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ABSTRACT OF THESIS 

This thesis is a study of predator-prey models, with particular 

emphasis on the effects of spatial separation. It is divided into 

two sections - spatial and non-spatial. 

In the non-spatial section. we study the deterministic equations 

of the general two-species interaction model. The equations are 

linearised about an equilibrium point, and thus linear solutions are 

found. To examine stochastic models, we develop a technique of pro-

bability linearisatton. Using this technique, we find that the Nor-

mal distribution Is an approximate solution for the probability 

structure of the stochastic model. 

The element of spatial distance Is introduced in the form of the 

stepping-stone model - that is, the population is divided into 

colonies which may be considered to be situated at the integer points 

of a single coordinate axis. We simplify the problem by first con-

sidering the two colony case. Deterministic linear solutions are 

found., as before, for models with certain restrictions on migration, 

and approximate stochastic solutions are found using the probability 

linearisation method. The effect of migration between colonies is 

seen by comparing these results with those of the non-spatial case. 

These methods are then extended to cover the case where the number of 

colonies in infinite. Finally, we look at the diffusion model, where 

the habitat is continuous and the populations diffuse throughout the 

region. A survey is given of the effects of spatial diffusion in 

predator-prey models, and a comparison is made between this continu-

ous diffusion and the discrete migration model. 
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CHAPTER 1 

INTRODUCTION TO THESIS 

!.!. General Introduction 

This thesis is a theoretical study of predator-prey modelling, 

with part icularemphasis on the effect of spatial separation. 

A predator-prey model is a model of two interacting species, 

where one species depends on the other for survival. By modelling, 

we intend to give a mathematical description of the behaviour of the 

species. This description can be used to tell us, for example, if 

the two species can exist in the same habitat, or, perhaps it could 

indicate what patterns of interaction are most likely to lead to sta-

bility. Most predator-prey models concentrate on how behaviour 

alters through different forms of interaction, ignoring any effects 

that might arise from geographical separation. In this study, we 

incorporate a spatial element into the model. 

Predator-prey models fall into two main categories - determinis-

tic and stochastic. The deterministic approach is to look at the 

rate of change of numbers of individuals, and to determine the exact 

outcome at a given time. It ignores all effects of statistical fluc-

tuations. In the stochastic model, it is the change in the probabil-

ity which is examined. The stochastic model will, of course, give a 

better indication of how the species will react (because of allowing 

for statistical variation). But this does not mean that determinis-

tic models should be forgotten. Deterministic models are easier to 

deal with, mathematically, while most stochastic models are 
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intractable (to an exact solution, at least). Furthermore, when the 

population numbers are large, they should give a good indication of 

the behaviour of the system. For these reasons, we study predator-

prey models from both the stochastic and deterministic aspects. 

Because of the nature of. the interaction between predators and 

prey, the models are non-linear. Non-linear models are generally 

difficult to solve. If a solution can be found, it is usually• so 
reaay 

mathematically complicated, that it gives rA  indication of how the 

model behaves. Deterministically, at least, linear solutions appear 

to be good approximations to the solutions of non-linear models 

(indeed better than they deserve). Because of the difficulties 

involved in non-linear mathematics, we generally consider linear 

solutions. Thus, most of our results are merely approximations, but, 

where possible, we show that these approximations are close to the 

true solutions. 

The thesis is divided into two sections - non-spatial (Chapters 

2-4) and spatial (Chapters 5-8). In the non-spatial section, we out-

line the main developments in predator-prey modelling, both deter-

ministic and stochastic, and introduce some ideas that we will find 

useful in the spatial section. 

!•• Non-Spatial Models 

The development of deterministic predator-prey modelling is dis-

cussed. in Chapter 2. To see what types of behaviour are possible, we 

study the general quadratic two-species equation, and find the solu-

tions to the equations linearised about the equilibrium point. We 

see that the solutions, are either exponential or oscillatory, which 

may be damped or undamped. These types of behaviour are illustrated 

using two examples of predator-prey models, one stable (which means 

that small perturbations from the equilibrium value decay) and the 
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other unstable (it exhibits constant 	amplitude 	oscillations). 

Because these two models represent all types of deterministic 

behaviour possible (from linear solutions), we shall usually use 

these as examples of predator-prey systems. 

In Chapter 3, we introduce the stochastic model in the form of 

the stochastic analogue of the unstable example above, and discuss 

the difficulties that arise in stochastic modelling. We derive the 

forward equation for the probability distribution, which is a 

difference-differential equation, but cannot solve it. The moments 

of the distribution cannot be found either, because the equations do 

not form a closed system. We try to extend other methods often used 

in the stochastic modelling of single-species systems, but without 

success. In an attempt to simplify the forward probability equation, 

we approximate the discrete state space by a continuous one, and 

arrive at a diffusion equation. Though this equation is now intract-

able, we will later simplify it, so that a solution can be found. 

We investigate techniques using linearisation in stochastic 

models in Chapter 4. Three methods are discussed - Bartlett's sto-

chastic linearisatlon, probability linearisation and linearisation of 

the continuous model. In the first two methods, approximations can 

be found for the moments of the distribution. In the third method, 

the discrete process is approximated by a continuous one, as before, 

but now, using probability linearisation, the diffusion equation can 

be solved. Hence, this method provides an approximate solution 

(which is the Normal distribution) for the probability distribution 

of the stochastic model. Another advantage of this third method is 

that it is possible to extend it for use in spatial models. 

Spatial Models 

To introduce a spatial element,. we consider that the habitat is 
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divided into a number of colonies. Within each colony, spatial 

separation Is ignored, but, between colonies, migration is common. 

We assume that migration is instantaneous, so the effects of it are 

immediate. We also assume that there are no losses during migration, 

so that an individual leaving one colony arrives at another. 

We first try to generalise our results to the 'spatial' model 

when the number of colonies is two. Deterministic two-colony models 

are studied in Chapter 5. Because the solution to the general deter-

ministic model is too mathematically complicated to give any indica-

tion of the general behaviour of the species, the solutions to some 

special cases are discussed. When individuals are allowed to migrate 

between colonies at the same rate in both directions, we see that 

migration has no long-term effect on the model. In the case of the 

unstable model, in a single colony, the populations oscillate with 

constant • amplitude. However, in the two-colony unstable model, if a 

species is allowed to migrate in one direction only, from colony 2 to 

colony 1, say, then, after a time t, both colonies oscillate with 

constant amplitude, but out of phase. If predators are migrating, 

colony 2 lags colony 1, whereas if prey migrate, colony 2 leads 

colony 1. 

Two-colony stochastic models are investigated in Chapter 6. 

Using the three stochastic linearisation methods developed in Chapter 

4, we study the effect of migration on a stochastic model. The model 

we choose Is the stable model where the predators migrate at the same 

rate in both directions. We choose this model because it enables us 

to simplify the equations. The approximations for the means and 

variances found using all three methods are identical. We see how 

migration affects the model by comparing these with the one-colony 

solutions. The approximate solution to a more general two-colony 

model is found using the third method (of continuous approximation). 
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Multi-colony models are discussed, in Chapter 7, in terms of 

'stepping-stone' models. A (one-dimensional) stepping-stone model is 

a model in which we consider the colonies to be situated at the 

Integer points of a single coordinate axis, with migration possible 

between nearest neighbours only. The solution to the deterministic 

model in which each colony is undergoing the same process is given. 

The same results appear as in the two-colony model. That is, if 

migration parameters are equal in both directions, no long-term 

effect is noticed, but in the unstable model, when migration is in 

one direction only, the colonies oscillate Out of phase. An approxi-

mate solution is found for the N-colony stochastic model, using the 

method of continuous approximation and linearisatlon. 

Thus, we incorporate spatial separation into the model by con-

sidering the populations to be separated into discrete colonies, and 

looking at the effect of migration between colonies. An alternative 

method of introducing spatial distance into the model is to regard 

the habitat as a continuous region, and allow the populations to dif-

fuse continuously throughout the region. In recent years, much pro-

gress has been made in investigating the effect of spatial diffusion 

in predator-prey models. A survey of these developments is given in 

Chapter 8, and a comparison is made between continuous diffusion and 

discrete migration models. 
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DETERMINISTIC MODELS 

2.1. Introduction 

As an introduction to predator-prey modelling, we will discuss 

the origins and development of non-spatial deterministic models. 

The first predator-prey model, the Lotka-Volterra model, will be 

defined in Section 2.2. Because we will be referring to this model 

throughout the thesis, we will describe its behaviour in detail, and 

give the solution to the linearised form of the equations. Develop-

ments in predator-prey modelling will be outlined in Section 2.3. 

These developments will be considered from two aspects: more general 

reaction rates, and time delays in systems. To see what types of 

behaviour are possible in predator-prey models, in Section 2.4 we 

study the general quadratic two-species equations, and find the solu-

tion for linear perturbations from the equilibrium value. From this 

solution it will be seen that only four types of behaviour may 

result. In Section 2.5, examples of predator-prey models displaying 

these different types of behaviour, are given. We will discuss in 

detail the example described in Section 2.5.2, known as the 

Volterra-Gause-Witt model, because it is an example we will often 

return to. In Section 2.6, we introduce different population 

processes which are algebraically similar to predator-prey models, 

emphasising that results from other population studies may often be 

useful. We discuss non-linear effects in Section 2.7, and consider 

the consequences of using linear approximations. 
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2.2. The Lotka-Volterra Model 

2.2.1. Description of model 

The first predator-prey model was proposed by Lotka (1925) and 

independently by Volterra (1931). According to Goel et al. (1971), 

Volterra was motivated to study fluctuations in animal populations by 

discussions with a young zoologist friend, D'Ancona. D'Ancona had 

made a statistical analysis of fish catches in the Upper Adriatic. 

There were two types of fish, one type feeding on the other. It was 

noticed that the population of both species varied with the same 

period, but out of phase. To describe this behaviour, Volterra 

(1931) proposed the mathematical model below. 

Let the number of prey at time t be denoted by H(t), and the 

number of predators by P(t). Let A,u  be the birth and death rates, 

respectively, for the prey, and 8,i.' the birth and death rates for the 

predators. Then the Lotka-Volterra model is defined by the differen-

tial equations: 

dH = 	- c4iP 
ZF 

4. = HP -  

As we can see from the equations, the birth rate of the prey is 

assumed independent of the number of predators, while the death rate 

of the prey is proportional to the number of predators. The situa-

tion is reversed in the predator equation. 

The behaviour of the system described by these equations may be 

graphically represented by using a phase diagram: that is, the change 

in the system with time may be plotted as a single trajectory on a 



graph with axes H and P. In the case of system 2.1, first notice 

that 

dH = (A 
- aP)H 

•P• 	(H - Ii)? 	 (2.2) 

which integrates to 

1' in H - 811 + ' in P - uP = constant, 	 (2.3) 

where the constant is determined by the initial conditions. 

Using 2.3, Pielou (1977) illustrated three different representa-

tions of the Lotka-Volterra model on the phase diagram (see Figure 

2.1). 

P 

20 	 40 	 60 	 ~ 00 
H 

Figure 2.1. Phase diagram sh ow ing three representations of 
the Lotka-Volterra model, wjth A = j, a 0.1, 8 = 0.02 k  = 
0.5. The  equilibrium is at I 25, P = 10. 

E is the equilibrium value of the system, that is, where the 



rate of change of the population numbers is zero: 

dH - dP =0 . 	 (2.4) 

In each curve, the same parameter values are used, but with different 

initial conditions. Because the curves are closed, the population 

will continue indefinitely to follow the trajectory on which it 

starts, travelling in an anti-clockwise direction. 

2.2.2. Solution to the linearised equations 

The behaviour of the system in the neighbourhood of this equili-

brium point may be investigated algebraically (see, for example, 

Pielou, 1977). Let the equilibrium values of the prey and predator 

be fi and P, respectively. By setting the left hand side of equations 

2.1 equal to zero, these values are seen to occur at 

p 	 A 
and 	P=,s. 	 (2.5) 

To examine small deviations from this point, introduce the 

transformations: 

H(t) = H + h(t) 

P(t) = P + p(t) 
	

(2.6) 

where h and p are small enough so that second order terms are negli-

gible. Note that the quantities h and p are integers, and so take 

the values h,p = 0,1,2,... This means that h 2  and p2  have the values 

h ,p 22 	0,1,4,9,... This would imply that h 2  and p 2  cannot be ignored 

except in the trivial case, when h,p = 0. 	However, consider the 

transf ormati on 
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H(t) = H(1 + h(t)) 

P(t) = P(1 + p(t)) . 	 (2.7) 

Because of dividing by H and P, h and p are small enough so that 

second order terms are negligible. Strictly, when linearising the 

equations, we should use transformation 2.7  instead of 2.6. But, to 

the first order, both transformations lead to identical solutions for 

H and P. Because 2.6 is easier to work with, we shall generally use 

it to linearise equations. 

Substituting 2.6 into 2.1, then, after linearising, the equa-

tions reduce to (see Pielou, 1977) 

= Ph , 	 (2.8) 

where • denotes d/dt. These solve to give 

h(t) = A ZIP cos (..fi?t + B) 
(BP) 

p(t) = A sin ( .fXi?t + B) , 	 (2.9) 

where A and B are determined by the initial conditions. For example, 

suppose that at t=0 

h(0) = 0 and p(0) = k 	 (2.10) 

then the solution 2.9 becomes 

h(t) = -k 	sin .jx•i:i't 	 (2.11) 
(8P) 
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p(t) = k cos 

From 2.9, we see that if the system is perturbed slightly from the 

equilibrium value, it will oscillate with constant amplitude, with 

the prey and predators n/2 out of phase with each other. These 

oscillations are not damped in time. This means that the system will 

not return to its equilibrium value, and so it is said to be 

unstable. 

Volterra noticed (see Scudo, 1971) that the model followed a law 

of conservation, namely that the quantity 

t 	 t 
OH(t) + aP(t) - AfH(s)ds + aifP(s)ds 	 (2.12) 

0 	 0 

was constant for all time t. Because of this, the Lotka-Volterra 

model is called a conservative system. 

2.3. Developments in Predator-Prey Modelling 

2.3.1. More general growth rates 

Since the introduction of the Lotka-Volterra model, 	many 

developments have been made in deterministic predator-prey modelling. 

These developments fall into three main categories: more general 

birth and death rates, which we will now discuss, the effect of age-

structure or time delays, which will be considered in 2.3.2, and the 

introduction of, spatial variation into the equations, which will be 

dealt with later. 

The birth rate of the prey in the Lotka-Volterra model has been 

generalised to include a self-inhibiting factor (see Cause and Witt, 

1935): 
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H = (A-cH)H - aHP 
	

(2.13) 

= BHP - UP 

The c term is called a Verhuist factor, and the model is known as the 

Volterra-Cause-Witt model. This will be discussed in more detail in 

Section 2.5.2, where it will be seen that when c is greater than zero 

the equilibrium value will be stable -that is, small perturbations 

from the equilibrium value will decay, and the system will return to 

equilibrium. Other density-dependent forms of the prey birth rate 

have been seen to have much the same effect. For example, instead of 

using the birth rate AH, Schoener (1973) considered 

AH + AH(K/H - 1) 

and Goel et al. (1971) considered 

AH + XH(1 - ( H/K)) 

where K is constant, and O<g(1. In both of these cases, the birth 

rate of the prey is reduced when H is large, with K acting as an 

upper bound on the number of prey. This has the effect of stabilis-

ing the model. 

The rate at which the prey are attacked by the predators is 

described in the Lotka-Volterra model as -aHP, which means the attack 

capacity of the predators increases linearly with H, the number of 

prey. Other models in which the attack rates increase less fast than 

linearly with the number of prey have been considered, for example, 

by Ivlev (1961): 

-cH aIiP + aP(1 - e 	) 
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or by Rosenwzeig (1971): 

aHP + czHP 

where c is a positive constant and O<g1. 	In both cases, as the 

number of prey increases, the death rate is reduced. This has the 

effect of destabilising the model. May (1974) commented that if the 

attack rate of the predators increases faster than linearly with the 

number of prey, this rate will have a stabilising effect, whereas if 

the rate increases less than linearly, a destabilising effect will be 

seen. 

A reduction in the attack rate of the predators was also con-

sidered by Maynard Smith (1974), by allowing some of the prey, say 

H0 , to take cover or refuge and so be protected from the predators. 

The equations become 

} = All - aP(H-H0 ) 

= 8P(H-H) - jP . 	 (2.14) 

Two types of cover are possible. First, the number of protected prey 

may be a fraction of the total number, that is 

H0  = kH 

for some constant k. This does not alter the behaviour of the solu-

tion., but merely has the effect of decreasing a and 8. However If 

the number of prey protected is constant, say 

H0  = k 
	

(2.15) 

then the solution changes from one of constant amplitude oscillations 
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to damped oscillations. That is, prey cover of the form 2.15 stabil-

ises the model. 

In the Lotka-Volterra model, the predator growth rate is given 

as BHP. It has been suggested that this may be over-estimating the 

contributory influence of the prey, and Cause (1934) considered this 

growth. rate may more reasonably be 

$HP + BH" 2P 

This means that as the number of prey increases, the increase in the 

predator birth rate is reduced, enabling the prey to increase faster 

than the predators. The same conclusions found for the change in 

attack rate apply here - that is, a less than linear growth rate has 

a destabilising effect, and a faster than linear rate will be sta-

bilising (see May, 1974). 

An alternative growth rate of the predators is considered by 

Leslie and Cower (1960) in the model 

= AH - aHP 

= BP - 1iP 2 /H . 	 (2.16) 

Here the growth rate of the predator depends on the relative sizes of 

the populations, so that when the number of prey is small, the 

increase in predators is small. The model has a stable equilibrium 

value, and small deviations from it result in damped oscillations. 

2.3.2. Time delays 

Models so far have assumed that the growth rate of a species 

will respond immediately to changes in population numbers. It is 

often more realistic to assume there is a time lag in the system. 
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For example, a large predator population may be a result of abundance 

of prey in the past rather than the present, or alternatively animals 

may be required to mature before being able to reproduce. Although, 

in this thesis, we will not be studying systems incorporating time 

lags, it is interesting to outline here what the effects of these 

delays can be. 

Models with potentially stabilising feedback mechanisms have 

often been used in engineering control theory, and it is known that a 

destablising influence may occur if the time delay is long compared 

with the natural response time of the system (Maynard Smith, 1974). 

This property also holds in ecology, as was first shin by Hutchinson 

(1948). He considered the growth of a species, X(t), satisfying 

x(t) = X(t)[a - bX(t-T)] 

That is, as the number of individuals increases, the resources avail-

able to it decrease, but with a time lag T. If T is small compared 

with 1/a, the system maintains its stable equilibrium point. If T is 

large compared with 1/a, divergent oscillations result. May (1974) 

generalised this model so that the time delay does not depend on the 

population at a particular instant in the past, but on an average 

over past populations: 

t 
X(t) = aX(t) - JX(u)Q(t-u)du 

where Q(t) is a weighting function. Not only is this equation a more 

realistic representation of time delay, it is also easier to solve 
and can be solved 

Urg Laplace Transforms. The conclusion is the same - the system 

will become unstable if the delay factor is large. 

Wangersky and Cunningham (1957) considered the model 
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11(t) = AH(t) - CH(t)2 - all(t)p(t) 

P(t) = 8H(t-T)P(t-T) - iP(t) , 	 (2.17) 

that is, a time T elapses between the killing of a prey and the sub-

sequent growth of predators. Using a computer to solve the equations 

numerically, the authors noticed that, when c0 and the equilibrium 

is unstable, large amplitude oscillations occur. However, when c is 

not zero (and the equilibrium stable), by including a time lag, the 

system may be either stable or unstable, depending on the relative 

sizes of damping, c, and destabilising, T. More general ecological 

systems with delay in development time (as in 2.17) have been studied 

by Caswell (1972). In these analyses, the effect of the time lag is 

to destabilise the model. 

Maynard Smith (1974) introduced the idea of discrete genera-

tions. If H and P are the prey and predator densities in year n, 

the discrete generation model of the Lotka-Volterra process is 

= AH - 

P1=8HP -pP nn 	n 

The introduction of discrete generations changes the solution of the, 

model from constant amplitude oscillations to divergent oscillations. 

Thus when time delay is considered, the predator prey model may 

be stable or unstable, depending on a balance between damping in the 

system and the size of the delay. In general a large time lag will 
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have a destabilising effect. However, Beddington and May (1975) have 

shown that in the neighbourhood of an unstable equilibrium point, 

time delays can slow down the rate at which the population diverges, 

and so in this case appear to have a stabilising Influence. 

2.4. Linear Solution to General Model 

2.4.1. Solution 

In Section 2.2, we examined the Lotka-Volterra model, and saw 

that small perturbations from the equilibrium value resulted in con-

stant amplitude oscillations. In Section 2.3.1, we saw that by 

altering the parameters, the behaviour of the model could change, and 

in some cases become stable. In order to understand what type of 

behaviour we might expect in a predator-prey system, we now study the 

general two-species quadratic model. 

The model we are considering is defined by 

dH = F(H,P) Ur 

4. 
= G(H,P) 
	

(2.18) 

where F and G are general quadratic functions of H and P. Assume 

that the equations have an equilibrium value at H, P which satisfies 

F(H,P) = G(H,P) = 0 . (2.19) 

When F and C are general functions, it may be possible to have more 

than one equilibrium. As we will only be dealing with linear approx-

imations, the solution found will only be valid near the equilibrium. 

Thus, if more than one equilibrium exists, this method may be used to 

find the solution near each equilibrium point. 



To approximate the behaviour of the system near the equilibrium 

point, use the transformation 2.6, that is 

H(t) = H + h(t) 

P(t) = P + p(t) 

where (remembering the comments in Section 2.2.2) we may regard 

second order terms in h and p to be negligible. The functions F and 

G may be expanded about this point (see Nisbet and Gurney, 1982), as 

follows: 

F(H,P) = F(H,P) + 	h + 
	

+ o(h2 ,p 2 ) 

where I denotes 'evaluation at the equilibrium point'. By ignoring 

higher order terms, system 2.18 may be written linearly as: 

= C 1 h + C 2 

= C 
3 
 h + C 4 

where • denotes d/dt, and the C 1 1 s are defined by 

aF I C1= 	 C2W1 

3G C4 p- 

(2.20) 

(2.21) 

The equations 2.20 may be solved by substituting one into the other. 

There are four different cases of the solution to consider, depending 

' on the values of the C1s. 
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Case 1(a) C 3  * 0, r * 0 

(C 1+C)t/2 rt  ________ 
_________ h(t) = 	 [(c14 + r)Ae 

4.) + 	- r)Be-r  

p(t) = e 
(C1-fC4)t/2 (Ae rt + 

Be 
_rt) 	 (2.22) 

where r4J(C 1 -C 4 ) 2  + 4C2C 3 , and A and B are constants defined 

by initial conditions. 

Case 1(b) C 3  * 0, r = 0. 

1 (C1+C4)t/2 
h(t) = -e 	[B(C 1-C 4 )/2 + A(1 + (C1  -C 4  

(C #C 4 )t/2 
p(t) = (At + B)e 1 	 (2.23) 

Case 2(a) C3  = 0, C 1  * C4 . 

AC  C4t 	C 1  t 
h(t) = 4_1c 	+ Be  

C, t 
p(t) = Ae 	 (2.24) 

Case 2(b) C3 	0 9  C1  = C4 . 

C 1 t 
h(t) = (AC 2 t + B)e 
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C 1  t P(t) = Ae  

!•±.•.• Analysis 

We first notice that when C 3=0, the format 

changes. Recall from 2.21 that C 3  is a measure of 

the predators on the prey. However, this change in 

not attach a strong significance to C 3 . If C2 , the 

dence of prey on predators, equals zero, the Case 

also simplify to the format of Case 2. 

(2.25) 

of the solution 

the dependence of 

the solution does 

measure of depen- 

solutions will 

The solutions 2.22 - 2.25 represent four main types 	of 

behaviour. 

Damped exponential. The solution is a sum of exponential func-

tions of time, but is governed by a damping exponential factor. 

It occurs in Case 1 when (C 1  + C4) < 0, and r is real, 

2r < C + C4 1 (we are including 'damped linear' motion, Case 

1(b), as a special case). This motion occurs in Case 2 when C 1  

and C4  are both negative. Examples of models displaying this 

type of behaviour will be given in the next section. 

Damped oscillatory. The solution is oscillatory but governed by 

a damping exponential factor. This occurs in Case 1 when 

(C1  + C4 ) < 0 and r is imaginary. Examples will be given later. 

Undamped oscillatory. The solution consists of oscillations of 

constant amplitude, it occurs in Case 1 when (C 1  + C4 ) = 0 and 

r is imaginary. We have already had an example of this type of 

behaviour in the Lotka-Volterra model of Section 2.2. 

Divergent. This category covers any type of solution which 

tends to infinity as t. 	It will happen in Case 1 when 

(C 1  + C4 ) is positive, or in Case 2 when C 1  or C4  is positive. 
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Because the perturbations increase in magnitude, the linearisa-

tion assumption will be inappropriate here. The solutions 2.22 

- 2.25 will not be a good approximation and should not be used. 

Hence, we have seen that, in a general predator-prey system, 

small perturbations from the equilibrium value will behave in one of 

four different ways. In two of these types, (a) and (b), the solu-

tion is damped in time and the system will return to the equilibrium 

point - that is, the model is stable. When the system does not 

return to equilibrium, as in (c) and (d), the model is unstable (for 

example, the Lotka-Volterra model). 

Because this approximation cannot be used for divergent solu-

tions (type (d)), we will just look at solutions in the first three 

categories. In the next section, examples of predator-prey models 

which illustrate the different types of behaviour are discussed. 

2.5. Examples of Predator-Prey Models 

2.5.1. Immigration-death model 

In order to give examples of models displaying behaviour pat-

terns described in Section 2.4, we consider now an 'immigration-

death' process. Suppose that the prey cannot be born into the sys-

tem, but immigrate into it at a constant rate, A. The equations of 

the model change to 

= A - aHP 

= 8HP - lip 
	

(2.26) 

The equilibrium value now occurs at 
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.i. 	 (2.27) all 

From 2.21 the Cs may be calculated as: 

C 1 =-aP C 3 =8p 

C 2  = -all C4  = 0 	, 	 (2.28) 

and r is found to be 

r. = 4.J(C 1 _C 4 ) 2  + 4C2 C 3'  

= if22 - 
4A8 

This is a Case 1 solution, and so from 2.22 we see 

h(t) = j -aPt/ 2 [(_,2 + r)Aert + (czPt/2 - r )B e t] 

8P 

= et12[Aert + Be-  

(with similar modification of 2.23 when r--O). 

From 2.29, we can see that the damping factor, e-aPt/2  , has been 

introduced. Because r may be real or imaginary, the motion may be 

exponential or oscillatory. Hence, on comparing 2.29 with the 

Lotka-Volterra solution, 2.9, we see that, by changing the birth rate 

to an immigration rate, the behaviour of the solution changes from 

type (c), undamped oscillatory, to types (a) or (b), damped exponen-

tial or oscillatory. 
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2.5.2. Density-dependent birth rate 

Recall that the Volterra-Gause-Witt model, mentioned in Section 

2.3, with a self-inhibiting factor in the birth rate of the prey, is 

defined by the equations (see 2.13) 

I = (A-cH)H - aHP 

= 8HP - up 
	

(2.30) 

where all parameters, including c, are greater than zero. 	Because 

the prey birth rate is (A-cH)H, this puts an upper bound of A/c on 

the number of prey. This is often more realistic than the Lotka-

Volterra model because, in general, a population cannot increase 

without limit, owing to finite constraints, for example, on the size 

of the habitat or the supply of resources. 

The equilibrium value of this model is at 

fl = uj 	P = X-cH
CX  BI I 

We calculate the C i 's and r to be 

C 1 -cH 	c3 = 

C 2 = _aH 	
C4 =0 

- 1 	2- r - 24c H2 - 4aHP . 	 (2.32) 

Depending on the magnitude of c, r may be real or imaginary. 	The 

solution is in the Case 1 format, and when r is real is given by 
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- .1 -cHt/2 	 rt 	 -rt 
h(t) - —e 	[(-cH/2 + r)Ae + (-cH/2 - r)Be 

8P 

p(t) = et/2 	rt [Ae 	+ Be -rt (2.33) 

When r is imaginary, this changes to 

h(t) =1-4-a cos (Ot + B)] e 1 t1' 2  

8P 	 - 

P(t) =[A sin (at + B)j et/2 	 (2.34) 

where 6 = j a 	- c2H2/4. (When r=O, the solution has the form of 

Case 1(b)). 

To investigate the effect of including c in the model, first 

remember that, when c is zero, the model reduces to Lotka-Volterra 

and the solution is given by 2.9. That is, the solution oscillates 

with constant amplitude, and phase angle 6, where 0 = Ja8HP. 

When c>O, but small, solution 2.34, the predators and prey still 

oscillate, and are 7r/2 out of phase with each other. However, these 

oscillations are now governed by a small damping factor 

e t/'2  

so that they eventually decay, and the system returns to equilibrium 

value. This may be illustrated using the phase diagram in Figure 

2.2. When c=O (Lotka-Volterra), the linear solution follows an 

elliptical path, whereas, when c>O but small, the solution gradually 

spirals towards the equilibrium, E. 

As c increases, the damping factor becomes stronger, the phase 
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H 

Figure 2.2. Typical phase diagram for Volterra -Gau se-Witt 
model, with showing linear solution for cO, and 
- - - the solution when c>O, but small. 

angle e decreases, and the period of osculation rises. 

