

101

102

103

o Total 110

(o) 110
aa Total 105
(aa) 108
i Total 519
() 519
@@ Total 55
(@@) 55
uh Total 108
(uh) 108
ei Total 127
(ei) 127
ou Total 106
(ou) 106
au Total 59
(au) 59
ai Total 163
(ai) 163
oi Total 27
(oi) 27
i@ Total 38
(i@) 38
e@ Total 42
(e@) 42
u@ Total 10
(u@) 10

@ Total 967
(@) 967
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F.4 Ext05

79 apus, including silence. Syllable-conditioned stops only, identical to those in

ext02. Total 36 stop allophones. Non-stop apus are as those in stdp.
1 b Total 161

(b—) 161
2 b2 Total 11
(br—) 11
3 b3 Total 12
(bl1—) 11 by—) 1
4 b4 Total 18
(—b) 18
5 b5 Total 10
(—bd) 5 (—bz) 3 (—1b) 1
(—1bd) 1
6 d Total 105
(d—) 105
7 d2 Total 10
(dr—) 8 (dw—) 1 dy—) 1
8 d3 Total 109
(—d) 101 (—1d) 8
9 d4 Total 24
(—mnd) 21 (—md) 1 (—ngd) 1
(—1md) 1
10 d5 Total 16
(—vd) 8 (—=zd) 4 (—dhd) 2
(—nzd) 1 (—1lvd) 1
11 dé Total 14
(—bd) 5 (—gd) 2 (—1bad) 1
(—jhd) 4 (—1ljhd) 1 (—njhd) 1
12 d7 Total 11
(—dz) 7 (—1ldz) 2 (—ndz) 1
(—dst) 1
13 g Total 53
(8—) =3
14 g2 Total 21
(gr—) 15 (81—) 4 (gw—) 1
(8y—) 1
15 g3 Total 25
(—g) 19 (—gz) 3 (—gd) 2

(—nggths) 1
16 p Total 86
(p—) 86
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17

18

19

20

21

22

23

24

25

26

27

28

29

p2

p3

p4

p5

p6

t2

t3

t4

t5

t6

t7

Total 26
(pr—) 26
Total 13
(pl—) 13
Total 14
(sp—) 9
(spl—) 1
Total 35
(—p) 35
Total 2
(—mp)
(—mpfs)
(—1lps)
(—sps)
(—p th)
Total 256
(t—) 256
Total 31
(tr—) 26
Total 36
(st—) 28
Total 142
(—t) 142
Total 27
(—nt) 25
Total 5
(—st) 2
(—ncht)
(—pst)
(—kst)
(—nst)
(—mpst)
Total 13
(—kt) 7
(—spt) 1
(—ngkt) 1
Total 47
(—ts) 27
(—mts) 1
(—1tst) 1
(—nts) 3
(—tths) 1

2

= R R =

0
4

OB M - N

py—) 2

(tw—) 4

(str—) 6

(—mt) 2

(—sht)
(—1lcht)
(—tst)
(—dst)
(—ngst)
(—1ft)

(—1pt)
(—skt)

(—tsh)
(—1¢)
(—fts)
(—t th)

1

o= g e

e e e e W

- e e

(spr—) 2

(—ps)

(—mpts)

(—spt)
(—pst)

(ty—) 1

(sty—) 2

(—cht)
(—1t)
(—1ltst)
(—1st)
(—mpts)
(—tht)

(—1kt) 1
(—mpt) 1

(—tst)
(—1ts)
(—sts)
(—mntths)

-

[ R T - T S - X

[ S R
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30 k Total 125
(k—) 125
31 k2 Total 15
(kr—) 15
32 k3 Total 18
(k1—) 10
33 k4 Total 14
(sk—) 10
34 k5 Total 64
(—k) 64
35 k6 Total 32
(—ks) 18
(—sks) 1
(—ngks) 3
36 k7 Total 11
(—kt) 7
(—skt) 1
37 =z Total 276
(z—) 32
(—mz) 5
(—bz) 3
(—1dz) 2
(—vz) 4
(—=zd) 4
38 zh Total 21
(zh—) 12
39 jh Total
Gh—)
(—njh)

(—njhd)

(kw—) 5

(skr—) 2

(—1k)
(—kst)
( — ng k th)

(—1kt) 1
(—ngkt) 1

(—z) 189

(—ngz)
(—dz)
(—ndz)
(—1lvz)
(—dh2)

(—zh) 7

(hy—) 2

(—ihd)
(—1jh)

L -

e I

2
1
1

(

(ky—) 3
(skw—) 2
(—1lks)
(—ngk)
(—sk) 1
(—n2)
(—1lmz)
(—g2)
(—12)
(—nzd)
—mnzh) 2
(—ih)
(—1jha)

1
5

15

-t W =
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40

41

42

43

44

45

sh

(—ks)

(—tst)
(—mngst)
(—kst)

18

e e -~ T B R o TR % S o T S R o R

(—mnths)

(—1fs)

||
el -
S
= 0o

(—dh) 28

(fr—) 19
(sf—)
(—fts)
(—1f)
(— f th)

