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ABSTRACT 

The research outlined in this thesis was primarily designed to study the 

quantitative and qualitative variability of plasma viral RNA during the course of HIV-

1 infection. The quantitative aspect involved the development of a highly sensitive 

and reliable RNA-based PCR method which has been used to detect and quantify HIV 

RNA load directly from patient materials (plasma, serum). High levels of plasma 

viraemia (geometric mean value: 104 - 108  virion per ml of plasma) were observed 

during the primary stage of HIV- 1 infection, considerably higher than those (geometric 

mean value: 103  - 10) observed in symptomatic patients. However, the high viral 

loads during this period are transient, and a marked drop in virus quantity was 

observed with the development of anti-HIV specific immune response. On average, 

HIV RNA was more abundant in the plasma of patients with more advance disease 

compared to asymptomatic patients. However, the observation of persistent high 

levels of HIV RNA in some asymptomatic patients suggests that viral replication 

continues throughout the course of HIV infection and that there is no 'latent' period 

to correspond with that observed with clinical progression. 

Extensive studies of sequential sequence variation in the HIV- 1 envelope gene 

constitute the qualitative element of this research and have revealed that there are 

complex evolutionary patterns. No sequence variation was observed in the V3 and V4 

regions in any of the samples collected prior to or immediately after seroconversion, 

although variation was present in the gag gene at this time. Such an observation led 

to the suggestion that there is a strong selection for the most rapidly replicating viral 
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variants before the immune response is mounted. However, along with the 

development of specific anti-HIV immune response, the pattern and process of HIV-1 

sequence variation changes. Rapid changes in the viral population were observed 

within weeks of seroconversion. Phylogenetic analysis of the V3 sequences from 

patient 82 identified several evolutionary lineages of virus variants after 3 years of 

infection, only two of which persisted and subsequently reached high frequency. 

Dramatic fluctuations in the population size of sequence variants were observed 

throughout the course of infection. Concurrently, selective constraints on the V3 

region, and in particular of the V3 loop, were also evident as indicated by extensive 

convergent evolution (identical amino acid changes occurring in independent lineages). 

Thus, it seems likely that there are two major elements that are governing the 

evolutionary process of V3 sequences. One is the requirement for variability in order 

to facilitate 'escape' once virus variants are recognized by the immune system. The 

other is the constraint required to produce functionally viable viruses for further 

infection. The implication of these findings for our understanding of the biology of 

HIV are discussed in the thesis. 
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ABBREVIATION 

ADCC 	antibody-dependent cell mediated cytotoxicity 

ag attogram 1018  gram  

AIDS acquired immunodeficiency syndrome 

ARV AIDS-related virus 

ATP adenosine-5'-triphosphate 
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degrees centigrade 
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(d)dATP 2', 3' -dideoxyadenosine-5' -triphosphate 

(d)dCTP 2', 3' -dideoxycytidine-5'-triphosphate 

(d)dGTP 2', 3' -dideoxyguanosine-5' -triphosphate 

ddC 2', 3'-dideoxycytidine 

ddl 2', 3'-dideoxyinosine 

(d)dYT'P 2', 3'-dideoxythymidine-5'-triphosphate 

DEPC diethylpyrocarbonate 

dGTP deoxyguanosine-5 ' -triphsphate 

DMSO dimethylsulphoxide 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 
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DNAML 	Maximum likelihood 

DTT dithiothreitol 

dTTP deoxythymidine-5' -triphsphate 

EDTA ethlenediaminetetraacetiC acid 

EIAV equine infectious anaemia virus 

ELISAs enzyme-linked immunosorbent assays 

FCS foetal calf serum 

fg femtogram 10'5  gram 

FIV feline immunodeficiency virus 

GCG Genetic Computer Group 

HEPES N-2-hydroxyethylpiperasin-N' -2-ethanesuiphonic acid 

HBV hepatitis B virus 

HCV hepatitis C virus 

HIV human immunodeficiency virus 

HLA human leucocyte antigen 

HTLV human T lymphotropic virus 

IDAV immunodeficiency associated virus 

Kienow large fragment of DNA polymerase 

LAV lymphadenopathy-associated virus 

mRNA messenger ribonucleic acid 

ng nanogram (10 	gram) 

OD optical density 

32P P emitting isotope of phosphorous 

PBMCs peripheral blood mononuclear cells 

PCP pneumocyStis carinii pneumonia 

PCR polymerase chain reaction 

PBS phosphate buffered saline 

% percentage 

pg picogram (10 12  gram) 

PND principal neutralization determinant 

RNA ribonucleic acid 
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RNase ribonuclease 