When 

C > 28[J.?'_ 1] , 	 (2.35) 

the solution is no longer oscillatory, but becomes damped exponential 

(solution 2.33). As c, the prey-inhibiting factor, increases, the 

damping force becomes stronger and the model returns to its equili-

brium state faster. However as c gets larger, the predator equili-

brium value, P, decreases. In order to keep P positive, c must be 

subject to the constraint 

C < 1A. 	 (2.36) 
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Thus, while c increases to its upper limit of A/H, the solutions 

become more and more damped. Initially, the solutions are oscilla-

tory, but when c reaches the value 

	

28[ J2j._ ii , 	 (2.37) 

the motion changes to exponential. (When c is equal to the quantity 

in 2.37, the solution is in a damped lini ar form which we treat as a 

special case of damped exponential). In particular, we have seen 

that introducing c stabilizes the model. Because the effect of sta-

bility in the system may be seen clearly (through a), we will in 

future use this system when we wish to consider an example of a 

stable model. 

2.6. Other Population Models 

2.6.1. Competition models 

Of course, the general equation 2.18 does not just describe 

predator-prey models - it represents all two-species population 

models whose behaviour may be described by differential equations. 

The following system 

j = X((x1 - 1 X - y 1Y) 

= Y(a2- 2X - y2Y) 
	

(2.38) 

where all parameters are greater than zero, may be interpreted as a 

model of two species X,Y who are competing with each other for sur-

vival (see Maynard Smith, 1974). The equilibrium values are 

	

=a 2YI - 0 1 12 	- 0 1 82 - 028.l 	
(2.39) '2 

	

8211 - 8 1 12 	- 82 11 - 8112 
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assuming these exist and are non-negative. 	Applying the theory 

developed in Section 2.4, the C constants and r are 

C l  = - a l X 	C3  = 

C2 = 	 C4  = 

r = 	81X+12Y) +yl 	 (2.40) 

This is a Case 1(a) type solution, and, because r is real, will 

always be exponential,' The equilibrium is stable if 

lid +C41 > 

that is 

12 > 8211 
	 (2.41) 

In order that the equilibrium values in 2.39 be positive, the ine-

quality 2.41 implies that 

'2y 1  < a1I2 

< 	 (2.42) 

Thus, using the theory developed for the solution of predator-

prey models in Section 2.4, the conditions (2.41 and 2.42) may be 

found for the existence of a stable equilibrium in a competition 

model. 
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2.6.2. Epidemic models 

Although, biologically, epidemic processes are different from 

predator-prey processes, algebraically, the models can be similar. 

Let •X(t) be the number of susceptibles at time t, and Y(t) the number 

of infectives of a given disease. Consider the simple epidemic case 

(see Bailey, 1975) where the number of deaths or removals of suscep-

tibles is ignored, and fresh susceptibles are supplied by immigra-

tion: - 

= A - 8XY 

= 8XY - 	 (2.43) 

This is merely a special case of the model studied in 2.5.1, (put a 

in equations 2.26), and the solution follows in the same way. 

Because of this algebraic similarity, many of the results for 

epidemic models may be used in predator-prey theory. In Chapter 4, 

we will be discussing the simplified epidemic model by Dietz and 

Downton (1968): 

= A - aXY 

= 8 - iiY , 	 (2.44) 

so it is useful here to describe its behaviour near equilibrium. The 

equilibrium is given by 

It 	 -, 	 -jT• 
	 (2.45) 

The C 1  constants are 
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C 	_aY 	C3 0 

C 2 
 = -

CL 	 C4 	 (2.46) 

The solution is in the form of Case 2(a) (or Case 2(b) when czY=j), 

and so is a sum of negative exponentials (see 2.24 and 2.25). Thus, 

the model described by 2.44 is always stable. 

2.7. Non-Linear Effects 

In this chapter, a method has been developed for studying a gen-

eral two-species system by linearising the equations about the 

equilibrium point, and thus examining the behaviour in the neighbour-

hood of that point. No account has been made so far for any non-

linear effect which might influence the behaviour of the system. In 

a review article, May (1976) emphasised the danger of ignoring ran-

linear terms. He showed that even simple non-linear models can 

display a wide range of behaviour - such as, stable points, stable 

cycles, or 'chaos' which is similar to the sample function of a ran-

dom process (though this is usually restricted to difference rather 

than differential equations). This type of behaviour may be unex-

pected if only linearised equations have been studied. 

The non-linear Lotka-Volterra model has been examined by Frame 

(1974). By writing the population densities in terms of convergent 

trigonometric series, he found a close estimate for the sum of the 

series which gives the exact period, with the use of Bessel func-

tions. Comparing his result with the linear approximation solution, 

he found that the periods of the linear solution depart increasingly 

from the true periods as the initial conditions depart from the 

equilibrium conditions. Biswas et al. (1977) investigated xn-

linearities in the Volt erra-Gau se-W itt model using a perturbation 

method developed by Ford and Waters (1963) to solve the energy 
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problem for a coupled oscillator system. This method gives correc-

tions, order by order, to the linearised solution. Though this 

method does yield more accurate solutions than the linear approxima-

tions, the solutions found are in the form of complicated mathemati-

cal series, which do not give 'much indication of the general 

behaviour of the system. Another perturbation technique was used by 

Dutt and Chosh (1975) to investigate non-linearity in the Lotka-

Volterra equations. Solutions to the first order approximations are 

oscillatory with no overall damping. In the linear solution, the 

period of oscillation depends only on A and U, but the corrected 

periods include the effect of the interaction rates, a and 0. 

• One technique which can sometimes be used to test global stabil-

ity in systems is the use of Lyapuiv functions (see Nisbet and Gur-

ney, 1982). A Lyapurv function is a mathematical function similar 

to energy in physical systems. If the density of a species is 

denoted by X, with equilibrium at X, then global stability is 

guaranteed if a function L(X) may be found such that 

(1) 	L(X) = 0 

L(X) > 0, for all 	 (2.47) 

( 0, with equality only when X = X 
TF 

The drawback of this method is that in ecological systems, choosing a 

Lyapunov function, L, to satisfy these conditions has turned out to 

be very difficult. A Lyaputv function has been found for some sim-

ple models (an example will be given at the end of this section), but 

these functions do not appear to have any obvious biological 

interpretation. 
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Subject to a few formal mathematical conditions, a general two-

species non-linear differential equation model may result in a limit 

cycle (see Nisbet and Gurney, 1982). A limit cycle corresponds to a 

closed loop in the phase diagram. As with an equilibrium point, a 

limit cycle may be stable or unstable - stability implying that small 

deviations from the curve will return to the curve. Figure 2.3 

represents a stable limit cycle, the dotted lines indicating the tra-

jectories of the system. 

Figure 2.3. Phase diagram showing stable limit cycle, with 
trajectories marked by dotted lines. 

By developing a theorem of Kolmogorov, May(1912) put forward a 

set of conditions whereby any two-species system satisfying these 

conditions was guaranteed to have either a single, globally stable 

equilibrium value, or a stable limit cycle. Further generalisations 

of these conditions were made by Bulmer (1976) and Brauer (1979). 

These conditions are essentially satisfied by all conventional 
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predator-prey models (May, 1974). Thus the non-linear solution of a 

predator-prey model will be be either a globally stable equilibrium, 

or a stable limit cycle. 

Nisbet and Gurney (1982) stressed that a linear approximation 

near an equilibrium point may be a good indication of the behaviour 

of the non-linear model. Although a linear approximation may only 

prove local stability, they, claim that this is usually a strong indi-

cator of global stability. As an example to illustrate this, they 

consider the Volterra-Gause-Witt model of Section 2.5.2. Recall that 

the linearised equations indicated that the equilibrium point was 

stable. A Lyapunov function has been found for this model by Goel et 

al. (1971): 

L(H',P') = P' - P' - P' ln(P'/P') 

+ H' - H' --H' ln(H'/H') , 	 (2.48) 

where H' ,P' are scaled versions of H and P, such that 

	

H' = 	P' = P 	 (2.49) - 

and 11' and P are equilibria of the scaled equations, namely, 

	

= 	, 	P' 	(AB-cii)-- 	. 	 (2.50) 

It can be shown that L defined here fulfils all the conditions 2.47, 

and the model is globally stable. 

To conclude, linear approximations appear to be good indications 

of the behaviour of the non-linear model. A stable equilibrium in 

the linear model seems to imply global stability, whereas persistent 

oscillations, as in the Lotka-Volterra model, may be an indication of 
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a stable limit cycle in the non-linear model. 
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CHAPTER 3 

GENERAL STOCHASTIC METHODS 

a.!. Introduction 

In this chapter, the stochastic predator-prey model Is intro-

duced, and several techniques, which have been used in stochastic 

models and may be applicable to predator-prey processes, are exam-

ined. 

We introduce the stochastic model (Section 3.2) by discussing 

the stochastic analogue of the Lotka-Volterra model, and noting the 

difficulties that arise. A brief outline of research done on sto-

chastic models is given in Section 3.3. We then consider three 

methods which have been used successfully on single-species stochas-

tic models, and see if these can be extended to cover the predator-

prey process. In Section 3.4, a method of finding the stationary 

probabilities of a birth-death process is discussed, and two possible 

generalisations considered. Uàe of the cinnulant generating function 

has been suggested by Bailey (1964), and this is investigated In Sec-

tion 3.5. Bartlett (1978) has studied the growth of a single 

species, and found its probability distribution to be approximately 

Normal. In Section 3.6, we consider this theory in relation to 

predator-prey models. Finally, in Section 3.7, in an attempt to sim-

plify the probability equation, we approximate the discrete state 

space by one which is continuous, and a diffusion equation is found. 

One method, which has been omitted from this chapter, is known 

as Bartlett's stochastic linearisation. 	It is more suitable to 
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include this method in the next chapter. 

3.2. Stochastic Analogue of the Lotka-Volterra Model 

In stochastic models, we must regard 11(t) and P(t) as random 

variables representing the numbers of prey and predators, respec-

tively, at time t. By the notation (H,P), we mean that there are H 

prey and P predators present in the system. The stochastic process 

is defined by a set of transition probabilities. A transition proba-

bility is the probability that the system will be in state (H+1,P), 

say, at time t+ót, conditional on being in state (H,P) at time t. 

This probability will be denoted by 

Pr [(H,P) + (H+1,P)] 

The set of transition probabilities for the stochastic Lotka-

Volterra model is 

Pr [(H,P) + (H+1,P)] = A}Iôt 	+ 0(6t) 

Pr [(H,P) + (H-1,P)] = a05t + o(t) 

Pr [(H,P) + (H,P+1)1 = HPt + o(St) 

Pr [(H,P) + (H,P-01 = jP6t + 0(50 

Pr [more than one event] = o(6t)  

where at is a small time interval, and 

iim 2- t)  = 0 . 	 (3.2) 

t+0 
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Notice from 3.1 that the probability of two or more changes to (H,P) 

in the time interval is negligible. Let p.(t) denote the probabil-

ity of having i prey and j predators at time t. Then using the tran-

sition probabilities from 3.1, we may form the forward equation (see, 

for example, Cox and Miller, 1965): 

pij 
	= p 1 (t) [1 - 6t(Xi+aij+8ij+iij)] 

+ 5t [x(i-1) 1_ 1, (t) + a(i+l)jp
1,j 

 (t) 

+ 8i(i-l)P 1, _ 1 (t) + ii(i+1),+1(t)  ] . 	(3.3) 

Taking the limit as tSt + 0, 3.3 becomes 

Pjj' = Pjj  [Xi + (a±)ij + Pi I 

+ x(1-1)_ 1,  + 

+ 	 + 1.i(i+1)Pi.+i 	 (3.4) 

where ' denotes d/dt. 	Equation 3.4 is a difference-differential 

equation, and so we look for a solution by introducing a generating 

function. Let 

CO 	cc 

G(z 1 ,z 2 ,t) 	 zzp.(t) 	 (3.5) 
1=0 j=0 

(assuming this converges in a suitably chosen domain where 

211 1, 1). Multiplying equation 3.4 by zz and summing 

over .1 and j, gives 
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aG  - at; 
It 	3z 1- - [—Az + Az] + 

aG 	- iiz 2 ] 

3 2 G 
+[az2  - (cz+8)z 1 z 2  + BZ

1 
 z] . 	 (3.6) 

If equation 3.6 could be solved and expanded in terms of 

then we would have the solution for the probability distribution of 

the process. However, I could not find a solution to equation 3.6. 

Instead, we will look for the factorial moments of the distribution, 

through the derivatives of C. Using the notation 1(1)  to denote 

'evaluated at z i  =z = 1' the first moments are given by 

i=1,2 , 	 (3.7) 

= 	 10)  

and the second factorial moments are 

rI 
V(t) = 

	

2 	 i=1,2 
ii 	3z 2 

V12(t) = [
aZij(l) = 

V21  . 	 (3.8) 

By differentiating equation 3.6 with respect to z 1  and z 2 , the first 

moment equations are found to be 

m1 '(t) = Xm 1 (t) - aV 12 (t) 

m2 (t) = —im2 (t) + BV 12(t) 
	

(3.9) 

Equations 3.9 cannot be solved simultaneously because of the V 12  

term. 	Similarly, second moment equations will involve third moments 
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- that is, the equations are not closed. 

To conclude, we have introduced the stochastic analogue of the 

Lotka-Volterra model and derived the forward equation, 3.4, of its 

probability distribution. Because 3.4 is a difference-differential 

equation, a generating function is used, but I still could it solve 

the equation. The factorial moments of the distribution cannot be 

found because the moment equations are not closed. 

The use of the probability generating function is just one tech-

nique which is commonly employed to solve difference-differential 

equations. During the rest of this chapter, we will consider other 

methods of finding the probability distribution of a stochastic pro- 

cess. 

3.3. Developments in Stochastic Modelling 

Having introduced the stochastic model, in the form of the sto-

chastic analogue of the Lotka-Volterra model, we will no w outline the 

main developments in stochastic modelling. Techniques used in study-

ing other two-species models, such as stochastic competition and epi-

demic models, will also be discussed, because, algebraically, the 

same problems arise here as in the predator-prey case. When describ-

ing stochastic methods below, the models are given in the determinis-

tic format because this is easier to read. The stochastic analogues 

of the models are obtained by changing the growth rates to transition 

probabilities, as in Section 3.2. 

Chiang (1954) derived the generating function equation, 3.6, and 

the first moment equations, 3.9. By examining the deterministic 

structure of the process, he suggested that one might expect the 

moment equations to be 

E'(H) = XE(H) - ciE(HP) 



E'(P) = 8E(HP) - pE(P) 
	

(3.10) 

These equations differ from 2.l only in the interaction terms. 

Because the two species are dependent on each other, 

E(HP) * E(H)E(P) . 	 (3.11) 

Chiang suggested that this is an indication that the stochastic mean 

of a non-linear process will not follow directly along the deter-

ministic path. 

Weiss (1963) investigated a model of two antagonistic species 

ignoring birth rates, so that the deterministic model is 

H = -ciHP 

P = -HP 
	

(3.12) 

Rather than forming a probability equation, Weiss studied the sto-

chastic model by considering the probabilities of the numbers of 

individuals left after each event. This he found to have a binomial 

distribution. Comparing the stochastic and deterministic results, 

Weiss found that the solutions agree qualitatively, and when the 

population sizes are large. However, the stochastic mèai-. seemed 

to be always higher than the deterministic- equilibrium. 

Other interesting results arise from the use of different gen-

erating functions. Dietz and Downton (1968) considered the stochas-

tic analogue of the epidemic model given, in 2.6.2, by' the deter-

ministic equations (2.44) 

x = A - aXY 
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Y= 3-pY 
	

(3.13) 

The forward probability equation is formed, but the generating func-

tion used is 

F(t,z) = 	L 
; i ( n) 
	

(3.14) 
1=0 j=0 

where m (n) 	A recursive expression for the solu- 

tion of F(t,z) is found, from which the means and variances may be 

calculated, for large t. Although the stochastic and deterministic 

means agree for Y, this is not the case for the X species. The sto-

chastic mean, E(X), Is always greater than the deterministic mean, X, 

though these values are close when numbers are large. Becker (1970) 

generalised the model of 3.13, by adding immigration and growth terms 

(though there is still only one non-linear interaction term). Solv -

ing in the same way, he found that E(X) is always greater than X, as 

before. 	As t becomes infinite, however, he showed it was possible 

for E(X) to become infinite, while X goes to zero. 	Becker (1973) 

examined simple two-species population models with one non-linear 

interaction term which may be a death term (as in 3.13), or a growth 

term, such as 

8XY 
	

(3.15) 

When this non-linear term represents death, Becker used the generat-

ing function described by 3.14. When it is a growth term (that is, 

positive), the generating function used is 

F(t,z) = 	
[ni l j 	z p..(t) 	 (3.16) 	i 	7 

1=0 j=0 

where m 	 = tn(m+1).....(ni+n-1). This enables the moments to be 

found, 	and compared with deterministic results. Discrepancies 
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between stochastic and deterministic results occur when the covari-

ance is infinite - in this case, the stochastic mean may become 

infinite while the deterministic mean does not. Another problem 

occurs when the numbers are small - the stochastic probability of 

extinction may be small, while the deterministic values are zero. 

Though the generating functions 3.14 and 3.16 have been useful 

in solving the models described above, they cannot be applied to a 

model, such as predator-prey, which has both birth and death qua-

dratic terns. 

In the late 1950's, computer simulation became an important tool 

in the study of stochastic models. Bartlett (1957) investigated the 

behaviour of the stochastic Lotka-Volterra model through simulation. 

He found that the model displays a cyclic pattern before extinction 

(of either species) occurs. A discrete-time competition model was 

simulated by Leslie and Cower (1958). Differences between stochastic 

and deterministic results are greater when the stationary state is 

unstable. Deterministically, the outcome is decided by the initial 

state, but, stochastically, only a probability can be associated with 

a particular outcome. When the stationary state is stable, the pro-

cess settles to an approximately Normal distribution. Using 

Bartlett's 'stochastic linearisation' (to be described in Section 

4.2), theoretical variances are calculated. Theoretical variances 

are found to be always smaller than variances calculated from simula-

tions. Leslie and Gower (1960) performed a similar analysis of the 

discrete-time version (found by working in discrete time units - see 

Leslie, 1948) of the predator-prey model 

= (A - cli - aP)H 

= ( - iiP/H)P . 	 (3.17) 
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Good agreement is noticed between theoretical variances and those 

calculated from simulations, near the steady state, but again the 

theoretical variances are always smaller. A more detailed account of 

results using computer simulation is given by Fiolgate (1976). 

A solution has been found for a special case of the stochastic 

Lotka-Volterra model by Billard (1977). The interactions are assumed 

to occur over a sufficiently short period of time so that no births 

occur. By using a new coordinate system developed by Severo (1969), 

the probability equation is transformed into a matrix equation: 

dz.(t = 
dt 	Bz(t) , 	 (3.18) 

where z(t) is a vector of the probabilities. 	The matrix B is a 

square matrix of order (N 1+1)(N2+l), where N1  and N2  are the initial 

sizes of the prey and predator populations. B is lower triangular 

and the solution to 3.18 is found using a recursion theorem of Severo 

(1969). This enables a series solution for the time-dependent state 

probabilities to be found. 

3.4. Stationary Probabilities from Birth-Death Processes 

3.4.1• Karlin and Taylor's results 

Much work has been done on stochastic modelling of birth-death 

processes - for example, see Bailey (1964), Karlin and Taylor (1975) 

or Bartlett (1978). Although the birth-death process is simpler than 

the predator-prey process, it may be possible to extend the results 

to give an approximate solution for the predator-prey model. We con-

sider here the method used by Karlin and Taylor (1975) for finding 

the stationary probabilities of a general birth-death process. 

The transition probabilities are 
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Pr [i + 1+11 = A 1  .sSt + o('St) 

Pr [i + i-i] = V 
i 6t + o('St) 
	

(3.19) 

Pr [1 + i I = 1 - (A1+i) + o('St) 

in a small time interval 'St. If p denotes the probability of being 

in state j (when t is large), then Karlin and Taylor showed, by 

induction, that 

= Ink 
provided that Ink  < , where 

it0  = 1 

A0 A 1 . ..A 4  
it = 	 j0 
i 

J 

IfInk = , then no stationary distribution exists. 

(3.20) 

(3.21) 

Two possible methods of extending this result will be considered 

- firstly, by approximating the predator-prey process by two separate 

birth-death processes, or secondly, by generalising the results to 

two dimensions. 

3.4.2. Separate' processes 

Consider the predator-prey process whose transition probabili-

ties, as shown by Figure', 3.1, are 

Pr[(1,j) + (i+1,j)J = A ij  ts
t  + 0(6t)t) 
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CCU T11, j) 	'Li 

'Ui)  

Figure 3.1. Transition probabilities for the predator-prey 
process defined by 3.22 at the point (i,j), where - - - 
represents prey and predators. 

Pr[(i,j) • (i-1,j)] 	ajjfSt + o(6t) 

Pr[(i,j) + (i,j+1)] - Bj ót + 0( 6 t) 	 (3.22) 

Prt(i,j) + (i,j-1)] Pij 	 + 0(60 

where 

x 	-ii 	(X- 1i)i 

- uij 
	 (3.23) 

B ii - (81 - c2j)j 
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ii. 	= l.jj 13 

and all parameters are constant. Note that c 1 	and c 2 	have been 

included so that both the predator and prey processes, when con-

sidered separately, will have a stationary distribution. In order to 

prevent extinction, we will not allow deaths to occur when only one 

member of a species remains. The deterministic equilibrium value of 

the system is at 

ai+Xc 
2 	 A-

11C  
c8 + c1c2 ' 
	

a + c 
1  c 

 2 (3.24) 

As an approximation to the predator-prey process, suppose we 

replace j in the prey transition probabilities by the deterministic 

equilibrium value for the predators, P. Similarly, I is replaced in 

the predator transition probabilities by H. The preyand predator 

processes may now be regarded as two separate birth-death processes. 

Let p1  denote the (stationary) probability of i prey, then, using 

Karlin and Taylor's method, - 

1-1 
= 	1 

I 	 i-1 
	(A - c 1 j) 	2(iM1  

Ti(cLP)l j=1 

P1 = lIT 	 (3.25) 

where T is the normalising constant 

H1 
	c1j) 

T = 1 +I 	 i-i 	, 	 ( 3.26) 
i=2 j=li(aP) 

and H1  is the upper bound on the number of prey - that is, the 	smal- 

lest integer less than or equal to A/c 1 . 

Similarly if q 1  is the probability of having i predators, and 
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i-1(8H - c 2 j) 
U = 1 + 	II 	 (3.27) 

i=2 j=1 	ji 

where M 2  is the upper bound on the predators, then 

1-1 

= 	
II (6H - c2 j) 	24i(M2  

j=l 

q 1  = 1/U 	. 	 (3.28) 

By assuming that the processes are independent, an approximation 

for P(i,j), the stationary probability of having i prey and j preda-

tors, is given by 

P(i,j) = pi 	. 	 (3.29) 

We investigate the accuracy of this approximation using the fol-

lowing numerical example. Let the parameters of the model have the 

values 

a = 1.2 	A = 270 

8 = 0.5 	11 = 50 	 (3.30) 

c 1  = 1.5 	c2  = 0.05 

The probability distribution of the original non-linear predator-prey 

process is calculated using the iteration procedure which will be 

described in detail in Section 4.7.1. Table 3.1 gives some values of 

the iterated probabilities, all probability values given being multi-

plied by 10. Because the deterministic equilibrium value is at 
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H = 108.9,. P = 88.9, 

larger 

most of theA  non-zeroprobability values are within the scope of the 

Table. 

Table 3.1 

Probability Values (x10 5 ) calculated using iteration method and 
parameters from 3.30. 

no. of predators 

80 	90 100 110 120 130 

80 1 8 22 26 15 	4 

no. 	90 11 36 65 65 33 	8 

of 	100 40 80 90 64 26 	5 

prey 110 68 80 52 22 6 	1 

120 40 28 10 2 4 	0 

130 6 2 1 0 0 	0 

Table 3.2 

Probability vales (x10 5 ) calculated using birth-death ap-
proximation and parameters from 3.30. 

no. of predators 

80 	90 100 110 120 130 

80 0 0 0 0 0 0 

no. 	90 9 9 8 7 5 4 

of 	100 48 48 45 39 30 21 

prey 110 79 1 80 74 63 49 35 

120 31 32 30 25 20 14 

130 2 2 2 2 2 1 

Table 3.2 shows the corresponding probability values calculated using 

equation 3.29. 
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By comparing the Tables, we see that the general shapes of the 

distributions appear to be different. In Table 3.1, the probabili-

ties seem to form an elliptical pattern, with the lowest probabili-

ties occurring when the numbers of prey and predators are either both 

low or both high. In Table 3.2, the probabilities seem to have a 

stronger dependence on the prey numbers - high or low probabilities 

occur when the number of prey is high or low, with little regard for 

the number of predators. When the number of prey is at 110, and the 

predators at 90, denoted by (110,90), which is rear the deterministic 

equilibrium, both Tables agree. However, following the elliptic 

shape in Table 3.1, as the prey decrease, and predators increase, 

large discrepancies occur - for example, at the points (100,100), 

(90,100), and (80,110). 

Hence, with this set of parameter values (3.30), numerical 

results show that this method does not appear to give a good estimate 

of the probability distribution of a predator-prey process. 

3.4.3. Twe-dimensional birth-death processes 

Let P1 (t) denote the probability of having I prey and j preda-

tors at time t. Then the two-dimensional equivalent of Karlin and 

Taylor's equations is 

P '  = 11 	-(A11+ 11 )P 11  + a21P21  + U 12  P  12 

P lj ' = (A +8 . lj --uij lj 
)P 	+ a2j P2j + 8 •-1P1,_1 + 

P '  = ii -(A
11+a 1+811 )P11  + A11,1 P1_1,1  + aj+l 1 P11 

 + P 12'12 

P ii ' = -(A
ii 
+a
Ii ij 
+8 +ii ij )Pij + X -i,?' i- i,j + 
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+ 8 1  + u i 	
P 	. 	 (3.31) 

i,j- 	- 	,j+1 i,j+1 

I tried to find a stationary solution to this by substituting in pro-

ducts of the parameters comparable with the one-dimensional case, but 

none were successful. To my knowledge, Karlin and Taylor's method 

has not been applied to a general birth-death process of more than 

one dimension. 

However, results have been found for the two-dimensional birth-

death process by Billard (1981). Using her method (mentioned In 3.3) 

of transforming the problem into a matrix equation, where the matrix 

is in lower triangular form, a solution may be calculated from a 

series of recursive equations. The transition probabilities of the 

predator-prey process may be found as a special case. 

3.5. Cumulant Generating Function 

Bailey (1964) suggested that it may be possible to find the 

solution to a one-dimensional non-linear process using the cumulant 

generating function. He proposed, without giving any justification, 

that the problem may be simplified by assuming that, for sufficiently 

large population numbers, cumulants of a higher order than j, say, 

may be ignored. If K(8,t) is the cuinulant generating function, then 

by equating powers of 8, a system of j differential equations in j 

unknowns is formed. Bailey suggested that it could be useful in a 

predator-prey context to form a system of equations for the cumulants 

k01 , k 10 , k11 , k02 , k20 , where 

K(0 1 ,6 t) = 
i,j 	

1 
6 19k. • (t) 	. 	 ( 3.32) 2, 	

ij 1 2 ij 

Applying this method to the stochastic stable model (given 

deterministically by 2.30), we find the cumulant generating function 

satisfies 



- 50 - 

e 	 -8 
- 1 aK 	aK t(e 1 1)] + 	e 	1) 

2 
= 

8 r 	2 [c(1-e 1 	K[(lel)] 6-2 LII 
K K 

+ ae ae [a(e-8 
	 0 
1- 1) + B(e 2_i)] 

3 2 K 
+ 	pp[a(e 1- 1) + B(e 2-1)1 • 	 (3.33) 

(This is found from the probability generating equation by letting 
0 

K= in G, and writing z as e i. ) Let us assume that only the first 

five cumulants are non-zero, so that 

K(8 1 ,6 2 ,t) = k 10 6 1  + k01 0 2  + k 11 0 1 0 2  

+ k208/2 + k026/2 . 	 (3.34) 

Then, equating the 0 coefficients on both sides, we obtain 

k10 ' = Ak10  - ck10 2  - ck20 - ak10k01  - uk11  

k ' = 
01 	

- Uk01  + 8k 10k01  + 8k 11  

= Ak11  - iak 11  - 2ck10k11 - ak 10k11  + 8k 10k02 	(3.35) 

k20 ' = Ak20  + 1/2Ak 10  - 2ck10k20  - ck102/2 
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- 1/2ck20  - ak10k11 + 1/2czk 10k01  + 1/2ak 11  

1/21ik 	- 'k02  + Bk 10 k 	 + 1/28k 11k01  + 1/25k 1101 

However, this system of equations seems to be difficult to solve, 

even in the stationary case, so that using the cumulant generating 

function does not appear to simplify the problem. 

3.6. Bartlett's Normal Approximation 

Bartlett (1978) considered the stochastic behaviour of a single 

species undergoing a birth-death process. By using a transformation 

on the probability equation, he found that the probability distribu-

tion is approximately Normal. 

