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  I 

Effects of 50m and 400m Race Paces on Three-Dimensional 
Kinematics and Linear Kinetics of Sprint and Distance Front 
Crawl Swimmers.  
 

Many authors have proposed that sprint and distance front crawl swimmers differ in their 
stroke characteristics, however little three-dimensional quantitative data is provided to support 
these assumptions. It is currently unknown whether sprint and distance swimmers exhibit 
distinct stroke characteristics when swimming at the same pace. There were two main 
purposes of this study: 1) to determine whether there are distinct kinematic and kinetic 
differences between sprint and distance front crawl swimmers, and 2) to investigate whether 
stroke characteristics of front crawl swimmers, in terms of kinematic and kinetic variables 
change with swimming speed.  
          Fifteen male national/international front crawl swimmers (17.87 ± 2.33yrs; 73.87 ± 
8.72kg; 183.02 ± 6.84cm) volunteered to participate in this study. This sample was composed 
of seven sprint (SG) and eight distance (DG) swimmers. Each testing session required 
swimmers to perform four 25m sprints and one 400m max effort (front crawl), with no pacing 
strategy, in a randomised order. Each trial was performed through a 6.75m

3
 calibrated space 

and recorded by six gen-locked JVC KY32 CCD cameras (4 below and 2 above water) 
sampling at a frequency of 50 fields per second. All trials were processed using ‘APAS’ 
software to obtain 3D coordinate data. Anthropometric measures were quantified using the 
elliptical zone method. Both data sets were entered into a bespoke MATLAB program which 
output: average swim velocity (Vav), stroke length (SL), stroke frequency (SF), stroke index 
(SI), vertical and lateral displacement for each segment, shoulder and hip roll angle, and 
elbow joint angle variables (1

st
 back, shoulder x, end back, hand exit and recovery elbow 

angle). Stroke phase (entry, pull, push and recovery) durations (%) were quantified at instants 
corresponding to percentiles of the stroke cycle. Centre of mass position data were obtained 
from the digitised 3D data using a 14 segment rigid link body model in conjunction with the 
body segment parameter data obtained by the elliptical zone method. Component whole body 
velocity (VCOMHor), acceleration (accCOM) and net force (forceCOM) were derived from the centre 
of mass position data. Variables were statistically analysed in SPSS v.14.0, using a General 
Linear Model, repeated measures analysis of variance.  
      The results indicated that the groups differed (p<0.05) with respect to the duration of 
the pull phase, the occurrence of max left and right shoulder roll and the temporal sequencing 
of the shoulders and hips rolling at both sprint and distance pace. Other variables approached 
significance between the groups, particularly when distance swimming, such as the duration 
of the push phase (p=0.082), the Vav (p=0.071) and average VCOMHor (p=0.071). The stroke 
kinematic variables that changed between paces (p<0.05) were the duration of the entry, pull, 
push, hand exit and recovery phases; the elbow angle at the end back position and the push 
phase range; total shoulder and hip roll; the sum average vertical displacement of the foot; 
the time to max vertical and lateral displacement of the finger; the time at max right elbow 
extension; the average VCOMHor, Min VCOMHor and Max VCOMHor. The stroke kinetic variables 
that changed between paces (p<0.05) were the Min accCOM, Max accCOM, range of accCOM, 
min forceCOM and max forceCOM. Other variables approached significance between the paces 
such as the entry elbow angle (p=0.084), the max right elbow extension (p=0.056), the finger 
lateral range (p=0.067) and the time to max accCOM (p=0.079). 
 The SG displayed shorter durations of the pull and push phases than the DG for both 
paces, which was linked to the faster horizontal velocity and/or vertical acceleration of the 
hand. The sequencing order of the shoulders and hips changed between groups and paces, 
which was speculated to be controlled by the magnitude of the leg-kick. The main changes 
between paces were the greater magnitude of elbow angle at both the end back position and 
the push phase range, which contributed to the adjustment of kinetic variables. SL, SF, SI, Vav 
and the duration of the all the stroke phases changed between sprint and distance pace in 
order to meet the physiological requirements of the race distance. The prolonged duration of 
the entry phase, when distance swimming, resulted in a delayed attainment of the catch 
position and maximum stroke depth. Moreover, the magnitude of shoulder and hip roll 
increased at distance compared to sprint pace, which in turn influenced the magnitude of 
average vertical and range of lateral displacement of the finger between paces. 

In conclusion, contrary to the literature, SG and DG differed only with respect to the 
duration of the pull and push stroke phases and the sequencing order of the shoulders and 
hips. All swimmers adjust the majority of kinematic and kinetic variables depending on the 
swim pace in order to optimise performance for that race distance. 
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Race distances in competitive freestyle swimming tend to be categorised as either 

‘sprint’ or ‘distance’ events. The 50m and 100m races are classified as sprint events 

whilst the 200m, 400m, 800m and 1500m are classified as distance events. Swimmers 

are inclined to specialise in a particular event to suit their innate and conditioned 

physiological characteristics (McArdle et al., 1996; Maglischo, 2003). Whilst the 

genetic predisposition of an individual has been recognised as having a direct link to a 

swimmer’s performance, other factors such as training, stroke mechanics, 

coordination, pulling strength and racing ability can overcome one’s genetic 

‘disadvantage’ for a particular event (Hohmann et al., 1998; Maglischo, 2003).  

 

Coaches design training programs for sprint and distance swimmers, which include a 

wide range of intensities, to strategically direct the swimmer towards their peak 

performance in their chosen event, and to develop physiological aspects regarded as 

deficient (Lydersen, 1999; Johnson and Gadboy, 1999; Maglischo, 2003). However, 

the possible impact of this accepted practice on the swimmers’ stroke mechanics has 

not been considered adequately. Bearing in mind the principle of specificity with 

regard to training, this is an important consideration. Many authors have speculated 

that sprint and distance swimmers utilise distinct stroke characteristics in order to 

achieve maximal performance for their specific event (Colwin, 1969; Costill et al., 

1992; Ito and Okuno, 2002; Cappaert, 1998). However, it remains unclear whether 

these groups vary in terms of kinematic and kinetic characteristics and/or whether 

these characteristics are influenced by the swim velocity. 

 

Researchers have reported that swimmers adjust the magnitudes of stroke frequency 

(SF) and stroke length (SL) in relation to swim velocity (Craig and Pendergast, 1979; 

Pai et al., 1984; Keskinen and Komi, 1993; Pelayo et al., 1996; Cappaert, 1998).  

However, it is unknown whether both sprint and distance swimmers change SF and 

SL in a similar manner between swim speeds.  

 

Due to the fact that the arms contribute more to propulsion than the legs in freestyle 

swimming (Adrian et al., 1966; Counsilman, 1973; Di Prampero et al., 1974; Holmér, 

1979; Watkins and Gordon, 1983; Deschodt et al., 1999), the arm trajectory has been 

assessed to identify stroke patterns which may be associated with optimal 

performance (Rushall et al., 1994; Deschodt et al., 1996a, 1996b). There is 
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considerable speculation that sprinters utilise a deeper stroke pattern than distance 

swimmers. Cappaert (1998) reported quantitative data that supported this perception 

(sprint swimmers: 1.6m, distance swimmers: 1.0m), however the magnitudes of these 

values are large in comparison to those obtained in similar studies. Distance 

swimmers have been characterised by a longer SL than sprint swimmers (Okuno et 

al., 2002; Maglischo, 2003).  

 

Although the lateral component of the stroke pattern is regarded as essential 

(Maglischo, 1989; Rushall et al., 1994; Deschodt et al., 1996a; Deschodt et al., 

1996b), there is disagreement as to which group, if any, produce greater magnitudes. 

Based on the above indications and the mass of speculation in the literature, it is 

presumptuous to suggest that the stroke pattern, incorporating lateral, vertical and 

horizontal displacements, differs between sprint and distance swimmers. It is possible 

that sprint and distance swimmers utilise similar stroke patterns at specific paces but 

differ between paces due to the difference in physiological demands. The stroke 

pattern characteristics reported in the extant literature are unclear in relation to the 

effects of swim distance specialisation and the pace adopted for sprint and distance 

events. While some authors have expressed opinions regarding differences with 

respect to the arm/hand pathways during a stroke cycle (SC- begins and ends with the 

hand entry of the same arm) between sprint and distance swimmers, it is apparent that 

more research is required using three-dimensional methods to investigate these 

differences and the effect of swimming pace as the distance of the event changes. 

  

It has been suggested that the arm trajectory during underwater swimming is related 

to the magnitude of body roll (Lui et al., 1993; Hay et al., 1993; Payton and 

Mullineaux, 1996). In fact, Lui et al. (1993) established that the medio-lateral motions 

of the hand result from the swimmer’s rolling actions of the trunk and not the 

hand/arm movements relative to the swimmer’s internal reference frame. The 

magnitude of body roll has been reported to differ between sprint and distance 

swimmers (Cappaert, 1998) and to be influenced by swim speed (Castro et al., 2002; 

Yanai, 2003). Specifically, body roll has been found to decrease as swimming speed 

increases (Castro et al., 2002; Yanai et al., 2003) and that distance swimmers utilise a 

greater body roll motion than sprinters. However, body roll research has been limited 

in the past due to the methods of quantifying the angles of this parameter. 
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Consequently the accuracy of previous data is questionable. Thus there is a need for 

further investigation of body roll using three-dimensional analysis methods.  

 

The magnitude of the elbow angle has been associated with the arm pathway, force 

production and limb velocity of the hand, which all contribute to forward propulsion 

(Deschodt et al., 1996a; Cappaert, 1998; Haffner and Cappaert, 1998; Maglischo, 

2003). It has been proposed that sprinters utilise a greater elbow angle than distance 

swimmers (Wilke, 1992; Cappaert, 1998). Alternatively Voronstov and Rumyantsev 

(2000) suggested that as the swim velocity increases, so too does the elbow angle, but 

did not provide quantitative data to substantiate these claims. It is therefore unclear 

whether the magnitude of the elbow angle is dependent on the swim velocity or 

influenced by the distance specialisation of the swimmers. Thus, there is a need to 

examine elbow angle throughout the SC with regard to sprint vs. distance pace and 

swimmer specialisation.  

 

Sprint swimmers have been characterised by a greater knee range of motion (ROM) 

during the kick than distance swimmers and this has been proposed as advantageous 

to propulsion (Cappaert, 1998). It is assumed that, as a consequence of the increased 

knee ROM, the foot ROM for sprint swimmers would also be greater in sprinting than 

in distance swimming. But this remains to be established. Further, although swim 

velocity is known to influence the kicking rhythm (Colwin, 1969; Costill et al., 1992; 

Maglischo, 2003) the displacement of the kicking motion has not been investigated.  

 

Front crawl swimmers display either a ‘one-peak’ or ‘two-peak’ COM velocity 

pattern (Maglischo et al., 1988; Maglischo, 2003). It has been suggested that the 

particular style a swimmer adopts is influenced by the body type, hand pattern, body 

roll and kicking rhythm (Maglischo, 2003). All of these have been found to differ 

between sprint and distance swimmers. To date, the influence of distance 

specialisation on COM velocity profile has not been investigated.  

 

Several studies have indicated that regardless of swim velocity, maximum COM 

acceleration occurs during the last phase of the underwater SC (Maglischo et al., 

1989; Rouard et al., 1996; Cappaert, 1998; Maglischo, 2003). This finding suggests 

that despite variations in the stroke patterns and whether one is a sprint or distance 
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swimmer, critical kinetic elements are core to the stroke. Based on the knowledge that 

sprinting requires faster and stronger arm movements than distance swimming, it may 

be that the magnitude of the COM accelerations will differ between the two groups 

even when swimming at the same pace. Yet kinetic parameters have not been 

extensively reported in the literature, especially with respect to the influence of 

distance specialisation and pace. This is due to the methods employed to calculate 

kinetic parameters which are often viewed as sub-standard in terms of accuracy 

(Schleihauf et al., 1983, Pai and Hay, 1988; Schleihauf et al., 1988; Berger et al., 

1995; Berger et al., 1999; Monteil et al., 1996; Rouard et al., 1996; Lauder et al., 

2001; Barbosa et al., 2002). For this study, the elliptical zone method, which provides 

accurate anthropometric data from which the dynamic COM position is determined, 

enables accurate derivation of the kinetic parameters. This will assist in establishing 

the relationships between the stroke kinematics and propulsion.  

 

Many factors are related to swim velocity and success in swimming. The literature has 

indicated that some of these parameters show variations in relation to sprint and 

distance swimming. Despite this knowledge, one has difficulty in confidently 

recognising the differences between these two groups. It is apparent that further 

research is required to establish the kinematic and kinetic characteristics of freestyle 

swimming.  It is also of interest to investigate whether differences that may occur 

across speeds are related to speed per se or the specialism of the swimmers, that is, 

sprint or distance.  

 

It is important to extend this area of research to identify kinematic and kinetic 

characteristics of both sprint and distance swimming. Such knowledge is necessary to 

help coaches direct a sprint or distance swimmer to an ideal pattern which is most 

effective for their particular event. Of great interest is to investigate if either group 

adjusts their stroke pattern when swimming at a non-preferred swim velocity, as may 

be the case during training.  
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1.1. Purpose of the Study 

1. To determine whether there are distinct kinematic and kinetic differences 

between sprint and distance swimmers 

2. To investigate whether stroke patterns, in terms of kinematic and kinetic 

variables, change with swimming speed for sprint and distance swimmers. 

 
 

1.2. Aim of the Study 

The aim of this study is to carry out a biomechanical investigation, which will 

compare sprint and distance swimmers at a similar pace (sprint and distance) in order 

to highlight whether sprint and distance swimmers are technically different from each 

other. Another important aim of this research thesis is to examine whether swimmers 

adjust their stroke characteristics across swim paces in order to optimise performance. 

Researching the aforementioned aims will provide coaches and swimmers with useful 

information with regards to training swimmers who specialise in a particular race 

event and whether training at various swim velocities would affect the swimmers 

technique.  

 

1.3. Objectives of the Study 

1. Investigate whether the basic stroke parameters differ with respect to sprint or 

distance swimmers. 

2. Examine the vertical and lateral hand displacement by sprint and distance 

swimmers at both paces to ascertain any differences in stroke pattern. 

3. Investigate the elbow angle magnitude and range throughout the stroke cycle 

to understand whether it changes dependent on pace or swim specialisation. 

4. Examine the shoulder and hip roll magnitude independently to obtain a better 

understanding of body roll at differing paces. 

5. Examine the magnitude of foot ROM to obtain a better understanding of the 

kicking action depending on pace and swim specialism. 

6. Investigate if swim groups favour a one or two peak COM velocity curve. 

7. Examine the COM acceleration and net force curves in order to obtain a better 

understanding of the swimming kinetics.  
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In order to conduct this study effectively, one must first have a thorough knowledge 

and understanding of the research area. This is achieved by evaluating and critiquing 

the pertinent literature relevant to this thesis. In the subsequent sections, aspects 

related to swim performance, and in particular, related to sprint and distance 

swimming, are presented. 

 

2.1. Swimming Velocity 

Many researchers have formulated ‘swimming models’ in order to identify and 

present the key deterministic factors related to a swimmer’s performance (Nigg, 1983; 

Grimston and Hay, 1986; Hay, 1993). Hay (1993) highlights that the prime objective 

in competitive swimming is to complete the race distance (in accordance to FINA 

rules) in the least time possible. The time it takes the swimmer is determined by the 

event distance, and the average speed of the swimmer over that distance (Grimston 

and Hay, 1986; Hay, 1993). It is assumed that the average speed over longer distances 

is less, due to the energy constraints to complete that distance. Common to all 

swimming models are the key factors relating to a swimmer’s speed, over a given 

distance. These are the product of the stroke length (SL)- the distance covered during 

each SC, and the stroke frequency (SF)- the number of strokes taken in a given time. 

SF is often expressed as the number of stroke cycles swimmers take each minute 

(cycles/min). Due to the robust relationship between these two parameters and the 

swimmer’s speed (SV), the SL and SF of a swimmer have been studied extensively 

and are discussed subsequently. 

 

2.1.1. Stroke Length and Stroke Frequency 

Researchers have linked SL and SF with anthropometric characteristics (Grimston and 

Hay, 1986; Kennedy et al., 1990; dos Santos, 1998), gender (Letzelter and Freitag, 

1983; Pelayo et al., 1996; Delaplace et al., 2001) skill level (Chollet et al., 1997; 

Cardelli et al., 1999), breathing and non-breathing conditions (Castro and Guimares, 

2006), and competition analysis (Mason, 1999; Mason and Cossor, 2000; Vorontsov 

and Rumyantsev, 2000). From these studies it is highlighted that: 

- SL and SF have a negative relationship. 

- SL is the single most important predictor of swim performance and skill.  



  Literature Review 

  9 

- At a similar SF, the main discriminating factor in performance between males 

and females is SL.  

- Females tend to increase SF as a way of maintaining velocity despite smaller 

SLs than males.  

- SL is related to the height of the swimmer, arm span, arm length, leg frontal 

area, hand and foot cross sectional area, which help explain male superiority 

with regard to this measure. 

- Elite swimmers tend to be taller than sub-elite swimmers, and hence have a 

longer SL.  

- For non skilled swimmers, SF permits faster swimming.  

- Skilled swimmers maintain these two parameters consistently between laps.  

- SF increases under non-breathing conditions independent of swim pace. 

- SF may be linked to arm coordination changes  

 

SL and SF variables have also been investigated in relation to the race distance (Craig 

and Pendergast, 1979; Keskinen and Komi, 1993; Arellano et al., 1994; Pelayo et al., 

1996; Nomura and Shimoyama, 2002; Maglischo, 2003), and report: 

- It is the combination of SL and SF which are related to successful swimming 

performance and are varied on an individual basis. 

- For both males and females, increasing velocity in short distance events (50, 

100 and 200m) is to increase SF.  

- SL progressively increases from 50-200m race distances and decreases from 

200-800/1500m.  

Moreover, it is recognised that the greater SF values when sprinting increases the 

energy expenditure of a muscle. That is, when the speed of the pulling arm is doubled, 

the energy expenditure is increased eight times (Counsilman, 1973). Therefore, whilst 

a faster SF may increase propulsion, it also disproportionately increases the energy 

expenditure and oxygen consumption. This finding helps explain why sprint 

swimming is unsustainable for long periods of time.  

 

Table 2.1 presents some numerical results from the above studies. To enhance the 

meaningfulness of these data with the current investigation, only studies that analysed 

skilled male swimmers who swam at sprint and distance paces are included. It is 
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evident that the shorter the distance, the higher the average SV, concomitant with a 

reduced SL and higher SF in relation to distance swimming.  

 

Study Swim Velocity 

(m�s
-1

) 

Stroke Length 

(m) 

Stroke Frequency 

(strokes�min
-1

) 

Kennedy et al 1990 
- 100m Pace No Data 2.07 ± 0.23 52.8 ± 0.23 

Pelayo et al 1996 
- 50m Pace 2.11 ± 0.05 2.21 ± 0.18 57.61 ± 4.67 
-100m Pace 1.94 ± 0.04 2.28 ± 0.19 51.37 ± 4.82 
-400m Pace 1.66 ± 0.03 2.24 ± 0.18 44.59 ± 3.34 

Seifert et al 2004 
- Max Pace 1.93 ± 0.10 2.16 ± 0.12 53.7 ± 3.6 
-400m pace 1.61 ± 0.06 2.66 ± 0.27 36.6 ± 3.6 

Seifert et al 2007a 
-100m pace 2.11 ± 0.61 2.13 ± 0.20 51.6 ± 0.05 

Table 2.1: Swim velocity, stroke length and stroke frequency data presented from previous 

research studies. 

 

Table 2.2 shows the SL and SF measures of the first three medal winners from the 

men’s 100m freestyle final at the 1998 World Championships. Alexander Popov came 

first by utilising the longest SL of all the medal winners combined with the lowest 

stroke frequency. General observation of these elite swimmers highlights the 

importance of the SL to successful performance.  

 

Swimmer Stroke Length 

(m) 

Stroke Frequency 

(strokes�min
-1

) 

Alexander Popov 2.49 48.8 

Michael Klim 2.31 51.2 

Lars Frolander 2.16 54.3 

Table 2.2: Stroke length and stroke frequency data for the first three swimmers in the men’s 50m 

freestyle final, World Championships, 1998. Data taken from Goldsmith, 1999.  

 

2.1.1.1. Limitations with SV, SL & SF Studies 

The primary concern with the present literature is with regard to the calculation of 

these variables. In short, the SV has been calculated in many studies as the time taken 

to complete either the entire race distance or a specified distance (Kennedy et al., 

1990; Keskinen and Komi, 1993; Pelayo et al., 1997; Chollet et al., 1997; Arellano et 

al., 1994; dos Santos, 1998; Cardelli et al., 1999; Okuno et al., 2002; Seifert et al., 
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2004a; Seifert et al., 2005; Seifert et al., 2007a; Seifert et al., 2007b; Girold et al., 

2007). SL and SF have been quantified commonly as the number of strokes performed 

to complete the distance and time taken, or with the use of specialised stopwatches 

(Kennedy et al., 1990; Keskinen and Komi, 1993; Chollet et at., 1997; Pelayo et al., 

1997; Cardelli et al., 1999; Seifert et al., 2004a; Minghelli and Castro, 2006; Seifert et 

al., 2007a; Seifert et al., 2007b). Although these methods are recognised in the field 

and serve their purpose to provide feedback with quantitative measurements of SV, 

SL and SF, the accuracy and validity are questionable. This is further supported by 

Chollet and Pelayo (1999) who reported that different procedures used to assess SL 

yield discrepant results. Consequently, comparisons between previous research 

projects will be performed cautiously. Moreover, it has not been established whether 

sprint and distance swimmers, as a group, display a different SL/SF relationship, or 

whether this relationship is primarily affected by the swim velocity. 

 

2.1.2. Stroke Index 

A relatively recent parameter reported in the literature is the ‘stroke index’ and is 

presented due to its association with the above parameters. Stroke index (SI) is 

determined as the product of SL and SV. Researchers regard this parameter as a 

measure of successful performance (Costill et al., 1985; Sanchez and Arellano, 2004) 

and as a practical tool to assess swimming ability (Pelayo et al., 1997). Male 

swimmers have a greater SI than female swimmers in all events (Sanchez and 

Arellano, 2004). This is not surprising based on the previous literature that male 

swimmers typically display higher magnitudes of SL and SV than female swimmers. 

Sanchez and Arellano (2004) also found that front crawl swimming has the greatest SI 

value followed by backcrawl, butterfly and breaststroke and that it decreases 

progressively with increases in race distance. These findings are expected based on 

the knowledge that front crawl swimming permits the greatest SV of all strokes, and 

generally as a race progresses, both SV and SL decrease.  

  

Although evidence supports the assumption that SI is greater in sprint than distance 

events, the magnitude of this variable with regard to sprint and distance swimmers, 

swimming at their preferred and non-preferred race distances, has not been 



  Literature Review 

  12 

investigated. In particular, it will be interesting to examine how swimmers change this 

variable between paces.  

2.2. Components of Swim Performance 

Movement of any kind in an aquatic medium is greatly affected by resistance due to 

water being 100 times more dense than air. Consequently, the swimmer experiences a 

retarding force known as resistance/drag when moving through the water, which acts 

in the opposite direction of travel (Costill et al., 1992). There are many sources of 

drag in swimming; namely form, frictional and wave drag. Form drag takes into 

account the space and shape of the swimmer’s body to the oncoming flow. Frictional 

drag is the layer of friction between the swimmer’s skin and the stream of water 

molecules in contact with the skin, and how these molecules behave. Wave drag is 

regarded as the turbulence created at the water surface which acts to inhibit forward 

motion. The magnitude of wave drag increases with higher swim velocities (Hay, 

1993; Maglischo, 2003), with a wall of water (bow wave) created in front of the 

swimmer which results in an increase in resistive drag. Studies have revealed that bow 

waves can exert a retarding effect to forward motion by a factor of eight when 

swimming velocity is doubled (Maglischo, 2003). Vorontsov and Rumyantsev (2000) 

calculated that the wave making drag force is proportional to the cube of the 

swimming velocity, whereas they calculated the form drag to increase with the square 

of the velocity. This means that the relative contribution of wave-making resistance to 

the total hydrodynamic resistance becomes important at near maximal swimming 

velocities and may be a factor limiting increase in swimming speeds. The most 

recognised method to reduce the influence of wave drag is to swim at a slower pace. 

However, if one wishes to win a race, this option is not a desirable one. Consequently, 

swimmers seek to minimise wave drag through effective technique. 

 

Nevertheless, successful performance is determined by the propulsive forces a 

swimmer generates during the SC whilst minimising the resistive forces acting on the 

body. In other words, a swimmer will accelerate in the forward direction only when 

propulsive forces, generated by the body segments, are greater than the opposing 

resistive forces and will slow down when the resistive forces are greater than the 

propulsive forces (Voronstov and Rumyantsev, 2000). Propulsion is the force that 
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drives the swimmer forward through the water in reaction to the movements of the 

swimmer’s limbs (Counsilman, 1973; Hay, 1993; Voronstov and Rumyantsev, 2000). 

The literature unequivocally highlights that the arms contribute more to propulsion 

than the legs in front crawl (Adrian et al., 1966; Counsilman, 1973; Di Prampero et 

al., 1974; Bucher, 1975; Holmér, 1975; Secher and Oddershede, 1975; Miyashita, 

1975; Smith, 1978; Holmér, 1979; Watkins and Gordan, 1983; Hollander et al., 1988; 

Engesvik, 1992; Toussaint, 1992; Riberio et al., 1994; Deschodt et al., 1999; 

Maglischo, 2003). Several studies have explained this finding due to the legs 

requiring significantly more energy than the arms to yield equivalent propulsion 

(Adrian et al., 1966; Holmér, 1974; Di Prampero et al., 1974; Holmér, 1975; Ohkuwa 

and Itoh, 1993; Riberio et al., 1994; Maglischo, 2003). Smith (1978) noted that this 

was due to the larger mass of active muscle in the legs. Long distance swimmers 

naturally decrease the contribution of the leg kick as a means of conserving energy, 

delaying the onset of fatigue, acting as a stabiliser to the body and thus improving the 

swimmer’s horizontal body position to reduce resistive drag and the energy 

requirement to sustain a given speed (Counsilman, 1973; Holmér, 1975; Watkins and 

Gordon, 1983; Engesvik, 1992; Maglischo, 2003). Alternatively, because sprinters 

have no need to conserve energy, kicking at a high intensity is advised to increase 

propulsion (Maglischo, 1988, cited in Wilke 1992; Maglischo, 2003).  

 
 

2.3. Kinematic Aspects of Front Crawl Swimming 

Seifert et al. (2004a) stated that SV, SF and SL components are not sufficient to 

examine swim performance as they do not indicate the associated changes in 

technique. Rather it is certain kinematic variables which provide a more 

comprehensive understanding of the influential aspects of swim speed (Seifert et al., 

2004a). The kinematic variables associated with swim speed will be discussed in the 

following sections.  

 

2.3.1. Arm Displacement 

It is widely acknowledged that the arm trajectory consists of a combination of 

horizontal, vertical and lateral motions in order to achieve forward propulsion of the 

body (Counsilman, 1973; Schleihauf, 1982; Schleihauf et al., 1983; Maglischo, 1989; 
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Costill et al., 1992; Deschodt et al., 1996a; Deschodt et al., 1999; Payton et al., 1999; 

Maglischo, 2003). There are indications in the literature that swimmers automatically 

adjust their pulling pattern according to swim speed (Colwin, 1977; Cappaert, 1998; 

Ito and Okuko, 2002). At high velocities swimmers use a straighter elbow and thus a 

deeper pulling action than when swimming at moderate velocities for longer 

distances, whereby a more prominent lateral sweeping action that permits the hand to 

cross the body’s centre line is used (Colwin, 1977). The benefit of these adjustments 

has not been specified in the literature.  

 

The component of the hand displacement in line with the intended swimming 

direction is regarded as playing a major role in generating propulsion (Maglischo 

1989; Rushall et al., 1994; Maglischo 2003). This is explained by Newton’s 3rd law 

‘For every action there will be an equal and opposite reaction’. Adapted for 

swimming purposes, it was reasoned that pushing the water back created a 

counterforce of equal magnitude that propelled the swimmer forward. This propulsive 

force (F) was determined by the mass (m) of water and the acceleration (a) of the 

water in accordance with Newton’s 2nd law equation: F=ma. As well as the amount of 

water (mass) accelerated, the time over which it is, is considered important due to the 

change in motion (momentum) of a body being the product of force and time. Indeed 

Deschodt et al. (1996a) (n=44 100m competitive freestyle swimmers during French 

national championships) established a link with the backward displacement of the 

wrist, elbow and shoulder segments to increasing the swim velocity (measured as the 

hip velocity). It has been found that skilled swimmers (front crawl) typically 

demonstrate a backward displacement of the hand within the range 0.4-0.5m, whilst 

less skilled swimmers have hand displacements of 0.6-0.7m (Voronstov and 

Rumyantsev, 2000). Deschodt et al. (1996a) revealed a 0.8m horizontal displacement 

of the wrist. It was also noted that the wrist has on average a 0.2m greater horizontal 

displacement than the elbow. Although sprint and distance swimmers have not 

specifically been investigated with regard to the magnitude of arm horizontal 

displacement, it has otherwise been reported that distance swimmers display a longer 

(horizontal) SL than sprint swimmers (Okuno et al., 2002; Maglischo, 2003). 

However, it is assumed that perhaps this is most likely due to the race distance event, 

rather than group differences per se. The magnitudes of arm displacements from 

previous studies are presented in Table 2.3. 
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Skilled swimmers also display large vertical motions of the arm segments (Schleihauf, 

1982; Costill et al., 1992; Deschodt et al., 1996a; Deschodt et al., 1996b). These 

movements have been related to the forward velocity of the swimmer (Rushall et al., 

1994; Deschodt et al., 1996a). Costill et al. (1992) recommended a maximum hand 

depth of 0.4-0.6m for all swimmers. Maglischo (2003) added that the hands should 

travel 0.5-0.7m vertically from the surface, in order to place them in a backward 

facing position at the ‘catch’. Deschodt et al., 1996a found that the wrist reaches a 

maximum depth of 0.78m whilst swimming a 100m race. Payton et al. (1999) (n= 6, 

competitive male swimmers, swimming at 200m pace) reported the hand segment to 

reach a maximum vertical displacement of 0.79 ± 0.04m. Cappaert (1998) analysed 

sprint (below 200m) and distance (above 200m) Olympic and world championships 

male swimmers and reported that sprint swimmers utilised a deeper pulling pattern 

than the distance group (1.6m vs. 1.0m). However, due to the greater values reported 

in the latter study (in relation to other studies), one should interpret this finding with 

caution. Nevertheless a greater vertical trajectory of the hand path is believed to be 

advantageous as a method of increasing the frontal area of the propulsive segments 

and allowing such segments to exert an increased force, both in an upwards and 

backwards motion (Schleihauf et al., 1983). Moreover, Cappaert (1998) speculated 

that the vertical displacement of the arm is related to the elbow angle. It was 

suggested that a straighter arm pull would result in a deeper pull pattern, yet this 

connection has not been established in the literature, and will be investigated in this 

study.  

 

As the arm segments travel backwards researchers have revealed that the wrist and 

elbow illustrate a sinusoidal, or curvilinear, pathway (Counsilman, 1973; Rushall et 

al., 1994; Deschodt et al., 1996a). It was reasoned that once swimmers started a mass 

of water moving, they could no longer elicit the same reaction force from it without 

substantially increasing their hand speed. This is due to the water and body segment 

moving in the same direction, i.e. the water is moving with the hand, the hand speed 

relative to the water is reduced resulting in a reduction in the propulsive force. It was 

proposed that swimmers stroked laterally, to continuously find ‘still’ water that 

allowed the swimmer to achieve a greater reaction force than when a swimmer pulled 

directly backwards (Counsilman, 1973; Sanders and Stewart, 1992, Voronstov and 

Rumyantsev, 2000). The literature reveals that the arm lateral motions have been 
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regarded as non-propulsive, yet the importance of this action is believed as an 

essential component of the underwater stroke trajectory (Maglischo, 1989; Rushall et 

al., 1994; Deschodt et al., 1996a; Deschodt et al., 1996b). Researchers have proposed 

that lateral actions are beneficial in terms of stroking efficiency by enhancing the 

propulsion aspects of the SC and increasing the SL (Counsilman, 1977; Costill et al., 

1992; Maglischo, 2003). Deschodt et al. (1996a) did not provide quantitative data in 

relation to the arm lateral displacement, but observed that the elbow follows a flatter 

lateral pathway than the wrist during the underwater cycle. The latter study also 

suggested that individual’s present very different arm lateral deviations during the 

underwater SC. Payton et al. (1999) showed that swimmers stroked with a maximum 

lateral displacement of 0.27 ± 0.07m when swimming at 200m pace. Although sprint 

and distance swimmers have not been compared with regard to the magnitude of arm 

lateral displacement, it has been speculated that distance swimmers tend to include 

more lateral motions for an energy efficient stroke pattern (Maglischo, 2003). 

Employing the vortex theory to describe propulsion in swimming, Colwin (2002) 

explained that at low speeds, swimmers produce a smoother and more rounded stroke 

pattern than when sprinting, whereby a single impulse of propulsion is produced at the 

end of the SC. However, no quantitative data has supported these assumptions. 

 

Study Horizontal 

Displacement 

(m) 

Vertical 

Displacement 

(m) 

Lateral 

Displacement 

(m) 

Payton et al. 1999 - 0.79 ± 0.04 0.27 ± 0.07 

Payton and Lauder, 1995 - - 0.34 ± 0.07 

Schleihauf et al. 1988 - - 0.37 ± 0.08 

Deschodt et al. 1996a 0.8 0.78 - 

Girold et al. 2007 - 0.85 ± 0.06  

Table 2.3: Finger displacement data from previous studies. 

 
In conclusion, many authors have expressed opinions regarding differences with 

respect to the arm/hand pathways during a SC between sprint and distance swimmers 

but empirical data is currently lacking. In order to test these ideas and perceptions it is 

necessary to conduct research in which movement is quantified in three dimensions. 

Moreover, it is important to assess whether stroke patterns differ with respect to the 

swim distance specialisation as well as the swim pace.  
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2.3.2. Body Roll 

The displacement and trajectories of the arm have also been related to the magnitude 

of body roll (Lui et al., 1993; Hay et al., 1993; Payton and Mullineaux, 1996). Body 

roll is often defined as the rotation of the entire body about its longitudinal axis 

(Colwin, 1969; Colwin; 1977; Colwin, 2003). The integration of this element into the 

front crawl stroke has many functions which are considered important for successful 

front crawl swimming: 

• Keeps the body in lateral alignment and decreases resistance (Colwin, 1977; 

Costill et al., 1992; Castro el al., 2002; Maglischo, 2003). 

• Places upper limbs in effective positions in which to generate propulsion 

(Colwin, 1969; Haffner and Cappaert, 1998; Castro et al., 2002; Maglischo, 

2003). 

• Brings the large trunk muscles into play, providing a greater capacity for force 

production (Colwin, 1969; Colwin, 1977). 

• Permits the underwater pull to continue directly backward and for a longer 

period of time (Colwin, 1969; Leonard, 1992; Maglischo, 2003).  

• Associated with easing the recovery of the stroke (Colwin, 1969; Colwin, 

1977; Leonard, 1992; Maglischo, 2003). 

