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Abstract 

Image restoration is concerned with the recovery of an 'improved' image 
from a corrupted picture, utilizing a prior model of the source and noise 
processes. We present a Bayesian derivation of the posterior probability 
distribution, which describes the relative probabilities that a certain image 
was the original source, given the corrupted picture. The ensemble of such 
restored images is modelled as a Markov random field (Ising spin system). 
Using a prior on the density of edges in the source, we obtain the cost 
function of Geman and Geman via information theoretic arguments. 

Using a combination of Monte Carlo simulation, the mean field approxi-
mation, and series expansion methods, we investigate the performance of 
the restoration scheme as a function of the parameters we have identified 
in the posterior distribution. We find phase transitions separating regions 
in which the posterior distribution is data-like, from regions in which it is 
prior-like, and we can explain these sudden changes of behaviour in terms 
of the relative free energies of metastable states. We construct a measure of 
the quality of the posterior distribution and use this to explore the way in 
which the appropriateness of the choice of prior affects the performance of 
the restoration. The data-like and prior-like characteristics of the posterior 
distribution indicate the regions of parameter space where the restoration 
scheme is effective and ineffective respectively. 

We examine the question of how best to use the posterior distribution to 
prescribe a single 'optimal' restored image. We make a detailed compari-
son of two different estimators to determine which better characterizes the 
posterior distribution. We propose that the TPM estimate, based on the 
mean of the posterior, is a more sensible choice than the MAP estimate (the 
mode of the posterior), both in principle and in practice, and we provide 
several practical and theoretical arguments in support. 

We then address the issue of parameter estimation from the corrupted pic-
ture alone. We apply the evidence formalism of Gull, Skilling and MacKay 
to the problem of making the 'optimal' choice of restoration parameters in 
the posterior. For the purposes of measuring the evidence by numerical 
simulation, we explore and develop the 'method of expanded ensembles' 
for free energy measurement, in the context of the Ising model. Ultimately 
our results suggest that parameters identified by the evidence framework 
provide effective priors, leading to optimal restoration, only to the extent 
that the priors are well matched to the processes they claim to represent. 
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CHAPTER 1 

Introduction 

1.1 New Applications of Statistical Mechanics 

Statistical Mechanics is a branch of theoretical physics distinguished by its 

wide applicability across such diverse fields as physics, astronomy, chem-

istry, materials science and biology. At an advanced level it deals with 

the interactions between the constituents of a large assembly and the co-

operative phenomena that result. Traditionally, most of the work of this 

nature has been confined to the field of condensed matter physics where 

there are numerous phenomena to be investigated and experimental tech-

niques have become increasingly sophisticated. In addition, the physical 

systems to be investigated may be simple enough to permit a theoretical 

analysis in many cases. As a result, condensed matter research has led 

the way in statistical physics methods and much of our understanding is 

derived from successes in this field. 

Lately, however, statistical physicists have been branching into many other 
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CHAPTER 1. INTRODUCTION 	 2 

subjects that lend themselves to a statistical mechanics approach. This is 

nowhere more apparent than in complexity research [64,1161: recent years 

have seen the emergence of 'complex systems' as a distinct field of scientific 

research in its own right. Such systems all exhibit what may be described 

as surprising or unusual behaviour that is in some way a property of the 

system as a whole—treat the constituents in isolation and the unexpected 

behaviour vanishes. This collective behaviour has long been recognized 

in condensed matter research. Now such expertise is being applied exten-

sively in subjects ranging from neurobiology and network computation, 

through fluid turbulence and climate modelling, to population growth and 

economics. In particular, the study of network computation models [8,56] 

has found its way into the bread and butter research of many theoretical 

physics groups, exploiting the close similarity between such models and 

lattice models of magnetic systems in condensed matter. 

In the rest of this introduction we briefly review some of the notable suc-

cesses of statistical mechanics applied to network computation before mov-

ing on to examine the background of the image restoration problem. We 

are then in a position to expound this thesis: that statistical mechanics can 

significantly improve our understanding of image restoration. 

The Hopfleld Model 

The Hopfield model [58] is a recurrent network of (McCulloch and Pitts) 

binary threshold units [80] analogous to a simple model of a magnet, with 

the 'units' playing the role of spins and the 'synaptic connections' the 

role of the spin-couplings. Such a physical model has an energy function 

defining a complex energy surface with many local minima. Hopfield was 

the first to realize the potential of this energy function, identifying the local 
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minima with the stored states of an auto-associative memory [2],  where 

the memory state is recalled by partially specifying the contents. 

There is a simple algorithm after Hebb [55] that will sculpt the energy 

surface in such a way as to store a desired set of patterns. But we must 

expect that saturation problems will occur if we try to store too many 

patterns in the same network. There are other spurious states in addition 

to the desired memories: mixture states [4] which are a linear combination 

of the desired states; and entirely unrelated states [5],  given the name 

spin glass states because of a close correspondence to spin glass models in 

statistical mechanics. 

Further physical insights can be obtained by using stochastic units [57,96]. 

The random noise in such units corresponds to the thermal fluctuations 

experienced by spins at finite temperature. Using a statistical mechanics 

approximation called mean field theory Amit etal. [5,7] obtained the phase 

diagram of the Hopfield model, which identifies the different phases of 

the model, distinct regions where there are qualitative differences in the 

behaviour of the associative memory. The phase diagram is the key to 

understanding any statistical mechanics system. 

The Gardner Theory 

Another successful application of statistical mechanics is the Gardner 

[32, 331 calculation of the capacity of the simple perceptron [104]. How 

many randomly chosen input-output patterns can we expect to store suc-

cessfully in a network of a given size? The basic idea is to consider the 

fraction of weight space (the space of all possible connection strengths) that 

implements a particular input-output function. The expression we obtain 
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resembles a statistical mechanics partition function, and the quenched av-

erage over the patterns is obtained using the replica method. Building on 

Gardner's methods [34, 47, 48, 94] it is possible to calculate the ability of 

the network to infer a rule from a set of examples. For discrete networks a 

phase transition from poor to satisfactory generalization is observed when 

a critical number of examples is reached. 

The Statistical Mechanics of Learning 

Learning theory continues to attract the attention of statistical physicists. 

The training examples constitute the quenched disorder of the problem, 

and it is possible to define a self-averaging analogue of the free energy. 

A whole battery of statistical mechanics techniques have been brought to 

bear on the analysis of learning algorithms: see e.g. [120,124]. For a binary 

perceptron implementing a realizable rule, learning has been completely 

and exactly solved by these methods. 

The learning of an unrealizable rule (where the network architecture is 

too simple to be able to implement the complexity of the rule, even given 

an infinite training set) leads to a phenomenon analagous to frustration 

in spin glasses. This problem is currently being tackled with one of the 

latest additions to the statistical physicist's armoury: replica symmetry 

breaking [89]. 
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1.2 Image Analysis 

Data reconstruction—the inference of underlying structure from experi-

mental data—is one of the key problems in modern science. In general 

we have an observed function g that has been generated by a (possibly 

unknown) process from a function f. The task is to estimate the function 

f, given the observed function g = if. Before proceeding we must ask 

what other information we have. Do we know the transfer function ,c 

accurately, or at all? Do we have any a priori information about the original 

function f? Depending on the answers to these questions, a multitude of 

techniques may be applied. The field is enormous: the books [42, 105, 115] 

offer an introduction to the subject. 

1.2.1 The Inverse Problem 

In image analysis, the observed function is the image: a two-dimensional 

array of picture elements, or pixels. The image synthesis problem is to 

determine this observable image g given a complete representation of the 

true scene f and the imaging process ,c. This direct problem is encountered 

in computer graphics applications such as ray-tracing [41],  while the study 

of the practical issues involved lies in the domain of experimental optics. 

The inverse problem is fundamentally more difficult. The observed image 

is generally an incomplete representation of the scene or object that we are 

viewing. The task may be to extract information about the scene from the 

image (the work of computer vision applications), or to remove blur or 

other degradation from the image (the image restoration problem that is 

the focus of this thesis). 
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Such inverse problems are made difficult by the information loss inherent 

in the image synthesis process: we collapse the continuous dimensions 

of the physical world onto the few degrees of freedom of a sampled and 

quantized image. The dimensions of the true scene that are represented in 

the image constitute the measurement space. Orthogonal to this is the null 

space—measurements of attributes that lie in the null space will yield no 

information [51].  Thus there will be numerous true scenes f, often quite 

dissimilar, that could be responsible for a given observed image g. We say 

that the problem is ill-posed [50]. 

Biological Motivation 

Given the complexity of the problem it is quite remarkable that animals 

seem able to overcome many of these difficulties. The success of biological 

systems over conventional signal-processing techniques is often attributed 

to the massive parallelism of the brain, and certainly a large part of the 

mammalian brain is given over to visual processing. We are thus able, 

in ways that are little understood, to process an enormous quantity of in-

formation from a multitude of sources. We integrate this with our prior 

knowledge of the world we live in to interpret an image in a mostly unam-

biguous fashion (although there are many examples that fool the eye-brain 

combination into an incorrect interpretation). Artificial systems rarely 

even approach the success of biological ones, and there are always lessons 

to be learnt from nature's example. 

The explicit use of prior knowledge of the world is one such example. 

Only the simplest maximum likelihood methods [51, 611 fail to assume 

some prior knowledge of the true scene, but this is seldom acknowledged. 

The prior model tells us what we might expect to see in the image, and 
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mathematically this is expressed as a probability distribution. What we 

actually see is a representation of the true scene, modified by the observation 

process or noise in the environment. These processes too can be modelled 

by a probability distribution. Bayesian inference then allows us to write 

down a posterior distribution for the possible true scenes, based upon the 

prior model, the observation process, and the image actually observed. 

Bayesian inference is not new in image analysis (see e.g. [49, 61, 90, 102]), 

but there has been renewed interest in prior models based on discrete 

Markov random fields [16, 21, 36, 37, 85, 1131. 

Markov Random Fields 

Markov Random Fields on finite lattices [127, 128] are just one approach to 

the implementation of a prior model. The idea is to model each pixel in the 

image as an element of a random field. A Markov process is a prescription 

for updating states where the transition probability is independent of the 

previous history of the system. In a Markov Random Field, or MRF, 

the update of an element depends only upon the current state of some 

neighbourhood of local sites. Thus they provide a flexible mechanism for 

modelling spatial dependence. Our interest in MRFs arises through their 

equivalence to the Gibbs distribution in statistical mechanics [53, 731. 

There have been a number of successful applications of MRFs to image 

analysis problems. 

. Texture Synthesis [22, 541: an attempt to reproduce the regularity in 

the visual appearance of some materials by modelling a local spatial 

process. 
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. Classification of Satellite Data [1171: the land use type of an area is 

assessed using primarily local, contextual information. 

. Surface Reconstruction and Boundary Detection [36]:  MRFs are use-

ful for representing unobserved image attributes such as discontinu-

ities. 

Monte Carlo Methods 

Theoretical analysis of MRFs usually proves difficult especially if the model 

includes the sort of line processes introduced in [36].  However Monte Carlo 

methods (see e.g. [181) are ideally suited to exploring such Markov pro-

cesses. The stochastic relaxation algorithms used are themselves Markov 

processes [52] and this has led to much numerical simulation work, with 

only a bare minimum of theoretical analysis [31].  Such simulations may 

rely heavily on the use of parallel computing: Markov processes, being 

essentially local, are ideally suited to parallel implementation. This is an-

other nod in the direction of the biological solution—massive parallelism. 

More importantly it presents the possibility of genuinely parallel hardware 

implementations (e.g. a silicon retina [87, 110]). 

1.2.2 Image Restoration 

Image restoration, the reconstruction of an image from incomplete and 

noisy data, is the particular aspect of image analysis that we investigate in 

this thesis. It forms a subset of the more general inverse problems described 

previously since the the functions f and g lie in the same space—they are 

both two-dimensional images. The true image f is operated on by some 
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noise process to give a corrupted image g. The restoration problem is to 

estimate the true image from the corrupted version (see e.g. [60, 105]). 

The Pseudo Inverse 

In the simplest case we know the form of the corruption process. We 

search the space of all possible uncorrupted images, calculating for each 

one what image would result from the corruption process. We compare 

this calculated image with the actual corrupted image and find the best 

match (by finding the least squared error). In effect we are trying to find 

the inverse of the transfer function or corruption process, and we call the 

inverse found by this least squares method the 'pseudo inverse' [42].  Due 

to the ill-posed nature of the problem, small perturbations in the corrupted 

image g will in general give rise to unacceptably large changes in the so-

lution. We cannot choose between such wildly differing solutions without 

some prior knowledge of what we expect the solution to be. Attempts 

to mitigate the ill-posed nature of this problem by altering the modelled 

transfer function ic are the subject of regularization theory [98, 1191. 

Bayesian Image Restoration 

The image restoration problem is ill-posed because the data is incomplete: 

there is insufficient information to determine the source image uniquely 

from the data. Even if the transfer function is modelled perfectly, any 

inverse function will be unable to represent the null space [51] of the source 

image. The essence of the Bayesian approach is the assumption that the 

image to be reconstructed may be modelled as a random selection from an 

identifiable ensemble of similar images. If there are many source images 
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we may be able to estimate this ensemble simply from a large number 

of previous observations. Otherwise we may construct an ensemble of 

images that satisfies certain prior beliefs about the source. Provided we 

model this prior adequately, the Bayesian method supplies a meaningful 

estimate of the null space component of the source. This is the approach 

we take in this thesis, and we defer further discussion to Chapter 2. 

Maximum Entropy 

The term 'Maximum Entropy' means many things to many people. In its 

most general form it is an information-theoretic method for calculating the 

most probable prior distribution given some limited information about the 

distribution. Indeed we will make use of 'maximum entropy' in exactly 

this way in the next chapter. However, in the engineering literature it refers 

to a particular model of image restoration first proposed by Frieden [28], 

and described by Skilling [111] as 'Classic MaxEnt.' 

Classic MaxEnt is equivalent to Bayesian inference, with the simplest pos-

sible prior [51, 1211: that the original image is formed by randomly dis-

tributing units of intensity across the frame subject only to a constraint on 

the total intensity of the final image. The noise process is a similar random 

distribution superimposed on this image, again subject to a constraint on 

the total noise present. The estimate we obtain is the most random estimate 

consistent with the presumed overall intensity of the original image and 

the noise. 

This method has been enormously successful for some problems in im- 

age restoration—notably for images of randomly pulsed objects, such as 
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starfields [29,45]. Some proponents insist, with an almost evangelical fer-

vour, that MaxEnt is the only method of regularization that can be rationally 

supported—based no doubt on the information theoretic aspects—and de-

cry the use of any other prior whatsoever. 

As Skilling shows [111], the MaxEnt prior is in fact evaluated relative to a 

model of sorts (the measure in the entropy integral—see [1081). In Classic 

MaxEnt this prior is taken to be completely flat; no prior knowledge is 

assumed. However successful this method may be for randomly pulsed 

objects, it gives very poor results [46] on real images with spatial correla-

tions. 

This has led Gull [461,  in what he calls 'New MaxEnt', to modify the model 

used in the entropy integral when the MaxEnt prior is determined. The 

model is no longer flat but is now able to account for spatial correlations 

as it is itself an image obtained by blurring some set of hidden variables. It 

is the functional form of the model blur that corresponds to the prior used 

in the Bayesian MRF approach. It is not clear what the hidden variables 

should be, but they are usually modelled as the corrupted image itself, or 

alternatively as the image resulting from an earlier restoration attempt. In 

Classic MaxEnt the prior is uniform across the image and simply models 

the mean intensity of the overall corrupted image. New MaxEnt calculates 

the mean intensity in the neighbourhood of each point in the image and 

uses this as the local model in the MaxEnt reconstruction at that point. 

With this formulation of MaxEnt it is now possible to argue that the 

Bayesian MRF approach is a special case of MaxEnt [46],  rather than the 

other way around [51, 1211. However, the modifications required to suc-

cessfully restore images with spatial correlations cause New MaxEnt to 
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lose much of the compelling simplicity of the original formulation that led 

to its espousal as the only axiomatic approach to image restoration. 

Real World Problems 

Although this thesis is not concerned with the kind of images and noise 

processes present in the real world, we hope that a better theoretical un-

derstanding will ultimately lead to improvements in current methods. To 

this end, we briefly review the kinds of problem encountered in real appli-

cations of image restoration [122]. 

It is not possible to say with any degree of certainty how much may be 

gained from attempts to improve a real image—nor what techniques will 

prove useful. In practice, much depends on the human experience and 

expertise available when attempting the restoration. Images are vetted 

to assess whether any useful restoration is possible and what techniques 

are likely to work best with respect to the specific question being asked 

of the image. Any answer will usually be phrased in terms of relative 

probabilities. 

The common degradations encountered in, for example, video camera im-

ages are: non-linearities in the recording medium; simple random noise; 

motion blur; and a lack of resolution. It is usually sufficient to use statisti-

cal methods such as principal component analysis—the Karhunen-Loeve 

transform, see e.g. [71]—and  any of a number of super resolution process-

ing techniques [29] to increase the apparent resolution of the images. It is 

possible to factor out both random noise and motion blur by analysing the 

correlations in a temporal sequence of images. 
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1.3 Statistical Mechanics of Image Restoration 

There is a method of scientific research, best described as phenomenolog-

ical, where the outcome of experiments are merely noted, and the results 

used perhaps to interpolate the behaviour of other experiments. There is, 

however, little attempt to gain a deeper understanding of the processes 

that are taking place. Without such understanding it is almost impossible 

to design modifications to these processes with any confidence in the likely 

outcome: improvements result only from 'hit or miss' alterations. 

Although such research is necessary to begin building our knowledge of 

a new field, and perhaps for speedy commercial implementation of new 

discoveries, for sustained progress to be achieved it must be balanced by a 

similar effort aimed at theoretical understanding. It appears that too much 

research falls between these two stools: the model studied is frequently 

inadequate for the basis of a commercial product, and yet is too complex 

to be properly understood. Hence, we get 'bandwagon' research: minor 

variations of established techniques are applied to a range of often similar 

problems. The outcome is reported, but there has been no real progress in 

our understanding. 

This thesis is devoted to improving our understanding. 

The literature on image restoration is enormous and, fragmented across 

many disciplines, the language is frequently alien. [References [38, 60] 

provide an introduction to the literature.] We make no attempt to compete 

with the level of complexity seen in many of the earlier references and 

concentrate on building an understanding of the simplest models. 
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1.3.1 The Work of Geman and Geman 

In 1984 Geman and Geman [36] (hereafter referred to as CC) proposed 

a model of image restoration, based on Bayesian inference, that included 

priors not only for spatial coherence but also for the presence of discontinu-

ities (the so-called line processes). The idea is to construct a MRF consisting 

of two processes, one accounting for the intensity values and the other for 

the discontinuities or edges. They enjoyed much success with this model 

and the paper initiated a huge amount of similar work [citations in more 

than 500 publications by 19921. 

The model is unfortunately analytically intractable. In this thesis we retreat 

from some of the complexities of CC in order to make analytic calculation 

feasible. Such simplification allows us to address some issues that seem so 

far to have been neglected or, at best, poorly understood due to the lack of 

a systematic treatment. 

1.3.2 Uncharted Territory 

The equivalence of Markov random fields and the Gibbs distribution of 

statistical mechanics was made quite explicit in the original CC paper. This 

equivalence motivated the use of Monte Carlo methods from statistical 

physics in the simulation of MRFs and models of image restoration. To 

date, however, few have taken the next logical step, and applied the analytic 

methods of statistical mechanics to the problem of image restoration. This 

thesis fills that gap. 

The Gibbs distribution describes the behaviour of the 'spins' that represent 
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the result of the restoration, relative to a particular instance of the noise. 

This noise constitutes a quenched disorder. We want results for the gen-

eral case, so we must average over this disorder; we calculate quenched 

averages. In statistical mechanics such quenched averages are deriva-

tives of the free energy. We will establish analogues of the free energy for 

the restoration scheme which will allow us to calculate these quenched 

averages. 

Phase Transitions in Hypothesis Space 

Bayesian inference requires that we construct a prior model. We make 

some estimate of the mechanism that generated the original image, and 

the performance of the reconstruction scheme is sensitive to this choice 

of prior. Since we may not have 'good' information when we choose the 

prior, we analyse two distinct cases. 

. If we can construct a prior model that accurately reflects the image 

generation process, how well can we do in this optimal case? 

. What happens when, for whatever reason, we choose a prior that is 

nothing like the real process that generated the original image? How 

well can we do when the reconstruction scheme tries to solve the 

wrong problem? 

In any practical application we may not know the correct prior to use, so 

a comparison of these two cases provides some insight into the success or 

failure of the restoration. Is there simply not enough information to do a 

good job of restoration, or have we chosen a fundamentally poor prior? 

These two questions recur many times in this work. 
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Whatever prior we choose, Bayesian inference yields a parametric result 

for the posterior distribution. It is well known that for some parame-

ter choices the restoration process will yield complete nonsense (see e.g. 

[44, 84]),  but it is not always clear why, or for what regions of parameter 

space this failure occurs. These different regions are the phases of the 

model. As we modify the parameters the success of the restoration scheme 

varies continuously. However, at particular points there is a phase tran-

sition where the performance of the restoration changes discontinuously. 

Our understanding of phase transitions in condensed matter allows expla-

nation of these sudden changes in behaviour. The questions we address 

are: 

• What is the sensitivity of the restoration to the choice of parameters? 

Where do we get optimal restoration? Where in parameter space 

does the method break down? 

• In what ways are the answers to the above questions altered by an 

incorrect choice of prior? 

We address these questions through the use of analytic methods and sim-

ulation. The restoration scheme is too complex to be susceptible to exact 

theoretical analysis, but we can make progress by the use of simplifica-

tions and approximations. We make use of a statistical mechanics tech-

nique called mean field theory in order to obtain an approximation to 

the phase diagram of the model. This mean field theory is the standard 

analytic method from statistical mechanics, used to calculate approxima-

tions to the order parameters that describe the overall performance of the 

restoration scheme. It is not to be confused with the so-called mean field 

technique used by Geiger and Girosi [351 which, like the renormalization 
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group approach of Gidas [401, is a deterministic algorithm for generating 

the actual reconstructions. Both are useful efforts to find more efficient 

ways of generating the reconstructions using ideas from statistical me-

chanics, but there is no attempt to use these techniques to understand the 

results. The other statistical mechanics technique we bring to bear on the 

analysis of the restoration problem is the small coupling expansion. Like 

the mean field approximation this method cannot provide exact results, 

but within the small coupling regime it does provide further insight into 

the details of the restoration scheme. 

The Optimal Estimator? 

Frequently the choice of estimator—the final image that is used as the 

reconstruction—is not even recognized as an issue. In the majority of other 

cases alternative estimators may be mentioned, but results will only be 

presented for the authors' favourite estimate. Such choices are not usually 

justified beyond a statement that the chosen estimator gives satisfactory 

results. A notable exception to this is the report by Marroquin [84,85] which 

usefully restates some general results on optimal Bayesian estimators, see 

e.g. [1]. However, few seem to have taken notice. 

CC, and much subsequent work, use the mode of the posterior distribution 

as the estimate of the original image. This maximum a posteriori (MAP) es-

timate seems initially reasonable because we consider it in everyday terms. 

It is the single image that was most likely to have generated the corrupted 

image given all of the information that has been included by the Bayesian 

calculation of the posterior distribution. However, this is not a case of ev-

eryday probabilities. The space of potential original images is enormous. 

To choose the single most probable image and discard all of the rest seems 
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foolish. A more reasonable approach might be to perform some average 

over the space of possible images. Marroquin [84] shows that the mean 

and mode of the posterior distribution are the optimal Bayes estimators 

for minimum mean-squared error and zero-one loss respectively. 

If there is zero tolerance of errors—classifying one pixel incorrectly is as 

bad as getting all of them wrong—then the MAP estimate maximizes the 

(very small) chance of success; the probability that we get the image exactly 

right. If, however, we can tolerate some errors in the reconstruction—

we are satisfied with images that are sufficiently close to the source—then 

it is better to minimize the misclassification rate. This can be achieved 

by thresholding the mean value of each pixel to obtain the thresholded 

posterior mean or TPM estimate. 

In statistical physics terms, finding the mean value of the posterior distri-

bution is similar to calculating the observables of a physical system. The 

MAP estimate, on the other hand, corresponds to the ground state of the 

system and neglects much of the available information associated with the 

entropy of the system at finite temperatures. Recent work seems still to 

focus upon the MAP estimate despite recognition that the TPM estimate 

performs quite comparably and is far less demanding to compute [69]. 

The literature is full of anecdotal accounts of the failure of the MAP estimate 

in certain parameter regimes. It is never clear, however, whether this 

failure is due to the choice of the MAP estimate and could be alleviated by 

an alternative estimate, or whether the model is simply unusable in this 

parameter regime. Other than a rather limited analysis by Marroquin on a 

modest-sized 2x2 pixel image [84] there has been no systematic comparison 

of the TPM and MAP estimates. 
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Another issue that affects this choice is the presence of local minima. This 

makes it difficult to establish the true MAP estimate. Greig et al. [44] in-

vestigate the difference between the MAP estimate obtained by the Monte 

Carlo methods advocated in CC, and the genuine mode of the posterior 

distribution. The problem of freezing is well-known in condensed matter 

research, and we are able to explain some of the phenomena associated 

with these metastable states. Greig et al. also compare their results with 

the method of iterated conditional modes [16] which specifically seeks 

these local minima. 

Parameter Estimation 

Parameter estimation is one of the unsolved (and probably insoluble) prob-

lems in image restoration. Any method of restoration must make some use 

of a prior model, and any such prior model will have certain key parame-

ters that must be determined. 

The degree of information available when we decide on the values of 

these parameters varies according to the problem. We know that a poor 

choice of parameters can lead to a nonsensical estimate (for both mode and 

mean). Indeed, the lack of any reliable method of choosing the parameters 

is often cited as the fatal flaw in Markov random field models of image 

restoration. Certainly it is this indeterminacy as well as the issue of the 

choice of prior that leads to the assertion that "much personal experience 

with the Bayesian method is required before one can rely on it" [51]. 

A great deal of work skirts the problem of parameter estimation and assigns 

the parameter values on an ad hoc basis (e.g. [36, 691) or, as in Chapter 3, 

compares different choices of parameters with no attempt to estimate the 
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parameters a priori. 

Most of the image restoration work that does address the issue of parameter 

estimation assumes that an ensemble of prototype uncorrupted pictures is 

available which can be analysed in an attempt to correctly parameterize 

the source [37, 72, 109, 123]. There is a large body of work in the statistics 

literature on such parameter estimation from complete or fully observed 

data, not usually in the context of image restoration [11, 12, 13, 14,95]. 

There are various techniques commonly used for estimation from fully 

observed data. All seek the maximum likelihood estimate. The likelihood 

function of the data is the probability of generating a particular set of data, 

given various parameters. The maximum likelihood estimate is the set of 

parameters that maximizes this probability for the given data. However, 

for large data sets this maximum must be found in a large multidimensional 

space, necessitating the use of coding techniques [11, 121. 

An attractive alternative to conventional maximum likelihood estimation 

is maximum pseudo-likelihood estimation [13, 14].  Here the likelihood 

function is a product of the local likelihood at each site, which depends 

only upon a neighbourhood of the site and so can be computed directly. 

This method is now widely used for parameter estimation from complete 

data. 

The idea of parameter estimation from the incomplete data was taken up in 

the statistics literature as an errors-in-variables problem [15]. Also from the 

field of statistics came the iterative EM algorithm for parameter estimation 

[23] which is now being applied to image restoration in the engineering 

literature [1291. A similar method found in both the engineering [761 

and statistics [101] literature involves simultaneous image restoration and 
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parameter estimation. These converge to the maximum likelihood param-

eters estimated from the reconstruction and the optimal reconstruction 

given these estimated parameters. However, there is no guarantee that 

such a re-estimation process will converge to even a local maximum of the 

parameters and the reconstruction simultaneously. Certainly the methods 

are unlikely to find the global maximum and in general the results depend 

upon the initial choice of parameters. 

The specific problems of maximum likelihood parameter estimation for 

the classical Ising model were considered in detail by Pickard [97] but the 

analysis was restricted to the fully observed data case. When the Ising 

field has been corrupted by noise Frigessi and Piccioni [30] show a way to 

find the optimal parameters, assuming the knowledge that the source was 

an Ising field 

But what happens if we get the prior wrong? How can we choose param-

eter values to optimize the restoration in the absence of firm knowledge 

of the prior? There is an approach called the evidence approximation [81], 

closely related to generalized maximum likelihood. The evidence was ini-

tially introduced by Gull [46] as a method for estimating the free parameter 

in conventional maximum entropy restoration. This has been applied to the 

Bayesian training problem for back-propagation neural networks [20, 82], 

although recently the approximations involved have come under some 

attack [126]. Neal [91] recognized that comparing the evidence for differ -

ent parameter choices corresponds to calculating free energy differences 

in statistical mechanics systems. We have established these free energies 

in the Bayesian image restoration model, and are able to investigate the 

success of the evidence approximation applied to image restoration. 
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1.4 Thesis Outline 

In the next chapter we set out all of the basic theory of the restoration 

process. To keep the later analysis tractable we restrict ourselves to the 

case of binary images. We derive the posterior distribution from first 

principles using a prior on the density of edges alone, and recover the 

intensity prior proposed by Geman and Geman. This is not unreasonable, 

as the MRF model was proposed as a way of controlling the edge-density 

in the reconstruction. We show rigorously by maximum entropy methods 

that, given only the information about the density of edges, this is the 

only rational prior distribution. We go on to derive the TPM estimate that 

we will use, and discuss the comparison with MAP, to be picked up in 

Chapter 4. We determine the quantities required to calculate the evidence. 

Finally we establish the links between the Bayesian statistics expounded 

in the chapter and the statistical physics approach to be used thereafter. 