We will illustrate this technique by applying it to the stable 

predator-prey model (Section 2.5.2). The forward probability equa-

tion of this mode]. is 

= _Pij[( -ci)i + (a+8)ij + iii] 

+ (A-c(i-1))(i-1) 1_1,  + 

+ 8i(i-1)P 1, _ 1  + M(i+l)P11 . 	 (3.36) 

Let us assume that a quasi-stationary state exists - that is, the 

population numbers are large enough so that extinction can be 

ignored, and the probability distribution is stationary. Let it 	be 
quasi 	 ij 

then-stationary probabilities of having i prey and j predators. Then, 

letting t, equation 3.36 becomes 

n 1 .[(),-ci)i + iij + (a+B)ij] = (X-c(i-1))(3.- 	
i-i,j 

e-t 
I 

C, 
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+CL( i+1)jTt 
i+1 j + 

i(j-1)fl i j-1 + u(j+i)i i j+1 
	. (3.37) 

,  

Using Bartlett's transformation, write 

X = (!.!) 	, Y = 	 . 	 (3.38) 

,fH 	FP 
Le t 

7t ij =  F(x,y) 

C =--- , 	=-i.-. 	 (3.39) 
X 

.JH PP 
Then equation 3.37 may be rewritten as 

F(x,y)[(A-cx)x + IJy + ,(cz+8)xy) 

= F(x_C,y)[(X_c(x_E))(x_C)] + F(x+€,y)[a(x+e)y] 

+ F(x,y-Cy)[8x(y-Cy)]+ F(x,y-f€y)[p(y+Cy)] . 	( 3.40) 

By a Taylor expansion of F, and ignoring terms higher than the first 

order of c ,c , this becomes xy 

F[(A- 2cx-- cxy)/ 	(8x-u)/ Jp ] 	 ( 3.41) 

	

L[_xx+cx2+czxy ] / 	+ .![-xy+py] / IFP 

I could not find an approximating Normal solution for F in 3.41. 

However, in the next chapter, I will examine this model using a dif- 

ferent method, and then will show that the probability distribution 
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may in fact be approximated by the Normal distribution. 

3.7. Continuous App.roximation 

3.7.1. Ko.lmogorov equation 

In the predator-prey process, the population numbers change by 

discrete unit steps (through birth or death). This leads to the 

difference-differential equation (such as 3.4), which is difficult to 

solve. By approximating the discrete state space by one in which 

only continuous changes occur, the forward equation is replaced by a 

well known partial differential equation. 

In the continuous case, we use the notation that 	x1 (t) 

represents the number of prey, and x 2 (t) the number of predators, at 

time t. The model we are studying is the stable predator-prey model, 

whose forward equation was given in 3.36. To derive the continuous 

approximation, first suppose that, instead of taking unit jumps, the 

populations change by discrete steps of size 5x 1 ,6x2 . The transition 

probabilities for this process are 

Pr[(x1,x2) + (x1+'5x1,x2)] = (Xx1 )x1 45t + o(t) 

Pr[(x1,x2) + (x 1-6x 1 ,x2 )] = ax1 X26t + o(t) 

Pr[(x1,x2) + (x 1 ,x2-f45 x2 )] = ax 1x26t + o(ót) 

Pr[(x1,x2) + (x 1 ,x2-6x2 )1 = 42 6t+ o(ót) 

Pr[more than one event] = 0(60 	 (3.42) 
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in a small time interval ót, where 	 are suitably modified 

versions of the original parameters (we will explain, below, how 

these are to be modified). Let p(x1 ,x2 ,t) be the probability of 

having x 1  prey, x 2  predators at time t. The forward equation now 

changes to 

p(x1 ,x2 ,t+ 5 t) = p(x 1 ,x2 ,t){l - 

+ 5t[(-Z(x1-6x1))(x1-6x1)p(x1-6x1,x2,0 

+ (x 1 +6x 1 )x2p(x1+6x 1 ,x2 ,t) 

+ h 1 (x2-Sx2 )p(x 1 ,x2-6x2 ,t) 

+ i:i(x2+6x2 )p(x1 ,x2+x2 ,t)] . (3.43) 

By Taylor expansion (ignoring higher order terms), this becomes 

= p[x1 (1+2x 1 +&x2 6x 1 ) + 6x2 (4x1+7 )] 

+ i .2_[S x  (-Xx 1+x+x1 x2 ) + 6x(-2x1 +&x2 )] 
dx1 	1 

+ 	[(_x1x2+x2) + 
X2 

2 

+ 4[oxx1-x+x1x2)/2] 
ax1 



+ 3 _[6x(x1x2+x2)/2] . 	 (3•.44) 
a 2  

The system is made continuous by letting 6t,6x. go to zero. In order 

that the continuous process be made consistent with the discrete one, 

we must impose constraints on the manner in which these quantities go 

to zero. The constraints we impose are that the infinitesimal means 

and variances remain unchanged (see Cox and Miller, 1965). To see 

what is meant by these constraints, we look at the instantaneous 

mean, for example, of the predators, which is 

E[X2 (t+6t) - X2 (t)] 
urn ôt 6 t-' 0 

To keep the instantaneous mean constant in the discrete and continu-

ous cases, we must have 

Urn (OX 1x2-ix2 )6x2 	6x1x2-ix 	. 	 (3.45) 
6 t+O 

Similarly, keeping the variance unchanged, we have 

Urn (8x1x2+ix2)6x = Bx1x2+ux2 . 	 (3.46) 
6 t+ 0 

The constraints 3.45 and 3.46 are compatible since it is possible, 

for example, to let 

8x 1 x2  + 8x 1 x2+ux2  

26x 

lix 	 + 

26x 

In the same way, keeping the prey mean and variance fixed, implies 
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_-2 - 	 2 
urn (x 	cx 1 	

1 - ax 1 x2 )6x 1  = Ax 1  - cx 1  - ax1x2 	(3.47) 
6tO  

urn (Xx - 	+ ax 1 x2 )ox = A 1  - cx + ax1x2 . 	(3.48) 
ót0 	

1 

Letting St,tSx  go to zero subject to the constraints 3.45 - 

3.48, equation 3.44 becomes 

3 	4 2 	2 	 2 
(a 	 P) - 	!-(b1p) , 	 (3.49) .1

=1 1 j 	1=1 i 
j= 1  

where the b are the instantaneous means, given in 3.47 and 3.45, the 

a 
ii 
 are the instantaneous variances, 3.48 and 3.46, and a ii 

 the 

covariances (which are zero here). 

Equation 3.49 is known as the Kolmogorov or Fokker-Plank equa-

tion (written here in two dimensions). It appears very often in phy-

sics, in two forms. Firstly, it is- a diffusion equation ( see, 

Tychonov and Sarnarski, 1964) - it can describe any system in which 

particles can diffuse, for example, through air, or in a system in 

which particles are suspended in a fluid. Secondly, it appears as a 

heat conduction equation ( Carsiaw and Jaegar, 1959). 

This continuous approximation was used to approximate simple 

discrete stochastic processes in genetics by Feller (1951) and Kimura 

(1957,1962). The Kolmogorov equation formed is just one-dimensional, 

and series solutions have been found for the probability function. 

The results appeared to be a good approximation when the population 

size (in this case the number of genes) was large. Many solutions to 

the one-dimensional equation have been found, with different boundary 

and initial conditions (Feller, 1954, Bharucha-Reid, 1960, and Cox 

and Miller, 1965). However, very little progress has been made in 
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finding the solution for second order partial differential equations 

with variable coefficients, and so the general Kol.mogorov equation, 

in two or more variables, resists solution. Thus, to my knowledge, 

no approximations have been found for predator-prey models using the 

Kolmogorov equation. 

3.7.2. Stochastic differential equation 

By approximating the discrete process by a continuous one, we 

arrived at the Kolmogorov diffusion equation (Section 3.7.1). Using 

this Kolmogorov equation, we will now show that the process satisfies 

a stochastic differential equation, for which an approximate solution 

will later be found. Let X(t) denote the two-dimensional vector of 

the process with components X1 (t),X2 (t), and let 

Ibi (K,t)1 

= {b2(Kt)j ' 	 (3.50) 

and 

[a 11 (z,t) a 12(c,t)j 

A(x,t) - [a
2i(cIt) a22(t) . 	 (3.51) 

Let Z(t), with components Z 1 (t), Z
2  W, be a vector of mutually 

independent purely random processes, with zero mean and unit vari-

ance. From the Kolmogorov equation (3.49), we deduce that the pro-

cess, X(t), satisfies the stochastic differential equation (see Gih-

man and Skorohod, 1972, or Arnold, 1974), given by 

dX(t) - !(.,t)dt + Z(t)A" 2 (i,t) rd-t"' , 	 (3.52) 

where A 1/2 (x,t) is the unique matrix satisfying 

A" 2  A''2  = A . 	 (3.53) 
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In the theory of stochastic differential equations, two types of 

equation are possible depending on what calculus is used in the 

derivation - one is an Ito equation (see Arnold, 1974), and the other 

a Stratonovich equation (Stratonovich, 1966). Arnold (1974) compared 

the two forms of calculus, and gave a conversion formula between the 

two types of equation. This is irrelevant to our discussion as we 

are considering differential equations in the sense of Ito, only. We 

study this type of equation because, although it is now intractable, 

by a suitable simplification of the a 1 .'s and bij's  an approximate 

solution for the process will be found in Chapter 4. 

Conclusion 

We have introduced the forward probability equation of a 

predator-prey process, using the Lotka-Volterra model as an example, 

but could not solve it. It was not possible either to find the 

moments of the distribution because these equations were not closed. 

Attempts were made to find an approximate solution to the sto-

chastic predator-prey process by generalising three single-species 

methods: Karlin and Taylor's method of finding stationary probabili-

ties, Bartlett's Normal approximation, and Bailey's suggestion of 

using the cumulant generating function. Though stationary probabili-

ties were found using the first method, these were seen to be a poor 

approximation to the predator-prey process. Otherwise these attempts 

were unsuccessful. 

Finally, the discrete predator prey process was approximated by 

making the state-space continuous. The Koltnogorov diffusion equation 

was derived, and, from this, the stochastic differential equation. 

Though these equations cannot be solved now, they will be useful in 

the next chapter. 
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CHAPTER 4 

STOCHASTIC METhODS USING LLNEARISATION 

Introduction 

Approximate solutions for stochastic predator-prey models are 

found in this chapter using linearisation techniques. 

In the next section, we introduce a method developed by Bartlett 

(1957), known as stochastic linearisation. This method can be 

applied to the (stochastic analogue of the) Volterra-GauseWitt model 

to give approximate solutions for the moments of the distribution. 

Section 4.3 deals with probability linearisation: three methods of 

linearising probabilities are suggested and compared using a simple 

model. The most accurate method is applied to predator-prey models, 

both stable and unstable. in Sections 4.4 and 4.5. Using this proba-

bility linearisation technique, the diffusion equation. derived in 

Section 3.7, for the continuous approximation is simplified, so that 

a solution may be found (Section 4.6). As a test of the accuracy of 

this solution, a numerical example is considered in-Section 4.7. 

In Chapter 2, we saw that there were three types of (non-

divergent) deterministic behaviour near the equilibrium value: 

unstable with constant amplitude oscillations; stable exponential; 

or, stable oscillatory. The Lotka-Volterra model was an example of 

the first type and the other two types of behaviour could be 

displayed by the Volterra-GauseWitt model, depending on the value of 

c. Because these two models represent all possible behaviour types 

(in deterministic linear solutions), from now on we shall just use 



these as examples, referring to Volterra-Gause-Witt model as the 

stable model, and the Lotka-Volterra model as the unstable model. 

4.2. Bartlett's Stochastic Linearisation 

4.2.1. Description of method 

One method for approximating stochastic equations which has had 

some success in predator-prey models, was introduced by Bartlett 

(1957) and is known as 'stochastic linearisation'. The technique is 

to approximate the stochastic equations by adding small deviations to 

the deterministic equations. The method was used to find the means 

and variances in a competition model by Bartlett (1957), and Leslie 

and Gower (1958). Smith and Mead (1979) applied it to the stable 

predator-prey model (from Section 2.5.2). The technique will be 

explained here In the context of this model. 

The stochastic equations of the model are approximated using 

deterministic equations, as follows: 

dli 	((X-cR)H-cxRP)dt + dZ1  

dP - (BUP-uP)dt + dZ 2 	 (4.1) 

where dZ 1  and dZ 2  are Independent random variables, modified so that 

the means are zero, and variances are 

var (dZ 1 ) = ((X-cH)H + iP)dt 

var (dZ2 ) = (8HP + IiP)dt 
	

(4.2) 

Let Ii and P be the equilibrium values for prey and predators, respec-

tively. Then, we use the transformation 
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H(t) = H + h(t) 

P(t) = i + p(t) 

remembering the comments in Section 2.2.2 on how higher order terms 

in h and p may be negligible, to linearise the equations about the 

equilibrium: 

dh = (-cHh-aHp)dt + dZ 1  

dp = Phdt + dZ2 	 (4.3) 

Because we are working with increments (such as dZ 1 ,dZ2 ), we write 

dh = h(t+dt) - h(t) 

dp = p(t+dt) - p(t) , 	 (4.4) 

so 4.3 may be rewritten as 

h(t+dt) = h(t) + [-cHh(t)-ctflp(t)]dt + dZ 1  

p(t+dt) 	p(t) + [BPh(t)]dt + dZ2  . 	 (4.5) 

Let us assume that the population sizes remain large relative to the 

standard deviations so that the chances of extinction by time t may 

be ignored, and a quasi-stationary distribution exists. Because of 

this stationarity assumption as t gets large 

E[h(t+dt)2] 	E[h(t) 2 ] a 
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E[p(t+dt)2 	 2]= ] 	
2 

a 	 (4.6) 

	

E[h(t+dt)p(t+dt)] 	E[h(t)p(t)] a hp 

where E[h] denotes the expected value of h, and a the variance of h. 

Square and cross-multiply the equations in 4.5, and take expecta-

tions, ignoring terms of order dt 2  

Ch = a + 2dt[ - cHa -czH%] + ((X-cH)H+ctHP)dt 

2 	2 
a = a + 2 8Pa + (BHP+ijP)dt 

P 	p 	hp 

2  
ahp = ahp + dt(-cHahp  -aHa

p
+Pa) 

which simplify to 

-cHa - allah + allp= 0 

$P  ahp + 8HP = 0 

(4.7) 

(4.8) 

_dllahP _czHaP +8P % O  

By solving equations 4.8 simultaneously, the variances and covari-

ances of H and P (Smith and Mead, 1979) are found to be 

an  = 

+ cI/a 	 (4.9) 
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OHP_H 

4.2.2. Analysis of results 

The effects of the parameters of the process on the variance of 

the distribution can clearly be seen from 4.9. The variance of H may 

be decreased by lowering a or raising c. This will bring about an 

increase in a 
2 from the cH/a term. The variance of P may be 

decreased without affecting aH  by lowering 8. 

Although, in deriving these variances, a quasi-stationary state 

was assumed, the results might give us some insight into the chances 

of extinction of the populations. Suppose that the equilibrium 

values are fixed. If the variance is large compared with the equili-

brium value, it is likely that the species will experience large 

fluctuations, and will soon become extinct. Hence it appears that, 

for fixed equilibrium values, reducing the coefficient of variation, 

that is, the, ratio of the standard deviation to the mean, should 

increase the chances of survival of a species. For the prey popula-

tion, the coefficient of variation, CV(H), is given by 

CV(H) = ,IL(Icl)/cn2 . 	 (4.10) 

This quantity always decreases as c increases. The predator coeffi-

cient of variation, CV(P), is 

Fctp_~ )

-s-CV(P) = 
 

(4.11) 

Taking the first derivative of 4.11 with respect to c (keeping P 

fixed), we find that CV(P) reaches a minimum when 
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C = 

 FPP) . 	 (4.12) 

When HP, this reduces to 

C = 42cV 
	

(4.13) 

Hence, the best chance of survival for the predators occurs when c 

satisfies 4.12. Increasing c beyond this, decreases the predator's 

chances but increases the chance of survival of prey. Of course, the 

probability of ultimate extinction is still one. 

4.2.3. Disadvantages 

This method relies on two main simplifying assumptions. First, 

the equations are linearised, so non-linear effects are ignored. 

Second, it assumes that the stochastic equations may be approximated 

by deviations from the deterministic equations. This means that the 

stochastic mean is assumed to coincide with the deterministic equili-

brium. Although this may occur in linear equations, Chiang (1954) 

(see Section 3.3) pointed out that this will not be the case in a 

non-linear process. However, Becker (1973) (Section 3.3) suggested 

that the greatest discrepancies occur between the stochastic mean and 

deterministic equilibrium, when the covariance is infinite. Here the 

covariance, from 4.9, is -H, so the difference should not be too 

great. 

In deriving these variances, we also assumed that extinction 

could not occur, and that a quasi-stationary-equilibrium existed. It 

is possible, as we shall see in Section 4.4.2, to relax this assump-

tion and find time-dependent moments. 
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4.3. Probability Linearisation 

Introduction 

In Section 4.3.2, a method of linearising 	probabilities, 

developed by Jernigan and Tsokos (1980), is discussed. Using this 

technique, we develop two other ways in which probabilities may be 

linearised. All three methods are illustrated on the Dietz and - Down-

ton (1968) model, introduced in 2.6.2. The reason we have chosen 

this model is because exact stochastic solutions have been found for 

it, as mentioned in Section 3.3. These exact solutions are discussed 

in detail in Section 4.3.5. This will provide a test of accuracy of 

the linearisation methods. Comparing the results from all three 

linearised methods with the exact solutions (Section 4.3.6), we 

select the method which is most accurate. 

4.3.2. Method A 

Jernigan and Tsokos (1980) studied a stochastic model of the 

flow of a chemical nutrient through zones of plankton in a marine 

ecosystem. Although, biologically, this is unrelated to the 

predator-prey process, algebraically, the models are quite similar. 

In particular, the transition probabilities are non-linear and Jer-

nigan and Tsokos encountered the same problems when trying to find 

the moments of the distributon - that is, the equations are not 

closed. They realised that this was due to the non-linear effects, 

and suggested a method for linearising the probabilities. We will 

illustrate this method using the Dietz and Downton (1968) model, 

described deterministically (see Section 2.6.2) as 

= A - aXY 



= 	- ijy 
	

(4.14) 

To apply the Jernigan and Tsokos method, use the transformation 

X=X+u., Y=Y+v 
	

(4.15) 

where X and Y are the deterministic equilibria, and u and v are 

small. Linearise the deterministic behaviour in the usual way: 

X = -ctv - czYu 

Y= - iiv 
	

(4.16) 

Substituting back for u and v, from 4.15, and writing in matrix form, 

this becomes 

n   r [YY-1 

	

- 
	

- 	- 
 . 	 (4.17)  ° 	-J 

 

Jernigan and Tsokos proposed that this linear deterministic system 

can be used to define linear transition probabilities in a stochastic 

model, just as the non-linear expressions were used to formulate the 

original non-linear model. They suggested that this is done by con-

sidering that whatever contributes positively to the change in a 

population in equation 4.17 should be regarded as a birth probabil-

ity, with negative contributions representing a death probability. 

Using this theory, the linearised transition probabilities are 

Pr [(i,j) + (i+1,j)] = 20XY6t + o(&t) 

Pr [(i,j) + (i-1,j)] = (Yi+aXj)ót +o(6t) 
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Pr [(i,j) + (i,j+1)] = "Y6t + 0(6t) 	 (4.18) 

Pr [(i,j) + (i,j-1)] = jjt + o(ót) 

The probability generating function equation, using the new probabil-

ities, is 

aG = G[ - (2aXY+Y) + 2ctYz 1  + 1jYZ 2 ] 

+.-[cxY-z1aY] 	 2 21 , 	 (4.19)  9G 	 DG 
3z I 

where 

G(z1,z2,t) 	
i0 	

0 i(t) . 	 (4.20) 

From 4.19, the equations for the factorial moments can be found . -  the 

first moment equations being 	 - 

= 2aXY - 	- aXin
2  

m2 '(t) = 	- 
	 (4.21) 

The moment equations are now closed. and can be solved to give the 

means and variances of X and Y. The time-dependent solutions for the 

mean and variance of Y are given by 

EA(Y,t) = 	
+ (k - $/p)et 	 (4.22) 

VarA(Y,t) = 8/u + (k - B/u)eit 
	-2 lit 
-ke 

where the initial conditions are X(0)m, Y(0)=k. 	Using the exact 
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method of Dietz and Downton, the mean and variance of X could only be 

found in the stationary case. Thus, because the accuracy of the 

approximation can only be tested in this case, the mean and variance 

of X, and the covariance of X and Y, in the stationary case (using 

the Jernigan and Tsokos method), are 

EA(X) = 

VarA(X) = 2K + 
	2/() 	 (4.23) 

C0vA(X,Y) = 

Jernigan and Tsokos claimed that numerical results show that this 

method produces good approximations to the original non-linear pro-

cess. We will investigate this is Section 4.3.6. 

This method of Jernigan and Tsokos is just one way of linearis-

ing probabilities.' It is possible to do this in a number of ways. 

In the next two sections, we consider two more methods of linearisa-

tion, and will compare all methods in Section 4.3.6. From now on, we 

will refer to Jernigan and Tsokos' method as Method A. 

4.3.3. Method B 

Suppose, instead of looking at the effect of linearisation on 

the whole system, as above, we consider each probability individu-

ally. For example, the probability of a death in the X species is 

Pr [death of X] = c*XYÔt + o(t) 

= a(X+u)('I+v)St + 0(60 • 



By linearising, this becomes 

(czXY+xYu+aXv)ôt + o(6t) 

Replacing u and v, as in Method A, we get 

[XY+aY(X-X)+ctX(Y-Y)]6t + o('St) 

which simplifies to 

(ctXY+UYX-aXY) 'St  + o(6t) 

That is, in the linearised case, 

Pr [(i,j) + (i-1,j)] = (ctYi+czXj-czXY)'St + o('St) . 	(4.24) 

Notice that it is possible for this quantity to become negative when 

I and j are far from the equilibrium value. But, because of the 

linearity assumption, this approximation is only valid near the 

equilibrium. Hence, in deriving the equations, we will assume that 

no negative probabilities can occur. 

This method appears to be a good approximation for three rea-

sons. First, it does not rely on splitting the probabilities into 

positive and negative components, as in Method A. Second, the proba-

bilities are accurate at the equilibrium point - this can be seen by 

replacing i and j by X and Y, respectively, in 4.24. So the method 

should be a good approximation in the neighbourhood of the equili-

brium. Third, transition probabilities which do not have a quadratic 

term are unchanged - for example 

Pr [death of Y] = uY6t + o(k) 
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= u(Y+v)6t + 0(6t) 

= [iiY+i(Y-Y)]St + 0(6t) 

= 1iY6t + o(5t) . 	 (4.25) 

Since these properties do not hold for Method A, this method appears 

to be a better approximation. 

The equation for the probability generating function is formed 

using the new transition probabilities, and again the factorial 

moments may be found. The mean and variance for Y are identical to 

those found using Method A, given in 4.22. The stationary mean and 

variance of X, and covariance of X and Y, are: 

EB(X) = 

VarB(X) = ( + 	 (4.26) 

C0vB(X,Y) = _ji{a'+ii} 

These results will be discussed later. 

Method C 

Another possible form of linearisation would be to replace the 

quadratic XY term In the transition probabilities by 

XY 	1/2 KY + 1/2 YX . 	 (4.27) 

The probability of a death of an X individual will now be 
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Pr [(i,j) •(i-1,j)] = 1/2 (axj+ayi)ót + o('St) 	(4.28) 

while all the other probabilities remain unchanged. This linearisa-

tion again seems to be a reasonable approximation because it 

possesses the properties of Method B - namely, no splitting into 

positive and negative components, accuracy at the equilibrium point, 

and linear terms are left unchanged. 

Calculating the moments from the probability generating function 

equation, we again find that the mean and variance of Y are identical 

to those given in 4.22. The stationary mean and variance of X, and 

covariance of X and Y, for this method are 

Ec(X) = 

Var(X) = 2X + a 2 /{a-i-2ii} 	 (4.29) 

Covc(X,Y) = 

4.3.5. Dietz and Downton's results 

As explained in 4.3.1, the reason for studying the model, given 

deterministically by 

= A - ctXy 

= 8 - iiY 
	

(4.30) 

is because Dietz and Downton (1968) found exact results for it. 

Although this model was proposed as an epidemic model, it is useful 

to study it here, because the effect of linearising the probability 
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(ciXY) of a death of an X individual may clearly be seen. 

Using the initial conditions 

X(0) = m , 	Y(0).= k , 	 (4.31) 

Dietz and Downton found that the mean and variance for the Y species 

are obtained straightforwardly, and are given by 

ED(Y,t) = 8/u + (k - 	- lit 

	

.. -ut 	-2ut 
VarD(Y,t) = 8/u + (k - w/li)e 	- ke 	. 	 (4.32) 

The behaviour of the X species is a lot more difficult to deter-

mine. Dietz and Downton obtained the solution for ED(X,t)  in a very 

complicated integral form. Letting t become large, they found that 

the mean of X does not tend to the deterministic equilibrium, X. The 

ratio of this mean to X is 

411m [ED  M01 = ( 1+0)6-  IP(_ ,+1;rl) , 	 (4.33) 
x t9c0 

where 

a= a/ 	, 71 = a2 8/{(a-) 2 } 	 (434) 

and (a c;x) is the confluent hypergeometric function defined by 

T(c) 	1r xu a-i, 	c-a-1 
•(a,c;x) = T(a)T(c-a) Je u 	Li-u) 	du 	 (4.35) 

0 

(see Abramowitz and Stegun, 1965). Dietz and Downton showed that the 

stochastic mean is always greater than the deterministic equilibrium. 

By examining this ratio for various values 'of a and n, see Table 
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4.1 they showed that the ratio tends to 1 when a, the relative death 

rate, is small, and X is large. 

An expression is found for the variance of X in the stationary 

case, which cannot be simplified analytically and requires numerical 

integration. Dietz and Downton gave numerical values (see Table 4.2) 

for the ratio, which is defined as 

EE (X(X-1))1 
= iim 	

D 	
2 	

- 1 . 	 (4.36) 
t+co[ E0(X) j 

This ratio is chosen because it may be written in terms of n and a 

and explicit dependence on A is eliminated. The coefficient of 

variation, CV(X), may easily be found from it: 

	

CV(X) = {RD + 1/ED(X)}h/2 . 	 (4.37) 

4.3.6. Comparison of results 

We now test the accuracy of the linearisation methods by compar-

ing the results with those of Dietz and Downton. 

First, we look at the results for the Y species. The time-

dependent mean and variance found by the linearised approximations 

are the same for all three methods (4.22), and are identical to those 

found by Dietz and Downton (4.32). Thus, none of the linearisation 

methods alters the solutions to equations which are already linear. 

To examine the results for the X species, consider the mean of X 

for large t (that is, stationary). In all the linearised cases, this 

mean is X, but this is not so with the non-linear method. However, 

Dietz and Downton showed that the stochastic mean is approximately X 

when a, the relative death rate is small, and X is large. 
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Table 4.1 

Ratio of stationary stochastic mean to 	deterministic 
equilibrium for X species, using different values of r and 
a (defined in 4.34). 

lei 

0.2 0.6 1.0 2.0 3.0 4.0 5.0 

0.2 1.088 1.379 1.695 2.503 3.318 4.135 4.952 

0.6 1.040 1.203 1.398 1.919 2.456 2.999 3.543 

1.0 1.025 1.134 1.264 1.614 1.975 2.338 2.704 

2.0 1.013 1.070 1.135 1.297 1.451 1.600 1.745 

3.0 1.009 1.047 1.089 1.185 1.267 1.340 1.408 

4.0 1.007 1.035 1.066 1.132 1.184 1.227 1.264 

5.0 1.005 1.028 1.052 1.102 1.139 1.168 1.192 

Table 4.2 

Stationary values of RD  (given in 4.36) for the X species, 
using different values of n and a (4.34). 

Ej 

TI 	1 	0.2 	0.6 	1.0 	2.0 	3.0 	4.0 	5.0 

0.2 0.093 0.371 0.579 0.870 1.016 1.102 1.160 

0.6 0.042 0.242 0.486 0.999 1.338 1.566 1.728 

1.0 0.026 0.160 0.352 0.895 1.374 1.759 2.065 

2.0 0.014 0.079 0.172 0.493 0.904 1.358 1.824 

3.0 0.009 0.051 0.106 0.277 0.499 0.771 1.085 

4.0 0.007 0.038 0.075 0.179 0.298 0.438 0.600 

5.0 0.006 0.030 0.058 0.129 0.200 0.276 0.358 
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Because Dietz and Downton's expression for the variance of X is 

so complicated we will try to compare results using the numerical 

values (Table 4.2) they gave for the ratio RD  (4.36). In the linear 

cases, the ratios are given by 

Method A : RA = 	+ a/ jdi+jjj 

Method B : R  = a/jai+vj 	 (4.38) 

Method C : R  =1/i + 

In Methods A and C, the ratio involves A, since (from equation 2.45) 

= 

so we cannot give.a table of numerical values that will compare 

directly with Table 4.2. However, R   does not involve A, and a table 

of numerical values using Method B is given in Table 4.3. Comparing 

Tables 4.2 and 4.3, the values in 4.3 are all slightly smaller than 

those in 4.2, apart from the first row when 

Tj = 0.2 , a ) 2 , 	 (4.39) 

which is inaccurate due to inaccuracy of the means. When a is 

small, and n large, the two Tables give very close results. 

The other methods are compared using three numerical examples in 

Table 4.4. We saw from Table 4.1 that the stochastic mean is closest 

to X when a=0.2, r=5.0. To obtain these values of a, n, let 

cz0.2 and 8180. Using these parameter values, the linearised 

methods should give a close approximation to the exact results. 

