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Abstract

Incorporation of wind energy into the electricity generation system requires a

detailed analysis of wind speed in order to minimize system balancing cost and

avoid a significant mismatch between supply and demand. Power generation

and consumption in the electricity networks have to be balanced every minute,

therefore it is necessary to study wind speed on a one-minute time scale. In this

thesis, we examine the statistical characteristics of one-minute average values

of wind speed. One-minute wind speed is available from a single site in Great

Britain while there are records of ten-minute wind speed available. We apply a

modified Gibbs sampling algorithm to generate one-minute wind speed required

for optimization modelling from the available ten-minute wind speed.

System balancing costs are estimated through optimization modelling of the

short-term electricity generation with wind energy contributing to the total sup-

ply. Two main drivers of additional system cost caused by wind energy are vari-

ability and unpredictability of one-minute wind speed. Further, a linear math-

ematical optimization model for a problem of short-term electricity generation

is presented to calculate an additional balancing cost that appears as a result

of wind energy variability. It is then shown that this additional balancing cost

can be estimated using the statistical characteristics of wind energy present in

the system. The unpredictable characteristic of wind speed is analysed with the

techniques of stochastic programming. Uncertainty of the expected wind speed

is represented through scenario trees and stochastic linear optimization models

are used to calculate the extra cost due to uncertainty. Alternative optimization

models are compared by calculating the additional balancing cost and the extent

of imbalance between power generation and consumption in the system.



Notation

G a set of all generators

C a set of conventional generators

W a set of wind generators

T a number of time periods

TΥ a number of time periods in one year

T S a modelling horizon

Tn a number of intervals associated with node

N a number of nodes

S a number of scenarios

V a number of intervals of mismatch between

the electricity supply and demand

α power law exponent

t, τ, ν, d, δ,m a single period of time

l, L a lag

i, j, k an index

g an index of generator

n a node

an an ancestor of node

pn a path probability

κ a number of thermal generators

f+
w saving in fuel cost

f−
w additional fuel cost

Si, Sj a set of indices

z, zr height where wind speed was recorded

θ, q, sg, k1, k2 parameters

λ a parameter of Lagrangian function

β± percent of cost band

ǫ an error term
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b1, b2, b3 parameters of quadratic function

βi, ςi parameter of an exponential curve

a1, a2, ..., aTΥ
deseasonal scaling curve

r±1 , r
±
2 , r

±
3 Run-Up and Run-Down export rates

e±1 , e
±
2 “elbows” of Run-Up and Run-Down export rates

D1, D2, ..., DT the electricity demand

cg, ccoal, cgas fuel costs

cm fuel cost of the marginal generator

ζ±1 , ζ
±
2 , ..., ζ

±
V cost of imbalance between the electricity supply and demand

kdm a weight in calculation of deseasonal scaling curve

∆D a percent mismatch allowed between

the electricity supply and demand

hw height of wind energy curve

γw the average of the absolute value of gradients of wind energy curve

γg the average of the absolute value of gradients of thermal plants

γg maximum of the absolute gradients of thermal plants

γ∗ sum of the absolute value of gradients of thermal plants

σx standard deviation of wind energy

σγ standard deviation of the absolute value of gradients

µ mean value

σ standard deviation

ϕ covariance matrix

ψ an inverse to covariance matrix

M a matrix such that MMT = ϕ

1 vector consisting of scalers 1 only

Y1, Y2, ..., Yk a vector of normal variable (normally includes 10 values)

U1, U2, ..., Uk a vector of a standard normal variable (normally includes 10 values)

X1, X2, ..., Xk a vector of decision variable (normally includes 10 values)

W s
1 ,W

s
2 , ...,W

s
k a vector of wind speed (normally includes 10 values)

W d
1 ,W

d
2 , ...,W

d
k a vector of deseasonalised wind speed (normally includes 10 values)

W e
1 ,W

e
2 , ...,W

e
k a vector of wind energy (normally includes 10 values)

y1, y2, ..., yk one-minute normal variable

u1, u2, ..., uk one-minute standard normal variable

x1, x2, ..., xk one-minute decision variable

ws
1, w

s
2, ..., w

s
k one-minute wind speed

wd
1, w

d
2, ..., w

d
k one-minute deseasonalised wind speed

we
1, w

e
2, ..., w

e
k one-minute wind energy
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d±1 , d
±
2 , ..., d

±
V mismatch between the electricity supply and demand

W s, ws the average of wind speed over a period of time

xg, xg maximal and minimal capacity limits

d±, d± upper and lower limits of mismatch intervals

Y A, Y B, Y C , Y D vectors

ŷ a value of normal variable

f(∗), h(∗) a function

P (∗) a probability function

φ(∗) probability density function

Φ(∗) cumulative distribution function

Θd(W
s, aν) function transferring original wind speed into deseasonal

Θn(W d) function transferring deseasonalised wind speed into normal variable

F0, F
flat
w , F var

w accumulated fuel cost of the deterministic optimization model

F
(a)
stoch, F

(b)
stoch accumulated fuel cost of the stochastic optimization model

FA actual accumulated fuel cost

Fm marginal fuel cost

[Y1, Y2], [Y1|Y2], [Y ] joint, conditional and marginal densities
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Chapter 1

Introduction

How expensive is the operating of the electricity generation system when wind

energy is introduced into it? This issue is becoming important as the amount

of renewables in the system increases in order to meet the target that the Gov-

ernment of United Kingdom has set. In 2002 the Government introduced the

Renewable Obligation (RO) to encourage development of renewable sources of

energy[1, 2] and aimed to reach 15.4% of renewables in the overall electricity

supply by 2015. Generators receive an RO Certificate (ROC) for each 1MWh of

renewable electricity they generate. These are sold to electricity suppliers (de-

fined in Appendix A) that pay the fixed penalty for each MWh it falls short of

its obligation[1].

Various renewable technologies can contribute to the goal set by the Gov-

ernment but wind resource takes a leading competitive position among other

renewable sources of energy (solar, tidal, wave, hydro) by the availability and ef-

ficiency. However, using wind for the electricity generation introduces a problem

of intermittency and unpredictability of wind energy that will be studied in this

work. The problem of meeting a target set by the Government of United King-

dom was investigated by the researchers of the Environmental Change Institute

at Oxford University. In the report “Wind power and the UK wind resource”[10],

Sinden states that in order to integrate wind power into electricity networks it is

essential to understand the characteristics of wind resources. He believes variabil-

ity of the wind energy is one of the obstacles to its extensive use by an electricity

supplier and suggests a diversified renewable energy portfolio that includes wave

and tidal steam combined with wind power. Such a combination reduces effect of

variability in wind speed and consequently the cost of balancing electricity supply

and demand.
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1.1 Benefits of wind energy

In the 21st century the use of modern wind turbines for electricity generation

has been growing very rapidly in Europe and this growth is expected to continue.

Integration of wind generation in the operation and development of the electricity

system is associated with both benefits and costs. The following reasons create

plenty of opportunities to realise the technical potential of renewable energy,

particularly wind power:

• Wind turbines produce green energy unlike conventional generators that

produce CO2 emissions;

• Renewable sources of energy do not have fuel costs that contribute the most

to the expenses of the conventional generators;

• In spite of high percentages of natural gas and coal in British electricity

generation, these resources are limited and their long-term supply can be

disrupted. Meanwhile wind, tides, solar are known as renewable sources of

energy.

1.2 Challenges of wind energy

However desirable the incorporation of wind energy into the electricity system

there are a number of issues associated with its installation and management of

the system. Detailed estimation of additional costs associated with the presence

of the wind energy in the electricity generation system was performed by a few

researchers since 2002 ([8, 9, 10, 11, 12]). Strbac et al. wrote a detailed paper

on “Quantifying the system costs of additional renewables by 2020”[8] that ex-

amined the issue of challenges that incorporation of additional renewable sources

faces. Besides the high investment cost of renewable sources of electricity, there

is additional cost that occurs when balancing intermittent and variable wind en-

ergy. The work of Strbac et al. shows that in the current system wind energy is

not able to replace fully the capacity and flexibility of conventional generating

plants.

This thesis concentrates on the system costs associated with the balancing

of supply and demand, however, there are also system costs appearing in trans-

mission and distribution of electricity. Strbac et al.[8, 9] state different system

cost drivers, such as location of the generation sources in relation to the source of

demand, lack of flexibility in generation as well as intermittency and variability
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of supply. Moreover, wind turbines are generally not able to provide the range of

system support services (eg. voltage and frequency regulation) that are provided

by conventional thermal and hydro plant. At relatively low levels of penetration

this can usually be tolerated, but at the higher levels indicated by the Renew-

ables Obligation target, it will require systematic solutions in order to maintain

stability and integrity of the transmission system. These issues reduce the value

of wind generation that displaces conventional generation.

1.3 Balancing of the electricity system

Electricity generation and delivery to the customers is a complex process. It is de-

scribed in detail by the National Grid and Balancing and Settlement Codes[3, 4]

that we refer to while formulating a problem of scheduling the electricity gener-

ation.

The main groups included into the electricity generation and distribution sys-

tem are presented on Figure 1.1.

Figure 1.1: Schematic description of the power system

Most of the electricity in the power system is contracted. Some of the contracts

are signed directly between the Generating companies and large industrial con-

sumers. Residential consumers pay for their electricity through the Suppliers,

companies like EDF, Scottish power or npower. Suppliers sign agreements to

deliver contracted amounts of power to the Consumers. At the same time the

Generators have an obligation to provide this power to the transmission system.
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This section explains general terms of the system functioning while formal defi-

nitions of what these participants represent are given in Appendix A.

The interaction process of different participants in the electricity generation,

transmission and consumption is complex and contains many procedures. Let us

give a general description of this process in terms of a Settlement Period, a

half-hour period of time when real-time balancing of the electricity supply and

demand takes place (Figure 1.2).

Figure 1.2: Process of balancing power system shown in terms of the Settlement
Period

In order to manage the electricity transmission system efficiently National Grid

Electricity Transmission (NGET), company that stands for the System Operator,

collects the necessary data from the appointed parties. Pre Gate closure pro-

cedures are intended for the submission of Balancing Mechanism (BM) Unit Data

(as defined in Appendix A) which includes characteristics of each generator such

as maximum and minimum power output, ramp up rates, availability and other.

This information would enable NGET to assess which BM Units are expected to

be operating in order that NGET can ensure (so far as possible) the integrity of

the Great Britain Transmission System, and the security and quality of supply

[4]. From the information provided by BM Units the System Operator has an

insight into how much it can vary their generation above or below their submitted

profile and what price must be paid for every possible amount of deviation from

the planned generation.

Gate Closure takes place one hour before the beginning of the Settlement

Period. Data for any Operational Day may be submitted to NGET up to several
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days in advance of the day to which it applies, as provided in the Data Vali-

dation, Consistency and Defaulting Rules. The data to be used by NGET for

operational planning will be determined from the most recent data that has been

received by NGET by 11:00 hours on the day before the Operational Day to

which the data applies, or if no data has been submitted by 11:00 hours on that

day by the default data values. The individual data items that Generators and

Suppliers submit include Physical Notifications, Quiescent Physical Notifications,

Export and Import Limits, Bid-Offer Data and Dynamic Parameters (all defined

in Appendix A).

NGET as the System Operator has the responsibility of providing the informa-

tion on the Demand Estimates. On the basis of historic trends in the availability

of generating capacity and the data submitted by the generating units NGET also

decides on the necessary Contingency and Operating Reserve, as well as System

Margins.

Electricity transmission and distribution system of Great Britain operates

with a certain Target Frequency. The frequency is allowed to vary 1% up

or down from 50Hz. As long as the amount of produced electricity equals the

demand, frequency in the transmission system stays at 50Hz. If the the gener-

ation exceeds demand frequency would rise above 50Hz and if demand exceeds

generation then frequency in the system drops. The System Operator balances

the supply and the demand in the system every moment of the real time through

different procedures and is responsible for keeping the system frequency in the

target range.

In order to deal with unpredicted variations in demand and generation, the

System Operator requires an appropriate automatic Response, to neutralise rapid

variations from a few seconds to a few minutes, and operating Reserve to deal

with slow variations over time horizons from several minutes to several hours

[24]. Response is defined as an automatic change in active power output by the

large generating units that effects the frequency in the system. Response is used

as an earliest available instrument of the balancing mechanism. It supports the

system from the first second up to 30 minutes after the imbalance was recorded.

By that time the operating Reserve is ready to change the Export (Import) level

(as defined in Appendix A). Some of the generating units acting as the Reserve

are operating at part-time load, some are off-line but able to start within a short

time. Pumped storage, for example, can respond very rapidly to counteract any

loss of generation or surge in demand. Gas turbines are able to provide generation

on timescale of few minutes while steam plant would require a few hours to warm
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up. The participants need to ensure that each of their BM units, applying Good

Industry Practise, follows the submitted notification of export or import level.

Balancing costs appear when the System Operator uses or keeps on stand-

by flexible but expensive generating units in order to deal with an unexpected

mismatch between the electricity supply and demand or operates generators at

non-optimal generation levels so as to provide flexibility for rapid change in out-

put level. The levels of reserve required at any given time depend partly on

uncertainties in the predictions of demand, but also on the need to deal with the

sudden loss of substantial amounts of generation, either due to a power station

faults or the loss of transmission circuits. In England and Wales, for example,

key criteria are possible loss of one circuit of the cross-Channel link (1000 MW),

or of Sizewell B nuclear power station (1320 MW). The value of possible loss of

generating capacity can significantly increase after wind energy is introduced into

the power system.

1.4 Timescale

Electricity supply and demand in the transmission and distribution power systems

need to be balanced every single moment of time. On the scale of seconds it is

managed through the automated process of frequency response. At the same time,

scheduling of electricity generation reserve on hourly and daily basis has been ex-

tensively studied by various researchers, for example in [29, 30, 31, 32, 33]. Hourly

and daily production planning of power systems involves start-up and mainte-

nance of the thermal plants. This leads to dynamic, mixed-integer programming

problems, and methods of solving these models were analysed by Römisch, Möller,

Dentcheva, Feltenmark and other researchers ([29, 30, 31]) in the 1990s. Later,

mixed-integer programming problems were extended by capturing the uncertainty

in thermal power systems and the stochastic mixed-integer programming was ap-

plied to solve complex models ([32, 33]).

We wish to study scheduling of the electricity generation at time intervals

that were not well-researched before but have an important application in the

industry. This work focuses on short-term variability of the wind energy and the

electricity generation with one-minute frequency. At this short scale there can be

no decision made on the start-up or maintenance of thermal plants, therefore, we

avoid the complexity of mixed-integer programming problems.

When scheduling the operating Reserve, the System Operator takes into ac-

count the uncertainties in demand and generation on various timescales. Uncer-
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tainty increases with the time horizon, but broadly speaking, the costs of the

appropriate Reserve decrease as the time scale over which they have to respond

increases. Operating Reserve (as defined in Appendix A), for example, may cost

around £1/MWh, but fast Response plant may cost up to £5/MWh, or more[24].

Figure 1.3 plots an example of the wind power that would have been generated

by a small wind farm in Aberystwyth based on the recorded wind speed. It varies

significantly from minute to minute1 which makes variability of wind energy one of

the strongest drivers of the balancing cost. One possible solution for this problem

involves diversifying locations of wind farms. Another solution suggested by

Sinden in his work on diversified renewable energy portfolios[12], was to combine

wind energy with more predictable tidal and wave energy.

 1

 2

 3
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 8
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Figure 1.3: Wind energy that would have been generated by a small wind farm
in Aberystwyth on the 5th of January,2001

1.5 Aim of the research

Different participants of the electricity industry (Figure 1.1) can benefit from the

efficient operation and planning of electric power generation systems. On the

one hand, suppliers of energy reduce the cost of mismatch between the reported

and actual electricity load. On the other hand consumers receive uninterrupted

electricity flow in their houses and offices. This thesis is aiming at the vertically

integrated utilities (like Scottish Power or EDF) that are capable of combining

1The MST Radar Facility at Aberystwyth is funded by the UK Natural Environment Re-

search Council and the data are provided through the British Atmospheric Data Centre
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different energy portfolios and, thus, minimize their costs of meeting the con-

tracted demand.

NGET acting as the System Operator manages the electricity generation sys-

tem of the United Kingdom. Its profit is independent of the operational cost

of the electricity generation, however the System Operator has to ensure the in-

tegrity of the Great Britain Transmission System while minimizing the balancing

costs.

1.6 Structure of thesis

In Chapter 2 we investigate how the wind speed varies and how this affects

the wind power generation. There is only one publicly available site of wind

speed one-minute averages. In order to obtain a wind power output from the

geographically diverse sources we will develop a Gibbs sampling algorithm to

generate one-minute average wind speed from available average ten-minute values

of wind speed at geographically dispersed locations.

Obtained in Chapter 2, wind power output is used later in the thesis when

testing the optimization model of the electricity generation. Chapter 3 describes

the power system of the United Kingdom and how it can be modelled using

linear programming. By setting different parameters of the deterministic model,

the system balancing cost of wind power variability is calculated. In deterministic

models we assume that wind can be predicted exactly, so the costs of incorporating

the wind power into the electricity generation system originate only in variability

of wind speed.

The additional system balancing cost that appears after the wind power is

introduced into the electricity generation system can be modelled as a function

depending on the statistical parameters of one-minute wind power output. There

is a number of tests performed in Chapter 4 that derives a model approximating

the operational cost of the electricity generation.

In practise it is not possible to predict the wind speed accurately even over

a short time period of 30 minutes. Chapter 5 investigates into the additional

system balancing cost that comes from coping with the unpredictable nature of

wind speed. The problem of electricity generation is then solved using stochastic

programming methods where the uncertainty is represented with a scenario tree.

The issue is complicated by a possible loss of the generating capacity. This

uncertainty can also be pictured on the scenario tree and resolved along with the

uncertainty of the wind power output using stochastic programming.

11



Deterministic and stochastic models formulated in this work are implemented

using a mathematical programming modelling language (AMPL)[47]. Data used

for the solving of the electricity scheduling problem are managed using JAVA

programming language.
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Chapter 2

Wind Speed Analysis

The aim of this thesis is to study electricity generation on one-minute time scale.

Implementation of optimization models requires data with the appropriate reso-

lution, however, there is no one-minute wind speed available on the country level.

Least frequent data is provided by two sources: the Meteorological Office of the

United Kingdom that publishes wind speed averaged over one hour for different

sites in the UK and Utah Geological Survey (USA) [21] that gives an access to

ten-minute average wind speed with standard deviation known.

To obtain the necessary data, in this chapter we wish to study the only avail-

able source of one-minute wind speed recorded in the UK ([20]) and apply this

information to generating an unbiased sample conditional on a given average

value. Samples generated for different sites of a geographically diverse territory

are further transformed into power that can be used for optimization modelling

of the electricity generation system.

2.1 Generating wind energy

United Kingdom is situated on an island with a unique location that defines its

climate. Due to the proximity to the Atlantic Ocean and the North Sea, weather

on the British islands frequently changes producing high wind speeds. As a result

the United Kingdom has some of the best wind resources in Europe, if not the

world, in both onshore and offshore locations. This makes the country a very

attractive location for wind developments, as high average wind speeds and good

reliability result in more power output and lower costs[6].

Currently there are over 200 onshore and offshore wind farm projects oper-

ating in Great Britain with a total installed capacity of 3.3GW. Wind energy

contributes around 2.2% of the total electricity generation in the United King-
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dom and this number is expected to grow as more wind farms are connected to

the grid. Rapidly developing technology introduces more efficient wind turbines

built with the towers up to 100m tall that can capture strong winds. The aver-

age turbine size in 2008 was considered as 2MW that produces energy with the

average output of 40% of the maximum possible capacity[6].

In order to estimate wind energy produced by a turbine, the available wind

speed is transformed into power using a wind-power curve. These curves are

uniquely determined for the different wind turbine type. Let us take NEG Micon

2750/92 as a typical wind turbine with the capacity 2.75MW, 3m/s cut in and

25m/s cut out wind speed. Its hub height is 70m and rotor diameter is 92m. The

wind-power curve for this wind turbine is plotted in Figure 2.1.
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Figure 2.1: Transformation function between the wind speed and the wind power

2.2 Generating wind speed data

This section starts with the analysis of the available source of one-minute wind

speed recorded in the United Kingdom ([20]) that is used to identify the probabil-

ity distribution required for sampling one-minute wind speed. Further, we wish

to develop a unique method that generates an unbiased sample from the wind

speed stochastic process conditional on each consecutive group of wind speeds

having a given average value. A new algorithm includes Monte Carlo Markov

Chain method, Gibbs sampling algorithm, originally adapted to a problem of

generating one-minute wind speed data.

14



2.2.1 One-minute wind speed data

The one-minute resolution wind speed stochastic process is based on the statistical

properties of one-minute wind speed measurements made at one location. The

one-minute wind speed measurements required for this work are provided by

Mesosphere-Stratosphere-Troposphere (MST) Radar located at Frongoch farm

near Aberystwyth (140 m above mean sea level, 52.42N, 4.05W; British National

Grid Reference SN 604826) funded by the Natural Environment Research Council

(NERC). Wind speed and direction are recorded at one-minute intervals using

vector instruments, an A100R anemometer and a W200P wind vane[20]. This

research uses 12 years of data for the period between 1996 and 2007.

Further adjustments are necessary. Wind speed read by the MST Radar is

registered at 5-meter height, however, a hub height of NEG Micon 2750/92 (a

typical wind turbine for this research) is 70 meters. Thus, it is necessary to

transfer available 1-minute wind speed to this height. The power law represents

a simple model for the vertical wind speed profile. Its basic form is provided by

Manwell, McGowan and Rogers in [22]:

W s(z)

W s(zr)
=

(
z

zr

)α

where W s(z) is the wind speed at height z, W s(zr) is the reference wind speed

at height zr, and α is the power law exponent.

