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Abstract

Significant progress has been made in the development of wave energy converters (WECs)
during recent years, with prototypes and farms of WECs being installed in different parts of the
world. With increasing sizes of individual WECs and farms, it becomes necessary to consider
the impacts of connecting these to the electricity network and to investigate means by which
these impacts may be mitigated. The time-varying and the unpredictable nature of the power
generated from wave power farms supplemented by the weak networks to which most of these
farms will be connected to, makes the question of integrating a large quantity ofwave power to
the network more challenging.

The work reported here focuses on the fluctuations in the rms-voltage introduced by the connec-
tion of wave power farms. Two means to reduce these rms-voltage fluctuations are proposed.
In the first method, the physical placement of the WECs within a farm is selected prior to the
development of the farm to reduce the fluctuations in the net real power generated. It is shown
that spacing the WECs or the line of WECs within a farm at a distance greater than half the
peak wavelength and orienting the farm at 90◦ to the dominant wave direction produces a much
smoother power output. The appropriateness of the following conclusionshas been tested and
proven for a wave power farm developed off the Outer Hebrides, using real wave field and
network data.

The second method uses intelligent reactive power control algorithms, which have already been
tested with wind and hydro power systems, to reduce voltage fluctuations. Theapplication of
these intelligent control methods to a 6 MW wave power farm connected to a realistic UK dis-
tribution network verified that these approaches improve the voltage profileof the distribution
network and help the connection of larger farms to the network, without any need for network
management or upgrades. Using these control methods ensured the connection of the wave
power farm to the network for longer than when the conventional controlmethods are used,
which is economically beneficial for the wave power farm developer.

The use of such intelligent voltage - reactive power (volt/VAr) control methods with the wave
power farm significantly affects the operation of other onshore voltage control devices found
prior to the connection of the farm. Thus, it is essential that the control of the farm and the
onshore control devices are coordinated. A voltage estimation method, whichuses a one-step-
ahead demand predictor, is used to sense the voltage downstream of the substation at the bus
where the farm is connected. The estimator uses only measurements made at the substation
and historical demand data. The estimation method is applied to identify the operating mode
of a wave power farm connected to a generic 11 kV distribution network in the UK from the
upstream substation. The developed method introduced an additional levelof control and can
be used at rural substations to optimise the operation of the network, withoutany new addition
of measuring devices or communication means.
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Chapter 1
Introduction

1.1 Research background

The ambitious carbon dioxide emission reduction targets set in the UK and the world have

given impetus to developments in renewable energy sources [1, 2]. Of thedifferent renewable

energy options being considered, wind energy conversion has come ofage and is presently

considered a mainstream power technology [3]. The world today has an installed wind capacity

of approximately 196 GW out of which nearly 50% is in Europe [4]. Large offshore wind

farms have been constructed, and considering the opposition to land based wind power in many

developed countries, might take an increasingly important role in the future [5]. Based on

current interest, solar generation comes second after wind even with the relatively higher costs

associated with the manufacture of solar cells. The US, Germany, Japan and Spain are the

leading countries in solar energy and have expanded their solar power generation capacity over

the last few years [6]. Hydro-power is the oldest and the largest renewable source used for

power generation. However, there is considerable opposition to the construction of new large

hydro-power plants with increasing environmental awareness. There are other less widely used

renewable energy options used today, details of which are available in [7].

Generating energy from waves and tides are two options that have been considered and steady

progress has been made in the last few years [8, 9]. In the case of wave energy, the western

coast of Europe, the Pacific coastlines of North and South America, Southern Africa, Australia

and New Zealand have significant wave resource. A large number of wave and tidal energy

devices have been developed and tested. At present there are full scale prototype wave and tidal

energy devices deployed in Europe, both singly and as farms [10, 11].

In the UK, the best wave resource is found off the northern and the western coasts of Scotland

[12]. These are remote, rural areas where the electrical loads are lowand the electricity distribu-

tion network is weak. The low capacity, low and medium voltage electricity networks in these

areas were originally designed to distribute electricity generated from central power stations to
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rural areas. When the direction of the power flow reverses, with the addition of distributed gen-

erators (DG) in these networks, issues arise. Even with only a relatively small increase in the

output from the connected generators, large voltage fluctuations are seen which are attributed

to the low reactance to resistance ratio at the edges of the distribution network. The varying

and unpredictable nature of the ocean waves further adds to the challenge of integrating large

wave power farms to the network. Some of the network issues and constraints associated with

an increase in renewable energy penetration into the network act as impediments to the growth

of this sector. Work has been completed to overcome some of these issues mainly with respect

to the more prevalent wind generators. Though some parallels may be drawn, the effects of

connecting large wave power farms to the network need to be studied further. The power gener-

ated from ocean waves has several useful characteristics, different from that generated by wind

power farms, which can be used advantageously.

1.2 SuperGen Marine project

The work reported in this thesis was a part of the research performed bythe SuperGen Marine

Energy Research Consortium (Phase II). The Marine Energy Consortium is supported by the

UK Engineering and Physical Sciences Research Council and was brought together to explore

the potential and the future of marine energy. Phase I of the project (October 2003 - September

2007) aimed at improving the understanding of the extraction of energy from the sea and reduc-

ing the uncertainty in the development and deployment of marine technology soas to enable

the progression of marine energy as a viable alternative for power production [13].

Phase II of the program (October 2007 - September 2011) built on the research completed in

Phase I and included work on arrays of devices, nonlinear modelling, design of devices, numeri-

cal and physical model consistency, moorings, etc. The objectives were divided among 12 Work

Streams of which this project is a part of Work Stream 7 titled “Advanced control/Network in-

tegration”. This Work Stream follows from the work completed in the work package 4 of Phase

I in which a wave-to-wire model of an array of non-interacting wave energy converters (WECs)

was built. The objectives of the Work Stream 7 of Phase II, as stated in the project proposal,

were the following:

1. Development of a non-linear wave model

2. Study of the effects of different degrees of wave non-linearity on response of a generic

WEC model
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3. Creation of a scheme for analysis and synthesis of non-stationary waves in wave energy

conversion

4. Study on short-term prediction of waves for optimised MEC control and energy capture

5. Study on the interaction between different modes of response of WECs

6. Development of predictive/adaptive/evolving control of MECs to mitigate resource non-

stationarity

7. Development of structured MEC array control schemes including supervised, autonomous

and master-slave control

8. Simulation and exploration of the electricity network impacts and their mitigation through

advanced MEC and network control

The collaborators in the Work Stream, spread across the University of Edinburgh, the Heriot-

Watt University and the Lancaster University, shared these tasks. Thisthesis deals mainly with

tasks 7 and 8 in the list. The group at Heriot-Watt University has been working on the prediction

of waves, the modelling of non-linear waves and the influence of moorings onthe power from

WECs. The group at Lancaster University has been developing methodsto control the WECs

hydrodynamics for improved performance. A colleague, Dr. David Forehand, at the University

of Edinburgh has built a time domain model of arrays of WECs taking into account all the

interactions between the individual WECs.

1.3 Thesis

The thesis of the work was that: appropriately placing the wave energy converters within a wave

power farm and the use of intelligent voltage and reactive power controlalgorithms applied

to the farm should significantly reduce the voltage fluctuations introduced in the electricity

network by the farm and help keep the network voltage within statutory limits. Further, means

to coordinate the control of the wave power farm and the other voltage control elements in the

distribution network can be devised to ensure that they complement each otherand improve

network operation.

1.4 Project objectives and scope

The key project objectives were as follows:
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• Develop the wave-to-wire model built in Phase I

• Investigate the effects of farm size and physical placement of WECs onthe quality of the

power generated

• Analyse effects of connecting wave power farms to weak, rural distribution network

• Develop means to mitigate these negative effects

• Compare the performance of the control options suggested

• Study the effects of using these control algorithms on other control elements in the net-

work

• Look at means to overcome some of the negative effects of the interaction between the

control elements

• Develop a new modelling framework to model wave power farms using systemidentifi-

cation

1.5 Contribution to knowledge and deliverables

Generally, the rationale behind the application of any control algorithm on a WEC is to max-

imise power extraction. The inherent quality of the power generated, whichhas a direct in-

fluence on voltage quality in the electricity network, is not considered very significant. The

main objective of this work was to explore the impacts on voltage quality of connecting farms

of WECs to weak, rural electricity networks. The term ‘voltage quality’ usually covers many

different voltage characteristics. In this work, though, voltage quality refers purely to fluctua-

tions in the rms-voltage magnitude. Much of the work performed was about quantifying and

minimising these effects. Means to improve the quality of the power generated from small and

large wave power farms were studied through mainly two pieces of work. The first examined

how the size of the farm, location and wave field characteristics at the site of the farm and

the spacing and the orientation of the WECs within a farm can be advantageously used for

smoothing power. The second investigated how further smoothing in the network voltage can

be obtained through the dispatch of reactive power from the Doubly-FedInduction Generators

(DFIGs) used in the farm. Intelligent controllers for primary voltage control were tested for

this purpose. Indices to compare the performance of these methods were also suggested. The

effects of the primary control method used in the farm on other voltage control elements in the
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network were evaluated and a technique using voltage estimation was proposed to overcome

these. A new modelling framework to model wave power farms using system identification was

also built, which allows accurate and fast simulations without losing the time-resolution of the

detailed dynamic model.

These are the main deliverables from this research:

• System identified wave-to-wire model of wave power farms - System identified models

significantly improve the simulation speed when compared to the detailed physicalmod-

els, without losing the accuracy of the detailed models. Such models become important

when the number of devices in the wave power farm increases and longersimulation runs

are required.

• Establishment of ways to optimise the layout of wave power farms for powersmoothing -

Some power smoothing and voltage quality improvement will be obtained by optimising

the layout of the WECs within a farm, making use of the spatially sinusoidal and the

directional nature of the wave field.

• Intelligent electrical control options for wave power farm - These intelligent voltage/power

factor controllers further improve the voltage quality and ensure that the voltage remains

within the allowed limits. This in turn ensures the connectivity of the farm to the network

for longer, thus, increasing production.

• Voltage estimation technique for coordinating control of two control elementsin distribu-

tion networks - The intelligent controllers of the wave power farm may interact negatively

with already present voltage controllers in the network. The operation of the distribution

network can be optimised by coordinating both the controllers, using voltage estimation

techniques.

• Indices to quantify fluctuations in the rms-voltage magnitude - These indices can be used

to quantify and compare the different voltage/power factor controllers and coordination

means.

1.6 Thesis outline

This chapter was the introduction to the scope of this project and the results that will be dis-

cussed further in the thesis. The literature review has been distributed through out the thesis and
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all relevant literature have been cited in appropriate sections. Therefore, there is no separate

chapter discussing all the relevant literature.

Chapter 2 describes the wave-to-wire model of the wave power farm used for generating the

results in this work.

The system identified (SI) model of the wave power farm is presented in Chapter 3. Results

of the comparative study performed between the SI model and the detailed model are also

discussed in this chapter.

Chapter 4 examines the smoothing in the real power generated by differentarray layouts. Ef-

fects of increasing the array size on the quality of the power generated are discussed. Whether

appropriately spacing the WECs within the array and orienting the array hasany affect on power

smoothing is presented in this chapter.

Further smoothing control through the use of power electronic converters and intelligent control

options is dealt with in Chapter 5.

Chapter 6 investigates the effects of using the intelligent controllers with the wave power farm

on the substation on-load tap changing transformer. A method using neuralnetworks to estimate

the voltage at the bus where the farm is connected from the upstream substation is described.

An application of the developed estimation method in identifying the operating mode of the

farm is also described in this chapter.

Indices to quantify voltage fluctuations have been reviewed and the resultsand inferences are

presented in Chapter 7.

Chapter 8 summarises the work reported in this thesis and discusses the scope for further re-

search.
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Chapter 2
Modelling wave power farms - Part I

2.1 Introduction

In order to study the electricity network impacts of connecting large wave power farms, a time

domain model of the farm is required. In this chapter, the model of the wave power farm

developed is described. The model has been developed in MATLAB/Simulinkbecause of their

acceptance and widespread use in both academic and industrial communities.

For developing a discrete-time model, two aspects define the model’s performance - the order

of the model and the simulation time-step. Selecting a high order may not producea marked

improvement in the model performance, but the simulation time increases. On the other hand,

inaccurate results are produced when a low order model is used. Sub-transient simulations

require time-steps less than 1 ms (even less than 1µs at times), while dynamic/transient simu-

lations require time-steps of approximately 10 ms. For fundamental frequency simulations of

the power system, dynamic/transient model are sufficient. Since this work aimsat analysing the

effects of connecting wave power farms on the network voltage magnitude,a dynamic model

has been used. A power flow solver written in MATLAB [14] has been used with the dynamic

model to study the network impacts of connecting wave power farms. The model accurately

reproduces the responses of both the electrical and the mechanical control of the wave energy

converters (WECs) and also correctly captures the effects of the variable input power.

A WEC constrained to move in heave has been modelled for this work. Since a modular

approach has been used in the wave-to-wire model, the WEC block alone maybe replaced

for modelling some other WEC type moving in surge or a combination. For example, this

block may be replaced by the array model developed by Dr. David Forehand, a researcher in

the SuperGen Marine II consortium, which also incorporates the hydrodynamic interactions

of the WECs within the array [15]. A doubly-fed induction generator driven by a hydraulic

power take-off system has been selected for use in this work. The generator in the wave-

to-wire model may also be replaced by other generator types because the model is modular.

7
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The control methods investigated for controlling the generator (see Chapter 5) may be applied

with any generator type connected to the network through back-to-back pulse width modulated

(PWM) converters.

A significant part of the wave-to-wire model was developed by Dr. Aristides Kiprakis during

his tenure as a researcher in the SuperGen Marine I consortium. Significant changes have been

made to make the model closer to reality.

This chapter describes in detail the wave-to-wire model that has been used for this work. For

the analysis of the electrical network impacts over longer durations without aloss in time-

resolution, a Nonlinear AutoRegressive eXogenous (NARX) model of the wave power farm

has been developed and is the subject of the second part of this chapter(Chapter 3). The

performance of both the detailed model and the NARX model has been compared and the

results are discussed there. The developed NARX model allows the use ofpersonal computers

to run simulations of large wave power farms over extended durations extremely quickly.

2.2 Modelling the wave resource

The primary input to the wave-to-wire model of the wave power farm is the time-series of wave

surface elevations at each location where a WEC is placed in the wave field.The time-series

can come directly from buoy measurements or can be generated using spectral representations

obtained from an analysis of the historical sea state at the location. Using spectral representa-

tions of the sea assumes that the sea may be represented linearly and that thesea is stationary.

The former is valid for small amplitude waves and when the WECs are placed in deep wa-

ter and when they are working under normal operating conditions. However, the latter is not

a valid assumption because the sea state varies continually with time and thus is inherently

non-stationary. Therefore, a model of the wave resource which represents the irregularity, the

non-stationarity and the directionality of ocean waves is required.

2.2.1 Sea spectra for synthesising irregular waves

In this work, the sea surface motions have been generated using spectral representations of the

sea. The wave energy density spectrum gives the distribution of the energy content of the waves

with frequency. These are suitable for long-crested seas for which thedirectional aspect can

be ignored. Spectral representations of the sea can be used to predictthe frequency response

of different structures in the sea. The power generated by a WEC can also be calculated using

8
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the spectrum of the sea and the frequency response of the WEC. Theseprocedures constitute a

frequency domain approach of modelling structures in the sea.

The appropriate application of spectral moments of the spectrum yields different parameters

which are used to characterise sea states. Of particular interest to wave energy developers are

the significant wave heightHs and the mean time periodT1. Most commonly used spectra are

functions of these parameters. The significant wave heightHs is defined as the average height

of the highest1/3rd of the waves over the time period under consideration [16]. The significant

wave height may also be calculated from the0th spectral moment of the sea spectrum, where the

kth spectral moment is given bymk =
∫

∞

0
ωkE(ω)dω. In this expression,ω is the frequency

andE(ω) is the energy density function. The significant wave height in terms of the0th moment

isHs = 4
√
m0. The mean wave periodT1 given by2πm0/m1, wherem1 is the first moment.

It is the inverse of the average frequency of the spectrum and cannotbe obtained from a wave

elevation time-series. Another commonly used time period measurement is the average zero-

up-crossing wave periodTz given by2π(m0/m2)
0.5, wherem2 is the second moment.Tz can

be calculated from a time-series of wave elevations by dividing the record length by the number

of waves in the record.

The Pierson-Moskowitz (PM) spectrum - for fully developed seas [17], the JONSWAP spec-

trum - for seas with a limited fetch [18] and the Bretschneider spectrum - foropen seas, are

some of the commonly used spectral representations of seas. The large fetch across the At-

lantic Ocean makes the Bretschneider spectrum suitable for use for modellingseas off the north

and north west coasts of Scotland. The two parameter Bretschneider spectrum has been used in

this work. The spectrum in terms of the significant wave heightHs and the mean wave period

T1 is given by [19]:

E(f, t) = 0.11H2
s T1 (T1f)−5 exp[−0.443/(T1 f)4], (2.1)

wheref is the frequency in Hertz,Hs is in metres andT1 in seconds. The spectra for four

differentHs, T1 pairs are plotted in Figure 2.1. Typical values ofHs andT1 found in the seas

off the Outer Hebrides have been obtained from the Wavenet database [20] and have been used

for simulating the wave power farm in this work. A statistical analysis of the distribution of the

energy content in the sea and the directional spreading of the sea foundat this site is discussed

in Chapter 4.
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Figure 2.1: Bretschneider spectra for fourHs, Tz pairs.

2.2.2 Modelling multi-directional waves

Short-crested seas are multi-directional and cannot be wholly represented by the spectrum

shown in Equation (2.1). Real seas generally have a dominant direction and an angular spread

about the dominant direction. The larger the spread, the more short-crested the wave becomes.

The directional aspect of the short-crested seas has been modelled using the following two-

dimensional spectrum [21]:

E(f, θ, t) = E(f, t)D(f, θ) (2.2)

whereE(f, t) is the one-dimensional spectral density function (from Equation (2.1)) andD(f, θ)

is the angular spreading function. In this work, the hyperbolic-secant-squared spreading func-

tion has been used since it better represents wind-waves [22]. The function is defined by:

D(f, θ) = 0.5βsech2β[θ − θm(f)], (2.3)

where

β =















2.61(f/fpeak)
13 if 0.56 < (f/fpeak) < 0.95

2.28(f/fpeak)
−13 if 0.95 < (f/fpeak) < 1.6

1.24 if (f/fpeak) > 1.6

(2.4)

andθm is the mean wave direction of the wave with frequencyf . This spreading function is

narrower than the commonly used cosine squared spreading function, which means that the
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wave field generated will have longer crest lengths. Owing to the large fetch across the North

Atlantic ocean, the north west coast of Scotland will see wind generated waves of this nature

[23]. Figure 2.2 shows the directional spreading functions for three frequenciesf , with the

peak frequencyfpeak = 0.1180 Hz (corresponding to a sea state withTz = 6 s).

Figure 2.2: Hyperbolic-secant-squared spreading function for three frequencies.

2.2.3 Computing the wave elevation time-series from the spectrum

Once the two-dimensional spectrum is computed, the time-series of the wave elevation has to be

constructed from it. Assuming wave linearity, the Inverse Discrete FourierTransform (IDFT)

has been used for this purpose. The wave elevation at an instant of time has been obtained from

[24]:

ξ =
J

∑

j=1

K
∑

k=1

Aj,k sin(2πfjt − kj x cosθk − kj y sinθk + φj,k), (2.5)

whereAj,k = (E(fj , θk, t)2π∆fj∆θk)
0.5 is the wave amplitude,(x, y) denotes the position

coordinates in the wave field andkj , fj , φjk, andθk respectively denote the wave number,

frequency, the random phase component and the angular spread of wave componentjk. The

random phase componentφjk is uniformly distributed between 0 and2π. The wave numberkj

has been obtained from the deep water dispersion relation:ω2
j = gkj , whereg = 9.81m/s2 is

the acceleration due to gravity.
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2.2.4 Modelling non-stationary wave elevation time-series

The statistical characteristics of the sea state such asHs andT1 are generally averaged over time

intervals between 20 minutes and 1 hour. Wave buoys used to collect wave data usually record

only these average values. The sea state is considered to be stationary between two records.

In this work, the parameters of the sea state in between two wave records have been obtained

through interpolation and thus the stationary spectrum (in Equation (2.1)) has been used for

non-stationary wave generation. Figure 2.3 shows the energy density spectrum varying over a

day at a site off the north west coast of Scotland.

Figure 2.3: Energy density spectrum over a day.

Some of the simulations in the thesis which have been run for less than 10 minutes,have used

irregular waves generated using constantHs andT1 values. When such simulations are run,

due to the discrete nature of the time-series generated, a cyclic repetition in thewave elevation

will be observed with a period of2π/(∆ω) = 1/(∆f). This cyclic repetition has been avoided

by altering the phase angleφjk by a small value for every frequency at each time step.

2.2.5 Modelling the wave resource for shallow waters

The modelling procedure described until now assumes that the wave elevation time-series are

being generated for the deep-water case, where the depth is greater thanλpeak/4, whereλpeak is

the peak wavelength [19]. Mooring and maintenance requirements currently force the deploy-

ment of WECs closer to the shore where the mean water depth is between 30 and 50 metres.

This is the case especially for WECs using heave motion to generate power [25], which have
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been considered in this thesis. For use in shallow waters, the spectrum described in Equation

(2.1) needs to be modified.

The similarity of the wind-wave spectrum for deep and shallow waters was established in [26].

The multiplication of the spectrum in Equation (2.1) by the depth dependent Kitaigordskii’s

factor makes it suitable for use in shallow water [27]. The modified spectrumthus becomes,

E(f,H, t) = E(f, t).Φ(f∗, H), (2.6)

whereE(f, t) is the energy spectrum density defined in Equation (2.1),Φ(f∗, H) is the non-

dimensional Kitaigordskii’s factor,f∗ is the non-dimensional frequency given byf∗ = f(H/g)0.5

andH is the mean water depth. The relationship between the Kitaigordskii’s factor and the

non-dimensional frequency is shown in Figure 2.4.

Figure 2.4: The Kitaigordskii’s factor versus non-dimensional frequency.

The similarity in the deep water and the shallow water spectrum was identified forthe limited-

fetch JONSWAP spectrum in [28]. The same procedure has been followed in this work to

obtain the shallow water spectrum from the deep water Bretschneider spectrum. This is possible

because the Bretschneider spectrum is the more generalized form of the JONSWAP spectrum

without the peak enhancement function [19, 29]. The shallow water spectra for Hs = 7.16

m andTz = 9.82 s for different depths are shown in Figure 2.5. The energy content in the

sea, which is measured by the area under the spectrum, reduces with a decrease in depth.

This occurs due to an increase in the energy losses due to enhanced dissipation in shallow
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water. To calculate the wave number for the shallow water case the more generalised form of

the dispersion relationω2
i = gki tanh(kiH) is used. To solve forki from this relation, the

Newton-Raphson method has been used in this work [30].

Figure 2.5: Self similar Bretschneider spectra with the same parameters for different water
depthsH.

Once the deep water spectrum is modified for use in shallow water, the wave elevation time-

series can be obtained by replacingE(f, t) with E(f,H, t) in Equation (2.5). Figure 2.6 shows

a sample of the wave elevation time-series generated for a sea withHs = 4 m andTz = 6 s.

2.2.6 Comment on wave linearity

The linearity assumption places constraints on theHs andT1 values that can be used for gen-

erating the wave elevation time-series. Waves with large amplitudes and steepnesses cannot be

treated as linear waves [31]. When the waves are steep they tend to break. Breaking is said to

occur in irregular waves when the steepness ratio of the wave(h/L) is greater than 1/9, whereh

is the wave height andL is the wavelength of the wave [29]. Statistical moments like skewness

and kurtosis have also been used to measure wave linearity [31]. A large number of steepness

coefficients that can be used to measure wave linearity like the down-crossing steepness, front

steepness, crest-back steepness, etc., were described in [32]. In this work, extreme and freak

waves have not been considered and only those waves which can be treated as linear have been

used. It must also be noted that in this work end-stops have been used, which ensures that the
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Figure 2.6: Wave elevation time-series.

motion of the WECs irrespective of the sea state used is still a linear problem.

2.3 Time domain wave energy converter model

Different types of WECs have been developed which use different methods to capture the en-

ergy of the waves. WECs can either be point absorbers or buoys [25,33, 34], attenuator devices

[10, 35], terminator devices, Oscillating Water Column devices [36], or overtopping devices

[37–39]. A review of the different technologies was discussed in [8].A list of all the WEC

manufacturers (numbering around 150) and the devices that they have developed is given in

[40].

For this work, the focus has been on point absorber type WECs. The modelled WEC is a

semi-submerged, vertical, cylindrical buoy like the one described in [41].It has a radius of 3.3

m and a draft of 3.1 m. All the simulation work in this thesis has been performed for WECs

constrained to move in heave. The power rating of the modelled WEC has beenset at 125 kW

which is representative of prototypes under test in various parts of the world today [25, 42, 43].

As a part of the Work Stream 7 of the SuperGen Marine phase II, Dr. David Forehand has

developed a model of an array of WECs which is completely generalised [15].
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2.3.1 Equation of motion

By Newton’s second law, the sum of all the forces acting on a body accelerates the body in

the same direction as the net force and this acceleration is proportional to theforce applied and

inversely proportional to the mass of the body. Thus,F = ma, whereF anda are vectors.

Figure 2.7 shows the free body diagram of a heaving WEC. The equation of motion of the

WEC can be represented by

fe − floss − fr − fs − fpto − fes = ma, (2.7)

wherefe is the wave excitation force,floss is the net force due to energy losses,fr is the wave

radiation force,fs is the spring force,fpto is the force provided by the power take-off andfes

is the force due to the operation of the end-stops.

Figure 2.7: Free body diagram of a WEC in heave.

The excitation forcefe has two components - one due to the undisturbed incident wave when

the body is kept fixed such that there are no radiated waves and the second due to the diffracted

waves [44, 45]. The diffraction force causes the change in direction (or diffraction) of the in-

coming waves. The non-causal relationship between the wave elevation and the excitation force

[46] is defined by:fe(t) = w(t) ∗ ξ(t), where∗ denotes convolution.w(t) is the convolution

kernel, also called the impulse response function for the excitation force. The excitation im-

pulse response function for a cylindrical buoy is shown in Figure 2.8 [44]. The scales are non-

dimensionalised, which means that the units associated with the variables have been removed

completely by appropriate variable substitutions. The non-dimensionalised functions need to

be dimensionalised using the radius of the cylindrical buoy to obtain the impulse response func-

tion for buoys of different dimensions. The non-dimensionalised functionvaries with change

in the radius to draft ratio and the water depth to radius ratio. Since the impulse response func-

tion is defined for all non-dimensional time from -10 to 10, it means that for computing the

convolution both past and future values of the wave elevation are required (non-causal).

The spring forcefs has contributions from the buoyancy of the buoy and from other means of
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Figure 2.8: Impulse response function for excitation force of a cylindrical buoy.

reaction (provided by moorings and other mechanical springs). In this work, the spring force

provided by the buoyancy of the buoy alone has been considered. Thebuoyancy spring stiffness

k = ρgπr2, whereρ is the density of sea water,g is the acceleration due to gravity andr is the

radius of the cylindrical buoy.

It has been assumed here that each WEC reacts against the sea floor through a taut mooring

cable. The horizontal component of the force acting on the WEC is therefore small and has

been ignored. [47] shows the effects on the heave motion of similarly modelledWECs with and

without moorings. It was shown that the effects of the mooring is not significant for the mooring

option chosen in this work. A study of different mooring configurations and attachment points

showed that for some configurations, no significant changes to the energy extraction spectrum

of point absorbers moving in heave, surge and pitch will be seen, when compared to the case

where the buoys were placed in the sea without moorings [48].

When the body is made to oscillate without any incident wave, the body radiateswaves. The

force acting on the oscillating body due to the waves it radiates is the radiation force. In the

frequency domain, the radiation force is defined byFr(ω) = [B(ω) + iωM(ω)]U(ω), where

B(ω) is the radiation damping andM(ω) is the added mass [49]. Taking the inverse Fourier

transform of the radiation force in the frequency domain, gives the expression for the radiation

force in the time domain, which is:

fr(t) = µ∞a(t) +

∫ t

0

K(τ)u(t− τ) dτ (2.8)
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The first term in the equation represents the added mass at infinite frequency. The second

term depends on past values of velocity. The kernel of the convolution integralK(τ) is called

the impulse response function for the radiation force. Figure 2.9 shows theradiation impulse

response function for a cylindrical buoy. Like the impulse response function for the excitation

force, the impulse response function for the radiation force also depends on the radius to depth

ratio and the radius to draft ratio.

Figure 2.9: Impulse response function for radiation force of a cylindrical buoy.

The power take-off (PTO) forcefPTO is the force on the WEC due to the PTO system. The

PTO system for the modelled WEC is explained in detail in the next section. In thiswork, only

real control of the WEC has been performed, wherein the PTO damping coefficientbpto alone

is available for control [45]. The net force due to energy losses has been incorporated as an

additional damping (represented byfloss in Figure 2.7).

End-stops are required to limit the stroke length of the piston [50] (see Figure 2.14). In this

work, the end-stops have been modelled as an additional spring-damper at both the top and

bottom of the piston [41]. The end-stop device helps decelerate the piston’s motion and reduces

the possibility of mechanical damage to the cylinder. The modelled WEC has a draft of 3.1 m

and therefore a limiting displacement of 2 m has been chosen. The end-stopforce has been

modelled as:

fes =







0 if z(t) < the limiting displacement

besż(t) + kesz(t) if z(t) >= the limiting displacement
(2.9)
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wherebes andkes are the damping and the stiffness coefficients of the end-stop. Figure 2.10

shows the effects of having end-stops on the displacement and velocity ofa heaving WEC

modelled in a stationary but irregular sea state withHs = 6 m andTz = 10 s. The use of end-

stops almost acts like a limit placed on the displacement and hence the velocity of the WEC.

The end-stop force is also shown in the figure, which exists only when the displacement of the

WEC exceeds the 2 m limit. The damping and stiffness of the end-stops have been set to be ten

times the damping coefficient of the PTO and the buoyancy stiffness respectively.

Figure 2.10: The effects of using end-stops.

Substituting the different forces into the equation of motion of the WEC (Equation(2.7)), the

linear hydrodynamic model of the WEC can be represented by the following integro-differential

equation [51]:

fex(t) = (M + µ∞) z̈(t) +

∫ t

0

ż(τ)K(t− τ)dτ + b ż(t) + k z(t), (2.10)

whereM is the mass of the buoy,µ∞ is the added mass at infinite frequency,z(t) is the vertical

displacement of the buoy,K(t) is the impulse response function for radiation force also called

the radiation kernel,b is the damping coefficient,k is the stiffness of the system andfex(t) is

the excitation force. In the equation, the damping coefficientb includes the damping introduced

by the PTO, the damping representing the energy losses and that introduced by the end-stops.

Similarly, the stiffness coefficientk in the equation includes both the buoyancy of the WEC and

the spring component of the end-stops. Figure 2.11 shows the displacement and the velocity of

a WEC generated using Equation (2.10).
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Figure 2.11: The (a) wave elevation (m), (b) WEC displacement (m), (c) WEC velocity(m/s)
and (d) the raw mechanical power extracted by the WEC (kW) for a sea state with
Hs = 2 m andTz = 6 s.

2.3.2 Other approaches for modelling WECs

WECs may also be modelled in the frequency domain. In the frequency domain approach, two

important quantities in the equation of motion are the added mass and the radiation damping,

which respectively replaceµ∞ and the radiation kernelK(t) in the time domain (Equation

(2.10)). These coefficients and their variation with frequency can be obtained from commer-

cially available software like WAMIT [52]. Literature also points to analytical functions for

calculating the added mass and the damping coefficients for buoys moving in heave and in the

other degrees of freedom [53, 54]. For the long-wave approximation,simple analytical means

have been established to determine the frequency domain coefficients [55].

Since the time domain equation of motion of the buoy has been used in this work, nofurther

analysis of the frequency domain added mass and radiation damping has been performed. Some

of the contemporary literature [56–58] treats the modelling of heaving buoyssimilar to what has

been followed in this work. The methods used in these papers to formulate the kernel function

vary. In all these publications the WEC was essentially analysed as a mass-spring-damper

system.
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2.4 Power take-off model

2.4.1 Damping coefficient for optimal control

As mentioned in the preceding section, the PTO imposes a reaction force on theWEC, which

has been modelled byfpto(t) = bptoż(t). The instantaneous power given by the WEC has been

modelled byPpto(t) = bpto(ż(t))
2 as given in [57]. Since only real control of the PTO has

been performed here, the PTO force is always in phase with the velocity.

The value for the PTO damping is selected for maximising the power extraction bythe WEC.

A detailed description of the various PTO control methods and the associatedimpedances (in

the frequency domain) was presented in [45]. An analytical expressionfor the optimalbpto

required to maximise power extraction was also derived. In this work a similar procedure has

been followed, wherein for a particular peak time period a range of valuesfor bpto have been

iteratively tested and the one that produces the maximum power extraction waschosen.

Figure 2.12 shows the average raw mechanical power extracted over 600 seconds for different

values of the PTO damping coefficient when a WEC is excited by sea states withdifferent peak

time periods. For the two sea states with a peak frequency of 0.7414 rad/s, it isseen that the

optimal value of the damping coefficient is approximately 40 kNs/m. For the sea states with

peak frequencies of 1.1184 rad/s and 0.5592 rad/s, the optimalbpto values are 14 kNs/m and

80 kNs/m respectively. From these results it becomes clear that when the sea is non-stationary

the value of the damping coefficient has to be tuned continuously for maximisingthe power

extraction. In this work, the damping coefficient has been pre-calculatedbefore simulation

runs are performed. In the case of stationary seas this is permissible. Fornon-stationary seas,

the peak frequency is seen to lie within a small band of frequencies (see Figure 2.3). In such

simulations, the damping coefficient has been calculated based on the average peak frequency

seen during the entire period.

The raw mechanical power extracted when using sub-optimal damping coefficients is shown

in Figure 2.13. This is for the sea state withHs = 4 m andTz = 6 s for which the optimal

damping coefficient calculated is 40 kNs/m. It is seen that for the optimal damping case the

power extracted is higher than when sub-optimal values are used for the damping coefficient.

There are certain periods (e.g. between 235 and 236 seconds) when the sub-optimal damping

coefficient gives a higher instantaneous raw mechanical power (Pwec). This is attributed to the
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fact that the sea state is a mixture of waves with different time periods. Powerextraction will

be the highest only when the wave period is close to the period to which the WECis tuned.

Figure 2.12: Selection of the PTO damping coefficient for different sea states.

2.4.2 Other approaches for controlling WECs

To maximise the power extracted by the WEC, the excitation force and the velocityof the

WEC have to be in phase [59]. For this, the frequency of the WEC has to beequal to the

peak frequency of the sea spectrum. The effects of tuning the WEC frequency to the energy

frequency, peak frequency and weighted average of several peak frequencies were tested and

compared in [57]. In that publication it was shown that tuning the WEC to the peak frequency of

the sea spectrum results in the maximum mean captured power. Latching is another method in

which the oscillating body is alternatively locked and released so that the body heaves in phase

with the excitation force [60]. This method requires additional mechanical elements which will

have to deal with extreme stresses when operating.

When using reactive power control of the WEC, an additional variable stiffnesskpto is intro-

duced in the PTO. The aim is to tune the two PTO coefficientsbpto andkpto such that the

excitation force and the velocity are always in phase. The stochastic nature of the sea may

require an adaptive control system which continuously seeksbpto andkpto. For doing so, pre-

diction of the wave climate may be required. The SuperGen Marine Energy Consortium has

a research group in Work Stream 7 at the Heriot Watt University investigating how the wave
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Figure 2.13: Raw mechanical power extracted from the sea for different PTO damping coeffi-
cientsbpto.

climate may be predicted, which is an invaluable input for controlling WECs. TheSuperGen

Marine research group at Lancaster University, which is also a part of WS7, explored how

the different control system set points and target values can be decided and how they can be

maintained to maximise yield.

2.4.3 Physical modelling of the PTO

The PTO system converts the power available in the heaving WEC to a suitable form for driving

the generator. There are mainly two options being used by WEC developerstoday. The first

one is the linear generator based direct drive system [61, 62]. Different linear generators have

been built and tested. Some of them are: vernier hybrid machines [63, 64], air-cored tubular

linear generators [65], and variable reluctance permanent magnet machines [66].

The second option for the power take-off is a hydraulic system. In such systems, the translatory

motion due to the heaving of the WEC acts on rams which force the flow of high-pressure oil

through the hydraulic circuit. The fluid flow transfers the power extractedfrom the waves to

a hydraulic motor/pump system which in turn drives the generator. The hydraulic system acts

in the motoring mode when real power control is applied to the WEC as has beenthe case in

this work. When reactive power control of the WEC is used, small fractions of power may

need to be returned to the sea to maximise the energy absorption. During suchperiods, the
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hydraulic system acts as a pump drive. Such a hydraulic PTO system has been modelled and

used in this work. The hydraulic PTO system was chosen because of its robustness, relatively

lower costs and the speed control facility it gives [67]. Power conditioning through the use of

on-board storage accumulators is an option tendered by these systems alone. Figure 2.14 shows

the schematic of the hydraulic PTO system.

Figure 2.14: Schematic of the hydraulic PTO system.

2.4.3.1 Hydraulic accumulator model

Using a hydraulic PTO system allows the use of some on-board storage in theform of accumu-

lators. An accumulator consists of a pre-charged gas chamber and a fluidchamber separated by

a bladder (in the case of bladder accumulators [68]). The gas used is pressurised Nitrogen. The

pressure of the gas in the accumulator is called the pre-charge or the pre-load pressure. When

the fluid pressure at the inlet of the accumulator increases beyond the pre-charge pressure, the

fluid enters the fluid chamber of the accumulator thus compressing the gas in thegas chamber.

The pressure in the gas chamber is normally equal to the fluid pressure unless the fluid pressure

is less than the pre-charge pressure of the accumulator. Under such a scenario, the accumulator

pressure is constant and equal to the pre-charge pressure. Figure2.15 shows the operation of

the accumulator. Sub-figure (a) shows the case when the pressure in thefluid system is less

than the pre-charge pressure and when the pressure within the gas chamber is maintained at the

pre-charged pressure. When the pressure in the fluid system increases beyond the pre-charge

pressure, the bladder is compressed thus raising the pressure of the gas (sub-figure (b)). When
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the pressure in the gas chamber increases beyond the maximum allowed pressure, the gas re-

lease valve ensures that the excess pressure within the gas chamber is expelled by the release

of some of the gas from within the chamber (sub-figure (c)). When the fluidpressure in the

system goes below the pressure within the gas chamber, the gas chamber pushes the fluid from

the fluid chamber to the system.

Figure 2.15: Operation of a bladder accumulator.

The equations on the basis of which the hydraulic accumulator has been modelled are:

∆Q(t) = Qp(t) −Qm(t) =
dVf (t)

dt
, (2.11)

Vf (t) =







Va(1 − (ppre/pacc(t)))
1/kg if pacc(t) > ppre

0 if pacc(t) < ppre

(2.12)

whereQp is the flow from the piston to the accumulator,Qm is the flow from the accumulator

to the hydraulic motor,Vf is the fluid volume within the accumulator,Va is the accumulator

volume, pacc is the system pressure,ppre is the pre-charged pressure andkg is the specific

heat ratio [69, 70]. The relation between the flow through the accumulator and the accumulator

pressure, which has been used in the model, is shown in Figure 2.16.Pmax/Pset in the figure

is the maximum allowed accumulator pressure, beyond which the excess pressure is released

through the gas valve.

Figure 2.17 shows the performance of a 0.5m3 accumulator when the WEC is placed in a

stationary but irregular sea state withHs = 6 m andTz = 10 s. The fluid flow from the

pistonQp follows the variation in the heave velocity of the WEC and has a peak at everypeak

of the velocity time-series. The fluid flow from the accumulator to the hydraulic motor Qm
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Figure 2.16: Motor flow versus accumulator pressure characteristic.

shows a significant reduction in fluctuations when compared toQp. The volume of fluid in the

accumulator during the 600-second period is also shown in the figure. Figure 2.18 shows the

energy stored in the accumulator, calculated by multiplying the fluid volume in the accumulator

with the gas pressure in the accumulator. The stored energy has been expressed in kWh to get

a more realistic sense of the amount of storage involved.

2.4.3.2 Hydraulic motor model

A simplified model of a digital displacement pump/motor (DDPM), like the one developed by

Artemis Intelligent Power Ltd. [71], has been used in this work. Each motor has six cylinders

(hydraulic pistons) which are placed radially around an eccentric. Valves are placed around the

periphery of the motor. The operation of the valves, during both pumping and motoring, has

been described in [72, 73]. The DDPM is a variant of a radial piston pump [74]. The pistons

push against the eccentric to produce rotatory motion. At any instant of time,half the cylinders

push the working fluid against the eccentric while the other half feeds the fluid to the outlet. The

fluid flow can be varied by selecting/deselecting the cylinders in the motor. In the developed

model, this functionality has been mathematically modelled based on Figure 2.16, where the

system pressure determines the fluid flow rate through the motor (Qm). The maximum flow

rate through the motor has been determined by the volume capacity of the cylinders and the

rotational speed of the eccentric.