These values remain fixed for each example, only A changes. From the 
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Table 4.3 

Values of ratio R, (4.38) calculated for the X species, us-
ing Method B, witfl different values of y and a (4.34). 

iJ 

r 	f 0.2 	0.6 	1.0 	2.0 	3.0 	4.0 	5.0 

0.2 0.082 0.324 0.556 1.053 1.452 1.778 2.049 

0.6' 0.038 0.169 0.294 0.541 '0.714 0.842 0.940 

1.0 0.024 0.114 0.200 0.364 0.474 0.552 0.610 

2.0 0.013 0.063 0.111 0.200 0.257 0.296 0.325 

3.0 0.009 0.043 0.077 0.138 0.176 0.203 0.221 

4.0 0.007 0.033 0.059 0.105 0.134 0.154 0.168 

5.0 0.005 0.027 0.048 0.085 0.108 0.124 0.135 

Table, we can see that the standard deviation of X is considerably 

larger in Method A than the Dietz and Downton results, with Method C 

being higher again. The results using Method B are slightly smaller 

than the true solutions but appear to be very close. 

Though this numerical analysis is only true for the parameter 

values given, we consider that this should be a good representation 

of the general pattern of results. Thus, because the solutions using 

Method B are closest to the true values, we will choose this method 

as the best form of probability linearisation. From now on, we will 

refer to Method B as the probability linearisation method. 

4.3.7. Conclusion 

To conclude, we have suggested a method (that is, Method B) of 

linearising transition probabilities, which gives approximate solu-

tions for the stochastic moments of a non-linear process. By testing 
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Table 4.4 

Three numerical examples showing mean and standard devia-
tions of X and Y, calculated using each method. In all ex-
amples, a = 0.2, p = 1, B = 180. while A takes the values 
shown. 

Example Type of result Dietz + Method Method Method 
No. (as 	t-,cc) Downton A B C 

E(X) 100.5 100.0 100.0 100.0 

E(Y) 180 180 180 180 

1 Stan Dev(X) 12.69 15.94 12.41 15.89 

(A = 3600) Stan Dev(Y) 13.42 13.42 13.42 13.42 

CV(X) 0.1263 0.1594 0.1241 0.1589 

E(X) 150.75 150.0 150.0 150.0 

E(Y) 180 180 180 180 

2 Stan Dev(X) 16.94 20.53 16.48 20.46 

(A = 5400) Stan Dev(Y) 13.42 13.42 13.42 13.42 

CV(X) 0.1124 0.1369 0.1099 0.1364 

E(X) 201 200 200 200 

E(Y) 180 180 180 180 

3 Stan Dev(X) 21.05 24.82 20.40 24.71 

(A = 7200) Stan Dev(Y) 13.42 13.42 13.42 13.42 

CV(X) 0.1048 j  0.1240 0.1020 0.1235 

it on the simple Dietz and Downton (1968) model, the linearisation 

method seems to be a good approximation when the death rate, Jp, is 

small, and the prey population is large. 

In the next section, we apply the probability linearisation 

method to the stable (Volterra-Gause-Witt) model, and compare the 

solutions with those found using Bartlett's stochastic linearisation. 
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4.4. Application to Stable Model 

±.•!• Moments using probability linearisation 

The transition probabilities of the stochastic analogue of the 

stable model are 

Pr [(H,P) + (H+l,P)] = (H-cH2 )St + o(6t) 

Pr ((H,P) + (H-1,P)1 = aH.P 6t + o(6t) 

Pr [(H,P) • (R,P+l)] = OHP ót + o(St) 	 (4.40) 

Pr [(H,P) + (R,P-l)] = iP &t + o(6t) 

We introduce the usual transformation 

H=H+h, P - P+p, 	 (4.41) 

where H,P are the deterministic equilibrium values, and h and p are 

small. We now linearise the transition probabilities by the method 

in Section 4.3.3 - for example - 

Pr [(H,P) + (H+l,P)] 	- cH2)6t + 0(6t) 

= (x(H+h) - c(H+h) 2 ]t + 0(6t) 

- 	i+th-cii2-2cHh)6t + o(6t) 	 (4.42) 



- 79 

= [X+A(H-H)-cH 2 -2cH(H-H)]St + o(6t) 

= [(A-2cH)H + 	ót + o(St) 

The other probabilities are treated similarly, so that the new set of 

probabilities is 

Pr [(H,P) • (H+1,P)] = [(A-2cH)H + cH 2 ] t + 0(6t) 

Pr [(H,P) + (H-1,P)] = [cPH + ctHP - czHP] St + o(iSt) 

Pr [(H,P) + (H,P+1)] = [PH + OfiP - HP] 6t + o(St) (4.43) 

Pr [(H,?) + (H,P-1)] = UP 5t + o(6t) 

As in Section 4.3.3, using the linearity assumption, we consider that 

these probabilities are all greater than or equal to zero. We also 

assume that the population sizes remain large relative to the stan-

dard deviations, so that the chances of extinction in a finite time 

may be ignored (otherwise it would be possible, for example, when H 

is zero, to have a positive probability of a birth of H). 

The forward probability equation is now formed using these tran-

sition probabilities, and the generating function equation (using the 

usual generating function, given in 3.5) is 

- = G [czHP+HPcH 2+cH2 z 1 aHP/z 1 HPz 2 ] 

+ _2_ [aP-(X-2cH+cLP+8P)z1+(X-2cH)Z+PZ1Z2] 



	

+-.- (p-(aH+BH+ii)z 2+8Hz+aHz 2 /z 1 ] . 	 (4.44) 
3 z 2 

By differentiating equation 4.44 with respect to z 1  and z 2 , and 

evaluating at z 1 =z 2=1, the equations for the first two factorial 

moments may be found: 

m1 '(t) = XH-cHm 1 (t)-cxBm2 (t) 

M20 (t) = -HP+8Pm 1 (t) 

V 11 1 (t) = -2aHP+(2?H+2A-4cH)m 1 (t)+2aHm2 (t) 	 (4.45) 

-2cHV 11 (t)-2czHV 12 (t) 

V22 '(t) = (2H-2HP)m2 (t)+2PV 12 (t) 

V12 '(t) = (8P- P)m1 (t)+(XH- )m2(t)+PV11(t) 

-ctHV22 (t)-cHV 12 (t) 

where m1  and V are the first and second factorial moments asij 

defined in equation 3.7 and 3.8, respectively. By solving the equa-

tions in 4.45 simultaneously, time-dependent solutions may be found 

for the means and variances of H and P. 

The means are given by 

-rt 

	

E(H,t) = ( 0)1 e_cHt/2(A(_c,2+r)ert + B(-cH/2-r)e 	] + H 
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E(P,t) = e 	[Ae -'Ht/2 	rt + B e rt] + 	 (4.46) 

where 

r = 1/2 f22 - 4HP 

and A and B are constants to be determined by initial conditions. 

The variances and covariance of H and P are 

	

-cHt 	( 8 )_2 (_c /2+r ) 2 (N_A2 ) e(_cH+2r)t  Var(H,t) = xH/(P)(N 1 -2AB)e 	+  

+ ( 2 (-cH/2-r) 2 (N3-B )e 
2 (-c4-2r)t 

+ e(_ /2+  t[M/(2B + A(BP2 )'(-cH2/2+cIHP(14) -rH)1 

+ e (_C 2) t[M2ai,(2B + B(8P 2
)
-' ( -cH2 / 2+aHP( 1-P)+rH)1 

+ .(i4)/c (4.47) 

-cHt + (N2 2 (-cH+2r)t 
Var(P,t) = (N 1 -2AB)e 	-A )e 

+ (N 3-B)e 
2 (-cH-2r)t 

2 )t 
	 ( 	t2  + [M1 + A( l-2P)]e 	 + [M2 + B(l_2P)]e t 
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+ CR/a + 5P(H+P)/(CH) 
	

(4.48) 

Cov(H,P,t) = -cR(28P)1(N1-2.AiB) e-cHt 

+ (-dH+2r)(28P) 1 (N2-A )e 2 (-cH+2r)t 

+ (-dH-2r)(2BP) 	B )e 1(N3- 2 (-cH-2r)t 

e'2+t)t[N1(_cii+2r)I(4 	- A(2811-cKP+2rP)/(28P)J 

+ e (_ 2_T)t[M2 (_c _2r )/(4 	 (4.49) 

+ B(-2I + cHP + 2rP)126]-  H 

where 

- 2A(BHP(cH+6r)} 1Ec2H28(2H+P) + zBPc(PH-3H-2P) 

+ 2uB2H6(H+P) + 25cHr( 2B-P) + 2aBPr(3HP-H+2P)1 

- 2B {aBHP(CH6r)11(c2R20(211+P) + a4Pc(PH-3H-2P) 	(4.50) 

+ 2aB2HP(I3+P) - 2a5cRr(2H-P) - 2czPr(3HPB+2P)1 , 

and N 1I N2 ,N3  are constants of integration to be determined from the 
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initial conditions (of the second moments). 

The solutions for the mean are identical to the results found 

earlier for the linearised deterministic equations (given by 2.33 and 

2.34). That is, for all time t, the stochastic mean will follow the 

deterministic path. This path may be oscillatory or exponential 

depending on whether r is real or imaginary. As t gets large 

E(H) + 

E(P) + 
	

(4.51) 

that is, the stochastic mean tends to the value of the deterministic 

equilibrium. On examining the results for the variance, we see that 

there exists at least a weakly stationary distribution - that is, 

stationary in the first two moments. The variances, as t- become 

Var(H) + a(H + P)/c 

Var(P) + eli/a + BP(H + P)/(cH) 

Cov(H,P) + -H . 	 (4.52) 

4.4.2 	Comparison with Bartlett's results 

The stationary means and variances given in 4.51 and 4.52 are 

identical to the stationary solutions found using Bartlett's stochas-

tic linearisation in Section 4.2. 

Although Bartlett's stochastic linearisation method has only 

been used to find results in the stationary case, it is possible to 

find time-dependent solutions. Consider, for example, the time- 
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dependent equation for the predators, from equation 4.5: 

p(t+dt) = p(t) + Ph(t)dt + dZ2 , 	 (4.53) 

where (from expression 4.2) 

var dZ 2  = (BHP + jP)dt 

(2$HP+Ph 4-8Hp+iip)dt 
	

(4.54) 

By using the deterministic solutions for h(t),p(t) (given by 2.33 and 

2.34), time-dependent solutions may be found for the variances. 

These solutions are identical to the time-dependent solutions (4.47 - 

4.49) found using the probability linearisation technique. 

Hence the same results are found using probability linearisation 

and stochastic linearisation. However, the probability linearisation 

method relies on fewer assumptions. In the stochastic .linearisation 

method, Bartlett assumed that the stochastic mean follows the equili-

brium. path, and that the stochastic equations can be approximated by 

the deterministic equations. No such assumption is made with the 

probability linearisation method - in this case the solutions for the 

moments are found using the forward probability equation. The equa-

tions using this method are also easier to solve. A further advan-

tage of the probability linearisatioTi technique will be seen when 

looking at the continuous approximation in Section 4.6. 

4.5.Application to Unstable Model 

As explained above, the probability linearisation method does 

not rely on the existence of a &tationary distribution, and so can 

easily be applied to the unstable (Lotka-Volterra) model. 

The moment equations are found by letting c equal zero in 
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equation 4.45. From this the means of the process are seen to be 

E(H,t) = H + A f7 (P) 1  cos ( ..ft + B) 

E(P,t) = P + A sin ( Jt + B) , 	 (4.55) 

where A and B are constants to be determined by initial conditions. 

The variances and covariance of H and P are 

Var(H,t) = N 1 cH(8P) -1  + B1(fi.rX)'H - 
	- XijA2 (28P 2

)
-1  

- N2czH(8P)'sin (2 Jt+N 3 ) 

-JA 2 Xu(8P) 2 /21 cos (2 .ft+2B) 

- A J(38P2 )'(4H+P)cos ( Jt+B) 

	

+ A2aH(34P) 1 (H+P)sin ( f2t+B) + aH(P+H)t 	(4.56) 

Var(Pt) = N 1  + P(14) - A2/2 + N2sin (2 f?t+N3 ) 

+(A2 /2) cos (2 .ft+2B) 

- [A28(+i/ 3 45]cos 

sin ( .jTt+B) + 8P(P4)t 	 (4.57) 



Cov(H,P,t) = (P-H)/2 +[N 2  ,JT?/( 8P)] COS (2 .ft+N3 ) 

-[A2 	sin (2 ,,ft+2B) 

+[A..fk2P-H)/(3HP)]cos ( 7Xut+B) 

+[A(-2)/(3)] sin ( f7t+B) , 	 (4.58) 

where the N are constants of integration to be determined from ini-

tial conditions. 

By comparing the solution for the means with expression 2.9, the 

solution for the linearised deterministic equations, we see that the 

stochastic means again follow the deterministic path. Thus the sto-

chastic means follow cycles of constant amplitude oscillations, show-

ing that no stationary probability distribution exists for this 

model. Because the stochastic means are periodic, we might expect 

that the probability distribution is periodic in time. On examining 

the variances, though, we see that they contain not only periodic 

terms, but also terms which are linear in t. This means that, as t 

goes to infinity, the variances become infinite, and so the probabil-

ity distribution cannot be periodic. 

This analysis, however, is based on the assumption that extinc-

tion can be ignored. In practice, extinction may occur very quickly 

- simulations performed by Bartlett (1957) showed that extinction of 

one or other species usually occurred after two or three cycles. If 

the time to extinction is short, these solutions might not give a 

good approximation to the behaviour of the system. 
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4.6. Continuous Approximation using Lirtearisation 

4.6.1. Simplified stochastic differential equation 

An important advantage of the probability linearisation tech-

nique is that the stochastic differential equation, introduced in 

Section 3.7.2, can be simplified. As we shall show in Section 4.6.2, 

the equation can now be solved using a solution from Arnold (1974), 

to give an approximate solutionfor the probability distribution of 

the stable model. 

Consider the stable predator-prey model, and linearise in the 

usual way so that the new set of transition probabilities is given by 

4.43. Recall, from equation 3.52, that the stochastic differential 

equation is given by 

dX(t) = B(x,t)dt + Al2(x,t)Z(t) ..RE' , 	 ( 4.59) 

where X(t), A, B, Z(t) are as defined in Section 3.7.2. The matrices 

A and B are matrices of the instantaneous means and variances (Sec-

tion 3.7.1) of the process. When the transition probabilities of the 

process are linearised, the new instantaneous means and variances, 

calculated as in Section 3.7.1, but using the probabilities 4.43, are 

now 

= -clixi - aIx 2  + xii 

=apx 1  - eui 

a 11  = (2ctP-cH)x 1  + cziix2  + c 2  - aII 	 (4.60) 



a 22  = $Px 1  + 2Hx2  - BHP 

a 12  = a21  = 0 

4.6.2. Arnold's solution 

The stochastic differential equation considered by Arnold (1974) 

was 

dX(t) = (C 12X(t) + C 2 )dt + C 3dW(t) , 	 (4.61) 

with X(0)=2so
and OtT, and where W is a Wiener process (for the 

definition of a Wiener process, see Cox and Miller, 1965). The Ci 's 

are matrices of constants, with C 1  and C 3  of order nxn, and C 2  of 

order nxl. Arnold found that the process, X(t), which satisfies 

equation 4.61, has an n-dimensional Normal distribution with mean 

and variance given by 

C 1  t 	
t -Cu 

= e 	+ ( f e ' du)C2] 
0 

t C1(t-u) 	T C(t-u) 

= f e 	C3C3  e 	du , 	 (4.62) 
0 

where C denotes the transpose of C 3 . 

To solve our equation (4.59), we rewrite it in the form used by 

Arnold. Let 

r- -ãl 
C= I 

L 0 



C2  = (XI , 	HP)T 
	

(4.63) 

As Z(t) .Ji71  represents the increments of a Wiener process (see Cox 
and Miller, 1965), we may write this as dW. Because C 3  (in 4.61) is 

a matrix of constants with no dependence on x, we must approximate 

the x in the elements of A (4.60) by the deterministic equilibrium. 

That is, we rewrite the a usingij  

x l 	H , x 20 	P. 	 (4.64) 

C3  can now be written as 

C3  = Diag {(2)h/ 2 	(2HP)1" } 	 (4.65) 

where 

ía ol 
Diag {a, b} 	Lo bj 

Thus, using the assumption that we may calculate the au's  at 

the deterministic equilibrium, our equation (4.59) can be written in 

Arnold's form (4.61). Then, by Arnold, an approximate solution for 

the probability distribution of the stabl'e model is the two-

dimensional Normal distribution, with mean and variance given by 

4.62. We will calculate this mean and variance in the next two sec-

tions. 

4.6.3. Calculation of mean 

To calculate the exponential of a matrix, we use the technique 

of expanding it in terms of the eigenvalues, and row and column 
-C i t 

elgenvectors (see Bartlett, 1978). In this way, we may write e 

as 
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where 

-C1 =e 
	[e R 1 +e

t  
e 	-cHt/2 	rt 	rtRl (4.66) 

r 2  = c 2H2 /4 - 

[(cfi+2r)/4r 
R=I 1 	

-8P/2r 

[ (cH/2)2-r2]/( P2r)1 

-(cH-2r)/4r 	j 

I -(cH-2r)/4r [(cH/2) 2-r 2 ]/( 8P2r)1 
R2 = 	 . 	(4.67) 

[ 	
P/2r 	(cH+2r)/4r 	J 

Because R 1  and R are constructed from row and column eigenvectors, 

respectively, they have the following properties: 

R 1  R  2 = R 2  R  1 = 0 

R=R1  , RR2  

From 4.62, we can now write the mean as 

-cHt/2 rt 
m( x) = e 	[e R2 + e rtR1 ] 

x 	+ (cH/2+r)_1[e 	2+tt - 11R1C2 

(4.68) 

(4.69) 

+ (CH/2_r)_1[e H/2-r)t - 1]R2C2} 

Because 

IcH/21 > Irl, 	 (4.70) 
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when t gets very large, the terms which are exponentially damped 

become negligible. Then as t gets large, expression 4.69 tends to 

lim mt() + [(cH/2-r) 1 R2  + (cH/2+r)'R 1 ]C 2  

= (H, 	 (4.71) 

Note that, as t gets very large, the mean is no longer dependent on 

the initial value 2SO . 	Asymptotically, the stochastic mean of the 

continuous approximation is equal to the deterministic equilibrium. 

4.6.4. Calculation of variance 

Recall from 4.62, that the variance matrix is given by 

t C1(t-u) 	T 
 C(t-u) 

V() = f e 	C3C3  e 	du . 	 (4.72) 
t =0

0  

Using the expansion of the exponential from 4.66, this may be written 

as 

V (X = e_(t(e r(t-u)R + e t_h1)R1 ] 

x 211P Diag{a, B}Ee r(t-u) R2  
T 
 + 

e-r(t-u) 
 R1  T ]du 

e-Hr 2rt(CH_2r)l {e 	-1 }R2C3CR = 

+ (cH)(e 
CHt-1 )R2C3CR'  + (cHYe 

1' dilt -1 	1)R
1  C3¼ 
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+ e_2 rt( c +2r )' {e  H+2r)t_1 }R1c3cR1 . 	 (4.73) 

As t gets large, exponentially damped terms will become negligible, 

and the variance tends to 

lira V() = [(cH-2r) 1 R2C3CR + (cH+2r)'R 1 c 3cRf 

+(cH)(R 1 C 3CR + R2C3CR)] , 	(4.74) 
3 2 

which is again independent of the initial values. The variance of H 

may be found from the (1,1) component of the variance matrix, which 

is 

_/(2r2) [(ck-2r)-lja(cfi/2-r ) 2 + (2)1 {(c/2)2-r212} 

- 2(cH) 1 {a{(cH/2) -r } + 
2 2 	

(BP2){(cH/2)2-r2}2} 

+ (c+2r)1{a(c/2+r)2 + (2)_1{(dH/2)2_r2}2 	. 	(4.75) 

This simplifies to 

c&(H + P)fc 

The variance of P may be found similarly from the (2,2) component, 

and the covariance from the (1,2) or (2,1) component. 

To summarise, in the limit as t-+, the variances and covariances 

are given by 

Var (H) = a(H + P)/c 
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Var (P) = 	2/(c) + 	/c + cH/cz 	 (4.76) 

Coy (H,P) = - f! 

4.6.5. Conclusion 

By approximating the discrete state space of the stable model by 

one which is continuous, a stochastic differential equation was 

formed. Using the probability linearisation technique, this was sim-

plified to a form for which a solution could be found. From Arnold's 

results, we saw that an approximate soution for the probability dis-

tribution is the two-dimensional Normal distribution, for all time t, 

with the formulae for the mean and variance given by expression 4.62. 

Although it is possible to calculate time-dependent moments from 

these formulae, it is mathematically very tedious. The asymptotic 

moments found are identical to those previously calculated using sto-

chastic linearisation (Section 4.2) and probability linearisation in 

the discrete state space (Section 4.4). 

The main advantage to this approach is that it provides an 

approximate solution not only for the moments, but also the shape of 

the distribution - that is, two-dimensional Normal. Recall that, in 

Section 3.6, Bartlett (1978) approximated the stochastic behaviour of 

a single species undergoing a birth-death process by a Normal distri-

bution, but, previously, no theoretical justification could be found 

for this in the two-species case. In the next section, we shall con-

sider a numerical example in order to investigate how close the Nor-

mal approximation is to the exact distribution. 

Another advantage of using this method is that the stochastic 

differential equation, 4.61, has been solved in n dimensions. As we 

shall see in Chapter 7, this will be useful when studying the multi 
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colony spatial model. 

4.7. Numerical Example 

4.7.1. Iterated probability distribution 

We now wish to test the accuracy of the approximate solution for 

the probability distribution of the stable model, which we found in 

the last section. We do this by calculating the distribution of the 

original, non-linear, discrete process for a given set of parameter 

values, using an iterative procedure. A comparison is made, in Sec-

tion 4.7.3, between the computed distribution and the Normal distri-

bution for these parameters. 

The forward probability equation of the stable model (using 

non-linear transition probabilities), for large t, is 

+ (4-)ij + iii] 

[X-c(i- 1)](i-1 ) 1_1 ,  + a(i+1)i +1 	 (4.77) 

+ 8i(i-l)p 	+ u(i+l)pi.+i 

Starting from a specified initial distribution,, we will make succes- 

sive approximations of the distribution using 4.77. Thus, if ij 

denotes the n'th successive approximation, then p7)  is calculated 

from 

(n+1) 
= [IX_c(i_1)](i_1)P." j + 	

(n) 

(n) 	 (n) 1 
+ i(i-l) 1, _1 + 
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x [(X-ci)i + ('- 8)ij + pj1 1  . 	 (4.78) 

By repeated use of 4.78, we can approximate the probability distribu-

tion for .a given set of parameter values. 

The parameters used in the example are 

a = 1. 2, 

8 = 

X = 270, 

0. 5, 	= 50, 

C = 1.5. 	 (4.79) 

These parameters were chosen, because, in order to have a good 

approximation, it was necessary to have fairly large equilibrium 

values, but relatively small standard deviations. The theoretical 

means and variances for these parameters (calculated from 4.71 and 

4.76) are 

E(H) = 100, 	E(P) = 100, 

Var(H) = 160, 	Var(P) = 191.667, 

Cov(H,P) = -100. 	 (4.80) 

In theory, the state space of the process is infinite. To calculate 

the probabilities using 4.78, it is necessary to put bounds on i and 

J. In our example, we constrain i and j to lie between 50 and 150, 

by allowing no births to occur at 150, and no deaths at 50. These 

bounds are 3.95 standard deviations from the equilibrium for the 

prey, and 3.61 standard deviations for the predators. If we assume 



that most non-zero probabilities lie within three standard deviations 

on either side of the equilibrium, then these bounds should not 

greatly alter the probability distribution. 

Successive approximations for the probability distribution are 

found until the distribution settles - that is, when the difference 

between the successive approximations is negligible. Figure 4.1 

shows a contour map of the computed probability distribution. In 

order to avoid possible edge effects, the p 1  for i=51,150, j=51,60 

and j=141,150 are set to zero (in the final approximation), and the 

probabilities are rescaled so that the remaining probabilities sum to 

one. 

4.7.2. Normal distribution 

The two-dimensional Normal distribution using the means and 

variances given in 4.80 is calculated, and a contour map drawn in the 

same way, shown in Figure 4.2. In order to keep the distributions on 

the same scale, the edge probabilities are set to zero as above, and 

the remaining probabilities rescaled. This made very little differ-

ence to the graph in this case, as most non-zero probabilities lay 

between j=60, and j=140. 

4.7.3. Comparison 

The iterated distribution, Figure 4.1, and the Normal distribu-

tion, Figure 4.2, appear to be quite similar in shape. The iterated 

distribution appears slightly flatter and more spread out. This is 

evident from the fact that the Normal graph has an extra contour and 

the ellipses appear a bit shorter than those in Figure 4.1. There 

also seems to be a slight skewness in Figure 4.1 - particularly when 

the number of prey is small and the number of predators large. 

From the iterative solution, we calculated the first two moments 
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Figure 4.1. Contour map of the stationary distribution of 
the stable model, calculated through the iterative pro-
cedure described in 4.7.1, using the parameters given n 
4.79. The figure on each curve is a probability value xlO , 
showing the minimum probability value within the region en-
closed by each contour. 

to be 

E(H) - 	99.38, 	E(P) - 100.11 9  

	

Var(H) - 162.07, 	Var(P) - 231.96, 

	

Cov.(H,P) - -114.44. 
	 (4.81) 

These appear to be very close to the theoretical calculations (4.80), 

though the variance of P is somewhat larger. It is interesting to 
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Figure 4.2.. Contour map of Normal distribution using the 
means and variances given in 5  4.80. The figure on each 
curve is a probability value xlO , showing the minimum pro-
bability value within the region enclosed by each contour. 

note that Leslie and Cower (1958,1960) (see Section 3.3) calculated 

variances of competition processes by simulation, and also found that 

theoretical variances calculated using stochastic linearisation were 

always smaller than variances computed from simulations. 

44. Conclusion 

In this chapter, three methods of finding moments of the distri-

butions of stochastic predator-prey processes were discussed. 

The first method, known as Bartlett's stochastic linearisatiOn, 

was described, and the stationary means and variances for the stable 

model found. 



In the second method, the transition probabilities were linear-

ised, thus simplifying the generating function equation so that 

time-dependent means and variances could be found. Three methods of-

linearising probabilities were discussed in relation to a simple 

model (Dietz and Dowaton, 1968), and the most accurate method chosen. 

This linearisation technique was applied to both the stable and 

unstable models and time-dependent moments found. The stable model 

solutions are identical to those found using Bartlett's method, but 

this technique makes fewer assumptions. - 

The third method used this probability linearisation technique 

in the continuous state space approximation. This enabled the sto-

chastic differential equation to be simplified so that an approximate 

solution could be found for the distribution of the stable model. 

The solution showed that the-process was the two-dimensional Normal 

distribution with asymptotic mean and variance identical to those 

previously found. To test the accuracy of this solution, a numerical 

example was given, in which the probability distribution of the ori-

ginal process was computed using an iterative procedure, and compared 

with the approximating Normal distribution. There was good agreement 

between the distributions, though the theoretical variances seemed to 

be smaller than the observed ones, especially in the predator case. 

Of course, one major simplifying assumption used in all these 

methods is that of linearity. Nisbet and Gurney (1982) said that in 

practice they found that with stochastic models whose deterministic 

analogues have a single, stable equilibrium value, then locally 

linear approximations lead to a good estimate of the probability dis-

tribution (though I did not see any justification of this in their 

book). They claimed that it is only necessary to include non-linear 

effects when models have an unstable equilibrium, or two or more 

locally stable steady states. Our numerical results on stable models 
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(Sections 4.3 and 4.7) indicate that ithearisation produces good 

approximations when population numbers are large. 
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CHAPTER 5 

TWO-COLONY DETERMINISTIC MODELS 

Introduction 

In all the models considered in Chapters 2 - 4, no account has 

been made for spatial. variability. The populations have been treated 

as though they were amassed at one point in space, with the same 

birth and death rates applying to all. In order to introduce the 

idea of allowing for variation through spatial separation, we con-

sider here two-colony models - that is, the populations are divided 

into two interconnected colonies, each of which undergoes a 

predator-prey process. Later on, in Chapter 7, we will make this 

'spatial' process less restrictive by extending the number of 

colonies. 

The general two-colony model is introduced in Section 5.2. 

Because the linear solution to this model is too mathematically com-

plicated to explain the behaviour of the populations, we shall exam-

ine some special cases of it by placing restrictions on migration. 

In Section 5.3, we demand that the individuals migrate at the same 

rate in both directions. A comparison is made between this model and 

the general one-colony (that is, non-spatial) model given in Section 

2.4. Using the two-colony extensions of the stable and unstable 

models, we then study the effect of one-way migration of a species - 

first allowing prey to migrate (Section 5.4) and then predators (Sec-

tion 5.5). 
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5.2. General Two-Colony Model 

We introduce the deterministic two-colony model by looking at 

the linearised equations of the model with general migration rates. 

Let Hi 
 (t)denote the number of prey at time t, and Pi (t) the 

number of predators, in colony i, for 1=1,2. Suppose that the prey 

(predators) can migrate from colony 1 to colony 2 at rate i(v1), and 

from colony 2 to colony 1 at rate 2(v2 ). These migration rates are 

illustrated in Figure 5.1. 

V1  

½ 	fli 
IE 

Colony 1 	 Colony 2 

Figure 5.1. Diagram showing two prey migration rates, with 
- - - representing migration of the prey, and - the 
predators. 