L B

1 (sp—)
10 (spr—)
2 (skw—)
1 (sw—)
1 (sm—)
4 (—ts)
113 (—st)
1 (—spt)
1 (—nst)
2 (—dst)
1 (—1tst)
1 (—sts)
1 (—1s)
1 (—1lks)
3 (—mts)
1 (—sps)
1 (— ths)
1 (—1ths)
1 (—ntths)
1
( — sh) 18
( —1sh) 1
( — ch) 24
( —nch) 2
(ve—) 2
(—vaz) 4
(—1lvd) 1
(—dhd) 2
(f1—) 5
(—1) 31
(—1ft) 1
(—fs) 2

(—mpfs) 1

LS T < R T S R o]
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46

47

48

49

50

51

52

th  Total 61
(th—) 18 (thr —)
(thw—) 1 (— th)
(—tths) 1 (— p th)
(—nggths) 1 ( — ng k th)
(— n ths) 1 (—1ths)
(— fth) 1 (—tht)
( — m th) 1

h Total 83
(h—) 82 (hy—) 1

1 Total 341
ff—3 135 ly—) 1
(k1—) 10 (bl—) 11
(spl—) 1 (f1—) 5
(—1) 98 (—1p) 1
(—1t) 7 (—1ltst) 1
(—1kt) 1 (—1b) 1
(—14d) 8 (—1lps) 2
(—1lks) 1 (—1ldz) 2
(—1vz) 2 (—1v) 1
(—1cht) 1 (—1ch) 1
(—1jh) 1 (—1m) 2
(—1n) 1 (—1lmz) 1
(—1f¢t) 1 (—1th) 2
(—1s) 1 (—1st) 2
(—1ths) 1

l= Total 29
(=) 29

r Total 284
r—) 118 (pr—) 26
(kr—) 15 (br—) 11
(gr—) 15 (fr—) 19
(shr—) 1 (vr—) 2
(str—) 6 (skr—) 2

r= Total 2
(r=) 2

m  Total 240
(m—) 127 (sm—)
(—m) 79 (—mp)
(—mpts) 1 (—mpst)
(—md) 1 (—mpfs)
(—1md) 1 (—mz)
(—mf) 3 (— m th)
(—1m) 2

17

i L T R < R )

T S ~ I~

(thy —)
(— ths)
(—t th)
(—ntths)
(—1th)
(— n th)
(pl1—) 13
(g1—) 4
(s1—) 4
(—1lpt) 1
(—1k) 2
(—1bd) 1
(—1ts) 1
(—1z) 5
(—1vd) 1
(—1jhd) 1
(—1md) 1
(—1f1) 3
(—1sh) 1
(—11fs) 1

{tr—) 26
(dr—) 8
(thr—) 7
(spr—) 2

(—r1) 26
(my—)
(—mpt)
(—mt)
(—mts)
(—1mz)
(—ms)

e T T R

L S T o

198



APU set ext05

53

54

55

56

57

58

59

60

61

62

65

66

m=

n

ng

uu

00

aa

Total 6

(m=) 6
Total 481
n—) 106
(—n) 278
(—nts) 3
(—nz) 15
(— n jh) 4

(—nzd) 1
(—nths) 1

Total 34
(n=) 34
Total
(—ng)
(—ngks)
(—nggths)
Total 72
r—17 42
(ky—) 3
(8y—) 1
my—) 2
Gy —) 3
(hy—) 2
Total 211
(w—) 191
(dw—) 1
(skw—) 2
Total 267
(ii) 267
Total 190
(e) 190
Total 126
(a) 126
Total 103
(uu) 103
Total 37
(u) 37
Total 105
(00) 105
Total 110
(o) 110
Total 105

(aa) 105

ny—) 4
(—mnt) 25
(—ntths) 1
(—mns) 9
(—njhd) 1
(—ncht) 2
( — n th) 1

(—ngk)
(—ngkt)
( — ng k th)

py—)
(by—)
(sty—)
(vy—)
(thy —)
(chy—)

HoH W R = R

(tw—) 4
(gw—) 1
(thw—) 1

(sn—) 1
(—nd) 21
(—ndz) 1
(—nst) 2
(—mnzh) 2
( — n ch) 2
(—1n) i {
5 (—mngd)
1 (—ngst)
1 (—ng2)
ty—) 1
dy—) 1
(ny—) 4
(hy—) 1
(sy—) 1
ly—) 1
(kw—) 5
(sw—) 6
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67 i Total 519

(i) 519
68 @@ Total 55
(@a@) 55
69 uh Total 108
(uh) 108
70 ei Total 127
(ei) 127
71 ou Total 1086
(ou) 106
72 au Total 59
(au) 59
73 ai Total 163
(ai) 163
74 oi Total 27
(oi) 27
75 i@ Total 38
(i@) 38
76 e@ Total 42
(e@) 42
77 u@ Total 10
(u@) 10

78 @ Total 967
(@ 967
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F.5 Ext06

55 apus, including silence. Stops divided into released and unreleased (not
syllable-conditioned). Total 12 stop allophones. Unreleased /b/ called /u-b/,

etc. Other apus as those in stdp.