The power output of the motor has been modelled usingPmech(t) = empacc(t)Qm(t), where
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Figure 2.17: Plots of the different accumulator quantities: (a) fluid flow rate from the piston,
Qp (m3/s) (b) fluid flow rate from the accumulator to the motor,Qm (m3/s) (c)
volume of fluid in the accumulator,Vf (m3).

Figure 2.18: Energy stored in the accumulator.
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em is the hydraulic efficiency of motor. The expression is in terms of the pressure in the

gas chamber of the accumulator because this is equal to the pressure in the hydraulic system.

A constant efficiency of 92% has been used in this work, which is representative of DDPM

efficiencies for the flow rates expected in a PTO system [71]. The much improved part-load

efficiency is one of the biggest advantages of using the DDPMs in the PTO system [75].

2.5 Generator model

Some of the generators and power converter technologies that have been used in wind turbines

are suitable for wave energy devices too. Figure 2.19 shows some of the most common gen-

erator topologies that may be considered for use with hydraulic PTO systems. The topology

(a) involves the operation of a squirrel cage induction generator. For this the speed of rotation

of the machine should be greater than the synchronous speed. This topology is the cheapest

and the most robust of the available options, but lacks options for active control of the gener-

ator. The same squirrel cage induction machine may be connected to the network through an

AC/DC/AC power converter (b). The converter allows the decoupling of the frequency in the

network and the rotational speed of the generator. Thus, variable speed operation of the genera-

tor is possible. Two disadvantages of this topology are: an increased cost due to the presence of

the power converter and the harmonics introduced in the network due to the fully rated power

converter.

Synchronous generators may also be used with a hydraulic PTO system and there are two

options for their use. In (c) the generator is directly connected to the network. In this case, the

generator speed has to be maintained constant. If driven by a low speed prime mover, gearboxes

must be used to step up the speed or low-speed synchronous generators with a large number

pole pairs may be used. The use of a full power converter in (d) allows variable speed operation

with the synchronous generators.

A doubly-fed induction generator (DFIG) with back-to-back PWM converters is shown in (e).

In this topology, a voltage is injected to the rotor using the converter. This configuration allows

a± 30% variation around the synchronous speed (a slip range of+smax = 0.30 to −smax =

−0.30). For this operation, the converters need to be only rated atsmax Ps, wherePs is the

power carried by the stator [76]. Unlike topologies (b) and (d) where theconverters are fully

rated, in this case the converter can be rated at 30% of the machine rating, which leads to

significant reduction in the investment on converters. The lower rating of the converters reduces
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the harmonics introduced to the network by their connection.

Figure 2.19: Common generator topologies.

A detailed comparison of the available options was made in [77–79]. From these articles it

becomes clear that using DFIGs with back-to-back PWM converters offers advantages over

the other generator topologies. DFIGs provide both the ruggedness of induction machines and

some of the control flexibility provided by synchronous machines. This is thesystem that has

been considered in this work. It is important to note that the control and coordination methods

discussed in Chapters 5 and 6 are not machine specific and can be used with other generator

topologies which use back-to-back PWM converters.

2.5.1 Modelling the DFIG

The dynamics of the DFIG have been modelled using its per-unit state equations [80]:

Vds = −Rsids − ωλqs + pλds (2.13)

Vqs = −Rsiqs + ωλds + pλqs (2.14)
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Vdr = −Rridr − (ω − ωr)λqr + pλdr (2.15)

Vqr = −Rridr − (ω − ωr)λdr + pλqr (2.16)

where[kqd0s]
T = [kqs kds k0s] (k represents current, voltage or flux), subscriptsd andq refer

respectively to the direct and quadrature axis components of voltage (V ), current (i) and flux

(λ), subscriptss andr are used respectively for the stator and rotor quantities,R is the resis-

tance,ω is the angular speed of the reference frame,ωr is the angular speed of the rotor andp is

the differentiation operator. The stator flux oriented reference scheme for modelling the DFIG

has been adopted where the d-axis is in phase with the maximum of the stator flux. Therefore,

λqs = 0 andλds = λs [81, 82]. Since the flux linked with thed andq axes induce an emf in

theq andd axes respectively,Vds = 0 andVqs equals the terminal voltage of the machine. The

stator flux rotates at synchronous speed and thereforeω = ωs.

The flux linkage expressions, in terms of the current, which have been used in Equations

(2.13)to (2.16), are:

λds = −(Ls + Lm)ids − Lmidr (2.17)

λqs = −(Ls + Lm)iqs − Lmiqr (2.18)

λdr = −(Lr + Lm)idr − Lmids (2.19)

λqr = −(Lr + Lm)iqr − Lmiqs (2.20)

whereLm is the mutual inductance,Ls is the stator leakage inductance andLr is the rotor

leakage inductance. The speedωr in Equations (2.13) to (2.14) is related to the developed

electrical and mechanical torques as:

Te = TL + (2/P )J
dωr

dt
, (2.21)

whereTe is the electrical torque generated,TL is the load torque,J is the rotor inertia andP is

the number of poles.
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The stator active and reactive powers are respectively

Ps = Vdsids + Vqsiqs (2.22)

and

Qs = Vqsids − Vdsiqs, (2.23)

while the rotor active and reactive power are respectively

Pr = Vdridr + Vqriqr (2.24)

and

Qr = Vqridr − Vdriqr. (2.25)

The real and reactive power generated by the DFIG thus becomesPs+Pr andQs+Qr. Ps+Pr

thus is the total real power the DFIG exchanges with the network.Qs+Qr is the reactive power

of the machine. The network-side power electronic converter connectedin the rotor circuit

allows the control of the absorbed/generated reactive power independently, while the rotor-side

converter supplies the reactive power required by the DFIG.Qr therefore is removed from the

equation. Generally, the reactive power that the converter exchangeswith the network is kept

at zero to reduce the rating of the converter and the losses. Since the converter cannot store real

power, the power it exchanges with the network isPr, neglecting converter losses.

2.5.2 Control of the DFIG

Figure 2.20 shows the block diagram of a wave energy converter equipped with a DFIG oper-

ating with a hydraulic power take-off system.

2.5.2.1 Speed/Torque control of the DFIG

From the stator Equations (2.13) and (2.14), since the stator flux does notvary, pλqs = 0.

Neglecting the stator resistance givesVds = 0 andVqs = ωsλds. Substituting Equation (2.18)

in Equation (2.22) gives

Ps = ωsλds(Lm/(Lm + Ls))iqr. (2.26)

From this equation it is understood that the real power output from the generator may be varied

by changingiqr (or Vqr).

Figure 2.21 shows the speed/torque control scheme of the DFIG which hasbeen used in this

work [76, 81]. A linear speed controller has been used which providesa torque reference for
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Figure 2.20: Schematic of the WEC with the machine control and the electrical network.

a measured speed input. A proportional-integral controller has been used to obtainVqr for the

error in the electric torque∆Te.

Figure 2.21: Speed control scheme of the DFIG.

2.5.2.2 Voltage and power factor control of the DFIG

Substituting Equation (2.17) in Equation (2.23) gives

Qs = −ωsλds(λds + Lmidr)/(Ls + Lm). (2.27)

From this equation it is understood that the reactive power output from thegenerator may be

varied changingidr (or Vdr). The first part of the RHS in the equation is the reactive power

required to magnetise the DFIG. If this is set as the reactive power reference, the rotor inverter

will provide only the reactive power required to magnetise the DFIG. The operating power

factor of the DFIG thus becomes unity.

Figure 2.22 shows the voltage and the power factor control scheme of the DFIG [76]. Proportional-

integral controllers have been used for generating the referenceVdr component of the voltage

which is sent to the rotor side inverter. When operating in the power factor control modeQref

is the input to the controller and when operating in the voltage control modeVref is the input.

Both these control operations of the DFIG are dealt with in detail in Chapter 5.
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Figure 2.22: Voltage and power factor control scheme of the DFIG.

2.5.2.3 Modelling the power electronic converters

For dynamic simulations at the fundamental frequency, a simulation step time between 10 and

50 ms is normally chosen. Under this condition, it is sufficient to model the power electronic

converters as controlled voltage sources [83]. The voltage set points are assumed to be instanta-

neously reached. The advances in power electronic converters that operate at high frequencies

justify this decision. Moreover, the higher order effects of the rotor-side converter do not af-

fect the operation of the system with respect to the time constants associated with wave energy

conversion. A comparative study, discussed in [84], of the two modelling approaches showed

that modelling the converters as controlled voltage sources suffices for power system dynamic

studies.

The network-side converter normally exchanges only real power with thenetwork. However,

the network-side converter may also contribute towards reactive power control. This would

require the rating of the network-side converter to be more than the 30% rating mentioned

earlier, to provide the reactive power. This would increase the cost andthe harmonics injected

to the network, but can play an important role in voltage regulation, in cases when the reactive

power control of the rotor-side converter alone is not adequate.

2.6 Electrical layout and network integration of the wave power

farm

So far in this chapter, only the developed model of a single WEC was described. Figure 2.23

shows the schematic of the developed WEC model. WEC installations will normally have

multiple units as farms of WECs. Models of such wave power farms have beendeveloped by

cloning the model of the individual WEC. The wave elevation time-series at thelocations in the

wave field where the individual WECs are placed are the inputs to the individual WECs.

Figure 2.24 shows a simple array of three WECs. WECs 1 and 2 lie along the dominant wave

direction, while WECs 1 and 3 lie perpendicular to the dominant wave direction.The spacing
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Figure 2.23: Schematic of a wave energy converter.

between the WECsd has been taken as 50 m here. Figure 2.25 shows the wave elevation time-

series at each location and the raw mechanical power extracted by the WECs. The power shown

is the power extracted before being subject to smoothing and storage. Thewave elevation time-

series seen by WEC 2 is almost the time-shifted wave elevation seen by WEC 1, since WEC 2

lies behind WEC 1 along the dominant wave direction. Increasing the distanced between these

two WECs would make the wave elevation seen by WEC 2 very different fromthe one seen by

WEC 1 because of the random nature of multi-directional sea states.

The difference in the wave elevation perpendicular to the dominant wave direction, seen by

WECs 1 and 3, is determined by the crest length of the oncoming waves. Peaks and troughs

in the wave elevation seen by both the WECs occur at the same instants of time, but the wave

amplitude and hence the power extracted by the WECs are different. Increasing the distanced

between WECs 1 and 3, beyond the average crest length, would make the wave elevation seen

by the two WECs out of phase and different.

Figure 2.24: Wave power farm layout.
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Figure 2.25: Wave elevation time-series and raw mechanical power extracted by the three
WECs.
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Figure 2.26: Radial network model (with three buses) of a hypothetical rural distribution
feeder with the wave power farm and the distributed loads.

A number of factors like the depth of the sea, the type of the WEC, the mooring system, the type

of the sea bed, etc., determine the layout of a wave power farm. The electrical connection to the

shore depends on the size of the generators in the farm, the size of the farm and the distance of

the farm from the shore. For early deployment of WECs, AC links are likelyto be used because

of the small size of the farms and the proximity to the shore. For example, heaving buoys would

be placed in waters with a mean depth of 30-50 m, which would be between 1-5 km from the

shore in the UK.

In this work, the wave power farm has been modelled with the mean water depthtaken as 40 m.

The site considered has been assumed to be 1 km offshore and the wave power farm has been

connected to the on-shore network through 11 kV AC sub-sea cables. For larger farms further

offshore, the power transmission may be at higher voltages. As the farm size and/or the distance

from the shore increases further, high voltage DC links may also be used.Different wave power

farm sizes and layouts have been used in different chapters in this thesisto investigate network

impacts. The farm layout, the electrical connection to the shore, and the on-shore network to

which the farm is connected are described in each chapter. A simple three-bus network, which

has been used in some of the preliminary analysis, is shown in Figure 2.26.

In this thesis, the interference between the WECs in a farm has been taken tobe negligible.

Wave power farms are normally sparse due to physical considerations, justifying this choice

[85, 86]. In all the chapters dealing with the electrical control of the generator, the developed

algorithms will work irrespective of whether the interactions between the WECs are considered

or not.

2.7 Summary

In this chapter, the developed dynamic wave-to-wire model of a wave power farm was de-

scribed. A non-stationary sea was modelled from spectral representations. The model was

made suitable even in shallow-waters. Both the directional aspect and the irregularity of a

realistic sea were modelled.
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A heaving WEC was considered and its equation of motion was obtained from the forces acting

on it. In this thesis, the effects of mooring on the WEC have not been considered and it was

assumed that the WECs, constrained to move in heave, are held in place by a monopile (or other

taut moorings). Moorings would be seen as additional spring forces on the WEC, which may

be incorporated in the model. A SuperGen Marine research group at the University of Exeter

has been researching the effects of moorings on the motion of WECs.

Different options available for the control of the WEC for maximising energyextraction were

then explained. In this work, a simple control option has been used where the damping coeffi-

cient of the PTO system is changed depending on the sea state. As has been explained in the

chapter, changing the damping coefficient only causes a phase shift and an increase/reduction

in the peak raw mechanical power extracted. The generated power profile remains similar, ir-

respective of the damping coefficient. The voltage fluctuations in the network, that these varia-

tions in the generated power profile introduce, is the main focus in this thesis. In the subsequent

chapters, wave power farms that have been modelled in different sea states, from extremely low

energy sea states to extremely high energy sea states are discussed.

The model of the hydraulic PTO system, which drives a DFIG, was described in detail. The

reasons why the hydraulic PTO system was chosen over the direct drive PTO and why the

DFIG was chosen over other generator types were discussed. The active power and reactive

power control capabilities of the DFIG and how these quantities may be controlled were also

examined.

In the next chapter, the developed detailed model of the wave power farmis used to train wavelet

neural networks to build an equivalent Nonlinear AutoRegressive eXogenous (NARX) model

of the wave power farm. The performance of the NARX model is then compared to the detailed

model.
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3.1 Introduction

The development of a time domain model of a wave power farm was describedin the previous

chapter. This detailed model can be used to study the impacts of connecting wave power farms

to electricity networks. Examples of such studies have been presented in different parts of

this thesis. One drawback of using the detailed model is that, being a dynamic model, it is

computationally intense and the simulation runs take an extremely long time. The simulation

time and the computing resource used increase further as the size (number of devices) of the

farm increases. It was necessary to have a large number of simulation runs of wave power

farms of different sizes over long periods of time. This being the case, analternative modelling

technique became necessary.

This chapter describes the use of system identification techniques for modelling wave power

farms. A Nonlinear AutoRegressive eXogenous (NARX) model of a WEChas been system

identified and the procedure for doing so is explained in this chapter. System identification has

been performed using data collected from simulating the detailed model. The dataobtained

was then used to train wavelet neural networks. The performance of theNARX model has been

compared with that of the detailed model for a range of sea states found offwestern Scotland

and the results are discussed in this chapter.

Before examining the development of NARX models, a brief description of some of the math-

ematical and theoretical concepts required to understand NARX modelling is presented. Def-

initions of the different model types with a special focus on linear time-invariant systems are

furnished. The different black-box model structures are listed and their generic form is derived.

This gives a clear picture of how the model can be used to predict future output values. Later in

the chapter, wavelets, neural networks and wavelet neural networksare dealt with, since these

have been used to identify the NARX model of the WEC. The section on NARX modelling

follows smoothly from this discussion on its mathematical basis.
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The NARX model was found to significantly improve the simulation speed when compared to

the detailed model. A high precision was also maintained. The developed NARX model of an

individual WEC has been cloned to model wave power farms. The real power generated by the

wave power farm may be obtained from the NARX model, which can then be used to study

the network impacts of connecting wave power farms to the electricity network over extended

periods of time. Since the main focus of this thesis is on the fluctuations in the rms-voltage

seen in the network with wave power farms, a high resolution study is required which is made

possible using the NARX model. Personal computers can be used to run simulations of the

NARX model with a high time resolution as required by the control loop times of the WECs.

3.2 Models of dynamic systems

Many physical systems can be considered as linear time-invariant systems,with nonlinear sys-

tems considered as generalisations of the linear ones [87]. In this section,the construction of

linear black-box models of time-invariant systems is addressed first. The theory for the linear

case developed is then extended for the nonlinear case. Different properties of such systems are

also defined in this section.

3.2.1 Types of models

A model of a system is a tool to answer questions about the system, without having to exper-

imentally work on the system. Models can be of four kinds - mental models, verbal models,

physical models and mathematical models [88]. Chapter 2 described in detail the development

of a mathematical model of a WEC. The WEC was broken down into modules whose properties

were known. Mathematical relations were used to describe the relationship between quantities

within each module. The different modules were then linked up and connected to a model of the

electrical network to form the wave-to-wire model of the WEC. Through physical modelling,

thus, a mathematical model of the WEC was developed. The detailed model of Chapter 2 can

also be called awhite-box model, which was constructed entirely from prior knowledge and

physical insights.

Another approach to mathematical modelling requires observations of the system to be made.

These observations are used to fit the model’s properties to that of the system. This way of

developing mathematical models is calledidentification, which is the main topic of this chap-

ter. The models developed using this approach can be of two types - grey-box models and

black-box models.Grey-box modelsare those built when some physical insight of the sys-
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tem is available and when the observations are required to find values of certain parameters in

the model.Black-box modelsare those that are entirely built using observations of the sys-

tem, where little or no physical insight is available. The model of the WEC developed in this

chapter can be classified as a black-box model. Data obtained from simulations of the detailed

white-box model have been used to construct the black-box model.

Models can also be classified based on how the signals in the model are defined as functions of

time. Continuous time modelsare those that represent the mathematical relationships between

time continuous signals. Practically, the signals normally dealt with are sampled ones. Models

which represent the relationship between signals at the instants of sampling are calleddiscrete

time models. Both the detailed model of the WEC and the model of the WEC dealt with in this

chapter are discrete time models.

3.2.2 Definitions

Time-invariant systems (or models) are those in which a time delay or a time advance of the

input signal causes the same time delay or time advance in the output signal, i.e. the output

signal does not depend on absolute time [89, 90].

A model is said to belinear if it satisfies the principle of superposition, i.e. if its output to

a linear combination of inputs is equal to the linear combination of the outputs of thesame

individual inputs [89, 90].

Causalsystems (or models) are those in which the current value of the output only depends on

the current and past values of the input [89, 90].

3.2.3 Linear black-box models

The output of a linear, time-invariant, causal, single input single output (SISO) and discrete

time model can be represented by its impulse response (g(k)) as follows [88]:

y(t) =
∞

∑

k=1

g(k)u(t− k); t = 0, 1, 2, ... (3.1)

wherey(t) is the current output andu(t) is the current input. This equation suggests that the

current output of a model can be predicted by knowing the current andthe past values of the

input. This is not always the case because there are some signals, which are not one of the

inputs, that affect the output of the model. These signals, also called disturbance, need to be
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added:

y(t) =
∞

∑

k=1

g(k)u(t− k) + v(t); (3.2)

wherev(t) is the lumped disturbance and is given by:

v(t) =
∞

∑

k=0

h(k)e(t− k). (3.3)

Defining the backward shift operatorq−1 as follows:q−1u(t) = u(t − 1), Equation (3.2) can

be rewritten as:

y(t) =
∞

∑

k=1

g(k)u(t− k) +
∞

∑

k=0

h(k)e(t− k) (3.4)

y(t) =
∞

∑

k=1

g(k)(q−ku(t)) +
∞

∑

k=0

h(k)(q−ke(t)) (3.5)

y(t) = [
∞

∑

k=1

g(k)q−k]u(t) + [
∞

∑

k=0

h(k)q−k]e(t) (3.6)

y(t) = G(q)u(t) +H(q)e(t). (3.7)

In Equation (3.7),G(q) is called the input pulse transfer function whileH(q) is the noise pulse

transfer function. This equation shows the structure of linear black-boxmodels. Equation (3.7)

can be modified as follows [87, 91]:

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t). (3.8)

where

A(q) = 1 + a1q
−1 + ...+ anaq

−na (3.9)

B(q) = b1q
−1 + ...+ bnbq

−nb (3.10)

C(q) = 1 + c1q
−1 + ...+ cncq

−nc (3.11)

D(q) = 1 + d1q
−1 + ...+ dndq

−nd (3.12)

F (q) = 1 + f1q
−1 + ...+ fnfq

−nf . (3.13)

Equation (3.8) is a general representation of the input-output relationship. Depending on which

polynomialsA(q) to F (q) are used, 32 different model structures can be derived from the

equation. Some of the most commonly used structures are listed in Table 3.1.
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Model name Condition
Finite Impulse Response (FIR) A = C = D = F = 1

Box-Jenkins (BJ) A = 1

AutoRegressive Moving Average with eXogenous inputs (ARMAX) F = D = 1

Output-Error (OE) A = C = D = 1

AutoRegressive with eXogenous inputs (ARX) F = C = D = 1

Table 3.1: Model structures

3.2.4 Prediction from linear black-box models

An expression for predictingy(t) can be obtained by rearranging Equation (3.8) [92]:

A(q)D(q)

C(q)
y(t) =

B(q)D(q)

F (q)C(q)
u(t) + e(t) (3.14)

y(t) = [1 − A(q)D(q)

C(q)
]y(t) +

B(q)D(q)

F (q)C(q)
u(t) + e(t). (3.15)

SinceA, D andC all start with a 1 (see Equations (3.9, 3.11 and 3.12)) the first expressionon

the right-hand side (RHS) contains the outputy(t) only until time t − 1. Similarly, since the

second term on the RHS containsB which starts withb1q−1 and sinceD, F andC start with 1,

the second term only consists of inputs on and before timet− 1. e(t) is the disturbance signal,

which is taken to be white noise and cannot be predicted using previous values ofe(t), u(t) or

y(t); and hence the best one-step-ahead predictor is given by:

ŷ(t|θ) = [1 − A(q)D(q)

C(q)
]y(t) +

B(q)D(q)

F (q)C(q)
u(t). (3.16)

This equation means that the current value of the outputy(t) can be predicted from the past

values of the inputs and the outputs. In Equation (3.16) the parameter vectorθ represents the

unknown parametersa1, ..., ana, b1, ..., bnb, c1, ..., cnc, d1, ..., dnd, f1, ..., fnf . Equation (3.16)

can be rewritten as:

ŷ(t|θ) = θTϕ(t, θ), (3.17)

whereϕ(t) is called the regression vector, whose components are called regressors. In the

general case depicted in Equation (3.16), the regressors are given by [91]:

• u(t− k) (associated withB(q))

• y(t− k) (associated withA(q))

• ŷu(t− k|θ), the simulated output from past values alone (associated withF (q))
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• e(t− k) = y(t− k) − ŷ(t− k|θ), the prediction error (associated withC(q))

• eu(t− k) = y(t− k) − ŷu(t− k|θ), the simulation error (associated withD(q)).

A special case of Equation (3.16), whenC(q),D(q) andF (q) are 1 leads to:

ŷ(t|θ) = [1 −A(q)]y(t) +B(q)u(t). (3.18)

This structure is called the AutoRegressive eXogenous (ARX) model. The first term on the

right-hand side of Equation (3.18) forms the autoregressive part of themodel, while the sec-

ond term represents the exogenous input part. Expanding Equation (3.18) we get the linear

difference equation:

ŷ(t|θ) = a1 y(t−1)+a2 y(t−2)+...+ana y(t−na)+b1 u(t−1)+b2 u(t−2)+...+bnb u(t−nb).
(3.19)

The equation does not show the requirement of the current input u(t). This is because the

equation represents a model used to predict the next output. When used for simulation, i.e.

when the current output for the current input is required, the current value of the input would

also be a part of the regressor set.

For the ARX model structure, thus,θ andϕ(t) in Equation (3.17) becomes:

θ = [a1, a2, ..., ana, b1, b2, ..., bnb] (3.20)

ϕ(t) = [y(t− 1), y(t− 2), ..., y(t− na), u(t− 1), u(t− 2), ..., u(t− nb)]. (3.21)

3.2.5 Nonlinear black-box models

Nonlinear input-output models can be obtained from Equations (3.2) and (3.17) by replacing

the linear function with a nonlinear function as follows:

y(t) = g(ϕ(t), θ) + e(t), (3.22)

ŷ(t|θ) = g(ϕ(t), θ). (3.23)

whereg(.) is a nonlinear function parameterised byθ.

Similar to the linear model, different nonlinear model structures can be constructed using the

generic structure given in Equation (3.23) [91]. They are:
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• NFIR models -u(t− k) in the regression vector

• NARX models -u(t− k) andy(t− k) in the regression vector

• NOE models -u(t− k) andŷ(t− k|θ)) in the regression vector

• NARMAX models -u(t− k), y(t− k) andê(t− k|θ) in the regression vector

• NBJ models -u(t− k), ŷ(t− k|θ), ê(t− k|θ) andêu(t− k|θ) in the regression vector.

In this chapter, the development of a NARX model of a wave energy converter is described, and

hence in the remaining sections the focus is on NARX models. The reasons why a nonlinear

model representation of the WEC has been chosen over linear models are discussed in the next

section.

3.3 System identification

So far in this chapter only systems with known parametersθ were dealt with. When the only

known quantities are the measured input and output values and when the parameter vector

and the nonlinear mapping function are unknown, the model of the system can be built by

system identification. System identification can be defined as a systematic approach of building

dynamic models of systems using statistical methods. Observed input-output data are used to

develop models of unknown systems [93].

System identification has found application in other areas of engineering and science [94, 95].

In these publications, the models were derived from experimental set-ups. In the field of elec-

trical power systems, system identification techniques have mainly been usedto model power

electronic converters [96–98]. Applications of system identification havealso been used in

failure/abnormal condition detection [99] and forecasting [100, 101].

In this section, how a NARX model of a WEC has been developed using system identification

is described. Data obtained from simulating the detailed model of the WEC have been used

for this. The different steps involved in the construction of NARX models are discussed and

explained using the example of the PTO-DFIG unit of a WEC. Before describing the process

used to construct the NARX model of the wave power farm, the theory behind wavelets, neural

networks and wavelet networks are briefly dealt with. These are required to understand the

NARX modelling framework adopted in this work.
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3.3.1 Why nonlinear models

The WEC system, with the buoy, the PTO system and the DFIG, is inherently nonlinear. The

nonlinearity has components introduced by the end-stops (see Section 2.3.1), by the on-board

energy storage in the form of accumulators (see Section 2.4.3) and by the power curve of the

DFIG. Figure 3.1 shows the power curve of the DFIG which has been used in this work. It is

seen that power generation starts only above a cut-off speed (ωmin rad/s). The power generation

increases linearly till the rated speed of the DFIG (ωrated rad/s). The DFIG generates rated

power at rated speed. Beyond the rated speed, the power generated by the DFIG is kept fixed

at its rated power. The nonlinearity introduced by the accumulator and the end-stops were

discussed in Chapter 2. The presence of these nonlinearities makes nonlinear black-box models

the obvious choice for modelling WECs.

Figure 3.1: Power curve of the modelled DFIG.

3.3.2 Wavelet transform

It is known from Fourier theory that a signalf(t) can be wholly represented as a sum of si-

nusoids of, probably, infinite frequencies. One of the drawbacks of using Fourier theory (FT)

is that though the frequency content of a signal may be obtained, the time-localisation of the

frequency content is lost. That is, one would not be able to know when certain frequencies

were present in the signal. One alternative available is to cut the given signal into sections in

time, and to perform Fourier analysis of each of these sections separately. This approach, called

the Windowed Fourier Transform (WFT) [102], is more useful in the time-frequency wedding.
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One question that comes up in this approach is regarding the size of the window to be used.

Wrongly sized windows could lead to a loss of information.

Wavelet analysis is the most recent method developed to overcome the shortcomings of the

Fourier and the Windowed Fourier approaches. It is similar to the WFT because both time and

frequency domain information are obtained. The main difference is that whilethe WFT has a

fixed time and frequency resolution, wavelet analysis looks at the signal at different frequencies

with different resolutions [103]. A detailed description of the differences between these two can

be found in chapter 1 of [104]. The advantages of using wavelet analysis over WFT and FT

along with the properties of wavelet analysis and general areas of application were discussed

in detail in [105]. The applicability of these approaches for an application ingeophysics was

compared in [106], which again proves the advantages of using wavelettransforms for obtaining

a time-frequency picture of the dynamics of internal waves. Wavelets, thus, can be defined as

a class of functions which can be used to find the frequency content of asignalf(t) locally in

time.

3.3.2.1 Continuous wavelet transform

In wavelet analysis, a scalable function is used as a window. This functionis shifted along the

signal till the end of the signal and the spectrum is calculated using all the scaled windows for

every position. In the end, a collection of time-frequency representation of the signal is obtained

[107]. A waveletψ(t) is a small wave function which is used as the scalable function [108, 109].

It is a function with zero-average and is dilated with a scale parameterj and translated byk and

is represented by [102, 110]:

ψj,k(t) =
1

s
ψ(
t− k

j
). (3.24)

Haar, Daubechies, Gaussian, Meyer, Mexican hat and Morlet are thecommonly used wavelets

[111]. Figure 3.2 shows the translation and the scaling functions applied to aHaar wavelet. The

wavelet transform of a signalf(t) as a function of scale and translation is given by [102, 110]:

Wf(j, k) =

∫

∞

−∞

f(t)ψ∗

j,k(t) dt. (3.25)

3.3.2.2 Discrete wavelet transform

So far, only signals present continually in time were dealt with and thereforethe Equation (3.25)

represents the Continuous Wavelet Transform (CWT). Since we are dealing with discrete-time
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Figure 3.2: Scaling and translation of the Haar wavelet function.

signals, only discrete wavelets are useful. Only Discrete Wavelet Transforms (DWT) are dis-

cussed in the rest of this section.

The wavelet in Equation (3.25) when discretised becomes [102, 110]:

ψj,k(t) = 2j/2ψ(2jt− k), (3.26)

where2j/2 is a normalising constant, andj andk represent the scaling index and the translation

index respectively. Any signalf(t) with a finite energy can be represented using the wavelet

represented in Equation (3.26) as [102, 110]:

f(t) =
+∞
∑

j=−∞

+∞
∑

k=−∞

dj,k ψj,k(t), (3.27)

wheredj,k constitute the discrete wavelet transform (DWT) of the functionf(t). To express

f(t) using Equation (3.27) a whole range of scaling and translation indices from−∞ to +∞
are required. Due to the availability of a finite amount of data this is not practical and hence

a scaling functionφ(t) is defined. Using the scaling function is akin to using a low pass filter

[103] to capture all the information at the lowest frequencies. Thus, by collapsing all the low

resolution terms, Equation (3.27) can be represented as:

f(t) =
+∞
∑

k=−∞

ck φ(t) +
L

∑

j=0

+∞
∑

k=−∞

dj,k ψj,k(t), (3.28)

whereck anddj,k together represent the DWT of the functionf(t).
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In this section, the basics of discrete wavelet transforms were explained for an easier under-

standing of the section on NARX modelling which follows. A deeper and a more mathematical

explanation of wavelets and wavelet transforms can be found in chapter 10 of [112] and [104].

3.3.3 Neural networks

An artificial neural network (ANN) is a massively parallel distributed processor made up of a

network of simple processing units called neurons. ANNs have the ability to store experiential

knowledge and to use it in the future [113]. The application of ANNs was motivated by the

human brain and resembles these two functionalities of the brain.

3.3.3.1 Mathematical model of a neuron

The smallest processing unit within an ANN is a neuron and its mathematical modelis shown

in Figure 3.3 [113]. The variables of the neuron are its inputs, represented byx1 to xm in the

figure, and its output is represented byvk. The output of the neuron is mathematically described

by:

vk =
∑

wki xi + bk, (3.29)

wherewki are the weights associated with each input andbk is a bias. These weights are used to

store knowledge and their values are changed according to an appropriate learning algorithm.

The functionϕ(.) in the figure is called the activation function and is a function ofvk. The

outputyk is defined byyk = ϕ(vk). The activation function defines the output of the neuron.

The threshold function (Heaviside function), piecewise linear functions and sigmoid functions

are commonly used activation functions. Other functions like the radial basisfunction and

wavelets may also be used. These are used when local nonlinearities are tobe represented,

since the commonly used activation functions have an infinite range [114].

3.3.3.2 Neural network architecture

Neural networks are constructed using one or more neurons and thus represent a nonlinear

function of one or more neurons. They are classified into two - feedforward networks and

recurrent networks (networks with feedback). Feedforward neural networks can further be

classified into the following types:

(a) Single layer feedforward networks: Such a network is shown in Figure 3.4(a) [113], where

there is only one layer of neurons. There is an input layer which acts as inputs to the network.
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Figure 3.3: Nonlinear model of a neuron.

The output from the network is not fed back into the input layer and hencethe name feedforward

(also called acyclic networks). In the network shown in Figure 3.4(a) there are four input units

and four output neuron units.

(b) Multilayer feedforward networks: In these networks there is a presence of one or more

layers of hidden neurons. Such a network is shown in Figure 3.4(b). Generally, networks with

hidden layers work better when higher-order statistics are involved and when the input layer is

large. Figure 3.4(b) shows a network with four inputs in the input layer andfour neurons in

the hidden layer, which accept these inputs. The outputs of these four hidden neurons are the

inputs to the output layer of neurons.

Recurrent networks are those in which the past values of outputs of the network are fed back

as inputs to the hidden layer/single layer of neurons. The feedback can be from the hidden

neurons and/or the output neurons. The time-delayed output from one neuron can be the input

to the same neuron (self-feedback) or to other neurons. Feedforward networks being static in

nature cannot be used to model dynamic systems. For dynamic modelling, recurrent networks

need to be used.

There are different kinds of recurrent networks [chapter 15 in [113]], but in this work the

focus is on input-output mapping networks. A generic form of such multilayer networks is

shown in Figure 3.5 [113]. In the network shown, the current and pastvalues of the inputs

and the past values of the outputs (which are feedback from the output layer of the network)

are inputs to the ANN. These are used to calculate the present value of the output. In the

figure, a single-input-single-output network is shown, but the same principle can be extended

to multiple-input-multiple-output networks too. The network architecture shownin the figure
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Figure 3.4: Neural network architectures.
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can be used to model a system mathematically represented by Equation (3.23) (in this case a

NARX model, which uses past input and output values alone). The dynamicNARX model is

discussed in more detail in Section 3.3.6.

Figure 3.5: Input-output mapping networks.

3.3.4 Learning in neural networks

The simplest form of a neural network is one in which there is only one neuron. Such ANNs

are called perceptrons. Figure 3.3, if taken as the entire ANN, represents a perceptron whose

output may be represented as a function of the inputsxk and weightswk. Given an initial

set of weights, the perceptron may be trained to calculate a specific target function ts. For

training the perceptron a training set needs to be provided, which constitutes the experience of

the perceptron. The training set normally would have values of the inputxk and their associated

target function values. According to a learning algorithm the initial weights are varied such that

the network’s output most closely matches the training set. Once a matching setof weights is

found, the ANN can be used to model the system from which the training set was derived.
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Training neural networks means estimating the parameters of the neurons in anetwork. In the

simpler case of a perceptron discussed earlier the weightswk and the biasbk of the network

are established through training. Two categories of training are available:supervised and un-

supervised training. In supervised training, the function that has to be estimated by the ANN

is known at some points. With this information available, the ANN has to predict thefunc-

tion at other points. For input-output mapping networks, discussed in the preceding section,

supervised training of the ANN is performed using input-output data obtained earlier. In unsu-

pervised training only some data is available at hand and the ANN is tasked to cluster or find

similarities/dissimilarities within the data set. No prior knowledge of the task is available.

In the case of input-output mapping networks (e.g. NARX models), a set ofinputsxk and

outputsyk(xk) of the system is available. This constitutes the training set. The neural network

has to be trained to estimate the relationship between the input and the output. Thisis made

difficult because of the finite size of the training data set available. Once constructed, the neural

network will be a black-box model of the system under investigation. The cost function of the

training process is given by:

J(wk) = 0.5
N

∑

k=1

[yk(xk) − g(xk, wk)]
2, (3.30)

whereg(xk, wk) is the nonlinear mapping between the input and the output modelled by the

neural network. The optimal set of weights, thus, would be the one for which the least-squares

cost functionJ is minimised. For finding the optimal set of weights, both the gradient ofJ with

respect towk andwk itself are to be considered, and this is performed by an iterative process.

In the simplest case, the set of weights at a particular iteration is given by:

wk(i) = wk(i− 1) − µi ∆J (wk(i− 1)), (3.31)

wherewk(i) represents the set of weights at theith iteration,µi is the learning rate (>1) and

∆J is the gradient of the cost function with respect to the set of weights. Practically, the simple

gradient descent method represented by Equation (3.31) is not used and more efficient algo-

rithms like the Gauss-Newton and the Levenberg-Marquardt algorithms areused. An extensive

description of the training process for NARX models and the algorithms used tosolve for the

least square error is available in chapters 2 and 4 in [114], chapter 15 in[113] and in [92].
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3.3.5 Wavelet neural networks

A wavelet neural network is one in which the activation functions of the ANNare drawn from

an orthonormal wavelet family. That is, each neuron has either the scalingfunction or the

wavelet function as its activation function [115, 116].

The simplest form of a wavelet network is one with a single input and a single output, which

is shown in Figure 3.6 [115]. The hidden layer in the network is made up of units of wavelet

functions and scaling functions. The dilation and translation coefficients ofthe wavelet and

the scaling functions are input parameters to the wavelet units. These are initialised before the

training process. These parameters get modified during the training process as per the learning

algorithm. These wavelet units produce a non-zero output only when the input is localised

within the input domain. The different wavelet units respond to inputs in different localised

areas in the input domain.

Figure 3.6: Structure of a wavelet neural network.

Figure 3.7 shows a wavelet unit with an input and its two parameters. The output is defined as:

ψλ,t(u) = ψ(
u− t

λ
), (3.32)
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whereλ andt are respectively the scaling and the translation coefficients.

Figure 3.7: A wavelet unit.

When the hidden layer consists of N units, the output is the weighted sum of theoutput of each

wavelet unit and is given by [117]:

yθ(u) =
N

∑

i=1

wi ψλi,ti(u) + ȳ, (3.33)

whereȳ is introduced to deal with functions having nonzero mean.

There are two types of wavelet neural networks. In the first kind calledwavenets, the input sig-

nal is first decomposed using wavelet analysis by the neurons in the hidden layer. The wavelet

coefficients, which are output, are then weighted and summed. That is, in such networks the

dilation and translation coefficients of the wavenet units are fixed at initialisation. Only the

weights of the output summer are modified according to the learning algorithm. Inthe second

kind of wavelet neural networks, called wavelet networks, the scaling and translation coeffi-

cients and the weights are modified during training. In this thesis, only wavenets have been

used and considered from here on.

The training algorithms for wavenets can be obtained by replacing the set ofweightswk used

in Equation (3.30) and (3.30) withθ. θ is a vector which has the parametersȳ,wi, λi andti. λi

andti are parameters which are fixed at initialisation. The cost function thus becomes:

J(θ) = 0.5
N

∑

k=1

[yθ(u) − f(u)]2, (3.34)

and, as explained earlier in Section 3.3.4, the minimum ofJ(θ) is found by calculating the

partial derivative ofJ with respect toθ. The algorithms that are used to solve the cost function

for sigmoidal or piecewise function neural networks can also be used to obtain the optimal
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parameter vector when wavenets are considered. A thorough description of wavelet networks

and radial basis functions are available in [117, 118].

3.3.6 Nonlinear AutoRegressive eXogenous (NARX) models

NARX models have the form (from Equation (3.23)):

ȳ(t|θ) = g(y(t− 1), y(t− 2), ..., y(t− na), u(t− 1), u(t− 2), ..., u(t− nb)), (3.35)

whereg is an unknown nonlinear mapping function between the input and the output. In the

parametric approach, the functiong is represented as the function expansion:

g(ϕ(t), θ) =

m
∑

k=1

αk gk(ϕ(t)), (3.36)

with some basis functiongk. gk(ϕ(t)) is normally generated by parameterising a mother func-

tion, denoted byκ(ϕ(t)) in Equation (3.37) [93]. Different forms of function expansions may

be used, some of which are: polynomials, Volterra kernels, Fourier series, radial basis functions,

wavelets, etc. Wavenets, described in the previous section, have been used for the nonlinear-

ity estimation in this work. Wavenets are defined as one-hidden-layer neural networks whose

activation functions are drawn from a family of orthogonal wavelets [116]. Mathematically,

wavenets may be represented as:

g(ϕ(t), θ) =
∑ ∑

αj,k κ(βj(ϕ(t) − γk)), (3.37)

whereκ is the mother wavelet function,βj is the scaling function,γk is the translation function

andαj,k is the wavelet coefficient.

As done in Equation (3.28) the nonlinear mapping function can be re-expressed as a sum of the

scaled and translated scaling and wavelet functions as [91, 108]:

f(u) = g(ϕ(t), θ) =

N
∑

k=1

wk φ(u) +

M
∑

j=1

wj ψ(u) + ȳ, (3.38)

whereu represents the input to the neural network andM+N represents the number of wavenet

units in the hidden layer.

The training of the wavenet happens based on the cost function shown inEquation (3.34).