In practise, the exponent α is a highly variable quantity. It has been found that

α varies with such parameters as height above the sea level, time of day, season,

nature of terrain, wind speed, temperature, and various thermal and mechanical

mixing parameters. Some researchers have developed methods for calculating α

from the parameters of the log law. Many researchers, however, feel that these

complicated approximations reduce the simplicity and applicability of the general

power law and that wind energy specialists should accept the empirical nature of

the power law and choose values of α that best fit available wind data. For flat

and open areas α equals 1
7
, which is what expected for a flow over a flat plane.

In what follows the wind speeds have been transformed to correspond to a

height of 70m above ground level.

Definition Let W s
1 , ...,W

s
T be a vector of wind speed corresponding to a height

of 70m above ground level. T is a number of minutes in 12 years of one-minute

records. We assume 360 days in a year so that T = 6220800.

Let us test the wind speed data for periodicity, as this can interfere with the
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probability distribution of the wind speed data later. There are two different

types of periodicity affecting original records. There is a daily pattern which

may be caused by the interaction between warm and cold air of the land and the

sea consequently (geographical feature of the United Kingdom) or due to heating

during the day over land (even when there is no sea involved). There is also

a seasonal pattern which affects a strength of the wind speed during different

months of the year. We use a multiplicative model to evaluate the seasonal and

daily effect in order to preserve a non-negative property of the data.

Definition Let {aν}ν=1,...,TΥ
be a deseasonal scaling curve that carries the in-

formation on daily and seasonal patterns of the wind speed. TΥ is a number of

minutes in a year. We assume 360 days in a year so that TΥ = 518400.

For a convenience of further calculations every minute ν of a year can be

described by a δ day of the year and a τ minute of the day:

ν = 1440(δ − 1) + τ,

where δ = 1, ..., 360 and τ = 1, ..., 1440. Similarly, every minute t of the 12-year

data can be described by a δ day of an Υ year and a τ minute of the day:

t = 518400(Υ − 1) + 1440(δ − 1) + τ,

where Υ = 1, ..., 12, δ = 1, ..., 360 and τ = 1, ..., 1440.

Then aν is obtained by calculating a weighted average of the wind speeds over

all 12 years for a day δ − 10 to δ + 10 and for each of these days over minutes

τ − 20 to τ + 20.

aν = a1440·δ+τ =
12∑

Υ=1

10∑

d=−10

20∑

m=−20

kdmW
s
Υ,(δ+d),(τ+m) (2.1)

where kdm is a weight of the wind speed W s
Υ,(δ+d),(τ+m) in minute (τ +m) of day

(δ+d) in year Υ. In (2.1) ν = 1, ..., TΥ is a minute of a year and an average value

aν is assumed to be effected by the preceding and the following 20 minutes of the

preceding and the following 10 days to the current.

Weight kdm varies depending on the distance between the current minute (δ, τ)

and a minute effecting it (δ + d, τ + m). If plotted in terms of day d or minute

m, weights kdm form a shape of an isosceles triangle with the middle vertex at

the current time moment of τ minute of δ day. Every weight kdm can be defined
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as follows:

kdm =
(10 − |d| + 1)(20 − |m| + 1)

12 ∗ (20 + 1)2 ∗ (10 + 1)2
(2.2)

In (2.2) values 10 and 20 correspond to intervals of 10 days and 20 minutes

assumed to contribute to an average value aν . Note, that all 12 years are given

the same weight in the average.

As a result a deseasonal scaling curve aν can be constructed, each value of

which is a weighted average over 12 years of data.

Definition Let us denote W d
1 , ...,W

d
T as deseasonalised wind speed, or the wind

speed with removed daily and seasonal components. T again is a number of

minutes in 12 years.

To estimate deseasonalised wind speed W d
t we remove daily and seasonal effects

from the wind speed W s
t dividing the latter by a corresponding value of the

deseasonal scaling curve. For a convenience of calculation we assume a linear

connection between a minute of a year ν and a minute t of the 12-yearly data:

t = 518400(Υ − 1) + 1440(δ − 1) + τ ⇒ ν = 1440(δ − 1) + τ, ∀Υ

Definition Let us denote Θd(W
s
t , aν) as a function transferring original wind

speed W s
t into deseasonalised wind speed W d

t for ∀t = 1, ..., T .

By defining a time position of a wind speed t with a minute τ of a day δ in year

Υ the deseasonilised value W d
t can be found as follows:

W d
t = Θd(W

s
t , aν) = Θd(W

s
Υδτ , aδτ ) =

W s
Υδτ

aδτ

where aδτ = aν is the deseasonal scaling curve.

Notice, that the hypothesis about daily periodicity of wind speed is supported

by the autocorrelation of the original data. The series of autocorrelation coeffi-

cients measure the correlation, if any, between observations at different distances

apart and provide useful descriptive information [43]. Given T observations of

wind speed W s
1 , . . . ,W

s
T , on a time series, for every integer l we can form T − l

pairs of observations, namely, (W s
1 ,W

s
1+l), . . . , (W

s
t ,W

s
t+l), . . . , (W

s
T−l,W

s
T ), where

each pair of observations is separated by a time lag l. Regarding the first obser-

vation in each pair as one variable, and the second observation in each pair as

a second variable, then, we can measure the autocorrelation coefficient between
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adjacent observations, W s and W s
l , using the formula:

corr(W s,W s
l ) =

∑T−l

t=1 (W s
t −W

s
)(W s

t+l −W
s
)

∑T

t=1(W
s
t −W

s
)2

· T

T − l
(2.3)

where W
s

is the mean value of the series W s
1 , . . . ,W

s
T .
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Figure 2.2: Autocorrelation of the original and the deseasonalised wind speed
data

Figure 2.2 plots the autocorrelation of one-minute wind speed recorded with

MST Radar located near Aberystwyth and the autocorrelation of the same desea-

sonalised data. The fluctuations of the autocorrelation function for the original

data repeat every 1440 minutes, which supports the presence of a daily periodic

component in the wind speed, however this pattern is not visible in the desea-

sonalised data.

2.2.2 Methods of generating missing data

After wind energy is incorporated into the the electricity generation system its

optimization modelling requires geographically distributed samples of one-minute

wind speed data. US Geological Survey provides sample of ten-minute wind speed

recorded over a large territory of Utah state. In this section we wish to describe

an algorithm that would allow us to sample one-minute wind speed from a known

distribution when an average value over ten minutes is given.
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To ensure a generated set of data values reflects the properties of one-minute

wind speed distribution, one-minute records from MST Radar located near Aberys-

twyth are analysed. However, it is hard to describe this distribution analytically.

A survey of existing techniques on data sampling identified Monte Carlo Markov

Chain (MCMC) methods as a group of methods that can be applied to generate

one-minute wind speed when the distribution is not fully formulated. One of the

MCMC algorithms, Metropolis-Hastings produces a sequence of random samples

from a probability distribution, however it requires a joint probability distribu-

tion of one-minute wind speed which is hard to find. Meanwhile, it is possible

to find a conditional distribution of wind speed at every minute depending on

the past realisations and, hence, to use a special case of Metropolis-Hastings al-

gorithm - Gibbs sampling algorithm. This method ensures that as a number of

iterations of sampling from known conditional distributions increases, the density

of a resulting set of variables converges to the required one.

Gibbs sampling algorithm was developed during the last 30 years. In the

1980s two important papers were published that discussed a question of comput-

ing an estimate of a posterior distribution. Tanner and Wong (1987)[15] estimated

a distribution of the set of missing and observed values by data-augmentation.

Shortly before this, in 1984 Geman and Geman[13] offered a new restoration al-

gorithm for computing the maximum a posteriori estimate of the original image

given a degraded image. In 1990, Gelfand and Smith[14] showed a close rela-

tionship between the Gibbs sampler introduced by Geman and Geman (1984)

and the data-augmentation algorithm proposed by Tanner and Wong. In their

paper “Sampling-based approaches to calculating marginal densities”, Gelfand

and Smith gave a description of a sampling technique that we shall extend for

the generation of one-minute wind speed when the average value over each ten

minutes is known.

Glasbey et al. in ([16, 17, 18, 19]) applied Gibbs sampling to a problem of

sampling hourly rainfall when a daily value is given. It worked better for dry days

as Glasbey required repeated sampling until the desired average value appeared.

We wish to apply Gibbs sampling to the sites with the highest wind speed, hence,

the algorithm is originally adapted to preserve good samples and reduce their

number.

2.2.3 Description of Gibbs sampling

Let us formulate an algorithm of Gibbs sampling for a problem of generating T

variables correlated with the variables in a certain “neighbourhood” [14]. In a
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relation to a collection of random vectors, Y1, Y2, . . . , YT , suppose that for i =

1, . . . , T , the conditional distributions [Yi|Y1, . . . , Yi−1, Yi+1, . . . , YT ] are available

in reduced forms, i.e. depend only on {Yj}j∈Si
, where Si ⊂ {1, . . . , T}:

[Yi|Y1, . . . , Yi−1, Yi+1, . . . , YT ] = [Yi|Yj; j ∈ Si ⊂ {1 . . . T}], i = 1, . . . , T (2.4)

In (2.4), brackets denote densities, so joint, conditional, and marginal forms, for

example, can be written as [Y1, Y2], [Y1|Y2], and [Y ]. We denote by Si a certain

“neighbourhood” subset of {1, . . . , T}.
Gibbs sampler is an iterative Markov Chain Monte Carlo method. The algo-

rithm uses the following representation of the desired posterior density:

[Y1] =

∫

[Y1|YT , . . . , Y2] ∗ [YT |YT−1, . . . , Y2] ∗ . . . ∗ [Y3|Y2] ∗ [Y2] (2.5)

[Y2] =

∫

[Y2|Y1, YT , . . . , Y3] ∗ [Y1|YT , . . . , Y3] ∗ . . . ∗ [Y4|Y3] ∗ [Y3] (2.6)

[Y3] =

∫

[Y3|Y2, Y1, YT , . . . , Y4] ∗ [Y2|Y1, YT , . . . , Y4] ∗ . . . ∗ [Y5|Y4] ∗ [Y4] (2.7)

· · · (2.8)

[YT−1] =

∫

[YT−1|YT−2, . . . , Y1, YT ] ∗ [YT−2|YT−3, . . . , Y1, YT ] ∗ . . . ∗ [Y1|YT ] ∗ [YT ]

(2.9)

[YT ] =

∫

[YT |YT−1, YT−2 . . . , T1] ∗ [YT−1|YT−2, . . . , Y1] ∗ . . . ∗ [Y2|Y1] ∗ [Y1] (2.10)

In (2.5) − (2.10), ∗ denotes a multiplication of densities, for example [Y1, Y2] =

[Y1|Y2]∗ [Y2]. The process of marginalisation (i.e. integration) is denoted by forms

such as [Y1|Y2] =
∫

[Y1|Y2, Y3, Y4]∗ [Y3|Y4, Y2]∗ [Y4|Y2], with the convention that all

variables appearing in the integrand but not in the resulting density have been

integrated out. Therefore, for this example the integration is with respect to Y3

and Y4 [14].

Substitution of (2.10) into (2.9) and further up into (2.5) produces a marginal

distribution for Y1 [14]:

[Y1] =

∫

h(Y1, Ŷ1) ∗ [Ŷ1]

where h(Y1, Ŷ1) is an integral that was resulted from the substitutions with Ŷ1 ≡
Y1. By similar substitutions, marginal distributions of all the random vectors
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Y1, Y2, . . . , YT are found:

[Yi] =

∫

h(Yi, Ŷi) ∗ [Ŷi] (2.11)

The method of successive substitution for solving (2.11) suggests an itera-

tive method for the estimation of marginal distributions [Yi], i ∈ 1, ..., T . Its

implementation by Tanner and Wong[15] requires, however, the availability of

all conditional distributions on the right-hand side of (2.5) − (2.10), which are

not known in our case. The full conditional distributions uniquely determine the

joint distribution [Y1, . . . , YT ] that we wish to estimate by marginal distributions

using Gibbs sampling algorithm.

Figure 2.3: Schematic description of Gibbs sampler as a Markov-chain process

Gibbs sampling can be described as the following sequence of actions schemat-

ically presented in Figure 2.3.

Step 1: Given an arbitrary starting set of values Y
(j)
1 , . . . , Y

(j)
T

we draw Y
(j+1)
1 ∼ [Y1|Y (j)

2 , . . . , Y
(j)
T ]

Step 2: After the value of Y
(j+1)
1 is found

we draw Y
(j+1)
2 ∼ [Y2|Y (j+1)

1 , Y
(j)
3 , . . . , Y

(j)
T ]

· · · : · · ·
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Step T : After the values of Y
(j+1)
1 , . . . , Y

(j+1)
T−1 are found

we draw Y
(j+1)
T ∼ [YT |Y (j+1)

1 , Y
(j+1)
2 , . . . , Y

(j+1)
T−1 ]

Thus, each variable is visited in the natural order and a cycle requires T random

variate generations. After i such iterations, results a set of variables (Y
(i)
1 , . . . , Y

(i)
T ).

Under mild conditions, Geman and Geman showed that the following results

hold[13, 14]:

Convergence. [Y
(i)
1 , . . . , Y

(i)
T ] → [Y1, . . . , YT ] as i → ∞, and so [Y

(i)
j ] → [Yj] for

j ∈ 1, . . . , T . In fact, a slightly stronger result is proved. Rather than requiring

that each variable is visited in repetitions of the natural order, convergence still

follows under any visiting scheme, provided that each variable is visited infinitely

often.

Rate. Using the sup norm, rather than L1 norm, the joint density of (Y
(i)
1 , . . . , Y

(i)
T )

converges to the true joint density at a geometric rate in i, under visiting in the

natural order. A minor adjustment to the rate is required for an arbitrary “in-

finitely often” visiting scheme.

For i sufficiently large, the resulting set of variables (Y
(i)
1 , . . . , Y

(i)
T ) is a suffi-

ciently accurate sequence of wind speed values. It does not reflect, however, our

property that the average value of wind speed over each group of 10 one-minute

values should equal a given ten-minute measured value. Let us denote {Yj}j=1,...,T

as a vector consisting of 10 scalars, or in other words Yj = (yj,1, . . . , yj,10), j =

1, . . . , T . Then, we can write an additional condition required in the probability

density function to reflect the fact that we require 10 sampled values of one-minute

wind speed having the measured ten-minute wind speed average:

Yj ∼ [Yj|Y1, Y2, . . . , Yj−1, Yj+1, . . . , YT , f(Yj) = W s
j ] (2.12)

where f(Yj) is a function of 10 components of Yj and W s
j is the ten-minute

measured value.

Glasbey and Allcroft in [16] performed spatio-temporal rainfall disaggregation

using Gibbs sampler for a truncated Gaussian Markov random field model. In

order to satisfy (2.12) they suggested repeating sampling from the conditional

distributions (2.4) until the right average value is reached within a specified tol-

erance. Dry blocks were easier to match but approximately 0.1% of blocks that

described intense rainfall needed more than 1000 attempts. For the purpose of

electricity generation using wind speed turbines it is in the interest of produc-

ers to locate wind farms in windy places. Therefore, we would like to suggest a

modification to Gibbs sampling of one minute wind speed that reduces a number

22



of iterations. Later in subsection 2.2.5, a technique is described that shifts every

generated point towards the required average wind speed value in a way that

does not bias the sampling. This reduces a number of samples required by using

samples that initially do not satisfy the condition f(Yj) = W s
j .

2.2.4 Transformation to normal variable

This section presents transformation of the deseasonalised one-minute wind speed

data so that the marginal distribution is normal. If the stochastic process de-

scribing the deseasonalised wind speed was fully known, then in theory we could

generate the samples from this. However, there is not enough data to decide on

a unique stochastic process for the deseasonalised wind speed so we proceed as

follows.

1. We do a non-linear transformation of the deseasonalised wind speed so

that the distribution of wind speeds at any time is normal and so that

when the normalised wind speed falls below a threshold, the corresponding

deseasonalised wind speed is zero. In the normalised wind speed variable

the distribution of wind speed at any one time is truncated normal.

2. We assume that the stochastic process in the normalised variables is mul-

tivariate normal with the same autocorrelation function as the measured

data.

Points 1 and 2 make the generation of data computationally tractable.
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Figure 2.4: Cumulative probability distribution of one-minute wind speed
recorded with MST Radar located at Frongoch farm
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The nature of wind speed is such that there can be no negative values. Further,

typical measurements show a big number of values zero. This is due to the fact

that the measurements are recorded in discrete quantities. These features are

depicted with the distribution of 1-minute wind speed plotted in the Figure 2.4.

As a multiplicative model was applied to remove seasonal effect from the data,

the non-negative property of the original data is still present. Since 8% of the

wind speeds are zero we require:

P (W d ≡ 0) = 0.08 (2.13)

where W d is a deseasonalised wind speed.

Definition Let us denote Y1, . . . , YT as normalised wind speed, or the deseason-

alised wind speed transfered to the normal variable. T again is a number of

minutes in 12 years.
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Figure 2.5: Truncated and full plot of normal probability density function

Let us consider standard normal distribution N(0, 1) with mean equals 0 and

standard deviation 1. Eight percent of wind speed data equals zero, hence we wish

to transform the standard normal distribution so that it is truncated from the

left (Figure 2.5). Single truncation means that certain outcomes are constrained,

in our case these are the wind speeds recorded at zero.

The corresponding lowest value of the normal variable can be found from the

equation:

P (Y ≤ ŷ) ≡ P (W d ≡ 0) = 0.08 (2.14)
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From (2.14) we have ŷ equals −1.1225.

There is a large body of literature on the subject of estimation of the pa-

rameters of the original data (µ, σ) based upon data from truncated samples.

For our work Schneider provides an excellent overview of parameter estimation

of truncated normal distributions in his detailed work “Truncated and Censored

samples from Normal Populations” [44]. Johnson and Thomopoulos applied most

of the analysis to a special case of left truncated normal distribution [45].

Definition Let us denote U1, . . . , UT as standard normal random variable with

mean equals 0 and standard deviation 1.

The probability density function (pdf) of U is given by

φ(U) =
1√
2π
e−

U2

2 −∞ ≤ U ≤ ∞

Let Φ(U) denote the cumulative distribution function (cdf) of U . The cdf of a

normal random variable Y with mean µ and variance σ2 is Φ(Y −µ

σ
). The random

variables Y and U are linearly related and the relationship is given by U = Y −µ

σ
.

A random variable Y has a single truncation from the left normal distribution if

its probability density function is:

f(Y ;µ, σ, ŷ) =







φ(Y −µ
σ

)

σ(1−Φ(ŷ))
ŷ ≤ Y −µ

σ

0 otherwise

where ŷ = −1.1225 is left (lower) truncation point and a degree of truncation is

Φ(ŷ) = 0.08 for the considered dataset.

Let us define θ for a singly truncated from the left normal distribution:

θ =
φ(ŷ)

1 − Φ(ŷ)

Then the expected value and variance of Y can be obtained in the following way:

E(Y ) = µ+ σθ (2.15)

V (Y ) = σ2(1 − θ2 + θŷ) (2.16)

Every variable from the truncated normal distribution described by (2.15) and

(2.16) corresponds to a single value of the deseasonalised one-minute wind speed.

Y (W d) : P (Y < ȳ) ≡ P (W d < w̄) (2.17)
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where ȳ and w̄ are the corresponding values of the normal variable and the de-

seasonalised wind speed respectively.

Wind speed is normalised according to the cumulative density function of the

left truncated normal distribution. If we write now a normalised wind speed in

discrete form with a step equal to 0.01, it has a “one-to-one” relation with the

deseasonalised wind speed. Hence, it is possible to look for an analytic fit that

can simplify further calculations.

Figure 2.6 plots the original empirical relation between normalised and desea-

sonalised wind speed. It appears a simple function can be used as an analytic

monotonic fit to the transformation function between the normalised and desea-

sonalised wind speed (Monotonicity is a necessary condition for this transforma-

tion. If transformation function were not monotonic there would be a possibility

of multiple solutions, this would prevent the method working). In ([16, 17, 18, 19])

Glasbey et al. suggest using a quadratic as the function to transform the rainfall

to normal.
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Figure 2.6: Normal variable plot with respect to the deseasonalised wind speed

Definition Let us denote Θn(W d
t ) as a function transferring deseasonalised wind

speed W d
t into normalised wind speed Yt for ∀t = 1, . . . , T .

We wish to find an analytical fit to Θn(W d
t ) so that during sampling it is easy

to calculate its inverse W d
t = Θ−1

n (Yt). We assumed Θn(W d
t ) to be a logarith-

mic or quadratic function from a plot on figure 2.6 and tested a set of points

{(W d
t , Yt)}t=1,...,T for a best fit. During the test quadratic function gave a better
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result, therefore, we write a function Θn(W d
t ) as a full square:

Yt = Θn(W d
t ) = b1(W

d
t + b2)

2 + b3, ∀t = 1, . . . , T (2.18)

where W d
t denotes the deseasonalised one-minute wind speed and Yt denotes the

normalised wind speed, i.e. a variable from the normal distribution truncated to

the left. Using a quadratic function formulated as a full square it is straightfor-

ward to find the inverse to Θn(W d
t ):

W d
t = Θ−1

n (Yt) = ±
√

Yt − b3
b1

− b2, ∀t = 1, . . . , T (2.19)

Parameters of the equation (2.18), b1, b2 and b3 can be estimated by solving si-

multaneously three linear equations for the points from the original plot (W d
t , Yt),

giving b = (−0.0854,−7.993, 4.3335). With these parameter values, the function

is monotonic along all the period [0 : 6] (m/s) with a range for the normalised

wind speed [−1.1225 : 4.3335] and probability of the deseasonalised wind speed

exceeding 6m/s at a single site is only 1.6∗10−5, which is small enough to ignore.

Plus or minus in front of the square root in (2.19) is chosen so that a value of

the deaseasonalised wind speed W d
t is in a range [0 : 7.993] (m/s). The estimated

transformation function is plotted on Figure 2.6 along with the original plot.

2.2.5 Suggested modifications to Gibbs sampler

Let us now reformulate the Gibbs sampling algorithm for the normalised wind

speed. On page 19 of the current work we introduced Yt as a vector containing

10 normalised wind speeds or Yt = (yt,1, . . . , yt,10), t = 1, . . . , T . Then f(Yt)

represents the average of the wind speeds corresponding to the components of Yt,

i.e.

f(Yt) =
1

10

10∑

j=1

Θ−1
d (Θ−1

n (yt,j)),

where yt,j is normalised wind speed that is transfered into one-minute wind speed

with inverse functions to Θn and Θd defined on page 23 and page 14 accordingly.