In Chapter 3 we systematically investigate the effect of parameter choice 

on the success of the restoration. We are able to explain the behaviour 

of the model in terms of well-understood characteristics of statistical me-

chanics models. There are regions of parameter space where the model 

performs well, and other regions where the model fails to behave like a 

reconstruction scheme of any sort. These differing regions correspond to 

separate phases in physical systems and we are able to explore the nature 

of the phase transitions between these regions using analytic as well as 

Monte Carlo techniques. 

From two extensive analytic calculations—the mean field approximation 

and a small coupling expansion—we construct the phase diagram of the 

model. By reference to this we are able to explain the failure of the method 
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in certain parameter regimes and analytically model the qualitative per-

formance of the restoration. Monte Carlo simulation of the reconstruction 

scheme provides confirmation of the analytic results, and permits quanti-

tative evaluation of the performance. Simulation also allows us to display 

the images that result from the restoration, including the cases of catas-

trophic failure and the milder failures caused by the metastable states. 

Chapter 4 is concerned with the choice of the best estimate that can be 

obtained from the posterior distribution. A comprehensive comparison of 

the MAP and 1PM estimates is carried out by simulation, with reference to 

the work of Greig et al. [44]. We show, as expected, that the TPM estimate 

is always optimal in cases where the prior is well chosen. Although we are 

unable to calculate these estimates analytically, our understanding of the 

phase diagram of the model gleaned from the mean field approximation in 

Chapter 3, allows us to explain the differences in the parameter sensitivity 

of the two estimates. 

Finally, in Chapter 5, we consider a method for parameter estimation—

the evidence approximation. This requires the calculation of free energy 

differences. The small-coupling calculation provides analytic results for 

the evidence approximation, but calculation of free energy differences by 

simulation is a different, more difficult problem. We verify the success of a 

recent method [77] by calculating the free energy of a simple Ising model, 

before proceeding with measurements of the evidence itself. The evidence 

calculation correctly identifies the optimal parameters when the prior is 

correctly chosen. When we get the prior wrong, things are not so simple. 



CHAPTER 2 

The Bayesian Formulation of 

Image Restoration 

2.1 Introduction 

Imagine that we are presented with an image which is the result of the 

superposition of noise on an original picture which we wish to recover. 

We are provided with some information which characterizes the class of 

image that the original belongs to. We use this information along with our 

knowledge of the noise process to develop a reconstruction scheme. Then, 

with the additional information provided us by the presented noisy image, 

we attempt a reconstruction of the particular source image underlying the 

noise. 

24 
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2.1.1 The Image Coordinates 

For expediency we restrict analysis to the simplest two-colour pictures. We 

regard the presented image as a two-dimensional array of N pixels, and 

we represent this as an array of binary variables Di = ±1, i = 1 . . . N, each 

corresponding to a black or white pixel in the image. Then we can denote 

the entire image using the vector notation D {D 1  . . . DN}, and we will 

henceforth call this the data. 

Now there is a set of 2' pictures that can be composed from N binary 

pixels. Since we are dealing with a random noise process, it is conceivable 

that any member of this universe of pictures could have been the original 

source image. Therefore the set of all possible source pictures covers this 

universe and is identical to the set of all possible data pictures. As with 

the data, we represent the source images as arrays of binary variables 

S = ±1) i  = 1 . . . N. Our task is to find the source image S I S, . . . SN } 

that was most likely to have been corrupted to give the data D. Or, rather 

more usefully, we wish to find the probability distribution over the whole 

ensemble of source images that gives for each image in {S} the probability 

that it was indeed the original source from which the data D was generated. 

Since we are in the business of investigation and analysis, we want to be 

able to compare the images that result from the restoration process with the 

images that make up the source ensemble. Although these images share the 

same space, the underlying probability distributions are of course different. 

Therefore, we introduce a further ensemble {R}, distinct from {S}, of 

reconstructions which are the restored images generated by the restoration 

process. Once again R is an array of binary variables Ri = ±1, i = 1 . . . N, 

representing a binary pixel array. 
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2.1.2 The True Probability Distributions 

The above definition of the variables introduced the idea of probability 

distributions underlying the ensembles of images. We now identify the 

probability distributions that interest us. Throughout we will not attempt 

to label the distributions explicitly but will allow, where possible, the 

arguments of the function to specify implicitly which distribution we are 

referring to. 

First there is the true ensemble of source pictures {S}. The original source 

picture S is drawn from this ensemble with a probability given by P(S): the 

source distribution. For the purposes of the restoration, we do not know 

the explicit form of F(S) and we will make an estimate of this (the prior 

distribution). Of course, for experimental purposes we can control the 

source process, and we choose a distribution appropriate for the property 

we wish to investigate. 

The mechanism that takes the source and generates a corrupted image is 

a stochastic process, and is expressed as a conditional probability. The 

probability of observing a particular corrupted image D, given a source 

image S. is expressed by the likelihood function P(DIS). Once again 

we control the choice of this true likelihood function in our experiments, 

but when determining the restoration process we must imagine that this 

distribution is unknown to us and is to be estimated. 

Now that we are given the corrupted picture D we try to recover the 

source S. The probability distribution that we seek is the true posterior 

distribution P(S ID)—the probability that an image S is the original source 

image, given that we have observed a particular data image D. We call the 
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actual probability distribution that we determine the restored distribution: 

given a particular data picture D we generate reconstructions R with 

a conditional probability given by P(RJD). This restored distribution 

characterizes the restoration scheme and is determined by the estimates 

we make of the source and likelihood distributions. 

2.1.3 The Screens 

Now let us sketch the environment we have defined in a more tangible 

form. This will also provide a framework for the experimental simulation 

in Chapter 3, when we come to test the results of the theory. Consider a 

series of three screens capable of portraying a picture of the type we are 

discussing, an N pixel binary image. Label these individually as the source, 

data, and reconstruction screens. On the source screen will be displayed 

a picture from the source ensemble {S}, selected with a probability given 

by F(S). The data screen will display a picture from the data ensemble 

{D} with a probability given by the true likelihood P(DIS). Finally the 

reconstruction screen will display a picture drawn from the {R} ensemble 

with a probability given by the restored probability distribution P(RID). 

We see in Figure 2.1 how this screen analogy depicts the restoration scheme 

as it might actually be used: there is a picture on the source screen which is 

hidden from us; via the noise process the picture on the data screen, which 

is all we can see, is generated with a probability P(DIS); then given this 

particular data picture we carry out the restoration process and generate 

a sequence of restored pictures which appear on the reconstruction screen 

with a sampling probability given by P(RID). We will consider the second 

row of Figure 2.1 when we discuss, in §23, how best to interpret the pictures 

on the restoration screen. 
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Figure 2.1. The Bayesian view of image restoration. The picture on the 
source screen is selected with a probability P(S). A corrupted picture is 
generated with probability P(DIS) and displayed on the data screen. The 
restored screen displays an ensemble of pictures generated with probabil-
ity P(RID). The thresholded mean of this ensemble provides the TPM 
estimate, while the mode corresponds to the MAP estimate (to be dis-
cussed in Chapter 4). In a real world problem we would not be able to 
observe any of the processes behind the curtain that separates the source 
and data screens. However, for the purposes of experiment we control 
these processes too. 
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2.1.4 The Model Distributions 

We want to investigate the effects of choosing a poor prior model of the 

processes that generated the data. This requires that we distinguish the 

model distributions from the true distributions described in §2.1.2. 

We imagine that we do not know explicitly the true distribution P(S) of 

the source images, but we will have some information about the source. 

We may for example know the expectation values of certain observable 

properties of the source pictures, averaged over the whole source ensemble 

IS}. We will use any such information available to determine our best 

guess at the source distribution, the prior .P(S). Henceforth we will use the 

notation P() to denote the model distributions— approximations to things 

we might measure. This distinguishes them from the true distributions 

PQ that we may assume we know when testing the restoration scheme. 

In the same vein, we do not have complete information about the noise 

process—the true likelihood function P(DIS). We will use whatever 

knowledge we have about the statistics of the corruption process to con-

struct our best guess at this distribution, which we will call the model 

likelihood F(DIS). 

In fact we may not even have adequate information about the observables 

of the source ensemble. If we are fortunate we may know these from obser-

vations of a set of uncorrupted pictures drawn from the source ensemble. 

Alternatively, if we can accurately determine the noise process, we may be 

able to calculate these observables from measurements of a set of corrupted 

images. [For a simple statistical measure and Gaussian noise the inverse 

problem is not necessarily ill-posed, cf. §3.3.5.1 Most likely, we have no 
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certain knowledge of either the source distribution or the noise level. In 

this case we must resort to the parameter estimation techniques discussed 

later in §2.6. 

We seek the true posterior distribution P(SID), but since we do not have 

complete information we cannot determine it exactly; therefore we will 

use the limited information that we are given to assign the most rational 

values possible to the model posterior distribution P(SID). This yields an 

explicit function of the coordinates D which we use to define the restoration 

process, setting P(RID) = P(SID)S....R; we obtain the restored distribu-

tion by replacing S with R in the model posterior. When our last piece 

of information arrives—we are presented with a given data picture—we 

realize a probability distribution over {R} that will generate reconstructed 

pictures. 

2.2 Priors and Posteriors 

2.2.1 Introduction 

In this section we make use of ideas drawn from the fields of information 

theory and Bayesian statistics. The two disciplines have a tremendous 

amount in common. 

Information theory is a branch of the mathematical theory of probability 

and statistics [75],  and is relevant to statistical inference. The communica- 

tion theory aspects have led to a resurgence in interest with the dawning of 
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the information age, concerned particularly with signal processing, com-

pression techniques, and various ways of 'encoding' information. The 

information theoretic approach to statistical mechanics is another useful 

application, which offers careful and precise mechanisms for describing 

the amount of information available. 

The field of Bayesian statistics sometimes more resembles a religion than 

a discipline. It concerns itself with the assignment of probabilities by 

inference, based upon the information available to the agent assigning the 

probabilities. In this respect, Bayesian inference models the kind of decision 

making processes that we use in everyday life [67]. 

Both disciplines are careful and useful in determining the available infor -

mation: Bayes concentrates on the agent, while information theory anal-

yses the object and embraces both frequentist and Bayesian probability 

theories. 

Bayesian Statistics 

The basic problem is one of inverse probability. We calculate a prior 

probability distribution that describes our knowledge of the ensemble of 

pictures appearing on the source screen, before observation of the data. 

We want to know how to update our degree of belief about what we 

think is displayed on the source screen after the data arrives (when we 

are shown what is displayed on the data screen). Bayes theorem [91 gives 

a mathematical procedure for updating our prior belief about the value 

of a set of coordinates, to produce the posterior distribution for these 

coordinates reflecting our increased knowledge after observation of the 

data. 
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In its most general form, Bayes theorem is easily derived from the definition 

of conditional probability. The joint probability of two events A and B both 

occurring may be expressed as the product of the probability of event B and 

the conditional probability of event A given event B. But we can equally 

well consider the events in the reverse order; then 

P(A, B) = P(AJB)P(B) = P(BA)P(A). 

Rearranging this equation gives us Bayes theorem in its commonly stated 

form 
P(BIA) -P(AIB)P(B) (2.1) - 	P(A) 

or, in words, that the posterior probability distribution is proportional to 

the likelihood times the prior. 

. P(BIA) is the posterior probability distribution for event B, once we 

know that event A has in fact occurred. 

P(B) is the prior distribution—the probability of B before we know 

anything about A. 

. P(AIB) is the likelihood of the event A given that the event B does 

occur. 

• P(A) is in fact the prior distribution of A, but clearly acts as a nor-

malization, with P(A) = > B P(AIB)P(B). 

Information Theory 

The Bayesian statistics discussed above tells us how to derive the posterior 

distribution from the prior distribution, given the likelihood function of 
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the data. However, we have not yet chosen the prior distribution and we 

need a consistent method to determine this. Here we call on ideas from 

information theory and use these to justify our claim that we will make 

the most rational assignment possible of the probabilities. The crux of 

our claim is that when assigning the prior distribution we should use all 

of the information available to us, but equally, not make any unfounded 

assumptions. If we do not use all available information we will fail to 

capture some potentially accessible behaviour of the distribution. In this 

case the results are often counter-intuitive [68].  If we unintentionally make 

hidden assumptions about the prior distribution we will introduce arte-

facts into the solution. Since we are operating in the absence of complete 

information, either failure may result in an adequate or improved solution 

in some special case. However, averaged over all possible cases, both errors 

will reduce the effectiveness of the restoration process. 

If we have no information at all then our best prediction can only be that all 

possible outcomes will be equally likely, and our most rational assignment 

is simply that each outcome has the same probability. How then do we 

fold in any extra information that we may have? To aid us in this task, we 

desire a function that will give some quantitative measure of the amount 

of information we have assumed in our assignment of the probabilities. 

Such a function is the missing information function defined as 

S = —p1ogp,, 	 (2.2) 
P 

where the p  are discrete probabilities, and the sum is over the entire prob-

ability distribution. The expression (2.2) is also given the name 'Shannon 

entropy' [106]: entropy measures the degree of disorder, and hence a high 

entropy is consistent with a large amount of missing information. 
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The function measures the amount of information implicitly assumed by 

any choice of the probabilities. The following rationale enables us to use 

this property to make the most logical assignment of the probabilities. 

We assume that any information we have is expressible as a con-

straint on the values of the probabilities. Any choice of probabilities 

that violates these constraints is failing to use the corresponding in-

formation. 

We want to choose these probabilities in such a way as to obtain the 

maximal value of the missing information function, subject to the 

constraints. A choice that gives a value for S less than its maximal 

constrained value is making assumptions that are invalid given the 

available information. 

We can find this maximal value using the method of Lagrange un-

determined multipliers, where we vary the probabilities in order to 

maximize the function S subject to the various constraints. Because 

of the entropic form of 5, this procedure for determining the distri-

bution is often given the name 'maximum entropy' [66]. 

Shore and Johnson [108] proved that the principle of maximum entropy 

proposed by Jaynes in [66] is a consistent method of inference when given 

new information in terms of expectation values. Thus we can use this 

information theory technique to make the best possible assignment of the 

prior distribution, which we can then feed into our Bayesian scheme to 

calculate the posterior distribution. 
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2.2.2 The Posterior Distribution: The Bayesian Result 

We now apply Bayes theorem to our specific problem; the determination 

of the best choice of probabilities for the model posterior P(SID). Writing 

(2.1) in terms of the estimated distributions that represent our incomplete 

state of knowledge, we get: 

f(DIS)P(S) 
P(SID) = (2.3) 

P(D) 

Consider in detail the terms in (2.3): 

• P(SID) is what we seek to prescribe, the model posterior distribution 

of S after the data arrives. It is our best shot at a reconstruction scheme 

using all our available information at this time as input to the right 

hand side of (2.3). 

• P(DIS) is the model likelihood of getting the data D for a particular 

source S given no explicit knowledge of the true data distribution. 

We will make a rational assignment of its form using our information 

about the corruption process. 

• P(S) is the prior probability of a particular source picture S. given 

our limited information. It is our best guess at what is appearing on 

the source screen in the absence of explicit knowledge of the source 

distribution F(S), and before we are shown what picture is currently 

on the data screen. We will use whatever prior information we have 

about the source pictures to guide us in making the most rational 

assignment of this function. 

• P(D) is the prior probability of the data given the same limited 

knowledge. Given our assignment of the model likelihood and prior, 
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it is constrained by the normalization condition 

>P(SID) = 1. 
{S} 

Its crucial feature in (2.3) is that it is by definition a function of the 

coordinates D alone, and will have no impact on the S-dependence 

of the posterior. We have no extra information about P(D) that will 

not be used in the assignment of P(DIS) and P(S)—therefore our 

best guess for this distribution has to be: 

P(D) = >P(DIS)P(S). 	 (2.4) 
{S} 

P(D) is also known as the evidence [46, 811, as it measures the 

'evidence' provided by the data D for our particular choice of prior 

and likelihood. We will pick up this idea later in §2.6. 

As argued above, -P(SID) is our best guess at a solution to the original 

problem we posed back in §2.1.1, and therefore we assign the distribution 

P(RID), which defines our restoration process, the same functional form 

as this model posterior, P(sID). 

Thus we write: 

P(RID) qSf P(SID)SR  = 
P(Ds)P(s) 	

. 	(2.5) 
P(D) 
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2.2.3 The Prior Distribution: Information About the Source 

Now we want to assign the most rational values possible to the prior dis-

tribution F(s) using the information theory/maximum entropy technique 

described in §2.2.1. We proceed by imposing on the prior distribution, as 

constraints, all of the information we have about the source distribution. 

In particular, let us imagine that we know, or at least think that we can 

estimate, the mean value 0 of some observable property of the source 

images, defined by the operator 0(S). Then we will impose this value as 

a constraint on the probability values of the prior distribution F(S). We 

require that the average of the operator over the prior distribution (0 ) P  

take on the value of our estimate 0: 

(0) 	P(S)O(S) = 0. 	 (2.6) 
{S} 

Here we use the subscript pto denote a functional of the prior distribution 

F(s). 

The missing information function for the prior distribution is defined as 

S = —F(S) log F(S). 	 (2.7) 
{S} 

If we have measurements Oa  of n different operators 0,,, (S) averaged over 

the source distribution, then we want to choose the prior probability dis-

tribution F(S) such that S, takes on its maximal value, subject to the n 

constraints 

F(S)Oa (S) = Oa, 	= 1 . . . fl, 	 (2.8) 
{S} 
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and the normalization constraint 

00 t>i(S)=1. 	 (2.9) 
{S} 

Introducing Lagrange multipliers \o ... A n  for these n + 1 constraints, a 

turning point in S will correspond to 

ctS-- kOd.Ob  + A i d (01 ) p  + 	+ ) d (0) = 0. 

Now, differentiating (2.7) 

dS = - 	[1 + log .P(S)}dP(S), 	 (2.10) 
{S} 

and from (2.8) 

d(Oa ) p  = > O(S)dP(S). 
{S} 

Thus 

>1 [)o + ) 1 O 1 (S) + ... + )tO(S) - 1 - log p(S)] dP(S) = 0. 
{S} 

Since this condition must hold for arbitrary variations in .P(S) we may 

write for each and every configuration S: 

log F(S) = A 0  + \1 01 (S) +... + AO(S) - 1 1  

which gives 

= A01 exp{.\ i Oi (S) + .. + )O(S)}. 

Now differentiating (2.10) with respect to the probability of a particular 
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configuration S gives: 
ô2S - —1 < 0 

9j2(s) -  

Since there are no cross-terms in (2.10), off-diagonal terms in the Jacobian 

of S,, are necessarily zero and we are guaranteed a maximum in S,, for this 

choice of P(s). 

The value of the normalization e 1  can be determined from the normal-

ization property (2.9), while the other Lagrange multipliers ) . . . ) are 

implicitly defined by the constraint equations (2.8). When we perform the 

sums over the prior distribution we get from (2.9) 

= 1 - 1ogexp {A 1 01 (S) + ... + )tO(S)}, 	(2.11) 
{S} 

and from (2.8), ii equations, 

0a = 	 exp 01 01 (S) + ... + \O(S)}, 	(2.12) 
{S} 

so we have n + 1 simultaneous equations to be solved for the n + 1 Un-

knowns, .X 0  . . . 

Thus this method allows us to make the best assignment of the prior 

distribution F(S) with only the information we have about the value of 

certain observables. In practice, we may not be able to determine the exact 

values of the Lagrange multipliers in the event that we cannot calculate 

the sums in (2.11) and (2.12) analytically. 
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2.2.4 The Likelihood: Information About the Noise Pro-

cess 

In order to determine the posterior distribution we must also assign the 

model likelihood P(DIS). In the most general binary case we model the 

noise process as an independent probability of corruption for each pixel: 

P(D, 54 S) = 4(S). As the corruption probabilities may vary depending 

on the local nature of the source image, we may have to specify very many 

(up to N.2N)  corruption probabilities and Lagrange multipliers. 

The probability of the data is given by 

P(DI IS) = [1 - (S)1öDs1  + ( S)[1 - 6D 1 s,], 	(2.13) 

with 

8DISI = J 1, if D, = S, 

0, otherwise, 

or equivalently 

P(DIS)DS, = 1 - 2(S). 	 (2.14) 

Following the method of §2.2.3 we have N constraints per source configu-

ration: 

(D1S) 1 	P(DIS)D15, = 1 -  2 2 (S) 7 	(2.15) 
{D} 

where the subscript 1 indicates a functional of the likelihood distribution 

P(DIS). These constraints require N Lagrange multipliers, which along 
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with the normalization condition yield the probability distribution: 

	

P(DIS) = e'°'exp { i (s)Disi }. 	(2.16) 

We can determine the values of the Lagrange multipliers as a function of 

i(S) from the constraint equations (2.15): 

1 - 24i(S)  = 	 exp 
{D} 

= 2Ne/01 sinh yj (S) fl cosh i(S), 
j96 i 

and the normalization condition gives 

1 = 	P(DIS) = e 0_l2Nfl cosh z .(S) 
{D} 	 j 

Hence, we obtain 

(1 - 2(S)) = tanh i(S), 

1 	Ii 
 log = 

and finally we can write 

Ii 	/1 
15 (DIS) = [J[4(S)(i - ( S))] exp 2 > log 	- i) Di S}. (2.17) 

2.2.5 The General Result 

We have now specified the prior and likelihood distributions required by 

Bayes theorem (23). Recall that the evidence P(D) is taken care of by the 

normalization. Therefore let us combine the general results and write the 
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restoration scheme as defined in (2.5) as: 

P(RID) = exP{A i Oi (R) + + O(R) + 
1  E log 	- i) R1 D1 +0(R 1  

Z 	 2 	Gi(R) 
(2.18) 

with the normalization: 

Z = >IexP{\iOi(R) + + O,(R) + 
1  E log( 
	

-   i) RD 

(2.19) 

2.3 A Measure of Quality 

We have now established the form of the probability distribution P(RID) 

that presents the available information in the best form for the image 

reconstruction we shall attempt. We want to develop criteria to assess just 

how good is the result we will obtain with this strategy, and quite how we 

shall use this result to generate reconstructed pictures. 

2.3.1 Displaying the Output 

Operationally we are able to generate configurations from the ensemble of 

restored pictures {R} sampled with a probability given by the distribution 

P(RID). In general, any one of these configurations will appear with 

only an infinitesimal probability, and this is the case even for the most 

probable configuration in the output. Since this configuration is the mode 

of the posterior distribution, it is called the maximum a posteriori (MAP) 

estimate of the true source: the single source picture that was most likely 
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to have been corrupted to give the data. Determining the MAP estimate 

from the distribution is operationally very difficult (we will discuss this 

in Chapter 4), but in any case, we should be able to make better use 

of the posterior distribution than this. Rather than find the single most 

probable configuration, we want to characterize the entire distribution. 

The frequency with which configurations appear in the output reflects the 

confidence we may place in them as reconstructions. We wish to find the 

generic properties of the typical configurations that appear with greatest 

overall probability. 

We perform an ensemble average over the output configurations to give 

the first moment of the output vectors, which distills information from the 

whole reconstruction distribution: 

(R[D])R 	RP(RD). 	 (2.20) 
{R} 

This is a real valued vector quantity, and gives the average value of the 

site variable Rk for each pixel in the ensemble of restored images. From 

this we may determine the most probable colour for the pixel, given by 

sgn((Rk[D])) with the corresponding confidence measure of this predic-

tion being I (Rk[D]) R  I. 

The most concise way to display all of this information is to use a sin-

gle grey-scale picture: the shade of each pixel, determined by the value 

of (Rk[D]) R , indicates our confidence in the prediction for that particular 

element. In practice, we want the output to be another binary picture, 

so we display the thresholded value sgn((R k [DJ)), and we do not explic-

itly represent the varying confidence levels across the image. This is the 

thresholded posterior mean (TPM) estimate of Marroquin [84]. 
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The TPM method contrasts with the approach of Geman and Geman [36] 

and much subsequent work which uses the MAP estimate. We will discuss 

the MAP estimate in detail in Chapter 4. More recent work by Skilling, 

Robinson, and Gull [112] shows a 'movie' of configurations with a prob-

ability of appearance determined by the probability weighting of each 

configuration. Our own eyes and brain then do the processing to detect 

those pixels which the restoration scheme predicts with high confidence 

from those which it predicts with low confidence. This is very similar to 

the grey scale picture described above. 

2.3.2 Measuring the Quality of Restoration 

Now we want to measure quantitatively how successful the reconstruction 

process can be on a typical picture. There are really two questions here: 

How near is our reconstruction to the best that we could possibly do 

on the average—if we were told the correct source distribution and correct 

corruption probability. 

How useful is the information we get in this best possible case. 

Before we begin we must define some measure of the 'closeness' of two 

images. The overlap is a suitable measure, defined as the normalized 

scalar product of the two configuration vectors: 

A.B 	AkBk. 	 (2.21) 
k 

We see that the overlap takes on value 1 when the two images are identical, 

zero if there is no correlation between the images, and —1 if one image is 
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the negative of the other. For the simplest measure of the success of the 

reconstruction we may calculate the overlap between the source and our 

chosen reconstruction. This is the approach taken to-date by those authors 

who have gone beyond ad hoc assessments of image quality and presented 

quantitative results of any sort (e.g. [44, 103]). 

However, we have more information available in the probability distribu-

tions. To use this, we must be able to deal with real valued vectors, so let 

us define a square distance between two real valued vectors as: 

d[A,B]=>[Ak_Bk] 2 . 

Now to answer the first question, consider what our aim was when de-

termining the reconstruction scheme. We have tried to get the probability 

distribution P(RID) to be as close a match as possible to the true posterior 

distribution P(SID). A standard measure of the difference between two 

probability distributions is the cross-entropy [43,75]. However, we seek a 

measure that can be calculated in terms of observables. 

We first measure the average distance between the data (the image we have 

to begin with) and configurations from the source distribution: 

Q0 [D] 	d[D,(S[D])J 

= 	[Dk - (Sk[D]) s] 2 . 	 (2.22) 

Note that (Qo)D  is a function of the noise and the true posterior distribution 

only. Therefore it is constant for a given source distribution and noise 

process. 
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We can then quantify the improvement of the reconstructions over the 

data by measuring the average distance between images from the restored 

distribution and members of the source distribution: 

QA[D] 	d[(R[D])R,(S[D])s] 
1 

- 	 - (Sk[D]) s ] 2 . 	 (2.23) 

We want to compare the difference between QA[D]  and Q0 [D], averaged 

over the noise—all possible configurations of the data—and we normalize 

this, dividing by (Q0)D-  This normalization scales the difference so that 

the more corrupted a data picture is, the greater the improvement we will 

require before considering the output to be useful. Thus we define this 

measure of performance, which we will call the quality factor, as: 

4 •f (Qo - QA)D 	 (2.24) 
- 	(Qo)D 

(d [D, (S{D])sI - d [(R[D])R, (S[D] )s])D 	(2.25) 
= 	 (d[D,(S[D])sJ)D 

This has the following properties: 

. In the event that we perfectly model the true posterior distribution 

[P(RID) = P(SID)] then QA[D] = 0, VD and Q = 1. 

• If our model is incomplete, (QA)D  will nevertheless be minimized 

when the two probability distributions are matched most closely, 

given the model. Therefore, finding the maximum value of Q will 

determine the optimal choice of parameters for the model. 

• If we make no improvement on the dataset given, and simply choose 

(R[D])R = D, then we get QA  [D] = Q0  [D], VD, and therefore Q = 0. 
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. If we make a particularly poor choice of the parameters, giving results 

that are worse than the given dataset, then the quality factor indicates 

this by becoming large and negative. 

We now return to the second question. How good is the best restoration 

that could be achieved, given that we perfectly model the source distri-

bution and noise process. Since the quality factor measures how close 

the true posterior distribution lies to the restored distribution we have ob-

tained, this other question is one of how precise the optimal result is: what 

are the error bounds? We hope that the particular original source image 

that generated the data D lies somewhere in the region of high probability 

in the restored distribution. We want some measure of the width of this 

probability distribution. 

The Hamming distance is the number of bits that differ between two binary 

signals, or in this case the number of pixels that differ between the two 

images: 

H[A, B] ;f 	(1 - AkBk). 	 (2.26) 

It is simply related to the overlap: 

H[A,B]=(1—A.B). 

Now we can define the width of the restored distribution P(RID) as: 

def 
WR = 

=E E E 11 - RkR j P(RID)P(R'ID) 
2N k {It} {R'} 

=(2.27) 
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and the width of the true posterior distribution as 

def 

= 	{1_(Sk[D])}. 	 (2.28) 

Measuring the width Ws allows us to answer the second question. The 

narrower is the true posterior distribution, the smaller is the set of images 

that the true source is likely to have been drawn from, and hence the greater 

is the confidence we can place in our estimate. 

To summarize: 

The quality factor, Q, measures how close the means of the two 

probability distributions lie - the true posterior distribution P(SID) 

and the restored distribution P(RID). 

. Ws measures the width of the true posterior distribution, which in-

dicates how large is the range of values that the original source S 

may have been drawn from, after we know the data picture D. It 

measures the confidence with which we may determine the source 

picture if we know the source and true likelihood distributions. 

• WR measures the width of the restored distribution. Like Ws it is 

a confidence measure of sorts, but since the estimates of the prior 

and model likelihood may be poor, it is possible to be confident but 

wrong. 

With this last point in mind we ought never to specify the restored dis- 

tribution with a greater confidence than the true posterior distribution 

could provide—it is unreasonable to have WR < Ws. Evidently the three 
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measures are linked. If we evaluate Q in terms of WR and Ws  we find: 

- * >k ([(Rk[D])R - DkJ (Sk[D])s)D + WR 
- 	1— 1 >k(')k(Sk[D])s)D—WS 

= (((R.S)s) R) + WR - a 
(2.29) 

1—cr—Ws 

where 
def 1 

a = 	E (D, (Sk[D]) s ) D . 	 (2.30) 
k 

The average overlap between the source and data is constant for a given 

noise process and is not affected by the parameterization of the restoration 

scheme, so we call this a. 