(—mu-pfs)

1

(—mupt)

1

1 b Total 196
(b—) 152 (br—) 10 (bl1—) 11
(by—) 1 (—1b) 17 (—bd) 2
(—bz) 3
u-b  Total 15
(u-b—) 9 (—ubd) 3 (—1lub) 1
(—uwb) 1 (—lubd) 1
d Total 201
(d—) 85 (dr—) 6 (dw—) 1
(dy —) 1 (—4d) 59 (—14d) 5
(—nd) 16 (—md) 1 {(—mngd) 1
(—vd) 6 (—=zd) 3 (—nzd) 1
(—bd) 2 (—wbd) 3  (—gd) 1
(—u-gd) 1 (—lubd) 1 (—dz) 5
(—1dz) 2 (—ndz) 1
u-d Total 88
(u-d — ) 20 (u-dr —) 2 ( —u-d) 42
(—nu-d) 5 (—lmud) 1 (—1lu-d) 3
(— v u-d) 2 (—dhud) 2 (—zu-d) 1
(—1vu-d) 1 (—jhud) 4 (—1ljhud) 1
( — n jh u-d) 1 (—u-dz) 2 (—u-dst) 1
5 g Total 20
(8—) 51 (gr—) 15 (81—) 4
(zw==) y—) 1 (=8 13
(—ge2) 3 (—gd) 1 (—nggths) 1
6 u-g Total 9
(=—ug) ® (wg—) 2 (—u-gd) 1
7 p Total 187
r—) 86 (pr—) 26 (pl—) 13
(sp—) 9 ey E (spr—) 2
(spl—) 1 (—mp) 5 (—p) 30
(—ps) 4 (—mpst) 1 (—1ps) 2
(—1p) 1 (—sps) 2 (—1pt) 1
(—pst) 1 (—p th) 1
u-p Total 9
(— u-p) 5 (—muputs) 1 (—suput) 1
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9

10

11

12

t

Total

u-t

k

457
(t—) 248
(ty—)
(sty—)
(—mt)
(—cht)
(—pst)
(—ngst)
(—kv)
(—1kt)
(—ngkt)
(— tsu-t)
(—1ts)
(—t th)
Total
(-t —)
(u-tr—)
(—ku-t)

L o e T " T S = - N B

(— nu-t)
(—u-ts)
(—1u-tsu-t)
(— nsu-t)
(—tsu-t)
(—fu-t)

( — th u-t)
Total 262
(k—) 123
(kw—) 5
(skr—) 2
(—ks) 18
(— ku-t) 1
(—sk) 1
(— ngk) 4
( — ng k th) 1

u-k Total 17

(— u-k) 10
(—sukt) 1

145

[ T e T e R ¥ - T = - R R R v ]

(tr—) 25
(st—) 26
(—t) 60
(—st) 14
(—1cht)

(—1st)

(—mpst)
(—ukt)

(—sukt)
(—ts) 19
(—mts)

(—fts) 1

L R

-

(sut—)
(su-ty—)
(— u-k u-t)
(—nu-ts)
(— u-t ths)
(— nu-tths)
(—1su-t)
(—su-ts)

( — n ch u-t)

(kr—) 15
(ky—)
(skw—)
(—1k)
(—1kt)
(—sks)
(—ngkt)

L Y R - R - T ]

(—ukt) 2
(—nguk) 1

(tw—) 4
(str—) 4
(—mnt) 19
(—sht) 2
(—1ft) 3
(—u-dst) 1
(—11ft) 1
(—1pt) 1
(—mu-pt) 1
(— t sh) 1
(—1¢) 3
(—mnts) 1
2 (su-tr—)
1 (— u-t)
1 (— s u-p u-t)
2 (—1lu-tsu-t)
1 (—1lu-t)
1 {—su-t)
1 ( — sh u-t)
1 (— m u-p u-t s)
2 (—ksu-t)
(k1—) 10
(sk—) 10
(—k) 54
(—kt) 3
(—1lks) 1
(— ks u-t) 1
(—mngks) 3
(u-k—) 2

(—ukut) 1
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Total 276
(z—) 32
(—ma2)
(—bz)
(—eg2)
(—1z2)
(—mnzd)
(—dhz)
Total 21
(zh—) 12
Total 77
(h—) 40
(—n jh) 4
(—1jhu-d) 1
Total 463
(s—) 139
(st—) 26
(spr—)
(skr—)
(suty—)
(s1—)
(sn—)
( — u-t s)
(— s u-t) 10

13 =z

o W W G

14 =zh

15 jh

16 s

00 oA - R W

(— s upu-t)
(—nsu-t)
(—1lsu-t)
(—pst)
(—suts)
(—ns)
(—1lps)
(—mts)
(—sps)
(—ths)
(—1ths)
(—nu-t ths)
Total 76
(sh—) 52
(—sht) 2
(—1sh) 1
Total 68
(ch—) 35
(—cht) 2
(—1lcht) 1