• Facilitation of turning the head to breathe is also improved with incorporating 

a body roll into the stroke (Colwin, 1977; Payton et al., 1999).   

 

More recently it has been suggested that body roll influences the underwater pathway 

of the armstroke. This relationship was first investigated by simulation studies. Hay et 

al. (1993) devised a two-segment rigid body model (the trunk and right arm) which 

were joined at the shoulder as a hinge joint. Before each testing condition, the rigid 

arm segment was assigned a pre-selected elbow flexion angle and the hand motion 

was made in a plane through the shoulder parallel to the sagittal plane of the rotating 

trunk (Hay et al., 1993). It was evident from this study that the medial trajectory of 

the hand towards the trunk was entirely due to body roll alone. The authors noted that 

in order to achieve this handpath, required less body roll (19-34°) than what is usually 

observed by competitive swimmers. Hay et al. (1993) further reported that when one 

rolls more than that necessary to produce the desired medial handpath, the swimmer 

should press the arm laterally away from the midline. The researchers concluded that 
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when studying the swimmer’s handpath, one should give more consideration to body 

roll. However, the limitation of this study was due to the fact that the underwater pull 

phase is rarely, if ever, executed with a constant elbow angle. Secondly, constraining 

the hand to move only in the plane through the right shoulder and normal to the 

shoulder axis is invalid as swimmers are noted to constantly move their hands 

laterally relative to this plane (Payton et al., 1997).  

 

Acknowledging these limitations Payton et al. (1997) made appropriate modifications 

to establish a three-segment rigid body model. The arm was represented as a two-

segment model which was hinged at the elbow to enable elbow flexion and extension. 

The arm was linked to a rigid trunk with a shoulder joint capable of extension and 

shoulder abduction/adduction. Movement of the hand beyond the plane through the 

shoulders and normal to the shoulder axis was also feasible. Payton et al. (1997) 

found that body roll influences the mediolateral and vertical pathways of the hand and 

hence affects the hand speed. It was also noted that when body roll was increased, so 

too was the squared hand speed in the plane perpendicular to the swimming direction. 

It was suggested therefore that an increase in body roll has the potential to develop 

greater lift forces.  

 

One major drawback from the aforementioned simulation studies is that the validity of 

the models used has not been established. The creditability of any mathematical 

model of human motion ultimately rests on its validity, which is its ability to 

accurately represent the essential features of the real-life motion (Hay et al., 1993). 

Until this is the case, the results obtained from these simulation studies can only be 

regarded as preliminary. 

 

One of the first experimental studies to investigate the influence of body roll and the 

handpath in front crawl swimming was conducted by Liu et al. (1993). Ten male 

collegiate front crawl swimmers were asked to swim three (15m) trials at a long 

distance pace. Body roll was quantified by strapping a balsa wood fin (mounted on a 

curved aluminium base) to the swimmer’s back. Analysing the motion of the balsa fin 

was assumed to represent that of the body roll. The body roll angle is defined as the 

angle between the edge of the fin and the vertical axis (Fig. 2.1). The maximum body 

roll angle ranged from 51.5-66.0˚ (mean 60.8 ± 4.4˚). The researchers recognised that 
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this angle was greater than what was expected, yet it was acceptable due to the 

different population and speed requirements of this study. The contribution of body 

roll to the actual handpath ranged from 41.1% to 73.6%, with a mean value of 52.1%. 

It was therefore concluded, that on average, body roll and relative motion of shoulder, 

elbow, or both contributed equally to the medial-lateral motions of the hand- a result 

which conflicts with Hay et al.’s (1993) prediction that hand motion was determined 

entirely by body roll.  

            

 

            

Figure 2.1: Illustration of body roll angle, from Payton et al., 1999. 

 

Liu et al. (1993) further presented that the relative motion of the hand during the pull 

phase, firstly travelled away from, and then back towards the midline of the trunk. 

This was exactly the reverse of that predicted by the previous simulation studies. In a 

subsequent study, Payton et al. (1999) also emphasised that body roll was not 

responsible for the medial motion of the hand. In fact, body roll was found to oppose 

medial hand motion, rather than assist it during the insweep.  

A further prediction made from the simulation studies was that body roll had the 

capability of increasing the swimmer’s hand speed (Payton et al., 1997), which 

Payton et al. (1998), in an experimental study intended to determine. Six male 
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experienced swimmers performed several 25m trials at their 100-200m race pace. The 

balsa fin technique, positioned at the level of the inferior borders of the scapula, was 

also employed in this study. Three-dimensional coordinates of the hand and shoulder 

were obtained by manual digitisation. It was reported that body roll reduced hand 

speed by an average of 1.04 ± 0.28m�s-1 during the insweep. The researchers 

predicted that if the swimmers had maintained the same shoulder and elbow 

movement patterns, without adding any body roll, their mean hand speeds would have 

been 46% (± 15%) higher. However, Payton et al. (1998) highlighted that these results 

should not be construed to mean that one will achieve greater hand speeds by rolling 

less- as any changes in body roll are likely to be accompanied by compensatory 

changes at the shoulder and elbow. The researchers suggested that the negative 

contribution of body roll to hand speed was due to the swimmers rolling back towards 

the neutral position before, or close to, the start of the insweep. The previous 

simulation studies assumed that the body rolled away from the neutral position at this 

phase of the armstroke. It was therefore concluded that body roll opposed the medial 

motion of the hand rather than facilitating it during the insweep, or alternatively 

assisted the swimmer’s body in rolling back toward the neutral position. 

 

Payton et al. (1999) extended the body roll literature by investigating the trunk and 

upper extremity kinematics during both preferred side breathing and breath-holding 

conditions when swimming front crawl. Six male competitive swimmers performed 

12 trials (25m) at their 200m race pace. Half of the trials required the subject to 

breathe to their preferred side, with the other half to hold their breath through the 

calibrated area. Body roll was quantified using the balsa fin technique. This study 

revealed, on average, that a swimmer rolled 9° more when breathing (66 ± 5°) 

compared to breath-holding (57 ± 4°). The researchers proposed that the additional 

body roll assisted the swimmer in turning their head so the mouth was clear of the 

water. The study also detailed that front crawl swimmers can perform the breathing 

action without significantly interfering with the basic stroke parameters. Castro et al. 

(2002) replaced the balsa fin with a PVC stick to investigate the contribution of body 

roll when swimming at three different velocities and whilst breathing and non-

breathing. Ten male competitive swimmers performed six (25m) trials at a warm-up 

pace, a 1500m pace and a 50m pace, under breathing and non-breathing conditions. 

The results indicated that although breathing required a greater body roll angle 



  Literature Review 

  21 

magnitude than non-breathing, this variable appears to be more influenced by the 

swim velocity than the breathing condition (Table 2.4). Nevertheless, in this 

investigation participants were required not to breathe for the length of the calibrated 

area to avoid any possible effect of stroke kinematics. 

 

Condition Trial Velocity 

(m�s
-1

) 

Body Roll Angle ‘�’ 

(deg) 

Breathing 1 1.27 ± 0.07 139 ± 5 

 2 1.50 ± 0.07 133 ± 9 

 3 1.88 ± 0.08 113 ± 12 

Non-Breathing 4 1.33 ± 0.11 129 ± 8 

 5 1.61 ± 0.08 117 ± 10 

 6 1.94 ± 0.07 110 ± 16 

Table 2.4: Mean swim velocities and mean body roll angles; n= 10; during two conditions: 

breathing and non-breathing. Trials 1 & 4= warm up pace. Trials 2 & 5= 1500m pace. Trials 3 & 

6= 50m pace. (Adapted from Castro et al, 2002). 

 

Moreover, as seen in Table 2.4 Castro et al. (2002) indicated that the body roll angle 

tends to decrease as the velocity increases for high level sprint swimmers, which was 

further supported by Yanai (2003). It was therefore concluded that sprint swimming 

was characterised by a smaller range of body roll than distance swimming. Because 

sprint swimmers were involved in Castro et al’s (2002) study, it is not known whether 

distance swimmers would display similar characteristics. In terms of swim groups, 

Cappaert (1998) revealed that sprinters roll less (average 20.9°) than the distance 

group (36.9°). It was suggested that due to the rapid nature of sprinting events these 

swimmers may not need to spend as much time lengthening their stroke during the 

catch phase to emphasise body roll (Cappaert, 1998). Although Cappaert (1998) 

reported these differences to occur between swim groups, the swim pace was not 

considered as a factor, and therefore it remains unclear whether sprint and distance 

swimmers roll with different magnitudes or whether this is a consequence of the swim 

velocity. Therefore, further research is warranted to clarify these issues.   

The literature has focused on the magnitude of the body roll represented as a motion 

of the whole trunk. Cappaert et al. (1995) was the first to subdivide body roll into two 

distinguishable components, namely the shoulder roll and hip roll. Establishing three-
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dimensional coordinates of the body, both these elements were quantified. Both the 

magnitude and temporal aspects of the shoulder and hip roll were considered. The 

participants of this investigation included 12 male, 100m front crawl swimmers, who 

competed in the 1992 Olympic Games. The main finding was with respect to the 

symmetry of the total body roll. Elite swimmers displayed a symmetrical body roll, 

with both shoulders and hips rolling in the same direction, whereas sub-elite 

swimmers demonstrated an asymmetrical body roll pattern, with the hips rolling in the 

opposite direction to the shoulders. From these results it was suggested that elite 

swimmers had a reduced active drag due to a symmetrical body roll; whereas the 

opposing body roll between the shoulders and hips of the sub-elite group may have 

increased the active drag by increasing the frontal surface area. Additionally, Colwin 

(2003) added that better streamlining and a natural flow of water, moving along the 

body, is enhanced by using the ‘2 part body roll’ in which the shoulders roll first 

followed by the hips. It is unknown whether a possible ‘relationship’ of the shoulders 

leading the hips when rolling, is consistent over all speeds or is more obvious in one 

particular swim group than the other. 

 

A further development in understanding front crawl body roll has been contributed by 

Yanai. Firstly, Yanai (2001) examined what specifically causes the body to roll in 

front crawl swimming- whether it was a turning effect due to fluid forces (external 

torque) or a reaction effect due to the acceleration of the limbs (internal torque) acting 

on the long-axis through the centre of mass (COM) of the body. Yanai (2001) found 

that the overall contribution of the external torque was to propel body roll, while the 

reaction effects of limb accelerations resisted body roll. In a subsequent study Yanai 

(2004) further elaborated that it was the buoyant force which determined the 

magnitude of the body roll and that skilled swimmers used the buoyant force as the 

primary source of generating body roll. Moreover it was revealed that the buoyant 

force is dependent on the swim velocity, in that faster swimmers used the buoyant 

force more effectively to generate body roll than slower swimmers (Yanai, 2004). 

Finally, Yanai (2003) hypothesised that the rolling action of the body could be 

connected to the kicking action of the legs through a mechanical formula he derived. 

It was proposed that since the fluid forces generated by the kicking action and the 

moment of inertia of the body exhibit a three sinusoidal cyclical pattern in a SC may 

explain why swimmers adopt a six beat kick. However, the magnitude of body roll 
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concomitant with the other kick patterns (2 beat, 4 beat etc) are not discussed with 

regard to this formula which currently weakens its application.   

 

The aforementioned studies (with the exception of Cappaert, 1998 and Yanai 2001-

2004) implemented either the balsa fin or PVC stick technique to quantify the body 

roll angle. In applying this method, one assumes that body roll is representative of the 

trunk rolling as a rigid unit. Studies conducted by Cappaert et al. (1995; 1996) have 

revealed that this is not the case; therefore the validity of these techniques is 

questionable in terms of accuracy. Further, the positioning of the balsa fin or stick 

along the trunk may have significant implications since researchers have quite 

recently documented that the shoulders and hips of select subjects roll in opposition 

relative to one another (Cappaert et al., 1995; Cappaert et al., 1996; Colwin, 2003). 

Another limitation of this technique is that the motion of the balsa fin or stick was 

analysed from one camera view only, typically the front (Lui et al., 1993) or rear view 

(Payton et al., 1998; Payton et al., 1999). Therefore, this parameter has in the past 

been assumed to be two-dimensional in nature. Because swimming is a three-

dimensional activity, it is unlikely that body roll only occurs in a two-planar motion. 

This study will create a three-dimensional representation of each swimmer in which 

the magnitude of the shoulder and hip roll may be calculated independently and with 

improved accuracy compared to previous methods used in the literature.  

 

In conclusion, this study involves two groups of swimmers, (sprint and distance) who 

will be required to swim at their specialist and non-specialised race paces. It is 

recognised, for example, that sprinters have a smaller body roll angle than distance 

swimmers- yet it is unknown when they swim at a distance pace, if the body roll angle 

changes to resemble that of a typical distance swimmer, and vice versa. It is also of 

interest to examine the temporal aspects of this parameter when both swim groups 

swim at their specialist and opposing race paces.  

 

2.3.3. Elbow Angle 

The elbow angle is discussed regularly in the literature primarily due to its influence 

on the arm trajectory during the underwater phase (Hay et al., 1993). This variable is 

also believed to have the highest impact on the stroke as it determines the efficiency 
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and power of the applied propulsive force by the arm during the underwater SC 

(Counsilman, 1973; Colwin, 1977; Cappaert, 1998; Haffner and Cappaert, 1998; 

Deschodt et al., 1996). Voronstov and Rumyantsev (2000) have identified important 

functions of swimming with a bent elbow, which are adapted in the following 

paragraphs:  

1. Adjustment of the elbow angle can permit an increase in angular velocity and 

acceleration of the arm without involving the shoulder. Therefore, less muscle 

torque is required and the pulling force is more effective.  

2. Elbow flexion reduces frontal area of the swimmer and permits the propulsive 

forces to be applied in the desired (backwards) direction. 

3. The ability to apply force is greater when the elbow is partly flexed than fully 

extended.  

 

With no rationale, the majority of literature highlights that swimmers tend to exhibit a 

90° elbow angle throughout the underwater SC (Colwin, 1969; Colwin, 1977; 

Maglischo et al., 1989; Costill et al., 1992; Maglischo, 2003). There is a paucity of 

information in the extant literature with regard to whether this angle changes with 

swim speed or race distance. The recommendation of 90° is based on the assumption 

that this angle offers maximal motor recruitment to maximise force (Mc Ardle et al., 

1996). The following summarises the literature with respect to elbow angle: 

- The angle tends to be closer to 100° than 90° (Counsilman, 1973).  

- Butterfly and front crawl swimmers demonstrate a maximal elbow angle in the 

middle section of the underwater pull of 90-120° (Voronstov and Rumyantsev, 

2000)  

- A straighter arm during the underwater cycle results in a longer pull pattern 

and slower cycle rate (Cappaert, 1998).  

- Female swimmers tend to stroke with smaller elbow angles than males 

because they are weaker in terms of muscular strength (Counsilman, 1973). 

 

Moreover, based on observations, Wilke (1992) and Cappaert (1998) commented that 

sprinters tend to have a larger elbow angle (120° and 106.5° respectively) than 

distance swimmers and also greater than the ‘recommended’ 90°. Voronstov and 

Rumyantsev (2000) added that the magnitude of elbow angle increases as swim 

velocity increases. That is, at sprint events, swimmers would display greater elbow 
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extension angles, while in distance event swimmers would tend to stroke with greater 

flexion angles. However, no quantitative data have been presented to substantiate 

these claims. It is therefore construed, that a degree of uncertainty and discord is 

present with regard to the elbow angle literature. 

 

Discrete phases within the SC are often identified in the literature in order to analyse 

performance characteristics within each phase. However, there is a considerable lack 

of literature in which both the magnitude of the elbow angle at particular events 

during the SC and how the elbow angle is influenced throughout the duration of the 

SC have been reported. Nevertheless, some researchers have recommended that the 

90° elbow angle should be maintained throughout (Costill et al., 1992; Maglischo, 

2003), whilst others have expressed that it changes continuously (Counsilman, 1973; 

Vorontsov and Rumyantsev, 2000). Payton et al. (1999) supported the claim that the 

elbow angle is not constant by highlighting that male competitive swimmers show a 

45 ± 14° elbow angle range during the pull phase of the SC. Therefore, concomitant 

with the fact that little research has explored the elbow angle throughout the SC, it is 

also a matter of interest whether these variables are influenced by the swimming 

specialisation or as a consequence of swim velocity. To date neither have been 

investigated sufficiently.   

 

2.3.4. Timing between the Arms 

Swimming is cyclic in nature. Cyclic motion is defined as the motion of the body 

from one place to another produced by the repetition of a basic sequence (or cycle) of 

body movements (Hay, 2002). In swimming it is the repeated sequential actions of the 

arms and legs that aid in the motion of the swimmer. It is imperative that the 

sequencing of these actions is not interrupted in order to provide continuity and speed 

to forward motion (Colwin, 1969; Lerda and Cardelli, 2003; Maglischo, 2003). It is 

also essential that the timings, particularly between the arms, is adaptable so that the 

physiological and performance objectives are met (Chollet et al., 2000; Millet et al., 

2002; Lerda and Cardelli, 2003; Seifert et al., 2004a; Seifert et al., 2004b; Seifert et 

al., 2007a; Seifert et al., 2007b). 
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Initially, the timing or coordination between the arms was assessed by visual 

inspection of video footage combined with qualitative feedback. Costill et al. (1992) 

and Maglischo (2003) commented that the most important event in the timing 

between arms is that one arm should enter when the other is midway through its 

insweep/pull phase. It was also emphasised that following entry the arm should not 

begin sweeping down until the other has completed its upsweep (Costill et al., 1992; 

Maglischo, 2003), which permitted the swimmer to obtain a hydrodynamic position in 

the water whilst applying propulsive force (Costill et al., 1992; Voronstov and 

Rumyantsev, 2000; Maglischo, 2003). However, the relative timing between the arms 

has not been explored with regard to either the swim velocity or the swim distance 

specialisation.  

 

More recently, researchers have investigated the coordination between the arms 

throughout the SC. Chollet et al. (2000) developed the ‘index of coordination’ (IdC) 

as a tool to quantify the relationship between arms when swimming front crawl in a 

standardised manner.  This index is based on quantifying the lag time between the 

start of propulsion by one arm and the end of propulsion by the other. In order to 

achieve this Chollet et al. (2000) divided the SC into four discrete phases: Entry ‘A’, 

Pull ‘B’, Push ‘C’ and Recovery ‘D’ (Figure 2.2). The process of subdividing the SC 

into distinct phases:  

- Establishes criteria for clear identification of phases so that comparative 

investigations of swimming strokes can be made (Wiegand et al., 1975). 

- Is a useful method of quantification- phases exist independent of swim 

velocity and level of swim performance, resulting in an effective tool for 

coaches and teachers to assess the development of technique (Wiegand et al., 

1975). 
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Figure 2.2: Four phases within a stroke cycle. Adapted: Chollet al., 2000 

 

‘Lag time 1’, was defined as the time between the beginning of propulsion in the first 

right arm stroke and end of propulsion in the first left arm stroke. ‘Lag time 2’, was 

defined as the beginning of propulsion in the second left arm stroke and the end of 

propulsion in the first right arm stroke. These lag times were then expressed as a 

percentage of mean duration of a SC resulting in IdC1 and IdC2 respectively. Figure 

2.3 shows that the IdC was the mean of these two indices (TL1 +TL2).  

            

 
            

Figure 2.3: Coordination illustration adapted from Seifert et al., 2004a 

 

Using this measure Chollet et al. (2000) identified three modes of front crawl 

swimming: ‘catch up’ - lag time between the propulsive phases of two arms (IdC < 0); 

‘opposition’ – describes propulsive actions whereby one arm begins pull while the 

other is finishing the push (IdC = 0); and ‘superposition’ – describes an overlap of the 

propulsive phases (IdC>0). To test this new tool Chollet et al. (2000) examined the 

relationship between 44 French National division swimmers, swimming at 800m, 

100m and 50m pace. It was found that IdC increased with swim velocity. That is, at 

800m pace, swimmers displayed a ‘catch-up’ style, whilst at 100m and 50m pace, 

‘opposition’ style was the most prevalent. The best swimmers displayed a 

superposition between the arms at 50m pace. In particular, the increase in relative 

duration of propulsive phases was evident in the pull phase. 

 



  Literature Review 

  28 

Other researchers have adopted this tool to examine front crawl coordination: between 

elite swimmers and triathletes (Millet et al., 2002), gender adaptation (Seifert et al., 

2002; 2004; 2007a; 2007b); effect of swim velocity (Lerda and Cardelli, 2003; Seifert 

et al., 2004); effects of drafting in elite triathletes (Chollet et al., 2000b), during 

exhaustive exercise (Alberty et al., 2002), the effect of breathing and skill level (Lerda 

and Cardelli, 2003; Seifert et al., 2005) 

 

From these studies it has been found that  

1. Swimmers and triathletes adapt their stroke pattern from a catch up style to an 

opposition style when changing from long distance pace to max pace. This 

resulted in a decrease in entry phase duration and an increase in pull and push 

phase therefore enhancing longer propulsive forces (Millet et al., 20002; Lerda 

and Cardelli, 2003; Seifert et al., 2007). 

2. Men change from catch-up to opposition spontaneously at a critical velocity  

and SF corresponding to 100m pace (1.8m�s-1) and 40strokes/min. Women 

adopt their pattern progressively (Seifert et al., 2004a; Seifert et al., 2007b). 

3. A critical change of coordination occurred at the 100m pace, which was 

explained by the subject sample being sprint specialists who changed to a 

preferred pattern at the 100m pace (Seifert et al 2004a). 

4. Only the best male performers can adapt a superposition stroke pattern (Lerda 

and Cardelli, 2003; Seifert et al., 2002; Seifert et al., 2007b). 

5. Top performers demonstrate a shorter push phase, resulting in a greater 

acceleration of the hand during this phase (Lerda and Cardelli, 2003).  

6. Skilled and less skilled swimmers illustrate changes in breathing pattern at 

different velocities (Lerda and Cardelli, 2003).  

7. Elite swimmers show no change in arm coordination when breathing. Sub-

elite change arm coordination when breathing (Seifert et al., 2005).  

 

Table 2.5 presents quantitative data from previous studies with regard to the duration 

of each stroke phase and the coordination index. To enhance the meaningfulness of 

the data, only values in relation to sprint or distance swimming are presented.  
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 IdC  

(%) 

Entry 

(%) 

Pull  

(%)  

Push  

(%)  

Recovery 

(%)  

Chollet et al 2000 
800 Pace 

100m Pace 
-6.9 ± 7.1 
2.5 ± 4.4 

30.3 ± 6.5 
22.1 ± 3.9 

21.3 ± 4.2 
26.7 ± 3.7 

22.9 ± 2.7 
26.3 ± 2.7 

25.5 ± 2.4 
24.9 ± 2.6 

Seifert et al 2004a 
400m Pace 
50m Pace 
Max Pace 

-7.8 ± 4.5 
1.1 ± 6.0 
2.6 ± 6.1 

31.8 ± 5.8 
20.0 ± 6.7 
18.5 ± 6.3 

22.5 ± 3.5 
28.7 ± 4.5 
28.8 ± 5.1 

20.0 ± 2.0 
22.5 ± 3.1 
23.6 ± 2.8 

25.8 ± 4.0 
28.8 ± 2.6 
29.1 ± 3.6 

Millet et al 2002 
Max Pace 2.3 ± 4.8 21.5 ± 3.3 27.0 ± 2.5 26.6 ± 2.9 24.8 ± 2.1 

Seifert et al 2007a 
Max Pace 5.4 ± 3.4     

Table 2.5: Presentation of previous research results of Index of Coordination and time spent in 

each stroke phase, expressed as a percentage of the SC.  

 
From these studies it was also identified that sprinters decreased the entry phase so 

that they could begin the propulsive phase of the next armstroke almost immediately 

as the other arm releases pressure. This method is responsible for increasing the 

energy cost of swimming because it increases the resistance in front compared to 

stretching the front arm forward in a streamlined manner. Nevertheless, it has the 

benefit of increasing the turnover rate and results in fast times for short distances. In 

middle-distance and distance races, swimmers choose to sacrifice speed and conserve 

energy by delaying the downsweep until the propulsive phase of the stroking arm has 

been completed (Costill et al., 1992). However, the duration of each stroke phase with 

respect to sprint and distance swimmers, combined with swim velocity as a condition, 

has not yet been investigated. This warrants attention to understand whether swim 

groups emphasise particular stroke phases at the velocity they are accustomed to, or 

whether they adapt these durations based on the swim velocity. 

 

Moreover, the previous quantification of the stroke phases is based on visual 

inspection of the SC and is therefore subjective. Seifert et al. (2007a) was more 

cautious than the other coordination researchers by recognising an error <0.04secs 

between three independent operators. Nevertheless, the current literature using the 

IdC tool incorporates a degree of error due to the subjective manner of estimating and 

quantification of stroke phases. An additional problem with the current method of 

quantifying coordination is the requirement to measure this variable over a series of 
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three or four strokes (Chollet et al., 2000; Seifert et al., 2004a; Seifert et al., 2007b) to 

achieve acceptable accuracy.  

 

Finally, although the effect on coordination of swim velocity has been investigated, 

only sprint swimmers have been included as the sample tested. Indeed Seifert et al. 

(2004) noticed that the 100m pace was the critical velocity that swimmers changed 

from a catch up style to a superposition style, by changing the relative durations of the 

stroke phases. It was reasoned that this abrupt change occurred due to a preferred 

pattern because they were sprint swimmers. However, no research to date has 

explored whether a group of distance swimmers would adapt their coordination 

pattern or stroke phase durations when swimming at various swim velocities and 

whether there is a noticeable modification of their coordination parameters when 

swimming at a preferred pace. This study will examine the relative stroke phase 

durations of both sprint and distance swimmers at their preferred and non-preferred 

swim velocity. 

 

2.3.5. Leg Action 

It is widely accepted that the role of the leg-kick in front crawl swimming to forward 

propulsion is significantly less than that generated by the arms (Holmér 1975; 1979; 

1983; Watkins and Gordon, 1983; Deschodt et al., 1999). As mentioned previously, 

this is due to the energy demands of the leg muscles (Di Prampero et al., 1974).  This 

‘secondary’ role may explain the lack of research with regard to the lower leg limbs in 

terms of kinematic characteristics. It has been found, in particular relation to longer 

distance events, that the legs act to stabilise and aid rotation of the trunk when 

swimming front crawl (Counsilman, 1973; Watkins and Gordon, 1983; Costill et al., 

1992; Voronstov and Rumyantsev, 2000; Maglischo, 2003). It is also well known that 

the kick consists of primarily up and downbeat kicks that incorporate a lateral 

component. It is the lateral component which is believed to keep the body in good 

lateral alignment and balanced throughout the SC (Costill et al., 1992; Maglischo, 

2003). The majority of the leg kick literature concerns the kicking pattern or rhythm 

that the swimmers utilise. Front crawl swimmers tend to display a six, four, or two-

beat kick (and variations of these) per SC. For example, a six beat kick consists of six 

complete ascending or descending leg movements within the SC. Persyn et al. (1983) 
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investigated the kick pattern in relation to anthropometric characteristics of the 

swimmer. They found that two-beat swimmers tended to have longer legs and because 

six-beat kickers were those whose legs experienced a greater sinking force, they 

compensated by utilising a six-beat kick. Perhaps this trend is specifically related to 

the two swim groups. It has also been reported in the literature that swimmers 

travelling at higher velocities tend to display a six-beat kick pattern whereas those 

competing in longer distances tend to favour either a four-beat or two-beat kick 

pattern, primarily due to the energy demands of the event (Counsilman, 1973; Costill 

et al., 1992; Maglischo, 2003). However, there is a lack of information with regard to 

the displacement of the feet during the kicking action and whether this differs across 

speeds or distance specialisation. With no displacement guidelines, it is impossible to 

provide confident recommendations to swimmers and coaches as to the extent of 

kicking range. This knowledge is important in developing the appropriate kicking 

rhythm and perhaps propulsion generated from the legs. Indeed Cappaert (1998) 

reported that Olympic and world class sprinters were characterised by a greater knee 

bend than the distance swimmers indicating an increased range of motion of the foot 

through the water to generate propulsion. It is therefore suggested that displacement 

data of the foot would provide a more transparent insight into this assumption and will 

be investigated in this study. 

 

 

2.4. Kinetic Aspects of Front Crawl Swimming 

Understanding swimming kinetics, allows one to evaluate the propulsive and resistive 

characteristics of the kinematic aspects, as highlighted above. However, knowledge of 

the kinetics of swimming is limited. This is primarily due to the inability to accurately 

calculate kinetic aspects such as accelerations of the COM and net force. These 

aspects are discussed in sections 2.9.1- 2.9.3.  

 

2.4.1. Net force acting on the whole body obtained from 

acceleration of the COM.  

The net COM force of the body is the total force applied to the water in order to 

propel forwards. It incorporates the propulsive and resistive forces during the SC. Due 
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to the aquatic environment, it is virtually impossible to measure the body’s net force 

directly. Measuring it indirectly by double differentiation of the COM position data 

requires knowledge of the COM position, which in turn requires digitising a full body 

model and using estimates of segments masses and COM locations relative to 

segment endpoints. Consequently, no studies to date have reported quantitative data 

for this measure. Additionally, it is unknown whether the net force differs between 

sprint and distance swimmers, or whether it is influenced by the swim pace. 

 

The combination and interaction of the magnitude of COM net propulsive and 

resistive forces determines the COM velocity, and acceleration profiles of the 

swimmer throughout the SC. These components are discussed in the subsequent 

sections.  

 

2.4.2. COM Velocity 

To further establish the propulsive phases, the velocity of the swimmer’s COM has 

been studied extensively. This measurement has become a valuable tool in research, 

as this indicates when and to what extent phases of the SC are effective in propelling 

the body forwards (Maglischo et al., 1989; Alves et al., 1994). Therefore, by aligning 

the swimmer’s COM velocity profile with their corresponding actions during the SC, 

the actions that influence the interplay between propulsive and resistive forces, can be 

identified. COM velocity profiles have been examined and produced for all four 

competitive swimming strokes. Accelerations and decelerations throughout the SC are 

characteristic of all strokes (Nigg, 1983; Maglischo et al., 1989; Mason et al., 1989; 

Mason et al., 1992; Vilas-Boas, 1992; Cappaert et al., 1996; Colman et al., 1998; 

Fujishima and Miyashita 1998; Colwin, 2003; Maglischo, 2003; Chollet et al., 2004). 

An increase in COM velocity, that is, acceleration, indicates that propulsion is greater 

than resistance, while deceleration indicates that resistance is greater than propulsion 

(Colman et al., 1998).  

 

Few researchers have investigated the COM velocity profiles of front crawl swimmers 

(Maglischo et al., 1989; Maglischo, 2003) compared to other strokes (Mason et al., 

1989; Colman et al., 1989; Mason et al., 1992; Vilas-Boas, 1992; Sanders, 1996a; 

Sanders, 1996b; Alves et al., 1998). However, COM velocity profiles have not yet 
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been examined with regard to sprint and distance swimmers nor the change across 

different swim velocities. The literature does indicate that front crawl swimmers tend 

to display a ‘one peak’ (Figure 2.4) (one large peak per armstroke) or ‘two peak’ 

(Figure 2.5) velocity pattern (two distinct peaks during each armstroke, separated by a 

period of deceleration). Differing styles for the other three competitive strokes 

include: backcrawl (two vs. three peaks), breaststroke (peak at end of stroke vs. peak 

earlier in stroke), and butterfly (one vs. two vs. three peaks). Obviously, as the name 

of each stroke pattern suggests, the particular style that the swimmer uses influences 

the COM velocity fluctuation throughout the SC. 

            

 
            
Figure 2.4. One peak velocity profile. Each peak occurs during the upsweep (push) phase of each 

armstroke:  Maglischo, 2003. 

 
            

 

            

Figure 2.5. Two peak velocity profile. A small peak occurs during the insweep (pull) phase 

followed by a bigger peak during the upsweep (push) phase for each armstroke: Maglischo, 2003. 
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Maglischo et al. (1989), digitised 10 world-class swimmers to create 2D data. Using 

anthropometric data of Dempster (1955), Maglischo et al. (1989) produced a velocity 

curve of the COM. However, analysis of these curves, like other researchers (Mason 

et al., 1989; Mason et al., 1992) was completed by qualitative visual inspection. 

Consequently, due to the subjective analysis of these profiles and the paucity of 

studies, it is unclear whether a one peak or two peak velocity pattern is more effective 

in propelling the body. Maglischo (2003) offers the opinion that the two peak pattern 

is recommended as it has a greater potential to be more effective in terms of achieving 

a higher velocity per SC over a greater length of time. This assumption is deducted 

from the following: 1) one can achieve a higher average velocity per armstroke 

because the propulsive force is applied over a longer time with less muscular effort, 2) 

potential for a longer distance per stroke due to increased diagonal motion, 3) one 

segment of water is accelerated, after which another slower segment is accelerated 

backward; which should result in the two-peak swimmers achieving the same forward 

velocity as one peak swimmer but with a longer and slower armstroke. Moreover, it 

has also been speculated a ‘one-peak’ or ‘two-peak’ velocity pattern is dependent on 

the trajectory of the swimmer’s stroke pattern (Maglischo et al., 1988; Maglischo, 

2003). The one-peak velocity pattern is exemplified by an almost directly backward 

pulling action, whereas the two-peak velocity pattern is believed to contain more 

diagonal and lateral motions of the arm/hand. Based on Maglischo’s assumption with 

respect to the stroke pattern characteristics, it is likely that swimmers who display the 

two-peak velocity pattern may use both greater elbow and body roll angles in addition 

to larger arm/hand displacements than one-peak velocity swimmers. It has also been 

suggested that the particular style a swimmer adopts is influenced by factors such as 

body type, hand pattern and kicking rhythm (Maglischo, 2003) - all of which have 

been shown to differ between sprint and distance swimmers. Perhaps the style and 

COM velocity profile of a swimmer is a function of the race distance or swim velocity 

to which they are accustomed. This has not been considered to date. It may be 

possible that sprint or distance swimming is characterised by a one or two-peak COM 

velocity profile. Other variables such as body roll, elbow angle or orientation etc. 

have not been investigated to date with regard to the COM velocity profile.  
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2.4.2.1. COM Velocity Fluctuations 

A scientifically logical and broadly accepted assumption is that the smaller the range 

of fluctuation in COM velocity during the SC the less energy is wasted, thereby 

allowing the swimmer to optimise swim speed (Nigg, 1983; Fujishima and Miyashita, 

1998; Voronstov and Rumyantsev, 2000; Kjendlie et al., 2002; Colwin, 2003; 

Maglischo, 2003; Barbosa et al., 2005). Thus, the magnitude of velocity fluctuations 

within a SC is an indicator of swimming proficiency (Holmér, 1979; Holmér, 1983; 

Colwin, 2003). Similar to COM velocity profiles, many studies have investigated the 

horizontal intracyclic velocity fluctuations of the COM in butterfly (Mason et al., 

1992; Sanders et al., 1996b) and breaststroke swimming (Mason et al., 1989; Colman, 

et al., 1998) but not front crawl swimming. Perhaps this is due to larger velocity 

fluctuations in these strokes compared to front crawl swimming (Holmér, 1973). 

Specifically Colman et al. (1998) analysed 28 international male and female 

breaststroke swimmers, and found that the flat-style swimmers exhibited a 76% range 

of mean swim velocity, whereas undulating-style swimmers exhibited a 53% range of 

average swim velocity. These findings indicate that the undulating style is more 

energy efficient than the flat breaststroke style.   