The achievement of maximum quality in the restoration requires a balance 

between competing terms in the quality factor. We want to maximize the 

simple overlap between source and reconstruction, but we must not do 

this at the expense of making the restored distribution artificially narrow, 

lest we reduce the quality factor as well. 

Refer to Figure 2.2. If we can make QA  small enough, then the quality 

factor will be large and we are allowed to have WR of similar size to Ws. 

If, however, the distance QA  between distributions is large, then we need 

the width of the restored distribution P(RID) to be large in order that it 

should still encompass the true posterior distribution P(SID). The quality 

factor demonstrates this behaviour correctly. 
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Figure 2.2. A comparison of the probability distributions. This is an 
attempt to show in one dimension the difference between the true posterior 
and model posterior distributions, and their relationship to the quality 
factor. The quality factor provides a measure of how close the restored 
distribution is to the true posterior, as a proportion of how close the data 
picture is to the true posterior. Notice that we need to widen the restored 
distribution, dependent upon how far its mean is from the true posterior, if 
we require most of the probability mass of the true posterior to be contained 
in the restored distribution. 
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2.3.3 Recovering a Single Thresholded Binary Output 

Now that we have developed a consistent quality measure, we can return 

once again to the issue of the optimal estimator. Marroquin [84] states that 

if we correctly model the posterior distribution, the thresholded posterior 

mean (TPM) is the optimal Bayesian estimator that minimizes the average 

bitwise error between the estimate and the source. 

In fact the proof of this is straightforward if we consider it in two parts. 

To begin with we are generating pictures R according to the distribution 

P(R!D). We want to find the binary picture T that has the maximal overlap 

(minimum bitwise error) with the R, averaged over the entire ensemble of 

restored pictures. Thus we want to maximize 

TkRkP(RID) = 	Tk (Rk[D])R. 
k{R} 	 k 

Since Tk can only take on values ±1, this is clearly maximized when every 

term in the sum over sites is positive, and therefore: 

Tk = sgn {(Rk[D]) R }, 	 (2.31) 

recovering the intuitive result from §23.1. 

Thus T is the single binary image that best characterizes the restored dis-

tribution in the sense that it minimizes the average bitwise error between 

T and the images in the restored distribution. It is then a trivial state-

ment that if the restored distribution correctly models the true posterior 

distribution, then the TPM estimate minimizes the average bitwise error 

between T and the source picture. 
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If we want to measure how good the TPM estimate is in the general case 

(i.e. how close to the true posterior distribution) we should rewrite (2.23) 

replacing the reconstructions R by T and calculate the mean square dis-

tance between the thresholded image and the source: 

(d[T, (S[D])s])D = 1— E ((S[D]) s  sgn{(Rk[D])})+ > 

(2.32) 

The minimum of the square distance (2.32) defines the maximum of the 

quality factor. Since only the second term in (2.32) depends on T, the 

maximum of the quality factor Q coincides with the maximum of: 

def 
QT[D} = 

1
__ ((Sk [D]) 5 sgn{(Rk[D]) ft }) 

= ((T.S)s) D , 	 (2.33) 

which is simply the overlap between the TPM estimate T and the source 

S. averaged over all possible values of the source and data. 

2.4 A Specific Prior Model 

We have so far been considering the most general case, without specifying 

any particular source distribution or noise process, nor the priors that we 

will use. We now restrict the general result to a simple noise process and 

a particular choice of prior distribution, which we can then investigate in 

greater detail. 

We want to compare the performance of the model in two distinct cases: (i) 

where the prior model matches the true source distribution; and (ii) where 

the prior is a poor model of the true source. We will actually only consider 
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a single prior for the source distribution. But we will effect the comparison 

by testing this prior against two distinct source types. We first model the 

priors for the source and noise processes. 

2.4.1 The Prior on the Noise: Simple Gaussian 

Imagine the simplest possible noise process: pure Gaussian noise, where 

each pixel has an equal probability 4 of being inverted, and there is no 

dependence on the source configuration S. We assume that the noise is 

Gaussian, but we will only guess at its strength 4 . Then our constraint 

equation for the noise process is 

(DSZ ) 1  = 1 - 2 	 (2.34) 

and the average is over the likelihood distribution P (DIS). Our guess at 

the corruption process is then, from (2.17): 

-  
P(DIs) exp 

1 
	
I 

~EDjS} 	 (2.35) 

where we have defined the field ii, which couples the data to the source, as 

.I':i 
2°q 	) 

and Z1(i) is determined by the normalization, >1{D}  P(DJS) = 1: 

Z1(ii) =>JexP{h>Disi}. 	 (2.36) 

Using these results we can consider the success of the restoration scheme in 
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the absence of any prior knowledge of the source. [With zero information, 

the only rational choice is a flat prior, P(S) constant.] So given only the 

noise parameter 4 and the data D the restored distribution (2.18) is simply 

P(RID) = (DIS) s  a = 
1 

expl /i>J D1 R1 I. 
Z1(ui) 	1..  

This has the following properties. 

• In the case of no noise, - 0 and h - oo, R = D with probability 1: 

the restored image R is 'bound' to the data D. 

• When = 1, every pixel in the data has been corrupted. Now as 

- 1, ii -+ —oo, and the only R with significant probability is the 

negative of D. 

• When 4 = , the data pictures will be completely random and will 

bear no relation to the source. In this case = 0 and each and every 

possible R has the same low probability of 1/2N• 

These results exhibit the behaviour on {R} that we would desire from the 

reconstruction scheme in these circumstances. This situation is somewhat 

unusual but is worth discussing further. In the absence of any knowledge 

about the prior we can never do better (with a single picture) than to take the 

reconstruction equal to the data. This is the same result as the maximum 

likelihood estimate for this model [i.e. finding the S that maximizes the 

likelihood function P (DI S)].  However, our knowledge of the level of noise 

does allow us to make some statements about the degree of confidence we 

place in our estimate. As we increase our estimate of the noise level 4, we 

are assuming that the true source is likely to be further and further away 

from the data. 
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2.4.2 The Prior on the Source: Edge Density 

Now we fold in our prior information about the original image. We con-

sider the case where we have an estimate of the mean density of edges Es, 

averaged over all pictures in the source distribution. We do not make any 

explicit statements about the bias (the excess of black pixels over white) in 

the source pictures, and this has the effect of implicitly modelling a zero 

bias. Using the edge-density prior, we can model our belief that edges are 

quite rare in most real world pictures and we argue that this is a sensible 

measure of the source distribution. To be a consistent measure requires 

that the spread of values of this observable over the source ensemble be 

not too great, otherwise it fails to characterize successfully the majority of 

the pictures and is a poor choice. 

We impose the value of the mean density of edges ES as a constraint on the 

prior distribution: 

Si Si = 1 - 26S 7 	 (2.37) 
vN <ii> 	p 

where the sum is over nearest neighbour pairs of sites, and ii is the number 

of nearest neighbours (ii = 4 for a square lattice). Following the method 

of Lagrange multipliers in §2.2.3 the calculation of the prior distribution 

yields: 

P(S) =exp {k 	 (2.38) 
p( ) 	<ii> 

with the value of the coupling ft' specified implicitly by the constraint 

/>sjs 	
ô log Z(k) tiN 

/ 	OK 	
= -- (1 - 2S), 	(2.39) 
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and the normalization function is 

Z(k) = > exp k E s, s., 	(2.40) 

	

{S} 	I.. 	<i> 	) 

We can place this result in the context of the parameter estimation problem 

to be discussed later. Given only an estimate of the mean density of edges 

in the source, there is only one rational value that may be assigned to 

the restoration parameter k. However, this value may not give optimal 

restoration if the mean density of edges is a poor measure with which to 

characterize the source. 

2.4.3 The Resultant Posterior 

Now we have expressions (2.38) for the prior distribution P(S) and (2.35) 

for the likelihood P(DJS) and these define the posterior distribution 

.P(DIS)P(S) 
P(SID) = 
	i 	

(2.41) 
(D) 

with P(D) given by the normalization: 

	

= 	DIS)P(S) 
{S} 

1 	
expfk 	 (2.42) 

{S} 

Therefore  the restoration process for this particular model is given by 

1 
Z(K,i;D) 	I ff 	 (2.43) 

	

P(RID) = 	exp 
<22> 	 i 1 
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where the normalization is 

Z(k,;D) = >2exp1? 	RR + 	 (2.44) 
{R} 	I.. 	<ii> 	I 	I 
P(D)z(k)z 1 (l). 	 (2.45) 

Examine the result (2.43). It sets forth the distribution for the ensemble of 

restored images given a particular data image. It provides a prescription 

for generating restored images from the data D, sampled with probability 

P(RID). The images that appear with greatest probability minimize the 

cost function 

R = —K R•R - h RA. 	 (2.46) 
<ii> 

The cost function consists of two terms: 

• The first, -k ><> R1R, makes edges in the output R costly, with 

the magnitude of the cost dependent upon the value of the coupling 

constant k. This is the Lagrange multiplier and is determined by the 

estimated value of the density of edges e s  in the source distribution, 

so the fewer edges in the source picture, the greater the cost of edges 

in the output. This term will tend to remove edges in the restored 

picture, but the level of competition with the second term in the cost 

function will determine just how many edges are removed from the 

data in generating the restored pictures. 

• The second term, —h Ei  R, Di , imposes a penalty for each pixel in the 

restored picture that differs from the presented data D. Therefore 

this term tends to align the restored picture with the data, but the 

strength of this tendency will be determined by the magnitude of ii 

which in turn depends on our estimate 4 of the level of noise in the 

corruption process. 
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2.4.4 Discussion 

The cost function (2.46) is equivalent to the cost function used by Geman 

and Geman in [36] except that we have neglected the line processes intro-

duced there. GG concentrate on minimization of this function (to generate 

the MAP estimate), neglecting the more complete information available 

in the probability distribution (2.43). The width of this probability distri-

bution is related to the degree of uncertainty in the prior model and the 

severity of the corruption process, and hence provides additional informa-

tion about the level of confidence we may place in the output. We generate 

a whole ensemble of restored images sampled according to the probability 

distribution (2.43), each individually less probable than that obtained by 

minimizing (2.46), but nevertheless important because of the multiplicity 

of similar configurations. 

We have arrived at (2.43) by using information theory to assign forms to 

the prior and estimated noise distributions. The formalism then specifies 

the values of the couplings, K and h, that should be used for optimal 

restoration, based upon the edge density es of the source images, and the 

pixel flip probability 4, provided the assigned forms of the prior and like-

lihood are accurate. [This form of parameter estimation requires explicit 

knowledge of the source. Estimation of k and /i without such information 

is discussed later in §2.6.1 In contrast, the minimum of (2.46) depends 

only on the ratio of the couplings—there is one less degree of freedom. 

By ignoring the specified values of the couplings we are violating the con-

straints (2.39) and (2.34), and effectively ignoring some of the available 

information (recall §2.2.1). 
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2.5 The Test Distributions 

We now specify the real source and noise distributions that we will use 

to test the restoration scheme. We are in effect drawing back the curtain 

that conceals the true source distribution and noise process in Figure 2.1. 

We may then consider a variety of different source distributions and noise 

processes, and observe the effect of a particular choice of prior distribution. 

2.5.1 The Noise Process 

The noise process we will consider is, as modelled in §2.4.1, pure Gaussian. 

We write (2.13) with (S) = q VS, i, and the true conditional probability is: 

P(DIS) = [JP(D1IS) 

= exp1ogP(D1IS1). 

Now we can write 

log P (Di  IS1 ) = 8DS log( 1 - q) + (1 - t5D s1) log q 

= log 
q+(1+DjSj) 

 log 
 (1) 

= 	1og(1_q)q+DjSj 
log 

 (1d1), 

and therefore the noise process is described by 

1 
P(DIS) 

= Z1(h) exp I h 	 (2.47) 
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with 

h = log (1 ; q), 	 (2.48) 

and the normalization 

Z1(h) = [(1 - q)q] -N12  

is consistent with (2.36). 

With this definition of the noise process we can calculate the average over-

lap of the source and data, defined as a in (2.30): 

a = (Dk (Sk[D])s)D = 	DkP(D) E SkP(SID) 
{D} 	{S} 

= 	SkP(S) > DkP(DIS) 
{S} 	 {D} 

= >SkP(S) 	
1 	

>DkexP{hSiDi} 
{S} 	 [2cosh(h)]N{D} 

1:= 	SkP(S)Sk tanh(h) 
{S} 

= tanh(h) = 1 - 2q. 	 (2.49) 

If we compare (2.47) and (2.35) we see that they are, of course, equivalent: 

our model of the noise process P(DIS) correctly matches the true noise 

process P(DIS). However, we may not correctly guess the level of noise, 

i.e. 4 54 q, so we will investigate the effect that the choice of the field Ii 

has on the success of the restoration. The field h (determined by the noise 

level q) indicates how close the data is to the source, while the restoration 

parameter ii determines how close the restoration is to the data. 
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2.5.2 A Source Well Modelled by the Prior 

We want to consider the case of a prior that is well-matched to the source 

distribution. Given the prior that we have chosen, we get this case if 

we generate the source image from the realization of a simple nearest 

neighbour Markov random field [128]. In this case we have: 

	

F(S) = zK) exp IK 	 (2.50) 

with Z(K) defined as in (2.40). Then 

P(D) = >P(DIS)P(S) 
{S} 

1 

	

expfK 	SS+hS1D1 1 . 

- Z1(h)Z(K) {s} 	1. <> 	 i 	J 

As with the noise process, we can, by varying k, investigate the effect of 

failing to estimate the parameter K correctly. 

2.5.3 A Source Poorly Modelled by the Prior 

It is of interest to determine the performance of the scheme when the prior 

is ill-matched to the source distribution. For these purposes we consider 

a single source picture, and so model the source distribution as a delta 

function. If we call the source picture in question (0),  the distribution may 

be written: 

	

F(S) = 6 (is - s (°) i), 	 (2.51) 
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which then considerably simplifies the distribution of data pictures that 

may be generated: 

P(D) = >JP(DIS)P(S) 
{S} 

= P(DIS ° ) 
1 

= Z,(h) exp {h DS0)}. 

This allows us to construct arbitrary synthetic pictures. For the analysis of 

this case in the next chapter we will consider simple chequerboard images 

with various edge-densities. 

2.6 The Evidence for the Prior 

In the early parts of this chapter we derived a framework for image restora-

tion with a view toward conducting a systematic analysis of the perfor-

mance of the restoration scheme. For the purposes of this investigation we 

allow ourselves complete knowledge of the source and noise processes so 

that we can objectively assess the success of the restoration process. There-

fore, calculation of the quality factor (2.25) requires explicit knowledge of 

the processes that generated the data picture (i.e. we know the values of the 

generation parameters K and h). 

This knowledge is only available in the context of the testing process. In 

any real restoration problem we will not have access to the values of the 

generation parameters. In effect we will be unable to take a peek behind 

the curtain in Figure 2.1. This leaves us with the problem of choosing the 

'best' set of restoration parameters k and h given only access to the data 
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picture. We require a prescription that will provide a consistent estimate 

of the optimal restoration parameters we should use in the absence of any 

knowledge of the source. If this estimation scheme is successful then we 

should find, when we disclose the information about the source, that these 

specified parameters maximize the quality factor and the overlap T.S. 

The formalism that we will use for this determination is the evidence 

[46,81]. This is a natural extension of the Bayesian methods we used earlier 

in the chapter to determine the reconstruction scheme initially. We first 

modify our notation a little, and recognize that so far we have effectively 

suppressed the parameter dependence of the reconstruction scheme when 

writing down probabilities. Our equation (2.5) for the restored distribution 

should, more completely, read: 

P(DIS;7)P(Stk)I 	. 	(2.52) 

	

P(RID;k,/i)= 	
P(DIk,/i) 

The left-hand side represents the probability of getting reconstruction R, 

given the data D and a particular choice of parameters 1? and h. 

We now see that the denominator in equation (2.52) depends explicitly on 

the restoration parameters K and Ii. This is the evidence provided by the 

data for this particular choice of k and Ii. We can evaluate this, as in (2.4), 

in terms of the prior and model likelihood as follows: 

P(DIk,ii) = >P(DIS;)f(SIk) 
{S} 

1 	1 
- 	 exp 	SS + 	S1D 1  
- Z(k) Z1(J) 	{S} 	<i i> 	 i 	J 
- Z(k,iz;D) 

(2.53) 
- 
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We can obtain the same result if we rearrange (2.52). 

The simplest approach we can take to the assignment of the restoration 

parameters is a form of maximum likelihood estimation. According to 

Bayes we may write 

P(k, hID) cx P(DIk, i)P(k, ii). 	 (2.54) 

Assuming we have no a priori information on the best choice of the pa-

rameters, P(k, ii) is constant, which leaves the evidence P(DIK, /i) as the 

function we should maximize to find the most probable a posteriori (MAP) 

values k*, h*, estimated in the light of the data picture. 

This idea is quite straightforward, however it is not a true Bayesian ap-

proach to simply set the values of the restoration parameters in equation 

(2.52) to these MAP estimates and to continue to call P(RID; k*, ui* )  the 

posterior distribution. When we originally derived the posterior distri-

bution (2.52), we assumed that the parameters 1? and ii were set a priori. 

We now admit that they are not explicitly specified in the prior and model 

likelihood, but remain to be estimated a posteriori from the data. Any 

parameters that are not specified a priori cannot appear explicitly in the 

posterior: we obtain the posterior distribution by integrating over the 

unknown parameters. Thus 

P(RID ) J P(RID; k, 11)P(k, hID)dKdh. 	(2.55) 

As MacKay argues [811,  provided the evidence, and therefore P(k, hID),  is 

sharply peaked around the maximum at (k*, h*), the posterior distribution 

(2.55) will be dominated by (2.52) evaluated at the MAP values of the 
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restoration parameters, i.e. 

P(RID) P(RID;k*,ii*). 	 (2.56) 

There is an ongoing debate [83, 1261 about the validity of this evidence 

approximation, and whether it is in the true spirit of Bayes. 

Like the testing of the restoration scheme itself, we establish the success or 

failure of the method in a purely objective sense: does the approximation 

provide a reasonable estimate of the parameter values that maximize the 

quality factor? Does the success or failure depend on whether the prior is 

well-matched to the source? 

2.7 The Statistical Mechanics Perspective 

In preparation for the analytic work that follows in the next chapter, we 

place the results so far in the context and language of statistical physics. 

We may think of the image as a statistical mechanics model of a magnetic 

system. Like the two-dimensional array of binary pixels in the image, 

we model the magnet as a two-dimensional lattice of atoms or spins that 

represent the crystal structure of the material. The term 'spin' arises from 

the quantum mechanical origin of the magnetic moment in the atom, and 

as we are dealing with binary site variables, what we have is known as 

a spin-! system. The simplest and most widely studied example is the 

Ising model [62].  The partition function of the zero-field Ising model is 

just (2.40). Therefore, the source pictures generated by (2.50) are sample 

configurations of an Ising model. 
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The reconstruction system may be considered as an Ising model in a 'ran-

dom' external field, i.e. the external field—the data term—is non-uniform 

across the lattice with regions of Dk = +1 interlaced with regions of 

Dk = —1. The cost function (2.46) is simply the energy function of the 

magnetic system and minimizing this cost function is equivalent to find-

ing the ground state of the magnet. If we write (2.43) as 

P(RID) = exp {—/3fl}, 	 (2.57) 

where /3 is an inverse temperature that scales the magnitude of the cou-

plings K and Ii, we can recover the Geman and Geman result (2.46) exactly 

in the zero-temperature limit (0 -p oo). 

The quantities that we need in order to calculate the evidence turn out to 

be statistical mechanics partition functions. Finding the maximum of the 

evidence is equivalent to minimizing (in the sense of most negative) the 

free energy difference between the model posterior (restored) distribution 

and the prior distribution. 

Numerous techniques have been developed for studying statistical sys-

tems like the Ising model—notably the mean field approximation, series 

expansion methods, and Monte Carlo simulation; all to be considered in 

the next chapter. In general it is necessary to find a way of describing the 

state of the system which is less tortuous than specifying the state of the 

spin variable at each and every site. One solution is to construct order 

parameters which succinctly describe the macroscopic properties of the 

system. For the basic Ising model the standard order parameter is the 

magnetization, and the behaviour of this order parameter clearly signals 

the phase transition in real magnetic materials between ferromagnetism 
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at low temperatures and paramagnetism at higher temperatures. These 

order parameters may in general be calculated as log derivatives of the 

partition function, with respect to a particular conjugate field. In the case 

of the simple Ising model, the field conjugate to the magnetization is the 

external magnetic field. For the image model we may use the bias as an 

order parameter if we introduce an analogous uniform field into the par-

tition function. However there are other useful order parameters for our 

model, namely the overlaps between the reconstruction and the source. It 

is these order parameters, along with the quality factor and the overlap of 

the TPM with the source that we will proceed to calculate and measure in 

the following chapter. 

We have now stepped well into the field of disordered systems. We want 

to calculate the average value of these order parameters, but there are 

several ways of performing such averages where the average is over all 

source, data and reconstructed pictures. Reconsider the screens analogy: 

for each source picture selected from the source distribution we may gen-

erate a number of data pictures, and from each data picture we generate 

a number of reconstructions. Therefore we may not simply average over 

all source, data, and reconstructions simultaneously (what is known as 

an annealed average) but we must average over all reconstructions of a 

fixed data picture, before then averaging this result over all data configu-

rations derived from a particular source and subsequently averaging over 

all possible source pictures. It is this 'quenching' of the disorder that leads 

to complications in the calculation of the order parameters and has re-

quired the introduction of various other techniques in disordered systems 

to deal with these quenched averages. Most notable of these is probably 

the replica trick [107], but this is in general useful only for models with 

long range interactions. 
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Distribution Parameters Normalization 
Source F(S) K Z9 (K) 
True Likelihood P(DIS) h Z1(h) 
True Posterior P(SID) K, h Z(K, h; D) 
Prior i5(S) K Z(k) 
Model Likelihood P(DIS) h Z,(ii) 
Model Posterior P(SID) k, h Z(k, h; D) 
= Restored = P(RID) ditto ditto 
Evidence P(D) K,h 

Table 2.1. A summary of the probability distributions discussed in this 
chapter, showing the distinction between the generation parameters K, h 
and the restoration parameters k, i. 

2.8 Conclusion 

We have now set out all of the basic theory we will use hereafter: see 

Table 2.1 for a summary of the notation. In the next chapter we will look 

at a software implementation of the restoration scheme and investigate 

the performance of the scheme on different source distributions and noise 

levels, as a function of the restoration parameters k and ui. We will attempt 

to improve our understanding of the results by analytic calculations using 

mean field theory and series expansion methods. 

In Chapter 4 we will discuss the pros and cons of the different estimates 

of the source that we may derive from the restoration, and make some 

quantitative comparisons of the MAP and TPM estimates, again using 

theoretical techniques to explain some of the results. 

Finally, in Chapter 5 we will develop the evidence formalism introduced 

in §2.6, both analytically and through the use of Monte Carlo simulations. 



CHAPTER 3 

Exploring the Prior: Phase 

Transitions in Hypothesis Space 

3.1 Introduction 

The restoration scheme has been constructed in such a way as to incorpo-

rate prior information, both on the density of edges in the source image, 

and on a random Gaussian noise process. These assumptions have de-

termined the functional form of the posterior probability distribution for 

the restored images. We have yet to specify the values of the restoration 

parameters, which will be estimated based upon the likely density of edges 

in the source, and the assumed severity of the degradation. The particular 

values we choose, and their accuracy, reflect the prior knowledge available 

when we attempt the reconstruction. 
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In this chapter we explore the hypothesis space of the restoration param-

eters: we investigate how the success of the restoration scheme depends 

upon the appropriateness of the prior. There is freedom to choose the prior 

at two levels. First the functional form of the prior must be determined—

we restrict ourselves to a prior on the density of edges in the source. 

Subsequently, whatever the functional form, there will be certain param-

eters to be fixed: (k, ui). Therefore, we analyse two distinct cases: the 

well-matched prior where the functional form of the prior matches the 

generation process—we still have to choose the restoration parameters ap-

propriately; and the ill-matched prior—we use the edge-density prior to 

restore pictures generated from a fixed chequerboard source. 

We investigate the parameter dependence of a number of observable prop-

erties of the reconstructions: in particular, the quality factor and the overlap 

of the TPM estimate with the source. Using a Monte Carlo simulation of 

the restoration process, we first show that the optimal Bayesian choice 

of the restoration parameters does provide the optimal restoration (maxi-

mizes the quality factor and T.S) for the case of the well-matched prior. 

We then apply the techniques of mean field theory in order to predict and 

explain the qualitative behaviour of the model. We find phase transitions 

(discontinuous changes in the qualitative behaviour of the model) as we 

vary the restoration parameters, and we are able to explain these in terms 

of the relative free energies of metastable states. Subsequently we carry 

out a small coupling expansion of the quantities required to calculate the 

quality factor, which allows us to confirm some of the earlier results on the 

optimal parameter choice. 
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3.2 Simulation of the Restoration Scheme 

In this section we describe how the model of image restoration developed 

in the previous chapter may be implemented in software, and the desired 

measurements made. First a word about the termino1ogy. Computational 

physics work is usually concerned with the simulation of a model of a 

physical system. In this case the image restoration model does not match 

any physical process and it makes more sense to describe the software as 

an implementation of the scheme rather than a simulation. However, we 

are in the business of testing the restoration scheme, not implementing 

it, and the source picture we use is simulated rather than real. So with 

deference to our statistical mechanics background, we will continue to 

refer to 'simulation', and this also conveniently distinguishes it from any 

possible hardware implementation. 

3.2.1 Monte Carlo Methods 

Monte Carlo simulation is based upon the use of pseudo-random numbers 

to generate a Boltzmann distribution that satisfies a given energy func-

tion. There are two techniques commonly used in the restoration of binary 

images—namely the Metropolis algorithm [88] and the Gibbs sampler [36], 

although this latter method is better known as 'heat bath' in statistical me-

chanics (see e.g. [631). Both methods rely upon the concept of importance 

sampling. In order to make measurements of macroscopic observable 

quantities we wish to average over all possible microscopic configurations 

of the system with a weighting factor proportional to the probability of 

finding the system in that configuration. So for an energy function ?(R) 
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we have a normalization, or partition function 

Z =E exp [–W(R)J. 	 (3.1) 
{R} 

[The Z stands for the German Zustandsunime, which means quite literally 

"sum over states".] The average value of a function f of the site variables 

is calculated as 

(f) = E f(R) exp {–H(R)}. 	 (3.2) 
{R} 

However, for any reasonably sized system (and in most condensed matter 

problems, the system size is of the order of Avogadro's number), the calcu-

lation of this sum is unfeasible due to the huge number of configurations 

to be considered. 

The elegant way around this, first proposed by Metropolis et al. [88] is to 

generate the configurations with a probability of occurrence already given 

by the Boltzmannn distribution 

P(R) = - exp {–H(R)}. 	 (3.3) 

We may then obtain an average from a simple unweighted sum over 

configurations—the weighting factor has been taken care of by the way 

we sample configurations according to their relative importance. 

How do we go about ensuring that each configuration occurs with the 

required probability? First, we write down the the balance equation, which 

states that for a system in equilibrium the rate of transition into a state must 

equal the transition rate out of that state. Thus considering a state labelled 

A: 

P(A) P(A - B) = P(B)P(B —+ A). 	(3.4) 
B 	 B 
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A more restrictive condition which satisfies the balance equation (3.4) is 

the detailed balance condition, which states that for all states A and B, the 

rate of transition from state A to state B should equal the rate from B to A: 

P(A)P(A - B) = P(B)P(B -+ A) 	 (3.5) 

Therefore, in order that configurations A and B occur with the correct 

relative probabilities, we simply have to choose P(A -* B) and P(B -+ A) 

so as to satisfy (3.5). 

If P(A) and P(B) satisfy the Boltzmannn distribution, then 

P(A) = - exp {—fl(A)}, 	 (3.6) 

and 
P(A) - - 

exp {- [fl(A) - 7-((B)]}. 	 (3.7) 
P(B)  

Therefore for detailed balance (35) we require 

P(B—A) 
= exp {- [71(A) - fl(B)J}. 	 (3.8) 

P(A—*B) 

The Metropolis algorithm implements this condition by choosing 

P(A— B) = min{1,exp{—[7i(B)-7f(A)]}}, 	(3.9) 

P(B—*A) = min {1,exp{[h(B)—fl(A)]}}. 

With these definitions P(A -i B) and P(B -+ A) are guaranteed to meet 

equation (3.8): we say that the simulation satisfies detailed balance. There-

fore the Metropolis algorithm consists of the following steps. 
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Choose a new configuration B. 

Generate a random number p between zero and one. 

Accept the change to the new configuration if the random number p 

is less than the transition probability P(A -* B) given in (3.9). 

Provided the method for choosing the new configuration in step 1 allows 

all possible states to be visited (i.e. the simulation is ergodic), then after 

very many iterations the probability of finding the system in a particular 

state will converge to the Boltzmann distribution. 

On the other hand, the Gibbs sampler chooses the probabilities such that 

P(B -* A) oc P(A) 	 (3.10) 

which trivially satisfies detailed balance. For simple update rules the 

calculation of P(A) may be straightforward: e.g. for a single spin flip we 

choose the new value of the spin (independent of the old value) according 

to the probability 

P(B -* A) 
= 

However, for more complex models such as continuous valued spins, the 

calculation of P(A) can be arduous since it requires calculation of the 

normalization term involving a sum over all possible states. It is computa-

tionally simpler to implement Metropolis Monte Carlo dynamics since the 

update decision depends only on the calculation of Lfl = fl(A) - 1-1(B). 