L 7 T C T SN " S 7 S S S Gy SV S R

17 sh

18 ch

(—=2) 189 (—naz) 15
(—ngz) 1 (—1mz) 1
(—dz) 5 (—u-dz) 2
(—1dz) 2 (—ndz) 1
(—wvz) 4 (—1vz) 2
(—zd) 3 (—zu-d) 1
(—=zh) 7 (—nzh) 2
(hy—) (—ijh) 24
( — jh u-d) 4 (—1jh) 1
(—njhud) 1
(sf—) 1 (sp—)
(sut—) 2 (sk—)
(str—) 4 (su-tr—)
(skw—) 2 (sty—)
(spl—) E (sw—)
(sy—) 1 (sm—)
(—ps) i (—ts)
(—ks) 18 (—st)
(—sk) 1 (—sukt)
(—tsu-t) 1 (—mpst)
(—ngst) 1 (—1st)
(—u-dst) 1 (—ksu-t)
(—lutsut) 1 (—sps)
(—sks) 1 (—s)
(— ms) 1 (—1s)
(—1ts) 1 (—1ks)
(—fta) 1 ( — m u-p u-t s)
(—su-ts) 1 (—sks)
(—fs) 2 (—mnths)
( — u-t th s) 1 (—nggths)
(—mu-pfs) 1 (—1fs)
(shr—) 1 ( — sh) 18
(—shut) 1 (—tsh) 1
(chy —) 1 (— ch) 24
(—nchut) 2 (— n ch) 2
(—1ch) 1

203

10

19
14

B e e e

113

L T = T =



APU set ext06

19

20

21

22

23

24

25

v

f

th

1

1=

Total 155
{(v—) 55
(—v) 79
(—vz) 4
(—1vu-d) 1
Total 332
(dh —) 301

(—dhz) 1

(vy—) 3
(—vd) 6
(—1vz) 2
(—dn) 28

Total 183

(f—) 107 (fr—) 19
(fy—) 3 (sf—) 1
(—ft) 3 (—fu-t) 1
(—1ft) 1 (—mf) 3
(—fs) 2 (—1fs) 1
(—mu-pfs) 1

Total 61

(th—) 18 (thr—)
(thw —) 1 { — th)
(—u-tths) 1 (— p th)
(—nggths) 1 ( — ng k th)
(—nths) 1 (—1ths)

(— f th) 1 (— th u-t)
(— m th) 1

Total 83

(h—) 82 (hy—) 1

Total 341

1—) 135 ly—) 1
k1—) 10 (k1—) 11
(spl—) 1 (f1—) 5
(—1 ¢ (—1p) 1
(—1t) 3 (—1lu-t) 4
(—1k) 2 (—1kt) 1
(—1lu-bd) 1 (—14d) 5
(—1ps) 2 (—1ts) 1
(—1d3z) 2 (—12z) 5
(—1v) 1 (—1vu-d) 1
(—1lch) 1 ( —1jhu-d) 1
(—1m) 2 (—1mu-d) 1
(—1lmaz) 1 (—11) 3
(—1th) 2 ( —1sh) 1
(—1st) 1 (—1su-t) 1
(—1ths) 1

Total 29

{l: ) 29

(vr—) 2
(—vud) 2
(—1v) 1

(—dhud) 2

17

A

(f1—) 5
(—1) 31
(—fts) 1
(—1f) 3
( — f th) 1

(thy —)
(— ths)
(—t th)

(—nu-tths)

(—1th)
(— n th)

(e1—)
(81—)
(s1—)
(—1pt)
(—1u-t s u-t)
(—1u-b)
(—1u-d)
(—1ks)
(—1vz)
(—1cht)
(—1jh)
(—1n)
(—1ft)
(—1s)
(—1fs)

[ S T

13
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26 r Total 284
(r—) 118 (pr—) 26 (tr—) 25
(u-t r—) 1 (kr—) 15 (br—) 11
(dr—) 6 (udr—) 2 (gr—) 15
(fr—) 19 (thr —) 7 (shr—) 1
(vr—) 2 (spr—) 2 (str—) 4
(sutr—) 2 (skr—) 2 (—r1) 26

27 r= Total 2
=) 2

28 m Total 240
(m—) 127 (sm—) 5 (my—) 2
(— m) 79 (—mp) 5 (—mupt) 1
(—mu-pu-ts) 1 (—mpst) 1 (—mt) 2
(—md) 1 (—mupfs) 1 (—mts) 1
(—1mu-d) 1 (—mz) 5 (—1lmz) 1
(—mf) 3 ( — m th) 1 (—ms) 1
(—1m) 2

29 m=  Total 6
(m=) 6

30 n Total 481
(n—) 106 (ny—) 4 (sn—) 1
(—mn) 278 (—mnt) 19 (— n u-t) 6
(—nd) 16 (— nu-d) 5 (—nts) 1
(—nu-ts) 2 (—nu-t ths) 1 (—ndz) 1
(—nz) 15 (—ns) 9 (—nsut) 2
( — n jh) 4 ( — n jh u-d) 1 ( — n zh) 2
(—nazd) 1 ( — n ch u-t) 2 ( — n ch) 2
(— nths) 1 ( — n th) 1 (—1n) 1

31 n= Total 34
(n=) 34

32 ng Total 78
(— ng) 64 (—ngk) 4 ( — ng u-k) 1
(—ngd) 1 (—ngks) 3 (—ngkt) 1
(—mngst) 1 (—nggths) 1 (—ngkth) 1
(—ngz) 1

33 y Total T2
(r—3} 8 px—) 2 (ty—) 1
ky—) 3 by—) 1 dy—) 1
(gy—) 1 (sty—) 1 (su-ty—) 1
my—) 4 (my—) 2 Gy 3
thy—) 1 (fy—) 3 (thy —) 1
(y—) 1 (hy—) 2  (hy—) 1
ly—) 1
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34