 

Maglischo (2003) referred to a COM velocity profile of a world class front crawl 

swimmer whose velocity decreases by 1m/sec during the SC. Maglischo also cited a 

study by Miyashita (1997) who reported decreases in velocity of 0.5-0.8m�s-1 for 

skilled swimmers. In a comprehensive study conducted by Psycharakis and Sanders 

(2008) 10 male front crawl swimmers were analysed during a 25m maximum sprint. 

They reported an average COM velocity of 1.68 ± 0.05 m�s-1, an average maximum 

COM velocity of 1.85 m�s-1 which occurred at 32% of the complete SC, and an 

average minimum velocity of 1.48 m�s-1 occurring at 61% of the entire SC. This 

resulted in a COM fluctuation of 0.37 m�s-1. Nevertheless, it is assumed, due to the 

nature of sprint swimming, that sprinters obtain a greater maximum COM velocity 

during the SC than distance swimmers. Similarly, it is predicted that distance 

swimmers aim to conserve energy during a longer race distance and display less COM 

fluctuations. However, these assumptions have not yet been quantitatively validated in 

the literature. 
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It should also be mentioned that the literature indicates that the COM velocity 

fluctuations are strongly influenced by the stroke pattern of the arms (Schleihauf, 

1979; Counsilman, 1981; Barthels, 1982; Schleihauf, 1982; Hollander et al., 1988; 

Maglischo, 1989; Toussaint and Beek, 1992; Deschodt et al., 1996a; Deschodt et al., 

1996b; Rouard et al., 1996; Cappaert, 1998; Haffner and Cappaert, 1998; Ito and 

Okuno, 2002). Consequently, more knowledge of the COM velocity profile and intra-

cyclic motions is warranted with regards to front crawl swimming.  

 

2.4.2.2. Limitations Associated with COM Velocity Studies 

The ability to interpret the velocity profiles with confidence depends on the 

anthropometric data used in the calculation of the COM. It is necessary that precise 

and accurate segment mass, and location of the COM for each body segment relative 

to the segment endpoints are used.  

 

Two primary methods are used in the previous literature to calculate the COM 

velocity of a swimmer. In some studies the motion of the hip has been assumed to be 

representative of the swimmer’s velocity (Mason et al., 1989; Persyn et al., 1990; 

Mason et al., 1992; Deschodt et al., 1996b; Alves et al., 1998; Barbosa et al., 2002; 

Buckwitz et al., 2002). In others, the motion of the COM has been determined 

(Cappaert et al., 1996; Cappaert and VanHeest, 1998; Colman et al., 1998; Barbosa et 

al., 2005; Psycharakis and Sanders, 2008). Using the hip as a substitute for measuring 

one’s COM is an economic method of calculation compared to calculating the 

position of the COM following digitisation of a full body model. Some researchers 

have reported that the method of simply tracking the hip is inaccurate and unreliable 

(Mason et al., 1989; Persyn et al., 1990; Mason et al., 1992; Colman et al., 1998; 

Barbosa et al., 2002; Psycharakis and Sanders, 2008). The profiles of the swimmers’ 

hips were found to fluctuate with greater magnitude and were out of phase with the 

velocity and acceleration profiles of the COM (Mason et al., 1989; Persyn et al., 1990; 

Mason et al., 1992; Colman et al., 1998; Barbosa et al., 2005; Psycharakis and 

Sanders, 2008). Figure 2.6 clearly illustrates that the motion of the hip does not 

accurately reflect the COM motion.  
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Figure 2.6: Intracycle velocity of the hip (dashed line) and the centre of mass (continuous line)  

for one swimmer. With permission: Psycharakis and Sanders, 2008. 

 
To estimate the COM accurately many points on the body must be digitised at each 

instant (video field) using three-dimensional data collection and analysis techniques. 

This requires digitising synchronised above and below water views of the swimmers 

and independently scaling and transforming the data to a common three-dimensional 

frame of reference. Continuous paths of the body parts that move above and below the 

water surface, for example, the shoulders, elbows, wrists and hands, are then obtained. 

However, the majority of research studies conducted in this field are of a two-

dimensional nature and consequently cannot be used as a true representation of 

swimming motion as it ignores the rotations of the body or replicate the exact motions 

of the body when swimming.  

In addition to the lack of front crawl COM velocity data reported in the literature, 

there is a paucity of data comparing sprint and distance swimmers, and changes with 

change in pace. 

 

As identified in the previous sections, the importance of quantifying the body COM 

accurately is imperative for velocity measures. In the following section, the most 

popular methods used in the past are identified and analysed.  
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2.4.3. Method of Calculating COM  

Several sources of body segment parameter data (BSP data - segment masses and 

segment mass centre locations relative to the segment endpoints), required to calculate 

the COM, are available.  These include data using studies of cadavers, mathematical 

models, and data from radiation and MRI techniques.  

 

2.4.3.1. Data from Cadavers 

Initial attempts to advance the understanding of human physiological and 

biomechanical functions were through dissection techniques. Dempster (1955) 

recorded details of the planes of dissection, which consequently resulted in a degree 

of standardisation of methodologies for subsequent research. On dissecting eight 

Caucasian male cadavers (52-83yrs; mass: 49.43-72.11 kg), Dempster quantified both 

segmental centres of gravity with a balance plate and volumes using immersion 

methods.  The mass moments of inertia of each segment were calculated around the 

transverse (through the COM) and parallel axes (through the centre of the proximal 

joint) by a free swinging pendulum system. 

 

Using similar techniques as detailed by Dempster (1955), Clauser et al. (1969) 

examined the segmental mass, volume and COM of 13 Caucasian male cadavers 

(49.31 ± 13.69yrs; 172.72 ± 5.94 cm; 66.52 ± 8.7 kg). Additionally Clauser et al. 

(1969) established a series of regression equations to estimate these segmental 

parameters, based on defined anthropometric measurements. These included the 

length, circumference and breadth/ depth of each body segment.  

 

Chandler et al. (1975) dissected six male embalmed cadavers (age: 54.3 ± 7.3yrs, 

mass: 65.17 ± 13.20 kg and height: 172.15 ± 5.75cm) to measure the segmental mass, 

volume, COM location, and additionally calculated the principal mass moments of 

inertia of each segment. Anthropometric measurements were also obtained from both 

the entire cadaver and individual segments. The methods used to calculate the 116 

anthropometric measurements and the segmental properties resembled those of 

Clauser et al. (1969). Some of the results from this study were compared to data 

collected by Santschi et al. (1963) on living subjects and it was concluded that a 

satisfactory level of agreement exists between the two datasets. Nevertheless, 
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Chandler et al. (1975) expressed caution that their data should not be interpreted to 

reflect population parameters due to the limited subject sample. Others consider their 

data the most valid estimates of the segment moments of inertia available at the 

present time and can be used as a criterion for comparing other estimates (Miller and 

Nelson, 1973; Jensen and Nassas, 1988). 

 

2.4.3.1.1. Limitations with Cadaver data 

Despite the initial breakthrough in obtaining data from cadaver studies, there are 

many concerns over the interpretation and implementation of the results. The 

literature firstly highlights whether cadaver data can be reasonably applied to living 

subjects. The density of tissues in cadavers differs from that of living subjects (Katch 

and Gold, 1976; Zatsiosky, 2002) which would introduce errors into the calculations. 

Despite this acknowledgement, many scientists are of the opinion that due to the 

impracticality of achieving such measurements on living subjects, applying cadaver 

data can be used as a rough approximation.  

 

The second concern is with regard to the sampled population within these studies. The 

number of subjects per study was generally quite small due to obvious ethical 

restrictions. It is also considered that the populations sampled were not representative 

of the average adult population with respect to race, age, height or weight. Indeed the 

majority of the scientists who conducted the cadaver research often concluded that 

their data should be interpreted with caution (especially when applied to diverse 

populations) due to the inherent errors. Hence in situations where it is impossible to 

obtain direct data on individuals, cadaver data may be applied but the accuracy of the 

segmental properties are at best a first approximation and should be treated with 

caution (Katch and Gold, 1976; Plagenhoff et al., 1983). 

 

2.4.3.2. Computation (Regression equations etc) 

Due to the difficulty in ascertaining segmental characteristics from living subjects, 

regression equations have been formulated. Based on certain anthropometric 

measurements, these equations calculate the appropriate segmental information with 

minimal subject intrusion. Initially a fixed relationship, such as a percentage 

correlation, between the segment and that of the total body was assumed. These 
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relationships have been determined from cadaver data. The advantage of this 

technique is that one does not need any prior anthropometric measurements on the 

subject being analysed, which makes this approach very fast and easy to use 

(Sprigings et al., 1987). 

 

Combining cadaver data of Braune and Fischer (1889), and Dempster (1955) Barter 

(1957) presented regression equations that predicted the segment mass as a function 

of total body weight (Table 2.6).  

 

Body Segment Regression Equation Standard Error of 

Estimate 

Head, Neck and Trunk = 0.47 x Total Body Wt + 12.0 (±6.4) 

Total Upper Extremities = 0.13 x Total Body Wt – 3.0 (±2.1) 

Both Upper Arms = 0.08 x Total Body Wt – 2.9 (±1.0) 

Forearm plus Hands = 0.06 x Total Body Wt – 1.4 (±1.2) 

Both Forearms* = 0.04 x Total Body Wt – 0.5 (±1.0) 

Both Hands* = 0.01 x Total Body Wt + 0.7 (±0.4) 

Total Lower Extremities = 0.31 x Total Body Wt + 2.7 (±4.9) 

Both Upper Legs = 0.18 x Total Body Wt + 3.2 (±3.6) 

Both Lower Legs plus Feet = 0.13 x Total Body Wt – 0.5 (±2.0) 

Both Lower Legs = 0.11 x Total Body Wt – 1.9 (±1.6) 

Both Feet = 0.02 x Total Body Wt + 1.5 (±0.6) 

Table 2.6: Regression equations developed by Barter (1957). *N= 11, all others N= 12. Wt- weight 

 

Due to differences in dissection techniques for the head and neck, Barter (1957) could 

not compute a regression equation for this segment and so recommended that the 

researcher use Dempster’s data. Clauser et al., (1969) also developed regression 

equations to predict segmental mass, but additionally incorporated 2-3 anthropometric 

parameters into the equations. The inclusion of specific anthropometric measures 

‘personalises’ the data by taking into account the subjects’ proportionality differences 

and reduces the magnitude of error (Miller and Nelson, 1973). Regression equations 

that assumed a fixed relationship between the segmental length and the location of the 
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segmental COM were also established by Braune and Fischer (1889), Dempster 

(1955) and Clauser et al. (1969). 

 

Using radiation techniques, Zatziorsky and Seluyanov (1983) were able to analyse 

segmental mass and inertial characteristics (mass, location of COM and radii of 

gyration) of 100 healthy living young men (age: 23.8 ± 6.2yrs; mass: 73.0 ± 9.1 kg; 

height: 174.1 ± 6.2 cm). Based on the scans, average values and more than 150 

second order regression equations for the mass, COM and principal mass moments of 

inertia of the body segments were derived. These regressions were supplemented by a 

further set in which segment anthropometric measures were used as predictor 

variables. Consequently the accuracy of prediction was improved by the use of 

segment-specific variables. 

 

2.4.3.2.1. Limitations of regression equations 

Whether based on direct proportions or regression equations, one can obtain 

information on segmental mass, mass centres and selected moments of inertia with 

ease. However, the source from which they were derived, namely a limited number of 

Caucasian adult male cadavers (with the exception of Zatziorsky and Seluyanov, 

1983) must be kept in mind. When implementing this method, investigators should 

consider the lower degree of accuracy that one would expect from applying average 

values from a small population of cadavers to specific living individuals that might 

differ considerably from the cadaver population (Sprigings et al., 1987). 

 

2.4.3.3. Radiation 

This technique involves scanning the subject’s body and subsequently retrieving 

surface density and coordinate data of the body which has been affected by radiation. 

These components are measurable based on the principle that photon transmission is 

dependent on the mass and composition of the body. Hence the magnitude of rays that 

penetrate the body will provide an evaluation of its mass. 

 

Zatziorsky and Seluyanov (1983) developed the gamma-mass scanning technique to 

quantify the segment mass and its distribution directly. Using this method, the 

radiation was measured before and after it passed through the body, providing an 
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indication of the segment density (the amount of mass below the surface area). As 

mentioned previously, having obtained these results, Zatziorsky and Seluyanov 

(1983) derived regression equations that permitted them to calculate the mass, COM 

locations and principal mass moments of inertia of the body segments.  

 

Despite the inclusion of a younger and healthier population, de Leva (1996) 

highlighted that Zatziorsky and Seluyanov’s (1983) data are rarely preferred to 

cadaver data, due to bony landmarks were used as reference points for locating the 

segmental COM and defining segment lengths. Some of these points are quite distant 

from the centres of the neighbouring joints, meaning that when a subject flexes their 

joints the distances of these reference points from the respective proximal or distal 

segment COM’s significantly decreases (de Leva, 1996). These and other related 

changes which make it impossible to accurately locate segment COMs, can be 

minimised only by using joint centres as reference points (de Leva, 1996).   

 

2.4.3.3.1. Computed Tomography 

Computed Tomography (often referred to as a CT scan) is an alternate radioactive 

technique used to measure in vivo segmental inertial parameters. To commence the 

procedure, the operator obtains three-dimensional computer images of the body by 

using the CT scan machinery. Use of the ‘standard picture recognition’ tool, helps to 

identify the boundaries and cross sections of the internal organs and bones from the 

images produced. Based on the ‘CT number distribution’ in the cross-sectional scan, 

the outlines of the anatomical structures can be automatically traced and their 

coordinates saved (Huang and Suarez, 1983). The mass, centre of gravity and inertia 

of each anatomical structure is then computed from the coordinates of the outline and 

the conversion of the enclosed CT numbers to mass densities (transforming the CT 

numbers to its mass density is performed by converting pixel by pixel). Studies have 

shown that there is generally good agreement between the CT-derived bone, muscle 

and fat density values in comparison to traditional methods as described previously 

(Ackland et al., 1988; Huang and Wu, 1976). For example, when comparing CT scans 

of a patients and a cadaver’s leg segment, Ackland et al. (1988) found that there was a 

1.9% difference between the CT-derived density values and the hydrostatic weighing 

values for the cadaver leg. Rodrigue and Gagnon (1983) also employed CT to 

estimate the forearm density of 20 human cadaver segments. They calculated density 
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and volume estimates that were within the range of 0.1-4.8% and 5.4-35.9% 

respectively, of the criterion values obtained by direct measurement. Concomitant to 

the good results and the advantages of this method, as outlined in Huang and Suarez 

(1983), it would appear that both gamma-scanning and CT techniques offer promising 

methods for estimating body segment characteristics in vivo.  

 

2.4.3.3.2 Limitations of Radiation 

Despite the potential these techniques offer, they are rarely incorporated into research 

studies for two reasons. The primary limitation is because CT imaging and gamma 

mass scanning are radiation-based. Even though the radiation levels are low, they still 

present a risk to the subject being analysed to adverse effects of exposure. Secondly 

the costs, qualification of the operator and time commitment these instruments incur 

have prevented common utilisation.  

 

2.4.3.4. MRI 

Magnetic resonance imaging is a relatively new method of obtaining cross-sectional 

images of body tissue distribution within segments without exposing it to radiation. 

The principle of this technique is based on the magnetic moment (dipole) generating 

an electromagnetic force that is detected by a receiver coil interfaced with a computer. 

Computer generated pictures depict the cross-section of the body through which the 

magnetic field passes. Each tissue shows up as specific shades of brightness (white to 

black).  

 

Martin et al. (1989) and Mungiole and Martin (1990) examined segmental parameters, 

as quantified by the MRI scan, which closely agreed or came within the range of other 

predictive methods. Using eight baboon cadaver segments Martin et al. (1989) 

examined the mean differences (%) between MRI values and those obtained from 

direct measures for the volume, density, mass, COM location and moment of inertia, 

which were found to be 6.3, 0.0, 6.7, -2.4 and 4.4% respectively. Mungiole and 

Martin (1990) examined the lower leg inertial properties for 12 adult male athletes 

(age: 28.59 ± 3.41yrs; mass: 66.24 ± 3.72 kg; height: 177.69 ± 4.54 cm) using the 

MRI technique. The MRI-based estimates, especially the COM data, all fell within the 

range of values obtained with other methods. Moreover, in addition to obtaining 
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comparable or better body segment inertial parameters with the MRI technique- the 

fact that inertial properties of any portion of the body can be obtained safely and 

accurately is a major advantage (Martin et al., 1989). This is particularly beneficial 

when calculating the trunk and head segments which have, in the past, presented 

problems to previous researchers. 

 

However, similar to the gamma-mass scanning and CT scan method, the limited 

facilities for MRI analysis, the high cost and time consuming nature of the analysis 

does not make this method very practical for determining inertial properties in vivo.  

 

2.4.3.5. Mathematical Modelling 

By employing simplifying assumptions concerning the composition and functioning 

of the body, in addition to technological advancement of computer programming and 

software, the development of mathematical modelling techniques has emerged. The 

advantage of this technique is that biomechanical properties of all segments can be 

obtained readily from few anthropometric measurements of the subject. As a result, 

subject invasion and time commitment are greatly reduced. This technique is 

particularly useful for the kinetic analysis of sport because extensive calculations of 

the body segment parameters can be obtained quickly and accurately.   

 

The underlying assumption of mathematical modelling is that each body segment can 

be represented by a simple geometric shape. The second assumption is that each 

segment has uniform density as determined from the cadaver data. There has been 

much speculation as to the authenticity of applying this assumption. Indeed Ackland 

et al. (1988) confirmed that the assumption of segment uniform density was invalid 

based on the 10% variation in density along the segment length. However, Ackland et 

al. (1988) further showed that the adoption of the uniform density assumption when 

estimating inertial parameters of leg segments only produced minor errors and was 

therefore acceptable. Furthermore, Mungiole and Martin (1990) using MRI 

techniques, observed less variation in segment density (2.3%) along the longitudinal 

axes of the leg, which strengthens the support of the uniform density assumption. 
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Regardless, the fundamental disadvantage of this technique is that its application is 

limited to adult male subjects due to the fact that the mass distribution relationships 

have been derived from a relatively small sample of cadavers.  

 

2.4.3.5.1. Hanavan’s 1964 Model 

Hanavan (1964) devised a 15-segment computerised model (Figure 2.7) which 

depicted the head as a circular ellipsoid, the two trunk segments as elliptical cylinders, 

the hands as spheres, with the subsequent segments represented as circular cones 

(Bartlett, 1999).  

            

 

            

Figure 2.7: 15 segment model as designed by Hanavan 1964. 

 

Twenty-five anthropometric measurements, including body weight, height, segment 

lengths and girths were inputted to the program to personalise the model for each 

subject. Hanavan also incorporated Barter’s (1957) regression equations, based on 12 

cadavers, to estimate the segment masses. Hanavan computed the segmental and total 

body principal moments of inertia and COM location. Miller and Nelson (1973) 

highlight that because it was Hanavan’s intention to calculate the inertial properties of 

the total body in various positions, data of individual segments was not outputted. 

However, it is acknowledged, that by using subroutine calculations, one may obtain 

these quantities (Miller and Nelson, 1973). 
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In order to validate the Hanavan model, comparisons were made between the COM 

locations and relative segment densities for model segments and the cadaver data of 

Dempster (1955). The COM location errors in the average values of the Hanavan 

model were quite low, with the exception of the head-torso and upper arm segments. 

Discrepancies in relative density were as high as 10% and greater for the foot.  

 

Comparisons were also made with results obtained experimentally from 66 subjects 

(Santschi et al., 1963). According to Bartlett (1999) the values of whole body COM 

location were such that only 50% of the predicted model horizontal and vertical 

locations were within 1.3cm and 1.8 cm respectively of the experimental data. The 

moment of inertia errors were greater, with only half of values about the two 

horizontal principal axes being within 10% of the experimental values. For the 

vertical axis, a discrepancy of less than 20% occurred for only half of the data. 

 

There are many limitations for this model, primarily the substantial errors identified in 

segment volumes and moments of inertia. Bartlett (1999) suggests these are due to 

oversimplified geometrical shapes utilised to represent the human limbs and the 

uniform density assumption. Jensen (1978) supported the above by adding that the 

assumption of simple geometrical shapes does not take into consideration the shape 

fluctuations throughout the segment length which results in questionable accuracy. 

Secondly this model did not incorporate movements between the head and trunk 

segments or distinguished the shoulder girdle segments- both would be utilised in 

sports motion. Miller (1979) concludes that modifications of Hanavan’s model are 

required to improve its accuracy and segmental moments of inertia.  

 

2.4.3.5.2. Hatze’s 1980 Model 

Hatze (1980) developed a similar model to that of Hanavan, but further incorporated 

the two shoulder girdle segments, to produce a 17-segment mathematical model 

(Figure 2.8). The model was personalised by inputting 242 anthropometric 

measurements for each subject.  
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Figure 2.8: Lateral and anterior view of Hatze’s 1980 17-segment anthropomorphic model. The 

shapes of the segments, as depicted here, accurately reflect the morphologies of the model 

segments. The local (segment fixed) coordinates are also shown. 

 
Hatze (1980) claimed that his model was superior to other previous models because it 

allowed for sex differences by use of different density functions and mass 

distributions and the fact that segments had neither simple nor symmetrical shapes. 

For example, when analysing the model, each segment was subdivided into 

subsections of known geometric structure, each having a specified density- thereby 

allowing density distributions along and across the segments to be incorporated 

(Bartlett, 1999). To evaluate the accuracy of this mathematical model, Hatze reported 

model predictions on four anthropometrically diverse subjects (two young male 

athletes, one female tennis player and one 12year old boy) and compared this data 

with experimental measurements from four subjects as reported by Dempster (1955). 

 

It was concluded that the overall accuracy of the program was approximately 3%, and 

subject to a maximum error of about 5% for each of the 17 segments. One of the 

many examples detailed by Hatze (1980) to illustrate the above can be seen within the 
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average error results between the measured and computed total body mass which was 

reported as 0.06%.  

 

Sprigings et al. (1987) further supported the above claims by commenting that 

Hatze’s anthropometric model was more accurate at predicting the subject’s centre of 

gravity than Dempster’s (1955) data or Clauser et al.’s (1969) percent segment input 

data. The fact that the execution time of the computer program took only 0.515 secs is 

recognised as an additional bonus (Hatze, 1980) 

 

Despite the reported accuracy of this mathematical model, it does contain obvious 

limitations. It is recognised that the time required to gather 242 anthropometric 

measurements takes approx 80mins/subject (Hatze, 1980; Sprigings et al., 1987; 

Bartlett, 1999). This would have considerable implications if the researchers required 

data from a large sample and would be tedious for the subject involved. As a result, 

Sprigings et al. (1987) recommend that the researcher should decide whether the 

improved accuracy by Hatze is warranted by the extra hours of subject measurement.  

 

2.4.3.5.3. Yeadon’s 1990 Model 

Yeadon (1990) developed a model that divided the body into 11-segments with the 

assumption that the segments are rigid and that no movement occurs at the neck, wrist 

or ankle joints. Similar to Hatze’s model, Yeadon subdivided the body into 40 sub 

segments and included 95 anthropometric measurements (34 lengths, 41 perimeters, 

17 widths and 3 depths), which Yeadon claimed took 20-30mins.  
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Figure 2.9: Yeadon’s 1990 Model; Sectioning of the torso S. Left arm A, Right arm B. Left leg J 

and Right leg K into 40 solids. 

 

The solids representing the torso, hands and feet are stadium solids, whereas the head, 

arms and legs are represented by a circular cross-section. For each segment the mass, 

COM location, principal moments of inertia about the mass centre and distance 

between joint centres are calculated. It is assumed that the solids comprising a 

segment have coincident longitudinal axes. The values for the left and right limbs are 

then averaged since the simulation model is designed to have symmetrical inertia 

values.  

 

Dempster’s cadaver density values were incorporated into the calculations, which 

Bartlett (1999) recognises as a limitation of the model. Three trampolinists (two male 

and one female) were used to evaluate Yeadon’s model. Comparing the measured 

total body mass to the predicted estimates, resulted in an error close to 2%, which was 

more than Hatze’s results (Table 2.7). 

 

Subject Mass (kg) Estimated Mass (kg) Error (%) 

A 60.0 58.8 -2.0 
B 60.9 62.0 1.8 
C 64.3 65.8 2.3 

Table 2.7: Total body mass from Yeadon 1990 model compared to those obtained by weighing. 

Adapted from: Yeadon 1990.  
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Evaluation of this model’s accuracy with regard to segment inertial parameters has 

not yet been conducted and therefore cannot be compared against the Hatze (1980) or 

Hanavan (1964) models. Nevertheless Bartlett (1999) suggested that this model may 

potentially be a suitable compromise between Hanavan’s (the errors were too large 

and oversimplified for modelling and simulating sports motions) and the over-

parameterised model of Hatze (1980). However, the accuracy of the model has not 

been established sufficiently to use it with confidence.  

 

2.4.3.5.4. Jensen’s Elliptical Zone Method 

Jensen (1978) developed a 16-segment model in which the segments were considered 

to be composed of elliptical zones 2cm wide. Subdividing each segment in this 

manner allows the model to detect shape fluctuations within the segment. Segment 

densities are assumed and used with the calculated segment volumes to give the 

segment masses. The assumption that the body is composed of elliptical zones had 

been applied by Weinbach (1938) and verified by Dempster (1955) as reasonable with 

the exception of the shoulders. Segment densities were assumed to be uniform and as 

reported by Dempster (1955).  

 

After marking the subjects anatomical joint centre reference points and the lines to 

identify the segment sections they were placed on a horizontal board, lying in a prone 

anatomical reference position (Jensen, 1978). Two photographs were then taken of the 

subject one from the frontal view and the other from the lateral view. The two images 

are then analysed by digitising the required points and the size and inertial parameters 

computed. This process is initiated by sectioning the segments into 2cm ellipses and 

subsequently calculating the radii from both the front and lateral views. The volume, 

mass, COM location and moments of inertia of each elliptical cylinder is then 

calculated by implementing the formulas given by Jensen (1978). Segment mass is 

obtained by summing the masses of the elliptical zones within each segment. The 

location of the segments COM is determined by summing the moments of the 

elliptical zones using the positions of the centroid of the cylinders with respect to the 

proximal endpoint as the moment arm (Deffeyes and Sanders, 2005). Finally, the 

moment of inertia of the segments are determined for the anteroposterior, medio-

lateral and proximal-distal axes of the segment by summing the local and remote 
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moment of inertia terms in accordance with the parallel axis theorem (Deffeyes and 

Sanders, 2005).  

 

Jensen (1976) compared results obtained from the elliptical zone method to those 

obtained by Hanavan’s model. The largest differences were for the segments with 

irregular shapes. This supports the opinion that the elliptical zone method can 

accurately detect shape fluctuations.  

 

On a whole, researchers who have utilised the elliptical zone method for calculating 

body segment parameters have presented relatively accurate results. Jensen (1978), 

comparing three prepubescent boys of differing somatotypes, found that the elliptical 

zone method showed an error of less than 2% compared to the measured body mass 

(Table 2.8).  

 

 Ectomorph Endomorph Mesomorph 

Estimated Body Mass (kg) 28.83 40.72 39.21 

Measured Body Mass (kg) 28.50 40.25 40.00 

Error (%) 1.16 1.17 1.82 

Table 2.8: Accuracy of the estimate of total body mass compared to that obtained from weighing 

scales. Adapted: Jensen 1978). 

 
According to Jensen (1978), in a subsequent study of 12 subjects ranging in age from 

4-12yrs, the error for the Hanavan method was -12.36% compared to 0.68% for the 

elliptical zone method (a negative error signifies the model underestimates the actual 

model). Jensen (1978) reported that based on these results, the elliptical zone method 

is more accurate when applied to children. Moreover, Yokoi et al. (1985) obtained 

body segment parameters from 184 (93 males, 91 females) Japanese 5-15yr old 

children using the elliptical zone method. The average differences between the 

estimated (using elliptical zone method) and the measured values for the body was 

1.14% whereas for the whole body, the error in COM location was 1.82%.  

 

Jensen (1986) studied a group of 12 boys between the ages of 4-15yrs over a period of 

three years and thus obtained 36 observations. The mean errors were 0.203% with a 

standard deviation of 2.301% between the predicted body mass and the measured 
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body mass. Jensen and Nassas (1988) reported errors of -0.82% (SD= 2.63%, N= 88) 

in the total body mass of 12 boys (4-20yrs) taken over a nine year period.  

 

Sanders et al. (1991) employed the elliptical zone method and found that all mass 

estimates were within ± 3% (Table 2.9). These are comparable to errors in mass 

estimates previously reported by Jensen (1978) of 1.13, 1.17 and 1.82%, and are 

within the standard deviations reported by Jensen and Nassas (1988) of 2.63% (n= 

88).  

 

Subject Sex Age (yrs) Mass (kg) Stature (cm) Est. Mass (kg) Error (%) 

1 F 35 63.8 167 64.8 +1.3 

2 F 24 60.6 165 62.1 +2.5 

3 M 21 76.4 175 75.5 -1.2 

4 M 28 82.9 179 81.9 -1.2 

Table 2.9: Participant characteristics and accuracy of the estimate of total body mass, compared 

to that obtained from weighing scales. (Adapted: Sanders et al. 1991). 

 

Wike and Lopers (2003) examined the validity of the volume functions of Jensen’s 

elliptical zone method on testing 20 subjects: 10males (24.3 ± 1.4yrs; 178.8 ± 6.6 cm; 

75.4 ± 9.5 kg) and 10 females (23.8 ± 1.4yrs; 161.4 ± 6.1 cm; 62.7 ± 10.9 kg). They 

also concluded that the volumes of several segments, as well as the whole body, can 

be accurately measured using the elliptical zone method.  

 

From the aforementioned studies, it appears that Jensen’s elliptical zone method 

offers an accurate means of calculating the subjects body segment parameters. Yet 

Deffeyes and Sanders (2005) recognised that its implementation within studies is not 

common because of limited availability of digitising tables and data collection 

programs which are compatible with the digitising device. Consequently a PC based 

digitising software program known as ‘eZone’ was developed that combines the 

functions of digitising digital photographs to obtain the diameters of the ellipses, with 

the ability to calculate the BSP data. The eZone program uses the same procedure and 

methods as those established by Jensen (1978) and is estimated to take 10-15mins to 

complete the process.  
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On evaluating this new program the authors reported the BSP values to be within the 

ranges expected based on the literature, with the whole body mass within 5% of its 

actual value. Further Psycharakis (2006) reported the mean differences (for the group 

of swimmers) between calculated and real values for the whole body mass as -0.2 ± 

0.9 kg or -3 ± 1.3% (expressed as a percentage of the real body mass values). It is 

therefore reasonable to state that the eZone program offers a method of obtaining 

accurate anthropometric data. When combined with precise digitising of a whole body 

model it may be expected that the derived COM position data would yield COM 

velocity data of acceptable accuracy.  

 

2.4.4. Net Accelerations 

Buchner and Reischle (2002) stated that it is not sufficient to analyse swim 

performance based only on velocity curves of the swimmer and that the derived 

acceleration profiles should also be considered to allow a ‘more direct analysis of 

propulsion effects of movement actions than the velocity curves’. Mason et al. (1989) 

added that the acceleration profile indicates where the swimmer utilises effective 

propulsive actions to propel forwards and where effective streamlining is used to 

reduce drag. On the other hand, velocity profiles indicate the effect of propulsion on 

the swimmers motion (Mason et al., 1989). Buchner and Reischle (2002) commented 

that the time difference between maximum acceleration and maximum velocity, 

depends on the shape of the acceleration curve.  

 

Nevertheless, as highlighted previously, an acceleration of the COM indicates that the 

propulsive forces are greater than the opposing resistive forces. There are periods of 

marked acceleration and deceleration within each SC, which are measured by tracking 

the forward velocity of the hips, or more accurately, the velocity of the COM 

(Maglischo et al., 1989). The majority of the literature indicates that maximum COM 

acceleration, which corresponds closely to maximum propulsion, occurs during the 

last phase of the underwater SC in front crawl, backstroke, and butterfly (Maglischo 

et al., 1989; Rouard et al., 1996; Cappaert, 1998; Maglischo, 2003). However, no 

quantitative data have been provided to illustrate this conclusion. Based on visual 

observation, Maglischo et al. (1989) commented that the COM decelerates during the 

downsweep and outsweep phases due to water being displaced to the side and down 
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as opposed to directly backwards, but again no quantitative data were presented, and 

the activities of the opposing arm were not considered.   

 

Generally there is a dearth of literature with regard to COM acceleration profiles in 

front crawl swimming. This is due to the difficulty of calculating the COM accurately 

throughout the SC and to present quantitative data to support qualitative analysis. 

Moreover, the COM acceleration profiles for specialised race distance swimmers, or 

swimmers performing over varying swim velocities, have not been discussed in the 

extant literature. Consequently, it is unknown whether sprint and distance swimmers 

have different COM acceleration profiles and whether these characteristics change 

between swim velocities.  

 

 

2.5. Summary of Literature Review 

While there are some indications of differences in the kinematics of sprint and 

distance swimmers the situation remains unclear, particularly with respect to the 

influence of distance specialisation. A digest of the literature reveals some evidence 

and belief that sprint swimmers stroke with a greater elbow angle (less flexion), stroke 

depth, spend more time in propulsive phases, use a six beat kick, a smaller total body 

roll and display a higher COM velocity fluctuation and acceleration profile than 

distance swimmers. Also, it has been reported that distance swimmers tend to exhibit 

a greater horizontal and lateral displacement of the arms, utilise a two beat kick, spend 

more time in the non-propulsive phases, have greater body roll and a smaller COM 

velocity fluctuation than sprint swimmers. Most of these conclusions have been based 

on qualitative observations and confirmation is required through quantitative 

empirical research. Most of the existing quantitative data has been obtained using 

methods with limited accuracy and reliability and most has involved two-dimensional 

rather than three-dimensional analysis techniques.  

 

While there has been some comparison of the kinematics of sprint and distance 

swimming there has been no research into the effect of race distance specialisation on 

the kinematics of sprint and distance swimming.  Thus, it remains unclear whether 
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sprint and distance specialists differ in their kinematic characteristics, or whether the 

differences previously observed between sprint and distance swimmers are due only 

to the effect of the swimming pace. This issue will be addressed in this study using 

three-dimensional analysis methods to ensure confidence in the results.  
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Chapter Three: Methodology 
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3.1. Participants 

A total of 15 male freestyle swimmers, (aged: 17.87 ± 2.33 years; body mass: 73.92 ± 

8.72 kg; height: 183.02 ± 6.84 cm) volunteered from several Scottish and Northern 

Irish swimming clubs for this study. The sample included swimmers who currently 

compete in specialised events (7 sprint (50-100m) swimmers (SG) and 8 distance 

(400m+) swimmers (DG)) at national and international level.  The sample was limited 

to elite trained swimmers to increase the likelihood that stroke characteristics and 

stroke patterns would be well established and consistent (Pyne et al., 2004; Nikodelis 

et al., 2005).  The inclusion criteria for the subjects’ participation were as follows; a) 

must be either a male sprint or distance specialist front crawl swimmer, b) must be 

specialised in their chosen distance event for a minimum of 2 years, c) sprinters 

personal best time for 50m, short course, must be less than 24.60secs, d) distance 

swimmer’s personal best time for 400m, short course, must be less than 4min 10secs, 

e) at the time of testing, swimmers must have no injury, nor be in the process of 

recovering from one. The specified times above were based on the 15 best 

performances at the Scottish National Short Course Championships, 2007, for both 

the 50m and 400m freestyle events (See Appendix A for subjects’ performance 

times).     