[See [311 for a discussion on the relative merits of the two methods.] Indeed, 

this flexibility allows entirely arbitrary changes in the system configura-

tion. This is the basis for cluster updating methods [118] used to reduce the 

time spent in metastable regions and reduce the effects of critical slowing 
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down. It is very much up to the experimenter to decide on the particular 

update rule. The Metropolis algorithm guarantees that detailed balance is 

satisfied, and it only remains for the experimenter to ensure that the sim-

ulation is ergodic. One can thus choose the update rule that provides the 

quickest equilibration. We choose to use the standard Metropolis dynam-

ics, implemented using a chequerboard site visitation schedule to avoid 

the effective loss of ergodicity that may occur at low temperatures. 

3.2.2 The Model 

Following the idea of the screens introduced back in §2.1.3 and Figure 2.1, 

we have three two-dimensional binary arrays representing the source, data 

and restoration screens. 

• The picture on the source screen may be generated in one of two 

ways. It may be a sample configuration from an Ising distribution, 

in which case we choose a value of the coupling K, and equilibrate 

the system before selecting a typical configuration. Alternatively, we 

may consider a fixed source, not generated by any statistical process; 

in practice we will use various sizes of chequerboard. 

• The data screen contains the corrupted image generated from the 

source by the noise process. In a real application, it is only this screen 

which would be available to us—we exploit knowledge of the true 

source to enable us to test the restoration scheme, not to implement 

it. The picture on the data screen is generated from a particular 

source picture by simply flipping pixels randomly with a probability 

of corruption q at each site. This simulates random Gaussian noise. 
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• The restoration screen does the real work of the restoration scheme. 

It is upon this screen that appear configurations sampled according 

to the distribution P(RID). The two restoration parameters K and 

ii may be set arbitrarily, and the initial configuration set to an Ising 

ground state (i.e. all one colour), copied from the data screen, or 

simply generated randomly. 

These three screens represent the probability distributions we consider. 

We next introduce a fourth screen on which we will display our best esti-

mate of the source picture. Once the restoration distribution has reached 

equilibrium we perform a vector sum over a sequence of configurations on 

the restored screen. We generate the binary array T by thresholding this 

vector sum, so 

T =sin >IRP(RID) 
IfR)  

This is the TPM estimate, and we obtain a simple measure of the success 

of the restoration by evaluating the overlap T.S of this estimate with the 

source. 

3.2.3 Implementation Notes 

The simulation code was implemented in C with various tricks used to 

promote maximum efficiency, notably: 

• calculating all the transition probabilities once only, and storing the 

values in a look-up table; 

• using pointers to pointers [sic] to implement the boundary conditions 

and chequerboard visitation schedule; 
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• using in-line code for the random number generator. 

These techniques increase the initialization time (and memory require-

ments), but significantly improve the speed of the most frequently executed 

inner-loop code. 

The random number generator used was RMARIN [65, 861, the first of a 

new generation of very long period generators with a period of 2141  and 

used extensively by the QCD Grand Challenge project at Edinburgh. 

Many simulations were carried out on 24Mip Unix workstations with par-

ticularly intensive work performed on a 16-node i860 supercomputer. 

An X-window interface was implemented using the Motif Widget set and 

the Xt toolkit yielding graphical output such as is shown in Figure 3.1 

[100] . This proved a most useful visualization tool. The calculation 

subroutines were common between both interactive X usage and overnight 

batch processing. In addition, the state of the 'screens' could be saved by 

the batch processes, on both the workstations and the supercomputer, 

and subsequently loaded during an interactive session for visualization 

purposes. 

3.2.4 Results 

Although we will perform a systematic analysis of the restoration process, 

others have produced much previous work that has relied on a rather ad hoc 

visual assessment of the reconstruction (e.g. [36, 40, 35]).  When we try to 

visualize the processes involved in image restoration it is useful to be able 

to see the reconstructions that result in different parameter regimes, and for 
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this reason we will present a number of sample pictures of the restoration 

process at work. However this is not a concise way of presenting the 

results, and a simple qualitative assessment of a small number of restored 

pictures will not enable one to perceive all of the trends and properties that 

may be discovered in a comprehensive set of quantitative results. 

Figure 3.1 is a screen-dump of the interactive X-window interface, and 

shows the computional realization of the screens approach from Figure 2.1. 

We set the source coupling K as we wish and then run the Monte Carlo pro-

cess on the 'Source' screen until the system has equilibrated and we have a 

representative picture from the source distribution. The other generation 

parameter, the noise level q, is set and the picture on the 'Data' screen is 

generated from the source by randomly flipping pixels with probability q. 

The restoration parameters k and ii are set and the Monte Carlo process is 

run on the 'Restored' screen so that the pictures are displayed according to 

the posterior probability distribution. Finally the picture on the 'Thresh-

olded' screen is generated by averaging over the pictures appearing on the 

restored screen and then applying a threshold to recover a binary image. 

For each picture we measure the overlap with the source picture, the bias 

(magnetization) of the picture, and the density of edges in the image. If 

we examine the 'Restored' screen, we see the need for an estimator such 

as the TPM, shown on the 'Thresholded' screen: configurations appearing 

on the restored screen reflect the uncertainty (the width of the reconstruc-

tion distribution) in the level of 'entropic' noise (small-scale short-lived 

fluctuations). In fact, for these optimal restoration parameters, the width 

of the reconstruction distribution matches the width of the source distri-

bution and the pictures on the 'Restored' screen agree qualitatively with 

the source. However these 'entropic' fluctuations, which give the image 
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Figure 3.1. The X-Window interactive. Four screens are shown: the orig-
inal image S is shown on the Source screen (top left) and is a sample 
configuration from an Ising distribution close to criticality (in order that 
there be a reasonable degree of long range structure in the image); the 
corrupted picture D was generated from the source with 30% noise and 
is displayed on the Data screen (top middle); a configuration from the 
restoration ensemble {R} is shown on the Restored screen (top right) [op-
timal restoration parameters K = K and h = h were used]; and the TPM 
estimate T obtained by averaging over the pictures in {R} is displayed on 
the Thresholded screen (bottom left). The overlap of the source and data 
is 0.4. The restored pictures R have an average overlap with the source of 
0.64, while the TPM estimate has an overlap with the source of 0.76. 
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a textured appearance, are purely random and the TPM estimate shows a 

significant improvement of overlap with the source. Figure 3.1 shows just 

how effective the reconstruction process can be. 

In Figure 3.2 we show some sample output of the restoration process on 

fixed chequerboard sources. We show three cases: one a relatively easy 

restoration with a low density of edges in the source and a low noise level; 

and two more difficult restorations, one with a high noise level and the 

other with a high density of edges in the source. As before the restoration 

process is quite successful in quantitative terms. Qualitatively, in the high 

noise case, the restoration does not much resemble a chequerboard, but 

one can make out the homogeneous regions that constitute the squares of 

the chequerboard. 

Notice in the 4x4 chequerboard case that typical pictures from the posterior 

distribution are less like the source than the data, but that the mean of the 

distribution, shown on the thresholded screen, represents an improvement 

over the data. The restoration scheme is very successful in smoothing and 

removing random noise from large homogeneous regions. However, it 

has difficulty in successfully modelling the corners of the squares. This 

arises from the simple form of the nearest neighbour interaction in the 

prior. Consequently the restoration of small chequerboards is made more 

difficult. 

Now that we have developed a qualitative 'feel' for what is going on in 

the reconstruction process, we move on to a systematic investigation of the 

model for different source types and restoration parameters. 
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A Prior Matched to the Source Distribution 

The first question we ask is how good the restoration scheme is when 

the prior is well-matched to the source distribution. We always consider 

an edge-density prior (which leads to a nearest neighbour interaction in 

the prior probability function), so for this investigation we use a nearest 

neighbour MRF (or Ising model) to generate the source. 

All simulation results show quenched averages, where we have averaged 

each of the quantities over 50 different instances of the source and data. 

Figure 3.3 shows the results we obtain for a range of prior parameters 

k and ii with the source coupling and noise level (i.e. K and h) fixed at 

arbitrarily chosen values. Although we have chosen just a single point in 

the space of generation parameters, the qualitative results are typical of 

those obtained throughout the space. 

The Bayesian derivation of the restoration scheme leads us to believe that 

we will see optimal performance when the prior exactly models the true 

generation process. Since we are using the correct functional form for the 

prior, this means that we should set the restoration parameters equal to the 

generation parameters, i.e. K = K and h = h. It is clear from Figure 33(a) 

that the quality factor is maximized at this point, and furthermore from 

Figure 33(c) that the TPM estimate has maximal overlap with the source at 

this same point in parameter space: if the quality factor and TPM estimate 

are defined consistently the maxima of the quality factor and of the overlap 

T.S must coincide. 
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(c) T.S (Average overlap of TPM estimate and source) 

Figure 3.3. Simulation results for Ising source with the density of edges in 
the source Es = 0.25 and 20% noise, q = 0.2. [tanh(K) 0.36, tanh(h) = 
0.6.] See the main text on page 82 for discussion. 
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Figure 33(b) shows the average overlap of the restoration pictures with 

the source. Notice that this quantity is maximized for large values of k 

and ui. When we discussed Figure 3.1 it was pointed out that the pictures 

on the restoration screen contained a degree of entropic, random statistical 

noise which is removed in the TPM estimate. However, as we increase the 

values of 1?, ii and walk up the ridge in Figure 33(b), we reduce the width 

of the restored distribution and remove this entropic noise, improving the 

average overlap of the distribution with the source picture. This property 

is utilized in order to generate the MAP estimate, but we believe that the 

TPM estimate provides a more consistent way of exploiting the posterior 

distribution. We will discuss this further in Chapter 4. 

Notice that both overlaps T.S and R.S fall away to zero in the upper 

left of the parameter space (when k is much larger than ii) and that the 

quality factor is similarly poor in the same region. It has been noted 

before that restoration schemes fail for certain poor choices of parameter 

[84,85], but these regions are usually avoided and no explanation has been 

attempted. Later in this chapter we will turn to analytic methods to explain 

this undesired behaviour. 

How does the quality factor change around the maximum? It is clear from 

the definition of the quality factor that, whatever the values we choose 

for the generation parameters K and h, we will find that we get optimal 

restoration when k = K and h = h. However, when we get one aspect 

of the prior wrong, this affects the optimal choice of parameters for other 

aspects of the prior. Examine the 2D plot in Figure 3.3(a) and see that 

the principal axes of the closed contours around the optimal position are 

not parallel to the graph axes—the highest points lie diagonally across 

parameter space. This means that if we fix one of the parameters incorrectly 
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(e.g. choose tanh(k) = 0.5), we must adjust the other parameter from its 

optimal Bayesian value if we want to maximize the quality factor (in this 

case we must then choose tanh(ui) 0.8). This effective coupling between 

the parameters is exhibited again in the next example. 

An Ill-matched Prior Model 

What happens when the source image is synthetic, rather than drawn from 

an ensemble? Since the prior is still modelling an Ising source distribution, 

it is impossible to choose restoration parameters that exactly match the 

generation process. Nevertheless, we might hope that the optimal choice 

of the restoration parameter h would continue to be determined by the 

level of noise in the corruption process, and that the optimal choice of 

the restoration parameter k would be related to the density of edges in 

the source picture (since our derivation of the prior on the source back 

in §2.4.2 used only information about the density of edges). However, we 

have already been given a preview of the kind of behaviour to expect when 

the prior is ill-matched to the source. 

The density of edges of various chequerboards is shown in Table 3.1. For 

each of these edge-densities we have calculated the corresponding Ising 

coupling: the value of K that would generate source pictures with the spec-

ified density of edges if the source distribution were Ising. Notice that there 

is a large variation in es for a fairly small change in coupling tanh(Keff ). 

In Figure 3.4 we plot the density of edges in a typical Ising configuration 

as a function of the coupling. Most source images we are interested in 

(i.e. having a small but finite density of edges) fall into a narrow band of 

coupling values. 
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Chequer Size Edge Density Ising Coupling 
[es] [Keff] tanh(Keff) 

3x3 0.333 0.28768 0.280 
4x4 0.25 0.37855 0.361 
8x8 0.125 0.44841 0.421 

16x16 0.0625 0.50154 0.463 

Table 3.1. Keff  is the effective Ising coupling that would generate source 
pictures with the density of edges es. 
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0.10 

0.05 

tanh(K) 

Figure 3.4. Plot of edge density versus Ising coupling. The data was 
generated using the exact solution of the 2D Ising model by Onsager [931 
(see e.g. [591). Notice the small range of couplings that produces images 
with edge densities in the domain of interest. 
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Figure 3.5 shows contour plots of the quality factor for three different 

chequer sizes: 4x4, 8x8, and 16x16 pixels square. The relevant edge-density 

and the corresponding effective coupling Kff  from Table 3.1 are shown at 

the head of each column. [Note that Keff  is presented for comparison only 

and is not a source generation parameter: the source image is simply a 

fixed chequerboard.] The level of noise and the corresponding value of h 

is shown at the right end of each row. 

It is still the case that a low density of edges in the original source picture 

requires the use of a high value of the restoration coupling 1?, and vice 

versa. And similarly a low noise level requires a high value for ii and vice 

versa. However, it is apparent that the naive assignment of the restoration 

parameters, k = Keff and ii = h, does not maximize the quality factor. 

Indeed the optimal value for I? depends not only on the density of edges, 

but also on the level of noise. We know from the Ising source example 

that if one of the prior parameters is fixed to be suboptimal, then the best 

choice of the other parameter is dependent on the value of the first. In this 

case the simple prior based only upon the density of edges is inadequate to 

describe the chequerboard source and this inadequacy couples the optimal 

values of k and T. They both depend on the chequerboard size and the 

level of noise. 

Figure 3.5 can only summarize the comprehensive investigation of hy-

pothesis space by simulation. Since we are exploring a four dimensional 

parameter space [K or es, h, k and ii] there is an enormous amount of data 

to be represented, but for more detailed analysis we will pick a typical 

point in the space of generation parameters K and h. Further simulation 

results are presented alongside analytic results in Figures 3.8, 3.9, 3.14, and 

3.15, following the analytic calculations to which we now turn. 
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Figure 3.5. Contour plots of the Quality Factor as a function of the restora-
tion parameters K and h, for various chequerboard sizes and noise levels. 
Looking from left to right across each row of figures the size of the chequers 
in the source increases, and it is apparent that the optimal choice of the 
restoration parameter K increases (reflecting the decrease in the density 
of edges in the source). Moving down a column of figures, the noise level 
increases and the optimal choice of the restoration parameter h decreases 
in line with the decrease of the noise parameter h. However, still moving 
down a column the optimal choice of K also decreases: the optimal choice 
of K is affected by the noise parameter h. 
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3.3 The Mean Field Approximation 

3.3.1 The Need for Approximation Methods 

The first thing we must recognize is that calculation of the quantities that 

we have identified in the quality factor is a hard problem, requiring the 

computation of quenched averages. For example, we want to calculate 

the average value of, say, the overlap R.D, a quantity which depends 

upon both the restored picture and the data picture. To find this average 

we have to perform the weighted sum over all possible configurations 

of R and D. Since the distribution of restored pictures has an explicit 

dependence on the data, we must sum over all configurations of R for a 

fixed D, and subsequently average over all instances of the data. We say 

that the disorder in D is fixed, or quenched during the average over R. In 

algebraic terms: 

= > >P(R,D)f(R,D) 
{D} {R} 

= 	P(D) 	P(RID)f(R, D) 
{D} 	{R} 

An analogous physical situation is found in a binary alloy [19] where at low 

temperatures the diffusion of the two atomic species occurs on a far longer 

timescale than other processes such as the evolution of the magnetization. 

Calculations of such quenched averages have been carried out fully in only 

a very few cases (notably the Sherrington-Kirkpatrick spin glass [1071). An-

alytic progress therefore seems possible only with the aid of simplifications 

and approximations. For the purposes of the mean field calculation we: 
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analyse the case of a single fixed source rather than an ensemble of 

source images; 

restrict exploration of the landscape of the model to the simplest 

non-trivial subspace; and 

employ the mean field approximation in its variational formulation, 

to analyse the restricted space. 

The first simplification allows us to dispense with one level of quenched 

average. Recall that the data depends explicitly on the source picture via 

the distribution P(DIS). Hence for the general quenched average of a 

function f we should write: 

(((f))) = F(S) E F(DIS) E F(RID)f. 
{S} 	{D} 	{R} 

The source variables are quenched with respect to the data in just the same 

way that the data is quenched with respect to the reconstructions—we 

have in effect three different timescales. 

Therefore, we write the source distribution F(S) as a delta function as in 

(2.51) and we can replace the general quenched free energy 

F = _((1ogZ(k,h;D))) 

= - 	F(S) 	P(DIS) log Z(k, h; D), 
{S} 	{D} 

by 

F = - (log Z(k, h; D))D 

= - 	F(DIS° ) log Z(k, Ii; D). 
{D} 
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Fixing S also allows us to specify the order parameters as functions of the 

source image. The quantities that we wish to measure are to be identified 

from these order parameters, which are computed from the free energy F 

by differentiating with respect to appropriate conjugate fields (introduced 

in the next section). 

For the second simplification we employ the simplest set of order parame-

ters that give meaningful results. [A set of order parameters is a simplified 

set of coordinates with which we may describe the macrostate of a statis-

tical mechanics system, without resorting to the N coordinates of the full 

specification.] Consider for example the quenched average 

(((Rksk)R)D) S  

= (/Rk [S0]\ \ Sk°, 'RID 

given the first simplification of the fixed source case. We must expect that 

there will be as many different values of this average as there are distinct 

sites in the source image—in general a multiplicity of order parameters. 

In order to keep the calculation tractable, we examine only the restricted 

space where 

((Rk[S0])R) = I 
R+  when S=+1, 

R_ when S=-1, 
(3.11) 

and to compute these order parameters we need to introduce conjugate 

field terms into the configurational energy. 
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Finally, the third simplification is the mean field approximation, originally 

proposed by Weiss [125] as a phenomenological theory of ferromagnetism. 

We may model a magnetic material as an array of atoms with magnetic 

moments or spins (corresponding to our pixel coordinates S, D, and R) 

which interact with one another via a coupling K as in our model. In 

the theory as proposed by Weiss the interactions between spins on the 

lattice are approximated by an effective molecular field, proportional to 

the overall magnetization of the system. In other words, the effective field 

experienced by any particular spin is calculated by averaging over the 

fluctuations in all the other spins in the system. 

Over the years, many approximation schemes have been suggested which 

ultimately reduce to mean field. They all share the property that they 

neglect fluctuations in the local molecular field at a site, but they frequently 

arise from quite different assumptions. The method we will present here 

is known as the variational approach (see e.g. [631) and is based upon the 

minimization of a variational free energy. 

3.3.2 The Variational Method 

The full partition function, from which we could calculate all properties of 

interest is just (2.44) with an additional conjugate field term H1  (later set to 

zero), which allows us to calculate the quenched averages as derivatives 

of the free energy F = - log Z(k, h; D). Thus 

Z(k,;D)= 	expk D1+ HR, . 	(3.12) 
{R} 	(. 	<ii> 	 ) 
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Then, for example: 

clef 	1 
Rkexp J k (Rk[D])R - 

Z(k, lz; 	>J  D) {R} 	1 <ii> 	I 	 $ 	J 

allk 
a = 	log Z(k, Ii; D). 	 (3.13) 

We begin our mean field calculation by first writing down an approxima-

tion for Z; a factorized expression, the only sort for which we can perform 

an explicit computation. 

cle 
Zv[S, D] =f 	exP{Ri [H1 + g(D1, S1, {Ha})]}. 	(3.14) 

{fl.} 

The function g(D1, Si, {H'}) introduces the set of fields {H} conjugate 

to the order parameters we will calculate. At this stage we will keep the 

discussion quite general, and specify the explicit form of the function later. 

We then define 

	

A = k E R1R, + ii R2 D1 - 1: Rig(Di, 51,  {Ha}) , 	(3.15) 
<ii> 	 I 

and write the identity 

Z(k, ; D) = 	exp 	R1R + 	D1 + H1 
{R} 	I 	<ij> 	 I 	 I 

= zv 	ex{ R1 [H1 + g(D1, S1, {H})} + A}) 

= Zv(expA), 

where (...) v  represents an average over the factorized measure Zv. 
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We next make use of the well known convexity property of the exponential 

function 

	

(expA) ~!exp(A) 
	

(3.16) 

which holds for any function A, and any measure that we may choose to 

average over. 

Therefore we can write the true free energy: 

F = —log Z(k,ii;D) 

- [log Z(k, ui ;  S, D, {H}) + (A) v ] 
def 

The variational free energy .T( 
{ 

H 
}) 

is thus an upper bound on the value of 

the true free energy F. We may now take advantage of the arbitrariness of 

the set of variational fields {Ha}  to find the infimum of this upper bound. 

The set of equations 

	

= 0, 	 (3.17) 

determines the values of the {Ha}  that minimize T({ Ha}). This procedure 

finds the optimal set of values for {Ha},  the set that gives ({Ha})  closest 

to the true free energy, given our initial choice of variational fields. Thus 

we define the mean field free energy 

i-, 	de 
rMF =l inf 	{Ha}) ,  

{H°} 
(3.18) 

and we simply replace the true free energy by this 'best' estimate through-

out the calculation of the order parameters. Hence 

aF 
= aHk 
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OFMF 
OHk-  

O log Zv O(A) V  
= OH,, +OHk 

O log Zv lIef(R[SD]) 	 (3.19) 
= 	OH,, 

and the relationship between the order parameters in the full theory (3.13) 

and in the mean field approximation (3.19) is made explicit. Now that it 

has served its purpose we may set Hi = 0 in (3.12). 

3.3.3 The Choice of Order Parameters 

Since Zv is a factorized measure we can proceed with the explicit com-

putation of these order parameters. We have already indicated in (3.11) 

the order parameters we will use, but let us step back for a moment and 

consider the expressions we could possibly choose for the variational parti-

tion function Zv, [or rather, for g(S, D, {H'})]. We will choose the simplest 

form that allows us to make meaningful calculations of the quality factor 

(in the mean field approximation). Consider four possibilities: 

91 (Di, H, ui) 	(1+D2 )(H+ii)+(1—D2 )(H—h) 

92 (D,H,H, l) f 1+ D1)(H + ii) + 	- D)(H 

93 (D2 , Si, H,H, 	! 	+ S) [(1 + D)(H + + (1— D)(H - 

+ 	- S) [(1 + D)(H + + (1— D1)(H - 

94 (D, S ) 	. . , /i) + Si)  [(1 + D1)(H + ui) + (1 - D)(H - ui)} 

+ 	- S) [(1 + D1)(H + ) + (1— D)(H - 
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These are the only possible choices for g if we wish to parameterize the 

source by just its bias and density of edges. 

The first two expressions, gi and g, turn out to be too restrictive to give any 

meaningful results. They are also not dependent on the source picture in 

any way, which makes the measurement of any of the quantities of interest, 

such as overlaps with the source, a hopeless task. 

We choose 93. We are effectively dividing the sites of the lattice into four 

different classes dependent upon the value of Siand Di at each site. But 

we introduce only two variational fields H+  and H. Wherever the source 

image has Si = + 1 (-1) we approximate the effective molecular field in the 

reconstruction lattice by H (H). Since there is also the external field h 

coupled to the data at each site, we have four degrees of freedom in 93. 

For g4 we introduce four variational fields depending on Si and Di at each 

site. However, we still have only four degrees of freedom and it turns out 

that the four equations for H, H+-, H-+, H obtained using g4 are not 

independent and reduce to the two equations obtained from g3. Hence, 

we define 

Zv(H, H, ii; D, S) = 	exp I Ri[ 1 (1+Si)(1+Di)(H++h)>   

+ (1 + S)(1 - D)(H -) + (1 - S)(1 + D)(H + 

+ (1 —S)(1 —D)(H - 
4 	 11 

= 2NH cosh [(1 + Si ) (I + Di) (H+ + h) 

+ (1 + S1)(1 - D)(H -) + (1 - S)(1 + D1)(H + 

+ (1 - S)(1 - D2)(H - ui) + Hi]. 
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Now, due to the binary nature of Siand D, when we take the logarithm of 

Zv, each site picks out only one term in the argument of the cosh: 

log Zv(H,  H, i; D, S) = 	[( 1 + S1)(1 + D1 ) log cosh(H + h + H1) 

+ (1 + S1)(1 - D) log cosh(H - ii + H1) 

+ (1— S1)(1 + D1) log cosh(H + + H1) 

+ (1 - Sj(1 - D) log cosh(H - + H1 )] + N log 2. (3.20) 

In order to calculate quenched averages we wish to average the value of 

the free energy over all instances of the data, and this requires that we find 

the average of log Zv, 

log Zv(H,  H, Ii; D, S)) D  = > P(D)log Zv(H,  H, h; D, S) (3.21) 
{D} 

However, when we perform the sum over i in (3.20) and take the thermo-

dynamic limit N - oo, we find that log Zv does not in fact depend on the 

particular instance of the data D, but only upon the noise level q. We say 

that log Zv self-averages: 

urn /log Zv(H,  H, Ii; D, s)\ = Nlog2 
H-O \ 	 ID 

+ (1 - q)log cosh(H + ii) + 	log cosh(H - 

+ (l - q) log cosh(H - li) + q log cosh (H + ii), (3.22) 

where we have assumed zero bias in the source. For such systems it is a 

standard tenet of statistical mechanics that observables are dominated by 

their most probable values, and that the average and most probable values 

are essentially the same. Similarly, we argue that the value of log Zv for 

any D chosen randomly from the same probability distribution P(DIS°) 
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should be independent of the actual choice of D. It is easy to see how this 

self-averaging property arises—as we go from site to site in the sum on i in 

(3.20) we are choosing N independent Di from the probability distribution 

P(DIS° ) which is uniform over the sites. Therefore, for large N, this sum 

over sites is equivalent to an average over the distribution. 

An alternative explanation imagines that we divide the system into a large 

number of subsystems. Each of the subsystems may be imagined as a 

different instance of the data. Therefore, if we perform the spatial sum 

over each subsystem first, the full spatial sum, averaging over subsystems, 

gives us the average over the data for free. 

With this definition of Zv, we must declare A as 

	

H 	
—Si), 	(3.23) 

and to find the mean field free energy we must calculate (A) v . First: 

(R, IS, D]) V  = urn 	log Zv(H,  H, ii ;  D, S) 

= 	+ S)(1+Dj)tanh(H + + 	+ S1)(1 - D1)tanh(H - 

+ 	- S1)(1 + D1) tanh(H + ui) + 	- S)(1 - D)tanh(H - 

(3.24) 

We then define a pair of order parameters 

= 	> (1 + S) [(1 + D1 ) tanh(H + ii) + ( 1 - D1) tanh(H - 

= (1 - q)tanh(H + li) + qtanh(H - ii), 	 (3.25) 
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R 
N i  

= (1 - q) tanh(H - Ii) + qtanh(H + li). 	 (3.26) 

R+ and R are defined as the mean bias of two complementary subsets of 

sites: reconstruction sites where Si = +1 and Si '= —1 respectively. We see 

from (3.25) and (3.26) that these quantities self-average and therefore that 

they also represent the quenched average ((Rk[S, D])v)D over the same 

two sets of sites. 

Next we make use of the fact that Zv is a factorized measure and therefore 

(RiR 3 ) = (R) (R 3 ). So when we calculate i <>  (R1) 1, (Rj ) v  from 

(3.23) we get sixteen terms of the form 

C1  = 
1  E (1 +51)(1+D1)(1 +S)(1+D)tanh2 (H +ui). 	(3.27) 

16 <ii> 

Given that the density of edges in S is 6S and the noise level is q at each 

site, C1  self-averages to give 

Ci  = (1 - s)(1 - q)' VN  tanh2(H + ii), 	(3.28) 

where ii is the coordination number of the lattice. Finally we can write 

NKu ri 
(A)V 	2 [(1 - Es) (R +2  + R 2) + EsR+Rj 

NHR NH - R-  
(3.29) 

- 2 - 2 

and we see that the mean field free energy does not depend explicitly on 

the data picture. Nor does it depend on the particular source picture S° 

that generated the data, but only upon the density of edges in the source, 

ES. 
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We can now write down the variational free energy, combining equations 

(3.29) and (3.22): 

= —1ogZv —(A) 

= —(1 - q) log cosh(H + li) - qlogcosh(H - ii) 

- 	- q) log cosh(H - h) - q log cosh(H + 

- 	[ 1  (1 -&s) (R 2  +R - 2 

2 2 	
)  + esRR] 

HR HR 
+ 2 

 + 2 — log 2, 	 (3.30) 

and we find the mean field free energy by minimizing F with respect to the 

variational fields H+,  H- . The values of the order parameters R+  and R-

at this minimum define the equilibrium values, and thus the observables 

of the system. 

Figure 3.6 shows the typical free energy surfaces that (3.30) defines in terms 

of the order parameters R+  and R, for a number of different points in the 

parameter space (k, ui). The values of H+  and H are given in terms of the 

order parameters by rearranging equations (3.25) and (3.26). Notice that 

the surface changes qualitatively for different values of I? and h and there 

is in general more than one local minimum in this surface. These are the 

metastable states of the system that feature in some regions of parameter 

space. 
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From (3.25) we see that the order parameter, R+  depends on the conjugate 

field H but not on H. Therefore 

a.F 
=  

I vk 
1---?i- [(1 - es)R 	+ esR] ± 

ÔR 
(3.31) 

aH+ OH' 

a.r 
= f 	zI? 