We wish to sample a collection of random normalised wind speed variables,

Y1, Y2, . . . , YT from the available conditional distributions:

[Yt ∼ [Yt|Y1, Y2, . . . , Yt−1, Yt+1, . . . , YT , f(Yt) = W s
t ], t = 1, . . . , T

To achieve this, first Yt is sampled from the distribution [Yt|Y1, Y2, . . . , YT ] and
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then shifted to Ỹt in the space to satisfy the equation f(Ỹt) = W s
t .

Assume a vector Yt is generated. We wish to preserve a chance of this vector

to appear. So Yt is shifted along a vector of maximum probabilities for the desired

normal probability distribution function. Let us consider a matrix form of the

probability density function for the normalised wind speed.

φ(Y ) =
1√
2π
e−

1

2
(Y T ϕ−1Y −2Y T ϕ−1µ−µT ϕ−1µ) (2.20)

where Y is the normalised wind speed with the covariance matrix ϕ and the mean

µ.

Then a point Y which maximizes φ(Y ) subject to satisfying the constraint

f(Y ) = W s can be found by solving an optimization problem:

arg max

[
1√
2π
e−

1

2
(Y T ϕ−1Y −2Y T ϕ−1µ−µT ϕ−1µ)

]

subject to:

f(Y ) = W s

which occur at the same

arg min

[
1

2
(Y Tϕ−1Y − 2Y Tϕ−1µ− µTϕ−1µ)

]

subject to:

f(Y ) = W s

Write Lagrangian for this minimization problem to solve it:

L(Y, λ) =
1

2
(Y Tϕ−1Y − 2Y Tϕ−1µ− µTϕ−1µ) + λ(f(Y ) −W s) (2.21)

Function f(Y ) in (2.21) is complex, every normalised wind speed is transformed

to one-minute wind speed using two inverse functions Θ−1
n and Θ−1

d . In order

to work in the space of the normalised wind speed we assume further that the

equation f(Y ) = W s can be replaced with its linear approximation 1TY = Y ,

where 1 is a vector of the same size as vector Y and consists of scalars 1 only.

Value of Y is found so that 1TY is situated closer to the center of the distribution
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[Y ]:

If 1TY ≤ 1Tµ, 1TY is the tangent to f(Y ) −W s at the point of

the shortest distance between f(Y ) −W s and µ, and

If 1TY > 1Tµ, we assume Y = b3,

where µ is mean value of the distribution [Y ] and b3 is a parameter in a quadratic

function at (2.18).

When using a linear approximation of the equation f(Y ) = W s, the resulting

Lagrangian function obtained from (2.21) is easily differentiated with respect to

Y :

∇YL =
∂L

∂Y
=
∂[1

2
(Y Tϕ−1Y − 2Y Tϕ−1µ− µTϕ−1µ) + λ(1TY − Y )]

∂Y

= ϕ−1Y − ϕ−1µ+ λ1T

First-order necessary condition for Y to be a minimum for the above optimization

problem stipulates that ∇YL = 0. From here we can find an equation for Y :

ϕ−1(Y − µ) = −λ1T (2.22)

Y = −λ1Tϕ+ µ (2.23)

In (2.23) ϕ and µ denote the covariance matrix and the mean vector, they de-

scribe the probability distribution of the normalised wind speed. The scalar λ

is a Lagrangian constant and defines a position of Y on a vector of maximum

probabilities. Parameter λ is found so that Y in (2.23) satisfies a linear equation

1TY = Y .

In the context of the Gibbs sampling, a generated vector Yt is shifted along

the vector described by (2.23). This means that Ỹt acquires a value from the

vector

Ỹt = −λ1Tϕ+ Yt (2.24)

where Yt is the original generated variable and Ỹt is a shifted normalised value of

wind speed so that it satisfies now the condition 1T Ỹt = Y .

A shifted variable Ỹt is found so that it satisfies f(Y ) = W s within a certain

tolerance as the equation f(Y ) = W s is close to its linear approximation 1TY = Y

which Ỹt satisfies exactly. Assume, there exists a vector Y ∗
t such that it satisfies

both equations exactly, f(Y ∗
t ) = W s and Y ∗

t = −λ1Tϕ+ Yt. Then Ỹt is accepted

as a valid normalised wind speed if the probability of Ỹt is within a specified
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tolerance of the probability of Y ∗
t . The values of the one-minute wind speed W s

t

in this case are found using W s
t = Θd(Θn(Ỹt)).

2.3 Implementation of modified Gibbs sampler

We wish to generate an unbiased sample from the wind stochastic process con-

ditional on each consecutive group of wind speeds having a given average value.

Assume the group size is q and we wish to generate T · q values:

ws
1, . . . , w

s
q

︸ ︷︷ ︸
, ws

q+1, . . . , w
s
2q

︸ ︷︷ ︸
, . . . , ws

(T−1)q+1, . . . , w
s
Tq

︸ ︷︷ ︸
,

t = 1 t = 2 . . . t = T

such that
1

q
(ws

(t−1)q+1 + ws
(t−1)q+2 + . . .+ ws

tq) = W s
t

where ws
i , i = 1, . . . , T q are the one-minute wind speeds and W s

t is the measured

average wind speed for times i = (t − 1)q + 1, . . . , tq. For the real problems we

are dealing with q = 10, but we will also illustrate the case q = 2.

Instead of operating with wind speed variables ws
i directly, we work with the

transformed stochastic process when the periodicity (seasonal and daily effects)

has been removed so that their marginal distribution is a truncated normal. We

will do this in two steps, first the removal of periodic effects by transforming to

new variables wd
i = Θd(w

s
i ) followed by a transformation to variables yi = Θn(wd

i )

which have a truncated normal distribution.

Definition Let us denote Θ as a compound function, such that

yi = Θn(Θd(w
s
i )) := Θ(ws

i )

and since the transformation will be “one-to-one”,

ws
i = Θ−1

d (Θ−1
n (yi)) := Θ−1(yi)

Transformation functions Θd and Θn were described earlier in this Chapter.

Section 2.2.1 dealt with daily and seasonal periodical components of the original

wind speed data. Section 2.2.4 discussed transformation to the normalised wind

speed. Given these functions are known and given µ and ϕ as described in Section

2.2.4, the algorithm of generating one-minute wind speed values is the following:

Step 1: Start with t = 1.
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Step 2: Generate normalised wind speed Yt = (y(t−1)q+1, . . . , ytq)

from Nq(µ, ϕ).

Step 3: Find ws
i = Θ−1(yi), i = [(t− 1)q + 1 . . . tq].

Step 4: If 1
q
(ws

(t−1)q+1 + ws
(t−1)q+2 + . . .+ ws

tq) = W s
t

within a specified tolerance

Go to Step 8

Step 5: Shift (y(t−1)q+1, . . . , ytq) along the vector of maximum prob-

abilities to find (ỹ(t−1)q+1, . . . , ỹtq)

Step 6: If a probability of (ỹ(t−1)q+1, . . . , ỹtq) is within a specified tol-

erance of a probability of (y∗(t−1)q+1, . . . , y
∗
tq), which if trans-

ferred to the wind speed satisfies
1
q
(ws

(t−1)q+1 + ws
(t−1)q+2 + . . .+ ws

tq) = W s
t exactly,

Go to Step 8

Step 7: Go to Step 2

Step 8: t = t+ 1

Step 9: If t > T Stop

else Go to Step 2

This algorithm describes a single iteration of the Gibbs sampler. To generate

a sample with the required probability density function we wish to perform a

significantly big number of such iterations.

2.3.1 Multivariate normal distribution

Section 2.2 of this Chapter introduced the Gibbs sampling technique for a collec-

tion of normalised wind speed variables Y1, Y2, . . . , YT . Every generated variable

Yt = (yt,1, . . . , yt,10), t = 1, . . . , T has to satisfy f(Yt) = W s
t , which is ten wind

speed values have to add up to the measured average ten-minute wind speed. The

fact that Yt includes 10 univariate variables defines a vector Yt as a multivariate

variable.

A stochastic process can be described with the moments of the process, par-

ticularly the first and second moments, mean and autocovariance function re-

spectively. Let us find mean and autocovariance of the univariate one-minute

normalised wind speed that can be used further to define a stochastic process for

multivariate normalised wind speed. First moment of the stochastic process of
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wind speed generation is described earlier as the expected value of the truncated

normal distribution. It can be found using the formula (2.15).

Given Tq variables y1, . . . , yTq, autocovariance coefficients can be found:

cov(y, yl) =
1

Tq − l

Tq−l
∑

i=1

(yi − y)(yi+l − y) (2.25)

where l denotes a lag between the variables and y is the mean value of the series.

Figure 2.7 plots the autocovariance function in terms of a lag l calculated

for the normalised wind speed. We assume a lag up to 1440 minutes (1 day) is

significant for the one minute wind speed stochastic process.

In order to use the autocovariance in the process of wind speed generation

it is convenient to find a continuous function that would fit in the original plot.

We assumed cov(y, yl) to be a quadratic or exponential function from a plot on

figure 2.7 and tested a set of points {(l, cov(y, yl))}l=1,...,L for a best fit. During

the test the exponential function gave a better result, therefore, we estimate the

autocovariance function with a mixture of exponential curves:

cov(y, yl) ≡
m∑

i=1

βie
−ςi|l|

m∑

i=1

βi = 1 (2.26)

According to Allcroft and Glasbey [16] a condition of all coefficients βi being

positive is sufficient for the function to be valid.
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Figure 2.7: Fitted sum of exponential functions to approximate the autocovari-
ance of the normalised wind
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Figure 2.7 shows that the autocovariance of the normalised wind speed is

influenced by certain processes that effect its smoothness, for example, for l >

1000 a gradient to the curve changes and it is hard to find a simple function to fit

it perfectly. We found a good fit to the autocovariance function to be a mixture

of six exponentials with the following parameters:

β = (0.04, 0.026, 0.19, 0.204, 0.25, 0.29)

and

ς = (1.5, 0.13, 0.0023, 0.0018, 0.0005, 0.0002)

Figure 2.7 plots the original autocovariance for the normalised wind speed along

with the fitted exponential function.

Calculated autocovariance and mean describe a stochastic process for the

univariate normalised wind speed y1, . . . , yTq. It can be used now to formulate a

multivariate stochastic process for the series Y1, . . . , YT .

For the convenience of further calculations a covariance can be described in a

matrix form:

ϕ =











ϕ11 · · · ϕ1j · · · ϕ1L

· · · · · · · · · · · · · · ·
ϕi1 · · · ϕij · · · ϕiL

· · · · · · · · · · · · · · ·
ϕL1 · · · ϕLj · · · ϕLL











where L denotes a biggest lag of the autocovariance. Covariance matrix ϕ is

found based on the autocovariance function described by (2.26):

ϕji = ϕij = cov(y, yi−j), i ≥ j (2.27)

For a collection of multivariate normalised wind speeds Y1, . . . , YT every vector

Yt follows the distributionNq(µ, ϕ). For the case of generating ten minutes of wind

speed, we take q = 10 << L. To find mean and covariance of a q-dimensional

variable let us partition an interval of length L. Suppose that Y ∼ NL(µ, ϕ),

partitioned into q and (L− q) components as

Y =

(

Yq

YL−q

)

In our case Yq, of dimension q, is a set of ten normalised wind speeds for which we

wish to find a probability distribution. Variable YL−q, of dimension (L− q), is a

set of variables that first q variables correlate with. Partition µ and ϕ analogously
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as

µ =

(

µq

µL−q

)

and

ϕ =

(

ϕqq ϕq(L−q)

ϕ(L−q)q ϕ(L−q)(L−q)

)

with dimensions of the subvectors and submatrices as induced by the partition

of Y . Then Yq ∼ Nq(µq, ϕqq) and YL−q ∼ NL−q(µL−q, ϕ(L−q)(L−q)).

Assume that ϕ(L−q)(L−q) is positive definite. Then the conditional distribution

of Yq given YL−q = Y ∗
L−q, is q-variate normal with the following parameters:

µq|(L−q) := E[Yq|YL−q = Y ∗
L−q] = µq + ϕq(L−q)ϕ

−1
(L−q)(L−q)(yL−q − µL−q) (2.28)

and

ϕqq|(L−q) := Cov[Yq|YL−q = Y ∗
L−q] = ϕqq − ϕq(L−q)ϕ

−1
(L−q)(L−q)ϕ(L−q)q (2.29)

Mean and covariance stated in (2.28) and (2.29) represent conditional normal

probability distribution that describes the stochastic process of ten-minute wind

speed generation.

For any vector µ ∈ Rq and positive semidefinite symmetric matrix ϕ of di-

mension (q×q), there exists a unique multivariate normal distribution with mean

vector µ and covariance matrix ϕ [46] .

Further, to generate a multivariate normal variable with mean µ and covari-

ance ϕ we sample first a multivariate vector U ∼ Nq(0, Iq). For any vector µ ∈ Rq

and positive semidefinite, symmetric matrix ϕ of dimension (q×q), random vector

Y with a Nq(µ, ϕ)-distribution can be generated as

Y = µ+MU (2.30)

where U ∼ Nq(0, Iq), and MMT = ϕ.

If ϕ is a positive semidefinite symmetric matrix of dimension q× q, then there

exists a matrix M of dimension (q × q) such that

ϕ = MMT , (2.31)

where MT is the transposition of matrix M . Matrix M can be found precisely

using different methods, for example Cholesky decomposition, since in our case

covariance matrix ϕ is a positive definite matrix. More specifically, M can be
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computed as follows:

M :=









M11 0 . . . 0

M21 M22 . . . 0

. . . . . . . . . . . .

Mq1 Mq2 . . . Mqq









where every element Mij, i ≥ j can be found with a sequence of calculations:

Step 1: M11 =
√
φ11

Step 2: Mi1 = φi1

M11
, i ≤ q

Step 3: Set j = 2

Step 4: Mjj =
√

φjj −
∑j−1

k=1M
2
jk

Step 5: Mij =
φij−

∑j−1

k=1
MikMjk

Mjj
, j < i ≤ q

Step 6: Set j = j + 1

Step 7: If j ≤ q Go to Step 4

Else Finish algorithm

Matrix M is used now to generate a multivariate normal variable Y of the Gibbs

sampling algorithm.

2.3.2 Two-variable sampling

We wish to generate data for each minute t where each consecutive group of ten

variables has a given average value. To illustrate the method we will first derive a

case where the variables are divided into groups of two. Therefore, on the interval

{0, 1, . . . , 2T} we wish to generate points ws
i subject to a given average of two

adjacent values of wind speed W s
t :

ws
i + ws

i+1

2
= W s

t , i = 0, 1, . . . , 2T, t = 0, 1, . . . , T

This can be achieved through a sequence of steps described below in this section

and illustrated in Figure 2.8. Let us start with normalising a given average wind

speed by transforming it to the truncated normal variable:

Y
(0)
t := (y

(0)
i , y

(0)
i+1) := (Θ(W s

t ),Θ(W s
t ))
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This gives us an initial set for Gibbs sampling.

The repeated subproblem when using Gibbs sampling algorithm to generate

samples with given means, is to sample from one group of variables conditional on

achieving a given average wind speed. Here are the main steps of j-th iteration:

1. Assume we wish to generate a sample Y
(j)
t = (y

(j)
i , y

(j)
i+1). In the normalised

variables this will be a bivariate normal Y
(j)
t ∼ N2(µ, ϕ), where ϕ is the

same for all samples and is given in general by, for our example,

ϕ =

(

0.8 0.6

0.6 0.7

)

and µ is calculated using the neighbouring sample values

(Y
(j)
1 , Y

(j)
2 , . . . , Y

(j)
t−1, Y

(j−1)
t+1 , . . . , Y

(j−1)
T ).

Assume, a point A := Y
∗(j)
t := (y

∗(j)
i , y

∗(j)
i+1 ) = (1.2595,−0.3102) is generated

(Figure 2.8) using N2(µ, ϕ).

Figure 2.8: Contours of Normal distribution and four linear functions used in the
modification to Gibbs algorithm

2. The generated normalised wind speeds are transformed further using inverse
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function to Θ:

w∗s
i = Θ−1(y

∗(j)
i ) (2.32)

w∗s
i+1 = Θ−1(y

∗(j)
i+1 ) (2.33)

Calculated with (2.32) and (2.33) new wind speed values are W
s(j)
t :=

(w∗s
i , w

∗s
i+1) with their average equals

W
s(j)
t :=

w∗s
i + w∗s

i+1

2

whereW
s(j)
t is the average wind speed corresponding to the generated values

(y
∗(j)
i , y

∗(j)
i+1 ).

The generated point (y
∗(j)
i , y

∗(j)
i+1 ) is tested. If W

s(j)
t equals W s

t within a

specified tolerance, the point (w∗s
i , w

∗s
i+1) is accepted, otherwise (y

∗(j)
i , y

∗(j)
i+1 )

is shifted in order to satisfy W s
t as explained in steps 3 and 4 of this algo-

rithm.

3. We assumed λ to vary in the interval between −10 and 10, that are suffi-

ciently large to find Y in (2.23). By advancing λ from one border of the

interval to another with a step 0.001, we search along the line

Y
(j)
t = −λ1Tϕ+ Y

∗(j)
t , (2.34)

where Y
∗(j)
t is the point A sampled in step 1 of this algorithm, ϕ is a

covariance matrix of distribution [Yt] and 1 is a vector of the same size as

Yt and consists of scalars 1 only. Points Y C and Y D (C and D in Figure

2.8) are found during the search.

Definition Let us denote Y B (B in Figure 2.8) as the point on the curve

f(Yt) = W s
t that acquires the shortest distance to the center of the distri-

bution [Y ].

Definition Let us denote Y C as the intersection of the line (2.34) with the

tangent to the curve f(Yt) = W s
t at the point Y B, i.e. a line 1TYt = Y

defined in the Section 2.2.5 of this work. A scalar Y is calculated as in the

Section 2.2.5:

If 1TY B ≤ 1Tµ, Y = 1TY B, and

if 1TY B > 1Tµ, we assume Y = b3,
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where b3 is a parameter of the quadratic function in (2.18). By modifying

the value of λ, Y C (and a corresponding λC) are found so that 1TY C and

Y match to small given tolerance.

Definition Let us denote Y D as the point on the line (2.34) that satisfies

the condition of two adjacent one-minute wind speeds being equal a given

average value f(Y D) = W s
t . By modifying the value of λ, Y D (and a

corresponding λD) are found so that f(Y D) and W s
t match to small given

tolerance.

4. The probabilities of the points Y D and Y C are further compared:

If
φ(Y D)

φ(Y C)
> ρ accept Y

(j)
t = Y C

Else reject Y C and Go to step 1,

where φ(∗) is the probability distribution function for truncated normal

distribution used for sampling normalised wind speed. We assumed ρ to

be a fixed number 0.95. Glabey et al. in [17] suggested to take ρ as a

random number from the uniform [0, 1] distribution in order to add random

character to the test.

5. Take i = i + 1. If i ≤ T Go to step 1, Else Finish j-th iteration of Gibbs

sampling algorithm.

Steps 1 to 5 are repeated until j reaches a specified number of iterations j∗.

We determine j∗ so that a stochastic process of the resulting sample is weakly

stationary.

2.3.3 Multivariate sampling

The two-variable algorithm was described in order to illustrate wind speed gen-

eration when the average value of adjacent values is given. We wish to apply the

demonstrated method to the sampling of ten minutes of wind speed when their

average value is given.

In [16], Glasbey et al. generate hourly rainfall with a given daily value by

repeated sampling from the multivariate normal distribution until the data total

fell within a certain margin of the target. To sample hourly rainfall values it

required an average of 170 simulations per day (sometimes considerably larger
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numbers for wet days) for one iteration of the Gibbs sampling. This means that

many samples were rejected.

On the interval [0, 1, . . . , qT ] we wish to generate wind speeds ws
i subject to

the measured ten-minute average wind speed W s
t :

1

q
(ws

i + ws
i+1 + . . .+ ws

i+q−1) = W s
t ,

where q = 10 and t = 1, . . . , T . This can be achieved through a sequence of

steps similar to that described for two-variable sampling in Section 2.3.2. The

algorithm starts with normalising a given average wind speed by transforming it

to the truncated normal variable:

Y
(0)
t := (y

(0)
i , y

(0)
i+1, . . . , y

(0)
i+q−1) := (Θ(W s

t ),Θ(W s
t ), . . . ,Θ(W s

t ))

This gives us an initial set of variables for Gibbs sampling. The repeated sub-

problem when using Gibbs sampling to generating samples with given means, is

to sample from one group of variables conditional on achieving a given average

wind speed. Here are the main steps of j-th iteration:

1. We wish to generate a multivariate Y
(j)
t ∼ Nq(µ, φ), where

µ =







µ1

...

µq







and

ϕ =











ϕ11 . . . ϕ1j . . . ϕ1q

. . . . . . . . . . . . . . .

ϕi1 . . . ϕij . . . ϕiq

. . . . . . . . . . . . . . .

ϕq1 . . . ϕqj . . . ϕqq











are given (see below). We are interested in generating ten minutes of wind

speed at any single time, hence q = 10.

A covariance matrix for a set of one-minute wind speed data recorded with

MST Radar near Aberystwyth is first calculated for a lag L = 1440 minutes.

For sampling of a multivariate variable of size q = 10 we use a covariance

matrix of size (10 × 10) and mean of size (10 × 1). Both can be found as

a conditional covariance ϕqq|(L−q) and a conditional mean µq|(L−q) as was

shown in section 2.3.1. The calculated conditional covariance ϕ does not

39



depend on the values of adjacent normalised wind speeds and has the same

values for any sample.

