
TEACHING COMPUTER CONTROL APPLICATIONS

A PROGRAMMING APPROACH

by

Wai Hing Chung

Ph.D. Thesis

University of Edinburgh

1986

ABSTRACT

The objective of this project is to investigate the task of

teaching control applications and the related concepts to secondary

school students between the age of 14 and 16. The age range is chosen

so that students may leave school with some understanding of the use

of computers for automation.

This study is based on a programming approach. A suitable

programming language is used by a student to construct programs that

control different devices. This approach is appropriate because it

helps a student to focus on thinking about the control processes and

learn about the functionality of the electronic components commonly

used in control devices, without having to worry about the details of

electronics. A program represents at least part of the student's

understanding of the control concepts used in an application, and his

solution may be validated by running the program on a computer.

The idea of learning through programming has been investigated

in some depth in the context of mathematics teaching. An important

point which has been repeatedly emphasised by the investigators is

the suitability of the programming language. To allow a student to be

creative and be able to describe his solution or experiment with

ideas in a convenient way, the language should provide commands,

control and data structures for handling all the kinds of problems

likely to arise in a particular domain. With this in mind, a

computer language, Concurrent-Logo, has been designed and

implemented. It is an extension of Logo, a well developed language

for teaching purposes. The novel facilities of Concurrent-Logo

- i -

include commands for detecting signals, commands for actuating

switches and stepping motors, and a multi-programming capability.

A pilot study has been carried out in a secondary school with

two small groups of students. It has three themes:

(1) Development of ideas for a course in control applications.

(2) Evaluation of the language and the course.

(3) Identification of difficulties that students face in learning

control applications.

A course consisting of six projects was developed. Each project

involved writing programs for a particular control device. The

control devices comprised windmill, turtle, doll's house, lift,

turtle with optical sensors, and robot arm. These devices make use of

a wide range of electronic components and the programming tasks also

cover a wide range of control and computing concepts.

From the profile of the students' work some misconceptions that

they had and errors that they made are identified. A final test also

showed that the students had gained some understanding in control

applications. The implementation of Concurrent-Logo was reliable and

effective. The students' feedback showed that the course was a

success. They enjoyed it and felt that they had benefited from it.

- ii -

ACKNOWLEDGEMENTS

I am in debt to my supervisors Jim Howe and Peter Ross for their
9

encouragement and supervision throughout the whole project. They,

along with Paul Brna, Rosemary Candlin, Bert Hutchings, Ena Inglis,

Ken Johnson, Hamish Macleod and Mike Sharpies have commented on a

draft of this thesis. Andy Russell, Mike Irving and David Wyse

helped me design and build the electronics modules and control

devices used in this project.

I would like to thank Peter Bates, the Principal Teacher of

physics in Firrhill High School, for his willing cooperation. I am

also grateful to the students who participated in the study.

Economic and Social Research Council supported me financially.

Finally I would like to dedicate this thesis to my fiancee

Anissa Ho for waiting patiently for me to complete it.

Declaration

I composed this thesis and the work which it describes was done

by myself.

CONTENTS

1. Introduction 1
1.1 Setting the scene . 1
1. 2 Moti vat ion 3
1.3 The subj ect .. 5
1.4 The needs 11
1.5 The study .. 17
1.6 Layout of the thesis 21

2. Control applications in schools 23
2.1 Control hardware 24
2.2 Programming language 31
2.3 Teaching material 36
2.4 Teaching methods 37
2.5 Other uses of control applications in schools 38
2.6 Conclusion 39

3. Learning through programming 40
3.1 Programming aids understanding 40
3.2 Logo 44
3.3 Other languages .. 56
3.4 Learning control applications through programming 71

4. Concurrent-Logo 76
4.1 D esi gn 76
4.2 I/O handling ... 79
4.3 Control structures 82
4.4 User defined objects 83
4.5 Multi-programming 88
4.6 Event handling ... 102
4.7 Related work 1 06

5. A pilot study 110
5.1 Aims 110
5.2 Design . 110
5.3 Participants 112
5.4 Equipment .. 115
5.5 Course 1 21
5.6 Evaluation . 1 32

6. Learning control applications through programming 135
6.1 The students 135
6.2 An overview .. 1 36
6.3Windmill ... 152
6.4 Turtle I 1 55
6.5 Lift ... 161
6.6 Doil' s house 169
6.7 Turtle with opto-sensors 175
6.8 Robot arm 1 84
6.9 Discussion ... 191

- iv -

7. Students' understanding . 197
7 • 1 C anponents 198
7.2 Feedback ... 199
7.3 Robot 200
7.4 Procedures ... 201
7.5 Parallelism 203
7.6 Conclusion ... 206

8. Students' response 210
8.1 Course 210
8.2 Projects . 213
8.3 Discussion ... 216

9. Assessing Concurrent-Logo 219
9.1 Programming language design............................. 219
9. 2 Concurrent-Logo 228
9.3 Conclusion ... 239

1 0. Conclusion 240
'

10.1 Summary ... 240
10.2 Criticism ... 242
10.3 Future research 244

Appendix I : Implementation of Concurrent-Logo 246
Appendix II : Worksheets 262
Appendix III: Questionnaires ... 295
Appendix IV : Control applications test'........................ 308

Reference 319

- v -

TABLE OF FIGURES

Figure 1.1 Open loop system 6
Figure 1.2 Closed loop system 6
Figure 1.3 Subjects related to control'systems 6
Figure 2.1 Programs for Buggy 27
Figure 2.2 Windmill 30
Figure 3.1 Relationship between building models and writing

programs 43
Figure 3.2 Logo and the curricula 48
Figure 3.3 Interactions between programming modes 50
Figure 3.4 Mutually exclusive classes 65
Figure 3.5 Hierarchical classes 66
Figure 4.1 Controlling DC motor 84
Figure 4.2 Turtle 90
Figure 4.3 Doll's house 92
Figure 4.4 Lift 99
Figure 4.5 A multi-programming solution to the lift problem .. 100
Figure 5.1 Fourth year group 114
Figure 5.2 Third year group 115
Figure 5.3 Armdroid 118
Figure 5.4 Stepping motor module 120
Figure 5.5 Windmill project 123
Figure 5.6 Turtle I project 124
Figure 5.7 Lift project .. 125
Figure 5.8 Doll's house project 126
Figure 5.9 Turtle II project 127
Figure 5.10 Robot arm project 128
Figure 5.11 Fourth year group time table 130
Figure 5.12 Third year group time table 131
Figure 6.1 Turtle tracks 143
Figure 6.2 Turtle paths 145
Figure 6.3 Binary patterns'..................................... 146
Figure 6.4 Sequence of robot arm positions (I) 149
Figure 6.5 Turtle I connection 155
Figure 6.6 Lift connection 162
Figure 6.7 Doll's house connection............................. 170
Figure 6.8 Turtle II connection 175
Figure 6.9 Robot arm connection 184
Figure 6.10 Sequence of robot arm positions (II) 187
Figure 6.11 Sequence of robot arm positions (III)'.............. 189
Figure 7.1 Overall result 207
Figure 7.2 Summary of students'"results 209
Figure 8.1 Students' opinion of the course 211
Figure 8.2 Students' opinion of the worksheets 212
Figure 8.3 Students' own evaluation of how much they had

benefited 212

Figure 8.4 Students' recommendation of the course 213
Figure 8.5 Students' rating of the devices 214
Figure 8.6 Students' opinoin of amount of time spent on each

project 216
Figure 9.1 Facilities used in Concurrent-Logo 229
Figure 9.2 Commands in object and in procedure formats 232
Figure 9.3 Students' preference of formats 233

- vi -

CHAPTER 1

INTRODUCTION

1.1 Setting the scene

With the growing use of computers in our society, educational

computing is becoming increasingly important. Many developed and

developing countries have initiated national schemes for introducing

computers into secondary and primary schools. To give an example of a

national scene, in Britain in 1973 the government sponsored the

National Development Programme in Computer-Assisted Learning, costing

£2.5 million (Hooper, 1977). In 1980 the Departments of Education and

Science of England, Northen Ireland and Wales started funding the

Microelectronics Education Programme (MEP). The Programme is

'concerned with microelectronics applications in schools and in non-

vocational course for 16-19 year-olds in further education, including

GCE 0 and A level courses, and courses leading to pre-vocational

qualifications' (DES, 1981). The Programme has two parts. One is

'the investigation of the most appropriate ways of using the computer

as an aid to teaching and learning.* The other is 'the introduction

of new topics in the curriculum, either as separate disciplines or as

new elements of existing subjects. ' The budget for this programme is

§8 million. The Scottish Microelectronics Development Programme

(SMDP) was set up in Scotland around the same time also with the aim

of promoting the use of computers in schools. In 1981 the Department

of Industry started a Micros in Schools Scheme. It offered a 50$

subsidy for the first microcomputer bought by any secondary school.

The scheme was later extended to primary schools and schools for the

handicapped. A survey carried out in March 1984 by BBC and MEP showed

- 1 -

that the average number of computers in UK secondary schools was nine

and the maximum number in any school was thirty-eight (DES, 1985).

Computers are used in many ways to assist the learning of

traditional curricula in schools (Howe & du Boulay, 1979; Feurzeig et

al, 1981). Some common uses are running applications programs that

compute the results for given problems; running simulation programs

that represent an event or system; running drill and practice

programs that ask students to type in answers to given questions and

then check the results, and running tutorial programs that teach

basic concepts. The most common use of computers is for teaching

computer studies from general computer awareness to specialised

computer science. The UK examination entries for computer studies

have increased from 23182 in 1977 to 79009 in 1982 (Weston, 1984).

This thesis is concerned with the teaching of one particular

application area of computing, namely control of processes and

machinery. Central to the study is the idea that new knowledge and

skill may be naturally gained through programming. The idea is in

turn inspired by research in Artificial Intelligence.

The contribution of Artificial Intelligence research to

education is threefold (Howe, 1978; O'Shea and Self, 1983; Yazdani,

1984). First, the knowledge representation and modelling techniques

developed in A.I. open an avenue for developing intelligent tutoring

systems that are far more advanced than the normal drill and practice

CAI programs (see Sleeman and Brown, 1982). Secondly is the idea that

building computer programs is an effective way of testing one's

understanding of a complex process, such as solving a mathematical

problem, diagnosing a disease or playing chess. In other words,

- 2 -

programming helps a learner to focus attention and gives concrete

forms to abstract ideas. With a suitable programming environment a

student can engage in purposeful activities. Thirdly, closely

associated with the second, is the development of A.I. programming

languages suitable for students to explore and experiment with ideas.

The best known computer language that is designed for learning

through programming is Logo. The commands for controlling a Turtle

are its distinctive features. A Turtle is either a motorised cart

with an attached pen or a graphical object on the display screen. The

Turtle can be told to move FORWARD <a distance>, BACKWARD <a

distance>, RIGHT <an angle> and LEFT <an angle>. These commands are

especially suited for learning and exploring geometry (Abelson and

diSessa, 1981). A student can easily relate the Turtle's movement

with his own. It requires no knowledge of the Cartesian coordinate

system. Programming the Turtle to trace out patterns is fun and by

doing so a student can naturally extend his existing knowledge to

include geometrical concepts such as interior angles, exterior

angles, side lengths and symmetry.

Just as Logo makes learning mathematics fun and accessible, this

thesis investigates applying the programming approach to the teaching

of Computer Control Applications at secondary level.

1.2 Motivation

In industry, there is increasing use of microprocessors and

computers in automated manufacturing and control of processes. The

teaching of Computer Aided Manufacturing, Robotics or similar

subjects in further education has gained much importance and

- 3 -

popularity in recent years. The need to introduce the teaching of

control applications at secondary school level is also becoming

greater.

The Schools Committee Working Party, of the British Computer

Society, wrote (1982) '.... if a school undertakes an overall review

of the curriculum during the next few years, the following list of

topics should be considered for inclusion as a priority, reflecting

as they do the environment and society in which our students will

inevitably develop.' One of the topics mentioned is the Automatic

Control of Processes.

One of the stated aims of MEP is 'to help schools to prepare

children for life in a society in which devices and systems based on

microelectronics are commonplace and pervasive' (DES, 1981)

As the demand for trained personnel in control applications

becomes higher, industrial companies are also keen to promote

interest in the subject so that students will be encouraged and

enabled to develop their potential to become creative engineers. In

1980, Fisher Controls Limited took the initiative in collaboration

with the Leicester Education Authority (Higgs, 1980). They invited

schools in Leicestershire to submit ideas for control projects. The

submissions were then assessed. The selected schools received

financial and technical support from the company and the education

authority to complete the proposed projects.

A 'Buildarobot' competition was sponsored by British Petroleum

in 1982 (BP, 1982). The competition was carried out in two phases.

Schools were first invited to submit feasibility studies. The best

- 4 -

projects were selected and received £100 towards the cost of making

the robot. The competition attracted tremendous interest; over 200

schools in the UK had submitted entries and 21 of them were selected.

Despite all this interest and activity, so far there is little

investigation into the teaching and learning of control applications.

It would be fair to say that the industrial schemes described above

are aimed, perhaps not exclusively, at the more able pupils. To

reach a wider population, research into the methods of teaching the

subject and systematic course development is essential.

1.3 The subject

Control applications is related to a number of science and

engineering subjects. Therefore it may mean different things to

different people. Before outlining the problems and the resource

requirements of the teaching of control applications it is

appropriate to describe briefly the nature and the essentials of the

subject matter.

Central to control applications is the idea of a system. In

general, control systems are classified into two types: open loop

systems (figure 1.1) and closed loop systems (figure 1.2) The

difference between them is simply that a closed loop system makes use

of feedback information from the control device to make corrective

actions and an open loop system does not.

- 5 -

Computer —>— External
Device

Figure 1.1 Open Loop Syst em

> Computer

Output
Converter

External
Device

Figure 1.2 Closed Loop System

The study of a control system may be related to many different

subjects. Figure 1.3 shows the relationship.

Control system

the structure &
the mechanics of
the system

mechanical

engineering

electronic

components &
interfacing
equipment

electronic

engineering

control process
& theory

V

ma ths

V

computer
modelling

Figure 1.3 Subjects related to control systems

- 6 -

At the introductory level, it is inappropriate to clutter a

course in control applications with detailed mathematics, electronics

and computing. Instead the course should help a student to

(1) understand the basic control concepts

(2) understand the computing concepts which are particularly

useful in control applications

(3) understand the control algorithms used in different control

systems

(4) recognise the common electronic components that are used in

control systems.

1.3.1 Control concepts

Input, output, state, feedback and sampling rate

A control system usually has a set of variables and the

complexity of the system increases as the number of variables

increases. The state of the system is determined by the values of

these variables. The controller, i.e. the computer, reads input from

various sensors to find out the current state of the system. The

controller then compares the current state with the desired state.

If there is a difference, the controller sends output to activate, or

deactivate, certain components to bring the system into the desired

state. This use of information produced at one stage of processing as

input at another is called feedback. A control system that makes use

of feedback information to make decision and take corrective actions

is called a closed loop system (see fig 1.2). In general, closed

loop systems are divided into two types (Marshall, 1978):

(1) regulator - a system which has to maintain an output equal to a

desired value despite outside changes and disturbances, for

- 7 -

example, a central heating system.

(2) servomechanism - a system which has to produce an output

position equal to some reference input position, for example,

a lift.

The stability of a regulator and the accuracy of a

servomechanism are dependent on the sampling rate, i.e. the number of

times that input is read and processed in a fixed time unit. In some

applications, failure to compute a result within a specified time may

be just as bad as computing a wrong result.

1.3.2 Computing concepts

One characteristic of control applications is that the computer

has to respond to ongoing processes. As described previously, the

role of the computer is to read input from sensors to find out the

current state of the system; and send output to certain components to

bring the system to the desired state. The computing concepts which

are particularly relevant are input, output, conditional execution

and parallel processing.

In a closed loop system, the output values depend on the input

values. Therefore, the computer must examine the input values and

decide on the actions that are to be taken. The idea of testing

whether certain conditions are true and then taking the appropriate

course of action is called conditional execution. Programming

languages provide conditional statements for this purpose.

Parallel processing is relevant in the control applications

context because it is common for a control system to have several

components that require attention at the same time. It is

- 8 -

appropriate to use parallel processing to deal with inherently

parallel processes. However, parallel processing is a vast subject

and much research is still being done. The aim, therefore, is not to

teach it thoroughly but to give students the access to the use of it.

Through the practical experience they may appreciate the power of and

some of the problems with parallel processing.

1.3.3 Control algorithms

Besides teaching the relevant control and computing concepts, it

is important to help the students to appreciate how these concepts

are applied in some particular systems. Control algorithms is the

study of how the behaviour of different systems is achieved.

The following example considers using different algorithms to control

a simple lift system which has three levels. A basic function of the

lift would be to move the lift cage up and down cyclically between

the bottom and top levels. Assuming the lift cage is at the bottom,

the algorithm would be:

Forever (
(1) start the lift cage moving upward;
(2) wait for a specified amount of time, i.e. the time

required to move the cage from the bottom to the top.
(3) start the lift cage moving downward;
(4) wait for a specified amount of time, i.e. the time

required to move the cage from the top to the bottom.
)

The algorithm is inflexible because it depends on the absolute

time required to move the lift between two levels. The algorithm

could be made slightly more general by using feedback information

from sensors at the bottom and top of the lift:

- 9 -

Forever (

(1) start the lift cage moving upward;

(2) wait until sensor at top level is on;

(3) start the lift cage moving downward;

(4) wait until sensor at bottom level is on;

)

A simple and realistic extension to the function of the lift

would be to add three button switches to the system so that

(1) whenever switch 1 is pressed, move the cage to the bottom

level,

(2) whenever switch 2 is pressed, move the cage to the middle

level,

(3) whenever switch 3 is pressed, move the cage to the top level.

Although the functional extension is trivial, the control

process that would achieve this result is already quite complex. The

computer needs to monitor the states of the button switches

continuously and activate the movement of the lift cage accordingly.

Moving the cage to the second level would require information about

its current position to decide whether to move it up or down. By

adding further scheduling requirements the control process could be

very complex indeed. As the example shows, the lift may be programmed

to do apparently the same thing (move up and down), but the

underlying control processes differ greatly.

Different systems usually share certain characteristics, such as

the use of feedback information or the use of similar electronic

components. However, each system also has its intrinsic

characteristics. For example, a lift is very different from a robot

- 10 -

arm. A course in control applications should cover a wide range of

applications and help the students to understand the different

algorithms used.

1.3.4 Electronic components

It has been mentioned that a course in control applications

should not be cluttered with detailed electronics. However, the

students should be given the opportunity to program simplified or

scaled-down versions of real-life control systems. This will the

students a sense of realism. Furthermore, they will gain familiarity

with some of the sensors and actuators that are used in control

systems.

1.4 The needs

Secondary school students, instead of developing a fear, should

be encouraged to develop an appreciation and understanding of control

applications.

At present, control applications is usually taught to 11-13 year

old students as part of a technology awareness course, and to older

students as part of an 0/A level course in electronics, computer

studies or related subjects. The problem with the way that control

applications is being taught is that it is introduced at either too

low or too high a level. At the low level end the emphasis is on

understanding electronics and machine oriented programming. At the

high level end the emphasis is on demonstrating what a control device

can do and neglects the aspect of how it does it. As mentioned

earlier the teaching should be control process oriented. The students

should be led to focus on thinking about how the functionality of a

- 11 -

control system is achieved. They should be led to ask questions

like: what information is required? What events should be monitored?

What should be the response? How should we achieve it?

To develop a suitable control applications course, there are

three equally important areas of concern:

(1) hardware; the physical devices and all the necessary components

for connecting the devices to a microprocessor and a computer.

(2) programming language; a language that is understandable by

computers and allows a programmer to express control

algorithms conveniently.

(3) courseware; a collection of books and worksheets for use by

students and teachers.

With the growing interest in control applications an increasing

variety of control hardware is becoming available. These include

specially designed control devices such as Buggy[1], Armdroid[2] and

general purpose interfacing hardware (Andrew and Whittome 1981).

1.4.1 Programming language

The main restriction is that there is no suitable programming

language. Students are forced either to learn electronics and low

level programming or to be content with observing and running

demonstration programs.

The suitability of a programming language may be judged on two

grounds: suitability for the users, who in our context would be

[1] Buggy is manufactured by Economatics Ltd, Sheffield.
[2] Armdroid is manufactured by Colne Robotics, London.

- 12 -

secondary school students and teachers, and suitability for the

application. There are differences between the requirements of a

programming language for learning and one that is for use by

professionals in industry. An analogy will make this point clear: 'We

might expect to find that racing drivers are impatient with slow,

family saloon cars, though the latter are much better than racing-

cars for the learner drivers.' (du Boulay et al, 1981). Ross and

Howe (1984), recalling some of the principles and decisions that

contributed to the design of the Edinburgh version of Logo, point out

that it 'was initially aimed at children and the classroom, and so

the normal priorities in the design of the language had to be

reshuffled somewhat.' Designing a programming language for learning

might be called 'cognitive engineering' (Lawler, 1984), for its

purpose is to shape children's minds. In general a programming

language for novices should be interactive, extensible, visible and

simple.

An interactive language allows a student to test or try out his

ideas easily, and provids immediate feedback. This conflicts sharply

with the crucial requirement of 'security' in system development

languages. 'The security of a language is a measure of the extent to

which programming errors can be detected automatically by the

compiler or language run-time support system In general, the

design of a language should be such that as many errors as possible

are detected at compile-time rather than at run-time.' (Young, 1982).

The means by which errors may be detected at compile-time forces the

programmer to provide extra information for the compiler. For

example all the variables used in a program have to be declared and

their types have to be specified. To use a compiled language, one

- 13 -

also has to learn to use an operating system. All these imposed

demands can be discouraging, particularly for novice programmers for

whom the benefits of interactiveness far outweigh the benefits of

security.

An extensible language is one that allows a programmer to create

new procedures which can be used in exactly the same way as system

provided procedures. This facility encourages a good approach to

problem solving. A student is able to build up a set of higher level

procedures, and to combine them easily to make more complicated

programs. Another advantage is that a teacher can introduce a

problem at the right level of abstraction, hiding all the unnecessary

details by providing higher level procedures. A student can run

them, become familiar with them and later adopt them to solve complex

problems.

A visible language makes it easy for a student to understand and

to follow what a computer is doing when executing a program. The

former aspect of visibility is concerned with providing a simplified

model - a notional machine - of how the computer works at the level

of the operations of the programming language. The latter aspect of

visibility is concerned with providing commands in a language that

provide immediate feedback, such as sound, visual display or movement

of a device.

A simple language is one that is easy to learn and to use.

Dijkstra (1972) wrote: 'the development of "richer" or "more

powerful" programming languages was a mistake in the sense that these

baroque monstrosities, these conglomerations of idiosyncrasies, are

really unmanageable, both mechanically and mentally'. However, a

_ m -

simple language does not mean a restricted and unexpressive language.

There are two aspects of simplicity (du Boulay et al, 1981):

syntactic and logical. Syntactic simplicity means that the rules of

the language are simple and consistent. There should be very few

exceptional cases and no ambiguities, thus making the language easy

to learn. Logical simplicity means that the language allows a

student to describe the structure and mechanism of his solutions in a

convenient way, helping him to focus attention on solving problems

rather than on the peculiarities of the language. This implies that

the language should provide suitable primitives, and also control and

data structures for handling all the kinds of problem likely to arise

in a domain which he is investigating. A programming language that

has all these characteristics would make it easy for a student to do

interesting things without having to overcome many initial hurdles

and it would enable him to experiment easily with different ideas in

control applications.

In comparison with languages developed for other applications, a

control language also has three distinct features:

(1) I/O handling

(2) Event handling

(3) Multi-programming

In control applications, it is necessary for a computer to

communicate with external devices. Facilities must be provided for

programming devices conveniently. The computer must also detect the

occurrences of some events and respond to them. A control system

usually consists of several active components that require attention

from the computer. They are naturally described as a set of

- 15 -

concurrent processes, and a control language should provide some

facility for multi-programming.

In view of the general and specific requirements, there is

currently no suitable computer language for learning control

applications. Although BASIC, the most commonly used programming

language in schools, is interactive, it is neither extensible nor

simple. Dijkstra (1982) wrote, 'It is practically impossible to

teach good programming to students that have had a prior exposure to

BASIC: as potential programmers they are mentally mutilated beyond

hope of regeneration' (See Section 2.2.). Machine oriented assembler

languages are also far from satisfactory.

1.4.2 Course

The lack of a suitable control language also limits the range of

control projects that students can do and hence hinders the

development of courseware. The six principle design criteria laid

down by MEP for the course 'Microelectronics For All' are relevant

here :

(1) Must be acceptable, stimulating and meaningful to pupils of

all abilities.

(2) Must not require specialist technical or scientific

knowledge on the part of the teachers.

(3) Must be practically based with all pupils having the

opportunity to investigate systems which they can

understand, describe and modify. Ideal pupil group size

working together 2 and not to exceed 3-

(4) The course must provide an introduction to the subject and

- 16 -

a foundation for those who choose to study the subject

beyond this level.

(5) Must be based on a closely defined core practical programme

tailored to lower abilities which is extendable to the

degree required for brighter pupils.

(6) The core programme to be supported by a complementary

teaching programme designed to relate the practical

classroom experience to real applications in industry,

commerce and the home and to develop an awareness of the

implications of current and future development.

Beside the immediate need for course development, another

important area of research is to build up a body of knowledge of how

students learn control applications. In order to improve the teaching

of control applications, it is necessary to know what kind of

misconceptions students hold, what common mistakes they make and so

on.

1.5 The study

The study had four related themes:

(1) Design of a programming language suitable for learning control

applications.

(2) Development of ideas for a course in control applications.

(3) Evaluation of the language and the course through an

experimental study.

(4) Identification of difficulties that students face in learning

control applications.

- 17 -

The approach to the design of the computer language was by first

choosing a language which has the structures suitable for the

potential users, i.e. secondary school students and teachers, and

then incorporating into the language primitives suitable for the

application. Four languages were considered: Logo, Prolog, Smalltalk

and Forth (see chapter 3).

Logo (Abelson, 1982) was chosen as the base language because it

is interactive, extensible and has a simple and consistent syntax

which make it a good language for learning; it is procedural which

makes it a suitable language for describing processes. The extensions

to the language include commands for detecting signals, commands for

actuating switches and stepping motors, and also abstract data types,

multi-programming and guards (see chapter 4). The extended language

is called Concurrent-Logo (Chung, 1984).

A course consisting of six projects was developed. Each project

involved writing programs for a particular control device. The

control devices were: windmill, turtle, doll's house, lift, turtle

with optical sensors and robot arm. The course was designed to

(1) give the students practical experience in using the basic

control concepts: state, feedback and pulsing.

(2) give the students practical experience in using programming

constructs such as: procedures, conditionals and parallel

processing.

(3) help the students understand how the devices work

(4) familarise the students with components which are commonly used

in control devices: DC motor, stepping motor, button switch,

reed switch, reflective-opto switch and micro switch.

- 18 -

Howe and Delamont (1974) distinguish two stages in evaluating

educational innovations. The first, termed monitoring, gathers

general impressions on the innovation with a view to improving it.

The second, termed non-reactive, collects data in a controlled

fashion using rigorous techniques. The development of Concurrent-

Logo and the course were at the pioneering stages. Therefore a small

scale formative evaluation study was most appropriate. The results

from a formative study should help to identify some common

difficulties that the students faced, to refine the course and the

language, and to form more specific questions for future research.

Because the author had to be both the teacher and the investigator,

the number of students in each class needed to be reasonably small to

allow him to make observations without being distracted too much by

the teaching.

The course was taught to two groups of students from Firrhill

High School, a secondary school in Scotland. One group of five

students was from the fourth year (approximately fifteen years of

age) and the other group of seven students was from the third year

(approximately fourteen years of age). Over two school terms, the

fourth year group had seventeen sessions and the third year group had

fourteen sessions. Each session lasted 75 minutes. The fourth year

group had fewer sessions because they had to spend more time

preparing for their examinations.

The central classroom activity was the students programming the

computers. Worksheets with explanations and suggestions for

programming projects were provided. A structured teaching strategy

was adopted because it would give the students the same starting

- 19 -

point and help them to acquire a common vocabulary and a common set

of concepts very quickly. Furthermore, designing programming tasks

for a control device is not trivial. It requires some appreciation of

what the device can do and the different ways that it may be

controlled in the first place. For example, it may be obvious to a

student that a lift may be programmed to move up and down but he may

not be aware of the varieties of control strategy that may be used.

Therefore there need to be well planned suggestions that would lead

the students from one programming task to the next. Through

programming they might acquire an appreciation and understanding of

the different embedded control concepts.

Throughout the course, four questionnaires were designed and

used. During each session the students' work was recorded:

everything that they typed was recorded on disk in addition to the

author's own observations on paper. At the end of the course the

students were also given a test. From the profile of their work some

misconceptions that the students had and errors that they made were

identified. The test results showed that the students had gained

some understanding in control applications. The survey also showed

that the course was a success. The students enjoyed it and felt that

they had benefited from it.

The implementation of Concurrent-Logo proved reliable and

effective. It helped the students to focus attention on solving

control problems and minimised distractions due to peculiarities of

the language or details of computer hardware. Some extension to the

language is suggested, so that the language may be used for a wider

range of projects.

- 20 -

1.6 Layout of the thesis

The rest of this thesis has nine chapters and two appendices.

Chapter 2 reviews the state of the art of the teaching of control

applications in schools. The review considers the resources that are

available and the ways that the subject is being taught.

Chapter 3 outlines the rationale behind the methodology of

learning through programming and reviews four interactive computer

languages, namely: Logo, Prolog, Smalltalk and Forth. Their

suitability as languages for learning control application is

considered; Logo is chosen as the most suited for extension.

Chapter 4 explains the overall design philosophy of an extended

Logo - Concurrent-Logo - which is specifically designed for teaching

and learning control applications. The novel features of Concurrent-

Logo are described with examples of their use.

Chapter 5 gives the design details of the previously mentioned

pilot study carried out in Firrhill High School.

Chapter 6 describes and analyses the work done by four of the

students who took part in the pilot study. Their work is fairly

representative of the work done by all of the students. The

description concentrates on

(1) the variation of the students' work

(2) the difficulties that the students faced

(3) how the students solved the problems.

The chapter ends with a summary of the benefits and limitations of

learning control applications through programming.

- 21 -

Chapter 7 assesses the students' understanding of control and

related concepts. At the end of the pilot study a test was designed

and given. The students' answers are categorised into different

levels of understanding where possible.

Chapter 8 describes the students' opinion concerning the course.

The information is obtained from questionnaires filled in by the

students at the end of the pilot study.

Chapter 9 evaluates Concurrent-Logo. Features of the language

that are likely to cause programming errors are identified. Further

extensions for the language are also discussed.

Chapter 10 summarises the results and the limitations of the

study. This final chapter ends with several suggestions for future

research.

Appendix I is a brief description of the implementation of

Concurrent-Logo. The formal syntax of Concurrent-Logo is also

described in Backus-Naur form.

Appendices II and III are worksheets and questionnaires

respectively, which were produced for and used in the study.

Appendix IV is a control applications test. Its design is based

on the experience gained from the study.

Throughout the thesis, in-line comments for program listings are

preceded by the symbol '@'.

- 22 -

CHAPTER 2

CONTROL APPLICATIONS IN SCHOOLS

Papert observed that the teaching of control applications and

the use of robots in schools are much more common in Britain than in

the United States (Ginn, 1984). He suggested two reasons:

(1) it is Britain's tradition to use very concrete objects for

introducing young children to abstract thinking.

(2) in Britain manufacturers made robots earlier than they made

computers with good graphics.

A third, perhaps a more important, reason is that in Britain

there is a recognition that control applications is an important

subject. This is manifested in several ways. MEP, a government

sponsored project, has set up a 'Control Technology Domain' to

provide in-service training for teachers (Bevis, 1984). Industry is

promoting interest in the subject by organising competitions for

secondary schools. 0 and A level courses in computer studies and

electronics are evolving to include more and more control aspects.

However, this does not mean that all is well.

This chapter reviews the current state of the art of the

teaching of control applications in Britain. This review begins by

looking at the resources that are available. The first section is

concerned with hardware. The second section is concerned with

programming languages. The third section is concerned with teaching

materials. Then, in the fourth section, the methods of teaching

control applications in schools are considered. Section 5 describes

some uses of control applications to assist the teaching of other

science subjects.

- 23 -

The conclusion is that control hardware development has made

considerable advancement whereas there is relatively little effort

put into the development of a computer language for learning control

applications. As a result the development of teaching material is

hindered and the classroom activities restricted.

2.1 Control hardware

In Britain, a lot of effort has been put into developing control

hardware for educational purposes. The hardware falls into two

categories: special purpose control devices and general purpose

modules. The main types of control devices are mobile robots that

move around on wheels, and robot arms. These devices are either ready

built or in kit form. With each device specially designed interfacing

and power supply boxes are provided by the manufacturers so that

connecting a computer with the device would be straightforward.

Instead of providing specially designed control devices, another way

is to provide general purpose modules that facilitate the

construction of control devices and the task of connecting the

devices to a computer.

2.1.1 Turtle and derivatives

The Turtle is a computer controlled, motorised cart with an

attached pen. It is called a turtle because of its shape. The Turtle

was invented at MIT, as a tool to introduce young students to the

ideas of problem solving and mathematics (Papert, 1971a). The Turtle

responds to commands, either to move FORWARD or BACKWARD in the

direction it is currently facing, or to rotate LEFT or RIGHT on the

spot. These commands are a subset of the Logo programming language.

- 24 -

They are body centred and a student can easily relate the turtle's

movements with his own. It serves as an 'object-to-think-with'.

Listing 2.1 shows a sequence of commands for drawing a square.

FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90

Listing 2.1 SQUARE program

Besides drawing, a student might program it to follow a path or to

knock a pile of bricks over.

The idea of using the Turtle for teaching control applications

was first suggested by Papert (1971b). He suggests attaching sensors

to the turtle to provide feedback information for the computer. A

turtle with optical sensors [3] could be programmed to follow a track;

a turtle with touch sensors could be programmed to walk around

obstacles or to find its way out of a maze. Turtles are now produced

by several companies. The following describes two variants of

turtles.

Buggy

Buggy is a turtle-like robot. It was developed by MEP for the

BBC Computer Literacy Project as a complement to the series 'Making

the most of the Micro'. It is designed especially to be used with a

[3] The version of the Turtle manufactured by Terrapin Inc.,
U.S.A., has touch sensors mounted on it.

- 25 -

BBC model B computer. A Buggy can be connected directly to the user

and analogue ports of a BBC model B computer.

The sensors mounted on a Buggy include: microswitches for

detecting collisions and an opto-reflective sensor for sensing

whether the Buggy is on a black or white surface. There are options

for a pen-up, pen-down mechanism and a gripper.

Buggy is available in kit form so that students can learn from

assembling it.

Thirteen programs are supplied with the kit. They are designed

to demonstrate the basic ideas of programmable control applications.

Figure 2.1 gives a summary of these programs. No other device is

supplied with so many programs.

Big Trak

Big Trak[4] is a toy cart based on the idea of a Turtle. Its

advantage is that it is completely self-contained and operated by

batteries. All the electronics and programs for driving the cart are

built into the device, so there is no need to connect it to a

computer. It is a simple device that can be used in any classroom.

[4] Big Trak is manufactured by Milton Bradley Electronics, West
Germany.

- 26 -

Program name | Description

TEST checks that BUGGY is set up correctly and
that all sensors are working.

SWITCH shows the essential commands in BASIC which
drive the Buggy.

MEMORY SWITCH allows the user to drive the Buggy by single
key-presses; the computer records the key¬
presses and will replay them in sequence or
in reverse order.

RECORDER as the user drives Buggy interactively an on¬
screen map of the path is drawn graphically.

SNAIL it is like RECORDER, but the sequence of
instructions for Buggy has to be input first.
As Buggy follows the instructions a trail is
drawn on the screen to show the progress.

ROUTEPLANNER the user first creates a route on the

graphics screen, the information on the
screen is then interpreted by the program and
Buggy then enacts the designed route.

BAR-CODE
ROUTE PLANNER

it is like ROUTE PLANNER, but the route
information is read by Buggy from Bar-coded
cards and then the route enacted.

EXPLORE FOR
OBJECT

Buggy seeks out an object, then crawls around
it to find out how large it is. The shape
of the object is then drawn on the screen.

EXPLORE FOR
WALL

Buggy can be placed anywhere in a bordered
area. It first crawls around the border and
then draws a correctly scaled map of the area
and its current position in the area.

SUNSEEKER Buggy tries to seek out a light sources and
get around any obstacles that are in the way.

MAN vs BUGGY The task is as for SUNSEEKER but Buggy is
driven by the user using the same information
as would otherwise be available to the
SUNSEEKER program.

LINE FOLLOWER Buggy follows a black line on a white surface
or vice versa.

TIN PAN ALLEY Buggy reads musical information (score) from
special bar-codes and the score is then
displayed graphically.

Figure 2.1 Programs for Buggy

- 27 -

A student programs the cart by entering turtle-like commands

from the key-pad on the top of the cart. It is cheap and convenient.

However, like the turtle it can not be used to teach many control

concepts. It has the further disadvantage of being inaccurate.

2.1.2 Robot arm

With the fall in hardware prices, small robot arms with

reasonable accuracy are also becoming cheaper. This means that every

school should be able to afford one in the future.

Examples of robot arms that are developed for educational use

are Armdroid, Atlas[5], Ogre 1[6] and MA 2000[T], They are small and

friendly devices for students to work with. Many basic ideas in

robotics could be taught using such devices, if appropriate control

software and programming languages were available.

A robot arm is usually provided with a teaching program so that

a student can operate the arm using single key-presses, record a

sequence of actions and replay it. This technique of programming a

robot is known as 'teaching by showing' (Motiwalla, 1982). However,

manufacturers seldom provide any other software.

2.1.3 Hardware modules

The Advisory Unit For Computer Based Education (Andrews P.J. and

Whittome L.J., 1981) has developed general purpose hardware that

makes it easy for students and teachers to construct their own model

[5] Atlas is manufactured by L.J.Electronics Ltd, Norwich.
[6] Ogre 1 is manufactured by L.W.Staines & Co., London.
[7] MA 2000 is manufactured by TecQuipment International Ltd, Not¬

tingham.

- 28 -

control devices.

The hardware basically consists of:

(1) a Buffer Box which plugs into the parallel port of a computer.

The Buffer Box serves three purposes. First, it has protective

circuitry so that any misconnections would not damage the

computer. Second, the individual input and output lines of the

computer are linked to convenient sockets on the top of the

Buffer Box. Third, it is the power supply for other modules.

(2) a collection of modules which plug, into the Buffer Box. Each

module provides a specific facility. Already over ten modules

have been developed. They include modules for push-button

switches, light activated switches, bleeper, joystick,

analogue/digital converter and DC-motor.

Example: a windmill

Figure 2.2 shows the construction of a simple computer

controlled windmill using the DC-motor module, push-button module and

Buffer Box.

- 29 -

Figure 2.2 Windmill

- 30 -

The windmill may be built out of any modelling kit, for example

Meccano, Lego or Fishchertechnik.

The Buffer Box is first connected to the computer, so that the

input and output sockets respectively correspond to the input and

output lines of the computer. The motor on the windmill is connected

to the DC-motor module. Two output lines are used to drive the

motor.

The push-button module has two push-button switches connected to

it and the output from them is connected to input sockets of the

Buffer Box. These switches are used to start-stop the device.

The computer may be programmed to sense inputs from the button-

switches and start or stop the motor by altering the output signals

to the motor module.

The module approach provides a convenient and economical way of

designing and constructing a wide range of control devices for use in

schools. A variety of hardware module systems are now commercially

available (for example Beasty[8] and Fischertechnik Robot Kit[9]).

2.2 Programming language

2.2.1 BASIC

BASIC is the most widely used language in secondary schools. It

is popular because it is interactive, making it seem easy to use, and

it is widely available; most, if not all, inexpensive micro-computers

[8] Beasty is manufactured by Micro-Robotics, Cambridge.
[9] Fischertechnik Robot Kit is manufactured by Fischertechnik,

Wimborne.

- 31 -

are provided with a version of BASIC.

Although the original Dartmouth Basic does not have commands for

controlling devices, most dialects of BASIC available on micro¬

computers have the commands PEEK and POKE. 'PEEKing' at the contents

of a machine-specific address reads signals from an external device.

'POKEing' a number into the same (or another) machine-specific

address sends signals to a device.

In his paper advocating the use of microcomputers in schools,

Sparkes (1982) gave as an example a BASIC program (listing 2.2) for

controlling traffic lights. The program is written for the PET

computer, which is a 8 bit machine with Data Direction Register

address 59459 and Parallel Port address 59471. It is assumed that a

red, amber and green light are connected to lines 0, 1 and 2 of the

Parallel Port respectively. The program simply switches on and off

the lights periodically.

100 POKE 59459, 7 @lines 0, 1 and 2 as outputs
110 POKE 59471, 1 @switch red on,

amber and green off
120 FOR T = 1 TO 10000: NEXT T @delay 10 second
130 POKE 59471,3 @switch red and amber on
140 FOR T = 1 TO 2000 : NEXT T @delay 2 seconds
150 POKE 59471,4 @switch green on,

red and amber off
160 FOR T = 1 TO 10000: NEXT T @delay 10 seconds
170 POKE 59471,2 @switch amber on,

red and green off
180 FOR T = 1 TO 2000 : NEXT T @delay for 2 seconds
190 GOTO 110 @repeat the sequence.

Listing 2.2 Traffic Light Program (BASIC)

The program is obscure: it is machine oriented rather than

problem oriented. The low level PEEK and POKE commands are awkward to

use and would make little sense to pupils who knew no binary

- 32 -

arithmetic.

The Advisory Unit For Computer Based Education has produced a

version of Control BASIC (Wood, 1981). It provides commands for

setting the individual lines of a parallel port to 'high' or 'low'

and for detecting the states of the individual lines. Listing 2.3 is

a traffic light program written in Control BASIC.