[i - es)R +,,R+] + -_J 
H- )ôR 

(3.32) 

We find candidate minima of .F by requiring O..'F/ÔH = a.F/ÔH-  = 0 

which results in a pair of equations for the fields: 

H+ = 	k [(1 - s)R + (3.33) 

H = 	k [(1 - Es)R 	+ esR]. (3.34) 

We may now substitute these values for the conjugate fields H+  and H 

into our equations (3.25) and (3.26) for the order parameters to get a pair 

of coupled self-consistent equations for the equilibrium values R+,  R- 

R  = (1 - q) tanh {kv [(1 - s)R + esRj + /i} 

+ qtanh {Kv [(1 - Es)R + esRj - 	(3.35) 

R = (1 - q) tanh {k [(1 - es)R + 	- 

+ qtanh f ff v [(1 - s)R + esR] + h}. 	(3.36) 

3.3.4 Limiting Behaviour in Special Cases 

We can check that the above equations for the order parameters are rea-

sonable for limiting values of k (the coupling that specifies our prior on 

the density of edges), and Ii (the field in the model likelihood that spec- 

ifies how noisy we believe the data to be). Recalling our definitions of 
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Figure 3.6. Free energy surfaces for the mean field model with density of 
edges Es = 0.125 and 30% noise. There is one local minimum in (I), two 
in (II), three in (III) and (IV), and four in (V) and (VI). In (I), (IV) and (V) 
the global minimum is data-like (lies on the R = -R line), while for the 
others there are two equal prior-like minima. The regions of parameter 
space that these correspond to will be indicated in Figure 3.7. Notice the 
symmetry about the R = -R line; this indicates that there is in fact only 
one degree of freedom in the equilibrium values of the order parameters, 
and we will use this fact to simplify the calculation of these values. 
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R and R it is clear that the quantity (R + R) is the overall bias in 

the reconstruction, while 1  (R+ - R- ) measures the overlap between the 

reconstruction and the source image S°. 

. In the limit as k -i 00 we find two stable solutions R = R 	±1. 

These give a net bias of ±1 and overlap of zero, and correspond to 

the two edge-free (i.e. single colour) ground states. This is easily 

explained: the infinite nearest neighbour coupling overwhelms any 

finite value of ii and the smoothing effect of the prior removes all 
edges from the image. 

. In the limit of ii - 00 we get, for any 

R = ( 1-2q), 

= —(1-2q). 

Thus the bias remains zero as in the data, and the overlap with 

S retains the same value as the initial overlap of D with S. This 

occurs because the restored picture is bound to the data by the infinite 

coupling h. 

. At K = 0, for finite h we have 

= (1-2q)tanh(), 

R = —( 1-2q)tanh(ui). 

This gives a bias of zero and overlap of (1 - 2q) tanh(i). So for 

any finite ii, this restoration scheme simply adds further noise to the 

corrupted picture, reducing the overlap. 
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. For ii = 0 at finite K we have 

R = tanh {vl? [(1 - es)R +,-,R- ] 

R = tanh {vk [(1 - s)R + esR]}. 

One stable solution of these equations has R+ = R- , in which case 

we have the implicit equation R = tanh(v1?R) This has either one 

solution at R+ = = 0 (i.e. a completely random picture), or two 

prior-like solutions (i.e. few edges), depending upon the value of the 

prior coupling 1?. The result here is wholly determined by the prior. 

3.3.5 Numerical Calculation of General Solutions 

Reassured that the equations (3.35) and (3.36) for the order parameters are 

reasonable, we turn our attention to the numerical calculation of R+  and 

R and the corresponding mean field free energy (the minimum of the 

variational free energy). 

We wish to solve the two coupled implicit equations for R and R. We 

can reduce these to a single implicit equation in H+  as follows. From (3.33) 

and (3.34) we find 

H  = (
1 —Es) 

[H+ - k(1 - s)R] + ziKe5R. 	(3.37) 
ES 

Then substituting this into (3.26) and the result back into (3.33) we get 
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H = 	- q) tanh {(1 
is 

 Es) [H+ - vk(1 - es)R] + vK&5R - i} 

+ vkEsqtanh {(1 
—ES) 

[H - 	 - Es)R} + vke5R + 

+ vK(1 - s)R 	 (3.38) 

with R given in terms of H by (3.25). So we can solve for H numeri-

cally using a simple, robust method such as bisection [99],  and from this 

determine H, R and R. 

This method will find the fixed points of (3.38), but not all will be minima 

of the free energy. To ensure that we have found a value for H+  that cor-

responds to a local minimum of .T we calculate second derivatives. When 

the fixed point equations are satisfied we have 8.F/,9H+ = a.F/aH-  = 0 

and the second derivatives are, from (3.31) and (3.32), 

I 1 ÔR 
2ôH 

ÔR 

 

 k(i 
- 

ô2 77  I 1 	R- 
2öH-   Es) OH  

OR ÔR 
= _VKESÔH+ ÔH- 

A local minimum in .F requires 192.F/OH+2 > 0 and the Jacobian 

92 F 52F 	/ 32i \2 

H+2  0H2 - (.oH~aH-) 
> 0. 	(3.39) 

Once we are satisfied that we have determined all of the minima of I we 

can then determine which of these is the global minimum corresponding to 

the equilibrium free energy, and which are metastable states. Although we 
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will concentrate on the equilibrium state, we should note that metastable 

states do figure significantly in certain simulation regimes. 

The expression for the mean field free energy, substituting (3.33) and (3.34) 

into (3.30), is 

FMF = —(1 - q) log cosh(vk[(1 - s)R + ,5R] + 

- q log cosh(v1?[(1 - s)R + R] 

- 	- q) log cosh(vk[(1 - es)R + esR] - ii) 

- q log cosh(uI?[(1 - Es)R + egR] + ii) 

Kv (1 
- -i-- 	- 

	+ R -21  + ,RR} 

KuRt 	 kvR 
+ 2 [(1 - es)R + esR] + 2 [(1 - s)R + esR] 

- log 2 	 (3.40) 

We can check (3.40) in the same limits of K and /1. as we did back in §3.3.4. 

First let us calculate the true free energy F = - log Z for three special 

cases where 

Z = exp k R1R + 	R1 D1 
{R} 	I <ii> 

1. For K - oo the minimum energy configuration dominates the con-

figurational sum—the entropy term is zero and the free energy is just 

the configurational energy of the Ising ground state 

F(k—oo)=—. 

2. For h -, oo, the entropy is zero once again. R is bound to D so, 

writing the density of edges in the data as 6D,  the internal energy and 
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hence the free energy is just 

F(ii — oo) = —D 1 D1 —ii 
<ii> 

LIK -  
= ---(1 -2eD)—h, 

3. For 1? = 0 and h = 0 the energy term is clearly zero and the number 

of arrangements is 21  giving the free energy 

F(K - 0,/i - 0) = log 2. 

Now we compare the behaviour of (3.40). We use the identity 

log cosh(x) = xI + log(1 - e_ 2 IxI) ,  

and we use the limiting values of R, R determined previously in §3.3.4. 

In the limit k - oo, 	= R = ±1, which gives 

FMF(k - oo) = -. 

In the limit h -+ oo, R = —R = 1 - 2q, then 

FMF(h - oo) = — ii - 	- 26S)(1 - 2q) 2 . 

When Ii = K = 0, all terms in (3.40) disappear except the constant, 

and so FMF(K = h = 0) = - log 2. 

There is clearly agreement in the first and third cases, and a brief analysis 

Of ED will show that the results agree in the second case also. 
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Relationship Between ES and ED 

If the probability of an edge in the source is ES,  then the probability of a 

corresponding edge in the data, given a probability q of flipping each pixel, 

is 

ED 
= [( 1 _ q)2 +q2] E5+2( 1 _ q ) q ( 1 _ es ) 

= ES + 2q(1 - q)(1 - 2E5). 	 (3.41) 

. When q = 0.5, ED = 0.5, irrespective of the value of 6, i.e. all infor-

mation is lost. 

. When q = 0 or 1, ED =es as expected since in these cases S maps 

deterministically onto D. 

. For es < 1 , ED ~! E5, i.e. the noise process always increases the density 

of edges in the picture. 

From (3.41) we get 

(1 - 2ED) = (1 - 2es) [i - 4q + 4q2] 
, 	 (3.42) 

which verifies the agreement of the second special case Ii —i oo. 

3.3.6 The Observables 

We are now in a position to determine numerically all of the locally stable 

states of the mean field model for any choice of couplings k, h. Returning 

to equation (3.24) we can determine all of the quantities of interest in terms 



CHAPTER 3. PHASE TRANSITIONS IN HYPOTHESIS SPACE 	109 

of H and H. It is understood that HI are implicitly determined by the 

choice of couplings k and ii: the values we use are fixed point solutions 

of equations (3.37) and (3.38). 

The overlap between source and reconstruction is 

(S.R)D = -- (((RkSk)R) 

	

N 	
g)D 

	

MF 1 	
((Rk[S,DI)VS °) D . 	 (3.43) 

N k  

Since the quantities are self-averaging we may replace the spatial sum with 

a quenched average over the data. Recalling that 

(Dk[S °])D  = 	P(DS ° )D = (1 - 2q)S° , 	(3.44) 
{D} 

we get the average overlap of the source and reconstruction, from (3.24), 

S.R = ((Rk[S,D])VS) D  

= (1 - q)tanh(H + l) + qtanh(H - ii) 

- (1 - q) tanh(H - ii) - qtanh(H + Ii). 	(3.45) 

The average overlap of the data and reconstruction is 

D.R = (( Rk[S,D])vDk)D 

= (1 - q) tanh(H + Ii) - q tanh(H + Ii) 

- (1 - q)tanh(H -/i) + qtanh(H - ii). 	(3.46) 
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Under mean field 

((Rk[D])) D 	((Rk[s,D])) D  

	

= ((i + Sk)(1 + Dk) tanh2(H + ii) + 	+ Sk)(1 - Dk) tanh2(H - 

	

-Sk)(1 + Dk) tanh2(H + iz) + 	- Sk)(1 - Dk) tanh2(H 
- )D 4 	 4 

and so the width of the restored distribution (2.27) is 

	

(WR)D = - 	- q)tanh2(H+ + - qtanh2(H+ - 

- - q)tanh2  (H -- qtanh2(H_ + h). (3.47) 

These three results (3.45), (3.46) and (3.47) are what we require to calculate 

the quality factor (2.29). 

In addition, the average bias in the reconstructions is 

(MR)D = 

= 	- q) tanh(H + ui) + q tanh(H - 

	

+ 	- q)tanh(H - ii) + qtanh(H + ii), (3.48) 

and the overlap of the thresholded posterior mean with the source is 

T.S = (Ssgn(Rk [S,D]) V ) 

= (1 - q)sgn(H + i) + sgn(H - i) 

-- q)sgn(H - i) - sgn(H + ii), 	(3.49) 
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using the identity sgn[tanh(x)] = sgn(x), where 

sgn(x) = { +1 
if x > 0, 

—1 ifx<O. 

3.3.7 Results 

The first result we examine is the phase diagram of the mean field model 

shown in Figure 3.7. This is generated by first finding all of the stable 

solutions of the implicit equation (3.38) at each point in parameter space 

(k, ii). Each stable solution corresponds to a minimum in the free energy 

surfaces shown in Figure 3.6. We then classify the point according to 

the number of stable solutions (or metastable states) and the character of 

the equilibrium solution [that which minimizes the free energy (3.40)]. The 

solution may be prior-like (non-zero bias and zero overlap with the source), 

or data-like (non-zero overlap with the source and data). 

For small enough coupling k we find the equilibrium solution is mostly 

aligned with the data and the overlap R.S is non-zero, while the bias 

remains zero. As we increase the value of k, two metastable prior-like 

states appear which have zero overlap with the source but a non-zero 

bias. Ultimately, for large K, further data-like metastable states appear. At 

some point, as K increases, there is a phase transition where the ordered 

prior-like state becomes lower in energy than the data-like state: the prior 

wins. 

This phase transition explains the failure of the restoration scheme in cer- 

tain regions of parameter space. When the nearest-neighbour interaction 

k is too strong, the collective behaviour overwhelms the field h that binds 
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tanh(fi') 
Figure 3.7. The phase diagram for the mean field model with density 
of edges ES 0.125 and 30% noise [q = 0.3]. The regions of the phase 
diagram are distinguished by the number and character of metastable 
states as follows [refer to Figure 3.61: (I), only one stable state with a non-
zero overlap with the source; (II), two stable states with zero overlap but 
non-zero bias (prior-like states); (III), three metastable states, both data-like 
and prior-like states with the prior-like states being lower in free energy 
than the data-like state; (IV), three metastable states as in region (III) but 
with the data-like state lowest in free energy; (V), as region (IV) but there is 
now a further state, anti-aligned with the data; (VI), four metastable states 
as in region (V) but with the prior-like states lowest in free energy. 
Therefore the restored pictures will have a non-zero overlap with the source 
only in regions (I), (IV) and (V). There is a phase transition line between 
these regions and the regions (II), (III) and (VI) where the restored pictures 
are overwhelmed by long range order and have zero overlap with the 
source. This notwithstanding it is only in region (II) where there are no 
data-like states whatsoever. 
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the restoration to the data, and unless one can access the metastable states 

rather than the global minimum of the free energy,' this results in pictures 

of predominantly one colour, with no overlap with the source. There is a 

region of phase space (region (II) in Figure 3.7) where there are no data-

like states and there is no possibility of finding suitable restorations. This 

region grows in size as the difficulty of the restoration problem grows (i.e. 

as the edge density es or the noise level q increases). 

The phase transition also explains why the quality factor and the overlaps 

presented in Figure 3.3 all show a marked decrease toward the top left of 

the diagrams (large k, small ii). 

Figure 3.8 compares the quality factor obtained from the mean field calcu-

lation with the simulation results for the comparable chequerboard. As we 

stated at the beginning of this section, the mean field calculation assumes 

a fixed source picture, characterized only by the density of edges in the im-

age. Although we could compare this with a single image drawn from the 

Ising source distribution, such a source contains structure on many length 

scales, and is characterized by very many correlation functions. The plain 

chequerboard seems more typical of the simplest source picture modelled 

in the mean field calculation, and for the purposes of comparison we use 

this chequerboard source. 

We see that there is excellent qualitative agreement between simulation 

and the mean field approximation. 

The phase transition is clearly defined in the mean field results, as 

we would expect since the calculation is carried out for an infinite 

system and we can exactly calculate the free energy and hence the 
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Figure 3.8. Comparison of mean field and simulation results for quality. 
The upper figures show the results for the mean field calculation with the 
density of edges ES = 0.125 and 30% noise [q = 0.3,tanh(h) = 0.41. The 
lower figures are the simulation results for the corresponding 8x8 chequer-
board [Es = 0.1251 and 30% noise. There are quantitative differences in 
the position and sharpness of the phase transition but there is excellent 
qualitative agreement. 
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point at which a metastable state changes to become the global mini-

mum of the system. The simulation does not exhibit significant finite 

size effects, but the transition is smeared out because the system gets 

caught in metastable states near the phase transition with the par-

ticular minimum found having a strong dependence on the starting 

configuration for the restoration. 

• The position of the phase transition is also shifted. This is no surprise 

as we know that for the two-dimensional Ising model the phase 

transition occurs at K = 0.44, while the mean field calculation for 

the Ising model yields a critical coupling of K = . Of course, for 

h = 0 the restoration scheme is simply an Ising model in zero field. 

Figure 3.9 compares the results of the mean field calculation with simu-

lation for three other quantities: R.S the average overlap of the restored 

pictures with the source; R.D the average overlap of the restored pictures 

with the data; and T.S the overlap of the 1PM estimate with the source. 

The qualitative agreement these exhibit is quite remarkable given the ap-

proximations made in the calculation, and provides ample support for the 

earlier interpretation of the phase diagram. 

Phase transitions are marked by a discontinuity in an observable. Although 

there is clear evidence of an ordered (prior-like) phase in the simulation 

results, the actual phase transition is softened and we see a continuous, 

if steep, change in the value of the quality factor. What happens is that 

when the ordered phase becomes the equilibrium state of the restoration 

model, data-aligned metastable states remain. Since we start the Monte 

Carlo process with the restored picture copied from the data, the system is 

trapped in one of these metastable states, and we still get useful restoration 

a little beyond the phase transition. However, as the nearest neighbour 
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Overlap of restored and source [R.S]. 

MM 
Overlap of restored and data [R.D]. 

Overlap of TPM and source [T.S]. 

Figure 3.9. Comparison of mean field and simulation results. The left 
hand column shows results for the mean field calculation with the density 
of edges 6s = 0.125 and 30% noise [q = 0.3,tanh(h) = 0.41. The figures 
on the right are the simulation results for the corresponding 8x8 chequer-
board [ES = 0.125] and 30% noise. As in Figure 3.8 there are quantitative 
differences in the position and sharpness of the phase transition but there 
is excellent qualitative agreement. 
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coupling is increased, the correlation length grows accordingly and large 

domains begin to be formed in spite of the underlying data. Imagine a 

chequerboard source. As the nearest neighbour coupling increases there 

comes a point where the surface to volume ratio of a single chequer is 

such that it is more favourable to remove the edges around the chequer 

than it is to retain the alignment of the chequer with the data. However, 

to reach this state requires the reversal of the whole cluster of pixels that 

make up the chequer. This is a metastable state since the chequer remains 

stable against single pixel flips. Therefore there is a small probability of a 

single chequer being lost in the restoration, but as the nearest neighbour 

coupling increases further this probability increases and the mean number 

of chequers inverted against the data increases. This leads to a finite 

rate of decrease in the overlap of the source and data as the coupling is 

increased. If, on the other hand, we begin the Monte Carlo process with the 

restored picture all one colour, i.e. close to the ordered phase, we observe 

a much sharper transition in the values of the observables as indicated in 

Figure 3.10. 

Although starting from the edge-free state gives results that are much 

closer to mean field, and that are indeed a closer representation of the true 

equilibrium states, we continue to present results that were obtained by 

starting from the data-like state, since this is the more natural approach 

given the image restoration task. 

Figure 3.11 provides further evidence of the success of the mean field 

calculation. It serves as a companion figure to Figure 3.5 which presented 

comparable results for simulation with chequerboard sources. The trends 

that were discovered by simulation are consistent with the mean field 

results: 
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PQ 

T.S 

Figure 3.10. Simulation results for 8x8 chequerboard and 30% noise, as 
in Figure 3.8 and Figure 3.9, but starting from the edge-free (one colour) 
state. Notice how much sharper the phase transition is in all cases, and the 
better qualitative agreement with the mean field results. 
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The optimal choice of restoration coupling Er increases as the density 

of edges in the source decreases, and as the noise level decreases. 

The optimal choice of the restoration parameter h increases as the 

noise level decreases, and as the density of edges in the source de-

creases. 

Figure 3.11 also clearly shows how the position of the phase transition line 

depends upon the density of edges in the source and the noise level. As 

either the density of edges or the noise level increases the phase transition 

line cuts deeper into the phase diagram and the size of the ordered phase 

increases. In both cases the restoration problem is more difficult and this is 

reflected in the reduced volume of phase space that provides meaningful 

restoration. 

In conclusion, we see excellent agreement between simulation and mean 

field, especially for the overlap R.D. For the overlap R.S, and the quality 

factor, the qualitative agreement is good, but in the mean field results the 

overlap approaches unity for large Er, ii while it has a smaller upper bound 

in simulation. The most disconcerting mean field results are those for the 

overlap of the TPM estimate with the source, T.S (refer to the bottom row 

of Figure 3.9). There are three distinct regions. In the prior-like phase the 

overlap T.S is zero, while for low values of K it is simply 1 - 2q and these 

both agree with the simulation results. However, in the region where we 

get best performance, the mean field results indicate perfect restoration for 

the TPM estimate. The qualitative results are not too bad since we do 

see a good correspondence between the region where in the mean field 

approximation T.S = 1 and the region of good performance (large T.S in 

the simulation). 
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Figure 3.11. 
Plot of the mean field quality factor for various values of ES and h. 

Compare with Figure 3.5. As the density of edges decreases the optimal 
choice of both K and hincreases. As the noise level increases the optimal 
choice of both k and h decreases. The phase transition line cuts deeper 
into phase space the greater the density of edges and the higher the noise 
level. 
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The rather unlikely cases of perfect restoration indicated in the mean field 

results are related to the simplicity of the model. If we examine the equation 

for T.S (3.49) we see that the thresholded nature of this quantity has led 

to sgn functions. With only four terms on the right-hand side there is a 

very restricted set of values that the overlap could possibly take on, and 

only the three detailed above actually arise. A value of 1 indicates perfect 

restoration; 1 - 2q is the degree of overlap we begin with, [S.D]; while zero 

indicates a complete failure of the restoration scheme. These results lead 

us to experiment with a somewhat more complex model in the belief that 

this will more closely match the simulation results. 

3.4 An Extension to the Mean Field Calculation 

We claim that the behaviour of T.S arises from the restricted number of de-

grees of freedom that we allow the model—this corresponds to the way we 

have classified the sites into four types: {D1 = Si = +1), {D1 = —Si 

{D1 = Si= —1}, {D. = —Si = —1}. The advantages are that it is a simple 

natural classification, and it allows us to derive the mean field equations 

with the source parameterized by merely the edge density, &. 

We may, however, consider more than four classes of site, provided we 

know more of the geometry of the source picture. [If we were to consider 

the classification on a site by site basis, with N classes, and hence N order 

parameters, then we would get very good results, but the calculation would 

be almost as intensive as computation of the partition function itself!] 
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Figure 3.12. A schematic of the breakdown of the sites in an 8x8 chequer-
board source into four regions. (1) and (4) are bulk sites: where all nearest 
neighbours are the same colour. (2) and (3) are edge sites where one or 
more nearest neighbours are a different colour and hence two neighbours 
may lie in a different class. 

3.4.1 The Extended Calculation 

We proceed with a more detailed classification in the case of the 8x8 che-

querboard. We distinguish the sites of the source image as members of 

four classes, rather than as members of two [see Figure 3.121: 

sites where Si= +1 and all nearest neighbours have Si= +1, i.e. 

bulk sites with Si = 1; 

sites where Si = +1 and one or more nearest neighbours have 

Si  = —1, i.e. edge sites with Si = +1; 

edge sites with Si = —1; 

bulk sites with Si = —1. 

This classification allows eight degrees of freedom in the mean field equa-

tions once we have taken account of the corruption process. We have four 

variational fields H1 ...4  and four corresponding order parameters R1...4. 
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We must first compute the size of each class, and the number and type 

of each nearest neighbour pair. The proportional area of each class is 

1. 128  2. 128 • 	 128• We can now write down the variational 

partition function for this particular geometry and calculate 

36  
logZv = 128 [(1 - q) log cosh(Hi  + ) + q log cosh(Hi  - 

+ (1 - q) log cosh(H4  - ii) + q log cosh(H4  + ii)]
28  

+ 128 [(1 - q) log cosh(H2  + + q log cosh(H2  - iz) 

+ (1 - q) log cosh(H3 - + q log cosh(H3  + ii)]. (3.50) 

Defining order parameters R1 ...4  as before we get 

R1 	= 	(1 - q)tanh(Hi  + ii) + qtanh(Hi  - 	(3.51) 

R2 	= 	(1— q)tanh(H2  + h) + qtanh(H2  - h), 	(3.52) 

R3  = 	(1— q)tanh(H3  - ui) + qtanh(H3  + h), 	(3.53) 

R4 	= 	(1 —q)tanh(H4  - h)+qtanh(H4 + i). 	(3.54) 

The number and type of each nearest neighbour pair is used to calculate 

(A) 
r 60 

2 256 	 256 
24 	 32 

= 

+-256 (R1R2  + R3R4) + R2R31
256 

36  
- 128 (R

1H1  + R4H4) - 128 (R2H2  + R3H3). (3.55) 

From (3.50) and (3.55) we can construct F(H1 , H2 , H3 , H4 ) and then requir- 

ing V.T = 0 for a turning point in the variational free energy gives a set of 
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four coupled equations 

H1  = (5R 1  + R2 ), (3.56) 

H2 = (7R + 3R 1  + 4R3 ), (3.57) 
14 

H3 = (7R3  + 3R4  + 4R2 ), (3.58) 
14 

H4 = (5R + R3). (3.59) 

with R 1 ...4  given in terms of H1 ...4  by equations (3.51. . . 3.54). We now have 

a set of four coupled implicit equations in four unknowns. There is no 

straightforward simplification such as we used to find the single implicit 

equation (3.38) in the previous mean field case. In order to solve we apply 

a numerical algorithm from the NAG library [92, Subroutine C05NBF]. 

The computation requires considerable care in order to find all of the 

possible fixed points—for many sets of parameters and initial conditions 

the algorithm fails to converge. To check for minima requires calculation 

of second derivatives, and the Jacobian is a four by four determinant. The 

calculation is not detailed here. 

3.4.2 Results 

The results of this extended mean field calculation are presented in Fig-

ure 3.13 and should be compared with the results from the simpler mean 

field calculation shown in Figures 3.8 and 3.9. We see that there is very 

little qualitative change in the results, except for T.S which now exhibits 

a stepped effect. This more closely matches the simulation results. The 

stepped effect is due to the further degrees of freedom available in the 

calculation of T.S since we have four rather than two variational fields. 
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Figure 3.13. Results for the extended mean field calculation for an 8x8 
chequerboard and 30% noise. In the third figure we see that the extension 
to the mean field calculation has taken us one step towards the reality of 
the simulation results. T.S now takes on more than just a single value in 
the region of "good" restoration. In addition the maximal values of the 
quality factor and the overlap R.S are reduced from the perfect restoration 
indicated in the results from the simpler mean field calculation. 

fi 
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Examining R.S we see that the extra degrees of freedom allow a more 

accurate calculation and the values are reduced in the direction of the sim-

ulation results, with an upper bound on R.S of less than unity. The same 

effect is observed for the quality factor. We expect to see this improvement 

trend continue as we allow more and more degrees of freedom with the 

inclusion of further variational fields. 

To summarize the mean field results, it is apparent that we get remarkably 

good qualitative results, even with just the simple model we first described, 

and we understand the reasons for the quantitative differences from the 

simulation results: 

• It is well known that the position of the transition to the ordered 

phase is modified in the mean field approximation. Since mean field 

is equivalent to having an infinite interaction range (see e.g. [1141), 

we would expect a transition to long range order to occur at a smaller 

value of the coupling in the mean field approximation than a nearest 

neighbour interaction would suggest. 

• The quantitative difference in the values of observables are caused, 

at least in part, by the simplification of the space of order parameters 

that we consider. 

The utility of the mean field approximation in improving our understand-

ing of the qualitative behaviour of the model far outweighs any reserva-

tions we may have about the quantitative results. 
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3.5 The Small Coupling Expansion 

3.5.1 Introduction to Series Expansions 

We now consider an alternative approach to mean field. This is the small 

coupling expansion, where we rewrite the exponential in the posterior 

probability distribution (2.43) as a series expansion. Then, provided the 

argument of the exponential is small—i.e. the coupling k is small—we get 

an approximation to the true results by truncating the series and calculating 

only the first few terms. Of course such calculations are rarely simple, and 

the complexity of each higher order term is in general comparable to the 

total complexity of calculating all of the previous terms in the expansion. 

So there is invariably a trade-off between cost and accuracy, or the size of 

region in which the calculation gives meaningful results. 

There is a wealth of literature on series expansions (see e.g. [251). The 

most often quoted success is doubtless that of quantum electrodynamics. 

Feynman developed a graphical formalism which allows the calculations 

to be carried to very high orders using geometric arguments. In the work 

that follows we have not constructed a complete formalism, however it is 

still useful to use a diagrammatic notation at times to simplify the complex 

summations required. 

Our aim is to calculate the quality factor (2.29), and to do this we need 

to calculate two quenched averages: (((R.S))) and (R[D]I 2). We be-

gin by considering source pictures drawn from an Ising distribution—for 

the small coupling calculation this is more straightforward than the fixed 

source case considered in the mean field approximation. 
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3.5.2 Calculation of R.S 

Consider 

(((R.S))) = 	R.SP(S, R), 	 (3.60) 
{S} {R} 

where the joint probability distribution is 

P(S, R) = > P(RID)P(DIS)P(S) 
{D} 

1 	_______________ 
= Zp(K)Zl(h)Z(k,;D)f K 	SS 

I <ii> 

(3.61) 
<ii> 	i 	 I 	J 

and the normalizing partition functions are 

	

Z(k,h;D) = 	exp 
 

Z, (h) = 1: exp 
{D} 

	

Z(K) = 	exp 
 

k 	 (3.62) 
<ii> 	 I 	I 

h>S1D1} = [2cosh(h)]N, 	(3.63) 

K>S1SjI. 	 (3.64) 
<ii> 	) 

We define a normalized average 

def 1 
= 	 exP{RiD . +hEDisi}  (3.65) Z1(h)Z1(Ji)21\T 

IS) ID) {R} 

which allows us to write 

()SD)R = (() gi(1 , k, Ii; S, D, R)) 1 , 	 (3.66) 
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where we define 

_ 	2NZ1(h) 	
exp {K>2  S1S1 + 1? >2 RR}. gi (K,k, iz;S,D,R) - 

Z(K)Z(k,ui;D) 	<,> 	<> 
(3.67) 

Written in this way, we have to expand g1  (K, k, ii ;  S, D, R) in powers of K 

and 1?, and then perform the average ()• 

In an effort to simplify the notation, we declare three functions of the 

configurations as follows: 

The product of two nearest neighbour spins, summed over all nearest 

neighbour links on the lattice 

A(S) ! >2 SS3 
(®-®). 	

(3.68) 
<ii> 

The product of all second and third neighbour pairs—the sum over 

the lattice of all connected two link graphs 

B(S) 	>2 SS 	(7). 	(3.69) 
<<ii>> 

And a four-spin product over all disconnected two link graphs 

	

'I® 	\ 
C(S) Lef >2 SS3SkS1 	

(I 	). 	
(3.70) 

<ij)<ZkI> 	 C1) 

In the graphical notation, a sum over all such graphs on the lattice is 

assumed. 
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Defined in this way we calculate the square of A(S) 

A2(S) = ( 	
:) 

vN = 	+ 2B(S) + 2C(S), 

since Siare binary variables and S? = 1 Vi. This will greatly simplify the 

notation for an expansion to second order. 

First we deal with the partition functions Z(k, Ii; D) and Z(K). 