Table 2.1: Covariance matrix ϕ calculated for the normal variables transformed
from the minute-by-minute wind speed data

0.076 0.031 0.017 0.011 0.009 0.008 0.007 0.006 0.005 0.003
0.031 0.089 0.038 0.021 0.015 0.012 0.010 0.009 0.007 0.005
0.017 0.038 0.092 0.040 0.023 0.016 0.013 0.011 0.009 0.006
0.011 0.021 0.040 0.094 0.041 0.023 0.016 0.013 0.010 0.007
0.009 0.015 0.023 0.041 0.094 0.041 0.023 0.016 0.012 0.008
0.008 0.012 0.016 0.023 0.041 0.094 0.041 0.023 0.015 0.009
0.007 0.010 0.013 0.016 0.023 0.041 0.094 0.040 0.021 0.011
0.006 0.009 0.011 0.013 0.016 0.023 0.040 0.092 0.038 0.017
0.005 0.007 0.009 0.010 0.012 0.015 0.021 0.038 0.089 0.031
0.003 0.005 0.006 0.007 0.008 0.009 0.011 0.017 0.031 0.076

Conditional covariance for our illustrative example is presented in the Table

2.1. The calculated conditional mean, however, is defined by the normalised

wind speed values of the partition (L− q). It is calculated for every sample

separately.

Assume a point U
∗(j)
t = (u

∗(j)
i , . . . , u

∗(j)
i+q−1) ∼ Nq(0, Iq) is generated. It is

then transferred to the required conditional normal probability distribution

Nq(µ, ϕ).

Y
∗(j)
t = µ+MU

∗(j)
t

where µ is a conditional mean and a conditional covariance matrix ϕ =

MMT . MatrixM can be found using the algorithm demonstrated in Section

2.3.1. For the covariance matrix ϕ presented in Table 2.1, matrix M can

be found as in Table 2.2.

Table 2.2: M-matrix such that MMT = ϕ
0.276 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.113 0.276 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.061 0.112 0.276 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.041 0.060 0.111 0.276 0.000 0.000 0.000 0.000 0.000 0.000
0.033 0.040 0.059 0.111 0.275 0.000 0.000 0.000 0.000 0.000
0.028 0.032 0.039 0.057 0.110 0.275 0.000 0.000 0.000 0.000
0.025 0.027 0.030 0.038 0.056 0.108 0.274 0.000 0.000 0.000
0.022 0.023 0.025 0.028 0.036 0.054 0.106 0.273 0.000 0.000
0.018 0.019 0.020 0.022 0.025 0.032 0.050 0.102 0.270 0.000
0.012 0.013 0.014 0.015 0.016 0.019 0.025 0.041 0.088 0.255
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2. Generated normalised wind speed is transformed further using the inverse

of function Θ:

W
s(j)
t = Θ−1(Y

∗(j)
t ) (2.35)

Calculated with (2.35) new values of wind speed areW
s(j)
t := (w∗s

i , . . . , w
∗s
i+q−1)

with ten-minute average wind speed equals

W
s(j)
t =

1

q
(w∗s

i + . . .+ w∗s
i+q−1)

where W
s(j)
t is an average wind speed corresponding to the generated earlier

values of the normalised wind speed (y
∗(j)
i , . . . , y

∗(j)
i+q−1).

The generated point Y
∗(j)
t := (y

∗(j)
i , . . . , y

∗(j)
i+q−1) is tested. If W

s(j)
t matches

W s
t within a specified tolerance, the point (w∗s

i , . . . , w
∗s
i+q−1) is accepted.

Otherwise (y
∗(j)
i , . . . , y

∗(j)
i+q−1) is shifted in order to satisfy W s

t as explained

in steps 3 and 4 of this algorithm.

3. As in the case of two variables a shifted point (y
∗(j)
i , . . . , y

∗(j)
i+q−1) acquires

a value from the vector of maximum probabilities of the truncated normal

probability distribution, so the following applies. We assumed again λ to

vary in the interval between −10 and 10, that are sufficiently large to find

Y in (2.23). By advancing λ from one border of the interval to another with

a step 0.001, we search along the line

Y
(j)
t = −λ1Tϕ+ Y

∗(j)
t , (2.36)

where Y
∗(j)
t is a point sampled in step 1 of this algorithm, ϕ is a covariance

matrix of distribution [Yt] and 1 is a vector of the same size as Yt and

consists of scalars 1 only. Points Y C and Y D are found during the search.

Direction in which point Y
∗(j)
t is shifted is defined by the covariance matrix

ϕ and evaluates how much information each of ten variables contributes

to the average wind speed W s
t . Information carried by each of the ten

generated variables is calculated as a sum of elements in every column of

the covariance matrix:

η = (η1, η2, . . . , ηq)

where

ηj =

q
∑

i=1

ϕij

41



Figure 2.9 plots the amount of information carried by each of the ten gen-

erated points in the total sum.
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Figure 2.9: Amount of the information carried by each of the ten variables

Point Y
∗(j)
t is shifted in the specified above direction η towards a curve

that presents a required sum of q wind speed values in terms of a normal

variable, i.e. f(Yt) = W s
t .

Definition Let us denote Y B as a vector that satisfies the equation f(Yt) =

W s
t and acquires the shortest distance to the center of the distribution Yt.

Definition Let us denote Y C as a vector on the intersection of the line

(2.36) and the tangent to the curve f(Yt) = W s
t , i.e. a line of the form

1TYt = Y as defined in the Section 2.2.5 of this work. A scalar Y is

calculated as in the section 2.2.5:

If 1TY B ≤ 1Tµ, Y = 1TY B, and

if 1TY B > 1Tµ, we assume Y = b3,

where b3 is a parameter of the quadratic function in (2.18). By modifying

the value of λ, Y C (and a corresponding λC) are found so that 1TY C and

Y match to a small given tolerance.

Definition Let us denote Y D as the point on the line (2.36) that satisfies

the condition of ten one-minute wind speeds being equal a given average
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value f(Yt) = W s
t . By modifying the value of λ, Y D (and a corresponding

λD) are found so that f(Y D) and and W s
t match within a small given

tolerance.

4. The probabilities of the points Y D and Y C are further compared:

If
φ(Y D)

φ(Y C)
> ρ accept Y

(j)
t = Y C

Else reject Y C and Go to step 1,

where φ(∗) is the probability distribution function for truncated normal

distribution used for sampling wind speed. As in the case of two-variable

sampling, we assumed ρ to be a fixed number 0.95.

5. Take i = i + 1. If i ≤ T Go to step 1, Else Finish j-th iteration of Gibbs

sampling algorithm.

Steps 1 to 5 are repeated until j reaches a specified number of iterations j∗.

We determine j∗ so that a stochastic process of the resulting sample is weakly

stationary. For an interval of 5 years when the average wind speed is given, there

are j∗ = 12 Gibbs sampling iterations being performed.

Out of five years of ten-minute average wind speed data records there were

between 34 to 87 rejects reported for a single iteration. Therefore, shifting a

generated point is an improvement to the method used by Allcroft and Glasbey

in [17], even with high wind speeds it rejects very view trial points.

2.3.4 Testing the results of wind speed sampling

On Figure 2.10 there is one hour of generated wind speed plotted along with

original wind speed. However good the generated sample can look on Figure 2.10

it necessary to evaluate it statistically. Let us begin by defining a second-order

stationary process. A process is called second-order stationary (or weakly

stationary) if its mean is constant and its autocovariance function depends only

on the lag [43], so that

E[Y (j∗)] = µ

and

Cov[Y (j∗), Y
(j∗)
l ] = ϕ(l)

No requirements are placed on moments higher than second order. By letting

l = 0, we note that the form of a stationary autocovariance function implies that
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the variance, as well as the mean, is constant.
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Figure 2.10: An example of the sampled and the original values of 1-minute wind
speed plotted along with the ten minute average wind speed

The chains encountered in Monte Carlo Markov Chain settings satisfy a sta-

bility property, namely a stationary probability distribution that exists by con-

struction. This means, if there exists a distribution [Y ] such that Y
(j∗)
i ∼ [Y ],

then Y
(j∗)
i+1 ∼ [Y ].

Let us analyse the first two moments of the probability distribution for the

original and sampled data sets. The first moment of the probability distribution

is calculated as an expected value for the sampled normalised wind speed, it

reflects the mean of truncated normal distribution described in the section 2.2.4:

E[Y (j∗)] = 0.2412079 while µ = 0.2419591

where Y (j∗) is the j∗-th sample of the Gibbs sampling method.

The second moment of the probability distribution is calculated with the

autocovariance coefficients of the sampled normal variables. Let us take 5 years

of the recorded one-minute wind speed for the analysis, which is 2592000 points

in the data set. Figure 2.11 plots the autocovariance functions of the original and

sampled normalised wind speeds.

We see that the difference between the mean of the i-th sample and the original

data is insignificant, µ−E(Y (j∗)) < 10−3. One day is chosen as a significant test

interval to compare the autocovariance of the sampled and the original datasets

where they are very close to each other.
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Figure 2.11: Autocovariance of the sampled and the original normalised 1-minute
wind speed

For the next test we calculate variance of one-minute wind speeds inside

ten-minute time sections. The variance is calculated for all consecutive groups of

ten minute wind speeds.

var(Y j∗) =
1

Tq

Tq
∑

t=1

(yj∗

t − Y j∗

i )2 (2.37)

where yj∗

t are the sampled normalised wind speeds from the ten-minute interval i

with the average Y j∗

i . As data was sampled for ten-minute sections it is important

to ensure that there is no boundary effect appearing in the results. To test this,

variance (2.37) is calculated for shifted ten-minute intervals.

Table 2.3: Variance of the original and the sampled normalised wind speed
shift original data sampled data

0 0.027672 0.025126
1 0.027672 0.025126
2 0.027672 0.025126
3 0.027672 0.025126
4 0.027672 0.025126
5 0.027672 0.025126
6 0.027672 0.025126
7 0.027672 0.025126
8 0.027672 0.025126
9 0.027672 0.025126
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Table 2.3 shows that independent of the start point for the grouping of the

interval 1 . . . T q cumulative variance has the same value 0.025126. This supports

a statement that there are no boundary effect appearing in the sampled data.

2.4 Diversification of wind energy

As it was stated at the beginning of this chapter, we require a dataset of ge-

ographically distributed one-minute wind speed in order to model short-term

electricity generation. Utah Geological Survey publishes ten-minute wind speed

([21]) recorded in different sites of the Utah state of the United States of Amer-

ica. Section 2.2 of this work introduced Gibbs sampling algorithm and in Section

2.3 we originally adapted this algorithm so that one-minute wind speed is sam-

pled when the average value of ten-minute wind speed is given. We applied

further the modified Gibbs sampling to generation of one-minute wind speed us-

ing ten-minute wind speed provided by the Utah Geological Survey. Statistical

characteristics of one-minute wind speed were based on the data received with

the MST Radar located at the Frongoch farm in Wales ([20]) that allowed us to

study short-term wind electricity generation with wind energy in Great Britain.
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Figure 2.12: An example of wind speed sampled for one of the Utah sites

We chose 22 different sites from the Utah state where ten-minute wind speed

was recorded by Utah Geological Survey. They are distributed around the state

that introduces an effect of the geographical diversity into the accumulated wind

energy curve. For every site we generated a valid sample of one-minute wind
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speed using the modified Gibbs sampling algorithm explained in Section 2.3.3,

so that a given value of ten-minute wind speed is achieved. Figure 2.12 plots an

example of wind speed sampled for one of the sites in Utah.
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Figure 2.13: An example of geographically distributed wind energy output

We sampled 22 sets of one-minute wind speed for different sites in Utah that

were further transfered into energy using the wind power curve plotted in Figure

2.1. Notice, variability of the combined wind energy from 22 sites in Utah varies

less than the same amount of energy produced at one site. To demonstrate this,

Figure 2.13 plots the combined wind energy that could have been generated from

22 sites in Utah against wind energy that could have been generated by 22 wind

turbines using a single wind speed sample plotted in Figure 2.12.

Considering a geographical diversity of wind farms in Great Britain we wish to

use the combined wind energy from 22 sites in the Utah state for the optimization

modelling of the electricity generation further in this work.
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Chapter 3

Modelling Electricity Generation

with Wind Energy

Scheduling electricity generation is a complex engineering problem that takes into

account various parameters of generation, demand, transmission and distribution.

This chapter specifies the details of the electricity demand and generation in

the United Kingdom and formulates a mathematical programming problem of

scheduling the operating reserve so that the supply and demand match within

the target range. We use the formulated optimization model to investigate the

costs involved in incorporating different levels of wind energy into the electricity

generation system of Great Britain.

We assume in this chapter that wind speed is forecast with certainty. There-

fore, the formulated optimization model is deterministic and includes some of the

common constraints of power generation. The uniqueness of the model developed

in this chapter consists in the data representing the power system of the UK and

the application of the optimization model to estimating the system balancing cost

of the variable wind energy.

3.1 Elements of the British power system and

simplifying assumptions

Section 3.1 introduces the electricity generation system of the United Kingdom

and how it can be adapted for the optimization modelling. In Chapter 2 we devel-

oped an algorithm that would produce one-minute wind energy data, therefore,

this section focuses on the parameters of thermal generation and its fuel cost.

We assume that the electricity load only slowly changes, leaving the matter of
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interaction between the demand and wind power for further research.

3.1.1 Electricity generation

Currently electricity generation in the United Kingdom includes a diversity of

generating units. The amount of generation provided by different types of gen-

erating units vary depending on the time of the year and the size of the load.

For the purpose of this work we use Plant/Demand Balance of the “Seven Year

Statement” published by the National Grid Electricity Transmission in 2008 [35].

Table 3.1 shows the percent of power from the various plant types in the total

generation.

According to the figures in Table 3.1 two types of plants that cover more than

70% of the total British electricity generation are Gas and Coal turbines. Various

nuclear generators contribute to another 14% of the total generating capacity.

Coal, gas and nuclear units have common characteristics with other units of the

same type that we wish to incorporate in the model. Parameters describing a

certain type of the generator are available through the Balancing Mechanism

(BM) reporting system ([5]). This website publishes on a daily basis Physical

and Dynamic parameters (as defined in Appendix A) of the units participating

in the balancing mechanism. We wish to incorporate some of the characteristics

into the mathematical programming model, in particular the available capacity

and the maximum rates of change in the power output.

The first characteristic that the System Operator takes into account while

planning an output of a thermal generator, like gas, coal or nuclear, is a capacity

limit. Capacity limit is specified in the BM reporting system as the Export Limits

parameter (defined in Appendix A) and describes a maximum level at which the

generating unit may be exporting power to the transmission system. The capacity

limit of any type of the generator depends on the size of the unit and can vary

within the same type of generators. However, for the modelling purpose we wish

to use a single value as a capacity limit for every type of a same plant. Let us use

a capacity limit for a typical gas generator as 500MW and 600MW for typical

coal and nuclear types of generating units.

The output levels of thermal plants are not constant and can vary following

the changes in the electricity load. The maximum rate at which units change their

production can be described by Run-Up and Run-Down export rates (defined

in Appendix A). These rates depend on the current output of the generator

and are used by the System Operator in scheduling the operating Reserve when

balancing the supply and demand in real-time.
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Table 3.1: Plant/Demand balance for SYS Background (2007/2008)
hline Plant type Capacity (MW) %
biomass 45 0.06
CCGT 25532 32.58
CHP 1725 2.20
Hydro 1028 1.31
Interconnector 1988 2.54
Large coal 4413 5.63
Large coal+AGT 21462 27.39
Medium coal 1152 1.47
Medium coal+AGT 1102 1.41
Small coal 783 1.00
Nuclear AGR 8365 10.68
Nuclear Magnox 1450 1.85
Nuclear PWR 1190 1.52
OCGT 589 0.75
Offshore wind 140 0.18
Oil+AGT 3496 4.46
Pumped storage 2300 2.94
Wind 1597 2.04

The Run-Up and Run-Down export rates specified in the BM reporting system

are further adjusted to be used in the model. Maximum Run-Up and Run-Down

rates are published in the form of a table with three different values for each of

the rates that depend on a production level. The rates for different power output

can cause a non-convex constraint in the optimization model. Let us consider the

following example:

Table 3.2: An example of the Run-Up and Run-Down export rates for a typical
coal plant

Export rate r1 e1 r2 e2 r3
Run-Up 5.0 177 0.2 180 5.0
Run-Down 5.0 240 0.4 234 58.5

Table 3.2 gives an example of the Run-Up and Run-Down export rates pub-

lished for a typical coal plant by the Balancing Mechanism reporting system.

There are usually three Run-Up and Run-Down export rates, r1, r2 and r3 sub-

mitted by the generating unit before the Gate Closure. Every rate is applied to

a different output level specified by the “elbows”, e1 and e2. So, Run-Up rate

r1 = 5.0 MW per minute is applied to the production level from 0 to 177 MW.

And a maximum Run-Down export rate r3 = 58.5 MW per minute can be applied

when a coal generator cools down between 234 MW and 0.
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The specified sequence of maximum Run-Down and Run-Up export rates

leads to the non-convex constraint describing the power output rate of change

between the current and the following minute. Hence, we wish to simplify the

rates presented in Table 3.2. First, the rate r2 can be dropped as it is likely to

be an internal work taking place in the generating unit and is not important for

our work. Later in this chapter we modify the values of the remaining rates r1

and r3 so that they form a convex feasible set. The resulting constraints will be

formulated in Section 3.2.2.

Short time scale water reservoir limits are often not building and a hydro

generator can be modelled in the same way as a thermal generator except that

the “fuel” is water. Table 3.1 also shows that the hydro and pumped storage

contribute no more than 5% to the total electricity generation. Considering a

limit of water resources in United Kingdom and capital cost of pumped storage

generation we wish to avoid modelling hydro generation in this work.

According to the “Seven Year Statement” published in the beginning of 2008

wind contributes only 2% to the total electricity generation, however, the installed

wind energy capacity have doubled during the last year and is expected further

to increase. We wish to introduce the wind energy output into the electricity

generation system based on the wind speed data provided by the Utah Geological

Survey. Every site is assumed to contribute an equal number of wind turbines to

the total wind energy curve. This curve is further scaled so that wind contributes

a required amount of energy to the total electricity generation.

3.1.2 Cost of generation

Due to the fact that the electricity generation is scheduled minute by minute

during the real time, there is not enough time to make a decision about switching

additional thermal plants. For some coal generators it takes up to 2 hours to

be warm and ready to respond. Therefore, we assume that only generators that

are currently onstream can be used to meet the load. Short term scheduling

determines a cost of the electricity generation as the fuel cost for all types of

generators. Following this, generating cost of wind and nuclear energy is zero

and cost of gas and coal is defined by the fuel prices.

In the report “Keeping the lights on: Nuclear Renewables and Climate Change”

Milborrow [41] discusses current cost of the electricity generation and the way it

can be calculated. Also governmental organisation “Department for Business En-

terprise and Regulatory Reform” (BERR) regularly publishes the average prices

of fuels purchased by the major UK producers. We wish to use the quarterly
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energy prices reported by BERR for year 2008 [7]. An average price of coal for

power stations was increasing since 2007 and amounted to 0.72 p/KWh. The

price of gas has increased by more than 50% up to 1.5 p/KWh.

In order to apply these prices to the electricity generation in one-minute fre-

quency we recalculate the given prices in £/MW*min.

ccoal = 0.72p/KWh = 0.12£/MW*min

cgas = 1.5p/KWh = 0.25£/MW*min

Note, there is no capital cost included in the cost of the electricity generation,

we are interested in minimizing the fuel cost later in this work.

3.1.3 Electricity demand

We wish to model the electricity demand with the same time frequency as the

generation, i.e. on a minute by minute basis. However, a most frequent electric-

ity demand reported through the Balancing Mechanism reporting system is the

historic and real-time records of the national demand.
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Figure 3.1: Half-an-hour average of the daily electricity demand in the United
Kingdom and its piecewise linear approximation with 1-minute frequency

As the electricity demand is available in half-an-hour average estimates we wish to

transfer it into a continuous piecewise linear function with one minute frequency.

Figure 3.1 shows an example of the winter electricity demand used later for the

deterministic and stochastic models.
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3.1.4 Cost of demand-and-supply mismatch

In reality it is very hard to generate exactly the value of the national electricity

demand at any moment. Considering the uncertainty of consumer’s behaviour

and a probability of losing a generating capacity in the system, it is important

to have a flexibility of meeting the demand. As it was stated in Chapter 1 the

transmission system of the United Kingdom operates at the frequency 50Hz with

a range of 1% variation above and below 50Hz.

We wish to incorporate an option of the mismatch between the electricity

generation and demand in the model. The transformation function that calculates

the deviation in power, based on a given deviation in frequency is complex: it

depends on the system parameters and the load level. Transmission system is

not modelled in this work, therefore, a mismatch between the generation and the

electricity demand that corresponds to the variations in the frequency is assumed

to be a function of the electricity demand. Further, the generation is allowed to

vary 2% above or below the electricity load which corresponds to the 1% variation

in frequency.

Although it is possible for the generation to deviate from the demand it is

not a good practise to get close to the upper and lower limits. This can get the

transmission system into zones of too high or too low frequency. As a result of

modelling minimization of the electricity generating costs, the solution tends to

produce an output of the electricity generation 2% below the electricity demand.

To prevent this happening let us introduce a penalty of mismatch between the

demand and generation.

Figure 3.2: A mismatch between the electricity demand and the generation with
the cost attached
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Let us divide the allowed mismatch between the electricity demand and generation

into several intervals so that the cost of a mismatch increases with the higher

deviation between the demand and generation.

Gas generating units are assumed to be a marginal type of the electricity

generation. Gas turbines have the highest fuel cost among the thermal plants

but the Run-Up and Run-Down rates are also higher than that of the coal and

nuclear generators. Determined as the marginal generator, gas turbines are used

first to respond to the mismatch between the electricity demand and generation,

so that a cost of the mismatch is estimated according to the fuel cost of the gas

generator. In Figure 3.2 the cost c+1 corresponding to the mismatch between the

electricity demand and the generation d+
1 is marginally higher than the fuel cost

of the gas generator. If gas turbines are able to cope with the load fluctuations,

higher cost of mismatch encourages the generation to meet the demand exactly.

However, it is rather allowed for the generation to deviate from the demand

than to modify the power output of the coal or gas turbines. The cost c+3 is

significantly higher than the cost of the marginal generator so that the mismatch

between the electricity demand and generation exceeds d+
1 + d+

2 only if no other

feasible solution exists.

3.1.5 Summary

Let us summarise the above points in order to formulate a deterministic problem

of the electricity generation. To estimate the system balancing cost when variable

wind energy is incorporated into the electricity generation system we assume:

a. there is no transmission cost;

b. there are three types of thermal generators (gas, coal and nuclear) included in

the model. They are characterised by the limited capacity and the Run-Up

and Run-Down rates;

c. there is only generating (fuel) cost considered in the problem. Time scale is

short so there is no start-up costs of thermal generation;

d. wind power generation is determined by the incoming data and is perfectly

forecast for the deterministic problem;

e. there is no hydro energy included in the model;
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f. the electricity demand is deterministic;

g. there is a cost of mismatch between the electricity demand and generation.

3.2 Deterministic model for the electricity gen-

eration with wind energy

This section formulates a linear programming (LP) mathematical optimization

model for the electricity generation scheduling problem specified in Section 3.1.

3.2.1 Decision variables

Let T denote the number of time intervals obtained by discretising the planning

horizon. This discretisation may be chosen uniformly or non-uniformly. For the

current problem we use one-minute uniform discretization of the planning horizon.

Let G denote the set of all the generators and consist of the union of C, the

set of the conventional generators, and W , the set of the wind generators. The

set of conventional generators also consists of Coal, Nuclear and Gas generating

plants. The decision variables in the model correspond to the outputs of each

thermal unit, i.e. the electric power generated by the Coal, Gas and Nuclear

generators. The decision variables are denoted by

xtg, t = 1, 2, . . . , T ; g ∈ C

where xtg is the production level of thermal unit g during time period t. We

assume a constant power output during 1 minute and measure it in MW*min.

Wind power generation is determined by the wind speed and equals to the

power we
t at time t:

xtg = we
t , t = 1, 2, . . . , T, g ∈ W (3.1)

3.2.2 Constraints

The electricity generation system is complex so it is possible to include different

constraints in its optimization model (capacity, emission limits, system security

and others). The model described in this section would contain only those con-

straints that allow us studying a problem of incorporating the wind energy into

the electricity generation system. Decision variables corresponding to the ther-

mal generation mentioned above have finite upper and lower bounds representing
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unit capacity limits of the generation system:

xg ≤ xtg ≤ xg, t = 1, 2, . . . , T, g ∈ C (3.2)

The constants xg and xg denote minimal and maximal possible outputs of the

thermal units respectively.

Figure 3.3: Area formed by Run-Up and Run-Down constraints for thermal gen-
erators

Further single-unit constraints describe maximum Run-Up and Run-Down

export rates introduced in Section 3.1.1. An example of Run-Up and Run-Down

export rates that a generating plant provides to the System operator before the

“Gate closure” is given in Table 3.2. As it was stated then, these export rates

cause a non-convex constraint. Hence, let us modify the limits of maximum Run-

Up and Run-Down rates in a way that they form a convex set (xtg, x(t+1)g), t =

1, 2, . . . , (T − 1), g ∈ C of the decision variables.

As mentioned in Section 3.1.1 we use only two Run-Up and two Run-Down

rates that are connected in a piecewise linear function and form a convex set.

The piecewise linear function can be chosen in a way that tighten or relax the

maximum export rate limits. Constraints (3.3) − (3.6) formulated below relax

the limits of Run-Up and Run-Down rates of generating plants. Let r1+ and

r2+ denote two Run Up rates separated by the “elbow” e+, while r1− and r2−

- denote two Run Down rates separated by the “elbow” e−. The corresponding

constraints of the change in the power output are described by inequalities:

xt+1,g ≤ e+ + r2+ − r1+

e+
xt,g + r1+, t = 1, 2, . . . , T, g ∈ C (3.3)
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xt+1,g ≤ xt,g + r2+, t = 1, 2, . . . , T, g ∈ C (3.4)

and

xt+1,g ≥ xg − e− + r2− − r1−

xg − e−
xtg −

r2−xg − r1−e−

xg − e−
, t = 1, 2, . . . , T, g ∈ C

(3.5)

xt+1,g ≥ xt,g − r2−, t = 1, 2, . . . , T, g ∈ C (3.6)

Figure 3.3 plots a convex set (xtg, x(t+1)g), t = 1, 2, . . . , (T−1), g ∈ C with new

Run-Up and Run-Down export rates in a form of the shaded area bordered by

two lines from the above and two lines from the below. Every line on the graph

states a maximum rate of change between the output at the current minute and

the following minute. The two lines from the above in Figure 3.3 intersect in a

point of the “elbow” e+ and are described by the inequalities (3.3) − (3.4). The

two lines from the below intersect in a point of the “elbow” e−, their gradients

are r1− and r2− respectively. Run-Down rates are described by the inequalities

(3.5) − (3.6).
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Figure 3.4: Load mismatch costs: the difference between the curves gives the
penalty for generation deviating from demand.

The loading constraint couples across all the generating units. It is essential

for the operation of the power system and means that the difference between

the total power generation and the load demand does not exceed the allowed

(by the transmission system) limit at any time. Denoting by Dt the electricity

demand during a time period t and by ∆D a percent mismatch allowed between

the electricity load and the generation, the loading constraint is described by the
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inequalities:

(1 − ∆D)Dt ≤
∑

g∈G

xtg ≤ (1 + ∆D)Dt t = 1, 2, . . . , T (3.7)

In (3.7) a parameter ∆D is taken as 2% that corresponds to 1% variation in the

system frequency.

In Section 3.1.1 we discussed a cost of the mismatch between the electricity

supply and demand. Logically the generators should produce close to the demand

and as far away from the lower and upper bounds as possible. To achieve this

result in the model we introduce a piecewise linear cost for the load imbalance

{ζ+
v ; ζ+

v }, v = 1, 2, . . . , V where V denotes a number of bands in the penalty cost.

To avoid giving an incentive to violate the load constraint, this piecewise linear

load imbalance cost should be above the cost of the marginal generator at that

time. Figure 3.4 plots the fuel cost of the marginal generator (gas in our case)

and three different cost bands for the generation exceeding the demand and the

demand exceeding the generation. The higher mismatch between the electricity

demand and generation the higher the cost of coping with it.

Let us denote a mismatch between the electricity generation and the load by

a set of variables d+
tv and d−tv, t = 1, 2, . . . , T, v = 1, 2, . . . , V such that

∑

g∈G

xtg −Dt =
∑

v∈1..V

(d+
tv − d−tv) t = 1, 2, . . . , T (3.8)

In (3.8) T denotes the planning horizon while V is a number of the cost bands

in the accepted mismatch between the supply and demand [(1 − ∆d)Dt;Dt] and

[Dt; ((1 + ∆d)Dt)]. Size of every interval v = 1, 2, ; dots, V is measured in MW

and defined by the inequalities:

0 ≤ d+
tv ≤ d+

tv (3.9)

0 ≤ d−tv ≤ d−tv (3.10)

where d+
tv is an upper bound of interval v when the electricity demand exceeds

the generation at time t,
∑

g∈G xtg < Dt. d−tv is an upper bound of interval v

when the generation exceeds the demand at time t,
∑

g∈G xtg > Dt.

Set of parameters [d+
tv, d

−
tv] is time dependent and defined by the changing

value of demand. It can be calculated in the following way

d+
tv = ∆d ∗Dt ∗ β+

v (3.11)

58



where βv determines a part of the demand envelope ∆d ∗Dt that corresponds to

the cost band v = 1, 2, . . . , V .

3.2.3 Objective function

The constraints described above form a feasible set of solutions for our optimiza-

tion problem of scheduling the electricity generation. To complete our LP model,

let us introduce the operational cost of the electricity generation for different

types of plant. Let cg denote the fuel cost for each thermal generator g ∈ C.

Fuel cost of the coal and gas generation was introduced in the section 3.1.2.

Then
∑

g∈C cg
∑T

t=1 xtg is the operational cost paid by the Supplier to generate
∑

g∈C

∑T

t=1 xtg amount of electricity.

In order to decrease a mismatch between the electricity generation and de-

mand we wish to include the cumulative cost of the mismatch into the objective.

If parameters ζ+
v and ζ−v denote the cost of the excessive and insufficient gener-

ation respectively, we wish to minimize the total cost of the electricity demand

and generation mismatch:

V∑

v=1

ζ+
v

T∑

t=1

(
∑

g∈G

xtg −Dt) +
V∑

v=1

ζ−v

T∑

t=1

(Dt −
∑

g∈G

xtg)

If we define d+
tv :=

∑T

t=1(
∑

g∈G xtg − Dt) and d−tv :=
∑T

t=1(Dt −
∑

g∈G xtg) this

can equivalently be rewritten as:

V∑

v=1

ζ+
v

T∑

t=1

d+
tv +

V∑

v=1

ζ−v

T∑

t=1

d−tv

Taking into consideration the fuel cost and the cost of the load imbalance, the

objective of the mathematical programming model is to minimize the cumulative

operational cost of the electricity for the planning horizon T :

min
x

∑

g∈C

cg

T∑

t=1

xtg +
V∑

v=1

ζ+
v

T∑

t=1

d+
tv +

V∑

v=1

ζ−v

T∑

t=1

d−tv (3.12)

In the objective function (3.12)
∑

g∈C cg
∑T

t=1 xtg denotes the fuel cost of the

thermal generators g ∈ C and
∑V

v=1 ζ
+
v

∑T

t=1 d
+
tv +

∑V

v=1 ζ
−
v

∑T

t=1 d
−
tv denotes the

cost of mismatch between the electricity supply and demand.
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3.2.4 Formulation of the LP deterministic optimization

model

The constraints and and the objective described in Section 3.2.2 and Section 3.2.3

are combined below:

Objective (minimize cost):

min
x

∑

g∈C

cg

T∑

t=1

xtg + +
V∑

v=1

ζ+
v

T∑

t=1

d+
tv +

V∑

v=1

ζ−v

T∑

t=1

d−tv

Subject to:

xtg = wtg ∀g ∈ W

xg ≤ xtg ≤ xg ∀g ∈ C

x(t+1),g ≤ e+ + r2+ − r1+

e+
xt,g + r1+ ∀g ∈ C

x(t+1),g ≤ xt,g + r2+ ∀g ∈ C

x(t+1),g ≥ xg − e− + r2− − r1−

xg − e−
xtg −

r2−xg − r1−e−

xg − e−
∀g ∈ C

x(t+1),g ≥ xt,g − r2− ∀g ∈ C

(1 − ∆D)Dt ≤
∑

g∈G

xtg ≤ (1 + ∆D)Dt

∑

g∈G

xtg −Dt =
V∑

v=1

(d+
tv − d−tv)

0 ≤ d+
tv ≤ d+

tv ∀v = 1, 2, . . . , V

0 ≤ d−tv ≤ d−tv ∀v = 1, 2, . . . , V

d+
tv = ∆d ∗Dt ∗ β+

v ∀v = 1, 2, . . . , V

d−tv = ∆d ∗Dt ∗ β−
v ∀v = 1, 2, . . . , V

where t = 1, 2, . . . , T .

3.3 Calculating cost of wind energy variability

An output of the mathematical optimization model (3.1) − (3.12) formulated in

Section 3.2 represents a series of one-minute electricity generation level for every

thermal generator g ∈ C over a time period of T minutes. The optimal solution

is chosen according to the minimization function that includes fuel cost of the
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thermal generators and the cost of a mismatch between the electricity supply and

demand.

The deterministic LP optimization model formulated in Section 3.2.4 includes

two sets of variables {xtg} and {dtv}, where g ∈ C, t = 1, 2, . . . , T and v =

1, 2, . . . , V . If we denote κ as a number of thermal generators in the set C, a total

number of decision variables in the model equals κ∗T+V ∗T . To reduce a number

of variables we wish to group thermal generators so that there are only three

generators included in the set C: nuclear, gas and coal. Each of these thermal

generators represent a big number of plants with similar fuel costs and capacity

limits. Then, taking V = 6 there are 12960 decision variables in the deterministic

optimization problem of daily (T=1440) electricity generation. Assuming further

one accumulated wind energy curve in the set of wind generators, a number of

constraints results in 60480 for a daily electricity generation problem.

Formulated deterministic optimization problem is linear so that it can be

efficiently solved with a CPLEX solver. We used version 10.00 of the CPLEX

solver that resulted in CPU time < 1s.

Formulated deterministic model can be used now to estimate the system bal-

ancing cost that appears as a result of wind energy variability. In order to estimate

this cost we compare the results of two different cases. The power system bene-

fits initially from the wind energy being present in the system as there is no fuel

cost associated with the generation of wind energy. But this advantage of wind

energy is challenged by its variability. If a significant amount of the wind energy

fluctuates, thermal generators must frequently modify their production level in

order to balance these fluctuations in the power system. Fluctuations of the wind

energy result not only in the additional fuel cost but also the cost of a mismatch

between the electricity generation and the load.

3.3.1 Case of constant wind energy that reduces the op-

erational cost

First let us consider a case when a wind energy profile if flat, i.e. there are no

fluctuations in the wind output. There are three types of thermal generators used

to meet the electricity load: nuclear, coal and gas generators. These generating

units can be ordered by the fuel cost and the output flexibility, i.e. a size of the

maximum Run-Up and Run-Down export rates.
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Figure 3.5: Electricity generation when 11% of wind energy with flat profile is
introduced to the system

Figure 3.5 plots an example of the optimization model output, which is a

generation level for the thermal plants as well as the available wind energy with

the flat profile. Nuclear generators are the cheapest, we price the fuel cost as

zero in the model. It is also the least flexible type of generation as it has the

lowest Run-Up and Run-Down rates. Gas turbines are the most expensive type of

generation in the model but they are the most flexible generators. As a result the

model output shows the nuclear and coal generation at the maximum available

capacity and gas generators produce the remaining electricity to meet the load.

Definition Let us denote a flexible generation producing electricity away from

its upper and lower boundaries as the marginal generation with the fuel cost

equals cm. Marginal generators are the first to react on changes in the electricity

load.

Wind energy is constant for this solution with the output of 5173 MW*min that

makes up to 11% of the load in two hours.

The cumulative fuel cost corresponding to this problem of scheduling the

generation is reduced by the fuel cost of the marginal generator that would be

used if there was no wind present in the system.

Definition Let us denote F flat
w as the cumulative fuel cost of the mathematical

optimization problem with flat wind energy profile and f+
w as the saving in fuel

cost by the Supplier of the electricity when it uses the wind energy in the total

generation.
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Cumulative fuel cost F flat
w is related to the problem with no wind energy in the

system in the following way:

F flat
w = F0 − f+

w (3.13)

In (3.13), F0 is the fuel cost related to the optimization problem with no wind

energy available. The cost of the mismatch between the electricity demand and

the generation equals zero in the current case as the load can be met exactly.

3.3.2 Case of variable wind energy that increases opera-

tional cost

For the next case a profile of the wind energy curve is variable. It is balanced by

the group of thermal generators: nuclear, coal and gas. As in the previous case

they are ordered by the fuel cost and maximum Run-Up and Run-Down export

rates.
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Figure 3.6: Electricity generation when 11% of variable wind energy is introduced
to the system

Figure 3.6 plots an example of the optimization model output, which is a

generation level for the thermal plants as well as the available wind energy. Unlike

the case presented in the Section 3.3.1, wind energy for the current problem

fluctuates. Let the fluctuations of the wind energy curve be proportional to

the amount introduced to the power system. Figure 3.6 plots 11% of the wind

energy in total electricity generation of 1 day. In order to balance the variable
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wind energy the thermal generators have to modify their production profile. Gas

turbines have the highest Run-Up and Run-Down exports rates so it reflects most

of the variation in the wind energy. However, gas generation is not able to cover

some of the steep changes in wind energy from minute to minute. Then the

coal generators modify the power output so that the supply and the electricity

demand are within the target range. The nuclear plants have the lowest Run-Up

and Run-Down rates which results in the output profile being flat at almost all

the time t = 1, 2, . . . , T .

Figure 3.6 shows that it is hard to meet the electricity demand exactly when

variable wind energy is introduced into the power system. In the reality coal

generators can not modify the power output as often. Therefore, we wish to

allow the total generation to deviate from the electricity demand within a certain

range. This can be achieved by setting the penalty cost of the first band v = 1

marginally higher than the fuel cost of the gas turbine that acts most of the

time as the marginal generator. If the gas turbines are able to cope with the

variation of the wind energy it is cheaper for the total generation not to deviate

from the electricity demand. However, a small mismatch between the supply and

the electricity demand is preferable to the modification of the coal power output

as it is shown in Figure 3.7.

The cumulative fuel cost corresponding to the problem of scheduling the elec-

tricity generation with the variable wind energy is affected not only by the fuel

cost of the marginal generator but also by the fuel cost of the generators that

modify the output profiles in order to balance the fluctuations of the wind energy.

Definition Let us denote F var
w as the cumulative fuel cost of the optimization

problem with variable wind energy profile and f−
w as the additional fuel cost of the

generators that modify the output profiles in order to balance the fluctuations of

the wind energy.

Cumulative fuel cost F var
w is related to the problem with no wind energy in the

system in the following way:

F var
w = F0 − f+

w + f−
w

F flat
w + f−

w ,

where F0 is the fuel cumulative cost related to the optimization problem with no

wind energy available and F flat
w was calculated in (3.14) as the accumulated fuel

cost of the problem with the flat wind energy profile.
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Figure 3.7: Electricity generation and load mismatch when 5% of variable wind
energy is introduced to the system

Figure 3.8 plots the cumulative fuel cost of a daily electricity generation

weighted by the total amount of the produced power. The highest cost is the

fuel cost calculated for a problem when there is no wind energy in the power

system. The fuel cost from the bottom reflects a problem with the variable wind

energy that can be balanced by the marginal generator. So the weighted fuel cost

is a piecewise linear function with the gradient of the marginal generator.
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Figure 3.8: The fuel cost of the wind energy variability shown for different levels
of it introduced into the electricity system

The system balancing cost that appears when variable wind energy is introduced

into the power system can be estimated as the difference between the fuel cost
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calculated for the problem with variable wind energy that can be balanced with

a combination of different thermal generators and the fuel cost calculated for a

problem with variable wind energy that can be balanced by the marginal gener-

ator.
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Chapter 4

Statistical analysis of operational

cost

In the previous chapter we introduced the deterministic optimization LP model

of the electricity generation system. This model was used to estimate the system

balancing cost that appears when variable wind energy was incorporated into

the generation system. We assume further that the saving in fuel cost and the

additional fuel cost (as defined in Section 3.3.1 and Section 3.3.2) can be deter-

mined as a function of the statistical parameters of the wind energy and develop

a unique model that estimates the parameters of such a model.

4.1 Formulation of the problem

To evaluate how well the statistical model estimates the system balancing cost,

the optimal value of the cumulative fuel cost is found using the deterministic

optimization model described in Chapter 3. Again we assume that the wind

speed can be forecast exactly over the planning horizon and there is no uncertainty

about the electricity load. For the purpose of this chapter we wish to make the

following modifications to the optimization model:

• The electricity demand is constant so that variability in wind energy is

clearly presented in the output. However, the general conclusions can be

applicable for the case of slowly changing load.

• The electricity load has to be met exactly by the generating units, which

means that there is no cost of mismatch between the electricity supply and

demand. The objective function of the optimization models in this chapter

is presented only by the accumulated fuel cost.
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• There is hydro generation included in the optimization model, however, it

is small and does not affect the solution.

Let us consider a small electricity generation system where the set of the

conventional generators C consists of 15 thermal units. Thermal generators are

not differentiated by the available capacity and every plant has the following

upper and lower bounds:

xg = 0MW and

xg = 30MW, g ∈ C.

Hydro generation is small for all the models in this chapter and has a constant

output of 20 MW. Maximum Run-Up and Run-Down export rates (introduced

in Section 3.1.1) of thermal generating units are the same for all the range of

the electricity output, xg ≤ xt,g ≤ xg, therefore, inequalities (3.3) − (3.6) are

simplified as

xt+1,g ≤ xt,g + r+

xt+1,g ≥ xt,g − r− t = 1, 2, . . . , T, g ∈ C,

where r+ equals 0.125 MW*min and r− equals 0.125 MW*min for all the models

in this chapter.

The thermal generators are differentiated by the fuel cost chosen in a certain

merit order so that cheaper thermal plants are used first. Let us take a merit

order of the fuel costs to be a piecewise linear function, so that the cost of the

first unit c1 = 1£/MW*min increasing by 0.1£/MW*min for every next unit so

that the 15th thermal plant is priced at c15 = 2.4£/MW*min. There is no cost

associated with hydro generation.

Definition Let us denote FA as the actual accumulated fuel cost calculated using

the deterministic optimization model.

Further in this chapter we will consider different statistical models of the ac-

cumulated fuel cost and compare these with the actual accumulated fuel cost.

Every next model is chosen so that the error between the actual and calculated

accumulated fuel cost decreases. We assume the accumulated fuel cost of the

electricity generation to be a piecewise linear function. The value of FA is calcu-

lated per unit time (per minute in the current case), therefore all the statistical

models in this chapter are independent of the planning horizon T .
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4.2 Case of marginal generator following a pro-

file of the wind energy curve

Let us begin with a simplified situation of the electricity generation when the

wind energy is constant and equals zero. In this case the accumulated fuel cost

can be calculated accurately with an error ǫ = 0 by:

FA = F0 (4.1)

where F0 is the generated cost when there is no wind energy available and can

be found from the merit order fuel costs of the thermal generators.

The model described by (4.1) is not, however, suitable for calculating the

accumulated fuel cost if there is wind energy incorporated into the power system.

In this case error of the calculation ǫ = FA − F0 can be significantly higher than

zero. To improve the model we take into account another simplified situation of

electricity generation, when a marginal thermal generator (as defined in Section

3.3.1) has the Run-Up and Run-Down export rates big enough to cope with

variability of wind energy curve.
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Figure 4.1: Electricity generation with only the marginal generator modifying the
power output

Figure 4.1 plots an example of the solution for this simplified case of electricity

generation. On this graph thermal plant with the index “Th8” is the marginal

generator. It frequently changes the production plan in order to balance the
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wind energy output and meet the electricity load exactly. The first seven gen-

erators have the lowest fuel cost so that they produce at full capacity. The last

seven generators with fuel cost higher than that of the marginal generator do not

produce.

This case improves the model that estimates the operational cost of the elec-

tricity generation:

FA = F0 − cmxw − ǫ. (4.2)

In (4.2) cm denotes the fuel cost of the marginal thermal generator and xw is an

average wind energy over the modelled period of time T .

For both simplified cases considered in this section, the operational cost can be

calculated with (4.2) with an error ǫ = 0. However, for a situation when the rates

of change of the wind energy curve are higher than that of the marginal generator,

there can be an error calculating the operational cost from the right-hand side of

formula (4.2). The error term in (4.2) is non-zero and can be significant. Thus,

we wish to find a better model in order to improve accuracy of the operational

cost calculation.

4.3 Case of wind energy curve having a zigzag

profile

Assume, the other elements of the model that estimates the operational cost also

depend on the statistical parameters of the wind energy curve.
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To evaluate them we construct another simplified case when the marginal gen-

erator has the Run-Up and Run-Down export rates smaller than those of the

wind energy curve, however, the wind energy itself is periodic and has a form of a

zigzag. Figure 4.2 shows that the solution is also periodic and makes it possible to

calculate the accumulated fuel cost exactly as it is found using the deterministic

optimization model.

Further in this section there is a number of tests performed with one V-shaped

drop in wind energy that is plotted in Figure 4.3. Because the solution shown in

Figure 4.2 is periodic, calculations for one V-shaped drop are applicable to the

whole zigzag curve.

4.3.1 Analytical calculation of the accumulated fuel cost

Definition Let us denote a height of wind energy curve as hw that represents

the difference between the highest and the lowest value of wind energy in the

time horizon 1, 2, . . . , T .

A first test investigates how the accumulated fuel cost changes depending on the

modification of the height of every V-shaped wind energy curve defined in Figure

4.3 while a length of the planning period of time T remains the same.
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Figure 4.3: Electricity generation for a wind energy curve as one zigzag and the
thermal plants increasing and decreasing their output in a symmetric Λ-shape

Definition We denote γw as the average of the absolute value of the gradients

calculated for the wind energy curve.

Modification of the wind energy height hw is performed in a way that the absolute

value of the gradient of the drop in the symmetric V-shaped wind energy curve
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changes proportionally to the height while the average of wind energy xw remains

the same.

Definition Let γg denote the average of the absolute value of the gradients of a

thermal plant g ∈ C; then γg denotes the maximum of the absolute gradients of

the thermal plant and is defined by the Run-Up and Run-Down export rates.

In Section 4.1, γg was assumed to be the same for all κ = 15 thermal generators.

Then, for every γw such that γw ≤ κγg there exist situations where the output

from thermal plants decreases or increases in a symmetric Λ-shape. Note, that

for the case where generation has to meet the electricity load exactly:

γw =
∑

g∈C

γg (4.3)

i.e. the absolute value of the average gradient of the wind energy equals a sum

of the absolute values of the gradient of κ thermal plants.

We wish to find a formula that calculates the accumulated fuel cost of the

electricity generation where a V-shaped wind energy curve is given. To do this,

let us look into the output of the thermal generators for a series of problems with

the absolute value of gradient of the wind energy curve increasing. After finding

a way every thermal plant responds to the increase of the variability in wind

energy, we can calculate its total generated energy and, hence, the accumulated

fuel cost.

Besides the cases where the output of the thermal generators increases or

decreases in a symmetric Λ-shape, there are also transition cases between the two

adjacent Λ-shapes where the the output of the thermal generators increases or

decreases in a symmetric broken-Λ-shape. Figures 4.5 and 4.6 plot an example of

a symmetric broken-Λ-shape for the generators “Th6” and “Th10” respectively.

Definition Let us denote the active thermal generators as generators that run

away from the upper and lower capacity limits so that an increase or decrease

in their output has a broken-Λ-shape. For an odd number of the thermal plants

there always exists a pair of matching active thermal generators, one of which

increases the output and the other decreases it.

Figure 4.4 plots an example of the solution with the broken-Λ-shapes; Figure

4.5 emphasizes this solution for the thermal generators running close to the upper

capacity limit and Figure 4.6 - for the thermal generators running close to the

lower capacity limit. Thermal generators “Th6” and “Th10” are matching ther-
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mal generators and change the gradient of the Λ-shape at the same time intervals

t = 30 and t = 150.
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A point in time t where a pair of two matching active thermal generators

running at the maximum and minimum production levels modify a gradient of

the Λ-shape is determined by a proportion between their fuel costs and the fuel

cost of the marginal generator:

cm+i − cm
cm+i − cm−j

where cm+i is the fuel cost of a thermal generator, higher than that of the fuel cost

of the marginal generator, cm, and cm−j is the fuel cost of a matching thermal

generator, lower than that of the marginal generator.

Using information on the shapes of the thermal generation, increase or de-

crease in the produced energy can be calculated as the volume of an isosceles

triangle. Then, the accumulated fuel cost, FA, for the planning horizon T can be

estimated using Formula (4.4) below. In order to simplify visually further analy-

sis, the right-hand side of Formula (4.4) is divided into three parts: (I), (II) and

(III).

FA(γw, T ) =F0 − cmxw+ (I)

cmγw

T

4
+ (II)

γ∗

T

κ−1∑

i=1

∑

g∈C

(

(∆i+1
g − ∆i

g)Tcm
1 − sg

4
+ ((∆i+1

g )2 − (∆i
g)

2)cg
sg

4

)

(III)

where

∆i
g :=







c̃i
g−cm

c̃i
g−ci

g
T, cg < cm

T, cg = cm

T (1 − ci
g−cm

ci
g−c̃i

g
) =

cm−c̃i
g

ci
g−c̃i

g
T, cg > cm;

(4.4)

F0, cm and xw are defined as in the previous model (4.2);

T denotes a planning horizon with one-minute discrete intervals;

cig and c̃ig are the fuel costs of the paired active thermal generators;

γ∗ denotes the sum of the absolute values of the average gradient of the thermal

generators g ∈ C as in (4.3);

κ represents a number of thermal generators;

sg is a parameter that equals 1 for the active generators g ∈ C running at the

minimum capacity, equals −1 for the active generators g ∈ C running at the

maximum capacity and equals 0 for the marginal generator.

The actual accumulated fuel cost FA is significantly close to that calculated

with the right-hand side of (4.4) and weighted by the planning horizon T with

74



respect to the gradient of a V-shaped drop of the wind energy curve. To find how

close the LP-modelled and the calculated accumulated fuel costs are, we wish to

estimate the marginal fuel cost for each of them.

Let us take a discrete interval of the absolute values of the gradient for the

wind energy curve with a discretisation step j.

Definition Let us denote the marginal fuel cost as Fm. It is calculated as the

difference between the accumulated fuel cost for the adjacent values of the abso-

lute value of the gradient of the wind energy curve weighted by the difference in

the height of the wind energy hw.

Then, for every γw, the marginal fuel cost can be estimated by (4.5):

Fm =
FA(γw, T ) − F T

A (γw − j, T )

hw(γw) − hw(γw − j)
(4.5)

where (γw − j) is the average of the absolute value of the gradients of the wind

energy preceding the current value γw.

Proposition 4.3.1 The marginal fuel cost does not depend on the planning hori-

zon T and is constant for every transition case where the active thermal generators

increase or decrease the output in the broken-Λ-shape.

Proof Let us consider, first, a simple case where γw ≤ γg for the planning horizon

t = 1, 2, . . . , T , i.e. the variability of the wind energy can be balanced with the

marginal generator. We wish to calculate the marginal fuel cost by analysing

parts (I)− (III) of Formula 4.4. By construction of the case on the modification

of a height of wind energy curve (introduced at the beginning of Section 4.3.1), the

average wind energy xw remains the same through the series of tests. Therefore,

a part (I) of (4.4), calculated for FA(γw, T ) and FA(γw−j, T ) has the same value;

part (I) of (4.4) is set to zero in the numerator of (4.5). A part (III) of (4.4)

consists of the fuel costs for the active generators, however, there are no thermal

plants deviating from the capacity limits when γw ≤ γg, thus, a part (III) of

(4.4) equals zero for FA(γw, T ) and FA(γw − j, T ). As parts (I) and (III) are not

used, the numerator of (4.6) is calculated as the difference in parts (II) of (4.4)

for F T
A (γw) and F T

A (γw − j). Taking into account a V-shape of the wind energy,

the marginal fuel cost Fm equals the fuel cost of the marginal generator:

Fm =
cmγw

T
4
− cm(γw − j)T

4

hw(γw) − hw(γw − j)
=
cmj

T
4

j T
4

= cm (4.6)
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Next, we wish to look at the general case of (4.5), again by analysing parts

(I)−(III) of Formula (4.4). As for the simple case, a part (I) of (4.4), calculated

for FA(γw, T ) and FA(γw − j, T ) has the same value, therefore, part (I) of (4.4) is

set to zero in the numerator of (4.5). For every transition case pairs of the active

generators are the same when calculating the accumulated fuel cost, thus, a part

(III) of (4.4) calculated for F T
A (γw) and F T

A (γw − j) has the same value. Then

applying the results of (4.6) the marginal fuel cost for a transition case can be

calculated in the following way:

Fm = cm+

γ∗

T

∑κ−1
i=1

∑

g∈C

(

(∆i+1
g − ∆i

g)Tcm
1−sg

4
+ ((∆i+1

g )2 − (∆i
g)

2)cg
sg

4

)

hw(γw) − hw(γw − j)

−
γ∗−j

T

∑κ−1
i=1

∑

g∈C

(

(∆i+1
g − ∆i

g)Tcm
1−sg

4
+ ((∆i+1

g )2 − (∆i
g)

2)cg
sg

4

)

hw(γw) − hw(γw − j)

= cm+

j

T

∑κ−1
i=1

∑

g∈C

(

(∆i+1
g − ∆i

g)Tcm
1−sg

4
+ ((∆i+1

g )2 − (∆i
g)

2)cg
sg

4

)

j T
4

= cm+

∑κ−1
i=1

∑

g∈C

(
(∆i+1

g − ∆i
g)Tcm(1 − sg) + ((∆i+1

g )2 − (∆i
g)

2)cgsg

)

T 2

Using the definition for ∆i
g in (4.4) the marginal operational cost is further cal-

culated as

Fm = cm +

∑

g∈C

(

(
ci+1
g −cm

ci+1
g −c̃i+1

g
T − ci

g−cm

ci
g−c̃i

g
T )Tcm(1 − sg) + ((

cm−c̃i+1
g

ci+1
g −c̃i+1

g
T )2 − (

cm−c̃i
g

ci
g−c̃i

g
T )2)cgsg

)

T 2

= cm +
∑

g∈C

(

(
ci+1
g − cm

ci+1
g − c̃i+1

g

−
cig − cm

cig − c̃ig
)cm(1 − sg) + ((

cm − c̃i+1
g

ci+1
g − c̃i+1

g

)2 − (
cm − c̃ig
cig − c̃ig

)2)cgsg

)

where i = 1, 2, . . . , (κ− 1). This shows that an additional unit of the calculated

accumulated fuel cost depends only on the combination of the fuel costs of the

thermal generators g ∈ C.

Figure 4.7 demonstrates that the marginal fuel cost is constant for every tran-

sition case where the active thermal generators increase or decrease the output

in the broken-Λ-shape. A length of the interval where the marginal fuel cost is

constant equals to the Maximum Run-Up and Run-Down Export Rates of the

thermal plants, r+ = r− = 0.125 for our small electricity generation system. No-

tice, that for the first interval, 0 ≤ γw ≤ 0.125, marginal fuel cost equals to the

fuel cost of the marginal generator, cm = 1.7.

The calculated marginal fuel cost acquires the same value as the LP-modelled,

which is shown in Figure 4.7. This provides an insight into the next element of

76



the statistical model calculating the accumulated fuel cost that would reduce the

error ǫ. We assume further in Section 4.3.2 that another element of the statistical

model includes the height and the average of the absolute value of the gradient

of the wind energy curve and test it through a series of cases.
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Figure 4.7: Comparing the calculated and the LP-modelled marginal fuel costs

4.3.2 Improving the estimation of the accumulated fuel

cost

Analysis provided in the section 4.3.1 helps us improving the model (4.2) that

evaluates the accumulated fuel cost of the electricity generation. Section 4.3.1

showed that the accumulated fuel cost depends on the absolute value of the

gradient of the wind energy curve, hence, we wish to perform two tests with the

wind energy curves having various profiles similar to the tests performed for the

wind energy curve with a zigzag profile.

a. For a first test the average of the absolute value of gradients of the wind

energy curve γw remains the same while the height and planning horizon

T are modified linearly. This can be achieved by the scaling of the wind

energy curve.

b. For another test the average of the absolute value of gradients of the wind

energy curve γw and the height of the wind energy curve hw are changing

while the planning horizon T remains the same.

For the calculation later in this chapter we chose a set of 30 wind energy curves

so that they provide a variety of the statistical parameters such as the mean, the

absolute value of the gradient, the standard deviation and the height.
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It was noticed that the height of the wind energy and the average of the

absolute value of gradients are linearly dependent and a remaining error of the

model (4.2) plotted against γw has a quadratic form. Figure 4.8 demonstrates

the results of the tests a) and b) performed for the different values of hw. In the

test a) only the height of the wind energy drop changes while the average of the

absolute value of the gradients remains constant. So the error ǫ in the model

(4.2) is linear with respect to the changing height hw. Test b) is more complex as

two variables: the height and the average value of the absolute gradients of the

wind energy curve are changing. Error ǫ can be plotted as quadratic function as

long as the height and the absolute value of the gradient are modified linearly.
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Figure 4.8: Fitting a quadratic term into the model that estimates the accumu-
lated fuel cost of electricity generation

Tests a) and b) support a statement that an error in the model (4.2) depends

on a quadratic term containing the average of the absolute value of gradients γw

and the height of the wind energy curve hw. In Figure 4.8 three functions from the

below use the same quadratic 0.0155γwhw to approximate another term included

in the model that estimates the accumulated fuel cost. Hence, an improved model

estimating the accumulated fuel cost of the electricity generation is formulated

further as (4.7).

FA = F0 − cmxw + k1γwhw + ǫ (4.7)

In (4.7) k1 ≈ 0.0155 is a parameter that can be estimated with the fuel costs of

the thermal plants, it is independent of the wind energy curve.

Let us find how good the model (4.7) is for the estimation of the accumulated

fuel cost of the electricity generation. Figure 4.10 plots the error term of the
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model (4.2) and compares it to the quadratic term 0.0155γwhw calculated for a

set of 30 wind energy curves.

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10  12  14  16  18

co
st,

 p/
un

it t
im

e

square root of product h*Gav

Approximation of the difference between LP-modeled and calculated cost for zigzag wind curve

Ftot-Fo+1.7*Xav
0.0165*Gav*h
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Figure 4.9 shows that within a range of the wind energy curves with low variability

(represented by a low γw) the model (4.7) can be considered a good estimate of

the accumulated fuel cost of the electricity generation. However, for the more

variable wind energy we wish further to improve the model (4.7).

4.4 Case of the wind energy curve with chang-

ing standard deviation

Let us estimate the error term in the model (4.7) to decide on the elements that

would improve it. We wish to calculate the error for two different cases: for all

the planning horizon T and an accumulated error if calculated for the ten-minute

intervals that a planning horizon T is divided into.

Figure 4.10 plots the error of estimating the accumulated fuel cost calculated

for all the planning horizon T and an accumulated error calculated for T
10

intervals

of the planning horizon. For both curves in Figure 4.10 the error is relatively

high. However, an accumulated error for T
10

intervals of the planning horizon

is convenient for further improvement as all the values are positive. An error

calculated for all the planning horizon T has positive and negative values for the

different wind energy curves so that it is hardly possible to improve the result.
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When plotted along the axis of the standard deviation of the absolute value

of the gradient of the wind energy curve, an accumulated error for T
10

intervals

of the planning horizon has a trend of a power function. Thus, we wish to use a

standard deviation of the wind energy and a standard deviation of the absolute

value of the gradients of the wind energy to formulate another element in the

model estimating the accumulated fuel cost of the electricity generation. Again

we are looking at two different ways of calculating both values of the standard

deviation: over the whole planning horizon T and accumulated for T
10

intervals of

the planning horizon T .

An improved model estimating the accumulated fuel cost of the electricity

generation is formulated as follows:

FA = F0 − cmxw + k1γwhw + k2σxσ
α
γ + ǫ (4.8)

where σx denotes the standard deviation of the wind energy and σγ is the standard

deviation of absolute value of gradient in a power α = 1.28 for our case. Parameter

k2 equals 0.05 for our case.

Figure 4.11 plots a comparison of the error term in three models estimating

the accumulated fuel cost of the electricity generation, (4.2), (4.7) and (4.8),

calculated for a set of 30 wind energy curves. The figure shows that the error,

found as the difference between the LP-modelled and the calculated accumulated

fuel cost, decreases with the additional statistical parameters being added to the

model. This is an expected result as the latter models are richer and include the
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former when setting parameters k1 := 0 and/or k2 := 0.
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A small error of estimating the accumulated fuel cost when calculated with

the statistical model (4.8) shows that the saving in fuel cost and the additional

fuel cost (introduced in Section 3.3.1 and Section 3.3.2) are determined by the

statistical parameters of the wind energy curve. When wind energy is incorpo-

rated into the electricity generation system, the accumulated fuel cost is reduced

by the amount of wind energy present in the system, however, one-minute fluc-

tuations of the wind speed, described by the absolute value of gradients and the

standard deviation, cause an increase in the accumulated fuel cost.
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Chapter 5

Stochastic Modelling

Chapters 3 and 4 use deterministic modelling for scheduling the electricity gen-

eration assuming the electricity load is known and all the generating units are

strictly following the operating plan. However, this is a strong assumption in

real-life situations, so this chapter introduces an uncertainty of the electricity

generation. We wish to use stochastic programming as a method of structuring

possible future scenarios and estimating the system balancing cost that appears

when wind energy is not forecast for certain.

The System Operator of the United Kingdom balances the electricity genera-

tion and consumption in the power system every moment of the real time and is

responsible for keeping the system frequency within a target range. In order to

cope with an unexpected mismatch between the electricity supply and demand

the System Operator uses the available Response and Reserve provided by the

generators. As it was specified in Chapter 1, Response and Reserve are being used

on different time scales. Response is an automatic process provided by the large

generating plants that keeps the power system within the target frequency in a

time range from 0 seconds to several minutes. By that time operating Reserve

is expected to increase or decrease the output and support the power system in

minutes or hours.

Response is an automatic process provided by the generators while a decision

about the amount of operating Reserve is made by the System Operator and

depends on possible losses or fluctuations of the load that can happen in the

future. For example, 1GW of Reserve means that some generators run away

from their maximum export limits so that they can increase the power output by

1GW if required by the System Operator. The aim of the stochastic programming

is to formulate an operating plan that keeps feasible possible scenarios of wind

energy output and minimizes the system balancing cost.
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The stochastic optimization model is formulated using the deterministic model

introduced in Chapter 3 and includes common constraints of the electricity gen-

eration. Our original contribution consists in developing a scenario tree that

reflects two uncertainties: uncertainty in the available capacity of the thermal

plants and uncertainty in wind energy output. We use the formulated stochastic

optimization model to achieve the aim of this thesis by calculating the system

balancing cost when unpredictable wind energy is introduced into the electricity

generation system.

5.1 Uncertainty of the wind energy

A motivation to model the uncertainty of the wind energy comes from the fact

that wind speed is hard to forecast. Mathematical techniques of forecasting an

average wind speed for the next hour or half an hour have improved significantly

during last 30 years ([36, 37, 38, 39, 40]), however, one minute variations as well

as sub-hourly capacity of wind energy are still calculated with possible errors.

Until the short-term prediction of the wind speed is further improved, the avail-

able wind energy creates an additional uncertainty in the electricity generation

system. Currently the installed wind capacity does not exceed 4% of the total

electricity generation, so that the matter of wind speed low predictability can be

resolved without an increase in the operating Reserve. However, if the wind en-

ergy production amounts to 15% and higher, as it is planned by the Renewables

Obligation, then the system balancing cost would significantly increase.

Assuming the uncertainty of the wind energy output, planning the electricity

generation can be described as a sequence of random realisations and decisions of

the System Operator on the modification of the operating plan for the thermal

plants. In its simplest form the discrete stochastic process can be represented as

a scenario tree describing the unfolding of uncertainty over the planning horizon

[28].

A scenario tree consists of nodes and arcs as in the example pictured in Figure

5.1. For our case the nodes represent the states when the information about the

wind energy output is revealed and the operating plan of the thermal generators

is determined to match the electricity load. The arcs do not have a physical

meaning and are used to structure the nodes and form possible scenarios. For

every two nodes connected by an arc the preceding node is named a parent and

the following node is named a child. The current state is taken as the first node

of every scenario, it is named the root of the tree while the last node of a scenario
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is named a leaf. A path, from the root to a leaf of the scenario tree, represents a

scenario. Thus, node 1 on Figure 5.1 is parent of three nodes-children, 2, 3 and

4, while node 2 is parent of only two nodes, 5 and 6 that are considered leaves

as they do not have any children. An example of a scenario is the set of nodes

{1, 3, 7}.

1.Root

2.Child

5.Leaf

Scenario 1

6.Leaf

Scenario 2

3.Child

7.Leaf

Scenario 3

8.Leaf

Scenario 4

4.Child

9.Leaf

Scenario 5

10.Leaf

Scenario 6

Figure 5.1: An example of a scenario tree

It is important to capture the nonanticipativity property with the structure

of the scenario tree. Nonanticipativity property can be explained in the following

way. At each state the System Operator makes a decision about the operating

Reserve under the uncertainty of the future realisations of the wind energy. This

uncertainty is gradually reduced, since the decision process is being accompanied

by a flow of information, however, at the moment of making a decision, the

System Operator does not have a preference for any of the scenarios so that the

decision is nonanticipative [34]. For example, node 1 of the tree presented in

Figure 5.1 corresponds to the first stage, and the associated decisions at this

node are identical for all six scenarios.

Let us specify further the parameters of the scenario tree. The System Oper-

ator balances the electricity generation and demand every moment of the time,

however, in Chapter 3 we used the discrete time with the smallest interval of 1

minute. The aim of the modelling is to schedule the operating Reserve of gas

and coal plants whose production level can not be modified too frequently. At

the same time, the Reserve has to respond to the changes in the electricity load

as soon as possible, hence one minute is considered the most appropriate fre-

quency for short-term scheduling. We wish to use the discrete time further for

the stochastic programming as well, and incorporate it in the scenario tree so

that a decision about the electricity generation is made every other minute. A
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length of the Settlement Period (as it was defined in Chapter 1) is 30 minutes.

Denote further a length of the modelling horizon as T S, and for the current

problem T S = 30.

Let us define an event as an output of the available wind farms in MW every

minute t = 1, 2, . . . , T where T ≥ T S is a certain planning horizon. Assume

that wind speed and, therefore, the wind energy output are known at the current

state t = 1 when decision about the generating plan for the conventional plants

is made. It is unknown whether at the minute t+ 1, t+ 2, . . . , T S the wind speed

remains as it was forecast or a wind speed profile deviates from the forecast or

shifts in time. This means that a number of possible scenarios for the wind energy

profile can be significantly large.

Assume further multistage stochastic programming so that the wind energy

branches several times during the modelling horizon T S. Let us branch the sce-

nario tree every 10 minutes so that there are 4 stages in this multistage stochastic

program. Accumulated length of all the stages equals the length of the modelling

interval T S so that for every stage s ∈ S := {1, 2, 3, 4} we set:

T 1 = 1, T 2 = 9, T 3 = 10, T 4 = 10 :
4∑

s=1

T s = T S = 30

Branching the scenario tree every 10 minutes reflects the uncertainty of the wind

energy and keeps a limit on the number of nodes that can grow dramatically

when branching the scenario tree every minute of the modelling time period.
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Figure 5.2: Tree of scenarios that represent possible changes in wind speed
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Branching of the scenario tree is an individual process and depends on the

characteristics of the underlying events. Although variability and capacity of the

wind energy turbines depend on the geographical and weather characteristics of

the site, we wish to outline further some general directives for building a scenario

tree for the wind energy output. Assume there are four main elements of the

available wind energy taken into account when building a scenario tree, namely:

1. the current output from the wind energy turbines;

2. an average wind energy predicted for the next hour;

3. a heuristic distribution of the wind energy; and

4. the preceding values of the wind energy;

The transformation function that allows us calculating the wind power from the

wind speed, provides a useful information for building a scenario tree. Figure 2.1

plots a typical transformation function and shows that the wind energy output

has upper as well as lower bounds. Besides, when the wind speed exceeds 15m/s

the power output flattens at the maximum capacity. Hence, we wish to build a

scenario tree of the wind power rather than the wind speed as it can reduce a

number of nodes in the tree and increase the speed of solving a problem.

We wish a scenario tree to capture the unpredictable nature of the wind power,

however, it does not reflect the variability of the wind power that was estimated

in Chapter 3. Every possible scenario of the wind power output is a piecewise

linear function so that the slope of a linear segment of this function remains the

same for every node.

When calculating the probability distribution of the wind power, bullet points

3 and 4 of the above list can be combined so that the distribution of the wind

energy output is conditional to the preceding values.

P (we
t+1) = P (we

t+1|we
t , w

e
t−1) (5.1)

The conditional probability distribution (5.1) provides the information on the

variability of the wind power from a given value we
t . While building a scenario

tree we consider three ways of branching, such as two extreme outcomes; two

extreme outcomes balanced by the mean wind power; and five or more branches.

• two extreme outcomes. In this case a wind power value of the parent

node branches into two child nodes so that two new nodes are represented

86



by the highest positive and negative deviation of the wind power from the

current value:

we+
t+1 : max(we

t+1 − we
t ) and we−

t+1 : min(we
t+1 − we

t ) (5.2)

where we
t+1 is found with the probability distribution (5.1).

The probability for each of the two child nodes is calculated so that the

stochastic process of the wind power output is preserved. In the case of

two nodes it requires the expectation of the probability distribution (5.1)

to remain the same. If we+
t+1 and we−

t+1 are new child nodes acquired by

respectively the highest positive and negative deviation of the wind power

then the probability of their outcome can be calculated as follows:

p(we−
t+1) =

we+
t+1 − we

t+1

we+
t+1 − we−

t+1

p(we+
t+1) = 1 − p(we−

t+1)

where we
t+1 is the expected value of the conditional probability distribution

(5.1).

• two extreme outcomes balanced by the mean wind power. In this

case a wind power value of the parent node branches into three child nodes

two of which are represented by the highest positive and negative deviation

of the wind power from the current value (as in (5.2)) and the third child

node is the expected value of the conditional distribution (5.1).

The probability for each of the three child nodes is calculated so that the

stochastic process of the wind power output is preserved. In the case of three

nodes it requires that the expectation and the variance of the probability

distribution (5.1) remain the same. If σw
t+1 denotes the variance of the

probability distribution (5.1) then the probability of the outcomes we+
t+1,

we−
t+1 and we

t+1 are as follows:

p(we+
t+1) =

σw
t+1

(we+
t+1 − we

t+1)
2 − (we+

t+1 − we
t+1)(w

e−
t+1 − we

t+1)

p(we−
t+1) =

σw
t+1

(we−
t+1 − we

t+1)
2 − (we+

t+1 − we
t+1)(w

e−
t+1 − we

t+1)

p(we
t+1) = 1 − p(we+

t+1) − p(we−
t+1)

• five or more branches. In this case a wind power value of the parent node
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branches into five or more child nodes two of which are represented by the

highest positive and negative deviation of the wind power from the current

value (as in (5.2)) and the remaining possible outcomes are the mean values

of the equally spaced segments.

A scenario tree can be built by combining different branching methods. For

example, a scenario tree in Figure 5.2 was built with the combination of (T 1 :

T 2 : T 3 : T 4) := (1 : 5 : 3 : 2). This combination means that at stage s = 1

there is only one node that branches into 5 nodes at stage s = 2. Each of these 5

nodes branches into 3 nodes resulting in 15 nodes at stage s = 3, each of which

branches further into 2 nodes resulting in 30 nodes at stage s = 4.

We tested different combinations of branching methods for building a four-

stage scenario tree by finding a solution of the stochastic linear optimization

model, described further in Section 5.3.1. All the branching methods result in a

feasible solution, hence, we determined the best branching combination with the

accumulated fuel cost over the planning horizon of 5 days. Table 5.1 compares

the accumulated fuel cost weighted by the generated power and calculated for

different branching methods.

Table 5.1: Accumulated fuel cost weighted by the generated power and calculated
for different branching combinations, £/(MW*day)

(T 1 : T 2 : T 3 : T 4) day 1 day 2 day 3 day 4 day 5 total
(1 : 2 : 2 : 2) 15.28 17.43 16.10 16.81 17.71 83.33
(1 : 3 : 2 : 2) 14.21 15.12 14.55 14.85 15.17 73.90
(1 : 3 : 3 : 2) 13.44 14.36 13.72 13.88 14.43 69.83
(1 : 3 : 3 : 3) 12.66 13.13 12.87 12.36 12.98 64.00
(1 : 5 : 2 : 2) 11.67 11.95 11.20 11.77 12.03 58.62
(1 : 5 : 3 : 2) 11.12 11.51 10.82 10.96 11.84 56.25
(1 : 5 : 5 : 2) 11.56 12.07 11.15 11.65 12.16 58.59

Table 5.1 shows that the accumulated fuel cost calculated for the branching

combination (1 : 5 : 3 : 2) is the lowest, therefore, we wish to use this branching

method further in this chapter for the stochastic optimization modelling. Figure

5.2 plots an example of scenario tree where every scenario represents a possible

output of the wind turbines. This scenario tree is used to solve a single stochas-

tic programming problem of scheduling the electricity generation at the current

minute t of the planning horizon 1, 2, . . . , T such that the resulting generation

prepares the system for a variety of wind power outcomes. After the solution

is obtained, the electricity generation of the root of the scenario tree is fixed at

its optimal value that establishes the final schedule for this minute of the time
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horizon.

For the next minute t = 1, 2, . . . , T the modelling horizon 1, 2, . . . , T S is rolled

forward in time and a new scenario tree is built based on a new value of the

wind power we
t . The next stochastic programming problem is solved using a new

scenario tree and the optimal electricity generation for the root is fixed for the

current minute t. This process of the rolling modelling horizon is repeated so

that the optimal values obtained from each iteration yield the final solution for

every minute of the planning time horizon 1, 2, . . . , (T − T S).

5.2 Uncertainty of lost generating capacity

Another uncertainty that the System Operator of the United Kingdom has to take

into account while balancing the electricity demand and generation involves a loss

of the generating capacity. An example of an event captured by this uncertainty

could be a conventional plant tripped and taken out of service. A probability

of such an event is low, however it can happen at any moment and effect the

target frequency with a significant mismatch between the electricity supply and

demand.

As it was specified in Chapter 1, the System Operator can use the automatic

Response and the planned operating Reserve to increase or decrease an active

power in the system and preserve the integrity of the GB Transmission System.

An impact of the generating capacity loss on the power system increases when

there is also the uncertainty of the wind energy output taken into consideration.

Therefore, we wish to build a scenario tree that describes a possible loss of the

capacity and estimate the system balancing cost when resolving both uncertain-

ties by the System operator, loss of the generating capacity and the wind energy

output.

A scenario tree that captures a possible loss of the capacity is built so that it

is compatible with the wind power scenario tree. Every node represents a state

when the information about the available capacity of the conventional plants

enters the system and the System Operator determines whether their operating

plan should be modified. The arcs connect the nodes forming a path from the

root to the leaves of the scenario tree. Modelling time horizon T S is discretized

for the scenario tree of the possible capacity loss and, similar to the wind power

scenario tree, equals 30 minutes.

In order to introduce a possible capacity loss of any type of conventional

plant in one scenario tree, we define an event as a size of the electricity load
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in MW every minute t = 1, 2, . . . , T S. The fact that the electricity demand is a

deterministic value in this work allows us interpreting a loss of the capacity as

an increase in the electricity load. Assume that the available generating capacity

and, therefore, the electricity load are known at the current state t = 1 when a

decision is made whether to modify an operating plan of the conventional plants

or not. It is unknown whether the onstream generating capacity is available at

minutes t + 1, t + 2, . . . , T S or there is an importing or exporting capacity lost.

On the event tree it can be pictured as a linear change in the forecast demand

for a minute t + 1, t + 2, . . . , T S comparing to the previous state. Figure 5.3

plots a scenario tree of the electricity load values where every minute there is an

expected loss of the exporting or importing capacity. Every scenario suggests a

loss of 600MW in the generating capacity and a loss of 100MW in the importing

capacity at a certain minute t.
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Figure 5.3: A scenario tree of the changes in the electricity load equivalent to the
loss of the capacity

A scenario tree plotted on Figure 5.3 presents three possible outcomes every

minute t of the modelling horizon 2, 3, . . . , T S: all the planned generating capacity

is available; there is a loss of the generating capacity; there is a loss of the

importing capacity. For every scenario we assume that once the capacity is lost,

the remaining generating units are available until the end of the modelling horizon

T S.

We wish to capture the expectation of a loss in the generating capacity every

minute of the modelling horizon. In this case, however, the number of stages when

a new information becomes available is T S − 1, which is higher than that for the
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scenario tree of the changes in the wind power where S = 4. In order to formulate

a mathematical model for both uncertainties, a loss of the generating capacity and

the change in the wind power, we assume there are four stages in the scenario tree

of the changes in the electricity load rather than T S. This assumption leads to the

situations where parent and child belong to the same stage, they are formulated

in the next section so that the nonanticipativity property is preserved.

The optimal solution at the root of the scenario tree ensures that the electricity

generating system is prepared for a capacity loss at any minute t of the modelling

horizon. This solution is fixed and the modelling horizon is rolled forward so

that the optimal solution can be found for the next minute t = 1, 2, . . . , T . The

optimal solution for the root of the scenario tree which is now a new minute t, is

fixed again. The rolling horizon method is applied until the optimal solution

is found for every minute t of the planning horizon 1, 2, . . . , (T − T S).

5.3 Solving a problem with the uncertainty

The uncertainties presented in sections 5.1 and 5.2 are formulated in the stochastic

programming problem later in this section. The output of a number of tests

performed with the stochastic model result in the estimate of the system balancing

cost when the wind power and the available capacity are uncertain.

5.3.1 Decision variables and constraints of the LP stochas-

tic optimization model

To formulate the deterministic equivalent of the multistage stochastic program-

ming problem, let us combine the wind power and the electricity load scenario

trees described in sections 5.1 and 5.2, and enumerate all nodes of the combined

scenario tree. We use a breadth-first search order [28], i.e. start from a root node

corresponding to the first stage.

Definition Let n denote a node of the scenario tree and an denote the direct

ancestor of a node n to capture the dynamics in the stochastic optimization

model.

The root of the scenario tree has index n = 1, so the stage 2 nodes start from index

2. The numbers of children for each node in the event tree may differ, as they

depend on a probability distribution of the appropriate stochastic process and a

choice of the branching. However, the “parent-child” structure of the scenario

tree preserves the nonanticipativity property of the stochastic problem.
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Let N denote the last node at the stage 4 so that each scenario goes through a

certain number of nodes n ∈ {1, 2, . . . , N}. A number of time intervals associated

with every node n is denoted by Tn > 0. For the root node, a number of intervals

T1 = 1 shows that there is only the current minute information available at the

moment of the decision making. Depending on a choice of the branching method

(as described in Section 5.1) nodes of the scenario tree can be grouped by stages

of the scenario tree. Then, for the scenario tree that captures the uncertainty of

the wind power output, Tn equals a length of the stage s corresponding to node

n. However, the scenario tree of the changes in the electricity load branches every

minute, so a number of intervals Tn for a node n of this tree varies depending

on a minute when the generating capacity is lost, and ancestor an sometimes

corresponds to the same stage as node n.

Definition Let the index τ denote a minute of node n, such that τ = 0, 1, . . . , Tn.

If a certain event describes a loss of the generating capacity at time τ = τ ∗ < T s

of node an then Tan
= τ ∗ and Tn = T s − τ ∗, where s is a stage of node an.

Let G denote the set of all the generators and consist of the union of C, the set

of the conventional generators, with W , the set of the wind generators. The set

of the conventional generators also consists of Coal, Nuclear and Gas generating

plants. The decision variables in the model correspond to the output of each

generating unit in the power system. The decision variables are denoted by

xnτg ∀n = 1, 2, . . . , N, τ = 0, 1, . . . , Tn, g ∈ C (5.3)

where xnτg is a production level of the thermal unit g during time interval τ of

node n. The wind power generation is determined by the wind power scenario

tree.

xnτg = wnτg ∀n = 1, 2, . . . , N, τ = 1, 2, . . . , Tn, g ∈W (5.4)

There are two groups of constraints that can be formulated for the stochastic

model: the constraints applied to every node n = 1, 2, . . . , N and the constraints

that reflect the stochastic properties of the model. First let us formulate the

constraints that connect the nodes into the scenarios and show the “parent-child”

relationship between the nodes.

xn0g = xanTng ∀n = 2, 3, . . . , N, g ∈ G (5.5)

These inter-nodal constraints state that for every generator g the first value of an

output in a node n has to be the same as the last value of its ancestor an. The
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first value of a node n is described with an index 0, it is fixed by the ancestor

while decisions are made beginning with τ = 1. The last value of a node n is

determined by an index Tn.

Further there are constraints that are applied to every node n, they are equiv-

alent to the constraints formulated for the deterministic model in Chapter 3.

Planning the production level of the electricity generation units is bounded by

the available resources and technology. Decision variables introduced above have

finite upper and lower bounds representing unit capacity limits of the generation

system.

xg ≤ xnτg ≤ xg ∀n = 1, 2, . . . , N, τ = 1, 2, . . . , Tn, g ∈ C (5.6)

The parameters xg and xg denote the lowest and the highest possible output of

unit g respectively.

Further, Run-Up and the Run-Down constraints also applied to the thermal

generation. Following the notation of Chapter 3, let r1+ and r2+ denote two

Run-Up rates separated by the “elbow” output level e+ and r1− and r2− denote

two Run-Down rates separated by the “elbow” e− output level. Then the corre-

sponding constraints of the possible change in the output of the thermal plants

are formulated as the inequalities:

xn(τ+1)g ≤ e+ + r2+ − r1+

e+
xnτg + r1+ (5.7)

xn(τ+1)g ≤ xnτg + r2+ (5.8)

and

xn(τ+1)g ≥ xg − e− + r2− − r1−

xg − e−
xnτg −

r2−xg − r1−e−

xg − e−
(5.9)

xn(τ+1)g ≥ xnτg − r2− (5.10)

where n = 1, 2, . . . , N, τ = 0, 1, . . . , Tn, g ∈ C.

The loading constraint combines different generating units and applied for

every node separately. Denoting by Dnτ the load demand during interval τ of

node n and by ∆D a percent mismatch allowed between the electricity load and

the generation, the loading constraint is formulated with the inequalities:

Dnτ (1 − ∆D) ≤
∑

g∈G

xnτg ≤ Dnτ (1 + ∆D) (5.11)
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where n = 1, 2, . . . , N, τ = 1, 2, . . . , Tn.

Similarly to the case of the deterministic problem, the minimization of the

accumulated fuel cost affects the stochastic solution by setting the generation of

the thermal units close to the lower bound of the allowed mismatch between the

electricity generation and the demand Dτn(1 − ∆D). This fact increases the risk

of operating at a frequency below the target level. To avoid this we reintroduce

a cost of mismatch between the electricity demand and the generation {ζ+
v ; ζ−v }

as it was described in Chapter 3.

Let us introduce further another set of variables:

{d+
nτv, d

−
nτv} (5.12)

where n = 1, 2, . . . , N, τ = 1, 2, . . . , Tn, v = 1, 2, . . . , V . These variables denote

the difference between the electricity demand and the generation formulated in

the following way:
∑

g∈G

xnτg −Dnτ =
V∑

v=1

(d+
nτv − d−nτv) (5.13)

where n = 1, 2, . . . , N, τ = 1, 2, . . . , Tn and V is a number of the penalty cost

bands in the allowed mismatch between the electricity demand and the generation

[(1 − ∆d)Dnτ ; (1 + ∆d)Dnτ ].

The size of every penalty cost band v = 1, 2, . . . , V is formulated with the

inequalities:

0 ≤ d+
nτv ≤ d+

nτv (5.14)

0 ≤ d−nτv ≤ d−nτv (5.15)

where d+
nτv is an upper bound of the band v when the generation exceeds the

electricity demand and d−nτv is an upper bound of the band v when the electricity

demand exceeds the generation.

The set of parameters [d+
nτv, d

−
nτv] depends on the scenario tree of the electricity

load and can be calculated in the following way

d+
nτv = ∆d ∗Dnτ ∗ β+

v (5.16)

d−nτv = ∆d ∗Dnτ ∗ β−
v (5.17)

where β±
v is the part of the allowed mismatch between the electricity demand and

the generation ∆d ∗Dnτ that corresponds to the penalty band v = 1, 2, . . . , V .
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As distinct from the deterministic case there are four penalty cost bands

for the stochastic programming problems. Because of the uncertainty that the

System Operator has to deal with, the amount of the wind power in the electricity

generation system that produced a feasible solution for the deterministic problem

maybe give an infeasible result for the stochastic model. First, three penalty cost

bands are associated with the costs {ζ+
v ; ζ−v } and the size {d+

nτv; d
−
nτv} as in the

deterministic case. The fourth price band has a very high cost and big enough

size associated with it so that the variables (d+
nτ4; d

−
nτ4) are nonzero only in the

exceptional cases where there is no other way to avoid infeasible solution.

The objective of the stochastic problem is to find a feasible solution {xnτg}
such that it satisfies all the constraints (5.2)− (5.17) at the minimal operational

cost, i.e.:

min
x

N∑

n=1

pn(
∑

g∈C

cg

Tn∑

τ=1

xnτg +
V∑

v=1

ζ+
v

Tn∑

τ=1

d+
nτv +

V∑

v=1

ζ−v

Tn∑

τ=1

d−nτv) (5.18)

In the objective function (5.18) the operational cost is calculated for every

node n and includes the fuel cost
∑

g∈C cg
∑Tn

τ=1 xnτg and the cost of a mismatch

between the electricity generation and the load
∑V

v=1 ζ
+
v

∑Tn

τ=1 d
+
nτv+

∑V

v=1 ζ
−
v

∑Tn

τ=1 d
−
nτv.

It is uncertain if a node n = 1, 2, . . . , N will realise in the future, however, there

is a probability pn associated with node n. The probabilities in the objective

function are not those that were formulated for the scenario tree but path prob-

abilities

pn = P (n) ∗ P (an) ∗ P (aan
) ∗ · · · ∗ P (1)

where P (n) is a probability formulated for a node n in the scenario tree. This

probability is multiplied by the probabilities of its ancestors to get the path

probability pn. Therefore, the objective function (5.18) estimates the expected

operational cost of the electricity generation.

The stochastic LP optimization model formulated in this section includes two

sets of variables {xnτg} and {dnτv}, where g ∈ C, v = 1, 2, . . . , V n = 1, 2, . . . , N

and , τ = 1, 2, . . . , Tn. We take κ again as a number of thermal generators

in the set C so that a total number of decision variables in the model equals

κ
∑N

n=1 Tn + V
∑N

n=1 Tn. Similarly to the case of the deterministic optimization

model, we wish to reduce a number of variables by grouping thermal generators:

one nuclear, one gas and one coal generators in the set C. Number of nodes N

in the stochastic optimization problem depends on a chosen scenario tree. For

the problem formulated in this section we combine two scenario trees plotted in
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Figure 5.2 and Figure 5.3. The aggregated tree results in N = 1000 nodes. Then,

taking V = 6 there are 72, 882 decision variables in the stochastic optimization

problem for a single t of the rolling horizon 1, 2, . . . , T . We assume again one

accumulated wind energy curve in the set of wind generators, thus, number of

constraints result in 344, 112 for a single t of the rolling horizon 1, 2, . . . , T .