The System Identification toolbox in MATLAB/Simulink, which has been used to develop the

NARX model of a WEC, uses the Levenberg-Marquardt algorithm for thefinding the optimal

set of weightswk andwj in Equation (3.38) [119, 120]. In the toolbox, the scaling function and
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the wavelet function used arey(x) = e−0.5x′x andf(x) = (dim(x)−x′x)e−0.5x′x respectively.

They are shown in Figure 3.8.

Figure 3.8: The wavelet and scaling functions used.

Figure 3.9 shows the schematic of the NARX model supported by the system identification

toolbox of MATLAB/Simulink. The schematic is very similar to the NARX model shownin

Figure 3.5. The only difference is the additional linear function in the model. The presence of

the linear function modifies the output function shown in Equation (3.38) as follows:

f(u) = g(ϕ(t), θ) + au+ b, (3.39)

whereau + b is the additional linear term. Both these constantsa andb are also estimated

during the training of the NARX model.

Figure 3.9: Schematic of the NARX model.
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3.4 Developing the NARX model for a WEC

With all the mathematical and theoretical background covered in the preceding sections, this

section deals with discussing the steps involved in the development of the NARXequivalent

model of a WEC. A modular approach like that used for the development of the detailed model

has been used in this case too. NARX models of the wave energy converter(in the sea), the

PTO system and the DFIG have been developed separately. This approach has been followed

because these entities can be independently controlled. The schematic of thedeveloped NARX

model of the whole system is shown in Figure 3.10. Referring to Figure 2.23 gives a clear

picture of the modular nature of the developed NARX model.

Figure 3.10: Schematic of the developed NARX model of the WEC.

The NARX model has two distinct parts. NARX model 1, which essentially modelsthe WEC

module in Figure 3.10, takes the wave elevation time-series as its input and returns the raw me-

chanical power extracted by the WEC (Pwec). A three step process is used to generate the Pwec

time-series. In the first step, the NARX1 module takes the wave elevation as input and returns

the WEC displacement without considering the presence of end-stops. Inthe second step, this

WEC displacement is fed to the NARX2 module, which returns the WEC displacement includ-

ing the effects of end-stops. Differentiating this displacement gives the velocity of the WEC.

The derivation of Pwec from the velocity constitutes the third step in the WEC module. For

this, the NARX3 module takes the velocity as its input and returns Pwec. The second distinct

part of the complete model is NARX model 2, which takes the predicted Pwec time-series and

returns the real power generated by the WEC (Pfarm).

Generating the Pwec time-series from the wave elevation time-series using the detailed model is

a very fast process, since the WEC has been modelled as a mass-spring-damper system. There-

fore, only the development of NARX model 2 is described in detail here. The development of

NARX model 1 is dealt with briefly in Section 3.4.4.

Model development using system identification consists of the following stages [94, 121]:
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• Acquisition of input-output data

• Selection of model structure

• Estimation of model parameters

• Model validation

3.4.1 Acquisition of input-output data

The detailed model of the WEC has been used to generate the time-series of Pfarm and Pwec,

which have been used to train the NARX model 2. The Pwec time-series generated is the input

while the Pfarm time-series is the output. Data obtained from simulating the detailed model of

the WEC for 600 seconds were used as the estimation data for high energy sea states. The data

were obtained by simulating the WEC in a stationary but irregular sea state withHs = 6 m and

Tz = 10 s. From the 600-second run with a time-step of 0.1 seconds, half the data were used

for the estimation and the other half were used to validate the developed NARX model. The

model developed was for WECs with an accumulator size of 0.5m3. The same simulation run

with other accumulator sizes can be used to generate data, which could then be used to develop

NARX models for WECs with different accumulator sizes.

3.4.2 Selection of the model structure

The wavenet network, which was described in detail earlier, has been chosen as the nonlinear

function estimator. A modified form of the algorithm used in [100] has been used to select the

optimal regression vector for the identification process. As the first step of the algorithm, an

initial NARX model is developed, which only uses the current input in the regression vector.

The fit between the simulated output and the validation data is then calculated. The ‘fit’ is a

measure of how close the simulated NARX model output is to the detailed model output. It is

defined by:

Fit = (1 −
√

∑

(y − ŷ)2
√

∑

(y − ȳ)2
) ∗ 100 (3.40)

wherey is the output from the detailed model,ŷ is the simulated model (NARX model) output,

andȳ is the mean ofy. A fit of 100% means a perfect fit and a fit of 0% is when there is no fit

between the two data sets.

Next, another regressor, e.g.u(t− 1), is added to the regression vector and the fit is calculated

again. If the fit is better with the new regression vector it is chosen over theprevious regression
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vector. If the fit obtained with the new regression vector has not improved, the newly added

regressor is rejected and the previous regression vector is used. In the same fashion, a set

of regressors is tested. The selection procedure is complete when the required fit is reached.

Using this algorithm, a combination of regressors was selected. To model the Pwec-Pfarm

relationship, the regression vector was constructed using the following regressors:y(t − 1),

y(t− 2),...,y(t− 10), u(t), u(t− 1),...,u(t− 9). A best fit of 98.45% was obtained between

the simulated and the validation data.

3.4.3 Estimating the model parameters

After the model structure is decided, the next task is to parameterise the nonlinear function

expansion shown in Equation (3.38). As mentioned earlier, the scaling and the translation co-

efficients of the wavelet and the scaling functions and the number of wavenet units are decided

iteratively before the training procedure. Once this is performed, the Levenberg-Marquardt

algorithm is used to parameterise the nonlinear function expansion. For NARXmodel 2, a

wavenet with four units was chosen.

The NARX model developed using the input-output data was seen to be sufficient for moder-

ately and highly energetic seas withH2
sTz ≥ 64. The model overestimated Pfarm when used to

simulate the WEC in low energy sea states. To improve the accuracy of the NARXmodel, two

other NARX sub-models were developed. The first sub-model was generated for sea states with

H2
sTz <= 10. The estimation/validation data for this sub-model were obtained by simulating

the detailed model of the WEC with a stationary but irregular sea withHs = 1 m andTz = 4 s.

The optimal regression vector was found and had the following regressors: y(t− 1), y(t− 2),

u(t) andu(t − 1). A wavenet with 52 units was seen to make the most accurate estimation.

A best fit of 99.46% was obtained between the validation data and the simulated output of the

NARX model. The second NARX sub-model was generated for sea states with H2
sTz between

10 and 64. The data obtained by simulating the detailed model for 600 secondswith a sea state

with Hs = 2 m andTz = 6 s were used for the estimation. The same set of regressors as the

first sub-model and a wavenet with 9 units gave a best fit of 97.22%.

3.4.4 NARX model of the WEC module

In this section, the construction of the intermediary models in NARX model 1, shown in Fig-

ure 3.10, is described.
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For NARX1, the current input, 39 past input values and 25 past outputvalues were selected

as the regressors to map the relationship between the wave elevation time-series and the dis-

placement of the WEC. A wavenet with just one unit was seen to estimate the relationship

most accurately. A best fit of 99.93% between the validation data and the simulated output was

obtained.

The NARX2 model, which models the effects of having end-stops on the displacement of the

WEC, takes in the unrestrained WEC displacement (output of NARX1) and returns the dis-

placement of the WEC with end-stops. The current input and one past value of the input formed

the optimal regression vector. A treepartition network with 1023 units was seen to estimate the

relationship most accurately. A best fit of 98.65% was obtained.

The WEC’s velocity (derivative of the output of NARX2) is the input to NARX3. The Pwec

time-series is returned by NARX3. For developing this model, the optimal regression vector

was constructed with the current value of the input and the squared of thecurrent input. A

wavenet with 9 units was chosen to best represent the mathematical relationship and a best fit

of 100% was obtained using this model structure.

For constructing the three intermediary models in the NARX model 1, the data used for training

were obtained by running a simulation of the detailed model for 600 seconds,in a sea state with

Hs = 6 m andTz = 10 s. This simulation run was performed with a constant PTO damping

coefficient, selected by using the method described in Section 2.4. In reality,when adaptive

controllers are used to continually find the optimal PTO coefficients, the NARXmodel 1 has

to account for changes in the damping coefficient. To include the effects of changing PTO

coefficients, a NARX model may be developed that takes in both the PTO coefficients and the

wave elevation time-series as inputs and returns Pwec as the output. When thismodel is used

in simulations, the adaptive controller would feed the PTO coefficients to the NARX model.

3.4.5 Model validation

In this section, the NARX model was validated for the same sea states used to obtain the data

used for training. The ‘fit’ was used to quantify the closeness of the data obtained from the

NARX model and the detailed models. A further process of thorough validation has been

performed, both for single WECs and for wave power farms, and the results obtained from

these validation runs are discussed in the next section.
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3.5 Further model validation

The thorough validation process adopted in this section tests the appropriateness of the NARX

model developed, when the WECs are placed in seas other than those usedto train the wavenet.

Two quantities - the residual and the percentage error - have been usedto compare the operation

of the NARX model with the detailed model. The residual is defined by:

R(t) = |y(t) − ŷ(t)|, (3.41)

and the percentage error is defined by:

P (t) = (R(t)/y(t)) ∗ 100, (3.42)

where the quantities in these equations are as described earlier.

In this section, the results of the estimation of Pfarm from the wave elevation time-series when

accumulators and end-stops are used are discussed. The results obtained for the accumulator

size of0.5m3 are shown for the different sea states modelled. The validation performedfor

single WECs and for wave power farms are treated separately.

3.5.1 Validation of the NARX model of a single WEC

3.5.1.1 Stationary sea case

The applicability of the NARX model to simulate a single WEC in different stationarybut ir-

reregular seas has been tested and the results are discussed in this section. A range of significant

wave heightHs and average zero-crossing wave periodTz values found off the west and north

coasts of Scotland have been used. The different combination ofHs andTz that have been

used, and sorted based on the energy content of the sea state (measured byH2
sTz), are listed in

Table 3.2. The time-series of Pfarm obtained from 600-second simulation runs of the detailed

model of the WEC have been compared with the results provided by the NARX model.

Figure 3.11 shows the maximum absolute and the average values of the residual in the estimated

Pfarm time-series and the instantaneous percentage errors at the instantswhen the maximum

residuals were obtained. Except for the sea states 11, 20 and 21 low values of the percentage

errors are seen. For sea states 11, 20 and 21 though, the value of the residual is less than 5

kW, which means that the percentage error at these instants were high because of low power

generation from the WEC. The average residual lies below 2 kW for all thesea states tested.
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S. No. Hs(m) Tz(s) H2
sTz(m

2s)

1 0.5 4 1
2 0.5 6 1.5
3 0.5 8 2
4 0.5 10 2.5
5 0.5 12 3
6 1 4 4
7 1 6 6
8 1 8 8
9 1 10 10
10 1 12 12
11 2 4 16
12 2 6 24
13 2 8 32
14 2 10 40
15 2 12 48
16 4 4 64
17 4 6 96
18 4 8 128
19 6 4 144
20 4 10 160
21 4 12 192
22 6 6 216
23 6 8 288
24 6 10 360
25 6 12 432

Table 3.2:Hs andTz combinations used for this study
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Figure 3.11: Maximum absolute and average residuals in Pfarm when the model is validated
with the 25 different stationary sea states.

3.5.1.2 Non-stationary sea case

Hs andTz do not vary much during 10, 20 or 30 minute intervals. Also, most wave buoys

collect theHs, Tz data averaged over such periods. Following this approach of keepingHs and

Tz constant for a certain duration (10 minutes in this work), a concatenated sea state has been

constructed. The NARX model has been tested with a 1800-seconds sea state formed by the

concatenation of a weakly, a moderately, and a highly energetic sea. The sea is highly energetic

for the first 600-seconds period (Hs = 6.03 m, Tz = 8.52 s). During the period between 600

seconds and 1200 seconds the sea is weakly energetic (Hs = 1.27 m, Tz = 4.82 s) and during

the last 600-second period the sea is moderately energetic (Hs = 4.4 m,Tz = 6.78 s).

Figures 3.12 and 3.13 show the Pfarm time-series generated by both the detailed model and

the NARX model, along with the residual and the instantaneous percentage errors over a 200-

second period and a 40-second period respectively. The values of the residual are less than 2.5

kW during the entire 1800-seconds run.

3.5.1.3 Non-stationary realistic sea case

The NARX model of the WEC has been validated with a 24-hour simulation run under a real-

istic, non-stationary sea state. Again, the Pfarm time-series generated by the NARX model was
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Figure 3.12: NARX model and detailed model generated Pfarm time-series, residual and per-
centage error over 200 seconds, with the WEC excited by the 1800-seconds non-
stationary sea state.

Figure 3.13: Snapshot of the Pfarm time-series with the WEC excited by the 1800-seconds
non-stationary sea state.
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compared with that generated by the detailed model.

Figures 3.14 and 3.15 show the Pfarm time-series generated by both the detailed model and the

NARX model, along with the residual and the instantaneous percentage errors over a selected

300-second period and a 60-second period respectively. Acceptable levels of percentage error

and the residual are seen during the entire run. A hard limit of 125 kW has been placed on

the real power output of the NARX model, which is seen in Figure 3.15. Figure 3.16 shows

the percentage distribution of the instantaneous percentage error in the estimated Pfarm values

over the 24-hour period. It is seen that for most parts of the simulation runthe percentage error

lies below 4%. Such errors are acceptable for power flow studies, sincethese will not produce

significant changes to the voltage profile envelope of the network.

Figure 3.14: NARX model and detailed model generated Pfarm time-series, residual and per-
centage error over 300 seconds, with the WEC excited by the 24-hour non-
stationary sea state.

3.5.2 Validation of the NARX model of wave power farms

Like in the case of the detailed model, since a modular approach has been used in modelling the

WECs, wave power farms can be modelled by replicating the developed modelof an individual

WEC and by exciting it with different wave elevation time-series. The NARX model of a

wave power farm with 8 WECs has been validated and the results are discussed in this section.

The operation of the NARX model has been tested in both stationary and non-stationary sea

states. The validation has been performed by comparing the time-series of thenet real power

65



Modelling wave power farms - Part II

Figure 3.15: Snapshot of the Pfarm time-series with the WEC excited by the 24-hour non-
stationary sea state.

Figure 3.16: Histogram of the percentage error in the estimated Pfarm time-series obtained
from the 24-hour simulation.
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generated by the farm provided by the detailed model and the NARX model. A simple farm

topology has been chosen where the WECs are placed in a line with a 100 m spacing between

two neighbouring WECs.

Recent work suggests that interference between devices in a WEC farmcan affect (positively or

negatively) the individual and aggregated power output, especially when the distance between

the WECs is less than 10 diameters [85, 86]. In this work, the wave power farm has been

assumed to be sparse and hence the interference has not been taken intoaccount.

As a part of the SuperGen Marine Energy consortium’s WS7, a detailed hydrodynamic model

of wave power farms has been developed by Dr. David Forehand [15]. A state-space model of

the farm has been constructed, which takes into account all the radiation and diffractions from

the WECs in the farm. The NARX model 2 developed in this study fits in well with the model

Dr. Forehand has developed and both these models together form a more realistic wave-to-wire

model of a wave power farm.

3.5.2.1 Stationary sea case

Figure 3.17 shows the average percentage error and the average value of the residual over the

600-second period for the 25 different stationary sea states used in Section 3.5.1.1. The results

for wave power farms of four different sizes - with 2, 4, 6 and 8 WECs -are shown in the figure.

For all the sea states tested, the average value of the residual and percentage error are less than

5 kW and 3% respectively. The average percentage error is seen to decrease with an increase in

the size of the farm, which means that the NARX model of the WEC can be used tocorrectly

model even larger farms.

3.5.2.2 Non-stationary sea case

The NARX model of a wave power farm with 8 WECs has been tested under highly energetic

and weakly energetic non-stationary, realistic sea states. Figures 3.18 and 3.20 show the NARX

model and the detailed model generated Pfarm time-series with the residual and the instanta-

neous percentage error when excited by both the sea states. Figures 3.19 and 3.21 show the

same time-series over a shorter time period. It is seen from these figures thatthe NARX model

gives a very good estimate of the net Pfarm generated by the wave powerfarm with 8 WECs.
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Figure 3.17: Average percentage error and average value of the residual in the net Pfarm gen-
erated by a wave power farm with 2, 4, 6, and 8 WECs for the 25 stationary sea
states (of Table 3.2).

Figure 3.18: NARX model and detailed model generated Pfarm time-series, residual and per-
centage error over 600 seconds, with the wave power farm with 8 WECs excited
by the low energy non-stationary sea state.
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Figure 3.19: Snapshot of the Pfarm time-series with the wave power farm with 8 WECs excited
by the low energy non-stationary sea state

Figure 3.20: NARX model and detailed model generated Pfarm time-series, residual and per-
centage error over 600 seconds, with the wave power farm with 8 WECs excited
by the high energy non-stationary sea state.
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Figure 3.21: Snapshot of the Pfarm time-series with the wave power farm with 8 WECs excited
by the high energy non-stationary sea state.

3.6 Summary

This chapter described an alternative modelling framework in which input-output data collected

from a system are used to construct its black-box model. This framework,called system iden-

tification, was applied to model individual WECs and wave power farms. Thedetailed model

of the WEC was used to generate the estimation data which were then used to trainwavenet

networks. After training, the wavenet network accurately maps the input-output relationship of

the system being modelled.

The most significant advantage of using the NARX model of the WEC over thedetailed model

is the savings made in the simulation time and the computing resource. For example, when

the detailed model of a wave power farm with 8 WECs takes an average of 194 seconds for

a 100-second run, the NARX model takes on average 4.50 seconds. The savings in time and

computing resource does not vary linearly with the change in the wave power farm size and

simulation time period and, thus, will be more important when simulating larger farms over

extended durations. The simulation runs of wave power farms having 48 WECs discussed later

in this thesis would not have been possible without the equivalent NARX model.

70



Modelling wave power farms - Part II

Another advantage of using the NARX equivalent model comes from the fact that the improve-

ment in the simulation run times does not come with a reduction in the time-resolution of the

model. In all the simulations performed for this chapter, a time-step of 100 ms wasused. Thus,

the NARX model ensures the availability of a time-series of Pfarm, sampled every 0.1 seconds

or less. Such time-steps are required to study the effects of connecting wave power farms to the

electricity network on the supply voltage quality.

The NARX model was thoroughly validated with the simulated results obtained from the de-

tailed model for different sea states. The results show the applicability of theNARX model for

realistically modelling WECs and wave power farms. The performance of the NARX model

was seen to improve with an increase in the farm size, which proved that the modelling ap-

proach can be used to model larger farms too. It is envisaged that the system identification

modelling approach can also be used to model tidal and wind energy systems.
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Chapter 4
Topologies of arrays of wave energy

converters - effects on power
smoothing

4.1 Introduction

The introduction to the thesis defined some of the problems that will need to be addressed before

significant amounts of distributed generation (DG) can be connected to weak, rural electricity

networks. It also mentioned that voltage fluctuations introduced in the electricity network by

the connection of DG in general and wave power farms in particular is the focus of this thesis.

When wave power farms are connected to the network, strict voltage qualityrequirements set

by the distribution network operators [122] need to be met. This is challengingdue to the

time varying and the unpredictable nature of the power generation from these farms. In these

weak networks, even small changes in the power generated by the wave power farm is likely to

produce significant voltage fluctuations.

Power generation from ocean waves is different from the generation from tides and wind. In

the case of tidal power, the change between high and low tides and betweenthe arrival and

the recession of tides is predictable. This makes designing the control system, to maintain

voltage and power quality, relatively straightforward. Wind energy converters, on the other

hand, deal with spatially random wind speeds which make output prediction difficult. Apart

from the advantages of spacing the wind converters far enough to avoidthe wake effect, no

significant improvement in the voltage quality can be obtained by spacing the individual wind

energy converters in wind power farms differently.

Ocean wave fields can be represented as a superposition of a large number of sinusoidal wave

components across both time and space. The wave energy converters (WECs) are said to be in

coherence, if in a wave power farm the WECs are spaced such that at the same instant of time

each WEC produces maximum power. When the WECs are coherent, the net power generated
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by the farm would tend to be more variable. The spatially sinusoidal nature ofocean wave fields

leads to this feature, which can be exploited for voltage quality improvement and is investigated

further in this chapter. The theory behind this approach is first discussed through simulation

runs in which two WECs are placed in a purely sinusoidal sea. Whether this theory will hold

good for mixed and stationary seas and for mixed and non-stationary seasis then examined with

a simple line of WECs. The smoothness in the cumulative raw mechanical power extracted by

the farm is inspected first. Whether the directional orientation of the line of WECs with respect

to the dominant wave direction has any influence on the smoothness in the power produced is

also examined.

Next in the chapter, the influence of spacing between the WECs in the linear array and the

orientation of the linear array on the quality of the net real power generated by the farm is

analysed. This is performed because the quantity of interest for networkoperators is the quality

of voltage in the network, which is directly dependent on the quality of the real power fed to the

network (assuming that no reactive power is exchanged with the network). The same test cases,

as performed for the cumulative raw mechanical power, are repeated for studying the relation

between different spacing and orientation, and the smoothness in the net real power generated

by the farm. The advantages of using accumulators in smoothing the real power generated by

the individual WECs and by the farm as a whole are also discussed.

From the simple line of eight WECs, the analysis then moves to a more realistic array of 48

WECs, which constitute a 6 MW wave power farm. The effects of increasingthe size of the

wave power farm on the smoothness in the generated power are first examined. Then the spac-

ing effects seen in the simple array are tested with the 6 MW farm to see if the effects can be

reproduced in the case of the larger array. The effects of changing the dominant wave direc-

tion on the smoothing obtained are also studied. A statistical study of the wave climate off the

north western coast of Scotland using data collected over two years has been performed and is

presented later in this chapter, which puts the results obtained into context. The work with the

6 MW farm is set in context of real array deployment in multi-directional seas.

Recent work suggests that interference between devices in a wave power farm can affect (pos-

itively or negatively) the individual and aggregated power output fromthe WECs. Most of

the work performed on arrays of WECs has focussed on this aspect. There are publications

that looked at how the interaction factor (q-factor) of an array of WECsand its net power pro-

duction can be influenced by appropriately spacing the WECs [123–125]. Other publications
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investigated the effects of different WEC control mechanisms on the net power produced by

the array of WECs [126–128]. These publications though, have not considered the influence

of these choices on the smoothness in the net real power generated by thearray which directly

influences voltage quality in the network. Also, in these publications the WECs were taken to

be closely spaced such that they influence each other significantly.

Arrays of WECs are normally sparse due to deployment and operational reasons. For this

work, the spacing between WECs of diameter 3.1 m has been taken to be greater than ten times

the diameter. When the spacing between the WECs is large, the hydrodynamic interference

between the WECs can be neglected [85, 86]. Other publications have alsostudied the effects of

placing WECs on the wave climate downstream of the WECs [129, 130]. In these publications

it was shown that beyond a certain distance the effects of the hydrodynamic interference are

negligible. Therefore, the work performed for this chapter has neglected the hydrodynamic

interference between the WECs within the array.

All the simulation runs completed for this chapter were performed using the NARX equivalent

model of wave power farms developed in Chapter 3. It would not have been possible to run

the simulations of the 6 MW farm (with 48 WECs), discussed in this chapter, if thedetailed

and computationally intense model of the WECs (described in Chapter 2) had been used. The

nature and the number of simulation runs discussed in this chapter shows an application of

system identified models.

4.2 Definition of terms

Pwec (raw mechanical power)is the power extracted from the sea by an individual WEC.

Cumulative Pwec (cumulative raw mechanical power)is the sum of Pwec across the wave

power farm. This is not a quantity that we have access to and is not importantfrom the net

real power generation point of view. This quantity is used to assess and quantify the smoothing

introduced by the spatially sinusoidal nature of the wave fields.

Pfarm (real power) is the real electrical power generated by an individual WEC.

Net Pfarm (net real power) is the sum of Pfarm across the wave power farm. It is the net real

power output from the wave power farm.

Variance is defined byV ar = (
∑N

i=1
(Piavg−Pi)

2)/N , wherePi is the power output at instant
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i,N is the total number of points in the power time-series andPiavg is the average ofPi overN .

In this chapter, the variance in both cumulative Pwec and net Pfarm have been calculated. For

the former,Piavg has been taken as the moving average, while for the latter the normal average

over theN data points has been taken asPiavg. This has been done to take into account both

the high and the low frequency variations seen in the cumulative Pwec. In thecase of the net

Pfarm, the variance has been calculated with respect to the average net Pfarm, since most of the

high frequency variations in the cumulative Pwec are filtered out by the power take-off system

and the generator.

Coefficient of Variance is defined as the variance in the net Pfarm divided by the average net

Pfarm over the observed time period. This coefficient is useful in comparing the variance in the

net Pfarm when arrays of different sizes are placed in the same sea.

(See Figure 2.23 to understand the variables Pfarm and Pwec with respect to the schematic)

4.3 The theory

In this chapter, the effects of different WEC spacings, which vary from 0.25λpeak to 0.5λpeak,

on power smoothing are investigated.λpeak here is the peak wavelength of the sea correspond-

ing to the peak frequency of the ocean wave spectrum. The reason for choosing this range of

WEC spacings can be appreciated using Figure 4.1. The figure shows twoWECs placed in a

purely sinusoidal sea at two different spacings - 0.25λ and 0.5λ. The power extracted by the

individual WECs and the combined power extracted from the sea are shown for the two spac-

ings. When the WECs are spaced 0.25λ apart, the powers extracted by the two WECs are out

of phase. Their combined power output thus is relatively smooth. When, onthe other hand, the

WECs are spaced 0.5λ apart, their individual power outputs are in phase and thus the combined

power output is not smooth.

For the sinusoidal sea used in this section, the smoothing that can be obtainedby spacing

WECs 0.25λ apart is fairly easy to understand. However, even for irregular seasgoverned

by the Bretschneider spectrum, it is still possible that such smoothing will be seen when the

WECs are spaced 0.25λpeak apart. This will be tested in this chapter for both stationary and

non-stationary seas. Also, thus far only the smoothness seen in the cumulative raw mechanical

power extracted by an array of WECs was dealt with. How this smoothness isreflected in the

smoothness of the net real power the wave power farm feeds to the electricity network is of

consequence too, since it is the quality of the power fed to the network that determines to a
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Figure 4.1: The combined power from two WECs in a sinusoidal sea when they are placed
0.25λ and 0.5λ apart.

large extent the voltage quality of the network. Whether the smoothing in the generated power

from a simple linear array of WECs can be scaled to suit the case of larger arrays with more

complex structures is also examined.

4.4 Effects of spacing and orientation on the cumulative raw me-

chanical power (Pwec) in a simple line of six WECs

In this section, the smoothing in the cumulative Pwec observed when the WECs 0.25λpeak apart

and placed in irregular seas is explored. The theory explained in the preceding section is tested

in more realistic seas. A simple array topology in which the array is a line of six WECs has been

considered. The array is shown in Figure 4.2. Though this is the most basicarray configuration,

it is believed that its analysis will reveal many characteristics, which will be important for more

sophisticated array configurations. The applicability of these characteristics on more complex

array topologies are dealt with later in this chapter.

The effects of spacing WECs differently on the power smoothing in this array when it is placed

in both stationary and non-stationary seas have been analysed. The effects of changing the

orientation of the array with respect to the dominant wave direction on the power smoothing

obtained by spacing WECs appropriately has also be touched upon. Therefore, the two vari-
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Figure 4.2: Configuration of the line of six WECs with respect to the dominant direction of
wave propagation.

ables of interest here are the spacing between the WECsd and the orientation of the array

α.

4.4.1 Stationary, irregular sea - effects of spacing

This section summarizes the results discussed in [131]. Figure 4.3 shows thefrequency spec-

trum of the stationary but irregular sea state used in this section (Hs = 4.4 m andTz = 6.78 s)

and shows the peak frequency (fpeak) of the spectrum. The peak wavelengthλpeak can be

calculated fromfpeak using the dispersion relation. For the simulation runs described in this

section, no accumulators were used.

Figure 4.4 shows the cumulative raw mechanical power extracted by the array when placed

in the sea modelled, withα= 0◦, for three spacings (0.25λpeak, 0.375λpeak and 0.50λpeak).

As was stated in [131], the cumulative raw mechanical power extracted is much smoother

when the WECs are spaced a quarter peak-wavelength apart. When theyare spaced a half

peak-wavelength apart high frequency fluctuations are seen. Table 4.1 shows the variance in

the cumulative Pwec with respect to the moving average for the three different spacings. A

larger variance points to larger fluctuations. It is seen that the variance increases as the spacing

increases from 0.25λpeak to 0.5λpeak.
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Figure 4.3: Energy spectrum density of the used stationary but irregular sea state.

Figure 4.4: The cumulative raw mechanical power extracted by the array ford = (a) 1/4λpeak

(b) 3/8λpeak and (c) 1/2λpeak, when placed in a stationary sea withHs = 4.4 m
andTz = 6.78 s.
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Spacingd Variance in the cumulative Pwec (MW)2

0.25λpeak 0.0042
0.375λpeak 0.0119
0.5λpeak 0.0299

Table 4.1: Variance in the cumulative Pwec, for different array spacings, of the array modelled
in a stationary sea withHs = 4.4 m andTz = 6.78 s

Figure 4.5: The cumulative raw mechanical power extracted by the line of six WECs forα= (a)
0◦ (b) 30◦ (c) 60◦ and (d) 90◦, when placed in a stationary sea withHs = 4.4 m
andTz = 6.78 s.

4.4.2 Stationary, irregular sea - effects of array orientation

Keeping the spacingd constant at 0.25λpeak, the orientation of the array with respect to the

dominant wave direction is now changed. Figure 4.5 shows the cumulative raw mechani-

cal power extracted for four different orientationsα. The cumulative Pwec time-series is the

smoothest when the array is oriented along the dominant wave direction. Even atα= 30◦, the

cumulative Pwec is as smooth as theα= 0◦ case. This is attributed to the directional spreading

function used, which is significant up to 30◦ on both sides of the dominant wave direction. The

fluctuations in the cumulative raw mechanical power extracted increases withan increase inα.

The variance in the cumulative Pwec with respect to its moving average, listed inTable 4.2,

confirms this. Under the worst case condition, when the line of WECs lies perpendicular to the

dominant wave direction (α= 90◦), the wave excitations at the locations of the WECs are in

phase. This produces the most fluctuating cumulative Pwec, which is confirmed by the largest

variance for theα= 90◦ case.
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Orientation α Variance in the cumulative Pwec (MW)2

0◦ 0.0042
30◦ 0.0047
60◦ 0.0348
90◦ 0.0465

Table 4.2: Variance in the cumulative Pwec, for different array orientations, of the lineof six
WECs modelled in a stationary sea withHs = 4.4 m andTz = 6.78 s

4.4.3 Non-stationary, irregular sea - effects of spacing

The simulation runs used for the preliminary analysis used a stationary but irregular sea state.

Those simulations were run for a period of 10 minutes. In this section, the inferences made

earlier will be tested on the line of six WECs placed in a non-stationary wave field. The simula-

tions in this section have been run for 5.5 hours, with the significant wave height and the average

zero-crossing time period varying every 0.1 seconds. The effects of changing the spacingd and

the orientationα have been studied and the results are discussed here.

Figure 2.3 showed the varying nature of the spectrum over a day, which isa characteristic of

non-stationary seas. Therefore, selecting the peak wavelengthλpeak will not be as straight

forward as when the sea was stationary. Figure 4.6 shows the variation ofthe peak frequency

over a day and the data that has been used for the 5.5-hour simulation runsdiscussed in this

section. The data selected shows the widestfpeak variation during the day. Thefpeak used for

appropriate WEC spacing has been calculated as the average offpeak(t) during the day. With

the meanfpeak and the correspondingλpeak calculated, the power smoothing in the cumulative

Pwec has been analysed for different spacingsd and orientationsα.

The three spacings tested with the stationary sea case have been used here too. Figure 4.7 shows

the cumulative Pwec extracted by the array of 6 WECs for the three different spacings. Only a

500-second snapshot of the generated cumulative Pwec time-series is plotted. The variance in

the cumulative Pwec with respect to its moving average (over the plotted 500-second period) for

the three cases is shown in Table 4.3. As observed in the figure, the cumulative Pwec time-series

is smoothest when the WECs are placed 0.25λpeak apart with the smoothness progressively

decreasing asd increases to 0.5λpeak. The same smoothing in the cumulative Pwec can also

be seen over the entire 5.5-hour simulation run. The results are in good agreement with the

argument above pertaining to Figure 4.1 and sinusoidal seas. That is, even in irregular, non-

stationary seas, a smoothing effect is seen when the WECs are placed 0.25λpeak apart.
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Figure 4.6: Variation of the peak frequency over a day.

Figure 4.7: The cumulative raw mechanical power extracted by the line of six WECs for d=
(a) 0.25λpeak (b) 0.375λpeak and (c) 0.5λpeak, when placed in a non-stationary
sea.
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Spacingd Variance in the
cumulative Pwec
over 500 seconds
(MW) 2

Variance in the
cumulative Pwec
over 5.5 hours
(MW) 2

0.25λpeak 0.0517 0.0495
0.375λpeak 0.2018 0.1266
0.5λpeak 0.2757 0.1862

Table 4.3: Variance in the cumulative Pwec, for different array spacings, of the line of six
WECs modelled in a non-stationary sea

Orientation α Variance in the
cumulative Pwec
over 500 seconds
(MW) 2

Variance in the
cumulative Pwec
over 5.5 hours
(MW) 2

0◦ 0.0517 0.0495
30◦ 0.0589 0.0472
60◦ 0.2184 0.1232
90◦ 0.4766 0.3247

Table 4.4: Variance in the cumulative Pwec, for different array orientations, of the lineof six
WECs modelled in a non-stationary sea

4.4.4 Non-stationary, irregular sea - effects of array orientation

In this section, the effects of changing the orientation of the array of WECson the smoothing

in the cumulative Pwec are discussed further. It was shown earlier that some smoothing in the

cumulative Pwec is seen when the array is oriented along the dominant wave direction. This

was seen in the case of a stationary but irregular sea. Now, whether the smoothing seen in the

cumulative Pwec is still seen when the array is simulated in a non-stationary seais examined.

Figure 4.8 displays a similar effect to the one observed for the stationary sea case. Whenα=

0◦, the cumulative Pwec is relatively smooth. The smoothness progressively decreases asα

is increased to 90◦, i.e. when the array is perpendicular to the dominant wave direction. The

values of the variance for both the 500-second and the 5.5-hour simulationruns corroborate this

(see Table 4.4). It can be observed that the values of the variance arevery close to each other for

α= 0◦ andα= 30◦. The relatively high value of the variance for theα= 0◦ case is due to the fact

thatλpeak varies, which overrides the smoothing that would have been produced because of the

alignment of the array. The definition of the spreading function, where significant spreading

in the waves is seen even at± 30◦ from the dominant wave direction, also plays a role in

producing this effect.
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Figure 4.8: The cumulative raw mechanical power extracted by the line of six WECs forα =
(a) 0◦ (b) 30◦ (c) 60◦ and (d) 90◦, when placed in a non-stationary sea.

4.5 Effects of spacing and orientation on the net real power (Pfarm)

generated by the line of six WECs

In the preceding section, it was shown that spacing the WECs at quarter the peak wavelength

and orienting the linear array along the dominant wave direction ensured a smoother cumulative

Pwec time-series. Since the main aim of this thesis is to study the electrical networkimpacts

of connecting wave power farms, the quality of the net real power injectedto the network

by the array is more significant than the cumulative Pwec time-series. The voltage quality in

weak, rural distribution networks is largely defined by the quality of the power fed by the DG

connected to it. Hence, for the different array configurations and seas used in the preceding

sections, the power smoothing seen in the net Pfarm is now analysed. The wave power farms

modelled in these sections have been connected to a simple three bus electricalnetwork, which

is representative of rural distribution networks. Details of the network and its diagram were

given in Section 2.6 (Figure 2.26).

Figure 4.9 shows the net real power generated by the array under the same three spacings for

the stationary but irregular sea. It is seen that the fluctuations in the net Pfarm are bigger

when the spacing is 0.25λpeak than when the spacing is 0.5λpeak. This is attributed to the fact

that the hydraulic system and the DFIG within each WEC behave as filters andfilter out the

high frequency cumulative Pwec fluctuations, seen at the 0.5λpeak spacing case, more than the
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Figure 4.9: The net real power generated by the line of six WECs, when placed in a stationary
sea withHs = 4.4 m andTz = 6.78 s.

Spacingd Variance in the cumula-
tive Pwec (MW)2

Variance in the net
Pfarm (MW 2)

0.25λpeak 0.0042 1.3136×104

0.375λpeak 0.0119 7.0647×103

0.5λpeak 0.0299 4.8998×103

Table 4.5: Variance in the cumulative Pwec and the net Pfarm, for different array spacings, of
the line of six WECs modelled in a stationary sea

low frequency variations in cumulative Pwec, seen when the spacing is 0.25λpeak. Increasing

the spacingd from 0.25λpeak to 0.375λpeak and 0.5λpeak was seen to augment the average

real power fed to the network by approximately 6% and 11% respectively.Table 4.5 shows

the variance in the net real power generated for the three spacings, which clearly shows an

increased smoothing in the net real power generated whend is 0.5λpeak.

Figure 4.10 shows the real power fed to the network by the wave power farm for theα= 0◦ and

α= 90◦ cases. The extent of the low frequency swings in the net Pfarm time-series is reduced in

theα= 90◦ case when compared to theα= 0◦ case. Though significant high frequency variations

in the net Pfarm time-series are seen, most of these variations will be smoothened by the use

of hydraulic accumulators which is the subject of the next section. From these results it can

be inferred that the smoothing in the net Pfarm increases with an increase inthe orientation

angleα. In this case too, the time-series of the cumulative Pwec studded with high frequency
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Figure 4.10: The net real power generated by the line of six WECs, when placed in a stationary
sea withHs = 4.4 m andTz = 6.78 s.

Orientation α Variance in the cumula-
tive Pwec (MW)2

Variance in the net
Pfarm (MW 2)

0◦ 0.0042 1.3136×104

30◦ 0.0047 9.9861×103

60◦ 0.0348 7.3361×103

90◦ 0.0465 4.3064×103

Table 4.6: Variance in the cumulative Pwec and the net Pfarm, for different array orientations,
of the line of six WECs modelled in a stationary sea

variations gives a much smoother net Pfarm time-series, as seen in the casewhend = 0.5λpeak.

The values of the variance for the four different orientations (see Table 4.6) corroborate the

visual evidence shown in the figure.

4.6 Effects of using accumulators on the net Pfarm

One of the advantages of using a hydraulic PTO system is the option of having some on-

board storage in the form of accumulators. The results shown in Section 4.5were all obtained

through simulation runs in which no accumulators were used. This section explores some of

the advantages of using accumulators in WECs. The effects of having accumulators on some

of the results discussed in the previous section are examined here.

Increasing the size of the accumulator improves the quality of the real powergenerated by

a WEC. This is shown in Figure 4.11 in which the real power generated by twoWECs, one
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Figure 4.11: Effects of using accumulators on the real power generated by a WEC.

Accumulator
capacities (m3)

Average cu-
mulative Pwec
(kW)

Average net
Pfarm (kW)

Avg. net
Pfarm/Avg.
cumulative
Pwec

0.01 539 445 0.825
0.05 539 470 0.872
0.10 539 479 0.888
0.25 539 485 0.899
0.50 539 489 0.908

Table 4.7: Effects of using accumulators on the average real power fed to the network

without any accumulator and one with an accumulator of size 0.5 m3, are shown. The WECs

have been excited by the same sea state. Most of the high frequency fluctuations in the power,

detected in the case when no accumulator is used, are reduced when the accumulator is used.

These high frequency fluctuations in power are those caused by the wave-to-wave power vari-

ations. The lower frequency fluctuations are not addressed by the increase in the size of the

accumulator. Another significant advantage of using accumulators is the augmentation of the

exported power from a wave power farm. Table 4.7 shows the effects ofincreasing the accu-

mulator size on the average real power exported from an array of 6 WECs.

The effects of having accumulators on the smoothing in the net Pfarm, which isobtained by

appropriately spacing and orienting the array are now discussed. Figure 4.12 shows the net

Pfarm time-series for the three spacings, when each WEC in the array hasan accumulator

of size 0.5 m3. The average real power generated for the three cases was seen to be higher
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Figure 4.12: The net real power generated by the line of six WECs with on-board storage for
different array spacings, when placed in a stationary sea.

Spacingd Variance in the cumula-
tive Pwec (MW)2

Variance in the net
Pfarm (MW 2)

0.25λpeak 0.0042 8.4499×103

0.375λpeak 0.0119 5.7587×103

0.5λpeak 0.0299 4.7514×103

Table 4.8: Variance in the cumulative Pwec and the net Pfarm, for different spacings,of the
line of six WECs with on-board storage, when modelled in a stationary sea

than when no accumulators were used (by approximately 16%, 17% and 19.5% for thed =

0.25λpeak, 0.375λpeak and 0.5λpeak cases respectively). This is an important result, which

affirms that using some amount of storage in the array increases the average yield from the array.

As seen in the case without accumulators, the average real power generated also increased with

an increase ind from 0.25λpeak to 0.375λpeak and 0.5λpeak. An increase of approximately 6%

and 14% respectively, with respect to thed = 0.25λpeak case, was seen.