 

The literature highlights many factors which affect sports performance, namely: 

heavy/overtraining (Lehmann et al., 1993), ingestion of caffeine and alcohol (Costill 

et al., 1978; Graham and Spriet, 1991; Shirreffs and Maughan, 1997; Burke et al., 

2003), dehydration (Saltin, 1964a; Saltin, 1964b), and lack of sleep (Reilly and 

Piercy, 1994; Blumert et al., 2007). To prevent any of these factors affecting the swim 

test, participants were asked to avoid all of the above prior to the testing session.    

 

Prior to all testing sessions, participants were provided with a volunteer information 

document (Appendix B), which details a brief purpose of the study, the requirements 

of the participants, and the protocol of the experiment. The possible risks the subject 

may experience and the benefits for their participation were also outlined. Subsequent 

to reading the volunteer information document, and the investigator addressing any 

concerns expressed by the participants, the swimmers (or the participants parent/ 
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guardian if under 16yrs) signed the supplied informed consent form (Appendix B). 

Subjects were also required to complete a ‘pre- activity questionnaire’ based on the 

recommendations provided by the American College of Sports Medicine (ACSM, 

2005). This form evaluates the participants’ medical readiness to undertake the 

physical activity required, and thus provides the investigator with the assurance that 

the participant is ready and able to participate in the rigors of the assessment. 

 

To protect the swimmers’ identities, a code system was utilised to replace their names 

and any individual details of the swimmers. Thus, the code given to each swimmer, 

rather than the names used, is used throughout this thesis.  

 

3.2. Participant Preparation 

All participants wore brief swimming trunks so that the hip joint was clearly visible 

and easy to identify. An added benefit of wearing this type of swim costume is to 

reduce any effect of drag that ‘training’ trunks offer. As this study was conducted 

during the training phase of the swimmer’s program, they were not asked to shave 

down. 

 

Once the swimmers had changed into their swimming trunks, their height and body 

mass measurements were recorded using the stadiometer (Seca 225-1821009) and 

weighing scales (Seca 712-1321009) respectively.  

 

Participants were marked for two purposes: i) to track the swimmer through the water 

as they swim and ii) to enable subsequent calculation of the inertial properties of the 

limbs using the elliptical zone method (Jensen, 1976). Beforehand, both sides of the 

trunks were taped to reduce the possibility of obscuring the hip marker during the test 

(Figure 3.1). 
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Figure 3.1: Trunks taped 

 

In swimming research skin markers are the most commonly used method to define the 

relevant limbs to be studied. In this study, black waterproof oil and wax based cream 

(Grimas Crème Make Up), applied by a 45mm diameter sponge was used to mark the 

participants’ anatomical landmarks. Black was chosen due to the strong contrast with 

respect to the skin and water. All markers applied to the skin corresponded to the axis 

of the particular joint centre.  

 

For the swimming trials, the markers required were: the vertex of the head and the 

right and left of the following: longest tip of the 3rd distal phalanx of the finger, wrist, 

elbow, shoulder, hip, knee, ankle, 5th metatarsophalangeal joint and the tip of 1st 

interphalangeal joint (Figure 3.2). The placement of these markers was carefully 

executed, to minimise errors in subsequent calculation of variables including the 

segment and whole body centre of mass. Moreover, markers were placed on the 

frontal and lateral aspects of the aforementioned markers so that they were visible to 

more than one camera perspective.  
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Figure 3.2: A model representation of the marker locations used during the swim trials. 

 

For the calculations of the segment anthropometric data by the elliptical zone method 

(described later), additional markers were necessary to define the geometry of the 

body. As these markers were not required for the swimming trials, black tape was 

used. These additional markers were placed at the following locations: mandible 

angle, 2nd cervical vertebra, 7th cervical vertebra, axes of the head of each humerus, 

acromioclavicular joint, hip and the line of the xiphoid process (Figure 3.3). 

Additional information regarding the method of locating the above markers is 

provided in Appendix C.  
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Figure 3.3: A model representation of the additional markers required for the eZone method 

calculations.  

 

 

3.3. Experimental Design 

 

3.3.1. Swimming Pool Details 

The testing session was conducted in a 25m x 13.25m x 2m, indoor level deck 

swimming pool (average pool temp 29.5° ± 0.2 and air temperature 29.9° ± 1.2 over 

the testing period). Only one swimmer at any time was permitted in the pool during 

the testing session to minimise wave turbulence and prevent any possible interference 

with camera views. Wave turbulence was also minimised due to the nature of the 

swimming pool being level deck, which displaces excess water into the overflow 

channel perimeter (Figure 3.4). An added benefit of this type of wave turbulence 

reduction was the facilitation of the digitising process especially with respect to the 

above water camera views. 
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Xiphoid Process Line 
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Evenly diffused and distributed lighting at 1000 Lux was provided by large lights and 

reflectors (Figure 3.4).  

            

 

            

Figure 3.4: Trials were conducted in the above level deck swimming pool with adequate lighting.  

 

Originally this swimming pool was specifically designed for aquatic research. 

Therefore, all underwater cameras were permanently fixed in the water in purpose 

built recesses in the pool walls. Transparent perspex protective screens which shielded 

the cameras were removed for video data collection to reduce errors due to distortion 

and refraction (Kwon, 1999; Kwon and Casbolt, 2006).  

 

3.3.2. Camera Settings 

Six ‘gen-locked’ JVC KY32 CCD cameras (4 cameras below and 2 above the water 

surface) recorded the motion of the swimmer. The above water cameras were 

mounted at elevated positions on the side walls of the swimming hall. The camera 

positions are shown in Figure 3.5.  
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Figure 3.5: Camera and calibration frame set up during the testing session for 3D data capture. 

Cameras 1-4 are underwater. Cameras 5 and 6 are above water. X- horizontal direction; Y- 

vertical direction; Z- lateral direction. With permission from Psycharakis (2006). 

 

Camera sampling frequency was set at 50 fields per second, with an electronic shutter 

speed of 1/120 seconds, sufficient to reduce the smearing/blurring of the image that 

occurs when recording fast movements such as swimming. High quality telephoto 

zoom lenses, provided almost perfect optics, i.e. minimal distortion, and enabled the 

field of view to be set to maximise image size while capturing one complete SC with 

every pass through the calibrated space. The gain function was also adjusted to obtain 

Y 

Z 

X 
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the best quality image possible prior to data collection taking into account the light 

levels of each camera view.  

 

3.3.3. Calibration Frame 

The calibration frame used in this study was designed and manufactured by The 

University of Edinburgh, based on the requirements for 3-D motion analysis (Figure 

3.6). The dimensions of the rectangular prism frame were: 4.5m length, 1.5m height 

and 1m width, enabling a calibration space of 6.7m3 in total. A sum of 92 (46 above 

and 46 below) polystyrene spheres (3cm in diameter), otherwise known as control 

points, were randomly distributed within the frame. 

            
 

 
            

Figure 3.6 Picture of calibration frame. 

 

Prior to each testing session, the calibration frame was positioned in the centre of the 

swimming pool. As swimming incorporates both above and below water movements, 

it was essential that the frame was elevated so that half of it was equally above and 

below the water surface. Eight aluminium legs, each 1.25m in length, were attached to 

the bottom of the frame via screwing the legs onto the external thread projected from 

the bottom of the base joints. The supports were adjusted so that the frame was 

aligned exactly with the external frame of reference with the x axes in the direction of 

swimming.  

 

High accuracy and reliability of 3D coordinate calculation was established by 

Psycharakis et al. (2005). Using ten control points the mean difference for a set of 
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thirty digitised points was: 3.3 mm, 2.6 mm and 4.0 mm for the X, Y and Z axes 

respectively. The average root mean square errors for these points were 3.9 mm, 3.8 

mm and 4.8 mm for the X, Y and Z axes respectively, representing 0.1%, 0.2% and 

0.5% of the calibrated space. Therefore Psycharakis et al (2005) concluded that the 

accuracy of the frame used in this study was similar or better than other frames used 

in 3-D swimming studies, due to the errors obtained being regarded as low and 

acceptable. The reliabilities indicated by repeated digitisations of one marker were 

±0.4 mm, ±0.5 mm and ±0.4 mm for the X, Y, and Z axes respectively, also 

demonstrating good reliability in the reconstruction of 3D coordinates. In the same 

study, Psycharakis et al. (2005) also evaluated the effect of data collection with and 

without the transparent screens in front of the cameras. It was reported that data 

collection through the screens had a small effect. Nevertheless, in order to reduce all 

sources of error, data collection proceeded with the screens removed.  

 

3.3.4. Testing Set Up 

All underwater cameras have a height adjustment function that varies from 0.5m to 

1.5m, as measured from below the surface of the water. The four underwater cameras 

used in this study were randomly fixed at different heights to avoid errors with respect 

to the camera axes being in the same plane as the axes of the calibration frame plane. 

It was also ensured that all the control points on the calibration frame were clearly 

distinguishable in order to enhance the accuracy of the digitising and subsequent 

calculations of the DLT coefficients. The two above water cameras were fixed at 

heights 2.5m and 3.5m respectively, as measured from the poolside deck.  

 

Because the calibration frame was positioned in the centre of the swimming pool, all 

underwater cameras were approx 8m away from the centre of the calibrated space. 

The above water cameras were measured as being approx 12m away from the centre 

of the calibrated space.  As in Psycharakis (2006) the angle between the 2 above water 

camera axes was approx 100°, while the angles between axes of adjacent below water 

cameras ranged from 75° to 110°. 

 

All cameras were adjusted for a field of view of 6.5m length, which represented the 

full length of the calibration frame (4.5m) in addition to an extra 1m on both ends of 
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the frame to ensure a full SC was captured.  The vertical field of view was adjusted so 

that the swimmer was approximately along the midline of the view (Figure 3.7). 

            

 
            
Figure 3.7: Cameras’ field of view. Cameras 1-4 = underwater, Cameras 5-6 = above water. With 

permission from Psycharakis (2006). 

 
After camera adjustments with respect to the calibration frame were made, the frame 

was video-taped for a period of 10secs (Figures 3.8 and 3.9). No person was allowed 

in the pool during this capture to ensure that there was no disturbance of the water that 

might interfere with the calibration process. Following this data collection, the frame 

was removed from the water and stored. No further adjustments were made to the 

camera settings at any time thereafter. During the testing session the participants 

swam in the space that the frame had occupied; this was marked by two black blocks 

outlining the beginning and end of the calibrated space. An added benefit of marking 

the space in this way was to indicate to the swimmers the area within which no 

breaths were to be taken.  
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Figure 3.8: An underwater view of calibration frame from camera 1 perspective.  

   
 

 
   

Figure 3.9: An above water view of the calibration frame from camera 5 perspective. 
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3.4. Testing Procedure 

Data collection for each swimmer required one session. Due to the participants’ vast 

experience, the swimmers performed their own individual warm-up prior to the 

testing session. Although individualistic in nature, this warm-up was still standardised 

and tended to last for a period of 10-15minutes, consisting of both aerobic and pace 

swimming, in addition to swim drills and stretching. As outlined in the literature 

review chapter this study had a ‘no breathing requirement’ within the calibrated 

space. Therefore, the swimmers were advised to familiarise themselves with this 

protocol during the warm-up. 

 

After the warm-up, each participant was required to swim four repeat 25m sprints and 

one repeat 400m at a maximal effort and even pace. The order in which the swimmers 

performed the sprint block of trials and distance swim was randomly assigned to 

prevent any order effects.  

 

All swim trials were performed in the centre of the swimming pool (which had been 

previously calibrated) and initiated from a push start to eliminate any possible 

influence that a dive may have on the stroke kinematics of the first length. Push starts 

are often used in swim research designs (Alves and Vilas Boas, 1992; Cardelli et al., 

2000; Seifert et al., 2004a; Toubekis et al., 2005; Psycharakis, 2006). All trials were 

manually timed using a Cronus 602M100D stopwatch.  

 

Each 25m sprint was accompanied by a recovery pace 25m to the starting position, 

followed by a two minute stationary rest period remaining in the water, before starting 

the next 25m sprint. At the completion of the 4 x 25m sprints, or the 400m maximum 

effort, swimmers were instructed to ‘swim down’ (swim at a recovery pace) for a 

period of at least 5minutes. Swimmers were then asked to exit the water and rest for a 

further 10mins on the poolside before warming up again to complete either the 400m 

maximum effort swim or the 4 x 25m sprints.  

 

The recovery method utilised in this study was in accordance with research described 

in literature highlighting that active recovery, combined with passive recovery, and 

water immersion per se, following a bout of rigorous exercise, are more beneficial in 
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terms of aiding the recovery process than passive recovery alone (Dodd et al., 1984; 

Choi et al., 1994; Wilcock et al., 2006).  

 

3.5. Data Collection 

 

3.5.1. Anthropometric Data  

As described in the literature review, the elliptical zone method of Jensen (1976) was 

applied using software developed by Deffeyes and Sanders (2005), to quantify the 

anthropometric data of all the participants. The accuracy of calculating the COM of 

the whole body using the elliptical zone method from the anthropometric data 

obtained has been previously validated (Jensen, 1978; Yokoi et al., 1985; Jensen, 

1986; Jensen and Nassas, 1988; Sanders et al., 1991; Wicke and Lopers, 2003). In 

simple terms, this technique requires two photographs taken simultaneously (from 

front and side views) of a marked participant, as described in the ‘participant 

preparation’ section.  

 

3.5.1.2. Camera Setup and Capture for the Elliptical Zone Method 

The two digital cameras used in this study were a Nikon E4200 and Canon Ixus 400, 

both with a 4.0 megapixel capacity. Although Deffeyes and Sanders (2005) 

recommended that a 2 megapixel digital camera is adequate for data collection, the 

higher resolution cameras used in this study would allow for a larger image-to-actual 

body size ratio, which would aid the digitising process and ultimately lead to a 

reduction in errors. Other functions of these cameras were: exposure time 1/60secs, 

ISO 200 and focal length 23mm. A flash was used to maximise image quality and 

contrast taking care to ensure that the flash did not produce shadows that affected the 

definition of the body segment outlines.  

 

Both cameras were fixed to horizontally levelled tripods and set at a 1m height, based 

on the recommendation by Deffeyes and Sanders (2005) that the height of the 

cameras should be set at the equivalent of one-half of the participant’s height. The 

axes of the cameras were horizontal and perpendicular to one another, so that both a 

front and side view of the participant would ultimately be observed simultaneously 
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(Figure 3.10). The perpendicular distance from the centre of the space to each of the 

cameras was set to 12m to minimise image distortion whilst maintaining a large 

image of the participant with the optical zoom function set at 3x.    

             
            
 

                                                                                             
 
 Camera 1 

 
 
 
 
 
  
 
 Camera 2 
 
           

Figure 3.10: Schematic illustration (not to scale) of the participant and two camera set-up for the 

eZone method. Camera 1 captures the participants’ front view. Camera 2 photographs the side 

view of the participant. 

 

Prior to capturing the participants’ photographs, the area was calibrated in order to 

convert pixels into ‘real’ distance for further data analysis in the MATLAB program. 

A vertical and horizontal reference scale comprising of a series of 200mm alternating 

white and black bands was positioned in the same plane as the participants’ mid-

frontal and mid-sagittal planes for the subsequent pictures (Figures 3.11 and 3.12). 

Camera settings were not changed between the calibration and participant 

photographs. 

 

 

 

 

 

 

 

 

 

 

Participant  
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 Figure 3.11: Side View of Calibration frame     Figure 3.12: Front view of Calibration frame 

 
The point at which the calibration frame was positioned was in turn replaced by four 

heavy kickboards, stacked to create an incline on which participants stood. Standing 

on an incline permitted the feet to be plantar flexed with the toes pointed, a 

prerequisite for elliptical zone calculations. Participants were instructed to stand in the 

anatomical position with the fingers and thumb adducted, hands held as straight as 

possible, and chin horizontally parallel to the ground. When viewed from the side the 

arms were aligned to avoid obscuring the outline of the torso and thigh. Participants 

were also required to wear a swim cap so that their hairstyle did not interfere with the 

outline of the head.  

 

When the participants were satisfactorily in place, two photographs (front and side 

view) were taken simultaneously (not synchronised) with the help of another 

researcher (Figures 3.13 and 3.14). Taking the photographs simultaneously prevented 

errors being incorporated into the calculations due to the participant moving. These 

photographs were saved as ‘Jpeg’ files and input to a MATLAB program.  
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Figure 3.13: Front view of participant (eZone)    Figure 3.14: Side view of participant (eZone) 

 

3.6. Data Processing 

 

3.6.1. Anthropometric Calculation for Elliptical Method 

The MATLAB ‘eZone’ program processed all the data collected by sequentially 

prompting the researcher for various inputs. Firstly, the program requested uploading 

the calibration frame photographs and which were then analysed by inputting the 

dimensions of the scales. Secondly, the participants’ photographs were uploaded and 

the anatomical landmarks identified in response to the sequence requested by the 

program. This protocol defines the body segments and is completed for both the front 

and side views. Finally, the program requested that the following body segment 

clusters be outlined with the aid of the MATLAB image processing toolbox: 
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1. Head and Neck 

2. Thorax and Abdomen 

3. Thigh, Shank, and Foot (lower limb) 

4. Upper arm, Forearm and Hand (upper limb) 

After the above body segment clusters were defined, the eZone program divided these 

clusters into the head, neck, thorax, arm, forearm, hand, thigh, shank, and foot 

segments based on the digitised segment landmarks. A model representing the 

participant was then displayed on screen as seen in Figures 3.15 and 3.16: 

            

                            

            

Figure 3.15: eZone model for Front View             Figure 3.16: eZone model for Side View 

 

It should be noted that during the data processing in MATLAB the images were 

magnified in order to ease the process of identifying the calibration scales, the 

anatomical landmarks and the outline of the body segment clusters. Magnifying the 
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images is an acceptable method of analysing the data as Wicke and Lopers (2003) 

found that it reduced the digitising errors.   

 

3.6.1.2. Accuracy and Reliability of Elliptical Zone Method 

Psycharakis (2006) quantified the accuracy of the eZone program by measuring the 

difference of the body mass value as obtained from eZone calculations, to that 

obtained from ‘real’ (as measured from weighing scales) data for all 11 participants. It 

was reported that the mean (±SD) differences (for the group of swimmers) between 

calculated and real values for the whole body mass were -0.2 ± 0.9 kg or -0.3 ± 1.3% 

(expressed as a percentage of the real body mass values) (Psycharakis, 2006). In this 

study, the same calculations were performed and the differences were 0.12 ± 0.43 kg 

or 0.2 ± 0.6% between the values from eZone calculation and the real data. These 

results further support the high accuracy of the eZone body mass calculations, with 

differences smaller than other studies using the eZone method (Jensen, 1978; Yokoi et 

al., 1985; Jensen, 1986; Jensen and Nassas, 1988; Sanders et al., 1991; Wicke and 

Lopers, 2003; Psycharakis, 2006) 

 

Reliability of the eZone calculations was also assessed by digitising the same 

participant 10 times. This procedure was completed by the same operator in order to 

eliminate any inter-operator errors. The SD of the body mass as calculated from the 

eZone program across all 10 repeats was 0.24 kg, or 0.31% of the mean body mass. 

Performing similar calculations Psycharakis, 2006, reported a SD for the whole body 

mass as 0.4 kg, or 0.3% of the mean body mass. It was therefore concluded that the 

eZone calculations used in this study had a reliability similar to those of Psycharakis 

(2006), with errors considered low and acceptable.  

 

3.6.2. Digitising Swim Trials Procedure 

The camera recordings of the swim trials were automatically converted to AVI files 

and saved to each PC hard drive dedicated to each camera. All files were then 

transferred to a separate PC for digitising and calculation of 3D coordinates using the 

Ariel Performance Analysis System (APAS) software. The first step of this process 

was to use the APAS ‘Trim’ function to obtain one complete SC. The start and end 

points of the SC were defined as the video field at which the 3rd metacarpal tip of the 
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hand entered the water. The hand selected for analysis was based on the first to enter 

the calibrated space with the whole body also in view. The time codes displayed on 

the left hand corner of each camera view was used as a reference to ensure accurate 

trimming. Trimming was completed for all six camera views. Before proceeding, all 

six camera views, per SC, were checked to ensure that the data sets were in exact 

temporal correspondence.  

 

The APAS ‘Digitise’ function was used to create two sequence files, one for the 

above and one for the below water camera views. Creating sequence files is likened to 

that of creating a template, in which one determines the landmarks to be identified 

and specifies the order in which this is completed. Embedded in the sequence file was 

also the number and position of calibration points of the frame (20 points were 

selected in this study). Once the sequence files were completed, they were 

subsequently used as a reference for all files during the digitising process. The 

specified reference points were manually digitised in the following order: fixed point, 

vertex of the head, left finger, left wrist, left elbow, left shoulder, left hip, left ankle, 

left 5th metatarsophalangeal joint, left 1st interphalangeal joint, and then the 

corresponding points for the right side. This was repeated for each frame within the 

SC. A key feature in the APAS software is, if a reference point is not visible in a 

particular frame, APAS allows one to ‘skip’ that point, rather than estimating the 

point on the screen.  On completion of each fully digitised SC, the calibration points 

corresponding to the camera view previously digitised were then processed. It should 

be highlighted that no underwater calibration point was digitised from the above water 

view, and vice versa. As a result, no errors were introduced due to refraction 

phenomena in the different mediums (air to water) during the digitising process.  

 

The APAS ‘Transform’ function was used for each SC and for each of the above and 

below water views. The transform function is based on calculations from the DLT 

method. This applied the DLT equations to the digitised data to produce the 3D 

coordinate data for the above and below water views.   

 

The final component of the APAS data processing procedure was to use the APAS 

‘Display’ function which produces columns of the raw displacement data (x,y,z) for 

all digitised landmarks. Above and below water data were presented in separate files. 
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The output files from the ‘Display’ function were saved as Microsoft Excel files. The 

above and below water files were then combined into one single excel file 

representing continuous coordinates throughout the SC. These files were then saved 

as ‘text’ files, as a prerequisite for inputting the data into a MATLAB program for 

calculation of the variables.       

 

3.6.3. Calculation of Variables 

A MATLAB program developed by Sanders (2007) was used for all variable 

calculations in this study. The raw displacement and anthropometric data were input 

into the MATLAB program as ‘text’ files, as previously detailed. This process was 

completed for each SC (12 stroke cycles per swimmer) and for each swimmer (n=15). 

 

A Fourier transform retaining 6 harmonics was used to smooth the raw data. The use 

of the Fourier series transform is regarded as highly appropriate when analysing 

periodic data, whereby the movement being examined displays a cyclical pattern, 

such as in swimming (Bartlett, 1997). It operates by removing noise as the series of 

sinusoidal waves above a ‘cut-off’ specified frequency. Bartlett (1997) recommended 

a cut-off frequency between 4-8Hz for human movement. However, Antonsson and 

Mann (1985) suggested that a lower cut-off frequency may be preferable for 

swimming. In this study, the retention of 6 harmonics corresponded to a frequency 

cut-off between 4 and 7Hz depending on the duration of the swimming cycle.  

 

Following the calculation of variables in the MATLAB program, all output data were 

presented as 101 points. These points represented the SC as a percentage, expressed 

by a 0 to 100 range of percent points. This controlled for the duration of cycles 

enabling comparisons between and within swimmers using a common base on the 

abscissa of the graphs. Nevertheless, real time values corresponding to each percent 

point were also output. 
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3.6.3.1. Average velocity, stroke frequency, stroke length and 

stroke index 

The average horizontal swimming velocity (m⋅s-1) for each swimmer was calculated 

by dividing the swimmer’s mean COM horizontal displacement by the time it took to 

complete one SC. Stroke frequency (cycles⋅min-1) was the inverse of the time 

(seconds) it took to complete one SC which was then multiplied by 60. Stroke length 

(m) was the horizontal displacement of the COM during SC by one (representing one 

complete SC). The stroke index (m2.cycles⋅min-1) was quantified as the product of the 

stroke length and swim velocity.   

 

These variables were quantified to illustrate the fundamental parameters of swim 

performance and display how these were influenced by the swimming velocity.  

 

3.6.3.2. Displacement Stroke Pathway of the Hand 

 The vertical motion of the arm pathway was analysed by calculating the maximum 

displacement (m) of the finger throughout the underwater phase of the SC in the 

vertical plane aligned in the direction of intended motion. Maxima, minima and range 

of motion were determined, as well as the times corresponding to the instants of 

attainment of the maxima and minima as both percent points of the SC and as real 

time relative to the commencement of the SC.  

 

The lateral motion of the upper limb segment during the underwater phase was 

calculated as the absolute maximum and range of the finger, wrist and elbow 

displacement (m) in the vertical plane perpendicular to the intended motion. The 

lateral displacement data were expressed with respect to the swimmer’s COM so that 

the hand movement was depicted as moving past a stationary body, i.e. the swimmer, 

making the data more interpretable. The time corresponding to the maximum lateral 

displacement of the finger was also calculated and expressed as a percentage of the 

overall SC. The lateral displacement calculations provided information on the extent 

of the lateral ‘sweeping’ motion of the arm during the SC.  
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3.6.3.3. Shoulder and Hip Roll 

Shoulder roll angle during the SC was determined as the angle between the unit vector 

of the line joining the shoulders, projected onto the YZ plane (i.e. the plane 

perpendicular to the swimming direction) and the horizontal. Computationally, this is  

atan (Sz/Sy) 

Where Sz and Sy are the z and y components of the shoulder unit vector. 

 

The hip roll angle was calculated in a similar manner as the shoulder roll.  

atan (Hz/Hy) 

Where Hz and Hy are the z and y components of the hip unit vector. 

 

The maximum shoulder and hip roll angles (degrees) were calculated for each side per 

SC. Rolling to the left occurred when the shoulder/hip joint of the left side was higher 

than that of the right side, and vice versa. The time corresponding to the peak 

shoulder/hip roll per side was also measured and expressed as a percentage of the SC. 

Additionally the range of the shoulder and hip roll angle was also quantified for each 

SC. The shoulder and hip roll data provided information with respect to the magnitude 

of the shoulder and hip roll during sprint and distance events.  

 

3.6.3.4. Elbow Angle  

To calculate the elbow angle the following equation was utilised: 

 

�= acos (a·b/|a||b|) 

 

Where, |a||b| is the length of vector a (Figure 3.17) multiplied by the length of vector 

b and a·b is the dot product of vectors a and b.  
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Figure 3.17: Calculation of the elbow angle 

 

The elbow angle was quantified at five different instants within the underwater SC 

corresponding to the transitions between the stroke phases. Namely, at the moment: 

1. The 3rd finger begins to move backwards following entering the water (1ST 

back). Point ‘X2’ in Figure 3.18.  

2. The 3rd finger is vertically aligned to the shoulder joint (shoulder x). Point ‘X3’ 

in Figure 3.18. 

3. The 3rd finger stops moving backwards (end back) Point ‘X4’ in Figure 3.18. 

4. When the 3rd finger exits the water (hand exit). Point ‘X6’ in Figure 3.19. 

5. The same finger breaks the water surface (recovery). Point ‘X5’ in Figure 3.18. 

 

Moreover, it should be stated that the ‘1st back’ elbow angle represents the ‘catch’ 

event. This position is regarded as one of the fundamental aspects of all swimming 

strokes, due to propulsion said to commence at, or soon after, this moment.  

 

Additionally, with reference to the above instants, the elbow angle range during the 

pull and push phases was calculated: 

 

1. Range 1 = Elbow angle at instant ‘1st back’ - Elbow angle at instant ‘shoulder 

x’. 

2. Range 2 = Elbow angle at instant ‘end back’ - Elbow angle at instant ‘shoulder 

x’.   

 

� 
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The elbow angle calculations provided an indication of this parameter’s behaviour, in 

terms of quantity and change, during the different underwater stroke phases.  

 

3.6.3.5. Time Spent in Each of the Stroke Phases 

Quantifying phases of a SC is common in swim research and performance for the 

purpose of analysis and skill development respectively. In this study, four separate 

phases; Entry, Pull, Push and Recovery were identified. Each phase, within every SC, 

was determined by the analysis of the swimmer’s horizontal (x) and vertical 

displacement (y) of the 3rd finger and noting the time corresponding to these 

displacements.  The phases were defined as follows, and graphically illustrated in 

Figures 3.18 and 3.19: 

Entry ‘X1-X2’ (Figure 3.18): The time at which the finger breaks the water surface on 

entry to the time of the first backward movement of the finger. 

Pull ‘X2-X3’ (Figure 3.18): Time of first backward movement of the finger, until the 

time the finger is vertically ‘in-line’ with the shoulder joint.  

Push ‘X3-X4’ (Figure 3.18): Time of the finger inline with the shoulder joint to the 

time of the last backward movement of the finger. 

Recovery ‘X4-X5’ (Figure 3.18): Time of last backward movement of the finger, until 

the time the same finger enters the water again.  

 

The time, expressed as a percentage of the SC, at which the hand exits the water was 

also quantified. The duration of different phases, when compared between sprint and 

distance events, is used to provide information on how swimmers distribute their time 

within the SC.  
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3.6.3.6. Kicking Vertical Range of Motion 

The flutter kick consists of the legs alternately executing an upbeat and downbeat 

action in an antagonistic manner. An upbeat and downbeat kick is defined as the end 

of the upbeat and downbeats of the foot respectively during a kick cycle (Figure 3.20 

for illustration of events). In swim research and performance, the leg action is 

measured by quantifying the number of beats (up and down) within one complete SC. 

For example, many researchers have recommended that sprinters should utilise a six 

beat kick action per SC (three downward beats per arm stroke), whereas distance and 

middle distance swimmers are advised to use fewer beats per cycle, such as a two beat 

kick (one downward beat for each arm stroke) or a four beat kick action (two 

downward beats for each arm stroke) (Counsilman, 1977; Costill et al., 1992). 

Illustration of One Kick Cycle
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Figure 3.20: Vertical displacement of the foot during one complete stroke cycle. Diagram 

illustrates the upbeat and downbeat during one kick cycle.  

 

The vertical displacement (cm) of this parameter in the ‘y’ plane was represented by 

quantifying the centre of the foot: 

 

= vertical displacement of ankle + vertical displacement of the big toe 

2 

 

1 Kick Cycle 

Upbeat 

Downbeat 
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The centre of the foot displacement was calculated for all 101 points per SC, and for 

all stroke cycles per swimmer. The displacement of the foot was graphed for both feet 

so that the beats of the kick were easily identifiable. 

 

Each upbeat and downbeat action of the kick was quantified as the maximum and 

minimum vertical displacement of the foot respectively. This was performed for each 

foot within each SC. The vertical displacement range was calculated between an up 

and downbeat portion, and vice versa. These measurements provided information with 

respect to the number of upbeat and downbeat kicks within a SC, and also the depth 

range of the foot when swimming at a sprint and distance pace.  

 

3.6.3.7. COM Horizontal Velocity Pattern  

The COM displacement (cm) was determined by summing the moments of the 

segment centres of mass about the X, Y, and Z reference axes. The velocity of the 

COM (m⋅sec-1) was obtained by differentiating the COM displacement data using the 

first central difference formula. The horizontal maximum and minimum instantaneous 

COM velocities, in addition to the range between these two parameters, were 

calculated for each underwater SC. 

 

Analysis of the horizontal COM velocity profile (VCOMHor) provided information with 

regard to velocity fluctuations when swimming at different speeds.  

 

3.6.3.8. COM Horizontal Acceleration  

COM acceleration (accCOM) was obtained by differentiating the COM displacement 

data using the second central difference formula. 

 

3.6.3.9. COM Net Force 

The COM net force (forceCOM) was calculated as the product of COM acceleration 

and the mass of the swimmer. The maxima and minima were determined, as well as 

the times corresponding to these instants as both percent points of the SC and as real 

time relative to the commencement of the SC. These calculations provided 

information on the resultant magnitude of the sum of propulsive and resistive forces 

throughout the SC.  
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3.7. Reliability 

To assess the reliability of the investigator’s digitising technique on all of the 

aforementioned kinematic variables, one single SC was digitised five times for all six 

camera views. For each of the kinematic and kinetic variables, the standard deviation 

and 95% confidence interval (CI) of the five repeat digitisations were used as an 

indication of the reliability.  

 

 

3.8. Statistical Analysis 

The processed data were analysed using the Statistical Package for Social Sciences 

(SPSS) version 14.0. Descriptive statistics including the mean, and standard 

deviations were calculated for all the data in Microsoft Office Excel 2003 software.  

 

The data were pre-analysed to assess for any learning or fatigue affects within the 

trials. A single factor ANOVA, with the lap number as the factor, was used to 

evaluate whether any of the laps differed significantly in magnitude relative to each 

other. This was repeated for each kinematic and kinetic variable. Within the four 25m 

sprints, trial number one was different from the other three trials in the majority of 

kinematic and kinetic variables. Within the 400m swim, lap numbers 1, 4, 7 and 8 

where consistently different from laps 2, 5 and 6. Based on this finding, the mean of 

the three trials per swim condition which did not differ from each other (sprinting: 

number 2, 3, and 4; distance swimming: 2, 5 and 6) were used for statistical analysis.  

 

A two factor mixed design ANOVA with an independent factor (factor A: group), 

being a sprint specialisation group and a distance specialisation group, and a repeated 

measures factor (factor B: pace), being sprint and distance pace, was used to analyse 

the data based on the fact that each swimmer swims both conditions of the speed 

factor. The differences between groups and paces as well as the interactions between 

these, were tested with the confidence level of p < 0.05 accepted as significant. Post 

hoc analysis was also performed and a Bonferroni adjustment made for multiple 

comparisons (p < 0.0125).  
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In statistical analysis using a repeated measures ANOVA the criterion of sphericity, 

that is, homogeneity of variance and homogeneity of covariance must be met. 

Homogeneity of covariance means that the relationships, or correlations, on the 

dependent variable among all of the three or more repeated measures are equal. 

However, when only two repeated measures are employed, such as sprint and distance 

swimming, this assumption is not applicable, because there are too few points to 

establish a correlation coefficient.  

 

To compliment the above, a 95% CI of the true mean was quantified for each 

variable. The upper and lower CI boundaries were presented on the graphs instead of 

the standard error bars to indicate the range in which the true value of the variable fell 

95% of the time. All CI calculations were quantified using Microsoft Office Excel 

2003 software, using the formula:  

CI= X ± (z x SE) 

Whereby X is the mean, z is the z-score for the particular confidence level of interest 

and SE is the standard error. Since this study required a 95% confidence level, the 

value of z would be 1.96. The SE is calculated as: 

SE = SD / √ n 

Where SD is the standard deviation and n is the number of number of cases/subjects. 

 

The effect size (d) for each variable was also calculated to measure the magnitude of 

change between swimming at a sprint and distance pace (within groups) and to assess 

the magnitude of change between sprint and distance swimmers (within paces). The 

general effect size formula is given as: 

Effect Size = Mean of dataset1 – Mean of dataset2 / Standard Deviation 

This formula presents two problems. Firstly, the effect size quantifies the difference 

between two datasets, but it is not obvious which dataset should be subtracted from 

the other, making it important to quote which order the calculations are performed. In 

this study, calculating the effect size between paces (within the SG and DG) was 

performed by subtracting the mean of the distance pace variable from the mean of the 

sprint pace variable. When calculating the effect size between groups (within the 

sprint and distance paces), the mean of the DG variable was subtracted from the mean 
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of the SG variable. Secondly, it is almost never known which standard deviation to 

use. It is therefore recommended that a ‘pooled’ standard deviation (sp), which is the 

average of the standard deviations of both datasets (Coe, 2002):  

 

Where n1 and s1 are the number of cases and standard deviation within the first 

dataset; n2 and s2 are the number of cases and standard deviation within the second 

dataset. The criteria for interpreting the absolute effect size, was based on Cohen’s 

(1992) suggestion that effect sizes of 0.2 are small, 0.5 are moderate and 0.8 are large. 

These values enable us to compare effect size results to known benchmarks.  
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In this section, the results of the race parameters in addition to kinematic and kinetic 

variables are presented. Tables and graphs are used to illustrate the results and to 

highlight the differences between sprint and distance pace for both groups.  

 

4.1. Reliability of Calculated Variables  

Table 4.1 presents the results from the reliability calculations, based on the same 

swim trial digitised five times. The 95% confidence intervals show the range in which 

the true value of that particular variable fell 95% of the time. The standard deviation 

(SD) values were considered small and acceptable for most variables. However, the 

results for some variables need to be interpreted cautiously, namely: time to max 

VCOMHor, time to max accCOM, time to min accCOM, max forceCOM, time to max 

forceCOM, min forceCOM, maximum right hip roll angle, elbow angle at hand exit and 

re-entry which had higher variability in terms of SD magnitude.  

 

Variable Mean Standard 

Deviation 

95% Confidence Intervals 

Lower                  Upper 

SL (m) 2.63 0.01 2.62 2.64 

SF (cycles�min-1) 31.0 0.14 30.87 31.11 

SI (m2
�cycles-1

�s-1) 3.57 0.02 3.55 3.59 

Vav  (m�s-1) 1.36 0.003 1.35 1.36 

Max finger vertical depth (m) 0.69 0.012 0.68 0.70 

Time to max finger depth (% SC) 60.2 0.45 59.81 60.59 

Max finger lateral displacement (m) 0.60 0.01 0.59 0.61 

Time to max lateral displacement of 

finger (% SC) 

54.2 0.45 53.81 54.59 

Range of finger lateral displacement (m) 0.61 0.02 0.59 0.63 

Range of wrist lateral displacement (m) 0.49 0.02 0.47 0.51 

Range of elbow lateral displacement (m) 0.36 0.01 0.35 0.37 

Max shoulder roll- right (°) 47.4 1.61 45.99 48.81 

Time to right shoulder roll (% SC) 37.4 0.55 36.92 37.88 

Max hip roll- right (°) 35.2 4.92 30.90 39.52 

Time to right hip roll (% SC) 43.2 1.48 41.90 44.50 

Max shoulder roll- left (°) 78.7 2.87 76.20 81.24 
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Time to max left shoulder roll (% SC) 88.4 0.55 87.92 88.88 

Max hip roll- left (°) 49.9 4.72 45.73 54.01 

Time to max left hip roll (% SC) 97.3 0.50 96.81 97.69 

Elbow angle at 1st back (°) 170.0 4.32 166.19 173.77 

Elbow angle at ‘shoulder x’ (°) 101.2 2.02 99.44 102.98 

Elbow angle at end back (°) 117.1 3.82 113.71 120.41 

Elbow angle at hand exit (°) 52.3 4.80 48.09 56.51 

Elbow angle at re-entry (°) 147.8 5.96 142.58 153.02 

Elbow angle range for pull phase (°) 68.8 4.15 65.13 72.41 

Elbow angle range for push phase (°) 15.9 2.85 13.35 18.35 

Time spent in entry phase (% SC) 48.6 0.55 48.12 49.08 

Time spent in pull phase (% SC) 15.2 0.45 14.81 15.59 

Time spent in push phase (% SC) 11.6 0.55 11.12 12.08 

Time spent in recovery phase (% SC) 24.6 0.55 24.12 25.08 

Time at hand exit (% SC) 85.4 0.55 84.92 85.88 

Average left foot vertical displacement 

range (m) 

0.19 0.002 0.185 0.189 

Average right foot vertical displacement 

range (m) 

0.086 0.004 0.082 0.089 

Sum av foot vertical displacement (m) 0.136 0.003 0.133 0.139 

Av VCOMHor (m�s-1) 1.36 0.003 1.36 1.36 

MaxVCOMHor  (m�s-1) 1.46 0.017 1.45 1.47 

Time to MaxVCOMHor (% SC) 20.00 21.31 1.32 38.68 

MinVCOMHor  (m�s-1) 1.22 0.032 1.19 1.25 

Time to MaxVCOMHor (% SC) 48.20 1.64 46.76 49.64 

Max accCOM (m�s-2) 1.37 0.29 1.12 1.62 

Time at max accCOM (% SC) 34.20 28.08 9.59 58.81 

Min accCOM (m�s-2) -1.10 0.26 -1.33 -0.87 

Time at min accCOM (% SC) 45.20 25.6 22.76 67.64 

Max forceCOM (N) 113.93 23.90 92.98 134.88 

Time at max forceCOM (% SC) 34.20 28.08 9.59 58.81 

Min forceCOM (N) -91.78 21.76 -110.85 -75.71 

Table 4.1 Reliability of all variables calculated in this study. 
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4.2. Race Parameters 

Table 4.2 presents all the effect sizes for the race parameter variables. 
 

Parameter Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Vav  6.14 6.00 0.17 -1.64 
SL -0.91 -1.43 0.24 0.20 
SF  2.89 3.80 -0.17 -0.55 
SI 1.20 0.81 0.27 -0.36 
Table 4.2: Effect size values for Vav, SL, SF and SI. The effect size between paces within the SG 

and DG are presented on the left side columns. The effect size between groups within the sprint 

and distance paces are presented on the right side columns. 

 

4.2.1. Average Swimming Speed 

It is clear from Figure 4.1 that both groups achieved a greater Vav when swimming at 

sprint than distance pace. The difference between the two paces (0.40 m�s-1 and 0.30 

m�s-1 for SG and DG respectively) was significant (p< 0.001), which is further 

supported by the large effect size of both these variables (Table 4.2). Both the groups 

and the pace-group interaction approached significance (p= 0.071). Post hoc analysis 

showed that the difference in Vav between the DG and SG approached significance at 

the distance pace trials (p= 0.015), with the DG faster than the SG when distance 

swimming but not when sprinting. Moreover, Table 4.2 presents that there was a large 

effect size between the groups at distance pace, supporting the post hoc analysis.  
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Figure 4.1: Vav - SG vs. DG, at both sprint and distance pace. Mean swimming speed (m/sec) 

values are indicated. Error bars represent 95% confidence interval of the true mean.  
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4.2.2. Stroke Length 

The difference in SL between sprint and distance pace was significant (p< 0.001). The 

SL effect size was also found as large for both groups (Table 4.2). Figure 4.2 shows 

that SL was greater at distance pace (2.24 ± 0.32m- SG and 2.19 ± 0.18m- DG) than 

sprint pace (2.00 ± 0.19m- SG and 1.96 ± 0.14m- DG). Post hoc analysis revealed that 

the DG adjusted SL significantly between the paces (p< 0.0125), whereas the SG 

approached significance (p= 0.030). There was no significant difference between 

groups (p= 0.672) nor a significant pace-group interaction (p= 0.944), which is 

supported by the small effect size values in Table 4.2. 
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Figure 4.2: SL- SG vs. DG at both sprint and distance pace. Mean stroke length (m) values are 

indicated. Error bars represent 95% confidence interval of the true mean.  
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4.2.3. Stroke Frequency 

SF was significantly different between paces for both groups (p<0.001) (Figure 4.3), 

which is supported by the large effect sizes for the SG (d= 2.89) and the DG (d= 3.80) 

between paces. The SF when sprinting (54.64 ± 5.08 cycles�min-1- SG and 55.38 ± 

3.73 cycles�min-1- DG) was greater by 16.05 cycles�min-1 (SG) and 14.12 cycles�min-1 

(DG) than distance pace (38.59 ± 6.00 cycles�min-1- SG and 41.26 ± 3.70 cycles�min-

1- DG). There was no significant difference between the groups (p= 0.433) nor a 

significant pace-group interaction (p= 0.431), despite a moderate effect size between 

the groups at distance pace (d= -0.55).  

 
 
            

38.59

54.68

41.26

55.38

0

10

20

30

40

50

60

Sprint  Distance

Pace

S
tr

o
k

e
 F

re
q

u
e

n
c

y
 (

c
y

c
le

s
/m

in
)

Sprint Group Distance Group

 
            

Figure 4.3: SF- SG vs. DG at sprint and distance pace. Mean stroke frequency (cycles/min) values 

are indicated. Error bars represent 95% confidence interval of the true mean.  
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4.2.4. Stroke Index 

SI was significantly greater at sprint than distance pace (p< 0.001) by 0.47 m2
�cycles-

1
�s-1 and 0.25 m2

�cycles-1
�s-1 respectively for SG and DG (Figure 4.4). Both groups 

showed a large effect between paces (Table 4.2). Moreover, post hoc analysis 

revealed a significant difference between paces within the SG (p< 0.0125) but not 

within the DG (p= 0.0232). There was no significant difference between groups (p= 

0.924) nor a significant pace-group interaction (p= 0.122).  
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Figure 4.4: SI- SG vs. DG at sprint and distance pace. Mean stroke index (m
2
����cycles

-1
����s

-1
) values 

are indicated. Error bars represent 95% confidence interval of the true mean.  
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4.3. Kinematic Parameters 

 

4.3.1. Arm Displacement 

The vertical displacement of the arm was measured with respect to an external 

reference frame. The lateral displacement of the arm was quantified with respect to an 

internal reference frame with the COM as the origin and with its axes parallel to the 

external reference frame. Table 4.3 presents the effect sizes for the finger, wrist and 

elbow displacement data. 

 

 Effect Size 

SG 

Effect Size  

DG 

Effect Size 

Sprint 

Effect Size  

Distance 

Max Vertical Finger  -0.01 -0.18 0.06 -0.08 

Max Vertical Wrist -0.04 -0.24 0.04 -0.10 

Max Vertical Elbow -0.03 -0.48 0.23 -0.11 

Time to Max Vertical Finger -1.46 -1.07 0.02 0.36 

Max Lateral Finger -0.07 -0.15 -0.05 -0.03 

Max Lateral Wrist  -0.20 -0.06 -0.45 -0.14 

Max Lateral Elbow -0.15 -0.05 0.40 0.43 

Time to Max Lateral Finger  -1.80 -0.17 -1.11 -0.03 

Table 4.3: Effect size values for the vertical and lateral displacement of the finger, wrist and 

elbow for SG and DG. The effect size between paces within the SG and DG are presented on the 

left side columns. The effect size between groups within the sprint and distance paces are 

presented on the right side columns. 

 

 

4.3.1.1. Finger Vertical Displacement  

There was no significant difference in maximum vertical displacement of the finger 

between the paces (p= 0.755), or swim groups (p= 0.852) (Figure 4.5).  
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Figure 4.5: Maximum vertical displacement of the finger- SG vs. DG at sprint and distance pace. 

Mean displacement (m) values are indicated. Error bars represent 95% confidence interval of 

the true mean. 

 

However, Figures 4.6 & 4.7 indicate that five participants made individual changes 

between paces with respect to maximum finger vertical displacement. Sprint 

participants 2, 3 and 4 changed the mean maximum finger depth by +0.10 m, -0.13 m 

and +0.06 m respectively, at sprint than distance pace (Figure 4.6). Distance 

participants 4 and 5 changed the mean maximum stroke depth by +0.03 m and -0.08 

m (Figure 4.7) between sprint and distance pace. These results indicate that despite a 

lack of significant difference in group means between paces, some individuals 

changed this variable between paces. However, there was a lack of consistency among 

individuals in terms of the direction of change. Consequently, further investigation 

that includes a larger sample and a greater number of trials is warranted to examine 

individual and group effects more closely. 
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Figure 4.6: SG- maximum vertical displacement of the finger- sprint vs. distance pace. 

Participants 2 and 3 and 4 had differences in the means of this parameter between the two paces.  

The values presented are means of three trials per swim pace. 

            

0.0

0.3

0.6

0.9

1 2 3 4 5 6 7 8

Distance Subjects

D
is

p
la

c
e

m
e

n
t 

(m
)

Sprint Pace Distance Pace

 
            

Figure 4.7: DG- maximum vertical displacement of the finger- sprint vs. distance pace.  

Participant 4 and 5 had differences in the means of this parameter between the two paces. The 

values presented are means of three trials per swim pace. 
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4.3.1.2. Time to Maximum Vertical Displacement of the Finger 

The difference in time to maximum vertical displacement of the finger between paces 

was significant (p< 0.001), which is supported by the large effect size found for both 

groups across paces (Table 4.3). Figure 4.8 indicates that the time to reach the 

maximum finger vertical displacement is longer when distance swimming (51.52 ± 

6.71%- SG and 48.79 ± 6.71%- DG) than sprinting (42.17 ± 5.61%-SG and 42.02 ± 

5.86%-DG). Post hoc analysis revealed significant differences between paces within 

the DG (p= 0.0107), whereas the SG approached significance (p= 0.035). There was 

no significant difference between groups (p = 0.389) nor a significant pace-group 

interaction (p= 0.851).  
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Figure 4.8: Time to maximum vertical displacement of the finger- SG vs. DG at sprint and 

distance pace. Error bars represent 95% confidence interval of the true mean. 

 
 

4.3.1.3. Maximum Vertical Displacement of the Wrist and Elbow 

There were no significant differences between paces for the maximum vertical 

displacement of the wrist (p= 0.599) or elbow (p= 0.296). Groups did not differ 

between maximum wrist (p= 0.920) or elbow (p= 0.946) vertical displacement (Figure 
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4.9). The pace-group interaction was not significantly different with respect to the 

wrist (p= 0.752) and elbow (p= 0.399).  
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Figure 4.9: Maximum vertical displacement of the wrist and elbow- SG vs. DG at sprint and 

distance pace. Mean displacement (m) values are indicated. Error bars represent 95% confidence 

interval of the true mean. 

 

Figures 4.10 and 4.11 illustrate data for two participants changed the maximum 

vertical displacement of both the wrist and elbow between paces. Sprint participant 2 

(Figure 4.10) increased the mean vertical displacement of the finger, wrist and elbow 

by 0.10 m, 0.10 m and 0.09 m respectively when distance swimming relative to 

sprinting. Sprint participant 3 (Figure 4.11) decreased the mean vertical displacement 

of the finger, wrist and elbow by 0.13 m, 0.12 m and 0.08 m respectively when 

distance swimming relative to sprinting. These results indicate that despite a lack of 

significant difference in group means between paces, some individuals changed this 

variable between paces. Due to the lack of consistency among individuals in terms of 

direction of change, further investigation is warranted.  
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Figure 4.10: Vertical displacement of the finger, wrist and elbow for sprint participant 2- sprint 

vs. distance pace. These values are the mean of three trials per event.  
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Figure 4.11: Vertical displacement of the finger, wrist and elbow for sprint participant 3- sprint 

vs. distance pace. These values are the mean of three trials per event. 
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4.3.1.4. Maximum Arm Lateral Displacement 

There were no significant differences found for the maximum lateral displacement of 

the finger (p= 0.838), wrist (p= 0.587) or elbow (p= 0.635) between sprint and 

distance pace. There was no significant difference between groups with respect to 

maximum lateral displacement of the finger (p= 0.959), wrist (p= 0.569) or elbow (p= 

0.406) (Figures 4.12 and 4.13). A small effect size was found between the groups 

within the sprint pace trials in relation to the maximum lateral displacement of the 

wrist (d= 0.45) and elbow (d= 0.40). The effect size for the elbow lateral displacement 

was also small between the groups within the distance pace trials (d= 0.43). Figures 

4.12 and 4.13 indicate that all swimmers laterally displaced the finger relative to the 

COM, more than the wrist and elbow. 
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Figure 4.12: Max lateral displacement of the finger, wrist and elbow at sprint pace- SG vs. DG. 

Mean displacement (m) values are indicated. Error bars represent 95% confidence interval of 

the true mean. 
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Figure 4.13: Maximum lateral displacement of the finger, wrist and elbow at distance pace- SG 

vs. DG. Mean displacement (m) values are indicated. Error bars represent 95% confidence 

interval of the true mean. 

 
Figures 4.14 and 4.15 indicate that several individuals changed the magnitude of the 

maximum finger lateral displacement between paces. This is most apparent for 

distance participants 7 and 8 (Figure 4.15).  
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Figure 4.14: SG: maximum lateral displacement of the finger- sprint vs. distance pace. 
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Figure 4.15: DG: maximum lateral displacement of the finger- sprint vs. distance pace.  

 
The above adjustments made between paces had no directional consistency, with 

some participants increasing lateral displacement, whilst others decreased its 

magnitude. Distance participant 7 increased the maximum lateral displacement of the 

finger, wrist and elbow by 0.16 m, 0.06 m and 0.05 m respectively when distance 

swimming relative to sprinting (Figure 4.16). Distance participant 8 decreased the 

maximum lateral displacement of the finger, wrist and elbow by 0.11 m, 0.09 m and 

0.05 m when distance swimming relative to sprinting (Figure 4.17). 
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Figure 4.16: Distance participant 7- maximum lateral displacement of the finger, wrist and 

elbow. Error bars are the SD over three trials.  
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Figure 4.17: Distance participant 8- maximum lateral displacement of the finger, wrist and 

elbow. Error bars are the SD over three trials.  

 

4.3.1.5. Time to Finger Maximum Lateral Displacement 

The time to maximum lateral displacement of the finger was significantly different 

between paces (p= 0.041). Figure 4.18 indicates that SG and DG take 19.76% SC and 

2.50% SC longer respectively to reach maximum lateral displacement of the finger, 

when distance swimming relative to sprinting. A large effect size was found between 

paces within the SG (d= 1.80) and a small effect within the DG (d= 0.17). Moreover, 
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post hoc analysis revealed that within the SG, the difference approached significance 

(p= 0.0175) between paces, but not within the DG (p= 0.7473).  
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Figure 4.18: Time to maximum lateral displacement of the finger- SG vs. DG at sprint and 

distance pace. Mean time (%SC) values are indicated. Error bars represent 95% confidence 

interval of the true mean. 

  

 

4.3.1.6. Lateral Displacement Range 

The difference in lateral displacement range of the finger between paces approached 

significance (p= 0.067), with a moderate effect size found for the SG (d= 0.76) and a 

small effect size for the DG (d= 0.33) (Table 4.4). There was no significant difference 

between groups (p= 0.359) nor a significant pace-group interaction (p= 0.738), 

despite a moderate effect size within the sprint pace trials (d= 0.53) and a small effect 

size within the distance pace trials (d= 0.35) between the groups. No significant 

difference was found between paces for the wrist (p= 0.166) and elbow range (p= 

0.784), despite a moderate effect size found for each of these variables (Table 4.4).  
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 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Finger  -0.76 -0.33 -0.53 -0.35 

Wrist  -0.45 -0.27 -0.71 -0.44 

Elbow  -0.24 0.19 -0.09 0.46 

Table 4.4: Effect size lateral displacement range of the finger, wrist and elbow for SG and DG. 

The effect size between paces within the SG and DG are presented on the left side columns. The 

effect size between groups within the sprint and distance paces are presented on the right side 

columns. 

 
Figures 4.19 and 4.20 indicate that six participants changed the magnitude of finger 

lateral displacement range between paces. Sprint participants 3, 6, 7, and distance 

participants 1 and 4 all increased the finger lateral displacement range at distance than 

sprint pace. Distance participant 8 had a greater finger lateral displacement range 

when sprinting than distance swimming. These results indicate that despite a lack of 

significant difference in group means between paces, some individuals changed this 

variable between paces. However, there was a lack of consistency among individuals 

in terms of the direction of change. Consequently, further investigation that includes a 

larger sample and a greater number of trials is warranted to examine individual and 

group effects more closely.  
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Figure 4.19: SG: lateral range of displacement of the finger- sprint vs. distance pace. 
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Figure 4.20: DG: lateral range of displacement of the finger- sprint vs. distance pace.  

 

Figures 4.21 and 4.22 indicate that the DG had a greater mean lateral displacement 

range of the finger and wrist than SG at both paces. However, due to the large error of 

individual swimmers these differences did not reach statistical significance.  
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Figure 4.21: Lateral displacement range of the finger, wrist and elbow during the sprint pace- SG 

vs. DG. Mean displacement (m) values are indicated. Error bars represent 95% confidence 

interval of the true mean. 
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Figure 4.22: Lateral displacement range of the finger, wrist and elbow during the distance pace- 

SG vs. DG. Mean displacement (m) values are indicated. Error bars represent 95% confidence 

interval of the true mean. 

 

Figures 4.23-4.26 show the lateral displacement range of the finger, wrist and elbow 

of four participants who changed between sprint and distance swimming based on the 

magnitude of the error bars. Distance participants 1 (Figure 4.23) and 4 (Figure 4.24) 

increased the lateral displacement range of the finger and wrist when distance 

swimming, but not the elbow. Distance participant 8 (Figure 4.25) increased the 

lateral displacement range of the wrist and elbow, but not the finger, when sprinting. 

Sprint participant 3 (Figure 4.26) increased the lateral displacement range of the 

finger, wrist and elbow when distance swimming. 
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4.3.2. Elbow Angle 

Table 4.5 presents the effect sizes for the elbow angle variables.  
 
 
 
 
 

Figure 4.23: Distance participant 1: lateral 

range displacement- sprint vs. distance 

pace. Error bars are the SD over three 

trials. 

Figure 4.24: Distance participant 4: lateral 

range displacement- sprint vs. distance 

pace. Error bars are the SD over three 

trials. 

Figure 4.25: Distance participant 8: lateral 

range displacement- sprint vs. distance 

pace. Error bars are the SD over three 

trials. 

Figure 4.26: Sprint participant 3: lateral 

range displacement- sprint vs. distance 

pace. Error bars are the SD over three 

trials. 
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 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Max Left 0.57 0.02 0.49 -0.15 

Max Right 1.21 0.37 0.57 -0.30 

Time to Max Left -0.28 -1.92 -0.02 -0.81 

Time to Max Right 0.29 -0.37 0.24 -0.45 

Min Left 0.22 -0.11 -0.54 -0.70 

Min Right -0.03 0.14 -0.18 -0.01 

Time to Min Left 0.72 -0.13 0.17 -0.44 

Time to Min Right -1.04 -0.21 -0.84 0.51 

Table 4.5: Effect size elbow angle data for SG and DG. The effect size between paces within the 

SG and DG are presented on the left side columns. The effect size between groups within the 

sprint and distance paces are presented on the right side columns. 

 

 

4.3.2.1. Maximum Elbow Angle  

The maximum right elbow angle approached significance between paces (p= 0.056) 

(Figure 4.27). Post hoc analysis revealed a significant difference between the paces 

within the SG (p< 0.0125) but not within the DG (p= 0.442), which was supported by 

the effect size data (Table 4.5). There was no significant difference between groups 

(p= 0.372) nor a significant pace-group interaction (p= 0.985), despite a moderate 

effect size between groups when sprinting (d= 0.57) and a small effect when distance 

swimming (d= 0.30). There was no significant difference with respect to the 

maximum left elbow angle between paces (p= 0.151), groups (p= 0.342), nor a 

significant pace-group interaction (p= 0.743). However, a moderate effect size was 

found across paces and groups within the SG and sprint pace trials respectively in 

relation to the maximum left elbow angle variable.   
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Figure 4.27: Maximum elbow angle during the underwater phase- SG vs. DG at sprint and 

distance pace. Mean angle (degs) values are indicated. Error bars represent 95% confidence 

interval of the true mean. 

 

4.3.2.2. Time to Max Elbow Angle 

The time to maximum right elbow angle was not significantly different between paces 

(p= 0.931), nor groups (p= 0.894), and the pace-group interaction (p= 0.320) was not 

significant (Figure 4.28). The time to maximum left elbow angle was not significantly 

different between paces (p= 0.178), groups (p= 0.406) and the pace-group interaction 

(p= 0.181) was not significant. However, the DG presented a large effect size across 

paces in relation to the time to maximum left elbow angle, which was supported by a 

significant difference between paces within the DG (p= 0.0020) following post hoc 

analysis. Figure 4.29 indicates that the DG generally take longer to reach maximum 

left elbow angle at distance pace than sprinting. The effect size data (Table 4.5) also 

present a large effect size between groups, but only within the distance pace trials.  
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Figure 4.28: Time to maximum elbow angle of both arms- SG vs. DG at sprint and distance pace. 

Mean time (%SC) values are indicated. Error bars represent 95% confidence interval of the true 

mean. 
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Figure 4.29: DG: Time to maximum left elbow angle- sprint vs. distance pace.  

distance pace 
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4.3.2.3. Minimum Elbow Angle 

There was no significant difference between paces for either the right (p= 0.848) or 

left (p= 0.658) minimum elbow angle (Figure 4.30), which is further supported by a 

low effect size for either group across paces (Table 4.5). The groups were not 

significantly different for the right (p= 0.831) or left (p= 0.211) minimum elbow 

angle, despite a moderate effect size found between groups at both paces in relation to 

the minimum left elbow angle (Table 4.5). There was no pace-group interaction for 

the right (p= 0.751) and left minimum elbow angle (p= 0.424).  
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Figure 4.30: Minimum elbow angle of both arms- SG vs. DG at sprint and distance pace. Mean 

angle (degs) values are indicated. Error bars represent 95% confidence interval of the true mean. 

 

Figure 4.31 shows the minimum elbow angles of five individuals who changed 

between paces. Three participants (SG- 6 and 3; DG- 3) decreased the minimum 

elbow angle at distance pace than sprinting, whereas the other two participants (DG- 1 

and 7) increased this angle at distance pace (Figure 4.31). These results indicate that 

some individuals changed this variable between paces, even though there was no 

significant difference between paces amongst the group means. However, there was a 

lack of consistency among individuals in terms of the direction of change. 
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Consequently, further investigation that includes a larger sample and a greater number 

of trials is warranted to examine individual and group effects more closely.   
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Figure 4.31: Illustration of the participants who changed the minimum elbow angle with a 

change in swim pace.  Sprint participants 6, 3 and distance participant 3 decrease the minimum 

elbow angle when swimming at a distance pace. Distance participants 1 and 7 increase the elbow 

angle when swimming at a distance pace.  

 
 

4.3.2.4. Time to Minimum Elbow Angle 

There was no significant difference between paces with respect to the time to left 

minimum elbow angle (p= 0.366) (Figure 4.32), despite a moderate effect size found 

within the SG (d= 0.72) across paces in relation to this variable. There was no 

significant difference between groups (p= 0.594) nor a significant pace-group 

interaction (p= 0.200). The time to the minimum right elbow angle approached 

significance (p= 0.067) between paces with both groups taking longer to reach the 

minimum right elbow angle during distance than sprint pace. The effect size data 

(Table 4.5) present a large and small effect size within the SG and DG respectively 

across paces in relation to the time to minimum right elbow angle. There was no 

significant difference between groups (p= 0.897) nor a significant pace-group 

interaction (p= 0.174) in relation to the time to minimum right elbow angle, despite a 
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large effect size found between groups within the sprint trials (d= 0.84) and a 

moderate effect size within the distance trials (d= 0.51).   
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Figure 4.32: Time (%SC) to minimum elbow angle of both arms- SG vs. DG at both paces. Mean 

time (%SC) values are indicated. Error bars represent 95% confidence interval of the true mean. 

 

 

4.3.2.5. Elbow Angle Variables 

The seven elbow angle variables examined in this study are presented in Figure 4.33, 

numerical data in Table 4.6 and effect size data in Table 4.7.  
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Figure 4.33: Elbow angle at various events during the SC- SG vs. DG at sprint and distance pace. 

Error bars represent 95% confidence interval of the true mean. 

 

 Sprint Pace Distance Pace Difference 

1st  Back- SG 151.14 ± 8.65 155.15 ± 6.24 � 4.01 

1st  Back- DG 150.99 ± 9.75 151.73 ± 8.80 � 0.74 

Shoulder X- SG 103.18 ± 9.28 101.37 ± 6.78 � 1.81 

Shoulder X- DG 104.18 ± 6.25 104.69 ± 7.23 � 0.51 

End Back- SG 147.83 ± 7.87 140.31 ± 8.15 � 7.52 

End Back- DG 147.88 ± 8.53 140.79 ± 7.52 � 7.09 

Hand Exit- SG 141.51 ± 24.64 126.56 ± 30.11 � 14.95 

Hand Exit- DG 138.75 ± 26.05 128.98 ± 22.69 � 9.77 

Recovery- SG 153.04 ± 10.01 144.50 ± 13.50 � 8.54 

Recovery- DG 154.73 ± 11.18 146.28 ± 23.12 � 8.45 

Range of Pull- SG 47.96 ± 9.40 53.77 ± 5.30 � 5.81 

Range of Pull- DG 46.81 ± 7.42 47.28 ± 10.20 � 0.47 

Range of Push- SG 44.65 ± 13.24 38.94 ± 8.55 � 5.71 

Range of Push- DG 43.70 ± 11.88 35.72 ± 9.22 � 7.98 

Table 4.6: Elbow angle variables (degrees) for SG and DG. Differences between the sprint and 

distance trials.  
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 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

1st  Back -0.53 -0.08 0.02 0.44 

Shoulder 0.22 -0.08 -0.13 -0.47 

End Back 0.94 0.88 -0.01 -0.06 

Hand Exit 0.54 0.40 0.11 -0.09 

Recovery 0.72 0.47 -0.16 -0.09 

Range of Pull -0.76 -0.05 0.14 0.78 

Range of Push 0.51 0.75 0.08 0.36 

Table 4.7: Effect size data for elbow angle variables. The effect size between paces within the SG 

and DG are presented on the left side columns. The effect size between groups within the sprint 

and distance paces are presented on the right side columns. 

 

The 1st back elbow angle was not significantly different between paces (p= 0.186), 

however the SG did show a moderate effect size between paces. There was no 

significant difference across groups (p= 0.669), and no significant pace-group 

interaction (p= 0.355). The shoulder x elbow angle was not significantly different 

between paces (p= 0.712). The groups (p= 0.540) and pace-group interaction (p= 

0.511) were not significantly different. The end back elbow angle was significantly 

different between paces (p = 0.007), with both groups showing a large effect size for 

this variable (Table 4.7). These results indicate that both the SG and DG reduced the 

end back elbow angle by 7.52° and 7.09° respectively when distance swimming 

relative to sprinting. No significant difference was found between groups (p= 0.940) 

and no pace-group interaction (p= 0.928). The hand exit elbow angle was not 

significantly different between paces (p= 0.099), however the SG showed a moderate 

effect size (d= 0.54), whilst the DG showed a small effect size (d= 0.40) across paces. 

No significant difference was found between groups (p= 0.989) and there was no 

significant pace-group interaction (p= 0.716) for the elbow angle at hand exit. 

Nevertheless, Figures 4.34 and 4.35 indicate that seven participants did change the 

magnitude of elbow angle at hand exit between paces based on the magnitude of the 

error bars. Sprint participants 3, 4, and 8, and distance participants 4, 7, and 8 all 

reduced the elbow angle magnitude at distance than sprint pace. Distance participant 3 

increased the elbow angle magnitude at distance than sprint pace. Despite the majority 

of participants reducing elbow angle at hand exit, this was not a consistent trend 

across swimmers and requires further investigation.  
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Figure 4.34: SG: Elbow angle (degrees) at hand exit between sprint and distance pace. 

Participants 3, 4, and 8 all changed the magnitude between paces.  
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Figure 4.35: DG: Elbow angle (degrees) at hand exit between sprint and distance pace. 

Participants 3, 4, 7, and 8 all changed the magnitude between paces.  

 

The difference in elbow angle at recovery (as the hand re-enters the water) between 

paces approached significance (p= 0.084), with both groups showing a moderate 

effect size between paces (Table 4.7). Figure 4.33 and Table 4.6 indicate that both 

groups had a greater elbow recovery angle when sprinting than distance swimming. 

There was no significant difference between groups (p= 0.798) nor a significant pace-
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group interaction (p= 0.993). Figures 4.36 and 4.37 indicate that sprint participant 2 

and distance participants 7 and 8 clearly reduced the elbow angle at recovery when 

swimming at distance than sprint pace.   
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Figure 4.36: SG: Elbow angle (degrees) at recovery between sprint and distance pace.  
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Figure 4.37: DG: Elbow angle (degrees) at recovery between sprint and distance pace.  

 

The elbow angle range during the pull phase was not significantly different between 

paces (p= 0.270) or groups (p= 0.275) and there was no significant pace-group 

interaction (p= 0.346). However, a moderate effect size was found within the SG 

between paces (d= 0.76) and between the groups within the distance pace trials (d= 

0.78). The elbow angle range during the push phase was significantly different 



  Results 

  120 

between paces (p = 0.05), with both SG and DG showing a moderate effect size 

(Table 4.7), and reducing the range by 5.71° and 7.98° respectively at distance 

relative to sprint pace. There was no significant difference between groups (p= 0.659) 

and there was no significant pace-group interaction (p= 0.659). 

 

 

4.3.3. Time Spent in Each of the Stroke Phases 

The duration of each stroke phase was analysed with respect to the first and second 

arm entering the water. This was performed as the same arm did not always enter the 

water across trials and swimmers. The duration of all the stroke phases (entry, pull, 

push, and recovery) and the instant at which the hand exited the water was 

significantly different between paces for both groups (p< 0.05). The effect sizes 

presented in Table 4.8, show that the SG had a large effect size between paces in 

relation to all the stroke phases, whilst the DG showed large effect size during the 

entry phase and a small effect size during the pull phase and moment of hand exit.  

 

Phases Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Entry -1.89 -1.59 0.73 0.40 

Pull  1.34 0.22 -0.07 -0.12 

Push  1.15 0.18 -1.16 -0.54 

Recovery  1.10 0.17 -0.39 -0.25 

Hand Exit  -1.33 -0.19 0.15 0.28 

Table 4.8: Effect size data for the stroke phases. The effect size between paces within the SG and 

DG are presented on the left side columns. The effect size between groups within the sprint and 

distance paces are presented on the right side columns. 

 

There was no significant difference between groups for the entry (p= 0.244), hand exit 

(p= 0.610) or recovery (p= 0.489) phase duration. The pace-group interaction was not 

significant for the entry (p= 0.649), pull (p= 0.975), push (p= 0.366), hand exit (p= 

0.794), or recovery (p= 0.890) phases. The difference between groups in duration of 

the pull phase was not significant with respect to the first arm (p= 0.853) (Figure 

4.38), but was significantly different between groups with respect to the second arm 

(p= 0.045) (Figure 4.39).  
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Figure 4.38: Stroke phase durations (% SC) with respect to the first arm entry, at sprint pace- 

SG vs. DG. Mean stroke phase duration data are indicated. Error bars represent 95% confidence 

interval of the true mean.  

 

Post hoc analysis revealed that this change occurred during the sprint trials (p= 

0.0069). It was found that the DG spent longer in the pull phase than SG (16.13% SC 

vs. 8.76% SC) at sprint pace with respect to the second arm entry (Figure 4.39). In 

comparison, the duration of the pull phase with respect to the first arm entering was 

19.95% and 20.17% SC for the SG and DG respectively at sprint pace.  

 

The difference between groups in duration of the push phase approached significance 

(p= 0.082) with respect to the first arm entry. A large effect size was found between 

groups within the sprint trials (d= 1.16) during the push phase, whilst a moderate 

effect size was found within the distance trials (d= 0.54). Figure 4.38 indicates that 

the DG spent longer in the push phase than the SG, particularly when sprinting.  
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Figure 4.39: Durations (%SC) of stroke phases of the second arm - SG vs. DG at sprint pace.  