35

36

37

a8

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

w  Total
(w—)
(dw—)
(skw—)

ii  Total 267
(ii) 267

e Total 190
(e) 190

a Total 126
(a) 126

uu Total 103
(wa) 103

u Total 37
(u) 37

oo Total 105
(o00) 105

o Total 110
(o) 110

aa Total 105
(aa) 105

i Total 519
(i) 519

@@ Total 55
(@@) 55

uh Total 108
(uh) 108

ei Total 127
(ei) 127

ou Total 106
(ou) 106

au Total 59
(au) 59

ai Total 163
(ai) 163

oi Total 27
(oi) 27

i@ Total 38
(i@) 38

e@ Total 42
(e@) 42

u@ Total 10
(u@) 10

211
191
1
2

(tw—)
(gw—)
(thw—)

4

(kw—)

(sw—)

206
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54 @ Total
(@)

967
967



APU set ext07

F.6

Ext07

208

65 apus, including silence. Syllable-conditioned stops only, derived from those

in ext05. Ext05’s 36 stop allophones were combined to give 22 stop allopones.

Non-stop apus are as those in stdp.

1

9

10

11

12

13

b  Total 161
(b—) 161
b2 Total 23
(bl—) 11
b3 Total 28
(—b) 18
(—1b) 1
d Total 115
(d—) 105
(dy—) 1
d2 Total 109
(—d) 101
d3 Total 24
(—ad) 21
(—1md) 1
d4 Total 30
(—vd) 8
(—nzd) 1
(—egd) 2
(—1jhd) 1
d5 Total 11
(—daz) T
(—dst) 1
g Total 53
(g—) 53
g2 Total 21
(gr—) 15
(gy—) 1
g3 Total
(—s)
(—mnggths)
p Total 95
(p—) 86
p2 Total 44
(pr—) 26

(spr—) 2

(br—) 11
(by—) 1

(—bd) 5
(—1bd) 1

(dr—) 8

(—1d) 8
(—md)
(—z4d)
(—1vd)
(—1bd)

(—njhd)

(—1dz)

(gl—) 4

25
19
1

1

2

(—sgz)

e S

(—bz) 3

(dw—) 1
(—ngd) 1
(—dhd) 2
(—bd) 5
(—ijhd) 4
(—mndz) 1

(gw—) 1
3 (—gd) 2
py—) 2
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14 p3 Total 57
(>} 35
(—ps) 4
(—mpts) 1
(—spt) 1
(—pst) 1

15 t Total 284
(t—) 256

16 t2 Total 39
(tr—) 26
(sty—) 2

17 t3 Total 279
(—¢) 142
(—st) 24
(—mt) 2
(—1lcht) 1
(—tst) 1
(—dst) 1
(—ngst) 1
(=1t 1
(—1lkt) 1
(—mpt) 1
(—tst) 1
(—1ts) 1
(—sts) 1
(—ntths) 1

18 k Total 125
(k—) 125

19 k2 Total 15
(kr—) 15

20 k3 Total 32
(kl1—) 10
(sk—) 10

21 k4 Total 64
(—k) 64

22 k5 Total 43
(—ks) 18
(—sks) 1
(—ngks) 3
(—1kt) 1
(—ngkt) 1

(—mp)
(—mpfs)
(—1ps)
(—sps)
(—pth)
(st—) 28
(str—) 6
(t.y—) 1
(—ts)
(—kt)
(—cht)
(—1t)
(—1ltst)
(—1st)
(—mpts)
(—tht)
(—spt)
(—mngkt)
(—mts)
(—1ltst)
(—nts)
(—tths)
(kw—) 5
(skr—) 2
(—11)
(—kst)
( — ng k th)
(—s¥)

o e R

L T - T - |

(—mpt) 1
(—mpst) 1
(—1p) 1
(—1pt) 1
(tw—) 4
27 (—nt) 25
T (—sht) 3
2 (—mncht) 2
4 (—pst) 1
1 (—kst) 1
2 (—nst) 2
1 (—mpst) 1
1 (—1pt) 1
1 (—skt) 1
1 (— tsh) 1
1 (—1¢) T
1 (—fts) 1
3 (—t th) 1
1
ky—) 3
(skw—) 2
(—1ks) 1
(—ngk) 5
(—kt) T
(—skt) 1

209
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23

24

25

26

z Total 276
(z—) 32 (—2) 189
(—mz) 5 (—ngz) 1
(—bz) 3 (—dz) 7
(—1dz) 2 (—ndz) 1
(—vz) 4 (—1vz) 2
(—=zd) 4 (—dhz) 1

zh  Total 21
(zh—) 12 (—zh) 7

jh  Total 77
Gh—) 40  (hy—) 2
(—n jh) 4 (—jhd) 4
(—njhd) 1 (—1jh) 1

s Total 463
(s—) 139 (sf—)
(st—) 28 (sk—)
(str—) 6 (skr—)
(sty—) (spl—)
(s1—) 4 (sy—)
(sn—) (—ps)
(—ks) 18 (—s)
(—sk) 1 (—skt)
(—tst) 1 (—mpst)
(—ngst) 1 (—1st)
(—kst) 1 (—pst)
(—sps) 2 (—sks)
(—ns) 9 (—ms)
(—1ps) 2 (—1ts)
(—mngks) 3 (—nts)
(—fts) 1 (—mpts)
(—sts) 1 (—sks)
(—1s) 2 (—nths)
(—tths) 1 (—nggths)
(—mpfs) 1 (—1fs)

sh Total 76
(sh—) 52 (shr—) 1
(—sht) 3 (—tsh) 1

ch  Total 68
(ch—) 35 (chy —) 1
(—cht) 2 (—ncht) 2
(—1cht) 1 (—1ch) 1

—
—
(%]