RT reverse transcriptase 

3 emitting isotope of sulphur 

SDS sodium dodecyl sulphate 

SIV simian immunodeficiency virus 

SSC standard citrate saline 

TCR T cell receptor 

TEMED NNN' N' -tetra-methyl- 1 ,2-diamino-ethane 

tk thymidine kinase 

Tm melting temperature of double stranded nucleic acid 

Tris tris(hydroxymethyl)-amino-methane 

UV ultraviolet 

jiCi microCurie 

0 microlitre 

PM micromolar 

VV visna virus 

W watt 

w/v 	weight per volume 
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1.1 General Background: HIV and AIDS 

The human immunodeficiency virus (HIV), the etiologic agent of the acquired 

immunodeficiency syndrome (AIDS), has the capability of selectively infecting and 

ultimately incapacitating the immune system. HIV induced profound 

immunosuppression results in a host defect that renders the body highly susceptible 

to opportunistic infection and malignant tumours associated with severe defects of 

cell-mediated immunity (Gottlieb et at., 1981; Masur et at., 1981; Nelson, 1990). 

The immune defect appears to be slowly progressive and irreversible. AIDS patients 

develop a range of infections such as pneumocystis carinii pneumonia (PCP), 

generalized cytomegalovirus (CMV) infection, progressive herpes and mucocutaneous 

candidiasis and tumours, particularly a tumour of the skin and viscera known as 

Kaposi's sarcoma and various types of lymphoma (Stahl et al., 1982; Friedman-Kien 

et at., 1982). HIV infection also causes at least 50% of AIDS patients to develop 

encephalopathy with loss of memory, impaired speech and dementia (Price et at., 

1986; Navia et al., 1986a, b). AIDS was first recognized in the United States of 

America in 1981 (Gottlieb et at., 1981) and subsequently the number of cases has 

increased rapidly. Up to the end of 1991, approximately 9-11 million people are 

thought to be infected worldwide and 1.5 million have so far developed AIDS (Chin 

et at., 1991). The rapid spread of the AIDS virus not merely in homosexual men, but 

in haemophiliacs, intravenous drug abusers, heterosexual partners and children of 

infected parents indicates that the viral infection is transmitted through sexual contact, 

blood, blood products and perinatally (Chin et at., 1991). 
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1.1.1 Natural History of 11W Infection Like other retroviral infections, HIV 

infections are chronic infections that probably persist for life (Clements et al., 1988). 

Infectious virus has been successfully isolated from a majority of both asymptomatic 

and symptomatic seropositive individuals after seroconversion (Popovic et al., 1984; 

Barre-Sinoussi et al., 1983; Gallo et al., 1984). After an initial acute illness, the 

patient may be asymptomatic for a prolonged period of time. Then, the infection 

may lead to gradual impairment of immune and neurological functions (Fauci, 1988). 

Several different staging classifications have been proposed to monitor the course of 

HIV infection. The Centers for Disease Control (CDC) and the Walter Reed (WR) 

classifications are those currently used most widely (Center for Disease Control, 

1986; Redfield et al., 1986). The patients studied in this work are all classified by 

CDC classification. The current CDC classification of HIV infections is depicted in 

Table 1.1 

1.1.2 The Virus and Its Discovery First described as a novel disease in 1981 

(Gottlieb et al., 1981), AIDS was recognized several years before the new causative 

agent was identified and isolated. Several earlier candidates as the causative agent 

such as CMV (cytomegalovirus), HBV (hepatitis B virus), HTLV-I (human T-cell 

lymphotropic virus) were excluded when Francoise Barre-Sinoussi published the first 

report of a new virus from a patient with lymphadenopathy typical of some pre-AIDS 

cases (Barre-Sinoussi et al., 1983). This new virus was classified in the subfamily 

Lentivirinae of the family Retroviridae (Barre-Sinoussi et al., 1983; Gallo et al., 

1984). The family of Retroviridae consists of three subfamilies, Oncovirinae, 
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Table 1.1 The current CDC classification system for human HIV infection 

Group I: Acute infection 
Mononucleosis like syndrome, with or without aseptic meningitis, 

associated with HIV antibody seroconversion. 

Group II: Asymptomatic infection 

Possible subclassification: 

No pathological laboratory findings; 

Pathological laboratory findings. 

Group HI: Persistent generalized lymphadenopathy 
Lymph node enlargement of 1 cm or greater at two or more extra-inguinal 

sites persisting for more than 3 months in the absence of a concurrent 

illness or condition other than HIV infection. 

Group IV: Other disease 
Subgroup A: constitutional disease (weight loss greater than 10%, fever 

longer than 1 month, diarrhoea longer than 1 month). 

Subgroup B: neurological disease (dementia, myelopathy, peripheral 

neuropathy). 

Subgroup C: secondary infectious disease (pneumocystis carinii pneumonia, 

chronic crytosporidiosis, toxoplasmosis etc.). 

Subgroup D: secondary cancers (Kaposi's sarcoma, non-Hodgkin's 

lymphoma, primary lymphoma of the brain). 

Subgroup E: other conditions 



Spuinavirinae, and Lentivirinae (Weiss et al., 1985). Lentiviruses cause chronic 

disease affecting the lungs, joints, nervous, haematopoietic and immune systems of 

humans and animals (Weiss et al., 1985). The lentivirus group are so called because 

the prototype virus of this subfamily, visna virus, can cause the 'slow' degeneration 

of the central nervous system in sheep (Haase, 1986a, b). The lentivirinae subfamily 

also contains other animal viruses such as EIAV (equine infectious anaemia virus), 

CAEV (caprine arthritis-encephalitis virus), SIV (simian immunodeficiency virus), 

FIV (feline immunodeficiency virus) and others (Clements et al., 1988). 

From the time this novel retrovirus was discovered, it has been variously 

named LAV (lymphadenopathy-associated virus), IDAV (immunodeficiency 

associated virus), HTLV-111 (human T-cell lymphotropic virus type III) and ARV 

(AIDS-related virus) by different laboratories. But HIV (human immunodeficiency 

virus) has been adopted as the accepted nomenclature by the International Committee 

on the Taxonomy of Viruses in 1986 (Coffin et al., 1986a, b). Not long after the 

first HIV was isolated, another novel isolate, which is genomically and antigenically 

related, but clearly distinct from the prototype HIV, was obtained from a western 

African AIDS patient (Clavel et al., 1986a, b; Guyader et al., 1987). It was therefore 

proposed to name the prototype isolates as HIV- 1 and novel isolates as HIV-2. HIV-

1 isolates comprise those viruses which are responsible for the current AIDS 

epidemic in Central Africa, Europe, the Americas and other regions of the world. 

However, the distribution of HIV-2, which has previously been identified as LAV-2 

or HTLV-IV, is largely in West Africa. 

The HIV virion is roughly lOOnm in diameter. It has a double layer of lipid 



which is derived from the outer membrane of the host cell. Studding the membrane 

are glycoproteins made up of two components: gp41 which spans the membrane and 

gpl20 which extends beyond it. The membrane also contains other proteins such as 

HLA (Human Leucocyte Antigens) which are believed to be derived from the 

membrane of the human cell. This membrane-protein envelope covers a nucleocapsid 

core which is eikosahedral sphere in shape and made up of proteins designated as p24 

(the capsid protein), p17(the myristoylated protein) and p9 and p7 (the nucleocapsid 

protein). The virus itself has two identical RNA molecules which are carried in the 

core along with several copies of reverse transcriptase (p66 and p51), protease (p22) 

and integrase (p32) (Gelderblom et al., 1987). The schematic structure of HIV is 

presented in Figure 1.1. 

1.1.3 Biological and Biochemical Characteristics of HIV After the association of 

HIV with AIDS was established, several biological characteristics of HIV were 

identified. Interestingly, HIV shares some biological and biochemical properties with 

Human T-lymphotropic viruses (HTLV-I and HTL V-IT) and this is probably why HIV 

was initially called HTLV-Ill (Gallo et al., 1984). The common features shared by 

HTLVs and HIV include a tropism for the helper T lymphocytes possessing the cell 

surface antigen CD4 (Dalgleish et al., 1984; Klatzmann et al., 1984); impairment of 

T-cell function (Barre-Sinoussi et al., 1983, Popovic et al., 1984; Gallo et al., 1984); 

induction of syncytia and formation of multinucleated giant cells in in vitro culture 

(Popovic et al., 1984) ; absence of nucleic acid sequences derived from human DNA; 

and transcriptional regulation (tat) of viral and possibly cellular genes (Wong-Staal 
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et al., 1985). However, unlike HTLVs, HIV shows cytopathic activity rather than 

immortalization and transformation of normal T lymphocytes (Chen et at., 1983; 

Popovic et al., 1984); extensive diversity in its genomic sequences probably relates 

to the highly replicative nature of the virus and the well-recognized infidelity of 

retroviral replication (Hahn etal., 1984 and 1986; Willey etal., 1986; Modrow et at., 

1987; Preston et al., 1988; Roberts e. at., 1988; Coffin, 1992). 

1.1.4 Genomic Organization of 11W-1 Schematic representation of the HIV-1 

genomic organization is given in Fig 1.2. The genome of HIV-1 is about 10,000 

nucleotides long in RNA form and comprises of at least nine genes (Ratner et al., 

1985; Wain-Hobson et at., 1985). These genes are the gag, pol and env structural 

genes common to all replication-competent viruses, as well as genes involved in the 

regulation of viral replication (tat, rev, and nef), and genes of uncertain function (vpu, 

vif and vpr) (see Figure 1.2). These various gene products are translated from 

different mRNAs produced by the use of distinct splice donors and splice acceptors. 

In general, the viral regulatory proteins (Tat, Rev and Nef) are encoded by multiple 

spliced mRNA species while the structural and enzymatic viral proteins are the 

translated products of unspliced (Gag, Pot) or singly-spliced (Env, Vif) mRNAs 

(Cullen, 1991). Flanking these nine genes in its proviral DNA form are stretches of 

DNA called long terminal repeats, or LTR' s which include DNA sequences that have 

important roles in controlling the expression of the viral genes (Sodroski et at., 1984 

and 1985a, b; Arya et at., 1985). 
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Figure 1.2 Schematic representation of HIV-1 genomic organization. Function of each gene are shown and '?' indicates the uncertain function 

of corresponding gene. 
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1.1.5 The Structural Genes of HIV-1 The HIV-1 gag gene yields a gag-pot 

transcript which is subsequently translated to yield the 53-kd Gag precursor 

polypeptide. This precursor is then cleaved by viral protease to produce the p24 

(phosphorylated), p17(myristylated), p9 and p7 Gag proteins (Veronese et al., 1988). 

Together these polypeptides form the nucleocapsid of the HIV virion. The p7 protein 

contains a putative "zinc finger" domain that may be involved in direct interaction 

with the viral RNA (Veronese et at., 1988). Like most myristylated proteins, p17 is 

associated with membrane structures and may serve to stabilize the exterior and 

interior components of the virion (Veronese et at., 1988; Green, 1990). 

The pot gene product of HIV-1 is translated from an unspliced gag-pot 

transcript by a mechanism that involves the frameshifting of the ribosome (Jacks et 

at., 1987; Varmus, 1988a, b). The resultant Pot precursor protein is sequentially 

cleaved to yield the reverse transcriptase, protease, and integrase proteins (Varmus, 

1988a, b). In addition to its polymerase activity, the HIV-1 reverse transcriptase 

contains an RNase H activity which is required for degradation of the RNA template 

during the synthesis of the double-strand DNA (Varmus, 1988a, b). 

The HIV- 1 env gene is transcribed as a single spliced viral mRNA species that 

when translated yields the 160-kd Env precursor protein. This precursor is 

subsequently cleaved and glycosylated in the endoplasmic reticulum and Golgi 

complex to yield the gpl20 and gp4l glycoproteins (Stein et at., 1990). While 

lacking a transmembrane domain of its own, gpl20 is stabilized at the cell surface 

by its non-covalent interaction with gp4l (Veronese et at., 1985; Helseth et at., 

1991). However, the release of gpl20, which apparently occurs readily from the 
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virus or infected cells, has also been reported (Moore et al., 1990). 

gpl2O mediates attachment to the cellular virus receptor (CD4 molecule). The 

region of the ligand and the receptor involved in binding have been identified (Lasky 

et al., 1987; Jameson et al., 1988). By analyzing the crystallised N-terminal half of 

CD4 molecule secreted from Chinese hamster ovary (CHO) cells, the primary binding 

site for gp120 has been mapped in the first domain (Dl) of the CD4 molecule with 

sequences resembling immunoglobulin variable (V) domains (Wang et al., 1989; Ryu 

et al., 1989). However, the precise three-dimensional structure of whole CD4 

molecule has not yet been delineated, largely because of the poor diffraction of the 

whole CD4 molecule (Wang et al., 1989). The location of other regions essential for 

virus infection and cytopathogenicity have been postulated, such as the region from 

amino acids 260-270 involved in the post-CD4 binding event (Bolognesi, 1990); the 

region from amino acids 303-337 involved in syncytium formation (Lifson et al., 

1986) and the region from amino acids 213-365 which contains the major determinant 

of T-cell and macrophage tropism (Cheng-Mayer et al., 1990a, b; O'Brien et al., 

1990; Westervelt et al., 1991 and 1992, Hwang et al., 1991; Cann et al., 1992). 

Comparison of independent HIV-1 isolates has shown that the region of the 

envelope gene encoding gp 120 is characterized by considerable sequence variation 

(Hahn etal., 1986; Simmonds et al., 1990a; Leigh Brown, 1991; Coffin, 1992). This 

variation is clustered into five major so-called hypervariable regions: Vi (amino acids 

135 to 154), V2 (163 to 203), V3 (305 to 395), V4 (396 to 414) and VS (459 to 

469) (Modrow et al., 1987). These five hypervariable regions are interspersed with 

highly conserved sequences and regions of intermediate variability: Cl (amino acids 
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38 to 134), C2 (204 to 304), C3 (415 to 458) and C4 (470 to 510) (Modrow et al., 

1987). The extensive sequence heterogeneity in gp120 complicates efforts to make 

an effective vaccine against the AIDS virus. Several studies have located the 

epitopes within gp120 immunogen that are responsible for generating neutralizing 

activity. One of these epitopes is within the third hypervariable domain, commonly 

referred to as the V3 loop which consists of a stretch of approximately 35 amino 

acids bound by two cysteine residues (Rusche et al., 1988; Palker et al., 1988; 

Javaherian et al., 1989). Other regions of gp120 might also be involved in eliciting 

neutralizing antibodies, such as the amino terminal half (Vl or V2) (Ho et al., 1992, 

McKeating et al., 1992, personal communication), and/or the carboxyl terminal half 

(V4 or V5) (Haigwood et al., 1990). Some recent experiments suggest that there are 

also conformational epitopes formed by different parts of gp120 (Profy et al., 1990; 

Steimer etal., 1991; Sattentau etal., 1991; Ho etal., 1991a, b). Interestingly, despite 

its high divergence, the 21 cysteine residues in the gp160 are completely conserved 

in all isolated reported (Tschachler et al., 1990). Even more striking is that the 

conservation of these cysteine residues are shared by both envelope proteins of SIV 

and HIV-2 (Tschachler et al., 1990), suggesting the indispensable role of these 

cysteine residues for viral envelope function. Schematic representation of the 

variable and constant regions of gp 120 and its related function is summarized in 

Figure 1.3 

The membrane spanning glycoprotein gp41 contains a fusogenic domain (the 

region which centrally involved in virus-cell and cell-cell fusion) which may located 

at its N-terminal end (Gallaher, 1987; Gonzalez- Scarano et al., 1987), but other sites 
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Figure 1.3. Schematic representation of variable and constant regions of gp120 and its related functions. Amino 

acid positions are numbered according to HIVpB7 Variable and constant regins are drawed based on the work of 

Modrow etal. (1987). Viral neutralizing and CTL epitopes are presented according to Bolognesi (1990) and 

Cheng-Mayer (1990). 
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on both gp120 and gp4l are likely to take part in the overall process of virus-cell 

fusion. The gp41 glycoprotein is therefore responsible for the cell fusion and 

syncytia formation and thus may contribute to the pronounced cytopathic effects of 

HIV-1. A number of studies also suggest that there are conserved regions in gp4l 

(amino acids 735-752) that can elicit neutralizing antibodies (Daigleish et at., 1988). 

In addition, there are also T-cell epitopes within both gpl20 and gp4l associated with 

immune activity of cytotoxic T lymphocytes (Cease et al., 1987; Takahashi et al., 

1988). 

1.1.6 The Regulatory Genes of HIV-1 HIV-1 encodes a powerful transactivation 

protein termed Tat that dramatically increases the expression of all genes linked to 

the retroviral LTR's (Sodroski et at., 1985a, b; Arya et at., 1985). The 14-kd Tat 

polypeptide is translated from a double spliced viral mRNA species and is comprised 

of 86 amino acids. The Tat protein is primarily localized in the nuclei of expressing 

cells (Hauber et at., 1987) and it functions in a sequence-specific manner. Cis-acting 

viral sequences required for Tat protein, designated the TAR (transactivation response 

element), are located between +1 and +60 in the viral RNA (Rosen et at., 1985). 

Common to the 5' terminus of all HIV-1 mRNAs, this TAR region appears capable 

of forming an RNA stem-loop structure both in vitro and in vivo (Feng et al., 1988). 

At present, it remains unknown whether the Tat protein directly binds to this RNA 

loop or alternatively modifies the RNA binding activity of host factors. 

Like tat, the rev gene is also essential for viral replication. The product of 

the rev gene is a 20-kd protein which is primarily localized in the nucleus of the 
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expressing cells (Green, 1990). The HIV Rev protein appears to play a crucial role 

in promoting the transmission from early regulatory gene expression to late structural 

gene expression, by activating the transport of the large pool of unspliced or partial 

spliced viral mRNA from the cell nucleus to the cytoplasm (Sodroski et al., 1986b; 

Feinberg et al., 1986). Rev also functions in a sequence-specific manner acting 

through a Rev response element (RRE) located in the env gene (Malim et al., 1989a, 

b). 

The nef (negative factor) gene of HIV was originally recognized as an open 

reading frame located near the 3' end of the retroviral genome. This open reading 

frame is conserved in most strains of HIV-1, HIV-2 and SIVs, thus may play an 

important functional role. Nef is a 27-kd myristylated protein (Guy et al., 1987) 

primarily localized in the cytoplasm of expressing cells associated with membranous 

structures due to its myristic acid anchor. The Nef protein may act as a 

transcriptional silencer to inhibit activation of H1V-1 LTR's via a negative regulatory 

element (NRE) (Niederman et al., 1989). However, more recent studies have failed 

to confirm this finding and the real function of this conserved retroviral protein thus 

remains uncertain (Hammes et al., 1989). The most recent data, however, suggests 

that the Nef protein is required for maintaining high virus loads during the course of 

persistent infection in vivo and the Nef is required for full pathogenic potential 

(Kestler et al., 1991). 

Apart from HIV-1 self-regulating factors, some cellular factors have been 

found to influence the level of viral expression through interaction with the U3 

region of 5' LTR. NF-kappa B protein purified from Nalmalwa B cells (Kawakamin 
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et al., 1988), for example, is likely to interact with the kappa B enhancer which 

identified between nucleotides -104 and -81 of HIV-1 LTR (Rosen et al., 1985). 

Deletion and site-directed mutation of this viral kappa B-like enhancer markedly 

impaired effects on HIV-1 LTR activation induced by NF-kappa B protein (Greene, 

1990). Three consecutive Spi sites have also been found in LTR, locating between 

nucleotides -77 to -46 (Jones et al., 1986). Each of these site has been shown to bind 

to Sp 1 transcription factor and mutation of these factor binding sites leads to the 

substantial loss of HIV-1 LTR activity both in vitro and in vivo (Jones et al., 1986). 

1.1.7 Viral Genes of Uncertain Function The vif (viral infectivity factor) gene 

appears to play a role in virion morphogenesis but is not absolutely required for viral 

replication in vitro (Varmus, 1988; Green, 1990). Provirai clones containing 

mutations in the vif gene yield only low levels of infectious particles, although, cell 

to cell transmission of virus is still possible at reduced efficacy. 

The vpu gene also appears to be involved in virion morphogenesis promoting 

efficient assembly and release of the virus (Cullen, 1991; Green, 1990). 

The function of the vpr gene still remains unknown, although it has been 

suggested that it may play a role in accelerating virion assembly (Cullen, 1991; Green 

1990). 

1.1.8 The Life Cycle of HIV-1 Like that of all retroviruses, HIV-l's life cycle 

comprises a number of discrete steps, which include the binding of the virion to 

specific receptors on the surface of the target cell, penetration of the virus into the 
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cells, the synthesis of viral DNA, the integration of viral DNA into host cell DNA 

to form the provirus, the transcription of viral mRNA, and the assembly and release 

of mature virions (Varmus, 1988a, b). 

The CD4 human T lymphocytes, B lymphocytes and macrophages form the 

primary cellular target for the infectious HIV-1 virion (Schnittman et al., 1989; 

Daigleish et at., 1984; Klatzmann et al., 1984). CD4+ cells are more easily infected 

by the HIV- 1 virion in the solid tissues than they are in the blood circulation (Fauci, 

1992; Meltzer et al., 1990a, b). Recently, it has been reported that HIV-1 also 

appears able to infect CD4 cells such as neoplastic glial cells (Cheng-Mayor et at., 

1987; Watkin et at., 1990), gut epithelial cells and a broad array of other 

nonlymphoid cells (Levy et at., 1985; Cheng-Mayer et at., 1987). The tropism of 

HIV-1 for CD4-expressing cells is readily explained by the finding that the 

membrane-bound CD4 protein forms the cellular receptor for HIV-1 (Dalgleish et at., 

1984). The external envelope protein, gp120, is believed to interact with the CD4 

molecule (Lasky et al., 1987). However, the CD4 independent entry of HIV-1 

infection still remains a mystery. One possible explanation could be the presence of 

Fc receptors on some of the CD4 cells. Fc receptors (receptors for binding to the 

constant fragment [Fc] of an antibody which is responsible for binding the Clq 

component of complement) on the cell surface may therefore facilitate the 

combination with antibody-virus complex and consequently initiate the virus infection 

(Homsy et al., 1989; Jouault et al., 1989). In vitro experiment has indeed shown the 

initiation and enhancement of HIV-1 infection of fibroblast cells which are previously 

uninfectable before the expression of Fc receptors (McKeating et al., 1990). Recent 



experiments have shown that, like HIV- 1, HIV-2 can also infect certain CD4- human 

cell lines (Clapham et at., 1992; Zack et at., 1990a), suggesting that HIVs can enter 

CD4- cells probably via an alternative cell surface receptor to CD4. 

Subsequent to receptor binding at the cell surface, the HIV-1 virion is 

internalized by a process involving either cell fusion (Stein et at., 1987) or receptor-

mediated endocytosis (Maddon et at., 1986). In the infected cell, viral DNA 

synthesis occurs in the cytoplasm within the nucleoprotein (Bowerman et al., 1989). 

By using its own reverse transcriptase, a full-length linear double-stranded proviral 

DNA containing a single copy of all sequences present in viral RNA, plus duplication 

of the U3 and U5, is synthesised, which appears in the nucleus. At present, there is 

no information about the mechanisms responsible form nuclear transport or about the 

changes that occur in the nucleoprotein complex during or after migration to the 

nucleus. The final arrangement of linear DNA, U3-R-U5 --- viral genes --- U3-R-U5, 

is collinear with proviral DNA, which later on integrated into host genome by viral 

integrase, but includes two nucleotides at each terminus (TI at the 5' ends of each 

strand) that are removed during integration (Varmus, 1988a,b). Recent studies in a 

number of retroviral systems have provided convincing evidence that the linear 

unintegrated form of viral DNA present in the nucleus is the direct precursor to the 

integrated provirus ((Brown et at., 1989; Fujiwara et at., 1988). However, there are 

at least two forms of circular viral DNA have been found in the nucleus, the most 

abundant form contains a single copy of the LTR whereas smaller portion have two 

LTRs (Farnet et at., 1991). Recent experiment carried out by Farnet et al., suggested 

that circularization and integration are likely two independent and competing fates 
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form the newly formed linear viral DNA. In other words, the linear viral DNA will 

either be stabilised by integration into the host genome or forms circular molecules 

which no longer have the capacity to integrate. 

Viral RNA is reformed by transcriptional activation of the HIV-1 provirus 

mediated through its 5' long terminal repeats (LTR's). Initiation of this process 

appears to require an "activated" T-cell environment and the presence of various 

inducible host transcription factors (Zack et at., 1990 and 1992; Stevenson et al., 

1990; Bukrinsky et at., 1991). Virus-encoded trans-acting factors (tat, rev) and 

several cellular factors with cis-acting sequences are required to control the HIV-1 

gene expression. Initial products of HIV-1 gene expression are the short, multiple 

spliced RNA species encode tat, rev and, possibly nef (Cann et at., 1989). The 

longer and full-length transcripts, which act as both virion RNAs and the mRNAs for 

the gag-pol polyprotein and for the envelope protein, then appear and accumulate in 

the cytoplasm. These findings demonstrate that there is a shift of HIV-1 gene 

expression from multiple-spliced short RNA species which encode regulatory protein 

to single- or un-spliced long RNA molecule, which largely encode viral structure 

proteins. 

Following synthesis of viral proteins in the cytoplasm, several post-translation 

events occur. The envelope glycoprotein gp160 is cleaved and glycosylated in the 

endoplasmic reticulum and Golgi complex to yield the gp120 and gp4l glycoproteins 

(Stein et at., 1990). Other proteins are either phosphorylated such as p24 or 

myristylated such as p17 and nef before they involved in the virus assembly. The 

process of viral assembly, maturation into infectious particles and release from the 



cell via the process of budding is poorly understood. There seems a packing signal 

in the gag region which contribute to virus packaging. The sequence appears capable 

of forming a hairpin loop structure and may act as a primary sequence for binding 

of gag proteins (Cann et at., 1989). Finally, somehow assembled mature virions bud 

from the cellular membrane to promote dissemination of the virus to other CD4 and 

probably CD4- cells, and at the same time, may result in the death of the original 

infected cells (Popovic et at., 1984;). 

1.1.9 Latency and Persistence of HIV Existing in their latent stages is probably 

one of the major means by which lentiviruses persist in their hosts. According to our 

present knowledge, there are at least three potential forms of latent HIV-1. First, 

resting T cells appear deficient in various cellular factors required for the efficient 

conversion of retroviral RNA genome into a double-stranded DNA equivalent (Fritsch 

et at., 1977; Varmus et at., 1977). Thus, one form of latent virus may correspond 

to the accumulation of viral RNA and reverse transcriptase complex in the resting T 

cells. Alternatively, these RNA in the complex may be reverse transcribed, yielding 

complete or partial linear DNA duplex (Green et al., 1990; Zack et al., 1990b and 

1992; Stevenson et al., 1990). This viral DNA is normally incorporated into the host 

genome under the control of the viral integrase protein. However, this integration 

process appears to be dependent upon certain host factors lacking in resting T cells. 

Thus, this unintegrated DNA form of HIV represents a second form of latent virus, 

although it is not stable in long term. A third form of latent HIV-1 may exist at the 

level of the fully integrated provirus. In the normal course of the immune response, 
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some of the activated T cells eventually return to the G0  phase of the cell cycle as 

memory T cells. Because of the unlimited life span of memory T cells, HIV may 

persist within the genome of these memory T cells as an untranscribed provinis for 

a long period of time. Such viral latency may contribute to the prolonged 

asymptomatic period observed clinically. Taken together, latent forms of HIV-1 may 

theoretically exist at the RNA, unintegrated DNA, and integrated DNA forms. 

Infected monocytes and macrophages also contribute to the persistence of 

HIV. Generally speaking, monocytes and macrophages are relatively resistant to the 

cytolytic effect of HIV (McElrath et al., 1989; Nicholson et al., 1986; Harper et at., 

1986). In addition, the infected monocyte or macrophage in the central nervous 

system may be protected from certain immune effector cells (Koenig et at., 1986; 

Joly et at., 1991). These properties may allow monocytes and macrophages to serve 

as an important reservoir of HIV. Furthermore, a small percentage of infected and 

activated CD4 T lymphocytes can also survive HIV infection (Schnittman et at., 

1989) and further contribute to virus persistence. 

Finally, the high degree of sequence variation especially in its envelope gene 

may also help HIV-1 to persist in the face of immune recognition and clearance. It 

has been suggested that the nucleotide substitution in the V3 region could alter the 

virus antigenicity and therefore deter neutralisation by autologous sera (Albert et at., 

1990; Wolfs et al., 1991; Zwart et at., 1991; Goudsmit et al., 1991; Montefiori et al., 

1991). 
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1.1.10 Pathogenesis of HIV-1 Infection The impact of HIV infection on the 

immune system is manifested by marked changes in several aspects of immunological 

responses. However, the most profound immunosuppression in AIDS patients is 

mainly due to the depletion of CD4 T helper/inducer lymphocytes (Gallo et al., 

1984; Fauci, 1988; Lifson et al., 1989). In normal individuals, CD4+ cells constitute 

approximately 50-70% of circulating T cells in blood, and play a vital role in the 

recognition of antigens and B cell activation (Lifson et al., 1989). With HIV 

infection and replication, however, the CD4 T cells are killed by as yet unknown 

mechanisms. Recent experiments suggest that the HIV envelope glycoprotein may 

play an important part in killing CD4 T cells, probably through cell to cell fusion, 

although the precise mechanism for this cytopathic effect is unclear (Lifson et al., 

1986a, b; Sodroski et al., 1986a). Additional mechanisms of CD4 T cell depletion 

may be due to an autoimmune response. CD4 T cells, infected or not, may be 

coated with free gpl20 glycoprotein shed from the virus particle which are 

susceptible to be killed via antibody-dependent cell mediated cytotoxic (ADCC) 

mechanisms (Moore, et al., 1990; Lyerly et al., 1987a, b). This, or a similar 

mechanism, may also involve bone marrow precursor cells (Donahue et al., 1987). 

However, all these hypotheses lack direct in vivo experimental evidence, and 

therefore depletion of CD4 T cells in AIDS patients still remains a mystery. 

Recent experimental evidence from in vivo samples supports the autoimmune 

hypothesis. It was discovered that there is a selective depletion of T cells in AIDS 

patients that have specific T cell receptor V sequences, whereas Va  usage was 

normal (Imberti et al., 1991). Normally, most antigens are recognized through their 
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interaction with the variable portion of the T cell receptor (TCR) a and P chains. 

However, T cells recognize another category of ligands, the superantigens, on the 

basis of the expressed V region alone, independently from the other variable TCR 

segment (Fleischer et at., 1991a, b; Hugin et al., 1991). The pattern observed by 

Imberti et al., was compatible with superantigen action. Therefore, it has been 

proposed that HIV can encode a kind of "superantigen" which initially produces a 

massive stimulation of immune cell activities, but ultimately they lead to the cells' 

dysfunction and death. 

CD4 T cells are a central component of the immune response and intimately 

involved with monocytes and macrophages, cytotoxic T cells, natural killer cells and 

B cells. Therefore, even a selective depletion of the CD4 T cell population can 

result in a multitude of immunologic deficits, leading to the life-threatening 

opportunistic infections characteristic of AIDS. 

Apart from CD4 T cells, many other cells can also be infected and affected 

by HIV. The elimination of these non-T cells or an alteration in their function can 

also create immune abnormalities. Recent studies have shown that monocytes and 

macrophages can be infected by HIV, especially those in certain bodily tissues such 

as the central nervous system, lymph nodes, and lungs (Ho et at., 1985; Meltzer et 

at., 1990a; Gendelman et at., 1989). The frequency of HIV-infected monocytes and 

macrophages in these tissues may be many time higher than that in the blood, and 

this may suggest that HIV infection may account for the dysfunction of the 

mononuclear phagocyte system (Meltzer et at., 1990a). An additional consequence 

of frequent infection of macrophages in the central nervous system and in 
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cerebrospinal fluid (CSF) is to cause dementia complex in AIDS patients (Price et al., 

1986; Navia et al., 1986a, b). Therefore, taken together with the similarities between 

HIV and the other lentiviruses that can infect macrophages in the central nervous 

system and induce encephalitis, it strongly suggests that HIV is neurotropic and that 

the central nervous system, at the same time, may serve as a sanctuary site for the 

virus. 

HIV can also infect B lymphocytes. B-cell abnormalities, consisting of 

polyclonaJ activation with high immunoglobulin levels (Pahwa et at., 1985) and a 

poor antibody response to novel antigens (Mizuma et al., 1988), are common in 

AIDS patients, and may be the direct consequence of HIV infection. In addition, this 

heightened production of nonspecific immunoglobulin may also result in autoimmune 

processes (Lyerly et al., 1987a, b; