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Abstract
The Saccharomyces cerevisiae STE6 gene product mediates the export of the peptide mating

pheromone a-factor. The Ste6 polypeptide belong to the ABC transporter superfamily whose

members include many proteins of medical significance. The Ste6p is a short lived,

transmembrane protein which is produced in low levels in wild-type yeast. This thesis describes

the construction, expression and partial purification of a recombinant Ste6p from S. cerevisiae.

In the absence of a functional assay for Ste6p, its presence was detected by Western blot analysis

using polyclonal antibodies raised in this study. The antibodies were produced in rabbits in

response to a recombinant Ste6p-ProteinA fusion protein. Purification studies on wild-type Ste6p

were hindered due to the very low levels at which the protein was being produced. As an

alternative to conventional purification techniques the Ste6p was affinity tagged at its extreme N-

terminus with a hexa-histidine tail (N(His)6Ste6p) so that it could be "pulled" out of a dilute

solution by its high affinity to Ni-NTA (nickel-Nitrilo-Tri-Acetic-acid) resin. The chimaeric

protein was expressed under the control of the GAL promoter in aMATa, pep4 strain of S
cerevisiae against a background ofwild-type protein. Purification ofN(His)6Ste6p failed due to

an apparent inability to bind the chimaeric protein to the resin. Extracts of cells expressing

N(His)r,Stc6p were Western blotted and probed with an anti-histidine-tag monoclonal antibody.
The antibody failed to detect any protein of the correct size for the Ste6p chimaera. These results

suggested that the N-terminus ofN(His)6Ste6p had been removed during posttranslational
modification of the protein.

The third approach to the purification of Ste6p involved tagging the C-terminus of the protein

with an octa-histidine tag to produce C(His)gStc6p. As with the N-terminally tagged Ste6p this
chimaera was expressed under the control of the GAL promoter however in this case the protein

was expressed in aMATa.pep4 strain of S.cerevisae. This protein could be detected by the anti-

histidine tag monoclonal antibody and was able to bind to the Ni-NTA resin. The protein was

partially purified and was clearly identifiable on silver stained polyacrylamide gels. It was hoped
that the enigma surrounding the N-terminus of Ste6p would be resolved by sequencing the

partially purified C(His)gSte6p, however only a small amount of protein was produced in this

study and attempts at sequencing it were unsuccessful.
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A600 Absorbance at 600nm
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B Bound
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K thousand

kb kilobase

MSD Membrane Spanning Domain

mg milligram

min minute

ml millilitre

Eg microgram

Hi microlitre

MDR Multiple Drug Resistance

MHC Major Histocompatibility Complex
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MWt Molecular Weight

nm nanometer

NBD Nucleotide Binding Domain

Ni-NTA nitrilo -tri-acetic-acid

N-terminus amino terminus

dNTP deoxy nucleoside triphosphate

PAGE Polyacrylamide Gel Electrophoresis

PMSF phenylmethylsulphonyl flouride

PCR Polymerase Chain Reaction

RAM Ras and a-factor maturation

RPM Revolutions per Minute

S. cerevisiae Saccharomyces cerevisiae

SAPU Scottish Antibody Production unit

sec second
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TAP Transporter Associated with Antigen Processing
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UB Unbound

V Volts
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Amino Acid
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Chapter 1

Introduction



Introduction

The selective transport of specific molecules across biological membranes is essential

for cell survival as it provides a mechanism by which a cell may acquire nutrients,

excrete waste products and communicate with other cells in its environment. Selective

transmembrane transport is mediated by specific transporter and channel proteins

associated with cellular membranes. Molecular characterisation of these proteins has

revealed that they can be grouped into discrete superfamilies. The largest of these

groups is the ATP Binding Cassette (ABC); (Higgins, 1992) or Traffic ATPase (Ames

et al., 1992) superfamily of transport proteins which comprises ofmore than 100

members, with examples discovered in many organisms from simple prokaryotes to

man. Family members are characterised by their highly-conserved ATP binding

domain (Walker et al., 1982) with which they are thought to couple the hydrolysis of

ATP with the movement of substrate across biological membranes. ABC-transporters

are thought to be relatively substrate-specific and transporters specific for the

transport of amino-acids, sugars, inorganic ions, polysaccharides, peptides and

proteins have been identified (Higgins, 1992).

The ABC transporter superfamily includes many proteins ofmedical significance. In

humans, mutations in genes encoding ABC transporters cause genetic diseases such as

cystic fibrosis (Riordan et al., 1989), Zellweger syndrome (Kamijo, 1990; Gartner et

al., 1992), infantile hyperinsulinaemic hypoglycaemia (Aguilar-Bryan, 1995; Thomas,

1995) and adrenoleukodystrophy (Mosser et al., 1994). Other ABC transporters of
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medical significance include the human P-glycoprotein (Chen et al., 1986), which is

involved with the development ofmultidrug resistance in the treatment of cancer, the

Pghl protein of the malarial parasite Plasmodium falciparum, which contributes to

antimalarial drug (chloroquine) resistance (reviewed in Rubio and Cowman, 1996)

and the human TAP1 and TAP2 genes which are involved in the processing of antigen

by MHC class 1 molecules (Deverson et al., 1990). The significance of this family of

proteins has prompted research into elucidating the mechanism by which the substrate

molecules are recognised and transported.

The yeast Saccharomyces cerevisiae has been used as an experimental eukaryotic

organism for decades and to date twenty nine ABC-transport proteins have been

assigned to it (Michaelis and Berkower, 1995; Decottignies and Goffeau, 1997). The

STE6-encoded ABC-transporter of S. cerevisiae transports the oligopeptide mating

pheromone, a-factor, into the extracellular environment and is essential for the sexual

life cycle (McGrath and Varshavsky, 1989; Kuchler et al., 1989). The pheromonal

control of the life-cycle of S. cerevisiae has been of interest since 1956, when Levi

first reported that the mating process might be hormonally regulated. Decades of

intensive study centred on the production of and response to the mating pheromones

of S. cerevisiae have provided researchers with a model system on which to base

various eukaryotic cellular processes such as peptide secretion and signal

transduction. Unlike many eukaryotic ABC transporter proteins the substrate of

Ste6p, a-factor, has been unequivocally identified and many of the cellular processes

involved in the biosynthesis of a-factor and the mating process are understood. This,
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taken in addition with the ability to manipulate yeast genetically makes Ste6p an ideal

candidate for the study of eukaryotic ABC-transporter proteins.

Part 1

The ABC-transporter superfamily

1.1 The ABC-transporter superfamily of transport proteins

The ABC-transporters form one of the largest and most diverse superfamilies of

proteins known to date. They are present in many organisms providing a means of

transportation for a vast number of compounds ranging from inorganic ions to large

polypeptides. The majority ofABC proteins are active transporters, utilising the

energy of ATP hydrolysis to pump solute across biological membranes. However

recent findings have shown that some ABC proteins may function in the regulation of

other membrane proteins in addition to their own transport activities. P-glycoprotein

and the cystic fibrosis transmembrane conductance regulator (CFTR) are examples of

mammalian ABC-transporter proteins which have been shown to regulate the activity

of heterologous channels (reviewed in Higgins, 1995). The following section provides

a brief introduction to structure and cellular functions associated with this family of

transport proteins. This section deals mainly with the eukaryotic members of the ABC

transporter superfamily; reviews concerning the structure and function of the bacterial

permeases may be found in: Higgins, 1992; Ames et al., 1992.
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1.2 Structure

a) The four domain organisation ofABC-transporters

The ABC transporter superfamily is distinguished from other transport proteins by a

highly conserved nucleotide binding domain (ATP-binding cassette) and modular

structure. In general, ABC transporters are composed of homologous halves, each

containing multiple (usually six) highly hydrophobic membrane spanning domains

(MSD) and a nucleotide binding domain (NBD) (Figure 1.1A). The typical ABC

transporter therefore contains two membrane spanning domains (MSD1, MSD2) and

two nucleotide binding domains (NBD1, NBD2). The individual domains of an ABC

transporter are frequently expressed as separate polypeptides, particularly in

prokaryotic species (e.g. the oligopeptide transporter of S. typhimurium; Figure 1.1B,

i). In many other ABC transporter proteins the domains are fused into larger

multifunctional polypeptides, for example, the two ATP binding domains of the E.

coli ribose transporter are fused into a double sized protein and the two membrane-

spanning domains of the iron hydroxamate transporter, also from E. coli, are fused

into a single polypeptide (Figures 1.1B, ii and iii respectively). Certain members of the

ABC transporter superfamily consist of two separately encoded "half-molecules".

These include the haemolysin transporter ofE. coli (Figure 1.1B, iv) which is

composed of one MSD and one NBD thought to function by existing as a homodimer

and the mammalian TAP1 and TAP2 polypeptides (Figure 1.1B, v) which consist of

two separately encoded "half-molecules" which are thought to associate to form a

functional transporter molecule (Androlewicz et al., 1994; Momburg et al., 1994).

Finally, many eukaryotic transporters, such as the human multidrug resistance protein
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(Figure 1.1B, vi) the S. cerevisae Ste6p (Figure 1.1A, vii) and the cystic fibrosis gene

product (Figure 1.1A, viii), have all four domains fused into a single polypeptide in

the order MSD1 -NBD1-MSD2-NBD2. A small subset of these "full-length" ABC

transporters, for example CFTR, contain an additional domain, designated the R

(regulatory) domain which lies between NBD1 and MSD2 and is the site of

phosphorylation events that regulate its activity (Reviewed in Kuchler and Thorner,

1990; Ames et al., 1992; Fliggins, 1992; Michaelis and Berkower, 1995; Fliggins

1995).

b) The Nucleotide Binding Domains

The ATP-binding domains of the ABC transporters are their most characteristic

feature. Each domain is approximately 200 residues in length and contains two highly

conserved motifs, the Walker A and Walker B motifs (Walker et al., 1982; Hyde et

al., 1990) associated with many nucleotide binding proteins. The sequence identity

between ABC-transporters extends over the entire nucleotide binding domain and is

not restricted solely to the Walker motifs. Both ABC and non-ABC nucleotide

binding proteins contain Walker A and B motifs. The ATP-binding domains are highly

hydrophilic, contain no potential membrane spanning segments and are thought to be

tightly associated with the cytoplasmic face of the membrane as detailed in Figure 1.1

(reviewed in Higgins, 1992). The sequence motifs found within the NBDs of the

ABC-transporter superfamily are indicated in Figure 1.2. In addition to the Walker A

and B motifs the NBD contains a highly diagnostic "signature" or C motif which lies
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Figure 1.1 Domain organisation of typical ABC-transport proteins

(A) Structural organisation of a typical ABC transporter

MSD MSD NBD

O
NBD

O
MSD,

NBD

MSD

NBD

(B) Domain organisation of ABC transporters

Oligopeptides Ribose
S.typkimurium E.

(?)

Fe-hydroxylate
E. col

(vii)

Haemolysin
E. coli

(viii)

MHC peptides Multidrug
resistance

a-factor Cystic Fibrosis

Figure 1.1A A schematic representation of the typical arrangement of the four
domains that make up a ABC transporter in the membrane. The nucleotide binding
domain (NBD) is shown as a yellow sphere and the membrane spanning domain
(MSD), usually composed of six predicted transmembrane spans, as a blue cylinder.
Figure 1.1 B A schematic representation of the domain organisation of some
members of the ABC transporter superfamily. The transporter's source and organism
are indicated. Each transporter consists of four domains as described in (A). Certain
transporters, such as CFTR, have additional domains that are not part of the core

transmembrane translocation mechanism. The regulatory, R, domain of CFTR is
indicated.

Taken from: Kuchler and Thorner, 1990; Higgins, 1992; Michaelis and Berkower,
1995; Higgins 1995.
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upstream of the Walker B motif and has the consensus LSGGQ. This motif generally

distinguishes ABC-transporter proteins from other ATP binding proteins (Hyde

al.,1990; Ames et al.,1992;reviewed in Michaelis and Berkower, 1995). The final

motif found within the NBD is the so called "centre region" which lies between the

Walker A and B motifs and is found in many ABC-transporter proteins.

Figure 1.2 Consensus sequences within the NBD of an ABC protein

Walker A Centre Signature Walker B

GxxGxGKS/T LSGGQ

90-120

A schematised NBD (-200 residues in length) is shown with the conserved regions

represented by green boxes. The Walker A, Walker B, signature and centre motifs
are shown and the distance (in amino acids) between the Walker A and Walker B

motifs are indicated. The consensus sequence corresponding to each region is

represented below the box by the single letter amino-acid code, with (j) denoting a

hydrophobic residue. The centre region is only conserved between certain groups of

ABC-transporters and as a consequence no consensus sequence is shown.

Taken from: Michaelis and Berkower, 1995.

c) The membrane spanning domains

The two MSDs of the ABC transporters are very hydrophobic and each is predicted,

from its sequence, to consist ofmultiple a-helical segments. Hydropathy analysis
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predicts that each MSD has six (or five) membrane spanning segments per domain. In

general the ABC-transporter proteins do not appear to contain a high degree of

sequence homology within their MSD. Certain transporters do however contain the

"EEA" loop which is found in the region joining transmembrane segments IV and V

of the MSDs of bacterial ABC permeases, in the yeast PXA1 and YKL741 gene

products and in humanMDR1 (reviewed in Higgins, 1992; Michaelis and Berkower

1995; Decottignes and Goffeau, 1997).

The modular design of the ABC-superfamily of transport proteins has led to the

suggestion that eukaryotic members arose from the fusion ofMSDs and NBDs of

prokaryotic ancestors. Duplication of the fused domains followed by a further fusion

event would result in the formation of a "full-size" ABC- transporter protein

(reviewed in Ames et al., 1992). The duplication of the initial fusion product,

resulting in two MSD-NBD peptides, is consistent with the basic structure of bacterial

ABC-proteins such as the haemolysin transporter ofE. coli (Figure 1.1B, iv). The

evolution of ABC-transporter proteins in vertebrates is further discussed in Hughes,

1994.

1.3 Yeast ABC transporters

Within seven years of the discovery of the first yeast ABC-transporter protein, Ste6p

(McGrath and Varshavsky, 1989; Kuchler et al., 1989) the entire sequence of the

genome ofS. cerevisiae was determined uncovering a further 28 family members
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(Decottignes and GofFeau, 1997; Michaelis and Berkower, 1995). Sequence

comparisons of yeast family members using various techniques has enabled the

classification of the yeast ABC proteins into six clusters (family groups) which may in

turn be broken down into ten distinguished sub-clusters of distinct predicted topology

and presumed distinct function (Decottignes and GofFeau, 1997). The yeast ABC

proteins range from 289-1,661 residues in length and are thought to reside in a variety

of cellular locations both as membrane proteins (associated with the plasma,

mitochondrial and ER membranes) and as soluble proteins (within the nucleus).

Family members include both half size and full size proteins which may be categorised

into one of six main topological units (Figure 1.3). Figures 1.3 a and d represent full

size ABC-transporter proteins, examples ofwhich include the a-factor transporter

encoded by STE6 and the protein encoded for by PDR5 which is involved in

cycloheximide and multidrug resistance respectively. Figures 1.3 b and e represent

half size molecules which include the gene products encoded for by ATM1 (involved

with the maintenance ofmitochondrial DNA) and PXA1 (involved with the (3-

oxidation of very long chain fatty acids). Figures 1.3 c and f represent soluble

members of the yeast ABC transporter superfamily. The protein encoded for by YEF3

is expected to be a soluble protein with a NBD-NBD topology (Figure 1.3 c) and a

nuclear localisation (as determined by PSORT analysis, Nakai and Kanehisa, 1992)

where it is thought to be involved with the stimulation of amino-acyl-tRNA binding to

the ribosome. The protein encoded by YFL028 is predicted to contain one NBD

(Figure 1.3 e) and is predicted, by PSORT analysis, to have a mitochondrial location,

its function however remains to be determined (reviewed in Decottignies & GofFeau,

1997).



Figure 1.3 Predicted topology of the principal ABC proteins

n c

vy
f) (nbd)

Schematic representation of the domain organisation and topology of the principal yeast

ABC transporters. The nucleotide binding domains (NBD) are represented by a yellow

sphere. The membrane spanning domains (MSD) consist of six predicted

transmembrane spans. Figures a and d represent full size transporter proteins with

Figures b and e representing half-size molecules.

Taken from: Decottignies & Goffeau, 1997.

Similarities between yeast and human ABC-transporter proteins have been revealed by

BLAST analysis (Basic Local Alignment Search Tool, Altschul et 1990;

Decottignes and Goffeau, 1997) which scores proteins on their degree of relatedness

with a low BLAST score indicating a high degree of relatedness. All human ABC-

proteins identified so far, except ABC1 and ABC2, may be included in the sub-clusters

defined by the yeast ABC proteins as they have extremely low BLAST scores
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with at least one yeast protein. A comparison ofABC-proteins implicated with human

disease and their closest yeast homologues are shown in Table 1.1.

Examples of the sequence and functional relatedness between yeast ABC proteins and

those which have an impact on human health (both human and non-human ABC

proteins) are discussed below. Detailed reviews on this subject may be found in

Decottignes and Goffeau, 1997; Michaelis and Berkower, (1995).

Human MDR1 and CDR1 and the yeast PDR5 subgroup

Members of the yeast PDR5 sub-cluster, which are involved in cycloheximide and

multidrug resistance in yeast, are functional homologues of the human multidrug

transporterMDR1 although their modules are arranged in a "reverse" order, and the

sequence identity is relatively low. Members of the PDR5 subgroup also have a high

degree of homology with the CDR1 gene of Candida albicans which is responsible

for drug resistant candidosis (Table 1.1; Prasad et al., 1995).

Human CFTR and yeast YCF1

The yeast YCF1 gene product confers resistance to high levels of Cd++ when

overexpressed (Szczypka et al., 1994; reviewed in Decottignes and Goffeau, 1997;

Michaelis and Berkower, 1995). The Yeast YCF1 gene product and related proteins,

resemble those encoded for by mammalian CFTR andMRP1 (a multidrug resistance

protein distinct from that encoded byMDR1, Grant et al., 1994). The F508 and
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Table1.1ExamplesofhumanhealthproblemsrelatedtoABCproteins ABCproteinHumanhealthimpactClosestyeast
homologues

CFTRacysticfibrosisYCFl AJLDaadrenoleukodystrophyPXA1 PMP70aZellwegersyndromePXA1 TAP1/Behcet'sdisease,multiplesclerosis,MDL1,MDL2 barelymphocytesyndrometype1
TAP2a MDRlaCancercells'drugresistanceSTE6 MRPaCancercells'drugresistanceYCFl,YLL015 SURaHyperinsulinemichypoglycaemiaofYCFl infancy

ALDRa,bZellwegersyndrome?PXA1 ABCl3-15

notknown

noclosehomologue
Functionofyeastgene
Topologyof yeastgene

Cdandmultidrugresistance, glutathioneS-conjugatepump VerylongchainfattyacidP- oxidation Verylongchainfattyacidp- oxidation notknown a-factorexport Cdandmultidrugresistance, glutathioneS-conjugatepump. Cd""" andmultidrugresistance, glutathioneS-conjugatepump. Verylongchainfattyacidp- oxidation

(MSD-NBD)2 MSD-NBD MSD-NBD MSD-NBD (MSD-NBD)2 (MSD-NBD)2 (MSD-NBD)2 MSD-NBD



ABC23'notknown ABC7a'bnotknown ABC8a,bnotknown cMOATsamephenotypeashumanDubin- Johnsonsyndrome(mildchronic conjugatedhyperbilirubinaemia)
CDRlddrugresistantcandidosis pfMDR2edrugresistantmalaria eEliPgplfdrugresistantamoebiasis IdMDR8drugresistantKalaazar(visceral leishmaniasis)

SMDR2hdrugresistantschistosomiasis VgA1drugresistantwoundinfections, pneumoniae,impetigos

noclosehomologue noclosehomologue ADP1 YCF1 PDR5,PDR10,PDR15 ATM1 STE6 STE6 STE6 YER036

notknown Cd^andmultidrugresistance, glutathioneS-conjugatepump cyclohexamideandmultidrug resistance

MSD-NBD- MSD (MSD-NBD)2 (NBD-MSD)2

mitochondrialDNAmaintenanceMSD-NBD a-factorexport a-factorexport a-factorexport notknown

(MSD-NBD)2 (MSD-NBD)2 (MSD-NBD)2 NBD-NBD

ThesequenceidentitylevelbetweentheclosestyeasthomologueofeachABCproteinisexpressedbytheBLASTscoreoftheircomparison.The originoftheABCproteinisasfollows:Tiuman;hMusmusculus,cRattusnorvegicus',dCandidaalbicans;ePlasmodiumfalciparum',Entamoeba histolytica',gLeishmaniadonovani',hSchistosomamansoni','Staphylococcusaureus.ThefunctionandpredictedtopologyoftheyeastABC- transportersarealsoindicated.Takenfrom:DecottigniesandGoffeau,1997.



N1303 residues that are mutated in some cases of cystic fibrosis are conserved, as are

the intracellular loops, ICL2 and ICL4, which appear to be important for CFTR

function (reviewed in Decottignes and Goffeau, 1997; Michaelis and Berkower,

1995).

Human MDRl and CFTR with S. cerevisiae STE6

The STE6 gene product of S. cerevisiae is one of the best characterised members of

the ABC superfamily in yeast. Ste6p exports a-factor, a hydrophobic lipopeptide, into

the extracellular environment providing functional similarities to MDR proteins which

are thought to be involved in the expulsion of hydrophobic compounds from the cell

(reviewed in Gottesman and Pastan, 1993). In addition Ste6p activity can be partially

complemented by human P-glycoprotein (Mdrlp) and its murine homologue Mdr3p

(Raymond et al., 1992; Kuchler et al., 1993) further compounding the functional

relatedness between these proteins.

It has been anticipated that the study of yeast ABC-transporter proteins will increase

our understanding of human ABC-protein associated disease. The yeast S. cerevisiae

provides a convenient model for the study of ABC-proteins. The entire sequence of

the yeast genome is known providing a full catalogue of all yeast ABC-proteins. The

yeast is relatively easy to manipulate genetically providing a straightforward means by

which protein function and location may be determined by creating a null mutation of
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the gene of interest. The following sections introduce the yeast as an experimental

organism and discuss the current understanding of the yeast a-factor export protein

encoded by STE6.

Part 2

Yeast pheromones and control of the life cycle of S. cerevisiae

1.4 An overview of the life-cycle of S. cerevisiae

The budding yeast S. cerevisae is a unicellular organism which can exist as any of

three distinct cell types. There are two haploid cell types, a-cells and a-cells, which

are able to conjugate (mate) to form a/a diploids. All three cell types are capable of

reproduction by mitotic division. When haploid cells of the opposite mating type are

mixed together a series of behavioural and morphological changes occur which can be

viewed through a light microscope (reviewed by Thorner 1981, Herskowitz 1988,

Sprague and Thorner 1992). When haploid a and a cells first come in contact, they

detect each others' presence by responding to the pheromone (a or a factor,

respectively) produced by cells of the opposite mating type, a-type cells produce a-

factor (a-pheromone) which elicits its effects through the STEi-encoded cell surface

receptor of a-cells. In turn a-cells secrete a-factor (a-pheromone) which interacts

with the STE2-&ncoded a-factor receptor of a-type cells. The binding of pheromone

to the cell-type specific receptors activates a heterotrimeric G-protein linked protein

kinase cascade mechanism which is common to both cell types. The signal
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transduction cascade activates the STE12-encoded DNA-binding protein which acts

as a transcriptional activator bringing about the changes in gene expression required

for sexual conjugation. Pheromone-inducible genes include those required for cell

recognition, agglutination, cell-cycle arrest, cell polarity and morphology changes,

plasmogamy, karyogamy and those whose gene products are involved in the adaption

and recovery processes. The pheromone-induced signal transduction pathway has

been reviewed in Fields, 1990; Kurjan, 1992; Sprague and Thorner, 1992; Bardwell et

cil., 1994 and Flerskowitz, 1995.

Within 30-60 min ofmixing cells of the opposite mating types together they begin to

aggregate into a multicellular mass. This aggregation is mediated by the production of

cell-type specific sexual agglutinins which mediate cell-cell contact during the mating

process (Lipke and Kurjan 1992). About 90-120 min (one doubling time) after the

haploid cells first come in contact with each other they synchronise their cell-cycles by

arresting growth at the G1 phase of their cell division cycle. Cultures which have gone

into G1 arrest may be identified by the virtual absence ofbudding cells (Pringle and

Hartwell 1981). Once cell-cell contact and synchronous growth have been established

(about 180 min) the mating cells undergo morphological changes in which they

project towards each other forming pear-shaped cells known as "Shmoos". It was the

observation of such morphological changes which resulted in Levi's (1956)

suggestion that the yeast mating process was under hormonal control. Once the

respective projections of the mating cells have come in contact, autolytic enzymes

remove, and others restructure, the cell walls and plasma membranes that originally

separated the two cells resulting in cell fusion and plasmogamy, the formation of a
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continuous cytoplasm. (Shimoda 1972). Zygote formation is completed when the

nuclei from the mating pair fuse (karyogamy) to form a single diploid nucleus. The

a/a diploid cell may then continue to reproduce by mitotic division but is unable to

mate with either a or a cells. If the diploid cell is exposed to nutritional deprivation it

is capable of undergoing meiosis and sporulation to produce an ascus containing four

haploid meiotic progeny. A schematic representation of the life-cycle of S. cerevisiae

is given in Figure 1.4.

1.5 An overview of the genetic control of mating

The three different cell types of S. cerevisiae differ in their ability to express certain

cell-type specific genes: for example a-cells produce only a-factor and respond to a-

factor whereas a-cells produce only a-factor and respond to a-factor, while a/a

diploids neither make nor respond to either pheromone. The cell-type specific

expression of genes encoding proteins required for cell-type-specific functions, such

as those required in the mating process, is controlled by the composition of the

genetic material contained at theMA T locus. Haploid cells that carry the MA 7a allele

are a-type cells and haploid cells that carry [he MATa allele are a-type cells. Diploid

cells contain both the MATa andMATa alleles. The MAT alleles encode three

polypeptides, Matalp and Mata2p are expressed by [heMATa allele and Matalp is

expressed from [heMATa allele. Together these polypeptide products

17



Figure 1.4 The mating process of the yeast S. cerevisiae
~

a-cells

c

Ascus

Agglutination

Cell Cycle arrest

Morphogenesis

Cell fusion (plasmogamy)

Nuclear fusion (karyogamy)

Limiting nutrients

(Meiosis &
sporulation)

Sufficient nutrients

Zygote Diploid

A schematic representation of the life cycle of A. cerevisiae reproduced from Sprague
and Thorner, 1992.

form three transcriptional regulatory products, Matalp, Mata2p and Matalp-

Mata2p, which control the expression of a, a and a/a specific gene products.

MATalp activates the expression of a-specific genes in a-cells, Mata2p represses

the transcription of a-specific genes in a-cells and Matalp-Mata2p represses the

transcription of haploid specific genes in diploid cells. In an a-type cell the Matalp

has no regulatory function: a-cells are such because they do not express the a-specific

activator protein Matalp, or the a-specific repressor protein Mata2p. The regulation

of the transcription of cell-type specific genes of S. cerevisiae has been reviewed in

Herskowitz, 1988, Dolan and Fields, 1991 and Herskowitz et al., 1992.

18



Many genes whose products are required for the mating process have been identified

by isolating mutants which were either unable to mate or unable to respond to the

mating pheromones. A large number of yeast genes necessary for mating but distinct

from theM4T locus have been identified (MacKay and Manney, 1974a; 1974b;

Hartwell, 1980). These genes were termed Sterile (STE) genes as mutations in them

conferred a sterile phenotype on affected cells. Since then other genes necessary for

mating have been identified and include for example those encoding the precursors to

the mating factors, which were not isolated in the original screens because they are

both encoded by two genes (Kurjan and Herskowitz, 1982; Singh et al., 1983;

Gething, 1985) and STE24 which is involved in an NH2-terminal processing event in

the production ofmature a-factor (Chen et al., 1997). To date some genes known to

be involved in the mating process have yet to be identified and include the genes

whose products are essential for a-factor processing and degradation (Caldwell et al.,

1995). The isolation of genes essential for the production and response to the mating

pheromones has allowed elucidation of the mechanisms involved in these cellular

events (reviewed in Sprague and Thorner, 1992).

1.6 The expression, biosynthesis and secretion of the mating pheromones

The mating pheromones ofA cerevisiae are oligopeptides with similar functions but

which differ greatly in their structure, biosynthesis and secretion, a-factor is an

unmodified tridecapeptide which is secreted through the "classic" yeast secretory

pathway which involves the endoplasmic reticulum (ER), Golgi and secretory vesicles.

In contrast a-factor is a prenylated and methylated dodecapeptide whose export from
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the cell is mediated by the activity of the STE6 gene product. For the purpose of this

project a brief overview of a-factor production and secretion is given with more

consideration being given to the production and export of a-factor. Review articles on

yeast pheromone processing include Fuller et al., 1988; Sprague and Thorner, 1992

and Kurjan, 1992.

a) An overview of the biosynthesis and secretion of a-factor: the secretion of a

peptide by the "classic" yeast secretory pathway

Mature extracellular a-factor is an unmodified tridecapeptide which is coded for by

two a-cell-type-specific, functionally redundant genesMFal andMFa2 (Kurjan and

Herskowitz, 1982; Singh et al., 1983). These genes encode polypeptide precursors

that contain tandem repeats of the a-factor peptide. TheMFal gene product is a

165-amino-acid polypeptide which contains four a-factor repeats whereas theMFa2

gene product is a 120-amino-acid polypeptide which contains two a-factor repeats.

Both gene products contain an amino-terminal hydrophobic signal peptide leader

sequence for transit into the ER (Julius et al., 1984; Waters et al., 1988; reviewed in

Rapoport, 1992 and Walter and Jackson, 1994); a hydrophilic domain (pro-region)

which contains three consensus sites for asparagine-linked glycosylation; and a C-

terminal segment containing the tandem repeats of the mature a-factor sequence.

These precursor molecules are targeted to the ER by the presence of the hydrophobic

signal sequence which is removed by signal peptidase (Dev and Ray, 1990). The pro-

region is glycosylated upon entry to the ER by the addition of three N-linked core
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oligosaccharides (Julius et al., 1984; Fuller et al., 1992). On entry to the Golgi

apparatus the core oligosaccharides are elongated and the pro-a-factor is

proteolytically processed to form mature a-factor. The mature a-factor then exits the

cell by exocytosis in a constitutive manner.MFal andMFa2 expression is induced

when cells are exposed to a-factor (Achstetter, 1989; Jarvis et al., 1988). The

processing and secretion of a-factor is an example of the classic protein secretory

pathway of yeast. Mutations in genes encoding proteins required for secretion (SEC

genes) prevent mature a-factor from being secreted into the extracellular environment

(Novick et al., 1980 and Novick et al., 1981).

b) a-factor

i) Introduction

Mature extracellular a-factor is a farnesylated and methylated dodecapepeptide which

is encoded by two a-specific functionally redundant genesMFal and MFa2 (Brake et

al, 1985; Michaelis and Herskowitz, 1988). The MFal and MFa2 genes encode a-

factor precursor molecules of 36 or 38 amino-acid residues respectively which are

composed of three main functional segments 1) the mature portion which is eventually

secreted: b) the NH2 terminal extension: and 3) a COOH-terminal portion which

contains the signal sequence for farnesylation and methyl-esterification known as the

CAAX motif (Figure 1.5). Maturation of the precursor molecules includes both NH2

and COOH terminal cleavage events and COOH-terminal modification to yield mature

a-factor molecules YIIKGLFWDPAC(Farnesyl)-OCH3 and
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YIIKGVFWDPAC(Farnesyl)-0CH3 fromMFa1 and MFa2 respectively (divergent

residues emboldened). Unlike the a-factor precursor molecules these polypeptides

contain neither a hydrophobic signal sequence nor sites for asparagine-linked

glycosylation and encode only one copy of the a-factor sequence. The precursor

molecules are produced in equal quantities in the cell and are induced by the presence

of a-factor (Dolan et al., 1989; Davis et al., 1992).

The differences in the structures ofa and a-factor precursor molecules indicate that

the maturation and secretion of a-factor may occur in a manner distinct from that

occurring in the classic secretory pathway. Indeed the secretion of a-factor occurs

when temperature-sensitive sec mutants are shifted to a non-permissive temperature

(Sterne and Thorner, 1986; McGrath and Varshavsky, 1989). In addition mutations in

genes essential for a-factor processing, for example kex2 and sie 13, have no effect on

the maturation of a-factor (Julius et al., 1983, 1984) indicating that another

mechanism for the secretion of the a-factor peptide must be present. Studies on

strains ofS. cerevisiae that were unable to mate because of a lack of a-factor

production has led to the identification of several genes required for a-factor

biogenesis and secretion (Chen et al., 1997; reviewed in Caldwell et al., 1995).
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Figure 1.5 Structure of precursors and mature forms of a-factor encoded by

MQPSTATAAPKEKTSSEKKDN|Y11KGVFWDPAC|VIA Precursor

N-tTmjml extension C A A X

/"vk/\A/\A
|YI IKG VF WPP AC Mature a-factor

O-CH3

The a-factor precursor encoded byMFal is shown with the NH2-terminal extension,

COOH-terminal CAAX motif and mature portion (shaded) indicated. The mature a-

factor molecule derived from this precursor molecule is shown modified at the
COOH-terminal with a farnesyl moiety and a carboxyl methyl group.
Taken from Chen el al.,1997.

ii) The biogenesis of a-factor

The C-terminus of a-factor contains a CAAX motif (C is cysteine, A is aliphatic and

X is one ofmany residues) which is CVIA in the case of a-factor. The CAAX motif

is common to all known prenylated proteins including small GTP-binding proteins

such as the ras proteins (plasma membrane-localised molecules which regulate cell

differentiation and proliferation), lipopeptide pheromones, nuclear lamins and

trimeric G-proteins. The CAAX motif signals a triplet of post-translational

modifications which include prenylation of the cysteine residue, proteolysis of the

COOH terminal AAX residues and methylation of the newly exposed cysteine

carboxyl group (Clarke, 1992; Schafer and Rine, 1992; Zhang and Casey, 1996).

Protein prenylation is thought to enhance membrane association and direct the
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polypeptide to its correct intracellular location. Farnesylation of a-factor is carried

out in the cytosol by the heterodimeric farnesyltransferase encoded by 11AM1 and

RAM2. The RAMgenes were initially identified by the discovery ofmutants of S.

cerevisiae which were deficient in both a-factor and Ras function suggesting that

there was a maturation pathway common to both proteins. These ram (Ras and a-

factor modification) mutants accumulate a-factor precursors intracellularly and

contain ras proteins which are non-functional due their inability to localise at the

plasma membrane (Fujiyama et al., 1987; He et al., 1991; Powers et al., 1986;

Schafer et al., 1990; Goodman et al., 1990). Following farnesylation the a-factor

precursor polypeptide is thought to become membrane-associated by virtue of the

hydrophobic interactions promoted by the lipid attachment. The a-factor precursor

molecule then undergoes a series of membrane-associated processing events to yield

mature a-factor. The three carboxy-terminal amino-acids distal to the farnesylated

cysteine (AAX) are removed by an endoprotease whose activity has been detected

and shown to be membrane-associated but whose gene(s) have yet to be identified

(Ashby et al., 1992; Hrycyna and Clarke, 1992). The a-factor precursor is then

methylated by the STEl4-encoded prenylcysteine-dependent carboxyl methyl

transferase (Hrycyna and Clarke, 1990; Hrycyna et al., 1991). The a-factor precursor

is then further matured by proteolytic removal, in two stages, of the N-terminal

extension by the proteins encoded by STE24 and AXL1 (Chen et al., 1997; Michaelis,

1997) to yield mature a-factor.
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iii) Secretion of a-factor is dependent on the STE6 gene product

In 1989 two groups (McGrath and Varshavsky 1989; Kuchler et al1989) reported

the importance of the STE6 gene product for the export of a-factor from a-cells.

McGrath and Varshavsky discovered the previously-mapped STE6 gene whilst

working on genes involved in the yeast ubiquitin pathway. They demonstrated that

deletion of the STE6 gene in an a-type strain resulted in a loss of a-factor secretion

whereas the same deletion had no effect on a-factor secretion from a-cells, further

compounding the evidence that a-factor is secreted in a manner distinct from the

classic secretory pathway. The STE6 and the human multiple drug resistance P-

glycoprotein gene, MDR1, were found to be 57% identical or highly conserved at the

amino acid level. The involvement of theMDR1 gene product in the energy dependent

export of cytotoxic drugs out of the cell implied that the function of the STE6 gene

product was in the export of a-factor into the extracellular environment. Kuchler et

al. demonstrated that the STE6 gene product is required for, and is the rate-limiting

step in, the secretion of a-factor. They demonstrated, by the use of antibodies directed

against a-factor, that ste6 mutants affected a-cells by preventing a-factor secretion.

The maturation of a-factor is completed prior to secretion as the mature form of a-

factor is found intracellularly mMATn ste6 mutants. These results showed that the

phenotype seen mMATn ste6 mutants was due to the inability to secrete a-factor

rather than to the secretion of biologically inactive a-factor. The transportation of the

a-factor mating peptide by Ste6p highlighted a novel mechanism for the transport

across cell membranes of peptides that lack the classic hydrophobic signal sequence.
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Figure 1.6 shows a schematic representation of the biogenesis and secretion of a-

factor.

iv) Localisation of a-factor biogenesis

In Figure 1.6 the biogenesis of a-factor following prenylation is shown to be localised

on the plasma membrane. However although the biogenesis of a-factor is intimately

associated with cell membranes, as determined by the localisation of all the maturation

enzymes apart from the soluble farnesyl transferase encoded by RAMHRAM2, the

precise location of a-factor maturation has yet to be fully clarified. The PhD thesis of

Sterne, (1989 referred to by Kuchler and Thorner, 1990; Sprague and Thorner, 1992)

describes subcellular fractionation and protease accessibility studies which suggest

that a-factor precursor molecules do not enter any intracellular membrane-bound

compartment. Caldwell et al., (1995) point out that enzymes involved in the

maturation of prenylated proteins and peptides in animal cells have been found in

microsomal membranes, for example a STEM functional analogue of isoprenyl

cysteine methyltransferase is found to cofractionate with an endoplasmic reticulum

marker in mammalian cells (Stephenson and Clarke, 1990; 1992) suggesting that such

peptides and proteins pass through a microsomal membrane compartment on their

way to their final destination. Microsomal membrane involvement in the maturation of

a-factor has not been ruled out and the Michaelis group (Chen et al, 1997) are
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Figure 1.6 Maturation and export of a-factor

1. Preitvlation ofCAAX cysteine

2. Proteolysis ofAAX

3. Caihaxyl methyl esterificatum

4.N-terminalproteolysis step 1

5. N-terminalproteolysis step2

6. Export

Model for a-factor synthesis and secretion. During a-factor biogenesis, the
unmodified a-factor precursor undergoes COOH-terminal processing (prenylation,

proteolytic trimming ofAAX, and carboxyl methylation) to yield the fully modified
membrane-associated species. The N-terminal proteolytic processing events occur in
two stages to generate mature a-factor. The CAAX processing machinery includes
the Ramlp/Ram2p farnesyltransferase, the genetically unidentified AAX protease

and the Stel4p methyltransferase. The N-terminal processing events are carried out

by the STE24 and AXL1 gene products. The export ofa-factor is mediated by ABC

transporter Ste6p. The presumed localisation of a-factor biogenesis is as indicated.
Taken from: Caldwell et al.,1995; Chen et1997
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currently conducting detailed fractionation analysis in order to determine the precise

cellular location of a-factor intermediates. The cellular locations of the final stages of

a-factor biogenesis are important in understanding the interaction of a-factor and

Ste6p and are further discussed in relation to Ste6p in 1.11.

Part 3

The ^STEYj-encoded a-factor transporter of the yeast S. cerevisiae

1.7 The iSTis6-encoded a-factor transporter

The original ste6 mutant was isolated in a screen for mutants ofS. cerevisiae which

were defective in mating (Rine, 1979 Ph.D. thesis, referred to in Wilson and

Herskowitz, 1984 and subsequent papers related to STE6). Wilson and Herskowitz

(1984) cloned the STE6 gene and demonstrated that production of stable STE6

mRNA is limited toMATa cells and is under negative regulation by MATa2p. The

sequence of 469 nucleotides from the 5' flanking region ofSTE6 was determined by

Wilson and Herskowitz (1986). The STE6 gene is located on chromosome XI

(McGrath and Varshavsky, 1989) and has an open reading frame (ORF) of 3870

nucleotides which would encode a protein of 1290 amino acids with a calculated

molecular weight of 144,774 (McGrath and Varshavsky, 1989; Kuchler ei al., 1989).

Sequence analysis of STE6 revealed that it was a member of the ABC-transporter

superfamily with the topological arrangement MSD1-NBD1-MSD2-NBD2. The

sequence similarities between Ste6p and Mdrlp are continuous throughout the length
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of the polypeptides. In addition their hydropathy profiles are virtually superimposible

suggesting that they share a common membrane topology with both the amino and

carboxyl termini being located on the cytosolic face of the plasma membrane as

indicated in Figure 1.7 (McGrath and Varshavsky, 1989; Kuchler 1989;

Gottesman and Pastan, 1993).

Figure 1.7 Predicted topology of Ste6p in the plasma membrane

Schematic representation of Ste6p in the plasma membrane. The two predicted
nucleotide binding domains (NBD) are shown as loops. The appropriate location of
the Walker A, Walker B and Centre regions within the NBD are indicated in red. The
membrane spanning domains (MSD) are represented as cylinders with each cylinder

representing a membrane spanning segment. The arrow indicates the site used for the
in vivo severing experiments discussed in section 1.10. See text for details.
Taken from: Michaelis, 1993; Browne et al., 1996.
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a) Ste6p is an integral membrane protein

Studies carried out on epitope-tagged versions of the STE6 gene product have shown

that Ste6p is an integral membrane protein which may be solubilised from cell

membranes by the addition of the non-ionic detergent Triton X-100. In contrast

treatments used for the removal of peripherally-bound proteins from cell membranes

(0.1M Na2C03 at pHl 1 and 3M urea) were unable to release detectable amounts of

Ste6p (Kuchler et a/., 1993).

b) Ste6p is not a glycoprotein

The STE6 sequence contains 14 consensus sites for the addition ofAsn-linked

carbohydrate (Kuchler et al., 1989). As one of the potential glycosylation sites lies

within the first putative hydrophilic loop of the protein, in an almost identical position

to a single Asn-linked chain found in theMDR1 gene product, it was reasonable to

expect that Ste6p would be a glycoprotein. However the molecular weight of Ste6p

has been shown to be unaffected by expression of the protein in the presence of

tunicamycin (an inhibitor ofN-linked glycosylation) suggesting that Ste6p does not

contain any N-linked oligosaccharide. In addition Ste6p, solubilised from yeast

membranes with Triton X-100, has been shown to be unable to bind to concanavalin

A, a lectin that recognised both O- and N-linked sugars. Thus, native Ste6p appears

not to contain any O- or N-linked oligosaccharide chains (Kuchler et al., 1993).
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c) Ste6p is an ATP-binding protein

Ste6p is predicted, from its sequence, to contain two discrete ATP-binding domains

with which it is thought to couple the hydrolysis ofATP with the movement of a-

factor across the plasma membrane. Ste6p solubilised from membranes with Triton X-

100 and partially purified by immunoprecipitation has been shown to be capable of

interacting with the photoactivatable ATP analogue, 8-azido-ATP (Kuchler et al.,

1993; reviewed in Kuchler et al., 1994). The crosslinking was shown to be specific for

Ste6p by the fact that appearance of the photolabelled 145kDa product was only

detectable in cells expressing Ste6p which had been exposed to the required UV

irradiation. In addition the labelling was effectively competed by the presence of

unlabelled 8-azido ATP.

d) Ste6p is a phosphoprotein

Several of the gene products involved in the mating signal transduction pathway

including Ste2p, Ste5p and Stel2p are phosphoproteins. In each case the level of

phosphorylation is stimulated by the presence ofmating pheromone. Ste6p was shown

to exist in a phosphorylated state by immunoprecipitation of Ste6p which had been

radiolabelled with 32P043~ in the presence or absence of a-factor. Ste6p was shown to

be phosphorylated in the absence of a-factor. On addition ofa-factor the level of

radioactivity incorporated into Ste6p significantly increased. However the increase in

phosphate incorporation was shown to be proportional to the increase in Ste6p
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concentration indicating that although Ste6p is phosphorylated the level of

phosphorylatoin is unlikely to be linked to the presence ofa-factor.

1.8 Structure-function analysis of Ste6p

Structure-function studies of Ste6p can be conducted by quantifying Ste6p activity

either by measuring the mating efficiency ofmutant cells or by quantifying a-factor

immunoprecipitated from the culture fluid of mutated cells. The following section

discusses mutagenic studies that have been carried out on Ste6p in order to determine

which structural components are necessary for the protein's function.

a) Both halves of Ste6p are essential for activity

The relative importance of the two halves of the Ste6p transporter has been analysed

by severing the STE6 coding sequence (as indicated in Figure 1.7) and expressing the

different halves of the molecule as two separate peptides, MSD1-NBD1 (N-half) and

MSD2-NBD2 (C-half). Neither peptide, when expressed alone, was capable of

complementing a ste6 null mutation indicating that both halves of the molecule are

critical for full activity and are therefore not functionally redundant. Co-expression of

the different halves of Ste6p results in the formation of a functional Ste6p transporter

suggesting that transport function is dependent on the formation of heterodimers

(Berkower and Michaelis, 1991; Michaelis and Berkower, 1995).
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The interactions between the domains of the human MDR1 gene product, P-

glycoprotein, have been examined by expressing each domain as a separate

polypeptide and testing for association by coimmunoprecipitation (Loo and Clarke,

1995). It was shown that interactions between the different halves of the molecule are

mediated by association between both the MSDs and the NBDs. These findings

coupled with the ability of the separated halves of Ste6p to associate and reconstitute

a functional transporter appear to reflect the modular architecture characteristic of

this family of transport proteins. Interactions between the domains of bacterial ABC-

transporters, which are composed of separate polypeptides, have been shown to be

critical for their function (Kerppola et al., 1991). The human TAP (transporter

associated with antigen) transporter protein is an example of a eukaryotic

heterodimeric ABC-transporter which is composed of the products of two separate

genes, in this case TAP1 and TAP2 (Figure 1.1B, v).

b) The effect of mutations in the Walker A, Walker B, LSGGQ signature

sequence and Centre region on Ste6p activity

The most highly conserved regions of the ABC-transport superfamily include the

Walker A, Walker B, LSGGQ signature and centre regions (Figure 1.2). The high

degree of conservation between these regions suggests that they may be essential for

ABC-transporter function. This notion is supported by the observation that mutations

in each of these four regions in the CFTR gene have been associated with the disease

cystic fibrosis. The introduction ofmutants into the conserved residues in the Walker

A and LSGGQ signature regions of Ste6p have been demonstrated to cause a
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dramatic loss of Ste6p function (Berkower and Michaelis, 1991; Browne et al., 1996).

This supports the suggestion that these residues play an vital role in ATP utilisation by

Ste6p and other ABC transporters (reviewed in Michaelis and Berkower, 1995). In

contrast mutations in the centre region of the NBDs of Ste6p have little effect on

Ste6p activity.

i) Mutagenesis of the Walker A motif of Ste6p

Many of the mutations ofCFTR associated with the cystic fibrosis phenotype are

found within the NBDs. An alteration of the first glycine residue of the Walker A

motif in either NBD ofCFTR results in cystic fibrosis (DeVoto et al., 1991).

Mutagenesis of the corresponding glycine residues in Ste6p (G392 and G1087) results

in a dramatic reduction in the level of a-factor secretion. In addition the mutagenesis

of a conserved lysine residue within the Walker A motif (K398 and K1093), which

leads to a loss of drug resistance when both halves of murine Mdrlp are affected,

results in a reduction of a-factor secretion of affected Ste6p (Berkower and Michaelis,

1991).

ii) Mutagenesis of the Walker B and LSGGQ motifs of Ste6p

The LSGGQ or "signature motif' of the ABC-proteins is located just N-terminal to

the Walker B motif (Figure 1.2). Several mutations of the CFTR protein associated

with cystic fibrosis are clustered in or near the LSGGQ motifs. The introduction of

cystic fibrosis-associated missense mutations into or near the LSGGQ motif of the
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first NBD of Ste6p has been shown to result in a broad-range of a-factor transport

defects with those mutations introduced directly within the LSGGQ motif causing the

most severe defects (Browne et al., 1996). Mutations of residues within the LSGGQ

signature region had no effect on either the steady-state level or intracellular location

of Ste6p indicating that this region of the protein may have a direct involvement in

Ste6p transporter function.

iii) Mutagenesis of the Central region of Ste6p

The ABC-transporters show only limited homology over the Centre Region (Figure

1.2). Nevertheless this region is of interest as the most prevalent cystic fibrosis

mutation, AF508, occurs in this region of the CFTR transporter. This phenylalanine

residue is not conserved amongst ABC proteins however Ste6p and P-glycoprotein

each contain a hydrophobic residue at an analogous position. Corresponding

mutagenesis in each of the domains of Ste6p (AL455 in the N-terminal NBD and

AY1150 in the C-terminal NBD) has been shown to have no effect on the activity of

the Ste6p in the export of a-factor. This and other mutagenic alterations to the central

region of Ste6p failed to exhibit any effect on the activity of the protein. This is in

marked contrast to the dramatic reduction in Ste6p activity associated with

mutagenesis of residues within the Walker A, Walker B and Signature regions of the

protein. It would appear that the centre region of Ste6p does not play an active role in

the transportation of a-factor (Berkower and Michaelis, 1991).

35



1.9 Expression of mammalian ABC transporters in S. cerevisiae

The successful expression of mammalian ABC-transporters in yeast provides a

mechanism by which these proteins might be genetically manipulated and studied in an

environment free from the inherent difficulties ofworking with mammalian cells. The

extent of the structural and functional similarities between Ste6p and mammalian

ABC-transporters has been demonstrated by functional complementation of Ste6p

activity by the expression of heterologous ABC-proteins in a tsste6 strain of yeast.

The following section discusses some of the insights that have been obtained into the

function of mammalian ABC-proteins by their expression in S. cerevisiae.

The extensive homology between Ste6p and mammalian P-glycoproteins has led to

the suggestion that the P-glycoproteins might function to catalyse the transport of

peptides or proteins under normal physiological conditions (Kuchler et al., 1989;

Kuchler and Thorner 1990a; 1990b). The murine homologue of human Mdrlp,

Mdr3p, has been shown to partially complement a ste6 deletion, allowing yeast to

mate at low but significant frequency (Raymond et al., 1992). Mdr3p behaves as a

fully-functional drug transporter when expressed in yeast, conferring cellular

resistance to the immunosuppressive and antifungal drug FK520, a known MDR

substrate (Raymond et al., 1994). A mutation in the 11 transmembrane domain of

Mdr3p decreases activity and changes the substrate specificity of the protein in

mammalian cells. This mutant form ofMdr3p is unable to complement a Aste6

mutation in S. cerevisiae suggesting that the Mdr3p functions in a similar way in yeast

and mammalian cells (Raymond et al., 1992). Similar studies have been conducted on
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the expression of humanMDlll in S.cerevisiae (Kuchler and Thorner, 1992). These

studies indicated that Mdrlp is capable of both complementing a Aste6 mutation and

conferring increased resistance toward valinomycin when expressed in S. cerevisiae.

However other groups have been unable to repeat these expression studies and as a

result doubt their authenticity (unpublished observations of S. Michaelis, reported in

Michaelis and Berkower, 1995).

The pfmdrl gene ofPlasmodium falciparum encodes the protein Pghl (P-

glycoprotein homologue) which is associated with chloroquine-resistance in the

parasite. Pfmdrl, like murineMDR3, is capable of the functional complementation of

a Aste6 mutation in yeast (Volkman et al., 1995). The functional complementation is

abolished by the presence, in Pghl, of two naturally occurring polymorphisms which

are associated with chloroquine resistance (Volkman et al., 1995). The expression of

wild-type Pghlp in S. cerevisiae confers cellular resistance to four quinoline-

containing antimalarial drugs. This drug-resistant phenotype is abolished by the

introduction ofPghl carrying the genetic polymorphisms discussed above (Ruetz et al

, 1996b). The heterologous expression ofPghl in S. cerevisiae has therefore not only

implicated Pghl in anti-malarial drug resistance, but has also provided a means by

which the structure-function relationships in this protein may be studied by genetic

analysis in yeast.

Other heterologous ABC-proteins which have been shown to complement a Aste6

mutation include the human MRP encoded multidrug resistance-associated protein

(Ruetz et al., 1996a) and the HST6 gene product from Candida albicans (Raymond
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et al., 1995). Ste6p-CFTR chimaeric proteins have been shown to complement a

Aste6 mutation and have consequently been used as tools for the study of certain

properties of mammalian CFTR (Teem et al., 1993).

It should be noted that not all of the mammalian ABC-transporters expressed in

S.cerevisiae are able to complement a Aste6 mutation. For example the expression of

human TAP1 and TAP2 in S. cerevisiae results in the formation of a stable, ER

located, TAP heterodimer which is fully functional in terms of selective peptide

binding, ATP-dependent transport and specific inhibition of herpes simplex virus

ICP47, but is unable to complement a Aste6 mutation. (Urlinger et al., 1996).

1.10 Intracellular trafficking, localisation and degradation of Ste6p

As Ste6p appears to be an integral membrane protein and functions to transport a-

factor to the extracellular environment, it would be expected to reside primarily in the

plasma membrane. This section discusses experimental evidence that indicates that

Ste6p is a metabolically unstable protein that is found primarily in intracellular vesicles

and is only transiently associated with the plasma membrane. It also discusses the

experimental data that suggests that Ste6p is degraded by two independent pathways,

one vacuolar and the other a cytosolic, ubiquitin-dependent mechanism.
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a) The cellular location of Ste6p

The cellular location of Ste6p has been investigated by comparing the equilibrium

distribution of Ste6p with marker proteins following fractionation of crude-cell lysates

by differential centrifugation (Kuchler et al., 1993; Kolling and Hollenberg 1994a).

Kuchler zt al. (1993) found that the bulk of cellular (c-myc-epitope) tagged Ste6p co-

fractionated with the plasma membrane marker protein, Pmalp (plasma membrane-

associated H+-translocating ATPase). No cytosolic marker protein (phosphoglycerate

kinase) was detected in this fraction indicating that Ste6p was primarily located in the

plasma membrane. Additional information on the association of Ste6p with the plasma

membrane was obtained by examining the distribution of Ste6p through a sucrose

density gradient. It was found that the distribution of Ste6p matched exactly that of

Pmalp again indicating that Ste6p is a plasma membrane protein (Kuchler et al.,

1993; Kuchler et al., 1994). In contrast Kolling and Hollenberg (1994a) carried out

sucrose density gradient fractionation of crude cell extracts and found that only a

minor portion of the total Ste6p localised with Pmalp. Instead they found that the

majority of Ste6p followed a distribution pattern virtually identical to that of the Golgi

marker protein dipeptidyl aminopeptidase A, indicating that Ste6p is predominantly

associated with internal membranes and not the plasma membrane. The apparent

discrepancy between these results might be explained by a plasma membrane

enrichment step carried out by Kuchler et al. (1993) prior to sucrose density gradient

analysis.
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Further information regarding the cellular localisation of Ste6p has been obtained by

the use of indirect immuno-fluorescence using overexpressed Ste6p which had been

epitope-tagged either with c-myc (Kuchler et al., 1993; Rolling and Hollenberg,

1994a) or with the influenza virus hemagglutanin epitope, HA1 (Berkower et al.,

1994). Both epitope-tagged variants of Ste6p were capable of complementing a ste6

deletion and were detected in immunofluorescence experiments by anti-epitope

antibodies. Kuchler et al. (1993) noted that the Ste6p had a patchy rim-like staining

pattern and appeared in vesicular bodies associated with the plasma membrane. They

concluded that this staining pattern was consistent for a plasma membrane protein and

suggested that the vesicular bodies might represent a) newly-synthesised Ste6p within

compartments of the secretory pathway en route to the cell surface or b) a reservoir

of Ste6p-containing secretory vesicles awaiting delivery to the plasma membrane in a

(perhaps) regulated manner.

The punctate staining pattern of Ste6p was observed by the other groups (Berkower

et al., 1994; Rolling and Hollenberg 1994a) who, however, concluded that the

staining pattern was more consistent with an intracellular localisation of Ste6p.

Berkower et al. (1994) analysed the staining pattern of the plasma membrane marker

protein, Pmalp, and found that it gave a characteristic rim-staining pattern which was

quite different to that seen for Ste6p. These observations were surprising considering

the supposed role of Ste6p in the export of a-factor into the extracellular

environment. The results could be interpreted in two ways; either Ste6p is an

intracellular protein, which queries its role in a-factor export, or Ste6p is transported
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to the plasma membrane but resides there for a short period of time before being

internalised by endocytosis. In order to ascertain whether or not Ste6p is plasma

membrane associated its distribution was examined in end3 and end4 strains of yeast

which carry temperature-sensitive defects in genes required for endocytosis (Raths et

al., 1993). Any Ste6p localised in the plasma membrane of either an end3 or an end4

mutant would become trapped at the membrane on shifting the cells to a non-

permissive temperature. Ste6p trapped at the plasma membrane would be expected to

produce an intracellular distribution pattern more consistent to that observed for

Pmalp. It was found that Ste6p exhibited a rim-staining pattern when expressed in

both end3 and end4 mutant strains at the non-permissive temperature indicating that it

had accumulated in the plasma membrane (Berkower et al., 1994; Rolling and

Hollenberg 1994a). In addition, sucrose gradient fractionation of crude cell lysates

obtained from the end4 mutant strain indicated that Ste6p fractionated with Pmalp

when the cells were grown at their non-permissive temperature (Rolling and

Hollenberg 1994a). Thus it would appear that when endocytosis is blocked, Ste6p

appears at the plasma membrane, exposing its normally transient residency in this site.

The immuno-fluorescent studies carried out on epitope-tagged Ste6p in wild-type and

on end3 and end4 mutant strains of yeast suggest that, at any given point in time, the

majority of Ste6p is found in intracellular vesicles and is either en route to or en route

from the plasma membrane.
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b) Trafficking and degradation of Ste6p

Pulse chase analysis of Ste6p has shown that is a metabolically unstable protein with a

half-life of 13 min (Rolling and Hollenberg 1994a) or 37 min (Berkower et al., 1994)

in wild-type strains of S. cerevisiae grown on minimal medium at 30°C. The half-life

of Ste6p is increased to greater than 2 hours in a pep4 mutant strain of yeast which is

deficient in several vacuolar ATPase functions (Ammerer et al., 1986; Woolford et

al., 1986) indicating that Ste6p is degraded in the vacuole (Berkower et al. 1994

Rolling and Hollenberg 1994a). Indirect immunofluorescence studies on the

intracellular localisation of epitope-tagged Ste6p in pep4 mutants indicate

Ste6p is localised in the vacuole (Berkower et al., 1994).

Plasma membrane proteins are transported from the ER to plasma membrane via the

Golgi apparatus and secretory vesicles. On reaching the plasma membrane the

proteins may exist either as stable resident proteins such as Pmalp, which has a half

life of over 5 hours (Berkower et al., 1994), or as tightly regulated protein such as the

pheromone receptors, Ste2p and Ste3p, which undergo rapid intracellular movement

and turnover via the endocytic pathway.

Evidence of the existence of a yeast endosomal pathway was not confirmed until

Riezman (1985) revealed that several yeast secretory mutants were in fact defective in

endocytosis. The internalisation of the yeast pheromone receptors has been used as a

model system for the study of endocytosis in yeast. Studies on the yeast a-factor

receptor, Ste3p, have shown that the formation of a pheromone-receptor complex
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initiates endocytosis and subsequent vacuolar degradation (reviewed in Riezman,

1993). Along with pheromone-induced endocytosis, the Ste3p receptor is subject to

constitutive endocytosis that occurs in the absence of pheromone (Davis et al.,

1993).The temperature-sensitive endocytosis mutants ends and end4 were isolated

through their inability to internalise a-factor or its receptor. The end4 mutant

specifically affects step(s) of the of the endocytic pathway prior to the formation of

the endosomal compartment (Raths et al., 1993). The ability of an end4 mutant strain

of yeast to "trap" Ste6p at the plasma membrane indicates that Ste6p is internalised

via the endocytic pathway. This, together with the dramatic instability of Ste6p

indicates that it is a tightly regulated protein. The following section discusses the

current models relating to the intracellular trafficking and degradation of Ste6p.

i) Endocytosis and vacuolar degradation of Ste6p

A model depicting the movement of Ste6p to and from the plasma membrane is

shown in Figure 1.8. Evidence in support of this model comes from cellular

fractionation and immunofluorescence studies, as discussed in the previous section,

combined with a series of experiments conducted both on mutants in the yeast

secretory pathway and on recombinant Ste6p molecules.

Mutations in genes essential for the trafficking of Ste6p have been identified by virtue

of their ability to increase the half-life of the protein by affecting its transport to the

vacuole. Ste6p is stabilised when temperature sensitive mutations in genes involved in

both ER to Golgi transport, (ste23) and in the fusion of post-Golgi secretory vesicles
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Figure 1.8 Endocytosis and vacuolar degradation of Ste6p

Intracellular trafficking and vacuolar degradation of Ste6p. The model depicts the

trafficking of Ste6p to the plasma membrane via the ER, Golgi and post-Golgi

secretory vesicles. From the plasma membrane, Ste6p undergoes endocytosis into an

endosome, which is delivered to the vacuole. In the vacuole, Ste6p is degraded by

proteases (yellow "pacmen") activated by Pep4p. The products of the SEC1, SEC4,

SEC6, SEC23, END3 and END4 genes act at the indicated steps. The dotted lines

represent purely hypothetical processes: direct trafficking of Ste6p to the vacuole and
a compartment for the recycling of Ste6p between the endosomes and the plasma
membrane.

Taken from Berkower et al 1994; Rolling and Hollenberg, 1994a.
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with the plasma membrane {seel, sec4 and sec6) are grown at a non-permissive

temperature (Berkower et al., 1994; Rolling and Hollenberg, 1994a). Likewise, in

addition to "trapping" Ste6p at the plasma membrane, mutations in gene products

essential for endocytosis (end3 and end.4) stabilise Ste6p.

Recombinant Ste6p molecules have been used in attempt to determine which physical

elements of the protein are required for recognition by the cells transportation

machinery. Rolling and Hollenberg (1994b) conducted studies on a chimaeric protein

produced by the fusion of the first hydrophobic segment of Ste6p (amino-acids 1-78)

to the secreted protein invertase which was lacking its ER signal sequence. The

results of the study indicated that the first hydrophobic segment of Ste6p was capable

of directing invertase to the ER membrane indicating that this region of Ste6p

functions as a signal sequence. In addition a quarter molecule of Ste6p encoding the

six N-terminal transmembrane domains has been shown to contain sufficient

information to enable internalisation by endocytosis at a rate comparable to that of the

full length molecule (Berkower et al., 1994). The signal sequences required for

recognition by both the endocytic machinery and the endoplasmic reticulum

recognition machinery remain to be determined.

In general the results of these studies indicate that Ste6p is a highly unstable protein

that is transported to the plasma membrane through the secretory pathway where it

resides for a transient period before being internalised and transported to the vacuole

by way of the endocytic pathway. The detection of Ste6p by indirect

immunofluorescence has shown that Ste6p is only visible at the plasma membrane
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when it is "trapped" there by end 4 and end3 mutant cells which are unable to carry

out the early stages of endocytosis. This, taken in the light of the results obtained

from the stability of Ste6p in various mutant strains, implies that Ste6p spends much

of its short lifetime in transit to or from the plasma membrane. Kolling and Hollenberg

(1994a) suggest that if there was an accumulation of Ste6p within the cell it would be

likely to occur at some stage prior to reaching the plasma membrane. Berkower et al,

(1994) suggest that the vesicular staining pattern for Ste6p could represent Ste6p in

endocytic or exocytic vesicles which might function as a recycling compartment

between endosomes and the plasma membrane. They suggest also that Ste6p may

never reach the plasma membrane by moving directly from the secretory pathway to

the vacuole. Both of the later hypotheses are represented in Figure 1.8.

It has been suggested that Ste6p may reside in a novel intracellular compartment that

fuses with the plasma membrane following induction by a-factor (Kuchler et al.,

1993). Sucrose gradient fractionation studies on a-factor-stimulatedM4Ja cells have

indicated that the presence of a-factor does not lead to a relocalisation of Ste6p to the

plasma membrane (Kolling and Hollenberg 1994a). In addition exogenous treatment

ofMA 7a cells with a-factor does not effect the half-life of Ste6p (Berkower et al.,

1994). Preliminary experiments therefore indicate that a-factor has no affect on the

localisation and half life of Ste6p.
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ii) Ste6p is multiubiquitinylated in endocytosis mutants

Ubiquitin is a small protein found in eukaryotic cells either free or covalently joined to

cellular proteins. It functions as a regulatory protein and often appears to serve as a

marker that targets a protein for degradation. Stable proteins are usually mono-

ubiquitinylated whereas substrates targeted for degradation are often modified by the

addition of a branched multiubiquitin chain. The degradation of multiubiquitinylated

proteins may occur in a cytosolic ubiquitin-dependent pathway defined by the

multisubunit protease yscE. yscE is structurally homologous to the so-called

proteasome particle, which is a component of the 26S proteolytic complex that has

been shown to specifically degrade ubiquitin-protein conjugates in reticulocyte

extracts. Selective degradation of proteins by ubiquitinylation allows tight regulation

and selective turn-over. Mata2p is an example of a regulatory protein which is known

to exist in a multiubiquitinylated form. Mata2p activity must be limited to a single cell

cycle and selective degradation would allow the concentration of the protein to be

tightly monitored so that this haploid-specific protein could be removed rapidly from

the cell with the onset ofmating or mating type interconversion. The yeast ubiquitin

system is reviewed in Finley (1992).

The dramatic stabilisation and vacuolar localisation of Ste6p in apep4 mutant

indicates that the majority of Ste6p is degraded in the vacuole. However none of the

secretory mutants examined in the previous section were capable of completely

blocking the degradation of Ste6p suggesting that it can be degraded by an alternative
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pathway. The accumulation of a low-mobility form of Ste6p in the plasma membrane

fraction of endocytosis mutants led to the suggestion that Ste6p was being

ubiquitinylated (Rolling and Hollenberg, 1994a). Studies have shown that Ste6p

expressed in an end4 mutant, grown at a non-restrictive temperature, is capable of

being both immuno-precipitated and detected on Western blots by an antibody

specific to ubiquitin. The appearance of this Ste6p species indicated that Ste6p most

likely exists as a multiubiquitinylated protein. In addition Ste6p was found to be

stabilised approximately 3-fold in a strain of yeast deficient in two ubiquitin

conjugating enzymes, Ubc4p and Ubc5p. These enzymes have been implicated in the

turnover of short lived and abnormal proteins (Seufert and Jentsch, 1990; Rolling and

Hollenberg, 1994a). Thus it would appear that Ste6p can exist in a ubiquitinylated

form and that the ubiquitinylation of Ste6p acts as a degradation signal.

It is possible that Ste6p is degraded by two independent pathways, both by the

vacuole and by a cytosolic ubiquitin-dependent pathway. In this case the majority of

Ste6p would be degraded in the vacuole, with the Ubc4p and Ubc5p-dependent

pathway being utilised in a situation where the vacuole is overloaded or blocked.

Alternatively the ubiquitinylation of Ste6p may be acting as a signal to direct Ste6p

into the vacuolar degradation pathway. Recent research (Rolling, 1996) has indicated

that Ste6p is stabilised by the removal of a putative ubiquitin binding domain.

Removal of this domain prevented the Ubiquitinylation of Ste6p and resulted in a shift

in the cellular distribution of Ste6p towards the plasma membrane. The

ubiquitinylation of Ste6p may therefore play an important role in the endocytosis of

Ste6p by labelling the protein for internalisation and transfer to the vacuole. Findings
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from studies conducted on the ligand stimulated endocytosis of Ste2p-a-factor

complexes from the plasma membrane support this notion. The ubiquitinylation of

Ste2p is stimulated by the binding of a-factor to the receptor and has been shown to

be required for the endocytosis of the receptor ligand complexes (Hicke and Riezman,

1996). Hicke and Riezman (1996) propose that the ubiquitinylation of Ste2p mediates

the degradation of the receptor-ligand complexes, not via the proteasome, but by

acting as a signal for endocytosis leading to subsequent degradation in the vacuole. A

schematic representation of the ubiquitin-mediated degradation of Ste6p is given in

Figure 1.9.

c) Possible roles for the rapid turnover of Ste6p

Since Ste6p is an a-type specific protein it must be capable of being rapidly cleared

from the cell surface immediately following mating. In addition S. cerevisiae is

capable of switching mating-type via interconversion of theM4riocus, necessitating

the rapid removal of cell-type specific proteins. Thus the continuous turn-over of

Ste6p provides a mechanism by which the cell can constantly monitor and modulate

the protein level as required. The pheromone receptors Ste2p and Ste3p are rapidly

endocytosed from the plasma membrane inferring that this might be a common feature

of cell-type specific proteins involved in the mating process (Davis et al., 1993).

As previously discussed the yeast endocytic pathway is thought to be responsible for

the internalisation of Ste6p. Endocytosis may also play a role in the courtship phase of

the mating of S. cerevisiae by concentrating Ste6p, and therefore a-factor, at the
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projection tip. The role of Ste6p in the courtship behaviour of S. cerevisiae is further

discussed in 1.12.

Figure 1.9 The Ubiquitinylation and degradation of Ste6p

Ubiquitinylation of Ste6p acts as a degradation signal. Ubiquitin is represented by
the small green box. Details of the trafficking of Ste6p are as indicated in Figure 1.8.
The model depicts Ste6p becoming ubiquitinylated in a UBC4, UBC5 dependent
manner. The ubiquitinylated Ste6p is internalised from the membrane in an END4

dependent manner and enters the endocytic pathway. The ubiquitinylated Ste6p is
then targeted for degradation either in the vacuole or in an ATP-dependent protease

complex, the proteasome.
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1.11 Ste6p and a-factor export

The experiments discussed in 1.10 indicate that Ste6p is located at the plasma

membrane for a transient period only with the majority of Ste6p being localised in

intracellular vesicles. This is surprising considering the supposed role of Ste6p in the

export of a-factor which is generally thought to occur when a-factor molecules,

partitioned in the plasma membrane by virtue of their hydrophobic modifications,

encounter Ste6p which exports them into the extracellular environment. (McGrath

and Varshavsky, 1989).

It has been suggested (Rolling and Hollenberg, 1994a) that Ste6p may function in the

intracellular accumulation of a-factor rather than in the direct transportation of a-

factor across the plasma membrane. In this scenario Ste6p would function to

sequester mature a-factor into intracellular vesicles. The contents of the vesicles

would be released on fusion with the plasma membrane leaving Ste6p in a position to

be internalised and transported to the vacuole. This model would provide a

mechanism without the requirement for Ste6p to be resident largely at the plasma

membrane. It would also explain why Ste6p appears to accumulate in intracellular

compartment before it becomes associated with the plasma membrane. However this

model does not provide a mechanism by which the, presumably plasma membrane

associated, a-factor molecules would be trafficked to the Ste6p vesicular

compartment. In addition the export of a-factor is not thought to involve vesicular

intermediates as its secretion occurs despite blocks imposed by various secretory



mutants (McGrath and Varshavsky, 1989). Studies have shown that pro-a-factor is

not sequestered into vesicles as it is not protected from degradation by proteases

(Kuchler et al., 1989; Sprague and Thorner, 1992) however a large fraction of a-

factor is degraded in the vacuole ofMATn cells suggesting that mature a-factor is

actually capable of entering the endosomal pathway (Rolling and Hollenberg, 1994a).

Figure 1.10 proposes a model for the maturation and secretion of a-factor in which

the a-factor maturation machinery and Ste6p are located within the same vesicular

compartment. In this model immature a-factor becomes associated with the membrane

located maturation machinery following COOH-terminal processing in the cytosol. On

maturation the a-factor is transported into the vesicle by the action of Ste6p where it

is accumulated until it is released by the fusion of the vesicle with the plasma

membrane. The requirement for components of the yeast secretory pathway could be

removed if a-factor is secreted by a different type of vesicular transport than normal

secretory proteins. If, for example, the intracellular vesicular compartment were

derived from the plasma membrane by endocytosis the homotypic fusion necessary for

a-factor release could occur without the involvement of the yeast secretory pathway.

Both of the models described above provide a mechanism by which the requirement of

Ste6p at the plasma membrane is minimal, thus providing an explanation as to how

Ste6p can function effectively in the export of a-factor during its transient visit to this

site. Further work is required to determine the precise cellular location of Ste6p and

a-factor interaction and a-factor maturation. This could prove problematical due to

the unstable nature and poor detectablility of both Ste6p and a-factor.
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Figure 1.10 A proposed pathway for the intracellular accumulation of a-factor

by Ste6p

/)ro-a-factor

Endocytic pathway

Extracellular

The intracellular accumulation of a-factor by Ste6p. The trafficking and

representation of Ste6p are as previously indicated, a-factor molecules are shown in

pink. In this model immature a-factor associates with membrane associated
maturation machinery (green sphere) following COOH-terminal processing in the

cytosol. Mature a-factor is sequestered into intracellular vesicles by the action of

Ste6p. The vesicles dock at the plasma membrane releasing a-factor into the
extracellular environment. Ste6p is rapidly internalised from the plasma membrane
via the endocytic pathway.

1.12 Ste6p, partner discrimination and cell fusion in S. cerevisiae

Mating between the two haploid cell types of S. cerevisiae is dependent upon the

efficient secretion and delivery of a and a-pheromones to their respective target cells.
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It is thought that the level of a and a factor secreted by M4 7a and MATa cells,

respectively, acts as the primary determinant of each haploid cell's identification as an

appropriate mating partner by the target cell. This section discusses how both the

pheromones and their representative receptors are thought to mediate partner choice

in S. cerevisiae. It also discusses the evidence that indicates that Ste6p is directly

involved in both partner selection and in the final stages of diploid cell formation

a) Pheromones, pheromone receptors and courtship in S. cerevisiae

In addition to stimulating the signal transduction pathway the pheromones and their

receptors play an important role in mate selection in yeast. Cells which are unable to

produce pheromone are sterile (Kurjan 1985, Michaelis 1988) as are those cells

deficient in the cell-type specific receptors encoded by STE2 and STE3 (MacKay and

Manney 1974a; 1974b; Hagen et al., 1986). Immediately prior to sexual conjugation

haploid cells of S. cerevisiae preferentially choose their sexual partners following the

production and response to each others pheromone in a process termed "courtship"

(Jackson and Hartwell 1990a; 1990b). Jackson and Hartwell demonstrated that, when

faced with a choice of partner, both haploid cell types preferentially choose a partner

which is producing the highest level of pheromone. This observation implicates the

involvement of the pheromone receptors in partner discrimination and is in agreement

with the observation ofBender and Sprague (1989) and Jackson et al, (1991).

Browne et al, (1996) produced a series of Ste6p mutant molecules which differed

from wild-type molecules only in their ability to transport a-factor. They found that

there was a positive correlation between the level of transported a-factor and the
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efficiency of mating. They also showed that, under conditions in which the level of a-

factor is limiting for yeast mating, small changes in the amount of pheromone

transported caused large changes in the mating efficiency. These observations are in

agreement with the studies of Jackson and Hartwell (1990a; 1990b) and indicate that

MATcl cells can efficiently discriminate between small differences in the level of a-

factor presented byMATu cells.

b) Ste6p and mate choice in S.cerevisiae

The sterile phenotype ofMATst cells containing null mutations in bothMFal and

MFal can be relieved, in part, by the addition of exogenous a-factor. In contrast the

addition of exogenous a-factor is unable to restore mating mMATu cells which

contain a ste6 null mutation. This suggests that Ste6p can interact with the exogenous

a-factor and that this interaction is required for recognition byMATol cells (Marcus et

al, 1991). It is plausible therefore that a Ste6p-a-factor interaction occurs at the cell

surface and that this interaction is necessary for recognition by the iSTFi-encoded a-

factor receptors on the surface ofMATa cells (Nahon et al., 1995).

c) Ste6p localisation and a-factor transportation during mating ofS.cerevisiae

Stimulation of S. cerevisiae by high levels of the appropriate mating pheromone

results in asymmetric growth and the formation of a projection or shmoo. (1.4;

Sprague and Thorner, 1992). The orientation of cell growth responds to the gradient

of pheromone such that the mating projection points to the nearby partner (Jackson
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and Hartwell 1990a and 1990b). The tip of the projection is the actual site of

conjugation where the two haploid cells fuse to form a zygote. Indirect

immunofluorescence studies onMA Ta cells exposed to a-factor cells has shown that

the majority of cellular Ste6p becomes located at the tip of the projection (Kuchler et

al., 1993; reviewed in Kuchler et al., 1992). The localisation of Ste6p at the

projection tip may be a result of constitutive endocytosis of older Ste6p molecules,

combined with a pheromone-induced increase in the synthesis of new Ste6p, all of

which goes to the projection tip (Berkower et al., 1994). a-factor induced expression

ofSTE6, MFal andMFa2 coupled with the localisation of Ste6p at the projection tip

would be expected to result in a dramatic increase in a-factor concentration at this

site. The high concentration of a-factor at the tip of the projection may be maintained

by the hydrophobicity and poor diffusibility of the molecule. As the tip of the

projection is the actual site of cell fusion it is possible that the localised secretion of a-

factor at this site is required for effective courtship and partner selection. Ste6p may

be critical for the establishment and/or maintenance of the polarity in a-factor

secretion that is required for effective courtship and partner selection. This would

explain why the presence of Ste6p is essential for mating even when its role as an a-

factor transporter has been removed by the addition of exogenous pheromone. The

pheromone receptors, like Ste6p, become concentrated at the projection tip during

mating (Davis et al., 1993). The projection tips can therefore be considered as

specialised organelles that would be highly enriched for signalling and signal

reception. The close contact between two mating cells should therefore create an

environment of very high concentration of pheromone and pheromone receptors. It
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can be envisioned that this would create the very environment necessary for courtship

and partner discrimination to occur.

d) Ste6p, a-factor and cell fusion

Studies onMATu cell specific mutants which are deficient in the ability to carry out

cell fusion have shown that both high levels of a-factor and Ste6p are required for this

final phase ofmating to occur (Elia and Marsh, 1996; Brizzio et al., 1996). Two

MATu specific cell fusion mutants, fus5 and fus8 were shown to produce less a-factor

than an isogenic wild-type strain, and the mutations were found to be allelic with two

genes known to be required for a-factor biogenesis, namely AXL1 and RAMI. Several

experiments have demonstrated that it is the partial defect in a-factor production,

created by mutations in these genes, that causes the fusion defective (Fus") phenotype.

First the overexpression of a-factor was found to be capable of suppressing the Fus"

phenotype. Second, slMATcl sst2A. strain that is more sensitive to a-factor suppressed

the Fus" phenotype in trans. Finally, reduced levels of wild-type a-factor from a

repressible promoter were shown to produce a cell fusion defect identical to that

observed in the fus5 and fus8 mutants. It would appear that thefns5 and fns8 mutant

strains are capable of producing enough a-factor to trigger the early stages of the

mating process (cell cycle arrest, shmoo/ projection formation and mating pair

formation) but cannot reach the levels required to elicit the cell fusion response in

partner a cells. Similar experiments conducted onMATa cells have shown that cells

secreting lower levels of a-factor have appreciable cell fusion defects. Thus it would
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appear that high levels of pheromone are required as one component of the signal for

prezygotes to initiate cell fusion (Brizzio et al., 1996).

Screens for mutants of S. cerevisiae that were defective in cell fusion (Cef)

uncovered three partial-function alleles ofSTE6 which elicited a substantial mating

defect (Elia and Marsh, 1996). The ste6(cefl-l) allele was recovered, sequenced and

found to contain an amber stop codon which was predicted to truncate Ste6p at

amino acid residue 862. It was unclear however whether the phenotype was the result

of underexpression of Ste6p, or of the expression of a mixture of truncated and

functional forms of the transporter. The ste6(cefl-l) mutant was found to be capable

of secreting a-factor and inducing many mating responses in uMATa strain. Electron

microscopy ofMA 7 a ste6(cefl-l) and MA 7a wild-type mating pairs revealed that the

mating process had become arrested at a late stage of conjugation in which the fusion

wall remained intact. Close examination of the mating pairs revealed that many of the

early mating functions remained intact, indicating that there had been adequate

pheromone present to stimulate the pheromone response pathway. Mating the

ste6(cefl-l) with &MATa sst2 strain had no effect on alleviating the defect in fusion

wall degradation indicating that the ste6(cefl-l) defect was not due simply to a lack

of pheromone secretion. In addition the overexpression of a-factor in the ste6(cefl-l)

strain resulted in an increase in the level of a-factor secretion but did not suppress the

mating fusion defect. The results of this study would suggest that Ste6p may be

playing a role in cell fusion distinct from its role in a-factor transport. It is conceivable

that Ste6p has an additional role as a regulatory protein that functions, either directly

or indirectly, in the activation of the cell fusion machinery. Other members of the
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ABC-transporter superfamily have been found to have additional roles in the

regulation of heterologous channels, and other membrane proteins as well as carrying

out their own transporter/ channel activities (reviewed in Higgins, 1995).

The findings discussed above indicate that Ste6p may be instrumental to the processes

of partner selection and cell fusion in addition to its role as the a-factor transporter. A

model providing a mechanism for the actions of Ste6p in partner discrimination is

discussed in Nahon et al., 1995. They propose that Ste6p and a-factor interact at the

cell surface and that it is this a-factor-Ste6p complex which interacts with Ste3p

receptors on the a-cell surface. This would provide direct cellular contact for

courtship. They also propose a role for a-propeptide in the mating process by

suggesting that exhibition of the molecule at the cell surface could act as a signal to

signify cell quality during courtship. Like the a-factor-Ste6p conjugate, the a-

propeptide would interact with Ste3p receptors on the surface ofMATn cells. In both

scenarios the cells would be brought into close contact by the interaction of the

receptor on one cell surface binding with the pheromone attached to the opposite cell

surface. This model might explain in part why the presence of Ste6p is required in the

final stages of the mating process.

1.13 Structural requirements for a-factor bio-activity and recognition by Ste6p

The mature form of a-factor consists of three structural components, the methyl

moiety, the lipid moiety and the amino-acid backbone (Figure 1.5) all of which are

candidates for the recognition of a-factor by Ste6p and Ste3p. Studies on the
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significance of the C-terminal modifications of a-factor have shown that both the

farnesyl and methyl ester groups are required for export and biological activity

(Schafer et al., 1989; Schafer et al., 1990; Marcus et al 1990). The removal of either

the farnesyl or methyl group leads to a 100 times reduction in a-factor bioactivity,

when compared to correctly modified pheromone, indicating that the methylation and

farnesylation of a-factor are essential for its interaction with Ste3p (Marcus et al.,

1991). Likewise yeast defective in farnesyltransferase and methyltransferase activity,

encoded by RAMHRAM2 and STEM respectively, are unable to produce extracellular

a-factor indicating that these a-factor modifications are essential for the interaction

with Ste6p (Schafer et al., 1989; Schafer et al., 1990; Sapperstein et al 1994). It is

presumed that the lack of the farnesyl moiety prevents a-factor from associating with

cell membranes thus impeding its interaction with either the Ste6p transporter or the

Ste3p receptor. The methyl-moiety is thought to promote protein-protein interactions

between a-factor and Ste3p/Ste6p. (Sapperstein et al., 1994). The contribution made

by the amino-acid backbone to the recognition of a-factor by Ste3p/Ste6p is thought

to be minimal and is further discussed in Chapter 6.
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Part 4

Outline of the project

1.16 Study of the interaction of Ste6p

The aim of this project was to study the interactions between Ste6p and a-factor by a

combination of biochemical and genetic techniques. The biochemical approach was

centred on the purification of Ste6p from an over-expressing strain ofS.cerevisiae. In

the absence of a functional assay for Ste6p a polyclonal antibody was to be raised

against the C-terminal domain of Ste6p to allow detection.

Further initial aims included the reconstitution of Ste6p into phospholipid vesicles in

order to allow the kinetics of its interaction with a-factor to be determined.

A genetic, or in vivo, approach to studying the interaction between Ste6p and a-factor

was to be undertaken in which a-factor molecules, mutagenised at random over their

amino-acid backbone, would be screened for their ability to interact with and block

the Ste6p pump. The isolation of such a-factor molecules would allow the

characterisation of residues essential for the interaction of a-factor and Ste6p.
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Chapter 2

Materials and methods



Materials

2.1 Chemicals, antibodies and enzymes

Chemicals were generally obtained from either BDH Chemicals, Sigma

Chemical Co., or Fisons Ltd. The Sequenase II DNA sequencing kit and

[a-^SJATP (>600Ci/mmol) were obtained from Amersham International pic.

The majority ofDNA manipulation enzymes e.g. restriction endonucleases,

ligase, and VENT polymerase were obtained from New England Biolabs. Taq

polymerase was purchased from Promega. Gel solutions for DNA sequencing

were purchased from Hybaid. DNA purification kits for the preparation of high

quality DNA (plasmid or M13) were purchased from Qiagen. Oligonucleotides

were purchased from Oswell. The NiNTA resin for nickel affinity

chromatography was also purchased from Qiagen. IgG Sepharose was from

Pharmacia. Hybond C-extra for Western Blotting and the Enhanced

Chemiluminescent (ECL) detection kit were supplied by Amersham. HRP

antibody conjugates were gifted by the Scottish Antibody Production Unit

(SAPU). Poly prep columns were from Bio Rad. Polaroid and X-ray film were

obtained from Genetic Research Instrumentation. Media components were from

Difco Laboratories. Protein sequence analysis was carried out by the Welmet

Protein Characterisation Facility, University of Edinburgh. The Bead-beater was

from Stratech Scientific LTD.
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Subunit M39 of the bovine adrenal chromaffin granulae ATPase, N-terminally

tagged with 10 histidine residues was gifted by D.K Apps (Edinburgh). The

gene encoding this protein was originally cloned by Wang et al., (1988). The

histidine tagged variant was constructed by Leonora Cuifo and expressed and

purified by Lorna Webster in the Biochemistry Department at the University of

Edinburgh.

2.2 Bacterial and yeast strains

Strains ofif. coli and S. cerevisiae used in this study are listed in Tables Al and

A2 respectively.

2.3 Plasmids.

Plasmids used in this study are listed in Table A3.

2.4 Media

In general all E.coli cultures were grown in Luria Broth (LB) consisting of 1%

(w/v) Bacto Tryptone, 0.5% (w/v) Bacto yeast extract and 0.5% (w/v) NaCl.

Bacto agar was added at a concentration of (2% (w/v) to make plates and at

0.8%(w/v) for making top agar. Antibiotics were added to a final concentration
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of 15pg/ml as necessary. For blue/white colony selection the media were

supplemented with 15pM 1PTG and 0.005% X-gal.

For the preparation of uracil-containing single-stranded DNA the E.coli strain

CJ236 was grown in 2xYT media which contains 1.6% (w/v) Bacto Tryptone,

1% Bacto yeast extract and 0.5% NaCl. Bacto agar was added at a

concentration of 2%(w/v) to make plates and 0.8% (w/v) for top agar.

Bacterial strains NM522 and CJ236 were kept on M9 minimal plates to

maintain the F' genotype. The medium was made as follows: 2%w/v Bacto agar

and 0.4% glucose were autoclaved and left to cool to 40-50°C. 100X additive

(0.1M magnesium sulphate and 0.01M calcium chloride) and 10X M9 salts (7%

(w/v) sodium phosphate (dibasic), 3% (w/v) potassium phosphate (monobasic),

0.5% (w/v) NaCl, 1% (w/v) ammonium chloride) were added to a final

concentration of IX and this was supplemented with 0.0002% thiamine. For

maintenance ofCJ236, chloroamphenicol was added to the medium at a

concentration of 15p.g/ml

Yeast cultures were grown in either rich medium (YPD; containing 1% (w/v)

Bacto yeast extract, 2% (w/v) Bacto peptone and 2%(w/v) glucose) or minimal

(selective) medium (SD; containing 0.67% Bacto yeast nitrogen base without

amino acids and either 2% (w/v) glucose, 2% (w/v) mannose or 2% w/v

raffinose as a carbon source. Amino acids and bases were added as required to a

final concentration as follows; histidine (20pg/ml), leucine (30p.g/ml),
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tryptophan (20p.g/ml), uracil (20pg/ml) adenine (20pg/ml). Yeast strains

auxotrophic for tryptophan, due to the presence of plasmid DNA, were

maintained on SD medium containing 1% casamino acids and uracil (20jig/ml).

Bacto agar (2%(w/v)) was added when solid medium was required.

Methods

DNA methods

2.5 DNA manipulations

DNA manipulations such as restriction endonuclease digestion, ligation,

mutagenesis using the Kunkel method, purification from host organisms and

treatment with CIP were carried out as described in Sambrook et al., (1989).

DNA was separated by electrophoresis through 0.4-1% (w/v) agarose gels.

Fragment size was estimated by comparison with standard markers, typically

digests of phage X DNA withHindlll or BstEll or the commercially available

lKbp ladder (Gibco BRL).
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2.6 Purification of DNA

Double and single-stranded DNA was purified from host bacteria according to

either the methodology of Sambrook et cil, (1989) or by use of Qiagen kits for

mini preparations, midi preparations, Ml3 purification and band purification of

DNA from agarose gels. The production and purification of single-stranded

DNA from phagemid vectors is detailed below. Yeast genomic DNA was

purified either according to the method below or, by using a kit from Igl.

a) Production of single-stranded DNA from phagemid vectors using the

M13K07 helper phage

Single stranded DNA was isolated from E. coli transformed with a phagemid

vector pVT103-U (AmpR) containing the gene of interest (e.g. MFal). 50pi of

an overnight culture of transformed E. coli strain BW313 or CJ236 (Table Al)

was inoculated into 5 ml TBG (1.2% w/v tryptone, 2.4% w/v yeast extract,

0.4% v/v glycerol, 17mM KH2P04, 55mM K2HP04 and 20mM glucose)

supplemented with ampicillin. A 20pl aliquot ofM13K07 helper phage at 1011

plaque forming units (pfu)/ ml was added to the culture. The culture was then

incubated, with agitation, at 37°C and 275rpm for 2 hours. Kanamycin was then

added to the culture at a concentration of75pg/ml and the culture was

incubated, as before, for a further 22-24 hours. The culture supernatant was

harvested by centrifugation at 14krpm for 10 min at 4°C in a microfuge. This

centrifugation step was repeated and the single-stranded DNA was purified
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from the supernatant either by use of a Qiagen kit or by the methodology

detailed in Sambrook et al., 1989; Lin et al., 1992; Vernet et al., (1987).

2.7 DNA Sequencing

Double-stranded plasmid DNA for sequencing was prepared from the bacterial

strain DH5a using Qiagen mini or midi preparation kits. These gave very high

quality sequencing-grade DNA. The Sequenase version 2.0 kit (USB) was used

for all sequencing reactions. Double-stranded DNA was sequenced using either

the method ofHsiao (1991) or the method noted below:

1. To 8pi (5-1 Oug) DNA add: lpl primer (lOng/pl)

lp.1 lMNaOH

2. Incubate for lOmins at 68°C (during this interval it is convenient to thaw

termination mixes (ddNTPs) and to prepare the labelling mix).

3. Add: 4pl TDMN

3.2g TES (Sigma T-1375)

0.5ml chloroform

0.386g DTT

4ml 1M MgCl2

2ml 5M NaCl

dd H20 to 50ml

pH 1.6
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4. Incubate for 10 min at room temperature. The reaction mix may be stored on

ice until ready to use.

Add: 4pl labelling mix

1 pi DTT (In sequencing kit)

0.4pl 5x Sequenase labelling mix

2.1 pi TE (3mM Tris, pH7.5, 0.2mM EDTA)

0.5pi [a35S]ATP

2p T7 DNA polymerase (Sequenase) diluted 1:5 with enzyme

dilution buffer

6. Incubate for 5 min at room temperature. It is convenient to pre-warm the

termination mixes at this point (aliquot 2.5pl of each into separate

microfuge tubes and incubate at 37°C).

7. Add 4pl of the labelling reaction to each termination reaction

(A,C,G,T) pre-warmed for 5 min at 37°C.

8. Incubate for 10 min at 37°C.

9. Add 5pi of stop buffer to each reaction.

10. Boil reaction mixtures for 2 min before loading 3pi on to a 6%

polyacrylamide gel.

Ml3 single stranded DNA was purified from NM522 culture supernatants using

standard protocols (Sambrook et a/., 1989). Sequencing reactions were carried

out using the instructions supplied with the Sequenase Version 2.0 kit (USB).
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The products of the sequencing reactions were separated on either 0.2-0.7mm

wedge gels or 4mm standard 6% polyacrylamide gels using pre-made solutions

as detailed in 2.1.

2.8 Polymerase Chain reaction (PCR)

PCR extensions were carried out using a Techne thermal cycler. Both VENT

and Taq polymerases were used. VENT was preferred to Taq as Taq is prone to

making errors as it lacks VENT's proof-reading ability. The reactions were

carried out in lOOpl volumes with typically 20pmol of each primer, lng

template DNA and 50pM of each dNTP (VENT requires 200-400 pM of each

dNTP). The reactions were buffered using the buffers supplied with the enzyme.

The magnesium concentration was optimised for each reaction and was usually

in the region of 2-6mM. The reaction mixtures were overlaid with 50pl of

mineral oil. A typical programme would be as follows:

Denaturation 95°C for 1 min

Primer Annealing 5°C below the true Tm of the amplification primers

for 1 min

Primer extension 72°C extension time is calculated from the reaction

proceeding at lkb per min
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In general 30 cycles were performed followed by a final extension of 10 min at

72°C.

Typically 5pl of PCR product was analysed on an agarose gel before being

purified either by phenol/chloroform extraction and ethanol precipitation or by

use of the appropriate Qiagen kit.

2.9 Cloning PCR products

In general PCR products were cloned into the appropriate vector following

digestion with the appropriate restriction endonuclease. If this was not

successful the pGEM-T vector system from Promega was employed. Essentially

this utilises the fact that Taq-derived PCR products have overhangs consisting

of dATP that are added by the terminal transferase activity of Taq. The pGEM-

T vector has a T overhang which allows for the ligation of the A-overhang PCR

product. Unfortunately VENT polymerase does not add terminal adenosine,

however this can be overcome by treating a VENT-derived PCR product as

follows: Phenol/chloroform extract and precipitate the DNA with two volumes

of isopropanol. Resuspend in Taq buffer and add 1 unit of Taq DNA

polymerase and 200p.M dATP. Mix and incubate at 72°C for 20 min. The

pGEM-T cloning system can now be employed. The PCR fragment can be

subcloned into the appropriate vector as required.
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2.10 Oligonucleotide-directed mutagenesis

Oligonucleotide-directed mutagenesis was carried out according to the Kunkel

method as detailed in Sambrook et al., 1989. This methodology is discussed in

greater detail in Chapter 3.

2.11 Preparation of genomic DNA from yeast

Genomic DNA was prepared from BJ5465 as follows: 5ml of yeast was grown

up overnight in YEPD. The following day the cells were harvested in a

microfuge (20,000g, 30 sec) and resuspended in 200pl of the following: 2%

Triton X100, 1% SDS, lOOmM NaCl, 10mM Tris pH 8.0, ImM EDTA. To this

lOOp.1 phenol and lOOpl 24:1 chloroform: isoamyl alcohol was added along with

300mg of glass beads. The mixture was then vortexed for 2 min before

centrifugation for 5 min at 20,000g. The upper aqueous layer was removed and

the DNA precipitated by the addition of 2.5x volume of ethanol plus O.lx

volume 3M sodium acetate pH5.2. The precipitated DNA was harvested by

centrifugation at 20,000 for 20 min and resuspended in 20pl TE. The DNA

could now be used as a template for PCR amplification reactions.

In later experiments the Igl Yeast Genomic DNA kit was utilised. This enabled

high quality DNA to be purified in 30 min.
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2.12 Transformation of bacterial and yeast cells

Bacterial cells were made competent by treatment with CaCl2 and transformed

as detailed in Sambrook et al., 1989. Yeast were transformed following

treatment with LiOAc according to the method of Geitz et al., 1992.

Protein methods

2.13 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Proteins were separated by electrophoresis through a 5% acrylamide stacking

gel followed by a 7.5-12% acrylamide separating gels according to the basic

method of Laemmli (1970). For routine analysis the Hoefer "tall mighty small"

gel apparatus was used. A Bio-Rad "Protean II" apparatus was employed when

larger gels were required (e.g. for band purification of proteins). The following

reagents were used:

1. Separating gel buffer

0.75M Tris.HCl pH8.8, 0.2% (w/v) SDS

2. Stacking gel buffer

0.25M Tris.HCl pH6.8, 0.2% (w/v) SDS

3. Acrylamide solution

44% (w/v) acrylamide, 0.8% (w/v) N N'-methylene-bisacrylamide.
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4. Electrophoresis Buffer

0.125M Tris.HCl., 0.2M glycine, 0.1% (w/v) SDS. The pH is 8.3 without

adjustment.

5. SDS sample buffer

0.0625M Tris.HCl pH6.8, 20% glycerol, 4% (w/v) SDS, 5% (w/v) (3-

mercaptoethanol.

Separated proteins were visualised by staining with either Coomassie Blue R-

250 or by Silver staining as follows:

(a) Coomassie Blue staining

Gels were stained by soaking in a solution of 0.25% (w/v) Coomassie Brilliant

Blue dissolved in 50% (v/v) methanol, 7% (v/v) acetic acid for approximately

15 min. Excess stain was removed by rinsing the gel in distilled water. The gels

were then destained in a solution of 10% (v/v) methanol, 7% (v/v) acetic acid

until bands could be clearly visualised.

(b) Silver staining

This method is based on that ofWray et al., 1981. SDS-PAGE was carried out

as above. Gels were fixed in a 50% methanol, 10% acetic acid solution for 20

min or overnight. The gels were then soaked in 50% methanol for 1 hour and
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washed in water for 5 min. This step was repeated two more times. The

following solutions were then prepared:

A) 0.4g silver nitrate dissolved in 2ml H20.

B) 21ml of 0.36% NaOH, 1.4ml ammonia (14.8M)

C) add solution A drop-wise to B stirring constantly. The solution

should be clear. Make up to 100ml with H20.

D) mix 2.5ml of a 1% (w/v) citric acid solution with 0.25ml

Formaldehyde (38% stock). Make to 500ml with H20.

E) 50% (v/v) methanol, 10% (v/v) acetic acid.

F) 3.7g NaCl, 3.7g CuS04.5H20 in 85ml H20. Add ammonia until

solution becomes deep blue. Make up to 100ml with H20.

Gels were stained with solution C for 15 min and then washed in H20 for 5 min.

The gels were then soaked in solution D for 5-15 min until protein bands could

be seen. The development was stopped by adding solution E. If the gel was

over stained solution F was added to destain.

2.14 Transfer of proteins onto nitrocellulose

Proteins were transferred onto a nitrocellulose filter (Hybond C extra

(Amersham)) following SDS-PAGE by use of a Novablot semi-dry blotter as

follows:
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Solutions:

Anode buffer 1: 0.3M Tris.HCl, 20% (v/v) methanol, 0.1% SDS

pH10.4

Anode buffer 2: 25mM Tris.HCl, 20% (v/v) methanol, 0.1% SDS

pH10.4

Cathode buffer: 25mM Tris.HCl, 20% (v/v) methanol, 0.1% SDS,

40mM 6-amino-N-hexanoic acid pH9.4.

The proteins were separated by SDS-PAGE as usual. Six pieces ofWhatman

3MM filter paper and one piece of nitrocellulose membrane were cut to the

same size as the gel. Two pieces of filter paper were soaked in buffer 1, one in

buffer 2 and three in the cathode buffer. The gel was soaked in cathode buffer

and the nitrocellulose in H20. The above components were then layered onto

the anode plate as follows: first the two pieces of anode 1-soaked paper, then

the piece of anode 2, then the nitrocellulose filter followed by the gel and finally

the three pieces of cathode buffer-soaked paper. The cathode plate was placed

on top and a current of 0.8mA X [area of geljcm^ was applied for one hour.

2.15 Detection of proteins by Western blot analysis

Proteins were transferred onto nitrocellulose as described in section 2.13. The

nitrocellulose strip was then incubated for at least one hour in blocking buffer

(TBST (lOrnM Tris.HCl pH7.4, 150mM NaCl,l% (v/v) Tween-20) plus 5%

(w/v) "Marvel" (non-fat dried milk powder) to block any non-specific sites to
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which antibody molecules might bind. The strip was then placed in fresh

blocking buffer and the primary antibody applied at the suitable dilution in

blocking buffer for the appropriate period of time (normally 20 min to

overnight). The blot was then washed four times (IX 10 min followed by 3X 5

min) in TBST to remove excess antibody. The strip was then placed in fresh

blocking solution with the secondary antibody. This was usually a donkey anti-

rabbit HRP conjugate applied at a dilution of 1: 5,000 for 20 min. The strip was

then washed as before, then developed with either the Enhanced

chemiluminescence (ECL) detection system (Amersham) according to

manufacturers directions, or latterly using the method detailed below which

essentially follows the same principles. All washes and incubations were carried

out with gentle agitation.

Stock solutions:

Luminol (Fluka) stock of 250 mM in DMSO. Stored in the dark at -20°C.

p-coumaric acid (Sigma) stock of 90mM in DMSO stored as above.

Solution 1: 1 ml luminol; 0.44ml coumaric acid; 10ml of 1M Tris pH 8.5

in 100 ml distilled E^O.

Solution 2: 64pl 30% H2O2; 10ml of 1M Tris pH 8.5 in 100 ml

distilled H2O.
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Solutions 1 and 2 were stored at 4°C. To develop a 50cm2 strip 2 ml of

solution 1 was mixed with 2 ml of solution 2 and applied to the blot for 1 min.

The blot was then removed from the solution and excess moisture removed by

blotting with a tissue. The strip was then placed between two pieces of Saran

Wrap (Dow) and exposed to a piece of blue sensitive X-ray film which was

subsequently developed in an automatic processor.

2.16 Lysis and fractionation of bacterial cultures

Cells were harvested by centrifugation (5 min at 5000rpm in a Hareus

Centrifuge), washed once in lOOmM Tris.HCl (pH7.4) and resuspended in an

appropriate volume (usually 5-10ml) of the same buffer. Lysozyme was then

added to a concentration of lmg.ml"! and the cells were incubated for 20 min.

Cell lysis was achieved by sonication for 4 bursts of 30 seconds interspersed

with 1 min cooling intervals on ice. The lysate was centrifuged at 3000rpm for 5

min to give the P3 (inclusion) body fraction, the supernatant was then further

centrifuged at 20,000rpm for 20 min to give a soluble fraction (S20) and an

insoluble fraction (P20)

2.17 Glass bead lysis and preparation of membranes from S. cerevisiae

Cells were harvested by centrifugation for 5 min at 5000rpm (in a Hareus

centrifuge) and washed once in 200mM Tris.HCl (pH8.5). The cell pellet was

then weighed and resuspended in 2X volume 200mM Tris.HCl (pH8.5)
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(protease inhibitors were added at this stage if required). Glass beads (0.45-

0.6mm diameter) were added to the meniscus of the suspension and lysis was

achieved by vigorous vortexing for three 2 min intervals interspersed with 2 min

cooling on ice. The homogenate was then resuspended to 7.5X lysis volume

with 200mM Tris.HCl (pH8.5) and centrifuged for 5 min at l,000rpm

(centrifuge) to remove unbroken cells and glass beads. The supernatant was

recentrifiiged as above as a further clearing spin. The cell membranes were then

collected by centrifugation of the cleared lysate at 100,000 rpm for 20 min in a

Beckman TL100 using the TLA100.3 rotor. The soluble, S100, fraction was

then removed and pellet, PI00, was carefully resuspended in 100-300ml 200pM

Tris.HCl (pH8.5) and homogenised until a uniform solution was produced.

On occasion the breakage of large quantities of yeast cells was achieved by the

use of a Bead-Beater (Stratech Scientific LTD) according to manufacturers

instructions.

Preparation ofprotease inhibitors:

The 5X mix contained 20mM EDTA, 20mM EGTA, 20mM PMSF and

lOpg.ml'l each of pepstatin, leupeptin, chymostatin and antipain. The following

stocks and the 5X mix were aliquoted and stored at -20°C.
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perml 5X

PMSF 200mM in isopropanol

pepstatin lmg.ml in methanol

lOOpl

lOpil

antipain lmg.ml" in water lOpl

leupeptin ling.ml"1 in 3:1 MeOH:DMSO lOpl

chymostatin lmg.ml in 3:1 MeOH:DMSO 10p.l

2.18 Purification of a-factor on Amberlite XAD-2

The following purification method was taken from Strazdis and MacKay (1982)

and Proteau etal., 1990.

a) Preparation ofXAD-2.

Amberlite XAD2 resin was washed in several times in distilled H20. The resin

was then incubated with gentle agitation for 3 hours at 40°C in 6 volumes of

1.2 dichloropropane: 1-propanol (1:3). The resin was then further incubated for

3 hours with gentle agitation at 40°C in 6 volumes of 1-propanol. The resin

could then be stored at room temperature until needed or washed well in

distilled water and autoclaved. At no point was the resin allowed to go dry.

79



b) Addition ofXAD-2 to growth media.

An appropriate yeast culture (in this case BJ5465(pAMB8)) was inoculated into

selective media and grown overnight shaking at 30°C. The following day the

overnight culture was diluted into fresh medium to give an Agoo of 0.1. At this

point 100ml of autoclaved XAD-2 was added per litre of culture. The culture

was then grown, shaking, at 30°C for 24 hours.

c) Removal ofa-factorfrom XAD-2.

The resin was retrieved by decanting off the growth medium and washing the

resin several times with distilled H20. The XAD-2 was then washed in 40%

methanol at 40°C for 2 hours. The methanol was then removed by aspiration

and the resin resuspended in 3 volumes of 1-propanol and incubated, shaking,

for 2 hours at 40°C. The propanol containing a-factor was then removed by

aspiration and rotary evaporated to dryness at 55-60°C. The resulting orange/

brown residue was then dissolved in a minimal quantity ofDMSO, aliquoted

and stored at -20°C until required. It was found that a-factor stored like this

will maintain its activity (as detected in a "Halo" assay) for several years.
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2.19 Determination of protein concentration

Protein concentration was determined by the use of the BCA kit (Pierce)

following manufacturer's instructions. Bovine serum albumin (Sigma) was used

as a standard in all assays conducted.

2.20 Expression of Protein A fusion proteins from the lac promoter.

The E. coli strain NM522 was transformed with either pAX12 or pAMBl and

grown in 500ml ofLB plus kanamycin at 25°C until an Agog °f 0.6 was

obtained. Expression from the lac promoter was then induced by the addition of

1PTG to a final concentration of 0.25mM. The cells were then left to grow for a

further 2 hours before being harvested.

2.21 Expression of (3-gaIactosidase fusion proteins from thePr promoter.

The E. coli strain pop2136 was transformed with either pEX12 or pAMB3 and

grown in 100ml LB plus ampicillin at 30°C until an Aggg of 0.6 was obtained.

Protein expression from the.P^> promoter of bacteriophage X was then induced

by shifting the cells to 42°C where they were grown for a further 4 hours before

being harvested.
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2.22 Purification of Pgal-Ste6 fusion protein from inclusion bodies

The inclusion body (P3) fraction harvested from the E. coli strain

pop2136(pAMB3), induced as detailed in 2.21, was resuspended in 500ml

lOOmM Tris.HCl (pH7.4) and loaded onto a preparative 10% SDS-

polyacrylamide gel. The gel was stained briefly with Coomassie Blue and the

region of the gel corresponding to the .Pgal-Ste6 fusion protein excised. The

fusion protein was placed in dialysis tubing containing 5- 10ml electrophoresis

buffer and removed from the gel by electroelution (50V for 2-5 hours) in this

same buffer. The buffer containing the electroeluted protein was then placed in

fresh dialysis tubing and dialysed against distilled H20 overnight. The protein

was then concentrated by lyophilisation.

2.23 Immunisation of rabbits for antibody production and collection of

serum

Two New Zealand white rabbits were subcutaneously injected with 150pxg of

purified PrtA-Ste6p chimera which had been mixed with an equal volume of

Freund's complete adjuvant to form an emulsion. A second injection was

administered six weeks later, however in this, and all subsequent injections,

Freund's incomplete adjuvant was used in the emulsion. A 5 ml test bleed was

taken a week after the third injection. The blood was left at room temperature

for 10 min before being placed at 4°C overnight. The following day the serum
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was collected by centrifiigation (3,000rpm for 15 min in a MSE bench top

centrifuge) and filtered through a 0.22pm ultrafilter (Acrodisc). After the

addition of sodium azide to a final concentration of 0.1%, the serum was stored

at -20°C in aliquots. The rabbits were boosted and bled at regular intervals until

they were finally sacrificed and the serum stored at -20°C.

2.24 Affinity purification of antibodies using antigen immobilised on

nitrocellulose

A sample of antigen, in this case (3gal-Ste6 fusion protein (2.22), was subjected

to 10% SDS-PAGE then blotted onto nitrocellulose (2.14). The nitrocellulose

was then stained with 0.2% Ponceau S in 3% TCA for 5 min and then washed

in water to remove background staining. The band corresponding to the Pgal-

Ste6p was excised from the blot with a scalpel and marked to indicate which

side had protein bound. The Ponceau S was then removed by washing the strip

of nitrocellulose in TBST several times. The strip was then incubated in 5%

Marvel in TBST for at least 60 min to block any non-specific sites on the

nitrocellulose. The strip was then washed in TBST and placed, antigen side up,

on a piece ofNescofilm. As much serum that could be held in place by surface

tension (typically 0.5-lml) was then placed on top of the affinity strip. A lid was

placed over the strip to avoid evaporation and the strip was incubated like this

at room temperature for 2 hours. The excess serum was then removed from the

affinity strip and the strip was washed 4 times, for 5 min each wash, in TBST.

The antibody was eluted from the strip by incubating it for 20 min in the
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presence of as much 0.2M glycine (pH2.8) as could be held by surface tension.

The eluted antibody was removed from the strip and added to an equal volume

of 0.1M Tris.HCl (pH8.5), sodium azide was then added to a concentration of

0.1%. The affinity-purified antibodies were aliquoted and stored at -20°C until

required. The strip could be re-used by washing it in a copious amount of TBST

then storing it in the presence of 0.1% sodium azide.

2.25 Protein sequencing from Immobilon P

a) Preparation ofpolyacrylamide gels for separation ofproteinsprior to

protein sequence analysis.

The following method utilises a buffer exchange procedure to provide enhanced

resolution of polyacrylamide gels pre-run for protein sequencing in the presence

of a free radical scavenger, to prevent blockage of the N-terminus of the protein

and it is taken from Dunbar and Wilson (1993).

All solutions used in this procedure were made up fresh and filtered immediately

before use. The electrophoresis was carried out using either the Hoefer Tall

Mighty Small or Bio-Rad Protean II apparatus. The polyacrylamide gels were

produced according to 2.13 however in this case both the separating and

stacking gels were made using the separating gel buffer. The gel was loaded

with SDS-PAGE sample buffer containing tracker dye (2.13) and was pre-run

at 20mA in the buffers detailed below until the dye had reached the bottom.
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Top reservoir Stacking buffer (diluted 2X) containing 5pM reduced

glutathione.

Bottom reservoir Separating buffer (diluted 2X)

The sample, which had been resuspended in SDS-PAGE sample buffer and

heated at 37°C for 10 min, was then electrophoresed through the gel at 20mA

in the presence of elecrophoresis buffer (2.13) to which lOOpM thioglycollate

had been added.

b) Electrotransfer ofprotein onto Immobilon P.

The following method for the electotransfer of material from a polyacrylamide

gel to Immobilon P is taken from Matsudaira, (1987). Following electrophoresis

the gel was soaked in transfer buffer (lOmM CAPS, 10% methanol, pHl 1.0) for

5 min. During this time a piece of Immobilon P was cut to the same size as the

gel, soaked in 100% methanol and stored in the transfer buffer. The gel,

sandwiched between a sheet Immobilon P and several sheets of 3MM paper,

was assembled into a wet blotting apparatus and electroeluted for 16 hours at

0.2 amps in transfer buffer.
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c) Staining Immobilon P with Coomassie Blue R-250.

The staining method was taken from Matsudaira, (1987). The Immobilon P

membrane onto which protein had been transferred was washed in deionised

water for 5 min. The proteins were detected by staining the membrane with

0.1% Coomassie Blue R-250 in 50% methanol for 5 min then destaining in 50%

methanol, 10% acetic acid for 10 min at room temperature. The membrane was

then washed in deionised water. The band corresponding to the protein of

interest (C(His)8Ste6p in this case ) was then excised and retained for protein

sequence analysis.

d) Direct transfer ofprotein onto Immobilon P.

The following method was obtained from D.K. Apps (University ofEdinburgh).

The C(His)sSte6p was separated from contaminating proteins by

polyacrylamide gel electrophoresis as detailed in 2.25a. The gel was stained

with filtered Coomassie Blue staining solution (2.13a). The band corresponding

to C(His)8Ste6p was excised, weighed, crushed and added to 2X volume per

weight lOOmM NH4HCO3. SDS was added to a concentration of 0.1% and the

mixture was incubated for 24 hours at room temperature. The mixture was

diluted 2X with distilled water and a 100mm2 piece of Immobilon, which had

been wetted with methanol, was added to the mixture. The protein solution and

Immobilon membrane were incubated for several hours to allow binding to take
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place. The membrane was washed with water and dried and used for N-terminal

protein sequence analysis.

Miscellaneous methods

2.26 Detection of Ste6p activity, the "halo assay"

The a-factor supersensitive strain, RC757, was grown in YEPD until an A6qo

of 0.6 was obtained. A 1 ml aliquot of the cells was then added to 4ml of top

agar (YPD or YPG plus 0.8% Bacto agar which had been maintained at 45°C)

and poured immediately onto the required agar plate (YPD or YPG) to create a

lawn of sensitive cells. The plates were allowed to set and were dried by placing

them in a 30°C incubator for 30 min. Overnight cultures of the strains to be

tested for a-factor secretion were harvested by brief centrifugation (6,000 rpm

for 3 min in a bench top microfuge) and 3p.l of the cells, or purified a-factor,

were spotted onto the lawn. The plates were then incubated for 2-3 days at

30°C until the RC757 lawn had grown and halos of growth inhibition due to the

presence of a-factor could be seen. Halo size is indicative of how much a-factor

is present, the greater the halo the more a-factor present.
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Chapter 3

Production and affinity purification of rabbit antibodies
specific for the C-terminal region of Ste6p



3.1 Introduction

In the absence of a functional assay for Ste6p it was necessary to raise antibodies

against Ste6p to allow detection. In order to produce (Ste6p) specific antibodies in

rabbits an appropriate antigen had to be produced. One way of producing antigen

from a cloned gene is to create a fusion protein which can be overexpressed in E.coli

and affinity purified from bacterial extracts. A variety of suitable expression vectors

are available including one which permits fusing the gene of interest to the N-terminal

portion of protein A, consisting of two and a half IgG binding domains, by use of the

pAX vector system (Zueco and Boyd, 1992). Protein A, a polypeptide from the cell

wall ofS. aureus, is an ideal candidate for fusion protein production as it has a high

affinity for the Fc domain of immunoglobulins. This enables the fusion protein to be

readily affinity purified on commercially available IgG Sepharose. The IgG binding

capacity of protein A also allows for detection of chimaeric proteins with

commercially available rabbit anti-bovine IgG HRP conjugate (SAPU) following

Western Blot analysis. It is thought also that the repetitive structure of protein A

enhances the immunological response to the fusion protein (Lowenadler et al., 1986).