Table 4.8 shows the variance in the net Pfarm for the three spacings with theaccumulator.

As seen in the case without accumulators, the real power generated is the smoothest when

the spacing is 0.5λpeak, as shown by the values of the variance. Comparing the values of the

variance shown in the Tables 4.5 and 4.8 clearly shows the improvement in the power smoothing

obtained when accumulators are used.

Figure 4.13 shows the smoothing in the real power generated by a WEC for three accumulator
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Figure 4.13: Real power generated by a WEC for different accumulator sizes.

sizes. There is some improvement seen in the smoothing with an increase in the accumulator

size, but the improvement is not keeping with the 300% increase in the accumulator size (from

0.5 m3 to 2 m3). This clearly shows that any improvement in the smoothing in the net Pfarm

that can be obtained by spacing the WECs appropriately, will also contributeto the overall

power smoothing. Also, a trade-off between the smoothing required and thecost and space

requirements for large accumulators has to be made. In the rest of this chapter, all the simulation

runs have been performed with WECs having an accumulator of size 0.5 m3 each.

4.7 8-WEC arrays - different topologies

So far in this chapter, only a line of WECs was considered to study the effects of spacing

and orientation on the power output. Some of the inferences drawn from theresults in the

preceding sections are now tested with more realistic arrays of 8 WECs. In this section, the

power smoothing introduced by appropriate spacing in three different 8-WEC array topologies

is explored. The three considered topologies are shown in Figure 4.14. The spacing between

the rows and columns of WECs in the array has been taken as 100 m and 0.25λpeak respectively.

For the dominant wave direction shown in the figure, it becomes obvious thatin the case of

Array 1, since all the WECs are in coherence, the cumulative raw mechanical power will be
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Figure 4.14: Topologies of the arrays of 8 WECs.
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Array configura-
tion

Variance in the cumula-
tive Pwec (MW)2

Variance in the net
Pfarm (MW 2)

1 0.0428 1.7007×103

2 0.0210 3.2244×103

3 0.0175 3.8327×103

Table 4.9: Variance in the cumulative Pwec and the net Pfarm for the three 8-WEC array
topologies

the least smooth. In Array 2, the 4 WECs constituting the first column of WECs inthe array

and the 4 WECs in the second column of WECs are in coherence. Since only 4WECs are in

coherence, it might be assumed that a smoother cumulative raw mechanical power output when

compared to Array 1 will be obtained. This again depends on the spacing between the two

columns of WECs. The spacing has been taken as 0.25λpeak. Array 3 has only the 2 WECs

in each column in coherence with each other. Thus, the smoothest cumulativeraw mechanical

power output would be expected from this array configuration. The three array topologies are

tested under a commonly occurring sea state found off the north west coast of Scotland. The

sea state used is irregular and non-stationary withHs = 4.32 m andTz = 6.71 s and an average

peak wavelength of 132.41 m.

Figure 4.15 shows the cumulative raw mechanical power extracted by the three arrays. As ex-

pected, the smoothness in the cumulative Pwec increases as the array configuration changes

from 1 to 3. This is also confirmed by the variance in the cumulative Pwec listed inTable 4.9.

Analysing the net Pfarm generated by the three arrays, which is shown inFigure 4.16, shows

wider power fluctuations when Array 3 is used. Array 1 in which all the WECs are in coherence

performs better than the other configurations with respect to the net real power fluctuations.

This is seen in the values of the variance in net Pfarm shown in Table 4.9, withArray 1 having

the lowest variance. As seen in the case with different spacings and orientations in the line of

six WECs, in the case of different topologies of arrays of 8 WECs, the smoothness in the gen-

erated net Pfarm and the cumulative Pwec extracted vary inversely; i.e. smoother the generated

cumulative Pwec time-series, less smooth the generated net Pfarm time-seriesis.

4.8 Increasing the array size - effects on power smoothing

A general belief of researchers in both the wind energy and the wave energy industry is that

just increasing the number of wind/wave energy converters would solve the problem of the

fluctuations in the generated power. This is true to an extent when considering wind power

farms; but when examining wave power farms not only the number of devices in the farm but
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Figure 4.15: The cumulative raw mechanical power extracted by (a) Array 1 (b) Array 2 and
(c) Array 3.

Figure 4.16: The net real power generated by (a) Array 1 (b) Array 2 and (c) Array 3.
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Array size
(MW)

Variance in the
net Pfarm (MW 2)

Average net
Pfarm (kW)

Coefficient of
Variance (kW)

1 1.7007×103 393.9 4.3276
2 7.4109×103 791.0 9.3689
3 1.7222×104 1194.8 14.4141
4 2.7094×104 1608.4 16.8453
5 3.4090×104 2023.5 16.8470
6 4.0343×104 2436.3 16.5591

Table 4.10:The average of and the variance in the net Pfarm, for different array sizes, of
the 6 MW wave power farm modelled in a stationary sea withHs = 4.4 m and
Tz = 6.78 s

also the layout of the farm influences the quality of the net real power generated. This has

been investigated and the results and inferences are discussed in this section. Arrays of sizes

ranging from 1 MW to 6 MW have been simulated and the effects of appropriate spacing of

the columns of WECs within the array on the quality of power generated are discussed. The

theory presented in the case of the simple line of six WECs has been extrapolated with the

spacing between columns of WECs in the array being the variable of interest.This section also

analyses the effects of increasing the size of the array on the quality of thereal power generated,

and whether the advantages of appropriately spacing the WECs still hold good for these larger

arrays.

Starting from the 1 MW Array 1 configuration (see Figure 4.14), successive arrays with ad-

ditional columns of 8 WECs each; i.e. arrays of 1 MW, 2 MW, 3 MW, 4 MW, 5 MW, and 6

MW have been considered. The six arrays are shown in Figure 4.17. The spacing between two

neighbouring columns of WECs is 0.25λpeak and the stationary sea state withHs = 4.4 m and

Tz = 6.78 s has been used in the first part of this section. Figure 4.18 shows the real power

generated by the six arrays. It is seen that large fluctuations in the net Pfarm are seen even in the

6 MW wave power farm’s case. Table 4.10 shows the variance in the net Pfarm and the average

net Pfarm values for the six arrays. In absolute terms, the variance in thenet Pfarm increases

with an increase in the size of the array. The coefficient of variance is initially seen to increase

with an increase in the array size. For farm sizes above 4 MW, the coefficient of variance is

seen to plateau.

Figure 4.19 shows the cumulative Pwec and the net Pfarm time-series generated by the 6 MW

array when the spacing between the column of WECs is 0.25λpeak and 0.5λpeak. Table 4.11

lists the variance in the cumulative Pwec and the net Pfarm for the two spacings. The variance

in the cumulative Pwec is approximately 2.3 times higher in the 0.5λpeak spacing case when
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Figure 4.17: The six arrays of WECs.
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Figure 4.18: The net real power generated by the six arrays when placed in a stationary sea
withHs = 4.4 m andTz = 6.78 s.

Spacingd Variance in
the cumulative
Pwec (MW)2

Variance in
th net Pfarm
(MW 2)

Average net
Pfarm (kW)

0.25λpeak 0.1069 4.0343×104 2436.3
0.50λpeak 0.2479 2.7799×104 2474.3

Table 4.11:Variance in the cumulative Pwec and the net Pfarm, for two different spacings, of
the 6 MW wave power farm modelled in a stationary sea withHs = 4.4 m and
Tz = 6.78 s

compared to the 0.25λpeak spacing case. On the other hand, the net real power generated is

smoother in the 0.5λpeak spacing case when compared to the 0.25λpeak spacing case. These

results prove that the effects of spacing on the net Pfarm smoothness holds even as the size of

the array increases.

The simulations performed with the stationary sea state withHs = 4.4 m andTz = 6.78 have

been repeated using a more energetic sea state withHs = 12.87 m andTz = 11.83 s. The

same set of array configurations has been used and the real power time-series generated by the

six arrays are plotted in Figure 4.20. Table 4.12 lists the variance in the net real power and the

average net real power generated by the different arrays. It becomes evident that significant

power fluctuations occur even when the size of the array increases. These results are similar
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Figure 4.19: The cumulative raw mechanical power and the net real power generated by the
48-WEC array for two different array spacings, when placed in a stationary sea
withHs = 4.4 m andTz = 6.78 s.

Array size
(MW)

Variance in the
net Pfarm (MW 2)

Average net
Pfarm (kW)

Coefficient of
Variance (kW)

1 6.7018×103 709.6 9.4445
2 1.7988×104 1425.1 12.6223
3 3.2851×104 2146.4 15.3052
4 5.0714×104 2870.7 17.6661
5 6.2302×104 3574.4 17.4301
6 6.5091×104 4264.2 15.2645

Table 4.12:The average of and the variance in the net Pfarm, for different array sizes, of the
6 MW wave power farm modelled in a stationary sea withHs = 12.87 m and
Tz = 11.83 s

to the observations made through the simulation runs performed with the moderately energetic

sea state.

For comparing the effects of having column spacings of 0.25λpeak and 0.5λpeak, Figure 4.21

shows the generated net Pfarm and cumulative Pwec extracted by the array of 48 WECs. The

generated net real power is smoother when the column spacing is 0.5λpeak. The smoothness in

the net real power generated is not as evident as in the sea state used previously, but still exists.

Table 4.13 shows the variance in the cumulative Pwec and the net Pfarm forthe two spacings.

The variance in the net Pfarm is seen to be lower when the spacing betweenthe columns of

WECs is 0.5λpeak.
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Figure 4.20: The net real power generated by the six arrays when placed in a stationary sea
withHs = 12.87 m andTz = 11.83 s.

Figure 4.21: The cumulative raw mechanical power and the net real power generated by the
48-WEC array for two different array spacings, when placed in a stationary sea
withHs = 12.87 m andTz = 11.83 s.
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Spacingd Variance in
the cumulative
Pwec (MW)2

Variance in
the net Pfarm
(MW 2)

Average net
Pfarm (kW)

0.25λpeak 4.4739 6.5091×104 4264.2
0.50λpeak 4.1092 3.6070×104 4233.8

Table 4.13:Variance in the cumulative Pwec and the net Pfarm, for two different spacings, of
the 6 MW wave power farm modelled in a stationary sea withHs = 12.87 m and
Tz = 11.83 s

4.9 6 MW wave power farm - different spacings

In this section, the effects of changing the spacingd between columns of WECs in the 6 MW

wave power farm are discussed further. The array configuration is shown in Figure 4.22. The

different spacings that have been considered in this section are - 0.25λpeak, 0.5λpeak, 0.75λpeak,

λpeak and 1.25λpeak. The array has been simulated in a sea state withHs = 4 m andTz = 6 s.

In the site off the north west coast of Scotland being considered in this work, this is a commonly

occurring sea state. In theory, the smoothing in the cumulative raw mechanical power obtained

by placing the WECs 0.25λpeak apart should be seen even when the WECs are spaced at odd-

numbered multiples of 0.25λpeak. This has been tested and the results are presented in this

section.

Figure 4.22: 6 MW wave power farm configuration.

Figure 4.23 shows the cumulative Pwec and the net Pfarm generated by the6 MW wave power

farm when the columns of WECs in the array are spaced at 0.25λpeak and 0.5λpeak. The

cumulative Pwec time-series is smoother when the spacing is 0.25λpeak than when the spacing

is 0.5λpeak. The net real power generated by the farm sees wider variations whenthe spacing
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Figure 4.23: The cumulative raw mechanical power and the net real power generated by the
48-WEC array for two different array spacingsd = 0.25λpeak and 0.5λpeak.

is 0.25λpeak than when the spacing is 0.5λpeak. These observations are as expected and as

discussed earlier in this chapter. Figure 4.24 shows the reason why a smoother cumulative

Pwec time-series is seen when the columns of WECs are spaced 0.25λpeak apart. The figure

shows the raw mechanical power extracted by two WECs in the same row but inneighbouring

columns of the array. When the spacing is 0.25λpeak, the peak generation by the first WEC is

negated by the minimum generation by the second WEC and vice versa. This feature is seen

across the array between corresponding WECs in neighbouring columns. On the other hand,

when the spacing between the WECs is 0.5λpeak, the raw mechanical power extracted by the

two WECs is almost in phase, which produces a more variable cumulative raw mechanical

power time-series.

In [131], it was proposed that the smoothing in the cumulative raw mechanical power, seen

when the WECs are spaced 0.25λpeak apart, would be seen when the spacing is any odd-

numbered multiple of 0.25λpeak. This means that a similar smoothness in the cumulative raw

mechanical power extracted by the array would be seen when the columns of WECs are spaced

at 0.75λpeak too. To test this proposition, a simulation run of the 6 MW wave power farm in

which the columns of WECs are spaced 0.75λpeak apart was performed. The results obtained

along with those obtained from the 0.5λpeak spacing run are shown in Figure 4.25. It is seen

that the visible smoothing in the cumulative Pwec, seen when the columns are spaced 0.25λpeak
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Figure 4.24: The raw mechanical power extracted by two WECs in two neighbouring columns,
occupying the same row in the array, when the spacingd = 0.25λpeak and
0.5λpeak.

apart, is not seen when the spacing is 0.75λpeak. From the results discussed earlier, it might be

assumed that the smoothness seen in the net real power generated by the array with 0.5λpeak

spacing would be more than when the array spacing is 0.75λpeak. Observing the net Pfarm

plots in Figure 4.25 does not show a visible improvement in the smoothing when thespacing

is 0.5λpeak. In fact, the variance in the net Pfarm when the spacing is 0.5λpeak is larger than

when the spacing is 0.75λpeak. Comparing the raw mechanical power extracted by two WECs

of the same row and in neighbouring columns with the 0.25λpeak and the 0.75λpeak spacings

(Figures 4.24 and 4.26) clearly shows why. When the columns of WECs arespaced 0.25λpeak

apart, the Pwec extracted by the two WECs are almost exactly out of phase,which ensures

a relatively smooth cumulative Pwec. On the other hand, when the spacing is 0.75λpeak, the

Pwec extracted by the two WECs are not exactly out of phase, which accounts for the bigger

variations in the cumulative Pwec. This was also seen with the other spacings (1.0λpeak and

1.25λpeak) that were tested. Thus, the high degree of coherence between two WECs of the

same row and in two neighbouring columns seen when the spacing is 0.5λpeak is not seen when

the spacing increases beyond 0.5λpeak.

Table 4.14 shows the variance in the cumulative Pwec and the net Pfarm forthe spacings con-

sidered. For the first two cases (0.25λpeak and 0.5λpeak) the results were discussed earlier in

this section. The discrepancy in the 0.75λpeak case was also explained earlier. Observing the

99



Topologies of arrays of wave energy converters - effects on powersmoothing

Figure 4.25: The cumulative raw mechanical power and the net real power generated by the
48-WEC array for two different array spacingsd = 0.5λpeak and 0.75λpeak.

Figure 4.26: The raw mechanical power extracted by two WECs in two neighbouring columns,
occupying the same row in the array, when the spacingd = 0.5λpeak and
0.75λpeak.
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Spacingd Variance in the cumula-
tive Pwec (MW)2

Variance in the net
Pfarm (MW 2)

0.25λpeak 0.0658 4.4032×104

0.50λpeak 0.3103 2.8825×104

0.75λpeak 0.2006 1.9094×104

1.00λpeak 0.2365 1.1364×104

1.25λpeak 0.1890 1.2953×104

Table 4.14:Variance in the cumulative Pwec and the net Pfarm, for different spacings,of the 6
WM wave power farm modelled in a stationary sea withHs = 4 m andTz = 6 s

Figure 4.27: The net real power generated by the 6 MW wave power farm for differentcolumn
spacings greater than 0.5λpeak.

variances in the cumulative Pwec for the 0.75λpeak, the 1.0λpeak and the 1.25λpeak cases shows

that at spacings which are odd-numbered multiples of 0.25λpeak the cumulative Pwec is rela-

tively smoother when compared to the case when the spacing is a multiple of 0.5λpeak. But the

difference in the cumulative Pwec and hence the net Pfarm smoothness that the two spacings

provide reduces as the spacing increases beyond 0.5λpeak. Figure 4.27 shows the net Pfarm

generated by the array for these three spacings, which confirm these findings. The smoothness

in the net Pfarm improves with an increase in the spacing from 0.75λpeak to 1.0λpeak. No sig-

nificant reduction in the smoothing is observed when the spacing is increased from 1.0λpeak to

1.25λpeak.
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4.10 Case study - 6 MW wave power farm off the Western Isles,

Scotland, UK

In this section, the results and the inferences drawn from described in theprevious sections are

applied in the prospective development of a real wave power farm off the north western Scottish

coast. For this purpose, two years worth of data of the wave climate found off the north west

coast of Scotland have been used. The data have been obtained from the Wavenet database [20].

The effects of changing the orientation of the line of six WECs with respect tothe dominant

wave direction were discussed earlier. It was seen that orienting the line of WECs at 90◦ to the

dominant wave direction, such that all the WECs are in phase, produced the smoothest net real

power output from the array. In the simulation runs in this section, directional spreading has

been considered, but the dominant direction of the generated waves hasbeen kept at 0◦. This is

keeping in view the directional features of the sea found at most sites off northern and western

Scotland. Figure 4.28 shows the percentage distribution of the dominant wave direction found

over the two-year period at the site being considered. For approximately 60% of the time,

the dominant direction lies between 250◦ and 300◦. Since the spreading function used has a

significant spreading of up to 30◦ on either side of the dominant wave direction, 275◦ has been

chosen as the dominant wave direction; i.e. the array of WECs is placed oriented with the 275◦

angle. Also, as more columns of WECs are added in the array, the effects that the dominant

wave direction has on power smoothing reduce. This is examined is Section 4.12 of this chapter.

Figure 4.29 shows the percentage of time for which the differentHs,Tz combinations occurred

at the site being considered. It is seen that for approximately 52% of the time the average zero-

crossing time periodTz lies between 5 and 7 seconds. This in effect means that the wavelength

corresponding to the peak frequency component in the sea is within a limited range. This

wavelength is a good starting point for selecting the spacing between columnsof WECs in the

array.

Three different wavelengths have been considered in this section representing the three most

commonly occurring time periods. They are: (a) the average wavelength ofthe blue cell in

Figure 4.29 - 60 m (b) the average wavelength of the green cells in Figure 4.29- 115 m (c) the

average wavelength of the yellow cells in Figure 4.29 - 184 m. First, the 6 MW wave power

farm has been simulated with these three column spacings (the three wavelengths divided by

two) with the seas most commonly found at the site being considered. After examining the
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Figure 4.28: Percentage distribution of the dominant wave direction at the site being consid-
ered.

effects of using these spacings, the farm placed in other more energetic and rarely occurring

sea states has been simulated and the effects of the chosen spacings on power smoothing have

been investigated.

Sea states withHs between 0.75-1.5 m (1 m chosen here) andTz between 3-5 s (4 s chosen here)

are weakly energetic and under these sea states the wave power farm generates approximately

100 kW on average. Since fluctuations in the power produced under such weakly energetic seas

will not adversely affect the voltage quality in the electricity network, resultsobtained from the

simulation of the array under these sea states are not discussed.

Figure 4.30 shows the net real power generated by the wave power farm when placed in a sea

state withHs between 1.5-3.0 m (2 m chosen here) andTz between 5-7 s (6 s chosen here). For

this sea state, with an average peak wavelength of approximately 112 m, the three spacings are

approximately close to 0.25λpeak, 0.5λpeak and slightly more than 0.75λpeak. As seen earlier,

when the spacing is close to 0.25λpeak, wide fluctuations in the net real power generated are

seen. The net Pfarm time-series is smoother in thed = 57.7 m case and relatively the smoothest

whend = 92 m.

Figure 4.31 shows the net real power generated by the wave power farm when placed in a sea

state withHs between 3-5 m (4 m chosen here) andTz between 7-9 s (8 s chosen here). For
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Figure 4.29: Percentage distribution of the sea states found at the Outer Hebrides site over two
years.

Figure 4.30: The net real power generated by the 6 MW wave power farm for differentcolumn
spacings, when placed in a sea state withHs between 1.5-3.0 m andTz between
5-7 s.
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Figure 4.31: The net real power generated by the 6 MW wave power farm for differentcolumn
spacings, when placed in a sea state withHs between 3-5 m andTz between 7-9 s.

this sea state, with an average peak wavelength of approximately 197 m, the three spacings are

approximately close to 0.15λpeak, 0.3λpeak and slightly more than 0.5λpeak. The smoothing in

the real power generated is seen to improve as the spacing increases from 30 m to 92 m. These

results corroborate the findings discussed earlier where it was found that for spacings less than

or equal to 0.5λpeak, the smoothest real power would be obtained at 0.5λpeak.

Figure 4.32 shows the variance in the net Pfarm and the cumulative Pwec for different column

spacing up to 4.0λpeak, when the farm is modelled in a sea state withHs = 4 m andTz = 6 s.

As seen earlier, the net Pfarm is significantly smoother when the spacing is 0.5λpeak than when

it is 0.25λpeak. Till the spacing of 2.0λpeak, the same effects are seen. For example when the

spacing is 1.25λpeak the variance in the net Pfarm is more than when the spacing is 1.5λpeak.

The difference is insignificant though, when compared to the variance change between sayd

= 0.75λpeak andd = 1λpeak. Beyondd = 1.5λpeak no such smoothing in the net Pfarm can be

attributed clearly to changes in the spacing.

For the most commonly occurring sea states at the site, it was found that the spacing between

the columns of WECs can be approximately 92 m for a relatively smooth net real power output.

Now, for the sake of completeness, the wave power farm with spacingd = 57.5 m, 92 m and 150

m has been simulated under very highly energetic sea states from the grey cells in Figure 4.29.

The figure shows that these sea states occur for less that 5% of the time at the site being consid-
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Figure 4.32: The variance in the net Pfarm and the cumulative Pwec for the 6 MW wave power
farm with different spacings up to 4.0λpeak.

ered. These runs have been performed to check the smoothing in the net real power generated

by the wave power farm when the spacing between columns of WECs is increased further. For

the sea state withHs = 6 m andTz = 8 s, the peak wavelength is 197.1 m and therefore the

three spacings become approximately 0.3λpeak, 0.46λpeak and 0.76λpeak respectively. For the

sea state withHs = 8 m andTz = 10 s, the peak wavelength is 309.7 m and the three spacings

become approximately 0.18λpeak, 0.29λpeak and 0.48λpeak respectively.

Figure 4.33 shows the net real power generated by the 6 MW wave powerfarm for the three

spacings when simulated in the sea state withHs = 6 m andTz = 8 s. As seen with the

other seas tested earlier in the chapter, the smoothing in the net real power increases with an

increase in the spacing. The smoothing in the net Pfarm increases with an increase in spac-

ing from 0.3λpeak (approx. 0.25λpeak) to 0.46λpeak(approx. 0.5λpeak) and 0.76λpeak(approx.

0.75λpeak). Figure 4.34 shows that the net real power generated is the smoothest when the

spacing between the columns of WECs in the array is close to 0.5λpeak, even for sea state with

Hs = 8 m andTz = 10 s. This finding matches the results discussed earlier through which

it was confirmed that for spacings less than 0.5λpeak, the smoothest real power generated will

be obtained when the spacing is 0.5λpeak. Table 4.15 shows the values of the variance in the

cumulative Pwec and the net Pfarm for these high energy sea simulation runs.
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Figure 4.33: The net real power generated by the 6 MW wave power farm for differentcolumn
spacings, when placed in a sea state withHs = 6 m andTz = 8 s.

Figure 4.34: The net real power generated by the 6 MW wave power farm for differentcolumn
spacings, when placed in a sea state withHs = 8 m andTz = 10 s.
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Sea state Spacingd (m) Variance in
the cumu-
lative Pwec
(MW) 2

Variance in
the net Pfarm
(MW 2)

Hs = 6 m andTz = 8 s 57.5 0.6648 4.8227×104

Hs = 6 m andTz = 8 s 92 1.2549 2.5372×104

Hs = 6 m andTz = 8 s 150 0.7238 1.2787×104

Hs = 6 m andTz = 10 s 57.5 0.4295 5.2455×104

Hs = 6 m andTz = 10 s 92 0.9038 3.2506×104

Hs = 6 m andTz = 10 s 150 0.6995 1.7986×104

Hs = 8 m andTz = 10 s 57.5 1.0507 6.4751×104

Hs = 8 m andTz = 10 s 92 1.9986 3.9748×104

Hs = 8 m andTz = 10 s 150 1.5023 2.2302×104

Table 4.15:Variance in the cumulative Pwec and the net Pfarm for different spacings forthe 6
WM wave power farm modelled in different stationary sea states

4.11 Effects of end-stops on power smoothing

In this section, the effects of having end-stops in the WEC on the power smoothing capability

of arrays are discussed. This has been mainly done to explain some of the discrepancies in the

variance in the cumulative Pwec, seen especially with the highly energetic seastates discussed

in the previous section.

Figure 4.35 shows the cumulative raw mechanical power extracted by the 6 MW farm when

simulated in a sea state withHs = 4 m andTz = 6 s. The time-series for the cases with

and without end-stops for 0.25λpeak and 0.5λpeak spacings are shown. When no end-stops are

used, it is seen that the cumulative Pwec is smoother when the spacing is 0.25λpeak than when

the spacing is 0.5λpeak. When end-stops are used, the cumulative Pwec time-series for the

0.25λpeak case is still smoother than the 0.5λpeak case. The smoothing seen is lower though,

than the case without end-stops. This is because of the limit placed on the WEC’s displacement

by the presence of the end-stops. The limit on the WEC’s displacement in turnlimits the

velocity of the WEC and also the power extracted.

The same effect is seen even when the farm is simulated in the highly energetic sea state with

Hs = 6 m andTz = 8 s. A significant improvement in the cumulative Pwec smoothness is

seen when there are no end-stops used. With end-stops, no visible smoothness in the cumulative

Pwec time-series is seen when the spacing is changed from 0.5λpeak to 0.25λpeak. This feature

reflects in some of the values of the variance listed in Table 4.15. The values of the variance in

the net Pfarm in the table match the inferences drawn from this work. Thereare discrepancies
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Figure 4.35: The cumulative raw mechanical power extracted by the 6 MW wave power farm
for the case with and without end-stops, in a sea state withHs = 4 m andTz =
6 s.

in the values of the variance in the cumulative Pwec, which can be attributed to the use of

end-stops.

4.12 Effects of the array orientation on power smoothing

In this section, the effects of changes in the dominant wave direction on the power smoothing

obtained by appropriate spacing are discussed. Three different spacings - 0.25λpeak, 0.50λpeak

and 0.75λpeak along the original 0◦ dominant wave direction have been tested. The orientation

of the array with respect to the dominant wave direction is shown in Figure 4.37. The statistical

work on the dominant wave direction, discussed in Section 4.10, showed that the direction

remains around 275◦ with respect to the geographical north for approximately 60% of the time.

Therefore, all the simulations performed had the array oriented at 90◦ to the dominant wave

direction. In this section, the dominant wave direction is changed by 30◦ and its effects on the

power smoothing obtained by appropriately spacing WECs or columns of WECs in the array

are examined. The results obtained and discussed earlier showed that even when the dominant

wave direction lies between 275◦ ± 30◦ (between 245◦ - 305◦), significant smoothing in the net

Pfarm time-series is seen when the WECs are spaced appropriately. In thissection, the analysis

is extended to include the inferences drawn from the work with the 48-WEC array performed

in this chapter. For this, the wave power farm has been simulated in a sea statewith Hs = 4 m

andTz = 6 for two different dominant wave directions. The results obtained from thisstudy
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Figure 4.36: The cumulative raw mechanical power extracted by the 6 MW wave power farm
for the case with and without end-stops, in a sea state withHs = 6 m andTz =
8 s.

though, will hold good even for higher and lower energy sea states.

Figures 4.38 and 4.39 and Table 4.16 show the results obtained from these simulation runs.

When the spacing is 0.25λpeak the cumulative Pwec extracted is the smoothest. This is con-

firmed in the values of the variance in the cumulative Pwec listed in Table 4.16. Asdiscussed

in Section 4.11, some of the smoothness in the cumulative Pwec is not visible because of the

presence of end-stops. When considering the net Pfarm, the smoothnessincreases asd in-

creases from 0.25λpeak to 1.0λpeak. This is as expected and was described in the other sets of

simulations performed.

A comparison of the values of the variance in the net Pfarm, seen when the dominant wave di-

rection is 0◦ and 30◦, shows a smoother net Pfarm for the 30◦ angle case. This can be explained

through Figure 4.40. When the dominant wave direction changes from 0◦, the effective spacing

between the columns of WECs becomesd′, which is larger thand. It was shown earlier that the

smoothness in the net Pfarm increases as the spacing between the columns of WECs increases.

The effective spacing between the columns of WECs increases further as the dominant wave

direction increases to 60◦. Therefore, a further improvement in the smoothness of the net Pfarm

will be observed.
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Figure 4.37: The array orientation with the dominant wave direction.

Figure 4.38: Cumulative raw mechanical power extracted ford = (a) 0.25λpeak (b) 0.50λpeak

and (c) 0.75λpeak, when the 6 MW wave power farm is placed at 30◦ to the
dominant wave direction.
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Figure 4.39: Net real power generated ford = (a) 0.25λpeak (b) 0.50λpeak and (c) 0.75λpeak,
when the 6 MW wave power farm is placed at 30◦ to the dominant wave direction.

Spacingd Variance in
the cumulative
Pwec (MW)2

Variance in
the cumulative
Pwec (MW)2

Variance in
the net Pfarm
(MW 2)

Variance in
the net Pfarm
(MW 2)

30◦ 0◦ 30◦ 0◦

0.25λpeak 0.0629 0.0658 3.9453×104 4.4032×104

0.5λpeak 0.3010 0.3103 1.4969×104 2.8825×104

0.75λpeak 0.2105 0.2006 1.1279×104 1.9094×104

Table 4.16:Variance in the cumulative Pwec and the net Pfarm for different array spacings
and two different dominant wave directions
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Figure 4.40: The effects of changing orientation on column spacing.

4.13 Summary

This chapter first looked at the smoothing in the cumulative Pwec and the net Pfarm that can

be obtained by spacing WECs appropriately within a line of WECs. It was seen that when the

WECs are spaced 0.5λpeak apart, the net real power generated by the wave power farm is the

smoothest, even though the cumulative raw mechanical power in this case is less smooth when

compared to the 0.25λpeak spacing case. An inverse relationship between the smoothing in the

cumulative Pwec and the smoothing in the net Pfarm was seen. When investigating the best

orientation of the simple line of WECs for the smoothest net real power output,it was found

that placing the WECs in coherence, i.e. the line of WECs perpendicular to thedominant wave

direction, produced the smoothest net real power output. Again, the cumulative Pwec was the

least smooth in this case.

Having accumulators provided some amount of smoothing to the net real power output from

an array. Most of the high frequency fluctuations in the power generated was removed. It was

further shown that even with a 300% increase in the accumulator size (from0.5 m3 to 2 m3)

significant variations in the net real power generated were still present.Moreover, long term on-

board storage is bulky and expensive. Therefore a trade-off has tobe made between the amount
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of storage to be included and the cost and space requirements of having large accumulators.

Next, the effects of increasing the farm size on the smoothness in the net real power produced

were examined. It was seen that as the size of the farm increased, the absolute variance in the

net Pfarm increased. This shows that the net Pfarm fluctuations cannot be removed by merely

increasing the number of devices in the farm. The spacing between the WECsin the array

and the orientation of the array with respect to the dominant wave direction also have roles to

play. In the 6 MW wave power farm simulated, placing the columns of WECs 0.5λpeak apart

produced a smoother net Pfarm than when the spacing was 0.25λpeak. The cumulative Pwec

time-series of two WECs in the same row and adjacent columns plotted in the chapter clearly

showed the coherence in the raw mechanical power extracted when the spacing between the

columns of WECs was 0.5λpeak. The smoothness in the net Pfarm time-series can be attributed

to this.

In the case where the WECs are placed in a unidirectional and a purely sinusoidal sea, the effects

of spacing the WECs 0.25λpeak and 0.5λpeak apart would exist for all odd-numbered multiples

of 0.25λpeak and 0.5λpeak. In the case of realistic mixed seas though, the smoothness in the

cumulative Pwec at 0.25λpeak and its odd multiples existed, but was the most prominent only

up to the 0.5λpeak spacing case. Beyond 1.5λpeak, no such visible advantage was seen when

the columns of WECs were appropriately spaced. The coherence/non-coherence between the

Pwec extracted by two WECs in adjacent columns and in the same row was seento reduce as the

spacing increased beyond 0.5λpeak. In general, larger spacings greater than 0.5λpeak produced

a smoother net Pfarm time-series. The multiples of 0.25λpeak, 0.5λpeak spacing effect was

significant only when spacings smaller than 0.5λpeak were considered.

Next, the effects of using end-stops on the WECs on the smoothness in the net real power

produced were analysed. The smoothness in the cumulative Pwec when thecolumns of WECs

were spaced 0.25λpeak apart was better when no end-stops were considered. When a physical

limit on the cumulative Pwec output was made, the smoothing in the cumulative Pwec became

less obvious. This was more so the case when the wave elevation was high and when the

end-stops played a more important role. Having end-stops improved the smoothness in the net

Pfarm with an expected reduction seen in the average real power fed to the network.

Statistical analysis of the dominant wave direction at the site off the north westScottish isles

showed that the dominant wave direction remained fairly within a±30◦ range for approxi-
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mately 60% of the time. Since an increase or decrease in the dominant wave direction from

the 0◦ direction in effect increases the distance between two columns of WECs in thearray,

the smoothness in the net Pfarm improved when the dominant wave direction changed from the

most commonly occurring one. Even when the dominant wave direction changed, the improve-

ment in smoothing seen between the 0.25λpeak and the 0.5λpeak spacings was still seen.

From the results discussed in this chapter, it becomes evident that there is some role for ap-

propriate spacing and orientation for smoothing the net real power generated by a wave power

farm. Using on-board storage in the form of accumulators also helps smooththe net real power

output. Even after spacing and orienting the WECs appropriately and usingaccumulators, the

net real power generated from the farm has variations, which in turn causes the network voltage

to vary. To smooth the network voltage it is envisaged that reactive power control in real-time

will be used and the next chapter deals with the use of reactive power control to improve voltage

quality.
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Chapter 5
Voltage control in wave power farms

5.1 Introduction

In the UK, the best wave resources are largely found offshore fromremote, rural areas where

the electrical demand is low [12]. The electricity network in these areas had been arranged to

supply power generated at the central generating stations to the demand in these areas. Hence,

the electricity networks in these areas are of low capacity. Most of the distribution networks in

rural areas taper radially, with lower X/R ratios as one reaches the outer edges of the network.

This characteristic of rural distribution networks makes them weak, such that even a small

variation in the power generated by any connected generator will have a significant effect on the

supply quality in these areas. The varying and unpredictable nature of theocean waves further

adds to the challenge of integrating large wave power farms to these networks. Therefore, there

is a need for a careful study of the impacts of integrating wave power farmsin particular and

distributed generators (DG) in general with weak, rural networks.

Chapter 4 showed that some smoothing in the net real power fed to the network by these wave

power farms can be obtained by appropriately spacing the WECs and orienting the wave power

farm. Having some storage, in the form of hydraulic accumulators, also removed some of the

high frequency variations in the power produced. Further improvement inthe voltage profile

can be achieved using dynamic processes that take place in real-time duringthe operation of

the wave power farm. This chapter explores the network impacts and their mitigation by further

smoothing using excitation control of the connected generators.

5.2 The need for control

According to the Electricity, Safety, Quality and Continuity Regulations 2002 [122], with re-

spect to voltage magnitudes, the nominal voltage of a load bus should be maintained within

±6% under all power flow conditions in an 11 kV network. The substation tap changing trans-

former, which supplies the radial network, is often adjusted so that the voltage at the substation

is set at 1.03 p.u. This is done to compensate for the voltage drop across theradial network
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Figure 5.1: Voltage variation at the bus where a wave power farm is connected.

especially during periods of high demands so that the load bus voltage magnitude requirements

are met.

Once the wave power farm is connected to the radial network, the excesspower after the local

load is supplied is fed back to the sub-transmission network. This reversalof power flow can

cause voltage variations in the network which may go beyond the statutory limits. Figure 5.1

shows a sample variation of the rms-voltage magnitude at the bus where a wavepower farm is

connected. The voltage reaches 1.06 p.u. during certain instants in this 600-second period. The

network interface protection would operate to trip the wave power farm andclear over-voltages

above 1.055 p.u. that lasts longer that 500 ms. The voltage variation shown inthe figure would

therefore cause the wave power farm to be tripped off the network. Thisrepresents as a loss

of revenue for the wave power farm developers who aim to have the farm connected to the

network for as long as possible. Means must therefore be tested to keep the voltage within the

permissible range.

5.3 Power flow and voltages in a two-bus system

Consider the simple two-bus network shown in Figure 5.2. Bus 1 is the infinite bus where

the voltage magnitude and angle is kept fixed. Bus 2 is the load bus, in this case, with the

distributed generator and the load. The real and reactive power exchanged by the load bus with

the networkPB, QB is the difference betweenPG, QG andPL, QL. R andX represent the
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Figure 5.2: Power flow in a simple two-bus system.

resistance and the inductive reactance of the line.

The voltage rise or drop on the line is:

V1 − V2 =
RP +XQ

V1

+ j
XP −RQ

V1

. (5.1)

It is seen that the voltage rise or drop has a real and an imaginary component. The real part

of the voltage rise/drop is∆V = RP+XQ
V1

, while the imaginary part of the voltage rise/drop is

δV = XP−RQ
V1

. In distribution networks, whereR is predominant when compared toX, the

imaginary part of the voltage rise/dropδV is insignificant and can be neglected. The voltage

rise/drop thus becomes∆V = RP
V1

+ XQ
V1

. Because of the lowX/R ratios in weak distribution

networks, the voltage rise is dominated by the first term. This is an important consideration

to be made when developing distributed generation schemes, because evena small rise in the

generated power can produce large voltage changes when theRP
V1

term dominates.

5.4 Voltage control options

Voltage control can be organised into three levels considering distinct geographical areas and

time constants [132, 133]. At the primary control level, control of the electrical parameters of

the network is performed locally with the aim of rapid (in a few seconds) compensation of ran-

dom voltage variations. Only local information is used to decide the control signals. Regional

information and hourly load changes spread over hours are used in the secondary control level.

The time constant in secondary control is in the range of a few minutes. Communication chan-

nels are required to maintain the voltage in the regional network within limits. Tertiarycontrol

involves the use of system-wide information and has a time constant between tens of minutes to

a few hours. It involves coordinating the different generators and thecontrol devices connected

to the network, so that they are able to maintain the voltage within limits and are able to tackle

voltage variations produced by generation or demand changes or emergencies. In this chapter,

local voltage control in rural distribution networks with distributed generation is discussed.
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Different local voltage control strategies have been adopted, some of which are [134]:

• Control of HV/MV substation secondary voltage

• Automatic voltage control of the generator

• Inverter based control of reactive power output from the generator

• Continuous voltage/VAr control using VAr compensators (eg. STATCOM)

• Curtailment of real power generation

The first four control methods enlisted have been discussed elaboratelyin the literature. Their

applicability for the control of wave power farms has been explored in this chapter. The conven-

tional operation of the wave power farm as voltage following and voltage supporting machines

have been tested and their drawbacks are discussed. Certain more intelligent control methods,

which involve reactive power exchange between the wave power farm and the network, have

also been investigated. The voltage control methods for the wave power farm discussed in this

chapter are: constant voltage controller, constant power factor controller, on-load tap changing

(OLTC) transformer controller, Automatic Voltage and Power Factor Controller (AVPFC) and

Fuzzy Logic Power Factor Controller (FLPFC). Curtailing the active power generation [135] is

a valid control option, since the aim of this study is to find means to maintain the voltage within

the statutory limits. A hierarchical control scheme has been followed here, wherein real power

curtailment is used only after the available reactive power capability has been exhausted [136].

In this chapter, only short time storage in the capacitors that form a part ofthe power electronic

interface and in the hydraulic accumulators was considered. This is mainly because commercial

and economical forms of long-term local electrical energy storage (e.g.supercapacitors and fuel

cells) are still rudimentary [137]. The amount of energy storage required for different WECs

was dealt with in detail in [138]. A very basic energy storage modelling in [139] showed the

improvement in the voltage profile brought about by storage. Advances have also been made

in the field of voltage control through the control of loads [140]. Demand side management

through load control is envisaged to play a significant role in the distribution networks of the

future [141].