Here the entry phase is represented as the instant the second hand enters the water. Mean stroke 

phase duration data are indicated. Error bars represent 95% confidence interval of the true 

mean. 

 
Figures 4.40 and 4.41 indicate the duration of the stroke phase changes between paces 

for the SG and DG respectively. Both groups spent significantly longer in the entry 

phase when distance swimming than when sprinting (SG- 9.05%; DG- 10.37%). All 

swimmers spent relatively less time in the pull, push and recovery phases at distance 

than sprint pace. Post hoc analysis for the pull phase revealed a significant difference 

between paces within the DG (p= 0.004), with the SG approaching significance (p= 

0.0188). Post hoc analysis for the push phase revealed a significant difference 

between paces within the DG (p= 0.0056) but not within the SG (p= 0.032). The 

swimmers spent less time in the push phase at distance than sprint pace. Post hoc 

analysis for the recovery phase revealed a significant difference between paces within 

the DG (p = 0.0082) and, again, the difference within the SG (p= 0.050) approached 

statistical significance. Swimmers increased the duration of the recovery phase when 

sprinting compared to distance swimming.  
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Figure 4.40: SG: stroke phase durations (%SC) - sprint vs. distance pace. 
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Figure 4.41: DG: stroke phase durations (%SC) - sprint vs. distance pace.  

 
The later timing of the hand exiting was significantly different between paces with 

respect to the first arm entering (p= 0.04) and the second arm entering (p<0.001). At 

distance pace it took both groups longer to exit the hand. Post hoc analysis revealed a 
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significant difference within the DG (p= 0.004) between paces, but not within the SG 

(p= 0.048) (Figure 4.42) with respect to the second arm exiting the water. 
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Figure 4.42: Occurrence (%SC) of hand exit phase for the second arm- SG vs. DG at sprint and 

distance pace. Mean time of hand exit values are indicated. Error bars represent 95% confidence 

interval of the true mean.  

 
 

4.3.4. Shoulder and Hip Roll 

Table 4.9 presents the effect size data for the shoulder and hip roll angle throughout 

the SC. 

 

 

 

 

 

 

 

 



  Results 

  125 

 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Max Shoulder, Left -0.02 -0.29 0.78 0.37 

Max Hip, Left -0.85 -1.14 -0.34 0.15 

Max Shoulder, Right -0.79 -0.64 -1.01 -0.49 

Max Hip, Right -1.01 -0.95 -0.35 0.37 

Time to Max Shoulder, Left -0.30 -1.73 1.72 0.06 

Time to Max Hip, Left -1.87 -1.97 -0.30 -0.11 

Time to Max Shoulder, Right -0.61 -0.85 1.29 0.93 

Time to Max Hip, Right -1.39 -1.61 0.35 0.04 

Total Shoulder Roll -0.37 -0.49 0.06 -0.01 

Total Hip Roll -0.97 -1.26 -0.40 0.28 

Table 4.9: Effect size data for the shoulder and hip roll variables. The effect size between paces 

within the SG and DG are presented on the left side columns. The effect size between groups 

within the sprint and distance paces are presented on the right side columns. 

  

 

4.3.4.1. Maximum Shoulder and Hip Roll 

Maximum left shoulder roll was not significantly different between paces (p= 0.602) 

or groups (p= 0.278), despite a moderate effect size (d= 0.78) between groups within 

the sprint pace trials. There was no significant pace-group interaction (p= 0.770). 

Figure 4.43 indicates that five participants changed the magnitude of left shoulder roll 

between paces. Sprint participant 1 and distance participant 5 produced a greater left 

shoulder roll when sprinting than distance swimming. Sprint participant 3, and 

distance participants 2 and 8 had a greater left shoulder roll magnitude when distance 

swimming than sprinting. These results indicated that despite a lack of significant 

difference in group means between paces, some individuals changed this variable 

between paces. However, there was a lack of consistency among individuals in terms 

of the direction of change. Consequently, further investigation that includes a longer 

sample and a greater number of trials is warranted to examine individual and group 

effects more closely.   
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Figure 4.43: Illustration of the participants who adjust the maximum shoulder roll to the left 

dependent of the swim pace.  

 
The difference between the two paces was significant (p= 0.044) with respect to the 

magnitude of maximum right shoulder roll, with a greater roll angle (3.78°- SG; 

3.02°- DG) when distance swimming than sprinting. Moreover, both the SG and DG 

showed a moderate effect size across paces (d= 0.79 and d= 0.64, respectively). There 

was no significant difference between groups (p= 0.122) and no significant pace-

group interaction (p= 0.122), despite a large effect size between groups within the 

sprint pace trials (d= 1.01). 

 

Maximum left hip roll was significantly different between paces (p= 0.001), which 

was supported by the large effect size in both groups (Table 4.9). Both SG and DG 

significantly increased maximum left hip roll by 9.16° and 5.75° respectively when 

swimming at a distance than sprint pace. Post hoc analysis revealed a significant 

difference between paces within the DG (p= 0.006) while the difference between 

paces within the SG (p= 0.034) approached significance. No significant difference 

was found between groups (p= 0.974) and there was no significant pace-group 

interaction (p= 0.362). SG and DG increased the magnitude of maximum right hip roll 

by 10.76° and 5.33° respectively when distance swimming relative to sprinting. This 
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change was significant between paces (p= 0.002), with both groups also showing a 

large effect size across paces (Table 4.9). There was no significant difference between 

groups (p= 0.731) and no significant pace-group interaction (p= 0.212).  

 

4.3.4.1.1. Sprint Pace 

Shoulder roll differed significantly between sides when sprinting (p< 0.001). Figure 

4.44 indicates that both groups roll more to the left than to the right side by 11.60° 

(SG) and 3.99° (DG). Post hoc analysis revealed that the SG changed between sides 

(p= 0.004) more than the DG (Figure 4.44). There was no significant difference 

between groups (p= 0.891), but the side-group interaction was significant (p= 0.041), 

meaning that one group changed more than the other between the sides. 

 

Hip roll differed significantly between sides (p= 0.03), with both groups rolling more 

to the right than the left side by 3.52° (SG) and 2.98° (DG) (Figure 4.44). There was 

no significant difference between groups (p= 0.473) and no significant side-group 

interaction (p= 0.887).  

 

4.3.4.1.2. Distance Pace 

Shoulder roll differed significantly between sides (p= 0.002) at distance pace. Figure 

4.45 indicates that SG and DG roll the shoulders more to the left than to the right side 

by 7.95° and 2.36° respectively. There was no significant difference between groups 

(p= 0.988) but the side-group interaction approached significance (p= 0.063) with the 

SG group having a greater asymmetry than the DG group (Figure 4.45). 

 

Hip roll differed significantly between sides (p= 0.05) but not between groups (p= 

0.599), and there was no significant side-group interaction (p= 0.503) at distance 

pace. Figure 4.45 indicates that, at distance pace, both SG and DG rolled the hips 

more to the right than the left side by 5.12° and 2.62° respectively. 
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Figure 4.44: Maximum shoulder and hip roll at sprint pace- SG vs. DG. Mean shoulder and hip 

roll angle data are indicated. Error bars represent 95% confidence interval of the true mean. 
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Figure 4.45: Maximum shoulder and hip roll at distance pace- SG vs. DG. Mean shoulder and 

hip roll angle data are indicated. Error bars represent 95% confidence interval of the true mean. 
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4.3.4.2. Time to Maximum Shoulder and Hip Roll 

 

Time to maximum left shoulder roll was not significantly different between paces (p= 

0.509) and the pace-group interaction (p= 0.836) was not significant. Post hoc 

analysis revealed a significant difference within the DG between paces (p= 0.0118) 

but not within the SG (p= 0.5510), which was supported by the large effect size for 

the DG (d= 1.73) and a small effect size for the SG (d= 0.30) as presented in Table 

4.9. Groups were significantly different (p= 0.003). Post hoc analysis also revealed a 

significant difference between groups within the sprint trials (p= 0.006), which was 

also supported by the large effect size between groups when sprinting (d= 1.72). No 

post hoc significance was found between groups in relation to the distance pace trials 

(p= 0.907). Figure 4.46 indicates that the DG reached maximum left shoulder roll 

earlier (7.43%) than SG at sprint pace.  

 

The time to maximum right shoulder roll was significantly different between paces 

(p= 0.030), with the SG and DG displaying a moderate (d= 0.61) and large effect size 

(d= 0.85) respectively. The groups were also found to differ significantly (p= 0.020), 

which was supported by the large effect sizes between the groups at both paces (Table 

4.9). There was no significant pace-group interaction (p= 0.770). Figures 4.46 and 

4.47 indicate that the SG took longer than the DG to obtain maximum right shoulder 

roll independent of the swim pace. 

 

Time to maximum left hip roll was significantly different between paces (p< 0.001), 

which was supported by the large effect size for both groups across paces (Table 4.9). 

Both groups took longer to reach maximum left hip roll at distance pace by 14.23% 

(SG) and 13.38% (DG) relative to sprint swimming. No significant difference was 

found between groups (p= 0.840), and there was no significant pace-group interaction 

(p= 0.669).  

 

Time to maximum right hip roll was significantly different between paces (p< 0.001), 

with the SG and DG taking 10.81% SC and 13.58% SC longer to reach the instant of 

maximum roll at distance than sprint pace. A large effect size was found between 

paces for both the SG (d= 1.39) and DG (d= 1.61). Moreover, post hoc analysis 

revealed a significant difference between paces within the DG (p= 0.0041), but the 
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difference within the SG did not reach significance (p= 0.155). There was no 

significant difference between groups (p= 0.586) and no significant pace-group 

interaction (p= 0.623). 
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Figure 4.46: Time (%SC) to maximum shoulder and hip roll at sprint pace- SG vs. DG. Mean 

time data are indicated. Error bars represent 95% confidence interval of the true mean. 
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Figure 4.47: Time (%SC) to maximum shoulder and hip roll at distance pace- SG vs. DG. Mean 

time data are indicated. Error bars represent 95% confidence interval of the true mean. 
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4.3.4.3. Relationship between Shoulder and Hip Roll 

4.3.4.3.1. Sprint Pace 

The times to maximum left shoulder and hip roll were significantly different (p= 

0.003) by 11.62% (SG) and 2.42% (DG) at sprint pace, with the maximum left hip 

roll obtained prior to the maximum left shoulder roll. The shoulder/hip-pace was 

significantly different for both the SG (p= 0.006) and DG (p= 0.039), meaning that 

one parameter changed more between the paces than the other parameter. Figures 4.48 

and 4.49 indicate that the time to maximum left hip roll changed the most between 

paces. The shoulder/hip-group interaction was significant (p= 0.035). Post hoc 

analysis revealed a significant difference within the SG between paces (p= 0.0076) 

but not within the DG (p= 0.3812), meaning that the SG changed the timing between 

the left shoulder and left hip between paces more than the DG. Figure 4.48 indicates 

that the SG obtain maximum left hip roll prior to maximum roll of the left shoulder 

when sprinting, whereas at distance pace the left shoulder and hip roll simultaneously.  

 

When sprinting, the difference in time to maximum right shoulder and hip roll 

approached significance (p= 0.069), with SG and DG tending to reach maximum right 

hip roll prior to the time of maximum right shoulder roll (Figures 4.48 and 4.49). The 

shoulder/hip-pace was significantly different for both the SG (p= 0.05) and DG (p= 

0.06), meaning that one parameter changed more between the paces than the other 

parameter. Figures 4.48 - 4.49 indicate that the time to maximum right hip roll 

changed the most between paces. 

 

4.3.4.3.2. Distance Pace 

The times to maximum left shoulder and hip roll were not significantly different (p= 

0.301) at distance pace, meaning that both shoulder and hip roll simultaneously to the 

left side. The time to maximum right shoulder and hip roll was significantly different 

(p= 0.02) at distance pace, with swimmers reaching maximum right shoulder roll 

prior to the time of maximum right hip roll. Post hoc analysis revealed a significant 

difference within the DG (p= 0.003) but not for the SG (p= 0.630). This indicates that 

the DG had a sequencing of right shoulder and right hip roll at distance pace, whereas 

the SG had a more simultaneous attainment of maximum right shoulder and hip roll 

(Figure 4.49).   
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Figure 4.48: SG- Time (%SC) to maximum shoulder and hip roll for both sides at sprint and 

distance pace. Error bars represent 95% confidence interval of the true mean. 
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Figure 4.49: DG- Time (%SC) to maximum shoulder and hip roll for both sides at sprint and 

distance pace. Error bars represent 95% confidence interval of the true mean. 
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4.3.4.4. Total Shoulder & Hip Roll 

  

Total shoulder roll was significantly different between paces (p= 0.001), with both SG 

(3.91deg) and DG (4.35deg) rolling more at distance than sprint pace (Figure 4.50). 

There was no significant difference between groups (p= 0.210), nor a significant pace-

group interaction (p= 0.877). 
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Figure 4.50: Total shoulder and hip roll- SG vs. DG at both paces. Mean total roll angle data are 

indicated. Error bars represent 95% confidence interval of the true mean. 

 
Total hip roll was significantly different between paces (p= 0.001), with both groups 

rolling more at distance than sprint pace (by 19.92°-SG and 11.02°-DG). Post hoc 

analysis revealed a significant difference between paces within the DG (p= 0.0002) 

while the difference between paces within the SG approached significance (p= 0.029). 

The aforementioned result was supported by the large effect sizes across paces by 

both groups for the total hip roll (Table 4.9).  
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4.3.5. Kicking Vertical Range of Motion 
 

Vertical displacement range of the left and right feet were compared for both groups 

and presented in Figures 4.51 and 4.52. The effect size data for all the foot vertical 

displacement data are presented in Table 4.10.  

  

 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Left Foot Range 1.19 0.52 0.38 -0.58 

Right Foot Range 1.01 0.60 0.48 -0.48 

Sum Av Vertical Displacement 1.08 0.26 0.63 -0.62 

Table 4.10: Effect size data for the vertical displacement range of both feet. The effect size 

between paces within the SG and DG are presented on the left side columns. The effect size 

between groups within the sprint and distance paces are presented on the right side columns. 

 

The sum average of this variable is also presented, which is the combined sum of the 

left and right foot vertical displacement range throughout each kick. Since all 

swimmers displayed a six beat kick throughout each SC analysed (in both the sprint 

and distance events), the mean over these six values were represented as the sum 

average of the foot.   

 

The difference in the left and right foot vertical displacement range between paces 

approached significance for the SG (p= 0.066) with the vertical displacement of each 

foot being greater at sprint than at distance pace. However, a large effect size was 

found within the SG in relation to the left and right foot vertical displacement changes 

across paces (Table 4.10). The large range within the 95% confidence interval, 

evident in Figure 4.51, prevented the difference from reaching statistical significance. 

There was no significant difference between paces with respect to the vertical 

displacement range of the left and right foot for the DG (p= 0.261) (Figure 4.52).  
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Figure 4.51: SG: left and right foot vertical displacement- sprint vs. distance pace. Error bars 

represent 95% confidence interval of the true mean. 
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Figure 4.52: DG: left and right foot vertical displacement- sprint vs. distance pace. Error bars 

represent 95% confidence interval of the true mean. 
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The sum average of the foot vertical displacement was significantly different between 

paces (p= 0.039), but not between groups (p= 0.877), nor a significant pace-group 

interaction (p= 0.210). Table 4.10 indicates a large effect size between the paces 

within the SG (d= 1.08), and a moderate effect size between groups across both sprint 

(d= 0.63) and distance (d= 0.62) paces. SG and DG reduced the mean sum average 

foot vertical displacement by 0.11 m and 0.02 m respectively at distance than sprint 

pace. Figure 4.53 indicates that the SG reduced the foot displacement the most when 

distance swimming, but due to the large SD, this observation was not significant. 
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Figure 4.53: Sum average of the foot vertical displacement (m) - SG vs. DG between sprint and 

distance pace. Mean displacement data are indicated. Error bars represent 95% confidence 

interval of the true mean. 
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4.4. Kinetic Parameters 

 

4.4.1. COM Horizontal Velocity Pattern 

The AvVCOMHor velocity - normalised time profile for both groups is shown in Figure 

4.54.  
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Figure 4.54: Mean horizontal velocity-normalised time profiles of the COM during one SC- SG 

vs. DG at sprint and distance pace. Each mean curve was the average across participants per 

group, with regards to this variable, which was calculated over three trials per participant (per 

pace). 

 

Table 4.11 presents the effect size data for the COM horizontal velocity variables. 

 

 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Average Velocity  6.14 6.00 0.17 -1.64 

Maximum Velocity 5.20 4.06 0.26 -1.38 

Minimum Velocity  4.14 2.66 0.00 -1.38 

Range Velocity 2.39 1.45 2.32 4.72 

Time to Max Velocity 0.23 -0.62 0.25 -0.62 

Time to Min Velocity 0.25 -0.16 0.23 -0.62 

Table 4.11: Effect size values for the COM horizontal velocity data. The effect size between paces 

within the SG and DG are presented on the left side columns. The effect size between groups 

within the sprint and distance paces are presented on the right side columns. 
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Both groups have similar velocity-normalised time profiles at sprint and distance pace 

(Figure 4.54). At the latter pace, the DG had a higher overall AvVCOMHor velocity-

normalised time profile than the SG. A two peak velocity pattern, per arm stroke, is 

evident at both paces for both groups.   

 

4.4.1.1. Average COM Horizontal Velocity 

The higher AvVCOMHor at sprint than distance pace (by 0.40 m�s-1 and 0.30 m�s-1 for 

the SG and DG respectively) was significant (p< 0.001) (Figure 4.55), with a large 

effect size for both groups across paces (Table 4.11). Both the groups (p= 0.071) and 

the pace-group interaction (p= 0.071) approached significance at distance pace. Post 

hoc analysis revealed that the difference in AvVCOMHor between groups approached 

significance within the distance pace trials (p= 0.015) but not within the sprint pace 

trials (p= 0.770). Moreover, a large effect size was found between groups within the 

distance pace trials. It is evident that the DG maintained a greater AvVCOMHor at 

distance pace relative to the SG (Figure 4.55). 
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Figure 4.55: Average COM horizontal velocity- SG vs. DG at sprint and distance pace. Mean 

velocity measures are indicated. Error bars represent 95% confidence interval of the true mean. 

 

4.4.1.2. Maximum COM Horizontal Velocity 

The MaxVCOMHor was significantly different (p< 0.001) between paces, with a greater 

MaxVCOMHor at sprint (by 0.53 m⋅s-1- SG and 0.39 m⋅s-1- DG) than distance pace 

(Figure 4.56). A large effect size was found between paces for both groups (Table 

4.11). There was no significant difference between groups (p= 0.228) nor a significant 

pace-group interaction (p= 0.100). However, post hoc analysis revealed that the 

difference between groups approached significance within the distance pace trials (p= 
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0.0196) and a large effect size (d= 1.38) was found within the distance pace trials 

between groups. No significance was found within the sprint pace trials (p= 0.6337) 

following post hoc analysis. 
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Figure 4.56: Maximum horizontal velocity of the COM- SG vs. DG at sprint and distance pace. 

Mean velocity measures are indicated. Error bars represent 95% confidence interval of the true 

mean. 

 

 

4.4.1.3. Time to Maximum COM Horizontal Velocity 

The time to MaxVCOMHor was not significantly different between paces (p= 0.764), 

with the SG showing a small effect size (d= 0.23) and the DG a moderate effect (d= 

0.62). No significant difference was found between groups (p= 0.750). There was no 

significant pace-group interaction (p= 0.339) (Figure 4.57). As indicated in the 

reliability section (4.1) the non-significant result is most likely due to the large SD 

with respect to this variable. 
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Figure 4.57: Time (%SC) to maximum COM horizontal velocity- SG vs. DG at sprint and 

distance pace. Mean velocity measures are indicated. Error bars represent 95% confidence 

interval of the true mean. 

 
 

4.4.1.4. Minimum COM Horizontal Velocity  

The MinVCOMHor was significantly different between paces (p< 0.001), with a greater 

MinVCOMHor at sprint than distance pace (by 0.27 m⋅s-1- SG and 0.21 m⋅s-1- DG). A 

large effect size was found between paces, for both SG (d= 4.14) and DG (d= 2.66), 

in relation to this variable. There was no significant difference between groups (p= 

0.280), nor a significant pace-group interaction (p= 0.263). However, post hoc 

analysis revealed that the difference between groups approached significance within 

the distance pace trials (p= 0.021) but not within the sprint pace trials (p= 0.995). This 

was supported by the large effect size between groups within the distance pace trials 

(d= 1.38). Figure 4.58 indicates that SG displayed a lower MinVCOMHor than the DG 

when distance swimming. 
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Figure 4.58: Minimum horizontal velocity of the COM- SG vs. DG at sprint and distance pace. 

Mean velocity measures are indicated. Error bars represent 95% confidence interval of the true 

mean. 

 

4.4.1.5. Time to Minimum COM Horizontal Velocity 

The time to MinVCOMHor was not significantly different between paces (p= 0.867) 

(Figure 4.59), with both groups displaying a small effect size (Table 4.11). Groups did 

not differ significantly (p= 0.395), and there was no significant pace-group interaction 

(p= 0.593). However, as indicated in the reliability section (4.1) this variable is 

subject to large variability due to measurement error so it remains unclear as to 

whether there may be differences between paces and groups in this variable. 
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Figure 4.59: Time (%SC) to minimum COM horizontal velocity- SG vs. DG at sprint and 

distance pace. Mean time data are indicated. Error bars represent 95% confidence interval of the 

true mean.  
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4.4.1.6. Range COM Horizontal Velocity 

The rangeVCOMHor was significantly different between paces (p< 0.001), with a greater 

rangeVCOMHor at sprint pace, by 0.25 m⋅s-1 (SG) and 0.17 m⋅s-1 (DG) relative to 

distance pace (Figure 4.60). Moreover, a large effect size was found between paces 

for both SG (d= 2.39) and DG (d= 1.45). There was no significance between groups 

(p= 0.832) nor a significant pace-group interaction (p= 0.309), despite a large effect 

size between the groups within both sprint (d= 2.32) and distance (d= 4.72) pace 

conditions.  
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Figure 4.60: Range COM horizontal velocity- SG vs. DG at sprint and distance pace. Mean 

velocity range data are indicated. Error bars represent 95% confidence interval of the true 

mean. 

 

 

4.4.2. Acceleration 

The effect size COM acceleration data are presented in Table 4.12.  

 

 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Max acceleration 2.43 1.39 0.60 -0.89 

Time, max acceleration 1.52 -0.25 0.68 -1.34 

Min acceleration -2.23 -1.43 -0.49 0.92 

Time, Min acceleration -0.25 0.74 -1.01 -0.20 

Range of acceleration 0.44 -1.16 0.44 -1.16 

Table 4.12: Effect size data for the COM acceleration data. The effect size between paces within 

the SG and DG are presented on the left side columns. The effect size between groups within the 

sprint and distance paces are presented on the right side columns. 
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4.4.2.1. Maximum Acceleration  

Max accCOM was significantly different between paces (p< 0.001), with both the SG 

(by 4.76 m⋅s-2) and DG (by 2.28 m⋅s-2) obtaining a greater Max accCOM at sprint than 

distance pace (Figure 4.61). Post hoc analysis revealed that the difference in Max 

accCOM between paces was significant for the SG (p= 0.0038), and approached 

significance for the DG (p= 0.0173). Moreover, both groups displayed a large effect 

size across paces in relation to maximum acceleration (Table 4.12). There was no 

significant difference between groups (p= 0.942), despite a large effect size found 

between groups within the distance pace trials (d= 0.89). The pace-group interaction 

approached significance (p= 0.069), as the SG changed the magnitude of Max accCOM 

more than the DG between paces.   
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Figure 4.61: Maximum COM acceleration: SG vs. DG at sprint and distance pace. Mean 

acceleration data are presented. Error bars represent 95% confidence interval of the true mean. 

 
 

4.4.2.2. Time to Maximum Acceleration 

The difference in time to Max accCOM between paces approached significance (p= 

0.079), however the effect size data show that the SG had a large effect across paces 

(d= 1.52), whereas the DG had a small effect (d= 0.25). There was no significant 

difference between groups (p= 0.659), despite a large effect size between the groups 
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within the distance pace trials (d= 1.34). The pace-group interaction was significant 

(p= 0.025) meaning that one group changed more than the other between paces. 

Figure 4.62 indicates that the SG changed more than the DG. 
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Figure 4.62: Time to maximum COM acceleration (%SC)- SG vs. DG swimmers at sprint and 

distance pace. Mean time data are presented. Error bars represent 95% confidence interval of 

the true mean. 

 
 

4.4.2.3. Minimum Acceleration  

The Min accCOM was significantly different between paces (p< 0.001), with both 

groups obtaining a greater deceleration (by 4.56 m⋅s-2 (SG) and 2.25 m⋅s-2 (DG)) 

when sprinting than in distance swimming. Moreover both groups displayed a large 

effect across paces for the minimum acceleration variable (Table 4.12). There was no 

significant difference between groups (p= 0.899), despite a large effect size between 

groups within the distance pace trials (d= 0.92). The pace-group interaction 

approached significance (p= 0.076), suggesting that one group changed more than the 

other between paces. Figure 4.63 indicates that the SG changed the magnitude of Min 

accCOM more than the DG between paces. 
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Figure 4.63: Minimum COM acceleration: SG vs. DG at sprint and distance paces. Mean 

acceleration data are presented. Error bars represent 95% confidence interval of the true mean. 

 
 

4.4.2.4. Time to Minimum Acceleration 

The time to Min accCOM was not significantly different between paces (p= 0.384) 

(Figure 4.64). A moderate effect size was found between paces within the DG (d= 

0.74) and a small effect size within the SG (d= 0.25). Groups did not differ 

significantly (p= 0.243), despite a large effect size between groups within the sprint 

pace trials (d= 1.01). The pace-group interaction was not significant (p= 0.790). 

However, as indicated in the reliability section (4.1) the non-significant result is most 

likely due to the large SD with respect to this variable. 
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Figure 4.64: Time to maximum COM acceleration (%SC)- SG vs. DG at sprint and distance 

pace. Mean acceleration data are presented. Error bars represent 95% confidence interval of the 

true mean. 

 
 

4.4.2.5. Range of Acceleration  

The difference in range of accCOM for both groups was significant between paces (p< 

0.001), with a greater accCOM range when sprinting (by 9.71 m⋅s-2 (SG) and 6.14 m⋅s-2 

(DG)) than distance swimming (Figure 4.65). Both groups showed a large effect size 

across paces in relation to the range of acceleration (Table 4.12). There was no 

significant difference between groups (p = 0.915), nor a significant pace-group 

interaction (p= 0.111). Post hoc analysis revealed that the range of accCOM between 

groups was significantly different within the distance pace trials (p= 0.0002), but not 

within the sprint pace trials (p= 0.4060). Moreover, a large effect size was found 

between the groups within the distance pace trials (d= 1.16), whereas a small effect 

size was found within the sprint trials (d= 0.44). Figure 4.65 indicates that the DG had 

a greater accCOM range than the SG at distance pace (SG: 4.31 m⋅s-2 vs. DG: 5.95 m⋅s-

2) despite the interaction not reaching statistical significance.  
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Figure 4.65: Acceleration range of the COM- SG vs. DG, at sprint and distance pace. Mean 

acceleration data are presented. Error bars represent 95% confidence interval of the true mean.  

 
 
 

4.4.3. Force  

The effect size data for the COM net force data are presented in Table 4.13, which 

shows that both groups displayed a large effect across paces with respect to the 

maximum and minimum COM net force. The time to maximum COM net force 

between paces was large within the SG (d= 1.52), but small within the DG (d= 0.37). 

 

 Effect Size 

SG 

Effect Size 

DG 

Effect Size 

Sprint 

Effect Size 

Distance 

Max Force 2.60 1.75 0.48 -0.69 

Time, Max Force 1.52 -0.37 0.73 -1.49 

Min Force -2.33 -1.78 -0.42 0.63 

Table 4.13: Effect size values for the COM force data. The effect size between paces within the 

SG and DG are presented on the left side columns. The effect size between groups within the 

sprint and distance paces are presented on the right side columns. 
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4.4.3.1. Maximum COM Net Force 

The Max forceCOM was significantly different between paces (p< 0.001), with SG and 

DG reducing the Max forceCOM by 357.36 N and 231.12 N respectively at distance 

than sprint pace (Figure 4.66). There was no significant difference between groups 

(p= 0.680) nor a significant pace-group interaction (p= 0.168), despite a moderate 

effect size between groups within the distance pace trials (d= 0.69).  
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Figure 4.66: Maximum forceCOM- SG vs. DG at sprint and distance pace. Mean force data are 

presented. Error bars represent 95% confidence interval of the true mean. 

 
 

4.4.3.2. Time to Maximum Net Force 

The time to Max forceCOM was not significantly different between paces (p= 0.098) 

(Figure 4.67), or groups (p= 0.736). The pace-group interaction was significant (p= 

0.018) as the SG reached Max forceCOM 25.81% later at sprint pace (Figure 4.67). Post 

hoc analysis revealed that the difference in time to Max forceCOM between groups 

approached significance within the distance pace trials (p= 0.019), but not within the 

sprint pace trials (p= 0.179). The effect size data supported the post hoc analysis by 

finding a large effect size between the groups within the distance pace trials (d= 1.49). 

Figure 4.67 indicates that the DG obtained the Max forceCOM 17.53% later in the SC 

than the SG when distance swimming.  
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Figure 4.67: Time to maximum forceCOM (%SC) - SG vs. DG at sprint and distance pace. Mean 

time data are presented. Error bars represent 95% confidence interval of the true mean. 

 
4.4.3.3. Minimum Net Force 

The Min forceCOM was significantly different between paces (p< 0.001) (Figure 4.68), 

with both groups having a greater Min forceCOM when sprinting than when distance 

swimming. There was no significant difference between groups (p= 0.819) nor a 

significant pace-group interaction (p= 0.155).  
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Figure 4.68: Minimum forceCOM- SG vs. DG at sprint and distance pace. Mean force data are 

presented. Error bars represent 95% confidence interval of the true mean.
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Chapter Five: Discussion 
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In the previous chapter, the results of this study were presented in relation to pace, 

group, and the interaction between pace and group. In this chapter the variables that 

were found to differ between the groups and paces are discussed. Moreover the 

kinematic and kinetic commonalities between groups, across sprint and distance pace 

are also discussed.  

 

5.1. Are Sprint and Distance Swimmers Different From 

Each Other?  

The primary purpose of this study was to investigate whether SG and DG differ in 

terms of kinematic and kinetic variables when swimming at similar velocities. This 

study revealed that these two groups are distinguishable with respect to the duration 

of the pull and push phases and the temporal sequencing of the shoulders and hips 

rolling. Differences between other variables approached significance between groups, 

indicating that with a larger sample, and/or increased number of trials, significant 

differences may be found. These variables were the Vav, AvVCOMHor and Max 

VCOMHor, Min VCOMHor and range accCOM at distance pace. The differences between the 

groups in relation to the above variables are discussed subsequently. 

 

One of the main differences between SG and DG was the different durations (%SC) 

spent within the pull and push phases. Researchers have previously suggested that 

skilled and non-skilled swimmers display different durations (%SC) within stroke 

phases due to the variation of hand velocity and/or acceleration within that particular 

phase, but have not taken into account the race specialisation of the swimmer (Chollet 

et al., 2000; Lerda and Cardelli, 2003). Although hand velocity and acceleration were 

not assessed in this study, they were examined post-analysis to ascertain whether the 

different durations of the pull and push phases between groups could be accounted for 

by the magnitude of these variables. With respect to the second hand entry, the DG 

spent longer in the pull phase than the SG. It was observed, that SG had a greater 

vertical acceleration (Figure 5.1) and horizontal velocity (Figure 5.2) of the hand 

during the pull phase which most likely contributed to the reduced duration (%SC) of 

this phase by the SG relative to the DG. This action does not appear to be 

advantageous in terms of the magnitude of net forceCOM during the pull phase which 



  Discussion 

  152 

showed that the DG displayed a greater net forceCOM when sprinting than the SG (-

1500 N vs. -1185 N). 
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Figure 5.1: Vertical acceleration of the second hand entering the water during the stroke cycle, 

SG vs. DG, at sprint pace. The red and blue arrows indicate the beginning and end of the pull 

phase for sprint and distance swimmers respectively. 
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Figure 5.2: Horizontal velocity of the second hand entering the water during the stroke cycle, SG 

vs. DG, at sprint pace. The red and blue arrows indicate the beginning and end of the pull phase 

for sprint and distance swimmers respectively. 

 
The difference between groups in the duration of the push phase approached 

significance with the SG having a shorter duration than the DG, particularly when 

sprinting. Figure 5.3 clearly indicates that SG had a greater magnitude of vertical 

acceleration of the hand during the push phase than the DG when sprinting. These 

results may be linked to the greater forceCOM of the SG than the DG at both sprint 

(801 N vs. 366 N) and distance pace (397 N vs. 367 N) within the push phase (Figure 

5.4).  
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Figure 5.3: Vertical acceleration of the hand during the stroke cycle, SG vs. DG at sprint pace.  

The red and blue arrows indicate the beginning and end of the push phase for sprint and 

distance swimmers respectively. 
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Figure 5.4: Mean net force during the push phase, SG vs. DG, at sprint and distance pace. 

 

The results from this study support the current literature with respect to the duration 

of stroke phases being connected to the magnitude of hand velocity or acceleration 

within that particular phase. This connection has not been investigated in relation to 

swim groups in the previous literature. The SG spent less time (%SC) in the pull and 

push phases than the DG, which appears to be linked to a greater horizontal velocity 

and vertical acceleration of the hand within the pull phase, and a greater vertical 

acceleration of the hand during the push phase, relative to the DG.  

Sprint Gp Distance Gp Distance Gp 
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No study has investigated the sequence order of the shoulders and hips rolling during 

a SC in swimming. This study revealed a different sequencing order of the shoulders 

and hips rolling between groups and between paces. When sprinting, the SG clearly 

led with the hips, as the shoulders followed. Although the DG showed this same 

trend, it was not as distinct as that of the SG, as supported by the significant 

shoulder/hip-group interaction in the results chapter. This altered sequencing of the 

shoulders and hips between groups when sprinting, may also explain the differences 

found between groups in terms of maximum shoulder roll (both sides) attainment, 

with the SG obtaining maximum shoulder roll later in the SC than the DG when 

sprinting (Figure 5.5), perhaps due to a greater time delay between the shoulder and 

hip segments rotating.  
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Figure 5.5: Mean shoulder roll angle for DG and SG at sprint pace. The difference in time of 

attainment of maximum roll to each side is evident.  

 

At distance pace the SG rolled with the shoulders and hips simultaneously, whereas 

the DG displayed a distinct sequencing of the shoulders leading the hips throughout 

the SC. Consequently the shoulders and hips changed the temporal relationship 

between groups and paces. This finding may be related to other sports skills that also 

require humans to sequentially rotate the segments in order to execute the skill 

successfully, such as golf, baseball, tennis serve, javelin throw, and boxing. The 

primary objective of sequencing the body segments as a linked chain system in the 

previous sporting skills is to develop motion, or high speeds at the end of the link 

system for effective performance (Kreighbaum and Barthels, 1996). This is achieved 

by ordering the segment motion from the base segment, which is the most stable part 
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of the system, to the free end; or from the proximal to distal end of the activity. In the 

case of the above activities, motion is generated by either the rotation of the trunk to 

initiate the movement or due to the application of ground reactive force. Failure to 

sequence a chain of segments progressively throughout the skill may result in an 

inadequate outcome at the end of the kinetic chain (Kreighbaum and Barthels, 1996). 

Prichard (1993) likened the skill of swimming to that of a baseball hitter, stating that 

the power originates from the hip rotation. However, in baseball, the sequential 

movement of the skill requires the player to rotate the segments about the hips, in 

addition to developing the necessary ground reaction force to initiate the movement, 

which is not possible in swimming. It is suggested that the kicking action of the legs 

in swimming may provide the torque to initiate the sequential motions throughout the 

body in order to effectively perform the cyclical motions of the arms (Yanai, 2001). 

Therefore, it is proposed that the flow of motion, or energy wave, travels from the 

bottom to the top of the swimmer, as is the case in many other sports. Although not 

statistically significant due to the large standard deviations, it is obvious that the SG 

displayed a greater vertical displacement of the feet relative to the DG when sprinting, 

and vice versa at distance pace. These observed differences in kicking action between 

the groups may explain the varied sequencing pattern of the shoulders and hips 

between the SG and DG. In conclusion, it was found that SG and DG sequence the 

rolling of the shoulders and hips in a different manner at both sprint and distance 

pace.  

 

However, further investigation is required to advance the understanding of the 

shoulder and hip roll relationship. It would be especially interesting to analyse the 

different techniques used by the groups in their chosen events to investigate any 

energy wave properties. Computational fluid dynamics (CFD), which is one of the 

branches of fluid mechanics that uses numerical methods and algorithms to solve and 

analyze problems that involve fluid flows, may provide a useful tool to examine the 

effect of water flow surrounding the trunk segment to identify why swimmers are 

sequencing their actions in this way.  

 

The difference in Vav approached significance between the groups at distance pace. 

Although not statistically significant, the greater ROM of the leg kick and higher SF 

by the DG relative to the SG, may have contributed to the greater maintenance of Vav 
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by the DG. The ability to swim fast with a higher SF has been linked to the 

maintenance of adequate neural activation to the working muscles (Hay, 1993; 

Keskinen and Komi, 1993). It is therefore suggested that the DG had a greater 

capacity to sustain effective contractibility of the muscles at distance pace than the 

SG. Additionally the greater contribution of the leg action by the DG at distance pace 

would have served as an extra source of propulsion to the swimming motion in 

comparison to the SG, resulting in a greater Vav maintenance.  

 

Similar to the differences between groups with respect to the duration of stroke 

phases, the higher average and maximum VCOMhor of the DG, than the SG, when 

distance swimming may also be linked to the magnitude of hand velocity. Figure 5.6 

indicates that the DG display a faster hand resultant velocity throughout the SC than 

the SG.  
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Figure 5.6: Hand resultant velocity: sprint vs. distance pace for both groups 

 
The greater magnitude of deceleration (Min VCOMhor) of the DG relative to the SG at 

distance pace is most likely due to the effect of wave drag. Since wave drag is 

proportionally related to the swim speed, due to the greater AvVCOMhor by the DG 

relative to the SG throughout the SC, the magnitude of wave drag would act more 

strongly on the DG than the SG, resulting in a greater deceleration of the DG.  
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5.1.1. Summary of Differences between Groups.  

This study revealed that SG and DG do not differ over a broad range of variables as 

suggested in the literature. The main differences between the groups were reasoned to 

be due to the differences in velocity or acceleration of the hand within the stroke 

phases, as well as the relative timing between the arms. An exciting difference 

between the groups was found with regard to the sequencing order of the shoulders 

and hips at both sprint and distance pace, which was speculated to be controlled by 

the magnitude of the leg action, but requires further examination.   

 

5.2. Do the Groups Change Between Paces? 

The second objective of this thesis was to investigate whether SG and DG adapt their 

race parameters, stroke kinematics and kinetics between sprint and distance pace. The 

aim of obtaining this knowledge is to understand why and how swimmers adjust their 

stroke characteristics between paces, as the current literature relating to this question 

is limited. This study revealed that many variables changed in terms of magnitude and 

the temporal aspect between the two paces for both groups, which are discussed 

subsequently.  

 

The main change between paces with respect to the race parameters is that sprint 

swimming is characterised by a significantly greater Vav, SF, SI, and reduced SL, 

compared to distance swimming for both groups. Maximum VCOMhor, accCOM and 

forceCOM, were also significantly greater when sprinting than distance swimming.   

The greater magnitudes of these variables when sprinting is expected due to the much 

lower requirement to conserve energy or implement a pacing strategy, as is the case 

when distance swimming. All swimmers demonstrated a longer SL at distance pace 

concomitant with a reduced Vav, SF and SI. These adaptations are made automatically 

to yield an energy efficient stroke, as energy expenditure of a muscle cubes with the 

speed of muscle contraction and thus acts to delay the onset of acidosis as a by-

product of a high SF (Maglischo, 2003). The fact that sprinting was characterised by a 

high SF and low SL, whilst distance swimming was exemplified by longer SL and 

reduced SF, further reiterates the negative relationship between SF and SL as reported 
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in the literature (Arellano et al., 1994; Pelayo et al., 1996; Keskinen and Komi, 1993; 

Maglischo, 2003).  

 

The greater magnitude of the VCOMhor when sprinting, was due to the propulsive 

actions within the entry and push phases, relative to the pull, hand exit and recovery 

phases by both groups  (Figure 5.7 and 5.8).  
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The propulsion generated during the entry phase is most likely due to the activities of 

the opposing arm, which relative to the entering arm was positioned in the latter 

portion of the push phase or at hand exit. Indeed, researchers have indicated that the 

hand achieves maximal velocity (Counsilman, 1981; Costill et al., 1992; Rouard et al., 

1996; Monteil et al., 1996; Maglischo, 2003) and force production during the push 

phase (Schleihauf, 1982; Schleihauf et al., 1983; Cappaert et al., 1995; Monteil et al., 

1996; Rouard et al., 1996; Cappaert, 1998), which would positively influence the 

COM. This study also revealed that maximum VCOMhor, accCOM and forceCOM occurred 

within the push phase, irrespective of swim velocity. This is in agreement with 

Maglischo et al. (1989), Rouard et al. (1996), Keskinen and Keskinen, (1997), 

Cappaert (1998) and Maglischo (2003), who all reported that maximum propulsion 

occurs during the push phase irrespective of the swim velocity. 

 

Figure 5.6 clearly indicates that the hand speed changes between paces, with the hand 

travelling faster during the sprint trials than the distance trials. The advantage of a 

Figure 5.7: SG- mean accCOM during 

each stroke phase throughout the SC, 

at sprint and distance pace.   

Figure 5.8: DG- mean accCOM during 

each stroke phase throughout the SC, 

at sprint and distance pace.   
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faster hand speed throughout the SC when sprinting, is due to the exponential 

relationship between hand speed and force. Doubling the speed yields a fourfold 

increase in force, if using the same stroke mechanics (Counsilman, 1973). Because 

the SF values in this study were 71-75% higher at sprint pace for both groups, 

swimmers applied more force when sprinting than distance swimming. This is 

manifested by the greater magnitude of acceleration in the entry and push phases as 

described previously.  

 

All swimmers experienced greater resistance, in terms of a lower VCOMhor, and a 

greater Min accCOM (deceleration) and Min net forceCOM (resistive force) when 

sprinting than distance swimming. This is most likely due to the effect of wave drag, 

in the form of a bow wave, acting on the swimmer. It is known that wave drag is 

proportional to the cube of the swimming velocity (Voronstov and Rumyantsev, 

2000). Therefore, this retarding effect becomes more significant when sprinting than 

swimming at a distance pace and consequently acts as a limiting factor to forward 

propulsion. Figures 5.7 and 5.8 illustrate that maximum deceleration occurs within the 

pull and recovery phases. The implications of this result in terms of stroke kinematics 

are discussed subsequently. 

 

Neither group adjusted the magnitude of maximum vertical and lateral displacement 

of the upper limbs between paces as suggested in the literature. However, the time 

that these variables occurred within the SC did change between paces. Maximum 

vertical displacement of the finger occurred approximately 10% later within the SC at 

distance than sprint pace for both groups. It is suggested that this result was a 

consequence of the prolonged entry phase (SG-9.05%, DG- 10.37%) when distance 

swimming compared to sprinting. Moreover, it was found that maximum vertical 

displacement occurred during the pull phase (middle of) for all swimmers which is in 

agreement with Cappaert et al. (1995).  

  

Maximum finger lateral displacement occurred 20% and 2% later in the SC for SG 

and DG respectively at distance than sprint pace. This result was not a consequence of 

a prolonged entry phase due to the fact that the duration of the latter was increased by 

10% when swimming at distance pace. To provide a better understanding Table 5.1 

identifies the stroke phase that corresponds to maximum finger lateral displacement. 
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The SG obtained maximum lateral displacement in the pull phase when sprinting, 

which is in agreement with several authors (Colwin, 1969; Maglischo, 2003). 

Therefore, the maximum lateral motions of the upper limbs (which are regarded as 

non-propulsive in the literature) may explain why the SG exhibit a greater COM 

deceleration within this phase compared to the DG, when sprinting (-15.39 m⋅s-2 vs. -

8.6 m⋅s-2). 

 

 Sprint Pace Distance Pace 

Sprint Group Pull Push 

Distance Group Push Push 

      Table 5.1: Corresponding phases to maximum lateral displacement of the finger. 

 
The time to maximum lateral displacement of the finger occurred in the push phase 

for the DG at both paces and for the SG at distance pace. In most cases, this occurred 

prior to the initiation of the recovery phase. This indicates that the hand is furthest 

(laterally), from the COM during the latter portion of the push phase. These findings 

suggest that throughout the SC, swimmers tend to position the upper limbs in close 

proximity to the axis in the direction of swimming passing through the COM until the 

latter portion of the push phase, perhaps in preparation for the hand exiting the water. 

In doing so, the swimmer reduces the torques about the vertical axis that tend to rotate 

the swimmer and increase drag. Therefore, all swimmers change the temporal aspects 

of attaining the maximum vertical displacement of the finger between paces, primarily 

due to the knock-on effect of a prolonged entry phase at distance than sprint pace. The 

SG changed the maximum lateral displacement of the finger the most between paces 

perhaps due to the energy requirements of the race distance. These above changes 

influenced the acceleration characteristics of the COM. 

 

Initially, it was proposed that the ‘maximum’ aspect of the stroke trajectory would 

provide useful information with regard to the vertical and lateral aspects of the stroke 

pattern. However, this was reassessed due to the results obtained and the average 

vertical displacement of the finger examined post analysis (Figure 5.9). This variable 

changed between paces (p= 0.013), but not significantly between groups (p= 0.307). 

All swimmers increased the average stroke depth of the hand when distance 
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swimming compared to sprinting, which is contrary to all assumptions and predictions 

made in the literature. The difference in the range of lateral displacement of the finger 

between paces approached significance, with the majority of participants increasing 

this range at distance pace. As the elbow angle magnitude has previously been related 

to the stroke depth (Cappaert, 1998), this aspect was examined. However, no change 

was found in relation to the magnitude of the elbow angle variables between paces, 

with the exception of the end back elbow angle, which was smaller at distance pace 

and thus not likely to influence the stroke depth or stroke width magnitude. Because 

upper limb displacement has been related to the magnitude of body roll in the 

literature (Lui et al., 1993; Hay et al., 1993; Payton and Mullineaux, 1996), it is 

reasoned that the increased magnitude of shoulder and hip roll at distance pace, 

accounts for the increased magnitude of average vertical and lateral range 

displacement of the finger for all swimmers when distance swimming than sprinting. 

That is, shoulder and hip roll appear to influence the magnitude of average vertical 

and lateral range displacement of the finger between paces for both groups.  
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Figure 5.9: Average vertical displacement of the finger throughout the underwater stroke phase: 

SG vs. DG.  

 

Many authors have explained the purpose of maximally extending the elbow during 

the entry phase in terms of improving the hydrodynamic position in the water whilst 
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applying propulsive force with the opposing arm at distance pace (Costill et al., 1992; 

Voronstov and Rumyantsev, 2000; Millet et al., 2002; Lerda and Cardelli, 2003; 

Maglischo, 2003; Seifert et al., 2007a). Alternatively sprint swimming has been 

characterised in the literature as flexing the elbow rapidly after entry in order to make 

the catch earlier and apply propulsive forces for a longer period as a proportion of the 

SC (Colwin, 1969; Voronstov and Rumyantsev, 2000). This variable has not been 

investigated quantitatively in the literature in relation to swim velocity or swim group. 

One may have predicted that the 10% longer period in the entry phase when distance 

swimming would facilitate a greater elbow extension. It was therefore surprising to 

find that maximum right elbow angle during the entry phase was greater when 

sprinting than distance swimming for both groups. However, Deschodt et al. (1999) 

reported that the contribution of the leg-kick when sprinting significantly alters the 

wrist kinematics in the forward direction. The greater foot vertical displacement range 

in this study when sprinting, by both groups, may have influenced the greater forward 

extension of the right elbow angle after entry. Moreover, the fact that the majority of 

swimmers were right hand dominant may have resulted in the difference between the 

left and right side.  

 

Researchers have not presently investigated whether the elbow angle changes between 

paces with respect to SG and DG. This study revealed that the magnitude of both the 

end back elbow angle and the range of elbow angle within the push phase changed 

between paces for both groups. The end back elbow angle is a measure of the elbow 

extension at the end of, what is regarded as, the most propulsive phase of the 

underwater SC. Both groups reduced the magnitude of the elbow angle at the end 

back event when distance swimming than sprinting by approximately 7°. The elbow 

angle range during the push phase was also reduced by 5.71° (SG) and 7.98° (DG) 

when distance swimming than sprinting. These adaptations appear to have influenced 

the kinetic aspects of the SC. Both SG and DG had a greater net forceCOM during the 

push phase when sprinting (SG- 800.59 N; DG- 366.28 N) as opposed to distance 

swimming (SG- 368.20 N; DG- 282.95 N). The accCOM data support the latter, 

showing a greater acceleration during the push phase when sprinting (SG- 10.35 m⋅s-2; 

DG- 5.62 m⋅s-2) compared to distance swimming (SG- 2.21 m⋅s-2; DG- 1.85 m⋅s-2). It 

is therefore suggested, in addition to other factors, that the greater end back elbow 
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angle when sprinting, contributes to the greater propulsion generated in terms of a 

higher net forceCOM and accCOM during the push phase compared to distance 

swimming.  

 

No quantitative data are provided in the literature with respect to the elbow angle 

when entering the water. Moreover, to date, this variable has not been investigated 

over a range of swim velocities. This study revealed that the difference between paces 

in magnitude of elbow angle at entry approached significance, with both groups 

displaying less elbow flexion at sprint than distance pace. It is suggested that all 

swimmers may have maximised the elbow angle prior to entry to avoid extending the 

arm within the water environment when sprinting, and in doing so increasing resistive 

drag. This can be explained due to the fact that water is 100 times denser than air; 

therefore any movement in the water creates more drag. The disadvantage of this 

characteristic is that an extended arm on entry when sprinting would increase wave 

drag due to a larger cross sectional area entering the water momentarily. At distance 

pace, all swimmers reduced the elbow angle at entry. Researchers have recommended 

this technique, so that the hand creates a ‘hole’ for the wrist and elbow joints to 

subsequently travel through, thus minimising wave drag. However, extending the 

upper limb in the water thereafter would increase form drag. It is therefore clear that 

all swimmers adjust the magnitude of the elbow angle as the hand enters the water, 

depending on the swim velocity, perhaps due to the resistive characteristics of the 

hand entry technique. 

 

All swimmers changed the duration (%SC) of the stroke phases between paces. This 

is in agreement with the literature which indicates that swimmers adapt the time spent 

in stroke phases to meet the physiological and performance objectives of the event 

distance (Chollet et al., 2000; Millet et al., 2002; Lerda and Cardelli, 2003; Seifert et 

al., 2004a; Seifert et al., 2004b; Seifert et al., 2007a; Seifert et al., 2007b). Relative to 

distance swimming, sprinting is characterised by a shorter entry phase and a longer 

pull, push and recovery phase, permitting more time within the propulsive phases 

(pull and push) and less time in the non-propulsive phases (entry), resulting in a 

longer application of propulsive forces (Millet et al., 2002; Lerda and Cardelli, 2003; 

Seifert et al., 2007a). All swimmers spent longer in the recovery phase when sprinting 

relative to distance swimming, as a way to compensate for the shortening of the entry 
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phase, thus allowing an earlier start of the pull phase and a relatively longer muscular 

recovery time (Chollet et al., 2000; Seifert et al 2004b). Maximum COM deceleration 

was also found to occur during the recovery phase irrespective of the swim pace. 

Relative to sprinting, distance swimming is characterised by a longer entry phase and 

reduced pull, push and recovery phases. These findings support previous studies that 

have identified that swimmers adopt this style to improve the hydrodynamic position 

of the body during the distance event (Chollet et al., 2000; Lerda and Cardelli, 2003; 

Seifert et al., 2004).  

 

The magnitude of elbow angle range during the pull phase (46.81°-SG and 53.77°-

DG) is not in agreement with some of the statements in the literature advocating that a 

90° angle should be held constant throughout the propulsive (pull), or that it changes 

minimally throughout the SC (Counsilman, 1973; Costill et al., 1992; Voronstov and 

Rumyantsev, 2000; Maglischo, 2003). However, the findings of this study are in 

agreement with those of Payton et al. (1999) who reported the elbow angle range 

during the pull phase as 45°. Therefore, the fact that swimmers are identified to 

progressively change the magnitude of the elbow angle during the pull phase, 

challenges the assumptions implied in the literature in relation to a constant 90° angle 

throughout the underwater SC, and will consequently have implications in terms of 

how swimmers are taught/coached. 

 

Another interesting finding with respect to the temporal changes within the SC was 

the occurrence of the catch position (1st back elbow angle position), which was also 

significantly different (p < 0.05) between paces for both groups. Figure 5.10 indicates 

that both groups made the catch at approximately 30% and 40% of the SC for sprint 

and distance swimming respectively.  
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Figure 5.10: Time (% SC) corresponding to the catch for both swim groups, swimming at sprint 

and distance pace.  

 

It is suggested that the later occurrence of the catch position is also due to the 10% 

greater duration of the entry phase, when distance swimming. Research studies have 

recommended that sprint swimmers make the catch earlier in the SC to enable a 

longer period of propulsive force as a proportion of the SC than distance swimmers 

(Colwin, 1969; Duclos et al., 2002; Lerda and Cardelli, 2003; Seifert et al., 2004). 

Similarly, it has been proposed that distance swimmers intuitively increase the time 

between entry and catch, thereby increasing the duration of the entry phase, to adopt a 

posture that reduces the hydrodynamic resistance (Keskinen and Komi, 1993; Chollet 

et al., 2000; Seifert et al., 2004a). The results obtained from this study are not strictly 

in agreement with the above. SG and DG do not obtain the catch at significantly 

different times in the SC. All swimmers make the catch earlier when sprinting, and 

later when swimming at distance pace. As suggested in the literature, it is reasonable 

to assume that swimmers obtain the catch earlier when sprinting to apply propulsive 

forces for a greater proportion of the SC and later at distance pace to enhance the 

hydrodynamic position of the body. Although Maglischo (2003) and Costill et al. 

(1992) recommended that the catch be attained at 30% of the SC, they did not 

differentiate between swimming paces. This study indicates that the time to catch is 
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dependent on whether the swimmer is sprinting or distance swimming and not related 

to the distance specialisation of the swimmer as suggested in the literature.  

 

This study revealed that all swimmers increased the total shoulder roll when distance 

swimming relative to sprinting. Researchers have proposed that this action reduces the 

frontal surface area and consequently minimises active drag (Cappaert et al., 1995; 

Cappaert, 1998; Castro et al., 2002). Moreover, Cappaert et al. (1995) proposed that 

reducing the difference between shoulder and hip roll magnitude would be beneficial 

in terms of minimising active drag. In this study, the difference between total shoulder 

and hip roll was less at distance pace for SG (53.87°) and DG (59.55°) than in 

sprinting (70°- SG; 66°- DG), confirming that all swimmers adopted a more 

streamlined or improved hydrodynamic body position when swimming at a distance 

pace.  

 

Moreover it was found that the total shoulder roll changed between swim velocities 

due to the contribution of the right shoulder roll adjusting between paces and not the 

left shoulder. This finding may be due to an asymmetric stroke pattern, which is 

discussed subsequently. Nonetheless, researchers have proposed that an increase in 

shoulder roll with increasing race distance is due to a longer entry phase (Cappaert, 

1998; Castro et al., 2002). It is therefore possible that the increased shoulder roll may 

be due to the longer entry phase per se, or due to the increase in overall time allowing 

for more roll. Further, an increase in duration of the entry phase, longer SL and 

reduced SF has been related to better economy in distance swimming than sprinting. 

In this study, the SL increased by 0.24 m (SG) and 0.23 m (DG) respectively, 

concomitant with a decrease in SF of 16.05 cycles/min (SG) and 14.12 cycles/min 

(DG), when swimming at distance pace. These results suggest that a greater shoulder 

roll at distance pace can facilitate a more economical stroke due to the associated 

effects of other variables i.e. increased duration of entry phase, SL and reduced SF. In 

sprint swimming economy is not the main consideration for the swimmer. The 

objective is to maximise propulsive forces throughout the SC (Costill et al., 1992; 

Cappaert, 1998; Chollet et al., 2000; Seifert et al., 2004a). Thus, the high SF does not 

enable as great a body roll to be achieved due to the reduced time available to roll.  
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The influence of body or shoulder roll has been addressed frequently in the literature. 

However, the hip roll as a separate entity has not. This may be due to the methods 

implemented in previous studies (e.g. the balsa fin or PVC stick method) that 

accounted only for total trunk rotation. This study indicated that the magnitude of the 

maximum hip roll to both sides was significantly greater at distance than at sprint 

pace. The magnitudes of the hip roll in this study were similar to those obtained by 

Cappaert et al. (1995), for sprint swimming, and Psycharakis (2006), for distance 

swimming. The large difference in magnitude of hip and shoulder roll further supports 

the independency of the hips and shoulders in that a change in one is not necessarily 

reflected in a proportional change in the other. Indeed, hip roll was 8° greater at 

distance than sprint pace, whereas the shoulder roll was only 4° greater. Moreover the 

significant interaction between pace and shoulder/hip revealed that both groups 

changed the time to maximum hip roll more than the shoulders. This finding further 

supports the assumption that the hip is independent of the shoulders, and is more 

subject to change between paces than the shoulders. This issue of independence of the 

hips and shoulders has never been addressed previously in the literature.   

 

It was also proposed that the magnitude of the kicking action may contribute to the 

change of hip rotation between paces for both groups, due to the generated torques 

about the longitudinal axis. It was suggested that the hip rotation is dampened when 

sprinting due to the vigorous action of the leg-kick as indicated by Yanai (2001). The 

decreased foot vertical displacement magnitude when kicking at distance pace may 

not produce torques as powerful as that in sprint swimming, permitting the swimmers 

to increase hip rotation during this pace. It is therefore concluded that the magnitude 

of the kicking action may determine the degree of hip and consequently shoulder roll 

between swim paces.   

 

This raises the issue of the timing of attaining maximum shoulder and hip roll. The 

time corresponding to maximum hip roll (both sides) revealed that all swimmers 

reached maximum left and right hip roll later in the SC when swimming at distance 

than sprint pace (Figures 5.11 and 5.12).  The longer time to reach maximum rotation 

of the hips at distance pace may be related to the reduced vertical kicking 

displacement of the feet at this pace. It is assumed that the kick is not as aggressive 

when distance swimming and therefore the torques produced from the leg-kick are 
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diminished in comparison to sprinting, resulting in a longer period to obtain 

maximum hip rotation at distance pace.  

            

-20

-10

0

10

20

0 10 20 30 40 50 60 70 80 90 100

Time (%Stroke Cycle)

A
n

g
le

 (
d

e
g

re
e

s
)

Hips_Sprint Pace Hips_Distance Pace

 
            

Figure 5.11: Time (%SC) to maximum left (negative) and right (positive) hip roll for the SG.  
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Figure 5.12: Time (%SC) to maximum left (negative) and right (positive) hip roll for the DG.  

 

Similarly, the time to maximum right shoulder roll also occurred significantly later at 

distance than sprint pace for both groups, whereas the maximum left shoulder 

remained unchanged between paces. Table 5.2 illustrates the position, in terms of 

stroke phase, of each hand at maximum right shoulder roll. Maximum right shoulder 

roll occurred on the borderline of hand exit when sprinting- whereby shoulder roll has 

been linked to permitting longer application of propulsive forces (Colwin, 1969; 

Leonard, 1992; Maglischo, 2003), or during the recovery phase when distance 
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swimming, whereby shoulder roll has been linked to assisting arm clearance over the 

water (Colwin, 1969; Leonard, 1992; Maglischo, 2003). The later attainment of 

maximum right shoulder roll when distance swimming relative to sprinting is also 

most likely due to the contribution of the leg kick as identified previously.  

 

 Right Hand Left Hand 

SG: Sprint Pace Recovery Phase Initiating Pull 

DG: Sprint Pace Prior to hand exit Entry 

SG: Distance Pace Post hand exit, in recovery Entry 

DG: Distance Pace Post hand exit, in recovery Pull 

Table 5.2: Hand positions, in stroke phases, at maximum right shoulder roll.  

 

By assessing the time to maximum shoulder and hip roll relative to one another, it is 

possible to obtain an indication of a potential relationship between these two 

variables, which has not been established in the literature. In section 5.1 it was 

outlined how each group changes the temporal relationship between the shoulders and 

hips between paces. It was proposed that the kicking action may have controlled the 

different sequencing of the shoulders and hips between groups. Similarly it is 

proposed that the different sequencing between paces is a consequence of the leg 

kicking action. When sprinting, all swimmers displayed a greater vertical 

displacement of the feet which may have produced greater torques originating at the 

feet travelling along the body towards the shoulders. This may be beneficial in terms 

of transmitting energy from the hips to the shoulders, allowing the arms to 

subsequently direct energy back through the stroke pattern. Similarly, because the DG 

were found to lead with the shoulders followed by the hips at distance pace it is 

speculated that these swimmers utilise this technique as a method of directing water 

flow along the body progressively from shoulders to feet. Moreover, the fact that the 

vertical displacement of the feet was less at distance pace than sprint pace for all 

swimmers suggests a reduced torque effect from the legs, which may have been 

responsible for shoulders leading followed by the hips. Further exploration of the flow 

of motion/energy along the body in swimming is necessary to assess the rotational 

movement about the shoulders and hips and their sequencing between swim paces. 

Although a possible energy effect may be responsible for the different hip and 
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shoulder roll patterns when sprinting and swimming at a distance pace (due to the 

torques generated by the kicking action), it is presently speculation. However, based 

on the work by Sanders and Psycharakis (2008), who demonstrated that a body wave 

was transmitted from the hips to the ankles during freestyle swimming, it is also 

possible that energy is transferred along the body and perhaps changes in direction 

depending on the swim velocity. Thus further investigation is required. 

 

Quantitative data with regard to the foot ROM when kicking has not been presented in 

the literature to date, and thus comparisons with previous research is not possible. The 

magnitude of the kicking action has been linked to the change of many variables 

between paces as presented previously. However, the primary purpose of a greater 

foot vertical displacement when sprinting is to increase propulsion (Wilke, 1992; 

Deschodt et al., 1999; Maglischo, 2003). The decreased vertical range during 

prolonged periods of distance swimming may not produce as much propulsive force 

as when sprint swimming, but may be advantageous in terms of reducing the frontal 

surface area and minimising active drag. Between the paces, the SG appeared to 

reduce the foot vertical displacement range the most at distance pace and it is 

proposed that they were unable to sustain, perhaps due to physiological capacity, a 

magnitude similar to that of the DG throughout the distance event.  

 

It should also be highlighted that the foot vertical displacement range did not differ 

across groups. That is, all swimmers display a similar kicking range at each swim 

pace. This finding is contrary to that of Cappaert (1998) who reported that one of the 

most distinguishable differences between sprint and distance swimmers was the knee 

range of motion, which in turn creates a greater foot displacement range. It was 

suggested that an increase in knee ROM would increase propulsion. This study 

indicates that there are no differences between SG and DG in terms of the magnitude 

of foot vertical displacement range, but that all swimmers change this variable 

depending on swim pace. 

 

5.2.1. Summary of Changes between Paces 

The stroke kinetics, race parameters and durations within the stroke phases all 

changed between sprint and distance pace in order to meet the physiological 
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requirements of the race distance. The magnitude of the elbow angle within the end 

back event and the range within the push phase differed between paces which 

contributed to the adjustment of the kinetic variables. Due to the relative timing 

between the arms, the entry and push phases were the most propulsive irrespective of 

swim pace, whereas the most decelerative phase occurred during the recovery. The 

prolonged duration of the entry phase, when distance swimming, resulted in a delayed 

attainment of the catch position and maximum stroke depth at distance pace compared 

to sprint pace. Shoulder and hip roll appeared to influence the magnitude of average 

vertical and lateral range displacement of the finger between paces.  In turn, the 

magnitude of the kicking action appeared to influence the sequencing of the shoulders 

and hips, in terms of both magnitude and timing, due to the different torques 

generated by the legs over the swim paces. Moreover the kicking action was also 

related to the forward extension of the right arm after entry.   

 

The findings of this study indicate that all swimmers adapt their swimming technique 

in relation to the above variables depending on the swim velocity. It is proposed that 

swimmers make this adjustment, whether it is intuitive or learned in order to 

maximise their performance at that particular race distance. Moreover, the literature 

provides recommendations with regard to the different stroking characteristics 

between sprint and distance swimmers. This study revealed, in relation to most 

variables, that this is not necessarily the case. SG and DG swimmers are not 

overwhelmingly different in terms of their technical characteristics, but all swimmers 

adjust certain variables depending on the swim pace in order to meet the race distance 

outcomes. 

 

5.3. Commonalities between Groups and Paces and 

Individual-Specific Adjustments.  

This section discusses the variables that were not subject to change between groups or 

paces. Another dimension to this section is to highlight any individuals who changed 

their technique between paces as a way to optimise their individual performance.  
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Neither group changed their stroke kinematics between paces with respect to the 

maximum stroke depth and stroke width (measured by the vertical and lateral 

displacements of the finger, wrist and elbow segments). The maximum stroke width 

in this study (0.39 m), was in general agreement with Schleihauf et al. (1988): 0.37 m; 

Payton and Lauder, (1995): 0.34 m; and Payton et al. (1999): 0.27 m. Similarly, 

maximum stroke depth (0.66 m) was comparable to that reported by Costill et al. 

(1992): 0.4-0.6 m; Payton et al. (1999): 0.79 m; and Maglischo, (2003): 0.5-0.7 m. 

Cappaert’s (1998) study was the main exception to this trend, in which the main 

difference between sprint and distance swimmers was the stroke depth with values of 

1.6 m and 1.0 m respectively. These values far exceed those in both the current 

literature and the data obtained from this study. It is suggested that perhaps this was a 

misprint or problem with the methodology implemented.  

 

Nevertheless, the fact that no change occurred across paces is contrary to that reported 

in the literature which associates sprint swimming with a greater stroke depth than 

distance swimming (Colwin, 1977; Cappaert, 1998; Voronstov and Rumyantsev, 

2000). This assumption is based on the fact that a deeper stroke depth allows a larger 

cross-sectional area of the upper limbs to apply force. Moreover, Voronstov and 

Rumyantsev (2000) demonstrated that an extended elbow requires a greater muscular 

torque about the shoulder than a flexed elbow, which is characterised by a reduced 

length of the levers and inertia of the arm. Therefore, it was assumed that a ‘straighter 

arm’ pull may be unsustainable, in terms of muscular effort over longer distances, 

which would result in swimmers adopting a reduced elbow angle and consequently a 

smaller stroke depth. The literature does not provide sufficient quantitative data with 

regard to the maximum lateral displacement of the upper limbs, but there has been 

speculation that due to a greater body roll during distance swimming, lateral 

displacement of the upper limbs also increases at this pace. These assumptions were 

not evident in this study in terms of the group as a whole.  

 

On an individual basis, some swimmers changed the magnitude of both maximum 

vertical and lateral displacement of the finger across paces. With regard to maximum 

vertical displacement, sprint participants 2 and 3 increased and decreased the stroke 

depth by 0.10 m and 0.13 m respectively at distance relative to sprint pace. Similar 

adjustments were evident with respect to the wrist and elbow joints. Due to the 
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association between stroke depth and the magnitude of the elbow angle (Cappaert, 

1998), this parameter was investigated in relation to the above participants. Figure 

5.13 indicates that sprint participant 2 increased the elbow angle at distance pace 

whilst sprint participant 3 increased the elbow angle when sprinting. These findings 

support the suggestion that the stroke depth is influenced by the magnitude of elbow 

angle. However, with only two participants indicating this association, more research 

is warranted.  
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Figure 5.13: ‘Shoulder x’ elbow angle between sprint and distance pace for sprint participant 2 

and 3.  

 

With regard to the maximum lateral displacement, distance participants 2, 3, 6 and 8 

all increased the maximum lateral displacement of the finger when sprinting, 

compared to distance swimming, whereas distance participant 7 reduced this variable 

at sprint pace. Because body roll has been thought to influence the medio-lateral 

aspect of the stroke pattern (Lui et al., 1993; Hay et al., 1993; Payton and Mullineaux, 

1996), this was investigated. However, no association was apparent in relation to 

these individuals. It therefore appears that the adjustment of maximum lateral 

displacement of the finger between paces for these participants is influenced by an 

additional factor and is independent of body roll. This may be due, for example, to the 

swimmers’ attempts to optimise the vortex shedding characteristics of the hand path. 

The literature proposes that swimmers can shed vortices prematurely in the stroke 

pattern due to a sudden directional change combined with excessive acceleration and 
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application of force (Colwin, 2002). Thus, it is possible that the adjustment is due to 

the swimmers attempts to avoid premature shedding of the vortices. 

 

The above results indicate that some swimmers adjust their swimming technique 

between paces in relation to changing the maximum vertical and lateral aspect of the 

stroke pattern. Because no consistent trend of directional change between paces was 

observed, it appears that the above individuals change their technique between paces 

to optimise their own individual swim performance. 

 

The importance of the elbow angle during the underwater phase of the SC has been 

emphasised in the literature. Figures 5.14 and 5.15 present the average elbow angle 

profiles with respect to the first arm entering the water, for both groups at sprint and 

distance pace respectively. Each profile is divided into stroke phases to identify the 

activity of this variable within each phase. Following hand entry at both paces, all 

swimmers extended the elbow. After the entry phase, the elbow angle decreased 

during the pull phase until the hand was vertically aligned with the shoulder 

(representing the end of the pull phase). Thereafter the elbow angle extended during 

the push phase until hand exit. The recovery phase contained both a sharp decrease 

and increase in elbow angle representing the time the elbow travels from behind the 

shoulder axis to the arm beginning its forward extension for re-entry.  

 

Interestingly the average elbow angle did not approach 90° at any time during the 

underwater phases of the SC. This is not in agreement with the recommendations that 

swimmers should stroke with a 90° angle throughout the underwater phases of the SC 

(Colwin, 1969; Colwin, 1977; Maglischo et al., 1989; Costill et al., 1992; Maglischo, 

2003). Moreover, many researchers have advocated that the elbow angle should not 

change, or change minimally throughout the pull and push phases. It is evident from 

Figures 5.14 and 5.15 that the elbow angle changes continuously during the 

underwater phase.  
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Figure 5.14: Average elbow angle data for SG and DG, swimming at sprint pace. The stroke 

phases are identified throughout the stroke cycle and colour coded to match the swim group.  
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Figure 5.15: Average elbow angle data for SG and DG, swimming at distance pace. The stroke 

phases are identified throughout the stroke cycle and colour coded to match the swim group.  

 

The minimum elbow angle for both right and left sides was not significantly different 

between paces. The magnitude of the minimum elbow angle (approx. 95°) in this 

study are similar to the 90-100° angle recommended in the literature (Colwin, 1969; 

Counsilman, 1973; Maglischo et al., 1989; Costill et al., 1992; Maglischo, 2003), but 

do not support the view that at greater velocities, swimmers increase the elbow angle 
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to permit greater application of forces (Voronstov and Rumyantsev, 2000). That is, all 

swimmers, independent of group or pace, utilise a similar minimum elbow angle.  

 

Nevertheless, some individuals did change the minimum elbow angle across paces 

(Figure 5.16). Sprint participants 3 and 6, and distance participants 1 and 7 all reduced 

the minimum elbow angle at distance than sprint pace, whilst distance participants 3 

and 8 both increased this variable when distance swimming. Although the majority of 

swimmers who changed the magnitude of this variable between paces showed a 

tendency to increase the minimum elbow angle when sprinting, this trend was not 

conclusive. Because there was no decrement in swim performance by these 

individuals, it appears that these swimmers change the magnitude of the minimum 

elbow angle in an individualised manner so to optimise their own performance.  
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Figure 5.16: Individuals who change the magnitude of minimum elbow angle between sprint and 

distance paces.  

 

Nonetheless, based on the literature, it may be speculated that the advantage for some 

swimmers to utilise a larger elbow angle when sprinting may be associated with a 

greater application of propulsive force (due to the increased cross-sectional area of the 

arm in this position). A larger elbow angle has also been associated with a greater 

motor recruitment about the shoulder muscles which may induce local muscular 

fatigue during longer races. It is possible that swimmers reduce the elbow angle at 



  Discussion 

  177 

distance pace to apply a smaller propulsive force requiring less motor recruitment. 

Distance participants 3 and 8 did not display the above trend. Alternatively they 

employed larger elbow angles when swimming at a distance pace, perhaps as a way to 

maximise their performance.  

 

Moreover, it was also observed that all the above participants who indicated a change 

of minimum elbow angle across paces, also appeared to change the magnitude of 

finger lateral displacement range between paces (Figure 5.17). To be precise, those 

who had a larger minimum elbow angle whilst swimming showed a decreased finger 

lateral displacement range at that particular pace, and vice versa. Perhaps a greater 

elbow angle inhibited the lateral range of motion of the upper limb and vice versa. To 

establish a more definitive relationship between these two variables requires further 

analysis, however it is obvious that these variables are logically connected. It appears 

that some individuals change the magnitude of minimum elbow angle and the lateral 

displacement range of the upper limb between paces without adversely affecting their 

swim performance. These swimmers appear to change their technique as a way to 

optimise their own performance at that particular pace. The fact that there was no 

consistent change of the swimmers’ technique across paces, further supports the 

individual aspect of these adjustments between paces.  
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Figure 5.17: Swimmers who had a greater minimum elbow angle across paces also had a 

different range of lateral displacement of the finger between paces.  
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Although the ‘catch’ event is regarded as fundamental to swim propulsion, no 

quantitative data are reported in the literature with regard to its magnitude (Costill et 

al 1992; Maglischo, 2003) or whether it varies in relation to swim group or swim 

pace. The results from this study indicated that the angle of the elbow at catch does 

not change between paces regardless of swim group and is in the range of 150.99°-

155.15°. 

 

Researchers have advised that a large hand exit elbow angle causes the swimmer to 

displace water upwards and thus consequently drive themselves down in the water as 

a reaction (Costill et al., 1992). Similarly a reduced elbow angle at this position may 

reduce the magnitude and duration of the force. It is therefore essential that this angle 

is optimised, yet no recommendations are provided in the literature with regard to the 

magnitude of this variable, or whether it varies according to the swim pace. This study 

revealed that both groups do not change the magnitude of elbow angle at hand exit 

across paces. However, some individuals adjusted the magnitude of this variable 

across paces, with the majority of participants decreasing this angle at distance pace 

compared to sprint swimming (Figures 5.18 and 5.19). It is suggested that those 

swimmers who reduced the elbow angle as the hand exits the water enable an efficient 

exit of the hand at the end of the underwater SC.  
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Figure 5.18: Elbow angle at hand exit between sprint and distance- SG 
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Figure 5.19: Elbow angle at hand exit between sprint and distance- DG 

 
Another main finding across trials was the asymmetry of the shoulder and hip roll. 

That is, for both variables, participants typically roll more to one side than the other. 

Similar to the findings by Psycharakis (2006) it was revealed that all swimmers rolled 

the shoulders more to the left side than to the right. Both groups rolled the hips 

significantly more to the right side. This further indicates the ability of the hips to 

rotate independently of the shoulders. It may be speculated that the asymmetry is 

related to maintaining the body in alignment. Asymmetry of the shoulders has been 

identified with respect to breathing, with a greater shoulder roll to the breathing side 

(Payton et al., 1999; Castro et al., 2002). However, all trials in this study were 

performed under non-breathing conditions. Symmetry of arm coordination in freestyle 

swimming has also been associated with motor laterality (arm dominance) and the 

preferred side of breathing (Seifert et al., 2005). Seifert et al. established that 

swimmers who breathe unilaterally are predisposed to an asymmetric stroke action. 

Even though the swimmers did not breathe during the trials it is possible that, through 

training, they have developed an asymmetric stroke pattern which incorporates the 

rolling action of the shoulders and hips. Moreover, arm dominance has been 

associated with greater hand velocities and propulsive forces (Rushall et al., 1994; 

Keskinen and Keskinen, 1997; Maglischo, 2003). This may have resulted in an 

asymmetric pulling pattern thereby affecting the magnitude of shoulder roll. Further, 

Seifert et al. (2005) found that most freestyle swimmers illustrate asymmetric arm 
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coordination with propulsive discontinuity on the side of the non-dominant arm and 

propulsive superposition on the side of the dominant arm.  

 

It has been proposed (Maglischo et al., 1988; Maglischo, 2003) that front crawl 

swimmers fall into one of the following categories: a one-peak or two-peak velocity 

COM profile (per arm stroke). It was unknown whether a group would favour one 

style than the other, or whether the swim velocity may determine the velocity profile. 

The majority of swimmers had a two-peak COM velocity profile, independent of 

swim velocity. Sub-dividing the COM velocity profile into the various stroke phases, 

it is evident that the majority of swimmers display two peaks corresponding to the 1) 

push phase and 2) hand exit (Figure 5.20). As suggested by Maglischo (2003), no 

peak occurred during the pull phase. It should also be highlighted that these 

illustrations do not take into consideration the effect of the leg kick during the SC, 

consequently these interpretations should be considered cautiously.  
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Figure 5.20: Two peak velocity profile of sprint swimmer 3 when sprinting and distance 

swimming. The two velocity-normalised time profiles are the mean of the three trials for each 

event distance. Blue and pink lines represent the stroke phases of the first arm entering the water 

at sprint and distance pace respectively- time = 0%- hand entry, time= 100%- hand re-entry. 

Green and purple lines indicate the stroke phases of the second arm entering the water at sprint 

and distance pace respectively. 
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In this study, no participant displayed a one peak COM velocity profile when 

sprinting. Figures 5.21 and 5.22 illustrate two participants who utilised a one peak 

velocity profile when distance swimming. Both swimmers had a prolonged peak that 

occurs as a combination of the pull and push phases and hand exit, which is in general 

agreement with Maglischo (2003). One period of deceleration, or domination of 

resistive forces, is obvious throughout the SC which corresponds with the pull phase.  
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Figure 5.21: One peak velocity profile during the distance pace. A two peak velocity profile is 

evident at sprint pace. The two velocity-normalised time profiles are the mean of the three trials 

for each event distance. Blue and pink lines represent the stroke phases of the first arm entering 

the water at sprint and distance pace respectively- time = 0%- hand entry, time= 100%- hand re-

entry. Green and purple lines indicate the stroke phases of the second arm entering the water at 

sprint and distance pace respectively. 
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Figure 5.22: One peak velocity profile during the distance pace. A two peak velocity profile is 

evident at sprint pace. The two velocity-normalised time profiles are the mean of the three trials 

for each event distance. Blue and pink lines represent the stroke phases of the first arm entering 

the water at sprint and distance pace respectively- time = 0%- hand entry, time= 100%- hand re-

entry. Green and purple lines indicate the stroke phases of the second arm entering the water at 

sprint and distance pace respectively. 

 

Maglischo (2003) proposed that swimmers with a one peak velocity pattern tend to 

utilise a less diagonal (lateral) stroke pattern and a minimal kicking rhythm than those 

who have a two peak velocity pattern. Sprint participants 3 and 6, and distance 

participants 1 and 4, all displayed a one peak velocity profile at distance pace. These 

participants were examined with regard to lateral displacement of the finger during 

the underwater stroke phase. It was observed in the results chapter that sprint 

participants 3 and 6, and distance participants 1 and 4, all increased the lateral 

displacement range at distance compared to sprint pace. All other participants, who 

displayed a two peak velocity pattern at distance pace, did not show such distinct 

changes with respect to finger lateral displacement range. Consequently it is 

suggested that one-peak velocity swimmers may be characterised by a greater lateral 

displacement of the finger, with no change in magnitude of shoulder or hip roll 

between paces. This finding is contrary to Maglischo (2003). Perhaps the greater 

lateral displacement of the finger when distance swimming inhibits the directional 
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change of upper limb throughout the SC resulting in a reduced capability of 

generating two-peaks per armstroke when distance swimming.  

 

The two peak velocity pattern was recommended by Maglischo (2003) due to the 

greater potential to be effective in terms of achieving a higher velocity per SC. Post 

analysis, the total sum of each swimmer’s average VCOMhor profile, over one SC 

(based on the mean of three trials), was analysed to investigate a possible connection 

with this variable and the peak velocity style pattern.  The sum velocity was used as 

an indication of total COM velocity profile, including both the propulsive and 

resistive activities throughout the SC. Figure 5.23 reveals that whether a swimmer is 

typified by a one or two peak velocity pattern does not appear to have any associated 

advantage with respect to obtaining a greater velocity per SC.   
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Figure 5.23: Sum velocity throughout the SC for one (4 participants) and two peak velocity 

profilers (10 participants). 

 

It is therefore concluded that the majority of swimmers utilise a two peak velocity 

pattern when swimming at both paces. Some participants displayed a one peak 

velocity pattern, but this occurred only at distance pace. No apparent benefits were 

associated with the use of a one or two peak velocity pattern. A possible relationship 

may exist between the one peak velocity pattern and lateral displacement of the finger 

during the SC; based on the fact that all these participants increased the lateral 
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motions of the finger when distance swimming, but more research is required. 

Moreover the style of velocity profile, i.e. whether one or two peak, does not appear 

to be typically associated with either the race distance specialisation of the swimmer, 

or the swim velocity.  

 

5.3.1. Summary of the Commonalties and Individual Changes 

between Paces 

This study revealed that the overall group did not always adapt the magnitude of a 

variable between paces. Alternatively some individuals within each group did respond 

to the change in pace by uniquely adjusting the characteristics of that particular 

variable in order to maximise their swim performance. In most cases, the changes 

amongst the individuals did not have a consistent trend which further supports the 

notion of individual modifications of swimming technique between paces in order to 

optimise each swimmers own performance. The variables that displayed individual 

changes in this study were the maximum stroke depth and width, which were also 

speculated to relate to the change in magnitude of the elbow angle during the pull 

phase and the vortex shedding characteristics of the underwater SC respectively 

between swim paces. Participants also appeared to adjust the magnitude of the 

minimum and hand exit elbow angle, with the former linked to the lateral 

displacement of the finger. Finally, only four swimmers displayed a one peak velocity 

pattern which occurred at distance pace. Contrary to recommendations in the 

literature, one peak velocity profiles appear to be related to the magnitude of lateral 

upper limb displacement and no kinetic advantage was observed in relation to either a 

one or two peak velocity profile.      
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Chapter Six: Conclusion 
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The primary purpose of this study was to investigate whether front crawl SG and DG 

were different in terms of stroke kinematics and linear kinetics.  

 

The second purpose of this study was to investigate whether front crawl swimmers 

change their stroke kinematics and linear kinetics between sprint and distance pace. 

This study found that over a broad range of variables, all swimmers adjust their 

technique between paces in order to optimise performance.  

 

6.1. Groups 

Although swimmers specialise in either sprint or distance events, contrary to the 

literature, this study found that these swimmers are not significantly different in terms 

of stroke kinematics and linear kinetics. It has been publicised that sprint and distance 

swimmers differ in terms of the magnitude of stroke depth, stroke width, elbow angle 

and the foot range of motion. In this study, SG and DG did not differ with respect to 

the aforementioned variables. Thus, these findings challenge current views with 

regard to front crawl sprint and distance swimmers.   

 

Cappaert (1998) suggested that sprint and distance swimmers displayed different 

magnitudes of shoulder roll. In this study, SG and DG did not differ in terms of 

shoulder or hip roll magnitude. However, it was evident that these swimmers had a 

different sequencing pattern of the shoulder and hip segments- a characteristic which 

has not to date been previously investigated. When sprinting, both sprint and distance 

swimmers rotated the hips prior to shoulders. The SG showed this sequencing pattern 

distinctively throughout the SC, whereas was less pronounced with respect to the DG. 

When distance swimming, the DG sequenced the shoulders prior to the hips, whereas 

the SG rolled the shoulders and hips simultaneously. There was some evidence that 

the different sequencing order of the shoulders and hips between the groups was 

related to the magnitude of kicking ROM and a possible energy wave travelling along 

the body was speculated and requires further investigation. 

 

This study revealed that SG and DG are different with respect to the duration of the 

pull and push phases. The shorter duration of these phases by the SG was linked to a 

faster horizontal velocity and vertical acceleration of the hand by the latter group 
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within the pull and push phases. Moreover, the faster average swim velocity and 

maximum horizontal velocity of the COM by the DG at distance pace, was logically 

related to the greater hand resultant velocity of the DG relative to the SG.   

 

Maglischo et al. (1989) has shown that front crawl swimmers display either a one-

peak or a two-peak COM velocity profile. Maglischo (2003) speculated that the style 

of velocity pattern differs with respect to the stroke pattern, body roll and kicking 

rhythm. The COM velocity profile in relation to sprint and distance specialisation has 

not been examined. In this study, no difference between the groups was found. The 

majority of swimmers had a two-peak COM velocity profile, whereas two sprint and 

two distance swimmers had a one-peak velocity profile only at distance pace. 

Contrary to Maglischo’s (2003) assumptions, in this study one-peak COM velocity 

profile swimmers logically relate to a greater lateral displacement of the finger, 

however regression analysis is warranted to conclude this finding. In this study, it was 

also shown that neither style was superior in terms of performance.  

 

In conclusion, the findings of this study challenge current views regarding the 

differences in kinematics and linear kinetics between sprint and distance front crawl 

specialists swimming at sprint and distance pace. 

 

6.2. Paces 

Despite the distance specialisation, all swimmers changed a broad range of kinematic 

and kinetic variables between sprint and distance pace.  

 

The magnitude of average vertical and lateral range of the finger’s displacement 

changed between paces, with evidence of a link to the adjustment of shoulder and hip 

roll magnitude between paces. The end back elbow angle and the range of elbow 

angle within the push phase were the only elbow angle variables to change between 

paces (which occur during the end of the underwater stroke phase). It is unlikely that 

the elbow angle contributed to the altered trajectory of the finger in this study.  

  

The temporal aspects of the stroke trajectory were also noted to change between the 

paces, primarily due to the varied duration of the entry phase. Specifically, the 
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duration of the entry phase was approximately 10% longer when swimming at 

distance pace relative to sprinting. Maximum stroke depth and the execution of the 

catch position were both attained 10% later in the SC when distance swimming. 

Contrary to the current literature, the catch position did not differ between swim 

groups, but did change in between swim paces. This finding challenges the existing 

knowledge of the catch position and requires further examination.  

 

Finally foot ROM changed between sprint and distance paces. The literature has 

advocated that this occurs due to the energy requirements of the race distance (Adrian 

et al., 1966). The magnitude of hip and shoulder roll appeared to be strongly 

influenced by the contribution of the leg kick between paces.  

 

Although the group as a whole did not change some particular kinematic or linear 

kinetic variables between paces, it was evident that a number of individuals adjusted 

their technique between paces in order to optimise their individual performance. This 

underlines the individualistic nature of swim performance. 

 

 

6.3. Practical Implications 

This study revealed that SG and DG are not distinctively different over a broad range 

of stroke variables. One of the primary differences was that the SG had a shorter pull 

phase duration than the DG at both paces. Because a shorter stroke phase duration has 

been associated with a greater hand speed, coaches should encourage those who tend 

to specialise in sprint events to execute a fast pulling action of the hand during this 

phase, regardless of the event distance in training. In order to execute a relatively fast 

pulling action, sprint swimmers should include specific strength exercises which 

target those muscles utilised in the pull phase, such as the lattisimus dorsi, rotator cuff 

and biceps. Land based stretch cord sessions are useful for developing these isolated 

muscles by mimicking the stroke pattern, in particular, by repeatedly performing the 

pulling action at a high intensity. Moreover, as sprinters begin to fatigue, whether in 

pool or land sessions, maintaining a fast contraction during the pull phase should be 

emphasised. Additionally, when all swimmers partake in the same training set, then 

the coach should be attentive to observe the sprinters executing a more powerful or 
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rapid pulling action than the distance swimmers. However, it should be highlighted 

that distance swimmers should not be trained to perform the pulling action slower 

than the sprinters. Whereas, due to the powerful nature of sprint swimming, it is 

proposed that the execution of a fast pulling action is as a result of how they train for 

their specific event.   

 

The other main difference found between SG and DG was the sequential ordering of 

the shoulders and hips rotating during the body roll. This finding that swimmers 

adjust the order of rotation between these segments is innovative and requires further 

examination. Currently coaches give importance to the skill of body rolling in front 

crawl swimming through drills in the pool and on land. However, drills that 

encourage a two-part roll are largely non-existent. Certainly within the teaching 

education modules provided by the British Amateur Swimming Association, no 

reference is made with regard to a two-part body roll, or a possible temporal 

sequencing of the shoulders and hips. This study supports that the shoulders and hips 

roll independently, and their temporal sequencing are dependent upon pace and group. 

Therefore, although it appears that swimmers have naturally adopted these 

characteristics, guidance through coach education is required to further develop the 

skill of rolling in front crawl swimming and how this action changes according to 

swim speed. This means that drills which encourage a two-part sequencing of the 

shoulders and hips should be included within all swimmers’ training programs, 

regardless of the level or ability of the swimmer. Moreover, varying the sequencing 

order of the shoulders and hips through drill practice should also be implemented into 

training programs knowing that this relationship appears to change dependent on 

pace. Possibly including the participation of other sports, such as golf, boxing, etc, 

which encourage sequential rotations of the shoulders and hips could be effective in 

the development of this skill. In terms of specifically training sprint swimmers, 

coaches should emphasise that the hips rotate prior to the shoulders, whereas distance 

swimmers rotate the shoulders prior to the hips.   

 

Although this study only revealed the above differences between SG and DG, it was 

further highlighted that, regardless of the race specialisation of the swimmer, sprint 

and distance swimming displayed distinctive stroke characterises. Sprint swimming, 

relative to distance, was characterised by a greater Vav, SF, SI but smaller SL; a 
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greater extension and consequently range of the elbow angle throughout the push 

phase; a shorter entry phase duration and a longer pull, push and recovery phase 

duration; a greater vertical displacement of the foot. Therefore, when training 

swimmers for a sprint event or during a sprint set in training, coaches should focus on 

a high turnover rate of the arms and not a long stroke, in addition to reinforcing the 

other stroke characteristics. In order to encourage swimmers to execute a greater 

elbow extension during the push phase, coaches should promote aquatic drills which 

emphasise this characteristic in training. Such drills include doggy paddle with the 

swimmers head in the water, repeatedly performing only the push phase of the SC; 

single arm drills with the swimmers focus placed on a rapid extension at the end of 

each stroke. Land based activities would be centred towards the development of the 

triceps muscle group, such as using stretch cords, tricep dips, or tricep pull downs. 

Because sprint swimming displays a greater magnitude of vertical displacement of the 

feet, coaches should also emphasise a deeper kicking action whilst maintaining speed, 

instead of a standard kicking depth across all swim speeds.  

  

Distance swimming, relative to sprinting, was characterised by a longer SL, but 

reduced Vav, SF and SI; an increased rotation of the shoulders and hips; a longer 

duration of the entry phase and a shorter duration of the pull, push and recovery 

phases; a reduced magnitude of the kicking vertical displacement. Therefore the 

primary goal for coaches when training distance sets should be to encourage a longer 

stroke and less turnover of the arms than sprint swimming. Coaches should also 

include more drills to develop a greater magnitude of shoulder and hip rotation and 

emphasis placed on a reduced kicking depth than that seen when doing sprint sets.  

 

In conclusion, this study suggests that sprint and distance swimmers are not 

distinctively different in terms of stroke kinematics or kinetics when swimming at a 

sprint or distance pace. However, coaches should be aware that they do differ in terms 

of the duration of the pull phase and the sequential ordering of the shoulders and hips. 

Consequently, coaches should include specific drills to develop these characteristics 

and to place emphasis on those throughout the training session. Otherwise, coaches 

can be confident that sprint and distance swimmers are not as different in terms of 

technique as once suspected. However, this study also reveals that all swimmers 

display certain kinematic and kinetic characteristics associated distinctively with 
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sprint and distance swimming. Coaches should be aware of sprint and distance 

swimming techniques and that all swimmers appear to adjust these characteristics in 

order to optimise their performance. Moreover, coaches may wish to consider the 

duration of various speed sets which are not necessarily appropriate to a sprint or 

distance swimmer, due to the associated changes made, which could in the long term 

promote unwarranted adaptations of a permanent nature.  

 

6.4. Limitations and Recommendations 

This study recruited sprint (50m) and distance (400m) specialist swimmers and found 

that these groups did not differ in terms of stroke characteristics to the extent  

expressed in the literature. However it is speculated that differences in stroke 

characteristics would be more pronounced if the groups were further apart on the 

spectrum of race distance specialisation. Therefore, it is possible to speculate that had 

the distance group been specialised 800-1,500m swimmers, that more marked and 

obvious differences relative to the sprint group may have emerged from this study.  

 

This study aimed to examine how specialised sprint and distance swimmers change 

their stroke characteristics when swimming at a distance (400m) and sprint (25m) 

pace respectively. However to advance our understanding of how swimmers adjust 

their stroke dependent on swim velocity, all competitive paces should be examined. 

Front crawl events include 50m, 100m, 200m, 400m, 800m, 1,500m and most 

recently 10,000m. Therefore, to provide a true representation of swimming 

adjustments, all of the aforementioned paces should be tested. In doing so, this would 

provide useful information to coaches as to how swimmers change their technique 

when swimming at different paces, which is the standard practise in any training 

session. This information may influence the coaches’ decision to include various 

speeds sets, or question the duration of varied intensity sets.    

 

This study focused on the biomechanical adjustments of swim technique made 

depending on the swim pace. What has been overlooked is the question: ‘why do 

these changes occur?’ or ‘what is the mechanism responsible for these changes?’ Such 

knowledge is essential to enhance the understanding of the technical adjustments 

which are dependent on swim speed. It is suggested that the data and results obtained 
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from this study, may be examined from a motor control perspective in order to shed 

light on the aforementioned questions. In particular, the application of the dynamical 

systems theory which has frequently been used to analyse athletic performance across 

many sports, (due to its emphasis on processes of coordination and control in human 

movement systems) may prove useful (Bartlett et al., 1996; Glazier et al., 2002). 

 

The criteria for trimming each video file of the swimmers’ performances was to 

capture one complete SC. Due to the length constraints of the calibration frame, it was 

not always possible to capture a SC that commenced with the same hand entry. This 

had many consequences. Firstly, it has been reported in the literature that swimmers 

display a dominant and non-dominant arm when swimming which also means that 

one arm pulls stronger than the other. Because each SC did not begin with the same 

arm consistently, this may explain the large SD with regard to the timing variables in 

relation to the kinetic data. Secondly, it may have affected the duration of stroke 

phase calculations, since the ‘first’ and ‘second’ arm entry were considered. Thirdly, 

the occurrence of the shoulder and hip roll magnitudes had to be adjusted post 

analysis so that the left or right side was consistent throughout. To eliminate those 

problems, and to capture consistent data, it may have been better to collect 25m trials 

at a distance pace, and not the 400m straight, so that if a complete SC with the same 

hand entry did not occur, then it could be discarded and repeated without fatiguing the 

participant.  

 

In this study, asymmetry was evident in relation to shoulder and hip roll, elbow angle 

extension and the majority of kinetic variables. The intention of this study was not to 

examine the laterality of the participants, since skilled swimmers are assumed to 

display a symmetrical stroke pattern (Nikodelis et al., 2005), however it was evident 

that all swimmers displayed an asymmetric stroke pattern. Therefore further analysis, 

taking into consideration lateral symmetry, should be conducted to evaluate the 

changes in kinematics and linear kinetics between sides when front crawl swimming 

at different velocities.  

 

Front crawl is the fastest swim stroke, the most used in training programs and perhaps 

the most researched stroke. This study focused on the stroke changes made in front 

crawl swimming over two swim paces. However it is important that more studies of a 
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similar nature are conducted across the remaining three strokes (butterfly, backcrawl 

and breaststroke) in order to develop our knowledge and understanding of all 

swimming strokes and how they change across paces.   

 

Some individuals significantly adjusted their technique between paces, with respect to 

certain kinematic variables. Due to the small number of participants and a lack of 

consistency in the direction of change amongst individuals, further investigation is 

required that includes a larger sample and a greater number of trials to examine 

individual and group effects more closely. Moreover, because some variables 

approached significance, it is speculated that perhaps with a larger sample, and/or 

increased number of trials, significant differences may be found. Also, while there 

appeared to be some connections among variables that changed across groups and 

paces, regression and correlation analysis should be conducted with a larger sample 

than the current sample, to establish effects of change in one variable on the other 

variable. 
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Table AP.1: Swimmer’s performance measures. 

 
 
 
 
 
 
 
 
 
 
 
 

Subject Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Sprint/Distance 

Specialist 

50m P.B 

(secs) 

400m P.B. 

(mins) 

1 17 176.4 70.9 Distance 25.80 4.01.98 

2 18 180.5 72.6 Sprinter 24.46 4.12.96 

3 16 176.8 63.1 Distance 28.04 4.10.31 

4 16 179.6 76.2 Distance 24.90 4.04.52 

5 20 194.2 82.2 Sprinter 24.58 4.01.42 

6 15 184.8 71.3 Sprinter 24.60 4.15.98 

7 23 198.8 94.5 Distance 23.92 3.48.56 

8 18 181.9 75.6 Distance 24.50 3.55.12 

9 19 183.0 79.1 Sprinter 24.60 4.20.39 

10 22 176.3 66.0 Sprinter 24.49 4.06.47 

11 18 184.6 69.4 Distance 24.70 3.59.95 

12 17 191.1 83.8 Sprinter 24.24 N/T 

13 15 180.9 60.3 Distance N/T 4.03.84 

14 17 180.7 75.7 Sprinter 24.17 4.27.32 

15 17 175.7 68.1 Distance 25.99 4.08.41 
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Effects of 50m and 400m Race Paces on  

Three-Dimensional Kinematics and Linear Kinetics 

of Sprint and Distance Front Crawl Swimmers 
 

Purpose of the Study: 

 

Competitive swimmers tend to specialise in either sprint or distance events. Despite 
this acknowledgment, coaches often devise training programs that incorporate both 
varying distances and intensities. This accepted practice is considered justifiable in 
order to advance certain physiological aspects of the swimmer’s physical condition. 
Recent studies have revealed that swimmers naturally adjust aspects of the stroke 
cycle depending on the swim velocity. However, the possible effect this practice may 
have on the stroke kinematics has previously not been investigated.  
 
It has also been suggested that sprint and distance swimmers utilise distinct 
characteristics and stroke patterns in order to achieve optimal performance for their 
specific event. These parameters have not yet been thoroughly examined three 
dimensionally. 
 
It is therefore important to extend this area of research to identify an optimal stroke 
pattern and kinetic characteristics which are uniquely appropriate to sprint and 
distance swimming. Such knowledge is necessary to help coaches direct a sprint or 
distance swimmer to an ideal pattern which is most effective for their particular event. 
Of great interest is to investigate if either group adjusts their stroke pattern when 
swimming at the non-preferred swim velocity, as may be the case during training. At 
this velocity it is unknown if either group exhibit similar stroke patterns to that of 
their preferred velocity, or whether they adjust their stroke pattern to resemble that of 
a sprint of distance swimmer.  
 
Therefore, the purpose of this study is to identify the distinct kinematic and kinetic 
differences between sprint and distance swimmers. And to investigate if and how 
these specific stroke patterns vary in relation to the speed they are swimming. 
  

 

What is expected of you? 

 
Your participation will span over one single day and will not interfere with your 
training schedule. The participant will be required to swim four repeats of 25m and 
one 400m at maximal race pace. The order in which the swimmer performs these 
swims will be randomly assigned. A substantial period of recovery will be applied 
between all swims. Prior to the session, the swimmer will be instructed to perform a 
pre-competition warm-up.  
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Swimmer Day One 

 4 x 25m 400m 

Sprinter A 1 2 

Sprinter B 2 1 

Distance A 1 2 

Distance B 2 1 

Table 1: A sample outline of the participants’ requirements within the study. The numbers ‘1’ 

and ‘2’ determine the order of the individual swims, i.e. the number in the 25m and 400m column 

determines the order the swims are performed. 

 
During each swim the participant will videotaped, so that they may be subsequently 
analysed. In order to aid the motion analysis procedure, each participant will be 
marked with black theatrical paint (applied with a sponge) to the necessary joint and 
anatomical landmarks.  
 
You will be required to wear a swim cap during each swim (this will be provided). 
You should wear fitted trunks as opposed to training shorts so that the hip can be 
easily identified.  
 
During the calibrated area, the participant will be asked to hold their breath during 
alternative lengths, so that the act of breathing does not interfere with the stroke 
kinematics. 
 
The approximate time duration is less than 45mins.  
 

Possible Risks: 

 
The primary objective throughout these testing sessions is to expose you to the 
minimalist risk possible. ‘Minimal risk’ means that you should not be exposed to a 
greater risk factor than the one you experience during your existing training sessions. 
If you feel during any of the testing sessions, that your exposure to any risk is greater 
than a normal training session, which you are uncomfortable with, then you are free to 
withdraw at any stage.  
 
 

Benefits for you Participation? 

 

You will have the opportunity to receive important feedback with regards to your 
swims, i.e. you can observe from the analysed data the effect of swimming at different 
velocities has on your stroke pattern and overall performance.  
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On completion of the study, the results and findings will be forwarded to the 
participant and relevant coach. 
 

 

Notices 

 

This research study will be conducted in the St Leonard’s Swimming Pool. 
 
It should be stated that you are under no obligation to complete these testing sessions, 
and are at liberty to withdraw at anytime. 
All information obtained will remain strictly confidential and anonymous, except if 
any of the individuals participating in the study wish to observe their data. When 
publishing the study, no names will be referenced, or any information in association 
to the individuals. When the study is completed, all video footage will be erased and 
any other material collected that would reveal the identity of any of the persons 
involved. 
  
If you have any further questions with regard to this study or about the above 
information, please no not hesitate to contact the research project supervisor or myself 
(details provided below) 
 
Investigator:  Carla McCabe 

Telephone: 07841428688 

E-mail: s0349842@eductaion.ed.ac.uk 

 

Supervisor: Prof. Ross Sanders 

Telephone: 0131 6516520  

E-mail: r.sanders@ed.ac.uk 
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___________________________ (Please Print Your Name) 
 
 

Please tick the appropriate box:      YES NO 
 
 

1. I have read and understood the Volunteer Information Sheet,   �  �  

which outlines the details and requirements of this study. 
 

2. I fully understand the procedures of this study, my    �  �  

Participation within it and have no further questions. 
 

3. I understand that video recording is a fundamental element   �  �  

to the study and I grant my permission for their implementation.    
 

4. I also grant my permission for the video recordings to be    �  �  

shown to others for educational purposes, for example on the  
world-wide web. 
 

5. I understand that I am free to withdraw from the study at any time. �  �  

 

6. I give consent for my participation in the study.      �  �  
 
 
 
 
 
______           

Signature of the Participant    Date 
(or parent/guardian of child under 16yrs) 
 
 
            

Signature of the Investigator    Date 
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Name             
 
Date of Birth________________  Age ______________ 
 

Please tick the appropriate box:      YES NO 

Has the test procedure been fully explained to you?    �  �  
 

Any information contained herein will be treated as 
confidential 

          
1. Has your doctor ever said that you have a heart condition and 
that you should only do physical activity under the doctor’s   
instruction?         
 
2. Do you feel pain in your chest when you do physical activity?  
 
3. In the past month have you had chest pain when you were not  
doing physical activity? 
 
4. Do you lose your balance because of dizziness or do you  
ever lose consciousness? 
 
5. Do you have a joint or bone problem that could be made  
worse by a change in your physical activity? 
 
6. Is your doctor currently prescribing drugs for blood pressure  
or heart condition? 
 
7. Do you know of any other reason why you should not undergo  
physical activity?  

 

 
If you have answered NO to all questions then you can be reasonably sure that you 
can take part in the physical activity required of the test procedure. 
 
I _____________________   declare that the above information is 
correct at the time of completing this questionnaire. 
 
Date ___________  Signature of Supervisor:     

�  �  

�  �  

�  �  

�  �  

�  �  

�  �  

�  �  
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Marker Side View Marker Location Frontal View of Marker Location 

Vertex Highest point of the head above 
the ear 

Central highest point of the head 

C2 Mandible Angle Centre of chin 

C7 At level of C7 spine, in centre of 
neck segment 

Adam’s Apple 

AC Joint One marker at AC joint should 
be visible in both views 

One marker at AC joint should be 
visible in both views 

Humerus 
Head 

Greater tubercle of the humerus 
(head of humerus) 

Same as side view marker but on 
the midline of the arm 

Elbow Olecranon Process of Ulna Level of the Olecranon Process of 
the Ulna 

Wrist Wrist Level with the side marker 

Finger Longest tip of the 3rd Distal 
Phalanx 

Longest tip of the 3rd Distal Phalanx 

Xiphoid Level with front marker, on the 
midline of the trunk. 

Base of Sternum 

Pubic Not required Applied by participant 

Hip Greater Trochanter of Femur Level with the side view marker, on 
the midline of the thigh. 

Knee Level to the side of the Patella Centre of Patella 

Ankle Lateral Malleolus of the Fibula Level with the side marker, on the 
midline of the ankle. 

Metatarsal 
phalangeal 
joint P 5  

5th Metatarsophalangeal joint Same as side view 

Toe 1st Interphalangeal joint (Tip of 
big toe) 

1st Interphalangeal joint (Tip of big 
toe) 

Table AP.2: Location of anatomical landmarks for eZone calculations. 

 