Antigen-specific antibodies may be purified from serum by immunoaffinity absorption.

This may be achieved by the production in E. coli of a second fusion protein by means

of the pEX vector system (Kusters et al., 1989). Here the gene is expressed from the

Pjl promoter as a cro-lacZ ((3-galactosidase) fusion protein under control of the

temperature-sensitive cI875 repressor protein giving a very high and consistent level

88



of gene expression. The fusion protein is purified from inclusion bodies by preparative

SDS-PAGE and attached to a solid support as described in Chapter 2.

This Chapter describes the production and purification of a bacterially-expressed

Ste6p-proteinA fusion protein to use as an antigen for the production of anti Ste6p

antibodies. I also describe the production of a P-galactosidase-Ste6p fusion protein

and its use in the affinity-purification of Ste6p specific antibodies.

3.2 Construction of a protein A-tagged Ste6p chimaeric protein

Ste6p is thought to have f2 membrane-spanning domains (Kuchler et al., f989;

McGrath and Varshavsky, 1989) making it a fairly hydrophobic molecule. For this

reason it was decided to raise antibodies against the extreme C-terminal portion of

the protein. This region is thought to be exposed on the cytosolic face of the plasma

membrane. The solubility of the fusion protein was an important consideration as the

production of insoluble aggregates (inclusion bodies) would make purification of the

fusion protein on IgG Sepharose difficult. Another important consideration when

choosing the region of Ste6p to use in antibody production was the degree of

sequence similarity between domains of Ste6p and other members of the ABC

transporter family which may be present in yeast. The other major extramembrane

domains of the protein are thought to be mainly located on the cytosolic face of the

cell membrane and are thought to encode the conserved nucleotide binding-domains

associated with the ABC transporter family. At this time little was known about other

S. cerevisiae ABC transporter proteins. It was hoped that the C-terminal region of
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Ste6p would share little sequence homology with other family members so as to avoid

immunological cross reactivity which could render a polyclonal antibody useless.

A SaR fragment of approximately 6.6kb containing the entire STE6 gene and 600bp of

upstream sequence cloned into pUC7 was obtained from Benjamin Glick, University

ofBasel (originally supplied by Alexander Varshavsky MIT). A 1.2kbp fragment

corresponding to the extreme 3' end of the STE6 open reading frame was amplified by

PCR using as primers the oligonucleotides;

1) 5'-CGG AAT TCA GAT ACC CGA TAT AAG TAG AGG-3'

2) 5'-CGG GAT CCT TTC TTA TGG CGT TTC TCT TTA TGC CTC-31.

These two oligonucleotides contain the restriction sites .EcoRI and BamHI,

respectively which were used for sub-cloning. The PCR product was cloned into the

BamHl and EcoKl sites of pAX12 (Zueco and Boyd, 1992) to create an in-frame

fusion with IgG binding domains of protein A under control of the lac promoter.

Expression from the E. coli lac promoter can be induced by the presence of IPTG

(Chapter 2). This construct was called pAMBl and was predicted to encode a protein

of 56kDa (16.9kDa from the protein A and 39kDa from the Ste6p). This fusion

protein was called PrtA-Ste6p.
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3.3 Expression of PrtA-Ste6p in E. coli

The E.coli strain NM522 was transformed with either pAX12 or pAMBl to make

strains NM522(pAX12) and NM522(pAMBl) respectively. Expression ofPrtA-Ste6p

in the presence of IPTG was compared with IPTG-induced protein expression from

untransformed NM522 and NM522(pAX12) (Figure 3.1a). The blot indicates that no

protein was expressed from untransformed NM522 cells which was capable of

interacting with rabbit IgG (lane 1). In lane 2 a band of around 17kDa corresponding

to the protein A moiety from pAX12 was detected. Induced NM522(pAMBl) cells

produced a protein of approximately 56kDa (lane 3). This corresponds to the

expected molecular weight of the PrtA-Ste6p chimaera demonstrating that the fusion

protein is being expressed correctly. To examine further the expression ofPrA-Ste6p

in NM522, cell lysates of IPTG induced NM522(pAMBl) were subjected to

differential centrifugation and Western Blot analysis. The results shown in Figure 3.1b

indicate that the majority of the chimaera is found in the insoluble, P20, fraction in

cells grown at 37°C.

3.4 Expression of the PrtA-Ste6 fusion protein in cells grown at 25°C

For ease of purification it was important that the PrtA-Ste6p chimaera could be

isolated from a soluble extract of the cells. Early expression studies carried out at

37°C showed that the fusion protein was found predominantly in the insoluble P20

fraction (Figure 3.1b). In an attempt to prevent the formation of insoluble protein
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aggregates (inclusion bodies) cells were grown and expressed at 25°C. Figure 3.2

indicates that the majority of the fusion protein is found in the soluble S20 fraction in

NM522(pAMBl) grown at 25°C. In comparison, when grown at 37°C, nearly all of

the fusion protein is in the insoluble P20 fraction. There was a considerable amount of

protein degradation apparent in cells grown at 25°C. Subsequent experiments on the

PrtA-Ste6p were conducted at 25°C with an induction time of 2 hours.

3.5 RIPA buffer enhances binding of the PrtA-Ste6 fusion protein to IgG

Sepharose

Affinity purification of protein A fusion proteins is normally achieved by binding

soluble cell extract onto IgG Sepharose under suitable conditions (low salt

concentration) washing the Sepharose to remove non-specifically bound protein and

then eluting the fusion protein either by increasing the salt concentration or by

decreasing pH. Initial purification studies on the PrtA-Ste6 fusion protein indicated

that it failed to bind efficiently to the IgG Sepharose. In an attempt to increase binding

efficiency the S20 fraction of the cell lysate was treated with a complex detergent

mixture called RIPA buffer (added to give a final concentration of 150mM NaCl, 1%

Nonidet P-40, 0.1% sodium deoxycholate and 0.1% SDS). The results obtained using

RIPA-treated S20 extracts compared with those in a low salt solution are shown in

Figure 3.3. It can be seen that a far greater proportion of the fusion protein is bound

to IgG Sepharose when RIPA buffer is added to the S20 fraction prior to addition to

the IgG. Figure 3.3 also demonstrates that the temperature at which binding is carried
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out is unimportant. Subsequent purifications were carried out at 4°C in the presence

ofRIPA buffer.

3.6 Purification of the PrtA-Ste6 fusion protein and its use as an antigen for

production of Ste6p specific antibodies

The PrtA-Ste6p fusion protein was bound onto IgG Sepharose in the presence of

RIPA buffer as detailed in section 3.5. Contaminating proteins were removed by

washing the IgG Sepharose in wash buffer (150mM NaCl, 50mM Tris-HCl and

0.05% Tween 20 pH 8.0) until the wash buffer gave an A2go of less than 0.1. At this

point several attempts were made to elute the chimera from the IgG Sepharose. It was

found that neither high salt (1M NaCl, 50mM Tris.HCl, 0.05% Tween 20 pH8.0) nor

0.5M acetic acid were able to remove the majority of the chimera from the IgG

Sepharose (data not shown). To overcome this problem the fusion protein was

electroeluted from a preparative polyacrylamide gel loaded with IgG-Sepharose-

bound PrtA-Ste6p which had been dissociated in gel sample buffer. The eluate was

dialysed overnight against distilled water and concentrated by lyophilization.

Sufficient pure PrtA-Ste6p was obtained to use as antigen for antibody production in

two New Zealand White rabbits (as detailed in Chapter 2). At a later date it was

discovered that the fusion protein could be dissociated from the IgG Sepharose by

incubation in the presence of 0.1M Glycine pH 3, 1% CHAPS for 20 min (Figure

3.4). This method gave greater yields of fusion protein and was less time demanding

than elution from a preparative gel. Protein purified by this later method was used for

all subsequent booster inoculation of the rabbits.
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3.7 Construction and expression of a pgal-ste6 chimaeric protein for the affinity

purification of anti Ste6p antibodies

Antibodies specific to Ste6p protein were affinity-purified by the use of a second

fusion protein. This time a pgal-Ste6p fusion protein was produced by sub-cloning the

1.2kbp EcoRH BamHl fragment ofpAMBl corresponding to the extreme 3' end of

STE6 into pEX12 (Kusters et al., 1989) to create an in-frame fusion with p-

galactosidase. The resultant plasmid, pAMB3, was transformed in to the if coli strain

pop2136. Growth and expression from the Pr promoter was carried out as detailed in

Chapter 2 and was compared with pop2136 cells containing either no vector or the

parent pEX12 vector. The results are shown in Figure 3.5. The results indicate that

the pgal-Ste6p fusion protein is being correctly expressed in pop2136.

3.8 Detection of Ste6p in yeast with the affinity-purified anti-Ste6p antibody

Polyclonal antibodies specific for Ste6p were affinity purified from rabbit serum by the

method detailed in 2.24. The affinity purified antibodies were tested for their ability to

bind specifically to Ste6p expressed in yeast by use of the S. cerevisiae stains BJ5464

and WKK7 (Table A2). The BJ5464 strain has a wild-type STE6 gene whereas

WKK7 is a AZEd-deleted strain. As shown in Figure 3.6a the antibodies recognise a

protein of approximately 145kDa (the expected molecular weight of Ste6p) in a

membrane extract ofBJ5464 cells whereas no protein was detected in a membrane

fraction ofWKK7. To further demonstrate that the antibody was specific for Ste6p,

WKK7 was transformed with pAMB14 (Table A3) which contains the STE6 gene
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under the control of the powerful GAL promoter. When WKK7(pAMB14) was

grown on mannose no immunoreactive protein was detectable in the membrane

fraction, however when grown in the presence ofgalactose a protein of 145kDa was

detected (Figure 3.6b). Thus the affinity-purified antibody was specific for Ste6p and

was capable of detecting Ste6p in yeast cell membranes by Western blot analysis.

3.9 Discussion

In this Chapter the successful production, expression and purification of an affinity

purified anti-Ste6p antibody was described. The antibody was capable of detecting

Ste6p found in membrane fractions of glass bead-lysed yeast cells by Western Blot

analysis. The affinity-purified antibody was found to be quite unstable and tended to

be non-functional after 1-2 months even when stored in aliquots at -20°C. The

addition of 1-2% BSA appeared to help stabilise the antibody; however, it was still

necessary to re-purify antibody from rabbit serum at regular intervals.
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Figure 3.1 Expression of PrtA-Ste6p in E. coli

A. The E. coli strain NM522 was transformed with either pAX12 or pAMBl and

grown shaking at 37°C in LB plus ampicillin until an Agoo °f 0.6 was obtained. The

cultures were then induced by the addition of.0.25mM IPTG and grown at 37°C for a

further 4 hours. Cell pellets were weighed and resupended in an equal volume of 2x

SDS-PAGE sample buffer. The samples were then boiled for 10 min before analysis

by 12% SDS-PAGE. The proteins were visualised by Western blot analysis using a

rabbit anti-bovine IgG HRP conjugate at a 1:10,000 dilution for 20 min. The blot was

developed by use of enhanced chemiluminescence (ECL).

B. A culture ofNM522(pAMBl) was grown and induced as in 3.1a. The cells were

harvested then subjected to glass bead lysis and differential centrifugation as described

in Chapter 2. The cell fractions (P3, S20 and P20) were made up to an equ.al volume

and combined with 2x SDS-PAGE sample buffer. The samples were then subjected to

Western blot analysis as detailed in Figure 3.1a.
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A. 1 2 3

PrtA-Ste6p
(56KDa)

PrtA

(17kDa)

Lane 1 NM522

Lane2 NM522(pAX12)

Lane3 NM522(pAMBl)

B. NM522(pAMBl)

PrtA-Ste6p
(56KDa)

1 2 3

Lane 1 P3

Lane 2 S20

Lane 3 P20
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Figure 3.2 The PrtA-Ste6p fusion protein is soluble in cells grown at 25°C

NM522(pAMBl) cells were grown at either 37°C or 25°C until an Aggo °f 0-6 was

reached. They were then induced by the addition of 0.25mM IPTG and grown for a

further 4 hours. Samples were taken at hourly intervals. The cells were lysed and then

subjected to differential centrifugation to give S20 and P20 fractions as described in

materials and methods. The samples were then run on 12% SDS-PAGE and the

presence of the fusion protein detected by Western blot analysis using a rabbit anti-

bovine IgG HRP conjugate at a 1:10,000 dilution for 20 min. The blot was developed

by use ofECL.
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a) NM522(pAMBl) grown at 37»C

b) NM522(pAMBl) grown at 25°C
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Figure 3.3 Solubilisation of the PrtA-Ste6p chimera with RIPA buffer aids

binding to IgG Sepharose

Overnight cultures ofNM522(pAMBl) were inoculated into LB with ampicillin and

grown shaking at 25°C until an AggO °f 0.6 was obtained then induced by the

addition of 0.25mM IPTG and grown for a further 2 hours. The cells were lysed and

the S20 fraction collected as detailed in Chapter 2. The S20 fraction was then either

left untreated or treated with RIPA buffer (final concentration 150mM NaCl, 1%

Nonidet P-40, 0 .1% sodium deoxycholate and 0.1% SDS) and applied to 1ml of IgG

Sepharose previously equilibrated with wash buffer (150mM NaCl, 50mM Tris-HCl

and 0.05% Tween 20 pH8.0). Binding of the fusion protein occurred during gentle

rotation at either room temperature or at 4°C for 1 hour. The IgG Sepharose was

then pelleted by centrifugation (30 seconds at 3,000g) and the supernatant fraction

("unbound") collected for analysis by SDS-PAGE. The IgG Sepharose was then

washed with wash buffer until an A28O of less than 0.01 was obtained, then

resuspended in 2X SDS-PAGE sample buffer (Chapter 2). Samples of unbound and

bound chimaeric protein were analysed by 12% SDS-PAGE and Western blot analysis

as described in Figure 3.1. In the following blot B signifies Chimaeric protein Bound

to the IgG Sepharose with UB indicating material which remained UnBound

following incubation with IgG Sepharose.
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Figure 3.4 Purification of the PrtA-Ste6p fusion protein on IgG Sepharose

The S20 fraction from a 500ml culture ofNM522(pAMBl), grown and expressed as

detailed earlier in this Chapter, was treated with RIPA buffer before being applied to

lml of IgG Sepharose previously equilibrated in wash buffer. Binding was carried out

for 1 hour at 4°C with constant gentle agitation. The IgG Sepharose was then washed

with wash buffer until an A280 of less than 0.01 was obtained. The chimaera was

removed from the IgG Sepharose by incubation in the presence of 0.1M glycine pH3,

1% CHAPS for 20 min with gentle agitation. The eluate was then dialysed and

concentrated by lyophilization. The purified fusion protein was analysed by 12% SDS-

PAGE and either stained with Coomassie Blue or transferred onto nitrocellulose and

visualised with ECL following probing with rabbit anti-bovine IgG HRP conjugate at

a 1:10,000 dilution for 20 min.

A) SDS-PAGE: a 12% polyacrylamide gel stained with Coomassie Blue.

Lane 1 Molecular Weight markers

Lane 2 PrtA-Ste6p

B) Western blot of the stained gel shown in A.

Lane 1 PrtA-Ste6p
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Figure 3.5 Expression of a (3gaI-Ste6 fusion protein in pop2136 cells

Untransformed pop2136, pop2136(pEX12) and pop2136(pAMB3) cells were grown,

shaking, in 100ml LB plus ampicillin at 30°C until an Aggo of 0.6 was obtained. Half

the culture from each was then shifted to 42°C, the remainder staying at 30°C, and

grown for a further 2 hours. The cells were then lysed and the P3 (inclusion body

containing) fraction collected as detailed in Chapter 2. The inclusion body fraction

from each culture was resupended in 5ml lysis buffer, mixed with 2X sample buffer

and analysed by SDS-PAGE (Chapter 2).
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Figure 3.6 Detection of yeast Ste6p with affinity purified antibodies

Figure 3.6a single colonies of yeast strains BJ5464 and WKK7 were grown overnight

in selective media containing glucose as a carbon source (SD). The following day the

cultures were inoculated into 50ml of SD and grown until an A^oo of 0.6 was

obtained. The cells were harvested then subjected to glass bead lysis and differential

centrifugation to yield a membrane, PI00, fraction as described in Chapter 2. The

PI00 fractions were then subjected to SDS-PAGE and Western blot analysis. The blot

was probed with affinity-purified anti-Ste6p antibody at a 1:100 dilution for 16 hours

followed by a 1: 1,000 dilution ofDonkey anti-rabbit HRP conjugate for 20 min. The

blot was then developed by use ofECL.

Figure 3,6b single colonies of yeast strains WKK7 and WKK7(pAMB14) were grown

in selective medium containing mannose as a carbon source (SM). The following day

the cultures were inoculated into 50ml of either SM or SG (selective media containing

galactose) and grown until an A<;oo of 0.6 was obtained. The cells were then lysed and

subjected to Western blot analysis under identical conditions to those used for 3.6a.
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Chapter 4

The attempted purification of a recombinant Ste6p tagged
at the amino terminus with six histidine residues



4.1 Introduction

In order to carry out biochemical analysis of the Ste6p and a-factor substrate it was

essential that the Ste6p could be purified and reconstituted into phospholipid vesicles.

It was intended that the wild-type Ste6p would be isolated from a membrane enriched

fraction of lysed yeast cells that were overexpressing the protein. The first stage of the

purification would be to determine which detergents were capable of solubilising the

Ste6p. Once solubilised it was hoped that the protein could be purified using standard

techniques such as ion-exchange chromatography and exclusion chromatography.

As an alternative to traditional purification techniques there are various methods

available that enable a protein of interest to be tagged to allow rapid affinity

purification. One example of this is tagging a protein with a domain ofProtein A to

allow purification on IgG Sepharose as detailed in Chapter 3. Another, now widely

used technique exploits metal chelate chromatography. For this the protein of interest

is tagged at either the amino or carboxyl terminus with six or more consecutive

histidine residues. These histidine residues have a high affinity for the metal nickel that

may in turn be bound to a solid matrix. The commercially available Ni-NTA (nitrilo-

tri-acetic-acid) resin (Qiagen) is capable of binding hexa-histidine tags with a Kd=10"13

M at pH8. The high binding efficiency permits the removal of contaminating protein

either by competition with imidazole or by lowering the pH and theoretically leads to

a one-step purification procedure. The tag is very small and is therefore unlikely to

interfere with protein structure. Another advantage of using this type of affinity tag is

that the resin does not require any functional protein structure and can therefore bind
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tagged protein in the presence of 8M Urea, lOmM {3-mercaptoethanol, up to 1% non-

ionic detergent and salt concentrations of 1M. All of the above considerations are

important in the purification of a large membrane protein which has a low level of

expression and a relatively short half life.

Initial purification studies were centred around the constitutive expression ofwild-

type protein from a yeast episomal vector. The protein was found to be easily

solubilised with a wide variety of detergents and was detectable by Western blot

analysis. However, the level of protein expression, even when expressed in a strain in

which the vacuolar ATPase encoded by the PEP4 gene had been deleted, was poor

and it was envisioned that it would be virtually impossible to purify by conventional

means.

As an alternative to conventional purification procedures the amino terminus of Ste6p

was tagged with a hexa-histidine tail. It was hoped that resultant recombinant protein

(N(His)<5Ste6p) could be easily purified from the membranes of yeast expressing the

protein. Several different purification procedures were attempted using both native

and denaturing conditions, however, none appeared to enable binding of

N(His)gSte6p to the Ni-NTA resin. It was proposed that the N(His)gSte6p failed to

bind to the Ni-NTA resin because the hexa-histidine tail had been removed during

posttranslational processing of the protein.

This Chapter describes the attempts made to purify from S. cerevisiae both wild-type

Ste6p and an N-terminally hexa-histidine tagged variant.
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4.2 Production of a Ste6p-overexpressing strain of S. cerevisiae

For the purification ofwild-type Ste6p to be successful it was essential that its

expression in S. cerevisiae could be optimised to give high protein yields. As

discussed in Chapter 2 Ste6p is a metabolically unstable protein which is stabilised by

yeast containing a defect in the vacuolar protease A gene PEP4 (Rolling et al., 1994;

Berkower et al., 1994). With this in mind it was decided that BJ5465 apep4MAT&

strain of S. cerevisiae (Table A2) would be used for the expression studies.

An expression vector for wild-type Ste6p was produced by cloning the Sail fragment

of pSTE6, which contains the entire STE6 gene, into the Sail site of the yeast

episomal vector YEplacl81 (Geitz and Sugind., 1988) to make pAMB7. This plasmid

was transformed into the yeast BJ5465 to create BJ5465(pAMB7). Expression of

Ste6p from BJ5465 and BJ5465(pAMB7) was compared by Western blot analysis of

crude cell lysates as detailed in Figure 4.1. As can be seen from Figure 4.1 there was a

large increase in the amount of Ste6p expression from BJ5465(pAMB7) when

compared to wild-type BJ5465. All subsequent experiments on the purification of

wild-type Ste6p utilised the BJ5465(pAMB7) strain. A control experiment was

carried out in which pAMB7 was transformed into the MATa strain JRY188.

Expression of Ste6p from JRY188 and JRY188(pAMB7) was carried out as detailed

in Figure 4.1. As expected no Ste6p expression was detected in either strain (data not

shown) in agreement with Wilson and Flerskowitz (1984) who observed that STE6

expression is cell type specific and negatively regulated by theM47a2 product.
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The Ste6p detected by Western blot analysis appears as a diffuse band. The

appearance of the band would correspond with that of a glycoprotein; however Ste6p

is not thought to be glycosylated (Kuchler et al., 1993). Attempts were made at

improving the resolution of the band by altering the conditions of protein treatment

prior to and during analysis by SDS-PAGE. The most favourable conditions found are

those detailed in Figure 4.1.

4.3 Localisation of Ste6p by differential centrifugation

In order to optimise the purification conditions it was first necessary to determine

which cell fraction contained the greatest quantity of Ste6p. Crude cell lysates of

growing BJ5465(pAMB7) were subjected to differential centrifugation and analysed

by SDS-PAGE and Western blot analysis (Figure 4.2). As can be seen from Figure

4.2b the greatest quantity of Ste6p was found in the membrane fraction (PI00). A

large quantity of Ste6p was also found in the P3 and P12 fractions. The most likely

cause of this is incomplete cell lysis. Figure 4.2a indicates that there are a great many

contaminating proteins in the PI00 fraction. It also shows that Ste6p is not a major

protein and is not identifiable as a distinct protein in a crude cell lysate such as this.

All further experiments on the isolation of Ste6p were conducted on the PI00 fraction

from BJ5465(pAMB7) cells lysed with glass beads.
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4.4 Ste6p is solubilised by a wide range of detergents

When determining which detergent to use for the purification it was necessary to take

into account its critical micelle concentration (CMC). A detergent with a high CMC is

preferable for the reconstitution of protein into proteoliposomes and a CMC of ImM

or greater is preferable for detergent removal by dialysis (Neugebauer, 1990).

Preliminary experiments conducted on the solubilisation of Ste6p with a range of non-

ionic detergents indicated that Ste6p was readily solubilised by 1% Thesit, CHAPS,

Triton X-100 and Zwittergents 3-8 to 3-14. Of the detergents tested only LDAO and

MEGA-8 were inefficient at solubilising Ste6p. The Zwittergent 3-10 was picked for

the solubilisation of Ste6p, due to its favourable CMC and its relative cost efficiency.

At this point it became clear that it was going to be very difficult to purify wild-type

Ste6p from S. cerevisiae. The main problem envisioned was the very low level at

which the protein was being produced. This could have been overcome if large culture

volumes had been utilised, however this was deemed impractical due to the

constraints of handling large cell quantities. The expression of the protein might also

have been improved had it been put under the inducible control of the powerful GAL

promoter. Another alternative was to affinity-tag the protein with a oligo-histidine tail

so that it could be "pulled" out of a dilute solution by its high affinity to Ni-NTA resin

(Qiagen). It was decided that the Ste6p should be tagged with six consecutive

histidine residues at its amino terminus and be put under control of the GAL promoter

to produce N(His)gSte6p. The amino terminus was chosen for several
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reasons. First the anti-ste6p antibody is directed against the C-terminus of the Ste6p

and there were worries that a tag here would interfere with some antibody

recognition. The C-terminus is thought to contain a large non-membrane associated

domain on the cytosolic face whereas the N-terminus is thought to be part of a short,

non-membrane associated domain on the cytosolic face of the plasma membrane.

Thus it was reasoned that the larger C-terminal domain was more likely to have an

integral role in the function of the Ste6p than the rather shorter N terminal region. As

a consequence it was decided not to place the oligo-histidine tag on the C-terminus in

case it affected the activity of the protein.

4.5 Production of a recombinant Ste6p by attaching six consecutive histidine

residues on the amino terminus to produce N(His)6Ste6p

The addition of six consecutive histidine residues to the extreme N-terminus of Ste6p

was carried out by the use ofPCR using the following primers:

1) 5' primer

Start 5'end ofSTE6

5-CGCC AAG CTT ATG CAT CAC CAT CAC CAT CAC AAC TTT TTA AGT TTT AAG TA C-3'

Hindlll 6 consecutive histidine residues

2) 3' primer:

3'end ofSTE6

5-CGC CAA OCT TTT ACC ATT CCA TCT ATG AGT AAC-3'

Hindlll
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The PCR reaction was carried out using VENT polymerase with pSTE6 as the

template as detailed in Chapter 2. The 4.3kb product was digested with Hindlll and

cloned into the Hindlll site of pK19, a standard laboratory general purpose vector, to

produce pAMBlO. The Hindlll fragment containing the tagged STE6 gene was then

subcloned into the Hindlll site of the yeast episomal vector YEpGAL thus placing the

tagged STE6 gene under the control of the inducible GAL promoter. The resultant

vector was called pAMB 11. It was possible that the PCR process could introduce an

error into the STE6 gene that would render it useless. It was decided therefore to

sequence to the first EcoRl site (lkb down stream of the extreme 5'-end of the tagged

STE6 gene) so that, if necessary, the tagged region of the gene could be sub-cloned

into the wild type sequence using a simple HindlllJEcdRl digest of both pAMBl 1

and pSTE6 to produce a "wild-type" gene. A high quality sample of pAMBlO was

produced by the Qiagen midi-preparation kit from the E .coli strain DH5a. The DNA

was then subjected to double stranded DNA sequencing (method 1) as detailed in

Chapter 2 with the M13 forward sequencing primer and primers N1384-5'-AGC

GGC ATT CAT CGA CCA-3' and N2710-5'-CAT CAA GGT TTG TAT TCC-3'.

This enabled the first 1 kb ofDNA corresponding to the extreme 5' end of the

histidine tagged STE6 gene to the first EcoRl site be read. The sequence was checked

by two non-biased readers and was found to contain no mistakes.

A cartoon ofN(His)gSte6p spanning the plasma membrane is shown below. The

boxed "His" motif at the N-terminus indicates the position of the six consecutive

histidine residues and NBD stands for Nucleotide Binding Domain.
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4.6 N(His)6Ste6p complements a ste6 strain of A. cerevisiae

It was essential that N(His)gSte6p could act as a functional a-factor transporter. In

order to test this an a-factor supersensitive strain of S. cerevisiae, RC757 (MATasst2

Table A2), was utilised. Mutations in sst2 cause both a and a cells to display both

hypersensitivity and greatly prolonged responses (especially to division arrest) to

pheromone (Chan and Otte, 1982a,b; reviewed in Sprague and Thorner, 1992). As the

sst2 mutation in RC757 renders it hypersensitive to a-factor, the secretion of a-factor

can be semi-quantitatively monitored by the production of an area of growth

inhibition, or "halo", around an a-factor producing patch of cells on a lawn ofRC757

cells. To test whether N(His)gSte6p was capable of producing active Ste6p, pAMBl 1

was transformed into the S. cerevisiae strain WKK7 which has aMA 7a Aste6::HIS3

genotype (Table A2). The expression ofN(His)gSte6p and its ability to complement

the WKK7 Aste6::HIS3 genotype is detailed in Figure 4.3. Wild-type WKK7 was

unable to secrete a-factor in the presence of either glucose or galactose. As expected
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the control strains, BJ5465 and WKK7(pAMB7), were capable of secreting a-factor

on both carbon sources. No halo was produced from WKK7(pAMBl 1) grown on

glucose however a-factor secretion was apparent when the cells were grown on

galactose. The N(His)gSte6p was thus capable of complementing a ste6 strain of

yeast and was produced in the presence of galactose and not glucose.