These five control techniques have been first tested on a simple nine-bussystem with parameters

selected to represent rural networks. Figure 5.3 shows the radial distribution network to which
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the wave power farm is connected. A 1 MW wave power farm has been considered with 8

WECs each rated at 125 kW. The WECs are capable of operating between0.95 leading and

0.95 lagging power factors. The 11 kV network is connected to the edge ofthe 33 kV sub-

transmission network (bus 1) through a system impedance of 1.2029 + 2.6435p.u. (on a 100

MVA base). This is representative of networks in Stornoway/Harris where significant wave

energy developments will be seen in the near future. The total demand connected to the 33 kV

bus is 2 MW at unity power factor. The demand is divided between buses 4,6 and 7 in the

network. These buses have a maximum demand of 0.4, 1 and 0.6 MW respectively and these

demands pre-date the connection of the wave power farm. The loads havebeen considered to be

constant at 25% of the maximum demand for the simulated 600-second period.Over such time

periods, the variations in the power generated from the wave power farmoccurring over tens

of seconds show a bigger influence on the network voltage profile when compared to demand

variations which occur over tens of minutes. For longer simulations (e.g. over 24 hours), a load

profile, which best describes the demand of the settlement, may be used. A simple inter-array

electrical layout has been used here where each WEC is connected to anoffhore hub (bus 9),

where the voltage is stepped up to 11 kV. The impedance of the submarine cables connecting

the individual devices to the hub has been neglected here. A 1 km long submarine power cable

(2XS(FL)2YRAA 6/10 (12) kV Nexans submarine power cable [142]) carries the power from

the hub to the shore. Table 5.1 gives details of the network and the equipmentsused. The

impedance of the transformers and the overhead lines have been taken from [143] and [144]

respectively.

A sea state formed by the concatenation of three different seas - (a) lessenergetic (Hs = 1.27

m, Tz = 4.66 s) (b) moderately energetic (Hs = 5.82 m, Tz = 8.74 s) (c) highly energetic

(Hs = 7.16 m,Tz = 9.82 s), has been used for testing the applicability of these control methods

on this simple network. Figure 5.4 shows the variation ofHs, Tz andH2
sTz, which is a measure

of the energy content in the sea over the 1800-second period. It must benoted that the figure

does not show the wave elevation time-series. Though such a sea state may not be realistic, the

concatenated sea is a good test for the robustness of the control methods. All the simulations

have been run for 1800 seconds and the three sea states last for 600 seconds each. Att = 600 s

the sea changes from the highly energetic state to the less energetic state andat t = 1200 s the

sea changes from the less energetic state to the moderately energetic state. It is assumed that

this 600-second period is short enough to keep theHs andTz values constant. After testing the

control methods for this simple network, they have been tested on a more realistic 11 kV UK
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Figure 5.3: Radial network model of a hypothetical rural distribution feeder with the wave
power farm and the distributed loads.

From
bus

To
bus

Equipment R (p.u.) X (p.u.) B (p.u.)

1 2 System impedance 1.2029 2.6435 0.0
2 3 4 MVA, 33:11 kV OLTC transformer

with 7.5% impedance
0.25 1.875 0.0

3 4 2 km of ACSR 34/6 bare conductor for
overhead line

1.402 0.70 0.0

4 5 3 km of ACSR 34/6 bare conductor for
overhead line

2.102 1.051 0.0

5 6 0.5 km of ACSR 34/6 bare conductor
for overhead line

0.35 0.175 0.0

3 7 4 km of ACSR 34/6 bare conductor for
overhead line

2.803 1.402 0.0

5 8 1 km long submarine power cable 0.49 0.1288 9.88e-5
8 9 1.5 MVA, 11:0.690 kV transformer

with 5% impedance
0.6667 3.333 0.0

Table 5.1: Network data (100 MVA base)

distribution system with the wave power farm modelled under more realistic sea conditions.

5.4.1 Constant power factor control

Conventionally, generators connected to the distribution network have been operated at a con-

stant power factor (normally at Unity Power Factor). This is a viable option for reliable and

dispatchable distributed generators (DGs), but may cause problems whenthe primary energy

source is variable, as in the case of wave power farms. In this section, theeffects of the constant

power factor operation of a wave power farm are analysed.

Figure 5.5 shows the voltage at the bus where the wave power farm is connected over the

1800-second period with the wave power farm operating at different power factors. From the
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Figure 5.4: Variation ofHs, Tz andH2
sTz over the 1800-second simulation period.

figure and as confirmed in practice with land based DG, the extent and the duration of the over-

voltages are reduced by operating close to or below unity power factor. Figure 2.22 shows the

block diagram of the power factor controller of the individual generators in the wave power

farm.

The real and reactive power losses generally increase when the wavepower farm absorbs re-

active power (operating under leading power factor). This in turn meansthat the real power

carrying capability of the network reduces. The increase in the losses willbe significant in the

case of a larger network and a larger wave power farm. Variations in the local demand can also

make the use of the constant power factor operation untenable, which is exemplified through

some of the simulations discussed in Section 5.5.

5.4.2 Constant voltage control

Prior to the connection of DG to the electricity networks, power was generated at central power

stations mainly by synchronous machines. The machines’ excitations were controlled by their

automatic voltage regulators which ensured power generation at a constant voltage. The ad-

vantages of having large generators connected to the transmission network operating as voltage

supporting machines and those of a smaller size in the distribution network operating as volt-

age following machines were enumerated in [145]. Similar conclusions were drawn in [146],

where it was said that large synchronous machines in the power stations, operating at a constant

voltage, ensured better voltage stability in the network. Both these publicationsdealt with the

122



Voltage control in wave power farms

Figure 5.5: Bus 9 voltage for different DFIG excitations (a) 0.98 lagging power factor (b) unity
power factor (c) 0.98 leading power factor.

synchronous generators at central generating stations. With distributedgenerators the scenario

is different since they are generally smaller in size when compared to the generators in the

central power stations. Operating these small generators as voltage supporting machines may

cause them to be overloaded when the bus voltage changes from one extreme to the other due

to system bus voltage fluctuations or demand variations. The Distribution Network Operators

(DNOs) have not traditionally allowed the DGs to generate power at a constant voltage mainly

due to this reason. In this section, the effects of operating the wave powerfarm at a constant

voltage are analysed.

The 1 MW wave power farm, in Figure 5.3, has been operated such that a constant voltage,

irrespective of the real power production, is maintained at bus 9. This has been performed by

controlling the reactive power exchanged between the farm and the network. Figure 2.22 shows

the block diagram of the automatic voltage regulator used with each generatorin the model of

the wave power farm.

Figure 5.6 shows the results obtained when operating the wave power farmwith the voltage

reference at 1.05 p.u. The power factor plotted is the operating power factor of the farm. It is

observed that during the period when the sea is weakly energetic (600 s -1200 s), the operating

power factor of the wave power farm is very low, which is beyond the limits allowed by network

operators. Operating the DFIGs at such low power factors also puts excessive stresses on the
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Figure 5.6: Operation of the wave power farm in the constant voltage mode.

machines.

When DGs operate at a constant voltage, conflicts may also arise between the controller on the

DG and the substation transformer’s auto-tap-changer settings. Such a scenario in which the

transformer tap position changes until it reaches its extreme position is shownin Figure 5.7.

Since the two controllers have not been coordinated, unnecessary tap operations are seen in

the transformer. At every successive tap change, the wave power farm generates more reactive

power to maintain the bus voltage constant. The need to coordinate the controlof the trans-

former’s on-load tap changer and the control of the wave power farm isthus evident and is

dealt with in Chapter 6.

5.4.3 Control using the substation OLTC transformer

On-load tap changing (OLTC) transformers have been used at substations to maintain the volt-

age downstream of the substation above statutory limits, especially during periods when the

demand is high. For effective control, these transformers have been used for voltage control ac-

companied by line drop compensators or reverse reactance compounding compensators [147].

The operation of such schemes in radial feeders with distributed generation was described in

[148]. The optimal control of these transformers is challenging, especially when they feed

parallel feeders and when the DG, connected to the network downstream,exchanges reactive

power with the network. The control of the bus 9 voltage using an OLTC transformer at the

substation operating in the automatic voltage control mode is discussed in this section. The
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Figure 5.7: Interactions between the constant voltage controller of the wave power farm and
the substation OLTC transformer.

Parameter Value
Vh 1.04 p.u.
Vl 1.02 p.u.
Vstep 0.0125 p.u.
td 60 s

Tapmax 7
Tapmin -7

Table 5.2: OLTC transformer settings

main aim of this section is to demonstrate the inability of the OLTC transformer to operate as

fast as the variations in the power generated by wave power farms. It has been assumed here

that the OLTC transformer has direct access to the voltage at bus 9, whichin reality would

need some voltage estimation technique or communication means, which is further discussed

in Chapter 6.

The conventional control of an OLTC transformer in the voltage regulationmode, described

in [149, 150], has been used to model the transformer. Table 5.2 lists the OLTC settings used.

The voltage deadband of the OLTC transformer has been set betweenVh andVl. To prevent

unnecessary tap changes due to transient voltage variations, a time delaytd of 60 seconds has

been used. This ensures that a tap change occurs only when the voltageremains outside the

voltage deadband fortd seconds.Tapmax andTapmin are the two extreme tap positions. The

algorithm based on which the OLTC transformer operates is explained in the flowchart shown

in Figure 5.8.
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Figure 5.8: Flowchart of the operation of an On-Load Tap Changing transformer controller.
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Figure 5.9: Voltage control using the substation OLTC transformer.

Figure 5.9 shows the changes in the tap position over the 1800-second simulation period. Since

the tap is on the high voltage side of the transformer, an increase in the transformation ratio

of the transformer reduces the bus 9 voltage. It is seen that the substationOLTC transformer

maintains the bus 9 voltage within the statutory limits during the simulation run, except between

time t = 1200 s and t = 1300 s. The wave power farm would have been tripped off the network

due to this voltage violation. The presence of the time delay in the control algorithm makes

the transformer operation slow when compared to the variations in the power generated by the

wave power farm. From the figure it becomes evident that only coarse voltage control in certain

steps is possible using OLTCs at these transformers.

Significant work has been accomplished in developing advanced controllers based on artificial

neural networks and fuzzy logic for OLTC transformers [151, 152].Even with these advanced

controllers the inherent incapability of the OLTC transformers to deal with fast variations in

the network voltage remains a disadvantage. OLTC transformers still have arole to play for

slow, secondary voltage control. Effort will need to be made to coordinatethe operation of

the substation transformer and the DG downstream for optimal network operation [153, 154].

Commercial products to control OLTC transformers (SuperTAPP and GenAVC), which ac-

knowledge the presence of the downstream DG, have been developed [155–157]. Both these

products use communication means and state estimation techniques to decide the optimal tap

position. Such developments and an improved voltage estimation technique that does not re-

quire any communication means are discussed in Chapter 6. Coordination between the OLTC
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transformers at the secondary and the tertiary control levels have beendescribed in [158, 159],

which is not explored further in this work.

5.4.4 Automatic Voltage and Power Factor Control

Switching the DG from the voltage supporting mode to the voltage following mode and vice

versa was suggested to overcome the drawbacks of the power factor and the voltage control

modes [145, 147]. The Automatic Voltage and Power Factor Control (AVPFC) was developed

as a hybrid of these two modes [160]. The developed controller has beenconcept-tested on

models of hydro power plants and wind farms [161, 162]. The proposedcontrol method was

seen to augment the amount of DG that could be connected to networks [163]. Experimental

and simulation based studies on the applicability of the AVPFC controller (thoughnot called

so) with synchronous generators and DFIGs prove the practical viabilityof the hybrid controller

[164, 165]. Its applicability with wave power farms and the improvement in the supply voltage

quality obtained by using the controller have been studied and the results obtained are discussed

in this section.

In the AVPFC method, the wave power farm may be allowed to operate either in the constant

power factor mode or in the constant voltage mode depending on the current sea conditions.

Figure 5.10 shows the algorithm used in deciding whether the wave power farm operates in

the voltage control or the power factor control mode at any instant of time. Measurements of

the bus 9 voltageV and the operating power factor of the wave power farmPF , which can be

obtained from real and reactive power measurements, are required to select the operating mode.

In the flowchart,Vl andVh represent the lower and the upper voltage limits of the controller and

PFref is the reference power factor, which is the operating power factor of thewave power farm

when operating in the constant power factor mode.Vd andPFd are respectively the voltage and

the power factor deadbands. Table 5.3 details the AVPFC mode selection rules, which can be

understood from the voltage vector diagram of a two-bus system shown inFigure 5.11. From

these, it is understood that when the voltage and the power factor are withinlimits, the wave

power farm operates in the constant power factor mode. When a voltage violation occurs, the

wave power farm operates in the constant voltage mode with eitherVl or Vh as the reference,

as the case might be. A time delaytd has been included in the controller to prevent hunting

between the two control modes.

Table 5.4 lists the AVPFC voltage and power factor set points used for the simulation in this
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Figure 5.10: Flowchart of the operation of an Automatic Voltage and Power Factor controller.

V ≤ Vl Vl < V < Vh Vh ≤ V

PF ≤ PFB Vl PFref PFref

PFB < PF < PFT Vl PFref Vh

PFT ≤ PF PFref PFref Vh

Table 5.3: AVPFC mode selection rule set

129



Voltage control in wave power farms

Figure 5.11: Voltage vector diagram of a two-bus system.

Parameter Value
Vl 0.97 p.u.
Vh 1.05 p.u.
Vd 0.0025 p.u.
PFB 0.9975 (lag)
PFT 0.9975 (lead)
PFref UPF

Table 5.4: AVPFC parameters

section. A time delaytd of 10 seconds was chosen keeping in mind the average time period

of the waves. Figure 5.12 shows the AVPFC control signal and the voltageand power factor

measured at bus 9 when the wave power farm is controlled using this method.As seen in

the figure, both the voltage and the power factor are within the statutory limits forthe entire

run. The AVPFC method ensures the connection of the wave power farm tothe grid much

longer than the other methods discussed earlier in the section. Thus, this hybrid controller has

advantages over both the constant voltage and the constant power factor operation of the wave

power farm.

The operation of this controller can be varied by changing the set points and the time delay of

the controller. Some of the set points (e.g. the power factor set points) areselected after study-

ing the network to which the wave power farm will be connected and the demand variations

seen at the site, while the farm operators have discretion in selecting certainothers (e.g. time

delay). The selection of the different set points for a 4 MW wave power farm connected to a

realistic network is discussed in Section 5.5.
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Figure 5.12: Operation of the wave power farm, connected to the nine-bus system, with the
AVPFC controller. (a) Bus 9 voltage (p.u.) (b) voltage / power factor control
signal (2 - voltage control, 0 - power factor control), (c) power factor (-) (d)
reactive power generated (MVAr).

5.4.5 Fuzzy Logic Power Factor Control

Many fuzzy logic based applications for power systems are found in the literature [166]. In

wind energy conversion, fuzzy logic controllers have been extensively researched for control-

ling the PWM converters through which variable speed generators are connected to the elec-

tricity network. Some of the work in this area was to track the maximum power pointduring

variable speed operation [167, 168]. Fuzzy logic based excitation controllers for synchronous

generators are also found in the literature [169, 170]. In most of these papers the aim was to

regulate voltage. The Fuzzy Logic Power Factor Controller presented in this section is similar

to these, in that, the reactive power output from the DFIGs is controlled. Some of the recent

publications on fuzzy logic applications in power systems dealt with system-widevoltage reg-

ulation and voltage/VAr control. In these works, optimisation of the use of OLTC transformers,

SVCs, etc., in electricity networks was performed using fuzzy theory [171, 172]. A fuzzy logic

controller for controlling the reactive power generated from wind generators was described in

[160]. The fuzzy logic controller developed in this section builds upon the work discussed

in [160] by making the developed controller less network-specific. This section describes the

working of the Fuzzy Logic Power Factor Controller (FLPFC) developedto control the voltage
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Figure 5.13: Input membership functions forV (t).

at the bus where the wave power farm is connected. The controller is a hybrid between the

constant power factor and the constant voltage controllers.

A Mamdani-type fuzzy logic controller [173], with the terminal voltageV (t) and the differ-

ence between the terminal voltage and the voltage limit∆V as inputs, has been developed. The

increase in voltage fromVh = 1.03 p.u. or the decrease in voltage fromVl = 0.97 p.u., i.e.∆V ,

with respect toVh orVl, is the second input to the controller.V (t) varies over the range [0.9,1.1]

p.u. while∆V varies over the range [-0.02,0.02] p.u. Three linguistic variables define the ter-

minal voltageV (t): LOW, NORMAL and HIGH. Generalised bell shaped input membership

functions have been used forV (t) and are described by:f(x; a, b, c) = 1

1+|x−c
a |2b , wherea, b

andc are parameters, with parameterc denoting the centre of the curve. The input membership

functions for the terminal voltageV (t) used in this work are shown in Figure 5.13. The pa-

rameter vector[a, b, c] for the three linguistic variables used were[0.05, 5, 0.9],[0.05, 5, 1] and

[0.05, 5, 1.1].

Nine linguistic variables define the change in voltage∆V : HIGH NEGATIVE (HN), MEDIUM

NEGATIVE (MN), LOW NEGATIVE (LN), VERY LOW NEGATIVE (VLN), NORMAL

(N), VERY LOW POSITIVE (VLP), LOW POSITIVE (LP), MEDIUM POSITIVE (MP),

HIGH POSITIVE (HP). Triangular input membership functions have beenused for∆V and

are described by:f(x; a, b, c) = max(min(x−a
b−a ,

c−x
c−b ), 0), wherea, b and c are parame-
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Figure 5.14: Input membership functions for∆V .

ters. The parametersa and c locate the lower vertices of the triangle and the parameterb

locates the peak. The input membership functions for∆V are shown in Figure 5.14. The

parameter vector[a, b, c] for the nine linguistic variables used were[−0.025,−0.02,−0.015],

[−0.02,−0.015,−0.01], [−0.015,−0.01,−0.005], [−0.01,−0.005, 3.469e−018], [−0.005, 0, 0.005],

[−3.469e− 018, 0.005, 0.01], [0.005, 0.01, 0.015], [0.01, 0.015, 0.02] and[0.015, 0.02, 0.025].

A large number of membership functions have been used to improve the sensitivity of the con-

troller and to reduce the losses in the network by the unnecessary operation of the wave power

farm at lower power factors than required.

For anyV (t) and∆V , the output for the fuzzy controller is the change in the power factor

∆PF required to maintain the voltage within limits. The linguistic variables, the membership

functions and the range of∆PF are the same used with the input variable∆V .

The fuzzy rule set used in this work consists of the following rules:

1. IF (∆V IS HN) AND (V (t) IS NOT NORMAL) THEN (∆PF IS HN)

2. IF (∆V IS MN) AND (V (t) IS NOT NORMAL) THEN (∆PF IS MN)

3. IF (∆V IS LN) AND (V (t) IS NOT NORMAL) THEN (∆PF IS LN)

4. IF (∆V IS VLN) AND (V (t) IS NOT NORMAL) THEN (∆PF IS VLN)
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5. IF (∆V IS N) AND (V (t) IS NOT NORMAL) THEN (∆PF IS N)

6. IF (∆V IS VLP) AND (V (t) IS NOT NORMAL) THEN (∆PF IS VLP)

7. IF (∆V IS LP) AND (V (t) IS NOT NORMAL) THEN (∆PF IS LP)

8. IF (∆V IS MP) AND (V (t) IS NOT NORMAL) THEN (∆PF IS MP)

9. IF (∆V IS HP) AND (V (t) IS NOT NORMAL) THEN (∆PF IS HP)

It becomes evident from the rules that a change in power factor is sought only when the terminal

voltage is not NORMAL. The membership function for the linguistic variable NORMAL can

be modified as per the allowed voltage range to be used. In the present case (see Figure 5.13), no

change in the power factor is issued when the terminal voltage is between approximately 0.97

and 1.03 p.u. Only when the terminal voltage goes beyond the limits set by the membership

function for the linguistic variable NORMAL, will the controller output∆PF be non-zero.

In later sections, the operation of the FLPFC with different allowed voltage ranges has been

analysed and the set points used have been listed in the appropriate sections.

To explain how the fuzzy controller functions, an example is described now. Assume at an

instant of time the terminal voltage goes to 1.05 p.u. ThusV (t) = 1.05 p.u. and∆V = 0.02

p.u. These are the inputs to the controller. For these inputs, only the last ruleis relevant and is

the only one examined here. The first step is to determine to what degree each input fits into

one or more of the linguistic variables. This process is called fuzzification. Figure 5.15 shows

how the controller operates when rule nine is relevant. The first sub-figure, associated with∆V ,

shows that the membership level of activation for∆V is HIGH POSITIVE isµ1 = 1. Similarly,

the membership level of activation forV (t) is HIGH is µ2 = 0.5, as seen in the second sub-

figure. The membership function for the linguistic variable NORMAL is not shown in the

second sub-figure because all the rules give an output only whenV (t) is NOT NORMAL. The

figure also demonstrates the operation of the fuzzy operator that works with these two fuzzified

inputs. In this work, the AND operator has been used, which has been implemented by the

minimum (min) method [174]. The membership level of activation for the output∆PF is

HIGH POSITIVE is thereforemin(µ1, µ2) = 0.5, which is shown in the third sub-figure.

In a fuzzy system, decisions are based on the outputs obtained from testingall the rules. These

outputs must therefore be combined and this process is called aggregation.The maximum

(max) method has been used to aggregate the outputs from all the rules. In the example being
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Figure 5.15: The fuzzification process for rule 9.

considered here, only the ninth rule gives an output. Otherwise, the outputs of all the rules

would have had to be aggregated. The result of the aggregation is shownin Figure 5.16. The

centroid of the resulting area is calculated (a process called defuzzification) and used as the

output of the controller. The defuzzified result denotes the required change in power factor.

The centroid of the area is represented in the figure by the vertical red line. The change in

power factor∆PF = 0.0182 would have been issued by the controller for the inputs used in

this example.

Figure 5.17 shows the fuzzy inference system output, which is the relationship between the

change in voltage∆V and terminal voltageV (t), and the change in power factor∆PF required

to deal with the voltage change. Figure 5.18 shows the block diagram of the controller with the

DFIG and its volt/VAr controller.

Figure 5.19 shows the voltage and the power factor measured at bus 9 when the wave power

farm is controlled using the FLPFC method forVh = 1.05 p.u. andVl = 0.96 p.u. It is seen that

the power factor setting changes every time the voltage goes beyond the upper voltage limit.

A magnified version of the same figure is given in Figure 5.20 where only onesecond of the

operation is shown. At time t =t1, a small reduction in the operating power factor of the farm is

issued by the controller since the terminal voltage is above 1.05 p.u. It is seenthat the reduction

in the power factor is not sufficient to keep the voltage below 1.05 p.u. and,due to this, at time

t = t2 a further reduction in the operating power factor is issued. The voltage is below 1.05 p.u.

at the next time step. At times t =t3 andt4, further reductions in the operating power factor of
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Figure 5.16: The aggregation and the defuzzification process for rule 9.

Figure 5.17: Fuzzy inference system output surface.
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Figure 5.18: FLPFC block diagram.

Figure 5.19: Operation of the wave power farm, connected to the nine-bus system, with the
FLPFC controller.

the farm are issued to keep the voltage below the upper limit.

Some control over the operation of the FLPFC controller is possible by changing the allowed

voltage and power factor range. The developed controller can also be used with other reactive

power compensating devices (e.g. STATCOMs) in the network. Both these are explored further

later in this chapter.
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Figure 5.20: Operation of the wave power farm, connected to the nine-bus system, with the
FLPFC controller (magnified).

5.5 Control of a 4 MW wave power farm connected to a generic

UK distribution network

In this section, the effects of connecting a 4 MW wave power farm (with 32 WECs) to a generic

11 kV UK distribution network [175] have been analysed. Some modifications have been made

to the network to make it suitable for a single line equivalent power flow solution. All the lines

have been taken as three phase transposed lines. The loads have beentaken as balanced three

phase loads. Figure 5.21 shows the network model. The 4 MW wave power farm is connected

to bus 56 (an offshore hub) and is represented by a generator in the figure. The voltage is

stepped-up to 11 kV at the hub (transformer between buses 55 and 56) and the power is sent

onshore using a 1 km long submarine cable (2XS(FL)2YRAA 6/10 (12) kVNexans submarine

power cable [142]).

The total load connected to the network is 2.384 MW and 0.475 MVAr. Bus 1 in the figure is

connected to the sub-transmission network through the system impedance measured at bus 1.

Details of the line parameters and the loads used in this network are given in theAppendix A.

The voltage at bus 53 is maintained at 1.03 p.u. to compensate for the voltage drop across the

radial feeder when the demand is high. An OLTC transformer would normallybe used for this

purpose. To isolate and study the effects of the different control methods discussed so far in

this chapter, the tap position of the OLTC transformer is assumed to be automatically adjusted

138



Voltage control in wave power farms

to maintain the voltage at bus 53 at 1.03 p.u. at all times.

Typical values for the parametersHs andTz found in the seas off the north west coast of

Scotland have been obtained from the Wavenet database [20]. Data obtained from the site for

two years between February 2009 and February 2011 have been used to select representative

seas over the four seasons. Figure 5.22 shows the cumulative probabilitydistribution of the

energy (H2
sTz) in the seas during the four seasons. The figure clearly shows that the UK

waters are more energetic during the winters (December to February) when compared to the

summers (June to August). The cumulative probability distribution of the energy in the sea

during autumns (September to November) and springs (March to May) lie in between the two

curves for summers and winters.

The wave power farm has been modelled in four different sea states representing four different

energy levels. The fourHs, Tz combinations used are (a)Hs = 12.21 m, Tz = 11 s (b)

Hs = 7.16 m, Tz = 9.04 s, (c)Hs = 5.82 m, Tz = 8.05 s and (d)Hs = 1.27 m, Tz = 4.49 s.

The mean power generated by the wave power farm when placed in the 4 different sea states are

3.79 MW, 3.30 MW, 2.44 MW and 1.60 MW respectively. Figure 5.23 shows thetime-series

of the real power generated by the wave power farm when simulated in these four sea states.

The sea states modelled are non-stationary and irregular over the 10-minuteperiod. The four

sea states are hence referred to as sea states A, B, C and D. At the site under consideration, sea

state A only occurs during winters. The other three sea states can occur during any of the four

seasons.

Figure 5.24 shows the variation in the winter demand in the rural areas of north western Scot-

land over a day [176]. Analysing a longer data set would clearly show thedaily, weekly, and

seasonal characteristics of the demand variation. Figure 5.25 shows the probability distribution

function of the demand over the four seasons. The demands are higher during the winters and

lower during the summers. In this work, the maximum and minimum demands have been re-

spectively taken as 100% (winter maximum) and 25% (summer minimum) of the total loads

connected to the buses. Since the simulations discussed in this section have only been per-

formed for 600-second periods, the demand has been kept constant. This is justified since the

variations in the generated power from the wave power farm far exceedthe variations in the

demand over 10-minute periods.

Conventionally, an analysis of the network under extreme operating conditions (maximum gen-
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Figure 5.21: Generic 11 kV UK distribution network.
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Figure 5.22: Cumulative probability distribution of the energy (H2
sTz) in the sea over the four

seasons.

Figure 5.23: Real power generated by the wave power farm when placed in the four different
sea states. (a) Sea state A withHs = 12.21 m, Tz = 11 s (b) sea state B with
Hs = 7.16 m,Tz = 9.04 s, (c) sea state C withHs = 5.82 m,Tz = 8.05 s and
(d) sea state D withHs = 1.27 m,Tz = 4.49 s.
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Figure 5.24: Sample daily demand variation in the UK.

eration, minimum load; minimum generation, maximum load) is performed to evaluate the

effects of any new added generation on the network. Figure 5.26 showsthe voltage profile of

the network under the two extreme operating conditions. When generating 4 MW, the wave

power farm supplies all the loads connected to the network. The excess power, after the loads

are supplied, is fed back to the sub-transmission network (represented by bus 53 in the network

diagram). Voltage violations, defined by [122], are seen at various buses. These violations may

cause the wave power farm to be tripped off the network causing significant loss of revenue to

wave power farm developers.

Without any control applied to the wave power farm, the upper voltage limit of 1.05 p.u. would

be reached at bus 56 by a generation of 1.075 MW (under the minimum demandcase). Any

sustained generation above this value will cause the generator to be trippedoff the network. In

the following sections, the augmentation in the net real power fed to the network by the use of

the AVPFC and the FLPFC methods are discussed.

5.5.1 Benefits of the wave power farm

Before the wave power farm was connected, the real and reactive power losses in the network

when supplying all the connected loads were 99 kW and 171 kVAr respectively. Figure 5.27

shows the real and reactive power losses in the network, under maximum demand, for different

real and reactive power generation by the wave power farm. The realand reactive power flow
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Figure 5.25: Probability distribution of demand over the four seasons in the UK.

Figure 5.26: Voltage profile across the network for the two extreme operating conditions.
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Figure 5.27: (a) Real power loss (MW) and (b) reactive power loss (MVAr) and the measured
(c) real power flow (MW) and (d) reactive power flow (MVAr) at the substation
for different wave power farm outputs.

measured at the substation for varying generation are also shown in the figure. With an increase

in the wave power farm size, the real power fed from the sub-transmission network (sub-figure

(c)) reduces until it reaches the stage where the excess power generated by the farm is fed back

to the sub-transmission network.

5.5.2 AVPFC control of the wave power farm

In this section, the results of the simulation runs completed where the AVPFC controller has

been used to control the wave power farm connected to the generic 11 kVdistribution network

are discussed. As mentioned earlier, the primary aim of using the control method is to ensure

the connection of the wave power farm to the network for the longest possible time without any

voltage violations occurring. This section also discusses how the different parameters of the

AVPFC algorithm -td, Vh, Vl, PFref , PFT andPFB - are selected based on simulation runs.

Figure 5.28 shows the voltage envelope at bus 56 when the control of the farm switches from the

constant power factor mode to the constant voltage mode for three different time delays when

the wave power farm is simulated in sea state C. Over-voltage protection wouldtrip the wave

power farm off the network when an over-voltage occurs for more than500 ms. This being the

case, a time delay of less than 500 ms (e.g. 300 ms) becomes the obvious choice. Due to the

inherent nature of the net real power generated from wave power farms and the nature of the
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Figure 5.28: Voltage magnitude envelope during a control mode change for different time de-
lays.

network and the distributed demand, even after 10 seconds after the voltage goes beyond the

upper limit of the deadband (1.0525p.u.) the voltage does not go beyond thestatutory limits.

Additionally, at times, DNOs operate their over-voltage or under-voltage protection devices

only after voltage violations are seen for 6 seconds or more [177]. Due tothese two reasons, a

time delay of 10 seconds has been chosen for the simulation runs that follow inthis section.

To choose the power factor set point of the controller, the operation of the wave power farm

during periods of minimum demand has been analysed. Figure 5.29 shows theamount of

reactive power the wave power farm needs to exchange with the networkto maintain a constant

voltage of 1.05 p.u. (the upper voltage limit of the AVPFC controller) for different real power

generation scenarios. Up to 1 MW output, the wave power farm operates at a lagging power

factor to maintain the voltage constant. As the real power generated increases further, the

leading power factor reduces till the generation is approximately 4 MW. Further increase in

the real power generated increases the leading power factor. The minima of the power factor

curve shown in the figure lies when the wave power farm generates 4 MW.To maintain the

bus 56 voltage at 1.05 p.u., with the wave power farm generating 4 MW, the farm will need to

absorb 0.8833 MVAr from the network. This essentially means that the wavepower farm will

need to operate at a leading power factor of 0.9765. Since this value corresponds to the minima

of the power factor curve, the power factor limit of the controller has beenset at 0.975 lead
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Figure 5.29: The operation of the wave power farm maintaining a constant voltage of 1.05p.u.
with different real power generation.

and lag. If a higher power factor set point is chosen, unnecessary switching between the two

control modes will be seen. Also, depending on the time delay chosen, over-voltages may be

seen during periods when the wave power farm operates at a constantpower factor.

Using a similar approach, choosing a voltage set point of 1.055 p.u. for theconstant voltage

mode requires a power factor limit of approximately 0.979 lead and lag. Choosing this limit

might force the use of a smaller time delay because the voltage buffer betweenthe upper limit

of the AVPFC bandwidth and the upper statutory limit reduces. For this network and wave

power farm size, the upper voltage limitVh of 1.05 p.u. has been chosen. During periods of

high demand before the wave power farm was connected to the network, the voltage at the

extremities of the network used to reach 0.9737 p.u. Considering this, the lower voltage set

point of the controller has been set at 0.97 p.u.

Figures 5.30 and 5.31 show the results when the wave power farm operates with the AVPFC

controller using the parameters selected previously in this section. The wavepower farm has

been simulated under the sea state A and two different loading scenarios (25% and 100% of the

maximum demand) have been used. The spike in voltage seen at the start of the simulation is

because of the initial condition of the wave power farm (the generated power is 0 MW at timet

= 0 s). Since the increase in the power output from the wave power farm isgradual, occurring

over tens of seconds, such voltage or power factor spikes will not be seen in reality unless the

local load trips. Under both the loading conditions, it is seen that the wave power farm operates
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Figure 5.30: Operation of the wave power farm with the AVPFC controller; in sea state A,
connected to the UK 11 kV generic network, with 1 p.u. load and bus 53 voltage
= 1.03 p.u.

in the constant voltage mode. The operating power factor of the wave power farm is different

in the two cases. While the power factor is on average 0.996 leading in the 100% demand case,

it is on average 0.976 leading in the 25% demand case. Figure 5.32 shows theresults of the

AVPFC operation when the bus 53 voltage is maintained at 1.00 p.u. For the 25%demand case,

during highly energetic seas (sea state A), the wave power farm operates at a constant voltage.

The average power factor during the 600-second period is approximately 0.994 leading. Using

0.994 as the power factor limit of the AVPFC controller means that a much smaller power

factor change takes place during control mode switching. This option is better from the voltage

stability point of view in the network. The scope for improving the controller’soperation by

adjusting the substation OLTC transformer’s tap position based on the energy content of the sea

is discussed in Chapter 6.

The results discussed in this section confirm that the control parameters ofthe AVPFC controller

are site specific. Optimal values of these parameters, based on the size of the wave power farm,

the distribution network the farm is connected to, the loads, the reactive power capability of the

electrical machines, etc., need to be established. Whether the wave power farm warrants the

use of additional reactive power compensators (e.g. SVCs, STATCOMs) will also need to be

analysed. These compensators will need to be controlled and coordinatedwith the controller of

the wave power farm.
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Figure 5.31: Operation of the wave power farm with the AVPFC controller; in sea state A,
connected to the UK 11 kV generic network, with 0.25 p.u. load and bus 53
voltage = 1.03 p.u.

Figure 5.32: Operation of the wave power farm with the AVPFC controller; in sea state A,
connected to the UK 11 kV generic network, with 0.25 p.u. load and bus 53
voltage = 1.00 p.u.
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5.5.3 FLPFC control of the wave power farm

The FLPFC controller has been used to control the wave power farm connected to the generic

11 kV distribution network. As mentioned earlier, the primary aim of using the control method

is to ensure the connection of the wave power farm to the network for as long as possible

and to maximise production without any voltage violations occurring. Two different voltage

deadbands have been tested and a power factor limit of 0.95 lead and lag has been used in the

simulations.

Figure 5.33 shows the operation of the wave power farm using the FLPFC controller for the

25% demand case, with the farm simulated in sea state D. The power factor, and hence the

reactive power the wave power farm exchanges with the network, changes at every instant

when the voltage envelope reaches 1.05 p.u. The wave power farm thus operates as a voltage

following machine, but operates at a power factor which is selected basedon the energy content

of the sea and the demand.

Figure 5.34 shows the operation of the wave power farm at a lagging powerfactor set by the

FLPFC controller for the 100% demand case with the farm simulated in sea state D. The voltage

at the bus where the wave power farm is connected is less than 1.01 p.u. for the first few seconds

of the simulation. Even though such power variations will not be seen over such short periods of

time in reality, the current case shows the operation of the wave power farmat a lagging power

factor. It is seen that the FLPFC controller makes the wave power farm operate at approximately

0.95 lagging power factor during the first 40 seconds. When voltage excursions beyond 1.05

p.u. are seen, the wave power farm is made to operate at higher lagging power factors.

One of the main advantages of using the FLPFC over the AVPFC method is that itis less

network, load, and wave power farm size specific. Using such intelligentcontrollers are more

advantageous when compared to the conventional ‘fit and forget’ methodof control. The results

discussed here clearly show that for selecting the power factor and the voltage limits for the

AVPFC and the FLPFC methods, the worst case operating conditions still need to be considered.

5.5.4 Reactive power control using Static Synchronous Compensators (STAT-

COMs)

Static VAr Compensators (SVCs) and Static Synchronous Compensators (STATCOMs) have

been used in the transmission network to maintain the network voltage profile withinlimits
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Figure 5.33: Operation of the wave power farm with the FLPFC controller; in sea state D,
connected to the UK 11 kV generic network, with 0.25 p.u. load and bus 53
voltage = 1.03 p.u.

Figure 5.34: Operation of the wave power farm with the FLPFC controller; in sea state D,
connected to the UK 11 kV generic network, with 1 p.u. load and bus 53 voltage
= 1.00 p.u.
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[178]. With the addition of significant amounts of generation from renewable sources, the com-

pensators have been used accompanying the DGs to reduce voltage fluctuations introduced by

the DGs [179, 180]. The use of such compensators with some real powerstorage was sug-

gested for wave power farms using Oscillating Water Columns (OWCs) in [181]. In this sec-

tion, the preliminary use of these compensators is to avoid the over-stressingof the DFIGs

caused by an excessive generation or absorption of reactive power. The flexibility provided by

STATCOMs over SVCs to accommodate variable generation in the network wasdocumented

in [182]. Therefore, STATCOMs were chosen for this work. This section explores how voltage

and power factor control is possible using STATCOMs. The modelled STATCOM is connected

to the same bus at which the wave power farm is connected. The simulations in this section

have been performed with the wave power farm excited by the sea state A withthe demand at

25% of the maximum demand.

Figure 5.35 shows the equivalent circuit of the STATCOM used for the simulations [181, 183].

The AC source represents the capacitor banks and the shunt reactors along with the voltage

source converter. The output voltage of the STATCOM (Vs) is controlled to get the required

reactive power absorption/generation. The operation of the STATCOM isdescribed as follows

[183]:

• If the voltageVs is less thanVk, the STATCOM absorbs reactive power

• If the voltageVs exceedsVk, the STATCOM generates reactive power

• If Vs = Vk, there is no exchange of reactive power

STATCOM losses have been ignored in this work since they are less than 1.5% of the equipment

rating [179]. Assuming an ideal STATCOM with no real power loss, the following equation

yields information of the reactive power exchange with the network [183]:

QSTATCOM =
|Vk|2 − |Vk|.|Vs|

Xs
. (5.2)

Figure 5.36 shows the bus 56 voltage when the STATCOM’s voltageVs is set at 1.01 p.u.

The figure also shows the reactive power exchanged between the STATCOM and the network.

Figure 5.37 shows the bus 56 voltage whenVs is fixed at 1.03 p.u.

The FLPFC method, described earlier, can be applied to control STATCOMs accompanying

wave power farms. The FLPFC controller controls the reactive power exchanged between the
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Figure 5.35: Equivalent circuit of the STATCOM.

Figure 5.36: Operation of the wave power farm with the STATCOM, withVs = 1.01 p.u.

Figure 5.37: Operation of the wave power farm with the STATCOM, withVs = 1.03 p.u.
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Figure 5.38: Operation of the wave power farm with the STATCOM maintaining the bus 56
voltage between 1.049 p.u. and 1.051 p.u.

STATCOM and the network. In this case, the FLPFC acts on the power factor (and hence the

reactive power) set point of the STATCOM. Figures 5.38 and 5.39 showthe operation of the

STATCOM, controlled by the FLPFC method, when it is asked to maintain the bus 56 voltage

within certain prescribed ranges. In Figure 5.38 the STATCOM maintains the voltage at bus 56

between 1.049 p.u. and 1.051 p.u., while in Figure 5.39 the STATCOM maintains thevoltage

between 1.01 p.u. and 1.05 p.u.

5.6 Individual and group control of WECs

So far in this chapter, it was assumed that all the WECs in the farm are controlled together, in

effect, working like a single machine connected to the electrical network. The operating power

factor and the voltage seen at the bus where the wave power farm is connected were taken as

the input control variables, based on which the operating mode of all the DFIGs in the farm

was decided. In reality, the volt/VAr controllers on the DFIGs, in many cases, will only have

access to the local power factor and voltage. They will need to make the decision regarding

the control mode based on these variables alone. When the individual controllers in the wave

power farm do not communicate with each other, their operation may be significantly different

from the cases discussed till now in this chapter. In this section, differentindividual and group

control options are analysed. The pros and cons of using these control options are examined

in detail. All the simulations in this section have been performed with the wave power farm

excited by a stationary but irregular sea state withHs = 6.03 m andTz = 8.52 s.
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Figure 5.39: Operation of the wave power farm with the STATCOM maintaining the bus 56
voltage between 1.01 p.u. and 1.05 p.u.

5.6.1 Electrical proximity of the generators

Figure 5.40 shows the model of the hypothetical rural distribution feeder used for the simula-

tions discussed in this section. The power generated by the individual WECsat 440 V or 690

V is stepped up to 11 kV using offshore transformers. The power is then taken onshore by 1

km long submarine cables. Each WEC in the figure is rated at 125 kW. The electrical demand

at bus 3 has been taken to be constant over the simulated time periods in the simulation runs

discussed in this section.

Figure 5.41 shows the voltage measured at buses 12-19 over a 100-second period. It is seen

that even with the impedance between the WECs and bus 3 and the differencein the real power

generated (see Figure 5.42) by the individual WECs, the voltages seen at these buses are exactly

the same. This can be attributed to the small size of the WECs used in the farm andthe fact that

no reactive power was exchanged by the WECs with the network. The figure thus speaks of

the close electrical proximity of the WECs in the current farm layout. Since theWECs see the

same voltage, methods of controlling the DFIGs within the farm using individualquadrature

droops [184] can not be applied here. When reactive power is exchanged by the WECs, the

voltages will be slightly different at each bus and this is further examined later in this section.
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Figure 5.40: Electrical network model of a wave power farm connected to a hypothetical rural
distribution feeder (2 MVA base).

Figure 5.41: Voltage profiles at buses 12-19.
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Figure 5.42: Real power generated by the 8 WECs in the 1 MW farm.

5.6.2 Individual controllers that do not communicate

In this section, it has been assumed that the AVPFC controller on each WEC operates on its

own, without considering the operating mode and status of the other controllers in the farm.

In other words, the controller on a WEC (e.g. the WEC connected to bus 12 inFigure 5.40)

uses only the voltage and power factor measured at the bus it is connectedto (here bus 12) to

make the decision on its operating mode. All the eight WECs in the farm have such controllers

that do not communicate with each other. The AVPFC controller set points used in this section

areVh = 1.05 p.u.,Vl = 1.05 p.u. andtd = 1 s. The power factor set point chosen for the

individual controllers is 0.975.

Figure 5.43 shows the AVPFC control signal, the voltage and power factormeasured at the

corresponding buses (12-19) and the reactive power exchanged by the WECs with the network,

when the wave power farm is controlled using individual controllers that do not communicate

with each other. These quantities for three WECs, connected to buses 12,15 and 19, are shown

in the figure. Since the WECs are in close electrical proximity and thus see almost the same

voltage, all the eight controllers go into the voltage control mode at the same instant of time.

All the WECs that are in the voltage control mode share the reactive power,required to keep

the voltage fixed, equally. Due to this and the different real power generated by each WEC, the
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Figure 5.43: Operation of the wave power farm with individual AVPFC controllers that do not
communicate. (a) Voltage at buses 12, 15 and 19 (p.u.) (b) voltage / power factor
control signal (2 - voltage control, 0 - power factor control) (c) power factor (-)
(d) reactive power generated (MVAr).

operating power factor of the WECs are different and therefore the instants of time at which the

WECs return to the power factor control mode are different. When one ormore WECs move

from the voltage control mode to the power factor control mode, the reactive power shared by

the remaining WECs in the voltage control mode increases. For example, between time 200 s

and 250 s in the figure, it is seen that WEC 1 reaches the power factor limit and goes into power

factor control mode before WEC 4. Among the three WECs considered here, WEC 8 goes into

the power factor control mode last. Between the time WEC 1 and WEC 8 go into the power

factor control mode, WEC 8 operates in the voltage control mode. It is seenthat the reactive

power exchanged (generated here) between WEC 8 and the network increases with every WEC

going into the power factor control mode. This puts additional stresses on the DFIGs still in the

voltage control mode. This control, therefore, is not sufficient since some DFIGs in the farm

may reach the excitation limit placed.

5.6.2.1 One WEC operating with the AVPFC controller

Instead of having a controller on all the WECs, only one of the WECs has been controlled by

the AVPFC method here. All the other WECs operate in power factor controlat UPF as voltage
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Figure 5.44: Operation of the wave power farm with WEC 1 controlled by an AVPFC con-
troller. (a) Voltage at buses 12 and 19 (p.u.) (b) voltage / power factor control
signal (2 - voltage control, 0 - power factor control) (c) power factor (-)(d) reac-
tive power generated (MVAr).

following machines. Figure 5.44 shows the AVPFC control signal of WEC 1,the voltage and

power factor measured at buses 12 and 19 and the reactive power exchanged by WEC 1. As

expected, WEC 1 deals with much more reactive power in this case. Between 50 s and 100 s

in the figure, there are durations when the control mode keeps switching. Spikes in the voltage

reaching 1.057 p.u. are seen, which would trip the farm off the network. These spikes occur

every time WEC 1 reaches the power factor limit and moves back to the power factor control

mode. When in this mode, since the voltage is still above the upper voltage limit, WEC 1

returns to the voltage control mode after another time delay.

5.6.2.2 Two WECs operating with the AVPFC controller

Having two WECs controlled by the AVPFC method improves the control of the wave power

farm, when compared to the case when only one WEC is controlled. This is seen in Figure 5.45,

where the sharing of the reactive power requirement by the two WECs during the voltage con-

trol mode prevents unnecessary switching between the control modes and the voltage spikes

associated with it (as seen in Figure 5.44). Since only two WECs share the reactive power

exchanged with the network, the probability of the WECs being taken off the farm (see Sec-
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Figure 5.45: Operation of the wave power farm with WEC 1 and WEC 2 controlled by AVPFC
controllers. (a) Voltage at buses 12, 13 and 19 (p.u.) (b) voltage / power factor
control signal (2 - voltage control, 0 - power factor control) (c) power factor (-)
(d) reactive power generated (MVAr).

tion 5.6.5) is high, especially when the farm is excited by highly energetic seas. Taking off

one of the controlled WECs (due to excessive generation from the farm) would further burden

the remaining controlled WEC when in the voltage control mode. The results discussed in this

section and the preceding section show that the onus of maintaining voltage and/or power fac-

tor has to be distributed among the WECs in a farm to make full use of the capabilityof the

intelligent AVPFC controller.

In both Figures 5.44 and 5.45, the voltage seen at buses 12 and 19 are not the same when the

farm operates in the voltage control mode. This is due to the reactive powerexchanged by

WECs 1 and 2 and the reactive impedance between buses 12-19 and bus 3.

5.6.3 Individual controllers that communicate

In the preceding section, some of the issues that arise when the individualcontrollers on the

WECs do not communicate with each other were discussed. The main problem occurred when

the WECs moved from the voltage control mode to the power factor control mode. Since this

switching of modes did not happen at the same time in all the WECs, the WECs still in the volt-

age control mode had to deal with excessive reactive power generation/absorption to maintain
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Figure 5.46: Operation of the wave power farm with individual AVPFC controllers that com-
municate. (a) Voltage at buses 12 and 19 (p.u.) (b) voltage / power factorcontrol
signal (2 - voltage control, 0 - power factor control) (c) power factor (-)(d) reac-
tive power generated (MVAr).

a constant voltage. The advantages of letting the individual controllers communicate with each

other have been studied and the results are discussed in this section. The AVPFC algorithm has

been slightly modified to accommodate the interactions between the controllers on the WECs.

Some means of communication between the individual controllers is also required.

The individual controllers still work based on the input variables measured at their respective

buses (buses 12-19). The only change made to the AVPFC control algorithm is that all the

WECs are forced back to the power factor control mode when the power factor limit is reached

by any one of the WECs. This essentially means that a control hierarchy exists with an addi-

tional controller above the individual controllers. The improvement in the wave power farm

operation when this change in incorporated is seen in Figure 5.46. All the WECs share the

reactive power requirement equally throughout the time period irrespective of the control mode

of the WECs, since all the WECs now come into and go out of the power factorcontrol mode

together. The additional controller does not play any role during the switching to the voltage

control mode. This is due to the close electrical proximity of the WECs which ensures that all

the WECs enter the voltage control mode together even without the additional controller.
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5.6.4 Power factor set point for constant voltage controller

In Sections 5.6.2 and 5.6.3, all the WECs in the voltage control mode shared thereactive power

requirement equally, and therefore, their operating power factors depended on their instanta-

neous real power production. For the same reactive power generation/absorption, the WEC

with the lowest real power production had the lowest operating power factor. For example, in

the case described in Figure 5.46, at t = 109.5 s when the farm moves into thepower factor

control mode, only one of the WECs (WEC 2, connected to bus 13 in Figure 5.40) had reached

the power factor limit of 0.975. At that instant of time, the WEC was generating only 9.62

kW of real power, which was the lowest in the farm. It is because WEC 2 reached the power

factor limit, the other WECs were forced into the power factor control mode bythe additional

controller described in the preceding section. This happened even whenthe other WECs were

producing power at power factors well within the power factor limit, which means that the

reactive power capability of the farm was not being used completely.

In this section, a different control option has been used wherein a supervisory controller, with

access to and knowledge of the voltage and the operating power factor ofthe farm at bus 3,

decides the operating control mode of all the WECs in the farm. In the networkshown in

Figure 5.40, bus 3 is onshore. Bus 3 may be an offshore hub in larger array developments. In

the power factor control mode, the supervisory controller constrains theindividual controllers

to operate at UPF. When the voltage at bus 3 goes beyond the upper or thelower voltage limit,

the farm is forced into the voltage control mode. When in this mode, the supervisory controller

constantly issues the operating power factor of the farm to maintain the voltageat 1.05 p.u. or

0.97 p.u., as needed.

The supervisory controller that has been used is the FLPFC controller described in Section 5.4.5.

When the bus 3 voltage goes beyond 1.05 p.u., the FLPFC controller aims to maintain the volt-

age between 1.0495 p.u. and 1.0505 p.u. by issuing to the individual controllers of the DFIGs

the operating power factor of the farm. The power factor limit of the supervisory controller was

set at 0.9975 (leading and lagging). Figure 5.47 shows the AVPFC control signal of WECs 1

and 8, the voltage and power factor measured at buses 12 and 19 and thereactive power ex-

changed by the two WECs. It is seen that all the WECs operate at the same power factor that is

issued by the FLPFC controller. This means that the reactive power contributed by each WEC

is in proportion to the generated real power at any instant of time. ComparingFigures 5.46

and 5.47, shows the difference in the operating power factor of the WECswith and without the
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Figure 5.47: Operation of the wave power farm with individual AVPFC controllers that operate
at the same power factor. (a) Voltage at buses 12 and 19 (p.u.) (b) voltage / power
factor control signal (2 - voltage control, 0 - power factor control) (c) power
factor (-) (d) reactive power generated (MVAr).

supervisory controller. In the current case, the WECs have to deal withmuch smaller power

factor changes.

5.6.5 Constraining WECs off the network during periods of excessive generation

In all the simulation runs discussed so far, there was never a case for constraining a WEC off

the network due to excessive generation by the wave power farm. This is an option that has

to be considered when the seas are excessively energetic and when, even with the maximum

allowed reactive power generation/absorption by the WECs, the voltage cannot be maintained

at the lower/upper voltage limit. This section explores and compares different individual and

supervisory control strategies that can be used to remove generators from the network. Both

partial constraint or power shedding are possible in a wave power farm.The former is accom-

plished by proper adjustment of the hydrodynamic parameters (through control of the hydraulic

PTO), while the latter involves removing WECs from the network during periods of excessive

generation. Different WEC control methods involving the control of the hydraulic PTO have

been pursued as a part of the SuperGen Work Stream 7 at Lancaster University. Dr. David

Forehand and Dr. Aristides Kiprakis, at the University of Edinburgh, have also developed a
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bi-directional wave-to-wire model of the wave power farm, wherein control of the DFIGs in

the farm controls the damping coefficients of the PTO and hence the power extracted by the

WEC from the sea. In this thesis, the damping coefficients of the PTO of the WECs have been

selected for maximum power extraction and only power shedding has been considered.

An additional clause has been added to the initial AVPFC algorithm (see Figure 5.10) to remove

generators during periods of excessive generation. According to theclause, a WEC is removed

from the network when the operating leading power factor of the WEC reaches the limit. On

the other hand, the WEC is forced into the power factor control mode when theWEC operates

at the lagging power factor limit, as seen in Figure 5.46.

In the simulations that follow in this section, the size of each WEC, and hence thefarm, has

been increased. This has been accomplished by removing the real powergeneration limits

that are normally placed on the WECs. This simulation run has been performedto show the

effects of taking generators off the network with the same sea state used sofar in this section.

The power factor limit of the AVPFC controller has also been reduced to 0.9975 (leading and

lagging) for the case with the supervisory controller.

5.6.5.1 The case with individual controllers

The disadvantages of having individual controllers on the WECs, which do not communicate

with each other, were discussed in Section 5.6.2. The discussion there wasregarding the switch-

ing from the voltage control mode to the power factor control mode, which occurs when the

WECs reach the lagging power factor limit. The work has been extended to also include gener-

ator constraints.

The main issue seen earlier when individual controllers were used was that all the WECs did

not return to the power factor control mode simultaneously. This resulted in the WECs still

in the voltage control mode having to produce excessive amounts of reactive power. A similar

scenario would be seen in the case when a WEC is taken off the grid due to excessive generation.

As mentioned earlier, this would happen when the WEC reaches the leading power factor limit.

Once one WEC is taken off, the remaining WECs will need to increase their share of the reactive

power absorbed to maintain a constant voltage. This might in turn push another WEC to the

leading power factor limit, tripping that WEC off the network. A chain-reactionmight follow,

resulting in the whole farm being removed from the network.
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Figure 5.48: Operation of the wave power farm with the WEC constraint option, with indi-
vidual controllers that communicate. (a) Voltage at all buses (12-19) (p.u.) (b)
voltage / power factor control signal (2 - voltage control, 0 - power factorcontrol)
(c) power factor (-) (d) reactive power generated (MVAr).

When the individual controllers can communicate (as in Section 5.6.3), all the WECs are con-

strained to the power factor control mode when one of the WECs reaches the leading power

factor limit and is taken off. The operation of the farm with individual controllers that commu-

nicate is shown in Figures 5.48 and 5.49. In Figure 5.49, it is seen that two WECs are taken

off the network within the first 25 seconds of the simulation run. At the instantswhen the two

WECs are taken off, spikes are seen in the bus 3 voltage (see Figure 5.48). These voltage spikes

can be attributed to the fact that the controllers on the WECs still connected to the network are

forced into the power factor control mode, when one of the WECs is taken off the network.

Another reason why these voltage spikes are seen is that the WEC generating the least amount

of real power operates at the lowest power factor as explained earlier. This is the case when all

the WECs absorb the same amount of reactive power. Therefore, the WEC taken off the network

is not the most significant contributor to the voltage rise problem. These results clearly show

the necessity of a supervisory controller, like the one discussed in Section5.6.4, to overcome

these shortcomings of WECs having individual controllers.
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Figure 5.49: The real power production by the 8 WECs in the farm, showing the WECs being
constrained off the network; with individual controllers that communicate.

5.6.5.2 Supervisory controller for taking off WECs

As discussed earlier, the supervisory controller uses the measurements made at bus 3 to decide

on its future course of action. The advantages of this approach were discussed in the case

when there was a need to move from the voltage control to the power factor control mode. In

this section, the operation of the supervisory controller in the WEC constraint decision making

process is described.

The simulation runs described in this section use the same supervisory controller described

in Section 5.6.4, with the additional WECs constraint functionality. The results with the su-

pervisory controller (see Figures 5.50 and 5.51) are very similar to the results seen in Fig-

ures 5.48 and 5.49 with the individual controllers that communicate. In Section5.6.2, some of

the drawbacks of having individual controllers that do not communicate were examined and as

a solution to these the necessity of having controllers that communicate with eachother was

proposed. This additional control layer ensured that all the WECs wentinto the power factor

control mode once the lagging power factor limit was reached by any one ofthe WECs. A

drawback of this proposed modification was seen in Figure 5.48, where voltage spikes were

seen at instants when WECs were taken off the network. Voltage spikes are again seen, in the

first 25 seconds is Figure 5.50, at instants when two WECs are taken off the network.
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Figure 5.50: Operation of the wave power farm with the WEC constraint option, with the su-
pervisory controller. (a) Voltage at bus 3 (p.u.) (b) voltage / power factor control
signal (2 - voltage control, 0 - power factor control) (c) power factor (-)(d) reac-
tive power generated (MVAr).

Figure 5.51: The real power production by the 8 WECs in the farm, showing the WECs being
constrained off the network; with the supervisory controller.

166



Voltage control in wave power farms

Figure 5.52: The real power production by the 8 WECs in the farm, showing the WECs be-
ing taken off the network; with the new supervisory controller with no priority
generation shedding.

5.6.5.3 New supervisory controller

Forcing all the WECs into the power factor control mode, when one of the WECs reached the

power factor limit, was necessary when individual controllers worked only with the local power

factors. This was incorporated to avoid any excessive reactive power generation/absorption by

the WECs and to avoid the occurrence of a chain-reaction on the removal of one or more WECs

from the network. With the new supervisory controller described in this section, this feature

is no longer required. The supervisory controller allows the WECs to continue in the voltage

control mode even after one or more WECs are taken off the network. It returns to the power

factor control mode only when the lagging power factor limit of the farm is reached.

Figures 5.52 and 5.53 show the operation of the new supervisory controller when the WECs

are taken off, not taking into account their individual real/reactive power generation or power

factors. In other words, when the first leading power factor limit is reached by the farm, WEC

1 is taken off the network. The second time the leading power factor limit is reached, WEC 2

is taken off the network and so on. No voltage spikes or unnecessary switching between the

control modes are seen in this simulation run with the new supervisory controller.
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Figure 5.53: Operation of the wave power farm with the WEC take off option, with the new
supervisory controller with no priority generation shedding. (a) Voltage at bus
3 (p.u.) (b) voltage / power factor control signal (2 - voltage control, 0 - power
factor control) (c) power factor (-) (d) reactive power generated (MVAr).

Figures 5.54 and 5.55 show the operation of the supervisory controller when the WECs are

taken off depending on the magnitude of the real power generated by each WEC. At the instant

of time when the leading power factor limit is reached, the WEC which is contributing most

towards the net real power generation of the farm is taken off the network first. In the previ-

ous case (see Figure 5.52), WECs 1 and 2 were taken off the network, while in this case (see

Figure 5.54) WECs 7 and 1 were taken off the network. Again, no voltage spikes or unneces-

sary switching between the control modes are seen in this simulation run with the supervisory

controller.

Figures 5.52 and 5.54 compare the operation of the supervisory controllerwith and without

priority generation shedding. In both these cases, two WECs were constrained off the network.

The average net real power generated by the farm in the two cases is almost the same and no

significant advantage using the priority generator shedding is seen.

From these results, the advantages of having the new supervisory controller become evident.

All the simulations in the thesis, apart from the ones in this section, have been performed using

the supervisory controller. In essence, all the WECs within the wave power farm have been

controlled together as slaves, with the supervisory controller acting as the master.
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Figure 5.54: The real power production by the 8 WECs in the farm, showing the WECs being
taken off the network; with the new supervisory controller with priority generation
shedding.

Figure 5.55: Operation of the wave power farm with the WEC take off option, with the new
supervisory controller with priority generation shedding. (a) Voltage at bus 3
(p.u.) (b) voltage / power factor control signal (2 - voltage control, 0 - power
factor control) (c) power factor (-) (d) reactive power generated (MVAr).
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5.7 Control of a 4 MW wave power farm connected to the 33 kV

Stornoway/Harris distribution network

Section 5.5 described the procedure used to select the voltage and powerfactor limits and the

time delay of the AVPFC and the FLPFC controllers for optimal performance. The 4 MW

farm, in that section, was connected to a generic UK distribution network. The network used

was largely passive between the source and the generator and had onlydistributed loads.

In this section, the 4 MW wave power farm is connected to the Stornoway/Harris distribution

network [176]. This area off Outer Hebrides will see wave power developments in the near

future. The network is more active with a number of OLTC transformers anda wind farm (3

MW capacity at Arnish Moor) and a hydro power plant (1.2 MW capacity atChilostair). The

network is shown in Figure 5.56. The 4 MW wave power farm is connected tothe 11 kV

BARVAS1A bus. The OLTC transformers between BARVAS3B and BRAVAS1A buses have

been rated appropriately for the new farm connection. The proceduredescribed in Section 5.5

has been used to determine the set points of the controllers used in the simulationruns discussed

here. Some transmission and distribution network operators allow only a±3% variation from

the nominal voltage. Keeping this in mind, the upper and lower voltage limits have been taken

as 1.03 p.u. and 0.97 p.u. respectively and the power factor limit has been taken as 0.975

(leading and lagging) for the simulations discussed in this section.

Simulation runs over 500 seconds have been performed for different loading and generating

conditions. The outputs from the wind and the hydro power plants and the demand have been

taken to be constant during the simulation time. The transformation ratios of all theOLTC

transformers have been calculated from power flow runs completed before hand with the same

demand conditions. Under the conditions mentioned so far, the simulated networkis still pas-

sive. Two cases, where the OLTC tap changer changes its tap position and 50% of the load

connected to the BARVAS1A bus is lost suddenly, have been used as testsof the AVPFC and

the FLPFC controllers in more active networks. For the simulation runs in this section, the

wave power farm has been simulated in the sea state D (see Figure 5.23) andthe 25% demand

case has been used.

Figure 5.57 shows the operation of the wave power farm with the AVPFC controller when the

tap ratio of the transformer changes. At time t = 300 s the transformation ratio of the OLTC

transformer between BARVAS3B and BARVAS1A changes from 0.9435 to0.9385 p.u. The
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Figure 5.56: Stornoway/Harris 33 kV network.
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Figure 5.57: Operation of the wave power farm with the AVPFC controller when a tap change
occurs.

wave power farm was operating in the voltage control mode till that instant. Atthe instant

the tap change occurs, a sudden increase in the reactive power absorbed by the farm is seen.

Since the power factor limit of the controller is not reached, the farm continues in the voltage

control mode. Had the power factor limit been reached, one of the WECs would have had to be

constrained off the network.

The operation of the wave power farm with the AVPFC controller when 50% of the load con-

nected to the BARVAS1A bus is suddenly lost (at time t = 300 s) is shown in Figure 5.58. The

wave power farm was operating in the power factor control mode till time t = 300 s. Due to the

sudden rise in the voltage seen with the loss of load, the farm is constrained tooperate in the

voltage control mode. This shows the capability of the AVPFC controller to circumvent some

of the issues seen in the network.

Figures 5.59 and 5.60 show the operation of the wave power farm, under the same sea and

demand conditions like above, controlled by the FLPFC method. The voltage limits of the

FLPFC controller has been modified from those used in Section 5.5.3. The upper and lower

voltage limits used here were 1.03 p.u. and 0.97 p.u. respectively. In Figure5.59, at time t =

290 s, the transformation ratio of the OLTC tap transformer changes from 0.9435 to 0.9385 p.u.

A sudden reduction in the operating power factor of the farm is issued by the FLPFC controller,

which helps to maintain the voltage under 1.03 p.u. An increase in the reactive power absorbed

by the farm is seen at this instant. In Figure 5.60, a significant increase in the voltage is seen
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Figure 5.58: Operation of the wave power farm with the AVPFC controller when a sudden loss
of load occurs.

when 50% of the load is suddenly lost. The wave power farm was operatingat UPF till the load

loss. With the load loss, the FLPFC controller forces a reduction in the operating power factor

of the farm to maintain the voltage within the allowed limits.

In this section, the performance of the AVPFC and the FLPFC controllers in more active net-

works was tested. Both the controllers have some capability to overcome certainnetwork issues

(like loss of load). For more severe issues, the operation of the farm may eventually need to be

constrained and the WECs may need to be taken off the network.

5.8 Benefits of using the intelligent controllers

In this section, the savings that can be made using the AVPFC method for controlling a 6 MW

wave power farm over a period of one year has been analysed. A site off the north western

coast of Scotland has been chosen and the sea data [20] and the demanddata [176, 185] have

been obtained. This area has been identified by wave energy developers as a potential site for

the development of wave power farms [186]. The limited capacity of the electrical network

in this area is one of the major constraints for new distributed generation (DG)developments

here [187]. Normally, the DG developers are required to upgrade the network before their

generators can be connected. Any significant reinforcement of the network is expensive and

time consuming. The Scottish potential for renewable power may not be fully utilised to meet

the stringent 2020 targets due to these constraints. Using the intelligent controllers developed

in this work defers the required network upgrades. The additional incomegenerated through
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Figure 5.59: Operation of the wave power farm with the FLPFC controller when a tap change
occurs.

Figure 5.60: Operation of the wave power farm with the FLPFC controller when a sudden loss
of load occurs.
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Figure 5.61: The real power generation by a 6 MW farm, the demand variation and the voltage
variation over a year.

the avoidance of network upgrades has not been quantified in this work.The income generated

by the energy yield alone has been considered.

The model of the wave power farm has been simulated for a year using one-hour averaged

power generation and demands. The wave data between February 2011and February 2012

have been used, while the demand data during the same months but in 2002-2003 have been

used. Since the yearly demand patterns show a very strong correlation, the use of the older

demand data is sufficient to show the advantages of using the AVPFC method with the wave

power farm.

Figure 5.61 shows the variation in the power generated by the 6 MW farm andthe demand

variation at the site over the year. The voltage variations at the bus to which the farm is con-

nected are also shown. UPF operation of the wave power farm has beenused to generate these

results. It is seen that for approximately 52% of time during the year the voltage at bus 56 lies

above the 1.03 p.u. limit. This in effect means that without the option of voltage control and

power constraining, the wave power farm would have been allowed to generate power only for

approximately six months that year.

Figure 5.62 shows the variation in the power generated by the 6 MW farm andthe demand

variation at the site over a winter month (February 2011), when the sea wasextremely energetic.

In this case, voltage violations are seen for more than 76% of the time, which means that the
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Figure 5.62: The real power generation by a 6 MW farm, the demand variation and the voltage
variation over two and half weeks in February 2011.

farm would have been tripped off the network for all but seven days in February 2011 without

voltage control or power constraining. A similar analysis performed for December 2011 when

the sea was extremely energetic showed that the farm would have been connected to the network

for only three days that month. This clearly shows the advantages, from the energy production

point of view, of the intelligent voltage controllers.

The operation of a 6 MW wave power farm over a three-year period hasbeen analysed to un-

derstand the benefits of using the intelligent volt/VAr controllers. Wave data from 23 February

2009 to 12 February 2012 and demand data from 23 February 2001 to 12February 2004 were

used to make this assessment. The wave data between September 2010 and November 2010

were not available and therefore the number of hourly data points in the year two simulation

runs was less than the other two years. Three control strategies have been compared on the ba-

sis of both the additional energy and income production. DNOs normally require the connected

DG to constrain the real power generated to maintain the voltage within the allowed limits. This

is one of the strategies tested here. The second option is where there is no controller and when

the wave power farm G59 interface (with an automatic restarter) operates totrip the farm off

the network whenever the voltage goes beyond the voltage limits. The third strategy involves

the use of the AVPFC method with the supervisory controller. Figures 5.63 shows the operation

of the wave power farm over a month. The demand variation between 0.5 - 0.85 p.u. is usual in

autumns/springs when the seas can be very energetic, as is the case shown in the figure. With
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Figure 5.63: The real power generation by a 6 MW farm, the demand variation and the voltage
variation over a year using the three control strategies.

the wave power farm operating without any control, it is tripped off the network for extended

periods during the month to avoid voltage violations. Constraining the real power keeps the

voltage within limits, but limits the power generated and energy yield of the farm. The farm is

seen to operate at a constrained capacity (approx. 1 MW) much below it rated capacity (6 MW).

Using AVPFC ensured that both the voltage is maintained within limits and all the generated

power is fed to the network.

The net energy production over the three-year period, when the threestrategies were used, are

given in Table 5.5. The percentage of time for which the wave power farm had to be tripped

off the network or the real power generation had to be constrained during the three-year period

is also given. It is observed that the wave power farm would have beenoff the network for

more than six months between February 2011 and 2012 due to extremely energetic seas had

the AVPFC controller not been used. Over the three-year period too this value is significant,

and for close to five months every year the generation-demand conditions would trip the wave

power farm off the network. Relaxation of the voltage limits set by the DNO will allow the

connection of a larger farm to the network, which will cause all the voltage magnitude issues

seen in the case of the 6 MW farm discussed here. Using the intelligent controllers will make

the farm size selection more flexible.

Between two successive hourly instants of time, the instantaneous power generated by the farm
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Average energy production (MWh) Percentage of time (%)
Year 1

Without control 2965
Real power control 6237 35.39

AVPFC control 9337
Year 2

Without control 2622
Real power control 4809 27.75

AVPFC control 6899
Year 3

Without control 2151
Real power control 6839 51.92

AVPFC control 12779
Gross

Without control 7738
Real power control 17885 38.80

AVPFC control 29015

Table 5.5: Additional energy production

was found to be greater than the average for approximately 50% of the time. This means that

if the power, averaged over an hour, caused voltage violations, then for at least 50% of that

hour voltage violations would be seen in reality. To assess the impact of the remaining 50% of

the hour on the supply voltage magnitude, a series of simulation runs where theaverage power

over an hour was taken to be the minimum power generated for the particular sea state were

performed. It was found that during only 6.57% of the entire three-yearperiod were voltage

violations avoided when the average power generation, for the different sea states, was taken

to be the minimum instantaneous power. Assuming an equal probability of occurrence for all

powers between the minimum instantaneous power and the average power (over the 50% period

within an hour), it was found that the percentage of time for which voltage violations were seen

reduced to 33.47% for year 1, 26.40% for year 2 and 50.29% for year 3. The difference between

these values obtained after the correction for instantaneous power and those shown in Table 5.5

are insignificant. Also, applying this correction will not change the energyyield significantly.

It is seen that by constraining the real power the wave power farm was kept connected to

the network throughout the three-year period. With the AVPFC controller though, the energy

production was 62% more than when only real power control was used. This is economically

advantageous to wave power farm developers. Every extra MWh produced brings extra Renew-

ables Obligation Certificates (ROCs) to the developers. The Scottish government has recently

reviewed the ROC bands and has increased the ROCs/MWh for wave power farms to 5 ROCs
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[188] (from the previous value 2 ROCs [189]). For the energy produced shown in Table 5.5,

using real power constraining as a strategy alone would bring the developer 50735 more ROCs

over the three-year period when compared to the case when the farm is allowed to be tripped

off the network. With AVPFC control though, the number of ROCs gained would increase by a

further 55650 for the three-year period. According to the current buy-out rates of ROCs (£40.71

per ROC) [190], the additional ROCs gained would be valued approximatelyat £4.3M (without

any control being applied, the income would have been £1.57M). The net additional income

gained by the developers can be even higher (approx. £4.8M) because of the auctioning system

based on which ROCs are traded [191].

5.9 Summary

In this chapter, the effects of connecting wave power farms to weak, rural electricity networks

were explored. Though there are many benefits gained through the newlyadded distributed gen-

erators, especially those dependent on renewable sources, there are constraints that the supply

quality limits place on them. The focus in this chapter was on the fluctuations in the rms-voltage

magnitude introduced by the injection of wave power. Weak networks, like theones consid-

ered here, are particularly affected by the varying generation from wave power farms. Control

options for primary voltage control were discussed.

The operation of the wave power farm either at a constant voltage or power factor were thor-

oughly explored. Some of the evident drawbacks of using these conventional control options

were discussed. Voltage control using OLTC transformers showed the problems associated with

the time delay, which proved that the substation transformer was suitable only for coarse, sec-

ondary control. The advantages of using intelligent control methods, like the AVPFC and the

FLPFC, were demonstrated. In both these methods, reactive power generated/absorbed by the

farm was used as the control variable. Using these intelligent controllers ensured the connec-

tion of the wave power farm to the network for much longer than when the conventional control

methods were used. More importantly, the voltage was also kept below statutory limits. The

different operating conditions the DFIGs in the farm were put into by the intelligent controllers

were well within the reactive power capability of the DFIGs used in the farm [192]. By using

the intelligent controllers expensive network upgrades can also be avoided.

Different group and individual control strategies with an AVPFC controller on each WEC were

compared and tested in this chapter. The disadvantages of having individual controllers that

179



Voltage control in wave power farms

did not communicate with each other were established. Due to the close electrical proximity

of the WECs within the array, the WECs in the farm could be controlled as a single device.

It was established that having a master/supervisory controller in the farm, with access to the

operating power factor and voltage of the farm, was necessary for optimal use of the reactive

power capability of the farm. In the case of power shedding too, the farm with a supervisory

controller performed much better than the case where the individual controllers on the WECs

did not communicate with each other.

The succeeding chapter investigates the effects of controlling the wave power farm locally on

the other voltage control devices in the network and discusses how the different controllers can

be coordinated for optimal voltage control.
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Chapter 6
Voltage estimation at the far end of a

rural distribution feeder

6.1 Introduction

Until now, the focus of the work reported was on optimising the operation of the wave power

farm to avoid the varying nature of the power generated from causing voltage violations in the

network to which the farm is connected. A significant part of this thesis examined voltage

fluctuations due to the connection of wave power farms and looked at meansby which these

fluctuations can be reduced. In Chapter 4, means of reducing the fluctuations in the power

generated and hence the voltage were suggested that involved spacing and orienting the WECs

differently within the wave field. It was found that even after appropriately placing the WECs

within the wave power farm, significant fluctuations in the power profile still remained. To

ensure the prevention of voltage violations and the continued connection ofthe farm to the

electricity network, voltage and power factor control mechanisms for the farm were introduced

and tested in Chapter 5. In that chapter, the focus was on primary voltage control using reac-

tive power control of the connected wave power farm. Intelligent volt/VArcontrollers like the

AVPFC and the FLPFC were also described. Distribution networks generally have other voltage

and power factor control elements like the OLTC transformer at the substation, which might not

work effectively with the connection of the wave power farm. This is specially the case if these

intelligent controllers of the farm are not coordinated with the control of theonshore control

elements.

This chapter looks at a means of estimating the downstream voltage from the substation OLTC

transformer. The voltage estimator can be used to predict the voltage at the bus where the wave

power farm is connected, through measurements made at the substation. Before explaining the

estimation method, power flow runs have been performed to show its necessity. Other benefits

that may be accrued by using the information gained from the estimation are alsodiscussed.

The voltage estimation method developed, uses real and reactive power measurements made at

the substation prior to the connection of the wave power farm. A demand prediction method is
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described in this chapter, which returns the real and reactive power demand at the substation at

future instants of time. The demand prediction algorithm is a simple one, which uses past values

of the measured demand and values of the demand from historical archives to make a one-step-

ahead prediction. Hourly spaced data, obtained from [176, 185], have been used to train a

wavenet network, which is then used to predict the demand. Three models using different sets

of past and current data have been developed for the prediction and are compared in this chapter.

The performance of two nonlinearity estimators available in the system identification toolbox

of MATLAB/Simulink is also compared. The percentage errors in the predicted demand have

been fitted to normal distributions and the mean and standard deviation of the percentage errors

have then been used in the voltage estimation method described later in the chapter.

Once the predicted real and reactive power flows at the substation are available, real-time mea-

surements of the voltage, real power and reactive power at the substation along with the pre-

dicted demand values are used to estimate the voltage at the bus where the wavepower farm is

connected. A neural network has been trained with the data obtained fromoffline power flow

simulations, which estimates the voltage at the bus under consideration. This work shows that

the voltage estimation method by itself has a high accuracy and can be used instead of state es-

timation techniques or full power flow simulation runs. The only uncertainty in theestimation

is introduced by the imprecision in the demand prediction.

The main advantage of the method developed is that no communication means or new measure-

ment devices are required to make the estimation. Simple one-hidden-layer neural networks

have been used and the method developed can be implemented in standard microcontrollers or

microprocessors. The developed voltage estimation method has then been applied to identify

the control mode of a wave power farm, controlled by the Automatic Voltage andPower Factor

Control (AVPFC) method, connected to a generic 11 kV distribution network.

6.2 Need for voltage estimation

In this section, the need for effective voltage estimation at the substation is discussed. The volt-

age estimation is performed with the aim of coordinating the controllers of the WECs within

a wave power farm and the substation OLTC transformer. The operation of the AVPFC and

FLPFC methods and the control of the OLTC transformer were discussed indetail in the previ-

ous chapter.

To study the interactions between the controllers of the substation OLTC transformer and the
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wave power farm, only a simple two-bus system (see Figure 2.26) has beenused initially.

The issues that would be seen when the two uncoordinated controllers interact will normally

worsen as the complexity of the radial distribution network increases (for example when there

are laterals drawn out from the main radial feeder). The OLTC transformer between buses 2

and 3 controls the voltage at the bus where the wave power farm is connected. The transformer

is used as a voltage regulator. More complex networks might need the transformer to operate

as a load drop compensator (LDC).

When an OLTC transformer is used as an LDC, current measurements madeat the site of the

transformer are used to estimate the voltage at the load centre [150]. The transformer’s tap

position is determined once the voltage estimate is known. The LDC settings for theresistive

and reactive compensationRset andXset need to be decided before the LDC can be used.

Once the settings are decided, the LDC is found to work satisfactorily for cases when the

OLTC transformer deals with unidirectional power flows (towards the end of the radial feeder).

The presence of a DG operating at a constant power factor will requirethe settings of LDC

to be changed to account for the presence of the DG. When the DG is controlled using more

intelligent controllers (like the AVPFC and the FLPFC methods), the LDC will notbe able

to accurately estimate the voltage changes caused by the varying amounts of reactive power

exchanged by the DG with the network. When the real and the reactive power outputs from the

DG vary, which will be the case when intelligently controlled wave power farmsare connected

to the network, theRset andXset will need to be varied continuously to give a good estimate

of the voltage downstream of the substation. Therefore, a means to estimate the voltage at the

bus where the wave power farm is connected becomes important. Additionally, knowledge of

this voltage provides an opportunity to coordinate the operation of the OLTC transformer and

the wave power farm based on some optimisation criterion (eg. reduction of losses, lowering

the number of tap changes, etc.). The interactions between the controllers have been studied

using simulation runs in which the wave power farm is modelled in a 1800-second sea state

(see Figure 5.4 forHs, Tz details).

6.2.1 Interactions between the wave power farm controlled by the AVPFC method

and the substation OLTC transformer

Section 5.5.2 explained the procedure that would be used to select the different voltage and

power factor set points of the AVPFC controller based on the demand patterns seen at the site

and the size of the wave power farm. To accommodate the export of maximum real power
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AVPFC parameter OLTC setting
Vh = 1.05 p.u. Vnom = 1.03 p.u.
Vl = 0.97 p.u. Vh = 1.04 p.u.

PFB = 0.9975 (lag) Vl = 1.02 p.u.
PFT = 0.9975 (lead) Tapmax/min = ±7

Td = 10 s Td = 60 s

Table 6.1: The AVPFC parameters and the OLTC transformer settings

generation by the wave power farm, the voltage set point is normally chosento be close to

the allowed upper voltage limit (1.05 p.u. or 1.055 p.u.). The substation OLTC transformer

would normally be set such that the voltage at its secondary is 1.03 p.u. This isdone to prevent

low voltage violations occurring at the load-end of the network during periods of high demand,

before the connection of the DG downstream. The set points of the AVPFC controller and the

controller of the OLTC transformer used in the first simulation run are listed in Table 6.1. The

operation of the two controllers with these set points is shown in Figure 6.1. Itis seen that

during periods when the sea is energetic (0-600 seconds and 1200-1800 seconds) and when the

farm tends to operate in the constant voltage mode for considerable periods, a large number

of tap changes occur. This is because the nominal voltage set points of theAVPFC controller

and controller of the OLTC transformer are different. These unnecessary tap changes would

eventually wear out the tap changing mechanism.

The unnecessary tap changes seen in the case just discussed can be avoided by setting the

controller of the OLTC transformer to have a wider allowed voltage range when compared to

the controller of the wave power farm. Such voltage set points are shown inTable 6.2, where

the voltage range of the OLTC transformer overlaps that of the farm’s controller. The nominal

voltage of both the controllers is 1.03 p.u. The deadband of the AVPFC controller is +0.02

p.u and -0.06 p.u., whereas the deadband of the OLTC controller is +0.03 p.u. and -0.07 p.u.

respectively. Since the time delay and the deadband of the OLTC transformer are larger than and

overlap the AVPFC’s time delay and the deadband, the OLTC tap changes occur only when the

AVPFC controller cannot deal with certain voltage/ power factor conditions. In the simulation,

no tap change occurs because no voltage violations are seen (see Figure 6.2). Thus, by proper

selection of the AVPFC controller’s set points, unnecessary tap operations may be avoided.
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Figure 6.1: Interactions between the uncoordinated substation OLTC transformer andthe
AVPFC controller of the wave power farm showing (a) bus 3 voltage (p.u.),(b)
voltage / power factor control signal (2 - voltage control, 0 - power factorcontrol),
(c) power factor (-) (d) reactive power generated (MVAr) and (e) tapposition (0 is
the nominal position)(-).

AVPFC parameter OLTC setting
Vh = 1.05 p.u. Vnom = 1.03 p.u.
Vl = 0.97 p.u. Vh = 1.06 p.u.

PFB = 0.9975 (lag) Vl = 0.96 p.u.
PFT = 0.9975 (lead) Tapmax/min = ±7

Td = 10 s Td = 60 s

Table 6.2: The optimal AVPFC parameters and the OLTC transformer settings
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Figure 6.2: Interactions between the coordinated substation OLTC transformer and the
AVPFC controller of the wave power farm showing (a) bus 3 voltage (p.u.),(b)
voltage / power factor control signal (2 - voltage control, 0 - power factorcontrol),
(c) power factor (-) (d) reactive power generated (MVAr) and (e) tapposition (0 is
the nominal position)(-).