The deterministic equations of the two-colony model are 

= F(H 19 P1 ) + 12H2  - 1111 

C(H1,P) + v 2  P - v 1  P 
 1 
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= F(H2 ,P2 ) + T j H j  - 2 H  2 	 (5.1) 

= G(H2 ,P2 ) + v 1 P 1  - v2P 2  

where F and G are general quadratic functions of the H and P (as in 

the single-colony case, 2.18). Assume that the system 5.1 has an 

equilibrium value at 

ilp -pill H_ 2 , P 2  

(though, in the general model, these values may be difficult to 

determine). Using the transformation 

H 	= i 
+ h(t) 

Pi(t) = 	+ p(t) 
	

(5.2) 

where hi ,p, are small, we may write the equations in linear form: 

= a 1  h  1  + b 1p 1  + r 2h2  

= e 1h 1  + f 1p 1  + v2p2  

l;2 = a 2 h  2 +b2p 2  + n 1 h 
	 (5.3) 

= e 2  h 2  + f 2p2  + vi p 1  

The coefficients in 5.3 are calculated in the same way as in Section 

2.4.1 - for example 

a 1  = -1rj- 
E - 
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where by 1E 
 we mean evaluation at the equilibrium point. System 5.3 

may be written in matrix form as 

U=AU 	 (5.4) 

where 

U = (h i , p 1 , h2 , p2) T 

and 

a 1  b1 Ti 2 	
0 

e 1  f 1  0 V2  

0 a2  b2  

0 	v1  e2  f 2  

The solution to the equation 5.4 is given by 

U(t) = eAt C , 	 (5.5) 

where C is a 4x1 vector of Initial values of hi  and p.,. 	Calculation 

of eAt in 5.5 may be simplified by finding the eigenvalues of A. 

From matrix algebra (see Liebeck, 1969), we know that, if the elgen-

values are all distinct, we may write 

A=PNP 1  

where N is a diagonal matrix, so that 

A 	N-i e =Pe P 

If two (say) eigenvalues are equal, using Jordan decomposition (see 

Lang, 1971), the problem of finding e   is reduced to finding the 

exponential of a 2x2 matrix. 
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Thus, when an equilibrium exists, it is possible to find the 

linear solution to the general two-colony model. However, mathemati-

cally, this solution is very involved - to find the equilibrium 

values, we must solve four simultaneous quadratic equations, and the 

eigenvalues are the roots of a quartic polynomial. If we were to 

write the solution (5.5) in terms of the parameters of the models 
-ready 

owing to the mathematical complexity, it would give us noA indication 

of the behaviour of the model. For this reason, we will look at spe-

cial cases only of the two-colony process, by placing certain res-

trictions on the migration rates. 

5.3. Equal Migration Parameters 

5.3.1. Solution 

Suppose in the two-colony model described by 5.1, we assume that 

the migration parameters are equal in both directions. That is, we 

assume that 

= T 	TI ' 	=v2 	V . 	 ( 5.6) 

An equilibrium value occurs at 

H 1 -H2 	' 	P1 P2  

We will solve the equations near this point. The equilibrium values are 

now solutions of the four equations 

F(HP) = 0 

	

G(H,P) = 0 	i=1,2. 
	 (5.7) 

Furthermore, these values satisfy the same equations as the one- 

colony equilibrium values (2.19). Then if H and P are the onè-olony 
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equilibrium values, as a result of the constraint 5.6, we have 

= H = 

= P 2  = 
	

(5.8) 

Although we could find the solution of this model using the method 

previously considered (Section 5.2), it is easier to proceed in the 

following way. 

The equations are linearised as before, using the transformation 

5.2. But now write the linearised system as 

= C 1 h  1  + C2p 1  + (h2-h 1 ) 

p 1  = Ch 1  + C4p 1  + v(p 2 p 1 ) 

h2  = C 1h2  + C2p2  + (h 1-h2 ) 

;2 = C 3h2  + C4p 2  + v(p 1-p2 ) 

where the Ci 's are as defined in the one-colony situation (2.21), 

namely 

aF 
I 	

F 
C l  = 	, 	C2  = 

i 

aG  J C8 
 3G 	 - 

3 	aHIE ? 
	4 	

iE 

The equations are written in this form in order to separate the 

migration effects (governed by r and v ) from the interaction terms 



- 107 - 

(the C i 's). Because these C terms are the same as in the one-colony 

model, this should emphasise the effect of migration here. 

Let 

U(t) = h 1 (t) + h 2 (t) 

V(t) = p 1 (t) + p 2 (t) 
	

(5.10) 

Then, by adding (i) to (iii), and (ii) to (iv) in equation 5.9 9  we 

get 

c lu + c2v 

-c3TJ+c4v 
	 (5.11) 

These equations have the same form as the one-colony case, and so the 

solutions are the same, apart from the constants which are determined 

by initial conditions. For example, in the case where r 1  and C3*O 

(from 2.22) 

(c1+C4)t12 	 r t 

U(t) 	e 	 (C3)'({(Ci_C4)/2+ri}&re 1 

-r t 
+ {(Cl_C4)/2_rl}BTè 1 

(c 1+C4 )t12 	r t 	-r t 
V(t) 	e 	 [A,e 1 + BTe 1 
	, 	 (5.12) 

where 

-, 

- 1/2 F(Cl-C4)2 + 4C2C3 
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and AT  and 3T 
 are determined by initial conditions. (As in the one-

colony model, this solution is only valid provided it is non-

divergent, that is 

C 1+C4 4 0 and 1/2 1C 1+C4 1 > jr,j - 

If these conditions do not hold, the solution to the model is diver -

gent, and cannot be found in this way.) Other forms of the solution 

(as in 2.23 - 2.25) follow similarly. 

We use the results for U and V to find the h 1  and p 1  solutions 

in the following way. From 5.10, we have 

h2  = U - h1 , 	p2  = V - p 1  . 	 (5.13) 

Then, we may rewrite equations (i) and (ii) from 5.9 as 

(1) hi  =(C 1 2r1)h 1  + C2p 1  + flU 

(ii) p 1  = C 3 h  1 + (C4 -2v)p 1  + 'vV . 	 (5.14) 

Substituting (ii) into (1), we form an equation for p 1  

Pi - ; 1 [(c 4-2v)+(C 1 -2n1 + p1[(C1-2ri)(C4-20-C2C3] 

= C3 rU + \)V - v(C 1-2)V 
	

(5.15) 

From this equation, the solution for p 1 (t) may be calculated, and is 

given below. The solution for h 1 (t) is found from equation 5.14(1), 

and those for h 2 (t) and p 2 (t) from 

h2 =U-h 1 , 	p2=V-p1. 
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Thus, the full solution to the linearised equations (5.9) is 

(C 1+C4-O)t/2 r  2  t 
h 1 (t) = e 	 [e 	{(C 1 -C4 )/2+(v--r)+r 2  JA I  /C 3  

-r t 
+ e 2 

(C 1+C4 )t/2 r  1  t  + e 	[e 	{(Cl_C4)/ 2+rl}AT/( 2C3) 

	

+ e 1 {(C 1 _C4 )/ 2-r 1  }BT/(2C3)] 	(5.16) 

(C 1+C4-8)t/2 	r t 	-r t 

	

P i  (t) = e 	 [A1e 2 ~ B1e 2 

	

(C 1+C4 )t/2 r  1  t 	-r1 t 
~ e 	[e 	AT/2 + e 	BT/2] 	 (5.17) 

(C 1+C4-e)t/2 r  2  t 
h2 (t) = e 	 [e 	1(C1-C4 )/2+-i)+r2 1(-A1 )/C3  

+ e_r2 t { (Cl_C4)/2r2 } ( _Bl) , C3]  

(C 1+C4 )t/2 r  1  t 
+ e 	[e 	{(C 1-C4 )/2+r 1 }A,/(2C3 ) 

	

+ e'{(Cl_C4)/2_rl}BT/(2C3)) 	(5.18) 

r t 	-r t 

	

= e 	 [-A1e 2 - B1e 2 
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(C -I-C 4 )t/2 r t 	-r t 
+ e 1 	 1 	+ e 	BT/2 1 	 (5.19) 

where 

e = 2(v + i- ) 

= 1/2J(C 1 -C4 ) 2  + 4C2C3' 
	

(5.20) 

r2  = 1/21[(C 1 -2 11) - ( C4-2 v)] 2  + 4C 2C3' 

and Al,Bl 'AT  ,BT are constants to be determined from initial condi-

tions. 

5.3.2. Analysis 

By imposing the constraint that the migration rates are equal in 

both directions, we saw that the equilibrium values became equal, and 

identical to the one-colony equilibrium. Adding the equations for 

the prey perturbations, and the predator perturbations, we found 

solutions for the total fluctuations, U and V. The U and V solu-

tions, for all time t, are identical to the one-colony result, except 

for the initial conditions. If the initial conditions are the same 

in both systems, the total prey, and predator, fluctuations in the 

two-colony model will be equal to the one-colony fluctuations. 

Looking at the individual solutions in the two-colony model, the 

format is identical in both colonies. The solutions in both colonies 

have the same time-dependence, the only difference being in the con-

stant coefficients. As t gets large, so that the first section, 

(c 1+c4-e)t/2 
governed by e 	 , becomes negligible, the solutions become 

identical, and equal to the one-colony result (subject to the same 

initial conditions). 
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Hence, by splitting the populations into two colonies, and 

allowing individuals to migrate with equal rates in both directions, 

no long-term alteration is made to the non-spatial model. In partic-

ular, the one-colony solution is stable about the equilibrium point 

if, and only if, the two-colony solution is stable. 

5.3.3. Predator-prey application 

As with the one-colony case in Chapter 2, the solutions to this 

general two-species model may of course by applied to the simpler 

predator-prey models - in particular, to the stable model (both 

colonies undergoing a Volterra-Gause-Witt process) and the unstable 

model (two-colony Lotka-Volterra). In the stable model, all pertur-

bations eventually decay to zero, whereas, in the unstable model, 

when t is large, the populations in each colony will oscillate in 

phase with each other with period 2w! 43 and with the same ampli-

tude. 

5.4. One-Way Migration of Prey 

Introduction 

When migration between colonies is in one direction only, the 

equilibrium values are no longer equal, and the solution is more com-

plicated than in the last section. So, instead of studying the 

effects of migration of prey on the general quadratic system, we will 

look at its effects first on the stable model (5.4.2) and then the 

unstable model (5.4.3). In Section 5.5, we will consider the effect 

of migration of predators. 

5.4.2. Stable model 

Let r be the migration rate of prey from colony 1 to colony 2. 

Then the model (represented by Figure 5.2) is defined by the deter- 
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ministic equations 

= XH 1  - cH - 	- TH 1  

= 	- lip  

H2 = 	
2 - c}1 	22 + 
	

(5.21) 

- 

Colony 1 	 Colony 2 

Figure 5.2. Two-colony model, with one-way migration of 
prey. 

The deterministic equilibrium, found by setting these equations equal 

to zero, occurs at 

a1  - 	 H2 	u/B 



- 113 - 

	

= (X-cH 1 -fl)/n 	= (X-cH2+fl)/a 
	

(5.22) 

In order that these equilibrium values remain greater than zero, it 

is necessary to impose the constraint on n that 

Tj < X-cH 
	 (5.23) 

Intuitively, a maximum value imposed on n is necessary, because, if r 

is very large, all the 'prey from colony 1 will soon migrate into 

colony 2, and then the predators in the first colony will become 

extinct. 

By linearising the equations in the usual way, we have 

= -cH1h 1  - afilpi 

= 

	

h2  = -cH2h2  - a} 2p2  + ii(h 1-h2 ) 	 (5.24) 

(iv) ;2 = P 2h2  

Equations (i) and (ii) from 5.24 are identical to the equations in 

the one-colony case, and hence the solution (2.33 and 2.34) is 

	

-cH1t/2 	-. 	r 1 
 t 

h 1 (t) = e 	[A(-cH 1 /2+r 1 )e  

-rt 
+ B(-cH 1 /2-r 1 )e  

-cH 1 t/2 	r t 	-r t 

Pi 
	= e 	(Ae 1 + Be 1 
	, 	 (5.25) 
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where 

=1/2 F2fi 
C 
 I - 4 OHP, 

	

and A and B are determined by initial conditions. 	Using 5.25, the 

other two equations in 5.24 solve to give 

-(cH2+)t/2 	-1 	
r 2  t 

	

h2 (t) = e 	 (P2) [A2 (-cH2 /2-r/2+r2 )e 

-r t 
+ 2 
	

2/2/2r2)e 2 

-CH t/2BP 
	1 	

r 1  t 

	

+ e 	1 	( 2) [(-cH 1 /2+r 1 )X1 e 

-r t 
+ (-cfi1/2-r1)X2e 1 

-(CH2+)t/2 	r 2 t 	-r t 

	

= e 	 [A2e 	+ B2e 2 
	 (5.26) 

	

-cH1 t/2 	r 1  t 	
-r2t 

	

[X1 e 	+X2e 

where 

x  = 

(-cH 1 /2+r 1 ) 2  + (cH2+T1)(-cH1/2+r1) + u8H2P2 

P 2 'P l  nB(-cH 1 /2-r 1 ) 
X2  = 	 (5.27) 

2  (-cH 1 /2-r 1 ) + (cH2+ii)(-cH1/2-r1) + H2P2 
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and 

r2  = 1/2 j (CA 2+71)2 - 4c&8H 2P 2  

and A2 ,B 2  are constants. 

Thus, migration of prey has the effect of reducing the predator 

equilibrium in colony 1, and increasing it in colony 2. Because of 

this (to stop P 1  becoming zero), the migration parameter has an upper 

bound (given by 5.23). From equation 5.25, we see that the solution 

to the first colony has the same format as the single-colony solution 

(equations 2.33, 2.34) - except that P 1  here is less than P, the 

one-colony predator equilibrium. The h 2 ,p 2  solutions have an extra 

-(cH2+)t/2 
term, governed by the damping factor e 	 • Because r > 0, 

this term decays first, and the solution is then in the single-colony 

format. 

Migration of prey appears to have a stronger effect on the 

second colony than on the first. This we might expect, because 

migration out of the first colony is effectively increasing the death 

rate and should not drastically alter the solution. But migration 

into the second colony is exerting an extra force on the behaviour of 

the prey. This has no lasting effect, however, since, as t goes to 

o,.,. the perturbations decay to zero, and the system returns to 

equilibrium. 

5.4.3. Unstable model 

A more interesting result appears In the model where both 

colonies undergo the Lotka-Volterra process. The solution to this 

model may be found by letting c equal zero in the model in 5.4.2. 

Thus, the equilibrium of the unstable model occurs at 
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= u/B , 	H2  = u/B 

ii = (A-i)/a , 	= (),+r)/a . 	 ( 5.28) 

The constraint 5.23 on n, changes to 

Ti <A . 

It is easier to examine the effects of migration if we assume the 

initial conditions 

h 1 (0) = h 2 (0) 	p2(0) -0 , p1(0) 	k , 	 (5.29) 

as these correspond to the initial conditions (2.10) which we assumed 

in the one-colony solution. Under conditions 5.29, the first colony 

solutions are 

h 1 (t) 	-ke1/(8P 1 ) sin 8 1 t 

p 1 (t) - k cos 81 	, 	 (5.30) 

where 

1/2 	 1/2 - {aau 1P}  

The second colony solution, which may be found from 5.26, has an 
increases 

additional term exponentially damped by e 	• As tç, these solu- 

tions become 

-k 
- sin (e 1t+6) h2(t) 	

(42+e2) 
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kP2 6 1  
cos (8t+6) , 	 (5.31) P2(t) 	

p1(42+8) 

where 

= tan' 2 F/( A- n)' 

As t', both colonies experience constant amplitude oscillations of 

period 21/Oi. This period is greater than in the single-colony case, 

because P 1  here is less than p in 2.11. However, the colonies are no 

longer oscillating in phase - colony 2 now leads colony 1 with a 

phase difference, given by S. As n increases to its maximum A, this 

phase difference increases. 

Although this chapter is concerned with deterministic models, it 

seems more suitable to mention here, rather than In Chapter 6, what 

one possible consequence of these results might be for stochastic 

models. It may ,  be possible that, in a stochastic environment, 

extinction of a species in a fixed time might be connected with the 

period of oscillation. We make this suggestion for the following 

reason. If two species are oscillating about a point, on every cycle 

each species will reach a minimum value. Allowing for statistical 

fluctuations, the chances of a species becoming extinct near this 

minimum value are high. The more cycles that occur In a fixed time 

t, the more often this minimum Is reached, Increasing the chances of 

extinction. If this is so, then allowing one-way migration of prey 

should increase the chances of survival of both species. 

5.5. One-Way Migration of Predators 

Stable model 

Having looked at the effect of prey migration, we will now see 
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how these results are altered when predators migrate instead. Sup-

pose the predators migrate from colony 1 to colony 2 at rate v (see 

Figure 5.3). 

V 

	

Colony 1 	 Colony 2 

Figure 5.3. Two-colony model, with one-way migration of 
predators. 

The model is then defined by the equations: 

- 

CH - 

-OR1 P -  pP 1  - VP  

- 	
- CH - 	 (5.32) 

1 2 BR2P2 -uP2 +VP 1  

The equilibrium occurs at 
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= (j + v)/$ 

= (X-d11 1 )/a = (AB-cu-cv)/(aB) 

H2 	+ cii - a)/(213c) 
	

(5.33) 

12 	cu + a)/(2cxB) 

where 

a 	f(x+cu)2 + 4c(uvP 1-),p) 

We know that H2  and 2 are always real, because a may be written as 

a - jRxa—cia)2 + 4uBcvP1 

In order that P 1 ,R2  and i stay greater than zero, it is necessary to 

restrict v to 

o 	v < ( x - c jj  - a 1 )/(2c) 

(AB - ci.i + a 1 )/(2c) '< v < (A 	c  

where a 1  = J(x8 - cii)2 - 	 (5.34) 

that is, v may only take values that lie within the shaded regions A 

and B of Figure 5.4. The constraints placed on V are different from 

the upper bound found for n in the last section, for the following 

reason. In region A, an increase in V raises H and lovers H 2. To 

keep H2  greater than zero, an upper limit is put on 
V, namely 

v < (AB - co - a)./(2c) 
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2c 
 

Xe-ca a 	 Xe-cM 	a 	Xp-cp 
- 

2c 2c 	 2c 	2c 	 c 

Figure 5.4. Shaded regions, A and B, show possible sections 
of the real line in which v may lie, subject to the con-
straints in 5.34. 

But, because P1  is dependent on H 1 , an Increase in v decreases 

Thus, VP 1  reaches a maximum when 

v - (A - cu)/(2c) 

In region B, vi is decreasing, allowing H 2  to increase. 

The linearised equations are 

- -cH1h 1  - 1p 1  

- aPh 1  

- -cH2h2  - 2p2 	 (5.35) 
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= 8P 2h 2  +.(H2-i)p 2  + 'VP1 

which solve to give 

-cH1t/2 	-1 	
r 

1 
 t 

h 1 (t) = e 	(P 1 ) [A 1 (-cH 1 /2+r 1 )e 

-r t 
+ B 1 (—cH 1 /2 - r1)e 1 

-cH 1 t/2 	r 1  t 	-r 1 t 
p 1 (t) = e 	[A 1 e 	+ B 1 e 	I 

-(cH2-H2+j)t/2 	r 2  t 	
-r2t 

h 2 (t) = e 	 [Are 	+ BTe 	1 	 (5.36) 

-dH 1 t/2 	r 1  t 	
-r2t 

[X 1 e 	+X2e 

-(d112-B}i2+ij)t/2 r t 
P2 (t) = e 	 [e 2  (-cH2-BH2+ij-2r2)A./(2aR2) 

-rt 
+ e 2 (-cH2_8H2+1J+2r2)BT/(2czH2)] 

-cHt/2 rt 
+ e 	1 	[e 1  {(—cH 1 /2+r1 )(—x 1 )/(czH 2 ) - cx 1 /al 

1  + e{(c 1 /2+r 1 )X2 /( 2 ) - cX2 /all 

where 
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r 1  = 1/2 J(cH 1 ) 2  - 4aH 1 P 1  

r 2  = 1/2 J (Cfi 2H2p) - 4i2P 2  

-cxH2 vA 
X = 1 	(_cH1/2+r1)2+(cH2-H2+p)(-cH1/2+r1)+cxH2P2-CH2(H2P) 

-aH B v 2 1 	 (537) 
2 	(_cH1/2_r1)2+(cH2_8H2+)(-cH1/2r1)+cz8H2P2CH2(1i21i) 

and Al,Bl,A.,BT are constants determined by initial conditions. 

To check that these solutions converge, recall that v is bounded 

by the constraints in 5.34, which ensures that H2 4 P/$. This means 

that the factor 

-(cH2-H2 -fij) < 0 

and so, the exponential of this term acts as a damping factor for 

and p 2 . We can see that 

fl cfi2—$fi2+p l > 

112 < ()L8 + ci)/(2Bc) 

which is always true when v is bounded. This shows that the first 

term in h2  and p2  is always damped and goes to zero as t goes to 

infinity. 

Thus, as t, the perturbations decay to zero and the system 

returns to equilibrium, showing that migration of predators has no 
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lasting effect on the model. 

5.5.2. Unstable model 

The effect of one-way migration of predators on the unstable 

(Lotka-Volterra) model may be seen by examining equations 5.32, and 

setting c equal to zero. Because the P do not depend on the R,, the 

equilibrium is in simpler form: 

= (j4-v)/8 , 	R2  

A/a , 	 P2  - A/a . 	 (5.38) 

The constraint on v is simplified to 

U. 
	 (5.39) 

The linearised solution to the model may be found from 5.36 by let-

ting c equal zero. Subject to the initial conditions 

h 1 (0) - h2(0) - p2(0) - 0 , 	p1  (0) - k 

the solution, for large t, is 

h i 
 (t)- -k(8P1) L JA(i+vY sin .fA(1j+v)t 

p 1 (t) - k cos 

h2 
 (t)-kuH2(4A+i*V) 1  sin ( fA(p4-vYt - 6) 	(5.40) 

P2(t) - k(4A+p+v) DT-v+-v7 cos ( .[Xi+vYt - 6) 
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where 

= tan-1  2 fX/(v4v)' 

Thus, when t is large, the predators and prey in both colonies 

oscillate with constant amplitude, and period 2w! fX (u4i• This 

period is shorter than in the single-colony case. If we again con-

sider that, in a stochastic model, extinction of a species is related 

to the period of oscillation, then allowing predators to migrate 

appears to decrease the chances of survival of both species. 

The colonies oscillate out of phase with each other, but this 

time the second colony lags the first with a phase lag given by 6. 

As v increases, the phase lag decreases. This we might expect, since 

the larger the migration parameter becomes, the weaker is the effect 

of spatial separation. 

5.6. Conclusion 

When the populations are split into two colonies with equal 

migration rates between the colonies, the spatial separation has very 

little effect on the behaviour of the populations. As t, the solu-

tions reduce to the one-colony case, and, for t finite, the solutions 

sum together to give the one-colony result. 

When migration is allowed in one direction only, a more pro-

nounced effect may be seen. In the stable model, as t, all pertur-

bations from the equilibrium value decay to zero. In the unstable 

model, as t., the solutions oscillate with constant amplitude, but 

the colonies are out of phase. When only migration of prey is possi-

ble, colony 2 leads colony 1, but when predators migrate, colony 2 

lags colony 1. The period of oscillation is also altered - when prey 

migrate, the period is greater than that of the one-colony solution, 
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and when predators migrate, it is less. Though migration does not 

alter the deterministic stability of these models, it is possible 

that, in the stochastic situation, the chance of extinction by time t 

(assuming it is related to the period of oscillation) is increased by 

predators migrating, and decreased if prey migrate. 

We have only considered the above special cases of the two-

colony predator-prey process because of the mathematical complica-

tions involved in the more general model. In particular, we have 

always assumed equal birth and death rates in each colony. When con-

ditions in the colonies are unequal, the equations become a lot more 

complicated, partly because of the difficulty of finding equilibrium 

values. One way of avoiding this problem was suggested by Chewning 

(1975). He examined the effect of migration between unequal 

colonies, subject to the constraint that the migration parameters are 

small. He calculated the equilibrium value which would occur In each 

colony if no migration were allowed, and then devised a method of 

linearlsing the equations (with migration) about this point. He 

derived a set of sufficient (but not necessary) conditions under 

which migration can stabilise a locally unstable system. In particu-

lar, he showed that It is possible for migration to stabilise a two-

colony Lotka-Volterra system, if the parameters of the process are 

different in each colony. 
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CHAPTER 6 

TWO-COLONY STOCHASTIC MODELS 

6.1. Introduction 

In Chapter 4, three different methods for studying stochastic 

models were developed - Bartlett's linearisation, probability linear-

isation and the continuous approximation. Here we will use these 

methods to examine the effect of migration on the stochastic model. 

The model we study is the stable model where predators are 

allowed to migrate in both directions with the same migration rate, 

V. We choose this model because the identical migration rates sim-

plify the problem, as we will see later. Although it is also possi-

ble to study the effect of migration of prey using these methods, for 

mathematical convenience, this has been omitted. The model is inves-

tigated using Bartlett's linearisation in Section 6.2, probability 

linearisation in Section 6.3 and the continuous approximation in 

Section 6.4. The results using these methods are compared with the 

one-colony soution in Section 6.5, and the effect of the migration 

parameter v, is analysed. 

Finally, in Section 6.6, a less restrictive two-colony model is 

considered, and the general form of its stochastic behaviour is 

given. 

6.2. Bartlett's Linearisation 

As mentioned in Section 6.1, the model under investigation is 
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the two-colony stable model in which predators migrate in both direc-

tions at the same rate v. This model (represented by Figure 6.1) is 

the stochastic analogue of the model defined deterministically as 

i1 = (X-cH 1 )13 1  - aT-1 1 P 1  

'1 = 8H 1 P 1  - pP 1  - vP 1  + 

H2  = (-cH2)H2  - uH2P2 	 (6.1) 

p2  = 2p2  - tip  + VP  - VP  

V 

V 

Colony 1 	 Colony 2 

Figure 6.1. Two-colony model with migration of predators 
only. 

The deterministic equilibrium values are equal in each colony (Sec-

tion 5.3) and occur at 
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H 1 = 	= 	H 

== A 	CH 	
- 	 (6.2) 

To extend Bartlett's method, given in Section 4.2, approximate the 

stochastic behaviour of the system by adding small fluctuation terms 

to the deterministic equations: 

dli 1  = [(X-cH 1 )H 1  - zH 1 P 1 ]dt + dZ 1  

dP 1  = [BH 1 P 1  - UP  + v(p 2-p 1 )]dt + dZ2  - dZ 5  + dZ6  

dH2  = [(X-cH2 )H2  - aH2p2 ]dt + dZ3 	 (6.3) 

dP2  = [OH 2P2  - 	+ v(P 1 -
p2 )]dt + dZ

4  + dZ5  - dZ6  

where the dZi  are independent random variables, with zero means, and 

variances given by 

var (dZ 1 ) = [(X-cH 1 )H 1  + aH 1P 1 ]dt 

var (dZ2 ) = [BH 1P 1  + lip 1 ]dt 

var (dZ 3 ) = [(X-cH2 )H2  + a}12P2 ]dt 

var (dZ4 ) = [8H2P2  + liP 2 1 dt 
	

(6.4) 

var (dZ 5 ) = vP1dt 
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var (dZ 6 ) = \)P 2 dt 

Introduce the transformation 

H.=H+h1  , 	Pi =+pi 
	 (6.5) 

where .h and p1  are small, and linearise equations 6.3 to get 

h 1 (t+dt) = h 1 (t) + dt[_cHh1-cZHP1] + dZ 1  

p 1 (t+dt) = p 1 (t) + dt[Ph1+v(p2-p1)] + dZ2  - dZ5  + dZ6  

h2 (t+dt) = h2 (t) + dt[-cHh2-aRp2] + dZ 3 	 (6.6) 

p 2 (t+dt) = p2 (t) + dt[BPh2+V(P 1 -P2 )] + dZ4  + dZ5  - dZ6  

As in Section 4.2.1, assume that the chances of extinction by time t 

may be ignored and a quasi-stationary distribution exists. Then, as 

t gets large, 

E[h1 (t+dt) 2 ] 	E[h(t)2] a 	
2 	 i=1,2 

1 

E(p(t+dt) 2 ] = E[p.(t)2] Cr 
p1 2 
	 i=1,2 

E[h1 (t+dt)p 5 (t+dt)] 0  E[h1(t)(t) )! a 	i,j=1,2 
hp 
ii 

E[h 1 (t+dt)h 2 (t+dt)] z E[h I  Wh 2(t)]= a h 1  h  2 
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0 	 .  E[p 1 (t+dt)p 2 (t+dt)1 	E[p1(t)p2(t)] 	pip2 	
(6.7) 

 

To find the variances of the deviations, square and cross-multiply 

all the equations in 6.6 and take the expectations. This gives ten 

equations in the ten unknowns defined in 6.7. However, in our model, 

the migration parameters are identical, so that, when t is large, the 

influences on the behaviour of the populations are the same in both 

colonies. For this reason, we assume that the following identities 

should hold 

2 	2 	a 	a 2 
h 1 	h2 	 p1 	p2 

0 	=0 	 0 	=0 	. 	 ( 6.8) 
h 1p 1 	h2p2 	h1p2 	h2p 1  

(Using this assumption it is possible to find a solution, which has 

been checked by back substitution into the equations.) This reduces 

the set of simultaneous equations to the following six 

+aHPO _CHOh2 — cz a h1p1 

+ v(a 	_ 2  + (p+v)P = 0 
h1p 1 	p1p2 p 1  

	

- ajja2  - ( cH+V)0 	= 0 
+ h 1p2 	p1 	 h1p1 

+ V0 h1p1 - (cH+V)ahp -uHO 
pip2 =0  

= 0 	 (6.9) 
CHOhh -CLHO h1p2 
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apa 	 +v(a2 -a 	)_vp=0. 
h 1 p 2 

	
pi -C 

These equations are solved simultaneously to give the stationary 

variances of H. 
1 

and P 1  .: 

-c1 
au aOP i  

C 	 \) 
cii 

= 

-4-2 cH+4V+H 
C 	 V 

28PH 	
2 2 

2 ,2aVH, cx  
c 	c 	V 	2 

2 	aP 	C 	 C 
a =-- 
H. 	C 

+ 
 

3- 	 2aP+2 cH+4V+ 1  
C 

	

_LF .4cñ+2 aHp 	cx • 
	 (6.10) 

p = 	c 	 1 	cii 

	

The solutions to a , ,a 	,a 
 , may be found similarly from equa- 

12 	12 	12 

tion 6.9. These results have been checked by substituting back into 

the original (ten) equations. In Section 6.5, these results will be 

analysed and compared with the one-colony results found previously in 

Section 4.2. 