10 SET(O) (1) (2) LOW
20 SET(O) HIGH
30 GOSUB 200
40 SET(l) HIGH
50 GOSUB 300
60 SET(0) (1) LOW
70 SET(2) HIGH
80 GOSUB 200
90 SET(2) LOW
100 SET(l) HIGH
110 GOSUB 300
120 SET(l) LOW
130 GOTO 20
140
150
200 FOR 1=1 TO 1000
210 RETURN
220
230
300 FOR 1=1 TO 200
310 RETURN

@switch off all the lights
@red on

@long delay
@red and amber on

@short delay
@red and amber off
@green on
@delay
@green off
@amber on

@short delay
@amber off
@repeat the sequence

NEXT I @long delay loop

NEXT I @short delay loop

Listing 2.3 Traffic Light Program (Control BASIC)

Although the extended version is an improvement over the

standard version, the control commands still bear little direct

relationship to control problems. Furthermore, BASIC is a limited

educational language due to its fundamental design. The criticisms

of BASIC are

(1) it lacks control structures and procedure mechanisms

(2) it is not extensible

(3) it is syntactically ambiguous.

- 33 -

The lack of control structures and procedure mechanisms leads to

excessive use of GOTO statements. There is no built-in mechanism to

prevent the bizarre use of GOTO statements, such as jumping out of,

or even into, FOR loops or subroutines. As a result, a program

written in BASIC does not reflect a neat hierarchical structure, and

bad programming habits will be reinforced if a programmer is

inexperienced and undisciplined.

BASIC is not extensible. User defined programs are distinctly

different from the primitive commands and only one program may be in

the main memory at any one time. It is not possible to build up a

collection of 'building blocks' for solving complex problems.

du Boulay et al (1981) give as an example of ambiguous syntax in

BASIC its use of the '=' symbol for multiple purposes, including

assigning values to variables and testing for equality.

The first criticism has been overcome partly by the new

implementations of the so-called structured BASIC, e.g. BBC BASIC

(Coll, 1982) and COMAL (Atherton, 1982). Structured BASIC has been

extended to provide the IF...THEN...ELSE and the REPEAT....UNTIL

constructs. The procedurisation mechanism is much improved: it

allows parameter passing, variables to be local to a procedure, and

recursive procedure calls.

Listing 2.4 shows a BBC BASIC program (taken from Bostock

(1983)) for making a Buggy move forward until it collides with

another object. The program uses the extended REPEAT UNTIL control

structure and procedure facilities.

- 34 -

10 @Move Buggy forward until collision
20
30 ?&FE62=31
40 port=&FE60
50 wait=10
60 :

70 REPEAT
80 ?port=2 :PROCdelay
90 ?port=0 :PROCdelay
100 UNTIL ?port=128 OR ?port=64
110 :

120 END
130 :

140 DEFPROCdelay
150 FOR delay=l TO wait: NEXT delay
160 ENDPROC

Listing 2.4 A program for Buggy (BBC BASIC)

The program is still obscure. Although it does not use the PEEK

and POKE commands it still relies on examining and assigning values

to particular machine addresses. The development of structured BASIC

has made no real advance in making BASIC a suitable language for

teaching control applications.

2.2.2. Assembler language

An alternative to BASIC is assembler language. Sometimes it is

used because speed is essential to an application and BASIC is too

slow (for example see Stevenson, 1980). Another reason given by Pike

(1982) is that 'if any degree of realism with industrial control work

was to be achieved then the use of a high level language was

thoroughly inappropriate.'

The first reason is justifiable at present because of the

limitation of hardware speed. However, this will not be true in the

future as the hardware technology is advancing so rapidly. The second

reason is absurd. It is like advocating that computing science

- 35 -

students should be taught Fortran and Cobol, instead of other better

structured languages, because they are most widely used in industry

and commerce. Surely the aims are to teach general principles and

enforce good programming habits. Furthermore, even in industry the

aim is to move away from low level languages to higher level, more

descriptive languages. Concurrent-Pascal (Brinch Hansen, 1975),

Modula (Wirth, 1977) and Ada (Goos and Hartmanis, 1983) are all high

level programming languages developed for real time applications (of

which control applications is a part). The problem is that these

languages are sophisticated compiled languages developed for

professional programmers.

2.3 Teaching material

No book has been written specifically for teaching and learning

control applications at secondary school level. Books for post-A

level studies and the hobbyist exist (for example see Johnson et al,

1984; Foster, 1982). They assume that readers have some knowledge of

assembler programming and are written for particular microprocessors

or microcomputers.

0 and A level electronics text books exist and they usually

contain very small sections on control applications (for example see

Bevis and Trotter, 1981). However, the topic is introduced at a low

level. Prior knowledge of logic gates and circuitry is necessary.

A useful source of information for teachers is 'Microelectronics

System News', a quarterly journal published by IEE and supported by

MEP and the Department of Trade and Industry. The aim of the journal

is to keep teachers in touch with electronics and computing in school

- 36 -

education. Articles are written by teachers to share their ideas and

to inform others of current development in their schools.

2.4 Teaching methods

The way that control applications is taught depends largely on

the expertise, enthusiasm and initiative of individual teachers and

groups of students (Bevis, 1984). Three approaches may be

identified: demonstration, project and module approaches.

The purpose of the demonstration approach is simply to show the

students that the computer can be used to control external devices.

A teacher provides examples of working control systems, the students

observe the demonstrations and participate in discussions. Student

participation may be increased by allowing students to run the

application programs. The advantage of this approach is that it does

not require much resources, in terms of hardware, time and manpower.

Buggy and the set of supplied programs would meet the requirements.

However, the approach is limited. Students may acquire some

appreciation that computers can be used for control purposes, but

because of the lack of involvement it is unlikely that they will

acquire any understanding of the subject. They really have no means

of finding out for themselves how the system works.

At the other extreme is the project approach. A teacher and a

group of students work as a team on a project over a long period of

time, possibly several months. The team specifies the full

functionality of a control device, designing and constructing the

hardware, and writing the control programs. A wide range of projects

has been attempted by different teacher-and-student teams. The end

- 37 -

results are very impressive. Example of these systems are: a

computer controlled railway (Avis and Else, 1981), an energy

conservation system (Howard and Hooton, 1981), a church bell ringing

system (Stevenson, 1980), and a home seeking robot (Thompson et al,

1984).

Unfortunately, the project approach is not suitable for normal

classroom practice; it requires a high teacher/student ratio, and

usually only the able students are selected. To carry out a control

application project from beginning to end is intellectually

demanding. It requires knowledge and skill in design, electronics,

computing and long term planning.

The module approach is structured. A series of activities and

worksheets is designed by the teachers and the students follow guide

lines (for example see Simmond (1982)). This approach would be

restrictive if applied rigidly. However, it provides most scope for

students of different abilities if the modules are designed such that

each individual student is able to try out ideas up to his own level

of competence, at his own pace. A further advantage is that it does

not require a high teacher/student ratio.

The difficulty is to design a set of interesting activities and

to provide suitable facilities for carrying them out. At the moment,

the main obstacle that hinders this approach is the lack of a

suitable computer language.

2.5 Other uses of control applications in schools

Besides teaching control applications as a subject it has also

been used to assist the teaching of physics. The main idea is to use

- 38 -

the computer to automate certain experiments. One advantage is that

it would free students from the tedious task of collecting data.

Another is that the result can be displayed on the VDU in different

forms, such as a bar chart or graph.

GEIGER (Grant, 1980) is a control program written by a group of

physics teachers for assisting the teaching of the half-life of

radioactive substances. Some special purpose-built hardware is

required to connect a computer to a Geiger-Muller tube and scaler.

The program periodically reads and records the radio-activity count.

The decay curve can be plotted on the screen as the data are

collected so that any apparent anomalies can be discussed as they

appear.

Wilson (1984) and Blackburn (1980) also provide examples of

programs that automate experiments for studying acceleration due to

gravity and the effects of heating and cooling respectively.

2.6 Conclusion

The teaching of control applications in secondary schools is

still at its infant stage. Some advances have been made in hardware

development. A range of control devices is available. The major

contribution is the control modules which enable students and

teachers to design and construct their own control models without

much difficulty.

Much work, however, is needed in the design of a programming

language and teaching material.

- 39 -

CHAPTER 3

LEARNING THROUGH PROGRAMMING

The first section of this chapter outlines the rationale behind

the methodology of learning through programming. The second and

third sections review four computer languages, namely Logo, Prolog,

Smalltalk and Forth. All these languages are interactive and

extensible. These aspects of a computer language are particularly

valuable in an educational setting (Harvey, 1984). However, these

languages are fundamentally different. Logo, Prolog and Smalltalk

all have some prior association with educational computing. Besides

reviewing their language features, their uses in schools are also

considered. Forth was originally designed as a convenient language

for programming computer controlled equipment. Its suitability as a

language for learning is also considered. The final section

concludes that none of these languages, in their present forms, is

ideal for learning control applications. It also gives some reasons

why Logo is most suited for extension.

3.1 Programming aids understanding

Boden (1977) defined Artificial Intelligence as 'the use of

computer programs and programming techniques to cast light on the

principles of intelligence in general and human thought in

particular.' Implicit in the statement is the belief that program

construction aids understanding. There are three reasons for this

belief. First, in order to construct a program that performs an

intelligent function it is necessary to reflect on the nature of the

function to be performed. Second, a program provides a model for

understanding relationships, constraints and rules of complex

- 40 -

systems, such as human brains. For example, in order to construct a

vision, natural language, learning or expert systems program it is

necessary to probe deeply into the nature of the specific domain.

Third, programs are testable. They can be used to verify or to model

different theories.

Papert, in his book 'Mindstorms: children, computers and

powerful ideas' (1980) proposes 'to teach Artificial Intelligence to

children so that they, too, can think more concretely about mental

processes. While psychologists use ideas from A.I. to build formal,

scientific theories about mental processes, children use the same

ideas in a more informal and personal way to think about themselves.'

More importantly, the thesis is that children should program

computers, and that computers should not program children. This

would give children 'a mastery over a piece of the most modern and

powerful technology and establish an intimate contact with some of

the deepest ideas from science, from mathematics, and from the art of

intellectual model building.'

Programming helps a learner to focus attention and gives

concrete forms to abstract ideas. With a suitable programming

environment a student can engage in purposeful activities. A student

constructs a program which models the solution to a problem. The

program represents at least part of the student's understanding of

the problem, and its correctness can be checked by running the

program on a computer. Any error detected can usually be debugged and

corrected.

Many students have acquired the fear of learning. They tend to

associate their unsuccessful learning experiences with their

- 41 -

inabilities and classify themselves as good at X but not at Y. This

view has the effect of stopping many students from trying to learn

somthing that they think they are not good at. Programming is a

potentially effective way to change one's view of success and

failure. When programming a computer, one almost always gets it wrong

the first time. Debugging is an important component of programming.

Since making errors is the norm it is not so intimidating.

Howe (1980) draws a revealing analogy between building physical

models using a kit of parts, e.g. Meccano, and building computer

programs using a programming language. Just as building a physical

model would help a child to understand the structure and mechanism of

working machines, building computer programs would help a child to

understand the mechanism of processes. A physical model that is

ill-designed would collapse or the mechanical parts would cease to

function. A faulty program would also cause errors when executed by a

computer. The feedback information would help a student to identify

faults in his own understanding and refine it. Figure 3.1 shows the

relationship between learning to build physical models and learning

to write programs.

- 42 -

Modelling Programming

become familiar with
the components of the
modelling kit

become familiar with the

primitives of the computer
language

learn the basic

operations of assembling
learn the basic operations
of constructing programs

understand the structure

and the mechanism of the
machine being modelled

understand the problem to be
solved

plan assembly sequence plan program implementation

represent the essential
structure and mechanism

using the modelling kit

describe the solutions to the

problem and its sub-problems
in the computer language

make modification to cope
with mismatch

debug and correct any errors

Figure 3.1 Relationship between building models and
writing programs

A further advantage associated with learning through programming

is that programming is enjoyable. Students can spend hours in front

of a computer terminal without losing interest. Using the same model

building analogy, Howe (1980) points out that 'a child is often more

interested in grappling with the problems of assembling an object

from its parts than he is in playing with the final product.'

Although there are clear advantages in learning through

programming, in order that it is successfully applied there needs to

be a programming language suitable for a particular application.

Just as, given sufficient time and patience, one can build models of

any physical structures with matchsticks, so one can write any

program in machine code, but that would defeat the purpose of the

- 43 -

exercise.

3.2 Logo

3.2.1 The language

The computer language most associated with the programming

approach is Logo (Abelson, 1980). It was first designed by Feurzeig

et al (1969) for investigating the teaching of mathematics. The

language is based on LISP (Winston and Horn, 1981), an Artificial

Intelligence computer language. Logo is a powerful language and it

is only in the past few years that it has been feasible to implement

it on inexpensive microcomputers for school use. Since Logo has been

available on microcomputers it has gained immense popularity. Its

success owes much to the previously mentioned turtle commands

extension to the original design. However, Logo is much more than

turtle commands.

From the programming environment point of view, Logo has an

integrated screen editor and an integrated filing system. This means

that a user only needs to talk to Logo and need not learn an

operating system.

Data structures and related operations

Logo has three data types: numbers, words and lists. Most

implementations support both real and integer numbers and provide the

full range of arithmetic and trigonometry functions. A word in Logo

is essentially a string of characters. A list is an ordered set of

numbers, words, and lists. The following are some examples of valid

lists:

- 44 -

[THIS IS A LIST OF WORDS]
[THE EMERGENCY TELEPHONE NUMBER IS 999]
[TOM [HEIGHT [6 FEET]] [BIRTHDAY [23 JANUARY 1920]]]

Most programming languages, for example BASIC and Pascal,

provide arrays instead of lists. There are two major differences

between these two types of data structures. First, an array has a

fixed size but the size of a list can shrink or grow during run time.

Second, an array is uniform, i.e. each array element must be of the

same type. As shown above, a list element can be any Logo data

structure. A list is sufficiently general to represent and store any

kind of data.

The reason that some languages provide arrays instead of lists

is that, being fixed size and uniform, the location of any element in

the array can be easily calculated and the content can then be

accessed or updated directly. However, lists are stored in a more

complicated way because the elements can be of different sizes. To

access the nth element of the list, the computer has to do a search

starting with the first element of the list, then find out where the

second one is and so on. Since these operations are all done by the

Logo system, to the programmer list manipulation is more powerful but

not more difficult to use than arrays. The disadvantage is that list

processing is slower.

Logo is not typed, so that a variable can be used to store any

value; an integer at one point and a list or a word at another. In

BASIC a variable name which ends with a dollar sign can only store a

string of characters. Other variables can only store numbers. In

Pascal a variable has to be declared as a specific type. Originally,

- 45 -

variable typing is for the convenience of the compiler to generate

efficient code. There are some who would argue that variable typing

is good, apart from implementation issues, because it disciplines the

programmer to use variables carefully. Instead of this restriction,

Logo programmers are encouraged to write small procedures which have

their own local variables, which makes programs easier to write and

understand. Furthermore, a programming language is much more flexible

if it is not typed.

Control structures

Logo is a single-process sequential language. It allows

recursive procedure calls, i.e. a procedure can call itself. Most

implementations provide the control commands REPEAT and IF, with a

full range of conditional tests. Since Logo is extensible and has

list processing, other common control commands can be written in Logo

itself. For example the WHILE command can be defined as:

WHILE 'CONDITION 'ACTION
RUN :CONDITION

IFFALSE [STOP]
RUN :ACTION
WHILE :CONDITION :ACTION

Listing 3.1 WHILE program

Then, the commands .

MAKE 'X 10
WHILE [:X > 0] [PRINT :X MAKE 'X :X - 1]

would print the numbers from 10 down to 1 on the screen. However,

control commands implemented in Logo are slow.

- 46 -

Other commands

Logo also has commands for music. The most recent extension is

Sprites (Musha, 1981). They are graphical objects that can be told

to carry a shape, to move at a fixed speed, and to move in a fixed

direction. As an example, the commands

TELL SPRITE 1
CARRY :TRUCK

SETCOLOR :BLUE
SETHEADING 90
SETSPEED 60

Listing 3.2 A Sprite program

tell SPRITE 1 to carry a BLUE TRUCK and move continuously across the

screen at SPEED 60. The speed of a sprite is an arbitrary unit. A

student can define his own shapes for the sprites and many sprites

can be made to move across the screen simultaneously. The sprites

provide a simple way for students to write animation programs.

A simplified view of Logo and the curricula may be presented in

diagram form as in figure 3.2.

- 47 -

The core of Logo:
integrated editor and filing
system, consistent syntax,
general data structure,
control structures for sequential
processing.

Turtle list music sprites
commands commands commands commands

language music animation
&
art

Figure 3.2 Logo and the curricula

3.2.2 Logo programming

Logo programming is usually seen as a cyclic process: planning,

coding, debugging, planning, coding, debugging and so on, until the

execution of the program meets the intention. In an interactive

system such as Logo, and given the different abilities and

experiences of novice programmers, the programming activities do not

necessarily fall neatly into this pattern. Solomon (1982) described

three styles exhibited by students programming in Logo: the planner,

the macro-explorer and the micro-explorer. A planner would carry out

a careful analysis of the problem and then build procedures from a

structured plan. Not necessarily with the aid of a plan, the macro-

explorer would build procedures and examine their effects. Through

exploring, he would make new concepts his own and extend his control

- 48 -

over the programming environment. A micro-explorer is the most timid

programmer. He would only use a small set of primitive commands that

are familiar to him. Papert et al (1979) described how one student

only used the basic Turtle commands in her work. For inputs to the

commands, she used mostly 30, 60 and 90. To make the turtle move

formard 120, she would use the commands FORWARD 90 followed by

FORWARD 30.

Some students, but not all, fit clearly into one of the

categories above. Following Noss (1983), it is appropriate to

interpret different styles as different modes. Micro-exploring can be

seen as 'making sense of a new idea', such as learning the syntax of

a command and appreciating the function of the command. Macro-

exploring is extending a new idea, by incorporating it in a new

procedure or by experimenting with the idea. Exploring helps to link

new ideas with existing knowledge. Planning is problem solving in a

goal-directed way. When programming, a novice programmer may (and

some often do) switch between these different modes. Interaction

between the different modes is shown in figure 3.3 (adapted from

Noss, 1983). This model of programming is useful to a teacher for

deciding when and how to help a student. For example, when a student

is making sense of a command he should be given an explanation and

time to try it out until he feels confident with it. When he is

exploring an idea he may need suggestions on what may be tried or

where to focus his attention. When the student is planning a

solution, a teacher may help by discussing with him the different

ways that a problem may be solved.

- 49 -

,| Explore |

Make sense of
new idea

solve

problems

need for
more power

Figure 3.3 Interactions between programming modes

Although students can do interesting things with Logo from the

very first time they use it, there are features in Logo that require

some time to get used to. The use of single quote , and colon

to distinguish name from value does cause confusion among beginners.

Many students have difficulties in understanding the elegant and

powerful idea of recursion, i.e. a procedure calling itself. Kurland

and Pea (1983) found that some students misunderstood recursion as

looping - a jump back to the beginning of the procedure. Though this

model is faulty, it adquately explains tail recursion - a procedure

calls itself in the last command of the procedure. The problem is

understanding non-tail recursive programs.

3.2.3 Evaluation studies

Logo has been suggested and used for teaching many school

subjects. For example: physics (diSessa, 1980), biology (Abelson and

Goldberg, 1977), English language (Sharpies, 1980; Rowe, 1976) and

music (Bamberger, 1972; Bamberger, 1979). However, most formal

- 50 -

evaluation studies have been done in the context of teaching

mathematics to school children. The result is favourable.

Using the pre-post test method, Milner (1973), Howe et al (1980)

Hartley (1980) and Howe et al (1982) have found that the scores of

the experimental groups improved relative to the performance of the

control groups. Hartley (1980) and Howe et al (1980) also reported

that the students who learned mathematics through programming had

increased their ability and willingness to discuss mathematics.

du Boulay (1978), working with trainee primary school maths

teachers who found maths difficult, provides evidence that some basic

maths concepts can be learned effectively through programming. On

the other hand, he also made clear that programming does not fit in

well with all maths topics. An example given by du Boulay is

representing fractions as pie charts. His students concentrated in

constructing the programs to do the drawing and did not gain

understanding of fractions. This demonstrates that programming tasks

have to be relevant; helping the students to focus on the concepts

being learned and demanding little programming skills.

Because there is a clear relationship between programming and

problem solving, some advocate that learning to program a computer

can enhance a student's intellectual functioning. The idea is clearly

expounded in Papert's writing (1980). The following extracts help to

examplify the point:

'Indeed, the role I give to the computer is that of a carrier
of cultural "germs" or "seeds" whose intellectual products will
not need technological support once they take root in an
actively growing mind.' p.9

'.... children who had learned to program computers could use

very concrete models to think about thinking and to learn about
learning and in doing so, enhance their powers as psychologists
and as epistemologists.' p.23

'.... through these experiences these children would be
serving their apprenticeships as epistemologists, that is to
say learning to think articulately about thinking.' p.27

Several studies have been done to examine the claim that

programming improves a student's problem solving skills. The first

one was by Statz (1973). She taught programming to 16 students of

the age 9-11 over a one year period. She hypothesized that this

group would do better on a set of four problem solving tasks than a

control group who learned no programming. The outcome was that the

experimental group did significantly better in only two of the tests.

However, there are criticisms of the way she marked the tests (Weyer

and Cannara, 1975) and there are doubts about the validity of the

tests as they do not measure the kind of problem solving skills that

are likely to be learned through programming.

Papert et al (1979) also taught Logo programming to sixteen

sixth graders (age 11-12) over a period of six weeks. These students

had between 20 and 40 hours of hands-on experience with the

computers. The analysis of the students' work shows that the students

were engaged in extensive problem solving activities and that they

had different programming and problem solving behaviours. However,

it provides no evidence that the problem solving skills gained in

programming are transfered to other non-programming tasks.

More recently, Pea & Kurland (1983) taught programming to two

classes of 25 students (age 8-9, 11-12) for one year. Since the

development of planning abilities is one major predicted benefit of

learning to program, they developed a transfer task for assessing

- 52 -

children's planning (Pea and Hawkins, 1983). The task was given

twice, early and late in the school year, to eight children in each

of the two programming classes, and to a control group of the same

number of same-age students from the same school. The experimental

groups did not display greater planning skill than the control

groups.

Undoubtedly some would argue that the cognitive benefits of

programming would either be manifested only if a student is subject

to a much longer exposure to programming, or revealed only in later

years.

Based on two general findings in cognitive science and his own

observations, Pea (1983) gives three reasons why the claim made for

the cognitive benefits of learning to program is doubtful. First,

the 'transfer of problem-solving strategies between dissimilar

problems or problems of different content, is notoriously difficult

to achieve even for adults'. Second, even computer science students,

who have had several thousand hours of programming experience, have

great conceptual difficulties in understanding how simple programs

work. The programming experience and skills they had acquired do not

help them to solve problems related to programming. Third, the

context-free problem solving skills such as planning and debugging

are not necessarily developed through programming. Pea observed that

his students do very little pre-planning in their programming

activities. Furthermore, if the outcome of a program is not

satisfactory his students would change the goal and restart, rather

than revise the program.

- 53 -

The evidence accumulated so far, though scanty, shows that

programming can be used to enrich classroom activities and help

students to focus their attention and gain insight into concepts that

are directly relevant. It is doubtful that general problem solving

skills can be automatically acquired through programming.

3.2.4 Teaching methods

There are two contrasting views on how Logo should be introduced

into the school classroom. One view is that the programming

activities should fit into the existing classroom practice. The

teaching material should be structured. The student is asked to write

programs that model a particular process or concept with the aim of

promoting deeper understanding. The other view favours open-ended

investigation. The student is encouraged to create his own projects

and to explore his own ideas. By providing a suitable programming

environment, he may learn through self-discovery rather than

organised instruction. The latter view is supported particularly by

those who advocate that programming helps to develop general problem

solving skills.

The previously mentioned studies by Howe et al (1980; 1982) and

Hartley (1980) were carried out in the structured fashion,

particularly the studies by Howe and his colleagues. Though the

result is favourable, the structured approach has been bluntly

criticised as antithetical to the Logo philosophy (Kelman, 1983).

The studies by Papert et al (1979) and Pea et al (1983) were

carried out in the open-ended fashion. Papert made no comments on the

effectiveness of the teaching method. Pea concluded that 'we have

- 54 -

deep doubts, based on a series of empirical studies over an 18-month

period, that the Logo ideal is attainable with its discovery-learning

pedagogy.' In Statz's study (1973), three teaching strategies were

used. They varied in the degree in which projects were defined by

the students and the point at which Logo concepts were introduced to

the students. She found that a certain degree of structure in the

teaching of Logo is required.

Learning through discovery is idealised rather than practical.

It assumes that a student

(1) can develop his own projects; this requires initiative and

creativity.

(2) can appreciate the complexity of the project he is

undertaking; this requires some background knowledge and

understanding.

(3) is sufficiently motivated to pursue the project for a long

period of time in order to benefit from it.

It also assumes that the programming language is sufficiently general

to support the kind of projects that a student is interested in.

A teaching-learning situation should take into account the

nature of the learning task; the advantages and limitations of the

programming environment; and certain characteristics of learners,

such as their prior knowledge, level of ability and motivation. As

observed by Pea, most students will not rethink their ideas, even

when they see that their programs are wrong. Structure is necessary.

It provides a framework and a collection of ideas that a teacher can

follow or adapt. Teaching material should be categorized into

different levels of difficulty. Worksheets can be used to help a

student to learn the basic ideas quickly and provide suggestions of

what might be tried next. The important thing is that a teacher

should have an understanding of the likely mistakes that the students

would make, why they make them and should provide help when

appropriate. The model of programming described in section 3.2.2 is

a helpful guide line.

3.3 Other languages

This section reviews three other computer languages, namely

Prolog, Smalltalk and Forth. The former two languages have some

association with educational computing and Forth was designed as a

language for programming computer controlled equipment. Their

suitability as languages for learning are considered.

3.3.1 Prolog

The name 'Prolog' stands for PROgramming in LOGic. It is a

computer language based on Horn Clause predicate logic (Kowalski,

1974). Prolog has been chosen by the Japanese as the core

programming language for the next generation of computers. In

Europe, Prolog is widely used in Artificial Intelligence research for

building expert systems and natural language front ends. Kowalski

(1984) and Ennals (1984) advocate that logic is a good programming

language for teaching children. Recently, the Irish Department of

Education has decided to make Prolog available in all its secondary

schools. A number of other British education authorities are also

showing interest.

- 56 -

3.3.1.1 Distinctive feature of Prolog

The distinctive feature of Prolog is that it allows programs to

be written in declarative form rather than in algorithmic form, i.e.

telling the computer what to do rather than how to do it. A program

in Prolog consists of statements of facts and rules. Typically a

statement is of the form:

Conclusion,

or

Conclusion
if Goall, Goal2, ..., GoalN.

which can be read as: if Goall, Goal2, and GoalN are true, then

the Conclusion is true.

Listing 3.3 is a simple Prolog program written in micro-Prolog

(McCabe, 1980-81), the most widely used implementation in schools

today.

(father-of Jack George)
(father-of Tom Bill)
(father-of Bob Jack)
(father-of.Bernard Tom)
((grandfather-of X Z) (father-of X Y) (father-of Y Z))

Listing 3.3 Family relation program

In listing 3.3, the first four statements are facts stating that Jack

is the father of George, Tom is the father of Bill, Bob is the father

of Jack and Bernard is the father of Tom; the last statement is a

rule describing the grandfather relationship: X is the grandfather of

Z if X is the father of Y and Y is the father of Z. Note that the

program is incorrect in some sense because X can be the grandfather

of Z if X is the father of Y and Y is the mother of Z.

- 57 -

If a Prolog system has these statements stored in it, one can

ask it questions like 'Who is the father of Jack?' and 'Who is the

grandson of Bernard?' These questions are represented in Prolog as

(father-of X Jack)

(grandfather-of Bernard Z)

respectively. Prolog would reply with the answers X is Bob and Z is

Bill.

Another example that shows the declarative power of Prolog is

the program for appending two lists:

(append () X X)
((append (X | Yl) Y2 (X | Y3)) (append Y1 Y2 Y3))

Listing 3.4 Append program

The program appends the lists in the first two arguments and returns

the result in the third argument. The first clause states that if

the first list is empty then any list appended to it is the same

list. The second clause states that

(1) the first element of the first list X is always the first

element of the final list.

(2) the tail of the final list, Y3, is the second list, Y2,

appended to the tail of the first list, Yl.

The program is a description of the relationship between the lists to

be appended and the appended list, rather than a description of how

two lists are appended.

- 58 -

3.3.1.2 Prolog in schools

In schools, Prolog is used, typically, as a data base query

language. The content of the data base can be related to any

subject; for example: the history of a village and the geographical

information avout a country. The students learn by finding out and

providing facts and rules to the system. Alternatively the

information could be supplied by the teachers and the students then

conduct investigations by querying the system. Some teaching

material for using micro-PROLOG has been published (Ennals, 1982).

Efforts have been focused on evaluating and improving the user

friendliness of the interactive facilities in micro-PROLOG (Sergot,

1984; Weir, 1982). The front end (called SIMPLE) to micro-PROLOG

allows students to input data base statements or queries in a form

closer to natural language. For example the rule that describes the

grandfather relationship and the query 'Who is the grandfather of

George?' can be represented as

X grandfather-of Z
if X father-of Y & Y father-of Z

which(x : x grandfather-of George)

respectively.

So far, there is no evaluation of the educational benefits of

programming in logic.

3.3.1.3 Programming in Prolog

Ideally logic programs should be read declaratively and

understood without recourse to the behaviour they invoke inside a

machine. However, Prolog programs typically cannot. It is because

- 59 -

Prolog uses a very simple depth-first proof procedure. It means that

(1) the ordering of the goals within a statement is important;

(2) the ordering of the statements for a predicate is important;

(3) sometimes extra-logical primitives have to be used.

As an illustration, consider the program SUM_TO (listing 3.5)

written in SIMPLE syntax.

SUM_T0(1 1)
SUM_TO(x y) if

xl = (x - 1) &
SUM_TO(xl yl) &
y = (x + yl)

Listing 3.5 SUM_TO program

The program expects a goal of the form SUM_TO(N X), where N is

assumed to be a positive integer and instantiates X to the sum of the

numbers from 1 to N. Given the goal SUM_T0(3 X) X would be

instantiated to 6 since 6 =1+2+3. However, by swapping the

order of the two statements, i.e.

SUM_TO(x y) if
xl = (x - 1) &
SUM_TO(xl yl) &
y = (x + yl)

SUM_TO(1 1)

which does not change the logic of the program, the program would

loop infinitely.

Although the SUM_TO program is logically correct and seems to

work it would easily cause an infinite loop when used as a part of a

larger program. Consider the program SMALL_SUM (listing 3.6),

written to find out whether the result of SUM TO is less than 12:

- 60 -

SMALL_SUM(X) if
SUM_TO(X Y) &
Y LESS 12

Listing 3.6 SMALL_SUM program

The logic of the program is correct, but if the result Y is greater

than or equal to 12 Prolog would loop infinitely. For example, the

goal SMALL_SUM(4) would succeed but the goal SMALL_SUM(5) would cause

an infinite loop. To correct the error an extra-logical primitve

called 'cut', written as '\', has to be used in the definition of

SUM_TO to control the backtracking mechanism in Prolog. The correct

Prolog defintion of SUM_TO should be

SUM_TO(1 1) if \
SUM_TO(x y) if

xl = (x - 1) &
SUM_TO(xl yl) &
y = (x + yl)

Listing 3.7 Modified SUM_TO program

It is very difficult for a novice to form a model of how a Prolog

system works. What stories to tell a Prolog student is a major

research topic (Bundy, 1983). Some advances has been made in the

development of debugging aids (Byrd, 1980). There is currently a lot

of research work going on to improve the control aspects of Prolog

(for example see Clark and McCabe, 1982; Clark and Gregory, 1983;

Naish, 1982; Naish, 1983 and Shapiro, 1983)

Despite the apparent simplicity of using Prolog in a secondary

school classroom the extent to which Prolog can be used beyond data

base and query manipulation remains to be seen.

- 61 -

3.3.2 Smalltalk

Smalltalk was developed by the Learning Research Group at the

Xerox Palo Alto Research Center in California. The conception of the

language was strongly influenced by

(1) the Logo philiosophy that children can program and will

benefit from it;

(2) the vision that in the near future young children will have

access to very powerful computing facilities. It was the

group's aim to develop a computing environment for the future

generation of personal computers for children (Kay, 1977).

The language is designed around a single concept - that similar

objects can be grouped into more general classes. Every entity in the

system is considered as an object and each object is an instance of a

class. These objects can receive messages, which tell them to do

something, remember something, recall something, or send some

messages to other objects. Sprites in Logo may be considered as a

class of system objects that can respond to the messages CARRY,

SETCOLOR, SETHEADING, and SETSPEED. In Smalltalk users can create

their own classes, objects and messages.

To illustrate the class concept in Smalltalk, the following

example (listing 3.8) defines a class TRIANGLE and shows how

different triangular objects of that class can then be created and

manipulated. The program is not written in strict Smalltalk syntax.

- 62 -

CLASS NAME;

@define a new class TRIANGLE
TRIANGLE.

CLASS MESSAGE;

@NEW creates a new instance of class TRIANGLE.
@The new instance is given a default 'shape' and
@location.
NEW: LOCATION <- CENTER, ANGLE <- 120, LENGTH <- 100.

INSTANCE MESSAGES;

0SHAPE tells an instance to draw its shape on the
@screen
SHAPE: GOTO LOCATION, PENDOWN,

1 TO 3 DO (FORWARD LENGTH, TURNRIGHT ANGLE).

@SH0W tells an instance to draw its shape on the
@screen in black
SHOW: PAINT BLACK SHAPE.

0ERASE tells an instance to draw its shape on the
@screen in BACKGROUND colour
ERASE: PAINT BACKGROUND SHAPE.

@GROW tells an instance to change its size.
@This is done by changing it side length by the amount
^specified by the user.
GROW []: ERASE, LENGTH <- LENGTH + [], SHOW.

@TURN tells and instance to rotate.
TURN []: ERASE, TURNRIGHT [], SHOW.

Listing 3.8 TRIANGLE program

- 63 -

The following example (listing 3.9) shows how different

triangular objects can be created and manipulated

@create a new instance of class TRIANGLE, named JACK
TRIANGLE NEW NAMED 'JACK'!

@send a message to JACK, tell it to turn 30 degree right
JACK TURN 30!

@send a message to
@side by 120 units
JACK GROW 120!

JACK, tell it to increase the length of its

@create a new instance of class TRIANGLE, named BILL
TRIANGLE NEW NAMED 'BILL'!

@repeat the following 3 times:
@send a message to JACK, telling it to turn right 60 degrees,
@then send a message to BILL, telling it to turn left 60 degrees
1 TO 3 DO (JACK TURN 60. BILL TURN -60)!

\ V'

y-,
i

I X

Listing 3.9 Manipulating TRIANGLES

- 64 -

The advantages of the class concept are:

(1) An object is a computational entity that combines both the

data and the operations that are allowed to be performed on

the data, therefore objects subsume procedures, functions, and

all kinds of data structures.

(2) It is conceptually clean, having a natural and clear meaning.

(3) It is not possible to change any data that is local to an

object without sending that object a message requiring such an

operation, thus providing integrity.

(4) It is suitable for applications that involve modelling and

manipulation of abstract or physical objects.

The class concept described so far is similar to abstract data

type, as implemented in other programming languages such as

Concurrent-Pascal (Brinch Hansen, 1975). Each object belongs to only

one class. There is no intersection between classes. Pictorially it

can be represented as figure 3.4. In the figure, a rectangular shape

represents a class and an asterisk represent an instance of a class.

Figure 3.4 Mutually exclusive classes

Smalltalk also provides a subclass mechanism. Figure 3.5

illustrates it. A subclass specifies that its instances are the same

as those of another class, called its superclass, except for the

- 65 -

differences that are explicitly stated. Each subclass has one

superclass and many subclasses may share the same superclass. A

subclass is in all respects a class and can therefore have subclasses

itself. This subclass mechanism is useful for describing different

classes of objects that have essentially the same features but differ

in some details.

* *

A* *

* A

*

Figure 3.5 Hierarchical classes

Smalltalk has been used in an experimental study with a group of

specially gifted children (Goldberg, 1977). The subject material

taught included computer simulation methods, graphic techniques,

geometry and animation. The course work was designed to take full

advantage of the graphics capability of Smalltalk. Careful

consideration was given to how Smalltalk should be introduced to

pupils for modelling purposes. It is difficult for the uninitiated

to decide what objects are required and what messages the objects are

to receive. The teaching strategy developed was to provide

interesting pre-programmed classes so that the students could use,

- 66 -

modify and combine them. Because the students were talented and had

previous programming experience they were able to produce many

interesting pictures and simulations.

Unfortunately, the aim of the development of Smalltalk has

drifted. It is now more concerned with software development for

professionals (Goldberg and Ross, 1981). It is interesting to note

that the name of the research group has also changed from Learning

Research Group to Software Concepts Group. The major contributions

of Smalltalk are the concepts of windows and menus. They emphasise

multiple screen displays and the use of a pointing device for

selecting commands, rather than using the keyboard. Perhaps

Smalltalk now plays a new role in education; it is a language for

implementing educational software. It was used in the development of

Thinglab (Borning, 1979) and TRIP (Gould and Finzer, 1981).

3.3.3 Forth

Forth (De Grandis-Harrison, 1983) was invented around 1969 by

Charles Moore. It was originally created as a convenient means of

controlling equipment by computer. It has the advantages that it

executs quickly, requires little memory for program storage, and

encourages structured programming by breaking down a program into

small sub-procedures.

The distinctive features of Forth are that it uses post-fix

notation and that the system stack can be manipulated directly by a

programmer.

- 67 -

Post-fix notation

A computer language that uses post-fix notation requires the

operands to be specified before their operators. For example the

arithmetic expression

2 + 3-4

would be written in post-fix form as

2 3 + 4-

A more complicated expression

(2 + 3) * 5

could be written either as

2 3 + 5*

or as

5 2 3 + *

If Forth had turtle graphics the command FORWARD 100 would be written

as: 100 FORWARD.

Stack manipulation

Stack is a last-in first-out (LIFO) data structure where the

value most recently placed on the stack is most accessible. It is

similar to the pop-up pile of plates one might see in restaurants.

If a plate is placed on the top of the pile it moves down until the

new plate is at the counter level. If a plate is removed the pile

rises so that the plate which was underneath becomes the new top of

- 68 -

the pile.

Most high-level languages use one or more stacks for their

internal operations, for example for storing intermediate results of

arithmetic calculations. However, a Forth programmer manipulates the

system stack directly. As an illustration, consider the evaluation

of the expression

2 3 + 4-

It first tells the system to put the value 2 on the stack and then

the value 3. At this point the stack looks like

3 <- top of stack
2

The system is then told to add the top two values of the stack, which

is 3 and 2. The system removes the values and then put the sum on the

top of stack. At this point the stack looks like

5 <- top of stack

The system is then told to put the value 4 on the top of stack, thus

the stack looks like

4 <- top of stack
5

The minus sign tells the system to subtract the value on the top of

stack from the one that is underneath it, so at the end of evaluating

the expression the result 1 is found on top of the stack. Forth

provides many commands for stack manipulation. For example:

DROP remove top of stack item
DUP duplicate the top of stack item

- 69 -

SWAP exchange the top two items.

As an example, consider writing a COUNT program in FORTH. The

definition

COUNT
DO I . LOOP

Listing 3.10 COUNT program

is a first approximation. The command 'I' places the value of the

current loop index on the top of stack. means print and remove

the value on the top of stack. The command

6 0 COUNT

prints the sequence 0123 4 5 on the screen. Notice in this

definition the upper limit of COUNT has to be given before the lower

limit. The sequence printed is only up to upperlimit - 1. To

overcome them COUNT may be modified to

COUNT

1 + SWAP DO I . LOOP

Listing 3.11 Modified COUNT program

The command

0 6 COUNT

now prints the sequence 0123456. Writing programs in FORTH

requires substantial understanding of stack manipulation. The final

programs are far from comprehensible.

- 70 -

3.4 Learning control applications through programming

As indicated in section 3.2.3, the prevailing evidence suuggests

that programming is a good way for a student to gain insight into

specific aspects of a subject being studied, especially those aspects

concerned with processes. There are good reasons to believe that the

approach is also particularly suited for control applications:

(1) Working with models of control systems is compelling.

(2) It requires no prior knowledge of electronics. Programming is

directed toward producing descriptions of control processes; a

student might come to understand the general principles

underlying the control system.

(3) A moving device provides visual feedback of the control

process in action; the student programmer is more able to

realise the discrepancy between the effect and his intention.

As explained in Chapter 1, a course in control applications

should cover a wide range of control devices, so that they represent

a range of different applications and the programming tasks make use

of different control concepts. With these requirements it is

appropriate to apply the structured teaching method. The essential

requirement is a computer language containing commands that enable

the control processes to be conveniently described in program form.

One basic requirement of a control language is that it should

allow easy I/O handling, since controlling a device or process

requires that data be received from, and sent to, external

components. In control applications, it is common to talk about

objects (the device being controlled and its components) - what they

are for and what they can do. When writing a control program it is

- 71 -

convenient to model what the program does in terms of the components

of the device being controlled. For example, if a motor drives a

cart, a high level description of how the cart works could be 'the

cart moves forward when the motor turns clockwise; the cart moves

backward when the motor turns anticlockwise; the cart stops when the

motor stops.' It is appropriate to use the metaphor of sending

commands to objects telling them to do something. Therefore, a

programming language for control applications should also provide

(1) commands for manipulating objects that can be likened to real

world things, especially components common in control devices;

(2) a convenient notation for addressing individual components.