4.7 Expression ofN(His)gSte6p in BJ5465

N(His)gSte6p was expressed in BJ5465 in order to stabilise the protein by virtue of

the strain'spep4 genotype. As a consequence the N(His)gSte6p would be expressed

in a STE6 wild-type background producing a protein mix that would be

indistinguishable by Western blot analysis unless the addition of the histidine residues

greatly altered the molecular weight ofN(His)gSte6p in comparison to Ste6p. This

mixture of anti-Ste6p antibody reactive proteins will be referred to simply as Ste6p

immunoreactive material.

The expression ofN(His)gSte6p was checked by comparing the amount of Ste6p

produced in BJ5465 cells with anti-Ste6p antibody immunoreactive protein produced

by BJ5465(pAMBl 1) cells. The cells were grown and induced with galactose as

detailed in Figure 4.4. As can be seen from Figure 4.4 the membrane fraction of

BJ5465(pAMBl 1) cells appeared to contain more Ste6p immunoreactive material

than wild-type BJ5465 membranes isolated under identical conditions. The protein

detected by the anti-Ste6p antibody appears as a distorted, or smudgy, band. This
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banding pattern had been observed previously and did not appear to be due to the

N(His)6Ste6p.

The DNA sequence data, halo assay and Western blot ofN(His)6Ste6p expression

gave the clear impression that an active, galactose induced N-terminal hexa-histidine

tagged variant of Ste6p was being produced from the pAMBl 1 vector. From these

data we decided to continue the purification studies in the knowledge that the protein

was active and correctly tagged at the N-terminus. In addition the solubilisation of

N(His)6Ste6p protein with the range of detergents detailed in section 4.4 gave

comparable results to the those obtained from the wild-type protein (data not shown).

4.8 Attempted purification of N(His)6Ste6p solubilised from BJ5465(pAMBll)

membranes

It was hoped that the N(His)6Ste6p could be purified from the membranes of

galactose-induced BJ5465(pAMBl 1) cells under relatively mild conditions. Initial

purification studies were centred on solubilising the protein from a glass bead lysate

using the Zwittergent 3-10. The results shown in Figure 4.5 indicate that a large

amount of Ste6p immunoreactive material was present in the cell lysate suggesting

successful induction ofN(His)6Ste6p expression. Comparison of the amounts of

protein in the S20 and P20 fractions indicates that the protein was at best only 50%

soluble. The disappointing solubilisation of anti-Ste6p antibody reactive protein may

have been due partially to incomplete cell lysis. The lysis could have been monitored

by measuring the absorbance due to the release of DNA from lysed cells at 260nm
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until it reached a constant level. The blot also indicates that there was a large amount

of Ste6p immunoreactive material in the unbound fraction suggesting that very little, if

any, soluble N(His)gSte6p applied to the Ni-NTA resin actually bound to it. There

was no Ste6p immunoreactive protein found in either of the washes nor the eluate.

The results shown in Figure 4.5 indicate that the N(His)eSte6p was unable to bind to

the Ni-NTA resin under these conditions.

An identical experiment to that described in Figure 4.5 was carried out using Triton

X-100 instead ofZwittergent 3-10. The Triton X-100 was marginally better at

releasing anti-Ste6p antibody reactive protein from membranes of induced

BJ5465(pAMBl 1) cells and was an economical detergent to use while initial protein

binding experiments were being conducted. Virtually identical results were obtained

when Triton X-100 was used (data not shown) indicating that no anti-Ste6p antibody

reactive protein was being bound to the Ni-NTA resin. Further experiments in which

the concentration ofTX-100 for both protein solubilisation and binding were varied

were also carried out. No Ste6p immunoreactive material was found to have been

bound to or eluted from the Ni-NTA resin under any of the detergent concentrations

attempted (data not shown).

It was possible that the protein was being solubilised with Zwittergent 3-10 and

Triton X-100 but had somehow folded and as a result the histidine "tail" was

inaccessible to the Ni-NTA resin. In an attempt to overcome this problem both the

solubilisation and binding of the protein to the Ni-NTA resin were carried out in the

presence of 8M Urea (Figure 4.6). As demonstrated in Figure 4.6 there was no
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binding of Ste6p immunoreactive material to the Ni-NTA resin in the presence of 8M

urea and 1% Triton X-100.

4.9 Discussion

This Chapter described preliminary experiments relating to the purification ofwild-

type Ste6p and the production and expression of a N-terminally-hexa-histidine tagged

variant of the protein, N(His)6Ste6p. N(His)6Ste6p was expressed as an active protein

as shown by its ability to complement a ste6 null mutation in the yeast strain WKK7

and was detectable as an increase in Ste6p immunoreactive material when expressed

against a wild-type background in BJ5465.

Attempts made at purifying N(His)6Ste6p on Ni-NTA resin were unsuccessful due to

the inability to detect any N(His)6Ste6p binding to the Ni-NTA resin. This may have

been due to a low concentration ofN(His)eSte6p leading to poor visualisation on

Western blots. The blots themselves might have been misleading as the Ste6p

immunoreactive material visualised on the blots might have consisted mainly of the

wild-type Ste6p. Ideally the N(His)6Ste6p would have been expressed in apep4 strain

in which the STE6 gene had been deleted to remove contaminating wild-type protein.

This was attempted following the protocol detailed in the appendix to this Chapter.

Numerous attempts at making this ste6::URA3 strain failed due to inability to ligate

the blunt ended, filled-in URA3 fragment into the parent vector.
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It was possible that the binding ofN(His)6Ste6p to the Ni-NTA resin failed because

the tagged N-terminus was in some way unavailable for binding to the resin. As there

was no binding evident in the presence of 8M urea is would seem unlikely that this

was due to any residual protein structure which may have "hidden" the oligo-histidine

"tail". Alternatively it was conceivable that the N-terminus of the N(His)6Ste6p was

being cleaved during a posttranslational event and was therefore not available to bind

to the Ni-NTA resin. At this time Rolling and Hollenberg (1994b) conducted studies

on a chimaeric protein produced by the fusion of the 1st hydrophobic segment of

Ste6p (amino-acids 1-78) to the gene of the secreted protein invertase (SUC2) which

was lacking its ER signal sequence. The results of the study showed that the first

hydrophobic segment of Ste6p was capable of directing invertase to the ER membrane

indicating that this region of Ste6p functions as a signal sequence. During the course

of their experiments they observed that, when deglycosylated, the chimaeric protein

had the same mobility on SDS-gels as wild-type invertase. This was unexpected as the

chimaeric protein had a calculated molecular weight of 8.8 kDa larger than wild-type

invertase. It was concluded that this discrepancy was due to the removal of the N-

terminal Ste6p sequences by signal peptidase upon transition into the lumen of the

ER. Analysis of the Ste6p sequence by the rules set up by von Heijne (1986) predicted

that there would be a potential signal cleavage site at Gly62^Ser63.

In order to determine whether or not the extreme N-terminus was being removed

during some posttranslational event it was decided that the C-terminus of Ste6p

should be tagged with a oligo-histidine tail and tested for its ability to bind to Ni-NTA

resin. At this time monoclonal antibodies specific for an oligo-histidine sequence were
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becoming commercially available. It was hoped that such antibodies could be used to

determine whether or not the extreme N-terminus of Ste6p was present in the mature

protein. The results on the study of a C-terminally-oligo-histidine tagged variant of

Ste6p are detailed in Chapter 5.
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Figure 4.1 Overexpression of Ste6p from BJ5465(pAMB7)

Overnight cultures ofBJ5465 and BJ5465(pAMB7) were inoculated into 50ml of

glucose-containing selective medium (SD) supplemented with the necessary amino

acids and uracil. The cultures were grown, shaking, at 30°C until an A^oo of 1.0 was

obtained. The cells were then harvested, lysed with glass beads as detailed in Chapter

2. The crude cell lysate was diluted in 2X SDS-PAGE sample buffer and subjected to

electrophoresis on a 7.5% polyacrylamide gel. The electrophoresed protein was

transferred onto nitrocellulose. The blot was probed with a 1:100 dilution of anti-

Ste6p serum for 2 hours followed by a 1:5,000 dilution of donkey anti-rabbit HRP

conjugate for 20 min. The blot was then developed by ECL.
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Lane 1.BJ5465
Lane 2 BJ5465(pAMB7)
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Figure 4.2 Localisation of Ste6p by differential centrifugation of

BJ5465(pAMB7) cell lysate

An overnight culture of BJ5465(pAMB7) was inoculated into 50ml of selective

medium with glucose as a carbon source. The culture was grown shaking at 30°C

until an A^oo of 1.0 was obtained. The cells were then harvested and subjected to glass

bead lysis and differential centrifugation as detailed in Chapter 2. The cell fractions

were resuspended to an equal volume in lysis buffer and diluted in an equal volume of

2X SDS-PAGE sample buffer (Chapter 2). The samples were then heated at 37°C for

10 min and subjected to electrophoresis on a 7.5% polyacrylamide gel. Gels were

either stained with Coomassie Blue or transferred onto nitrocellulose. The Western

blot was probed with a 1:100 dilution of anti-Ste6p serum for 2 hours and a 1:5,000

dilution ofDonkey anti-rabbit conjugate for 20 min. The blot was developed with

ECL.

A. SDS-PAGE: a 7.5% polyacrylamide gel stained with Coomassie Blue.

B. Western blot of the stained gel shown in A.
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Figure 4.3 Expression of N(His)6Ste6p in WKK7; the Halo Assay

Agar plates containing either glucose or galactose as a carbon source were seeded

with RC757 cells as detailed in Chapter 2. Single colonies ofWKK7,

WKK7(pAMB7), WKK7(pAMBl 1) and BJ5465 were inoculated into 5 ml of

selective medium containing mannose as a carbon source and supplemented with

necessary amino-acids and uracil (SM). The cultures were grown for 16 hours until

they appeared turbid to the eye. The cells from a 1.5 ml aliquot of each culture were

harvested by centrifugation (3g for 5 min). The pellets were gently resuspended by

pipetting until a uniform cell solution was obtained. A 3 pi aliquot of each cell

suspension was then carefully pipetted on to the lawn ofRC757 cells. The plates were

incubated at 25°C in a static incubator until the halos were visible (2-3 days).
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Figure 4.4 Expression of N(His)6Ste6p in BJ5465

Overnight cultures ofBJ5465 and BJ5465(pAMBl 1) were inoculated into 50ml of

selective medium containing mannose as a carbon source and supplemented with the

necessary amino-acids and uracil. The cultures were grown, shaking, at 30°C until an

A^oo of 0.6 was obtained. The growth medium was then supplemented by the addition

of galactose to a concentration of 2%. The cultures were then grown, shaking, at 30°

C for a further 12 hours. The cells were then harvested and subjected to glass bead

lysis and differential centrifugation to yield S100 and PI00 fractions as detailed in

Chapter 2. The cell fractions were made up to an equal volume in cell lysis buffer and

diluted in 2X SDS-PAGE sample buffer. The samples were then heated at 37°C

before being separated by electrophoresis through a 7.5% polyacrylamide gel. The

gel was then blotted onto nitrocellulose and probed for the presence of

immunoreactive Ste6p with a 1:100 dilution of anti-Ste6p serum for 2 hours and a

1:5,000 dilution ofDonkey anti-rabbit HRP conjugate for 20 min. The blot was

developed by ECL.
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Figure 4.5 Attempted purification of N(His)6Ste6p solubilised from

BJ5465(pAMBll) membranes with Zwittergent 3-10

Overnight cultures ofBJ5465(pAMBl 1) were inoculated into 1 litre of selective

medium containing 2% mannose as a carbon source and supplemented with the

necessary amino acids and uracil (SM). The cultures were grown, shaking, at 30°C

until an A^oo of 0.6 was obtained. The cells were then harvested and resuspended in 1

litre of SG (as SM but using galactose as a carbon source). The cultures were

incubated as before for a further 16 hours. The cells were harvested and washed in

50mM Tris.HCl pH 7.5, then weighed and resuspended in an equal volume of lysis

buffer (50mM Tris.HCl, 300mM NaCl plus protease inhibitors). The cell suspension

was placed in the small chamber of the Bead Beater (Chapter 2), which had been half

filled with glass beads. The cells were lysed by 4 bursts of 1 min on the bead beater

interspersed with 1 min cooling intervals on ice. The cell lysate was separated from

the beads by centrifugation at 6,000g for 5 min (centrifuge) and solubilised by the

addition ofZwittergent 3-10 to a concentration of 1%. The lysate was incubated with

gentle agitation for 1 hour at 4°C then centrifuged to yield an S20 fraction (Chapter

2) which was added to 1ml ofNi-NTA resin that had been previously equilibrated in

Solubilisation buffer (lysis buffer plus protease inhibitors and 1% Zwittergent 3-10).

The Ni-NTA resin/cell lysate mixture was incubated, with gentle agitation, for 1 hour

at 4°C. The unbound material was removed from the resin by centrifugation (l,200g

for 3 min). The resin was washed in 10 volumes of solubilisation buffer (Wash 1) and

then in 10 volumes of wash buffer 2 (solubilisation buffer plus 10% glycerol pH6.0)

until the A2go of the wash buffer was less than 0.01. Oligo-histidine containing

proteins were competed off the resin by the addition of a high concentration of

imidazole in the final elutant wash (wash buffer 2 plus 500mM imidazole). Samples of

the cell lysate, unbound material, washes 1 and 2 and eluate were diluted with 2x

sample buffer and subjected to 7.5% SDS-PAGE and Western blot analysis. The blot

was probed with a 1:100 dilution of anti-Ste6p serum for 2 hours and a 1:5,000

dilution ofDonkey anti-rabbit HRP conjugate for 20 min. The blot was developed by

ECL.
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Figure 4.6 Attempted purification of N(His)6Ste6p solubilised from

BJ5465(pAMBll) membranes with Triton X100 and 8M urea

Cells from 1 litre ofBJ5465(pAMBl 1) cells, cultured and galactose induced as

described in Figure 4.5, were resuspended in buffer A (50mM NaP04 pH 8.0,

500mM NaCl) supplemented with protease inhibitors and lysed with the Bead-Beater

as before (Figure 4.5 and Chapter 2). The cell lysate was separated from the beads by

centrifugation at 6,000g for 5 min and solubilised by the addition of Triton X-100 to a

concentration of 1%. The lysate was incubated with gentle agitation for 1 hour at 4°C

then centrifiiged to yield an S20 fraction (Chapter 2) which was added to 1ml ofNi-

NTA resin that had been previously equilibrated in Buffer A plus protease inhibitors

and 1% Triton X-100. The resin was incubated on a rotating wheel for 60 min at 4°C.

The unbound material was removed from the resin by centrifugation (2,000 X g for 1

min) and the resin was washed in buffer B (8M urea, 0.1M NaP04, 0.01M Tris. HC1,

pH 8.0. and 0.1% Triton X-100) until the A28o of the wash buffer was less than 0.01.

The N(His)gSte6p was eluted by incubation with lOOpl elution buffer (lOmM Tris pH

7.5, 500mM NaCl, 0.1% Triton X-100, 300mM imidazole) for 5 min and

centrifugation at 2,000 X G for 2 min. The elution step was carried out twice.

Samples taken from each point in the purification procedure subjected to

polyacrylamide gel electrophoresis and Western blot analysis as detailed in Figure 4.5.
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Appendix to Chapter 4

Protocol for the production of a ste6::URA3 strain of BJ5465

The STE6 gene disruption strategy was based on the one-step gene replacement

method described in Kuchler et cil., 1989.

1) The plasmid pAMB4 (Table A3) would be digested with Stu 1 and SnaBl

(both ofwhich generate blunt ends) to remove a 3.4 kb fragment

representing 87% of the STE6 coding region.

2) The deleted fragment would be replaced with the URA3 containing BarnHl

fragment ofYDp-U (Berben et al., 1991) which had had its sticky ends filled

in by the action of the Klenow fragment ofDNA polymerase 1 prior to

ligation.

3) The resultant plasmid would be digested with SaR and Sad to release the

STE6 disruption cassette which would be transformed into BJ5465 (Table

A2).

4) Transformants would be screened for by their ability to grow on media

deficient in uracil.

5) Integration of the deletion construct into the genome would be confirmed by

DNA hybridisation and tetrad analysis.
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Chapter 5

The partial purification of a recombinant Ste6p tagged at
the Carboxyl terminus with eight histidine residues



5.1 Introduction

In Chapter 4 the production, expression and partial purification of an N-terminally

hexa-histidine tagged Ste6p was discussed. The failed attempts at purification of both

the recombinant and the wild-type protein left us with an interesting dilemma. It

remained of utmost importance to try and purify Ste6p from S. cerevisiae yet an

interesting question regarding the possible cleavage of the N-terminus of Ste6p had

also been posed. Although the state of the N-terminus of Ste6p could be determined

by protein sequence analysis, for this a large amount of purified protein would be

required.

In an attempt to purify Ste6p from S. cerevisiae, and in turn provide material for

protein sequence analysis, it was decided that a recombinant Ste6p would be

produced in which the C-terminus had been tagged with eight consecutive histidine

residues. This chapter describes the production, expression and partial purification of

a C-terminally octa-histidine tagged Ste6p variant. It also describes attempts made at

protein sequence analysis and how the use of a monoclonal antibody, specific for a

sequence of six or more histidine residues, was used to further substantiate the

evidence that the N-terminus of Ste6p had been removed by post-translational

modification of the protein.
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5.2 Production of a recombinant Ste6p by attaching eight consecutive histidine

residues to the carboxyl terminus to produce C(His)sSte6p

As discussed in Chapter 4 the inability to detect any binding ofN(His)gSte6p to Ni-

NTA resin may have been due to several reasons. Although the possibility of the N-

terminus being removed from mature Ste6p was of interest it led to doubt whether

conditions would ever be found which would enable N(His)gSte6p to be purified by

metal chelate chromatography. It was decided that a C-terminally octa-histidine

tagged Ste6p should be produced as an alternative to the studies on N(His)gSte6p.

Tagging the C-terminus of Ste6p contradicted the strategy of tagging the N-terminus

of the protein however it appeared to be the obvious step to take. It was expected

that a C-terminally tagged protein would be purifiable on Ni-NTA resin and would

enable the analysis of the nature of the N-terminus of Ste6p.

The addition of eight consecutive histidine residues to the extreme C-terminus of

Ste6p was carried out by the use ofPCR using the following primers:

1) 5' primer:

Start 5' end ofSTE6

5-GGC CAA OCT TAT GAA CTT TTT AAG TTT TAA GAC TAC A-3'

Hindlll

2) 3' primer:

8 consecutive histidine residues

5'-G CGG AAG CTT TTA GTG ATG GTG ATG GTG ATG GTG ATG ACT GCT TTG GTT GGA AAC AAT TTG-3'

Hindlll <—3 'end ofSTE6
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The PCR reaction was carried out using VENT polymerase with pSTE6 as the

template as detailed in Chapter 2. The PCR product was digested with Hindlll and

cloned into the Hindlll site ofYEpGAL thus placing the tagged STE6 gene under the

control of the inducible GAL promoter. The resultant plasmid was called pAMB14. In

order for DNA sequence analysis to be carried out the Hindlll fragment of pAMB14

containing the C-terminally histidine tagged STE6 gene was subcloned into the

Hindlll site of pK19 to produce pAMB15. A high quality sample of pAMB15 was

produced by the Qiagen midi-preparation kit from the E. coli strain DH5a. The DNA

was then subjected to double-stranded sequencing (method 2) with the following

primer: 5'-AGC GGA TAA CAA TTT CAC ACA GGA-3'. This enabled the DNA

corresponding to the extreme 3' end of the histidine-tagged STE6 encompassing the

octa-histidine tag to be read. The sequence was checked by two non-biased readers

and was found to contain no mistakes, so it was concluded that the DNA sequence

encoding the octa-histidine tag was correctly placed.

A cartoon ofC(His)gSte6p spanning the plasma membrane is shown below. The

boxed "His" motif at the C terminus indicates the position of the eight consecutive

histidine residues and NBD stands for Nucleotide Binding Domain.
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5.3 C(His)gSte6p complements a sie6 strain of S. cerevisiae

It was essential that C(His)gSte6p, like N(His)gSte6p, could act as a functional a-

factor transporter. The a-factor bioassay was carried out essentially as described in

4.6. This time the yeast strain WKK7 was transformed with pAMB14 to produce

WKK7(pAMB14). Samples ofWKK7, WKK7(pAMB14), BJ5465 and purified a-

factor (Chapter 2) were tested for their ability to produce a halo on a lawn ofRC757

cells grown using either glucose or galactose as a carbon source (Figure 5.1). As

expected BJ5465 and purified a-factor were capable of producing a halo effect when

grown on either carbon source. Wild-type WKK7 was unable to secrete a-factor in

the presence of either glucose or galactose and no halo was produced from

WKK7(pAMB14) grown on glucose; however a-factor secretion was apparent when

the cells were grown on galactose. The C(His)gSte6p was thus capable of

complementing a ste6 defect and was produced in the presence of galactose and not

glucose.
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The expression ofN(His)5Ste6p and C(His)gSte6pN from WKK7(pAMBl 1) and

WKK7(pAMB14) respectively were examined as detailed in Figure 5.2. It was found

that, when grown on galactose, both recombinant proteins were equally good at

complementing the ste6 mutation ofWKK7. Interestingly when cultures of both

strains were grown on galactose and then placed on an RC757 lawn grown containing

glucose as a carbon source halo production was also evident. This was an unexpected

observation when one considers that the half-life ofwild-type Ste6p is supposedly

only 13-30 min (Rolling and Hollenberg, 1994; Berkower et al., 1994). If this were

the case and if the glucose present in the RC757 lawn was sufficient to repress the

expression of the recombinant proteins, it is surprising that such an obvious halo was

produced. However it is conceivable that residual a-factor had remained associated

with the cell wall of the cells grown in the presence of glucose with subsequent

leaching resulting in the pheromone response of the RC757 tester lawn.

5.4 The expression of C(His)gSte6p in aMATct strain of S. cerevisiae

The efficient expression of recombinant Ste6p required that it should be produced in a

ste6 strain ofS cerevisiae which was preferably deficient in the vacuolar hydrolase

activities attributable to the PEP4 gene product (Ammerer et al., 1986; Woolford et

al., 1986). A strategy for the production of a WKK7 pep4 knockout strain is detailed

in the appendix to this Chapter. Suspected mutant cells were produced; however they

failed to grow on either liquid or solid media and were therefore deemed useless for

the expression of recombinant Ste6p.
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As discussed in Chapters 2 and 4, expression ofSTE6 in S. cerevisiae is a-cell type

specific, that is, it is not normally expressed in a-type cells. As it was expected that

expression ofC(His)gSte6p would be as inefficient as that observed with

N(His)gSte6p, it was decided to try and express the protein in theMATapep4 strain

BJ5464 under the control of the GAL promoter. Expression of the recombinant

protein under the control of the GAL promoter was expected to provide a high level

of protein expression which would not be subjected to transcriptional repression by

the Mata2p. If this was successful the expression of C(His)gSte6p would be stabilised

by the absence of a functional pep4 gene and detection of the recombinant protein

could be achieved without the interference from the wild-type protein. In addition the

studies ofBerkower et al., (1994) indicated that degradation ofwild-type Ste6p

occurs with identical kinetics inM47a andMATa strains of S. cerevisiae.

The expression ofC(His)gSte6p in aMA Tex ste6 strain of S. cerevisiae (BJ5464) is

shown in Figure 5.3. The expression ofwild-type Ste6p in the presence of glucose

and galactose is shown in lanes 1 and 2 respectively. The MATa strain, BJ5464, gave

no banding pattern for Ste6p when grown either in the presence of glucose or

galactose as shown in lanes 3 and 4 respectively. The expression ofC(His)gSte6p

from BJ5465(pAMB14) grown in the presence of galactose (lane 5) gave a banding

pattern comparable to that ofwild-type Ste6p (lane 1) and appeared similar to that

observed from the expression ofN(His)6Ste6p in BJ5465. No anti-Ste6p

immunoreactive material of the correct molecular weight for C(His)gSte6p was
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detected in the membrane fraction ofBJ5464(pAMB14) cells grown on glucose (lane

6). When BJ5464(pAMB14) cells were grown in the presence of galactose (lane 7) a

heavy band of approximately 145kDa corresponding to C(His)gSte6p was detected.

The results of the Western blot indicated that the expression ofC(His)gSte6p in

BJ5464 had been successful. All future experiments involving purification studies on

C(His)gSte6p were conducted on protein obtained from galactose-induced

BJ5464(pAMB14).

5.5 An anti-oligo-histidine monoclonal antibody is immunoreactive with

C(His)gSte6p but not with N(His)(;Ste6p

The practice of purifying oligo-histidine-tagged recombinant proteins by metal chelate

chromatography has stimulated the development of two different means by which the

poly-histidine "tail" can be detected. The first uses a Ni-NTA conjugate (Qiagen)

consisting ofNi-NTA coupled to either calf intestinal alkaline phosphatase (AP) or

horseradish peroxidase (HRP). These conjugates can be used for chromogenic or

chemiluminescent detection of any recombinant protein containing an accessible oligo-

histidine tag. The second method of detection involves the use of antibodies specific

for a oligo-histidine tag. Commercially-available monoclonal antibodies are available,

however they were usually directed against an oligo-His tag plus its flanking

sequence, for example the Qiagen His antibody is directed against the sequence Arg-

Gly-Ser-His-His-His-His which is the sequence contained in recombinant proteins

expressed from their commercially available expression system. Dianova GmbH

(Germany) produced the first monoclonal antibody (13/45/31) against the oligo-
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histidine tag. It was claimed to be effective in detecting oligo-histidine tagged proteins

when used in a variety of different situations including immunoblot and

immunoprecipitation analysis. Unfortunately the expense of this product prevented its

use.

A mouse monoclonal antibody directed against an oligo-Histidine residue epitope was

made available by Dr Dieter Engelcamp at the Western General Hospital, Edinburgh.

This antibody offered a means by which the presence or absence of an oligo-histidine

tag could be determined, so as to indirectly identify the N-terminus ofN(His)gSte6p.

If the antibody were immunoreactive with a protein of the correct size for

N(His)5Ste6p it would suggest that the failure to purify the protein was due to either

the experimental conditions or the inability to detect minute quantities of the protein.

On the other hand if the protein was not immunoreactive with the anti-His tag

antibody it would further confirm the idea that the N-terminus of Ste6p was cleaved

during posttranslational modifications of the protein. C(His)gSte6p would act as a

control protein being expressed under identical conditions in the same strains of S.

cerevisiae. If the C(His)gSte6p were immunoreactive with the antibody it should be

able to be purified on Ni-NTA resin.

Figure 5.4a shows a Western blot of a bacterially expressed N-terminally-deca-

Histidine-tagged protein, probed with the anti-His-tag monoclonal antibody. It

confirms that this antibody is capable of immunoreacting with a protein containing a

poly-Histidine motif attached to the N-terminus. Western blot analysis of the

membrane fractions ofBJ5464(pAMBl 1) and BJ5464(pAMB14) probed with anti-
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Ste6p antibody and anti-His-tag antibody are shown in Figure 5.4b. The Western blot

probed with the anti-Ste6p antibody demonstrates that Ste6p is being produced from

BJ5464(pAMB14) and BJ5464(pAMBl 1) cells respectively in the presence of

galactose. The Western blot probed with the anti-His-tag antibody indicates that a

protein of identical size to that detected with the anti-Ste6p antibody could be

detected in the membranes of cells expressing C(His)gSte6p, in contrast, this was not

observed in cells expressing N(His)5Ste6p. To eliminate the possibility that this was

the consequence of expressing the protein in an a-cell type the experiment was

repeated using the WKK7 strain of S. cerevisiae (Figure 5.4c). The results shown in

Figure 5.4c are identical to those shown in Figure 5.4b, the high background on the

blot being due to a longer exposure time (necessitated by the lower protein

concentrations resulting from the expression of protein in a PEP4 strain of S.

cerevisiae).

The results shown in Figure 5.4 demonstrate that the anti-His-tag monoclonal

antibody was immunoreactive with a bacterially-expressed N-terminally-deca-

Histidine tagged protein and C(His)gSte6p. This antibody was not immunoreactive

with N(His)gSte6p suggesting that there was no histidine tag accessible to the

antibody. The comparative Western blots probed with anti-Ste6p antibody indicate

that this was not due to poor expression of the protein. It is possible that this lack of

detection was due to the inability of the antibody to detect the hexa-histidine tag on

N(His)gSte6p as the proteins that were successfully detected in this study had eight

and ten histidine residues. However this explanation would seem unlikely as the

antibody had been tested against at least ten different histidine tagged proteins which
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were tagged with six to ten residues at either the N or C terminus and expressed from

different plasmid expression systems in a variety of different organisms. In each case

the protein of interest was positively identified by the antibody (D. Engelcamp

personal communication). The antibody has now been marketed commercially.

The results of the experiments carried out with the anti-His-tag antibody demonstrate

that the histidine tag of C(His)gSte6p was accessible and as a consequence it was

expected that it would be able to bind to and therefore be purifiable on Ni-NTA resin.