5.3.2 Formulation of the LP stochastic optimization model

The constraints and the objective function described in Section 5.3.1 are combined

below:

Objective (minimize cost):

min
x

N∑

n=1

pn(
∑

g∈C

cg

Tn∑

τ=1

xnτg +
V∑

v=1

ζ+
v

Tn∑

τ=1

d+
nτv +

V∑

v=1

ζ−v

Tn∑

τ=1

d−nτv)

Subject to:

xnτg = wnτg ∀g ∈ W

xg ≤ xnτg ≤ xg ∀g ∈ C

xn(τ+1)g ≤ e+ + r2+ − r1+

e+
xnτg + r1+ ∀g ∈ C

xn(τ+1)g ≤ xnτg + r2+ ∀g ∈ C

xn(τ+1)g ≥ xg − e− + r2− − r1−

xg − e−
xnτg −

r2−xg − r1−e−

xg − e−
∀g ∈ C

xn(τ+1)g ≥ xnτg − r2− ∀g ∈ C
∑

g∈G

xnτg ≤ Dnτ (1 + ∆D)

∑

g∈G

xnτg ≥ Dnτ (1 − ∆D)

∑

g∈G

xnτg −Dnτ =
V∑

v=1

(d+
nτv − d−nτv)

0 ≤ d+
nτv ≤ d+

nτv ∀v = 1, 2, . . . , V

0 ≤ d−nτv ≤ d−nτv ∀v = 1, 2, . . . , V

d+
nτv = ∆d ∗Dnτ ∗ β+

v ∀v = 1, 2, . . . , V

d−nτv = ∆d ∗Dnτ ∗ β−
v ∀v = 1, 2, . . . , V

xn0g = xa(n)Tng ∀n = 2, 3, . . . , N, g ∈ G
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where n = 1, 2, . . . , N , τ = 1, 2, . . . , Tn.

Formulated stochastic optimization problem is linear and, although a number

of decision variables and constraints is high, it can be efficiently solved with a

CPLEX solver. Using version 10.00 of the CPLEX solver CPU time of solving the

optimization problem was 0.54s for a single t of the rolling horizon 1, 2, . . . , T .

However, there is 2.36s of CPU time spent for calculating a new scenario tree

for the stochastic optimization problem. This adds-up to CPU time of 2.8s for a

single iteration or 67.2min for a daily electricity generation problem, or T = 1440.

5.3.3 Output of the stochastic model with the uncertainty

of the wind power and the capacity loss

The decision on the power output of the thermal plants at the current minute t is

based on the expected operational cost of the stochastic problem. The expected

cost depends on the heuristic probability distribution of the wind power illustrated

with the scenario tree. We wish the System Operator to be ready and respond to

the highest fluctuations recorded historically which means that the fluctuations

may be stronger than that happening in real time. To evaluate the operational

cost of the electricity generation during the real time rather than the expected

cost based on the chosen scenario tree we use the decision variables recorded at

the root of the scenario tree while solving the rolling horizon problems.

Let (x1g, x2g, . . . , xT−T S ,g) be a vector of the real-time decisions after solving

a sequence of T stochastic problems:

xtg := x
(t)
1,1,g, t = 1, 2, . . . , (T − T S)

where x
(t)
1,1,g is the power output at the root of the stochastic tree for the t-th

problem of the rolling horizon.

In a similar way a mismatch between the electricity generation and the load

is recorded.

d+
tv := d

+(t)
1,1,v,v = 1, 2, . . . , V

d−tv := d
−(t)
1,1,v,v = 1, 2, . . . , V

where d
+(t)
1,1,v and d

−(t)
1,1,v are the positive and the negative mismatch between the

electricity generation and the load respectively at the root of the scenario tree

for the t-th problem of the rolling horizon.

Knowing the fuel cost cg of each generating plant g ∈ C and the cost of the
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mismatch between the electricity generation and the load (ζ+
v , ζ

−
v ), the operational

cost can be calculated for the planning horizon t = 1, 2, . . . (T − T S) as follows.

Fstoch =
∑

g∈C

cg

T−T S
∑

t=1

xtg +
V∑

v=1

ζ+
v

T−T S
∑

t=1

d+
tv +

V∑

v=1

ζ−v

T−T S
∑

t=1

d−tv (5.19)

where {xtg, d
+
tv, d

−
tv} is a set of real-time decision variables recorded for (T − T S)

stochastic problems.
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Figure 5.4: An example of the rolling horizon stochastic programming solution
with the uncertainty of the capacity loss when 11% of the wind power is incor-
porated in the total generation

To evaluate the system balancing cost that appears when the wind power is

incorporated into the electricity generation system let us find the operational cost

in (5.19) for two cases:

Case A: there is uncertainty in the available capacity of the thermal

plants but wind energy output is known for the planning

horizon T . A scenario tree for this stochastic problem is

illustrated in Figure 5.3.

Case B: there is uncertainty in the available capacity of the thermal

plants and uncertainty in wind energy output is represented

with the scenario tree. A scenario tree for this stochastic

problem is a combination of two scenario trees illustrated in

Figure 5.2 and Figure 5.3.
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Figure 5.4 shows an example of the solution for Case A when there is un-

certainty of a possible capacity loss but the wind speed is forecast for certain.

Problem with 11% of wind energy in the total generation is feasible but the oper-

ational cost is high because the Coal and Nuclear generators are taken down from

the maximum capacity levels and the cheaper power is replaced by the more ex-

pensive gas power output. Such a scheduling of the thermal plants ensures that in

the event of capacity loss, the power system remains within the target frequency

until the end of the modelling horizon.

To calculate the operational cost for the Case A there are decision variables

recorded for the solution at the root of the scenario tree:

(x
(a)
1g , x

(a)
2g , . . . , x

(a)

T−T S ,g
)

(d
+(a)
1v , d

+(a)
2v , . . . , x

+(a)

T−T S ,v
)

(d
−(a)
1v , d

−(a)
2v , . . . , x

−(a)

T−T S ,v
)

The above variables are used to calculate the operational cost by applying them

into the right-hand side of (5.19). The operational cost of the electricity gener-

ation when there is only uncertainty in the available thermal capacity but the

wind power output is known, is then the following:

F
(a)
stoch =

∑

g∈C

cg

T−T S
∑

t=1

x
(a)
tg +

V∑

v=1

ζ+
v

T−T S
∑

t=1

d
+(a)
tv +

V∑

v=1

ζ−v

T−T S
∑

t=1

d
−(a)
tv

If compared with the operational cost Fvar calculated in Section 3.3.2, the

cost of the stochastic problem F
(a)
stoch is higher because of the thermal generation

running at the level that would allow them responding to a sudden increase or

decrease in load. The scheme of having a number of thermal generators away

from the output limits to secure feasibility of solution is currently being applied

in practise. It is also illustrated with the solution of the stochastic programming

problem. The system balancing cost that appears with the uncertainty of the

available capacity of the thermal generation can be estimated as follows:

f (a) = F
(a)
stoch − Fvar

We wish to compare further the results of Case A with that calculated for

Case B when there is also the uncertainty about wind power output added to the

uncertainty of the load. Similarly to Case A, there are decision variables recorded
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for a rolling horizon stochastic problem of Case B:

(x
(b)
1g , x

(b)
2g , . . . , x

(b)

T−T S ,g
)

(d
+(b)
1v , d

+(b)
2v , . . . , x

+(b)

T−T S ,v
)

(d
−(b)
1v , d

−(b)
2v , . . . , x

−(b)

T−T S ,v
)
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Figure 5.5: An example of the rolling horizon stochastic programming solution
with the uncertainty of the wind power output and the capacity loss when 7% of
the wind energy is incorporated in the total generation

The above variables are further used to calculate the operational cost of the

electricity generation when there are two uncertainties that the System Operator

faces: uncertainty of capacity loss and uncertainty of wind power output.

F
(b)
stoch =

∑

g∈C

cg

T−T S
∑

t=1

x
(b)
tg +

V∑

v=1

ζ+
v

T−T S
∑

t=1

d
+(b)
tv +

V∑

v=1

ζ−v

T−T S
∑

t=1

d
−(b)
tv

In Case B the System Operator does not have the information about the

variability of future wind power output as it is not reflected in the scenario tree.

The solution of the stochastic programming problem for Case B is found with

the expectation that wind power output is slowly changing over the modelling

horizon. Therefore, the cost of the uncertainty in the wind power is calculated

as follows:

f (b) = F
(b)
stoch − F

(a)
stoch + f+

w (5.20)

where f+
w is the additional cost of wind power fluctuations.
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Figure 5.5 plots an example of the rolling horizon stochastic programming

solution when 7% of the wind power is incorporated in the total generation. This

is the highest possible amount of wind energy that can be incorporated into the

electricity generation system. With wind power higher than 7% in the total

generation, the variables of the fourth penalty cost band (d+
t4; d

−
t4) are given non-

zero values, which means that the mismatch between the electricity generation

and the load is so high that it affects the target frequency.

5.4 The system balancing cost when there is the

uncertainty of the wind power in the elec-

tricity generation system

In order to calculate the system balancing cost of the uncertainty in the wind

and thermal generation, the operational cost of Case A and Case B are estimated

for a day (or 1440 minutes) of electricity generation for different levels of wind

power in the total generation.
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Figure 5.6: The fuel cost of the uncertainty in wind power output and the avail-
able thermal capacity, shown for different levels of the wind introduced into the
electricity system

Figure 5.6 plots the fuel costs of a daily electricity generation weighted by the

total amount of the produced power. For up to 13.3% of wind energy in the total

generation, the highest cost is the fuel cost calculated for a problem when there is

no wind energy in the power system. However, when the amount of wind exceeds

101



13.3% in the total generation, the balancing cost of the uncertainty in the wind

power output combined with the uncertainty of the available thermal capacity is

so high that the power system does not benefit from the incorporation of extra

wind into the electricity generation system.

Two optimization models that we developed in this work, deterministic and

stochastic, interact when estimating the system balancing cost of variable and

unpredictable wind energy incorporated into the electricity generation system.

Each of the models covers only one aspect of the wind speed: variability or

uncertainty. In case variable wind energy is also uncertain the system balancing

cost can be estimated as in (5.20). Even at 0% of wind energy integration the

balancing cost of variability is complemented by the cost of uncertainty in loss of

thermal generating capacity.

Even though it is possible to estimate the system balancing cost of variable

and unpredictable wind energy using the results of deterministic and stochastic

optimization models, we wish to emphasize the importance of developing a model

that captures both characteristics of wind. Building a scenario tree that includes

both, variability and uncertainty of wind energy can be suggested as a future

project.
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Chapter 6

Conclusion

This thesis presented a study of the statistical characteristics of one-minute wind

speed and estimated the system balancing costs when the wind power is incorpo-

rated into the electricity generation system. The problem of the increase in the

system balancing cost arises as a result of variable and unpredictable nature of

the wind speed that transferred into the wind power output. National Grid has to

balance the electricity supply and demand every moment, which leads to different

problems formulated on time scales of a year, hour, one minute or one second. In

this work we were focusing on one-minute electricity generation when the System

Operator makes a decision on the output of the available thermal generators.

This area was not well-researched before but has an important application in the

industry.

We wish to use optimization modelling to estimate the system balancing cost

that requires the appropriate data with one-minute resolution. However, there is

no one-minute wind speed available on the country level. Least frequent data was

presented by ten-minute wind speed published by the Utah Geological Survey,

therefore, we wish to generate unbiased samples from the wind stochastic process

conditional on each consecutive group of wind speeds having a given average

value. To do this, we developed a unique algorithm based on one of the Monte

Carlo Markov Chain methods, Gibbs sampling algorithm. It ensures that as the

number of iterations of sampling from a known distribution increases, the density

of a resulting set of variables converges to the required one.

We originally adapted an algorithm that transfers one-minute wind speed

into the deseasonalised and normalised wind speed, first used by Glasbey et al.

([16, 17]), so that the modified Gibbs sampling algorithm is described as follows:

step A: generate normalised wind speed that further transfered into

original wind speed;
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step B: if the average of the generated one-minute wind speed does

not equal a given average ten-minute wind speed, it is shifted

along the vector of the maximum probabilities of the prob-

ability distribution;

step C: a new value of the shifted normalised wind speed is found

within a specified tolerance interval of the probability space;

Iterations: steps A to C are repeated a big number of times that ensures

the probability distribution of the resulting set is second-

order stationary process.

Generated samples of one-minute wind speed were further used in determin-

istic and stochastic optimization modelling of the electricity generation system.

Both optimization models include common constraints of the electricity genera-

tion while our original contribution consists in reflecting the characteristics of the

UK power system and developing algorithms that estimate the system balancing

costs of variable and unpredictable wind energy.

The system balancing costs appear when the System Operator uses or keeps

on stand-by flexible but expensive generating units in order to deal with an un-

expected mismatch between the electricity supply and demand. The levels of the

operating reserve required at any given time depend partly on the uncertainties

in the electricity load but also in the available generating capacity.

Electricity supply and demand in the transmission and distribution power

systems need to be balanced every single moment of time. This thesis investigated

the electricity generation on one-minute basis and, therefore, the variability of

the wind energy and the electricity generation with one-minute frequency. The

system balancing cost caused by the fluctuations of the wind energy was estimated

through a series of cases. The power system benefits from the fact that wind power

does not include fuel costs but the operational cost is increased when the thermal

plants modify the power output in order to balance the electricity generation and

the load.

We assumed in this work that the saving in fuel cost and the additional fuel

cost appearing when wind energy is incorporated into the electricity generation

system, can be determined as a function of the statistical parameters of the

wind energy. To demonstrate this, we developed a unique model of the actual

accumulated fuel cost, depending on the mean, absolute value of gradients and

standard deviation of the wind energy curve.
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In reality the System Operator does not have the information about the vari-

ability or the capacity of the future wind power output. The system balancing

cost of this uncertainty was evaluated using stochastic programming when the

flow of the information and a sequence of the decisions by the System Operator

were illustrated with a scenario tree. Our original contribution consisted in devel-

oping a scenario tree that reflected two uncertainties: uncertainty in the available

capacity and uncertainty in wind energy output. The fact that the determinis-

tic and the stochastic optimization models cover only one aspect of wind speed,

variability or uncertainty, means that they have to interact in order to estimate

the system balancing cost. We wish to suggest exploring different scenario trees

in future work that would allow us to estimate the system balancing cost of vari-

able and unpredictable wind speed in one model. We also leave the matter of

interaction between the electricity demand and wind speed for future research.

In summary, the statistical characteristics of the wind speed have been ex-

plored and the system balancing costs of wind speed variability and unpredictabil-

ity have been estimated. The results showed that depending on the statistical

parameters and the geographic distribution of the wind speed the system bal-

ancing cost of the electricity generation can be significant. However, the recent

developments in construction of wind turbines as well as introduction of smart

metering into the global energy market could open a new area of application for

the results of this work.
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Appendices

Appendix A. Definitions by the National Grid

NGET is National Grid Electricity Transmission plc (NO: 2366977) whose reg-

istered office is at 1 − 3 Strand, London, WC2N5EH.

Supplier is

• (a) A person supplying electricity under an Electricity Supply Licence; or

• (b) A person supplying electricity under exemption under the Act; in each

case acting in its capacity as a supplier of electricity to Customers in Great

Britain.

Customer is a person to whom electrical power is provided (whether or not he

is the same person as the person who provides the electrical power).

Generator is a person who generates electricity under licence or exemption un-

der the Act acting in its capacity as a generator in Great Britain.

Network operator is a person with a User System directly connected to the

GB Transmission System to which Customers and/or Power Stations (not form-

ing part of the User System) are connected, acting in its capacity as an operator

of the User System, but shall not include a person acting in the capacity of an

Externally Interconnected System Operator.

Settlement Period is a period of 30 minutes ending on the hour and half-hour

in each hour during a day.

Gate Closure means, in relation to a Settlement Period, the spot time 1 hour

before the spot time at the start of that Settlement Period.

Operational Day is the the period from 05 : 00 hours on one day to 05 : 00 on

the following day.

Balancing Mechanism (BM) is a period of time which allows the System Oper-

ator to call upon additional generation/consumption or reduce generation/consumption

in order to balance the System minute by minute. From July this period of time

will be one hour before each trading period.
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BM Unit means a unit established and registered (or to be established and

registered) by a Party in accordance with Section K3 or, where the context so

requires, the Plant and/or Apparatus treated as comprised in or assigned to such

unit for the purposes of the Code.

Physical Notification means, in respect of a Settlement Period and a BM Unit,

a notification made by (or on behalf of) the Lead Party to the Transmission Com-

pany under the Grid Code as to the expected level of Export or Import, as at the

Transmission System Boundary, in the absence of any Acceptances, at all times

during that Settlement Period.

Quiescent Physical Notification is the data that describes the MW levels to

be deducted from the Physical Notification of a BM Unit to determine a resultant

operating level to which the Dynamic Parameters associated with that BM Unit

apply, and the associated times for such MW levels. The MW level of the QPN

must always be set to zero.

Export (Import) Limits is a series of MW figures and associated times, mak-

ing up a profile of the maximum level at which the BM Unit may be exporting

(importing) in MW to the GB Transmission System at the Grid Entry Point or

Grid Supply Point, as appropriate.

Dynamic Parameters comprise

• Up to three Run-Up Rate(s) and up to three Run-Down Rate(s), ex-

pressed in MW/minute and associated Run-Up Elbow(s) and Run-Down

Elbow(s), expressed in MW for output and the same for input. It should

be noted that Run-Up Rate(s) are applicable to a MW figure becoming

more positive;

• Notice to Deviate from Zero (NDZ) output or input, being the notifi-

cation time required for a BM Unit to start importing or exporting energy,

from a zero Physical Notification level as a result of a Bid-Offer Acceptance,

expressed in minutes;

• Notice to Deliver Offers (NTO) and Notice to Deliver Bids (NTB),

expressed in minutes, indicating the notification time required for a BM

Unit to start delivering Offers and Bids respectively from the time that the

Bid-Offer Acceptance is issued. In the case of a BM Unit comprising a

Genset, NTO and NTB will be set to a maximum period of two minutes;

• Minimum Zero Time (MZT), being either the minimum time that a

BM Unit which has been exporting must operate at zero or be importing,
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before returning to exporting or the minimum time that a BM Unit which

has been importing must operate at zero or be exporting before returning

to importing, as a result of a Bid-Offer Acceptance, expressed in minutes;

• Minimum Non-Zero Time (MNZT), expressed in minutes, being the

minimum time that a BM Unit can operate at a non-zero level as a result

of a Bid-Offer Acceptance;

• Stable Export Limit (SEL) expressed in MW at the Grid Entry Point

or Grid Supply Point, as appropriate, being the minimum value at which

the BM Unit can, under stable conditions, export to the GB Transmission

System;

• Stable Import Limit (SIL) expressed in MW at the Grid Entry Point or

Grid Supply Point, as appropriate, being the minimum value at which the

BM Unit can, under stable conditions, import from the GB Transmission

System;

• Maximum Delivery Volume (MDV), expressed in MWh, being the max-

imum number of MWhr of Offer (or Bid if MDV is negative) that a partic-

ular BM Unit may deliver within the associated Maximum Delivery Period

(MDP), expressed in minutes, being the maximum period over which the

MDV applies.

Target Frequency is that Frequency determined by NGET, in its reasonable

opinion, as the desired operating Frequency of the Total System. This will nor-

mally be 50.00Hz plus or minus 0.05Hz, except in exceptional circumstances as de-

termined by NGET, in its reasonable opinion when this may be 49.90 or 50.10Hz.

An example of exceptional circumstances may be difficulties caused in operating

the System during disputes affecting fuel supplies.

High Frequency response is an automatic reduction in Active Power output

in response to an increase in System Frequency above the Target Frequency (or

such other level of Frequency as may have been agreed in an Ancillary Services

Agreement). This reduction in Active Power output must be in accordance with

the provisions of the relevant Ancillary Services Agreement which will provide

that it will be released increasingly with time over the period 0 to 10 seconds

from the time of the Frequency increase on the basis set out in the Ancillary Ser-

vices Agreement and fully achieved within 10 seconds of the time of the start of

the Frequency increase and it must be sustained at no lesser reduction thereafter.

Primary Response is the automatic increase in Active Power output of a
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Genset or, as the case may be, the decrease in Active Power Demand in response

to a System Frequency fall. This increase in Active Power output or, as the case

may be, the decrease in Active Power Demand must be in accordance with the

provisions of the relevant Ancillary Services Agreement which will provide that

it will be released increasingly with time over the period 0 to 10 seconds from

the time of the start of the Frequency fall on the basis set out in the Ancillary

Services Agreement and fully available by the latter, and sustainable for at least

a further 20 seconds.

Secondary Response is the automatic increase in Active Power output of a

Genset or, as the case may be, the decrease in Active Power Demand in response

to a System Frequency fall. This increase in Active Power output or, as the case

may be, the decrease in Active Power Demand must be in accordance with the

provisions of the relevant Ancillary Services Agreement which will provide that it

will be fully available by 30 seconds from the time of the start of the Frequency

fall and be sustainable for at least a further 30 minutes.

Operating Reserve is the additional output from Large Power Stations or the

reduction in Demand, which must be realisable in real-time operation to respond

in order to contribute to containing and correcting any System Frequency fall to

an acceptable level in the event of a loss of generation or a loss of import from

an External Interconnection or mismatch between generation and Demand.

Good Industry Practice is the exercise of that degree of skill, diligence, pru-

dence and foresight which would reasonably and ordinarily be expected from a

skilled and experienced operator engaged in the same type of undertaking under

the same or similar circumstances.
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