(—nz) 15
(—lmz) 1
(—egz) 3
(—1z) 5
(—nzd) 1
(—nzh) 2
(—ih) 24
(—1jhd) 1
1 (sp—)
(spr—)
2 (skw—)
1 (sw—)
1 (sm—)
4 (—ts)
(—st)
1 (—spt)
1 (—nst)
2 (—dst)
1 (—1ltst)
1 (—sts)
1 (—1s)
1 (—1lks)
3 (—mts)
1 (—sps)
1 (—ths)
1 (—1ths)
1 (—ntths)
1
( — sh) 18
(—1sh) 1
(— ch) 24
(—nch) 2

L= B = T - T S = ]

24

[ e T - T e T o T T I - T
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29

31

32

33

34

v

f

th

1

Total 155
(v—) 55
(—v) 79
(—1lvz) 2
Total 332
(dh —) 301
(—dhz) 1
Total 183
(f—) 107
tyr—) 3
(—ft) 4
(—mf) 3
(—1fs) 1
Total

(th—)
(thw—)
(—tths)
(—nggths)
(—nths)
(—fth)

( — m th)
Total 83
(h—) 82
Total 341
a-—) 135
(k1—) 10
(spl—) 1
(—1) 98
(—1t) 7
(—1kt) 1
(—14d) 8
(—1ks) 1
(—1lvz) 2
(—1lcht) 1
(—1jh) 1
(—1n) 1
(—1ft) 1
(—1s) 1
(—1ths) 1
Total 29

(vy—) 3
(—vd) 8
(—1lv) 1
(—dh) 28
fr—) 19
(sf—) 1
(—fts) 1
(—11) 3
(—fth) 1

61

18 (thr—)

1 (— th)

1 (—pth)

1 (— ng k th)

1 (—1ths)

1 (—tht)

1

(hy—) 1
ly—) 1
(bl—) 11
(f1—) 5
(—1p) 1
(—1tst) 1
(—1b) 1
(—1ps) 2
(—1dz) 2
(—1v) 1
(—1ch) 1
(—1m) 2
(—1lmz) 1
(—1th) 2
(—1lst) 2

(vr—) 2
(—vz) 4
(—1lvd) 1
(—dhd) 2
(f1—) 5
(—1) 31
(—1ft) 1
(—fs) 2

(—mpfs) 1

(thy —)
(—ths)
(—t th)
(—ntths)
(—1th)
( — n th)
(pl—) 13
(81—) 4
(s1—) 4
(—1pt) 1
(—1k) 2
(—1bd) 1
(—1ts) 1
(—1z) 5
(—1vd) 1
(—1jhd) 1
(—lmd) 1
(—1f) 3
(—1sh) 1
(—1fs) 1

L - B
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36 r Total 284
(r—) 118
(kr—) 15
(gr—) 15
(shr—) 1
(str—) 6
37 r= Total 2
(=) 2
33 m Total 240
(m—) 127
(— m) 79
(—mpts) 1
(—md) 1
(—1md) 1
(—mf) 3
(—1lm) 2
33 m=  Total 6
(m=) 6
40 n Total 481
(n—) 106
(—n) 278
(—nts) 3
(—nz) 15
(— njh) 4
(—nzd) 1
(— nths) 1
41 n= Total 34
(n=) 34
42 ng Total 78
(—ng) 64
(—ngks) 3
(—nggths) 1
43 y Total 72
(y—) 42
ky—) 3
(By—) 1
(my—) 2
(fy—) 3
(hy—) 2
44 w  Total 211
(w—) 191
(dw—) 1

(skw—) 2

pr—) 26
(br—) 11
(fr—) 19
(vr—) 2
(skr—) 2

(sm—)
(—mp)
(—mpst)
(—mpfs)
(—mz)

(— m th)

(ny—)
(—nt)
(—mntths)
(—ns)
(—nihd)
(—mncht)
( —n th)

(—ngk)
(—mngkt)

(— ng k th)

py—)
by—)
(sty—)
(vy—)
(thy —)
(chy—)

[ e S ' N -5 T R % )

(tw—) 4
(gw—) 1
(thw—) 1

(tr—) 26

(dr—)
(thr—) 7
(spr—)
(—r1) 26
5 (my—)
5 (—mpt)
1 (—mt)
1 (—mts)
5 (—1lmz)
1 (—ms)
4 (sn—)
25 (—nd)
1 (—ndz)
9 {(—nst)
1 (— n zh)
2 (—nch)
1 (—1n)
5 (—mngd)
1 (—mngst)
1 (—ngz)
ty—) 1
(dy—) 1
(ny—) 4
(hy—) 1
(sy—) 1
ly—) 1
(kw—) 5
(sw—) 6

= N I = <

21

o R R
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45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

ii

e

a

uu

u

00

o

aa

i

uh

ei

ou

au

oi

i@

e@

u@

Total
(i)