5.6 Studies on the binding of C(His)gSte6 solubilised with Triton X-100 from

the membranes of galactose-induced BJ5464(pAMB14) cells

The successful purification of a histidine-tagged variant of human P-glycoprotein by

its affinity to Ni-NTA was reported by Loo and Clarke (1995). This purification of

another eukaryotic ABC-transporter by nickel chelate chromatography suggested that

C(His)gSte6p could also be purified using this technique, and provided a set of

conditions on which to base the purification ofC(His)gSte6p. The P-glycoprotein

purification was based on the transient expression of a C-terminally deca-histidine

tagged P-glycoprotein variant in the mammalian cell line HEK 293. Material

solubilised by the non-ionic detergent »-dodecyl-(3-D-maltoside was bound onto a Ni-

NTA spin column (Qiagen) in the presence of 50mM imidazole. Contaminating

proteins were removed by washing the resin with 80mM imidazole. The protein was

eluted from the resin with 300mM imidazole. This protocol yielded 6-12mg of

purified P-glycoprotein which had ATPase activity in the presence of lipid.
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The initial studies on the interaction ofC(His)gSte6p with Ni-NTA resin were

concerned with finding conditions which would enable efficient binding and elution of

the protein. In order to keep the cost of these initial binding studies to a minimum the

detergent Triton X-100 was used for the solubilisation ofC(His)gSte6p from the

membranes of galactose-induced BJ5464(pAMB14) cells.

Initial attempts at binding C(His)gSte6p onto Ni-NTA resin used the protocol ofLoo

and Clarke (1995), who loaded the recombinant P-glycoprotein onto the Ni-NTA

resin spin column in the presence of 50mM imidazole in order to reduce non-specific

protein binding. An attempt at binding the C(His)gSte6p to Ni-NTA resin in the

presence of 50mM imidazole (Figure 5.5) resulted in no C(His)gSte6p binding to the

resin under these conditions. The experiment was then repeated with the omission of

imidazole from the binding buffer (Figure 5.6) and C(His)gSte6p was found to bind to

the Ni-NTA resin under these conditions. The protein was eluted from the resin by the

addition of 300mM imidazole.

Although Triton X-100 appeared to be adequate for the solubilisation of

C(His)gSte6p from the membranes ofBJ5464(pAMB14) Figures 5.5 and 5.6 indicate

that a large amount of the protein was not solubilised under these conditions. Figure

5.6 also demonstrates that although some C(His)gSte6p was bound to the Ni-NTA

resin a large proportion of the protein remained unbound under these conditions. To

overcome these problems a strong denaturant, 8M urea was used. As can be seen

from Figure 5.7 the addition of 8M urea resulted in the total solubilisation of
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C(His)gSte6p from the membranes ofBJ5464(pAMB14). Unfortunately the addition

of urea did not decrease the proportion ofC(His)gSte6p remaining unbound. Figure

5.7, also shows that the protein remains bound to Ni-NTA when the pH was lowered

to pH6.0. This is an important consideration as contaminating proteins are usually

selectively eluted from Ni-NTA resin by the addition of a low concentration of

imidazole (c.f. Loo and Clarke, 1995). C(His)gSte6p did not bind to Ni-NTA resin in

the presence of 50mM imidazole indicating that a lower imidazole concentration,

which would allow C(His)gSte6p to bind to the resin, would have to be determined in

order that imidazole could be used as a means of removing contaminating protein

from the resin. A reduction in pH, resulting in the protonation of histidine residues

and their dissociation from the resin might provide an alternative mechanism by which

contaminating proteins could be removed. Proteins containing histidine monomers are

usually eluted at around pH 6.0 whereas proteins containing 6 or more histidine

residues are eluted at around pH 4.5 (Qiagen). The data obtained from Figure 5.7

would indicate that C(His)gSte6p remains bound to Ni-NTA when the pH is lowered

to pH 6.0. In addition the supplementation of the solubilisation buffer with 8M urea

appears to greatly increase the amount of C(FIis)gSte6p solubilised from membranes

ofBJ5464(pAMB 14) with Triton X-100.

In order to determine the imidazole concentration required to elute C(His)gSte6p

from Ni-NTA a discontinuous imidazole gradient was applied to C(His)gSte6p which

had been solubilised and bound to Ni-NTA in the presence of 1% Triton X-100 and

8M urea (Figure 5.8). As can be seen from Figure 5.8 C(His)gSte6p remained bound
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to the Ni-NTA resin in the presence of buffer at pH 6.0 and in the presence of 20mM

imidazole, but was eluted by imidazole concentrations of 40mM and greater.

Although Triton X-100 solubilised C(His)gSte6p could be purified on Ni-NTA in the

presence of 8M urea the use of the detergent «-dodecyl-/?-D-maltoside was also

explored. This was prompted by the success ofLoo and Clarke (1995) who used it in

their purification of deca-histidine tagged P-glycoprotein. They found that this

detergent solubilised around 80% of the available P-glycoprotein from mammalian cell

line membranes. In addition their purification procedure was successful without the

use of strong denaturants, e.g. 8M urea, and resulted in the recovery ofP-

glycoprotein ATPase activity.

5.7 The partial purification of C(His)gSte6p solubilised with «-dodecyl-/?-D-

maltoside

The studies conducted on Triton X-100-solubilised C(His)gSte6p indicated that the

protein remained bound to the Ni-NTA resin in the presence of 20mM imidazole.

Figure 5.9 shows an experiment in which C(His)gSte6p solubilised from the

membranes ofBJ5464(pAMB14) with A?-dodecyl-/?-D-maltoside was bound to Ni-

NTA resin in the presence of 20mM imidazole. The protein was then subjected to

elution by a discontinuous imidazole gradient using concentrations of 30mM-300mM

imidazole. As can be seen from Figure 5.9A, C(His)gSte6p bound to the resin in the

presence of 20mM imidazole and was eluted from the resin with imidazole

concentrations in excess of 40mM. There is a slight band corresponding to
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C(His)gSte6p in the 30mM imidazole wash, however, examination of the silver

stained gel (Figure 5.9B) indicates that a large amount of contaminating protein is

being eluted in the 30mM imidazole wash. A faint band corresponding to the expected

molecular weight is detectable in the silver stained gel. The inability to clearly detect

C(His)gSte6p on silver stained gel was disappointing especially when the amount of

contaminating proteins is taken into account. It was decided that subsequent attempts

at the purification ofC(His)gSte6p would be carried out with the addition of 20mM

imidazole to the binding buffer. In addition a 30mM imidazole wash would also be

included. This may result in the loss of a small amount ofC(His)gSte6p however this

loss would appear to be insignificant when one takes into account the benefits

obtained by removing such a large amount of contaminating protein. A duplicate

experiment was conducted in which the 20mM imidazole was omitted from the

binding buffer. The omission of imidazole from the binding buffer was found to have

no effect on the binding/elution pattern of C(His)gSte6p, which was found to be

identical to that indicated in Figure 5.9 (results not shown) indicating that the protein

behaves in an similar manner whether in the presence or absence of 20mM imidazole.

In an attempt to reduce the amount of contaminating proteins present in the final

eluate the resin was washed with a low pH buffer. Figure 5.10 shows an experiment in

which the Ni-NTA resin with C(His)gSte6p bound was washed with buffers of pH 6.3

and pH 5.7 before washing with buffer of pH 8.0 containing 30mM imidazole. The

Western blot (Figure 5.10A) shows that no C(His)gSte6p is lost from the resin in any

of the washing steps. It also shows that most of the C(His)gSte6p is efficiently eluted

from the resin by 300mM imidazole. The silver-stained gel (Figure 5.1OB) shows that
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contaminating protein is eluted from the resin in each of the washes. A candidate band

for C(His)gSte6p is also evident on the silver-stained gel but there was still a

considerable amount of contaminating protein present in the eluate fraction; however

the majority of these proteins appeared to be at a much lower molecular weight than

C(His)8Ste6p.

As the C(His)gSte6p appeared to be a distinct, albeit faint band on the silver stained

gel shown in 5.1 OB the purification was scaled up in an attempt to obtain enough

protein for protein analysis. The partial purification ofC(His)gSte6p from a 1 litre

culture ofBJ5464(pAMB14) is detailed in Figure 5.11. The purification was carried

out by binding the C(His)gSte6p onto the resin in the presence of 20mM imidazole

and contaminating proteins were removed by washing the resin with 30mM imidazole

at pH 8.0 and then at pH 6.3. The silver stained gel shows C(FIis)gSte6p as a clearly

identifiable band in the eluate fraction, distinct from the lower molecular weight

contaminating proteins. In addition the Western blot shows that the majority of

C(His)gSte6p was eluted from the Ni-NTA resin by of 300mM imidazole. The eluted

protein was retained for amino-acid sequence analysis as discussed in 5.8.
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5.8 Attempted sequencing of C(His)gSte6p immobilised on Polyvinylidene

Difluoride (Immobilon P) membranes

Until recently sequencing the N-terminus of a protein has required large (>nmolar)

quantities of purified protein. In recent years improvements in protein sequencing

techniques (Elizinga, 1982; Matsudaira, 1987) have resulted in the ability to directly

sequence pmol quantities of protein after spotting or electrotransfer onto

Polvinylidene Difluoride (PVDF) membranes. PVDF membranes, which are marketed

as Immobilon (Millipore), provide a mechanically strong solid phase support with a

capacity for protein adsorption similar to that of nitrocellulose (Matsudaira, 1987). In

practice it is possible to transfer proteins separated by SDS-PAGE onto Immobilon P

membranes either directly or by electrotransfer. The protein may then be detected by

staining with Coomassie Blue and the portion of Immobilon P containing the protein

excised and sequenced directly.

In an attempt to sequence the N-terminus ofC(His)gSte6p, the eluate fractions from

Figure 5.11 were concentrated and separated by SDS-PAGE according to the method

ofDunbar and Wilson, (1993) (Chapter 2) and as detailed in Figure 5.12. The gel was

electrotransferred onto Immobilon P by wet blotting and stained with Coomassie blue

as detailed in Chapter 2. The region of Immobilon corresponding to C(His)gSte6p

was cut out and sent for sequence analysis by Dr Andrew Cronshaw at the Welmet

protein sequencing facility at Edinburgh University. The material was subjected to 6

cycles of sequence analysis by the method ofHays et al., (1989) however the
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sequence analysis was unsuccessful and no information on the amino-acid sequence at

the N-terminus was obtained.

As it was possible that the blotting procedure may have blocked the N-terminus

another method for binding C(His)gSte6p to Immobilon P was attempted. The

concentrated partially purified protein from Figure 5.11 was separated by SDS-PAGE

as before and as detailed in Chapter 2 and Figure 5.12. On this occasion gel was

stained with filtered Coomassie Blue stain (Chapter 2) and the region of the gel

corresponding to C(His)gSte6p excised (Figure 5.12). The C(His)gSte6p was eluted

from the gel and bound to the Immobilon P membrane by the method of Apps as

described in Chapter 2. The Immobilon membrane was then subjected to 6 rounds of

sequence analysis as described above. The sequence analysis was unsuccessful and no

information regarding the N-terminus ofC(His)gSte6p was obtained. The failure may

have been due to insufficient quantities of protein or to the N-terminus being blocked

and therefore inaccessible to sequence analysis.

5. 9 Discussion

In this Chapter the production, expression and partial purification of a C-terminally

octa-histidine tagged Ste6p variant have been discussed. The protein (C(His)gSte6p)

was correctly expressed as an active protein as shown by its ability to complement a

ste6 null mutation.
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This protein (C(His)gSte6p) was found to be immunoreactive with a mouse

monoclonal antibody specific for a sequence of several histidine residues. In contrast

N(His)gSte6p showed no immunoreactivity with this monoclonal antibody suggesting

that the hexa-histidine tag was either inaccessible to the antibody or had been

removed during posttranslational modifications to the protein. In an attempt to

determine the amino acid sequence at the N-terminus ofmature protein the partially-

purified C(His)gSte6p was subjected to protein sequence analysis. Unfortunately the

protein sequence analysis was unsuccessful perhaps due to insufficient quantities of

protein or to the N-terminus being blocked and therefore inaccessible to sequence

analysis.

The studies conducted on the N(His)gSte6p, as detailed in Chapters 4 and 5, indicate

that the protein was correctly expressed as an active protein but was unable to interact

with Ni-NTA resin or a monoclonal antibody specific for an oligo-histidine tag. These

findings coupled with the recombinant Ste6p studies conducted by Rolling and

Hollenberg (1994b) would suggest that the N-terminus of Ste6p was removed during

posttranslational processing of the protein.
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Figure 5.1 Expression of C(His)8Ste6p in WKK7; the Halo Assay

Agar plates containing either glucose or galactose as a carbon source were seeded

with RC757 cells as detailed in Chapter 2. Single colonies ofBJ5465, WWK7 and

WKK7(pAMB14) were inoculated into 5 ml of selective medium containing mannose

as a carbon source and supplemented with the necessary amino-acids and uracil (SM).

The cultures were grown for 16 hours until they appeared turbid. The cells from a 1.5

ml aliquot of each culture were gently resuspended by pipetting until a uniform cell

suspension was obtained. A 3 pi aliquot of each cell suspension and of purified a-

factor (Chapter 2) were then pipetted on to the lawn ofRC757 cells. The plates were

incubated at 25°C until the haloes were visible (2-3 days).
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Figure 5.2 Comparison of Halos produced from WKK7(pAMBll) and

WKK7(pAMB14) cells grown on either glucose or galactose as a

carbon source

Agar plates containing either glucose or galactose as a carbon source were seeded

with RC757 as detailed in Chapter 2. Single colonies ofWKK7, WKK7(pAMBll)

and WKK7(pAMB14) were inoculated into 5 ml of selective medium containing

either glucose (D) or galactose (G) as a carbon source and supplemented with

necessary amino-acids and uracil. The cultures were grown and harvested and applied

to the RC757 lawn as detailed in Figure 5.1. The plates were incubated at 25°C until

the halos were visible (2-3 days).
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Figure 5.3 Expression of C(His)gSte6p in S. cerevisiae

Overnight cultures ofBJ5464, BJ5465, BJ5464(pAMB14) and BJ5465(pAMB14)

were inoculated into 100ml selective medium containing 2% mannose as a carbon

source supplemented with 1% casamino acids (plus tryptophan for BJ5464 and

BJ5465) and uracil (SM). The cells were then grown shaking at 30°C until an Aggo

of 0.6 had been obtained. The cells were harvested, split in half and inoculated into

50ml fresh selective medium containing either mannose (SM) or galactose (SG) as a

carbon source. The cells were incubated, shaking for 16 hours at 30°C before being

harvested, weighed and subjected to glass bead lysis and differential centrifugation to

yield S100 and P100 fractions as detailed in Chapter 2. The membrane (P100)

fractions were resuspended in lOOpl of lysis buffer, diluted in an equal volume of2X

SDS-PAGE sample buffer, heated at 37°C for 10 min, and loaded onto a 7.5%

polyacrylamide gel. The gel was blotted onto nitrocellulose and probed with a 1:100

dilution of affinity purified anti-Ste6p antibody for 16 hours. The blot was then

probed with a 1:5,000 dilution of donkey anti-rabbit HRP conjugate for 20 min and

developed by the use ofECL.
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Figure 5.4 Detection of C and N-terminally oligo-histidine-tagged-Ste6p

chimaeras with an anti-histidine tag monoclonal antibody

A. A 39kDa deca-histidine N-terminally tagged bacterially-expressed protein (Chapter

2) was diluted in 2X SDS-PAGE sample buffer and subjected to electrophoresis on a

12% SDS polyacryalmide gel. The electrophoresed protein was Western blotted onto

nitrocellulose and probed with a 1:50 dilution of anti-His-tag antibody for 16 hours.
The blot was then probed with a 1:1,000 dilution of anti-mouse IgG HRP conjugate
for 20 min and developed by the use ofECL.

B. Overnight cultures ofBJ5464(pAMBll) and BJ5464(pAMB14) were inoculated
into 100ml of selective medium containing either 2% glucose or galactose as a carbon
source and supplemented with 1% casamino acids and uracil. The cells were then

grown, harvested and subjected to glass bead lysis and differential centrifugation as

detailed in the legend to Figure 5.3. The membrane (PI00) fractions were

resuspended in lysis buffer and diluted with an equal volume of2X SDS-PAGE

sample buffer, heated for 10 min at 37°C and loaded in duplicate onto a 7.5%

polyacrylamide gel. The proteins were then separated by electrophoresis and blotted
onto nitrocellulose. The blot was then cut in half, half of the blot was probed with a

1:50 dilution of the anti-His-tag monoclonal antibody, the other halfwas probed with
a 1:100 dilution of affinity-purified anti-Ste6p antibody. The blots were incubated
with the primary antibody for 16 hours. Secondary antibodies were then applied as

follows; donkey anti-rabbit HRP conjugate was applied to the anti-Ste6p antibody
blot at a 1:5,000 dilution for 20 min and the anti-mouse IgG HRP conjugate was

applied at a 1:1,000 dilution to the anti-His-tag antibody for 20 min. The blots were

developed by the use ofECL.

C. WKK7 cells were transformed with pAMBl 1 and pAMB14 to produce

WKK7(pAMBl 1) and WKK7(pAMB14) respectively. These cell lines were grown
and subjected to Western blot analysis in an identical manner to that described in

Figure 5.4B.
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Figure 5.5 Binding of C(His)gSte6p onto Ni-NTA resin in the presence of 50mM

imidazole

BJ5464(pAMB14) cells were grown and galactose induced as described in Figure 5.3.

The cells were harvested and subjected to glass bead lysis in 50mM NaPC>4 pH8.0

plus protease inhibitors and subjected to differential centrifugation to yield a

membrane (PI00) fraction as detailed in Chapter 2. The cells were resuspended in

buffer A (50mM NaP04 pH 8.0, 500mM NaCl, 50mM imidazole and 20% v/v

glycerol) supplemented with 1% Triton X-100, thoroughly homogenised and

incubated with gentle agitation at 4°C for 1 hour. Insoluble material (PI6) was

removed by centrifugation at 16,000 Xgfor 15 min. The soluble material (SI6) was

mixed with 150pl packed Ni-NTA resin, which had been equilibrated in buffer B

(buffer A plus 0.1% Triton X-100), and incubated with gentle agitation for 60 min at

4°C. The unbound material was removed from the resin by centrifugation (2,000 X g

for 1 min).The resin was washed in 10 bed volumes of buffer B, then incubated in

100pl of buffer C (buffer B plus 80mM imidazole) for 2 min then centrifiiged at 2,000

X g for 1 min. The supernatant (wash C) was retained for Western blot and the resin

was further washed in 10 bed volumes of buffer C. The resin was then incubated in

100gl of elution buffer (buffer B plus 300mM imidazole) and centrifuged as before.

The supernatant was retained for Western blot analysis and the elution step was

repeated. Samples taken from each point in the purification procedure were subjected

to gel electrophoresis and Western blot analysis with affinity purified anti-Ste6p

antibody as described in Figure 5.3.
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Figure 5.6 Binding of C(His)gSte6p, extracted from the membranes of

BJ5464(pAMB14) with Triton X-100, onto Ni-NTA resin

The membranes from galactose-induced BJ5464(pAMB14) were collected as detailed

in Figure 5.5, resuspended in 1.5 ml buffer A (50mM NaPCX pH 8.0, 500mMNaCl

and 20% v/v glycerol) supplemented with 1% Triton X-100, thoroughly homogenised

and incubated with gentle agitation at 4°C for 30 min. Insoluble material (P16) was

removed by centrifugation at 16,000 Xgfor 15 min. The soluble material (S16) was

then mixed with 150pl packed ofNi-NTA resin which had been equilibrated in buffer

B (buffer A plus 0.1% Triton X-100). The resin was incubated on a rotating wheel for

60 min at 4°C. The unbound material was removed from the resin by centrifugation

(2,000 X g for 1 min) and the resin was washed in 20 bed volumes of buffer B.

C(His)gSte6p was eluted by incubation with 100pl lOmM Tris pH 7.5, 500mM NaCl,

0.1% Triton X-100, 20% v/v glycerol, 300mM imidazole for 5 min. The elution step

was carried out twice. Samples taken from each point in the purification procedure

subjected to Western blot analysis as detailed in Figure 5.3.
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Figure 5.7 Binding of C(His)j}Ste6p, extracted from the membranes of

BJ5464(pAMB14) with 1% Triton X-100 and 8M urea, onto Ni-NTA

resin

The membranes from galactose-induced BJ5464(pAMB14) were collected as detailed

in Figure 5.5, resuspended in buffer A (8M Urea, 0.1M NaP04, 0.01M Tris. HC1, and

20%v/v glycerol pH 8.0) with the addition of 1% Triton X-100 and incubated with

gentle agitation for 1 hour at 4°C. Soluble material (SI6) was separated from

insoluble material (PI6) gathered by centrifugation at 16,000 Xgfor 15 min. The S16

fraction mixed with 150pl packed ofNi-NTA resin which had been equilibrated in

buffer A plus 0.1% Triton X-100 and incubated with gentle agitation at 4°C for 1

hour. Unbound material was removed by centrifugation at 2,000 X g for 1 min. The

resin was washed with 2 X 2ml buffer A, then incubated in lOOp.1 of buffer B (8M

Urea, 0.1M NaP04, 0.01M Tris. HC1, 0.1% Triton X-100 and 20%v/v glycerol pH

6.0) for 2 min. The resin was then centrifuged at 2,000 X g for 1 min. The

supernatant (Wash B) was retained for Western blot analysis. The resin was then

washed in 10 bed volumes of buffer B. This washing process was repeated with buffer

C (buffer B plus 80mM imidazole) and buffer D (buffer B plus 300mM imidazole).

Samples taken from each point in the purification procedure were analysed by

Western blot analysis as detailed in Figure 5.3.
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Figure 5.8 Elution of C(His)8Ste6p from Ni-NTA resin with a discontinuous

imidazole gradient

C(His)gSte6p was solubilised from cell membranes from galactose induced

BJ5464(pAMB14) and bound to Ni-NTA as detailed in Figure 5.7. Protein was eluted

from the resin in a stepwise fashion using a discontinuous imidazole gradient. The

resin was washed with 2 X 2ml buffer A, then incubated in lOOpl of buffer B (8M

Urea, 0.1M NaP04, 0.01M Tris. HC1, 0.1% Triton X-100, 20%v/v glycerol pH 6.0)

for 2 min, and centrifuged at 2,000 Xg for 1 min. The supernatant (Wash B) was

retained for Western blot analysis. The resin was then washed in 10 bed volumes of

buffer B. The elution/ washing steps were carried with buffer B containing 20mM,

40mM, 60mM, 80mM and 300mM imidazole. Samples taken from each point in the

purification procedure were subjected to Western blot analysis as detailed in Figure

5.3.
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Figure 5.9 Binding of n-dodecyl-P-D-maltoside solubilised C(His)8Ste6p to Ni-

NTA resin in the presence of 20mM imidazole

The membranes from a 100ml galactose induced BJ5464(pAMB14) culture were

collected as detailed in Figure 5.5, resuspended in 400pl buffer A (50mM NaP04 pH

8.0, 500mM NaCl, 20mM Imidazole and 20% v/v glycerol) and homogenised until a

uniform solution was obtained. The homogenate was then diluted in 1ml ofbuffer A

which had been supplemented with 1% n-dodecyl-P-D-maltoside (DDM) and

incubated with gentle agitation at 4°C for 1 hour. Insoluble material (PI00) was

removed by centrifugation at 100,000 rpm for 20 min in a Beckman TL100

centrifuge. The soluble fraction (SI00) was mixed with a 150pl packed Ni-NTA resin

which had been equilibrated in buffer A supplemented with 0.1% DDM. The resin

was incubated with gentle agitation for 1 hour at 4°C. Unbound material was

separated from the resin by centrifugation at 2000 X g for 1 min. The resin was then

washed in 10 bed volumes of buffer A supplemented with 0.1% DDM. Stepwise

elutions were then carried out in buffer B (lOmM Tris. HC1 pH 7.5, 500mM NaCl,

20% v/v glycerol and 0.1% DDM) which had been supplemented with 30mM, 50mM,

60mM, 80mM and 300mM imidazole. The elution and washing steps were carried out

by resuspending the resin in 100pl of buffer, incubating for 2 min on ice, then

separating the resin from the eluate by centrifugation for 1 min at 2000 X g. The resin

was then washed in 10 bed volumes of the same buffer. Samples taken from each

point in the purification procedure were subjected to polyacrylamide gel

electrophoresis as detailed in Figure 5.3. The gels were either silver stained according

to the method detailed in Chapter 2, or subjected to Western blot analysis with the

affinity purified anti-Ste6p antibody as detailed in Figure 5.3. The region of the silver

stained gel in which the 145kDa C(His)gSte6p protein would be expected to appear is

as indicated.
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Figure 5.10 The effect of lowering the pH on the removal of contaminating

proteins from Ni-NTA

C(His)gSte6p was solubilised from the membranes of galactose-induced

BJ5464(pAMB14) cells and bound on to Ni-NTA resin in the presence of 20mM

imidazole as detailed in Figure 5.9. The resin was washed in 10 bed volumes ofbuffer

A (50mM NaP04 pH 8.0, 500mM NaCl, 20mM Imidazole and 20% v/v glycerol)

which had been supplemented with 0.1% DDM. The resin was then subjected to the

elution and washing steps (as described in Figure 5.9) with citrate-phosphate buffer

(50mM citrate-phosphate, 500mMNaCl, 20%v/v glycerol and 0.1% DDM) which

was at either pFI 6.3 or pH 5.7. The resin was then subjected to elution and washing

steps with buffer A which had been supplemented with either 50mM or 300mM

imidazole. Samples taken from each point in the purification procedure were

subjected to polyacrylamide gel electrophoresis as detailed in Figure 5.3. The gels

were either silver stained according to the method detailed in Chapter 2, or subjected

to Western blot analysis with the affinity purified anti-Ste6p antibody as detailed in

Figure 5.3.
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Figure 5.11 Partial purification of C(His)8Ste6p solubilised from the membranes

of BJ5464(pAMB14) cells with DDM on Ni-NTA resin

The cells from a 1 litre culture of galactose-induced BJ5464(pAMB14) were

subjected to glass bead lysis and differential centrifugation, and solubilisation with 1%

DDM as detailed in Figure 5.9. The DDM-solubilised material (S100) was collected

following centrifugation at 100,000 rpm for 20 min in a Beckman TL-100 centrifuge,

applied to a 350pil packed Ni-NTA which had been equilibrated in buffer A (50mM

NaP04 pH 8.0, 500mM NaCl and 20% v/v glycerol) supplemented with 0.1% DDM.

The resin was incubated with gentle agitation at 4°C for 16 hours then washed in 20

bed volumes of 0.1% DDM supplemented buffer A. The resin was then subjected to

elution and washing cycles (as described in Figure 5.10) with the following buffers;

buffer B (buffer A plus 30mM imidazole) and buffer C (50mM citrate-phosphate,

500mM NaCl, 20%v/v glycerol and 0.1% DDM). C(His)gSte6p was eluted from the

resin by incubation with 1ml elution buffer (buffer A plus 300mM imidazole and 0.1%

DDM) for 15 min. The eluate was harvested by centrifugation for 1 min at 2,000 Xg.

An aliquot of the eluted material was retained for further analysis and the elution

procedure was repeated with a further 9ml of elution buffer. Samples taken from each

point in the purification procedure were subjected to polyacrylamide gel

electrophoresis as detailed in Figure 5.3. The gels were either silver stained according

to the method detailed in Chapter 2, or subjected to Western blot analysis with the

affinity purified anti-Ste6p antibody as detailed in Figure 5.3.
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B. Silver stained 7.5% polyacrylamide gel
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Figure 5.12 Separation of partially purified C(His)sSte6p by SDS-PAGE prior to

attachment to Immobilon P membrane and sequence analysis

The eluate from the purification experiment detailed in 5.8 was dialysed against

distilled water and concentrated by lyophilisation. The material was resuspended in

300pl IX SDS-sample buffer and subjected to gel electrophoresis according to the

method detailed in 2.25a. The gel was lightly stained with Coomassie Brilliant Blue as

detailed in 2.13a. The band corresponding to C(His)8Ste6p (as indicated) was excised

from the gel and prepared for protein sequencing as detailed in 2.25d.
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Appendix to Chapter 5

Protocol for the production of apep4::LEU2 strain ofWKK7

A vector containing the PEP4 gene, in which the majority of the open reading frame had

been replaced by the LEU2 marker gene, was made available by Carol Woolford

(Carnegie-Mellon University). This vector, known as pTS17 or BJ5783, was used in the

creation of apep4: :LEU2 strain ofWKK7. pTS17 was created by replacing a HindUl

fragment of the PEP4 open reading frame and down stream sequence with the LEU2

marker. The digestion of pTS17 with BaniHl released the 8kb disruption cassette which

was purified by agarose gel electrophoresis and transformed into the S. cerevisiae strain

WKK7 (Table A2). WKK7 transformants were selected for their ability to grow on media

deficient in leucine. A PCR strategy was designed to determine whether or not the correct

recombination event had occurred between WKK7 and the pTS17 disruption cassette and

is detailed in Figure 5.13. The genomic DNA from colonies ofWKK7 transformed with

the LEU2 disruption cassette, which were capable of growing on leucine deficient

medium, was extracted and used as a template for PCR analysis. The analysis was carried

out using the template DNA with either primers 1 and 2 or primers 1 and 3 together.

Successful integration of the LEU2 disruption cassette into the WKK7 genome resulted in

the production of a PCR product only when primers 1 and 3 were used. The production of

a PCR product when primers 1 and 2 were used together indicated that correct integration

had not occurred and that the PEP4 gene ofWKK7 remained intact. The genomic DNA

from untransformed WKK7 was used as template for control PCR reactions.
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Figure 5.13 PCR strategy to analyse the integration of a disruption cassette

into the PEP4 gene ofWKK7

WKK7
1

PEP4 Downstream
sequence

WKK7pep4::LEU2

Downstream
sequence

The region of the WKK7 genome incorporating the PEP4 gene with and without the

integration of the LEU2 disruption cassette is shown. The PEP4 gene is indicated in

yellow and the LEU2 gene in blue. The PCR primers 1, 2 and 3 are also indicated.

Primer 1, sequence 5'-ATGTTCAGCTTGAAAGCATT-3', was directed against the 5'

end of the PEP4 gene which would be untouched if a successful disruption occurred.

Primer 2, sequence 5'-TATCGATGGCGGCACC-3', was directed against a region in the

centre of the PEP4 gene which is present in wild-type WKK7 but would be absent if the

successful disruption ofPEP4 by the LEU2 disruption cassette occurred. Primer 3,

sequence 5'-AGCCACCA TTGCCTATT-3', was directed against the centre of the

LEU2 gene.
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Chapter 6

A genetic approach to studying the interaction between
Ste6p and a-factor



6.1 Introduction

In addition to the biochemical approach to studying the interaction between a-factor

and Ste6p a genetic study involving the random mutagenesis of theMFal gene was

attempted. It was hoped that random mutagenesis of theMFal gene would result in

the production ofmutant a-factor molecules which, when expressed in a wild-type

MATu strain, were capable of interacting with and blocking the Ste6p pump. This

mutagenic strategy was expected to provide some insight as to which residues of the

mature a-factor molecule were involved in the interaction with Ste6p.

The mature form of a-factor consists of three parts (Figure 1.5), the C-terminal

farnesyl and methyl groups and the N-terminal amino-acid backbone. The structural

requirements of a-factor that are required for transport by Ste6p and detection by

Ste3p are not well defined. Previous studies (Marcus et al., 1990; He et al., 1991)

have demonstrated that both the farnesylation and methyl-esterification of a-factor are

essential for its export and biological activity. For the purpose of this project we were

interested in determining which residues of the amino-acid backbone of the mature

molecule play an essential role in mediating the interaction between Ste6p and a-

factor.

Region-directed oligonucleotide mutagenesis is a technique which allows random

mutagenesis of a defined region ofDNA. Vails et al., (1990) successfully employed

oligonucelotide-directed mutagenesis to determine which amino-acids were essential
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for targeting yeast carboxypeptidase Y to the vacuole. It was hoped that this

technique could be used as a means of producing a-factor molecules which were able

to interact with and block the Ste6p pump. It was proposed that a library ofmutant

MFal genes could be produced following mutagenesis with primers directed against

all residues of the mature a-factor molecule with the exception of the C-terminal

sequence, CVIA. This sequence is known to be required for a-factor modifications

(farnesylation and methylation) which are essential for a-factor secretion and

bioactivity (Marcus et al., 1990; He et al., 1991). Mutant a-factor molecules which

were able to interact with and block the Ste6p pump could, in theory, be detected by

transforming the mutated a-factor libraries carried at one copy per cell on a yeast

centromere-based plasmid, into aMATn strain of yeast containing intact MFal and

MFa2 genes. Transformants would then be screened for their ability to secrete a-

factor using a growth inhibition (halo) assay in which colonies of a-type cells

secreting a-factor can be detected by the ability of a-factor to inhibit the growth ofa-

type cells plated in a lawn. As the mutated a-factor molecules would be expressed in

the presence ofwild-type a-factor it could be rationalised that only those mutant a-

factor molecules capable of interacting with and blocking the pump would prevent the

secretion of a-factor. Such a-factor mutants would exert a dominant negative effect

and could be described as dominant negative mutations (DNM) of the a-factor gene.

The plasmid DNA from transformed cells displaying such a phenotype could be

rescued and retransformed into yeast to ensure that any observed inhibition of a-

factor secretion was due to the presence of the mutated a-factor. The plasmids of

interest could then be subjected to DNA sequence analysis to detect which mutations

in the MFal gene product conferred the dominant trait.
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It is conceivable that such a-factor mutants could exert their effects by blocking some

part of the a-factor maturation machinery for example those enzymes involved in C-

terminal modification or N-terminal proteolysis. To eliminate this doubt it was

intended that extracts of cells synthesising a confirmed DNM would be assayed for

their ability to modify a chemically synthesised a-factor precursor molecule (Marcus

et al., 1990).

It was hoped that this genetic screen would allow the isolation of a-factor DNMs

which were capable of interacting with and blocking the Ste6p-a-factor pump. Such

mutants would then be chemically synthesised and tested for their ability to block

Ste6p pump which had been purified and reconstituted into phospholipid vesicles. It

was hoped that kinetic studies on the interaction ofmutant a-factor and Ste6p along

with cross-linking studies would help identify which amino-acid residues, if any, were

essential for a-factor-Ste6p interaction.

The following Chapter describes the attempts made to produce a library ofmutant a-

factor genes. It also discusses the results of others' recent studies conducted on the

N-terminal region of a-factor.

6.2 Cloning MFal

The nucleotide sequences of the genes encoding the a-factor precursor molecules,

MFal andMFa2, were originally reported by Brake et al., (1985). For the purpose of
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this study it was decided that thtMFal gene would be cloned and subjected to

mutagenesis. A fragment ofDNA encoding the entire MFal structural gene was

amplified by PCR using VENT DNA polymerase, genomic DNA isolated from the S.

cerevisiae strain BJ5465 (as detailed in Chapter 2) and the following primers:

1) 5' primer 05127")

5'-GCC CCA AGC TTC TTT GTT CTT GTT ACA AAC GAG TGT GT-3'

Hindlll

2) 3' primer (El26)

5'-CGG GAT CCG TGC ATG GAT GTA CAA CGA TAA CC-3'

BamHl

The 560bp PCR product was digested with Hindlll and BamHl and cloned into the

Hindlll/BamHl site of the yeast phagemid vector pVT103-U (Vernet et al1987) to

produce pAMB8. The cloned material was subjected to double stranded DNA

sequencing (method 1) as detailed in Chapter 2 using primer "53" (Vernet et al.,

1987) as detailed below:

Primer "53"

5'-CTG CAC AAT ATT TCA AGC-3'

The region of the cloned material containing the a-factor structural gene was found to

contain no mistakes.
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6.3 Design and production of oligonucleotide primers for the random

mutagenesis ofmutagenesis ofMFal

The clonedMFal gene was used as a template for oligonucleotide-targeted

mutagenesis by the method ofKunkel (1987) and in Sambrook et al., (1989). The

mutagenic primers were designed so that a library ofmutant a-factor molecules that

contained amino acid substitutions at any position in the mature a-factor, with the

exception of the C-terminal CVIA, would be produced as discussed above. Mutagenic

oligonucleotides directed against the remaining 11 amino-acid residues of the mature

a-factor were produced according to the strategy detailed in Figure 6.1. Two

oligonucleotides were produced: a 30-mer (G1192) corresponding to the region

encoding [DN]YIIKGV[FW] and a 27-mer (G1191) corresponding to

[GV]FWDPA[CV], For each oligonucleotide the first and last six residues

(corresponding to the bracketed amino-acids) were synthesised according to the

MFal sequence. The intervening 18 (or 15) residues were "doped" (contaminated)

during synthesis with 0.22% of each of the incorrect nucleotides as described in Vails

et al., (1990). This strategy was calculated to yield single mutational frequencies of

20% (that is one in five oligonucleotides within the synthesised population will have a

single base change) and 4% and 0.8% for double and triple mutations respectively.
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6.4 Attempted mutagenesis ofMFal with random "doped" primers.

To increase the efficiency of oligonucleotide directed mutagenesis the Kunkel method

(Sambrook et al., (1989) taken from Kunkel, 1987) was used, in which the single-

stranded template DNA is produced in a strain ofE. coli which has a duf ung'

genotype. The duf ung' genotype results in the production of uracil-containing single-

stranded template DNA due to a deficiency in the dUTPase and uracil-N-glycosylase

activities respectively. Oligonucleotide directed-mutagenesis relies on the

semiconservative nature ofDNA replication resulting in half of the progeny carrying

the desired mutation. The Kunkel method increases the chances of the progeny

carrying a mutation to 80% due to the instability of the parent, uracil-containing,

strand ofDNA.

Uracil-containing single-stranded template DNA was produced in the E. coli strain

BW313 transformed with pAMB8 as described in Chapter 2. The single-stranded

DNA was purified from the culture supernatant with the QiagenMl3 kit and used as

a template for oligonucleotide-directed mutagenesis with either primer G1191 or

G1192 as described in Sambrook et al., (1989). The extension reactions were carried

out using Sequenase 2 (Amersham). The resultant DNA was transformed into the E.

coli strain NM522.

Initial attempts at mutagenesis failed due to the small number (<100) of transformants

per reaction carried out. Transformation efficiency was increased by the use of

184



commercial competent E. coli strain DH5a (GIBCO BRL). Transformants were

picked and subjected to DNA sequence analysis (Chapter 2) following extraction of

plasmid DNA with Qiagen spin-column mini-preparation kits. In the first instance

six transformants, from a mutagenesis reaction carried out with the G1191 primer,

were characterised and none contained mutations. Colonies picked from subsequent

mutagenesis reactions were screened by DNA sequence analysis and in all cases

failed to show any sequence alteration. It was thought that this apparent lack of

mutagenesis might be due to the quality of the single stranded DNA; in addition it

was possible that the BW313 strain was failing to produce uracil-containing DNA.

Figure 6.1

The design of oligonucleotide primers for the random mutagenesis ofMFal

MFal
5'- -3'

nh2-m qpstataapkektssekkdn YIIK.GVFWDPACVIA-COOH

target region for random mutagenesis

Asp Asn Tyr lie lie Lys Gly Val Plie Trp Asp Pro Ala Cys Val
GAG AAC TAT ATT ATC AAA GGT GTC TTC TGG GAC CCA GCA TGT GTT

Primer

G1192 GAC AAC TAT ATT ATC AAA GGT GTC TTC TGG

G1191 GGT GTC TTC TGG GAC CCA GCA TGT GTT

Representation of the primary gene product of the a-factor gene, MFa\. The yellow

region represents the portion of the precursor molecule present in mature a-factor
with the boxed area representing the target region for random mutagenesis. The

mutagenic oligonucleotides, G1191 and G1192, are shown with the emboldened
residues representing those which were doped during synthesis.
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In order to rule out any doubt regarding the uracil content of the template DNA

another duf ung strain ofE. coli, CJ236 (Table Al), was employed. Single-stranded

DNA produced from CJ236 harbouring pAMB8 and purified using the Qiagen kit was

used in a mutagenesis reaction with G1191 as the mutagenic primer. Transformants

were characterised by DNA sequence analysis and once again failed to show any

sequence alteration over the region supposedly mutagenised by G1191.

In all, approximately 50 transformants, recovered from mutagenesis with G1191,

were sequenced. The Kunkel method of mutagenesis is thought to be about 80%

efficient (Sambrook et al., 1982) therefore out of the 50 colonies screened some 40

would be expected to carry the mutagenised strand ofDNA. The oligonucleotides

were doped to the extent that 20% of oligonucleotides would carry a single base

change. If this were the case then 8 out of the 40 supposedly mutagenised

transformants would be expected to carry a single base change. If the E. coli strains

BW313 and CJ236 had been efficient at producing uracil-containing single-stranded

template DNA then 5 transformants would have been expected to carry a single base

change.

In an attempt to determine why the mutagenesis was unsuccessful the decision was

taken to clone and sequence the primers to determine the exact level of doping. The

primer G1191 was cloned following the PCR reaction detailed in Figure 6.2 where

pAMB8 was used as a template ofMFal with primers El26 (MFal V primer) and

G1191 (mutagenic primer). The PCR reaction was carried out in duplicate using Taq
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polymerase and the pooled product was cloned using the p-GEMT vector (Chapter

2).

The PCR reaction was carried out under low stringency conditions to ensure that the

reaction was non-biased against G1191 oligonucleotides which contained mutations.

Transformants were screened for the presence of PCR product by restriction digestion

and sequence analysis. 15 transformants were sequenced, but none were found to

contain any sequence alteration. If 20% of the oligonucleotide primers produced had

had a single base change then we would have expected to see 3 mutant forms of the

MFal gene over the G1191 priming region. This estimate assumes that the PCR

reaction was un-biased and accurate.

In all, approximately 50 transformants, recovered from mutagenesis with G1191,

were sequenced. This taken with the results of the studies on the cloned primer

G1191 would suggest that the primers were not doped to a sufficiently high level to

allow efficient screening ofmutant forms of theMFal gene.
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Figure 6.2

The use of PCR to produce anMFal containing product incorporating the

mutagenic primer G1191.

MFal-

pAMB8

51 3'
"-E126

G1191N
3' ^ 5'

PCR I
5'- 3'
3'-— 5'

The template, pAMB8, is shown with the region ofDNA corresponding toMFal

highlighted. The PCR product produced by reactions carried out with primers E126

and G1191 is also shown.

Information obtained in discussions at the Yeast Genetics and Molecular Biology

Meeting (Seattle, 1994) indicated that analysis of the amino-acid determinants for a-

factor-Ste6p interaction had already been attempted with little success. This

information taken with the apparent difficulty we were having with the creation of a

library ofmutant a-factor molecules prompted us to drop this side of the project. The

decision was taken to concentrate on the biochemical approach to studying a-factor-

Ste6p interaction by focusing on the purification and reconstitution of Ste6p.
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6.5 Discussion

In recent years several studies have concentrated on the molecular determinants of a-

factor bioactivity and Ste6p interaction. Caldwell et al., (1994) examined the role of

the N-terminal amino-acid residues on the bioactivity of a-factor. Their analysis of

truncated a-factor molecules showed that sequential removal of the N-terminal amino-

acids resulted in a progressive loss of potency. To further examine the importance of

N-terminal residues for the bioactivity of a-factor they used doped oligonucleotide

mutagenesis to create a library of mutagenised a-factor molecules. As their study was

concerned with the bioactivity ofmutant a-factor molecules they expressed the

mutagenic a-factor library in an mfal mfa2 null mutant and screened for colonies

which secreted biologically inactive a-factor. The identification ofmutant a-factor

molecules which were biologically inactive (or less active than wild-type) but secreted

could act as a reverse screen for amino-acids involved in a-factor secretion. Their

analysis showed that the mutant a-factor molecules were present at a lesser

concentration than wild-type molecules and they suggested that this was due to their

inability to immunoprecipitate mutant variants as efficiently as wild-type molecules.

This could also have been due to less efficient secretion by the Ste6p pump. The data

presented in this paper is too limited to draw any precise conclusions regarding which

residues might be important for bioactivity and secretion. In general they showed that

only extreme changes in the peptidyl structure affect the biological activity suggesting

that Ste6p may be a promiscuous peptide transporter. This is in marked contrast to

the effects of removal of either the methyl or farnesyl moieties.
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Studies on the importance the carboxyl methyl esterification of a-factor by the STE14-

encoded protein (Sapperstein et al., 1994) suggest that is essential for the export of a-

factor by the Ste6p pump. These studies (of Sapperstein et al., 1994) indicate that

although a-factor is correctly synthesised and membrane associated in a steJ4 null

mutant, the (stel4 null) mutant exhibits a block in a-factor export which is as severe

as that seen in a ste6 mutant strain. They suggest that the carboxyl methyl

esterification of a-factor is likely to be an essential determinant in the recognition of

the peptide by Ste6p. In addition they refer to unpublished data (Kistler, et al) that

states that most amino-acid alterations in mature a-factor do not cause an a-factor

export defect.

To date the precise structural requirements for the recognition of a-factor by Ste6p

remain unknown. The studies by Sapperstein et al., (1994) suggest that C-terminal

methyl esterification of a-factor is necessary for its interaction with Ste6p. In addition

attempts made at elucidating which N-terminal amino-acid residues are important for

the recognition of a-factor both by Ste6p and Ste3p have shown that neither protein is

able to discriminate against a variety of amino-acid changes within the N-terminal

portion of the peptide (Caldwell et al., 1994, Kistler et al., unpublished data).

Recent studies (Quinby and Deschenes, 1997) have shown that processing of the

CVIA sequence is not sufficient for the generation of a-factor competent for export.

Experiments conducted on truncated a-factor precursor molecules and GST-(pro)-a-

factor fusion molecules implicated the amino terminal prosequence in a-factor
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biogenesis. Deletion of the a-factor prosequence was found to lead to a dramatic

decrease in the level of intracellular a-factor resulting in sterility. They proposed that

the amino terminal prosequence may play a role in directing the a-factor precursor

through a transport pathway that culminated in Ste6p.

In order to ascertain which components of the a-factor molecule are involved with the

interaction of Ste6p it will be necessary carry out kinetic studies on purified,

reconstituted Ste6p and a variety of chemically synthesised mutant a-factor molecules.
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Chapter 7

Discussion



Discussion

The STE6 gene product of the yeast Saccharomyces cerevisiae encodes a

transmembrane ATPase which is essential for the export of the a-factor mating

pheromone. Ste6p is a member of the ATP binding cassette superfamily of transport

proteins which includes many human proteins of medical significance, as discussed in

Chapter 1. The identification of the Ste6p substrate, a-factor, coupled with the power

of yeast genetics made this an ideal candidate protein with which to study this family

of transport proteins.

During the course of this project I set out to purify Ste6p from the membranes of

yeast cells which were overexpressing the protein. The Ste6p was detected by use of a

rabbit polyclonal antibody directed against the C-terminal 400 amino-acids of Ste6p.

The antibody was raised and affinity-purified from the rabbit serum by use of two

bacterially-expressed recombinant Ste6p proteins which contained the C-terminal 400

amino acids of Ste6p fused to Protein A or P-galactosidase respectively. The affinity-

purified antibody was shown to be specific for Ste6p and was capable of detecting the

protein in yeast cell membranes by Western blot analysis (Chapter 3).

Initial purification studies were centred on the purification ofwild-type Ste6p from

the membranes of yeast which were constitutively overexpressing the protein from a

yeast episomal vector (Chapter 4). Although conditions were found in which the

protein could be solubilised from the membranes, it was soon realised that the
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purification ofwild-type Ste6p, by conventional means, could be extremely difficult,

the main reason for this being the poor level of Ste6p expression. This could possibly

have been overcome by greatly increasing the culture volume, or by placing the STE6

gene under the control of a powerful inducible promoter such as GAL. However the

decision was taken to tag the extreme N-terminus of Ste6p with six consecutive

histidine residues in order to allow its affinity purification on Ni-NTA resin (Chapter

4). The N-terminally histidine tagged version of Ste6p (N(His)eSte6p) was fully

functional, as shown by its ability to complement a Aste6 mutation and its expression

under the control of the GAL promoter was detectable when expressed in BJ5465.

However attempts made at purifying the N(His)6Ste6p by its supposed affinity for Ni-

NTA resin failed. It was proposed that the N-terminus was being proteolytically

removed during the post translational processing of the protein thus preventing it

from binding to the Ni-NTA resin. This proposal was supported by the observations

ofRolling and Hollenberg (1994b) who suggested that the N-terminus of Ste6p is

removed by signal peptidases on transit to the ER (as discussed in Chapter 4).

A functional octa-histidine-C-terminally tagged variant of Ste6p (C(His)gSte6p) was

then produced and conditions were found by which it could be partially purified from

yeast cell membranes (Chapter 5). A monoclonal antibody specific for a poly histidine

tag failed to detect the N(His)6Ste6p in Western blots analysis whereas the

C(His)sSte6p was readily detected under identical conditions. These observations also

supported the suggestion that the N-terminus of Ste6p was indeed being removed

during maturation of the protein.
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Recent studies in which the metabolic stability of Ste6p tagged with an HA tag at

either the N-terminus (between amino acids 7 and 8) or at its C-terminus have

indicated that the N-terminus of Ste6p is intact in the mature protein (Geller et al.,

1996). In this study the metabolic stability of the N and C-tagged variants of Ste6p

were compared by pulse-chase analysis and detection by SDS-PAGE following

immunoprecipitation with anti-HA antibodies. Geller et al., (1996) reasoned that a

cleavage event involving the N-terminus of Ste6p would occur very shortly if not

immediately after synthesis. Therefore, if the N-terminus were being removed, the

pulse-chase experiment would show a more rapid disappearance of the radioactive

label from the N-terminally tagged molecule that from Ste6p tagged at the C-

terminus. Their results indicated that there was no difference in the stability of the N

and C-terminally tagged Ste6p suggesting that no cleavage event was taking place.

The findings of Geller et al., (1996) conflict with those detailed in this thesis. The

discrepancy in the findings might be explained by differences in tagging strategies.

Their N-terminally tagged Ste6p variant was labelled between amino acids 7 and 8

whereas the hexa-histidine tag was added to the extreme N-terminus ofN(His)6Ste6p.

It is conceivable therefore that the addition of the HA tag at this position in some way

disrupted the proteolysis of the N-terminus. The definitive answer regarding the

nature of the N-terminus of Ste6p will require protein sequence analysis to be carried

out. Attempts made at sequencing the N-terminus of the partially purified

C(His)gSte6p proved unsuccessful probably as a result of the small quantity and low

purity of the material used (Chapter 5).
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Further aims:

This thesis details the expression and partial purification of C(His)gSte6p from yeast

cell membranes. The initial aims of the project were concerned with the isolation and

reconstitution of Ste6p into phospholipid vesicles to allow kinetic analysis to be

carried out. The reconstitution ofC(His)8Ste6p into phospholipid vesicles will first

require that improvements be made to the purification procedure in order that large

quantities of purified protein can be obtained. In addition protein sequence analysis of

C(His)gSte6p is more likely to be successful if large amounts of pure protein were

used. The C(His)gSte6p might be further purified by eluting it from the resin in the

presence of a continuous imidazole gradient. However this may prove difficult as

C(His)gSte6p is competed off the Ni-NTA resin by relatively low concentrations of

imidazole. Alternatively it may be possible to further enrich the crude cell membrane

extract for C(His)gSte6p prior to its incubation with Ni-NTA. This could be achieved,

for example, by passing crude cell extract through a lectin column to remove

contaminating glycoproteins. The quantity of crude material will most likely have to

be greatly increased to overcome losses encountered by the introduction of an extra

purification step.

The successful reconstitution ofC(His)gSte6p into phospholipid vesicles and the

development of a suitable assay with which to measure the transportation of a-factor,

will provide a mechanism in which the kinetics of Ste6p-a-factor interaction may be

studied (as discussed in Chapter 6). Ste6p-substrate specificity could be studied by
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measuring the kinetics of the interaction between C(His)gSte6p and a-factor

molecules lacking, for example, the methyl moiety, the farnesyl moiety or which have

been truncated at the N-terminus.

The studies discussed in 1.10 suggest that Ste6p may function in the accumulation of

a-factor into intracellular vesicles prior to reaching the plasma membrane. It would be

interesting to determine whether Ste6p and proteins involved in the modification of a-

factor were co-localised within any intracellular compartment. Indirect

immunofluorescence and cellular fractionation may be used to determine if this were

the case. An alternative approach might lie in the isolation of the Ste6p containing

intracellular membranes. This might be achieved by the use of techniques developed in

this laboratory for the immunoisolation of the Kex2-containing compartment of yeast

Golgi (Bryant, 1992). The isolation of the hypothetical Ste6p containing compartment

would enable the identification of other compartmental components, for example the

a-factor maturation machinery. It can be envisioned that, if such a compartment were

isolated, that it could be used in the development of a cell free assay system for the

maturation and export of a-factor.
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Table A1 Escherichia coli strains used in this study

Escherichia coli
strain

Genotype Remarks Source

NM522 supE thiA(lac-proAB)
hsd5 F'[proAB+ lacFl
lacZAUlS].

General lab strain
for the

propagation of
plasmids. Used for
the expression of
fusion proteins.

Gough and
Murray, 1993.

pop2136 F~supE44 hsdRI7
mcrA+ mcrB+ rjf m/c
thi-\ aroB mal-l
contains

chromosomally
integrated copy of
XcI857 (ts).

Used for the

+ expression of P-
galactosidase
fusion proteins
from the Pr
promoter ofpEX
vectors.

Kusters et al..
1989.

DH5a
supE44 AXacU\69
(080 lacZAMXS)
hisR 17 recA 1 endA 1

gyrA96 thi-1 relA 1.

General lab strain
for the

propagation of
plasmids. The
endA 1 mutation

improves plasmid
yield. This strain
makes good DNA
for sequencing.

Gibco, BRL.

BW313 F' duf ung. A dut~ung~ strain
used to make

uracil-containing
DNA for Kunkel

mutagenesis.

Gifted by Phil
Meaden (Heriot
Watt University).

197



CJ236 did 1ungHhi-lrelAl
(camx F on plasmid
JC105)

A dutung' strain
used to make

uracil-containing
DNA for Kunkel

mutagenesis. The
F is carried on the

plasmid JC105.

Kunkel (1987)
this was gifted
by J. Beags
(Edinburgh
University)

Table A2 Saccharomyces cerevisiae strains used in this study.

S. cerevisiae strain Genotype Remarks

BJ5464 MA 7a ura3-52

leu2Al his3A200

pep4::HIS3
prblAl. 6R canl
GAL

protease deficient
lab strain.

BJ5465 MA 7'a ura3-52

leu2Al his3A200

pep4::HIS3
prblAl. 6R canl
GAL

protease deficient
lab strain.

WKK7 MA 7a ura3-52

leu2-3, 112
ASte6::HIS3 trpl-1
ade2-l canl-100.

Ste6 null mutant for
use with

complementation
studies.

RC757 MATa sst2-l metl
his6 canl cyh2
rmel.

a-factor tester
strain.

JRY188 MATaleu2-3, 112
ura3-52 trpl his4
sir3-8 rme GAL.

General lab strain.

Source

Yeast Genetic
Stock Centre,
University of
California, Berkley.

Yeast Genetic
Stock Centre,
University of
California, Berkley.

Karl Kuchler

(Vienna).

R. Chan (University
ofOregon).

Brake etal1994.
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Table A3 Plasmids used in this study.

PLASMID CONSTRUCTION/ COMMENTS SOURCE

pAX12 Used in the production of protein A fusion
protein. Discussed in Chapter 3.

Zueco and Boyd
(1992).

pEX12 Used in the production of (3-galactosidase Kusters et al.,
fusion proteins. Discussed in Chapter 3. (1989).

pkl9 Small, high copy number E. coli plasmid
cloning vector.

NEB.

pVT-103U Yeast/if. coli shuttle phagemid vector used Vernet et al.,
for the production of single-stranded DNA in (1987)
mutagenesis studies.

YDp-U Yeast integrating vector carrying a URA3 Berben et al.,
disruption cassette. (1991).

Yeplacl 81 Yeast episomal vector with LEU2 selective
marker.

Gietz and Sugind
(1988).

YEpGAL GAL promoter cloned into the
EcoKHBamYil site ofYeplacl 12.

Boyd lab.

pSTE6 6.6kb Sal1 fragment of genomic DNA
containing entire STE6 gene and 600bp
upstream sequence cloned into the Sal 1 site
of pUC7.

Benjamin Glick
(University of
Basel), originated
from A.

Varshavsky
(MIT).

BJ5783 pUC4 vector containing the PEP4 gene

(p 17) disrupted by LEU2 for the creation ofpep4
knockout strains of yeast. Discussed in the
appendix to Chapter 5.

Gifted by Beth
Jones.
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pAMBl PCR amplified 1.2Kbp fragment This study,
corresponding to the extreme 3' end of the
STE6 open reading frame cloned into the
EcoRl/BamHl sites of pAX12.

pAMB3 The EcoKUBamHl fragment of pAMB 1 This study,
corresponding to the extreme 3' end of the
STE6 open reading frame subcloned into the
EcoKUBamHl site of pEX12.

pAMB4 The Sail Sac 1 fragment of pSTE6 This study,
containing the entire STE6 gene cloned into
the Sail Sacl Sites of pkl8.

pAMB7 The Sail fragment of pSTE6 containing the This study,
entire STE6 gene subcloned into the Sail site
ofYeplacl81.

pAMB8 PCR amplifiedMFal cloned into the This study.
BamHl/Hindlll site of pVT-103U.

pAMB 11 PCR amplified N-terminally hexa-histidine This study,
tagged STE6 cloned into Efindlll site of
YEpGAL.

pAMB14 PCR amplified C-terminally octa-histidine This study,
tagged STE6 cloned into Hindlll site of
YEpGAL

pAMB 15 STE6 containingHindlll fragment of This study.
pAMB14 subcloned into Hindlll site of
pkl9.
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