This is to make sure that a command is sent to the right

component, because there may be a number of components of the

same class (type) used on a control device.

This view is in accord with the growing trend in the development of

computer languages for real time applications - incorporation of

abstract data types (for examples Concurrent Pascal (Brinch Hensen,

1975), Modula (Wirth, 1977) and Ada (Goos and Hartmanis, 1983)). As

described in section 3.3.2, an abstract data type is similar to the

class concept found in Smalltalk. The major difference is that

abstract data types do not provide the subclass mechanism.

Another important feature of a control language is that it

should have powerful control structures. The term control structure

refer to 'both implicit global interpretation rules for programming

languages and explicit control operations' (Fisher 1972).

Sequencing, repetition, conditional statements and hierarchical

procedure calls are sufficient for most non-control applications.

- 72 -

However, it is essential for a control language to have a multi¬

programming capability. For example, to make two stepping motors

turn 30 steps simultaneously, it would be convenient if the language

allowed the programmer to write a program similar to

MOTOR 1 TURN 30 STEPS in parallel with MOTOR 2 TURN 30 STEPS

However, if the language allows only one process, a sequential

algorithm that tells the computer to switch between the two motors:

REPEAT 30 TIMES

MOTOR 1 TURN 1 STEP

MOTOR 2 TURN 1 STEP

has to be used. This solution obscures the logic of the program.

Furthermore, a control program usually describes a process that

continuously checks for occurrences of a number of signals or events

and then responds to them as they arrive. Sometimes, several

components or events might require attention simultaneously. To write

a control algorithm using a single-process sequential language is

extremely difficult. Consider translating the algorithm

WHENEVER (signal 1) DO (action 1; action 2; action 3)
in parallel with

WHENEVER (signal 2) DO (action 4; action 5; action 6)

into a single process sequential program. It is therefore essential

that a control language provides control structures that are

convenient for describing event handling, such as WHENEVER, and for

multi-programming.

Finally, a control language should be speed efficient. This is

to ensure reliability and acceptable performance. If a control

program is written correctly but its response time is slow, it may

- 73 -

miss some signals or events and fail to take the specified actions.

The characteristic which makes writing a program for control

applications different, and difficult in comparison with writing

programs for other applications, is the control flow of the program.

For most applications, the run time behaviour of a program, even of

one using recursion, can be understood using a sequential model.

Commands are obeyed one at a time in a linear and deterministic way.

Furthermore, the programmer does not have to worry about the time it

takes for a computer to obey a command. From the correctness point

of view, the length of time that a computer takes to draw a line or

to find the nth element of a list is irrelevant. However, in control

applications the control flow model is more complicated and timing is

essential. Consider the following control program:

REPEAT 1000 (
IF (signal 1) DO (procedure 1)
IF (signal 2) DO (procedure 2)

)

The run time behaviour of the program depends on when signals 1 and 2

are on and how long they stay on. It also depends on how long it

takes to execute procedures 1 and 2. Suppose, for example, signal 1

was on and the computer was executing procedure 1. In the meantime,

signal 2 was on for a short while but the computer was not checking

for it because it was busy executing procedure 1. When the computer

checked for signal 2, it was off again. So, the control flow of a

control program can be said to be non-deterministic. The programmer

has to reason about timing and whether different events are likely to

happen at the same time. He needs to develop a model of parallelism.

- 74 -

To recap, the aim of teaching control applications is to help a

student to understand how a control system works. In A.I. terms, this

type of knowledge is called 'procedural', as oppose to 'factual'. It

is best captured by procedures that describe algorithms explicitly.

Therefore the algorithmic programming languages are more appropriate

than the declarative ones. This means that Prolog as yet is not

entirely suitable. However, there is also no algorithmic programming

language that meets the above stated requirements . Instead of a new

language designed from scratch or a sophisticated language like

Smalltalk, Logo is a good language which can be suitably extended. A

further advantage of using Logo as the base language is that it is

already being used in schools and is being accepted by teachers and

students.

- 75 -

CHAPTER 4

CONCURRENT-LOGO

Concurrent-Logo (Chung, 1984) is an extension of the programming

language Logo. The aim of the extension is to provide a suitable

programming language for secondary school students to learn control

applications. The extended facilities include commands for detecting

signals, commands for actuating switches and stepping motors, also

multi-programming and guard facilities (see section 4.6).

This chapter explains the overall design philosophy of the

extension and describes the additional facilities with examples of

their use. The last section also describes two other implementations

of Logo, namely Control-Logo and Nimbus Logo, both of which are

related to Concurrent-Logo.

4.1 Design

There were two goals for the design of Concurrent-Logo:

(1) to provide a suitable notional machine for students to think

about control applications and to talk about them. This meant

designing suitable programming language primitives and

developing a metaphor that would help students to solve

problems.

(2) to maintain the virtues of Logo, such as being interactive and

extensible. This meant making sure that an interpreter could

be written for the extended language.

- 76 -

4.1.1 Object

The design of Concurrent-Logo is based on an 'object' metaphor.

Concurrent-Logo provides three classes of system objects: SWITCH,

RECEIVER and STEPPING MOTOR. Each class of object has a set of

commands associated with it (described in section 4.2). To keep

Concurrent-Logo extensible, facilities are provided for users to

define new classes of object.

An infix notation is chosen for separating the name of an object

from the command that is for the object. For example, the commands

MOTOR 1 ! TURNC 30
MOTOR 2 ! TURNA 30

mean: tell MOTOR 1 to TURN Clockwise 30 steps and tell MOTOR 2 to

TURN Anticlockwise 30 steps respectively. The exclamation mark is

the syntax marker for separating object names from commands. It is

analogous to telling a person to do something or asking a person for

something:

John ! Open the door,

Bill ! Help,

Steve! What is the time?

The object metaphor also applies to commands which are normal Logo

primitives or procedures. It treats the Logo system as the default

receiver of a command. Therefore the object metaphor for an ordinary

command is 'tell the computer to do something'. For example, the

command

PRINT ADD 2 3

- 77 -

means tell the computer to print the result of adding 2 and 3.

In Sprite-Logo there are many graphical objects of class sprites

and they all respond to the same set of commands. The TELL command is

used to inform the system of the current receiver(s) of sprite

commands. Once a TELL command is executed, all subsequent sprite

commands are send to the specified sprite(s) until another TELL is

executed. TELL is advantageous if

(1) the same command is to be sent to many objects. For example

the commands

TELL [OBJECTJ 0BJECT_2 0BJECT_3]
DO_SOMETHING

would send the command DO_SOMETHING to 0BJECT_1, 0BJECT_2 and

0BJECT_3.

(2) many commands are to be sent to the same object, before

switching to another one. For example

TELL OBJECTJ
D0_1
D0_2
D0_3
TELL 0BJECT_2
D0_4
D0_5
D0_6

However, in control applications the above cases seldom arise. If

TELL is used in Concurrent-Logo, the commands for making MOTOR 1 turn

clockwise 30 steps and MOTOR 2 turn anticlockwise 30 steps would be

TELL 'MOTOR 1 TURNC 30
TELL 'MOTOR 2 TURNA 30

The exclamation mark notation has two advantages over the TELL

- 78 -

command. First, it requires less typing. Second, more importantly,

it is meaningful when used to ask an object to return some

information. It is ambiguous to ask, 'Tell Steve what is the time? '

However, we do naturally ask, 'Steve ! What is the time?'

4.1.2 Multi-programming

As explained in the previous chapter, multi-programming

facilities are an important part of a programming language for

control applications. Concurrent-Logo allows commands to be executed

in parallel. For example the command

PROCEDUREJ // PR0CEDURE_2

would start PROCEDURE_l and PR0CEDURE_2 running at the same time.

The parallel bar '//' is used to separate commands that are to be

executed in parallel. Another syntax marker, semicolon is also

introduced for separating commands that are to be executed in

sequence. For example the command

PROCEDUREJ ; PROCEDUREJ

means execute PROCEDUREJ then PROCEDUREJ. This is for consistency:

commands are separated by markers.

4.2. I/O handling

There are system-defined objects for input and output. For

output these are: SWITCH, MOTOR; for input: RECEIVER.

- 79 -

4.2.1 Output

SWITCH

The prototype implementation can manipulate up to 8 switches.

In the prototype they are identified by subscripts: SWITCH 1,,

SWITCH 8. A SWITCH can be told to

(1) turn itself ON
(2) turn itself OFF
(3) return its STATE.

The commands are

SWITCH N ! ON
SWITCH N ! OFF
SWITCH N ! STATE

where N is the number of the SWITCH.

A SWITCH can also respond to a more sophisticated command of the

form: ONUNTIL condition. This command tells a SWITCH to switch

itself on, and to switch itself off automatically when the specified

condition becomes true. For example, if a heater is connected to

SWITCH 1, the command

SWITCH 1 ! ONUNTIL GRE? TEMP 25

would switch the heater on until the room temperature is greater than

twenty-five degrees Celsius. Note, TEMP is a user-defined procedure

that returns an integer value.

The SWITCH commands are suitable for components which are

usually turned on and off using hardware switches, e.g. lights and

bells.

- 80 -

MOTOR

Programming stepping motors at a low level is a difficult task.

It requires some understanding about stepping motors, the output port

of the computer and the sequence of stepping patterns that drive the

motors. In Concurrent-Logo, stepping motors are recognised objects.

They are identified as MOTOR 1 MOTOR 6. A MOTOR can be told

to turn clockwise or anticlockwise. The forms of the commands are

MOTOR N ! TURNC M
MOTOR N ! TURNA M

where N is the number of the motor and M is the number of steps.

Associated with each MOTOR is a variable named COUNT. When the

system is initialised each COUNT variable is set to 0. Whenever a

MOTOR turns clockwise the value of its COUNT variable is

automatically incremented by the number of steps turned; whenever a

MOTOR turns anticlockwise the value of its COUNT variable is

automatically decremented by the number of steps turned. The command

MOTOR N ! COUNT

will return MOTOR N's COUNT value. The value indicates the number of

steps that the motor has turned relative to its starting position.

4.2.2 Input

RECEIVER

Receivers are system objects for detecting signals from switches

which a device sends to the computer. The receivers are identified

as RECEIVER 1,, RECEIVER 8. If the command STATE is sent to a

- 81 -

RECEIVER, it returns the value of its current state: ON or OFF.

A more sophisticated use of a RECEIVER is to ask it to keep

count of the number of times that the input signal has changed state.

The commands

RECEIVER N ! KEEPCOUNT
RECEIVER N ! COUNT
RECEIVER N ! CLEARCOUNT

will tell RECEIVER N to keep count, return the value of count and

clear the count value respectively.

The RECEIVER commands are suitable for detecting signals from

two-state switches.

4.3. Control structures

Two control commands are introduced in Concurrent-Logo. They are

called FOREVER and WHENEVER.

FOREVER command

The FOREVER command is very simple. It is a loop without a

stopping condition. The command

FOREVER (PRINT [THIS IS FUN])

prints the sentence 'THIS IS FUN' on the screen until the ESC

(escape) key is pressed to interrupt it.

The command is ideal for control programs that usually have no

specific stopping condition. For example, a program for controlling a

lift would just detect requests and move the lift accordingly. The

program would continue until the user interrupted it.

- 82 -

WHENEVER command

The WHENEVER command has the syntax:

WHENEVER <condition> (<action to be taken>)

It means: take the specified action whenever the condition is true.

Semantically it is equivalent to

FOREVER (IF <condition> (<action to be taken>))

For example, if a heater is connected to SWITCH 1, the commands

SWITCH 1! OFF;
WHENEVER LESS? TEMP 20 (SWITCH 1 ! ONUNTIL GRE? TEMP 25)

will first switch the heater off, then whenever the temperature drops

below 20 degrees the heater will be switched on and when the

temperature rises above 25 degrees the heater will be switched off

automatically.

4.4 User defined objects

A user defined object is similar to system objects, i.e.

SWITCHes , RECEIVERS or MOTORS, in three ways:

(1) it belongs to a class and can respond to commands prescribed

for that class. For example, systems objects RECEIVER 1

RECEIVER 8 are all instances of class RECEIVERS and each

RECEIVER can respond to the set of commands prescribed for the

class RECEIVERS, which are STATE, KEEPCOUNT, COUNT and

CLEARCOUNT.

(2) it can have its own variables, which are accessible only by

the object itself. For example, each RECEIVER and MOTOR has

- 83 -

its own variable COUNT and its value can be accessed or

changed only by sending the object a command.

(3) the same syntax is used for sending commands to user defined

objects as is used for system objects,

i.e. Cobject name> ! <command for object>

User defined objects have special features that are very

important for multi-programming, which will be described later on in

this chapter.

4.4.1 Example: DC Motor

This example shows why objects are desirable and how a new class

of objects, DC motors, may be created.

A DC motor can be conveniently operated using two SWITCHes. One

SWITCH (power switch) is for switching a motor on and off and another

SWITCH (direction switch) is for changing the motor's direction of

rotation. Figure 4.1 shows the relationship between the states of

the SWITCHes and the states of the DC motor.

direction switch | power switch | MOTOR

On On turn clockwise
Off On turn anticlockwise
On Off stop
Off Off stop

Figure 4.1 Controlling DC motor

For example, if SWITCH 1 is used as a direction switch and SWITCH 2

is used as a power switch, the command

- 84 -

SWITCH 1! ON; SWITCH 2! ON

would make the motor turn clockwise, and the command

SWITCH 1! OFF; SWITCH 2! ON

would make the motor turn anticlockwise. If these commands are to be

used often it would be better to encapsulate them in procedures

called ANTICLOCKWISE, CLOCKWISE and HALT, or something similar.

However, if there are a number of DC motors to be controlled the

procedures have to be extended to input values which specify the

SWITCHes' numbers. The CLOCKWISE procedures could be defined as

CLOCKWISE 'DIRECTION 'POWER;
SWITCH :POWER ! ON; SWITCH :DIRECTION ! OFF

Assuming that there are four motors, the odd numbered SWITCHes are

used as direction switches and the even numbered SWITCHes as power

switches, then the command

CLOCKWISE 1 2

would make the first motor turn clockwise, and the command

CLOCKWISE 3 4

would make the second motor turn clockwise. It would be better to

create a new class of DC motor objects so that each DC motor

remembers which are its direction and power switches and can respond

to appropriate commands.

The new class to be created is called DC-MOTOR:

NEWCLASS 'DC-MOTOR HAS 'DIRECTION 'POWER 'STATE

- 85 -

When an object of this class is created it will be associated with

three variables: DIRECTION, POWER, and STATE, which are accessible

only by the object itself. The variables DIRECTION and POWER are for

storing the numbers for direction and power switches respectively.

The variable STATE is for storing information about what the motor is

currently doing, which could be stationary, turning clockwise or

turning anticlockwise.

Every object of this class can respond to five commands: READY,

TURNC, TURNA, STOP and STATE. READY is to initialise a motor; TURNC

is to make a motor turn clockwise; TURNA is to make a motor turn

anticlockwise; STOP is to stop a motor turning and STATE returns the

state of a motor. Notice that commands associated with the class

DC-MOTOR can share the same names with the class stepping MOTOR.

The commands can be defined as

- 86 -

DEFINE 'READY CLASS 'DC-MOTOR

READY 'X 'Y;
MAKE 'DIRECTION :X;
MAKE 'POWER :Y;
MAKE 'STATE [STATIONARY]

DEFINE 'TURNC CLASS 'DC-MOTOR

TURNC;
SWITCH :DIRECTION! ON;
SWITCH :POWER! ON;
MAKE 'STATE [TURNING CLOCKWISE]

DEFINE 'TURNA CLASS 'DC-MOTOR

TURNA;
SWITCH :DIRECTION! OFF;
SWITCH :POWER! ON;
MAKE 'STATE [TURNING ANTICLOCKWISE]

DEFINE 'STOP CLASS 'DC-MOTOR

STOP;
SWITCH :POWER! OFF;
MAKE 'STATE [STATIONARY]

DEFINE 'STATE CLASS 'DC-MOTOR

STATE;
RETURN :STATE

Listing 4.1 DC motor programs

Note, one limitation in the prototype implementation is that user

defined objects must have different names. They cannot be

distinguished using subscripts, like the system objects. Four DC-

MOTOR objects would be creted as follows:

NEWOBJECT 'MOTOR-1 CLASS 'DC-MOTOR
NEWOBJECT 'M0T0R-2 CLASS 'DC-MOTOR
NEWOBJECT 'MOTOR-3 CLASS 'DC-MOTOR
NEWOBJECT 'MOTOR-4 CLASS 'DC-MOTOR

Listing 4.2 shows an example of communicating with these

objects. The computer's prompt is 'W:', it stands for 'Waiting:' and

the user's input is in boldface.

- 87 -

§initialise the motors

@MOTOR-1 's direction and power switches are SWITCHes
@1 and 2 respectively

W: M0T0R-1! READY 1 2

@M0T0R-2's direction and power switches are SWITCHes
@3 and 4 respectively

W: MOTOR-2! READY 3 4

§M0T0R-3's direction and power switches are SWITCHes
§5 and 6 respectively

W: MOTOR—3! READY 5 6

@M0T0R-4's direction and power switches are SWITCHes
§7 and 8 respectively

W: M0T0R-4! READY 7 8

@make M0T0R-1 turn clockwise
W: MOTOR—1! TURNC

@make MOTOR-2 turn anticlockwise
W: MOTOR-2! TURNA

W: PRINT MOTOR-1! STATE
TURNING CLOCKWISE

W: PRINT MOTOR-2! STATE
TURNING ANTICLOCKWISE

W: PRINT MOTOR-3! STATE
STATIONARY

@make MOTOR-! stop turning
W: MOTOR-1! STOP

W: PRINT MOTOR-1! STATE
STATIONARY

Listing 4.2 Manipulating DC motors

4.5 Multi-programming

In Concurrent-Logo the parallel bar notation '//' is used to

initiate processes that are to be executed in parallel. For example,

the command

REPEAT 10 (PRINT 'BURGLAR) // REPEAT 10 (SOUND)

- 88 -

would print the word BURGLAR on the screen and beep at the same time.

A parallel statement is completed when all the processes that it

initiated have been terminated. Consider the command

REPEAT 1000 (PRINT 'WAIT) // REPEAT 2 (SOUND); PRINT 'FINISHED

which is semantically equivalent to

(REPEAT 1000 (PRINT 'WAIT) // REPEAT 2 (SOUND)); PRINT 'FINISHED

would print the word FINISHED only after one thousand WAITs had been

printed and not immediately after two beeps had been made. The

prototype implementation allows up to eight processes to run in

parallel.

4.5.1. Example: controlling a turtle

A turtle (see figure 4.2) can be built out of Meccano. It has

two stepping motors mounted, back to back, on it. The left motor is

controlled by MOTOR 1 and right motor is controlled by MOTOR 2. Since

the motors are mounted back to back, the turtle moves in a straight

line when they are rotating in opposite directions; it turns on the

spot when they are rotating in the same direction.

- 89 -

Front View

Top View

Figure 4.2 Turtle
Component Part No.

Motor 1 and 2

Reflective-opto switch 3 and 4

Scale 1:2.5 (approximate)

ote: The Turtles referred to in sections 4.5.1 and 6.4 did not have
parts 3 and 4 mounted on them.

- do -

The procedures FORWARD, BACKWARD, LEFT and RIGHT (listing 4.3)

are defined to make the turtle move forward, backward, left and right

respectively. The unit of the distance moved and the unit of the

amount turned is arbitrary.

FORWARD 'X;
MOTOR 1! TURNC :X // MOTOR 2! TURNA :X

BACKWARD 'X;
MOTOR 1! TURNA :X // MOTOR 2! TURNC :X

LEFT 'X;
MOTOR 1! TURNA :X // MOTOR 21 TURNA :X

RIGHT 'X;
MOTOR 1! TURNC :X // MOTOR 21 TURNC :X

Listing 4.3 Turtle programs

4.5.2. Example: a security system

A doll's house (figure 4.3) can be built out of Meccano. It has

one DC motor for opening and closing the sliding door; two reed

switches for detecting the closed and open positions of the door;

four micro-switches, one behind each window; one button-switch, used

as a door bell.

In this example:

SWITCH 1 is for turning the DC motor on and off;
SWITCH 2 is for controlling the motor's direction of rotation;
RECEIVERS 1 and 2 are connected to the reed switches;
RECEIVERS 3 to 6 are connected to the micro-switches;
RECEIVER 7 is connected to the door bell.

- 91 -

Component Part No.

Reed switch
Micro switch
Button switch
DC motor

1 and 2

3, 4, 5 and 6
7
8

Rear View

Scale 1:4 (approximate)

Front View

Figure 4.3 Doll's house

- 92 -

The procedure WINDOW (listing 4.4) would make the computer detect a

burglar trying to break in through any of the windows. Once a window

is open the computer would print out a message and beep continuously.

WINDOW;
WHENEVER EQU? RECEIVER 3! STATE 'ON
(PRINT [BREAK IN AT THE TOP RIGHT WINDOW]; FOREVER (SOUND))//

WHENEVER EQU? RECEIVER 4! STATE 'ON
(PRINT [BREAK IN AT THE BOTTOM RIGHT WINDOW]; FOREVER (SOUND))//

WHENEVER EQU? RECEIVER 5! STATE 'ON
(PRINT [BREAK IN AT THE TOP LEFT WINDOW]; FOREVER (SOUND))//

WHENEVER EQU? RECEIVER 6! STATE 'ON
(PRINT [BREAK IN AT THE BOTTOM LEFT WINDOW]; FOREVER (SOUND))

Listing 4.4 WINDOW program

The computer could also be programmed to be a door keeper. The

function of DOOR and its sub-procedures (listing 4.5) is to ask for a

secret word or sentence whenever the door bell is pressed. If the

correct answer is typed then the door slides open, otherwise the door

remains closed.

DOOR;
@whenever doorbell is pressed ask for password
WHENEVER EQU? 'ON RECEIVER 7! STATE (PASSWORD)

PASSWORD;
MAKE 'X ASK [WHAT IS THE PASSWORD?];
IF EQU? :X [GOOD] (OPENDOOR; CL0SED00R)

ELSE (PRINT [TRY AGAIN PLEASE])

OPENDOOR;
SWITCH 2! ON;
SWITCH 1! ONUNTIL EQU? RECEIVER 21 STATE 'ON;

CLOSEDOOR;
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? RECEIVER 1! STATE 'ON;

Listing 4.5 DOOR program

The alarm and automatic door system can be simply combined into one

program:

- 93 -

HOUSE;
DOOR // WINDOW

Listing 4.6 HOUSE program

4.5.3. Problems with multi-programming

In the previous examples, the processes that executed

concurrently were independent, i.e. they did not exchange information

and the order of events was independent. However, when concurrent

processes do depend on one another they pose some problems. This

section describes the problems briefly, and the following section

explains the facilities provided in Concurrent-Logo for handling

them. For detailed discussion on the problems of parallel processing

see Ben-Ari (1982).

The first problem is called 'mutual exclusion'. When concurrent

processes share one or more variables there is a danger that they may

update the same variable simultaneously. When this happens data would

be corrupted and lead to error.

The following simple example demonstrates the problem:

MAKE 'X [];
REPEAT 10 (MAKE 'X PUTF 'A :X) // REPEAT 10 (MAKE 'X PUTF 'B :X)

After the command is executed, the value of the shared variable 'X is

a list of only 10 elements rather then the expected value, a list of

20 elements. Since both concurrent processes tried to expand the

list at the same time they just overwrote each other and some data

were lost. Therefore, it is necessary to provide a facility called

'mutual exclusion', to ensure secure access to shared variables.

- 94 -

The other problem associated with multi-programming is

'synchronization'. When concurrent processes are running, there are

occasions when a process cannot continue until a certain event has

taken place. Therefore, it is necessary for a process to signal

either that it is waiting on an event, or that the event has occurred

so that other processes which are waiting may continue.

A well known example that requires both mutual exclusion and

synchronization is the Producer-Consumer problem (Dijkstra, 1968)

with a bounded buffer. The bounded buffer is a data structure that

can hold only a finite number of elements. Two cyclic processes

running in parallel access the buffer. The first of these is the

producer: it produces a new element and appends it to the sequence

produced so far. The other is the consumer: it removes the first

element from the sequence. Mutual exclusion is required when either

process accesses the buffer. Synchronization is also required. If

the buffer is full, the producer has to wait for the consumer to

remove an item; if the buffer is empty, the consumer has to wait for

the producer to insert an item. In practice, there may be more than

one consumer and producer. Therefore, a queue of processes is

associated with the wait condition.

4.5.4. Objects revisited

The design of the facilities for cooperating sequential

processes is a modification of Hoare's (1974) monitor concept. A

monitor defines a shared data structure and a set of procedures that

can operate on it. Processes cannot manipulate the shared data

structure directly, but have to call the monitor procedures. If more

than one procedure calls the monitor procedures simultaneously then

- 95 -

these procedure calls will be executed strictly one at a time to

avoid data corruption. Therefore a monitor is like an object with

scheduling facilities.

In Concurrent-Logo the object model is extended to deal with the

problems in multi-programming. The mutual-exclusion problem stated

in terms of the object model would be 'If several commands were sent

to an object simultaneously, how would the object respond?' In this

situation a simple solution would be for the object to obey the

commands one at a time. Though simple, the solution is reasonable

because people do this naturally. For example, if two persons were

to speak to me simultaneously, I would get hopelessly confused and

would say to them, 'Please! one at a time.' The synchronization

problem stated in terms of the object model would be, 'After an

object had accepted a command and had also realized that it could not

carry out the required task, what would the object do?' If the object

cannot fulfil a request due to some condition, the request will be

delayed, and the object will make itself available to other requests.

After a request has been successfully processed the object will check

whether it can restart any previously delayed requests.

There are certain features in this implementation of objects

which help to overcome the problems:

(1) an automatic scheduling mechanism - if an object receives more

than one message simultaneously, they will be processed

strictly one at a time

(2) the DELAYIF control statement:

Syntax: DELAYIF <condition>

- 96 -

Action: while obeying a message, if the object encounters the

DELAYIF statement and the condition is 'TRUE, the

request is delayed, and the object makes itself

available to other requests. After a request has been

successfully processed the object will check whether

it can restart any previously delayed requests.

To solve the Producer-Consumer problem, all that is required is

an object, say of class BUFFER-HANDLER, which knows how to insert an

element into or remove an element from the buffer.

Let the maximum size of the buffer be 20. The class BUFFER-

HANDLER and the INSERT and REMOVE messages may be created and defined

as follows:

Creating a new class BUFFER-HANDLER:

NEWCLASS 'BUFFER-HANDLER HAS 'BUFFER

DEFINE 'INSERT CLASS 'BUFFER-HANDLER

INSERT 'ELEMENT;
DELAYIF EQU? LENGTH :BUFFER 20;
MAKE 'BUFFER PUTLAST :ELEMENT :BUFFER

The insertion of an element will be delayed if the buffer is full,

otherwise the element will be inserted at the end of the BUFFER.

DEFINE 'REMOVE CLASS 'BUFFER-HANDLER

REMOVE;
DELAYIF EMP? :BUFFER;
LOCAL 'TEMP;
MAKE 'TEMP FIRST :BUFFER;
MAKE 'BUFFER REST :BUFFER;
RESULT :TEMP

Listing 4.7 Class: BUFFER-HANDLER

- 97 -

If the BUFFER is empty the message will be delayed. Otherwise the

value of the first element in the BUFFER is returned.

The producers and consumers, instead of having bits of code to

manipulate the buffer and bits of code to ensure mutual exclusion and

synchronization, need only send messages to an object of class

BUFFER-HANDLER requesting insertion or removal of data.

A BUFFER-HANDLER object SCHEDULER can be created by the command

NEWOBJECT 'SCHEDULER CLASS 'BUFFER-HANDLER.

An example:

REPEAT 10 (SCHEDULER! INSERT 'A) //
REPEAT 10 (SCHEDULER! INSERT 'B)

4.5.5. Example: Controlling a lift

To demonstrate the more elaborate use of multi-programming, this

example considers writing a program for controlling a model lift

(figure 4.4) which can be built out of Meccano. It has one DC motor

and three reed switches fitted to it. The motor is used to drive the

lift cage up and down. The reed switches detect whether the lift cage

is at a particular floor. Three button-switches control the lift.

The idea is to have the computer detect signals from the three button

switches so that whenever

(1) the left switch is pressed the lift cage moves to the ground

floor.

(2) the middle switch is pressed the lift cage moves to the second

floor.

(3) the right switch is pressed the lift cage moves to the top

floor.

- 98 -

Figure 4.4 Lift

Component Part No.

Reed switch
DC motor

1,2 and 3
4

Scale 1:4 (approximate)

- 99 -

The function of the required program seems rather simple: detect

the occurrence of a signal, then respond to it by actuating the motor

so that the lift cage is moved to the appropriate floor. However, an

underlying question is: What should the response be if signals occur

while the lift cage is moving? A trivial but unsatisfactory solution

is to ignore all signals while the computer is busy controlling the

lift cage. Another solution is to keep a record of all signals

according to some scheduling procedures and make the lift cage move

from floor to floor accordingly. The complexity of the final program

depends very much on the control structures and the scheduling

algorithm used.

Opting for the second solution, an obvious but cumbersome way to

write the program is to treat it as a single process and use many

nested conditional and iterative statements. The resulting program

might be difficult to understand and debug. It is more elegant to

make use of multi-programming. The program is decomposed into three

main components: a signal detector, a scheduler and a lift

controller. The way that these components interact is shown in

figure 4.5.

signal
detector

latest

input
scheduler

request

>

next
destination
for lift

lift
controller

Figure 4.5 A multi-programming solution to the lift problem

The signal detector and lift controller are two parallel processes.

- 100 -

The signal detector continuously checks if any of the switches is

pressed. Once a signal has been detected it passes the relevant

information to the scheduler. The lift controller is dedicated to

controlling the lift cage. Initially the lift controller sends a

request to the scheduler and the scheduler replies with the floor

number that the lift cage should move to. On receiving a reply the

lift controller starts the lift cage moving accordingly. Once the

lift cage has stopped at its destination the next request is sent and

the same process continues cyclically. It is apparent that this is

similar to the Producer-Consumer problem discussed in section 4.5.3 -

the signal detector being the producer and the lift controller being

the consumer. To simplify this example, the object SCHEDULER, of

class BUFFER-HANDLER, as defined in section 4.5.4 is used.

Let the electrical and electronic components be connected as

follows:

(1) connect the reed switch at the bottom floor to RECEIVER 1.

(2) connect the reed switch at the second floor to RECEIVER 2.

(3) connect the reed switch at the top floor to RECEIVER 3.

(4) connect the bottom floor button switch to RECEIVER 4.

(5) connect the second floor button switch to RECEIVER 5.

(6) connect the top floor button switch to RECEIVER 6.

(7) use SWITCH 1 for turning the motor on and off.

(8) use SWITCH 2 for controlling the motor's direction of rotation.

The definition of the SIGNAL-DETECTOR is:

SIGNAL-DETECTOR;
FOREVER
(IF EQU? 'ON RECEIVER 4! STATE (SCHEDULER! INSERT 1);
IF EQU? 'ON RECEIVER 5! STATE (SCHEDULER! INSERT 2);
IF EQU? 'ON RECEIVER 61 STATE (SCHEDULER! INSERT 3))

- 101 -

The definition of the LIFT-CONTROLLER and its sub-procedures are as

follows:

LIFT-CONTROLLER;
LOCAL 'CURRENT;
LIFT-READY;
LIFT-CONTROL

LIFT-READY;
@to initialise, move the lift to the ground floor
@and set the variable 'CURRENT to 1}

SWITCH 2! OFF;
SWITCH 1 ! ONUNTIL EQU? *0N RECEIVER 1 ! STATE;
MAKE 'CURRENT 1

LIFT-CONTROL;
LOCAL 'NEXT;
FOREVER

(MAKE 'NEXT SCHEDULER! REMOVE;
IF NOT EQU? :NEXT :CURRENT
(IF GRE? :NEXT rCURRENT (SWITCH 2! ON) ELSE (SWITCH 2! OFF);
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER :NEXT ! STATE;
MAKE 'CURRENT :NEXT))

Listing 4.9 LIFT program

To start the program, the user types

SIGNAL-DETECTOR // LIFT-CONTROLLER

This example illustrates how the use of multi-programming facilities

greatly simplifies and imposes structures on the program.

4.6 Event handling

In computing terms, a demon may be defined as a 'module that is

automatically activated when a certain condition becomes true'

(Bobrow and Raphael, 1974). The Concurrent-Logo implementation of

this concept is called GUARD. The word 'guard' is chosen because it

is much friendlier than 'demon'. It also has the implication of

watching out for an event to happen. A guard is created when it is

told to remember a set of commands. Once it is created it responds

- 102 -

to two messages WAKEUP and SLEEP. It is in a passive state until it

is told to wake up. When a guard is awake, it obeys the set of

commands it was previously told to remember. It returns to the

passive state either when it finishes obeying the commands or it

receives a message telling it to sleep.

4.6.1 Example: Digital clock

This example shows how a guard called CLOCK is created. When

CLOCK is awake, it updates a digital clock display, at the top right

hand corner of the screen, once a second.

©Enter the editor to define a set of commands for CLOCK
TELL CLOCK

CLOCK;
©Initialise the clock

INITIALIZE;
©Update the clock every second
WHENEVER NEXT.SECOND (UPDATE)

Listing 4.10 Guard: CLOCK

The guard facility makes it very easy to run another procedure while

the clock is ticking. For example, to run the clock and a procedure

called HANGMAN the command is simply

CLOCK ! WAKEUP ; HANGMAN

If required, the CLOCK can be switched on and off many times just by

sending it commands WAKEUP or SLEEP accordingly. The control flow of

the HANGMAN procedure would be very obscure if the clock was to be

built into it without using the guard facility.

- 103 -

4.6.2 The lift problem revisited

This example shows how the solution to the lift problem as

described in section 4.5.3 can be made more efficient using guards.

The solution, as it was, would detect a key-press and append the

corresponding floor number at the end of the list 'BUFFER. The

program permits BUFFER to have a list which has multiple instances of

the same number, for example [1 3 1 1312]. However, it is

unnecessary, or even wrong. The above list could be reduced to [1 3

2] since, no matter how many times a request is made, the lift only
• ■ • i

has to move to the requested floor once and all the occurrences of

the same request are satisfied. The problem can be overcome by

modifying the SCHEDULER'S INSERT routine so that it checks whether an

input value is already a member of the list.

A more elegant solution is based on the observation that once a

signal is detected and the corresponding floor number is inserted

into 'BUFFER it is not necessary to detect further occurrences of the

same signal until the request has been satisfied. As a result, the

value of 'BUFFER will never have more than three elements.

Instead of having one signal detecting routine, we can have

three guards. Each is responsible for the detection of a particular

signal. A guard will stay awake until it has received a signal. It

will be woken up again only after the lift has responded to the

signal. So the program would be as follows:

TELL DETECT-1
WHILE EQU? 'OFF RECEIVER 4! STATE ();
SCHEDULER! INSERT 1

TELL DETECT-2

- 104 -

WHILE EQU? 'OFF RECEIVER 5! STATE ();
SCHEDULER! INSERT 2

TELL DETECT-3
WHILE EQU? 'OFF RECEIVER 6! STATE ();
SCHEDULER! INSERT 3

The new definitions of LIFT-CONTROLLER and its sub-procedures are:

LIFT-CONTROLLER;
LOCAL 'NEXT 'CURRENT;
LIFT-READY;
LIFT-CONTROL

LIFT-READY;
@to initialize, move the lift to the ground floor
@and set the variable 'current to 1
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER 1! STATE;
MAKE 'CURRENT 1;
DETECT-2! WAKEUP;
DETECT-3! WAKEUP

LIFT-CONTROL;
FOREVER

(MAKE 'NEXT SCHEDULER! REMOVE;
IF EQU? :CURRENT 1 (DETECT-1! WAKEUP);
IF EQU? :CURRENT 2 (DETECT-2! WAKEUP);
IF EQU? :CURRENT 3 (DETECT-3! WAKEUP);
IF GRE? :NEXT :CURRENT (SWITCH 2! ON) ELSE (SWITCH 2! OFF);
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER :NEXT! STATE;
MAKE 'CURRENT :NEXT)

Listing 4.11 LIFT program using guards

To start the program, the user now types:

LIFT-CONTROLLER

- 105 -

4.7 Related work

Concurrent-Logo is already showing its influence and has found

commercial expression. There are now two versions of Logo, Control-

Logo and Nimbus Logo, which provide some of the facilities found in

Concurrent-Logo.

Control-Logo has been developed by the Advisory Unit For

Computer Based Education (AUCBE) and the work was started during the

final implementation phase of Concurrent-Logo. The workers at AUCBE

share with the author the view that Logo is a good computer language

that can be suitably extended for learning control applications.

However, instead of designing and implementing a new version of Logo

they took a short cut. They created Control-Logo by implementing

machine code utilities and linking them to existing full

implementations of Logo. These include RML Logo and Spectrum Logo.

The new Logo commands for invoking the machine code are:

SENDPORT outputs a byte
READPORT inputs a byte
TURNON switches on a bit
TURNOFF switches off a bit
STATE checks the state of a bit
COUNT counts pulses on specified input bit,

Due to the limitations of the original Logo implementations,

Control-Logo provides neither multi-programming facilities nor

commands for controlling stepping motors. As a result, Control-Logo

is rather limited.

Nimbus Logo has been developed at Edinburgh University for the

- 106 -

Nimbus personal computer[10], which is a 16-bit machine. Concurrent-

Logo has had a direct influence on the design of Nimbus Logo, in

particular the ideas of introducing more powerful control structures

and multi-programming into Logo. Nimbus Logo has sprites but does not

allow users to create any other types of objects because Nimbus Logo

is designed as an enhancement of RML Logo, and was subject to the

constraint that it should not differ too much in fundamental design

and should be compatible with the earlier system.

Nimbus Logo incorporates directly the FOREVER and WHENEVER

commands from Concurrent-Logo and introduces a new AWAIT command. Its

syntax is

AWAIT <condition>

which holds up the process until the condition is true. Multiple

processes can be started using the PARALLEL command. For example,

the commands

PRINT 'START
PARALLEL [[REPEAT 10 [PRINT 'A]] [REPEAT 20 [PRINT 'B]]]
PRINT 'FINISH

would print the word START then print 10 As and 20 Bs simultaneously.

When all the As and Bs had been printed the word FINISH would be

printed finally. The above commands are equivalent to the

Concurrent-Logo commands:

PRINT 'START;
REPEAT 10 (PRINT 'A) // REPEAT 20 (PRINT 'B);
PRINT 'FINISH

[10] Nimbus personal computer is manufactured by Research Machines
Ltd. (RML).

- 107 -

Instead of GUARDS, Nimbus Logo provides a BEGIN command. Its syntax

is

BEGIN [action]

which starts a process executing 'action' in parallel with the

existing process. For example, the commands

BEGIN [CLOCK] HANGMAN

would start the CLOCK procedure, which might be defined to update a

clock display on the screen once a second, running in the background

and then carry on executing the HANGMAN procedure. These are similar

to the Concurrent-Logo commands

CLOCK ! WAKEUP; HANGMAN

The difference between BEGIN and GUARDS is that a process started by

a BEGIN command will stop running only when it reaches the logical

end; a GUARD terminates when it reaches the logical end or when it

recives the SLEEP command. For example, there is no direct equivalent

in Nimbus Logo of

@initalise the clock then start game 1
CLOCK ! WAKEUP; GAMEJ; CLOCK ! SLEEP;
©stop the clock then reinitialise it and start game 2
CLOCK ! WAKEUP; GAME 2; CLOCK ! SLEEP

Nimbus Logo provides facilities for linking user defined machine

code routines. The commands are:

BLOAD @load a machine code file
UNBLOAD ^delete a machine code file from core

DRIVER @load a turtle driver
NODRIVER ^remove the turtle driver from core

- 108 -

The machine code files have to be in a special format which is fully-

described in the documentation supplied with Nimbus Logo. Therefore,

extending the I/O commands for control applications should be simple.

Since Nimbus Logo has also been designed for business use, it

provides very good file handling facilities.

109

CHAPTER 5

A PILOT STUDY

5.1 Aims

After the prototype of Concurrent-Logo had been implemented, it

was used in a pilot study to teach control applications.

The study had three aims:

(1) to develop ideas for a course in control applications. To

carry out the study the author had developed a series of

project ideas (see section 5.5.2). This experimental course

might form the basis for curriculum developers to modify or

extend in the future.

(2) to identify the advantages and difficulties of learning

control applications through programming.

(3) to evaluate Concurrent-Logo. Designing a programming language,

though guided by principles, is a very subjective process.

Therefore, the best way to assess Concurrent-Logo was to put

it to practical use.

The goal that united these aims was to develop a practical

classroom system for teaching control applications.

5.2 Design

The prototype of Concurrent-Logo was implemented on a TERAK.8510

microcomputer. It was chosen for several reasons. First, it is very

reliable. Second, it is a sixteen bit machine with 28k word of random

access memory, which is more powerful than the popular eight bit

microcomputers. At the time of implementation it served as good

-110-

interim hardware for developing programming system for the next

generation of sixteen bit microcomputers for schools. Third, several

TERAKs were readily available to the author.

Lothian Region Education Authority gave the author permission to

carry out a small scale evaluation study in a local secondary school

- Firrhill High School. The study began on 24th October 1983 and

extended through to 29th May 1984. Two groups of students were

selected from the school. One group of five students was drawn from

the fourth year (approximately fifteen years of age) and the other

group of seven students was taken from the third year (approximately

fourteen years of age).

During the study, two TERAK microcomputers and the necessary

hardware were put in the school.

The course consisted of a collection of six projects. Each

project involved the students in writing programs for a particular

control device. The control devices were: windmill, turtle, dolls'

house, lift, turtle with optical sensors and robot arm.