Total
(e)
Total
(a)
Total

(uu)
Total
(w)

Total

(00)

Total
(o)

Total
(aa)

Total

()

@@ Total
(@@)

Total
(uh)
Total
(ei)
Total
(ou)
Total
(au)
Total
(ai)
Total
(i)
Total
(i@)
Total
(e@)
Total
(u@)

267
267
190
190
126
126
103
103
37
37
105
105
110
110
105
105
519
519
55
55
108
108
127
127
106
106
59
59
163
163
27
27
38
38
42
42
10
10

64 @ Total 967

(@)

967
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F.7 Ext08

214

72 apus, including silence. Syllable-conditioned stops only, derived from those

in ext05. Ext05’s 36 stop allophones were combined to give 29 stop allopones.

Non-stop apus are as those in stdp.

1

10

11

12

13

14

b  Total 173
(b—) 161
b2 Total 11
(br—) 11
b3 Total 28
(—b) 18
(—1b) 1
d Total 105
(d—) 105
d2 Total 10
(dr—) 8
d3  Total 149
(—4d) 101
(—md)
(—vd)
(—nzd)
d4 Total 14
(—bd) 5
(—ihd) 4
d5 Total 11
(—dz) 7
(—dst) 1
g Total 59
(g—) 83
(gy—) 1
g2 Total 15
(gr—) 15
g3 Total
(—eg
(—mnggths)
p Total 86
(p—) 86
p2 Total 26
(pr—) 26
p3 Total 15

(pl—) 13

(b1l—) 11 by—) 1
(—bd) -5 (—bz) 3
(—1bd) 1
(dw—) 1 (dy—) 1
(—1d) 8 (—nd) 21
(—ngd) 1 (—1lmd) 1
(—=zd) 4 (—dhd) 2
(—1vd) 1
(—egd) 2 (—1lbd) 1
(—1jhd) 1 (—njhd) 1
(—1dz) 2 (—ndz) 1
(g1—) 4 (gw—) 1
25
19 (—gz) 3 (—gd) 2
1
(py—) 2
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15

16

17

18

19

20

21

22

23

24

25

26

p4

p5

p6

t2

t3

t4

t5

t6

k2

Total 12
(sp—) 9°
Total 35
(—p) 35
Total 2
(—mp)
(—mpfs)
(—1lps)
(—sps)
(— p th)
Total 284
(t—) 256
Total 39
(tr—) 26
(ty—) 1
Total 142
(—t) 142
Total 77
(—nt) 25
(—sht) 3
C=1ayy 1
(—tst) 1
(—dst) 1
(—ngst) 1
(—11t) 1
Total 13
(—kt) 7
(—spt) 1
(—ngkt) 1
Total 47
(—ts) 27
(—mts) 1
(—1tst) 1
(—nts) 3
(—tths) 1
Total 135
(k—) 125
Total 17
(kr—) 15
Total 20
(kl—) 10

ky—)

3

2

[ R -~ T L

(spr—) 2
(—mpt)
(—mpst)
(—1p)
(—1lpt)

(st—) 28

(str—) 6

(sty—) 2
(—my)
(—cht)
(—1t)
(—1ltst)
(—1st)
(—mpts)
(—tht)
(—1pt) 1
(—skt) 1
(—tsh) 1
(—1t) 7
(—fts) 1
(—tth) 1

(sk—) 10

(skr—) 2

(kw—) 5

[ R -~ T - =T ]

o e e

(spl—) 1

(—ps)
(—mpts)
(—spt)
(—pst)

(tw—) 4

(—st)
(—mncht)
(—pst)
(—kst)
(—nst)

(—mpst)

(—1kt) 1
(—mpt) 1

(—tst)
(—1ts)
(—sts)
(—ntths)

e

(skw—) 2

[ S S R -

24

[ R %)
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27

28

29

30

31

32

33

k4

k5

ké

zh

jh

Total 72
(—k) 64
(—sk) 1
Total 25
(—ks) 18
(—kst) 1
Total 10
(—kt) 7
(—ngkt) 1
Total 276
(z—) 32
(—m2)

(—z4d)

Total 21
(zh—) 12
Total 77
(jh—) 40
(— n jh) 4
(—njhd) 1
Total 463
(s—) 139
(st—) 28
(str—) 6
(sty—) 2
(s1—) 4
(sn—) 1
(—ks) 18
(—sk) 1
(—tst) 1
(—ngst) 1
(—kst) 1
(—sps) 2
(—mns) 9
(—1lps) 2
(—ngks) 3
(—fts) 1
(—sts) 1
(—1fs) 2
(—tths) 1
(—mpfs) 1

(—1k) 2

(—1lks) 1
(—ngks) 3

(—1kt) 1

|

=]

(=¥

&
S B B

(—mnths)
(—nggths)
(—1fs)

(—mngk) 5

(—sks) 1
(—ngkth) 1

(—skt) 1

(—nz) 15
(—1mz) 1
(—gz) 3
(—1z) 5
(—nzd) 1
(—nzh) 2
(—ih) 24

(—1jhd) 1

o et e T B T B R R R R - T

(sp—)
(spr—)
(skw—)
(sw—)
(sm—)
(—ts)
(—st)
(—spt)
(—nst)
(—dst)
(—1tst)
(—sts)
(—1s)
(—1ks)
(—mts)
(—sps)
(— ths)
(—1ths)
(—mntths)