6.2.2 Interactions between the wave power farm controlled by the FLPFC method

and the substation OLTC transformer

The problems associated with the controller of the farm interacting with the controller of the

OLTC transformer are more significant when the farm operates at a constant voltage. This is the

case when the AVPFC method is used to control the farm and was discussedin the preceding

section. Since the farm’s control using the FLPFC method is essentially operation at a power

factor decided by the controller, no major increase in the number of tap operations are seen even

when the optimal voltage set points (Table 6.2) are not used. This is shown inFigure 6.3 for

the controller set points shown in Table 6.3. No tap changes are seen during the 1800-second

simulation run. This is because even though the voltage goes above 1.04 p.u.a few times, the

violation occurs for less than the time delay of the OLTC transformer. For a different sea state

though, OLTC tap operations may have been seen, which can be avoided by using the the OLTC

voltage set points listed in Table 6.2.

It was shown in this section that the selection of the set points of the two controllers in question

has an influence on the performance of the whole system. Coordinating the two controllers
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FLPFC parameter OLTC setting
Vh = 1.05 p.u. Vnom = 1.03 p.u.
Vl = 1.01 p.u. Vh = 1.06 p.u.

Vl = 0.96 p.u.
Tapmax/min = ±7

Td = 60 s

Table 6.3: The FLPFC parameters and the OLTC transformer settings

Figure 6.3: Interactions between the uncoordinated substation OLTC transformer andthe
FLPFC controller of the wave power farm showing (a) bus 3 voltage (p.u.),(b)
power factor (-) (c) reactive power generated (MVAr) and (d) tap position (0 is the
nominal position)(-).
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provides a means to optimise the performance of the network. Such a means to coordinate the

two controllers is discussed in this chapter. The technique developed relieson historical data

collected at the substation to make accurate estimations of the voltage at the bus where the wave

power farm is connected. In this section so far, a simple two-bus system has been considered

where the controller of the OLTC transformer has exact measurements of the voltage at the bus

where the wave power farm is connected. This estimation is simple for the two-bus system

because the secondary terminal of the OLTC transformer is connected to the same bus as the

wave power farm. This would not be the case in realistic networks. For proper coordination,

a voltage estimate will be needed, but no straightforward method is available for this purpose.

Some techniques discussed in literature, which could be adapted for this purpose, are compared

and discussed in the next section.

One of the advantages of the estimation technique proposed in this chapter is that no additional

measurements need to be made in the network and no means of communication between the

wave power farm and the substation are required. The estimation techniquedeveloped can

be used to coordinate and find the optimal operating set points of differentvoltage and power

factor control elements found in the distribution system today.

6.3 Existing techniques

Before adopting the voltage estimation strategy discussed in this chapter, a specific study of

the related literature was performed. The focus of the literature survey was not only on voltage

estimation techniques, but also other methods that could be modified and used for estimating

voltages in distribution networks.

Analytical expressions for the voltage along radial distribution feeders were derived in [193–

195]. In [193], the emphasis was on controlling the DG connected to the distribution network

using the derived voltage expression. The radial feeder was assumedto have uniformly dis-

tributed loading and generation, which is not the case in practice. In [194], the expression

developed can be used only if the real and reactive power injection of theDG to the network

is known. This is the case for controllable and dispatchable DG (CHP, diesel generator sets,

etc.), but cannot be used when the power generation is varying in nature. A similar analysis

was presented in [195] where the voltage along parallel feeders can beevaluated. Again in

this publication, the real and reactive power injected by the DG is to be knownbeforehand.

According to the goals set out at the outset of this chapter, the voltage estimation technique that
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Figure 6.4: The relation between different levels of real and reactive power generation from
the wave power farm and the current measured at the substation.

will be used to coordinate the control of two or more volt/VAr control elements inthe distribu-

tion network should not need any real-time measurements of the power generated by the wave

power farm. The estimation should ideally be performed through local measurements made at

the substation and by using archives of historical load data measured at the substation, provided

these are available.

A volt/VAr control strategy to be used at distribution substations was presented in [196]. In the

method presented, the current measurement at the substation and the effective impedanceZeff

of the feeder are used to determine the voltage drop. In the publication,Zeff was taken to be

purely real. The IEEE 34-bus system [197] was chosen for their analysis and the network did

not have any generator connected. The same procedure suggested inthe paper was tested with

the addition of a DG to the IEEE 34 bus network. It was found that the suggested method could

still be used when the DG operated at a constant power factor. When controlling the wave

power farm using the AVPFC or the FLPFC method, the operating power factor of the farm

varies depending on the energy in the sea. Therefore, the method suggested in [196] cannot be

used to estimate the downstream voltage. Figure 6.4 shows the change in voltage along a feeder

for different real and reactive power generation by the DG connected to the network shown in

Figure 2.26. The figure clearly shows that the proposed method cannot be used in the case of a

wave power farm controlled by the AVPFC or the FLPFC methods.
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Another approach was tried in which the system impedance from two voltage and current mea-

surements at the wave power farm was calculated and used to estimate the current tap position

of the substation OLTC transformer [198]. In this approach, both the real and imaginary parts

of the voltages, currents and the system impedance were used in the calculations. This proce-

dure again proved to be ineffective as the calculated system impedance changed depending on

the real and reactive power generated by the farm and the demand at thedifferent buses.

A method to reduce any radial distribution network to a two-bus system with an equivalent

impedance and an equivalent load was described in [199]. Expressions for the real and reactive

power through each branch in the network and the voltage at every bus of the network were

derived. This approach can only be applied with purely radial networks, which will not be the

case in reality. A similar approach was described in [200], where expressions used to derive

the equivalent impedance were given. In this approach, the apparent power fed to each bus is

to be known before the equivalent impedance is calculated. In the case ofa wave power farm,

the apparent power fed to the network by the farm varies and thus such areduction procedure

cannot be applied. This approach was further extended in [201–203]to accommodate more

complex radial distribution feeders. In both these papers, a novel methodfor solving the load

flow in radial distribution networks was examined. Both these approaches required the real

and reactive power injection from the last bus in the laterals for solution. This means that

some communicating means to send the information regarding the measured quantities to the

substation was required. The use of such communication and measurement requirements at

the wave power farm will be avoided by using the voltage estimation method developed in this

chapter.

Different state estimation techniques have been developed and are discussed in [204–206].

State estimation techniques have been used in commercially developed productslike GenAVC

developed by Senergy Econnect [207]. Most of the state estimation applications to distribution

networks involve some measurements and pseudo measurements being made and communi-

cated. The power injected at buses, currents through lines, voltages atbuses, etc., are generally

the estimated variables. For the voltage estimation method developed in this work only his-

torical demand data and the real and reactive power measurements made atthe substation are

required. Therefore, the full state estimation procedure used in these publications will not be

required. The full state estimation procedure is mathematically laborious. The neural network

fitting based method, developed in this work, can be implemented relatively easilyin micro-
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controllers.

The SuperTaPP n+ system [156, 208], developed by Fundamentals Ltd.[209], uses a method of

separating the generation and the load components of the substation current using current mea-

surements made before and after the DG is connected to the network. Since only the current

magnitude is used in the calculations shown in these publications, it is obvious that the system

will not be effective when the DG exchanges reactive power with the network. The method

was mainly developed to improve the performance of the LDC, when a DG is connected to the

network downstream of it. The application of the SuperTAPP n+ system, forsubstations feed-

ing parallel feeders, was also demonstrated in a real distribution network and the results were

discussed in [210]. The method presented in this chapter is an improvement tothe methodology

used in the SuperTAPP n+ device.

6.4 Load forecasting

For the voltage estimation method presented in this chapter, an estimate of the load patterns

observed at the substation is required. This section describes a simple one-step-ahead load

forecasting method which will be used in conjunction with the voltage estimation method.

Load forecasting has for long been used in the planning and operation ofelectrical utilities.

Short-term (up to one day), medium-term (a day to a year) and long-term (a year to 10 years)

load forecasts have been used for planning and devising control mechanisms for electric power

systems. The focus in this section will be on short-term load forecasts. A range of different

techniques have been used for making these forecasts, some of which are [211]:

• Similar day approach - where from a database a similar day is chosen and the load is

forecasted depending on what was seen on that day;

• Regression method - in which a relationship between the load pattern and certain vari-

ables like the weather, the day type, etc., is found and then used to forecast loads;

• Time-series approach - where variations (yearly, monthly, weekly and daily) in the de-

mand pattern are recognised and are used to forecast loads;

• Neural networks [212] - which can be used to model nonlinear relationships between

different independent variables and the demand;

• Rule-based systems [213, 214] - which use heuristic rules to make demandforecasts;
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• Fuzzy logic [215–217] - which is another technique of mapping inputs to outputs, where

the inputs and the outputs take certain qualitative ranges and not just the Boolean logic

truth values of zero and one;

• Support vector machines - these are techniques used for classificationand clustering,

which can also be used for load forecasting;

A list of references for short-term load forecasting using the different methods listed

above is available in [218].

In the current work, the focus will be on a one-step-ahead load forecast, which is performed

using an approach in which both time-series analysis and neural networksare used. Data of the

demand at a substation in the Stornoway/Harris 33 kV distribution network have been used in

this work. The data consist partly of measurements from the substation and partly of demand

generated based on the measurements made. The data has been collated over three years (2001-

2003). The data consists of hourly real power measurements. Since the data only has real power

measurements, the estimation of the real power at the substation alone has been performed in

this chapter. The same procedure developed here may be used to get estimates of the reactive

power flow at the substation too.

System identification has been examined earlier in Chapter 3 as a means to map theinput-output

relationship of systems. In the same fashion as elucidated in that chapter, nonlinear exogenous

models of the historical demand and the one-step-ahead demand have beendeveloped. The

models used here are only use the current and past demand to predict thenext demand. There-

fore, the models are different from the NARX models developed in Chapter3, where even past

outputs were used in the regressor set.

Different sets of the demand data have been used to develop these models.The performances

of the models developed, in predicting the one-step-ahead demand, have then been compared

and the results are presented in this section. The demand prediction techniques developed in

this work use only past values of the demand. No other variables like temperature, humid-

ity, etc., which are commonly used in load forecasting methods [219] have been used. The

load forecasting technique discussed in this work will form the first part of the voltage esti-

mation method which is discussed in Section 6.5. The electrical demand/load variation has

daily, weekly, monthly, and yearly patterns, which can be used to predict the future demand.

This section explores how these variations can be modelled and then used to predict the future
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Figure 6.5: The electrical demand pattern at the Isle of Lewis over three years.

demand patterns.

6.4.1 Correlation between the annual demand patterns

Figure 6.5 shows the variation in the real power flow measured at a substation in the Stornoway

distribution network over a period of three years. Very prominent similaritiesin the annual

demand profiles can be observed from the figure. Relatively lower demands are seen during

the summer months and higher demands are seen in the colder months. The characteristics of

the weekly demand profile can also be seen with dips in the demand during the weekends. Fig-

ure 6.6 shows the demand pattern over the same month in the three years. There are similarities

in the demand pattern seen, which have been used here to predict the future real power demand

at the substation.

Figure 6.7 shows the correlation between the real power demands of year1 and year 2. A regres-

sion coefficient of 0.945 was obtained between these two quantities. The system identification

process used for the one-step-ahead load prediction needs to try and model the discrepancies

from the linear fit seen in the figure. Figure 6.8 shows the residual in the year 2 demand values,

with respect to the corresponding year 1 demand values. It is seen that the values of the residual

are not dependent on the magnitude of the year 1 demand. The aim of the system identification

process thus is to reduce the value of this residual through proper modelling.
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Figure 6.6: The electrical demand variation over a month at the Stornoway distribution net-
work.

Figure 6.7: Correlation between the demand seen in year 1 with the demand seen in year2.
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Figure 6.8: Residual in the demand of year 2 with respect to the corresponding year1 demand.

6.4.2 System identification for one-step-ahead demand prediction

Three nonlinear exogenous models have been developed to predict the demand patterns. The

averaged hourly demand data measured over three years have been used to train and construct

the models and also to validate them. Three different regressor sets have been used to train the

neural network and the performance of the models constructed using these regressor sets has

been compared.

In model 1, to predict the demand at the current timeti, the demand at timeti−1, ti−2 andti−3

and the demand at timeti, ti−1 andti−2 of the preceding year have been used as inputs. That

is, the corresponding demand seen during the previous year on a similar day is used to predict

the next demand of the current year. This model tries to model the similarities in the demand

pattern over years. In model 2, to predict the demand at the current timeti, 25 previously

measured demand values have been used. This model in effect uses the daily patterns in the

demand profile. In model 3, the demand at timeti has been estimated based on the current day’s

demand atti−1 and the demand at timeti andti−1 of the previous day. This modelling approach

is similar to the one found in [220]; the difference being the nonlinear mappingfunction used

here. It is observed that model 1 would require maximum amount of stored data, since the

corresponding demand values from the previous year are required. On the other hand, both

models 2 and 3 require almost the same amount of stored data (demand of the previous day/ 25
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past demand values).

6.4.3 Performance of the demand predictor

6.4.3.1 Comparison between the wavenet and the treepartition nonlinearity estimators

For the estimation, two nonlinearity estimators - the wavenet network and the treepartition net-

work - have been tested. Both these nonlinearity estimators have inherent characteristics which

make them react differently to the training set. The demand prediction models constructed us-

ing the two nonlinearity estimators have been compared and the results are discussed in this

section. Wavenet neural networks have been extensively describedand discussed in Chapter 3.

The theory behind wavenet networks is not discussed further here.

Treepartition networks create partitions of the regressor space definedby a binary tree and fit

the input to the output in these partitions using piecewise linear functions or simple regression

models [119, 221]. In the System Identification toolbox in MATLAB, the number of such

partitions (or units) is determined iteratively. The theory of regression andclassification trees

is available in [222] and these trees form an important part of data mining studies in computer

science.

Figure 6.9 shows the estimated and the measured demand pattern of year 2 over a 100-hour pe-

riod, when the wavenet and the treepartion nonlinearity estimators were used for constructing

model 1. The predicted demand shows a good fit to the measured demand formost periods dur-

ing the 100 hours. A wavenet network with 51 units and a treepartition network with 1023 units

were used and a fit of 90.21% and 92.05% were respectively obtained. The figure also shows

the distribution of the percentage error for the estimation achieved using boththe networks. For

most periods the percentage error is less than±5%. The percentage error distribution shown in

the figure has a mean of 0.03055% and a standard deviation of 2.1291 for thewavenet network

and 0.0545% and 1.6164 for the treepartition network. Models 2 and 3 also showed a better

fit to the validation data and a lower standard deviation for the estimation achieved using the

treepartition network.

Figure 6.10 shows the spread of the residual over the range of year 2 demand values. Comparing

this figure with the residual spread shown in Figure 6.8 shows the improvement in the demand

prediction made using model 1 with the treepartition network, when compared to using only

the correlation of the measured demand values of year 1 to make the prediction.
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Figure 6.9: Comparison of the wavenet and the treepartition network for the one-step-ahead
demand prediction using model 1.
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Figure 6.10: Residual in the estimated demand with respect to the measured year 2 demand,
using model 1 with the treepartition network as the nonlinearily estimator.

6.4.3.2 Comparison between models 1, 2 and 3 for estimating year 3 data with the

treepartition network

The results in Figures 6.9 and 6.10 were obtained when the demand values ofyear 2 were

predicted. Since a time-delayed year 2 demand pattern was used to train the model, estimating

the year 2 demand may not be a good validation test for the model developed.In this section, the

performance of the three models in estimating the one-step-ahead year 3 demand is compared.

Figure 6.11 shows the percentage distribution of the percentage errors obtained when estimat-

ing the year 3 demand using the three models. In all the three cases, the percentage error

values are less than±5% for most of the predicted demands. The average percentage error

and the standard deviation obtained using the three models are respectively0.0038%, 0.0705%,

0.0425% and 2.5838, 2.6574, 2.0628. The maximum percentage error in the estimated demand

is approximately 20%, which occurs very rarely. As expected, the estimationof the year 2

demands, discussed in the previous section, is comparatively better than theestimation of the

year 3 demands. This is attributed to the fact that the year 2 data was a part of the training data

used to train the treepartition network used when constructing the three models.
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Figure 6.11: Comparing models 1, 2 and 3 when the model is trained with the data from year
1 and 2 to predict the year 3 demand.
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6.4.3.3 Comparison between the models generated using the 1-year and the 2-year train-

ing data set for year 3 demand prediction

In all the results shown so far in this section, only the year 1 data and the time-delayed year

2 data have been used as inputs to train the network. The year 2 data was theoutput and

a relationship between the year 2 data and the input data was modelled. In this section, the

effects of increasing the size of the training set are examined. For this, data from the first two

years (year 1 and year 2) have been used for the estimation of the year 3demands. Time delayed

demand data of year 3 have also been used as one of the inputs during the training process.

Figure 6.12 shows the same results as in Figure 6.11, but when the model hasbeen developed

using the larger training set. The tails of the percentage distribution in this figure are steeper and

the maximum percentage error values are lower compared to the results shown in Figure 6.11.

The mean and the standard deviation for the three models constructed using the 2-year data

are respectively 0.0545%, 0.1345%, 0.0454% and 1.6155, 2.6452, 2.7436. These values were

obtained when the model was constructed using treepartition networks.

6.4.3.4 Validation

The load forecasting method developed in this section is not meant to replace other load fore-

casting techniques which are in use today, most of which include more variables in their predic-

tion analysis and hence may give more accurate results. The method developed shows that even

the simple load prediction technique discussed here gives a good estimate. The simplicity and

the accuracy with which the demand prediction is completed here, makes the suggested method

attractive for use especially in rural substations where complex load forecasting solutions using

measured values of weather conditions may not be practical. One of the main advantages of

this suggested method is that only past values of the demand are used in makingthe estimate.

A time-series of randomly generated percentage errors, obtained from the probability distri-

bution of the percentage errors in the estimated demands, will be added to the actual demand

profile to obtain the forecast of real power flow at the substation. This assumption has been used

in the voltage estimation technique discussed in the next section. It will be shown that the volt-

age estimation methodology works satisfactorily even when using the simple load forecasting

method discussed here. With better demand forecasts, the voltage estimates willimprove.

This section described three models which can be used to predict the one-step-ahead demand
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Figure 6.12: Comparing models 1, 2 and 3 when the model is trained with a larger data set
(collected over two years).

201



Voltage estimation at the far end of a rural distribution feeder

pattern using past values of the demand. The performance of the three models was compared.

Both wavenet and treepartition networks were used and their performance compared. The

treepartition network gave lower values of standard deviation and maximum percentage errors

for the data sets and hence was chosen to generate the results discussedin the following sec-

tions. A significant difference in the performance was not seen when thethree models, built

using three different regressor sets, were compared. All the models constructed produced an

error of less than 5% for most of the time during which they were tested. The maximum per-

centage error seen was approximately 20%, which occurred very rarely.

6.5 Voltage estimation

The need to coordinate the control of the different voltage and power factor controllers in the

distribution network was discussed earlier in the chapter. Some of the gains obtained through

the coordination of the control elements were also mentioned there. As an example, the coor-

dination of the control of the substation OLTC transformer and the volt/VAr controller of the

wave power farm was briefly examined. It was found that unless the two controllers were coor-

dinated, there would be unnecessary tap changes in the substation OLTC transformer and also

a probability of voltage set point runaway. The drawbacks of the LDC system used to control

OLTC transformers, especially when a new generator is connected downstream of it, was also

touched upon. Some means is therefore necessary to remove the DG’s effects on the power flow

for the LDC to operate as expected. Additional benefits can be gained if theadded knowledge

about the control mode or voltage at the far end of the feeder can be used to modify the control

of the substation OLTC transformer based on some optimisation criterion.

The preceding section looked at a simple demand prediction technique, whichpredicts the one-

step-ahead real power flow at the substation using past values of the flow. It was mentioned

that the demand prediction technique presented would be used in conjunctionwith a voltage

estimation methodology, which is the subject of this section. A voltage estimation method is

described here which can be used to obtain information about the operationof the wave power

farm at the substation. The generic UK 11 kV rural distribution system, shown in Figure 5.21,

has been used to validate the method. A 4 MW wave power farm is connected tobus 56 in

the network. As mentioned earlier, the aim of this work is to sense the bus 56 voltage at the

substation (bus 53). This method uses no communication lines and only measures the real

and reactive power and the voltage at the substation to make an estimate of the voltage at bus

56. These are measurements that are normally made at substations and hence no additional
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Figure 6.13: The real power generated and the demand profile over a day.

measurements will need to be made. An archive of historical real and reactive power flow at

the substation prior to the connection of the wave power farm is required for using this method.

The data may be obtained from offline simulations of the network or from archives of measured

data.

6.5.1 The methodology

The relationship between the real and reactive power and the voltage at the substation and the

voltage at the bus where the wave power farm is connected is nonlinear. This relationship has

been modelled in this work by training neural networks with historical data.

Figure 6.13 shows the variation in the real power generated by a 4 MW wavepower farm over

a day. The load profile over a winter day is also shown in the figure. Figure6.14 shows the

results of the power flow solution, performed over a day, both before and after the connection of

the wave power farm to the network. The changes in the measured values brought about by the

connection of the wave power farm have been used here to estimate the voltage at the bus where

the wave power farm is connected. The simulation in this section and the resultsin Figure 6.14

have been obtained with the substation voltage kept constant at 1.03 p.u. and the wave power

farm operating at UPF. Since the method uses only measurements made at the substation, the

developed method is independent of the load profiles used at each bus and the varying nature

of the power produced by any generator connected to the network.
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Figure 6.14: The real and reactive power measured at the substation and the bus 56 voltage
profile over a day.

A training data set with 120,000 sets of real power, reactive power, substation voltage, and

voltage at bus 56, both before and after the connection of the wave power farm, were obtained

through power flow runs. 100 randomly generated loads (between 0.25-1 p.u.), 100 randomly

generated real power outputs from the connected wave power farm (between 0-6 MW) and 12

power factors from 0.95 to UPF (both leading and lagging) were used in these power flow runs.

The training data set thus had values of the real power and the reactive power generation and

the loads across the range normally found in the network. In the simulation runsused to obtain

the training data, all the loads have been assumed to have the same profile, which is valid in

the case of rural networks [223]. A test case in which half the loads have randomly generated

profiles has also been tried and the results are presented later in this chapter.

The Neural Network toolbox [111] available in MATLAB has been used to estimate the volt-

age. The theory of neural networks and their training was discussed in detail in Section 3.3.3.

Figure 6.15 shows the structure of the neural network used in this study. As mentioned earlier,

the real and reactive power flow and the voltage at the substation, both before and after the

connection of the wave power farm, are the inputs to the neural network. The hidden layer of

the neural network consists of 20 neurons. The hyperbolic tangent sigmoid transfer function

has been used as the activation function of the neurons in the hidden layer and is shown in

Figure 6.16. The outputs of the neurons in the hidden layer are linearly summed in the output

layer. The weights and the biases of the hidden layer and the output layer are selected during
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Figure 6.15: Structure of the neural network used for the voltage estimation.

Figure 6.16: The hyperbolic tangent sigmoid transfer function.

the training of the network using the Levenberg-Marquardt algorithm (see Section 3.3.4 for

details of learning in neural networks). The output of the network is the rms-voltage magni-

tude at the bus where the wave power farm is connected. After training thenetwork with the

data, plotting the target values with the output from the network gave a regression coefficient of

0.99998, which means that the neural network almost exactly models the relationship between

the variables in consideration. The regression plots are shown in Figure 6.17.

6.6 Voltage estimation methodology validation

6.6.1 Loads conforming to generic profile

In this section, the voltage estimation method established in the preceding section isvalidated

using simulation runs in which actual time-series of the real and reactive power generated by

the wave power farm have been used. The time-series of the real powergenerated by the wave

power farm, under different sea conditions, have been obtained through 100-second simulation
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Figure 6.17: The regression coefficients obtained from the neural network based fitting.

runs (1000 data points). The different sea states used are listed in Table6.4. These time-series

of real power, under different wave power farm operating power factors and varying demand in

the network, have been fed to the distribution network at bus 56. Power factors spaced at 0.01

from 0.95 to 1 (both lagging and leading) and electrical demands from 0.25 to1 p.u. spaced

at 0.05 p.u. have been used in the validation process. Thus, 192192 sets of data points have

been used to validate the voltage estimation method for each of the 9 sea states used. In this

section, only the voltage estimation method is validated using the different sets ofdata and it

has been assumed that the real and reactive power flow at the substation, before the wave power

farm is connected, has been predicted with an accuracy of 100%. The effects of having demand

estimates with different accuracies will be dealt with in the next section.

Table 6.4 shows the results of the validation performed for all the sea states used. The per-

centage error listed in the table is the error between the voltage obtained through power flow

runs and the estimated voltage. It is seen that the maximum, minimum and average percentage

errors are extremely small. The values of the standard deviation of the percentage errors for the

nine sea states used are also small.

Figure 6.18 shows a snapshot of the results for theHs = 4 m, Tz = 8 s sea state. The actual

voltage at the bus where the farm is connected, obtained from the power flow solution, and the

206



Voltage estimation at the far end of a rural distribution feeder

Sea state (Hs

(m), Tz (s))
Standard devi-
ation of per-
centage errors

Maximum
percentage
error(%)

Minimum
percentage
error(%)

Average abso-
lute percentage
error(%)

1 m, 4 s 0.0025 0.0068 -0.0038 0.0026
1 m, 6 s 0.0024 0.0057 -0.0053 0.0021
2 m, 6 s 0.0020 0.0011 -0.0095 0.0034
2 m, 8 s 0.0019 0.0005 -0.0097 0.0037
4 m, 6 s 0.0036 0.0083 -0.0082 0.0029
4 m, 8 s 0.0037 0.0100 -0.0082 0.0030
6 m, 8 s 0.0053 0.0133 -0.0100 0.0051
6 m, 10 s 0.0050 0.0133 -0.0094 0.0048

Table 6.4: Errors in the estimated voltage

voltage estimated using the neural network constructed in the previous sectionare shown in the

figure. A close match between the two is seen. In the 200 instants of time plotted, the maximum

residual observed is 0.0001 p.u. and the maximum percentage error seenin 0.01%. Figure 6.19

shows the percentage distribution of the percentage errors for all the validation tests performed.

It is observed that the percentage error is less than 0.01% for the entire time-series used.

Another validation run has been performed in which the wave power farm issimulated under

the sea state A (see Section 5.5). The operating power factor of the wave power farm has been

changed every 60 seconds (shown in Figure 6.20). The electrical demand of the network has

been randomly varied between 0.25 and 1 p.u. at every instant of time. The actual and the

estimated voltage obtained through this run are plotted in the figure along with the residual and

the percentage error. The maximum absolute percentage error seen is approximately 0.033%.

The values of the percentage error seen in this run are higher than thoseseen in Figure 6.18,

since in the previous case the same power factors used to train the neural network were used

in the validation. In the present case, the power factors in the same range have been randomly

chosen.

6.6.2 Loads not conforming to the generic profile

The loads connected to all the buses in the preceding section followed the same generic load

profile. This selection is justified being a rural distribution feeder. Changing the load profile

of certain loads might make the voltage estimation method ineffective. In this section, it will

be shown that the voltage estimation method developed does not depend on theindividual load

profiles. Only the profiles of the real and reactive power flow and the voltage at the substation

are required. For proving this, a simulation run has been completed in which half the loads

connected to the different buses are given values randomly generated. The remaining loads
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Figure 6.18: Snapshot of the estimated and the actual voltage with the residual and the per-
centage error for the case with conforming loads
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Figure 6.19: Percentage distribution of the percentage errors obtained in the validation tests
performed with conforming loads.

conform to the generic load profile. Ten randomly selected values of the real power generation

by the wave power farm (between 0 and 6 MW), the loading of the network and five randomly

selected values of the operating power factor of the farm were used to validate the estimator.

Therefore, the data set used for non-conforming loads had 500 data points.

Figure 6.21 shows the estimated and the actual voltage and the residual and the percentage er-

ror obtained in this run. It is seen that the range of residuals and percentage errors are similar

(though relatively higher) to those obtained with the conforming loads. This proves that the

voltage estimation method depends only on the profile of the measurements made atthe substa-

tion and not on the individual load profiles, which is one of the advantagesof using this voltage

estimation method.

6.7 Full system validation

In the preceding section, the voltage estimation method developed in this chapterwas tested on

data sets assuming that accurate demand estimates of the real and reactive power flows at the

substation, without the wave power farm, were known. In this section, the effects of different

demand forecast accuracies on the voltage estimate made are examined. It has been assumed

that the forecast demand (prior to the connection of the wave power farm)is equal to the actual

demand plus a random number at any instant of time [224]. The random numbers used have
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Figure 6.20: (a) The estimated and the actual voltage (p.u.), (b) the randomly generated power
factors (-), (c) the residual (p.u.), and (d) the percentage error (%)for the case
with conforming loads.
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Figure 6.21: The estimated and the actual voltage (p.u.), the residual (p.u.), and the percentage
error (%) for the case with non-conforming loads.
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Figure 6.22: The normal distribution of percentage errors in the demand prediction fordiffer-
ent standard deviations.

been generated using normal error distributions like the ones shown in Figure 6.12. This mod-

els the effect of using a demand predictor as the first step of the voltage estimation process. The

mean and the standard deviation of the distribution give an idea of the extent of percentage er-

rors seen. The real and reactive power demands at the substation have been taken separately and

percentage errors, generated from a normal distribution with mean 0% andstandard deviations

1, 2.5 and 5, have been added to the actual demand to model the inaccuracies in the demand

prediction. The distribution functions for the different standard deviations used to generate the

percentage error in the demand prediction are shown in Figure 6.22. The effects of the error

range, measured by the standard deviation, on the precision of the voltageestimation have been

analysed and the results are discussed here.

Figure 6.23 shows the variation in the real and the reactive power generated by the wave power

farm, the random operating power factor (changing once every 60 seconds), and the electrical

demand (changing every time-step) used for testing the performance of thevoltage estimator.

In the first validation run, which is the worst case scenario, both the realand reactive power

estimates have randomly generated errors at every instant of time obtained from the distribu-

tion with a standard deviation of 5. Figure 6.24 shows the estimated and the actual voltage,

the residual and the percentage error over the 600-second simulation time.The values of the

percentage error in the estimated voltage are less than 1.0% during the entire run. Figure 6.25
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Figure 6.23: The data used to validate the full voltage estimator system: (a) the real powergen-
erated (MW), (b) the reactive power generated (MVAr), (c) the operating power
factor (-) and (d) the demand variation over the 600-second period (p.u.).
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Figure 6.24: The estimated and the actual voltage with the residual and the percentage er-
ror obtained from the full system validation, with the standard deviation of the
demand prediction error = 5.

shows the percentage distribution of the percentage error in the estimated voltage. For more

than 95% of the time, the value of the percentage error lies less than 0.5%.

The same validation test has been then performed with the demand prediction errors generated

using the normal distribution with a standard deviation of 2.5. This is in the rangeof standard

deviations seen in the demand prediction work discussed earlier in this chapter. The results are

shown in Figure 6.26 and the percentage distribution of the percentage error in the estimated

voltage is shown in Figure 6.27. As expected, the values of the percentage error and the residual

are smaller when compared to the case when the errors in the demand were generated using a

distribution with standard deviation 5. The percentage error is less than±0.4% during the entire

run. The distribution of the percentage error shows that the values of thepercentage error in the
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Figure 6.25: Percentage distribution of the percentage error in the estimated voltage obtained
through the full system validation, with the standard deviation of the demand
prediction error = 5.

Standard devia-
tion of the demand
prediction error

Mean absolute per-
centage error (%)

Standard devia-
tion of the voltage
estimation error

1.0 0.0296 0.0390
2.5 0.0730 0.0972
5.0 0.1446 0.1906

Table 6.5: Errors in the estimated voltage obtained through the full system validation for dif-
ferent standard deviations

estimated voltage are less than±0.2% for a large part of the simulation time.

Table 6.5 shows the improvement in the voltage estimation with the improvement in the demand

prediction accuracy. A linear relationship between the two is seen and is as expected because the

precision of the voltage estimation methodology only depends on the accuracyof the demand

forecast.

6.8 Voltage estimation application

In this section, the voltage estimation method validated in the previous section has been applied

to coordinate the control of the substation OLTC transformer and the AVPFCcontroller of the

wave power farm connected to bus 56 in the generic UK 11 kV distribution system. The AVPFC

simulation runs used in this section have already been analysed in Section 5.5.2and the current
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Figure 6.26: The estimated and the actual voltage with the residual and the percentage er-
ror obtained from the full system validation, with the standard deviation of the
demand prediction error = 2.5.
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Figure 6.27: Percentage distribution of the percentage error in the estimated voltage obtained
through the full system validation, with the standard deviation of the demand
prediction error = 2.5.

emphasis is to portray the applicability of the voltage estimation method. The followingset

points have been used for the AVPFC controller:Vl = 0.97 p.u.,Vh = 1.05 p.u.,PFref = 1,

PFB/T = 0.975 (lead and lag),Td = 10 s; with the wave power farm simulated is the sea state

C (see Section 5.5).

In the first test in this section, the voltage estimation has been performed under the assumption

that the demand prediction has an accuracy of 100%. The estimated and the actual voltage

time-series are plotted in Figure 6.28. A very close match between the two is seen, which

proves the applicability of the voltage estimation method for coordinating voltage and power

factor control in distribution networks.

Figure 6.29 shows the estimated and the actual voltage, with the residual and the percentage

error, when the percentage errors in the demand prediction have been generated using a distri-

bution with a standard deviation of 5. The maximum value of percentage error inthe estimated

voltage seen in this case is less than 1%. The precision of the voltage estimation improves with

an improvement in the accuracy of the demand forecast. Figure 6.30 showsthe same results

when the percentage error in the demand prediction have been generatedusing a distribution

with a standard deviation of 2.5, which is more realistic. The maximum percentageerror in this

case is approximately 0.375%. Literature shows more accurate demand prediction methods

with prediction errors that can be represented by normal distributions with standard deviations
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Figure 6.28: The estimated and the actual voltage time-series for 200 seconds, with 100%
accurate demand estimates.

of less than 1 [225]. With such demand prediction errors, the precision ofthe voltage estimation

will improve even further.

6.9 Summary

This chapter investigated issues that will need to be tackled when using intelligent volt/VAr

control techniques with newly added distributed generators. Some of theseissues between un-

coordinated controllers of the substation OLTC transformer and the wave power farm, like un-

necessary tap changes and voltage set point runaways, were discussed in this chapter. Through

these examples discussed early in the chapter, the need to estimate voltage downstream of the

substation becomes evident.

As the first part of the voltage estimation, the real and reactive power andvoltage measure-

ments at the substation, taken prior to the connection of the wave power farm,were needed.

The collected data were then used to predict the one-step-ahead power flow at the substation.

A wavelet neural network, trained with the demand data obtained from archives, was used to

make the demand prediction. The neural network models the relationship between the past

values of the demand at the substation and the one-step-ahead demand. Three nonlinear exoge-

nous models and two nonlinearity estimators were tested for the demand prediction and their

performance was compared. The developed model was not meant to replace other load fore-

casting algorithm available in literature and was used to portray a simple forecasting technique
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Figure 6.29: The estimated and the actual voltage time-series for 200 seconds, with a standard
deviation of the demand prediction error = 5.
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Figure 6.30: The estimated and the actual voltage time-series for 200 seconds, with a standard
deviation of the demand prediction error = 2.5.
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to be used in conjunction with the voltage estimation method. The demand predictor only made

one-step-ahead forecasts. Predictions over longer periods will require more regressors and also

the incorporation of other independent variables.

The one-step-ahead predicted demand was one of the inputs of the voltageestimator. The dif-

ference in the predicted and the real-time measurement of the power flow at the substation is

used to estimate the voltage at the bus under consideration. Inaccuracies in the demand pre-

diction, which affects the voltage estimation process, were generated usingdistributions of the

demand prediction errors obtained earlier. Data obtained from offline simulations of a UK 11

kV distribution network were used to train neural networks, which were then used to calcu-

late the voltage downstream of the substation transformer. The developed voltage estimation

method was tested with different real power time-series, load profiles and power factors. A

good match between the estimated and the actual voltages were seen in all the cases tested.

There are three distinct benefits of using the voltage estimation method presented in this chapter.

The first one is the optimal usage of the volt/VAr control elements in the network. Estimating

the voltage at the bus where the wave power farm is connected makes the functioning of the

LDC schemes effective, since actual operating data (also called pseudomeasurements in the

field of power system state estimation) are available now. This is the second mainbenefit of

using the voltage estimation technique. The third significant benefit of the method lies in the

possibility of optimising the operation of the wider distribution network on the basisof the

information available. The operation of the OLTC transformer and the controller of the wave

power farm can be controlled based on different optimisation criteria; e.g.reduction of losses

in the network, etc.

In this chapter, a method by which the voltage at the bus where a DG is connected in the

distribution network can be estimated from upstream was suggested. It is envisaged that the

developed method will become more important and more effective as the traditional distribution

networks are replaced by smarter networks with more measurements made in real-time.
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Chapter 7
Comprehensive assessment of voltage

control means and quantification of
voltage fluctuations

7.1 Introduction

Until now in this thesis, different strategies to minimise voltage fluctuations introduced in the

network by the connection of wave power farms were discussed. Chapter 4 examined the

effects of spacing and orienting WECs differently within a farm on the smoothing in the net

real power generated. Intelligent controllers for further voltage smoothing by excitation control

of the DFIGs within a farm were described in Chapter 5. The focus there was to avoid the wave

power farm being tripped off the network due to voltage violations.

Voltage violations (including voltage swells and dips) are classified as network events, which

are quantified based on the number and duration of their occurrences. Such events are quantified

using different indices like the System Average Interruption FrequencyIndex and the Customer

Average Interruption Duration Index [226]. Recent interest in studyingthe economic impacts

of voltage disturbances has arisen [227–230], again focussing on interruptions and voltage dips

alone. With an increasing penetration of varying generation from renewable sources in the

electricity network, the focus may need to move away from network events alone.

Existing power quality measurement standards (eg. [231]) treat slow voltage variations using

10-minute rms-voltage values. They specify the voltage quality requirements using statements

like “all 10 minute mean rms values of the supply voltage shall be within the range of ±10%”

etc. It is generally accepted that as long as the voltage is within this range anyequipment

connected to the network will not be adversely affected. Moreover, it isassumed that the

voltage excursions during the 10-minute period may be of any nature as longas the 10-minute

rms remains within the specified limits.

Rapid voltage changes (voltage step changes occurring over a few seconds) are dealt with sep-
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arately in the standard. Flickermeters are mentioned as a means of measuring extremely fast

variations in the rms-voltage magnitude occurring in the seconds to sub-second time-scales.

Variations in the power generated from wave power farms occur over time-scales in the range

from 3 seconds to 10 minutes and the the network voltage variations introduced by these farms

cannot be quantified either using 10-minute averages or using flicker indices. Other indices to

quantify voltage variations in these time-scales have been suggested in publications [149, 232–

235], but these indices have not found widespread use. Therefore, a need to introduce additional

quantities to measure voltage variations that occur over this range of time-scales is required.

Voltage fluctuations can cause non-flicker consequences, which havebeen mentioned in Section

3.5 of [236]. Also, long-term exposure of the equipment connected to thenetwork to voltages

different from their design value may impact the lifetime of equipment [237]. There is no

clear indication of the tolerance of the equipment against changes in the voltage. This has been

studied to an extent in the case of lighting loads, but no study of the potential impacts of voltage

variations on industrial loads, for example, has been undertaken [237]. With the increasing

penetration of generation from renewable energy sources and the susceptibility of equipment

to long-term voltage variations, it might become necessary to quantify these variations and to

study their economic impacts.

A number of indices that are available in the literature to quantify fluctuations in the rms-

voltage magnitude are reviewed in this chapter. Some of these indices have been modified

to make them more suitable for assessing the different volt/VAr control options discussed in

Chapter 5. New indices have also been suggested and the performance of these indices, as

a measure of voltage quality, is compared. With respect to the work presented in this thesis,

the ‘goodness’ of the different control means presented in the thesis are assessed. Using the

indices presented in this chapter, both the extent and the persistance of voltage fluctuations are

quantified. Such quantification may be used as the yardstick in accomplishing different smart

voltage management techniques across distribution networks.

7.2 Indices

This section describes some of the voltage fluctuation quantification indices which may be used

to assess voltage control means and to quantify voltage fluctuations. How theindices have been

calculated and how already existing indices have been modified to quantify the‘goodness’

of the rms-voltage time-series are also explained. Two new indices for quantifying voltage
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Figure 7.1: Variation ofHs, Tz andH2
sTz over the 1800-second simulation period.

fluctuations are also presented.

The voltage fluctuation indices have been calculated for different volt/VArcontrol methods used

with wave power farms. A 1 MW wave power farm connected to bus 9 in the network, shown in

Figure 5.3, has been analysed. The effects of connecting the wave power farm to the network,

at the different load buses, have been assessed. The wave power farm has been controlled

in the constant power factor mode, the constant voltage mode, and using theAVPFC and the

FLPFC methods. Secondary voltage control through the substation OLTC transformer has

also been assessed. The wave power farm has been simulated in a 1800-second concatenated

sea state (see Figure 7.1) and the rms-voltage magnitude fluctuations during the three time

periods - during highly energetic, weakly energetic and moderately energetic seas, have been

assessed separately. The three time periods have been denoted as time intervals 1, 2 and 3 in

the discussed results.