Every week, except during holidays and examinations, each group

had a seventy-five-minute session with the author. The fourth year

group had seventeen sessions; the third year group had twenty four

sessions. The former group had fewer sessions because they had to

spend more time preparing for their examinations. The particpants

had no access to the TERAKs other than during the allocated time.

However, some students had their own computers or belonged to the

school's computer club so they would have done some computing in

between the sessions.

- 111 -

During each session, the group was divided into three sub-groups

so that at any time there were two sub-groups working on the computer

and one waiting. The sub-grouping remained the same from the third

session onwards.

The classroom tutoring was done entirely by the author.

Worksheets (Appendix I) were produced to introduce the students to

new programming concepts, new control devices and project ideas. No

formal lectures or discussion groups were held.

From the point of experimental design it would have seemed

better if the tutoring had been done by an independent teacher rather

than by the author. The teacher would have been able to provide

impartial comments, with the author concentrating on observing and

recording information. However, this was not possible because time

and finance did not allow recruitment and training of a teacher. From

time to time, the head physics teacher, who helped to set up the

experiment, came into the classroom to observe, and outside the

teaching time he also gathered comments from the students through

informal conversations.

Evaluation of the study was based on classroom observation,

record of students' work, questionnaires and a post-test.

5.3 Participants

Initially two groups of six students were selected: one from the

fourth year and the other from the third year. After the first week,

because of ill health, a boy dropped out of the fourth year group,

and a girl was added to the third year group. Therefore the fourth

and third year group had five and seven students respectively.

- 112 -

"

Small experimental groups were used to enable the author to

monitor the progress of each student. The selection was done

independently by the school's Principal Teacher of physics, and no

attempt was made to influence his decision. The criterion for

selection was that the particpants should represent a spread of

learning ability over both groups.

All of the students expressed interest in knowing more about

computing. Each student's computing experience prior to the course

and his/her learning ability is shown in figures 5.1 and 5.2. The

information concerning the students' computing experience was

obtained from the use of a questionnaire (Questionnaire I, Appendix

II), and from the principal teacher's comments. Each student's

learning ability is graded by his/her own teacher. The grading scale

is:

a) well above average
b) above average
c) just above average
d) average
e) just below average
f) below average
g) well below average

- 113 ~

NAME COMPUTING EXPERIENCE
LEARNING
ABILITY

Nigel Very experienced in BASIC programming. b

Neil He has played computer games and copied
BASIC programs from books.

b

Willie He has been using computers for six years
and has a special interest in computer
hardware. On his own initiative, he took
an '0' grade in electronics. He also has
experience in using BASIC and Pascal.

c/d

Martin He has written simple programs in BASIC. d

Heath He has no computing experience at all. e

Figure 5.1 Fourth year group

- 114 -

NAME COMPUTING EXPERIENCE
LEARNING
ABILITY

Michael He has played computer games. a

Kei th He has written simple programs in BASIC. a

Kevin He has written simple programs in BASIC. b

Lynette She has written simple programs in BASIC. b

Gary He has written simple programs in BASIC. d

Heather She has played computer games. d

Ruth She has written simple programs in BASIC. e

Figure 5.2 Third year group

5.4 Equipment

5.4.1 Computer

Two TERAK 8510 microcomputers were used in the study. Each

computer had a single density eight inch disk drive and was extended

with a parallel I/O board[1f].

[11] The parallel I/O board is manufactured by Grant Technology
Systems Corporation, U.S.A.

- 115 -

5.4.2 Control Device

Six control devices were used in the study. The devices were:

windmill, turtle, doll's house, lift, turtle with optical sensors and

robot arm. All the devices, except the robot arm, were designed and

built by the author using Meccano. The robot arm is Armdroid.

The electronic components that were used for the Meccano devices

were DC motors, button-switches, reed switches, micro-switches,

reflective opto-switches and stepping motors[/2].

Windmill

The windmill (see figure 2.2 in chapter 2) had one DC motor for

making the sails spin.

Turtle I

The turtle (see figure 4.2 in chapter 4) had two DC motors

mounted on it. The motor on the right hand side was used to drive

the right wheel, and the motor on the left hand side drove the left

wheel. Notice the motors were mounted back to back, i.e. when they

turned in opposite directions the turtle moved in a straight line;

when they turned in the same direction the turtle turned on the spot.

Lift

The lift (see figure 4.4 in chapter 4) had one DC motor and

three reed switches mounted on it. The motor was used to drive the

[/2] All components, except the stepping motors, were obtained from
Radiospares. The stepping motors were four-phase 12 volt motors
manufactured by Philips.

- 116 -

lift cage up and down. Reed switches detected whether the lift cage

was at a particular location.

Doll's house

The doll's house (see figure 4.3 in chapter 4) had four micro-

switches, one behind each window, so that whenever a window was

pushed open a corresponding micro-switch was triggered; one button-

switch was used as a door bell; one DC motor opened and closed the

sliding door; two reed switches detected the closed and open

positions of the door.

Turtle II

The advanced turtle (see figure 4.2 in chapter 4) had two

stepping motors, instead of DC motors, mounted on it. Stepping

motors were used to give the students some control over how much the

motors should turn. Two reflective-opto switches were fixed to its

front. A reflective-opto switch sends an ON signal when it is above a

black surface and it sends an OFF signal when it is above a white

surface.

Robot arm

Armdroid (figure 5.3) had five moving parts: fingers, wrist,

forearm, upper arm and shoulder, controlled by six stepping motors.

Each moving part, except the wrist, was controlled by one motor. The

wrist was controlled by two motors. The same kind of stepping motor

was used for Turtle II and the arm.

- 117 -

Figure 5.3 Armdroid

Component Part No.

Finger 1
Wrist 2
Forearm 3

Upper arm 4
Shoulder 5

Scale 1:5 (approximate)

- 118 -

5.4.3 Hardware connection module

Four types of hardware module: Buffer Box, DC motor module,

Stepping motor module and Sensor module, were built to facilitate

connection between the computers and the control devices. These

modules were designed and built by the author with the help of the

technical staff from the Department. The Buffer box, DC motor module

and Sensor module are the same as the ones described in section

2.1.3. Figure 5.4 shows the Stepping motor module. There are six DIN

sockets on the top of the module. The sockets are numbered 1 to 6.

If a stepping motor is plugged into socket N then it will be referred

to as MOTOR N in Concurrent-Logo. For example, the command

MOTOR 1! TURNC 200

would make the stepping motor connected to socket 1 turn clockwise

200 steps.

- 119 -

to

Figure 5.4 Stepping motor module

Scale 1:3 (approximate)

to thypower supply

- 120 -

5.5 Course

Both year groups followed the same course. It consisted of a

collection of six projects. Each project involved the students in

writing programs for a particular control device decribed previously.

As mentioned in chapter 1, the course was designed to

(1) give the students practical experience in using the basic

control concepts: state, feedback and pulsing

(2) give the students practical experience in using programming

constructs such as: procedures, conditionals and parallel

processing.

(3) help the students understand how the devices work

(4) familarise the students with components which are commonly used

in control devices: DC-motor, stepping motor, button switch,

reed switch, reflective-opto switch and micro switch

5.5.1 Design principles

The principles for designing the collection of control devices

were:

(1) the devices should interest the students.

(2) the purposes and functions of the devices should be apparent

to the students.

(3) the students should be able to do interesting applications

with the devices without having to get over many initial

hurdles

(4) the devices should provide scope for project ideas. Individual

students should be able to try out ideas up to their own level

of competence.

(5) the devices should form a coherent set, starting from simple

- 121 -

to more elaborate ones, and they should cover a wide range of

applications and control concepts.

Principles (1) to (3) were concerned with motivation.

Principles (4) and (5) were concerned with the content of the course.

Something which is enjoyable and interesting does not necessarily

have educational value, so attention was given to the range of

devices and the programming tasks covered by the course.

5.5.2 Course content

The content of the course is based on six projects. The

description of each project includes

(1) the objectives of the project.

(2) a series of programming activities

(3) the control and related computing concepts in each of the

activities.

122 -

5.5.2.1 Windmill

students to the ideas of sending signals,

controlling motors and responding to signals.

Activity- Control concept CLogo command

Use direct commands to
make the windmill turn
in different directions.

controlling a motor;
sending signals SWITCH command

Use direct commands to
make the computer detect
signals from a button-
switch.

receiving signals RECEIVER command

Use direct commands to
make the computer detect
signals continuously.

continuous monitoring RECEIVER command;
FOREVER command

Make the computer detect
signals from three
button-switches

continuously so that
the windmill will turn

clockwise, turn anti¬
clockwise or s top
depending on which of
the button-switch was

pressed most recently.

relating input and
output

SWITCH command;
RECEIVER command;
IF command;
FOREVER command

Figure 5.5 Windmill project

Objective:

To introduce the

detecting signals,

- 123 "

5.5.2.2 Turtle

Objecti ve

To introduce the students to the ideas of coordinating the

movement of two motors and controlling the speed of motors.

Activity- Control Concept CLogo command &
computing concepts

Define procedures
FORWARD, BACKWARD,
LEFT and RIGHT

Co-ordinating two
motors

SWITCH command

Define procedure
SWITCH-CONTROL so that
the turtle may be
controlled to move in
different directions

simply by pressing
button-swi tches.

application of signal
detection: control
box

IF command;
FOREVER command

Extend the SWITCH-
CONTROL so that the

speed of the turtle
may be altered.

pulsing REPEAT command;
variable

Figure 5.6 Turtle I project

- 124 -

5.5.2.3 Lift

Objective

To introduce the ideas of current state of a device, list

processing parallel processing and inter-process communication.

Activity- Control concepts CLogo command &
computing concepts

Use direct commands to
make the lift move

to different floors.

SWITCH n ONUNTIL

Define procedure GOTO
so that the command
GOTO :N will make the
the lift move to the
Nth floor.

current position;
controlling a motor

IF command;
variable;
procedure with input

Define procedure
SWITCH-CONTROL so that
the lift may be
controlled to move to
different floors simply
by pressing button-
switches.

application of
signal detection:
control box

IF command;
FOREVER command

Improve SWITCH-CONTROL
so that while the lift
is moving, signals
should still be

detected, recorded and
processed in due course

scheduling;
synchroni zation

list processing;
parallel processing

Figure 5.7 Lift project

- 125 -

5.5.2.H Doll's house

Objective

To show how a computer controlled security system works. To

reinforce many of the concepts that the students would have

learned from previous work.

Activity Control concepts CLogo command &
computing concepts

Define procedure WINDOW
so that when a window

is being opened warning
signals are given.

application of signal
detection: burglar
alarm system

IF command;
FOREVER command

Define procedure DOOR
so that the computer
acts like a door

keeper. Whenever the
door bell is pressed
the computer asks
for a secret word
or sentence. If the
answer is correct the
door slides open,
otherwise the door

remains closed.

application of signal
detection:

position sensing;
door keeper;
password

ASK command;
list processing

Define procedure
HOUSE so that both
of the above ideas
are ccmbined in one

program.

parallel processing

Figure 5.8 Doll's house project

- 126 -

5.5.2.5 Turtle with optical sensors (Turtle II)

Objective

To introduce the use of stepping motors and the idea of feedback.

Activi ty Control concepts CLogo command &
ccmputing concepts

Make procedures
FORWARD, BACKWARD,
LEFT and RIGHT.

co-ordinating
two motors

MOTOR commands;
parallel processing

Define procedure
WALK so that the turtle
will follow a track.

following a
path in a set fashion

Define procedure TRACK
so that the turtle will
follow a track making
use of feedback
information.

application of signal
detection: feedback

FOREVER command;
IF command

Define procedures that
would make the turtle

recognise binary coded
patterns.

application of signal
detection: pattern
recognition

binary codes;
IF command

Figure 5.9 Turtle II project

- 127 -

5.5.2.6 Robot arm

Objecti ve

To introduce different methods of programming a robot, and the

ideas of object collision, absolute position, and relative

position.

Activity Control concepts CLogo command &
computing concepts

Operate the arm using
single key-presses.

robot movements

Teach the arm a

sequence of actions
and then replay it.

programming robot
through teaching;
object collision

Program the robot arm
using MOTOR commands
directly.

absolute position;
relative position;

MOTOR commands;
representing an arm
position as a list
of numbers

Figure 5.10 Robot arm project

5.5.3 Teaching method

As explained in Chapter 1 and 3» a structured framework was

adopted for teaching control applications since it was felt that this

would help the students to acquire a common vocabulary and set of

concepts very quickly and would initiate them into thinking about

different kinds of strategy for controlling a device.

For every project the author gave an introduction and some

demonstrations to the students. The central classroom activity was

the students programming the computers. Worksheets with a series of

suggested programming tasks were provided for the students and they

received help from the author whenever they asked. The author also

- 128 -

took the initiative and had discussions with the students

individually and helped them correct programming errors.

5.5.4 Timetable

The fourth year group had seventeen sessions; the third year

group had twenty four sessions (see figures 5.11 and 5.12).

- 129 -

Session 1 - 2 Session 3 ~ 4

Device: Windmill
Worksheet: 1 - 4
Topic: SWITCH command;

RECEIVER command;
DC motor; IF command.

Device: Turtle I
Worksheet: 5-6
Topic: Procedure;

Turtle.

Session 5

Device:
Worksheet: 7 - 8
Topic: Arithmetic; variable; list.

Session 6-9 (Two devices in parallel)

Device: Lift
Worksheet: 9
Topic: Lift

Device: Doll's house
Worksheet: 10

Topic: Computer controlled
security system.

Session 10

Intermediate progress survey

Session 11-16 (Two devices in parallel)

Device: Turtle II
Worksheet: 11-13
Topic: Stepping motor;

Reflective opto-
switch; Binary code.

Device: Robot arm

Worksheet: 14-16
Topic: A teaching program

for the robot arm;
How the arm works.

Session 17

Final survey and test.

Figure 5.11 Fourth year group time table

- 130 -

Session 1 - 2

Device: Windmill
Worksheet: 1 - 4

Topic: SWITCH command;
RECEIVER command;
DC motor; IF command.

Session 3-4

Device: Turtle I
Worksheet: 5-6
Topic: Procedure;

Turtle.

Session 5-6

Device:
Worksheet: 7-8
Topic: Arithmetic; variable; list.

Session 7-11 (Two devices in parallel)

Device: Lift
Worksheet: 9
Topic: Lift

Device:Doll's house
Worksheet: 10

Topic: Computer controlled
security system.

Session 12

Inermediate progress survey

Session 13 ~ 22 (Two devices in parallel)

Device: Turtle II
Worksheet: 11 - 13
Topic: Stepping motor;

Reflective opto-
switch; Binary code.

Device: Robot arm

Worksheet: 14-16
Topic: A teaching program

for the robot arm;
How the arm works.

Session 23 ~ 24

Final survey and test.

Figure 5.12 Third year group time table

Note: after a few sessions, the arrangement of sharing one device

between two computers was found to be inconvenient. Therefore frcm

session 6 (fourth year group) and session 7 (third year group) two

different devices were introduced at once so that each computer had a

device dedicated to it.

- 131 "

5.6 Evaluation

In this study, the illuminative evaluation approach (Parlett and

Hamilton, 1977) was used. The approach is most suitable for studying

innovatory programs. Its objective 'is to provide a comprehensive

understanding of the complex reality (or realities) surrounding the

program: in short, to "illuminate". In his report, therefore, the

evaluator aims to sharpen discussion, disentangle complexities,

isolate the significant from the trivial, and to raise the level of

sophistication of debate.' The advantage of this approach over the

pre- post-tests method is that it does not require a large sample

size for the result to be valid. Furthermore, numerical results do

not provide all the kinds of information that are relevant to this

study, for example, information about why students make certain

mistakes and how they solve problems.

An illuminative evaluation is characterised by three overlapping

phases: observation, inquiry and explanation. 'The observation phase

occupies a central place in illuminative evaluation. The

investigator builds up a continuous record of ongoing events,

transactions and informal remarks. At the same time he seeks to

organize this data at source, adding interpretative comments on both

manifest and latent features of the situation.' (Parlett and

Hamilton, 1977). As the investigator becomes enlightened, he then

directs his inquiry more systematically and forms more focussed

questions. The final phase consists in finding general principles

underlying the program being studied and finding explanation for

certain observed trends.

- 132 -

This three-phase methodology was followed in the study. A

record of all the sessions was kept. The data were analysed to help

form focussed questions. Questionnaires and test were produced and

used to gather further information. Finally, general conclusions

were drawn.

During each session the following methods were used to collect

data:

(1) observation. The author closely observed what was going on in

the classroom, paying particular attention to the children's

approaches to problem solving, their reaction to the

computer's responses and their gradual familiarization with a

piece of control equipment.

(2) dribble file. The Concurrent'Logo system automatically

recorded all the commands issued to it on a dribble file. A

copy of the procedures defined by the children was also kept

on the disk.

(3) reflective questions. Questions like 'Why did you do it?' or

'Could you have done it in another way?' were asked to find

out the intentions of a student.

Throughout the study, four questionnaires and a test (Appendix

II) were designed and used. The first two questionnaires were for

finding some background information about the students. The third

questionnaire was an intermediate progress survey. It was used at the

beginning of the second term. The fourth questionnaire was the final

progress survey. The last questionnaire and the test were filled in

by the students at the end of the course.

- 133 -

Questionnaires and test, instead of semi-structured interviews,

were used because they were easier to conduct and to a certain extent

guarded against the prejudice of the evaluator. Questionnaires and

test provide a less sensitive measure of result but it was

supplemented by detailed analysis of the students' work.

The outcome of the evaluation is in two parts. The first is a

formative assessment of the work done by the students. It identifies

what the students were capable of doing, the difficulties they faced

and the differences within their work. The second is a general

assessment of the study. It assesses the students' attitude towards

the course, the students' achievement from the course and

Concurrent-Logo.

- 134 -

CHAPTER 6

LEARNING CONTROL APPLICATIONS THROUGH PROGRAMMING

This chapter describes the work done by four of the students

during the pilot study. The four students, two from the third year

and two from the fourth year, are of varying abilities. Their work

is fairly representative of the work done by all the students.

Section one provides some information on the four students.

Section two summarises the work done by them and describes the

difficulties that they faced. Sections three to eight give details

of their work. The description is divided into projects and is in

the order in which they were presented to the students. For each

project, the description concentrates on:

(1) the variation in the students' work

(2) the difficulties that they faced

(3) how they solved the problems.

This chapter ends with a summary of the benefits and limitations

of learning control applications through programming and identifies

the practical problems of managing a course involving lots of

equipment.

6.1 The students

None of the students had any previous experience of programming

control devices.

Nigel is a fourth year student. He is very intelligent. His

teacher rated him as well above average. He had a lot of programming

experience in BASIC. He was very enthusiastic throughout the course.

- 135 -

In all the projects he was able to do more than any other student.

Heath is a fourth year student. His teacher rated him as a

below average student. He had no computing experience prior to the

course but he has a strong interest in computing. He is dominant in

character. During the course he made most of the decisions for

himself and for his partner, though his partner was a more able

student. He had difficulties in getting started on a problem. He

had to be told very carefully what was required of him.

Michael is a third year student. He had no computing

experience. However, he is very intelligent and very keen to learn.

He learned how to solve difficult problems very quickly.

Gary is a third year student. He is of average ability. He is

the problem student of the four. He had an inflated assessment of his

ability. Although he showed a poor understanding of his work, he

always thought that the projects were easy. Hence, very often he

needed to be persuaded to try them.

6.2 An overview

6.2.1 Understanding and appreciating problems

Nigel and Michael, the able students, had no difficulties in

understanding and appreciating any of the problems posed to them.

They readily accepted the challenge to solve the problems. Nigel

deliberately skipped several parts that he genuinely found too easy,

however.

Heath and Gary, the less able and average students, were easily

put off by difficult problems. There are several reasons why they did

- 136 -

not want to try anything difficult:

(1) they were content if they could just make a device move.

(2) they did not care how clumsy a method was, as long as it met

the end.

(3) they did not appreciate the difference between apparently

similar problems and hence did not see why different solutions

needed to be found to meet similar ends.

The first two reasons are related to attitude. Gary and Heath

cared very little about quality or style; their main concern was to

produce a desired effect. The third reason, however, is due to a

limited understanding of automation. Gary's excuse points

particularly to the third reason. The recurring excuse that he gave

for not attempting a problem was: 'I can do that already, why find

another way of doing it!' For example, after he had used direct

commands to manipulate the windmill he did not appreciate why he

should write a procedure for it. Other examples are: he did not want

to write a GOTO procedure for the lift because he could use direct

commands to make the lift go to different floors; he did not want to

write a responsive procedure for turtle II because he had written a

set procedure to walk the track; he did not want to write procedures

to drive the robot arm because he could use the provided procedures

to manipulate the arm.

When Heath found a problem difficult, instead of persisting, he

would avoid it. He left out parts of the lift project, the Turtle II

project and the robot project.

The author used different strategies with Heath and Gary. When

Heath avoided a problem the author just let him carry on doing

- 137 -

something which he felt comfortable with. Because he was quite a

motivated person this strategy worked very well in practice. It

helped him to consolidate what he had already learned and helped him

to build up his confidence.

Gary was less motivated and easily distracted so when he made an

excuse for not attempting a problem the author would persuade him to

try it. Of all the attempts to help Gary, the most successful tactic

was to help him to appreciate the difference between a set procedure

and a responsive procedure for Turtle II.

The programming task was to write procedures to make the Turtle

follow a track. Gary wrote a procedure that would make the turtle

walk the track in a set fashion. The turtle had to start at a fixed

point, follow the same path and finish at another fixed point. When

he was asked to write a procedure that made use of feedback

information he refused because he did not see the point in writing

another procedure to make the turtle walk the same track. He had to

be persuaded that the responsive procedure is significantly different

from the one he had already defined. The author used the analogy of

training a blind man to follow a street. One way is to show"the

blind man exactly how many steps forward, then how much to turn and

then how many steps forward, and so on. With this method, the blind

man has to memorize every detail and then trace it out. If he has to

walk another street he has to go through the same process of learning

and remembering every step that he should take. Another way of

training the blind man is to teach him how to use a walking stick,

which is a much more flexible solution. After every few steps that

the blind man has taken he can use the walking stick to find out

- 138 -

whether he should carry on going forward or turn, and in which

direction to turn. After this explanation Gary could see the

difference and was willing to try.

6.2.2 Difficulties and errors

Some misconceptions that the students held and mistakes that

they made can be clearly identified through their programming

activities. This section gives an overview of these problems.

Details are given in later sections where the students' work is

described.

6.2.2.1 Controlling motors

To recap, a DC motor is controlled by two switches, one for

switching the motor on and off, the other for changing the motor's

direction of rotation. There is a total of four possible switch

states (see figure 4.1 in chapter 4).

Although it is simple, Gary had a lot of difficulties when

writing programs involved in controlling DC motors: making the

windmill turn in different directions; making the lift move up and

down; opening and closing the sliding door in the doll's house. He

knew that a motor is controlled by two switches but he showed no

awareness of their different functional purposes. The problem was at

its worst when programming Turtle I, which has two DC motors mounted

back to back. To make the turtle move in different directions he had

to coordinate the movement of both of the motors. With two motors

there are four switches and sixteen possible switch states. Instead

of studying how the SWITCH commands relate to the motors' movements

and how the motors' movement relate to the turtle, he just defined

- 139 -

the procedures FORWARD, BACKWARD, LEFT and RIGHT independently from

one another. The end result was that

FORWARD made the turtle turn left about the left wheel
BACKWARD made the turtle move forward
LEFT made the turtle move forward
RIGHT made the turtle move backward.

Another example is equally revealing. He was given the program

GOUP 'FLOOR;
@set direction switch so that the lift would move up
SWITCH 2! ON;
@switch the motor on until recached the specified floor
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER :FLOOR! STATE

for controlling the lift, which takes an integer as input and moves

the lift upward until it reaches the specified floor. When asked how

he would modify the program to make the lift move down, instead of

just setting SWITCH 2 to OFF, he gave the definition

GODOWN 'FLOOR;
SWITCH 1! ON;
SWITCH 2! ONUNTIL EQU? 'ON RECEIVER :FLOOR! STATE

It is clear that he knew he had to reverse 'something' to make

the lift move in the opposite direction but he could not identify it

as the state of the direction SWITCH that has to be changed.

Instead, he changed the number 1 to 2 and the number 2 to 1.

6.2.2.2 Pulsing

The problem is to program Turtle I to move at different speeds.

Only Nigel had enough time to try it. This problem showed up a

misconception that he held.

- 140 -

He thought that the speed of the turtle must be related to how

'busy' the computer was: the more work that the computer had to do

the slower the turtle would move and vice versa. To have some

control over the activities of the computer he used a repeat-loop.

His idea was that by varying the repeat factor, which would vary the

amount of time the computer spent executing the loop, the Turtle

would move at different speeds. However, it was clear that the speed

of the Turtle stayed constant. After some discussion with the author,

Nigel realised that once a DC motor is switched on it stays on and

rotates at a constant speed. The way to change its speed is by

switching it on and off and varying the delay time.

6.2.2.3 GOTO procedure

For all of the students, writing a procedure that takes a number

as input and moves the lift to the corresponding floor was

conceptually difficult. The problem lies in recognising and using

the concept of current-state. Consider the case of moving a lift to

the second floor. If the lift is currently at the first floor then

it should move up; if it is currently at the third floor then it

should move down. In other words, to move the lift to a particular

floor a decision has to made with regard to the direction in which

the lift should move. To make this decision the current position of

the lift has to be taken into account. When controlling the lift in

the direct mode the students made such decisions unconsciously.

However, to automate the process they had the difficulty of

identifying the steps which they themselves could execute

effortlessly.

- 141 -

6.2.2.4 Following a track

The students were asked to write procedures for Turtle II to

follow two tracks. The shapes of the tracks are shown in figure 6.1.

A track is a black line, as wide as a turtle, painted on a white card

board. When a turtle is directly on top of a track both reflective-

opto switches would send an ON signal to the computer.

- 142 -

Track II

Figure 6.1 Turtle tracks

- 143 -

The students started by writing procedures that directed the

turtle to follow a track in a set fashion. The turtle had to start at

a fixed point, follow the same path and finish at another fixed

point. Then they progressed to write responsive procedures, i.e.

procedures that made use of the feedback information from the

reflective-opto switches. They did not have much difficulty in

formulating the control algorithm for following Track I. It is simply

Forever (
1) forward a little
2) if left hand side is off the track turn right a little
3) if right hand side is off the track turn left a little
)

A typical turtle path is shown in figure 6.2 (Path I).

The students thought that the algorithm that they had derived

for Track I would be sufficiently general for all tracks, including

Track II. However, they were wrong. Using the same algorithm on

track II the turtle went off the track and was unable to find its way

back, illustrated in figure 6.2 (Path II).

- 144 -

Path I

Path II

Figure 6.2 Turtle paths
- 145 -

There are three aspects of the algorithm that had to be changed

or extended:

(1) it should test whether the turtle is completely off the track

(2) if the turtle is completely off the track it should move

backward onto the track before making any turn.

(3) the angle of rotation has to be increased to 90 degrees.

The students quickly realized that the angle of rotation had to

be increased. However, the other two changes required were much more

difficult to identify.

6.2.2.5 Pattern recognition

Another programming task for Turtle II was to define procedures

for recognising binary-coded patterns. A pattern is represented by

four bars. Each bar is either black or white. For example, the

patterns shown in figure 6.3 were used to represent the letters 'k'

and 'B'. Fifteen patterns were made up to represent the letters 'A'

to '0'. The author provided the students with a sample procedure,

CODE.A, which confirms whether a pattern represents the letter 'A'.

'A' 'B'

Figure 6.3 Binary patterns

- 146 -

The students were asked to modify the procedure to recognise

other letters. Heath did not find the solution obvious at all.

Although he could not understand the algorithm used in the given

program, he started by changing the parts which were obvious. To

modify CODE.A to recognise the letter 'B', he renamed CODE.A as

CODE.B and replaced the output messages [THE CODE IS 'A'] and [THE

CODE IS NOT 'A'] by [THE CODE IS 'B'] and [THE CODE IS NOT 'B']

respectively. Though his initial modification did not work properly

it gave him the interest and confidence to find out how the algorithm

works. After several modifications he was able to change the given

procedure to recognise the letters 'B' and "C".

Michael did not find the above programming task difficult but

had lots of difficulties in defining a procedure that could identify

any of the fifteen patterns. His idea was to build fifteen

procedures: CODE.A, CODE.B ... etc, to recognise all of the patterns

and then think of a way of combining the procedures. It seemed hard

work and he could not see how the procedures might be combined.

The author reminded him that the turtle need walk over the

pattern only once, therefore, the computer should remember the

pattern and then compare and decide which letter it represents. When

the recognition algorithm was pointed out, translating it into

program form was easy.

Recognising a simple pattern is an example of a task which a

student is able to do very naturally without being aware of how he

himself does it.

- 147 "

6.2.2.6 Teaching the robot arm

The students were given a set of procedures that allowed them to

manipulate the robot arm using single key-presses, to request the

computer to remember a sequence of arm positions, and to replay a

movement.

The students did not have many problems in operating the arm.

However, they all made a common mistake when teaching the arm to

remember a sequence of movements. They did not identify all of the

important arm positions that need to be remembered.

As an example, consider teaching the arm to pick up a block. A

student would manipulate the arm, using the provided primitives. In

the process the computer needs to be told to remember certain arm

positions in order that the action can be replayed successfully.

Figure 6.4 shows the initial position of the arm and the arm

positions that must be remembered in the correct order.

- 148 -

Position 1

Position 2

Position 3

Figure 6.4 Sequence of robot arm positions (I)
- 149 -

When the students first programmed the robot arm they all missed

out position 2. As a result, when the computer was asked to replay

the action the arm moved directly from position 1 to 3. When the arm

reached the block its fingers were already closed, so the arm knocked

the block over instead of picked it up.

6.2.3 Summary of students' activities

The following tables summarise the work done by each of the four

students during the course.

Keys to the tables

'/' means completed
'X' means tried but not completed

means not tried

The number beneath each student's name is the number of minutes that

he spent on the device.

Nigel Heath Michael Gary
(35) (35) (35) (35)

Detecting signals / / 1 / 1 /

Sending signals / / 1 / 1 /

Relating input & output | / / 1
'

/ 1 /

The windmill

- 150 -

Nigel
(50)

Heath

(50)
Michael

(50)
Gary
(50)

Basic procesures / / / x

Procedure SWITCH-CONTROL / / / /

Puulsing / "

The turtle

Note: the basic procedures are FORWARD, BACKWARD, LEFT and RIGHT.

Nigel
(40)

Heath

(50)
Michael

(60)
Gary
(60)

Predefined procedures &
direct commands / / / /

Procedure GOTO / " / x

Procedure SWITCH-CONTROL / / / /

Scheduling / - " "

The lift

. .

Nigel
(40)

Heath

(50)
Michael

(60)
Gary
(60)

Procedure WINDOW / / / /

Procedure PASSWORD / / / /

Procedure DOOR / / /

Procedure HOUSE / / / /

The security system

- 151 -

Nigel Heath Michael Gary
(75) (85) (100) (125)

Basic procedures / / / /

Procedure WALK - / / /

Procedure TRACK (I) / - / /

Procedure TRACK (II) / - / -

Procedure PATTERN (I) - / / -

Procedure PATTERN (II) / — / -

Turtle II

Nigel
(75)

Heath

(85)
Michael

(125)
Gary
(125)

Operating / / / /

Teaching / / / /

Programming / - " "

Robot arm

6.3 Windmill

The windmill (see figure 2.2 in chapter 2) has one DC motor for

spinning the sails. The motor was connected to SWITCHes 1 and 2.

SWITCH 1 was the direction switch and SWITCH 2 was the power switch.

The objective of the project is to introduce the ideas of

sending signals, detecting signals, controlling motors and responding

to signals. Because the device is very simple there was not much

variation among the students' work.

- 152 -

6.3.1 Sending signals

The students were introduced to the SWITCH commands. They were

asked to experiment with changing the states of SWITCHes 1 and 2.

They typed in commands to turn the SWITCHes on and off. There were

expressions of satisfaction when the windmill turned. Later, they

were also encouraged to experiment with SWITCHes other than 1 and 2.

After a few commands, it was clear to them that turning on or off a

SWITCH which had nothing connected to it had no effects.

6.3.2 Detecting signals

They were then introduced to the RECEIVER commands. A push¬

button switch was connected to RECEIVER 1. They were asked to detect

whether the switch was pressed. They did this by using the command

PRINT RECEIVER 1! STATE.

The FOREVER command was also taught so that the state of a RECEIVER

might be continuously monitored:

FOREVER (PRINT RECEIVER 1! STATE).

The students had great fun in pressing and releasing the switch and

seeing the words ON and OFF printed on the screen accordingly. They

had no problems in understanding the FOREVER and RECEIVER commands.

They were then encouraged to detect the states of RECEIVERS

which had nothing connected to them. Again, it was clear to them

that a RECEIVER would change state only if an input device was

connected to it.

- 153 -

6.3.3 Relating input and output

Two additional push-button switches were connected to RECEIVERS

2 and 3. The idea was to make the computer detect signals from the

RECEIVERS so that whenever:

(1) push-button switch 1 is pressed the windmill turns clockwise

(2) push-button switch 2 is pressed the windmill turns

anticlockwise

(3) push-button switch 3 is pressed the windmill stops.

The IF command was an essential part of this project. Because

the IF command is quite complicated, both syntactically and

conceptually, a worksheet was produced. There was no resistance to

the idea of following a worksheet.

By the end of the second session they all had come up with the

correct sequence of commands:

FOREVER(
IF EQU? 'ON RECEIVER 1! STATE (SWITCH 1! ON; SWITCH 2! ON);
IF EQU? 'ON RECEIVER 2! STATE (SWITCH I! OFF; SWITCH 2! ON);
IF EQU? 'ON RECEIVER 3! STATE (SWITCH 2! OFF)

)

The windmill project was a simple and effective way of helping

the students to

(1) understand the SWITCH, RECEIVER, FOREVER and IF commands

(2) appreciate the concept of sending and receiving signals

(3) appreciate that the computer can be used to control an

external device

At the end of this project Nigel asked to be taught the editing

facility in Concurrent-Logo, because it was very tedious and error-

- 154 -

prone to type in a long sequence of commands again and again. A

worksheet was then prepared for introducing the students to the

concept of procedures and the window editor.

6.4 Turtle I

The turtle (see figure 4.2 in chapter 4) has two DC motors

mounted back to back on it. The right motor drives the right wheel

and the left motor drives the left wheel. Figure 6.5 shows the

motors' connections.

Component Concurrent-Logo object

DC motor (part 1) SWITCH 1 (direction)
SWITCH 2 (on/off)

DC motor (part 2) SWITCH 3 (direction)
SWITCH 4 (on/off)

Figure 6.5 Turtle I connection

The objective of the project was to introduce the ideas of

coordinating the movement of two motors and controlling their speed.

6.4.1 FORWARD, BACKWARD, LEFT and RIGHT

Elimination: effective use of trial and error

Nigel showed considerable ability in identifying the relevant

information to solve this task. He was the only student who

spontaneously experimented with the turtle using direct commands

before attempting to define the procedures. He systematically

changed the states of the SWITCHes and tabulated the resulting

- 155 -

movement of the turtle. With that information he defined the

procedures correctly at the first attempt.

The commands in his procedures were organised in an interesting

way. In his first procedure, FORWARD, the sequence of SWITCH

commands was in the ascending order of the SWITCH index numbers:

FORWARD;
SWITCH 1! ON; SWITCH 2! ON; SWITCH 3! OFF; SWITCH 4! ON

In his subsequent procedures the order of the SWITCH commands was

changed

BACKWARD;
SWITCH 1! OFF; SWITCH 3! ON; SWITCH 2! ON; SWITCH 4! ON

LEFT;
SWITCH 1! ON; SWITCH 3! ON; SWITCH 2! ON; SWITCH 4! ON

RIGHT;
SWITCH 1! OFF; SWITCH 3! OFF; SWITCH 2! ON; SWITCH 4! ON

The author asked him why he had done that. He explained that this

would set up correctly the motors' directions of rotation prior to

making them move. He was clearly aware of the different functional

purposes of the SWITCHes, i.e. SWITCHes 1 and 3 were used as

direction switches, and SWITCHes 2 and 4 were used as on/off

switches.

Michael also grouped the SWITCH commands according to their

functional purposes. The difference between his procedures and

Nigel's was that the motors were switched on before setting their

direction of rotation. For example the definition of BACKWARD was

BACKWARD;
SWITCH 2! ON; SWITCH 4! ON; SWITCH 3! OFF; SWITCH 1! OFF

- 156 -

This definition has the disadvantage of making the turtle move in an

undefined direction for a moment, depending on the states of SWITCHes

3 and 4 when the procedure is called. However, in practice the

effect was not noticeable. Since Michael was fully aware of the

different functional purposes of the SWITCHes he had no problem in

defining the procedures.

The students were also asked to write a SWITCH-CONTROL

procedure. Five button-switches were connected to RECEIVER 1 to

RECEIVER 5. The purpose is that whenever

(1) switch 1 is pressed the turtle moves forward

(2) switch 2 is pressed the turtle moves backward

(3) switch 3 is pressed the turtle moves right

(4) switch 4 is pressed the turtle moves left

(5) switch 5 is pressed the turtle stops moving.

Both Nigel and Michael found this problem very easy and came up

with the correct program:

SWITCH-CONTROL;
FOREVER (

IF EQU? RECEIVER 1! STATE 'ON (FORWARD);
IF EQU? RECEIVER 2! STATE 'ON (BACK);
IF EQU? RECEIVER 3! STATE 'ON (RIGHT); .

IF EQU? RECEIVER 4! STATE 'ON (LEFT);
IF EQU? RECEIVER 5! STATE 'ON (STOP)

)

Gary had a lot of difficulties in defining the four basic

procedures. He defined FORWARD as

FORWARD;
SWITCH 1! ON; SWITCH 2! ON; SWITCH 3! ON; SWITCH 4! OFF

which had the left motor turned off. Instead of correcting FORWARD,

- 157 -

he went on to define BACKWARD, LEFT and RIGHT. He defined each of

the procedures independently, without considering the relationship of

all of the procedures. His procedure BACKWARD made the turtle move

forward; LEFT made the turtle move forward; RIGHT made the turtle

move backward.

Gary's SWITCH-CONTROL was defined correctly but its sub-

procedures were not.

A subtle bug

The first procedure that Heath defined was

FORWARD;
SWITCH 1! ON; SWITCH 2! ON; SWITCH 4! ON

He deliberately left out the command SWITCH 3! OFF, which sets the

direction of rotation for the left motor. The procedure worked

because the initial state of SWITCH 3 was off. However, it was wrong

to assume that the state of SWITCH 3 would be always OFF. The bug

manifested itself when Heath was testing his SWITCH-CONTROL

procedure. Although the definition of SWITCH-CONTROL was correct,

the procedure did not work properly. Since FORWARD did not

explicitly set SWITCH 3 to OFF, when button 1 was pressed the turtle

sometimes moved forward and sometimes rotated left instead.

Heath redefined SWITCH-CONTROL twice and it still did not work.

The author advised him to identify the particular case when SWITCH-

CONTROL did not work. He then realized the bug might have been in

FORWARD instead of SWITCH-CONTROL. After he had included the command

SWITCH 3! OFF in FORWARD, everything worked properly.

- 158 -

Turning about one wheel vs Turning on the spot

Another interesting variation is the way that Heath initially

defined the procedure LEFT:

LEFT;
@rotate right wheel in the forward direction
SWITCH 1! ON; SWITCH 2! ON;
@left wheel stationary
SWITCH 4! OFF

The author asked him whether he thought the procedure would work. He

confidently said, 'Yes!' When he ran the procedure, indeed the turtle

did turn left. With the left motor turned off the turtle rotated left

about its left wheel. Then the author asked if there were other ways

of making the turtle turn left. Heath did not think so. The author

showed him that the turtle could also turn left about its centre.

Heath exclaimed, 'This is turning on the spot!' The author explained

that it was turning left on the spot and the turtle could also turn

right on the spot. Heath re-defined LEFT and then defined RIGHT to

make the turtle turn left and right on the spot respectively.

6.4.3 Pulsing

Only Nigel had time to modify the SWITCH-CONTROL program to make

the turtle move at different speeds. In this extension he used two

additional button-switches. One was connected to RECEIVER 6. It was

for sending signals to decrease the speed of the turtle, referred to

below as decrease-speed switch. The other was connected to RECEIVER

7. It was for sending signals to increase the speed of the turtle,

referred to as increase-speed switch.

- 159 -

As described in section 6.2.2, Nigel thought that the speed of

the turtle was related to how 'busy' the computer was. He introduced

a repeat-loop in his program. The number of times that the loop is

executed is determined by the value of a variable 'X. Whenever the

decrease-speed switch was pressed the value of 'X would be

incremented by one, so that the computer would spend more time in

processing the loop, and whenever the increase-speed switch was

pressed the value of 'X would be decremented by one. The loop was a

means of controlling the computer's processing activities.

The definition of the procedure is

SPEED;
MAKE 'X 10;
F0REVER(

IF EQU? RECEIVER 6! STATE 'ON (MAKE 'X ADD :X 1);
IF EQU? RECEIVER 7! STATE 'ON (MAKE 'X SUB :X 1);
SWITCH-CONTROL

SWITCH-CONTROL;
IF EQU? RECEIVER 1! STATE 'ON (FORWARD);
IF EQU? RECEIVER 2! STATE 'ON (BACK);
IF EQU? RECEIVER 3! STATE 'ON (RIGHT);
IF EQU? RECEIVER 4! STATE 'ON (LEFT);
IF EQU? RECEIVER 5! STATE 'ON (STOP);
REPEAT :X ();

When Nigel tried the program, the turtle moved at exactly the same

speed as before. It did not respond when either the increase-speed

switch or the decrease-speed switch was pressed. However, the

response time between pressing a switch and the turtle changing its

direction of movement had increased.

After some discussion with the author, Nigel concluded that

(1) the more activities that the computer has to attend to the

- 160 -

slower is the response time and vice versa,

(2) the computer's response time does not affect the speed of a DC

motor.