@ R R W

27
24

L T T o S S S S S S G S R U S
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34 sh Total 76
(sh—) 52
(—sht) 3
35 Total 68
(ch—) 35
(—cht) 2
(—1lcht) 1
36 Total 155
(v—) 55
(—v) 79
(—1lvz) 2
37 dh Total 332
(dh —) 301
(—dhz) 1
38 Total 183
f—) 107
(fy—) 3
(—ft) 4
(—mf) 3
(—1fs) 1
39 th Total
(th—)
(thw—)
(—tths)
(—nggths)
(—mnths)
(— f th)
( — m th)
40 h Total 83

h—) 82

61
18

[ e T o S O

(shr—) 1
(—tsh) 1

(chy—) 1
(—mncht) 2
(—1ch) 1

w

(vy—)
(—vd)
(—1v)

~=

(—dh) 28

(fr—) 19
(sf—)
(—fts)
(—11)
( —fth)

[

(thr—)
(— th)
(—pth)
(— ng k th)
(—1ths)
(—tht)

(hy—) 1

(—sh) 18
(—1sh) 1
(—ch) 24
(—nch) 2
(vr—) 2
(—vaz) 4
(—1vd) 1
(—dhd) 2
(f1—) 5
(—1) 31
(—1ft) 1
(—fs) 2

(—mpfs) 1

7 (thy—)
17 (— ths)
1 (—t th)
1 (—mntths)
1 (—1th)
1 ( — n th)

ST = T S Y 7 B
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41

42

43

44
45

46

47

1

m=

n

Total 341
1—) 135
kl1—) 10
(spl—) 1
(—1 98
(—1¢t) 7
(—1lkt) 1
(—14d) 8
(—1ks) 1
(—1lvz) 2
(—1lcht) 1
(—1jh) 1
(—1n) 1
(—1ft) 1
(—1s) 1
{—1ths) 1
Total 29
(=) 29
Total 284
r—) 118
(kr—) 15
(gr—) 15
(shr—) 1
(str—) 6
Total 2
Total 240
(m—) 127
(— m) 79
(—mpts) 1
(—md) 1
(—1md) 1
(—mf) 3
(—1m) 2
Total 6
(m=) 6
Total 481
(n—) 106
(—n) 278
(—nts) 3
(—mnz) 15
( — n jh) 4
(—mnzd) 1
(—nths) 1

(ly—) 1
(bl—) 11
(f1—)
(—1p)
(—1ltst)
(—1b)
(—1ps)
(—1dz)
(—1v)
(—1ch)
(—1m)
(—1mz)
(—1th)
(—1st)

BB e B = e B B = = =

(pr—) 26
(br—) 11
(fr—) 19
(vr—)

(skr—) 2

(sm—)
(— mp)
(—mpst)
(—mpfs)
(—mz)

( — m th)

(ny—)
(—nt)
(—ntths)
(—ns)
(—njhd)
(—ncht)
( — n th)

L S = TR = N 7 S ¥

(pl—)
(g1—)
(s1—)
(—1pt)
(—1k)
(—1bd)
(—1ts)
(—12)
(—1va)
(—1jhd)
(—1mad)
(—11)
(—1sh)
(—1fs)

(tr—) 26
(dr—) 8
(thr—) 7
(spr—) 2
(—r) 26

(my—)
(—mpt)
(—mt)
(—mts)
(—1mz)

(—ms)

(sn—)
(—mnd)
(—ndz)
(—nst)
(—mnzh)
(—mnch)
(—1n)

o
w

7 T R R < S R T - T " - -
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21
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48

49

50

51

52

53

54

55

56

57

58

59

61

62

63

64

n= Total 34

(n=) 34
ng Total
(—ng)
(—ngks)
(—nggths)
y Total 72
= 42
ky—) 3
(gy—) 1
(my—) 2
(Ey=—) 3
(hy—) 2
w  Total 211
(w—) 191
(dw—)
(skw—)
i Total 267
(i) 267
e Total 190
(e) 190
a Total 126
(a) 126
uu Total 103
(uu) 103
u Total 37
(u) 37
oo Total 105
(00) 105
o Total 110
(0) 110
aa Total 105
(aa) 105
i Total 519
(i) 519
@@ Total 55
(@@) 55
uh Total 108
(uh) 108
ei Total 127
(ei) 127

ou Total 106
(ou) 106

(—ngk)
(—ngkt)
( — ng k th)

(py—)
(by—)
(sty—)
(vy—)
(thy —)
(chy—)

o WO =

(tw—) 4

(gw—) 1
(thw—) 1

5 (—ngd)
1 (—mngst)
1 (—ngz)
(ty—) 1
(dy—) 1
ny—) 4
(hy—) 1
(sy—) 1
ly—) 1
(kw—) 5
(sw—) 6

1
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65 au Total 59

(au) 59
66 ai Total 163
(ai) 163
67 oi Total 27
(oi) 27
68 i@ Total 38
(i@) 38
69 e@ Total 42
(e@) 42
70 u@ Total 10
(u@) 10

71 @ Total 967
(@) 967