7.2.1 Cumulative probability function - index (CPF-index)

The Cumulative Probability Function-index (CPF-index) overcomes one ofthe issues of using

the flicker severity index to quantify voltage fluctuations. The flickermeter uses a series of fil-

ters to model the eye-brain unit’s response to fluctuations in luminance. Because of these filters,

the standard flickermeter only captures luminance fluctuations in the frequency range 0.5-30 Hz

[238]. Even within this range, the flickermeter is most sensitive to voltage fluctuations with fre-

quency between 3.5 Hz - 8.8 Hz. Analysing the real power time-series generated by wave power
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farms shows that the changes in the generated power are much slower, over periods of tens of

seconds. The voltage fluctuations caused by such real power excursions therefore cannot be

detected by flickermeters. The CPF-index removes the eye-brain unit’s response to luminance

fluctuations and thus provides a more objective index when compared to flickermeters. Though

the main drawback of using traditional flickermeters is negated, the new indexis by no means

a replacement for the standard flicker severity indexPst.

The cumulative probability function (CPF) of the rms-voltage magnitude is usedto calculate

the CPF-index. The CPF is evaluated by subdividing the rms-voltage into a number of classes

or levels [239]. The cumulative probabilityp(l), of a time domain signal, that a particular class

l has been exceeded over a period of timeT is [240]:

p(l) = (total timewhen signal level > l)/T. (7.1)

Since the CPF curves cannot be represented by standard distribution functions, a multipoint

method is used to characterise any CPF curve. Using this method, the CPF-index is defined by:

CPF − index =
√

K1P0.1 +K2P1 +K3P3 +K4P10 +K5P50, (7.2)

whereK1 toK5 are the weighting coefficients andPk is the CPF curve level with an assigned

probability of being exceeded [239]; i.e.P0.1 is the level exceeded by only 0.1% of the obser-

vation period. All the weightsK have been given the value of 0.2, such that the CPF-index is

equal to 1 when the voltage is either 1.06 p.u. or 0.94 p.u. during the entire period under exam-

ination. Different values may be given to these weights to assign differentscales of importance

to different voltage levels.

Plots of the cumulative probability functions (CPF) are shown in Figures 7.2 and 7.3. These

show diagrammatically the extent of voltage excursions and their persistencefor the different

control options used at the different buses in the network. Figure 7.2 clearly shows the advan-

tages of using the intelligent control options like the AVPFC and the FLPFC forcontrolling the

wave power farm. In both these cases the voltage at bus 9 exceeds the 1.05 p.u. limit placed by

the controllers only for an extremely small percentage of time. Figure 7.3 shows the CPF of the

voltage seen at all the buses in the network when then FLPFC controller is used. The voltage

quality (in terms of the rms-voltage magnitude) improves farther away from the bus where the

wave power farm is connected, as is shown by the reduction in the range of the rms-voltage

magnitude seen. The five percentiles used to calculate the index are also shown in the two

figures. Table 7.1 shows the values of the CPF-index for the different control methods used.
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Figure 7.2: Cumulative probability functions of the bus 9 voltage when the different control
methods are applied (time interval 1).

Figure 7.3: Cumulative probability functions of the voltage at buses 4, 6, 7, and 9 when the
FLPFC controller is used (time period 1).
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Control method CPF-index
0.98 lagging PF 1.0361

UPF 1.0289
0.98 leading PF 1.0214

OLTC 1.0235
AVPFC 1.0252
FLPFC 1.0237

Table 7.1: CPF-index values

7.2.2 Voltage fluctuation index

The average change in the rms-voltage magnitude between each time-step in anrms-voltage

time-series can be used as a simple index to quantify voltage fluctuations [148]. The index has

been named the voltage fluctuation index (VFI) and is defined as follows:

V FI =

∑N
i=2

|Vi − Vi−1|
N − 1

, (7.3)

wherei refers to an instant of time andN is the total number of such instants being considered.

In this work,N has been taken as 6000, which denotes a sampling time of 0.1 seconds over a

simulation period of 600 seconds.

The VFI may be used to quantify fluctuations in the rms-voltage magnitude at a particular bus

under consideration. The global voltage index, which is a modified form ofthe VFI, may be

used to assess the rms-voltage quality across a network [241].

The VFI calculated for the voltage time-series obtained by simulating the wave power farm,

controlled by the different methods in the three sea states, are given in Figure 7.4. As seen

earlier, the operation of the farm at lagging power factors worsens the voltage fluctuation prob-

lem seen in the network. This is corroborated by the high values of the VSI seen when the

wave power farm operates at 0.98 lagging power factor. The VSI obtained when operating the

farm at a constant voltage (ideally equal to 0) has not been plotted in the figure due to their

extremely low values. The time period between 600 and 1200 seconds showslower VFI values

when compared to the other time periods due to the lower variations in the energycontent of

the sea. The advantage of using the VFI is that both the magnitude and the number of voltage

fluctuations, occurring in the time duration under consideration, are accounted for. The voltage

variations occurring over different time-scales can also be quantified using the VFI, by aver-

aging the rms-voltage over the time-scale and using the averaged values asVi in Equation 7.3.

By following this procedure for different time-scales, the average variation in the rms-voltage

magnitudes over a range of time-scales can be obtained.
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Figure 7.4: Voltage fluctuation indices at buses 4, 6, 7, and 9 when the different controllers are
used over the three time periods.

7.2.3 Localised spectral analysis (Energy index ratio)

Windowed Fourier transform and wavelet methods were compared earlierin Chapter 3. They

can be used for spectral analysis of time varying signals and can be usedto identify information

both in the time and the frequency domains. A wavelet based technique for localised spectral

analysis of an rms-voltage time-series was described in [242]. The developed method was

used to assess the impacts of increasing the penetration of solar photovoltaics in distribution

networks through curves plotted, which show the different frequencycomponents at different

instants of time. In this chapter, the aim was to develop indices which can be used to assess the

quality of the rms-voltage and therefore an approach of obtaining the time-frequency informa-

tion from signals using the Windowed Discrete Fourier Transform has been adopted.

The Discrete Fourier Transform (DFT) [243] is defined by:

X(k∆ω) =
N−1
∑

n=0

x(n∆t) exp(−j k∆ω n∆t), (7.4)

where0 ≤ n < N − 1 and0 ≤ k < N − 1 andX(k∆ω) is the magnitude of the DFT at

frequencyω = k∆ω, N is the transform length or the number of samples used for the DFT

andx(n) is the discrete (sampled) version of the continuous signalx(t) under consideration.

A moving-windowed DFT (with 4096 (212 samples) each) has been used in this work, so that

time-localised spectral data are obtained. Each window thus correspondsto approximately 7

minutes of data sampled every 0.1 seconds. The windowing function is moved by one time-step
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and the DFT is calculated until the end of the signal. Smaller window lengths werealso tested

for calculating the DFT, but using 4096 samples as the window length gave a higher frequency

resolution. In this work, since the focus is on the fluctuations in the voltage withrespect to its

mean value, the DFT of the rms-voltage time-series subtracted from the mean rms-voltage over

the period being considered has been used to obtain the frequency domaininformation from the

rms-voltage signal.

Once the moving windowed DFT is evaluated, the power spectral density (PDS) of the rms-

voltage signal is calculated using

PSD = S(k) = 2
|X(k)|2
FsN

. (7.5)

whereFs is frequency at which the time domain signal has been sampled. Since the DFT of the

rms-voltage subtracted from the mean rms-voltage over every window has been used, the PSD

calculated from the DFT essentially shows the power in the rms-voltage fluctuations about the

mean value.

The energy in a time domain signal can be obtained by integrating the PSD over frequency

using

E =

N/2
∑

k=1

S(k)∆f, (7.6)

This energy quantifies the energy contained in the rms-voltage fluctuations about the mean

rms-voltage. To better compare the different control methods used for voltage and power factor

control of wave power farms, the ratio between the energy in the voltage fluctuations introduced

by a particular control method and that introduced in a base case has beenused as the index

and this index has been named the Energy Index Ratio (EIR). The UPF operation of the wave

power farm has been chosen as the base case in this work. Lower the EIR, better the supply

voltage quality is.

As discussed earlier, the PSD of the rms-voltage signal, over all the windows used, are required

before the EIR can be calculated. Figure 7.5 shows the PSD of the rms-voltage time-series

when the AVPFC method is used to control the wave power farm. The figure shows the results

after the DFT is obtained from the first window starting at timet = 0 s. The EIR calculated,

for the different control methods and the three sea states, for the voltagetime-series seen at bus

9 are given in Figure 7.6. As has been mentioned earlier, the EIR has beencalculated relative

to the UPF operation of the wave power farm (the EIR of the UPF operation istherefore 1.0).
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Since the UPF operation of the farm has been taken as the base case, the EIR over the three

time periods for the lagging and the leading power factor cases remains constant (at 1.7, 1.0

and 0.4 for the lagging, UPF and the leading cases respectively). This can be explained by

the fact that operating at the farm at different constant power factors gives a similar shape to

the rms-voltage envelope. Depending on the power factor, the rms-voltageenvelope is either

pushed up or down from that of the UPF case. During the first 600-second period, controlling

the wave power farm using the AVPFC method gives relatively low values ofthe EIR because,

during this period, the farm operates at a constant voltage for most of thetime. During the

period between 1200 and 1800 seconds, the EIR is high for the AVPFC case because of an

increase in the number of switchings between the control modes. When the farm is controlled

by the FLPFC method, the EIR values lies between the values seen in the 0.98 leading and the

UPF cases. This is because, when thus controlled, the wave power farmin essence operates at

a leading power factor between 0.98 and UPF. The step voltage changes that occur when the

OLTC transformer is used for voltage control in the network produces higher EIR values during

all the time periods, when compared to the other voltage/power factor controlmethods. During

the second time period, two voltage step changes (due to two tap changes) produced a very high

EIR value, which was approximately 50 times higher than the UPF case.

Figure 7.5: The power spectral density (PSD) of the voltage fluctuations when the wave power
farm is controlled by the AVPFC method.

Capacity and availability factors are two indices commonly used by power systems engineers

to assess the economic impact of power plants. The former is defined as the ratio of the actual
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Figure 7.6: Energy index ratio at bus 9 when the different controllers are used overthe three
time periods.

output of a power plant over a period of time to its output if it had operated atits rated capacity,

while the latter is defined as the ratio of the amount of time that the power plant is able to

produce electricity over a certain period to the time period considered. For all the control

methods tested in this work, except the 0.98 lagging power factor case, the availability factor

was 100%, with 0.94 p.u.< Vbus < 1.06 p.u as the limit. The capacity factor for all the

cases, except the 0.98 lagging power factor case, was approximately 33%. Since the aim of the

primary voltage control is to keep the voltage within the statutory limits, the operationof the

wave power farm at 0.98 lagging power factor would generally not be considered.

7.3 Summary

There are two main reasons for developing the voltage quality indices, examined in this chapter,

covering the voltage variations occurring over time-scales between 3 seconds and 10 minutes:

increasing penetration of generation from renewables with their variation occurring in this range

of time-scales and the susceptibility of equipment to voltage variations in this range of time-

scales. Quantifying such voltage fluctuations still does not have any widelyaccepted index,

nor have there been regulations dealing with these fluctuations. This chapter introduced some

indices to quantify the extent and persistance of voltage fluctuations occurring over the specified

time-scales. These were: the CPF-index, the voltage fluctuation index (VFI) and the energy
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index ratio (EIR). These indices were calculated for the different wavepower farm control

options tested under different sea states.

The sensitivity of flickermeters to voltage fluctuations within a certain range offrequencies

was overcome through the use of the CPF-index, in which the absolute valueof voltage is used

to calculate the index. The CPF curves also gave a visual indication of the extent of voltage

fluctuations and their persistence. The VFI is a simple index which is a measureof the average

change in the rms-voltage magnitude over certain durations of time. The VFI measured over

different time-scales provided both the time and frequency domain informationof the rms-

voltage signal.

The ERI uses advances in spectral techniques to quantify the energy in the fluctuations in an

rms-voltage time-series. Both time and frequency domain information of the fluctuation were

obtained with respect to the base case, making it better for comparing the different control

methods. The magnitude of the ERI obtained were spread more than the other indices tested

earlier, making it the most sensitive index to rms-voltage fluctuations.

The new indices proposed in this chapter can be used to quantify the effects of using the meth-

ods, suggested in Chapters 4 and 5, to improve the quality of voltage with respect to voltage

fluctuations. More than using the absolute values of the proposed indices,the indices can

be used as a means to compare voltage fluctuations when different physical placements and

volt/VAr control strategies are used. The latter was discussed in detail in thischapter. This

work will also be important when making network impact assessments of new DGconnections

and in scenarios where active voltage management across the network is aimed for. With im-

provements in metering equipment and their large-scale use, the implementation ofschemes

for measuring and quantifying voltage fluctuations and assessing voltage control means may

become practical in the near future.

232



Chapter 8
Discussion and conclusions

8.1 Chapter overview

This chapter discusses the significant conclusions that may be drawn from the research pre-

sented in the thesis. A chapter-wise summary of the work discussed in this thesis is first listed.

The research outcomes and benefits of the work completed and the contributions to knowledge

in the field of control and network integration of wave power farms are thenpresented. This

chapter concludes by providing the scope for further academic and industrial research.

8.2 Thesis summary

Chapter 1 gave an introduction to the work. The general research setting in which thiswork

commenced was discussed. Characteristics of the wave resource available in the UK and the

distribution network to which most wave power farms would be connected were reviewed. An

overview of the SuperGen Marine Energy Reseach consortium and howthis project fitted with

the wider research objectives of the consortium were given. The chapter concluded with the

thesis statement and the contribution to knowledge expected out of the research.

The wave-to-wire model of the wave power farm based on doubly-fed induction generators,

built in MATLAB/Simulink, was introduced inChapter 2. The chapter first dealt with the

modelling of irregular, non-stationary and multi-directional sea states using spectral means.

The wave elevation time-series were generated using the Inverse DiscreteFourier Transform

(IDFT) and were the inputs to the wave-to-wire model. Later, the time domain model of the hy-

drodynamics of a wave energy converter (WEC) developed from the basic equation of motion

was presented. Then, the different options for the power take-off (PTO) and the hydrodynamic

control of the WEC were discussed and the option chosen for this work was elaborately ex-

plained. Finally, the model of the generator, the power electronic converters and their control

were presented; with a brief mention of the electrical network layout within thefarm. This

model provided the basis for examining the effects of connecting wave power farms to the

electricity network. A system identified model of the wave power farm, basedon the detailed
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model, was then developed in the next chapter, which made analysing large farms quick and

efficient.

Chapter 3 studied a new modelling framework based on system identification used to model

wave power farms. Data obtained from the simulation of the detailed model, presented in Chap-

ter 2, were used to train wavelet neural networks, which were then usedinstead of the detailed

model. The chapter started with a brief description of the different characteristics of dynamic

models centred on linear black-box models. How linear black-box models canbe used for out-

put prediction was mathematically clarified. The theory of linear models was thenextended

to include nonlinear black-box models. Following this, the theory behind wavelet transforms,

neural networks, and wavelet neural networks, necessary to understand the development of sys-

tem identified models, were discussed. Next, the various steps involved in thedevelopment of

the nonlinear autoregressive exogenous (NARX) model of the WEC were presented. The de-

veloped model of the WEC was thoroughly validated for different sea states by comparing the

performance of the detailed model with the NARX model. Lastly, the NARX model of the indi-

vidual WEC was cloned to construct models of wave power farms, which were again validated

using the detailed model for different sea conditions. This, for the first time, demonstrated the

use of wavelet neural networks to model wave energy converters andwave power farms. The

detailed physical model of the WECs was replaced by this input-output based model, with only

an acceptable loss of accuracy. The system identified model allowed the simulation of farms

with a large number of WECs for longer periods of time, which would not havebeen possible

with the detailed model. The system identified model was extensively used in the simulations

discussed in the next chapter.

An analysis of the effects of changing the spacing between the WECs within an array on the

smoothing in the power generated by the array was performed inChapter 4. The chapter

started with a simple array of 6 and 8 WECs in a line and examined how the spacingbetween

the WECs and the orientation of the array with respect to the dominant wave direction affects

the quality of the raw mechanical power extracted by the array. The analysis was then further

extended to investigate the smoothing introduced in the net real power generated by an array.

The quality of the net real power generated by three different array topologies of an array with

8 WECs was then compared. Later, the consequences of increasing the array size on power

smoothing were discussed. Finally, the spacing and orientation effects in a realistic 6 MW

wave power farm on power smoothing were examined. A statistical study of the characteristics

234



Discussion and conclusions

of the sea state found off the Outer Hebrides was also presented, which puts the study presented

in this chapter into context.

Chapter 5 introduced the need for real-time control of the generated reactive power to keep

the voltage in the electricity network within limits. The conventionally used voltage and power

factor control methods were discussed and their drawbacks were evidenced. Two new voltage

and power factor controllers - the Automatic Voltage and Power Factor controller (AVPFC)

and the Fuzzy Logic Power Factor controller (FLPFC) - were presented. The different control

methods were first tested on a 1 MW wave power farm connected to a simple nine-bus net-

work. Later, the performance of the intelligent control methods were testedon a more realistic

farm connected to a generic 11 kV distribution network in the UK. How the different demand,

farm size and network specific set points of the developed controllers need to be chosen were

presented. A case where a STATCOM is used for voltage/VAr control was discussed and its

control using the developed intelligent control algorithm was explained. The next section of

the chapter discussed various individual and group control strategiesto be used within the wave

power farm. The advantages of coordinating the intelligent controllers on the individual WECs,

through the use of a supervisory controller, were established. Another scenario where WECs

had to be constrained off the network due to excessive generation was also discussed. How the

supervisory controller could be used for this purpose was identified. The use of these intelli-

gent controllers on wave power farms connected to more active networkswere then tested. For

this, a 4 MW wave power farm connected to the Stornoway/Harris 33 kV distribution network

was used. The significant improvement in the production from the farm wasalso quantified.

Using the intelligent controllers brought increased revenues to the farm developers and avoided

expensive network upgrades. This chapter established the hierarchyof the volt/VAr control

strategy that needs to be used on wave power farms for improving the voltage quality. It was

for the first time that the intelligent controllers, discussed earlier, were used individually on

WECs to study how they interact with each other and a overall control strategy was proposed

to make the most of the intelligent control.

The interactions between the control of the wave power farm and other voltage control elements

in the distribution network were explored inChapter 6. The focus was on the functioning of

the substation OLTC transformer. Issues that might arise due to uncoordinated control were

first discussed. Some of the options of coordinating the control were thenreviewed. Then, the

demand pattern seen at a substation in the 33 kV Stornoway/Harris distributionnetwork was
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statistically analysed to extract behavioural information from it. This was achieved using neural

networks trained using the system identification toolbox in MATLAB, and a one-step-ahead

demand predictor was constructed. Three versions of the demand predictor were described

and their performance compared. The percentage errors obtained in thevalidation runs of the

demand predictor were characterised using normal distributions. A voltageestimation method,

using the predicted demand values, was then established. The voltage estimation method with

and without the demand predictor was validated. Finally, the estimation method wasapplied

to identify the operating mode of a wave power farm connected to a generic 11kV distribution

network in the UK from an upstream substation. This showed that a means to coordinate the

working of two volt/VAr control devices on the network can be accomplishedwithout the use

of any new communication means.

In Chapter 7, means of assessing the impacts of using the different control methods on the

voltage quality were suggested. Three indices, two of which are already inuse and some which

have been adapted from the literature, were described and then tested onthe six voltage and

power factor control methods discussed in Chapter 5. This identified suitable indices to assess

the performance of the control methods discussed in the earlier chapters.

8.3 Contribution to knowledge

During the research, many useful findings and new methods to overcome some of the issues

of connecting wave power farms to the network were introduced. The keycontributions to

knowledge are now described.

8.3.1 System identification for modelling wave power farms

System identification, as a tool for modelling wave power farms, was introduced in Chapter 3.

The detailed wave-to-wire model of the wave power farm developed was used to train wavelet

neural networks. These neural networks modelled the relationship between the wave elevation

time-series (input) and the real power generated by a WEC (output). The most important ad-

vantage of using the system identified model over the detailed model was the savings made in

simulation time and computing resource, without a significant reduction in the precision and

the time-resolution. Using such models will be useful when simulating larger networks with

a large number of distributed generators. This novel work, presented inthe thesis, can also

readily be extended to include other generator types and primary energy sources.
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8.3.2 Benefits of using accumulators

Using accumulators with the hydraulic PTO system removed most of the high frequency fluc-

tuations seen in the real power generated by a WEC. The low frequency variations in the gen-

erated power still existed. Even a 300% increase in the accumulator size did not proportionally

improve the power quality. Therefore, it was found that using accumulators alone would not be

sufficient to ensure the required voltage quality.

8.3.3 Benefits of a spacing of 0.5λpeak or more in a wave power farm

It was found that spacing the WECs within an array at 0.5λpeak produced a much smoother

time-series of the net generated real power when compared to the case where the spacing was

0.25λpeak. Opposite results were seen when the cumulative raw mechanical power was anal-

ysed instead. This result held good for simple array topologies and also when the array size in-

creased. The odd-numbered-multiples-of-quarter-wavelength spacing effect was more evident

between the 0.25λpeak and the 0.5λpeak spacings. This effect reduced as the spacing between

the WECs or columns of WECs increased beyond 0.5λpeak. It was seen that increasing the

spacing beyond 0.5λpeak produced a much smoother net real power time-series. A change in

the dominant wave direction only improved the smoothing in the real power produced, since

the effective distance between the WECs or the columns of WECs increaseddue to the geom-

etry resolving differently. This work has implications for the packing and thelayout of wave

power farms. Most farms are normally sparsely spaced owing to mooring requirements and

for providing easy access to the individual WECs. The work discussedhere proves that having

sparsely spaced farms, with the spacing between WECs greater than 0.5 timesthe predominant

wavelength at a site, is better from the power smoothing point of view.

8.3.4 Peak wavelength and dominant direction characteristics of ocean waves

The characteristics of the wave climate (mainly the peak wavelength and the dominant wave

direction), which affect the power smoothing obtained by appropriate spacing, were studied for

a site off the Outer Hebrides. This area is being considered as a potential site for wave power

farms. The study showed that the dominant wave direction at the site is almost constant for more

that 60% of the three years during which the data were collected. During thisperiod, certain

mean time periods (and hence wavelengths) showed a much higher probabilityof occurring.

These behavioural characteristics of the seas found off the Outer Hebrides allow the use of

appropriate spacing and orientation for power smoothing. Once spaced based on the historical
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wave climate at a site, significant power smoothing was obtained. In the case of a farm with 48

WECs (6 MW capacity), the variance in the net real power generated forthe most commonly

occurring sea state when the spacing between the columns of WECs was 0.25λpeak was 1.5

times higher than the variance when the spacing was 0.5λpeak. The variance of the 0.25λpeak

case was almost 4 times the variance when the spacing wasλpeak.

8.3.5 Use of intelligent voltage and power factor control methods

Using the Automatic Voltage and Power Factor Controller (AVPFC) or the Fuzzy Logic Power

Factor Controller (FLPFC) was found to be advantageous when compared to the conventionally

used generator control options. Using these controllers ensured the connection of the wave

power farm to the voltage constrained network for longer, thus increasing yield. It was also

found that the voltage and power factor set points of the controllers werenetwork and demand

specific. The use of these controllers with other reactive power sources (STATCOMs) was also

demonstrated, which proved their generic nature. The FLPFC controller was found to be less

site-specific when compared to the AVPFC controller.

8.3.6 Supervisory controller for wave power farms

The operation of the wave power farm and the intelligent controllers, discussed above, assumed

that all the WECs in the farm were controlled together. This work was extended in this the-

sis, with the WECs controlled individually using the AVPFC method. It was shownthat when

these individual controllers did not communicate with each other, the full capability of AVPFC

method was not used. The performance of farm with the intelligent controllers improved im-

mensely when a supervisory controller (master controller) was used, which indicated to the

individual controllers (slaves) which control mode - power factor or voltage - to operate in. It

can be inferred from this work that some means of communication between the WECs and the

onshore or offshore hub would be required to make the most of these intelligent controllers.

Wave power developers need to have extensive instrumentation and communication means

(SCADA systems) to control the WEC and check the operation of the WEC onshore [244].

These SCADA systems, which are already present, can be used for the communication re-

quired between the WECs in a farm and for the supervisory controller described in this work.

The savings listed in the chapter are purely due to intellectual property and are obtained by

making the already available system smarter. No additional instrumentation/control facilities

are required for implementing these intelligent controllers and implementing these give very
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high economic returns.

8.3.7 WEC constraint strategy

During periods of highly energetic seas, it might be found that operating all the WECs at the

lowest leading power factor alone is not sufficient to keep the voltage withinlimits. Under such

extreme cases the WECs would need to be constrained off the network. Different individual and

group control strategies for taking off the WECs were considered in this work. In this case too,

WEC constraint initiated by a supervisory controller, that has knowledge of the contribution of

each WEC to the voltage problem, was found to be the optimal means. The use ofthis WEC

constraining strategy ensured that the G59 trip at the interface of the wavepower farm with the

network was not activated. Even under extremely energetic seas, the wave power farm, with a

fewer number of WECs, would continue to operate and produce power rather than be tripped

off the network.

8.3.8 Interactions between the controller of the wave powerfarm and the sub-

station OLTC transformer

With the wave power farm controlled by the intelligent controllers, interactionsbetween the

control of the farm and that of the substation OLTC transformer were seen. This was the case

especially when the wave power farm operated in the constant voltage mode. When uncoor-

dinated, these interactions caused a greater number of tap operations in thesubstation trans-

former, which caused excessive reactive power being exchanged between the network and the

farm. By selecting the voltage and power factor set points of the controller of the farm based

on the set points of the substation transformer (thus coordinating the two controllers), such

negative interactions were avoided. This coordination ensured that the volt/VAr controller of

the farm helped overcome smaller variations in the voltage (primary voltage control), while

the OLTC transformer dealt with the slower variations in the steady state voltage(secondary

voltage control).

8.3.9 One-step-ahead demand predictor

Analysing the demand pattern over three years showed daily, weekly, monthly and annual be-

havioural characteristics in the demand. Such characteristics were modelled and these models

were used to predict the future demands. Three system identified models for predicting the

one-step-ahead real power demand at a rural substation were tested.The main advantage of
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the models developed was that only past demand data were used to predict the results. All the

models constructed produced an error of less than 5% for most of the time during which they

were tested. The maximum percentage error seen was approximately 20%, which occurred

very rarely. Accurately predicting the demand was useful for the voltageestimation technique

that was discussed in the work. Predicting the demand also reduces the number of actual mea-

surements that may need to be made for voltage estimation methods.

8.3.10 Voltage estimation using neural networks

A neural network based voltage estimation technique was developed, whichuses the real and

reactive power measurements at the substation transformer to make an estimation of the voltage

downstream at the bus where the wave power farm is connected. The estimation of the voltage

was performed by comparing the real-time real and reactive power flow atthe substation with

the predicted power flows at the substation prior to the connection of the wave power farm.

The precision of the developed method was found to be wholly dependent on the accuracy

of the demand prediction made. One of the main advantages of the suggested method is its

simplicity when compared to power systems state estimation methods. Such voltage estimation

techniques are important in rural distribution networks where, without anyaddition of measure-

ment devices or communication means, the effects of the connected DG on the network can be

studied. Using the information gained from such voltage estimation techniques,the operation

of the network can also be optimised.

8.3.11 Quantifying voltage fluctuations

Indices to quantify fluctuations in the rms-voltage magnitude were introduced.Some of the

traditional means, like using the flicker severity index and the voltage fluctuation index, were

modified to better suit the purpose. New indices, like the energy index ratio and the CPF-index,

were introduced. These indices overcome the inapplicability of the traditionalindices to quan-

tify the effects of the different wave power farm control strategies on the supply voltage quality.

The performance of these indices to assess the rms-voltage quality for different operating sce-

narios of the wave power farm was compared. The energy index ratio, which is a localised

spectral index, performed better than the other indices suggested.
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8.4 Potential impact of the study and beneficiaries of this work

The development of the system identification based modelling framework for modelling wave

power farms can be used to model other renewable energy sources andgenerator types. This is

especially the case when the modelling aims to study the impacts of connecting a large number

of these generators to the power system. High-resolution system identified models, which can

be simulated very quickly, can be used to model a high penetration of marine orwind energy

converters in large power systems. Such systems will find use in academic and other research

circles involved in DG modelling.

The work, which analysed the relation between the physical placement of the WECs within

the array and power smoothing obtained, will be useful for wave power farm developers. In

addition to the work on power smoothing, the importance of studying the quality of the real

power, and hence the voltage, has been established through the work. The statistical work on the

directional aspect of the waves and the mean time period (and hence wavelength) of the waves

is particularly significant, since the work performed was with the data obtainedfrom the sea off

the Outer Hebrides, which is one of the largest potential sites for wave power development in

the UK. Very similar sea characteristics would be seen off the Orkneys where significant wave

power developments are planned in the Crown Estate leases.

The AVPFC and the FLPFC methods, which have already been tested on windenergy con-

verters and hydro-electric systems, have been used with wave power farms which prove their

effectiveness. By using these controllers, the DNOs will be able to provide wider network ac-

cess to wave power farms in particular and DG in general. The allowed increase in the amount

of generation from renewable energy sources, which will follow the widespread use of the con-

trol methods, will benefit the farm developers and the DNOs. Increasingthe penetration of

renewables will help countries meet the stringent emission reduction targets too.

The demand predictor and the voltage estimator developed can improve the functioning and

simplify commercially available systems like the GenAVC [207] and the SuperTappn+ [209].

The developed method introduces an additional level of control and can be used at rural substa-

tions without any new addition of measuring devices or communicating means. Having such

systems also aids the farm developers because bigger farms may now be connected to the same

network once the new method is used. Using the newly developed estimation method also im-

proves the reliability of the distribution network. The probability of issues like avoltage roll-up
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would be minimised and the wave power farm would be connected to the networkfor longer

thus increasing its yield. Using system identification for demand prediction is also an area of

research, which will interest network operators who need good estimatesof futuristic demand

conditions.

The voltage fluctuation indices can be taken as the measure for active management of voltages

across networks, especially with a high penetration of renewables. Theycan also be used to

study the effects of wide voltage variations on different equipments connected to the network.

They will find use in drawing up frameworks for regulation of rms-voltage magnitudes.

8.5 Suggestions for further work

The work on the smoothing in the real power generated and the physical placement of WECs

was only performed for heaving WECs. Means to use the spatially sinusoidal nature of ocean

waves to our advantage, when other WEC types are used, will need to be studied.

The use of system identification for modelling distributed generators needs tobe studied further.

Again, in this work, the NARX equivalent models of a heaving WEC was developed. NARX

equivalent models of other WEC types may also be developed.

The statistical study of the dominant wave direction and the mean time period useddata col-

lected at a site off the Outer Hebrides over a period of three years. A similarstudy of the seas

off the Orkneys should be performed to demonstrate that the results presented here will hold

good at the Orkneys too.

The system identification method for demand prediction can be further improved by increasing

the number of variables used for the prediction; to include those like temperature, etc., which

are conventionally used in demand prediction methods.

Only radial feeders were considered in Chapter 6 to show the working ofthe voltage estimation

algorithm and because many DG connections would be made in such sections of the electricity

network. Since the voltage estimation method uses only current and past measurements made

at the substation, the method would work even when there are multiple parallel feeders at

the substation. In these networks, loads connected to the different buses would still follow

a profile and the demand at the substation can be predicted with sufficient historical data. If

the parallel feeders are interconnected, then the real and reactive power measurements on the

isolated feeders will need to be used in the estimation. In more complex meshed networks more
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measurements/predicted quantities may be needed to make good voltage estimates.

Additionally, the proposed voltage estimation method can only be used under normal operating

conditions of the network. Efforts need to be made to sense emergencies in the network. One

way of doing this could be to compare the current demand values from measurements with

older information. If the current measurements differ widely from the expected values, it can

be inferred that the network is not operating normally and that the voltage estimates will not be

reliable.

The voltage estimation method may be used to optimise the performance of the distribution

network. For example, the developed technique may be used to set the substation OLTC trans-

former’s tap position, considering the operation of the wave power farm, toreduce losses or the

number of tap position changes.

8.6 Overall thesis conclusions

One of the main issues of connecting the varying power generated by wavepower farms is

the fluctuations in the voltage that will be seen in the network. In the UK, the areas with a

large wave energy resource are supplied by weak distribution networks. In such networks,

even small variations in the power fed by the farm can cause significant changes in the voltage

seen in the network. The traditional control methods used for dispatchableand controllable

power generating sources, such as power factor and voltage control,may not be sufficient for

optimal operation of the connected wave power farms. This was shown through simulations of

the distributed network with different sized wave power farms connected toit. Two intelligent

control algorithms - the Automatic Voltage and Power Factor Control and the Fuzzy Logic

Power Factor Control - were tested to control the wave power farm. Usingthese algorithms

ensured the connection of the wave power farm to the network for longerand also ensured that

the number and the persistence of the violations in the rms-voltage magnitude reduced. The

developed voltage control algorithms were able to prevent voltage violationscaused both by

the high generation and low demand and the low generation and high demand scenarios. The

suggested algorithms also required much smaller amounts of reactive power exchange between

the farm and the network than when the constant voltage control method wasused. Significant

additional income was generated by the increased energy yield and the avoidance of expensive

network upgrades.

The advantages of using these advanced voltage and power factor controllers for local and pri-

243



Discussion and conclusions

mary voltage control became evident through the simulation results discussed. Coordination

between the controller of the farm with the other voltage control devices in thenetwork, such

as the substation on-load tap changing transformer, should also be studiedto extend these ad-

vantages for wider optimal control across a network. One of the methods of doing so is to

sense the voltage at the bus where the farm is connected at the substation.For this, the be-

havioural patterns in the demand need to be learned and the future demand patterns must be

predicted from past measurements of the demand. The voltage downstreamof the substation

transformer may be estimated using the predicted data, which can further be used to optimise

the coordination between the two controllers.

The proposed intelligent farm control algorithms and the method to coordinatethe primary

control of the farm with the secondary control devices can be used to augment the amount of

DG that can be connected to the network, without the use of any new measurement devices or

communication links.

8.7 Thesis

The thesis statement expressed in Section 1.3 was that: appropriately placingthe wave en-

ergy converters within a wave power farm and the use of intelligent voltageand reactive power

control algorithms applied to the farm should significantly reduce the voltage fluctuations in-

troduced in the network by the farm and help keep the network voltage within statutory limits.

Further, means to coordinate the control of the wave power farm and the other voltage control

elements in the distribution network can be devised to ensure that they complement each other.

The work presented here proves the above statement by analysing the effects of the placement

of WECs on the smoothness of the net real power generated. This study showed that appropri-

ately spacing the WECs or the columns of WECs in a farm produced a much smoother net real

power time-series. To improve the voltage quality and to avoid voltage violations,it was found

that the smoothing obtained using appropriate placement was to be complementedby real-time

reactive power control of the farm. Intelligent voltage and power factorcontrol algorithms were

tested and their use improved the quality of the network voltage. Coordinating the control of

the farm with other voltage and power factor control devices in the network, through the use

of the developed demand predictor and the voltage estimator, gives a chance to use the wave

power farm to benefit the wider network.
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Appendix A
UK generic distribution network

Figure A.1: Generic 11kV UK distribution network.
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UK generic distribution network

Bus 1 Bus 2 R (p.u.) X (p.u.) B/2 (p.u.)
53 1 1.2029 2.6435 0
1 2 0.2508 0.1698 0
2 3 0.2508 0.1698 0
3 4 0.2508 0.1698 0
1 5 0.2480 0.1780 0
5 6 0.2480 0.1780 0
6 7 0.2480 0.1780 0
2 8 0.1860 0.1335 0
8 9 0.1860 0.1335 0
9 10 0.1860 0.1335 0
10 11 0.1860 0.1335 0
3 12 0.1860 0.1335 0
12 13 0.1860 0.1335 0
13 14 0.1860 0.1335 0
14 15 0.1860 0.1335 0
4 16 0.1860 0.1335 0
16 17 0.1860 0.1335 0
17 18 0.1860 0.1335 0
18 19 0.1860 0.1335 0
5 20 0.3556 0.1331 0
20 21 0.3556 0.1331 0
6 22 0.3556 0.1331 0
22 23 0.3556 0.1331 0
7 24 0.3556 0.1331 0
24 25 0.3556 0.1331 0
8 26 0.3556 0.1331 0
26 27 0.3556 0.1331 0
9 28 0.3556 0.1331 0
28 29 0.3556 0.1331 0
10 30 0.3556 0.1331 0
30 31 0.3556 0.1331 0
11 32 0.3556 0.1331 0
32 33 0.3556 0.1331 0
12 34 0.3556 0.1331 0
34 35 0.3556 0.1331 0
13 36 0.3556 0.1331 0
36 37 0.3556 0.1331 0
14 38 0.3556 0.1331 0
38 39 0.3556 0.1331 0
15 40 0.3556 0.1331 0
40 41 0.3556 0.1331 0
16 42 0.3556 0.1331 0
42 43 0.3556 0.1331 0
17 44 0.2371 0.0887 0
44 45 0.2371 0.0887 0
45 46 0.2371 0.0887 0
18 47 0.2371 0.0887 0
47 48 0.2371 0.0887 0
48 49 0.2371 0.0887 0
19 50 0.2371 0.0887 0
50 51 0.2371 0.0887 0
51 52 0.2371 0.0887 0
56 55 0.6667 3.3330 0
55 54 0.4900 0.1288 4.94e-5
54 4 0.2480 0.1780 0

Table A.1: UK generic distribution network line parameters
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UK generic distribution network

Bus Bus type Load (MW) Load (MVAr)
1 PQ 0.0065 0.00125
2 PQ 0.0065 0.00125
3 PQ 0.0085 0.00175
4 PQ 0.0085 0.00175
6 PQ 0.00425 0.00075
7 PQ 0.0065 0.00125
8 PQ 0.0065 0.00125
9 PQ 0.0065 0.00125
10 PQ 0.0065 0.00125
11 PQ 0.0065 0.00125
12 PQ 0.0065 0.00125
13 PQ 0.0065 0.00125
14 PQ 0.0065 0.00125
15 PQ 0.0065 0.00125
16 PQ 0.0065 0.00125
17 PQ 0.0065 0.00125
18 PQ 0.0065 0.00125
19 PQ 0.0065 0.00125
20 PQ 0.0150 0.00300
21 PQ 0.0150 0.00300
22 PQ 0.0150 0.00300
23 PQ 0.0150 0.00300
24 PQ 0.0150 0.00300
25 PQ 0.0150 0.00300
26 PQ 0.0065 0.00125
27 PQ 0.0065 0.00125
28 PQ 0.0150 0.00300
29 PQ 0.0150 0.00300
30 PQ 0.0150 0.00300
31 PQ 0.0150 0.00300
32 PQ 0.0150 0.00300
33 PQ 0.0150 0.00300
34 PQ 0.0065 0.00125
35 PQ 0.0065 0.00125
36 PQ 0.0150 0.00300
37 PQ 0.0150 0.00300
38 PQ 0.0150 0.00300
39 PQ 0.0150 0.00300
40 PQ 0.0150 0.00300
41 PQ 0.0150 0.00300
42 PQ 0.0150 0.00300
43 PQ 0.0150 0.00300
44 PQ 0.0150 0.00300
45 PQ 0.0150 0.00300
46 PQ 0.0150 0.00300
47 PQ 0.0170 0.00350
48 PQ 0.0170 0.00350
49 PQ 0.0170 0.00350
50 PQ 0.0170 0.00350
51 PQ 0.0170 0.00350
52 PQ 0.0170 0.00350
53 PQ 0.0 0.0
54 PQ 0.0 0.0
55 PQ 0.0 0.0
56 PQ 0.0 0.0

Table A.2: UK generic distribution network bus parameters
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Appendix B
Publications

B.1 Journal publications

• A J Nambiar, A E Kiprakis and A R Wallace , ‘System identification for dynamic mod-

elling of large wave power farms for power flow studies’, submitted to the IETRenewable

Power Generation (August 2012) (not included)

B.2 Conference publications

• A J Nambiar, A E Kiprakis, D I M Forehand and A R Wallace , ‘Effects of array

configuration, network impacts and mitigation of arrays of wave energy converters con-

nected to weak, rural electricity networks’, 3rd International Conference and Exhibition

on Ocean Energy (ICOE 2010), 6-8 October 2010

• A J Nambiar, A E Kiprakis and A R Wallace , ‘Quantification of Voltage Fluctuations

Caused by a Wave Farm Connected to Weak, Rural Electricity Networks’,14th Inter-

national Conference on Harmonics and Power Quality (ICHQP 2010), 26-29 September

2010

• A J Nambiar, A E Kiprakis and A R Wallace , ‘Voltage quality control of a 1MW wave

farm connected to weak, rural electricity networks’, 45th Universities’Power Engineer-

ing Conference (UPEC 2010), 31 August - 3 September 2010 (not included since paper

(ii) shows further work done)

• A E Kiprakis, A J Nambiar, D I M Forehand and A R Wallace , ‘Modelling Arrays

of Wave Energy Converters Connected to Weak Rural Electricity Networks’, 1st Interna-

tional Conference on SUPERGEN, 6-7 April 2009 (not included since paper (i) shows

further work done)
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