Nigel then focused his attention on slowing down the motors and

formulated the idea of pulsing - switching the motors on and off.

He kept SPEED the same and modified SWITCH-CONTROL to

SWITCH-CONTROL;
IF EQU? RECEIVER 1! STATE 'ON (FORWARD);
IF EQU? RECEIVER 2! STATE 'ON (BACK);
IF EQU? RECEIVER 3! STATE 'ON (RIGHT);
IF EQU? RECEIVER 4! STATE 'ON (LEFT);
IF EQU? RECEIVER 5! STATE 'ON (STOP);
REPEAT :X (SWITCH 2! OFF; SWITCH 4! OFF);
SWITCH 2! ON; SWITCH 4! ON

The final program was a success in the sense that he could

the turtle's speed. On the other hand, he had introduced a

the program: even if the turtle was stopped, by pressing

switch 5, it would always start moving again voluntarily,

two commands in SWITCH-CONTROL always switch the motors on.

6.5 Lift

The lift (see figure 4.4 in chapter 4) has one DC motor and

three reed switches. The motor drives the lift cage up and down. The

reed switches detect whether the lift cage is at a particular floor.

Figure 6.6 shows these components' connections.

control

bug into

button-

The last

- 161 -

Component Concurrent-Logo object

Reed switch (part 1)
(part 2)
(part 3)

RECEIVER 1

RECEIVER 2
RECEIVER 3

DC motor (part 4) | SWITCH 1 (on/off)
SWITCH 2 (direction)

Figure 6.6 Lift connection

The objective of the project was to introduce the ideas

concerning the current state of a device. For advanced students the

ideas of parallel processing and inter-process communication could

also be taught.

6.5.1 Making the lift move

The author defined an object LIFT in Concurrent-Logo. It can

respond to three commands: READY, UPANDDOWN and MOVETO. The idea of

these commands was to help the students to become familiar with the

lift and encourage them to find out how it works. READY moves the

lift cage to the first floor and initialises a variable to the value

1. UPANDDOWN moves the lift to the top (third) floor and down to the

first floor again. MOVETO takes a number as input and moves the lift

to the specified floor. If the number is not between one and three

nothing is done.

Michael was quite inventive. He used REPEAT loops to simulate

the time that a lift spent waiting at a floor.

- 162 -

He defined a procedure LIFT as

LIFT;
LIFT! MOVETO 2; REPEAT 1000 (PRINT [HURRY UP]);
LIFT! MOVETO 1; REPEAT 100 (PRINT [QUICKLY]);
LIFT! MOVETO 3; REPEAT 100 (PRINT [RUN]);
LIFT! MOVETO 1

Michael could obviously relate the model lift to lifts that he was

familiar with.

After the students had spent about ten minutes playing with the

provided procedures they were asked to operate the lift using SWITCH

commands directly. They were also taught the command

SWITCH N! ONUNTIL <condition>

An example of its use is

@set direction switch to move lift up
SWITCH 2! ON

@start lift moving until it reaches the third floor
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER 3! STATE

After the students had operated the lift using direct commands they

all made comments such as, 'Now I know how a lift works.'

6.5.2 GOTO and SWITCH-CONTROL

The next part of the project was to make the computer detect

signals from three button switches so that whenever

(1) button switch 1 (connected to RECEIVER 4) was pressed the lift

moved to the first floor.

(2) button switch 2 (connected to RECEIVER 5) was pressed the lift

moved to the second floor.

(3) button switch 3 (connected to RECEIVER 6) was pressed the lift

- 163 -

moved to the third floor.

The students found this problem very difficult. Only Nigel was able

to complete it without help.

Isolation: isolate difficulties

Instead of defining a GOTO procedure that takes a number as

input, Nigel defined three separate procedures G0T01, G0T02 and

G0T03. He realised that to make the lift move to the bottom floor

the lift should move downward, and to make the lift move to the top

floor the lift should move upward. The difficulty is to make the lift

move to the second floor. Nigel thought that splitting a general

procedure into three more specific ones would help him to concentrate

on solving the particular problem.

He defined GOTOl and G0T03 correctly at the first attempt:

G0T01;
@set direction switch to move lift down
SWITCH 2! OFF;
@move the lift to the first floor
SWITCH 1! ONUNTIL EQU? RECEIVER 1! STATE 'ON;
@remember the lift is at first floor
MAKE 'LOCATION 1

G0T03;
@set direction switch to move lift up
SWITCH 2! ON;
@move the lift to the third floor
SWITCH 1! ONUNTIL EQU? RECEIVER 3! STATE 'ON;
@remember the lift is at third floor
MAKE 'LOCATION 3

However, it took him several tries to work out exactly how to define

G0T02:

- 164 -

G0T02;
@if the lift is at the top floor, set the lift to move down
IF EQU? :LOCATION 3 (SWITCH 2! OFF);
@if the lift is at the bottom floor set the lift to move up
IF EQU? :LOCATION 1 (SWITCH 2! ON);
@move the lift to the second floor
SWITCH 1! ONUNTIL EQU? RECEIVER 2! STATE 'ON;
@reraember the lift is at the second floor
MAKE 'LOCATION 2

With the three GOTO procedures, Nigel easily re-defined SWITCH-

CONTROL as

SWITCH-CONTROL
@Initialisation:
@move the lift to the first floor
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? RECEIVER 1! STATE 'ON;
@ remember the lift is at the first floor
MAKE 'LOCATION 1;
@main control loop

1 (GOTOl));
2 (G0T02));
3 (G0T03))

IF EQU? RECEIVER 4! STATE
IF EQU? RECEIVER 5! STATE
IF EQU? RECEIVER 6! STATE

'ON (IF NOT EQU? :LOCATION
'ON (IF NOT EQU? :LOCATION
'ON (IF NOT EQU? :LOCATION

Teacher's guidance

Michael was not sure how to approach the GOTO procedure. The

author helped him by asking him to define two simpler procedures that

would help him to appreciate where the difficulties lie. The

procedures are GOUP and GODOWN.

GOUP 'N;
SWITCH 2! ON;
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER :N! STATE

GODOWN 'N
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? 'ON RECEIVER :N! STATE

GOUP takes a number as input and moves the lift upward until it

reaches the specified floor; GODOWN takes a number as input and moves

- 165 -

the lift downward until it reaches the specified floor.

The author then helped him to explore these two procedures.

Starting with the lift at the first floor, the author asked him to

make the lift move to the second floor. He typed 'GOUP 2' and

pressed RETURN. When the lift stopped at the second floor the author

then asked him to make the lift move to the third floor, he typed

'GOUP 3' and pressed RETURN. When the lift stopped at the third

floor, the author asked Michael if he would type GOUP 2 to make the

lift move to the second floor. He said, 'No.' Michael typed GODOWN 2

and pressed RETURN. The author then asked Michael to make the lift

move to the first floor. Michael typed GODOWN 1 and pressed RETURN.

When the lift stopped at the first floor, the author asked Michael if

he would type GODOWN 2 to make the lift move to the second floor. He

said, 'No' and it suddenly dawned on him how to define the procedure

GOTO. The procedure is

GOTO 'N;
IF LESS? :N :CURRENT (GODOWN :N);
IF GRE? :N :CURRENT (GOUP :N);
MAKE 'CURRENT :N

Once the GOTO procedure was defined he had no problem in defining

SWITCH-CONTROL.

Gary also had trouble in defining GOTO. The author used the

same strategy that he had used to help Michael. Because Gary has

difficulties with DC motors, he could not even define GOUP. So, the

author defined GOUP for him and asked him to modify it for GODOWN. As

described in section 6.2.2, Gary knew that GODOWN is opposite to

GOUP. But, instead of changing the motor's direction of rotation by

switching SWITCH 2 off, he replaced the number 2 by 1 and 1 by 2:

- 166 -

GODOWN 'FLOOR;
SWITCH 1! ON;
SWITCH 2! ONUNTIL EQU? 'ON RECEIVER :FLOOR! STATE

He had to redefine GODOWN five times before he could get it right.

He did not have enough time to carry on the project further.

Heath avoided the problem and took a familiar path. He defined

SWITCH-CONTROL such that whenever

(1) switch 1 is pressed the lift moves upward

(2) switch 2 is pressed the lift moves downward

(3) switch 3 is pressed the lift stops moving.

Heath also defined a procedure that made the lift move to the

third floor then down to the first and up to the second.

LIFT;
SWITCH 2! ON;
SWITCH 1! ONUNTIL EQU? RECEIVER 3! STATE 'ON;
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? RECEIVER 1! STATE 'ON;
SWITCH 2! ON;
SWITCH 1! ONUNTIL EQU? RECEIVER 2! STATE 'ON

Although he knew how to make the lift move up and down and how to

detect whether the lift had reached a particular floor, he was not

able to specify the GOTO algorithm.

6.5.3 Scheduling

The next extension was to improve on the SWITCH-CONTROL

procedure so that it would not ignore signals from the button

switches while the lift was moving from one floor to another. Only

Nigel had time to do this part of the project.

- 167 -

The author asked him how the problem might be solved. Nigel

recognised that the procedure needed to be changed so that it

switched back and forth between detecting whether the lift had

arrived at the specified floor and detecting signals from the button

switches. He was unwilling to implement the change because the

control flow of the procedure would be very complicated. The author

suggested that the solution would be simpler if he had used parallel

processing.

The author spent some time teaching Nigel about running

procedures in parallel and explaining the multi-programming solution

to the lift problem. However, the two problems related to parallel

processing, mutual exclusion and synchronization, were not mentioned.

Nigel defined two new procedures

LIFT;
SWITCH // BUTTON

BUTTON;
MAKE 'LIST [];
FOREVER(

@if a signal from a switch is detected,
@put the request into a list
IF EQU? RECEIVER 4! STATE 'ON (MAKE 'LIST PUTL 1 :LIST);
IF EQU? RECEIVER 5! STATE 'ON (MAKE 'LIST PUTL 2 :LIST);
IF EQU? RECEIVER 6! STATE 'ON (MAKE 'LIST PUTL 3 :LIST)

)

and modified SWITCH-CONTROL to

- 168 -

SWITCH-CONTROL;
@Initialisation
@move the lift to the first floor
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? RECEIVER 1! STATE 'ON;
@remember the lift is at the first floor
MAKE 'LOCATION 1;
@main control loop
FOREVER(

@get the next request from a list
MAKE 'X FIRST :LIST;
@update the list
MAKE 'LIST REST :LIST;
@move the lift accordingly
IF EQU? :X 1 (IF NOT EQU? :LOCATION 1 (GOTOl));
IF EQU? :X 2 (IF NOT EQU? :LOCATION 2 (G0T02));
IF EQU? :X 3 (IF NOT EQU? :LOCATION 3 (G0T03))

)

When Nigel had completed these procedures he was very pleased

with the elegance of using parallel processing. Unfortunately his

procedures did not work properly because there was a subtle bug in

the first line of the FOREVER loop of SWITCH-CONTROL. It assumed

that the list of requests was never empty. It would have been a good

opportunity to discuss process synchronization with Nigel but there

was no more time for this project. Up to this point, only Nigel had

used parallel processing.

6.6 Doll's house

The doll's house (see figure 4.3 in chapter 4) has one DC motor

for opening and closing the sliding door, two reed switches for

detecting the closed and open positions of the door, four micro-

switches, one behind each window, and one button switch, used as a

door bell. Figure 6.7 shows these components' connections.

- 169 -

Component Concurrent-Logo object

Reed switches (part 1) RECEIVER 1

(part 2) RECEIVER 2

Micro switches (part 3) RECEIVER 3

(part 4) RECEIVER 4

(part 5) RECEIVER 5

(part 6) RECEIVER 6

Button switch (part 7) RECEIVER 7

DC motor (part 8) SWITCH 1 (on/off)
SWITCH 2 (direction)

Figure 6.7 Doll's house connection

The objective of the project was to introduce how a computer

could be used to protect a house against burglars, and to reinforce

many concepts that the students would have learned from previous

work.

6.6.1 WINDOW

The first task was to make the computer detect if burglars were

trying to break in through any of the windows. If any of the windows

was open, the computer should sound a continuous tone and print out a

message telling exactly which window was opened. While the computer

was sounding the alarm it should still be checking whether burglars

were trying to get in through other windows.

All the students started the problem by using direct commands to

confirm which RECEIVERS were used for detecting the states of the

different windows.

- 170 -

The procedures defined by Nigel and Michael were very similar

WINDOW;
FOREVER(

IF EQU? RECEIVER 3! STATE 'ON
(PRINT [BREAK IN AT TOP RIGHT WINDOW]; SOUND);

• • • • •

IF EQU? RECEIVER 6! STATE 'ON
(PRINT [BREAK IN AT BOTTOM LEFT WINDOW]; SOUND)

)

The only difference is that in Nigel's version four beeps, instead of

one, are made when a window is being broken into. They both wanted

to make the computer sound continuously and at the same time check

whether any other window was being opened. Nigel was not prompted to

use parallel processing. The solution that they both adopted was to

make the computer beep a small number of times whenever a window is

detected open.

Initially, Heath defined WINDOW as

WINDOW;
FOREVER(

IF EQU? 'ON RECEIVER 3! STATE
(PRINT [THIEF AT TOP RIGHT WINDOW]; FOREVER(SOUND))

)

and the procedure worked very well. He then extended it to detect

another window. The modified WINDOW was

WINDOW;
FOREVER(

IF EQU? 'ON RECEIVER 3! STATE
(PRINT [THIEF AT TOP RIGHT WINDOW]; FOREVER(SOUND))

);
FOREVER(

IF EQU? 'ON RECEIVER 4! STATE
(PRINT [THIEF AT BOTTOM RIGHT WINDOW]; FOREVER(SOUND))

)

The extended procedure still only worked for the top right window.

- 171 -

Heath made the mistake of not realising that the FOREVER command is

non-terminating, so that the second FOREVER command was never

executed. He found the program very difficult to debug and gave up.

In fact, all he needed to do was to replace the semicolon at the end

of the first FOREVER statement by '//' so that both commands would be

executed in parallel.

Gary's procedure was

WINDOW;
FOREVER(

IF EQU? 'ON RECEIVER 3! STATE (
PRINT

[SOMEONE IS TRYING TO BREAK IN THROUGH THE TOP RIGHT WINDOW];
FOREVER(SOUND)

);
• • • • •

IF EQU? 'ON RECEIVER 6! STATE (
PRINT

[SOMEONE IS TRYING TO BREAK IN THROUGH THE BOTTOM LEFT WINDOW];
FOREVER(SOUND)

)
)

The limitation of his procedure is that once the alarm was triggered

it would continue to beep but would not check whether another window

was being broken into.

6.6.2 DOOR

This part of the project was to make the computer be the door

keeper. Whenever the door bell was pressed the computer asked for a

secret word. If the answer typed in from the keyboard was correct

the door would slide open and then close automatically, otherwise the

door would remain closed.

Nigel approached the problem in a structured and gradual

fashion. He first wrote a procedure that asked for a password and

- 172 -

then checked whether it was correct. He then wrote a procedure that

opened and closed the sliding door. Finally he wrote a top level

control procedure that detected signals from the door bell. As a

result he had a very nice set of nested procedures:

DOORBELL;
FOREVER(IF EQU? RECEIVER 7! 'ON (PASSWORD))

PASSWORD;
MAKE 'X ASK [WHAT IS THE PASSWORD];
IF EQU? :X [NIGEL IS GREAT] (DOOR)

ELSE (PRINT [WRONG. ACCESS IS DENIED TO THE HOUSE])

DOOR;
IF EQU? RECEIVER 1! STATE 'ON (

@open the door
SWITCH 2! ON;
SWITCH 1! ONUNTIL EQU? RECEIVER 2! STATE 'ON;
@wait for a while
REPEAT 100 ();
@close the door
SWITCH 2! OFF;
SWITCH 1! ONUNTIL EQU? RECEIVER 1! STATE 'ON

)

Michael approached the problem in the same way as Nigel.

Heath first defined a procedure DOOR

DOOR;
MAKE 'ANSWER ASK [WHAT IS THE SECRET];
IF EQU? :ANSWER [PIG] (DOOROPEN)

which asks for a password and checks it. He also correctly defined a

procedure that opens and closes the sliding door:

DOOROPEN;
SWITCH 2!
SWITCH 1!
SWITCH 2!
SWITCH 1!

ON;
ONUNTIL

ON;
ONUNTIL

EQU? RECEIVER 2! STATE 'ON;

EQU? RECEIVER 1! STATE 'ON

- 173 -

He then completed the problem by extending DOOR so that it checked

whether the doorbell had been pressed.

Gary correctly defined the procedure that checked whether the

door bell had been pressed, but he had difficulty in defining a

procedure to control the sliding door. The author suggested to Gary

that he might write two separate procedures, called OPEN and CLOSE.

In defining OPEN he made guesses about what the SWITCH commands would

be. The author then defined OPEN for him

OPEN;
SWITCH 21 ON;
SWITCH 1! ONUNTIL EQU? RECEIVER 2! STATE 'ON

and asked him to modify it to make the door close. Gary still ran

into all kinds of problems and could not complete the procedure.

6.6.3 House

The final part of this project was to combine the procedures

that they had written so far so that the computer could detect

thieves coming in through the windows, yet act as doorkeeper at the

same time. Nigel quickly recognised the use of parallel processing

and defined a procedure

HOUSE;
WINDOW // DOORBELL

which worked well. The other students tried combining the procedures

sequentially but could not get them to work satisfactorily. The

multi-programming facility was introduced to all of the students at

that point. They greatly appreciated its use.

- 174 -

6.7 Turtle with opto-sensors (Turtle II)

This turtle (see figure 4.2 in chapter 4) differed from the

previous one. It was driven by stepping motors instead of DC motors.

It also had two reflective-opto switches fixed to its front. A

reflective-opto switch sent an ON signal to the computer when it was

above a black surface and an OFF signal when it was above a white

surface. Figure 6.8 shows the connection of these components.

Component Concurrent-Logo object

Stepping motor (part 1) MOTOR 1

(part 2) MOTOR 2

Reflective-opto switches
(part 3) RECEIVER 1

(part 4) RECEIVER 2

Figure 6.8 Turtle II connection

The objective of the project was to introduce the use of

stepping motors and the idea of feedback.

6.7.1 FORWARD, BACKWARD, LEFT and RIGHT

The first task was to write the basic procedures for the turtle.

The procedure

FORWARD 'X;
MOTOR 1! TURNC :X // MOTOR 2! TURNA :X

was given to the students. The procedure takes a number as input.

The input value specifies the number of steps that the turtle is to

be moved. When the procedure is called, the two commands run in

- 175 -

parallel, causing the motors to turn simultaneously. They were asked

to modify it to make BACKWARD, LEFT and RIGHT commands. This task is

considerably easier than writing the procedures for the previous

turtle; instead of thinking in terms of the SWITCHes operating the DC

motors, it is much easier to relate directly the movement of the

motors to the movement of the turtle. None of the students had any

difficulties in defining the procedures.

The students were also asked to experiment by replacing '//" by

in the procedure and observe the effect. Only Michael actually

tried it. He excitedly reported to the author that the turtle would

rotate right and then rotate left, instead of moving in a straight

line. When asked if he understood why, he explained clearly that the

motors were not commanded to turn simultaneously.

6.7.2 Set procedure

The next step was to define a procedure that would make the

turtle follow a track. The shape of the track is shown in figure 6.1

(Track I).

Heath, Michael and Gary started by writing procedures that

directed the turtle to follow the track in a set fashion. The turtle

had to start at a fixed point, follow the same path and finish at

another fixed point. It was a good exercise for them to estimate

angle and distance. It took them some time to get their procedures

correct.

Heath had the idea of defining a procedure that would make the

turtle move backward to the starting point. He thought all that he

had to do was to replace all the FORWARD commands by BACKWARD. The

- 176 -

modified procedure did not work. Heath could not work out what was

wrong and gave up. He did not realise that all the RIGHT commands

also had to be replaced by LEFT and vice versa. Furthermore, the

order of the commands had to be reversed, i.e. the first command of

the procedure had to become the last command, the second become the

second last, etc.

6.7.3 Responsive procedure

Heath did not attempt this problem.

6.7.3.1 Track I

Nigel and Michael had no problems in defining their procedures

that made use of the feedback signals from the reflective-opto

switches. Nigel's procedure

WALK;
FOREVER(

@if left side is off the track: turn right
IF EQU? RECEIVER 1! STATE 'OFF (RIGHT 20);
@if right side is off the track: turn left
IF EQU? RECEIVER 2! STATE 'OFF (LEFT 20);
@if on the track then go forward
IF ALL EQU? RECEIVER 1! STATE 'ON

EQU? RECEIVER 2! STATE 'ON (FORWARD 50)
)

could make the turtle follow the track both from point A to B and

from B to A.

Michael and others took up the author's suggestion of defining

two procedures, LEFT.OFF and RIGHT.OFF, for testing whether the

turtle's left side or right side was off the track. Michael's WALK

was very simple and worked satisfactorily.

- 177 -

WALK;
FOREVER(

FORWARD 20;
IF LEFT.OFF (RIGHT 20);
IF RIGHT.OFF (LEFT 20)

After Gary was persuaded to try he defined WALK as

WALK;
F0REVER(FORWARD 100;

IF LEFT.OFF (RIGHT 200);
IF RIGHT.OFF (LEFT 200)

)

The algorithm is correct, but the distance moved and the angle turned

by the turtle are too great. The turtle would move off the track and

be unable to find its way back again.

Gary corrected his procedure in two stages. He first realised

that the angle turned was too great, so he reduced the amount of

turning from 200 down to 100 and then down to 50. The result of the

procedure was still not satisfactory. Then Gary realised the

distance moved was too great. He reduced the forward distance to 50

units. His final procedure was

WALK;
F0REVER(

FORWARD 50;
IF LEFT.OFF (RIGHT 50);
IF RIGHT.OFF (LEFT 50)

6.7.3.2 Track II

After Nigel, Michael and Gary had completed their responsive

procedures they were shown another track, figure 6.1 (Track II).

Independently they all thought that their procedures could make the

- 178 -

turtle follow the new track. When they tried out their procedures,

no matter which end the turtle started from, it would go off the

track and be unable to find its way back.

Gary modified his procedure by increasing the units of rotation

to 90 degrees. He found that the procedure still did not work and he

gave up.

Michael modified his procedure in three steps

(1) by increasing the angle of rotation. He changed the original

program to:

TURTLE;
F0REVER(

FORWARD 20;
IF LEFT.OFF (RIGHT
IF RIGHT.OFF (LEFT

)

and then

TURTLE;
F0REVER(

FORWARD 20;
IF LEFT.OFF (RIGHT 100);
IF RIGHT.OFF (LEFT 100)

)

(2) to detect whether the turtle was completely off the track. He

changed the procedure to:

TURTLE;
F0REVER(

FORWARD 20;
@if the turtle is off the track: try the left side
IF ALL? LEFT.OFF RIGHT.OFF (LEFT 90);
@if still off the track: turn to the right
IF ALL? LEFT.OFF RIGHT.OFF (RIGHT 180);
IF RIGHT.OFF (LEFT 20);
IF LEFT.OFF (RIGHT 20)

90);
270)

- 179 -

(3) if the turtle is completely off the track to move it back onto

the track before making any turns. The procedure was changed

to

TURTLE;
FOREVER(

FORWARD 20;
IF ALL? LEFT.OFF RIGHT.OFF (BACK 20; LEFT 90; FORWARD 20);
IF ALL? LEFT.OFF RIGHT.OFF (RIGHT 180; FORWARD 20);
IF RIGHT.OFF (LEFT 20);
IF LEFT.OFF (RIGHT 20)

)

Nigel recognised steps 1 and 2 at once. Only after several

modifications to his procedure did he realise step 3 and make the

correct modification.

6.7.4 Binary code

The next task was to define procedures for the turtle to

recognise a binary-coded pattern. A pattern is represented by four

bars. Each bar is either black or white. For example, the patterns

shown in figure 6.3 were used to represent the letters 'A' and 'B'.

Fifteen patterns were made up to represent the letters 'A' to '0'.

The width of each bar is 21 units of turtle movement, i.e. FORWARD

21 would move the turtle from the centre of one bar to the centre of

the next one.

6.7.4.1 Recognition I

The author provided the students with a sample procedure

- 180 -

CODE.A
^assume the pattern is A
MAKE 'ANSWER 'TRUE;
FORWARD 21;
@if the first bar is not white then false
IF LEFT.ON (MAKE 'ANSWER 'FALSE);
FORWARD 21;
@if the second bar is not white then false
IF LEFT.ON (MAKE 'ANSWER 'FALSE);
FORWARD 21;
@if the third bar is not white then false
IF LEFT.ON (MAKE 'ANSWER 'FALSE);
FORWARD 21;
@if the fourth bar is not black then false
IF LEFT.OFF (MAKE 'ANSWER 'FALSE);
IF :ANSWER (PRINT [THE CODE IS 'A'])

ELSE (PRINT [THE CODE IS NOT 'A'])

which confirms whether a pattern represents the letter 'A'. The

procedure assumes that the code does represent 'A' so the first

command sets the variable ANSWER to TRUE. It then makes the turtle

move from one bar to the next. If it detects that the colour of a bar

is not as expected it sets the value of ANSWER to FALSE. If after

all the bars have been tested, the value of ANSWER remains TRUE then

the code does represent 'A'.

The students were asked to modify the procedure to recognise

other letters. Gary did not have time to try. Nigel thought it was

too easy and moved ahead to the next part of the project. Michael

also found the problem very easy. Just as an exercise he modified

CODE.A to recognise the letter 'H'.

Heath did not find the solution obvious. He started by

modifying CODE.A to recognise the letter 'B'. He did it in three

stages:

(1) He first changed the procedure name to CODE.B and replaced the

output lists [THE CODE IS 'A'] and [THE CODE IS NOT 'A'] by

the lists [THE CODE IS 'B'] and [THE CODE NOT 'B']

- 181 -

respectively. The result was that it could not recognise the

code for 'B', but it would mistakenly recognise the code for

'A' as 'B'.

(2) After studying the code more closely, he changed the procedure

CODE.B

^initially set the answer to true
MAKE 'ANSWER 'TRUE;
FORWARD 21;
@if the first bar is white the answer is true
IF LEFT.OFF (MAKE 'ANSWER 'TRUE);
FORWARD 21;
@if the second bar is white the answer is true
IF LEFT.OFF (MAKE 'ANSWER 'TRUE);
FORWARD 21;
@if the third bar is black the answer is true
IF LEFT.ON (MAKE 'ANSWER 'TRUE);
FORWARD 21;
@if the fourth bar is white the answer is true
IF LEFT.OFF (MAKE 'ANSWER 'TRUE);
IF :ANSWER (PRINT [THE CODE IS 'B'])

ELSE (PRINT [THE CODE IS NOT 'B'])

The procedure recognised every pattern as 'B', since the first

command sets the variable ANSWER to 'TRUE and it is never set

to 'FALSE.

(3) After some discussion with the author Heath fully understood

the algorithm used in the procedure. He then, by himself,

modified the procedure correctly. He also successfully changed

it to recognise the letter 'C'.

6.7.4.2 Recognition II

The task was to define a procedure that identified the letter

corresponding to a given pattern.

Heath did not try this part of the project.

- 182 -

The only help that Nigel needed was a reminder of how to store

values into a list data structure. His procedures were

CODE;
MAKE 'PATTERN [];
FORWARD 21;
IF LEFT.ON (MAKE 'PATTERN PUTL 'FALSE :PATTERN)

ELSE (MAKE 'PATTERN PUTL 'TRUE :PATTERN);
FORWARD 21;
IF LEFT.ON (MAKE 'PATTERN PUTL 'FALSE :PATTERN)

ELSE (MAKE 'PATTERN PUTL 'TRUE :PATTERN);
FORWARD 21;
IF LEFT.ON (MAKE 'PATTERN PUTL 'FALSE :PATTERN)

ELSE (MAKE 'PATTERN PUTL 'TRUE :PATTERN);
FORWARD 21;
IF LEFT.ON (MAKE 'PATTERN PUTL 'FALSE :PATTERN)

ELSE (MAKE 'PATTERN PUTL 'TRUE :PATTERN);
READER

READER;
IF EQU? :PATTERN [TRUE TRUE TRUE FALSE] (PRINT 'A)
IF EQU? :PATTERN [TRUE TRUE FALSE TRUE] (PRINT 'B)
IF EQU? :PATTERN [TRUE TRUE FALSE FALSE] (PRINT 'C)
@and so on

His procedures worked very well. However, they could have been

simplified by using a REPEAT loop.

Michael needed much more help. His initial idea was to build a

procedure for recognising each letter and then think of a way of

combining them. It seemed hard work and he could not think of a way

of combining all the procedures even if they were defined.

The author reminded him that the turtle is only expected to walk

over the pattern once; it must remember the pattern and then decide

what it represents. Once he realised the need to use a variable, the

recognition algorithm became apparent. He then wrote a program

similar to Nigel's. An interesting variation that Michael tried out

was to make the turtle recognise words instead of just characters.

He used adhesive to stick together the patterns for the characters

- 183 -

"M", 'I', 'C', 'H', 'A', "E" and 'L'. To make the turtle walk over

the sequence of patterns and the computer spell out his name on the

screen he used the command

REPEAT 7 (CODE)

6.8 Robot arm

The robot arm (see figure 5.3 in chapter 5) has five moving

parts: fingers, wrist, forearm, upper arm and shoulder. They are

driven by six stepping motors. Figure 6.9 shows the connection.

Component Concurrent-Logo
object

Fingers MOTOR 1

Wrist MOTORS 2 & 3

Forearm MOTOR 4

Upper arm MOTOR 5

Shoulder MOTOR 6

Figure 6.9 Robot arm connection

The objective of the project was to introduce different methods

of programming a robot, and the ideas of object collision, absolute

position and relative position.

6.8.1 Operating the robot arm

Instead of asking the students to write procedures for the arm,

they were introduced to a procedure TEACH, written by the author in

- 184 -

Concurrent-Logo, which allowed them to operate the arm by single

key-presses. For example, when 'Q' was pressed on the keyboard the

robot opened its fingers, and when the key 'W' was pressed the robot

raised its wrist. Alltogether twelve keys were used (see Worksheet 14

in Appendix I for more detail).

The students learned the TEACH procedure very easily. However,

it took them some practice before they could operate the arm

smoothly. The common tasks that they did with the arm were

(1) pick up a block and put it into a box

(2) pick up a lid and put it on the box

(3) unstack a tower of blocks.

6.8.2 Teaching the robot arm

When the students were familiar with TEACH and with operating

the arm, the author introduced three more procedures: REMEMBER which

appended the present position of the arm, represented by a list of

six numbers, to a list called SEQUENCE; REPLAY which moved the arm to

its start-up position then moved the arm through the sequence of

positions as recorded in SEQUENCE, and FORGET which set SEQUENCE to a

null list.

The students were asked to repeat the tasks listed in the

previous section. For each task, at any stage, they could request

the computer to remember the arm position. After they had operated

the arm to accomplish the task, they could ask the computer to replay

the arm movement by making it follow the sequence of recorded

positions.

- 185 -

None of the students could make the arm replay a sequence of

actions successfully the first time. They all made one

characteristic mistake: for each task, certain essential arm

positions were not recorded.

Task 1

Figure 6.10 shows the essential arm positions that must be

recorded.

- 186 -

Position 5 Position 6

Figure 6.10 Sequence of robot arm positions (II)
- 187 -

All of the students recognised position 1 and position 3 as important

and recorded them. The positions that the students omitted were 2

and 4.

The replay showed up the mistakes clearly. As the arm moved

from the start-up position directly to position 3 its fingers were

closing at the same time. When the arm reached the block its fingers

were closed already and the block was knocked over. With position 4

omitted the arm took a direct path from position 4 to position 5 and

on its way it also knocked the box over.

Task 2

The mistakes that the students made in task 2 were similar to

that of task 1.

Task 3

Figure 6.11 shows the positions that had to be remembered to

unstack the top block.

- 188 -

Position 1 Position 2

Position 3 Position 4

Position 5 Position 6

Figure 6.11 Sequence of robot arm positions (HI)
- 189 -

Heath and Gary continued to make the mistake of omitting

position 2. The position that all of the students omitted was

The consequence was that the arm took the direct path from position 3

to 5 and it made the remaining tower fall over.

The students had a lot of fun playing with the robot arm. It

also gave a very good opportunity for the author to discuss with the

students the effect of wrongly programmed robots in a real working

environment where the damage could be costly and men's lives

endangered.

6.8.3 Programming the robot arm

The students were taught how to program the arm using MOTOR

commands directly.

Two worksheets were used. One explained the relationship between

the arm's movement and the MOTOR commands; the other described two

procedures, POSITION and MOVETO, that they might use for developing

their own programs. POSITION returned the current position of the

arm as a list of six numbers. MOVETO took a list of six numbers as

input and moved the arm to the position as defined by the list.

The students had no difficulty in relating the MOTOR commands to

the movement of the arm. When they had typed a MOTOR command they

could see the corresponding arm movement. However, Heath and Gary

had difficulties in understanding the number representation of arm

position.

Nigel successfully defined two procedures: BLUE and IN.BOX.

BLUE moved the arm to an absolute position where a blue block was

- 190 -

placed and then gripped it. IN.BOX put whatever was in the arm's

fingers into a box. After he had defined these two procedures he

typed the command

BLUE; IN.BOX

which made the arm pick up a blue block and then put it into a box.

His procedures were:

BLUE;
©move the fingers close to the block
MOVETO ['205 161 72 55 '225 61];
©get it exactly right
MOVETO ['205 161 72 55 '295 51];
©close the fingers to grip
M0VEM0T0R 1 269;
©raise the shoulder
MOVEMOTOR 5 '95;

IN.BOX;
©move the arm so that it is above the box
MOVETO [269 161 72 '83 99 '181];
©open the fingers and let whatever is in it drop into the box
MOVEMOTOR 1 69;

To define these procedures Nigel used TEACH to operate the arm. Once

it was at the right place he used POSITION to find out its position.

MOVEMOTOR was defined by the author. Its first input was a

number specifying a MOTOR; it moved that MOTOR to the position

specified by the second input.

6.9 Discussion

The preceding description shows the variation of the students'

work, especially the difficulties that they had and the ways that

they solved them. However, the practical problems of teaching a

course that involves lots of equipment do not come across clearly

from the description. The rest of this section is in two parts. The

- 191 '

first identifies the benefits and limitations of learning control

applications through programming. The second discusses the practical

problems of safety and convenient arrangement of equipment.

Later chapters describe the analysis of the students'

understanding, students' response and the language.

6.9.1 Benefits and limitations

One clear advantage of programming is that it compels a student

to think about how something is done. For a student to think about

and describe an algorithm has much more educational value than for

him to learn a set of rules or a sequence of operations without

understanding why they work. Programming controllable devices is

particularly suited for learning because the program's operations are

externalised through the device's actions. These actions provide

information that can be interpreted against the student's intentions

for the program. He can identify mismatches between the expected

behaviour and the actual behaviour of the device. However, this does

not mean that he can correct the program easily. The mismatches

could be caused by ill-conceived algorithm or faulty implementation

of the program. The latter type of mistakes could be trivial, like

typing errors or mis-spellings. It could also be at the conceptual

level, like misunderstanding the semantics of certain control

structures. Thus correcting a program, besides revising the

description, means that the student has to improve his understanding

of the problem and/or the programming language. From the students'

work there are good examples illustrating that correcting programs is

a constructive learning process.

- 192 -

A distinction should be made between using direct commands and

writing programs. Sometimes a student can manipulate a device in a

step by step fashion but has difficulties in specifying the

algorithm, or in implementing it as a program, or both. One example

is to make the lift move to different floors. The students can

easily do that using direct commands. However, writing a program

requires a student to identify explicitly the information that he

uses and the decisions that he makes instinctively. In this

particular example the information is the current position of the

lift and the decision is the direction in which the lift should move.

Another example is to make a turtle follow a track. Driving the

turtle directly, a student might be unaware that he makes use of

information about the current state of the turtle to decide whether

the turtle should go forward, turn left or turn right. Writing the

program WALK (section 6.7.3) forces a student to represent the

knowledge explicitly. The difference between using direct commands

and writing programs is similar to that between operating the robot

arm and teaching it. As described in section 6.8, the errors that the

students made in teaching the arm revealed the kind of information

that they had overlooked. Direct control is less demanding because a

student does not have to plan in detail. At this stage, the

knowledge could be vague. Programming helps a student to bring this

knowledge to the surface by making it explicit in programs. This also

leads to the conclusion that the demonstration approach as described

in section 2.4 is very limited, because a student is not led directly

to think how a device is controlled. Even if different control

algorithms were used to control a device, a student would not be able

to perceive that just from watching a demonstration. However, he

- 193 -

would have gained the appreciation that a device can be programmed to

do certain functions.

Learning through programming provides an excellent context for

teacher'Student interaction. A student's programs reveal his

difficulties and misconceptions. A teacher is more able to give help

that meets the individual's needs. Furthermore, the teacher'Student

discussion centres on correcting the computer and not the student.

After a student has had some experience with a model, the

teacher can help him to relate the model to real life applications.

The information that is passed on then becomes much more accessible

to a student as he has a concrete example and experience that he can

reference.

The programming approach has its intrinsic values. However,

teacher'student interaction is still fundamentally important. The

teacher has to understand the students' problems; he has to give

careful guidance to lead students from one level of understanding to

another and he has to grasp the opportunities to engage students in

purposeful discussion.

In this study the students used some very powerful programming

constructs including procedures, list processing, various looping

structures and parallel processing. However, the students did not

use these constructs in depth. Typically, they wrote procedures that

were only two to three levels deep. Their use of parallel processing

was also limited to one or two simple applications, e.g. Doll's house

and Turtle II. The students used only objects that were provided in

the Concurrent'Logo systems and did not define their own. If the aim

- 194 -

of the course were to be extended from giving students experience in

using these constructs in constrained situations to teaching them how

to apply these constructs to a wider range of tasks then the number

of projects would have to be expanded and more worksheets devised.

6.9.2 Equipment arrangement

At the practical level, the teacher also has to consider how

equipment is to be arranged in the classroom. In the study two

computers were used in each session. Initially each sub-group worked

on the same project and one device was shared between the two

computers. This arrangement was found to be very inconvenient.

While one sub-group was testing their program the other group had to

wait. Another problem was that the device had to be frequently

unplugged from one computer and plugged into the other. To avoid

moving the device every time, the computers had to be placed very

close to each other with the device between them. It was very

distracting. To remedy the problem two different devices were

introduced at once so that each computer had a device dedicated to

it. In a real classroom where there are more students and more

computers, equipment arrangment deserves careful attention.

The issue of safety should not be ignored when mobile devices

are directly under the students' control. In particular students do

write incorrect programs and cause the devices to be out of control.

One example is programming the lift. A student wanted to make the

lift move up and stop at the third floor but the stopping condition

was wrong, so the motor carried on turning even after the cage had

passed the third floor. When the cage had reached the top of the

frame and could not move any further the string that pulls the cage

- 195 -

became tighter and tighter. The author had to quickly switch off the

power supply to the motor to prevent the string from snapping. The

sliding door of the doll's house, the robot arm and even the turtle

can be potentially dangerous. The most important thing is that the

power supply switches must be within easy reach and that every

student must know where they are.

«• 196 -»

CHAPTER 7

STUDENT'S UNDERSTANDING

At the beginning of the course it was difficult to assess the

students' understanding of control applications since they had no

formal training in this subject and there are no standardised tests.

Therefore, the students were not given a pre-test. Based on the

author's observation and the content of the course taught to them, by

the end of the course the students were expected to have gained

(1) appreciaion of the different applications they had tried out;

(2) knowledge of the electronic components used;

(3) understanding of the concept of feedback;

(4) knowledge of the basic problems and limitations in the point

to point control of robots;

(5) an appreciation of the use of procedures;

(6) an appreciation of the power of parallel processing.

A test (Appendix III) was designed and used to examine the

students' understanding in the latter five areas. Since there is

only a post-test and no pre-test, the result cannot be used to

suggest how much each student had improved through taking the course.

Its contribution is that it identifies whether certain concepts can

be learned easily. The result also provides guidelines for designing

future tests.

The students were not told that they had to sit a test so they

did not purposely prepare for it. One student, Heather, thought when

she read the questions that they were too hard and asked not to

answer than. Since her help was voluntary the author agreed.

Therefore, the assessment is based on the written answers of eleven

- 197 -

students. They tended to give short answers expressing their primary

and partial understandings. In the following sections, quotations of

students' answers are not altered and any underlining is the author's

emphasis.

7.1 Components

Two types of question were asked about components. The first

type was factual. The second type required more understanding and

judgement to answer.

The factual questions were:

(1) What is a push-button for?

(2) What is a reed switch for?

(3) What is a reflective-opto switch for?

All the students answered the factual questions fairly well.

The experience with the devices provided a link for the students to

relate to the components and what they were used for.

One of the more difficult questions was 'What are the

differences between working with DC motors and stepping motors?'

Since the students were not taught electronics they were only

expected to point out the functional difference. Seven students

answered satisfactorily. A sample answer:

'Stepping motors only turn the number of steps they are told
while DC motors turn continuously'

The observation, though trivial, was missed by four of the students.

- 198 -

The final two questions asked the students to choose the

electronic components for two computer controlled toy models: a cable

car and a crane.

Knowledge of the difference between controlling DC motors and

stepping motors is necessary to answer the toy model questions

correctly. For the cable car, it was to move cyclically frcrn the

bottom to the top and then from the top to the bottom. It is better

to use a DC motor to drive the car and use reed switches to test

whether the car has reached either the top or the bottom. For the

crane, the moving parts were to move a specified amount at a time. It

is better to use stepping motors.

Five students had given the expected answer to both questions.

These students not only knew about the components but also

appreciated their applications and limitations.

One student preferred using DC motors for the crane and

explained that repeat loops could be used to control the amount

moved. Most students had chosen to use stepping motors for both of

the models.