6.3. Probability Linearisation 

We now examine the stochastic behaviour of the model using the 

two-colony extension of the probability linearisation method 

developed in Section 4.4.1. The probabilities are linearised in the 

same way as before (Section 4.4.1) so that, for example, the linear-

ised transition probabilities for colony 1 are 

Pr[(H1,P1) + (H1+1,P1)] = [(A_2cH)H1+cH2]6t + 0(60 
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Pr[(H1,P1) + (1-11-1,P1)] = [aPH 1 +cZHP 1 -HP]ôt + o(ôt) 

Pr[(H1,P1) + (H 1 ,P 1+1)] = [8HP 1+8PH 1 -BHP]t + o(6t) 

Pr[(H1,P1) + (H 1 ,P 1 -1)] = uP 1 &t + o(cSt) 	 (6.11) 

Pr[(H1,P1) + (H1 ,P 1+1)} = vp 2 6t + o(&t) 

Pr[(H1,P1) + (H19P1-01 = VP 1 6t + 0( 60 

in a small time interval 6t, where H and P are the deterministic 

equilibrium values (defined in expression 6.2). The last two proba-

bilities in 6.11 represent the change in P 1  through migration, 

whereas the third and fourth - probabilities represent change through 

birth and death. As in Section 4.4.1, we assume that these probabil-

ities are non-negative (by not letting the populations deviate too 

far from the deterministic equilibrium), and also that the population 

sizes are large so that the chances of extinction, in a finite time 

t, may be ignored. Let 

Pijkl(t) = probability of having I prey, j predators 

in colony 1, and k prey and 1 predators 

in colony 2, at time t. 	 (6.12) 

The forward probability equation is now formed using the linearised 

transition probabilities. 	Let G be the generating function defined 

by 
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CO 

i 
G(z 1 ,z 2 ,z 3) z 4 t) = 	 zlz 

j  
2z  k 

 
3z 

 l 
4Pjkl(t) , 	(6.13) 

i,j ,k,1=0 

(assuming this converges in a suitably chosen domain of the z 1 's). 

Then the generating Function equation is 

aG 
Tt

= c[-2ca2+2añ+2B+cn2z1+cci2z3 

aHP/z 1_Z3_2_4] 

+ 

+ 

+ 	4-z 3(A-2cH+aP+P)+z(A2cH)+PZ 3Z 4 I 

+ _jG  [ij-z 4 (aH+8H+u+v)+8HZaHZ4/z3+vz 2 ]. 	(6.14) 

Let 

[ a 1I 
1 

M ) 	-J I 	i=1,...,4 	 (6.15) 

where 1(1) denotes evaluation at z 1=z 2=z 3 z 4 1. Then the first moment 

equations are easily obtained by differentiating 6.14 

m1 '(t) = A11 - cHm 1 (t) - aHm2 (t) 

m2 '(t) = -HP+BPm 1 (t) 	vm2 (t) + vm4(t) 
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m3 '(t) = Xl - CAM 3 (t) - aHm4 (t) 	 (6.16) 

m4 '(t) =- Bfi ~ + apm3 (t) - vm4 (t) + vm2 (t) 

The time-dependent stochastic mean values are found by solving equa-

tions 6.16 simultaneously. These values are identical to the deter-

ministic solutions of the linearised equations (found from 5.16 - 

5.19). As ts, the stationary mean values are 

ml 	m  3 
 H 

=P 	m4  = 	. 	 (6.17) 

The second factorial moments are defined by 

rç1 
V1(t) 

= LJi 
V1(t) - 	

-1,...,4. 	 (6.18) 

This gives ten second moment equations. The time-dependent second 

moments could be found by solving simultaneously, but, as this is 

mathematically very tedious, we just look for stationary solutions. 

After a long time t, as in Pection 6.2, both colonies experience the 

same influences, so the following identities may be assumed: 

V 11  = V33 	V12  - V 34  

V22  = V44 	V.= V23 . 	 (6.19) 
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Using 6.19, the equations of the stationary second moments are 

-2aHP-fin 1  (2AH+2A-4cH)+2aHm 2 -2cHV 1  1-2&V12 = 0 

in2 (2}I-2HP)+28PV 12 -2vV22+2vV 24  = 0 

m 1 (BP-8HP)+1n2 (XH-H)+PV 11 -(cH+v)V 12-cxHV 22+vV 14  = 0 

2XHm 1 -2cHV 13 -2cxHV 14  = 0 (6.20) 

-8HPm 1 +XUm2+vV 12 -(cH+v)V 14+PV 13-aEV 24  = 0 

-28HPm2+2vV22-2vV24+28PV14 = 0 

We have solved equations 6.20 simultaneously, and found solutions for 

the V ii
's and V ii 

 's. From this, the variances and covariances are 

found by adding the appropriate constants, for example 

Var (H 1 ) = V 	m 
2
1 + m1  

Although the methods are different, the results we have found for the 

variances using this method are identical to those found previously 

(6.10) using Bartlett's stochastic linearisation. 

6.4. Continuous Approximation 

6.4.1. Fort of solution 

Recall that, in Section 3.7, we approximated the discrete state 

space by a continuous state space, and found that the probability 

distribution of the process satisfied the Kolmogorov equation 
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(equation 3.49), and the equivalent stochastic differential equation 

(3.52). Although a solution to these equations could not be found in 

the general case , by linearising the transition probabilities, we 

saw, in Section 4.6, that the stochastic differential equation was 

simplified to a form for which a solution was known. We now extend 

the results from Section 4.6 to the two-colony case. 

Let p(x 1) x2
1
x3

9
X4t) be the probability of having x 1  prey in 

colony 1, x 2  predators in colony 1 1  x3  prey in colony 2, and x 4  pre-

dators in colony 2. The forward Kolmogorov equation for two colonies 

(by extending 3.49) is 

1  4 	4 	2 	 4 
 ____ 

t 	2 	
3 (a 1.p) 

- 	 : ax

-(b1p) , 	 ( 6.21) 
j=1 1=1 	 1=1 

where the coefficients, in the case where the transition probabili-

ties are linearised (as in 6.11), are given by 

b 1  = -cHx 1 -ctRx2+XH 

b2  = BPX 1 BHP4V(x4x2 ) 

b 3  = -cHx3-a}1x4+XH 

b4  = 8px3-P+v(x2-x4) 

a 11  = (2aPcH)X 1 +0HX2+C}12 UHP 
	 (6.22) 

a22 = BPX1+2811X2BHP+V(x42) 
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2  a 33  = (2aP-cH)x 3+IIx4+cHciHP 

a44  = 8Px3+2Hx4-8HP+v(x4+x2 ) 

a 24  = a42  = -v(x2+x4 ) 

a 13  . . = 0 • otherwise. 

The corresponding stochastic differential equation (see Section 

3.7.2) is 

dX(t) = B(x,t) + A" 2 (x,t)Z(t) .jt 
	

(6.23) 

as in the one-colony case, where now X(t) is a 4-dimensional vector 

of the Xi 's, B is a 4-dimensional vector of the b r 's and A a 4x4 

matrix of the a ii  
.'s. 

This equation may be written in the form used by Arnold (Section 

4.6.2), by defining the C i 's as 

-c 	cz 	0 	0 

si -v 	0 	v 
C = 

	

o 	o -cH czH 

	

0 	v 	BP 	V 

T C2 = 	(AU, BHP, xi, _8HP) 	 (6.24) 
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2 BHP 	0 	0 	0 

2 	0 	
2HP+2 vP 	0 	-2P 

C3 = 
o 	0 	2 BHP 	0 

o 	 0 	2HP+2P 

(As in 4.6.2, the x.'s in A are approximated by the deterministic 

equilibrium values). Then, from Arnold, the probability distribution 

of the process satisfying equation 6.23 is the 4-dimensional Normal 

distribution with mean vector and variance-covariance matrix given by 

Ct 	t 
= e 1 [x0  + ( e-C1u  du)C2] 

t C(t-u) 	T C1(tu) 

V(xo) = 	e 	C 3C 3  e 	du , 	 (6.25) 

where io  is the initial value of X (at t=0). 

6.4.2. Calculation of mean 

To calculate the mean, we can see from 6.25 that it is necessary 

to find the exponential of C 1 , a 4x4 matrix. We will now see that by 

partitioning C 1  the problem is reduced to finding the exponential of 

two 2x2 matrices. The problem is further simplified when we discover 

that, as t., one of the matrices has no effect on the solution. 

The matrix C 1  is partitioned by writing 

-CII -  II; 0 	0 

8 	-vIO 	V 
C 1  = 	 . 	 (6.26) 

o 	0 	-cH cxH 

0 	v 	-v 
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In this way, we can see that C 1  may be written as 

C 1  = PMP' , 	 (6.27) 

where 

rio -i cn 
0 1 0 

= 	
ii o 	. 	o 	 (6.28) 

1J 

and 

1ci 	aH 	0 

0 	0 	0 

- 
. 	 (6.29) 

o 	0 	-cH 	H 

o 	0 	3i 	-2 

C 	- 
Thus e 1  is given by 

eC1 = PeMP 	. 	 (6.30) 

This simplifies the problem of calculating the exponential of C 1  

because N has two zero blocks, and so to find e   it is necessary only 

to calculate the exponential of two 2x2 matrices. 

Let 

-dil -aHi 
M

1  = 	- 	I 	 (6.31) 

and 

-cli 
N2  = 	- 	j. 	 (6.32) 

P 	2v 
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and N2  act independently of each other, because N contains two 

blocks of zeros. M is identical to the matrix referred to as C 1  in 

the one-colony case (see expression 4.63). From the results of Sec-

tion 4.6.3, we may write the exponential of N 1  as 

M1 t 	rt 	r,,t 
e 	= e 1 R 1  + e 

L R2 , 	 (6.33) 

where 

r 1  = -cH/2 - 	- HP 

r2 = -cR/2 + f2/4 - aP , 	 (6.34) 

and R1  and R are the matrices defined in 4.67. 

In the same way, by finding the elgenvalues of N2 , and calculat-

ing the row and column eigenvectors, we may write 

M 2  t 	r 3  t 
	r 4  t 

e 	=e R3 +e R4 , 	 (6.35) 

where 

CH = -(.+v) + J(cR-2v)2 - 4a8IIP 

r4  = _(q-1 -v) --.J(cH-2v)2 - 40HP 

As we shall see, the stationary mean is not affected by M2 , and so, 

there is no need to calculate R3  and R4 . 

Using this decomposition of C l , the mean is now given by the 

expression 
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Mt 	PeMtj -Mu 	-1 	 (6.36) = Pe P 	+ 	e 	du P C 2  .  
0 

Although it is possible to find the time-dependent nean from this, to 

avoid too much mathematical tedium, we will just calculate the mean 

for the stationary case. In the limiting case, as 

urn 	 Pe 	e 	du m(0) 	lita 	
Mt 	-Mu 	PC2). 	 (6.37) f 

t9 	0 

From expression 4.71, we know that as t 

t -M 1u 
e 	e 	du +_-!-R ---R . 	 ( 6.38) 

r 
1  1 
	r 2 

 2 

Treating the M2  partition similarly 

t e 
-M2u 

 du 4. - _L 	- 	, 	 ( 6.39) e 	 r 3  3 r 4  4 

as t.. However, if we calculate 

0 	1 	oil xñ 

1 	
1 

= - 
	I —1 	0 	1 	0 I I 	I 

-1 	0 	1] _OHP 

- if fT (2XH, -20HP, o, 0)' 	. 	 (6.40) 

Because the last two components of P 1 C2  are zero, then, as 	M2  

has no effect on the mean. Thus, 6.37 may be written as 
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1 
urn m (.0 )  = 
t .' 

1 0 -1 0 

0 1 0 -1 

1010 

0101 

0 	0 0 	2AH 
BP 

0 0 	-2BHP 
H uHP 

00 	** 	0 

0. 0 	* * 	0 

(where * denotes elements from expression 6.39, which need not be 

calculated) 

= (H 	f p)T • 	 (6.41) 

Therefore, the mean, as t gets large, tends to the deterministic 

equilibrium. 

6.4.3. The exponential of M 2  

Although the matrix It2  had no effect on the stationary mean, we 

M2  
will find it necessary to know e when calculating the variance. We 

M2  
will, therefore, calculate e 	before investigating the variance 

equation in 6.4.4. 

The exponential of It2  can be found in the same way as before, 

using eigenva].ue decomposition. However, we find that the calcula-

tions are simpler, and the elements in a better format, if we proceed 

in the following way. From 6.32, 
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[c1 	-cxli 
N =J 2  L8P -2v 

This may be written as 

N2  = (-cH/2 - v)I + S 

where I is the 2x2 identity matrix, and 

r-H/2+V 	-ai  
s= 

[ BP 
	-cR/2-v 

Because I and S commute, 

M2 	-cH/2V S 
e -e 	e 

e   is simpler to find, when we notice that 

al 

where 

a 	
2 

(cR/2-v) -aBRP 

The (1,1) component of e   is 

2 
= 1 + 	+ 	

+ (1-v )- + 	+ .... 	II 

which, by adding alternate terms, simplifies to 

(e ''+e •i) - (C,2_V)(e 
4—a e 	') 

2 (2 PA) 

(6.42) 

(6.43) 

(6.44) 

(6.45) - 

which becomes 
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.![i__21e 	+ rl+cH 4 e Ta 

-L 2JJ 	L 2JTJ 

The other components are calculated similarly. Let 

cH-2v 
b =1- 1 	

2J 

Therefore 

b = 1 + cH-2v 
2 	

2J 

M 2  t 	
[ ie +b2e

1 2 

I ---[e 	-e 
L Ira 

-[e -e'Fa  ] 

(6.46) 

b 2 e r+b1e- 
 Ta 

6.4.4. Calculation of variance 

Recall, from 6.25, that the expression for the variance-

covariance matrix is 

t C (t-u) 	T C1(t-u) 

- f e 	C3C3  e 	du 

In 6.24, an expression was given for the matrix C. We may easily 

calculate C 3  from this by diagonalising C3 . We notice that 

C 	P Diag{2&iP, 2BHP, 2aHP, 2BHP+4VPJP '  

where P is the matrix which was used to diagonalise C 1  (6.28). Let 

the diagonal matrix be denoted by N, so that 

I 

Diag{ J2aRP, .120HP, j2afii , .128HP+4vP} . (6.47) 

Then 
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C 3  = P ,J•'p1 . 	 (6.48) 

To find the transpose of C3 : 

C = (P 

= (p 1 )T4fpT 

= p qJP 1  

=c 3 , 	 S  

and so 

C 3  	= PNP1 . 	 (6.49) 

The expression for the variance is now simplified to 

M(t-u) MT(t_u) 	-1 

	

- Pf e 	N e 	du P 	. 	 (6.50) 
0 

Because N is diagonal, we are again dealing with the two 2x2 

matrices, N1  and N2  (6.31 and 6.32). If M is used in expression 

6.50, then the problem is identical to that of the one-colony vari-

ance, Section 4.6.4, ignoring the P and P matrices. Thus, we need 

only evaluate 6.50 in the case of N 2 . 

Let 

- 2BHP 
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= 2HP+4vP 

We need to calculate 

t M (t_U)[l 
f  	[o  

(6.51) 

1 
I MT (t-u) 

2j

I e 	du . 	 (6.52) 

As before, mathematical complications simplify greatly when we 
N 

consider the limit as t. Using the expression for e 2 from 6.46, 

after integration, the (1,1) component of the limit (as t - ) of 

(6.52) is 

	

1 - dH-2v 	1 	+ 	1 + CTh.2v1 	
1 

' L 	2 ..rj cH+2v-2 .J- ' " L 	2 jiJ dH+2v+2 ..J7 

n I— 	(dll-2v)1 1 
- 	4a 

1 	+ 	1 	- 21 
4 a  

	

cfi+2v-2 .Ji' dH+2v+2 J 	cH+2j 

This simplifies to 

B = 	+ 	 . 	 (6.53) 
cH+2v 	(2vc+uBP)(cH+2v) 

Similarly, the (2,2) component simplifies to 

B 	BlIP + 
	

(6.54) 

cII+2v 	 (2vc+cz5P)(c}I+2V) 

The (1,2) and (2,1) components are identical, and equal to 
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B 3 = 	ctp 	 (6.55) 
(2c+P)(dH+2v) 

	

The B.'s are the solutions as t 	for the M section of the 
1. 	 2 

variance (6.52). 	As mentioned, the H1  section of the variance is 

known from the one-colony solution. As t gets large, the components 

of the solution, from 4.76, are 

A1 	(1,1) comp = 

i i +. 	 (6.56) A2 	(2,2) comp 	+ c 	CL cli 

A3 	(1,2) comp -H 

- (2,1) comp 

From 6.50, the variance, for t large, is found from the 

At 's and Bk 's as follows: 

IA1 A3  0 01 

IA3 

urn V() - " 	0 
A2  

0 

0 

B 1  

0 1 
B3  

t  

[o 0 B 3  B2] 

which is 

A 
-,+B 

 
1  
I A1 -B 1  

A3+B3  

A2+B2  

A3-B3  

A2-B2  

A1 -B  1  

A 1+B 1  

A3+B3  

A2-B2  

A3+B3  

A2+B2  

(6.57) 
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These stationary variances and covariances are identical to those 

previously found using Bartlett'.s stochastic linearisation. 

6.5. Effect of Migration on Moments 

6.5.1. Introduction 

In the last three sections, the means and variances of a sto-

chastic model were found using three different methods. It is possi-

ble to find time-dependent solutions using the methods, but to avoid 

too many mathematically tedious calculations, only stationary solu-

tions were given. Although the format of the results differ, the 

means and variances calculated using the three methods can be shown 

to be equal. These methods appear to be different, and we cannot 

offer an explanation for the equality of the results. 

The most general method is the continuous approximation (Section 

6.4), because this method tells us that an approximate solution for 

the probability distribution is the 4-dimensional Normal distribu-

tion. In the other two methods, we assumed that, because the parame-

ters were equal, after a time t, the variances were equal in both 

colonies (6.8 and 6.19). Using the continuous approximation method, 

we did not need to make this assumption, but it can be seen (from 

6.57) that the variances are, in fact, equal. 

To examine the effect of migration on the variance, it is most 

convenient to use the format of the results from the third method, 

given in 6.57. In the one-colony case, the prey variance is A 1  and 

the predator variance A 2 . In the two-colony situation, the prey 

variance is (A1+B 1 )/2 and the predator variance is (A 2+B 2 )/2. Thus, 

by comparing the A1 's and B1 's, we will, in Sections 6.5.3 and 6.5.4 

be able to see how migration affects the variance. These results 

will be analysed from a biological point of view in Section 6.5.6. 
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6.5.2. The mean of the predators and prey 

In Section 6.3, we saw that the time-dependent means of 

H. 
1 1 
and P. were identical to the deterministic solution. Hence, for 

finite time t, migration affects the stochastic mean in exactly the 

same way as it affects the deterministic solution (see Section 5.3). 

As t-, the mean of H goes to H, and the mean of 
l'i 
 goes to P. That 

Is, for large values of t, migration (when the parameters are equal 

in both directions) has no effect on the means. 

6.5.3. The prey variance 

As mentioned in 6.5.1, the prey variance in the one-colony case 

is A1 , and in the two-colony case is (A 1+B 1 )/2. Let 

x = B 1  - A1  . 	 (6.58) 

Then x is a measure of the change in variance with migration. 	If x 

is positive, migration increases the prey variance; if x is negative, 

the variance is decreased; if x is zero, the variance remains the 

same. In this section, we will give a mathematical analysis of x to 

see what factors will increase or decrease variance. A biological 

interpretation will be given in Section 6.5.6. 

Using the expressions for A1  and B 1  from 6.56 and 6.53, respec-

tively, we see that 

x = {c(2vc+aBP)(dH+2v)}_1[acHP(2vC+aBP)+QCP(4v2+aBhI2+2avhi) 

-cz(H+P) ( 2vc+aBP)( cH+2v)] 

which simplifies to 
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2Qv raP( cH-8P-H)-c 2H2-2VcHJ • 
	 (6.59) 

c(2vc-f-uBP)(cH+2v) 

Thus 

x< 0 

<> aP[c -B -BH] -C2H2-2vcH < 0 

<=> V 
> aP[cH- P- H1 -c2H2 
	

(6.60) 
2cR 

and the variance is decreased. If this inequality does not hold, and 

CLP [CH-OP-SHI -C  V 4 	 , 	 ( 6.61) 
2cR 

then the variance is increased (or unchanged when the equality 

holds). 

The inequality in 6.60 shows that the change in variance depends 

on the quantity 

cR-BP-BH . 	 (6.62) 

If this quantity is negative, then the right hand side of 6.60 is 

negative. This means that the variance will decrease for all 00 

(when v-0, then x-0 and we have the single colony solution). Simi-

larly, if 

cR-BP-8}1 < 	 /(J)22  /() 	 (6.63) 

the variance will automatically decrease for all v>0. When the 
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inequality in 6.63 is reversed, then migration between colonies will 

only decrease the variance when the migration parameter is large 

enough. 

In the limit as v, the variance of H 1  becomes 

limvarH 1 	C 	2' 
	 (6.64) 

which shows an ultimate decrease in the variance of the prey by a 

factor of czH/(20. A summary of these results will be given (Section 

6.5.5) which will clarify the change in prey variance with v. 

6.5.4. The predator variance 

The single-colony predator variance is A2  (6.56) and the two-

colony predator variance is (A2+B2 )/2 (for B 2 , see 6.54). Let 

y - B2  - A2 
	 (6.65) 

As in the last section: 

if y>O, the predator variance is increased, 

if y<O, the predator variance is decreased, 

if y-O, the predator variance is unchanged. 

Substituting for A2  and B2  in 6.65, 

3-3 
y - 2{cR2(2vcBP)(cH+2v)][2V{ucHP(d11_BBEc 1i} 

(6.66) 

Then the predator variance is decreased 
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<=> y < 0 

<=> 2vcH[P(cH-8P-8H)-c 2}1 2 ] 

+a i[.SfiicIi2]jcfi_Oi_Ofi]_c4fi4<  0 . 	 ( 6.67) 

The following three situations arise, depending on the value of 

if cH-8P-BR 0, 

then the variance is always decreased, for all v>O. 

if 0 < cR-BP-BR < 

then the variance is decreased if 

, 

2cH(aP(c}I- P-8H) -c2H2 ] 

- 
_CH  + 	p2 2  SHP(cH-SPiR) 

2 	 - - 
2cH[ cL  

YL_aP( cHPR)] 

if c--i > c2112/(czP), 

then the variance is decreased if 

V < 	
- 

2 	 -. 
2cR(aP(c}I-8P-OH)c 2H2 ] 

Since the right hand side here is negative, in this case, migra-

tion always increases the variance. 
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If we look at the limiting case of the variance, as 	we see 

that 

liin var P 1  = lim(A2+B2 )/2 
V 

LE c = 
•: 	2cH 	

(6.68) 

We compare this with A2 , the single-colony variance: 

A2-lim var P 1 f1câ)+c21i2 ] . 	(6.69) 

This confirms the results given above, that, in the limit as v, 

migration decreases the variance of the predators, if and only if 

< c22/(aP) 

6.5.5. Suary of effect 

The effect of migration on the prey and predator variance falls 

into three distinct categories: 

(a) cH-P-8H ( 0 

Var ( H 1 ) is decreased for all V)O. 

Var (P 1 ) is decreased for all V>0. 

(c) 0 < dE-BP-BR < c2H2/(nP) 

Var (H1 ) is decreased for all ">0. 

Var (P 1 ) is decreased only when V  is sufficiently large, that 

is,. 

V > - + 

2cR(c U -uP(cH-8P-BU)1 
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(c) c-8P- 	c2ñ2/(czfo 

Var (H 1 ) is decreased only when V  is sufficiently large, that 

is, 

') > 
	 2-2 

2cR 

Var (P 1 ) always increases. 

6.5.6. Analysis of results 

For notational convenience, let 

Q = 
	 (6.70) 

Recall that, under linearisation, 

Pr [birth of H 1 
 ] = [(X-2cH)H 1+cH2 ] 6 t 

and 

Pr (death of P 	[8PH1+8HP 1 HP]6t 

The quantity Q then represents the restricting influence on the birth 

of H 1 , and the contributing influence on the birth of P 1 . 

When Q is very small, or negative, the birth rates of both the 

prey and predators are strong (through c being small and 8 large ). 

In this case (type (a) from 6.5.5), migration reduces the variance of 

both the predators and prey. This is what we might expect, because 

allowing predators to migrate between the colonies should even out 

the variations in fluctuations of the predators, and hence of the 

prey. 

As Q gets larger, the birth rates of both the predators and prey 
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get smaller. In order to keep P and H constant, the death rates also 

decrease, so that the predator and prey activity is slowed down. In 

this case ((b) from 6.5.5), it is necessary to have a fairly large 

migration parameter in order to reduce the predator variance. 

When Q gets very large (case (c)), very little activity is 

experienced by both populations. Allowing migration can only 

increase the predator variance, though it can decrease the prey vari-

ance when v is sufficiently large. In order to keep P positive, an 

upper limit must be placed on c, namely 

c < xiii 

This means that Q has a maximum of A. Even though Q is bounded 

above, it is possible to have 

Q > 

A numerical example of this is when HP100, a5, 	1/2, c=3. 

The results for the limiting case as v+co are surprising. We 

might expect that as v-, the effects from the spatial segregation of 

the colonies would become negligible. Instead, as the prey 

variance always shows a decrease, and the predator variance is 

decreased if and only if 

Q < c2H2 /(ctP) 

6.6. General Model 

Although Bartlett's stochastic linearisation and the probability 

linearisation methods can only be used on very simplified models, the 

continuous approximation method may by used to find moments for more 
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general models. 

Suppose that both predators and prey are allowed to migrate in 

both directions with different probabilities (as in Figure 6.2). 

V2 1'l 

Colony 1 	 Colony 2 

Figure 6.2. Two-colony model showing general two-way migra-
tion, with - - - representing prey, and 	predators. 

In deterministic terms, the equations of the model are: 

AH1  -CH  -OR 1P 1-i 1H1+fl2H2  

i, l  - 8H 1P CUP 1 -V 1P 1+V2P2  

H2 	AR2  -CH -cxR2P2  -ri 2E2+n 1 K 1 	 (6.71) 

8H2P2-jP2-vP2+v1P1 
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Suppose a deterministic equilibrium exists at 

H 1  ,P 1 ,H2 ,1 2 . 

Using this equilibrium, the probabilities are linearised in the same 

way as before, for example, 

Pr (birth of H 1 ) = [(X_2cH 1 )H 1+cH6t+0 ( 6 t) 

Approximating the discrete state space by a continuous state space, 

the forward Kolmogorov equation is 

ap 	
4 	2 	 4 

at = 	
j13xjxj(aii 	- 	—(b1p) , 	 (6.72) 

where now the coefficients are given by 

b 1  = (A-2cH1 -aP 1 rn 1  )x 1-aH 1x2+T 2x3+CH+aH1 P 1  

b2  =Oi 1x 1+( ui 1-ij-v 1  )x 2+v 2x4-6H1P 1  

b3  = (X-2cH2-aP2-T 2  )x3-czH2x4+Tl 

b4 = 0P 2x3+(8H2_w_V 2 )X4+V 1X2 42P2 

a 	(X_2cH1-fxP14m1)x1+H1X2fl2X3+C1P1 	(6.73) 

a22  = sP1x1+(H1+u+v1)X2+v2X4BHlPl 
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a33  = (X_2cH2+aP22 )X3+aH2X44m 1X 14CHaH2P2  

a44  = BP 2x3+( 812+V+v2 )x4+v 1X2-B112P2  

a 24  = -(v1x2+v2x4) = a 42  

a 13  = -(n1x1+n2x3) = a 31  

a 1  - 0 otherwise. 

Using Arnold's solution, the probability distribution Is the 4-

dimensional Normal distribution with mean and variance 

C l t 	
t -Cu 

- e 
	

+ ( f e ' du)C2 ] 
0 

t C(t-u) T C(t-u) 

V() 	f e 	C3C3  e 	du 	 (6.74) 

where EO  is the initial value of X at t-0, and 
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A-2cH 1 -aP 1 -r 1 
	 0 

C  = 
	

8P 1 
	 0 	 V 2  

TI 1 
	 1] 

0 
	

V 1 
	 8P2 	8i2—P — V 2  - 

C2  - 	(cH+aH1 P 19  -8} 1P 1 , cH 22'2' 

2aH 1P 1+2fl 1 11 1 	0 	-(v1R1+ 2H2 ) 	0 

C3 	0 	2ijP1+2V 1P 1 	0 	-(v1P1+v2P2 ) 

-0 1H1+ 2I 2 ) 	0 	2aR2P2+2T1 2H2 	0 

0 	-(v1p 1+v2P2 ) 	0 	21iP2+2v2P2  

Thus, the continuous approximation method can be applied to 

other more general models. In more complicated models, the general 

expression (as in 6.74) may be found for the moments, though these 

are too mathematically complicated to evaluate. 
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CHAPTER 7 

MULTI-COLONY MODELS 

Introduction 

In the last two chapters, a spatial element was introduced into 

predator-prey modelling by splitting the population between two dis-

tinct colonies. Now we develop this idea of allowing for spatial 

variability by partitioning the population into a large or infinite 

number of colonies, with a limited form of migration between them. 

When the colonies may be represented by the integer points on a 

single coordinate axis and migration occurs between nearest neigh-

bours only, the model is known as the one-dimensional stepping-stone 

model. This is described in detail in Section 7.2. Stepping-stone 

models have been used in studying processes In genetics, and in 

birth-death-migration processes. These results, and other methods of 

studying interconnected predator-prey systems, are summarised in Sec-

tion 7.3. The general solution for the unstable model (Lotka-

Volterra) extended over Infinite colonies has been found by Renshaw 

(1982). In Section 7.4. this solution is generalised to cover the 

stable model, where c, the density-dependent birth factor, is non- 

zero. 

In the next two sections, results previously found for deter-

ministic two-colony models are extended. In Section 7.5, we see that 

when the populations are split into any finite number of colonies, 

with equal migration rates between colonies, the total predator and 

prey movement is unaltered. However, this is not so when the number 
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of colonies is infinite. The effects of one-way migration of preda-

tors and prey on the Lotka-Volterra model are examined in Section 

7.6. 

In Section 7.7, we investigate the general stochastic N-colony 

model. Using the probability linearisation technique, an approximate 

solution for the probability structure of the stable model is found. 

The effects of spatial separation of the prey and predator popu-

lations are further discussed in the next chapter, when we consider a 

spatially continuous approximation to the discrete stepping-stone 

model. 

7.2. Description of the Stepping-Stone Model 

Consider the predator and prey populations divided into an 

infinite number of colonies situated at the integer points of a sin-

gle coordinate axis, represented by - < i < . Each colony under-

goes a predator-prey process. Both the prey and predators may 

migrate to neighbouring colonies. The migration rates for the prey 

from colony 1. to i+1,i-1 are n,fl,  and for the predators are v+, V _ 
(as illustrated in Figure 7.1). Let Hi(t)  denote the number of prey 

in colony i at time t, and Pi(t) the number of predators. If, for 

example, the predator-prey process in each colony is the Volterra-

Gause-Witt process, then the equations of the model are 

cH - aHP1 -+ + n_)H + Ti +H_i + 

P
I  = 
	

i 
HP 

i 
 - lip 

I 
 -(v + + v - I 	+ 1 

)P + v P. -1 	- i+1 
+ v P 	 (7.1) 

where —< < I <-. 

The model described by equation 7.1 is a one-dimensional 

stepping-stone model. The model may be made more general by relaxing 
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- 	 - 

V . 

4- 	 4- 

1)- 

Cocny i - 	 Colony I 	Colony ii 

Figure 7.1. Diagram illustrating stepping-stone model with 
- - - representing prey and 	predators. 

the migration restrictions, that is, by allowing the rates of migra-

tion between colonies to differ or by considering the predator-prey 

process in each colony to be different. The number of colonies in a 

stepping-stone model may also be finite (1(i(N, where N is a fixed 

integer) or semi-infinite ((X<'°). 

When the arrangement of the colonies is linear the model is 

one-dimensional. Higher dimensional stepping-stone models are also 

possible. A two-dimensional model, for example, is formed by consid-

ering the colonies situated at the integer points of a two -

dimensional lattice and allowing migration between nearest neigh-

bours. 

Because of the mathematical difficulty involved in more general 

models, throughout this chapter we shall only be looking at the one-

dimensional model described by equations 7.1, with either a finite or 
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infinite number of colonies. 

Recent Research 

The stepping-stone model was originally introduced in the study 

oE genetics, then applied to birth-death processes, and later to 

predator-prey processes. A survey of these developments is given 

here. We also include other results found when studying spatial 

separation in two-species population models, which do not rely on the 

stepping-stone arrangements. 

The stepping-stone model was first proposed by Kimura (1953) to 

study the genetic structure of a population. Kimura assumed that the 

population was divided into infinitely many colonies located at the 

grid points of an n-dimensional lattice. Migration of individuals 

occurs between neighbouring colonies in each generation. Each colony 

also receives immigrants as random samples from the whole population. 

The first type of migration he called 'short range migration', and 

the second type 'long range migration'. Biological discussions of 

this model were given by Kimura and Weiss (1964), and Crow and Kimura 

(1970). Formulae for the genetic correlation and variance between 

colonies were obtained by Weiss and Kimura (1965) for more general 

cases of the model, but subject to the restriction that the short 

range migration is symmetrical in each fixed direction. Maruyama 

(1969) extended these results to cover situations where the restric-

tion of symmetry of short range migration is removed. Stepping-stone 

models of finite length were considered by Maruyama (1970). 

Stepping-stone models were used to study the effect of geograph-

ical separation of a population by Bailey (1968). The population is 

divided into an infinite number of colonies along a single dimension. 

Each colony undergoes a stochastic birth-death process with identical 

birth and death rates. Migration is allowed between neighbouring 



- 164 - 

colonies, with all migration rates equal. Bailey formed the forward 

probability equation and by using a generating function, calculated 

the first- and second-order moments. An approximate solution for the 

probability structure was found by Renshaw (1974). Adke (1969) gen-

eralised Bailey's model to include time-dependent birth and death 

rates. Adke and Moyal (1963) considered an analogous situation to 

Bailey's model by allowing individuals to diffuse continuously along, 

a line, instead of migrating between discrete integer points. They 

developed an iterative procedure for evaluating the generating func-

tion of the colony sizes and found asymptotic properties when the 

population size is fixed. This model is extended to include time-

dependent birth and death rates. by Adke (1964). Stepping-stone 

models of finite length have been investigated for the general 

birth-death-migration process by Renshaw (1972). 

The predator-prey process has been considered in the stepping-

stone arrangement by Renshaw (1982) The process involved is the 

Volterra-Cause-Witt process in the infinite domain. Renshaw examined 

the effect of introducing predators into a previously predator-free 

environment. Expressions are given to describe the manner in which 

the predators advance through the system. Renshaw also found the 

general solution to the linearised equations of the infinite-colony 

Lotka-Volterra model. He showed that this solution ultimately decays 

to zero. However by altering the spatial arrangement, so that the 

colonies are represented by the non-negative integers ((Xi<co), and 

migration occurs to the right only, then a stable cycle will persist 

In colony 0 which will also affect the behaviour in the other 

colonies. The result, for large t, is a series of linked elliptical 

cycles around the equilibrium values. The amplitude of these cycles 

decreases geometrically with i, and the phase lag Increases linearly. 

The effect of spatial separation in competition models was stu- 
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died by Levins and Culver (1971) and Horn and Mac Arthur (1972) by 

looking at the proportion of habitats, or colonies, occupied by a 

given species. It was shown that stabilisatton is possible even for 

potentially unstable competitive interactions. This procedure was 

used with predator-prey models by Vandermeer (1973). He examined the 

proportion of habitats occupied by prey or predators only, both prey 

and predators, or neither. He found that an approximate balance 

between interhabitat migration and local population extinction is 

capable of stabilising an otherwise unstable model. The system 

becomes stable as the rate of predator migration becomes large rela-

tive to prey migration, or the extinction rate of the predators 

becomes large relative to the extinction rate of the prey. 

Another method of studying the spatial separation effect in 

predator-prey models is that investigated by Chewning (1975), and 

mentioned in Section 5.6. Keeping the migration parameters small, 

Chewning linearised the equations of the model about the equilibrium 

point which would occur if no migration were present. General condi-

tions under which limited migration can have a stabilising influence 

on locally unstable predator-prey dynamics are given when the number 

of colonies is finite. 

7.4. Solution for Stable Model 

7.4.1. Solution 

The linear solution for the infinite colony ( - < I < ) sys-

tem, in which each colony undergoes a Lotka Volterra process, and 

migration of both predators and prey is possible, was found by 

Renshaw (1982). Here we extend this technique to cover the stable 

system (given by equations 7.1) where c, the self-inhibiting factor 

in the prey birth rate, is non-zero. 
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Recall (from 7.1) that the deterministic equations of the model 

are 

1.i i  = (-cH1)H1 - aHjP_n+(HjRj 1 )__(H-H+i) 

= 	
(7.2) 

for -oc<i<=. The deterministic eqiulibrium occurs at 

,.ut x-cii  

8 

in all colonies, and the equations linearised around these are 

= _cHh-aRP1 n(hhj_1  )_fl(hjhi+j )  

; - BPh1-v(P-P_1)-v_(Pi-P1+l) 	 (73) 

Define the generating functions 

• 	h1(t)zt 

p(t)z1  91 

	 (7.4) 

aBBulflhTtg they exist in some suitably chosen domain of z. Multiplying 

equations 7.3 by z 
I and summing over i, we can solve to find U and V: 

Wit 
U(E,t) - A(z)e +B(z)e 

2t 

V(z,t) - 	(A(z)w1e 	+B(z)w2e 	] 	 (7.5) 

OR 
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1 t 

	

+{cH+(1_z)+(1-Z 1 )J(A(Z)e 	+B(z)e 	)] 

where 

[_cH-(n+v4)(1-z)-(1L.+V_)( 1-Z ' ) 

=
2_4,,,Ofii,(7.6) 

and the constants A and B are 

A(z)(w2-t*1) = uHV(z,O)+[L*3 2+cH+fl(1_Z)+fl_(1_Z)]hJ(z,O) 

a11V(Z,O)4Lc*314cfl+(1_z)4fl_(1'))U, - (7.7) 

The solution for the Lotka-Volterra process, found by Renshaw, is, of 

course, obtained from 7.5 by letting c equal zero. 

If, initially, all the colonies are at equilibrium except for 

colony 0, which is perturbed by an influx of k predators, then 

TJ(z,0) 	0 , 	V(z0) - k 

If we also let iv_ and 	then the solution simplifies to 

_(cRI2+v++u_)t 	1/2 
h(t) = -ke 	 (V /V- ) 

x . ,J 	
et/2_e-et/2 j 

v+vJe  

-(cRI2+v+u 	 et '/2 )tr 
p1 (t) 	 Lcc0)e 	

_(cl_O)e_0tl'j 
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x (v/v_) "2I(2t Jvv') 	 (7.8) 

where e = Jl1 2_4a8HP .  and I.(z) is a modified Bese1 function of 

the first kind, given by 

I(z) = [']j0 j!T 
(z /4) 

2

(i+j+1) 

(see Abramowitz and Stegun. 1965, result 9.6.10). Using the asymp-

totic expansion 

11(z) 	eZ/ .ii 

for fixed I and large z, the expressions in 7.8 may be written more 

simply, for large t, as 

ai 	_CHt / 2 E eOt/2_e_Ot/2 ] 	i/e h1 (t) - 	
28 	 [viv_] 	

-J 

{TrtJv+v_} 	
J 

P 1 (t) - 	e_' [ c +O)e0t1'2_ cfl_O e_8 t 1' J 
40 

-t( 	
F2 

it: 
[V+/V_1 	 S 	 (7.9) 

fir  j;+V_'}"2 

7.4.2. Discussion 

By comparing the general solution 7.5 with the solution for c0 

(given by Renshaw, 1982), we see that the inclusion of the c factor 

does not greatly affect the format of the solution. The main differ- 

wit 
ence Is that the damping factor in e 	is increased. 
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The effect of including the c factor is more apparent if we com-

pare solution 7.9 with the relevant solution when c=fl. In both 
i/2 

cases, the solutions change geometrically with i at rate [v+/v_ 1  

When c=O, h. and p 1  are both oscillatory. All colonies oscillate in 

phase, but the predator and prey are 7i/2 out of phase with each 

other. As t gets large, the solution decays to zero. When c is 

introduced into the model, the solution decreases to zero faster 

because of the extra damping factor, e1t'2.  When c is small, the 

motion is still oscillatory. By writing 7.9 in terms of 

cos* and sin*, where 

* 14.$fti-c 2i2 

we see that the predators and prey are no longer itt2 out of phase, 

but instead have a phase lag given by 

B = tan-1  [*/(Cfi)] 

When c is greater than 2 	the motion is purely exponential. 

7.5. Conservation of Motion for Finite Number of Colonies 

In Section 5.3, we saw that, when the population was split into 

two colonies and the migration parameters were equal, motion was con-

served. By 'conservation of motion', we mean that if h 19h2  are the 

linearised solutions for the prey perturbations in the two-colony 

model (p 1 ,p 2  for the predators), and h the one-colony solution for 

prey (p for predators), then 

h 1 (t)+h 2(t) = h(t) 

p 1 (t)+p2(t) = p(t), for all t, 	 (7.10) 
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subject to identical initial conditions. 

Renshaw (1982) examined the asymptotic solutions of the infinite 

colony Lotka-Volterra model - given by equations 7.1 with c equal to 

0. When all the migration parameters are equal, that is, 

the solutions were found to decay to zero at the rate of 

as can be seen from 7.9. Hence, motion is not conserved when 

the number of colonies is infinite. However, as we show here, the 

two-colony result does hold when the population is split into any 

finite number of colonies. 

Suppose we have an N-colony system with each colony undergoing a 

Lotka-Volterra process. Migration of prey is allowed to the right or 

left at rate n, and similarly for predators at rate v. The deter-

ministic equations of the model are 

= XHj_aHjPjtn(Ht_i+Hj+12Hj) 

P = 	 (7.11) 

for 1(i(N, where for notational convenience, we define 

110 (t) 	H1  (t) 	HN+l(t) 	HN(t) 

P0 (t) 	P1 (t) 	PN+l(t) a PN(t), for all t. 

The equilibrium is identical in all colonies, and given by 

= p18 

Pi  = A/a 	. 	 (7.12) 
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The equations linearised about this equilibrium are 

h. = -afip j+n(h 1_ 1 +hj1 2hj ) 

; = Ph.-f-v(p1+Pj12P1) . 	 (7.13) 

To solve by using the method of images, for - < i < - , will require 

the following 4 boundary conditions: 

h0 (t) 	h1 (t) 	hN+l(t) E h(t) 

POW p 1 (t) 	pN+1t) 	 for all t. 

Summing the equations in 7.13 from 1 to N, 

(7.14) 

These equations have the same form as in the one-colony case (see 

equation 2.8), and hence 

N 	 N 
h(t) = h(t) , 	p(t) = p(t), for all t, 	(7.15) 

1 	 1 

when the initial conditions are equal. Thus, motion is conserved 

when the number of colonies is finite. 

This result may seem surprising. As N becomes large, we might 

expect our N-colony results to approach those of the -colony situa-

tion. When the number of colonies is finite, edge effects will 

always influence the total fluctuation equations (7.14). It is pos-

sible that the non-zero fluctuations, after a time t, are due solely 

to the edge effects, so that when N becomes large, the colonies at a 

distance from the edges experience no fluctuations. When N becomes 

large, perturbations in the central colonies (that is, away from the 
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edges) decay to zero (for large t). 	In this way, the N-colony 

results would approach those of the -colony case. 

7.6. Migration in One Direction Only 

7.6.1. Summary of two-colony result 

In Chapter 5, we investigated the effect of one-way migration of 

prey and predators between two colonies undergoing the Lotka-Volterra 

process. Recall that, for large t, both colonies experienced oscil-

latory motion with identical periods of oscillation. There was, how-

ever, a phase difference between the colonies: when predators were 

migrating the second colony lagged the first (Section 5.5.2), and 

when prey were migrating the second colony led (Section 5.4.3). We 

now see If these results still hold in the multi-colony situation. 

7.6.2. Migration of predators 

Renshaw (1982) studied the system where the population is 

divided into colonies represented by the non-negative integers 

(O(i<'°). Each colony undergoes a Lotka-Volterra process, and preda-

tors are allowed to migrate to the right only, at rate v (as illus-

trated in Figure 7.2). Renshaw linearised the equations of the model 

using 

H(t) = Hi + h1 (t) 

P1 (t) 	+ 

where NIP  are the equilibrium values. Subject to the initial con-
ditions 

h1 (0) = 0 	i)O 
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V 	 V 
—p 
	 —4 

Colony 0 	 Colony 1 
	

Colony N 

Figure 7.2. Diagram representing -colony Lotka-Volterra 
model, with one-way migration of predators only, at rate V. 

	

- 0 	1>0 

PO(0) 	k 
	

(7.16) 

the solutions to the linearised equations, for large t, were found to 

be 

- -au/(F8) kr sin (Et-i6) 

p1 (t) - icr1  cos (t-16) 
	

(7.17) 

where 

- 	 r 
- 4X+i+v' 	

- tan14X/(p4-v)'. 
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Thus, as we might expect from the two-colony results, each 

colony oscillates with the same period of oscillation, and colony i 

lags colony i-i by 6. As v increases, this phase lag 6, decreases 

to 0. 

7.6.3. Migration of prey 

Consider now the system described in 7.6.2 above, but, instead 

of predators migrating, we allow prey to migrate at rate n, as shown 

in Figure 7.3. 

Colony 0 	 Colony 1 	 Colony N 

Figure 7.3. Diagram representing -colony Lotka-Volterra 
model, with one-colony migration of prey only, at rate i. 

That is, deterministically, the system is given by 

- AR0  - aR0P0 - nHO 

- OROPO - pP0 
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= XH1  - czH1P1 - 
	 (7.18) 

I'. =aH i P - pP. , 	(i>0). 

The equilibrium values occur at 

 P  0  

(00). 	 (7.19) 

Notice that 	must be restricted to TI<X in order to keep P O  positive. 

For i=0 the equations linearised about this equilibrium are 

hQ  = 

= (B(A—)/a)h0 . 	 (7.20) 

The solution, subject to the initial conditions described in 7.16, 

for colony 0 is 

h0(t) =_ FX LJsin et 

PO(t) = k cos et 

where e = J(xn)p. The linearised equations for 00 are 

= ap/B pj - 

;i = (A8/a)h1 . 	 (7.21) 
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We solve these equations by the approach used by Renshaw (1982). 

Suppose that the cycltc behaviour in colony 0 forces an oscillatory 

behaviour in all other colonies with the same period of oscillation, 

2,/o in all colonies. Then, for large t, a possible solution for 

h(t) might be 

h1 (t) = a 1 	 1 
cos et + b. sin 8t , 	 (7.22) 

where a 1  and b i 
 are constants. Then, from 7.21 

Pi(t) = A/(a8) [a 1sin et -'b i Cos  et] + C, 	 (7.23) 

where C is a constant of integration. Using 7.21, we find that CO 3  

and a1  and b 1  satisfy the relationship 

by/O - a1 = 

ap/e + b1 = bi_i 
	 (7.24) 

This relationship allows us to calculate a 1  and b 1 , and hence, for 

large t, the approximate solutions are 

h(t) = —ka/B 4/(x-m)I  s sin (et+iip) 

Pi(t) = XkI(A-r,) s 1  cos(Ot+i4) 
	

(7.25) 

where 

S = f(Xri)/(Xrrhi) '  , 	= tan'/(X—ri)' 

Thus, for large t, the system behaves as a series of linked 

elliptical cycles. Comparing these results with the solutions for 
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predator migration (7.17), the amplitude decreases geometrically with 

i, and the phase difference increases linearly. The main difference 

between the results is that here the phase difference, ip, is posi-

tive: hence colony i leads colony i-i. As r approaches X (its max-

imum value), ip increases to 7/2. 

7.6.4. Conclusion 

In the infinite-colony Lotka-Volterra process, with one-way 

migration of prey or predators, after a time t, the system forms a 

series of linked elliptical cycles. All colonies oscillate with the 

same period. When only predators migrate, colony i lags i-i, by 6 

(7.17). When prey migrate, colony i leads 1-1, by j, (7.25). Similar 

results were previously seen for two-colony models. 

As the predator migration rate, 'v, increases, 6 decreases to 

zero, showing that the effects of spatial separation become negligi-

ble. As n, the prey migration rate Increases, 4, also increases. 

However, in order that the equilibrium values are positive, a maximum 

bound is imposed on n, so that large values of r cannot be used. 

7.7. Stochastic Model 

In Section 4.6, we used the technique of probability linearisa-

tion to obtain the distribution of the approximating continuous pro-

cess. The technique was used to find the moments of the two-colony 

model in Section 6.4. We now extend this result to the general N-

colony stepping-stone model. 

In this N-colony model, both prey and predators are allowed to 

migrate from colony i to 1+1 at rates vi§-Tli and from I to 1-1 at 

rates respectively, as shown in Figure 7.4. Each colony 

undergoes a stable predator-prey process, though the parameters may 

vary with I. For example, the deterministic equations for colony i 
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_L>  

-'4 

- 

63  

Colony I 	 Cory 2 

- 

C1ony N 

Figure 7.4. N-colony model with general migration rates, 
where - - - represents migration of the prey and the 
predators. 

would be 

- X,H - c1H - 1RP1  - (1+6)E1 + nj_i Hi-  i + 61+1R1+1 

. 

Pj -01  R i  P  i 
- p jPj  (vj+yj)Pj  + vi_1pi_1 + yj+iPj+1 . 	(7.26) 

Following the method used in 6.4, we linearise the probabilities 

and find that the Xolmogorov forward equation of the approximating 

continuous process is 

jplv 
2W 2W 2 a 

a (ajjP )  

2W 

- 	
.-(b1p) 	, 	 (7.27) 

at 2 -1 i-i i i-i  axi 

where p p(xl,x2,x3,.....,x2N;t) 
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= probability of having 

x 1  prey, x 2  predators in colony 1, 

x3  prey, x4  predators in colony 2, 

etc. 

at time t. 

For notational convenience, let 

i = k/2 if k Is even, 

(k+1)/2 if k is odd. 

Then aki  and  b   are given as follows: 

If k odd, then 

b  = (A1 - 2c1H1 - clip  - v j  yj)xk 

- UjHjXk+1 + C i 
i + aHP1  

+ Vj_lXk_2 + i+1'k+2 

If k even, then 

b  = (B 1H1 	lij - Tlj - 6j)Xk + 8jPiXk.1 
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- B.1H. 
1 
P. 
1 + 1_1Xk_2 + 

if k odd, then 

akk = (AI - 2ci i 11. 	
1. 

+ c.P. 
1 	1 

+ V. + 

+ ajiXk+l + cn li 	- 

+ VI..lCk2 + 1i+lXk+2 

akk+2 = - iXk - 1i+l'k+2 

= 'k-2,k 

if k even, then 

akk = (Bj}1j+Uj+r.j)Xi+$jPjXi1 

akk+2 = 

= 

All other elements of A 	(a1 .) are zero. 

As in Section 6.4, we use a result from Arnold (1974) to show 

that X(t), where 
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X(t) = (x 1 (t),x2 (t), 

has a 2N-dimensional Normal distribution .Lth mean and variance 

defined by 

m(3O) 	
eC1t [ 
	+ ( 5 edu)C2] 

t C(t-u) 	C (tu) 

= 5 e 	C3  C3
e 	du , 	 (7.28) 

where 	is the initial value of x(t) (at t=O). 	The matrices 

C 1 ,C2  and 'C3 
 have dimension 2Nx2N, 2Nxi and 2Nx2N respectively, and 

are defined to be: 

r 1 	ci11 	2 	
0 	0 

alp 1 	Si 	
0 	6 	0 	0 

	

Ci - I V
1 
	0 	r2 	2u12  13 	0 

	

0 	TI 1 	B2 2 
	 0 	6 3  

	

••.• • 
	 0 	ON-i 	BNPN 	S  

where r W  A1 - 2c1R - ujPj - V1 - Yi 

S 1 Ir0 1iij _U i fl l 	61 
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C 2  = (c 1 H+u 1 H 1 P 1 , 	1 H 1 P 1 , c 2H+a 2H2 P 2  

0 in 1  0 0 a 1  

0 0 0 a 2  rn2  

C3 = ml 	0 	a3 	0 in3  

o m 	 0 a4 	0 

S 

S 

S 

S 

S 

' N-1 	c 	a  

where 

if k is odd 

a = x ii -c 	+ajfijj+v j+ j )i j  
k 	i i I 

-hi 

mk = 
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if k is even: 

a  = 

i-1i-1 1+1i+1 

-nii-6 i+1i+1 

Thus, although the notation is tedious, when the deterministic 

equilibrium values Hj,P i are known, an approximate solution can be 

found for the probability structure of the continuous approximation 

of the general N-colony stepping-stone model. This method may also 

be used to find moments of the distributions for the higher dimen-

sional models mentioned in Section 7.2. In higher, dimensions, the 

matrices C 1  and C 3  are less sparse, making them more difficult to 

work with. 
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CHAPTER 8 

SPATIAL DIFFUSION 

8.1. Introduction 

In this chapter, we discuss the effects of spatial diffusion, or 

dispersal, in population models. Instead of treating the location of 

the populations as a single point, or N discrete points (as in 

Chapter 7), we allow the individuals to diffuse continuously through 

a region, which may be single- or multi-dimensional. 

An important analytical study of the dispersal of living organ-

isms was carried out by Skellam (1951, 1973). Starting from the 

random-walk problem, he deduced the law of diffusion, and applied it 

to study the spatial distribution of a growing population. Much work 

has been done since then in applying diffusion to ecological models; 

comprehensive reviews on recent work may be found in McMurtrie (1978) 

and Okubo (1980). 

We define the general reaction-diffusion model in Section 8.2. 

Studies of diffusional effects on ecological models fall into two 

main categories. Firstly, the ability of diffusion to damp out spa-

tial pattern, and to stabilise the model, has been investigated - 

this will be discussed in Section 8.3. Secondly, in 8.4, we discuss 

how diffusion can be responsible for the emergence of spatial pattern 

in a spatially homogeneous environment. These two sections deal 

mostly with random diffusion - more general diffusion terms will be 

discussed in Section 8.5. Finally (in Section 8.6), a comparison Is 

drawn between diffusion models, and the multi-colony discrete models 
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considered in Chapters 4 - 7. 

8.2. The Reaction-Diffusion-Equation 

In three-dimensional space, the general N-species equation, 

incorporating diffusion of species, is 

as 	
--1-(A S)_L(A S)---(A s) 

at - 	3x x. 1  I 	DY y
1  i 	z 

+LED 	+..LrD 	
+rD - 

acLxii 	LiJ a Z L Z i aZJ 

+F. 1  (S.] ,x,y,z ) t) 	i,j1,...,N , 	 (8.1) 

where S i  is the density of the i'th species and F represents the 

population interaction terms. The D x i yi. ,D and D z are the diffusion 

coefficients of the i'th species dispersing in the x, y and z direc- 

tions, respectively. The A ,A and A 	are known as advection i yi 

coefficients for the x, y and z directions, respectively. We will 

outline the derivation of this equation, by using the explanations 

given by Okubo (1980). A more rigorous derivation is given by McMur-

trie (1978), following the arguments of Skellam (1951, 1973). 

For simplicity, suppose we have a single type of species, with 

density S, and diffusion is allowed in just one direction, x. The 

flux, .J, is the number of particles flowing through a given area per 

unit time (where by 'area' in one-dimension, we mean length). 

According to Pick's law of diffusion (see Crank, 1956), the flux is 

proportional to the negative of the rate of change of the density. 

Thus 
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J = - 
	 (8.2) 

where D is known as the diffusion coefficient. Using this, we find 

aS_ 
TF 	ax aX aJ 

(8.3) 

The diffusion terms in 3-dimensional space (the D terms in 8.1) are 

also obtained in this way. 

Advectiori terms arise when the movement of species is no longer 

random, but may be subject to influences such as a current or varia-

tion in the environment. Let A(x,t) be the instantaneous velocity of 

the species. Owing to changes in local conditions (that is, advec-

tion), A is variable. The flux of particles generated by this velo-

city is AS. Thus, when advection is Included, the total flux is 

J = AS 
- as  ax 

which means that 

(8.4) 

=-( AS) + 	 . 	 (8.5) 
a t ax 	axI ME 

Equation 8.1 is found from this by generalising to N species, three 

spatial variables, and including the interaction terms. 

The equation 8.1 deals only with self-diffusion: that is, diffu-

sion of the i'th species merely affects the density of Its own 

species. In Section 8.4.4, we will see that Jorn(1977) examined a 

model which included cross-diffusion terms. 

In the next two sections, we will be considering models with 

random diffusion only. Advection effects will be included in Section 

8.5. 



- 187 - 

8.3. The Damping Effect of Diffusio n  

8.3.1. Introduction 

In the deterministic situation, when a region is undergoing a 

predator-prey process, random diffusion can have the effect of damp-

ing out all spatial variation. This will be seen in Section 8.3.2, 

when we consider a linear analysts of the Lotka-Volterra model with 

diffusion. This smoothing effect is not the result of linearising 

the model. More general non-linear studies (Section 8.3.3) also 

indicate the damping effect of diffusion. 

8.3.2. Linear analysis 

Consider the Lotka-Volterra model in which random diffusion is 

allowed in one spatial dimension, x. Then, equation 8.1 is reduced 

to 

- = D 	+ AS 1  - aS 1 S2  
at 	1  ax 2 

as 	a 2s2  
aD 	+ at 	2 2 	

- 1iS 2  
ax 

(8.6) 

where S 1 (x,t) and S2 (x,t) are densities of the prey and predator 

species, respectively, and the D i 's are constant diffusion coeffi-

cients. The populations are allowed to diffuse uniformly (since the 

D1 1 s are constant) through a bounded region (O,L), which is sur-

rounded by an unfavourable environment. 

Okubo (1980) performed a linear stability analysis on this 

model. Let S 1  and S2  be the equilibrium points (for prey and preda-

tors, respectively) which the model would have, if we ignored spatial 
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separation and diffusion effects. Okubo linearised the equation 8.6 

about these points. If s 1  and s 2  are the linear perturbations from 

the equilibrium, he suggested that appropriate boundary conditions 

are either 

(1) s 1 s 2 =0 	atx=0,x=L, 

or 	 (8.7) 

1 	as 2  
(ii) D 1- 

as
--- = 	= 0 	at x=0, xL. 

Under conditions 8.7(1), at the boundary, the linear perturbations 

are zero. This corresponds to an absorbing barrier (an ecological 

example of this would be a group of animals in a clearing in a forest 

- once outside the -bounds of the clearing, the animals die or are 

lost). Conditions 8.7(ii.) imply that there are no fluxes of popula-

tion through the boundary. This corresponds to a reflecting barrier 

(an example is a group of animals inside a fenced field). Using 

these boundary conditions, a finite sine or cosine transformation 

simplifies the equations. When conditions 8.7(1) are used, consider 

the finite sine transform: 

T1 (t,m) 	s(tx) sin (mx/L) dx 	 (8.8) 

i1,2, 	m1,2,..., 

and take the sine transform of equations 8.6. Assume the solution is 

in the form 

Ti = Aje I 	 i=1,2. 
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By substituting this into the transformed equations, we find a solu-

tion for the eigenvalues, r 12 r 2 : 

r12 = [_m22 (D i+D2 )/L2  ± J-4- m 4 (n 1 _D2 ) 2 /L4_4a la ]/2 . 	 (8.9) 

As both solutions for r 1  have negative real parts, small perturba-

tions decay as t- and the population returns to the constant equili-

brium value. 

For boundary conditions 8.7(u), use the cosine transform 

L 
fs 1 (t,x) cos (mnx/L) dx 	 (8.10) 

0 

	

11,2, 	m0,l 2,... 

The equation for the eigenvalues is again given by 8.9, except that 

now in may be zero. When in is zero, the solution corresponds to con-

stant amplitude oscillations. Thus, using conditions 8.7(11), spa-

tially inhomogeneous terms decay for large t, leaving constant ampli-

tude oscillations of period 2ir/ 45. 

Hence, Okubo has shown, using a linear analysis, that only spa-

tially uniform solutions can exist for the Lotka-Volterra model with 

diffusion, In a bounded domain. This analysis shows, too, that, 

under certain boundary conditions (such as an absorbing barrier), 

diffusion can stabilise (that is, temporally stabilise) the Lotka- 

Volterra model. 

8.3.3. Non-linear analysis 

Although the above analysis was linear, non-linear studies have 

also shown that diffusion will damp out spatial inhomogeneities. 

Rosen (1975) studied the N-species model 
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as. 	 N 
= D V2S + (k + 	cx S )S , 	 (8.11) at 	. 	j j •3=1 Ii i 

where 

vs = -4 + - + 
32 

ax 	,2 (8.12) 

with x, y and z the spatial variables, D1  the diffusion coefficients, 

and a 13  . .=-a 31  .. 1 • The a. .3 
 's represent the interactions between the I and 

j species, so that the rate of increase of S, through interaction 

with S is where ,>0, for all i. Thus, when N=2, equations
js  

8.11 simplify to the Lotka-Volterra equations with random diffusion. 

The equations 8.11 are assumed to exist in a bounded region with the 

same boundary conditions as before (8.7). By assuming a temporally 

periodic solution and substituting it into the equations, Rosen 

showed that no spatial patterns are possible when the solution is 

periodic in time. 

This model was studied in more detail by Murray (1975), who made 

the additional constraints that N is even and that for all 1, 

D>O. Using the maximum principle (see Protter and Weinberger, 1967), 

he shoved that in a bounded region, diffusion damps out all spatial 

variations, provided that all of the interaction terms (a 11 's) are 

non-zero. He said (without proof) that, with minor modifications, 

the results should carry over to the infinite domain. By including a 

prey saturation term in the prey birth rate (that Is, the c factor in 

the stable model), the effect is merely to enhance the damping of the 

inhotnogeneities. Jorn and Carmi (1977) extended these results to 

allow for different diffusion coefficients for each species, but with 

the constraint that 8"1, for all I (that is, the changes, through 

interaction, in S 1  and S J,are  of equal size but opposite sign). 

This decay of spatial pattern was extended to more general 
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situations by Conway et al. (1978). They looked at equations of N-

species systems undergoing diffusion, advection and non-linear 

interaction 

as. 
_.!DV2S + A+A 3S+A. 
at 	i 	i 	xx 	yay 	z3z 

+ F. 1 
(s i ts 2,...,SN) , 	 (8.13) 

in a bounded region. Provided the boundary is sufficiently smooth 

(for example, reflecting boundary conditions), and all the diffusion 

coefficients exceed a certain critical value, then when t gets large, 

the solutions decay to spatially homogeneous functions of time. 

Thus, in a bounded region, when the diffusion coefficients are 

sufficiently large, only spatially uniform solutions exist asymptoti-

cally for coupled systems. 

8.4. The Pattern-Developing Effect of Diffusion 

Introduction 

In the last section, we saw that diffusion usually tends to have 

a damping effect on the population, so that a spatially uniform den-

sity results. However, an important exception to this behaviour is 

known as 'diffusive instability'. This means that diffusion can des-

tabilise an otherwise stable system and sometimes be responsible for 

the development of a new spatial pattern. We shall outline the 

results showing the ability of diffusion to destabilise a model 

through linear methods in Section 8.4.2, and non-linear methods in 

Section 8.4.3. 

Although in most studies, it is only the effects of self-

diffusion which are considered, it is interesting to see (Section 
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8.4.4) that cross-diffusion, too, may give rise to instability. 

8.4.2. Linear analysis 

The idea that diffusion may disturb the stability of a system 

was first noticed by Turing (1952). To model the growth of cell tis-

sues, he proposed a system of equations involving both chemical reac-

tions and diffusion. He showed that in a spatially homogeneous ring 

of tissue, a regular, stable, spatial pattern could emerge. 

Diffusive instability was first considered in an ecological con-

text by Segel and Jackson (1972). They considered the model of two 

interacting and diffusing species: 

- 	2S 1  
- D1 2 + F 1 (S 1 ,S 2 ) 

ax 

as 2 	32 s 2  

at 
= D2 

2 
 + F2 (S 1 ,S 2 ) (8.14) 

The functions F 1  and F2  are general functions of the densities. The 

D 1  and D2  are diffusion coefficients, and diffusion is allowed in one 

spatial dimension (x). Let S 1  and S2  be the equilibrium values which 

the system would have if spatial separation were ignored - the condi-

tions necessary for the existence of an equilibrium value will be 

discussed. Then, Segel and Jackson wrote the equations 8.14 linear-

ised about this point as 

2 
as 	as 1  

= D1 2 + a 11 
 
s 1  + a 12  s 2  

2 
as 	as 2  
—=D 
at 	22c2 + a

21  s 1  + a22  s2 
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(The equations hold in a large domain so that boundary conditions can 

be ignored.) They performed a linear stability analysis on the model 

by assuming solutions of an exponential form, and examining eigen-

values. In this way, the conditions under which instability will 

occur can be found. In order to have aninitial steady state equili-

brium, we must have 

a 11  + a22  < 0 

a ll  a 22 
 - a 12a21  > 0 
	

(8.16) 

Provided that D 1D2 , they showed that by introducing diffusion into 

the system, instability will occur if 

all D2  +a22l) 1  > 2 JD 1D2 (a 11a22  - a12a21Y . 	 (8.17) 

To simplify these conditions, the authors pointed out that expres-

sions in 8.16 imply 

a 11a22  < 0 

a 12a21  < 0 
	

(8.18) 

From 8.18, we see the a 11  and a 22  must have opposite sign. 	The 

species with positive a jj  is called the destabiliser (say S 1 ) and 

that with negative a ii 
 is the stabiliser. Condition 8.17 shows that 

D2>D 1  (when S 1  is the destabiliser), and also that the ratio of the 

two diffusion coefficients has a critical value beyond which dif-

fusive instability will set in. Thus, Segel and Jackson summed up 

these necessary (but not sufficient) conditions for diffusive insta- 

bility as 
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self-reinforcement of one species must be positive (stabiliser), 

self-reinforcement of other species must be negative (desta-

biliser), 

(iii)coupling terms must be of opposite sign, 

(iv) diffusion coefficient of stabiliser must be larger than diffu-

sion coefficient of destabiliser. 

This method was also used by Levin (1974) in studying a system 

of discrete intercommunicating 'patches' of species. This model is 

not strictly a diffusion model, because the habitat is not continu-

ous, but composed of discrete areas. Instead of diffusing continu-

ously throughout the region, the populations migrate between the 

patches at a rate proportional to the densities in the patches. How-

ever, we shall include it here because its spatially continuous 

analogue will be discussed in Section 8.4.3. In a set of M patches, 

with prey and predator densities in each patch i denoted by 

S 1  and S2 , the equations for the model are 

dS 1   

dt - 

- 
Sii (X-c 1  S 1 -c62 ) + 	d(S 1 -S 11 ) 

3 

d S21  
dt = S21(eS1j-v-c2S2i) + d' 1 (S 2 -S2 ) . 	 (8.19) 

The parameters of the predator-pry process are the same on each 

patch. The terms c 1  and c 2  are self-limiting factors for the prey 

and predators, respectively. The d 1 . terms represent the rate of 

migration of the prey from patch j to patch i, with the d' 1  terms 

representing the predator migration rates. Levin found that dif-

fusive instability could set in provided that c 1 c2<O. This is a spe-

cial case of an Allee, or humplike, effect in the growth rate of a 
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species. 	That is, if f(S) is the growth rate of a species S, an 
* 

Allee effect 	 is present if there is some point S 

such that 

* 
f'(S) > 0 when 0S<S 

f'(S) = 0 when S=S* =S  , 	 (8.20) 

* 
f'(S) < 0 when S>S 

which means that the growth rate reaches a maximum. Levin showed 

that provided an Allee effect is present in one species, diffusive 

instability is possible. 

8.4.3. Non-linear analysis 

The danger of performing these linear stability analyses was 

pointed out by Steele (1974). He looked at the Lotka-Volterra model 

with diffusion (given by equations 8.6) in a bounded region, with 

zero flux boundary conditions. By writing the solution in terms of 

Fourier series, he suggested that the non-linear terms create new 

modes of smaller and larger wavelengths, as time increases. From 

this he deduced that, by including non-linear terms, diffusion may 

never be able to damp out spatial variations. Steele's theory was 

incorrect for this model, since Murray (1975) showed that, in a 

bounded region, no temporally periodic, spatially non-uniform solu-

tions can exist (see Section 8.3.3). Nevertheless, it emphasised the 

possible dangers of omitting non-linear terms. 

Segel and Levin (1976) extended the work of Segel and Jackson 

(1972) and Levin (1974), which was mentioned in Section 8.4.2, by 

taking non-linear effects into account. Using a method of successive 
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approximations, they performed 

both the discrete and continuous 

Segel and Levin (1976), the 

effect. An autocatalytic effect 

itself, as opposed to self-da 

the prey and predator densities, 

a non-linear stability analysis on 

models. In the models considered by 

prey population had an autocatdytic 

occurs when the species reinforce' 

ping. For example, if S 1  and S 2  are 

respectively, and 

dS 1  
—= 
dt 	S1F(S1,S2) 

then an autocatalytic effect is present in the prey population if 

BF 
--> 0 . (8.21) 

For ease of notation, let D and 02  be the diffusion coefficients of 

the prey and predators, respectively. Segel and Levin found that in 

a continuous homogeneous environment, random dispersal can destabil-

ise a predator-prey model if there is an autocatalytic effect present 

in the prey population, and 02  is sufficiently greater than D 1 . As. 

the perturbations increase, non-linear effects become evident and 

bring about a new steady, but now spatially heterogeneous, distribu-

tion. 

In the discrete model, Segel and Levin noticed a similar effect. 

Random dispersal, combined with non-linear effects, can destabilise 

the model, and a spatially heterogeneous pattern can result. When 

the number of patches in the region is large, the conditions for this 

spatial pattern to occur approach those necessary in the case of the 

continuous model above. However, when the number of patches is 

fixed, unlike the continuous case, no destabilisation occurs if D is 

strong enough, regardless of the ratio of D to 

One obvious application of this theory of spatial pattern emerg- 
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ing from a continue1s homogeneous environment is in a marine ecosys-

tem. Levin and Segel (1976) suggested that such behaviour might 

explain the spatial patchiness of oceanic plankton blooms. In 

another attempt to explain plankton distribution and movement in the 

sea, Mimura (1979) proposed the model 

as  - 
at 

	D1 _____ 
2 + [W(S 1 )-aS 2 )S 1  

ax 

as 	a2s 2  
—=D 	- at 	2 2 	(n(S2)-8S1]S2 . 
	 (8.22) 

ax 

The model represents two species of plankton, with one species 

preying on the other (S 1 ). Miinura assumed that in and a are functions 

of only S 1  and S2 , respectively, and a and 8 are positive. 	This 

means that the birth rate of the prey is independent of the predator 

density, and the death rate of the predators independent of the 

number of prey. The diffusion coefficients D and D 2  are both posi-

tive, meaning that the tendency is to diffuse away from high concen-

trations of one's own species. The equations are assumed to exist in 

a bounded region with smooth boundary. When m is monotonic non-

increasing, and n is monotonic non-decreasing, and one of the diffu-

sion coefficients is small, Mimura showed that the solution is asymp-

totically spatially homogeneous. Recall that in Section 8.3.3, Con-

way et al. (1978) showed that this is always true when D and D are 

large. 

Mimura and Murray (1978) extended this study (still in a bounded 

domain) to cover the case where rn(S 1 ) exhibits an Allee effect (for 

example, self-saturation of the prey). In this case, patchiness will 

indeed result if D is small, in particular small compared with 1)2. 

This result is quite similar to that of Segel and Levin (1976), 
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except that Segel and Levin included an autocatalytic term in the 

growth rate, while here an Allee effect is included. The difference 

between Mimura and Murray's result and that of Segel and Jackson 

(Section 8.4.2) is that here the diffusion coefficient of the prey 

(D 1 ) is allowed to become very small, so that non-linear effects 

become important. 

8.4.4. Cross-diffusion 

Jorn (1977) investigated the effect of introducing cross-

diffusion into the Lotka-Volterra model. The equations are 

as 	a2s 	a2s 
at = D1 ax 

2 + D12 2;2 + XS  - 

as 	a2s 1 	a2 s 
= D21 

ax
2 + D22 	 1

2 + 
	- 	

. 	 (8.23) 
at 

The D terms represent the effect of the diffusion of S on its own
ii 

density (as before), whereas the D terms represent the effect on Si
ij 

of the diffusion of S (for example, in a predator-prey situation, 

prey would diffuse away from predators). When the cross-diffusion 

terms (D 12  and D21 ) are zero, the model reduces to that of Jorne and 

Carmi (1977), discussed in Section 8.3.3, and the solution is spa-

tially homogeneous. On the other hand, when self-diffusion is 

absent, and 012>0,  D2l<O Jorne' found that cross-diffusion may give 

rise to instability. Although cross-diffusion may be possible in 

electrolytic solutions, it is not usual in ecological systems. The 

conditions on the diffusion coefficients above, would require the 

prey to drift towards the predators, and the predators to drift away 

from the prey. 



- 199 - 

8.4.5. Conclusions 

Random diffusion may destabilise a previously stable model, and 

a new, spatially heterogeneous, steady state may result. 

In a linearised model, necessary conditions for diffusive insta-

bility are that D (diffusion of prey) must be less than 02  (diffu-

sion of predators), and that D and 02 must both be larger than a 

certain critical value. In non-linear models, non-linear reaction 

terms (such as an Allee or autocatalytic effect) relax these condi-

tions so that instability can occur when D 1  is small, provided D 2  is 

large enough. However, In a fixed patchy environment, if D 1  is large 

enough, no diffusive instability is possible for any value of 02. 

Finally, diffusive instability is also possible in models incor-

porating cross-diffusion, but the necessary conditions on the diffu-

sion coefficients make this biologically unlikely. 

8.5. More General Forms of Diffusion 

In the last two sections, only the effects of random diffusion 

have been condidered. In many cases, this may be unrealistic as the 

movement of species through an environment may be influenced by such 

factors as a current or cross-wind, variability in the environment, 

or bias caused by large concentrations of population. We will now 

give a brief outline of the behaviour of a population which is 

diffusing under influences such as these. 

Using three different forms of diffusion incorporating some of 

these factors, Gurney and Nisbet (1975) investigated the ability of a 

single population, in a spatially variable environment, to regulate 

its numbers through dispersal. The model they thvestigted is a 

single-species model only, but, nevertheless, it Is interesting to 

look at their results to see what the effect of different types of 
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diffusion can be. If G(x) is the linear growth rate of the species 

at x, S(x,t) the density at x and time t, the three different models 

are 

purely random dispersal 

- 
= G(x)S + 

random plus density-dependent dispersal 

as 	 a S 	S a  ]S 
- 

= G(x)S + D--- + 

(movement is largely random but modified to a small extent by 

large concentrations of the species), 

(iii)purely density-dependent dispersal 

as  - = GXS+K-[4 

(movement of the species is entirely influenced by large concen-

trations). 

Gurney and Nisbet showed that the species cannot be stabilised using 

type (i). The species will be stabilised using type (iii), and type 

(ii) also has a stabilising effect under certain conditions of the 

growth function. That is, wholly random motion, in a linear single-

species system, is incapable of exerting any stabilising influence. 

Density-dependent dispersal stabilises the system by increasing the 

diffusion rate in densely populated areas. 

Cotnins and Blatt (1974) looked at the effect of dispersal on 

models of predator-prey populations where both species have a prefer-

ence to disperse towards the centre of the habitat. The model may 
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represent animal systems in which there is a favourable area of the 

habitat. The equations of the model are 

as 	a2s 	
I'll

-- = D 
	+ u 1-- sign (x) + XS 1  - c 1 S 2 

 ax 

as 2 as 
= D2 2 + u2- 	sign (x) + 	- jS2  , 	(8.24) 

at 

where 

sign (x) = +1 	if x)0 

-1 	if x<0. 

The u 1  and u2  terms are advection terms (described in Section 8.2), 

which arise because the movement is no longer random. Numerical 

analysis of the model showed that populations quickly settle down to 

stable spatial distributions, with the populations accumulating in 

the central region. Indeed, McMurtrie (1978) suggested that attrac-

tion to, or repulsion from, particular points in space tends, as a 

rule, to confer stability on predator-prey interactions. 

The effects of a heterogeneous environment may be incorporated 

into the dispersive force, as shown by Shigesada et al. (1979), in a 

model of two competing species: 

as 	a2 	 + k .i1•5 
I  

= _[(a 1  +b 11 S 1  +b12S2)S13 	laxL 1 

+( c- 01112S2)S1 



- 202 - 

as 2 	2 
= -.--[(a2+b21 S 1+b22 S 2 )S 2 ] + k 2 [s2..j 

ax 

+(a2- 821 S 1 B22 S 2 )S 2  . 	 (8.25) 

The interaction rates of the model are denoted by a, $ i j . The dif-

fusion term is broken into two parts. The first part represents ran-

dom diffusion (a t ), density-dependent self-diffusion (bit),  and 

density-dependent cross-diffusion (b). In the second part, 	is a 

measure of the favourability of the environment. 	This term 

represents diffusion influenced by the variability of the environ-

ment. Thus, the model given by equations 8.25 is one of two compet-

ing species which diffuse, partly, in a random fashion, but also sub-

ject to influences from variation in the environment, and large con-

centrations of both species. Shigesada et al. found that the combi-

nation of the environmental heterogeneity and the non-linear disper-

sive force gives rise to a spatial separation of the two species, and 

conjectured that this separation may stabilise the model. Their 

numerical work showed that this form of diffusion could stabilise the 

model, at least for certain values of the a1  's and 8's. 

From these examples, we see that diffusion which is not random - 

for example, non-linear, density-dependent, or diffusion with advec-

tion - may tend to have a stabilising influence on the system. 

8.6. Implications for the Stepping-Stone Model 

8.6.1. Continuous approximation 

In this chapter, we have discussed the effects of spatial diffu-

sion in a continuous environment. We will now develop a spatially 

continuous analogue of the discrete stepping-stone model, and, using 

this, consider what possible implications the results of this chapter 
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might have for the multi-colony model. 

In the stepping-stone model, the equations are formed in terms 

of numbers of predators and prey in each colony. On the other hand, 

the diffusion nodel relates the densities of species present at a 

point, x. To find a continuous approximation for the discrete model, 

we must first associate an area with each colony, and hence a popula-

tion density. 

For simplicity, we develop this theory using the prey notation 

only. The results follow similarly for the predators. The prey 

equation in a stepping-stone model (from 7.1) is 

= F(H I P) + n+(Hi_ii) + t(Hj+1-}Ij) . 	(8.26) 

where H1  and P 1  are the numbers of prey, predators in colony I 

(-<i<) and F represents the growth and interaction terms. If, 

with each colony I, we associate the region (i-1/2, 1+1/2), then we 

may define S 1 (i),S 2 (i) to be the densities of the prey, predator 

populations, respectively, in cell i. (This concept of population 

densities diffusing between discrete cell units has been discussed by 

Levin (1974, 1978), and is mentioned in Section 8.4.2.) Because the 

cell has unit area, Si(i) =Hi. 

In the approximating spatially continuous case, suppose that the 

individuals migrate in smaller steps. That is, instead of moving 

from i to 1±1, the prey may move from x to xtx. Equation 8.26 

becomes 

as (x) 
= F(S 1 (x),S 2 (x)) + 

+ ?Js 1 (x+x)-S 1 (x)] , 	(8.27) 
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where n and n are suitably modified forms of n and fl. 	After 

expanding by Taylor's series, this becomes 

as 1 	 2 a 2 s 	 as 
= F(S 1 ,S 2 ) + (+)(6x) 	21  + 	 (6x)-- . 	 (8.28) 

3x 

In order that the continuous model does actually approximate the 

discrete one, we must impose constraints on the manner in which 6x+0 

(see Section 3.7.1). The constraints we impose are that the infini-

tesimal mean and variance of the change in position of prey remain 

constant. That is, 6x0 in such a way that 

ox (?i-i+) + 

(6x)2(+) + r++n_ . 	 (8.29) 

These constraints are possible, for example, if we let 

= 
+ +r 

-  
2(5x) 

2 	ox 
 

- 71+fl_ + 	
( 8.30) 

= 2(Ox) 2  

Thus, in the limit as 6x0, equation 8.28 becomes 

as 
_ L = F(S1S 	 1 	 n -i 

as 

	

L 	(8.31)  + 	. 	• 2   
+ 	ax/_ 	-+ 

In the same way, the continuous approximation of the predator equa-

tion is 

as 
=C(S1,S2) + ( v+V) 

2 + 
( V_-V)_ 	. 	 ( 8.32) 
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Hence, we have seen that the discrete stepping-stone model may 

be approximated by a continuous diffusion model. If, in the discrete 

model, the population migrates with equal parameters in both direc-

tions (n4=ri), then, in the continuous approximation, the population 

experiences random diffusion. If these parameters are unequal, then, 

in the continuous model, the population undergoes diffusion with 

advection. Using this continuous analogue, we will look at the 

implications of the results of this chapter for the discrete migrat-

ing models of the last chapter. 

- 	8.6.2. The damping effect 

By applying the results of Section 8.3 to stepping-stone models, 

we consider when migration should have a damping effect. All the 

diffusion results mentioned here have been discussed in Section 8.3. 

It has been shown (by Okubo, 1980, Murray, 1975, and Jorn and 

Carmi, 1977) that, in the bounded Lotka-Volterra model, random diffu-

sion damps out all spatial variation. The corresponding discrete 

case is the N-colony stepping-stone model, with equal migration 

parameters (r+n, vv). From Okubo's result (using reflecting 

boundary conditions, 8.7(1)), we would expect that, for large t, 

each colony would undergo constant amplitude oscillations with period 

2-rn .f?. This has been shown to be the case when N=2 (Section 

5.3.3). 

From Conway et al. (1978), this damping of spatial pattern may 

be applied to all N-colony models undergoing some predator-prey 

interaction, provided that all the migration parameters (which may be 

unequal) are large enough. 

Murray (1975) claimed that even in an infinite domain, when the 

diffusion coefficients of predators and prey are equal, no spatial 

pattern is possible. This damping is further enhanced when the prey 
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growth rate has a self-inhibiting (c) factor. Previous results for 

the dLscrete case agree with this. When v+=v_=fl+=fl_ Renshaw (1982) 

showed that in the unbounded stepping-stone Lotka-Volterra model, 

perturbations in all colonies will decay to the equilibrium, at the 

rate t- 1/2 (Section 7.5). When the self-inhibiting c factor is 

included, we saw (result 7.9) that damping is increased by the factor 

However, in the semi-infinite discrete case (colonies 0 to 	), 

Renshaw (1982) showed that one-way migration does not stabilise the 

Lotka-Volterra model - each colony oscillates with decreasing ampli-

tude. As one-way migration corresponds to advection with diffusion, 

this would appear to contradict McMurtrie's (1978) suggestion that 

advection tends to confer stability on the model. It can be argued 

that, in the discrete model, colony 0 forces a periodic solution in 

the other colonies. In the continuous model, the population from 

colony 0 is spread across an area from 0 to 1, say. This might imply 

that the force producing the spatially heterogeneous result is 

reduced - thus giving a stable result as McMurtrie suggested. How-

ever, in the continuous model, if we could regard the region (0,1) as 

a unit of population, this unit could have the same forcing effect as 

colony 0 in the discrete model. If this were so, we would expect the 

same solution In both cases, which contradicts McMurtrie's suggestion 

of stability. 

8.6.3. Diffusive instability 

In this section, we consider the results of 8.4, and see if it 

is possible for migration in a stepping-stone model to destabilise 

the system and cause a new spatially heterogeneous state to appear. 

In the stable predator-prey process, the c factor in the prey 

birth rate may be regarded as an Allee effect. Consider an N-colony 
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model where each colony undergoes a stable process, with prey and 

predators migrating at rates ri and v, respectively, in both direc-

tions. Segel and Levin's (1976) results (Section 8.4.3) show that no 

instability will occur if is large enough, regardless of the size 

of v. But, by increasing the number of colonies, we can approximate 

the discrete model by a (bounded) continuous process. Then, by 

Mimura and Murray's (1978) result, diffusive instability will occur 

in the continuous process if n is small compared with v, and a spa-

tial pattern will result. 

Diffusive instability may be a possible explanation of the 

results found when looking at the effect of migration on population 

variance in the two-colony model (Section 6.5). Recall that migra-

tion had three different effects depending on the quantity Q, where 

(6.70) 

Q = dH-P8H 

Looking at the effect of the change in Q on the predator variance, we 

saw that when Q was small, the variance decreased with migration. As 

Q increased, v had to be sufficiently large in order to decrease the 

variance. When Q was very large, no decrease was possible. If we 

regard Q as some measure of the susceptibility of the model to dif-

fusive Instability, then, when Q is very large, instability will 

always occur and migration will only increase the variance. 

When studying this two-colony model, only migration of predators 

was allowed. The result of Segel and Levin (1976) would imply that, 

if we also allowed prey to migrate, migration should always decrease 

the variance, provided i was large enough. 
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Conclusion 

In a bounded region, diffusion will generally damp out all spa-

tial variation, provided the diffusion coefficients are large enough. 

Murray (1975) suggested that damping should also occur in an infinite 

domain. Under certain conditions, diffusion may stabilise an other -

wise unstable model, for example, the Lotka-Volterra model in Section 

8.3.2. 

On the other hand, it is possible for diffusion to destabilise a 

previously stable system. In a stable model with non-linear reaction 

terms, if the diffusion coefficient of the prey is small enough com-

pared with that of the predator, instability may set in, and a new 

stable spatial pattern may emerge. Diffusion models have often been 

proposed to explain the appearance of spatial pattern in marine 

ecosystems (Section 8.4.3). This diffusive instability has been 

shown to occur in bounded regions with smooth boundary conditions, 

and in sufficiently large domains so that boundary conditions may be 

ignored. 

By finding a continuous approximation of the discrete stepping-

stone model, a comparison was made between continuous diffusion and 

discrete migration. In many cases, the stabilising effect of diffu-

sion agreed with the stabilising effect of migration previously seen. 

One-way migration, however, which corresponds to diffusion with 

advection, did not confer stability, which seemed to be contrary to 

McMurtrie's (1978) proposals for continuous models. Though the con-

cept of instability arising through migration was not noticed in 

discrete models, it might offer a possible explanation for the change 

in variance through migration, seen in Section 6.5. 
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