Z(K) = >Jexp{KA(S)} 
{S} 

= > {i + KA(S) + 1jç2A2(S)  + o(K3 )} 
{S} 

= 2' {i + 	
2 VN  + o(K3)}, 	 (3.71) 

where we have made use of the fact that Els, ><> SS3  = 0 as the S 

are binary variables and any sum over discrete sites will give zero when 

averaged over all configurations. This means that 

A(S) = E B(S) = E C(S) = 0. 	 (3.72) 
{S} 	{S} 	{S} 

Next consider the main partition function 

Z(k,;D)=expk 
{R} 	I <ij> 

= 	{i + kA(R) + k 2 A 2 (R) + 0(k3 )1 exP{hRiDi} 

= Z1(i) (i + kA(R) + 
1
k 2 A 2 (R) + 0(k3)  
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where we define the normalized average 

= Z,  ( h) 	
exP{uiRDi}. 	 (3.74) 

{R.} 

In order to calculate the average in (3.73) we first find 

= Dk tanh(h), 	 (3.75) 

and define 
.. def a = tanh(h). 	 (3.76) 

Then, since exp {i i, DR1} in (3.74) is a factorized measure we easily find 

	

(A(R)), = 	 (3.77) 

(B(R)), 

(C(R)) 1  = à4 C(D), 

	

(A  2 (R)) 1  = 	+ 2&2  B(D)  + 2&4 C(D). 	(3.78) 

Substituting (3.77) and (3.78) into (3.73) gives 

Z(k, ui ;  D) = Z1 (h) 1  + ka2 A(D) 

+k2 
[ 

 vN + 2&2 B(D) + 2&4 C(D)] + 

(3.79) 

The reciprocal of (3.79) is then 

= 	' 1 1 - k& 2 A(D) - 'k2 [(1-2&4 ) vN  
Z(K,h;D) 	Z1(h) 	 2 	1 	2 

+ 2&2(1 - 2&2 )B(D) - 2 4 C(D)] + 0(k3 )}. 	(3.80) 
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Finally, expanding the exponential in (3.67) and using the small coupling 

expansions (3.80) and (3.71) gives 

gi (K,k,iz;S,D,R) = 

1+ kA(R) + KA(S) - i(&2 A(D) 

+ KKA(S)A(R) - k2a2 A(D)A(R) - Kk& 2 A(D)A(S) 

- k2  [(1 - 2&4).i + 2&2(1 - 2à2 )B(D) - 2a4 C(D)1 

+ R2A2(R)  + K2 A 2(S) - K2 	+ o(K + k)3 . 	(3.81) 

We can check this result by confirming that (91  (K, k, h; S, D, R)) = 1. 

It is not difficult to perform the average, since 

= (Dk)1 = (Sk)1 = 0, 	 (3.82) 

and, once again (.) 1  is an average over a factorized measure so the average 

of any product where any site occurs only once will be zero: 

(A(S)), = 	(A(D)), = (A(R)), = 0 

(B(S)), = 	(B(D)), = (B(R)), = 0 

(C(S)), = 	(C(D)), = (C(R)) 1  = 0 

We have still to calculate averages such as (A(S)A(D)),. The necessary site 

averages are 

(SkRk) = aà, 

(SkDk) = a, 

(DkRk) = 
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which produce the results 

while 

(A(S)A(R)), = vN --° 2-2 
 

vN 2 (A(S)A(D)), = 

2 (A(R)A(D)), = 

u (A2(R)) =(A 2 (D)) = (A 2(S))N 	(3.83)1 = 

Finally, if we substitute these results back into (3.81) we confirm that 

(gi (K,k,ii;S,D,R)) = 1. 

We can simplify the calculation further by rewriting the general equation 

(3.66) as 

= () + 	- () 1 ]gi (K,k;S,D,R)) 1 . 	(3.84) 

This shows that any constants in g, (K, K, h; S, D, R) will not contribute to 

the average. Furthermore since (•) is an average over a factorized measure, 

(3.84) means that contributions arise only from the difference between two 

graphs in contact and the same two graphs disconnected. 

The first quantity we want to calculate is the average overlap of the source 

pictures with the reconstructions 

(((S.R)S)R) D  = 	SkRkgl(K, k, Ii; S, D, R)) 

(3.85) 
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As before, any unpaired site variable will give zero when the average is 

performed, so for example (SkRkA(S)) 1  = 0. The only non-trivial calcu-

lation required is of second order terms such as (SkRkA(S)A(R)) 1 , where 

there is a contribution of th from the ii connected graphs containing site 

Ic, and a contribution of a3a3 from the v(N - 2)/2 disconnected graphs. 

Using the graphical notation: 

-] A(S)A(R)) = 

( 

 1 
- c&] A(R)A(D)) = 

([>skRk_a] A(S)A(D)) = 

ii [aà - a3&3j, 

,  (&* 1 

,  (&') 1 
- I < 1> <> 

v [a&_a3à] . 

Substituting these last three results back into (3.85) gives 

(((S.R))) = a& 11 + vI?(1 —à2 )(K-1& 2 ) + o(K+1?)3 }. 	(3.86) 

3.5.3 Calculation of the Width 

The other quantity we require to calculate the quality factor is ((Rk[D] ))D. 

Unfortunately, the averages required are subtly different from the overlap 

we have just calculated and we need to define a new average 02  and 

function 92• = 	E RkRP(R, R'), 	(3.87) 
{R} {R'} 
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where the joint probability 

	

P(R, R') = 	P(RID)P(R'ID)P(DIS)P(S). 	(3.88) 
{D} {S} 

Therefore, if we define 

def 	1 
()2 =- 	( . )exP{ii(Ri+R)Di} 	(3.89) 

2NZ?(h) {B.}{R'}{DJ 

we can write 

	

R)D= (RkRg 2 (K, K, h; D, R, R')) 2 , 	(3.90) 

where, using the equations for the probability distributions (3.62), (3.63), 

and (3.64), the function 

	

92 (K,K,h;D,R,R') = 	
2NZ(K, h; D)Z?(h) 	

{krt + kA(R')} 
Z(K)Z 1 (h)Z2(k, h; D) 

= 1+ (Ka2  - 2K 2 )A(D) + kA(R) + kA(R') 

+ k 2 &4 A 2 (D) - 2KK& 2a2 A 2 (D) 

+ 2(KKci2 -2f(2&2 )A(R)A(D) 

- k 2  {2&2(1 - 2à 2 )B(D) - 2& 4  C(D)l 

+ K2  {2a2BçD) + 2a4 C(D)} 

+ k 2  [A(R) + A(R')1 2  + o(K + k) 3 	(3.91) 

and we have used the series expansions (3.71), (3.79), and (3.80), replacing 

k by K where appropriate, and we have neglected to write down any 

constant terms. 
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Most terms average to zero as before: 

= = 	= 0, 

(A(R')) 2  = (A(D)) 2  = (A(R)) 2 	= 	0 1  

= (B(D)) 2  = (B(R)) 2 	= 	0, 

(C(R')) 2  = (C(D)) 2  = (C(R)) 2 	= 	0. 

The other site averages we require are 

(RkR) 2  

(RkDk) 2  = a, 

which give 

(A(R)A(R'))2 
= (')2 

++ / 	R\ 

/2 \ 
— —&, 

2 

(A(R)A(D))2 = vN 
—a2, 

2 

(A  2 (R)) = (A 2 (RF)) = i'N 

These results confirm (92(K, k, Ii; R, R', D)) = 1. 

The only terms that figure in the expansion of (3.90) are: 

([ 

 
1

>JRkR — &2] A(R)A(R')) 	"r 	— 
()~ K)2 

= zi[a2_a6], 
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- à2] A(R)A(D)) 	
'V ( 	- (  

= v[a2 _a4 ] ,  

(IN k 
R,R', - &2] A(R')A(D)) = 	

- N ()2 ( 1)2 
= ,i[&2 _a4 ] .  

Finally, we obtain 

= &2 {i + 1k(1 - &2)[2Ka2 + k(1 - 3a2)] + o(K + k) 3 }. 

(3.92) 

Similarly, we can calculate 

((Sk[D] ))D = a2 f  + K2 zi(1 - 2a2  + a4 ) + o(K3)I. 	(3.93) 

3.5.4 Results 

We now have all the results we need to write down the small coupling 

expansion of the quality factor (2.29). 

Q = [2aa {i + vk[K - I?a2](1 - à2 )} 

&2  f  + uk[2Kcr 2  + k(1 -3&2 )](1  - a2)} + 1 - 2a + o(K + k)3] 

/ [i - 2a + a2  {i + K 2 v(1 - 2a2 ) 2  + o(K3 )j] 	 (3.94) 

using the results (3.86) and substituting (3.92) and (3.93) into (2.27) and 

(2.28). 

The denominator is a normalization which depends only on K and h. We 
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can check certain properties of the quality factor with reference only to the 

numerator. 

. If we bind the restored picture to the data with an infinite field h, 

then & = 1 and Q = 0. We get no improvement. 

. We can find the maximum value of Q as a function of 1? and h. Differ-

entiating (3.94) with respect to k and h we find a zero at k = K and 

Ii = h. This verifies the Bayesian claim that the optimal restoration 

parameters will be those values used to generate the data. 

Figure 3.14 compares the results of the small coupling expansion with 

simulation for an Ising source. We have chosen a small value of the near 

neighbour coupling K in the source picture since the expansion will only be 

accurate for small K and k. For this reason also, the results are presented 

for tanh(k) only in the range [0, 0.5]. With these provisions we see excellent 

agreement with the simulation results and, as predicted by equation (3.94), 

the maximum of the quality factor occurs when k = K and h = h. 

3.6 Small Coupling Expansion for Fixed Source 

We now attempt a small coupling expansion for the somewhat more com-

plicated case of a fixed source image S°. This case is more difficult because 

many of the terms that averaged to zero in the previous calculation now 

contribute to the result. 
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Small Coupling Results 
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Figure 3.14. Small coupling expansion results for an Ising source. The 
coupling used to generate the source picture was tanh(K) = 0.2, with 30% 
noise [tanh(h) = 0.4]. The upper figures show the results for the quality 
factor calculated by the small coupling expansion, while the lower figure 
show the corresponding results from a simulation of the same system. 
There is excellent agreement between the two, and as with the results in 
Figure 3.3(a) the maximum of the quality factor occurs when K = K and 
h=h. 
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3.6.1 Calculation of the Overlaps 

We retain the definitions of the lattice sums A, B, and C as given in equa-

tions (3.68),(3.69) and (3.70). And we want to calculate 

R.S°  P(RID)P(D IS°) 

	

{R} 	{D} 

1 	
- >RjR 

	

{R} 	{D} Z1 (h)Z(k )  ; D) 	{ <> 
= 	R.S° > 	 exp K  

+ h>RD + hS?D} 

= (R. S093 (K,h ; D,R)) 3 , 

where the average 

def 	1 - 	 (3.95) 
,(h)Z1(h) {Et}{D} 

and the function 

	

93 (1?,/i;D,R) tef 	
Z1(l) 

exp{kA(R)} 
Z(K,h;D) 

= 1+ kA(R) - ka 2 A(D) + k2A2(R) 

- 1 k [2à2(1 - 2&2  )B(D)  - 2a 4 C(D)] 

- k 2 &2  A(R)A(D)  + o(I?), (3.96) 

and we have again neglected to write down any constant terms. The 

averages we require are: 

(Rk) 3  = 	crfiS, 

(Dk) 3  = 

(RkDk) 3  = &s. 
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Then 

- cx&]A(R)) 
k 

([RICS - a&]A(D)) 
k 

= 

= 2(aà - 

(W&-'@)3 
— 2 (J) ~,  = 

= 2(cr&—cr3&)A(S ° ). 

Similarly 

([RICS - aà]B(R)) 
k 

> (RICS - ]B(D)) 
k 

([RJCS - aà]C(R)) 
k 

1 ([RJVS - cth]C(D)) 
k 

Therefore we have 

= 2(a& - 

= 2(aà - a3à)B(S °), 

= 4(a3à3  - 

= 4(a3 & - o 5&)C(S °) 

E ([RkS° - 	 = 4(cà - a3à3 )B(S ° ) + 8(a3à3  - 

(3.97) 

and 

([RICS° - a&]A(R)A(D)) = (&4) 3
-2  (t*3(0 3k    

+ 	+ 	+ (3)3 (01)3(2 ) 33 \ ®5/3  
/ 	' 	 I® 

 1)3(2)3
+2(1 I +2(1-4(1 	

\&3 	\ &3 	\  

= vN(a& - cà3 ) + 2(a3à + &'a + a& - 3a3 &3)B(S °) 

+ 4(aa +&3a3 -  2c5&3)C(S°) 
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Finally, we obtain the average overlap between the reconstruction and the 

fixed source S°: 

//S° .R" \ = a& 1  + k(1 - 2)2A(S) - k2&2(1 - & 2 ) 
'RID  

_&2) [i _à2 (1 +a2)] +o(k3)}. 	(3.98) 
N 

Notice that the configurational sum over disconnected two link graphs, 

CU, does not contribute to the result. We are calculating an intensive 

quantity that does not depend on the system size N, therefore we would 

not expect terms such as C(S ° ) to contribute as they are of order N. This 

is a general point when calculating physical quantities: only connected 

graphs contribute to the result. 

3.6.2 Calculation of the Width WR 

We have still to calculate 	 for the fixed source case. 

= E E RR 	P(RID)P(R'ID)P(DIS° ) 
{R.}{R'} 	{D} 

= ERkR 
1 

{R} {R'} 	{D} 
Zi(h)Z2(k,;D) exp I k 	RR 

<Z2> 

<ii> 	 i 	i 	 i 	J 
= 

Nk 
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where the average 

04 
def 	1 

= Z,(h)Z?() 	> 
{R}{R'}{D} 

(3.99) 

and the function 

def 	
Z12 (h) 

94 (k,ui;D,R) = 	 explK[A(R)+A(R')]} 
Z 2 (K, Ii; D) 

= 1 + k [A(R) + A(R') - 2&2 A(D)} 

+ k2 [A2(R) + 2A(R)A(R') + A2(RI)] 

- 2K 2 &2 A(D)[A(R) + A(R')] 

+ 2k2 &2 (3à2  - 1)B(D) + o(k 3 ). 	(3.100) 

We have not included in the above expression any terms involving the 

disconnected graphs Co nor any constants. 

The averages we require are: 

(Rk) 4  = 

= aS, 

(RkDk) 4  = 	a, 

(RkR) 4  

(RkRDk) 4  = 	sko 

Then 

- à2]A(R)) = 
	

—2 (
8)4—@) 4 k 

= 2(a 2&2 - 
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- &2]A(D)) 
k = (@O&~)4 

—2 
4 	4 

0. 

Similarly 

(RR - à2]B(Ft)) 
k 

(RR - &2]B(D)) 
k 

Therefore we have 

= 2(a2 &2  - 

I 

	

([RI%R - &2]A2(R)) = 4(a2 &2  - 	 (3.101) 
k 

and 

E (ERR - à2]A(R)A(D)) 
= 	—2 //\

k 	 4 	 \/4 

+  (01)4 + ~01)4 + (3)4 —3 (01)4(1)4 
= vN(à2 - &) + 4( &2  

- 

and 

k 

([RkR - à2]A(R)A(RF)) = 
(::: ) - 2 

(( 2) 4  

+ 	+ <°-:k> + <®®>4 
- 

 ('1)4 <>4 

= uN(à2 - à6) + 2 (2&4  + &2 
- 3&6 )  a2B(S°). 
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Chequersize A(S °)/N B(S °)/N 
2x2 0 —2 
3x3 1/3 —2/9 
4x4 1/2 1 
8x8 3/4 13/4 

Table 3.2. Table of small coupling constants for fixed source che-
querboards. Since A(S O ) and B(SO ) are two-point functions it is 
straightforward to calculate these same functions for the data picture: 
A(D) = (1 - 2q)2 A(S °) and B(D) = (1 - 2q)2B(S° ).  

Finally we obtain 

= &2 {i + 4k °) c 2 (1 - à2) + vk2(1 - 3&2 )(1 - &2 ) 

k22B)O2(l - à2)(3-5   &2)} 	 (3.102) 

3.6.3 Results 

Combining (3.102) with the result for the overlap of the restored distribu-

tion with the source (3.98), and recognizing that Ws = 0 for a fixed source, 

we can write down the small coupling expansion for the quality factor in 

the fixed source case: 

Q =2a& - à2 +4k A(SO)(1 - à2) 
[ - 

2a2] 

+ 2R2B °)( 1  - à2) [2&(1 - à2(1 + cr2 ))— à2cr2(3 - 5&2)} 

- a2) [2cr& + 1 - 3a2] ) / (2(1 - a)). 	(3.103) 
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Figure 3.15 displays the results for a chequerboard source, obtained using 

this last calculation. Although the calculation is valid for any chequer-

board size (see Table 3.2 for the values of A(S ° ) and B(S° ) that should be 

used for different chequerboard sizes), we choose a small chequer size. 

This ensures that the interesting structure in the quality factor appears 

within the range of values of k for which the approximation is reasonably 

accurate. Once again we see excellent agreement between simulation and 

theory. [However the quality factor is low, and we are not in a regime 

where the restoration scheme is very useful.] 

3.6.4 Connections 

There is a final consistency check that we can perform for these small 

coupling results. If we take a sample configuration from an Ising source 

and use this as our fixed source [i.e. measure A(S) and B(S)], we should 

expect the fixed source result (3.103) to recover the Ising source result 

(3.94). What we require are the small coupling (in K) expansions of the 

fixed source measures A(S) and B(S) where the source S is a sample from 

an Ising distribution. These are easily calculated from the near-neighbour 

correlation functions of the Ising model (see e.g. [1141): 

---A(S) = (S0 , 0S0 , 1 ) 	 (3.104) 
uN 

- K+o(K3' - 

	

zi(v - l )NB(S) = 	(S0 ,0S1 , 1 ) + (S0 ,0S0 ,2 ) 

	

= 	j2  + o(K4 ). 	 (3.105) 
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Figure 3.15. Small coupling expansion results for a fixed source. The 
system considered is a 3x3 chequerboard source with 30% noise. The upper 
row shows the quality factor calculated by the small coupling expansion, 
while the lower shows the same results from simulation. Although there is 
some small discrepancy in the position of the maximum due to the errors 
of order (K + K) 3, overall we see very good agreement between simulation 
and the results of the calculation. 
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When we replace iA(S) by K and neglect terms involving B(S) as they 

are more than second order in (K + k) we find that the fixed source results 

(3.98) and (3.102) reduce to the Ising source results (3.86) and (3.92). 

Given this agreement it is to be expected that, for a fixed source with a 

high density of edges, the optimal choice of K and h should match the 

value of the noise parameter h, and the value of the coupling Keff  that 

would generate Ising configurations with the correct density of edges. 

However, for lower densities of edges, corresponding to larger values of 

Keff outside the regime of the small coupling expansion, this is not the case. 

The simulation results at the beginning of this chapter demonstrated the 

discrepancy between the optimal choice of restoration parameter k and 

the effective coupling Keff  for larger chequerboards. 

3.7 Conclusion 

We have now completed our exploration of hypothesis space (K, h). The 

aim was to investigate the manner in which the performance of the restora-

tion scheme changes for different values of the restoration parameters, with 

particular interest in establishing the points in hypothesis space that pro-

vide the best restoration. 

Throughout the work we used the edge-density prior. The question of 

how the performance of the restoration is affected by the appropriateness 

of the prior was addressed by considering two kinds of source process: 

various fixed chequerboard source pictures, and pictures sampled from a 

nearest-neighbour Markov random field. 
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In spite of some severe approximations, the mean field calculation pro-

duced quite remarkable qualitative results. The failure of the restoration 

scheme for large values of the nearest neighbour coupling was identified 

as the result of a transition to long range order in the restoration model: 

the smoothing effect of the prior wins over the data. 

Finally, we have demonstrated the applicability of series expansion meth-

ods to this problem, and these have provided further insight into the 

criteria that determine the optimal point in hypothesis space. 



CHAPTER 4 

Exploiting the Posterior: Beyond 

the Ground State 

4.1 Introduction 

In the previous chapter we concerned ourselves with the search for the 

best match between two probability distributions: that generated by the 

restoration scheme, and the true posterior distribution we would have 

obtained had we known accurately the parameterization of the source and 

noise distributions. The quality factor that we used for this comparison 

was constructed from averaged functions of the restored distribution and the 

source distribution. We now focus our attention on a somewhat different 

task: that of finding the single binary image, constructed in some way from 

the information contained in the restoration distribution, that best matches 

the original source picture. 

150 
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In Chapter 2 we decided that the overlap would be our measure of how 

'good' the match was between the source picture and our estimate. If we 

choose to minimize the mean squared error between the pictures (which 

for binary images is equivalent to maximizing the overlap), we find the 

optimal Bayesian estimator to be the thresholded posterior mean, or TPM 

estimate. However, this optimal condition is only guaranteed when the 

restoration scheme exactly models the true posterior distribution, i.e. the 

source distribution is Ising, the noise process is simple Gaussian, and we 

have correctly chosen if = K and h = h. In any other case —either 

we have guessed the restoration parameters k and It incorrectly, or the 

functional form of the prior is wrong—the situation is somewhat obscure. 

Early work by Hunt [61] suggested that the TPM estimate could not be 

calculated. Perhaps for this reason, in the original GG paper [361 and in 

much subsequent work (e.g. [24, 37, 40, 35, 103, 109]), the maximum a 

posteriori or MAP estimate is studied. There is only a small body of work 

that begins to recognize the utility of the TPM estimate [69, 70, 84, 851. 

This chapter concentrates on an investigation and comparison of the two 

different estimates, the MAP and the TPM. 

4.2 Finding the MAP Estimate 

We first restate the probability distribution that characterizes the restora-

tion scheme: 

P(RID)= 	cx 	 (4.1) 
Z(k 

1  
,l'h;D) 	1. <> 	 2 	J 
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The MAP estimate is exactly what its name suggests—the single binary 

image R that has maximum probability in the restored distribution (4.1) 

a posteriori, i.e. after the data has arrived. We can therefore simply describe 

the MAP estimate as the single image that minimizes the cost function 

E = -k 	RR - h RjDj. 	 (4.2) 
<ii> 

This estimate seems intuitively to be flawed since it discards much of 

the information available to us in the reconstruction distribution. The 

exact values of k and Ii are unimportant, it is merely the ratio of the two 

that determines the configuration of minimum energy, and it is only this 

single configuration that is used; all other images are ignored. This single 

configuration is simply the ground state of the restoration system. 

There are many techniques for finding the minimum of a cost function. 

However, most deterministic methods such as gradient descent (or the 

greedy algorithm [1091) will get trapped in a metastable state—they find 

not the global minimum of the system but a point in configuration space 

that is merely locally stable. With this outcome the result is strongly depen-

dent on the starting configuration used. The standard way to minimize the 

chances of finishing in a local rather than the global minimum is a stochas-

tic technique known as simulated annealing [74]. Physical chemists use a 

process of heating followed by slow controlled cooling to remove defects 

from crystalline substances, and to temper metals. This annealing process 

provides a pathway for the substance to find a low energy state, free of 

defects. Simulated annealing emulates this cooling process in a similar 

attempt to find the ground state of a system (the state with the lowest 

energy). 
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To implement simulated annealing we rewrite the cost function (4.2) intro-

ducing an inverse temperature /3: 

= -/3 >1 RR + -->RD. . 	 (4.3) 1<ij> 	 i 

Using this cost function with a small value of /3 corresponding to a high 

temperature, we simulate the spin system using the standard Metropolis 

Monte Carlo algorithm [see §3.2.11. We then gradually lower the tem-

perature, being careful to re-equilibrate the system at each larger value 

of 8, until the system finds itself in the basin of attraction of the global 

minimum and settles into the ground state. Provided we cool the system 

slowly enough, this process enables the system to find its way out of any 

local minima it may be temporarily trapped in, utilizing the fluctuations 

in energy available at finite temperature. It is crucial to the success of this 

scheme that a stochastic technique (such as Metropolis Monte Carlo) is 

used to find equilibrium at each temperature. Such a stochastic relaxation 

scheme allows occasional increases in the internal energy of the system, 

and it is this that allows the system to escape from local minima (although 

escape becomes less likely at lower temperatures). 

GG [36] present a proof that with a suitable annealing schedule (sequence 

of temperatures) this simulated annealing technique is guaranteed to find 

the global minimum and hence the exact MAP estimate. However, such 

a schedule would take a prohibitive length of time to complete (the total 

number of site updates required is exponential in the system size N). They 

claim that acceptable results are obtained using a schedule: 

/3 = C log(1 + k) 	k=0 1 ...  , kmax . 	 (4.4) 
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This means that we start at /3 = 0, and at each temperature we allow the 

system to relax to equilibrium before incrementing k by one and altering 

the temperature accordingly. In this way the cooling process is complete 

in around 102_103  temperature steps, depending on the values of .0 and 

kmax . Even with this faster schedule the annealing process is still far more 

computationally intensive than the calculation of the TPM estimate. 

Examining equation (4.3) we can see our second point explicitly. Given 

a perfect annealing schedule that successfully finds the ground state, the 

MAP estimate depends only on the ratio of the parameters ! and ii, and 

not upon their individual values—we have reduced the dimensionality of 

the parameter space, with all of the information loss that this entails. 

4.3 Comparison of MAP and TPM 

We carry out a number of experiments to compare the effectiveness of 

the MAP and 1PM estimates and, returning to an earlier theme, we will 

consider the distinct cases of well-matched and ill-matched priors. 

4.3.1 The Well-matched Prior 

Initially, let us consider the optimal case discussed earlier. We generate a 

source picture according to the Ising distribution given by (2.50) and then 

corrupt this picture using the noise process (2.47) to generate the data. 

We then attempt the reconstruction using (4.1) with the optimal choice of 

parameters k = K and h = h. From the reconstruction distribution (4.1) 
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£ 

The TPM Estimate 	 The MAP Estimate 

Figure 4.1. The overlap of the source with the TPM and MAP estimates. 
Note that the coordinate axes represent both generation and restoration 
parameters—K = k and h = h: we are investigating the optimal case of the 
well-matched prior, for a range of parameters. The figures are essentially 
similar. For low K the restoration scheme is ineffective resulting in an 
inclined plane in the TPM case. In the narrow mid-band of K, which 
covers a large range of source edge-densities, we see good improvement 
(the overlaps are raised above the inclined plane). Once K gets large the 
source pictures are almost entirely one colour and it is relatively easy to 
generate single colour pictures that have a high overlap with the source. 
Note the poorer performance of the MAP estimate indicated by the gully 
in the inclined plane. The erratic results observed for large K and small h 
occur because when there is a lot of noise present the restoration scheme 
finds it difficult to determine which colour the source was and is just as 
likely to guess incorrectly (overlap —1) as correctly (overlap +1). 

we construct the TPM estimate (2.31) for this particular source and data 

picture, and calculate its overlap with the source [T.S]. Using the energy 

function given in (4.3) and following the annealing schedule given in (4.4) 

we obtain the MAP estimate for this source and data, and once again 

calculate its overlap with the source [M.S]. The annealing schedule we use 

sets C = 0.25 and kmax  = 750. These results for T.S and M.S are averaged 

over the source and data distributions for fixed K and h, and the results 

are presented as a function of K = k and h = h in Figure 4.1. 
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• For small values of K, the restoration scheme is generally ineffective—

there is insufficient structure in the source picture itself for the restora-

tion to do any better than to simply reproduce the data. This leads to 

the inclined plane seen at the front of the diagram since the overlap 

of source and data is simply tanh(h), as given in (2.49). 

• Once K exceeds the critical coupling of the Ising model, large scale 

structure appears in the source pictures, and it is in this region that 

the scheme is most effective. [This narrow range of K corresponds 

to a large range of edge densities—see e.g. Table 3.1 and Figure 3.4.1 

• As K increases further, we quickly reach a situation where the source 

pictures are almost entirely one colour. At this point the MAP and 

TPM estimates both result in a single colour picture, although it is 

noticeable that some authors select a source configuration before the 

ensemble has reached equilibrium [84, 85]. This has a large over-

lap with the source, so the scheme could be considered successful. 

However, the problem is rather easy and since there is no structure 

remaining in the estimates, it is questionable whether the restoration 

is at all useful. 

It is in the low K = k regime that the MAP estimate appears to perform 

poorly compared with the TPM estimate, indicated by a gully running up 

the inclined plane at the front of the MAP diagram. Figure 4.2, which 

illustrates the three different cases above, confirms this failure—the MAP 

estimate appears to oversmooth. 

The other question to be asked of the data in Figure 4.1, anticipating the last 

section in this chapter, is to what extent the results for the MAP estimate 

have been affected by the simulated annealing process. 
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Figure 4.2. Pictures of optimal restoration using a well-matched prior. The 
top row shows the source picture generated using the indicated coupling 
K. The second row shows the corresponding corrupted picture after the 
application of 30% noise. The TPM and MAP estimates were calculated 
using the optimal couplings 1? = K and h = 0.4. In general the MAP 
estimate oversmooths. In the low K case it has grown domains which are 
larger than any that exist in the source. In the medium K case the TPM 
estimate clearly outperforms the MAP estimate. At large K both estimates 
are single colour pictures: the few white pixels in the source are the result 
of entropic noise and cannot be rendered faithfully by either estimate. 
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After Marroquin [84, 85] we can calculate the MAP and TPM estimates 

exactly. For each data configuration D we explicitly sum over all possible 

restored pictures R to calculate the TPM estimate, and calculate the relative 

probability, in (4.1), of each configuration to find the MAP estimate—the 

configuration R that maximizes P(RID). These results are then averaged 

over all data configurations for a particular source, weighting the average 

according to P(DIS), and the intermediate results then weighted according 

to F(S). This process requires very intensive computation to enumerate 

all of the possible configurations. We extended the calculation from the 

simplest 2x2 square lattice treated by Marroquin, to 3x3 and 4x4 square 

lattices. We present these results in Figure 4.3 alongside those already 

discussed on a 64x64 square lattice using Monte Carlo methods. 

The exact calculation results verify the results from Monte Carlo simula-

tion, with some finite size scaling effects in evidence. The double ridge 

effect observed by Marroquin [84,85] is seen to be an artefact of the 2x2 lat-

tice only. However, the gully observed in the simulation results is clearly 

seen to be a true feature of the MAP estimate and is not simply an arte-

fact of the annealing process. Notice that the magnitude of the difference 

between the two estimates increases with the size of the system. 

In conclusion, for this optimal case, Figure 4.3 shows that the results for 

the MAP and TPM estimates are generally comparable. Where they do 

differ, however, we find as expected that the TPM estimate always does 

better than the MAP estimate. 
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Figure 4.3. Comparison of MAP and TPM results for well-matched prior 
at different lattice sizes. The left hand column shows the average overlap 
of the MAP estimate with the source [M.S] while the right-hand column 
shows the average difference between the overlaps of the two estimates 
[T.S - M.S]. For brevity, the TPM results and the results for the exact 3x3 
lattice are omitted. The finite-size effects can be seen clearly. In all cases the 
difference in overlaps is non-negative over the whole of parameter space: 
when the restoration parameters are chosen optimally the TPM estimate 
always beats the MAP estimate. The amount by which TPM beats MAP 
increases with the size of the lattice, which indicates that the shortcomings 
in MAP will be exacerbated in realistically sized pictures. 
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4.3.2 The Ill-matched Prior 

We have seen that in the case of a well-matched prior it is always better to 

use the TPM estimate than the MAP estimate. But what happens when we 

get the prior parameters wrong? Now k 54 K or h 54 h. Or perhaps the 

source was not generated by an Ising process at all, as in the chequerboard 

source images we have considered. 

Figure 4.4 shows a fairly typical example of the results obtained in such 

a case (again an 8x8 chequerboard with 30% noise). As we stated earlier, 

there is in fact only one free parameter determining the result of the MAP 

estimate—the ratio of ii/k. However, for comparison purposes, we have 

expanded the parameter space into two dimensions to match the parameter 

space for the TPM estimate. 

• For some choices of k and /i it is evident that the MAP estimate does 

beat the 1PM estimate—in the region of parameter space where this 

occurs, the TPM estimate finds insufficient information to make any 

improvement and simply returns the data as its best guess. 

• There is a region where the TPM estimate is clearly better than the 

MAP estimate, and in much of this region the MAP estimate fails to 

return anything sensible whatsoever (the results are severely over-

smoothed prior-like images). 

Figure 4.5 shows a prime example of this oversmoothing. The restoration 

parameters k and ui have been chosen to maximize the quality factor and 

hence provide the optimal 1PM image. The corresponding MAP image 

obtained by simulated annealing looks nothing like the source, or the data. 
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The TPM Estimate 
	

The MAP Estimate 

000. o 
The Difference [T.S - M.S] 

Figure 4.4. Comparison of MAP and TPM for ill-matched prior (8x8 che-
querboard with 30% noise). The upper row shows the qualitative dif-
ference in the results obtained using the TPM and MAP estimates. The 
bottom figures show the difference between the overlaps of the TPM and 
MAP estimates with the source. This shows that for the majority of pa-
rameter choices (k, ii) the TPM estimate does better, while in a smaller 
region the MAP estimate is preferred. However, the best results that can 
be obtained from each estimate are comparable. 
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16x16 Chequerboard 
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- va~,  
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Figure 4.5. Pictures of optimal restoration using an ill-matched prior. The 
source is a 16x16 chequerboard, subsequently corrupted by 40% noise as 
in Figure 3.2. Compare with the middle column of Figure 4.2. When 
the restoration parameters are chosen to optimize the TPM estimate, the 
corresponding MAP estimate is badly over-smoothed. [But note that the 
MAP estimate can perform almost as well as this optimal TPM estimate 
for carefully chosen values of the restoration parameters.] 
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In spite of the adequate performance of the MAP estimate in certain regions 

of parameter space, we still claim that the TPM is the preferred estimate. 

For all source pictures we considered we found without exception that: 

. the best achievable MAP estimate is never better (in terms of the 

overlap with the source) than the best 1PM reconstruction; 

. the 1PM estimate beats the MAP estimate in a greater volume of 

parameter space than the reverse; and 

. the volume in parameter space that yields any chosen level of im-

provement is alway greater in the TPM case. 

The degree of these effects changes qualitatively with different noise levels 

and chequerboard sizes. With a 4x4 chequerboard the restoration task is 

far more difficult due to the smaller size of the coherent regions, and the 

TPM estimate is preferred over almost all of parameter space. 

4.3.3 Other Issues in MAP Estimation 

We now turn to a different issue surrounding the MAP estimate. More 

than one paper [44, 84, 85] has shown examples of cases where the MAP 

estimate is patent nonsense: the restoration parameters have placed us in 

the prior-like phase and we simply get the edge-free state as the solution. 

In particular, Greig et al. [44] use a version of the Ford-Fulkerson algorithm 

[27] to calculate the exact MAP estimate for some 64x64 scenes and compare 

them with the MAP estimate obtained by simulated annealing using vari-

ous annealing schedules. They found that when the ratio k/li was large, 

the exact MAP estimate was all one colour—the edge-free state—which is 
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Source 	 TPM 	 SA MAP 

dr 
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Figure 4.6. Sample restoration of the synthetic image from [44] after appli-
cation of 25% noise. The restorations were performed using K = 0.87 and 
Ii = 1. 1, detailed in the last row of Table 4.1, and found by maximizing the 
quality factor. The TPM estimate does marginally better than MAP. 

K h 
Overlap with source 

MAP 1PM 
Exact annealed 

0.3 0.55 0.896 0.909 0.818 
0.7 0.55 0.808 0.867 0.878 
1.1 0.55 0.544 0.780 0.829 
0.87 1.1 - 0.908 0.921 

Table 4.1. 1PM results for the synthetic image in Figure 4.6 compared with 
annealed and exact MAP results. The results for the exact MAP estimate 
are taken from Table 2 of [44]:  the 1PM estimate for the optimal restoration 
parameters, detailed in the last row above, outperforms all of the results 
presented there. 

in general a very poor estimate of the true scene! However, using most 

annealing schedules, provided the initial configuration used is the data, 

the system becomes trapped in a metastable state closer to the data and 

the resulting image is a much better estimate than the exact MAP estimate. 

The inadequacy of the annealing technique with these schedules results in 

a better restoration than the true MAP estimate would provide. 

We repeated the experiment on their synthetic image (shown in Figure 4.6) 
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verifying their annealing result and also comparing both the exact and 

annealed MAP estimates with the TPM estimate. The results are shown 

in Table 4.1 and Figure 4.6. As before, the TPM estimate is overall most 

effective, although there are certain suboptimal choices of k and Ii where 

the annealed MAP estimate may do better. 

4.4 A Discussion on the MAP estimate 

We can go some way toward an explanation of the MAP estimate by making 

use of the phase diagrams that the mean field approximation provided in 

Chapter 3. We should first recognize what it is that we do when we anneal 

to find the MAP estimate—in effect we increase k and ui simultaneously 

while maintaining a constant ratio k//i [or we increase 0 in (4.3)]. Since 

the graphs we present have [tanh(k)] and [tanh(/i)] as the axis variables, 

the isolines of constant ratio are not straight (except for the trivial case of 

k = /i) and we show these isolines in Figure 4.7. These lines necessarily do 

not cross and, after we pick values of 1? and h to begin annealing from, the 

parameter values follow the isoline that passes through that point (h, k) 

up to the top right hand corner of the phase diagram. 

Why MAP Fails 

Now look at Figure 4.8, the mean-field phase diagram for the 8x8 chequer-

board with 30% noise. [See Figure 3.7 for an explanation of the nature 

of the different phases.] Setting (/i, k) somewhere near (A) places us in 

a phase where the restored screen is generating data-like pictures which 

have a non-zero overlap with the source—the TPM estimate will produce 
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tanh(h 
Figure 4.7. Annealing trajectories: lines of constant k/it. Whenever we 
anneal, the restoration parameters are varied together, moving through 
parameter space along one of the lines shown. 
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sensible results. When we anneal, however, the system undergoes a phase 

transition into the prior-like phase and therefore the MAP estimate that we 

obtain has very few edges. Any starting point that brings the annealing 

curve into the top right hand corner above the phase transition line will 

provide a useless prior-like MAP estimate. This is why we get regions 

where the MAP estimate fails catastrophically, but the TPM estimate is 

reasonable. The theory is confirmed in the lower diagrams of Figure 4.4 

where there is a peak in the difference [T - M] . S coincident with the region 

marked (A) in Figure 4.8. 

It is also clear from this analysis of the phase diagram why the region 

of parameter space in which TPM performs well is always larger than 

the region in which MAP performs well. Any point in parameter space 

where the TPM estimate is 'bad' (where 'bad' means worse than the data) 

is guaranteed to also give a 'bad' MAP estimate. The phase transition line 

lies in parameter space in such a way that annealing paths only ever cross 

from the data-like phase to the prior-like phase. Following the annealing 

curves through parameter space, once the phase transition line has been 

crossed into the prior-like phase, there is no path back into the data-aligned 

phase. When the TPM estimate is 'bad' we are already in the prior-like 

phase so it is impossible for the annealing process to produce a data-like 

MAP estimate. 

Why SA MAP Beats Exact MAP 

We can also explain the discrepancy between the exact MAP estimate and 

what we obtain by simulated annealing. Beginning somewhere in region 

(B) of Figure 4.8 the TPM estimate will be fine; however, when annealing 

we cross the phase transition line so the result of the MAP estimate should 
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0.00 	0.25 	0.50 	0.75 	1.00 

tanh(1) 
Figure 4.8. Example annealing trajectories through mean field phase space. 
The phase diagram is for an 8x8 chequerboard with 30% noise and is ex-
plained in the caption to Figure 3.7. In region (A) the TPM estimate is 
data-like, while, after following the annealing trajectories, the MAP esti-
mate is in the ordered prior-like phase. Following the annealing trajectory 
from region (B) ought to find a MAP estimate in the prior-like phase. How-
ever, if the annealing is performed too quickly the system is caught in a 
metastable data-like state. 
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be prior-like. But notice that we cross the phase transition line at quite a 

low effective temperature, and move into a region of the phase diagram 

where metastable data-like states exist. Therefore the system falls into the 

nearest metastable state and is unable to attain the true ground state. The 

annealed MAP estimate is data-like and reasonable while the exact MAP 

estimate would be prior-like and useless. 

4.5 Conclusion 

We have carried out a systematic investigation into the efficacy of the MAP 

estimate in the image restoration problem. We find that in almost all cases 

the TPM estimate provides a more reliable estimate of the original source 

image. Although choosing the optimal values for the restoration param-

eters remains problematical, it is easy to avoid the region of parameter 

space where the TPM estimate offers no improvement, and it is only a part 

of this region where MAP may do better than TPM. 

The failure of MAP can be understood in terms of the phase diagram. 

It seems foolish to carry out an annealing process that leads to phase 

transitions in the system. These phase transitions cannot be adequately 

controlled in the annealing process, and the results depend ultimately 

upon the phase the system is in as it approaches the ground state. All of 

the information gained prior to the phase transition is lost, and much of 

the compute time is wasted annealing in the wrong part of phase space. 

The failure of simulated annealing to reproduce the exact MAP estimate 

may also be understood from the phase changes that occur during the 

annealing process. It is clear from these results that simulated annealing 



CHAPTER 4. BEYOND THE GROUND STATE 	 170 

often fails to find the true MAP estimate. Again, it seems absurd to rely 

upon the metastable states for good restoration, when using a method 

specifically designed to avoid such local minima. 

The TPM estimate suffers neither of these flaws, is consistently defined, 

and may be computed in a fraction of the Monte Carlo time. In con-

clusion, we believe that TPM should be the favoured estimate for image 

reconstruction problems. Although there may be other problems such as 

boundary detection where the MAP estimate can give better results [39], 

for image restoration the TPM estimate is always as good as and usually 

better than the MAP estimate, and does not demand the same level of 

compute resource as simulated annealing. 



CHAPTER 5 

Optimizing the Prior: The 

Thermodynamics of Hypothesis 

Evaluation 

5.1 Introduction 

In the work presented so far we have determined the optimal values of 

the restoration parameters, k and Ii, in one of two ways. Given full 

knowledge of the true posterior and a matching prior model we could 

assign the optimal values, k = K and h = h, exactly. When the prior 

was not well matched we could still determine the optimal values, in 

the sense that they maximize the quality factor, by a comparison of the 

restored distribution and the known source distribution. In the language 

of parameter estimation, we had access to fully observed data. 

171 
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In this chapter we address the problem of parameter estimation from par-

tially observed data. See the discussion after page 19 for an introduction 

to the literature. In the context of this thesis, 'partially observed' means 

that we have access to the data picture alone, with no knowledge of the 

source distribution when we choose the parameters K and h. This is the 

situation one would encounter in a real restoration problem, where there 

is no explicit knowledge of the source picture or of the corruption process. 

In connection with hypothesis evaluation this does not preclude later access 

to the source distribution in order to measure the success of the parameter 

estimation scheme. 

We investigate the use of the evidence [46, 81] as a criterion for choosing 

the restoration parameters. This method still requires that we choose a 

prior model against which we will evaluate the evidence. As we will 

see, a reasonable choice of prior is crucial to the success of the method as 

presented, but in the spirit of Bayes "a failure is an opportunity to learn" 

[81], and indicates a flaw in the chosen prior. 

As presented in Chapter 2, the calculation requires the maximization of 

the evidence (2.53) or alternatively the log-evidence 

log P(DK, ui) = log Z(k, /i; D) - log Zi(/z) - log Z(k). 	(5.1) 

Therefore our task is to find a difference of free energies. As Neal [91] 

points out, the problem is essentially the same as the calculation of free 

energy differences in simulations of physical systems—and obtaining this 

information via Monte Carlo simulation is not straightforward. We can 

however discuss the following toy problem, which compares the evidence 
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for different chequerboards. We will then go on to consider the complex-

ities involved in the more general evidence calculations required for the 

edge-density prior we have considered so far. 

5.2 An Exact Evidence Calculation 

In our calculations we have always examined the edge-density prior in-

troduced back in §2.4.2. We will see shortly the difficulties encountered in 

evidence measurements for such a prior, so in order to develop a feel for 

the general calculation, we begin with the simple idea of a chequerboard 

prior. Using a chequerboard prior means we guess that the source picture 

was drawn from a set of chequerboard pictures. The particular one chosen 

is labelled c, so the prior distribution is given by: 

P(SIC) 
c 	(IS - SCI), 	 (5.2) 

where Scis a chequerboard source with squares of side c. 

Given this definition of the prior, the evidence is simply 

P(DIc,Ih) = EP(DIS;ii)P(SIc) 
{S} 

- Z1(ii) 
exp I ii > 	 (5.3) 

with Z1(4) defined in (2.36). 

We can now calculate the evidence for a number of different chequer- 

boards of side c, and as a function of the noise parameter /i. If the 
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source picture was indeed a chequerboard, and we choose the size c cor-

rectly so that Sc= 5°, then maximizing the evidence (5.3) with respect to 

the noise parameter ii correctly determines the noise level. Recall that 

(D.S°) = tanh(h), so that if Sc= 5° we get 

logP(DIc, /i) = N [i tanh(h) - logcosh(ii) - log2], (5.4) 

logP(Dc,ii) = tanh(h)—tanh(ui). 	 (5.5) 

where we have used self-averaging to write E j  Di Sic = N tanh(h). Clearly 

the evidence is maximized at h = h when we have chosen the prior cor-

rectly [see Figure 5.1(a)]. Note however that if S  S°, then this procedure 

will not choose the optimal h = h. 

We can use the evidence to determine what size of chequerboard the source 

was. Let us imagine that the source was an 8x8 chequerboard, i.e. S° = 

The log-evidence for the 8x8 chequerboard prior, log P(DIS8 , ii), is given 

by (5.4). The log-evidence for both the 4x4 and 16x16 chequerboard priors 

is reduced from this value by N/i tanh( h), since in all cases the central limit 

theorem guarantees that >1, DS°  = 0. Finding the size of the chequerboard 

is a rather trivial problem, but it demonstrates how the evidence procedure 

may be used to determine the parameterization of the source, provided the 

nature of the prior is chosen correctly. The evidence is maximized when 

the prior model Scmatches the source 50  that generated the data [see 

Figure 5.1(b)]. 

We are able to perform the previous calculation analytically but usually 

evidence calculations are computationally intensive; they are equivalent 

to the calculation of free energy differences. Free energy measurement by 

Monte Carlo simulation is a long standing problem. Before we move on to 
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(a) 	 (b) 

Figure 5.1. Analytic evidence results for a chequerboard prior. The source 
was an 8x8 chequerboard with 10% noise [corresponds to noise parameter 
h = Li]. (a) shows the log-evidence per site as a function of the noise 
parameter ii, given that the chequerboard size c has been chosen correctly: 
it is maximized when l = h. (b) shows the log-evidence per site as a 
function of the chequerboard prior parameter c: it is maximized when the 
prior model matches the source SC = S° . 

consider the evidence calculation itself, we spend some time investigating 

and developing a recent simulation method [77] for free energy measure-

ment. There has been only limited work on such calculations and what 

follows is a lengthy digression on the issues and difficulties involved. The 

technique provides a powerful means of comparing different hypotheses, 

and merits detailed investigation. 

5.3 Free Energy Measurement of the Ising Model 

There has been renewed interest recently in the problem of free energy 

calculation, notably [10, 771 and see [17] for a review. The approach we 

will use here is the method of expanded ensembles [77].  The problem that 
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one encounters when trying to calculate the free energy by Monte Carlo 

methods, is that there is no microscopic analogue of the free energy. In 

contrast, for example, to the energy, the free energy cannot be represented 

as a configurational average. When we want to calculate, say, the inter-

nal energy of the Ising model at equilibrium, we can measure the nearest 

neighbour correlation function for any microscopic configuration. Then, 

using the idea of importance sampling discussed in Chapter 3 to select 

configurations, we average this correlation function over many configura-

tions and obtain an approximation of the equilibrium energy to arbitrary 

precision—greater accuracy simply requires more Monte Carlo time in or-

der to generate better statistics. This approach is not available to us when 

we try to measure the free energy. 

We embark on a measurement of the free energy for the two-dimensional 

Ising model for two reasons. First, the Ising model is the analogue of the 

edge-density prior on which we want to perform the evidence calculation. 

Second, we can verify the success of the simulation method by reference 

to the exact results for finite size systems [26]. The zero field Ising model 

partition function is 

= exp K E SjS. 	 (5.6) 
{S} 	I. 	<ii> 	I 

The free energy F - log Z1 requires a comprehensive sum over all con-

figurations S, with the value of the exponential fluctuating wildly between 

configurations. Since there is no straightforward function to be averaged, 

we cannot use the importance sampling trick to reduce the computational 

complexity. 
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An alternative way to see the distinction between the free energy calcu-

lation and the internal energy calculation is to note that all observables 

(things we may measure directly) are derivatives of the free energy and 

are averages of a function of the lattice variables. The free energy is not 

a simple function of the lattice variables. Indeed the converse view is 

useful—the free energy is an integral of an observable function, and it is 

this integral that we wish to calculate. As is always the case with any sort 

of numerical integration, the result we obtain will be a definite integral—

the free energy difference. We may then determine the absolute value of 

the free energy at any desired point provided we know the absolute value 

at one point and use this as one of the limits of integration. 

The method of expanded ensembles was originally introduced by Lyubart-

sev et al. [77] when they applied it to the free energy measurement of the 

restricted primitive model of electrolyte. The complexities of the method 

require a large number of parameters, the choice of which is crucial to 

the success of the measurement. They sketch the details of an iterative 

scheme that will improve the choice of parameters following several pre-

liminary experiments, but they never indicate how one should make the 

initial choice of these parameters prior to the preliminary simulations. A 

significant portion of the following work addresses this open problem. 

5.3.1 The Method of Expanded Ensembles 

Following the method of Lyubartsev et al. [771 we introduce an expanded 

modified ensemble with partition function 

M 

Zexp - 	Z. exp( m ), 	 (5.7) 
m=O 
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where Zm is the partition function of the Ising model for a fixed value of 

the coupling Km , and i is a new parameter corresponding (in a fashion 

to be described later) to the particular value of Km. Hence 

Zm = exp Km  E S, S 	 (5.8) 

	

{S} 	I 	<ii> 	) 

and 

Zexp = E E exp {K m 	Si Si + 
}. 	

(5.9) 

	

'.=0 {S} 	 <ii> 

Now this expanded ensemble is amenable to Monte Carlo simulation by 

the Metropolis method discussed in Chapter 3. The distinction between 

this and conventional simulation is that calculation of the full partition 

function requires a sum over the M subensembles, each with a different 

value of coupling Km . Therefore, we must allow the system to explore the 

space of couplings {Km } as well as the space of configurations {S}. 

We use the standard Metropolis algorithm for the configurational updates 

as before. We use the same algorithm for updating the value of the coupling 

(i.e. shifting between subensembles) but this time the transition probability 

is chosen to be 

Pm k min 1,exp (KkK m ) E SiSj+km. 	(5.10) 1I. 	 ) 

This choice of transition probability guarantees that detailed balance is 

satisfied and then we have just to ensure that the simulation is ergodic. 

Thus, the Metropolis algorithm allows us to mix configurational updates 

and coupling changes in any way we wish, provided we ensure ergodicity. 
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The probability Pm  of finding the system in a particular state (Km , S) is 

given by 

P(Km ,S)= _exP{Km 	S1 S3  + 71m}. 	(5.11) 
exp 	 <> 

Hence the probability of finding the system in the subensemble with cou-

pling Km is found by summing over configurations {S}, yielding 

Z,,, ex(n—) 
Pm = 	- -. 

Llexp 
(5.12) 

The ratio of these probabilities, which we can measure, then allows us to 

calculate the free energy difference between subensembles 

- Zrnexp(i,m) 
(5.13) 

Pk 	Zkexp(k) 

='- 

 

"Pm \ logZm  — logZk = log(— I +1/k/m. 	(5.14) 
\ Pk J 

In the simulation, we measure the ratio Pm/Pk  by comparing the length of 

MC time spent in each subensemble. 

Of course, this only provides the difference in free energy between two 

ensembles. In order to obtain quantitative measurements of absolute free 

energy, it is necessary to 'connect' with an ensemble that is 'simple', (i.e. for 

which we know the value of the free energy). For the simple Ising model, 

we connect with the zero coupling system. This is a simple non-interacting 

system with a free energy of —N log 2 which arises only from the entropy 

contribution. 

This all seems straightforward enough. Operationally, however, there are 

many parameters to be chosen (the Km  and 77.. for m = 0... M), and 

the success or failure of the measurement depends crucially on a suitable 
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choice of these. A poor choice gives a simulation that is not ergodic, or one 

that moves through phase space so slowly that successive measurements 

are highly correlated. Lyubartsev et al. explain how to refine the selection 

of the {ij m } given a suitable initial choice, but they do not indicate a re-

liable method for making this initial selection, nor do they disclose their 

prescription for choosing the set of couplings {K m  }. 

We now consider the reason for introducing the parameters {1/m}.  Without 

this modification to the ensemble, the MC steps that change the coupling 

according to (5.10) would always drive K upwards, and the expanded 

ensemble would equilibrate at the largest value of K—a low energy con-

figuration. [We get this behaviour if we set 77rn = 0 Vm.] For equations 

(5.13) and (5.14) to hold we require that there be a finite probability of 

transition to any of the M subensembles, and in order that we generate 

reasonable statistics in the shortest MC time possible we require that the 

system spend a similar length of time in each of the subensembles. This 

last condition is satisfied if p = M 1  Vm. This implies 

17k 77m = 109 Z — logZk, 	 (5.15) 

i.e. the parameters 177m }, if chosen optimally, are just the free energies that 

we seek! 

To summarize, our task is to calculate the free energies for each subensem-

ble. We first guess the initial values of the {77m}  which must be close to the 

correct values of the free energy (modulo a constant), and we then calculate 

a correction to these using Metropolis MC simulation of the expanded en-

semble. It is essential that the {77m}  be reasonable initial guesses, otherwise 

many of the transition probabilities between subensembles will be very 
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small, and the statistics generated will be skewed by the slow evolution of 

the system through phase space. 

5.3.2 Initial Choice of {i} 

The transition probability between subensembles that we need to tune to 

avoid the pitfalls discussed above is given in (5.10). The prescription we 

use is to perform a number of standard spin-flip MC steps and then attempt 

a change in K using the transition probability (5.10). As long as both types 

of MC step are made regularly, the simulation should be ergodic and may 

explore all of the expanded ensemble of states. Therefore it is not especially 

crucial what the ratio of spin updates to K-change updates is. With this in 

mind we argue the following. 

Let us imagine that we allow the system to equilibrate at the particular 

value of Km  it currently holds, before we attempt to update the value of 

K. We may then write, for a typical configuration 

SiS3 Em+61 	 (5.16) 
<ii> 

where Em  is the equilibrium internal energy of the system (in units of the 

coupling Km ), and & is a 'displacement' from this equilibrium energy, with 

the e having a normal distribution. To a first approximation we neglect 

the displacement 6, since 6/Em is of order 1/v'N. As discussed we require 

Pm - Pk for good statistics, and this implies (from the detailed balance 

condition) that 

Pm,k Pk-M. 	 (5.17) 
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Combining (5.10) and (5.16), this condition gives 

- (Kk - Km )Em  + 71k - 11rn  = —(Km  - Kk)Ek + I/rn - 77k, (5.18) 

?17k17m  = (Kk — Km)(ek+ern). (5.19) 

In this way we can assign the {} (relative to an arbitrary 'c = 0) by calcu-

lating the equilibrium internal energy at each value of the coupling K. By 

assigning the {j} in this way we are in fact simply performing a very crude 

numerical integration, using the trapezoidal rule (e.g. [99]). Lyubartsev et 

al. [77] do not suggest this as a method for choosing the {i} but they do 

pick up on the idea when they discuss the difference between the internal 

energy and free energy. Choosing the {i} as we have suggested shifts 

the energy distribution for each of the subensembles to approximately the 

same energy region (see Figure 3 in [771) and therefore transitions between 

subensembles are equally likely to occur in either direction. [Without this 

shift, only transitions to subensembles of large K would be very probable, 

i.e. changes that reduce the energy.] 

This choice of the {} does not give the exact free energies of course (else 

our task would be complete) and the choice that will give the optimal 

sampling distribution is in fact given by equation (5.15). This differs from 

our initial guesses in (5.19) by an entropy term which we neglected when 

we ignored the fluctuations of e around the mean equilibrium energy in 

(5.16). However, the use of (5.19) provides a good initial guess to the 

optimal {}, given a suitable set of {K}, and we are close enough to the 

optimal sampling distribution that we can calculate the correction to the 

free energy given by (5.14) fairly efficiently. 
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We are not yet guaranteed an efficient calculation however, since the num-

ber of subensembles M, and the particular choices of the coupling values 

{ K} are also extremely important. Given the prescription for choosing 

the {}, consider the transition probabilities that result: putting (5.19) into 

(5.10) gives 
1 

Pmk = CX [ ' (Kk — Km)(ek - 6m)]. 	 (5.20) 

The first sanity check is that this is indeed a probability—the equilibrium 

energy varies inversely with the coupling K and so the argument of the 

exponential will always be negative. And clearly Pk.,,, = Pm ....+k if we use 

(5.20). However, note that from the definition in (5.16) the equilibrium 

energy is an extensive quantity, and for a large system size this will lead to 

a large and negative argument in (5.20) and an accordingly small transition 

probability. The upshot of this will be a slow exploration of the expanded 

phase space and correspondingly poor generation of statistics. The solu-

tion is to choose the difference in coupling AK = K m  - Kk small enough 

that an appropriate transition probability results. 

It is conventional in Monte Carlo simulations to aim for an acceptance ratio 

of around 50% in the belief that the optimal sampling distribution will be 

obtained when the transition probability is 1 , and we discuss this further 

in §5.3.4. We can arrange this but it requires a careful choice of AK, and 

evidently as the system size increases we will need to choose AK smaller 

to maintain an acceptably high transition rate. 
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5.3.3 Choosing the Couplings 

Since we are considering a small difference in coupling we approximate 

the K dependence of the internal energy with a linear relationship 

E(K) —cK, 	 (5.21) 

and we therefore write 

. 	def 
- = Mk 

f'.1 -OLKj. 	 (5.22) 

Substituting (5.22) into (5.20) gives 

exp (AKkASk) 

= exp H akAKk) 	 (5.23) 

and if we require Pkk+1  p (where p is the desired transition probability 

between adjacent couplings) we get 

AKk -0

(21o(1/P)\ 

) , 
	 (5.24) 

ak 

and we need to calculate ak at each point as 

LEk 
ak 	- 	. 	 (5.25) 

LK k  

Operationally the procedure is as follows. 

. Set initial values K0 =qo=  Eo  = 0, ao = 1. 
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• For n=1,2 ... M 

Set 1 
K",  = (21o(1/P)\'+K 	

(5.26) 
an-1 ) 

Equilibrate the system at this coupling K, and then measure 

the average internal energy E. 

We can then choose 

77. = 	K_ 1 )(e + e 1 ) + 77n-1. 	(5.27) 

Finally we calculate an  ready for the next iteration 

- 

an = - T 	T7 	
(5.28) 

- nfl-i 

In practice this procedure is most effective in choosing the parameters {K} 

and {}. More importantly, the procedure is stable—if an error is made 

in choosing one AKn, say too small, then ASn  will be smaller, leaving an  

essentially unaffected and the error is not propagated to the next choice 

of K+,. The question that remains is whether we can do better than to 

choose p= , and generate statistics more efficiently? 

5.3.4 The Optimal Transition Probability 

We mentioned earlier that it is conventional to aim for a transition prob-

ability of p = in order to generate statistics most efficiently. But why 

should we choose p this way? When making statistical measurements 

of observables, as we do in MC simulations, we make use of the central 

limit theorem (see e.g. [78]). This tells us that adding a very large number, 
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N, of basically independent random variables will result in a sum that 

has an essentially normal distribution with the width proportional to 'N. 

Therefore the relative statistical error in the averages measured is of order 

i/"N, and we refine our calculation of the average by making the number 

of measurements N as large as possible. However, the requirement that 

the N measurements be essentially independent is quite crucial to the va-

lidity of the central limit theorem. Imagine transitions between just two 

states A and B with the transition probabilities equal, i.e. PAB = PBA. 

Then the detailed balance condition tells us that PA/PB, the ratio of the MC 

time spent in state A to the time spent in state B will converge to unity as 

the number of MC steps increases. But how quickly will this convergence 

occur? 

If PAB = PBA =, then after one step there is an equal probability of 

being in state A or state B, so consecutive measurements of the states are 

independent. However, if the transition probabilities are greater or less 

than 1 , then even after several steps there is an uneven probability of being 

in state A or state B (given that we know the initial state). Therefore, con-

secutive measurements cannot be considered independent. The larger the 

value of Ii- 2PAB 1, the greater the number of steps we must take between 

measurements before we can consider them to be essentially uncorrelated. 

So in this simple example it is correct• to try to attain a transition rate of 

P=. 

Things are somewhat more complicated, however, in the expanded en-

semble. Say that we want to measure the free energy difference of the 

Ising model between two values of the coupling KA and KB.  We want to 

measure the ratio PA/PB, the relative proportion of MC time the system 

spends in the two subensembles A and B, and we want the number of 
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uncorrelated measurements to be as large as possible. Ideally we would 

simply choose the transition rate PAB  as close to 1  as possible. But in a 

simple two state system PAB  would be defined by (5.20), and if IKA - KB I 
was at all large, this probability would be exceedingly small, as AE is of or-

der N. How then should we divide the interval [KA, KB]  into a number of 

subensembles so as to most quickly generate uncorrelated measurements? 

Clearly, even if the transition probability between adjacent K-states is 1, 
we cannot consider each attempt to change the coupling as an independent 

measurement for the purposes of calculating PA/PB.  We can only count 

measurements as essentially independent if the system has been able to 

evolve all the way from state A to state B in the intervening steps: it is 

the number of crossings that controls the statistics. Therefore we achieve 

the optimal sampling rate when we choose the {K} so as to minimize the 

time taken for the system to traverse the coupling space between states 

Aand B. 

If the transition probability between adjacent K-states is p, then the time 

taken to make the transition is proportional to Tsingle = i/p. Given that 

the system may move to an adjacent state either side of the original in 

time Tsingle  we have effectively a one-dimensional random walk. In the ID 

random walk it takes n random steps for a particle 'to diffuse a distance of 

Therefore the total time taken for the system to get from state A to 

state B is on average Tfull = TsingleTi2, where n is the number of subdivisions 

in [KA, KB]  and will depend upon the value of the transition probability p: 

KA - KB 
n " 	 (5.29) 

AKk 

and 
I 

(-2 log p 	 (5.30) 
ak ) 
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For the moment we assume that ak does not vary much in the range 

[KA, Kb],  although this is not a strong constraint. Then 

1 
cx 	 (5.31) 

log(1/p) 
1 

= T 	0C (5.32) 
plog(1/p) 

To minimize Tfun we find the turning point in (p log p) 1 , which occurs at 

p = c 1 . Therefore the desired ratio PA/PB  should converge most quickly 

if we choose the transition probability p < 1  in (5.28). To summarize the 

argument, it is better to reduce the number of subensembles n, even al-

though this lowers the probability of making a transition between adjacent 

states, because the overall time taken to transit between the states that we 

wish to measure can be reduced. 

5.3.5 Results 

In Table 5.1,  we present the average number of K-change steps taken to 

traverse from K = 0 to K = 0.3, for different values of the chosen proba-

bility parameter p. We see that in fact the achieved transition rate between 

adjacent states is always larger than the value p that was chosen, because 

we neglected the variations E of the energies in (5.20). The energy values 

Ek are of order N, and the variations e of order /N. In order to make the 

transition rates appreciable we have ensured that AS = Ek - Em is suffi-

ciently small. However the variations remain of order 'N and so the 

value of AS fluctuates widely around the average. These variations result 

in configurations S that are more typical of a different value of the coupling 

K and greatly increase the probability of transition to an adjacent K-state. 
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1 2 3 4 5 6 

P No (n) of Traversal Transition n2 /p Traversal 
Intervals Time Rate (pj1)  Time (HB) 

0.0001 6 4112 0.031 1161 3859 
0.001 7 3061 0.065 753 2443 
0.01 9 2352 0.133 609 1744 
0.05 11 2260 0.224 540 1571 
0.1 13 2329 0.266 580 1638 
0.17 15 2473 0.355 633 1605 
0.2 16 2653 0.372 688 1567 
0.3 18 2866 0.445 728 1633 
0.4 21 3087 0.494 892 1628 
0.5 1 24 1 3949 1 0.545 1056 1 1606 

Table 5.1. Rate of exploration of K-space in the range K = [0, 0.3], showing 
how the speed with which the space of couplings is explored varies with 
the selected acceptance probability p. (1) is the expected transition rate to 
adjacent K-states neglecting, as in (5.20), the energy fluctuations around 
the mean. (2) is the number of K-states that the algorithm divides the 
range into for this value of p. (3) is the number of attempted transitions 
required to traverse the entire range of K values. (4) is the achieved 
transition rate between adjacent K-states [note the discrepancy with (1)]. 
(5) is a predictive measure of the efficiency of the exploration—note the 
correspondence with the traversal time (3). (6) is the same measure as (3) 
but for the heat bath method discussed later in §5.3.6. 
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This makes the calculation of the optimal value for p far more complex—

however, the general idea remains the same: an achieved transition rate of 

less than 1  still proves optimal. 

If we calculate the total statistical error based on the number of traversals 

of the range, we can predict the optimal p. If the range is subdivided 

into n intervals, the expected number of traversals will be proportional to 

pj1/(n2 ), and hence the statistical error on the full measurement will be 

proportional to n/(Ji). Minimizing this error yields the same optimal 

value for the transition rate, as shown in column (5) of Table 5.1. 

We carried out a simulation of a 64x64 square Ising model to test the 

scheme. The results are presented in Table 5.2. They show the initial guess 

for the {i}, based on simple trapezoidal integration of the energy, and the 

value for the free energy after correction, alongside the exact analytic value 

for the free energy. The calculation of the exact free energy for a finite size 

Ising model is taken from Ferdinand and Fisher [26]. 

In conclusion, the method is very effective; however, for large systems the 

computational resource required for reasonably precise calculation is enor-

mous. The refinement process achieved an order of magnitude reduction 

in the error over the initial choice of the {q}, but at the expense of an order 

of magnitude increase in the MC time required. 

5.3.6 The Heat Bath Method 

We can take advantage of the size of the variations e of the energy in order 

to move through K-space more quickly if we use the heat bath algorithm 
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K 77 Free energy 
(Simulation) 

Free energy 
(Exact) 

% error 
in 77 

%error 
in Sim. 

0.066 -18.242 -17.780 -17.786 2.6e+00 3.9e-02 
0.131 -71.692 -71.514 -71.494 2.8e-01 2.7e-02 
0.194 -159.830 -159.924 -159.890 3.8e-02 2.1e-02 
0.253 -277.110 -277.647 -277.626 1.9e-01 7.5e-03 
0.307 -418.554 -418.818 -418.797 5.8e-02 5.0e-03 
0.360 -597.269 -597.667 -597.621 5.9e-02 7.6e-03 
0.404 -779.097 -779.672 -779.659 7.2e-02 1.7e-03 
0.439 -960.848 -960.678 -960.639 2.2e-02 4.0e-03 
0.472 -1170.336 -1169.920 -1169.939 3.4e-02 1.6e-03 
0.522 -1524.066 -1523.810 -1523.879 1.2e-02 4.5e-03 
0.595 -2077.409 -2076.680 -2076.848 2.7e-02 8.1e-03 
0.708 -2977.731 -2977.070 -2977.346 1.3e-02 9.3e-03 
0.938 -4847.249 -4846.560 -4846.956 6.0e-03 I 8.2e-03 

Table 5.2. Results of the free energy measurement for the simple Ising 
model. The range of couplings [0, 1] was divided into 65 intervals by the 
initialization algorithm: we present the results for every fifth value of 
K. The free energies are measured relative to an arbitrary zero at K = 0 
(i.e. neglecting the usual N log 2). The exact free-energies are calculated 
using the method in [26].  The initial guesses () at the free energies are 
quite accurate. The refined measurements of the free energies reduce the 
percentage error by around an order of magnitude. 
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to make transitions between subensembles. We no longer consider only 

transitions to adjacent states, with the transition rates governed by the 

Metropolis algorithm. The new state of the system, the subensemble that 

we move into, is chosen purely on the basis of the current configuration S, 

with no reference to the current value of the coupling K. 

The heat bath algorithm (see e.g. [631) is essentially the same as the Gibbs 

sampler we discussed in Chapter 3, except that we apply it here to changes 

in coupling K. We choose the transition probability 

def exp {K m  >i:<>  SSi  + 
iim} = Pm. 	 (5.33) Pk.. = 	

exp {K 	SS + 77-1 

The results are presented back in Table 5.1, column (6). We see that the 

heat bath method for changing the couplings always results in a faster 

exploration of the space of the couplings than the Metropolis method. Sig-

nificantly, once the gap between couplings is small enough, there is no 

apparent penalty for increasing the number of K-states: the system tra-

verses K-space at the same rate. There are costs, however, in the increased 

computation required to calculate the sum in the denominator of (5.33), 

and in the increased statistical spread resulting from the smaller propor-

tion of the total MC time spent in each individual state. It is still necessary 

to choose the values of the {lim}  carefully in the same way that we did for 

the Metropolis version. 

Given the results presented in Table 5.1 we would strongly recommend 

the use of the heat bath algorithm over the Metropolis algorithm for the 

purposes of making transitions between subensembles. 
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5.4 The Evidence for a Hypothesis 

We now return to the original motivation for this chapter, the calculation 

of the log-evidence in (5.1). We have just shown how to calculate log Z(k) 

(or we can use the exact analytic calculation from [261) so we simply need 

to calculate the value of log Z(1?, h; D). 

The method is precisely as we have described for the simple zero-field Ising 

model. We again attempt changes in the value of 1? using the transition 

probability (5.10). The only distinction is that the traditional MC spin-flip 

updates are carried out using the energy function for the reconstruction 

distribution. 

First a word about the notation. Although the point of the evidence calcu-

lation is to guide us in the assignment of the restoration parameters (k, ii), 

we use these variables with a slightly different meaning in this chapter. 

The evidence, calculated at a particular value of (K, ii), measures the like-

lihood that the particular data picture we are considering could have been 

generated using the nearest-neighbour function of the prior with coupling 

1?, and with a noise level measured by ii, regardless of the actual generation 

processes involved. Our knowledge of the source process has disappeared 

completely: now we truly appeal only to the data. 
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5.4.1 Method 

Echoing the first part of this chapter we write the partition function of the 

expanded modified ensemble 

M 

	

Zexp = E E CXP km 	RR + h > RiD1 +71. 	 (5.34) 
m=O{R} 	I 	<ii> 	i 	 ) 

and as before we carry out a Metropolis MC simulation of the expanded 

ensemble (for a fixed ii) using conventional Metropolis updates within 

subensembles, each with partition function 

Zm  = E exp km E RR + E RD 	 (5.35) 
{R} 	( 	<ii> 	 i 	I 

and then making changes in coupling space with transition probability 

	

Pmk = min 1,exp (kkk m ) E RIRj+7/k7/m . 	(5.36) 1I.. 	 <ii> 	 ) 

Keeping h fixed allows us to connect with the trivial limit of zero coupling, 

1? = 0, which has free energy - log Z1 (ii) = — 2N cosh(ii). 

Note that we only alter the coupling k and this means that there is no 

contribution from the data term to the change in energy. So the simulation 

is just as in the simple Ising case except that we use (5.35) instead of (5.8) to 

update the system. However, we could alternatively define an expanded 

ensemble where the field term ii was the varied parameter: 

M 

	I 	I Z = 	exp k 	RR + Im R4 D + 7/rn . 	(5.37) 
m=O{R} 	<ii>  

The spin flip dynamics would use (5.35) as before, but the subensembles 
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would be at fixed coupling k, for different values of ii, with the transition 

probability being 

= mm {i 	1,exp(Ilk - 	RjD + 7/k - urn] D . 	
(5.38) 

We would then connect with the zero field system which has free energy 

- log Z(k) and is in the prior-like phase. Since we are most interested in 

measurements of the data-like phase, it makes more sense to connect to 

the zero coupling system, which is in the data-like phase on the relevant 

side of the phase transition. 

Returning to the expanded ensemble (5.34) we are able to calculate free 

energy differences as in (5.14) 

	

log Z(Km, h; D) - log Z(Kk, ii; D) = log Ea + 11k - 77rn. 	(5.39) 
Pk 

In this way we can calculate the partition function of the restored distribu-

tion relative to the zero coupling case. But as Z(k = 0,/i; D) is independent 

of D and is just Z, (h), the free energies we calculate already have log Z, (h) 

subtracted out. The log-evidence is therefore simply the difference be-

tween the free energy of the reconstruction system, and the free energy of 

the zero field Ising system at the same value of the coupling K. 

So the log-evidence, calculated in this way is: 

log P(DIkk, Il) = -7/ 	
P0

k - log - - log Z(Kk). 	(5.40) 
Pk 
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The simulations of the zero field Ising model have taught us several things 

which we should now note: 

. the calculation of the correction log(po/pk) is very intensive compu-

tationally; and 

. we have found a reliable method of choosing the {} well so that the 

correction term is very small. 

Now it turns out that even on the scale of the difference in free energy be-

tween the restoration system and the zero coupling system, the correction 

is still small. So for some analyses it may not be efficient to expend the 

CPU time required to refine the result beyond the initial choice of the {i}. 

Since we want to measure the average effectiveness of the evidence as a cri-

terion for choosing the restoration parameters, we really want to calculate 

the quenched average of the log-evidence. Since this average requires that 

we calculate the log-evidence many times over for different data pictures, 

we used simple numerical integration of the internal energy to approxi-

mate the log-evidence. However, for a practical calculation from a single 

data picture, the most precise results are obtained using the expanded 

ensemble method described above. 

5.4.2 The Well-Matched Prior 

We first consider the case where we have used the correct functional form 

for the prior—i.e. the source is taken from an Ising distribution at a par- 

ticular value of K, and the noise process is true Gaussian with a noise 

level q corresponding to the field parameter h. Frigessi and Piccioni [30] 
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show that given the functional forms of the source and noise processes 

are known, it is possible by calculating first and second neighbour corre-

lation functions of the data to determine exactly what parameters K and 

h were used to generate the data picture. The evidence procedure does 

not do these calculations explicitly, but we can conclude that the necessary 

information is contained in the statistics of the data picture alone. 

Using the trapezoidal integration method to determine the free energy of 

the restored system as a function of k and ii, and then subtracting the free 

energy of the zero field Ising model, we obtain a plot of the log-evidence 

shown in Figure 5.2. This shows that the maximum of the evidence cor-

rectly indicates the optimal restoration parameters that will maximize the 

quality factor and the overlap of the TPM estimate with the source. [Com-

pare with Figure 3.3.] For clarity, all of the following evidence graphs show 

log P(DIk, h) + N log 2 [N = 642 ] with only positive contours plotted. 

The plot also indicates a large negative evidence for the region where K 

and ii are both large. We can be reassured that this makes sense by the 

following observations. For a source coupling much beyond the phase 

transition (K > 0.44) the source picture would have a large bias to one 

colour. However, the data picture (which has been generated with a smaller 

coupling) has approximately zero bias, and this could only be reconciled 

with a large source coupling if the noise level was large (and hence h small). 

Thus there is negative evidence for all large K but especially for large K 

and large h together. 

Figure 5.3 shows further examples of the success of the evidence in finding 

the optimal parameters. When the prior is well-matched to the source, the 

evidence will find the optimal values of the restoration parameters that 
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Figure 5.2. The results of the evidence measurement for an Ising source and 
20% noise [tanh(K) 0.36, tanh(h) = 0.61, as in Figure 3.3. The evidence 
is very large and negative 0000) for large 1? and h. Therefore the 2D plot 
is more useful, showing only the contours around the maximum. 

maximize the quality factor, and in this well-matched case these optimal 

parameters are k = K and ii = h. 

Therefore we can conclude that the evidence procedure is successful at 

extracting the information on the K and h that generated D given only the 

data picture, provided that the data was generated by the chosen prior. 

5.4.3 The Ill-matched Prior 

We now investigate the success of the evidence procedure for guessing 

the optimal values for k and h that maximize the quality factor, when we 

have not chosen the correct functional form for the prior; again we realize 

this situation by modelling a fixed chequerboard source. These results are 

presented in Figure 5.4 for a range of chequerboard sizes and noise levels 

(compare with Figure 3.5 of the quality factor in Chapter 3). 
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Figure 5.3. Evidence results for a range of source parameters in the well-
matched prior case. All examples show that the evidence correctly identi-
fies the source parameters (and hence the optimal restoration parameters). 
For clarity, all of the evidence graphs show log P(D I K, h) +N log 2 [N = 64 2] 

with only positive contours plotted. 
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Figure 5.4. Evidence results for an ill-matched prior (chequerboard source). 
Moving across a row, the size of the chequers increases and the maximum 
of the evidence indicates a larger coupling K should be used. Moving 
down a column, the noise level increases and the maximum indicates a 
small value of the field h should be used. Compare these results with 
Figure 3.5. The trends in the restoration parameters are similar, but the 
maxima of the evidence and the quality factor do not coincide. 
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The qualitative behaviour of the maximum of the evidence does match 

that of the quality factor maximum. As the chequer size increases, the 

maximum of the evidence occurs at larger values of k. As the noise level 

increases the maximum occurs at smaller values of ii. However these 

maxima do not coincide with the maxima of the quality factor shown in 

Figure 3.5. The figures show that the evidence is not a reliable method for 

determining the optimal restoration parameters when the original choice 

of the prior model is poor. 

If there was any doubt in our minds, the mismatch between the maximum 

of the evidence and the maximum of the quality factor proves that the 

edge density prior is a particularly poor model for chequerboard source 

pictures. The quality factor results in Chapter 3 recommend the use of 

larger values of the restoration coupling 1?, since the source has large 

coherent regions (the chequers). However, the evidence is calculated based 

upon the assumption of an Ising source distribution. Since the bias in 

the data pictures is zero, the evidence for values of K much above the 

phase transition K = 0.44 becomes large and negative. Such a source 

coupling in a genuine Ising source process would generate pictures with 

an overwhelming bias to one colour. As we discussed in the previous 

section, since the bias in the data is zero (the source is a chequerboard), the 

evidence for a large value of K is large and negative. Of course, there was 

no large coupling used to generate the source—it is a fixed chequerboard 

and the evidence result is quite valid. It is simply the mismatch between 

the source and prior that undermines the result as a meaningful estimate 

of the optimal restoration parameters. 
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5.4.4 Model Comparison 

The previous example demonstrated that the evidence procedure is not 

useful unless we have made an adequate choice of prior. But recall that 

we have already performed the evidence calculation for the chequerboard 

prior back in §5.2. If we compare the numerical value of the log-evidence 

for the chequerboard prior (5.4) [neglecting the constant N log 21 with the 

results in the middle column of Figure 5.4, we find that the evidence is 

always greater for the chequerboard source than for the nearest neighbour 

prior. In particular, for the 8x8 chequerboard with 10% noise, the maximum 

of the evidence for the nearest neighbour prior is 800, while the maximal 

evidence for the chequerboard source [using N = 642  in (5.4)] is 1500. 

[Scale the results in Figure 5.1 by N and add N log 2.1 This is a clear 

indication that in this case, the chequerboard prior is more suited to the 

data than the edge-density prior. 

This is not a rigorous comparison of the priors, but it does indicate the way 

in which one can use the evidence formalism to compare different forms 

of prior, as well as different parameter choices. If the results obtained from 

the evidence calculation are poor, this warns us that we have made a poor 

choice of prior and urges us to develop other priors against which we may 

test the data. 
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5.5 The Small Coupling Expansion of the Evi- 

dence 

We set up the formalism for the small coupling expansions in Chapter 3. 

To conclude the work on the evidence we apply these analytic methods 

once again, and confirm the observations we have made in this chapter. 

5.5.1 Method 

The log-evidence is given in (5.1). Substituting in the small coupling results 

(3.71) and (3.79) gives 

logP(Dk,h) = log { 1+K&2 A(D ) 

+ k 2  [2&2 B(D) + 2   a4 C(D)] + o(K + k)3 } 

= ka2 A(D) 

+ k 2  [_-&4  + 2B(D)(à2 - &4)] 

+ o(K + k)3 . 	 (5.41) 

Therefore, given a data picture we just need to make measurements of A(D) 

and B(D). For investigation purposes we find the quenched average of 

the log-evidence by calculating A(S) and B(S) and utilizing their self-

averaging property. The corresponding results for the data are obtained 

by multiplying by (1 - 2q)2 = a2. 



CHAPTER 5. HYPOTHESIS EVALUATION 
	

204 

0.75 

0.50 

0.25 

0.00-f, 

0.00 0.25 	0.50 	0.75 	1.00 

tanh(E) 

Simulation 

:: 

	

0.00- 	 ulI 

	

0.(0 	0.25 	0.50 	0.75 	1.6 
tanh(1) 

Small Coupling 

Figure 5.5. Small coupling evidence for the well-matched prior. The 
source coupling was tanh(K) = 0.2 with 20% noise [tanh(h) = 0.6]. Both 
the simulation result and the small coupling result indicate a maximum in 
the expected location K = K and h = h. 

5.5.2 The Well-matched Prior 

For the well-matched prior, the source is drawn from an Ising distribution 

and we calculate the values of A(S) and B(S) given in equations (3.104) 

and (3.105). Thus .A(S) = 2Ka2  + o(K3 ). Since B(S) is of order K 2  we 

neglect the last term and obtain 

log P(DIK, ui) = 2Kâ2 Ko 2  -k  2&4  + o(K + k) 3 . 	 (5.42) 

The gradient of (5.42) with respect to k and h is zero when 1? = K 

and h = h indicating a maximum at this point. This is confirmed in the 

comparison of simulation and small coupling results shown in Figure 5.5. 

Notice the way the ridge of large evidence lies diagonally across the param-

eter space in Figure 5.5 and Figure 3.15. For small couplings it is difficult to 

determine whether the disorder evident in the data picture has arisen from 

little noise (large h) and a disordered source (small K), or from a larger 

coupling K with more noise (smaller h). 
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Figure 5.6. Small coupling evidence for an ill-matched prior (30 chequer-
board). The small coupling results on the right indicate the same maximum 
of the evidence as simulation, but when compared with Figure 3.15 they 
clearly fail to find the optimal set of restoration parameters that maximize 
the quality factor. 

5.5.3 The Ill-matched Prior 

For the ill-matched prior, we again use a chequerboard source, and since 

this is a small coupling expansion we consider a 3x3 chequerboard, which 

has a suitably small effective coupling Keff (see Table 3.1). The values for 

A(S) and B(S) and hence for A(D) and B(D) are obtained from Table 3.2. 

The results are shown in Figure 5.6. The success of the small coupling 

expansion for small chequerboards is proved once again, but the results 

confirm that the evidence is an inadequate basis for parameter estimation 

if the prior model is poorly chosen. 

5.6 Conclusion 

The method of expanded ensembles has been developed and refined in the 

context of free energy measurement of the Ising model. We have defined 

a prescription for setting the many parameters required, which was given 
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only passing mention in the original paper [77].  In conclusion we have 

discovered that a modification of the method, to use the heat bath rather 

than Metropolis algorithm for making transitions between subensembles, 

provides a faster and more robust measurement process. 

Such refinement does not prove necessary for our investigations of the 

evidence, which may be calculated approximately using numerical inte-

gration. The evidence approximation is successful at finding the correct 

values of the source and noise parameters provided the space of priors that 

we use contains the true source process. Otherwise we cannot say whether 

the evidence will provide any useful output—the further removed the true 

source image is from the prior distribution we use to calculate the evidence, 

the less reliable will be the result. 

When the prior is ill-matched with the source, we are effectively finding 

the projection of one problem (the Ising source distribution) onto another 

(the fixed source chequerboard). We cannot be too surprised at failure in 

these circumstances. The evidence is calculated correctly, but the model 

that we evaluate the evidence against is flawed and does not represent the 

truth. 

Given the opportunity to compare the evidence results with the quality 

factor results, the disparity acts as a warning that the prior model we have 

been using is inadequate. In fact, as we indicated in 5.4.4, it is possible 

to extend the evidence process a stage further and use it as a criterion for 

choosing different prior models (the functional form of the prior), as well 

as for parameter estimation [81]. 



CHAPTER 6 

Conclusions 

Image restoration, the recovery of an image that is in someway 'better' than 

the original noisy image, is a hard problem with many unsolved aspects. 

As we have seen, an enormous amount of research has been carried out 

across several scientific fields: notably in signal processing, and in applied 

statistics. The introduction of Markov random field models to this research 

has opened the way for a more theoretical treatment, making use of the 

similarity between such models and lattice models of magnetic systems in 

statistical mechanics. 

The image restoration problem is distinct from image enhancement in that 

we build a prior model of the possible processes involved in the genera-

tion of the corrupted image, and use this to guide us when attempting the 

restoration. Thus we infer the source image from the data and our prior 

model. Bayesian statistics prescribes the tools required to make this infer-

ence in a consistent, logical manner, and we presented the Bayesian deriva-

tion of the restoration scheme in Chapter 2. By modelling the prior on the 

207 
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predicted density of edges in the source, information theory arguments 

delivered a prior probability function that was just a nearest-neighbour 

Markov random field. 

With these basic arguments behind us, we were able to make use of an-

alytic methods from statistical mechanics to investigate the performance 

of the restoration process. Our immediate interest was not the perfection 

of a practical restoration scheme, but the investigation of the factors that 

affect the performance of such a scheme, and the development of a better 

understanding of its successes and failures. The mean field approxima-

tion, presented in Chapter 3, explains the changing performance of the 

model in different regions of the space of restoration parameters. There 

is competition between the restoration parameters: the nearest-neighbour 

coupling in the prior that tries to smooth the image, and the field term that 

binds the restored image to the data. We wish the restored images to reflect 

the qualitative features of the data, but to be smoothed by the effect of the 

prior. However, beyond a critical value of the nearest-neighbour coupling 

we found a phase transition to a prior-like state: the prior wins over the 

data. This result indicates regions that should be avoided for the purposes 

of image restoration. 

We considered the distinction between a prior that, is well-matched to the 

source, and a prior that is poorly matched. Remember that for the purposes 

of measuring the success of the restoration scheme we have control over 

the parameters that generate the data as well as the restoration parameters 

that define the prior. Given the Bayesian arguments and the definition of 

our measure of quality, it is obvious that when the prior is well-matched to 

the source the optimal choice of restoration parameters (in the sense that 

they maximize the quality factor) is simply the values of the corresponding 
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parameters used to generate the data. The small coupling expansion of 

the quality factor confirmed this. However, when we considered the ill-

matched prior, we found that the optimal values of both parameters were 

modified from the values we might have naively assigned based simply 

on the edge-density of the source and the severity of the noise process. 

The most significant point to note is that even when we correctly model the 

noise process, a poor choice of prior will cause us to modify the optimal 

restoration parameter in the model likelihood. An incorrect choice of one 

aspect of the prior has implications for the choice of all other aspects of the 

model. 

In Chapter 4 we attempted to lay to rest the debate over the optimal 

choice of estimate. Given the posterior probability distribution of restored 

images, what is the single image that best characterizes the distribution? 

With reference to the mean field phase diagram we argued that the MAP 

estimate obtained by simulated annealing is an absurd choice as many of 

the annealing trajectories cross the phase transition. This notwithstanding, 

the MAP estimate can provide results as good as the TPM estimate, but 

only with an order of magnitude increase in computational cost. 

Finally, we returned to the thorny issue of parameter estimation. We 

wanted to find a prescription for choosing the 'best' restoration parame-

ters in the sense that they maximize the quality factor, but with no prior 

knowledge of the actual generation parameters. The evidence formalism 

offers such a prescription for estimating the parameters from the data, but 

the measurement of the free energies involved is a non-trivial task. We 

extended the work on the 'method of expanded ensembles' to free energy 

measurement of the Ising model, and identified a number of improvements 

to the procedure. The method offers the possibility of direct comparison 
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of arbitrary hypotheses; one has just to find a Monte Carlo path between 

the subensembles that represent the hypotheses. 

Much as we discovered in the analysis of the quality factor, there is a 

distinct difference in the utility of the evidence, between the cases of well-

matched and ill-matched priors. When the space of priors contains the 

source all is well and the maximum of the evidence coincides with the 

maximum of the quality factor. But when the prior is ill-matched the 

evidence maximum is in general in a different place to the maximum of 

the quality factor. The evidence chooses the 'optimal' parameters (in the 

sense that they maximize the evidence) by finding the parameters that were 

most likely to have generated the data given the prior model. The criteria 

are quite different when choosing parameters that will provide a restored 

picture most like the source when that source is nothing like the prior. 

One avenue of research that merits further investigation would be to ex-

periment explicitly with different priors, i.e. to introduce further couplings 

into the prior (and correspondingly the source). This would allow us to 

control a continuous variation between well-matched and ill-matched prior 

forms, rather than the disparate cases of Ising or chequerboard prior. This 

would also provide the scope for a more detailed analysis of the evidence 

procedure: can we, by this method, quantitatively evaluate different prior 

models in the light of the data? 

In conclusion, this thesis has aimed to provide a better theoretical un-

derstanding of the issues surrounding the image restoration problem. In 

the words of Aristotle, "Those who wish to succeed must ask the right 

preliminary questions." 
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