7.2 Feedback

The feedback concept was not taught explicitly. However, it was

applied in the projects that made use of sensors, namely, Lift,

Doll's house and Turtle II. When asked the question: 'What are the

advantages of having sensors attached to a control device?', ten

students appeared to be aware that feedback helps the computer to

know something is going wrong. A typical answer is:

- 199 -

'It (the computer) can detect if it (the device) is going off
course.'

Two of them, Nigel and Kevin, added the point that feedback helps the

computer to make decisions. A specimen answer is:

'The advantage of having sensors on a control device is that
the computer can be helped to make up it's mind what to do.'

Michael also made another point: feedback helps the computer to take

corrective actions. His answer was:

'The computer then know if the device has gone off course and
take steps to correct it.'

Although the concept of feedback

feedback information -> make decision -> take corrective actions

could be learned through the programming activities alone, notice

that the use of the phrase 'going (or gone) off course' in the first

and third answers above shows that the students were actually

referring to a particular experience, i.e. programming the turtle

with sensors to follow a black line. This project had given them the

deepest impression of the use of feedback.

7.3 Robot

The students were asked the question: 'What are the difficulties

in training a robot arm to do a sequence of actions?' None of the

students gave a complete answer. They tended to describe only one or

two aspects of the difficulties. However, a collection of their

answers would constitute a complete answer. Here are some quotations

from the students:

- 200 -

'You have to get it to remember each step'

'You have to make it remember positions in the right place'

'It has to ranember a large number of actions _in the right
order'

'Making sure the arm doesn't take short-cuts knocking over the
object it is supposed to pick up'

'It tends to take the direct route frcm point A to B and not
the route you want it to take'

'If the position of something is changed then it will not work'

These quotations came from six students' answers. They describe

fully the sequence and the limitations, using the point to point

control method. These ideas were learned naturally frcm the

programming activities. However, each student had a deeper impression

of a particular aspect and was more able to recall it.

7.4 Procedures

The use of procedures is fundamental to the learning through

programming approach. Teachers write procedures to demonstrate

concepts which students can explore and use to solve problems.

Students use procedures to solve problans in a structured and gradual

fashion.

To find out how well the students had understood the use of

procedures, they were asked two questions:

(1) Do you think procedures are useful? If so,, why?

(2) If you know BASIC, can you tell me what the differences are

between subroutines in BASIC and procedures in Concurrent-

Logo?

The author was surprised to find that only nine, not all, of

the students thought that procedures were useful. The two who

- 201 -

considered procedures were not useful gave the reasons, 'BASIC is

easier to edit' and 'BASIC is much easier to edit'. These comments

will be considered later. The students' understanding of procedures

can again be categorised into three levels:

(1) procedures as editing tools

(2) procedures as problem solving tools

(3) procedures as language extension tools

The first level is concerned predominantly with text

manipulation, i.e. how to enter and modify a program text. The

second level is appreciating that the use of procedures makes

programming easier. The third level is understanding that a

procedure, once defined, can be used just as if it was a primitive,

thus extending the programming language.

The two students who did not like procedures obviously belong to

the first level. They overlooked the purpose of procedures and

concentrated on the editing facilities. Their view of programming

was distorted by their experiences with BASIC. Instead of seeing a

program as a collection of procedures they saw a program as a long

sequence of instructions. Towards the end of the second term, one of

them asked, 'Why can't we write long programs like in BASIC. We have

only been writing short procedures.'

The rest of the students had reached at least level two

understanding. Two of the students expressed their ideas quite

clearly:

'They (procedures) make the program less messy, easier to write
and easier to read. It is more structured and logical.'

'Procedures are useful as they let you see bugs in the program

- 202 -

more easily.?

However, only two students, both of whom understood BASIC,

showed level three understanding, i.e. procedures as language

extension. One of the students wrote 'The main difference between

subroutines and procedures is that subroutines need a lot of looping

and will not normally work on their own.' He was implicitly saying,

'BASIC subroutine requires the use of GOSUB and RETURN statements;

procedure is called by name. Subroutines can only be used inside a

program; procedures, once defined, can be used on their own.' Other

students gave no indication that they had understood the

extensibility of Concurrent-Logo. Students who knew BASIC could only

point out the superficial difference between BASIC subroutines and

Concurrent-Logo procedures: line numbers are used in the former and

not in the latter.

It is interesting to note that the best two and the worst two

answers were all given by students who knew BASIC. Thus experience

with BASIC might or might not have a deleterious effect in moulding

the students' attitude towards programming.

7.5 Parallelism

One of the questions that the students were asked was: 'Do you

consider parallelism is an important part of a programming language?

Why?'. Keith abstained and the rest gave a positive answer to the

first part of the question. Different reasons were given as answer

to the second part. Five of them gave answers similar to:

'it is important to be able to do a few things at once'

- 203 "

Ruth made the same point by referring to one particular device: 'in

the robot arm you really have to make the arm go down and closing the

fingers at the same time'. Its ability to move different parts at

the same time obviously made an impression on her. Kevin mentioned

that 'it makes things clearer to understand.' Gary explained that

parallellism makes the language more flexible.

Two of the students identified parallelism as important because

of faster execution speed. Thi3, however, is not strictly true

because Concurrent-Logo provides only pseudo-parallelism, i.e. time

sharing. Of course, they were not aware of that.

The students were also asked questions related to understanding

the flow of control. One question asked them to describe the effects

of the following commands:

a) REPEAT 10 (PRINT 'A); REPEAT 10 (PRINT 'B)
b) REPEAT 10 (PRINT 'A) // REPEAT 10 (PRINT 'B)
c) FOREVER (PRINT 'A); FOREVER (PRINT 'B)
d) FOREVER (PRINT 'A) // FOREVER (PRINT 'B)

Nine of the students described a) and b) correctly. An example is:

a) it will print 10 A's then 10 B's.
b) it will print 10 A's and 10 B's simultaneously.

One of the students gave a totally wrong answer. He wrote:

a) print A and B.
b) print A and B twice.

Another student gave the same description for both of the commands:

'print A and B 10 times.' Her description is ambiguous; it makes no

distinction between commands that are to be executed in sequence or

in parallel. From this example alone it is difficult to know whether

- 204 -

she was just being vague or had a misconception. The descriptions of

c) show that not only she but also seme of the others did not fully

uderstand the flow of control of programs. An example of a wrong

answer is:

c) it will print A and B until you tell it to stop.

Understanding that the FOREVER loop is non-terminating is easy. The

difficulty lies in realising that because the two FOREVER commands

are in sequence the second one would never be executed. Their model

seems to be that when the computer executes a FOREVER command it does

what it has been told to do continuously but also carries on finding

out what else it has to do. If the computer is told to do two things

together it will literally do them simultaneously. Their model is

closely related to human behaviour. For example, it make sense to

ask a person to sing and dance at the same time. On the other hand a

person can be told to sing continuously and while he is doing that he

is also able to respond to further commands such as 'also dance

continuously'. However, there is ambiguity in the latter way of

instructing a person to do things. Does it mean 'sing a bit and dance

a bit continuously' or,, 'sing and dance at the same time

continuously'. Depending on the situation, a person might be able to

resolve this kind of ambiguity. The students obviously expected the

computer be able to do that as well.

Only four students could answer correctly all the ■ questions

related to control flow of programs. Two of them were the most

experienced programmers and the other two were the most able students

of the third year group.

- 205 -

An example of their descriptions of c) and d) is:

c) it would just print A forever until you tell it to stop.
d) it would print A and B forever at the same time.

7.6 Conclusion

The overall result of the test is tabulated in figure 7.1, and

individual student's results are tabulated in figure 7.2. It is

evident that a basic understanding and appreciation of control

technology can be learned through programming. However, in general,

it is difficult to gain profound understanding from the activities

alone. It could be that the students were not very good at

structuring their ideas and describing than. Supplementing the

programming activities with formal discussion and sane teaching might

help to improve their understanding.

On the whole, the fourth year students had done better than the

third year students, especially on the question about DC motors and

stepping motors. The questions on the flow of control of concurrent

programs are particularly difficult. The limitation of the

computational model has to be explained to them clearly.

- 206 -

Types of component
questions

factual motors model

No. of correct
answers

No. of incorrect
or unanswered

unanswered
Levels

1 | 2 | 3

No. of student at different level
of understanding of procedures 1 2 6 2

number of points
mentioned about

robot control

1 | 2

number of I

students 9 [2

number of points
mentioned about
feedback

o 1 2

number of
students 1 7 3

Types of multi¬
programming question

appreciation
flow of
control

No. of correct
answers 1 0 4

No. of incorrect or

un answer ed 1 7

Figure 7.1 Overall result

- 207 -

Notes to figure 7.2:

(1) The students' results are tabulated in the order of overall

achievement.

(2) The small letters besides each student's name are the

teachers' grading of the students learning ability.

(a) well above average

(b) above average

(c) just above average

(d) average

(e) just below average

(f) below average

(g) well below average

(3) Keys to the tables

'/' means correct answer

' X' means wrong answer

*-' means did not answer

- 208 -

Fourth year group:

Component Question no. of points level parall el i sm

factual motor model feed¬

back

robot pro¬
cedure

apprecia¬
tion

flow of
control

Nigel (b) / / / 2 2 2 / /

William(c/d) / / / 1 1 3 / /

Heath (e) / / / 1 1 2 / X

Martin (d) / / / 1 1 2 / X

Neil (b) / / X 1 1 2 / X

Third year group:

Component Question no. of points level parallelism

factual motor model feed¬
back

robot pro¬
cedure

apprecia¬
tion

flow of
control

Michael(a) / / / 2 1 2 / /

Keith (a) / / X - 2 - - /

Kevin (b) / X X 2 1 3 / X

Ruth (e) / X X 1 1 2 / X

Lynette(b) / X X 1 1 1 / X

Gary (d) / X X 1 1 1 / X

Heather(d) " | ~ .

Figure 7.2 Summary of students' results

- 209 "

CHAPTER 8

STUDENT'S RESPONSE

Since the teaching of control applications is still at the

pioneering stage, it is important to find out any information that

would help the development of future work. A survey was designed, by

the author, to find out what the students thought about the course

after they had completed it.

On the whole, the students had enjoyed the course and felt that

they had benefited from it. None had developed a dislike of control

applications. The students' preferences for devices were varied,

confirming the view that a course in control applications should

cover a wide range of devices rather than just use one device to

teach different concepts.

This chapter ends with a discussion on how the course might be

improved.

8.1 Course

All twelve particpants started the course wanting to know more

about computing, a result obtained from the first survey

(Questionnaire 1 in Appendix II). Ten of them maintained their

interest throughout the whole course. The students' answer to the

question 'Did you find the course enjoyable?', given in the final

survey (Questionnaire 4 in Appendix II), is shown in figure 8.1.

- 210 -

Most enjoyable 3

Enj oyable 7

Fair 2

Boring 0

Very boring 0

Figure 8.1 Students' opinion of the course

Neil and Gary were the two who found the course fair. Neil's

problem was not that he didn't enjoy learning control applications.

He just did not get on with his partner. His resentment is obvious

in his answer to the question 'How many people do you prefer to work

with?': he preferred to work by himself. All other students

preferred to work with either one or two friends.

Gary had an inflated assessment of his ability. Although he

showed a poor understanding of his work, he always thought that the

projects were easy. Hence, he was not fully immersed in the

activities.

It is important to note that Neil and Gary were not the least

able students. Their personal difficulties can only be dealt with

successfully by skilful teaching.

The majority of the students found the notes helpful and clear

(see figure 8.2). Half of them would have liked to receive more

notes. All felt that they had received sufficient help when they

needed it. Seven stated that they would have preferred more teaching

- 21 1 -

and explanation about control applications.

very helpful 3

helpful 6

fair 3

not helpful 0

not helpful at all 0

very clear 2

clear 7

fair 3

not clear 0

not clear at all 0

Figure 8.2 Students' opinion of the worksheets

In response to the question 'Do you think you have learned

anything useful?', all the students, except Neil, gave a positive

reply, figure 8.3.

a lot 2

quite a lot

some 5

a little 1" '

very little 0

Figure 8.3 Students' own evaluation of
how much they had benefited

These answers indicate that the students saw some educational value

in the course and they felt they had achieved something through it.

- 212 -

Again, with the exception of Neil, the students gave positive

answers (figure 8.4) to the question, 'Would you recommend the course

to your friend?'.

yes 1 1

no 0

not sure 1

Figure 8.4 Students' recommendation of the course

Eight of the students requested to continue in the next academic

year.

8.2 Projects

Although the students responded positively, it is necessary to

know more about what the students enjoyed and why, in order to refine

and to extend the course.

Figure 8.5 shows the students' preferences among the control

devices.

- 213 "

Project / preference 1st 2nd 3rd 4th 5th 6th

Windmill o o 1 1 2 8

Turtle o 2 2 3 5 0

Lift 3 2 3 2

Doll's house o 2 5 3 2 0

Turtle with sensors

(Turtle II)
2 5 1 2 0 2

Robot arm 9 2 o 1 o o

Figure 8.5 Students' rating of the devices

As the survey shows, the robot arm was the most popular and the

windmill was the least. There is also a trend, but less apparent, in

the second, third, fourth and fifth choices, that is Turtle II,

Doll's house, Lift, and Turtle respectively. In fact the trend is

set by the more able students. They had all included Robot arm and

Turtle II in the top two preferences and mostly with Doll's house and

Lift as their third and fourth. These are interesting devices that

the able students could do, and had done, a lot with. It is not

surprising that the able students preferred them. The average or

less able students, though many of them had put the robot arm as

their first choice, were more diverse in their other choices. For

example, Gary had chosen Turtle, Lift and Windmill as his second to

fourth preferences respectively; Heather had chosen Doll's house,

Windmill and Turtle II; Heath had chosen Turtle, Doll's house and

Turtle II. The evidence shows that, to an average or less able

student, a simple windmill or turtle could be a better learning

-214-

device than the more complicated ones. It is interesting to note how

Gary had struggled with the Turtle project and yet it is his second

choice.

The three most common reasons that the students gave for

choosing their three favourites are:

(1) practical

(2) can do a lot with it

(3) can understand it.

These reasons are certainly true for the robot arm. It is

practical and versatile. The students found it easy to use because

they were given a set of predefined procedures to operate it.

Otherwise many students would have had difficulties.

Seme of their specific programming experiences also have

influence on their choices. Heath explained that he liked the Doll's

house because 'you could combine all your programs to work at once'.

Lynette wrote: 'I enjoyed the turtle with the opto sensors the most,

as it was good for trying to write a program to keep it on the black

line. In the end, we (she and her partner) succeeded. This was a

happy moment for us all.'

Certain characteristics of the devices also appealed to

individuals: Heather liked incorporating sound in the Doll's house

project; Lynette liked the way that the lift went up and down;

William liked the Robot arm because he had seen the same type of

Robot arm shown on a television computer program.

The students' opinions about whether they had spent enough time

on each of the projects are quite mixed. Their answers to the

- 215 -

question, 'Would you like to have spent more, or less, time with the

devices?', are tabulated in figure 8.6.

device / time more about right less

Windmill 2 7 3

Turtle 6 5 1

Doll's house 6 4 2

Lift 5 4 3

Turtle with sensors 6 5 1

Robot arm 8 4 0

Figure 8.6 Students' opinion of amount of time
spent on each project

8.3 Discussion

Fran the motivational point of view, the course appeared to be a

success. The students, of varying abilities, had developed, or

maintained, an interest in control applications. There was no

feeling that 'only the clever people can do control applications' or

'only the boys are good at it'. One possible reason for this success

was that they perceived programming control devices as fun, so they

enjoyed it. Another possibility might be the Hawthorne effect. The

students had been chosen to take part in an experiment and they might

have put in extra effort to make the experiment successful. If the

latter is the case, in the long run one would expect to detect a drop

in the motivational level. However, the study's duration was too

short for this to be investigated.

- 216 -

The students' preference of devices confirms the principles we

used in designing a device:

(1) it should have the potential for doing interesting things

(2) more importantly, the interesting things should be within the

students' capabilities.

Furthermore, to meet the needs of individual students a

collection of devices should be used, rather than just one.

The strategy of introducing simple devices first and leading on

to more sophisticated ones, as used in this study, could be

profitable. The important factor is to give the students enough

time. When a new device is introduced, a student should have the

choice of carrying on working with the previous one, if so wished.

There is great value in encouraging a student to persevere with a

project to the end, as shown in reasons given by seme the students on

why they liked a particular device. A student should not be rushed

from one device to the next, otherwise what he could gain is minimal

and superficial. Only when he has grappled with a project for a

sufficiently long time does the learning become personal and

rewarding.

Unfortunately, in this study seme students felt that they were

being rushed. A fixed amount of time was allocated to each project.

When a new project was introduced the students were not given the

choice whether they could carry on working with the previous one.

This decision was taken to make classroom management easier. It

minimised the problem of moving and connecting different devices to

the computers during one session and the author could concentrate on

helping and observing the students.

- 217 ~

Ideally, the students should be allowed to work at their own

pace. However, it remains important that their activities be guided

by structure. Throughout the study the author was often asked by the

students the question, 'What should we do next?' When they had

finished a program it was difficult for them to decide on something

else to do because designing a task for a control device requires

some appreciation of what the device can do in the first place. It is

very different from deciding what pattern to draw next with a drawing

device. Good suggestions must be planned beforehand so the students

may be initiated into thinking about complex control algorithms.

- 218 -

CHAPTER 9

ASSESSING CONCURRENT-LOGO

This chapter first reviews some of the work previously done in

programming language design and then assesses Concurrent-Logo in the

light of the previous work and the experience gained in the pilot

study.

9.1 Programming language design

9.1.1 An overview

There are three stages in programming language design:

(1) identify the general requirements of the language

(2) specify and implement the language

(3) evaluate the language

The general requirements of a programming language for teaching

and learning at secondary level were described in chapter 1. It must

be interactive, extensible, visible and simple. It is worth noting

that this set of requirements is different from those commonly found

in programming language design text books (for example see Horowitz,

1983; Young, 1982). These books deal mainly with software

development languages. Therefore, they would include other

requirements such as security, efficiency and portability. At this

early stage of identifying the general requirements, the language

designer must have a clear idea of who the intended users of the

language are and how it is intended to be used.

The common features found in most high level languages are:

block structures, control structures, data structures, arithmetic

- 219 "

operations, assignment operations and I/O operations. However,

languages can be very different in their syntax and details (for

example see Sammet, 1969; Tennent 1981). Hoare's (1973) advice is

that

the language designer should be familiar with many alternative
features designed by others, and should have excellent
judgement in choosing the best and rejecting any that are
mutually inconsistent. He must be capable of reconciling, by
good engineering design, any remaining minor inconsistencies or
overlaps between separately designed features. He must have a
clear idea of the scope and purpose and range of application of
his new language, and how far it should go in size and
complexity.

Most language features can be implemented using established

techniques (Aho and Ullman, 1978; Brown, 1979). If a programming

language includes novel facilities that are difficult to implement

efficiently, then a considerable amount of research effort has to go

into designing implementation techniques. One example is Ada's

tasking facilities for communicating sequential processes that run in

parallel (Habermann andNassi, 1980). Another example is Prolog.

Since it uses unification and backtracking as its basic execution

model, new compilation techniques and new ways of representing the

internal data structures have had to be devised (Mellish, 1982;

Warren, 1983; Clocksin, 1985).

The third stage of the design process is to evaluate the

language. There are two aspects of language evaluation. One is from

the technical point of view. It is concerned with evaluating the

speed, storage usage and reliability of particular implementations.

The other aspect is frcm the users' point of view. It is concerned

with identifying oddities, ambiguities and missing facilities of a

programming lanugage. This chapter considers this latter aspect of

- 220 -

evaluation in respect of certain details of syntax and facilities.

9.1.2 Language evaluation

9.1.2.1 Syntax

The syntax of a programming language can have a significant

effect on the readability of programs. The principle that Wirth

(1974) gave was

The language should not be burdened with syntactical rules,
it must be supported by them. They must therefore be
purposeful, and prohibit the construction of ambiguities.

Though the principle is simple, its application is subjective. In

practice, the real issue seems to be finding a compromise between

clarity, convenience and flexibility.

Ripley and Druseikis (1978) carried out an analysis of the

syntax errors of 589 Pascal programs written by students. They found

that 41 % of the errors were omitting a single syntactic token in a

statement, about half of which were the statement separator '

There were 83 instances of missing significantly all of which,

except one, occured at the end of a line. The conclusion is that

there is a strong tendency for programmers to regard the end of a

line as the end of a statement. It may seem that line-oriented

languages are to be preferred. However, they create other probi ens.

Take Logo for example. One common complaint is that there is no way

of writing a program with indentation to reflect the structure of a

program or statement (Hardy and Hardy, 1985).

- 221 -

For example the following Logo REPEAT statement

REPEAT 6
[
REPEAT 60

c
FORWARD 1
RIGHT 1

]
REPEAT 60
[
FORWARD 1
LEFT 2

]

may appear on a 40 column screen as

REPEAT 6 [REPEAT 60 [FORWARD 1 RIGHT !
1] REPEAT 60 [FORWARD 1 LEFT 2]]

The absence of a command separator also creates an ambiguity when

multiple commands are on the same line. For example, the line

PROC 1 PROC 2

can mean

(1) there is one command PR0C_l, which takes one argument the

result returned to it by PR0C_2; or

(2) there are two commands PROC 1 followed by PROC 2.

The Logo interpreter resolves this kind of ambiguity at run time by

checking the number of arguments each procedure has when it is

called. However, to make programs more readable, 380Z Logo (Johnson,

1983) introduced the word 'and' for separating commands on the same

line. Unfortunately the introduction of this new syntactic token

received much criticism. It is made optional in a later version of

Logo from the same designers and implementors. There is certainly a

- 222 -

conflict between the demands of clarity and those of convenience.

Another example of compromising clarity for the sake of

convenience is the use of infix operators in Logo. For example, the

commands

PRINT FIRST 23^ would print 2
PRINT 234 + 2 would print 236

but what is the effect of

PRINT FIRST 234 + 2

Is it

PRINT (FIRST 234) + 2 which would print 4

or is it

PRINT FIRST (234 + 2) which would print 2

Cannara (1975) recommended infix operators should be left out of Logo

to avoid this kind of ambiguity. It was a deliberate decision that

infix operators was left out of 38OZ Logo (Ross and Howe, 1984).

However, by popular demand, they were introduced into the later

version.

Arblaster (1982) mentioned that a common error in using Pascal

is mismatching the ' begin's and 'end's that mark the start and the

end of a block of statements respectively. In Ripley and Druseikis'

study cited above, mismatching 'begin's and 'end's accounted for 8%

of the total errors. The additional rule of requiring a full stop

after the final 'end' in Pascal also caused problems. The suggested

solution is to have more explicit bracket pairs like if - endif, for

- 223 -

endfor, while - endwhile. COMAL does this. The solution in Ada is

similar. Instead of using a concatenated word as a closing bracket,

it uses two existing reserved words in sequence, for example, if -

end if, loop - end loop. These solutions improve clarity at the

expense of making the syntax of the language more complicated. Lisp

is open to the same kind of criticism. The only bracket pair it uses

is '(' and ')'. A solution which does not involve changing the

syntax is to provide editors that have syntax checking capabilites.

One such capability is to make the cursor jump to the matching

parenthesis (for example the ' emacs' editor (Stallman, 1985)).

In Logo a word may be prefixed by either of two special

characters: a word preceded by a single quote (or double quote in

some implementations) means a constant or a name of a variable; a

word preceded by a colon means the value of the variable; with no

prefix, a word means a procedure invocation. The following are all

valid Logo commands

MAKE 'X 'Y MAKE :X 'Y MAKE X 'Y

which have totally different effects. The syntax is extremely

powerful but difficult to use, especially for novices (du Boulay,

1978). They have difficulty in distinguishing the difference between

a name, the value of a variable and the value returned by a function.

Most programming languages avoid this problem by dereferencing from

name to value automatically. For example, the variable * I * appears

twice in the Pascal statement

MAKE 'X :Y
MAKE 'X Y

MAKE : X : Y
MAKE :X Y

MAKE X : Y
MAKE X Y

I := I + 1 ;

- 22H -

The first ' I' stands for the name (reference) and the second stands

for the value. Automatic dereferencing is done at the cost of

increasing the difficulty of using higher order variables. The

following Logo code can increment any named variable:

INC 'VAR_NAME
MAKE :VAR_NAME ADD 1 VALUE :VAR_NAME

In Pascal, the user has to learn about the difference between 'pass

by value' and 'pass by reference', and the syntax of declaring

different kinds of variable.

One final point about syntax is that command names should be

short and meaningful. This would reduce some common errors that

students make:

(1) mistyping

(2) confusing the meaning of different words. An example, drawn

from an early implementation of Logo in Edinburgh, is the use

of the words REMEMBER and RECALL for storing procedures into

the filing system, and retrieving them from it, respectively.

Seme students were confused because they thought of the words

as synonyms (Ross and Howe, 1984)

(3) misusing space characters. Commands that are made up of

concatenated words, such as 'PENUP', mislead students into

thinking that the space delimiter is unimportant. As a result

they would type commands like 'FORWARD100' or even 'PEN UP'.

9.1.2.2 Facilities

When a programming language is put into practical use, it is

inevitable that the users will find something that they would like to

- 225 -

do but which the language does not allow them to do easily. The

criticisms about the facilities of a programming language can be

divided into three groups:

(1) new routines need to be added to the library utilities

(2) existing facilities need to be respecified

(3) extensions need to be added to the language

Obvious examples of the first group are formatted read and sorting

procedures. Where these procedures can be implemented in the language

itself, it is a good design principle to leave them out of the core

definition. The advantage is that the language would be small,

including only the essentials, which makes learning easy. A

prerequisite is that the language must be extensible, providing

facilities for linking and loading pre-ccmpiled utility routines.

For interactive languages like Logo, the utility routines are usually

in the source form. It would be a good idea if new implementations

allow utility routines to be compiled and then dynamically loaded in

at run time.

If existing facilities need to be respecified it is usually due

to the oversight of the designer. For example, some complaints about

Pascal are that variable declarations do not allow initialization and

that the 'case' statement does not have an 'otherwise' clause for

specifying default actions (Mickel, 1981)

Other limitations of a programming language can be dealt with

only by extending it. In particular most programming languages

provide only one level of modularity, namely procedure, and do not

support concurrent programming. This had led Brinch Hansen and Wirth

to extend Pascal to Concurrent Pascal and Modula respectively. An

- 226 "

important point is that the extension should at the same abstraction

level as the rest of the language (Wirth, 1974) .

Language designers should be concerned not only about the

facilities of the language but also facilities for debugging

programs. In particular the error messages that the system generates

should be at a level of detail appropriate to the programmer's

understanding of the computational events. Error messages frcm

compilers are useful for correcting syntactic errors. However, run

time error messages of compiled languages are notoriously bad. It is

no use to the programmer if the system generats an error message like

Segmentation violation

and then aborts. A language implementation, whether the language is

compiled or interactive, should provide a debugger so that a

programmer can trace and follow the execution of his program.

9.1.3 Summary

Designing a programming language is a complex process. More

importantly the process is a co-operative one. Hoare's (1973) advice

is

Listen carefully to what language users say they want, until
you have an understanding of what they really want. Then find
some way of achieving the latter at a small fraction of the
cost of the former. This is the test of success in language
design, and of progress in programming methodology.

Sane compromises that designers have to make about the syntax of a

language have been described, and criticisms concerning the

facilities of a programming language were divided into three groups.

Different action should be taken depending on the nature of the

- 227 -

criticism. Finally, a language implementation should be supported by

debugging aids.

9.2 Concurrent-Logo

Most of the criticisms of Logo have already been illustrated in

the previous section. They can be summarised as

(1) Logo does not allow textual layout of a program to reflect its

structure

(2) some of the command names are not carefully chosen

(3) the use of a quote and a colon to distinguish between the name

and the value of a variable often cause problems for novice

programmers

These criticisms are concerned with syntactical issues. Recently,

Hardy and Hardy (1985) also discussed the need to extend the

facilities of Logo.

The rest of this chapter concentrates on evaluating the extended

facilities found in Concurrent-Logo; features of the language that

are likely to cause programming errors are identified; the limitation

and further extension of the language are also discussed.

9.2.1 Cause of errors

Figure 9.1 shows which of the extended commands or facilities

were used during the pilot study.

- 228 -

Used by author
in demonstration

programs

Extended command
or facility

Used by
students

SWITCH n ! ON / /

SWITCH n ! ONUNTIL / /

RECEIVER n ! STATE / /

RECEIVER n ! KEEPCOUNT j |
RECEIVER n ! COUNT | |
MOTOR n ! TURNC / /

MOTOR n ! TURNA / /

MOTOR n ! COUNT / /

MOTOR n ! STOP /

// / /

FOREVER / /

GUARD /

USER DEFINED OBJECTS /

WHENEVER /

Figure 9.1 Facilities used in Concurrent-Logo

When the students used the extended facilities there were three

main sources of error:

(1) the extra syntax markers: semicolon, parallel bars and

exclamation mark;

(2) the RECEIVER object and command;

(3) the FOREVER command.

- 229 -

The post-test given to the students also showed that they had

difficulty in understanding the flow of control of programs.

9.2.1.1 Syntax

With the extended facilities, two major syntax rules were

introduced in Concurrent-Logo:

(1) Semicolon and parallel bars '//' were used as command

separators: if two commands were separated by a semicolon they

would be executed in sequence; if two commands were separated

by parallel bars they would be executed in parallel. One or

the other was obligatory.

(2) Exclamation mark was used to separate an object frcm its

message.

In practice the need to type in any syntax markers can be a

source of error and a cause of frustration. The students remembered

the exclamation mark after one session and took over three sessions

to get used to the semicolon. By the time the parallel bar notation

was introduced the students were quite well acquainted with the idea

of a separator, so they learned the new notation with relative ease.

For multi-programming it is necessary to have a syntax marker to

indicate processes that are to be executed in parallel. The parallel

bar symbol is as good as, if not better than, any other symbols since

it is simple and has the right connotation. Therefore, it should not

be changed.

The semicolon was introduced for two reasons. One is

consistency - all commands are separated by markers. The other

reason is to allow free-form layout of programs. It improves program

- 230 -

clarity but is a hindrance to the users. An alternative solution,

which allows free-form layout of programs and does not require any

explicit command separator, is to treat 'carriage returns' or

'linefeeds' in a procedure body as space characters. The effect is

that the procedure body is interpreted as if it is all typed in on

one line. An additional advantage of this solution is that it is

backwards compatible with existing implementations of line-oriented

Logo. It is worth experimenting with this solution and see whether

it creates any problems for users.

The object metaphor was very good for explaining the RECEIVER,

SWITCH and MOTOR commands. However, students could easily leave out

the exclamation mark between an object and its message. The object

metaphor could be discarded by changing the RECEIVER, SWITCH and

MOTOR commands to conventional procedure form. Figure 9.2 shows the

equivalence of the two forms. If the object approach is discarded,

for the sake of consistency, the synchronization mechanism will also

have to be redesigned.

- 231 -

Object form Procedure form

RECEIVER n ! STATE R.STATE n

RECEIVER n ! KEEPCOUNT KEEPCOUNT n

RECEIVER n ! COUNT R.COUNT n

SWITCH n ! ON ON n

SWITCH n ! OFF OFF n

SWITCH n ! STATE S.STATE n

SWITCH n ! ONUNTIL condition no equivalent

MOTOR n TURNC m TURNC n m

MOTOR n TURNA m TURNC n m

MOTOR n COUNT M.COUNT n

MOTOR n STOP M.STOP n

Figure 9.2 Commands in object and in procedure forms

Note that the object form allows different objects to have the same

message name. For example, both RECEIVERS and SWITCHes can receive

the message STATE. Also, both RECEIVERS and MOTORS can receive the

message COUNT. The object name provides the context for the message.

In procedure form, no two primitives or procedures can have the same

name. Therefore, seme of the primitives need to have suffixes.

To find out what the students preferred, they were asked three

questions in the final questionnaire:

(1) To make stepping MOTOR 1 turn clockwise 300 steps, which

command do you prefer (or suggest your own)?

a) MOTOR 1! TURNC 300

" 232 -

b) MOTOR 1 TURNC 300

c) TURNC 1 300

(2) To turn SWITCH 2 ON, which command format do you prefer (or

suggest your own)?

a) SWITCH 2! ON

b) SWITCH 2 ON

c) ON 2

3) To find out the state of RECEIVER 3» which command format

do you prefer (or suggest your own)?

a) RECEIVER 3! STATE

b) RECEIVER 3 STATE

c) STATE 3

Note, all of the b) options are syntactically incorrect, because the

names of the objects would be interpreted as procedure calls. The

options were included to find out whether the students preferred

including the object name in a command.

The students' answers are shown in figure 9.3.

Question / preference a b c

1 6 5 1

2 6 2 4

3 6 2 4

Figure 9.3 Students' preference for formats

- 233 "

The author stressed to the students that there were no right or wrong

answers to these questions.

The answers shows that the majority favoured naming both object

and message (options a) and b)). The use of the exclamation mark is

accepted by half the students. Since the students answered the

questionnaire after they had learned Concurrent-Logo their answers

may be biased towards what was familiar. Comparing only options b)

and c), the students prefer syntax c) if a command has at most one

input. Otherwise b) is preferred.

9.2.1.2 RECEIVER

The word 'RECEIVER' is difficult. The students often mis-spelled

it. To avoid distraction a simpler word should be used. A better

word may be 'SENSOR'.

The STATE command caused seme confusion. It was used most in the

condition part of an IF command. For example

IF EQU? RECEIVER 1! STATE 'ON (action 1)

IF EQU? RECEIVER 2! STATE 'OFF (action 2)

The STATE command is objectionable because

(1) the code for testing the state of a RECEIVER is very long

(2) the students often thought, mistakenly, that STATE returned

either the word 'TRUE or 'FALSE.

To overcome the deficiences it would be better to replace STATE

by two commands ON? and OFF?. The command RECEIVER n ! ON? would

return 'TRUE if RECEIVER n were on and 'FALSE otherwise. The command

RECEIVER n ! OFF? would return 'TRUE if RECEIVER n were off, and

- 234 -

'FALSE otherwise.

The examples above would become

IF RECEIVER 1! ON? (action 1)

IF RECEIVER 21 OFF? (action 2)

It would be even simpler if the word RECEIVER is replaced by SENSOR.

9.2.1.3 FOREVER command

The FOREVER command is simple both syntactically and

semantically. It is a loop structure without a stopping condition.

In its simplest form the students had no difficulty in understanding

or using it. However, there was a common mistake that the students

made: putting two FOREVER commands in sequence. A simple example

would be:

FOREVER (action 1); FOREVER (action 2)

When a mistake of this type is made, the intended format of the

command is either

FOREVER (action 1; action 2)

or

FOREVER (action 1) // FOREVER (action 2)

These two formats have very different effects. The first would

execute action 1 and action 2 alternately forever. The second would

execute the actions forever in parallel.

The problem with the FOREVER command is not that its syntax or

semantics is obscure but that the students have difficulties in

- 235 -

understanding the interaction between the command and the part of the

program that it appears in. They need to be taught how the FOREVER

command should be used. This finding is in accord with the

conclusion drawn by Soloway and Ehrlich frcm their study (1982). They

emphasised the importance of teaching more than just the syntax and

semantics of looping structures. The context of their study is quite

different frcm the present one. They tested whether student

programmers could distinguish the appropriate context in which to use

each of the Pascal's looping structures (the FOR, REPEAT and WHILE

loops). They found that the students (even after taking a course in

Pascal programming) had chosen the correct structure less than half

the time. The result demonstrates that the students should be taught

when and how the structures should be used.

9.2.2 Limitation and extension

The prototype implementation of Concurrent-Logo has two major

deficiencies:

(1) the programming environment is primitive;

(2) the language is inadequate for applications that involve

collecting data at a fast rate or in a large quantity.

The inadequacy of the programming environment is identified

below, and extensions for data collection facilities are suggested.

9.2.2.1 Programming environment

A particular advantage of an interactive language is that it has

an integrated programming environment. It should include an editor,

filer and debugger. In the prototype implementation, due to the

limited memory capacity of the TERAK computer, all these facilities

- 236 -

are either very basic or non-existent.

The screen editor is very primitive. It has no copy, search or

replace capabilities. As a user grows more sophisticated the absence

of such facilities can be most annoying.

Commands are available only for saving, retrieving and erasing

the definitions of procedures, guards and messages. There is no way

of saving the entire content of the working memory. Once the computer

is switched off, all the global variables and their values are lost.

Therefore, at the beginning of a session a user might have to spend

some time re-initialising the system to its previous state.

There is virtually no debugging facility. When an error occurs

an error number is printed instead of an error message. A user then

has to refer to a list of error messages.

All the above mentioned shortcomings can be successfully dealt

with if the next version of Concurrent-Logo is developed on a

computer that has more memory capacity than the TERAK.

A less trivial problem is that of providing suitable tracing

facilities. Since there may be more than one active process,

multiple window displays have to be used to show the progress of the

different processes.

9.2.2.2 Data collection

An example of an application that requires collecting data at a

fast rate and in a large quantity is the control of chemistry and

physics experiments. In this type of application the source data are

usually in analogue form and need to be converted into digital form

- 237 -

for the computer. The digital representation of an analogue signal

is usually a number in the range 0 to 255.

To conform with the object approach, a solution would be to

introduce a class of system objects called PORT. Different PORTs are

identified by numbers, i.e. PORT 1, PORT 2 and so on. Each PORT

would respond to four different messages:

(1) VALUE

E.g. PORT 1 ! VALUE

which tells PORT 1 to return the value of the present signal.

(2) COLLECT n m

(n is the number of signals to be collected and mis the delay

time (in centi-seconds) between reading the signals)

E.g. PORT 2 ! COLLECT 1000 50

which tells PORT 2 to collect 1000 signals with half a second

delay between each reading.

(3) ITEM n

E.g. PORT 2 ! ITEM .250

which tells PORT 2 to return the value of the 250th collected

item.

- 238 -

(4) RECORD

E.g. PORT 2 ! RECORD

which tells PORT 2 to return all the recorded values as a

list.

These PORT instructions allow convenient analogue input and

rapid data collection.

9.3 Conclusion

The prototype version of Concurrent-Logo forms the basis of a

practical control language for educational use. However, for it to

be fully useful sane improvement is needed. The areas that need

particular attention are the programming environment and the

extension for data collection. The improved version of Concurrent-

Logo should be sufficiently general for most educational control

projects. Future development should be done on a 16 bit computer,

with at least 128K random access memory. For maximum run-time speed

the interpreter should be written in assembler language. If

portability is important then an implementation language should be

used, but it is essential that a compiler exist for compiling the

source code directly into machine code.

An instruction method also has to be developed to help students

to understand the control flow of programs.

- 239 -

CHAPTER 10

CONCLUSION

10.1 Summary

The research described in this thesis investigated the teaching

of computer control applications at upper secondary school level.

The review showed that manufacturers have produced useful control

devices for educational use. One significant advancement is the

development of general purpose control modules which enable control

devices to be built very easily and cheaply by teachers or students

using model construction kits. The major problem that is identified

as hindering the teaching of control applications is the lack of a

suitable computer language and courseware. Consequently a course in

control applications is biased towards teaching of electronics or

demonstrating what a control device can do. Neither of these

emphases helps students to focus on thinking about the control

process of a systan. A related problem is that there is little

knowledge of how students learn control applications. In order to

improve the teaching it is necessary to know what kind of

misconceptions students hold and what common mistakes they make.

The first contribution of this research is the design of

Concurrent-Logo. It is a computer language based on Logo, a language

well developed for educational purposes but lacking facilities for

control applications. The extensions included in Concurrent-Logo are

commands for detecting signals, commands for actuating switches and

stepping motors, multi-programming, and control structures for

handling events.

- 240 -

A course in control applications was also developed. It consists

of six projects. Each project involves writing programs for a

particular control device. The control devices are: windmill, turtle,

doll's house, lift, turtle with optical sensors and robot arm. These

devices make use of a wide range of electronic components and the

programming tasks also cover a wide range of control and computing

concepts.

A prototype implementation of Concurrent-Logo and the course

were tested in a pilot study involving twelve students. The study

demonstrated that it is practicable to learn control applications

through programming with a high level computer language. A student

very often can manipulate a device in a direct drive mode. However,

he may be unaware that he is instinctively making use of feedback

information such as the current state of the device. Programming

helps him to bring knowledge to the surface by making it explicit in

programs.

A profile of four students' work is given. An analysis revealed

several misconceptions that the students had and the mistakes that

they made. Examples of problematic areas are controlling DC motors,

pulsing, pattern recognition and teaching a robot arm.

The post-test results showed that the students had grasped some

of the control concepts required in the applications. However, they

did not show in-depth understanding. This could be due to three

factors. First, a student was not given enough time to pursue a

project for as long as he wanted. Second, the author wanted the

students to learn as much as possible from their own programming

activities and did not fully explain the concepts to them. Third,

- 241 "

the testing material was not sensitive enough to find out all that a

student had learned.

The final survey showed that the students' response was

positive. They enjoyed the course and felt that they had learned

something from it. The ideas and materials developed for this course

could be used by curriculum developers as the basis for designing a

practical course.

Certain deficiences of Concurrent-Logo have been identified.

The object name RECEIVER is difficult to spell. The RECEIVER command

STATE is confusing. Facilities for fast data collection are

required. Suggestions for improvements are given.

10.2 Criticism

There exist an implementation of Concurrent-Logo and worksheets

for the course. However, the implementation is only a prototype and

the worksheets were developed specifically for the pilot study. Both

of these need to be improved before they could be used widely in

schools.

The pilot study was carried out with a small number of students.

The author played multiple roles in the study as tutor, as

experimenter and as evaluator. Fran a methodological standpoint,

this situation was not ideal. However, it had to be so because of

limited resources.

With hindsight, it is clear that the final survey might have

been administered by a school teacher instead of by the author, to

make it less obvious that the survey was part of the experiment.

- 2 42 -

That would have reduced the possibility that the students gave

favourable answers just to please the author.

In the absence of standardised tests for control applications,

the author had to construct his own test in an ad hoc fashion. His

task was the harder because very little is known about students'

understanding in this subject. The post-test was constructed in an

effort to verify the author's expectation that the students would

have gained some appreciation or understanding of the electronic

components used, the concept of feedback, the basic problems and

limitations in the point to point control of robots, the use of

procedures, and parallel processing. The test was not sensitive

enough to reveal all that a student had learned. Though the results

indicated that the students had difficulty in understanding the

control flow of parallel programs, the collected data were not

sufficient to infer students' mental models. The test procedure

might have been improved by interviewing each student as well. With

appropriate prompting during an interview, a student might have

revealed more than he wrote on paper.

From the experimental design point of view, it would have been

better if a pre-test had been given. Then, an analysis of the pre¬

test and post-test results would show how much each student had

benefited from the course. Based on the experience gained from the

study, a new pre-test and a new post-test are devised, which are

included in appendix IV.

- 243 ~

10.3 Future research

This thesis provides seme preliminary evidence to support the

proposed innovation. One direction of research is to go through a

second phase of monitoring stage evaluation. It should be carried out

after the refinement of software and hardware. More reliable and

sensitive tests should also be produced. If the outcome continues to

be favourable, a larger scale study may then be justified. The number

of classes should be increased. The number of students in each class

should be about the same as in a normal class. Furthermore, the

teaching should be done by teachers other than the committed

investigators. Such a study would provide stronger evidence of the

practicability of the approach. At the same time, it is necessary to

continue collecting detailed data that would help to improve our

knowledge of students' understanding of control applications.

It has been mentioned that students have difficulties in

understanding the control flow of concurrent programs. An

instructional method needs to be developed to help students to

understand parallel processing. A tentative suggestion is the idea of

'playing computer'. For example, one student can act as a computer

that obeys command sequentially. When he encounters commands that are

to be executed in parallel he will organise them and delegate them to

his fellow students, one command for each of them. When all his

fellow students have finished what they have been told to do he will

continue to obey the next command. Different models of parallelism

can be tried out in this way. The concept of mutual exclusion can be

illustrated clearly if the students were asked to act out a command

like:

- 244 -

boil water with the red sauee pan //
warm up the baked beans with the red sauee pan

Another direction of research is integration. It is mentioned in

the first chapter that control application is related to many

subjects. It is worthwhile investigating these relationships. The

aim is to design learning activities that will bring multi-

disciplinary skills and knowledge into one context. For example,

after the students have had sufficient experience in programming

control devices, they may design their own devices. This provides

the students with practical work that would help them to appreciate

physics concepts such as equilibrium, mechanical advantage,

efficiency and velocity ratio. The students can also exercise their

judgement in selecting the appropriate electronic components. If

sufficiently motivated, they may also design and assanble the

electronic modules required.

Finally the transition frcm secondary education to higher

education should also be considered. The approach proposed in this

study is on a practical basis. The teaching of control theory and

robotics at university level is undoubtedly on a theoretical basis.

The missing links that would help students to ■progress naturally frcm

concrete to abstract and frcm practical to theoretical need to be

identified.

- 245 -

APPENDIX I

IMPLEMENTATION OF CONCURRENT-LOGO

This appendix is in four sections. The first gives an overview
of the major components of the Concur rent-Logo system. The second
describes how data is held in the main memory. The third describes
the run time local stacks and how concurrency is implemented. The
last section gives the syntax of Concurrent-Logo as implemented.

1.1 The software

The prototype system was implemented on the Terak 8510. The
implementation language was UCSD Pascal, which is a structured high
level language well suited for software development. The UCSD Pascal
system also has the extended facility for overlay; where the code and
data for a segment procedure are in memory only while there is an
active invocation of that procedure. However, a snag is that a UCSD
Pascal program is not directly compiled into machine executable code.
The program is compiled into an intermediate form called P-code and
the P-code program is interpreted at run time, which reduces the
performance. To compensate the deficiency, time critical routines
were written in assembler and linked together with the compiled
Pascal code.

The Concurrent-Logo system has four main components: a parser,
an interpreter, an editor and a filer.

The parser is responsible for parsing any input text making sure
that it is syntactically correct and also for translating it into an
internal format suitable for execution by the interpreter. The
internal format of a command is in postfix form and is stored as a
list. Examples are given in section 1.2.

The interpreter is responsible for the execution of instructions
in the internal format.

The filer is responsible for saving and retrieving the source of
procedure definitions onto and from the disk respectively. This
simply involves keeping a directory of where a procedure is stored on
disk and initiating block transfers between the main memory and the
disk.

The built-in editor is screen based. It provides the basic
facilities for moving the cursor around the screen, and for insertion
and deletion of text.

- 246 -

The interaction between these components is illustrated below.

| input state: simple input routine | | parse state: parser |

1.2 Format of internal data structures

Beside a text buffer for temporarily holding user input and text for
editing, the Concur rent-Logo system has eight main data areas:

(1) A word space, where all previously unrecognised text
is stored if necessary.

(2) A variable name space, for holding the information
associated with names of variables.

(3) A procedure name space, for holding the information
associated with names of procedures.

(4) A class name space, for holding the information associated
with names of classes.

(5) An object name space,'for holding the information associated
with names of objects.

(6) A guard name space, for holding the information associated
with names of guards.

(7) A list space, for keeping track of lists, procedure
definitions, guard definitions and class procedure defintions.

(8) Eight local stacks, for keeping track of control information,'
procedure parameters and local variables while executing
commands.

Most of these areas are divided into records. Free records within
each of these areas are chained together via their last fields. To
reduce the implementation effort, a garbage collector was not
implemented. Instead, when used records became free they are put back
on the appropriate free list immediately. The following describes
(1) to (7) separately and then gives snapshots of the internal memory
illustrating how these areas relate to one another. The description
of the local stacks is in section 1.3 where the run time organisation
of the systan is described.

- 247 ~

1.2.1 The word space

This space is initialised to hold the names of all the system
procedures and objects. As the system runs, any new text strings,
such as procedure names and variable names not previously recognised
by the system are inserted. Component strings in this space are
stored consecutively without any separators. There are no pointers
frcm this space to anywhere. A pointer into this space is usually
stored together with a number indicating the length of the string
allowing text to be used as identification tags or for printing
purposes.

1.2.2 The variable name space

This space contains information about variables. The space is divided
into records and each record has six fields:

POINTER TO VARIABLE NAME

(in the word space)

LENGTH OF NAME

TYPE OF VALUE

VALUE

LENGTH

POINTER TO NEXT RECORD

If TYPE OF VALUE is

(1) nunber, VALUE holds the value of the number as a 16-bit signed
integer, and LENGTH is not used.

(2) word, VALUE holds the starting address of the word to be found
in the word space, LENGTH holds the length of the word.

(3) list, VALUE holds the starting address of the list to be found
in the list space, LENGTH holds the number of elements in the
list.

- 2118 -

1.2.3 The list space

This space contains information about lists and code for procedures,
guards and objects. The space is divided into blocks and each block
has four fields. In a list, a record looks like this

TYPE OF VALUE

VALUE

LENGTH

POINTER TO NEXT RECORD

If TYPE OF VALUE is

(1) number, VALUE holds the value of the number as a 16-bit signed
integer, and LENGTH is not used.

(2) word, VALUE holds the starting address of the word to be found
in the word space, LENGTH holds the length of the word.

(3) list, VALUE holds the starting address of the list to be found
in the list space, LENGTH holds the number of elements in the
list.

For storing procedure code, the first field of a record is the opcode
and it determines how the second and third fields are used.

1.2.4 The procedure name space

This space contains information about user-defined procedures. The
space is divided into records and each record has five fields: '

POINTER TO PROCEDURE NAME

(in the word space)

LENGTH OF NAME

POINTER TO NAMES OF FORMAL
PARAMETERS

(in the variable name space)

POINTER TO PROCEDURE CODE

(in the list space)

POINTER TO NEXT RECORD

- 249 "

1-2.5 The guard name space

This space contains information about user-defined guards. The space
is divided into records and each record has five fields: '

POINTER TO GUARD NAME

(in the word space)

LENGTH OF NAME

POINTER TO GUARD CODE

(in the list space)

PROCESS NUMBER

POINTER TO NEXT RECORD

The PROCESS NUMBER of a guard is initialised to 0. When the guard is
told to wakeup a new process is allocated for the running of the
guard code. The new process is identified by an integer between 1
and 8 and'this value is stored in PROCESS NUMBER. So, when the guard
is told to sleep the corresponding process can be identified and
removed.

1.2.6 The class name space

This space contains information about different classes of objects.
The space is divided into records and each record has five fields:

POINTER TO NAME OF CLASS

LENGTH OF THE NAME

POINTER TO CLASS PROCEDURES

(in the procedure name space)

POINTER TO NAMES OF OWN
VARIABLES

(in the variable name space)

POINTER TO NEXT RECORD

- 250 -

1.2.7 The object name space

This space contains information about user-defined objects. The
space is divided into records and each record has eight fields?

POINTER TO NAME OF OBJECT

(in the word space)

LENGTH OF THE NAME

POINTER TO CLASS INFORMATION

(in the class name space)

POINTER TO OWN VARIABLES

(in the variable name space)

OBJECT STATUS

POINTER TO WAIT QUEUE

POINTER TO DELAY QUEUE

POINTER TO NEXT RECORD

When a new object is created a new object name block is allocated for
it. POINTER TO CLASS INFORMATION points to the class name block of
which the object is an instance. New variable name blocks are
allocated for the object's own variable.

The fields OBJECT STATUS, WAIT QUEUE and DELAY QUEUE are for the
implementation mutual exclusion and synchroni'sation. To recap, the
special features of an object are:

(1) if an object receives more than one message simultaneously,
they will be processed strictly one at a time.

(2) while obeying a message, if the object encounters the
DELAYIF statement and the condition is evaluated to TRUE,
the bequest is delayed, and the object makes itself available
to other requests. After a request has been successfully
processed the object will check whether it can restart any
previously delayed requests.

Initially OBJECT STATUS is set to 0 and both the WAIT and DELAY
QUEUES are empty. This means that the object is passive - no message
is sent to the object to run any of the procedures defined for the
class it belongs to. When a message is sent to the object the OBJECT
STATUS is set to 1.' During the execution of the procedure if another
process sends a message to the same object that process is suspended
and put on the WAIT QUEUE. The first process in the WAIT QUEUE will
be reactivated when the object has finished the execution of its
current procedure and has checked the DELAY QUEUE.

- 251 -

1.2.8 Snapshots of the internal memory

The following are snapshots of part of the interal manory. They
illustrate more clearly how the internal memory is arrangedand how
procedures definitions are stored. In the illustrations, the end-of-
list character is '*'.

Snapshot 1

After the execution of the commands

MAKE 'X 1000; MAKE 'YZ [999 [998 997] A]

part of the memory looks like:

global variable pointer

list space

- 252 -

Snapshot 2

If a procedure DEMD is defined as

DEMO 'X;
PRINT:X;
PROC-1 // PROC-2 // PROC-3

part of the memory looks like:

procedure pointer

list space

- 253 -

Snapshot 3

After the execution of the commands

NEWCLASS 'DC-MOTOR HAS 'DIRECTION 'POWER
NEWOBJECT 'MOTOR-1 CLASS ' DC-MDTOR
NEWOBJECT 'MOTOR-2 CLASS 'DC-MOTOR
DEFINE 'INIT CLASS 'DC-MDTOR
MOTOR-1 ! INIT 1 2

where INIT is defined as

INIT 'X 'Y
MAKE 'DIRECTION :X
MAKE 'POWER :Y

part of the internal memory looks like:

- 254 "

Snapshot 4

After the execution of the commands

TELL 'BEEP-ONCE
TELL 'BEEP-LOOP

and defined the guards DETECT-ONCE and DETECT-LOOP as

BEEP-ONCE;
WHILE EQU? 'OFF RECEIVER 1 ! STATE ();
SOUND

BEEP-LOOP;
WHENEVER EQU? 'ON RECEIVER 1 ! STATE (SOUND)

part of the internal memory looks like:

guard pointer

BEEP-ONCE OFF^l

word ,-jJ number
_vjL

V

1
/

recei ver
state

/
/

iftrue -> sound r> stop

BEEP-LOOP ON-

word number

equ?

7—
/

r-> iftrue

receiver

state
~7
/

sound

r-> equ:

next

/

- 255 ~

1.3 Run time organisation

The Concurrent-Logo system has eight local stacks. When a process is
activated a free local stack is allocated to'that process. This
means that the system can handle up to eight processes in parallel.
The following description first deals with the simple case of a
single stack and a single process then followed by the description of
the implementation of concurrency.

1.3.1 Local stack

A local stack is organised in records of three fields. A record may
be used for

(1) storing intermediate results when evaluating expressions
(2) storing information concerning the caller of a procedure,

which is used to collapse the stack by one level when
the called procedure ends

(3) storing pointers to parameter/local variables

The latter two types of records are added to the stack whenever a
user-defined procedure is called.

The different formats of a record are:

(1)
TYPE OF VALUE

VALUE

LENGTH OF VALUE

(2)
/

POINTER TO PROCEDURE DEFINITION OF CALLER

POINTER TO PREVIOUS STACK LEVEL

(3)
POINTER TO OBJECT'S NAME RECORD

(if calling an object procedure

POINTER TO OBJECT »S OWN VARIABLES
(if calling an object procedure)

POINTER TO LOCAL/PARAMETER VARIABLES

Associated with each stack is a record of control information. It
has five fields, which provides the information concerning the
current execution state of a process.

- 256 -

POINTER TO TOP OF STACK

POINTER TO BOTTOM OF STACK FOR CURRENT LEVEL

POINTER TO DEFINITION OF PROCEDURE

PROCESS NUMBER OF PARENT PROCESS

NUMBER OF CHILDREN PROCESSES

Consider the execution of the following procedure, which requires
only one process:

COUNT 'X
PRINT :X
IF GRE? X 10 (STOP)

ELSE (COUNT ADD :X 1)

Initially the stack looks like:

control record
local stack

- 257 "

After the procedure has called itself once (i.e recursed two leveis)
the stack looks like this:

- 258 -

1.3.2 Parallel processes

In Concurrent-Logo parallel processes can be activated by the
parallel command '//'. A parallel command is completed when all the
processes that it initiated have been completed.

Consider the execution of the command

PROC-1 // PROC-2 ; PRINT 'FINISHED

When executing the '//' command, the parent process creates two new
processes (child processes): one for executing PROC-1 and the other
for executing PROC-2. Once the child processes are created the parent
process is suspended, i.e. only the child processes are active. When
both child processes terminate, the execution of the parent process
resumes and it prints the word FINISHED.

The implementation of this execution model is very simple. It
requires the parent process to remember, in the control information
record, the number of children processes it has created and each
child process remembers the process number of the parent process.
This can be shown diagramatically as follows:

H 2 3 —

active processes

-»top of stack 1
-^bottom of stack 1
.^command

control record of process 1
(parent process)

->top of stack 2
-^.bottom of stack 2
* PROC-1

->top of stack 3
bottom of stack 3

y PROC-3

control record of process 2 control record of process 3
(child process) (child process)

When a child process terminates, its parent process's count of
children is decremented by one. So when the count finally reached
zero all of the children must have'terminated and the parent process
is made active again.

Concurrent-Logo provides only pesudo parallelism. When more than
one process is active, the interpreter will switch process after
every internal instruction is executed.

- 259 "

1.1.4 Syntax

The syntax of Concurrent-Logo is described using Backus-Naur form.
Syntactic constructs are denoted by English word enclosed between the
angular brackets < and > . These words also describe the nature and
meaning of the constructs. The curly brackets { and } denotes
repetition of the enclosed construct zero or more times. The symbol
<empty> denotes the null sequence of symbols.

<procedure>
<whenever command>

<guard command>
<repeat command>
<delayif command>
<define command>
<new object command>

<commands> ::= <command> {; <command>}
<command> ::= <empty>

<if command>
<forever command>

<object command>
<parallel command>
<while command>

<new class command>

<procedure> ::= <procedure name> {<input>}
<if command>

::= IF <expression> (<commands>)
IF <expression> (<commands>) ELSE (<ccmmands>)

<repeat command>
::= REPEAT <expression> (<commands>)

<while ccmmand>
::= WHILE <expression> (<commands>)

<forever command>
::= FOREVER (<commands>)

<whenever command>

::= WHENEVER <expression> (<commands>)
<parallel command>

::= <command> // <command>

<delayif command>
: := DELAYIF <expression>

<guard ccmmand>
: := <guard name> ! WAKEUP | <guard name> ! SLEEP

<object command>
::= <systan object command> | <user object command>

<user object command>
::= <object name> ! <procedure>

<system object command>
::= MOTOR <subscript> ! <motor command>

RECEIVER <subscript> ! <receiver ccmmand>
SWITCH <subscript> ! <switch command>

Cmotor command>

::= TURNC <input>
STOP

<receiver command>
::= STATE

STOPCOUNT
CLEARCOUNT

<switch command>
::= ON

ONUNTIL <input>

TURNA <input>
COUNT

KEEPCOUNT
COUNT

OFF
STATE

<define command>
::= DEFINE <quoted word>

- 260 -

DEFINE <quoted word> CLASS <quoted word>
<new class ccmmand>

::= NEWCLASS <quoted word> |
NEWCLASS <quoted word> HAS {<quoted word>}

<new object command>
::= NEWOBJECT <quoted word> CLASS <quoted word>

<procedure definition>
= <procedure name> {<argument>} ; <coramands>
= <quoted word>
<expr ession>

<argument>
<input>
<expression>

::= <procedure>
:<word>
<number>

<subscript> ::= <number>
<procedure name>

::= <word>

<object name>
::= <word>

<variable name>

:: = <word>

<guard name>
<word>

< obj ect_command>
<quoted word>
<list>
:<word>

<integer>
<number>

<sign>
<word>

<quoted word>

= <digit>{<digit>}
= <integer>
= +

= <letter>{<character>}

<sign> <integer>

< at om>

<list>
<list element>

: : = <nunber>

= ' <atcm>
= <character>{<character>}
= [{<list element>}]

<list>
< at om>

<digit> := 0 1 2 3 *
6 7 8 9

<character> : = " # $ % &
+ - = * 9

- 261 -

APPENDIX II

WORKSHEETS

- 262 -

WORKSHEET 1

THE BUFFER BOX

A description of the buffer box

On the top of the buffer box there are sixteen sockets; eight blue
ones and eight yellow ones. The yellow ones are for sending out
signals and therefore are called switches. The blue ones are for
receiving signals and therefore are called receivers. In the near
future you will learn how to operate these switches and receivers
using a computer.

For the buffer box to work, it must be connected to the main power
supply and a computer.

At one end of the buffer box there is a wire with a plug attached to
its end. This is for plugging to the main power supply. There is
also a switch besides it for switching the power on and off. At
another side of the buffer box there are two sockets; one is marked
'INPUT' and the other 'OUTPUT'. These are for connecting the computer
to the buffer box.

Connecting the computer to the buffer box

The type of computer that we are using is called a Terak. The ribbon
cable that comes out from the back of the computer has two special
plugs at its end. One is marked 'PORT 0' and the other 'PORT 1'.
The plug that is marked PORT 0 should be connected to the socket that
is marked INPUT on the buffer box. The plug that is marked PORT 1
should be connected to the socket that is marked OUTPUT.

Once all the connections are made and the power is switched on, you
are then ready to start the computer running.

- 263 -

WORKSHEET 2

HOW TO USE THE BUFFER BOX

SWITCHes

The switches on the top of the buffer box are numbered 1 to 8. Just
like most light switches, they can be switched ON and OFF. However,
you cannot do that physically; you have to send them commands through
the computer. The switches can be used to control lights or motors.

To turn a. switch on: type

SWITCH n! ON <RETURN>

This sends a message telling switch n (a number between 1 and 8)
to switch itself on. '<RETURN>' means press the key marked RETURN
on the keyboard.

For example: to turn switch 1 on, type

SWITCH 1! ON <RETURN>

To turn a_ switch off: type

SWITCH n! OFF <RETURN>

For example: to turn switch 6 off, type

SWITCH 6! OFF <RETURN>

A switch can be in one of two states, ON or OFF. To find out the
state of a_ switch: type

PRINT SWITCH n! STATE <RETURN>

This prints the state of switch n.

RECEIVERS

The receivers are for receiving signals from external sensors, e.g.
button switches. A signal can be either ON or OFF. To find out the
state of a_ receiver: type

PRINT RECEIVER n! STATE <RETURN>

Ideas to try out

(1) Using direct commands, make the computer switch a motor on and
off .

(2) Make the computer detect the input from a button switch.

(3) Make the computer control the motor so that whenever the

- 264 -

button switch is pressed the motor will turn, and when the
button switch is released the motor will stop turning.

- 265 -

WORKSHEET 3

CONTROLLING MOTORS

So far, you have used a computer to control a motor so that it can be
made to turn or stop turning. A motor can do more than that, it can
turn in different directions, clockwise or anticlockwise.

To control a motor's direction of rotation you need to connect the
direction socket on the motor module to a switch on the buffer box.
The motor is switched on and off as before, but the motor is made to
turn in opposite directions by turning the direction switch on and
off.

Ideas to try out

(1) Using direct commands, make a motor turn clockwise and
anticlockwise.

(2) Make the computer detect signals from 3 button switches so that
whenever

(a) button switch 1 is pressed the motor turns clockwise

(b) button switch 2 is pressed the motor turns anticlockwise

(c) button switch 3 is pressed the motor stops.

- 266 -

WORKSHEET 4

THE IF COMMAND

You have already used the IF command in NOTE 1 and 2. Here is a more
detailed description of how to use it.

The general form of the IF command is:

IF condition (action ; action ;)

So the IF command is in three parts:

(1) the word IF, followed by

(2) a condition, followed by

(3) an action or a sequence of actions enclosed inside a pair of
brackets.

The sequence of actions will be carried out only if the condition is
true.

Conditions

A frequently used conditional test is to check whether two values are
the same. You can do this by using the EQU? command.

EQU? takes two values as input. If the values are the same the word
'TRUE is returned, otherwise the word 'FALSE is returned.

For example, the command EQU? 2 2 returns the value 'TRUE. So if you
type PRINT EQU? 2 2 to the computer it will print TRUE on the screen.

Try out the following on the computer:

PRINT EQU? 5 ADD 3 2

PRINT EQU? 6 MUL 3 2

PRINT EQU? 9 ADD 4 7

PRINT EQU? 'ON RECEIVER 1 ! STATE

Now hold down the button switch connected to RECEIVER 1 and try
again the command

PRINT EQU? 'ON RECEIVER 1 ! STATE

Did the computer do what you expected it to do?

Now that you understand the EQU? command you can confidently use it

- 267 -

in the conditional part of the IF command.

Try out the following on the computer:

IF EQU? 2 2 (PRINT [MERRY CHRISTMAS])

In this command the condition is EQU? 2 2, which checks whether
the numbers are equal, and the action is PRINT [MERRY CHRISTMAS
]. Because the numbers are equal, therefore the command inside the
brackets is obeyed, which prints the sentence MERRY CHRISTMAS.

IF EQU? 5 ADD 3 2 (PRINT [HAPPY NEW YEAR])

In this command the condition is EQU? 5 ADD 3 2, which checks
whether 5 is equal to the result of adding 3 and 2. If they are
the same the sentence HAPPY NEW YEAR is printed.

IF EQU? 10 ADD 4 5 (PRINT [THIS IS GREAT])

In this command the condition is EQU? 10 ADD 4 5, which checks
whether 10 is equal to the result of adding 4 and 5. Because they
are not equal, the command inside the brackets will not be carried
out.

IF EQU? 'OFF RECEIVER 1 ! STATE (SOUND)

In this command the condition is EQU? 'OFF RECEIVER 1 ! STATE,
which checks if the signal from RECEIVER 1 is 'OFF. If the signal
is 'OFF then the action to be taken is to make a short beep.

IF EQU? 'ON RECEIVER 1 ! STATE (SWITCH 1 ! ON)

In this command the condition is EQU? 'ON RECEIVER 1 ! STATE,
which checks if the signal from RECEIVER 1 is 'ON. If the signal
is 'ON then the action to be taken is turn on SWITCH 1.

Work out the effect of the following
computer.

FOREVER (IF EQU? 'ON RECEIVER 1 !

Now type the command to the computer
expected it to do.

command before tying it to the

STATE (SOUND))

and see whether it does what you

- 268 -

WORKSHEET 5

PROCEDURES & THE WINDOW EDITOR

The most useful feature of Concurrent-Logo is the ease with which you
can build new commands with procedures. Procedures can be used in
exactly the same way as the commands built into Concurrent-Logo.

A procedure consists of two main parts:

TITLE LINE which contains the name of the procedure, followed by a

semicolon, and

BODY which contains a series of commands. The commands are separated
by semicolons and are executed in order.

For example:

WINDMILL;
FOREVER (

IF EQU? 'ON RECEIVER 1! STATE
{MAKE THE MOTOR TURN CLOCKWISE}
(SWITCH 1! ON; SWITCH 2! ON);

IF EQU? 'ON RECEIVER 2! STATE
{MAKE THE MOTOR TURN ANTICLOCKWISE}
(SWITCH 1! OFF; SWITCH 2! ON);

IF EQU? 'ON RECEIVER 3! STATE
{STOP THE MOTOR}
(SWITCH 21 OFF)

)

To make your procedures more readable
(1) choose meaningful procedure names,
(2) lay out commands neatly,
(3) include comments, if necessary.

A comment is English text surrounded by { and } symbols. A comment
may appear anywhere in a procedure, may cover several lines and
appear in the middle of a command, but may not contain the symbol }.
All comments are ignored by the Concurrent-Logo and are used to
amplify and explain the procedure to a human reader.

Examples of legal comments:

{ THIS IS A COMMENT } , { ANOTHER LEGAL COMMENT ~ % $ # [] }

Examples of illegal comments:

{ AN ILLEGAL COMMENT }} , { ANOTHER ILLEGAL COMMENT } OK}

These comments are illegal because, in both cases, the comments end
after the first } symbol and all characters after it are treated as
commands.

- 269 -

Primitives related to procedures

There are five primitives for dealing with procedures.

PROCEDURES
the names of all the procedures currently in the working memory
are printed.

The following primitives take the name of a procedure as input.

DEFINE

it enters the window editor to allow you to define or change a
procedure.
E.g. DEFINE WINDMILL

SCRAP
removes the named procedure from the working memory.
E.g. SCRAP WINDMILL

GET
fetches the named procedure from disk.
E.g. GET WINDMILL

LOSE

removes the named procedure from both disk and the working memory.
E.g. LOSE WINDMILL

Building and changing procedures

After you have typed the DEFINE command, the editor is invoked and
you are in edit mode. The editor clears the text display, and puts a

top and a bottom edge on it. A new cursor appears inside this
window, and the number on the left side of the bottom edge indicates
which line the cursor is sitting on. The keyboard controls the
cursor until you finally presses the ETX or ESCAPE key to get back to
the waiting prompt. The actions of defining or changing a procedure
should be thought of as those of writing or amending a roll of paper
(one roll per procedure) and the screen outlined should be thought of
as a window onto the roll. The roll feeds in at the top, and out at
the bottom. It can be moved both upwards and downwards so that text
can disappear off the top or the bottom. You can change what is on
the roll, or slip whole lines out of the roll, or add whole blank
lines in. The maximum length of the roll is 44 lines long.

In edit mode, various keys that are normally not used now become
useful. These allow you to amend text, insert or delete lines and
move the roll up or down. The keys are:

The arrow keys
which move the cursor around the window in the direction suggested
by the arrow.

- 270 -

BACKSPACE
deletes the character to the left of the cursor and causes the
cursor to move to the left one space.

DEL

which deletes the character the cursor is standing on, and makes
everything on the line to the right of the cursor move one space
left.

US

which deletes the entire line on which the cursor is standing.
Lower lines all move up.

LINEFEED
which pushes the line on which the cursor stands, and everything
below, down a line i.e. it adds in a blank line. The cursor will
then be sitting on the new blank line.

TAB
which is a toggle switch that enables or disables the INSERT MODE.
In insert mode, when a character is typed, instead of overwriting
the character that the cursor is sitting on the typed character is
inserted; the cursor and all the characters which were underneath
and to the left of it move one space to the right.

ETX
which causes the editor to store all of the procedure definition
in working memory and on disk, and then return the system to
waiting for the user's commands.

ESCAPE

which causes the editor to forget all the editing done in the
current session and makes the system return to the waiting state.

Note that the RETURN key does not return the system to the waiting
prompt, it only makes the cursor jump down to the start of the next
line.

- 271 -

WORKSHEET 6

CONTROLLING A MECCANO TURTLE

The turtle is made out of Meccano with two DC motors mounted on it.
The motor on the right hand side is used to drive the right wheel,
and the motor on the left hand side is used to drive the left wheel.

You can make the turtle go forward, backward, left and right by
controlling the motors. Use SWITCHes 1 and 2 to control the right
motor, and use SWITCHes 3 and 4 to control the left motor. SWITCHes
1 and 3 are for controlling the motors' direction of rotation, and
SWITCHes 2 and 4 are for turning the motors on and off.

Ideas to try out

(1) Drive the turtle using direct commands.

(2) Write four different procedures to make the turtle go forward,
backward, left and right.

(3) Make the computer detect signals from five button switches so
that whenever

(a) button switch 1 is pressed the turtle moves forward

(b) button switch 2 is pressed the turtle moves backward

(c) button switch 3 is pressed the turtle moves right

(d) button switch 4 is pressed the turtle moves left

(e) button switch 5 is pressed the turtle stops moving.

(4) Make the turtle move at different speeds.

(5) Make the turtle move in units of distance.

- 272 -

WORKSHEET 7

ARITHMETIC AND VARIABLES

Up to now, you have learnt to control SWITCHes and RECEIVERS, and
have also learnt to use

(1) the FOREVER command,
(2) the IF command and
(3) the screen editor to build procedures.

In this note you will be introduced Concurrent-Logo's arithmetic
commands and the idea of a variable.

A first look at the PRINT command

Printing numbers:

e.g. PRINT 3

Try using the PRINT command with other numbers (both positive and
negative).

Printing words:

e.g. PRINT 'HELLO

A word must have a_ single apostrophe before it.
Try using the PRINT command with other words.

Printing lists:

e.g. PRINT [THIS IS A LIST WITH 7 ELEMENTS]

Try using the PRINT command with other lists.

The PRINT command takes one input, which can be a number, word or
list.

Arithmetic commands

Concurrent-Logo can do arithmetic for you. However, it only uses

integers (whole numbers like -1000, 0, 2, 99).

For the operations of addition, subtraction, multiplication, division
and finding the remainder, Concurrent-Logo uses the following
commands:

Concurrent-Logo commands

addition
subtraction

ADD
SUB

- 273 -

multiplication MUL
division DIV
remainder REM

These arithmetic commands take two inputs
result.

and return a number as

e.g. PRINT ADD 7 2
PRINT SUB 7 2
PRINT MUL 7 2
PRINT DIV 7 2
PRINT REM 7 2

Try out the above examples, and use Concurrent-Logo to
following arithmetic expressions:

evaluate the

a)
b)
c)
d)
e)
f)

4
4

* 3

As you have probably found out, the computer does not always
understand what you type in. If it returned an unexpected result
then try again.

/T do not understand the expression 1+2+3,
/ but I understand ADD 1 ADD 2 3
I which has a result of 6.

/ \

Variables

Instead of printing the result of a computation on the screen, the
value can be stored and looked at later. You do this by using the
MAKE and VALUE commands.

E.g. MAKE 'EMERGENCY.NUMBER 999
PRINT VALUE 'EMERGENCY.NUMBER

The MAKE command takes two inputs. The first is the name (a word) of
a box, and the second is the thing that is to be put into the box.

The VALUE command takes one input, which is the name (a word) of a
box, and returns the thing that is inside the box.

- 274 -

Note that colon (:) may be used as an abbreviation for the VALUE
command. If used, the colon must be the character immediately before
the name of the box, and the single apostrophe is omitted.
E.g. PRINT :EMERGENCY.NUMBER

Try out the following on a computer:

MAKE 'FRUIT 'APPLE
MAKE 'APPLE 'DELICIOUS
PRINT :FRUIT
PRINT :APPLE

MAKE 'APPLE.PRICE 30
MAKE 'PORK.PRICE 95
MAKE 'BREAD.PRICE 40
PRINT :APPLE.PRICE
PRINT :PORK.PRICE
PRINT :BREAD.PRICE
MAKE 'TOTAL.PRICE ADD :APPLE.PRICE ADD :PORK.PRICE :BREAD.PRICE
PRINT :TOTAL.PRICE

- 275 -

WORKSHEET 8

MANIPULATING LISTS

In the previous lesson you have learnt how to print a list. In fact,
there is a lot more you can do with lists. This note tells you
something about manipulating lists.

What a list is

A list is an ordered collection of numbers and words. The collection
is bound between two square brackets, [at the start,] at the end.
These are lists:

[THIS IS A LIST]
[0123456789]
[THERE ARE 10 GREEN BOTTLES ON THE WALL]
[]

In the first, second and third examples, the words and the numbers
are called the 'elements' of the list.

The fourth example was the empty list. It has no (0) elements.

Inside a list, words do not need to begin with a quote mark.

LENGTH

To find out how many elements there are in a list, use the LENGTH
primitive, like this:

PRINT LENGTH [HA HA HA]
PRINT LENGTH [HELLO HELLO HELLO HELLO HELLO]
PRINT LENGTH [HOW ARE YOU ?]
PRINT LENGTH [HOW ARE YOU?]
PRINT LENGTH []

These commands will make Concurrent-Logo print 3, 5, 4, 3 and 0 respectively,
Try them on the computer.

FIRST and REST

The primitive FIRST finds the first item in a list and returns it.
For example if you gave the commands

MAKE 'X [SUNDAY WAS VERY QUIET]

and

MAKE 'Y [MORNING HAS BROKEN]

then

- 276 -

PRINT FIRST :X
PRINT FIRST :Y

will print respectively

SUNDAY

MORNING

Whatever is first in the list is passed back to PRINT.

The primitive REST removes the first item from a list and returns the
rest of the list. For example

PRINT REST :X
PRINT REST :Y

will print

WAS VERY QUIET
HAS BROKEN

You may not use the empty list as input to FIRST and REST (if you do,
you get an error message).

Adding elements to a list

You can tack an element onto the begging of a list using PUTF (put
first). Here is an example of PUTF:

MAKE 'X [2 3 4]
PRINT PUTF 1 :X

Concurrent-Logo prints

12 3 4

but (as before) X is still [234],

To make X become [1234]:

MAKE 'X PUTF 1 :X
PRINT :X

Example and exercise

Example: Print a short description of a friend.

FRIEND 'NAME 'PRONOUN;
PRINT PUTF :NAME [IS A FRIEND OF MINE];
PRINT PUTF :PRONOUN [IS NOW 16];
PRINT PUTF :PRONOUN [IS VERY TALL];

- 277 -

This procedure takes two inputs. The first is a name of a friend.
The second is a word, either HE, SHE or IT.

Try it out with

FRIEND 'JIMMY 'HE
FRIEND 'SUSAN 'SHE
FRIEND 'BOBBY 'IT

Exercise:

A procedure called PUTL (put last) is defined for you, and is on
your disk. This procedure is similar to PUTF, but instead of
tacking an element onto the beginning of a list, it tacks the
element onto the end of a list.

For example

PRINT PUTL 'THIN PUTL [HE IS VERY]

would print HE IS VERY THIN.

Get the procedure PUTL into memory and then change the FRIEND
procedure so that it can describe your friends differently.

- 278 "

WORKSHEET 9

CONTROLLING A MECCANO LIFT

The lift is made out of Meccano with one DC motor and three reed
switches. The motor is used to drive the lift cage up and down, and
the reed switches are for detecting whether the lift cage is at a
particular location.

Use switch 1 for turning the motor on and off, and switch 2 for
controlling the motor's direction of rotation. When the motor turns
clockwise it winds the string that is attached to the lift cage so
that the lift cage is pulled upwards; and when the motor turns
anticlockwise it unwinds the string so that the lift cage will move
downwards.

Connect the bottom reed switch to RECEIVER 1, and the second and top
reed switches to RECEIVERS 2 and 3 respectively. Initially the
states of all these RECEIVERS are OFF. When the lift cage passes any
of these reed switches the corresponding RECEIVER'S state will then
be ON.

By controlling the motor, you can make the lift cage go to different
floors. You can know whether the lift cage has reached a particular
floor by detecting the state of the corresponding RECEIVER.

Programs for you to try out

Type the following to the computer

GETCLASS LIFTS

NEWOBJECT LIFT CLASS LIFTS
LIFT! READY

The above three commands set up the lift for you.

You can make the lift cage move up to the third floor and down to the
ground floor by the command

LIFT! UPANDDOWN

Now try

REPEAT 2 (LIFT! UPANDDOWN)

You can make the lift cage move to a particular floor by giving the
lift the MOVETO command. The MOVETO command takes one input, which is
the floor number, e.g. 1 for ground floor. Try the following:

LIFT! MOVETO 3
LIFT! MOVETO 2
LIFT! MOVETO 1
LIFT! MOVETO 3; LIFT! MOVETO 1

- 279 -

Exercise

(1) Write you own procedure CYCLE which moves the lift cage up and
down repeatedly.

(2) Write you own procedure GOTO which moves the lift cage to a
particular floor.

(3) Make the computer detect signals from three button switches so
that whenever

(a) button switch 1 is pressed the lift cage moves to the
ground floor.

(b) button switch 2 is pressed the lift cage moves to the
second floor.

(c) button switch 3 is pressed the lift cage moves to the
third floor.

- 280 -

WORKSHEET 10

A COMPUTER CONTROLLED SECURITY SYSTEM

The idea of this project is to learn something about how a computer
can be used to protect a house against burglars.

Connections

The Meccano doll's house has four micro-switches, two reed switches,
one button switch and one DC motor fitted to it.

Use switch 1 for turning the motor on and off, and switch 2 for
controlling the motor's direction of rotation. When the motor turns
anticlockwise the door slides open; when the motor turns clockwise
the door slides to its close position.

Looking at the house from the back, connect

(1) the right reed switch to RECEIVER 1 and

(2) the left reed switch to RECEIVER 2.

The reed switches are used to detect the position of the door. When
the door is at the closed position the state of RECEIVER 1 is OFF and
RECEIVER 2 is ON; when the door is at the open position the state of
RECEIVER 1 is ON and RECEIVER 2 is OFF.

Behind every window on the doll's house there is a micro-switch.
Again, looking at the house from the back, connect

(1) the top left micro-switch to RECEIVER 3,

(2) the bottom left micro-switch to RECEIVER 4,

(3) the top right micro-switch to RECEIVER 5 and

(4) the bottom right micro-switch to RECEIVER 6.

Initially the states of these RECEIVERS are OFF. When a window is
pushed opened the corresponding RECEIVER'S state will then be ON.

Connect the button switch, which is next to the sliding door, to
RECEIVER 7. The button switch is used as a door bell.

Ideas to try out

(1) Make the computer detect if a burglar is trying to break in
through any of the windows.

- (a) If any of the windows is open, make the computer sound
continuously and print the message [SOMEONE IS TRYING TO
BREAK IN THROUGH THE WINDOWS].

- 281 -

(b) Modify the program so that the computer tells you exactly
which window is being opened.

Make the computer be the door keeper.

(a) Whenever the button switch is pressed the door slides
open, and then after a short while the door closes
automatically.

(b) Whenever the button switch is pressed the computer asks
you for a secret word. If your answer is correct the door
slides open, otherwise the door remains closed.

Combine the ideas above in one program.

- 282 -

WORKSHEET 11

TURTLE AND STEPPING MOTORS

The turtle you are going to work with is a modified version of the
previous one. The main difference is the type of motors used.

Connect the left motor to the socket marked '1' on the stepping motor
module; connect the right motor to the socket marked '2'. Now, the
left motor is referred to as MOTOR 1; the right motor is referred to
as MOTOR 2. Each motor can respond to 3 commands:

(1) TURNC n, which tells a motor to turn clockwise n steps.

For example, the command

MOTOR 1! TURNC 200

would make the left motor turn clockwise 200 steps.

(2) TURNA n, which tells a motor to turn anti-clockwise n

steps. For example, the command

MOTOR 2! TURNA 200

would make the right motor turn anti-clockwise 200 steps.

(3) STOP, which tells a motor to stop turning.
For example, the command

MOTOR 2! STOP

would make the right motor stop turning.

Making the turtle move forward

Here is a procedure that would make the turtle move forward.

FORWARD 'X;
MOTOR 1! TURNC :X // MOTOR 2! TURNA :X

The procedure takes a number as input. The input value specifies the
number of steps that the turtle is to be moved. When the procedure
is called, the two motor commands will be run in parallel, causing
the motors to turn simultaneously. Notice, the motors are mounted
back to back. Therefore, for the turtle to move in a straight line
the two motors have to turn in opposite directions.

Exercise

(1) Type in the FORWARD procedure and try it out with different
input values.

(2) What would happen if the symbol '//" is replaced by

- 283 -

(3) Define your own procedures: BACK, LEFT and RIGHT.

- 284 -

WORKSHEET 12

TURTLE AND REFLECTIVE OPTO-SWITCHES

There are two small black objects fixed to the front of the
They are called reflective opto-switches (ROS). Connect the
to RECEIVER 1 and the right ROS to RECEIVER 2. Once a
connected to the BUFFER BOX,

(1) when it is placed above a black surface, it sends
signal to the computer;

(2) when it is placed above a reflective surface, for example a
white surface, it sends an 'OFF' signal to the computer.

The procedure

LEFT.ON.WHITE;
RESULT NOT EQU? 'ON RECEIVER 1! STATE

would return the value 'TRUE if the left ROS is on a reflective

surface, otherwise 'FALSE.

Exercise

(1) Type in the LEFT.ON.WHITE procedure and try it out.

(2) Define your own procedure RIGHT.ON.WHITE to test whether the
right ROS is on a white surface.

(3) You now have a collection of procedures that would

(a) make the turtle move in different directions for a

specified number of steps;

(b) test whether the turtle is on a white surface.

Making use of these procedures, write a new procedure that would make
the turtle follow a black line on a white surface.

Hint: make the turtle move forward in small steps,

turtle.
left ROS
ROS is

an 'ON'

- 285 -

WORKSHEET 13

BINARY CODE

Let the letters A to 0 be represented by the following patterns:

HIHIfli
ABCDEFGH

I IIIII I! II11
I J K L M N 0

Each pattern has four binarys. Each binary is either black or white.
We shall call these patterns binary codes. You may have seen similar
binary codes on products you buy from super-markets. Using the given
information above, can you work out what the following sequence of
binary codes represents:

i nun i n
Answer: .

I am sure you found the problem very easy. Let us consider how we can
program the computer to do it for us.

Identifying an 'A'

We are going to make use of the turtle with reflective-opto switches.

The binary code for 'A' is drawn on a piece of paper. The width of
each binary is 21 units of turtle movement, i.e. FORWARD 21 would
move the turtle from the centre of one binary to the centre of the
next binary. The following procedure A would make the turtle move
over a binary code and print out whether it represents 'A'.

- 286 -

A;
MAKE 'ANSWER 'TRUE;
FORWARD 21;
IF LEFT.ON (MAKE 'ANSWER 'FALSE);
FORWARD 21;
IF LEFT.ON (MAKE 'ANSWER 'FALSE);
FORWARD 21;
IF LEFT.ON (MAKE 'ANSWER 'FALSE);
FORWARD 21;
IF LEFT.OFF (MAKE 'ANSWER 'FALSE);
IF :ANSWER (PRINT [THE BAR CODE IS 'A'])

ELSE (PRINT [THE BAR CODE IS NOT 'A'])

The procedure assumes that the binary code does represent the letter
'A', That is why the first command sets the variable ANSWER to TRUE.
It then makes the turtle travel from one binary to the next. If it
detects that the colour of a binary is not as expected it changes the
value of ANSWER to FALSE. After all the binarys have been tested if
the value of ANSWER remains TRUE then the binary code does represent
A.

Exercise

(1) Type in the procedure A and try it out.

(2) Define procedures to identify other binary codes.

(3) Define a procedure to tell you what a binary code represents.

- 287 -

WORKSHEET 14

A TEACHING PROGRAM FOR THE ROBOT ARM

The robot arm you are going to work with is called ARMDROID. It
consists of five main parts: fingers, wrist, forearm, upper arm and
shoulder. The following shows the movements that the different parts
can make:

(1) fingers can open and close;

(2) wrist can raise up and lower down vertically;

(3) wrist can rotate right or left;

(4) forearm can rotate clockwise and anti-clockwise, about a
horizontal axis on the upper arm;

(5) upper arm can rotate clockwise and anti-clockwise, about a
horizontal axis on the shoulder;

(6) shoulder can rotate clockwise and anti-clockwise, about the
base.

Notice the wrist has two sets of movements.

There is a set of procedures, already defined for you, for
manipulating ARMDROID. They are called TEACH, REMEMBER, REPLAY and
FORGET.

The procedure TEACH

This procedure enables you to control the movement of ARMDROID by
single key-presses. As described above, there are six sets of
movements, with two directions in each set, associated with the
ARMDROID. Therefore, twelve keys on the keyboard are used to initiate
movement of the arm. Fig 1 represents part of the TERAK keyboard,
and the keys that are used are bracketed.

|l|2|3|4|5|6|7|8|9|°|

| (Q) | (W) | (E) | (R) | (T) | (Y) | U | I | 0 | P |

| (A) | <S) | (D) | (F) | (G) | (H) | J | K | L |

fig 1

- 288 -

The function of the keys

(1) The two keys and 'A', below the numeric key 1, are for
opening and closing the fingers respectively.

(2) The two keys ~W" and 'S', below the numeric key 2, are for
raising and lowering the wrist respectively.

(3) The two keys "E' and 'D~, below the numeric key 3, are for
rotating the wrist.

(4) The two keys "R~ and "F", below the numeric key 4, are for
rotating the forearm.

(5) The two keys 'T' and "G", below the numeric key 5, are for
rotating the upperarm.

(6) The two keys "Y" and "H", below the numeric key 6, are for
rotating the base.

All other keys, when pressed, stop the arm moving.

When the procedure is first called, it asks the question

FOR EACH COMMAND, HOW MANY UNITS OF MOVEMENT ?

Type in a number and press RETURN. From then on, whenever you press
any of the tweleve keys mentioned above, the corresponding part of
the arm will move, in the predefined direction, the number of steps
input. To change the number, press RETURN and you will be asked the
question again.

The idea is to move the arm, in big steps, roughly to its desired
position. Then, move it in small steps to the exact position.

Once you have moved the arm to the desired position, press ESC to
stop the procedure.

The procedure REMEMBER

The procedure REMEMBER tells the computer to remember the present
position of ARMDROID.

The procedure is defined to remember up to ten positions in the order
you told the computer.

- 289 -

The procedure REPLAY

The procedure REPLAY does two things:
(1) it moves ARMDROID to the starting position;
(2) it moves ARMDROID from position to position in the order you

told the computer to remember.

The procedure FORGET

The procedure FORGET tells the computer to forget the sequence of
positions it has been told to remember previously.

The set of procedures just described allows you to train ARMDROID to
follow a sequence of actions.

Ideas to try out

(1) Train ARMDROID to pick up a block and put it on top of another.

(2) Train ARMDROID to put a few blocks into a box and then put the
lid on the box.

- 290 -

WORKSHEET 15

HOW ARMDROID WORKS

The five main parts of ARMDROID are controlled by six stepping
motors:

(a) MOTOR 1 controls the fingers
(b) MOTOR 2 and 3 control the wrist
(c) MOTOR 4 controls the forearm
(d) MOTOR 5 controls the upper arm
(e) MOTOR 6 controls the shoulder.

The stepping motors used for ARMDROID and the turtle are of the same
kind.

To recap, the commands for stepping motors are

(a) TURNC n, which tells a motor to turn clockwise n steps.
E.g. MOTOR 1! TURNC 200.

(b) TURNA n, which tells a motor to turn anti-clockwise n step.
E.g. MOTOR 2! TURNA 200.

(c) STOP, which tells a motor to stop turning.

Now, send commands to different motors and observe the effect on

ARMDROID.

Closing the fingers

Here is a procedure that would close the fingers:

FINGERS.CLOSE 'X;
MOTOR 1! TURNC :X

The procedure takes a number as input. The input value specifies the
number of units that the fingers are to be closed.

Exercise

(1) Type in the FINGERS.CLOSE procedure and try it out with
different input values.

(2) Define procedures FINGERS.OPEN, FOREARM.DOWN, FOREARM.UP,
UPPERARM.DOWN, UPPERARM.UP, SHOULDER.LEFT, and SHOULDER.RIGHT.

- 291 "

Controlling the wrist

Unlike other parts, the wrist is controlled by two motors. By trying
out the following commands and filling in the blanks you will
appreciate how the wrist is being controlled.

(1) The command MOTOR 2!
made the wrist move

TURNA 50
•

(2) The command MOTOR 2!
made the wrist move

TURNC 50
•

(3) The command MOTOR 3!
made the wrist move

TURNA 50
•

(4) The command MOTOR 3!
made the wrist move

TURNC 50
•

(5) The command MOTOR 2!
made the wrist move

TURNA 50 // MOTOR 3! TURNA 50
•

(6) The command MOTOR 21
made the wrist move

TURNA 50 // MOTOR 3! TURNC 50
•

Exercise

Define procedures WRIST.UP, WRIST.DOWN, WRIST.RIGHT and WRIST.LEFT.

- 292 -

WORKSHEET 16

MORE ABOUT HOW ARMDROID WORKS

From the previous note you have learnt how different parts of
ARMDROID are controlled by stepping motors. This note tells you how
the computer keep track of ARMDROID's position.

Keeping count

Every stepping motor has a variable COUNT. When the computer is
switched on these variables are set to 0.

Whenever a motor turns clockwise the value of its COUNT variable is

automatically incremented by the number of steps turned; whenever a
motor turns anticlockwise the value of its COUNT variable is
decremented by the number of steps turned. For example, if the value
of MOTOR l's COUNT is 0, after executing the command

MOTOR 1! TURNC 50

the value of MOTOR l's COUNT would be 50. The values of other MOTORs'
COUNT variables are unaffected. If we now give the command

MOTOR 1! TURNA 80

the value of MOTOR l's COUNT would be decremented by 80, and it would
have -30 as its new value.

The command

MOTOR n! COUNT

returns the value of MOTOR n's COUNT.

E.g. PRINT MOTOR 1! COUNT

would, print -30 on the screen.

ARMDROID's position

Any position within the space of ARMDROID's movement can be
conveniently representing as a list of six numbers. The starting
position of ARMDROID is always [000000], the first number being
the value of MOTOR l's COUNT, the second being the value of MOTOR 2's
COUNT and so on. For example, to move ARMDROID from its starting
position to position [20 000 -100 0], MOTOR 1 needs to turn
clockwise 20 steps and MOTOR 5 needs to turn anticlockwise 100 steps.

There are two useful procedures which are already defined for you.
They are called: POSITION and MOVETO.

The procedure POSITION

This procedure returns the position of ARMDROID as a list of six

- 293 -

numbers. For example, if ARMDROID was at its starting position, the
command

PRINT POSITION

would print 00000 0 on the screen. If MOTOR 1 had turned
anticlockwise 30 steps and MOTOR 4 had turned clockwise 100 steps
then the command

PRINT POSITION

would print -30 0 0 100 0 0 on the screen.

The procedure MOVETO

The procedure MOVETO takes a list of six numbers as input. When the
procedure is called, it moves ARMDROID to the position specified by
the input.

For example, if you had recorded a block is at position [-20 30 245
-68 97 100] then the command

MOVETO [-20 30 245 -68 97 100]

would move ARMDROID to the block. The command

MOVETO [000000]

would move ARMDROID to its starting position.

Exercise

(1) Define a procedure PICKUP that would move ARMDROID to pick up
a block at a particular position.

(2) Define a procedure PUT.IN.BOX that would put whatever is in
ARMDROID's fingers into a box.

- 294 "

APPENDIX III

QUESTIONNAIRES

- 295 -

QUESTIONNAIRE 1 NAME

Please fill in the following:

(1) Have you used a computer before?

If yes, what did you use it for?

(2) Do you own or use a computer now?

(3) Write down all the things that you know or think a computer
can do?

(4) Have you written any program before?

If yes, please write down brief descriptions of the programs
and the programming languages used.

(5) Can you program the computer to do any of the things you
mentioned in 3)?

(6) Do you think computing is fun? If you have not done any, does
it sound like fun?

(7) Do you think computing is important? Try to say why, not just
'yes' or 'no'.

(8) Would you like to know more about computing?

- 296 -

(9) Do you think you would be good at computing?

- 297 -

QUESTIONNAIRE 2 NAME:

A 'robot' is really any kind of controllable machine that you don't have
to work directly. Besides the science-fiction notion of robot, there are
examples such as various radio-controlled toys, 'Big Trak'
and 'programmable' train sets.

Please fill in the following:

(1) Do you think robots are fun?

(2) Do you have some idea of how a robot works?

(3) Would you like to learn to program a robot?

(4) Do you like building working models of any kind?
If you do, please write down what you use for building -

e.g. Meccano, Fisher-Technik, wood.

- 298 -

QUESTIONNAIRE 3 NAME:

INTERMEDIATE PROGRESS SURVEY

I would like to know something about your response towards the course
so far. I have set out some questions to show you the kind of
information that I need. I would be very interested in any additional
comments and suggestions that you make.

General questions

For the following 3 questions, please put a circle around the most
appropriate answer.

(1) Do you think you have learned anything useful so far?
(a) a lot
(b) quite a lot
(c) some

(d) a little
(e) very little

(2) Did you find the course enjoyable?
(a) most enjoyable
(b) enjoyable
(c) fair
(d) boring
(e) very boring

(3) Do you think your teacher had given you the help you required?
(a) far too much
(b) too much
(c) about right
(d) too little
(e) much too litle

Concerning.each device

So far you have worked with the following devices:
(1) Windmill
(2) Turtle
(3) Doll's house
(4) Lift

Which one did you enjoy working with most? Why?

For each device please describe (you may consult your notes):
(1) What are the essential components? What are they for?
(2) What did you learn through working with it?
(3) What did you find difficult?
(4) What did you find easy?
(5) What did you find interesting?
(6) Would you like to have spent more, or less, time with it?

- 299 -

QUESTIONNAIRE 4 NAME:

FINAL SURVEY

I would like to know something about your response towards the whole
course. I have set out some questions to show you the kind of
information that I need. I would like to stress that this is not a

test so please feel free to express your own opinion. I would be
very interested in any additional comments and suggestions that you
make.

For a multiple choice question please put a circle around the most
appropriate answer. For other questions please put your answers on
the blank papers provided.

(1) Did you find the course enjoyable?
(a) most enjoyable
(b) enjoyable
(c) fair
(d) boring
(e) very boring

(2) Do you think you have learned anything useful?
(a) a lot
(b) quite a lot
(c) some

(d) a little
(e) very little

(3) Do you think your teacher (Paul Chung) had given you the help
you required?
(a) far too much
(b) too much
(c) about right
(d) too little
(e) much too litle

(4) Did you find the notes helpful?
(a) very helpful
(b) helpful
(c) fair
(d) not helpful
(e) not helpful at all

(5) Did you find the notes clear?
(a) very clear
(b) clear
(c) fair
(d) not clear
(e) not clear at all

- 300 -

(6) How many people do you prefer to work with?
(a) by yourself
(b) with 1 friend
(c) with 2 friends
(d) with 3 friends
(e) with 4 friends

(7) Would you like to have received more notes?

(8) Would you like your teacher (Paul Chung) to give you more
explanation and teaching about computer control applications?

(9) Would you recommend the course to your friends?

(10) So far you have worked with the following devices:
(a) Windmill
(b) Turtle
(c) Doll's house
(d) Lift
(e) Turtle with reflective-opto sensors
(f) Robot arm

Please write them down in order of preference, starting with the one

you enjoy working with most,

(11) For the top three choices, give reasons for why you like them.

(12) For the version of the turtle with sensors and the robot arm

please describe (you may consult your notes):

(a) What are the essential components? What are they for?
(b) What did you learn through working with it?
(c) What did you find difficult?
(d) What did you find easy?
(e) What did you find interesting?
(f) Would you like to have spent more, or less, time with it?

(13) Would you like to design your own device, e.g. crane, using
Meccano and then write a program in Concurrent-Logo to control
it?

(14) Do you feel confident that you can do it? What are the
difficulties?

(15) What other devices would you like to work with?

(16) Would you like to have Concurrent-Logo on your personal
computer? Why?

(17) Did you find Concurrent-Logo easy to use?

(18) What did you like about it?

(19) What didn't you like about it?

(20) Would you like to learn more about Concurrent-Logo?

- 301 -

(21) To make stepping motor 1 turn clockwise 300 steps, which command
do you prefer (or suggest your own)?

(a) MOTOR 1 ! TURNC 300
(b) MOTOR 1 TURNC 300
(c) TURNC 1 300

(22) To turn switch 2 on, which command format d£ you prefer (or
suggest your own)?

(a) SWITCH 2 ! ON
(b) SWITCH 2 ON
(c) ON 2

(23) To find out the state of receiver 3, which command format do you

prefer (or suggest your own)?

(a) RECEIVER 3 ! STATE
(b) RECEIVER 3 STATE
(c) STATE 3

- 302 -

QUESTIONNAIRE 5 NAME:

TEST

I would like to know how much you have learnt from the course. I
have set out some questions for you to answer. Please try to answer
all questions and to give the fullest explanation.

(1) What is a push-button switch for?

(2) What is a reed switch for?

(3) What is a reflective-opto switch for?

(4) What are the differences between working with DC motors and
stepping motors?

(5) What are the difficulties in training a robot arm to do a
sequence of actions?

(6) What are the advantages of having sensors attached to a control
device?

(7) Please describe the effects of

(a) PRINT 'A
(b) REPEAT 10 (PRINT 'A)
(c) FOREVER (PRINT 'A)
(d) REPEAT 10 (PRINT 'A); REPEAT 10 (PRINT "B)
(e) REPEAT 10 (PRINT 'A) // REPEAT 10 (PRINT 'B)
(f) FOREVER (PRINT 'A); FOREVER (PRINT 'B)
(g) FOREVER (PRINT 'A) // FOREVER (PRINT 'B)

(8) What is the difference between?
(a)

IF EQU? :A :B (SOUND)

and

FOREVER (IF EQU? :A :B (SOUND))

(b)
FOREVER (PRINT 'A; PRINT 'B; PRINT 'C; SOUND)

and

FOREVER (PRINT 'A; PRINT 'B; PRINT 'C) // FOREVER (SOUND)

- 303 -

(c)
FOREVER (IF EQU?

IF EQU?
IF EQU?

and

'ON RECEIVER 1!
'ON RECEIVER 2!
'ON RECEIVER 3!

STATE (REPEAT
STATE (REPEAT
STATE (REPEAT

1000 (PRINT 1);
1000 (PRINT 2);
1000 (PRINT 3))

FOREVER (IF EQU? 'ON RECEIVER 1! STATE (REPEAT 1000 (PRINT 1)) //
FOREVER (IF EQU? 'ON RECEIVER 2! STATE (REPEAT 1000 (PRINT 2)) //
FOREVER (IF EQU? 'ON RECEIVER 3! STATE (REPEAT 1000 (PRINT 3))

9) Do you think procedures are useful? If yes, why?

10) If you know BASIC, can you tell me what are the differences
between subroutines in BASIC and procedures in Concurrent-Logo?

11) Do you consider parallelism is an important part of a
programming language? Why?

12) Fig 1 is a model cable car made out of Meccano. I would like
you to consider using a computer to control it. Assuming the
cable car is initially at the bottom level, the task is

(1) make the cable car move to the top level

(2) wait for a short while

(3) make the cable car move to the bottom level

(4) wait for a short while

(5) continue from 1.

What electronic components would you use for this project?

What are you using them for?

Please write down the names of the procedures you would define,
and explain the function of each (no need to write the procedure
code).

- 304 -

Figure 1 Cable car

- 305 -

(13) Fig 2 is a model crane made out of Meccano. It has three moving
parts:

(a) the hook which moves up and down

(b) the jib which rotates clockwise and anticlockwise in a
vertical plane

(c) the upper part of the crane which rotates clockwise and
anticlockwise in a horizontal plane.

I would like you to consider using a computer to control it.
The task is to provide a control box with six buttons so that
whenever

(1) button 1 is pressed the hook moves up a fixed amount

(2) button 2 is pressed the hook moves down a fixed amount

(3) button 3 is pressed the jib rotates clockwise a fixed
amount

(4) button 4 is pressed the jib rotates anticlockwise a fixed
amount

(5) button 5 is pressed the upper part of the crane rotates
clockwise a fixed amount

(6) button 6 is pressed the upper part of the crane rotates
anticlockwise.

What electronic components would you use?

What are you using them for?

Please write down the names of the procedures you would define,
and explain the fuction of each (no need to write the procedure
code).

- 306 -

Figure 2 Crane

- 307 -

APPENDIX IV

CONTROL APPLICATIONS TESTS

- 308 -

PRE-TEST

Name:
Date:

This test is to find out something about your experience and
knowledge about control applications. It does not matter if you find
the questions difficult. Even if you do, please try to answer all the
questions and to give the fullest explanation. Please put your
answers on the blank papers provided. You can take as long as you
like over the test. • ■

(1) (a) Do you like building working models of any kind?

(b) What have you built before?

(c) What did you use for building - e.g. Meccano, Lego,
wood?

(2) (a) Have you done any programming before?

(b) Which programming languages have you used?

(c) For each of the following, explain what they mean and why
they are important features of a programming language for
writing control programs:

(i) input,
(ii) output,
(iii) procedure,
(iv) conditional execution, and
(v) parallel processing?

(3) (a) Are you familiar with electronics?

(b) What is a sensor? Please give examples.

(c) What is an actuator? Please give examples.

(4) (a) Have you any idea how a robot arm is programmed to do a
sequence of actions?

If so, please describe.

- 309 -

What is feedback.

Figure 1 shows a sequence of positions of a robot arm
un-stacking the top block of a pile of blocks. The robot
arm does not have touch sensors or cameras attached to it.

(a) Which of the positions shown must the computer remember in
order to repeat the sequence of un-stacking the top block?

(b) Is there any crucial position missing from the figure?
If so, illustrate it with a simple diagram.

- 310 -

Position 1 Position 2

Position 3 Position 4

Position 5

Figure 1

- 311 -

The letters A to I are represented by the following patterns:

A

f
E

Each pattern has three bars. Each bar is either black or white
We shall call these patterns bar codes.

(a) Using the given information above, what does the following
sequence of bar codes represent:

-if*
iff-

(b) Describe a control device that can recognise this kind of
bar coded information.

- 312 -

The following diagram shows two railway tracks with a
locomotive on each one of them.

The locomotives are computer controlled, i.e. the computer can
make them move forward and stop.

How would you program these locomotives so that they can move
along their own tracks without crashing into each other, either
at junction A or B? You can make use of extra electronic components
if you like.

- 313 -

POST-TEST

Name:

Date:

This test is to find out how much you have learned from the course It
does not matter if you find the questions difficult. Please still
try to answer all the questions and to give the fullest explanation.
For a multiple choice question please put a circle around the most
appropriate answer. For other questions, please put your answers on
the blank papers provided. You can take as long as you like over the
test.

(1) How is a reed switch activated?

(a) When it is immersed in water.
(b) When it is placed close to a magnet.
(c) When it is placed just above a white surface.
(d) When the temperature is in a particular range.
(e) When it is being pressed.

(2) How is a reflective-opto switch activated?

(a) When it is immersed in water.
(b) When it is placed close to a magnet.
(c) When it is placed just above a white surface.
(d) When the temperature is in a particular range.
(e) When it is being pressed.

(3) What is the main difference between working with DC motors and
stepping motors?

(a) DC motors turn faster than stepping motors.
(b) DC motors consume less power than stepping'motors.
(c) Stepping motors can only turn in one direction but

DC motors can turn in either direction.

(d) It is easier to control how far a stepping motor turns than
how far a DC motor turns.

(e) Stepping motors can lift heavier weight than DC motors.

(4) If you can switch a DC motor on and off by issuing commands to a
computer, how can you control the speed of the motor?

(a) By switching the motor on and off and altering the duration
that the motor stays off.

(b) By altering the work load of the computer, i.e. give the
computer lots of things to do to reduce the speed of the motor,
and give it less work to do to increase the speed of the motor.

(c) the speed of a DC motor can not be altered by computer commands.

- 314 -

For each of the following, explain what they mean and why they
are important features of a programming language for writing
control programs:

(i) input,
(ii) output,
(iii) procedure,
(iv) conditional execution, and
(v) parallel processing

Describe the 'teaching by showing' method of programming a robot
arm to do a sequence of actions.

Describe the limitations of this method.

Figure 1 shows a sequence of positions of a robot arm
un-stacking the top block of a pile of blocks. The robot
arm does not have touch sensors or cameras attached to it.

(a) Which of the positions shown must the computer remember in
order to repeat the sequence of un-stacking the top block?

(b) Is there any crucial position missing from the figure?
If so, illustrate it with a simple diagram.

- 315 -

Position 1 Position 2

Position 5

Figure 1

- 316 -

(7) The letters A to I are represented by the following patterns:

E F G H

Each pattern has three bars. Each bar is either black or white.
We shall call these patterns bar codes.

(a) Using the given information above, what does the following
sequence of bar codes represent:

(b) Describe a control device that can recognise this kind of
bar coded information.

- 317 -

The following diagram shows two railway tracks with a locomotive
on each one of them.

B

The locomotives are computer controlled, i.e. the computer can
make them move forward and stop.

How would you program these locomotives so that they can move
along their own tracks without crashing into each other, either
at junction A or B? You can make use of extra electronic components
if you like.

- 318 -

REFERENCES

Abelson, H. (1980) "Logo for the Apple II". Peterborough, NH:
Byte/McGraw-Hill.

Abelson, H. and DiSessa, A. (1981) "Turtle Geometry: the computer
as a'medium for exploring mathematics". Cambridge, Mass: MIT
Press.

Aabelson, H. and Goldberg, P. (1977) "Teacher's guide for
computational models of animal' behaviour". Logo Memo No. 46_,
The Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.

Aho, A.V. and Ullman, J.D. (1978) "Principles of Compiler Design".
Addison Wesley.

Andrews, P.J. and Whittcme, L.J. (1981) "Constructing Control
Hardware". The Advisory Unit for'Ccmputer Based Education,
Hatfield,' Herts.

Arblaster, A. (1982) "Human factors in the design and use of
computing languages". Int. J. Man-Machine Stud., 17, 211-224.

Atherton, R. (1982) "Structured Programming with COMAL".
Chichester: Ellis Horwood Limited.

Avis, P. and Else, K. (1981) "Computer Controlled Railway".
Computer Education, June, 5-6.

Bamberger, J. (1972) "Developing a musical ear: a new experiment".
A.I_. Memo No. 264, The Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

Bamberger, J. (1979) "Logo music projects: experiments in musical
perception and design". A.I. Memo No. 523, The Artificial
Intelligence Laboratory, Massachusetts Institute of
Technology.

Ben-Ari, M. (1982) "Principles of Concurrent Programming".
Prentice-Hall International, Inc.

Bevis, G. (1984) "Microelectronics in schools and colleges". In
'Using Microcomputers in Schools', Terry (Ed.). Croom Helm
Limited.

Bevis, G. and Trotter, M. (Eds.) (1981) "Microelectronics:
Practical Approaches For Schools and Colledges". London: BP
Educational Service.

Blackburn, P. (1980) "Monitoring experiments". In 'Micros in
Schools', Volume 2, Case study No. 5.9, Open University.

Bobrow, D.G. and Raphael, B. (1974) "New programming languages for
AI research". Computing, 6, 3, 153-174.

- 319 "

Bostock, M. (1983) "The BBC Buggy: an advanture with technology".
Electronic Systems News, Autumn, 4-5. Hertfordshire: IEE.

Boden, M. (1977) "Artificial Intelligence and Natural Man".
Hassocks: Harvester Press.

Borning, A. (1979) "Thinglab: a constraint-oriented simulation
laboratory". Rep. No. 79~3» Xerox Palo Alto Research Center,
California.

BP (1982) "BP Buildarobot Competition 1982-83". London: BP Oil
Limited.

Brinch Hansen, P. (1975) "The programming language Concurrent
Pascal". IEEE Trans, on Software Engineering, 1, 2, 199-207.

Brown, P.T. (1979) "Writing Interactive Ccmpillers and
Interpreters". John Wiley and Sons.

Bundy, A. (1983) "What stories should we tell Prolog students?"
Working Paper No. 156, Dept. of Artificial Intelligence,
Edinburgh University.

Byrd, L. (1980) "Understanding the control flow of Prolog
programs". In 'Proceedings of the Logic Programming
Workshop' ; Tarnlund (Ed.) .

Canara, A.b. (1975) "Experiments in teaching children computer
programming". Technical Report No. 271, Institute for
Mathematical Studies in the Social Sciences, Standford
University, California.

Chung, W.H. (1984) "Terak Concurrent-Logo manual". Occasional
Paper No. 49_, Dept. of Artificial Intelligence, Edinburgh
University.

Clark, K.L. and McCabe, F.G. (1982) "The control facilities of IC-
Prolog". In 'Expert Systons in the Micro Electronic Age',
Michie (Ed.). Edinburgh: University Press.

Clark, K.L. and Gregory, S. (1983) "PARLOG: a parallel logic
programming language". Research Report DOC 83/5, Dept. of
Computing, Imperial College, London University.

Clocksin, W.F. (1985) "Design and simulation of a sequential Prolog
machine". New Generation Computing, 3f 101-120. Springer-
Verlag.

Coll, J. (1982) "The BBC Microcomputer User Guide". London:
British Broadcasting Corporation.

De Grandis-Harrison, R, (1983) "Forth on the BBC microcomputer".
Cambridge: Acornsoft Limited.

DES (1981) "Microelectronics Education Programme: The Strategy".
London: Department of Education and Science.

- 320 -

DES (1985) "Microcomputers in secondary schools: a survey of
England, Wales and Northen Ireland secondary schools".
London: BBC Educational Broadcasting Services Research Unit.

Dijkstra, E.W. (1968) "Cooperating sequential processes in
programming languages". In 'Programming languages', Genuys
(Ed.). New York: Academic Press.

Dijkstra, E.W. (1972) "The humble programmer". CACM, 15, 859-866.

Dijkstra, E.W. (1982) "How do we tell truth that might hurt?" ACM
SIGPLAN Notices, 17, 5, 13"15.

Di Sessa, A. (1980) "Computation as a physical and intellectual
environment for learning physics". Computers and Education,
4, 66-75.

du Boulay, J.B.H. (1978) "Learning primary mathematics through
computer programming". Ph.D. Thesis, Dept. of Artificial
Intelligence, University of Edinburgh.

du Boulay, J.B.H., O'Shea, T. and Monk, J. (1981) "The black box
inside the glass box: presenting computing concepts to
novices". Int. J. Man-Machine Stud., 14, 237-49.

Ennals, J.R. (1982) "Beginning micro-Prolog". Chichester: Ellis
Horwood and Heinemann Computers in Education.

Ennals, J.R. (1984) "Teaching logic as a computer language in
schools". In 'New Horizons in Educational Computing', Yazdani
(Ed.) . Chichester: Ellis Horwood.

Fisher, D.A. (1972) "A survey of control structures in programming
languages". ACM SIGPLAN Notices, 7, 2, 1-14.

Feurzeig, W., Papert, S., Bloom, M., Grant, R. and Solomon, C.
(1969) "Programming language as a conceptual framework for
teaching mathematics". Report No. 1899, Bolt Beranek and
Newman Inc., Cambridge, Mass.

Feurzeig, W., Horwitz, P. and Nickerson, R.S. (1981)
"Microcomputers in education". Report No. 4798, Bolt Beranek
and Newman Inc., Cambridge, Mass.

Foster, C.C. (1981) "Real Time Programming - Neglected Topics".
Massachuetts: Addison-Wesley Publishing Company.

Ginn, A. (1984) "Giving maths power to the children". Practical
Robotics, Nov, 29-33.

Goldberg, A. (1977) "Smalltalk in the classroom". Rep. No. SSL
77~2, Xerox Palo Alto Research Centre, California.

Goldberg, A. and Ross, J. (1981) "Is the Smalltalk-80 system for
children?" Byte, 8, 6,'347-68.

- 321 -

Goos, G. and Hartmanis, J. (Eds.) (1983) "Reference Manual For The
Ada Programming Language". Springer-Verlag.

Gould, L. and Finzer, W. (1981) "A study of TRIP: a computer system
for- animating time-rate-distance problems". In 'Ccmputers in
Education', Lewis and Tagg (Eds.). Amsterdam: North-Holland.

Grant, R. (1980) "GEIGER". In 'Micros in Schools', Volume 2, Case
Studies No. 5.3, Open University.

Habermann, A.N. andNassi, I. R. (1980) "Efficient implementation
of Ada Tasks". Computer Science Report CMU-CS-80-103,
Carnegie Melon University.

Hardy J. and Hardy M. (1985) "Seme desirable improvements in the
Logo language". Paper presented at the British Logo User
Group 1985 annual conference. To be published in Logo
Almanack Vol 3.

Hartley, J.R. (1980) "Using the computer to assist the learning of
mathematics". In 'Proc. of British Society of the Psychology
of Learning Mathematics Conference' , Nottingham University.

Harvey, B. (1984) "Why Logo?" In 'New Horizons in Educational
Computing', Yazdani (Ed.). Chichester: Ellis Horwood.

Higgs, J.C. (1980) "The Leicestershire Schools Engineering Project
- A'schools/industry joint venture". Fishers Controls Ltd.

Hoare, C.A.R. (1974) "Monitors: an operating system structuring
concept". CACM, 17, 10, 549-557.

Hoare, C.A.R. (1983) "Hints on programming language design". In
'Programming Languages A Grand Tour', Horowitz (Ed.). New
York: Springer-Verlag.

Horowitz, E. (1983) "Fundamentals of Programming Languages". New
York: Springer-Verlag.

Howe, J.A.M. (1978) "Artificial Intelligence and computer-assisted
learning: ten years on". PLET, 15, 2, 114-125.

Howe, J.A.M. (1980) "Learning through model building". In 'Expert
Systems in the Micro Electronic Age', Michie (Ed.). Edinburgh:
University Press.

Howe, J.A.M. and Delamont (1974) "Towards an evaluation strategy
for CAI projects". Bionics Research Reports: No. 15, School
of Artificial Intelligence, University of Edinburgh.

Howe, J.A.M. and du Boulay, B. (1979) "Microprocessor assisted
learning: turning the clock back?" PLET, 16, 3.

- 322 -

Howe, J.A.M., O'Shea, T. and Plane, F. (1980) "Teaching mathematics
through Logo programming: an evaluation study". In 'Computer
Assisted Learning: Scope Progress and Limits' , Lewis and Tagg
(Eds.). Amsterdam: North Holland.

Howe, J.A.M., Ross, P.M., Johnson, K.R., Plane, F. and Inglis, R.
(1982) "Learning' mathematics through programming: the
transition frcm laboratory to classroom". Working Paper No:
118(b), Department of Artificial Intelligence, Edinburgh
University.

Hooper, R. (1977) "The National Development Programme in Computer
Assisted Learning: Final Report of the Director". London:
Council for Ed. Tech.

Howard, C. and Hooton M. (1981) "The House Project". Electronics
Systems News, July, 10-11. Hertfordshire: IEE.

Johnson, K. (1983) "The hitch hicker's guide to LOGO". Oxford:
Research Machines Ltd.

Johnson, R., Procter, C. and Reglinski, A. (1984) "Interfacing and
Control on the BBC Micro". England: National Extension
College Trust Limited.

Kay, A. (1977) "Microelectronics and the personal computer".
Scientific America, 237, 3, 230-224.

Kelman, P (1983) "Seymour, has your dream come true?" Classroom
computer News, No. 5, 7.

Kowalski, R.A. (1974) "Predicate logic as programming language".
In 'Proc. IFIP-74 Congress'. Amsterdam: North-Holland, 569-
574.

Kowalski, R.A. (1984) "Logic as a computer language for children".
In 'New Horizons in Educational Computing', Yazdani (Ed.).
Chichester: Ellis Horwood.

Kurland, D.M. and Pea, R.D. (1983) "Children's mental models of
recursive Logo programs". Technical Report No. 10, Center for
Children and Technology, Bank Street College of Education, New
York.

Lawler, B. (1984) "Designing computer-based microworlds". In 'New
Horizons in Educational Computing', Yazdani (Ed.). Chichester:
Ellis Horwood.

McCabe, F.G. (1980-81) "Micro-PROLOG Programmer's Manual". London:
Logic Programming Associates Ltd.

Mellish, C.S. (1982) "An alternative to structure sharing in the
implementation of a Prolog interpreter". In 'Logic
Programming', Clark and Tarnlund (Eds.). Academic Press.

" 323 "

Mickel, A.D. (1981) "The future of Pascal". In 'Pascal - The
language and its implementation', Barron (Ed.). John Wiley
and Sons Ltd.

Milner, S. (1973) "The effects of computer programming on
performance in mathematics". E.R.I_.C. Report No. ED076391.

Motiwalla, S. (1982) "Development of a software system for
industrial robots". Mechanical Engineering, August, 36-39.

Musha, D.R. (1981) "TI Logo Manual". Texas Instruments
Incorporated.

Naish, L. (1982) "An introduction to MU-Prolog". Technical Report
82/2, Department of Computer Science, Melbourne University.

Naish, L. (1983) "Automatic generation of control for logic
programs". Technical Report 83/6, Department of Computer
Science, Melbourne University.

Noss, R. (1983) "Doing maths while learning Logo". Mathematics
Teaching, 104, September.

O'Shea, T. and Self, J (1983) "Learning and Teaching with Computers
Artificial Intelligence in Education". Sussex: The

Harvester Press Ltd.

Papert, S. (1971a) "A computer laboratory for elementary schools".
A.I. Memo No. 246, The Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

Papert, S. (1971b) "Teaching children thinking". A.I. Memo No.
247, The Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.

Papert, S. (1980) "Mindstorms: Children, computers and powerful
ideas". New York: Basic Books, Inc.

Papert, S. , Watt, D. , Di Sessa, A. and Weir, S. (1979) "Final
report of the Brookline Logo Project, Part II: project summary
and data analysis". A.I_. Memo No. 545, The Artificial
Intelligence Laboratory, Massachusetts Institute of
Technology.

Parlett, M. and Hamilton, D. (1977) "Evaluation as illumination: a
new approach to the study of innovatory programs". In 'Beyond
the numbers game', Hamilton , Jenkins, King, MacDonald and
Parlett (Eds.). Macmillan Education Limited.

Pea, R.D. (1983) "Logo programming and problem solving". Technical
Report No. 12, Center for Children and Technology, Bank Street
College of Education, New York.

- 32 4 -

Pea, R.D. & Hawkins, J. (1983) "A microgenetic study of planning
processes in a chore-scheduling task". In 'Blueprints for
thinking: The development of social and cognitive planning
skills', Friechian, Scholnick, and Cocking (Eds.). New York:
Cambridge University Press.

Pea, R.D. & Kurland, D.M. (1983) "Logo programming and the
development of planning skills". Technical Report No. 16,
Center for Children and Technology, Bank Street College
Education, New York.

Pike, T.D. (1982) "The Schools Council modular courses in
technology development of a unit entitled 'Microelectronics in
control'". Electronics Systems News, May, 17-18.
Hertfordshire: IEE.

Ripley, G.D. and Druseikis, F.C. (1978) "A statistical analysis of
syntax errors". Computer Languages, 3. 227-240.

Ross, P. and Howe, J.A.M. (1984) "The design of Edinburgh Logo".
Microprocessors and Microsystems, 8, 3.

Rowe, N. (1976) "Grammer as a programming language". A.I_. Memo No.
391 , The Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.

Sammet, J. (1969) "Programming Languages: History and
Fundamentals". Prentice-Hall.

Schools Committee Working Party (1980) "Syllabuses for the future".
London: British Computer Society.

Sergot, M. (1984) "A query-the-user facility for logic
programming". In 'New Horizons in Educational Computing',
Yazdani (Ed.). Chichester: Ellis Horwood.

Shapiro, E.Y. (1983) "A subset of Concurrent Prolog and its
interpreter". Technical Report TR-003> ICOT, Japan.

Sharpies, M. (1980) "A computer based language workshop". ACM
SIGCUE Bulletin, 14, 3.

Sime, M.E., Green, T.R.G. and Guest, D.J. (1977) "Scope marking in
computer conditionals - a psychological evaluation". Int. J.
Man-Machine Stud., 9, 107-118.

Simmonds, K. (1982) "Control technology a place within the
curriculum". Electronics Systems News, May, 16-17.
Hertfordshire: IEE.

Sleeman, D. and Brown, J.S. (Eds.) (1982), "Intelligent Tutoring
Systems". London: Academic Press.

Solcmon C. (1982) "Introducing Logo to children". Byte, 7,8.

- 325 -

Soloway, E. and Ehrlich, K. (1982) "What do novices know about
programming?". In 'Directions in human/computer interaction",
Badre and Shneiderman (Eds.). New Jersey: Ablex Publishing
Corporation.

Sparkes, R.A. (1982) "Microcomputers in science teaching". School
Science Review, 63, 224, 442-452.

Stallman, R.M. (1985) "GNU Emacs Manual". Publication Department,
Massachusetts Institute of Technology.

Statz, J. (1973) "Syracuse University Logo Project: Final Report".
Syracuse University, New York.

Stevenson, P. (1980) "Computers and control in schools". In
'Proceedings of Microcomputers in Education Seminar' .

Northwood Hills: Online Conferences Limited.

Tennent, R.D. (1981) "Principles of Programming Languages".
Prentice-Hall.

Thomson, P., Branley, S. andHiggins, J. (1984) "BP Buildarobot
Competition 1983".' Computer Education, June, 2-5.

Warren, D. (1983) "An abstract Prolog instruction set". Technical
Note 309, Computer Science and Technology Division, SRI
International.

Weir, D.J. (1982) "Teaching logic programming: an interactive
approach". M.Sc. Thesis, Dept. of Computing, Imperial College
London.

Weston, P. (1984) "Teaching about computing". In 'Using
Microcomputers in Schools', Terry (Ed.). Croom Helm Limited.

Weyer, S.A. and Cannara, A.B. (1975) "Children learning computer
programming: experiments with languages, curricula and
programming devices". Technical Report No. 250, Institute for
mathematical studies in the social sciences, Standford
Uni versi ty.

Wilson, R.J. (1984) "Machine code programming in the physics
laboratory". Computer Education, June, 6-8.

Winston, P.H. and Horn, B.H. (1981) "LISP". Massachusetts:
Addison-Wesley Publishing Company.

Wirth, N. (1974) "On the design of programming languages". In
'Proc. IFIP Congress 74', Amsterdam:North-Holland, 386-393.

Wirth, N. (1977) "Modula: a language for modular multi¬
programming". Software Practice and Experience, 7, 3—35.

Wood, J. (1981) "Using Control Hardware: For Computer Studies
Courses". Advisory Unit For Ccmputer Based Education,
Hatfield, Herts.

- 326 "

Yazdani, M. (Ed.) (1984) "New Horizons in Educational Computing".
Chichester: Ellis Horwood.

Young, S.J. (1982) "Real Time Languages". Chichester: Ellis
Horwood Limited.

- 327 -

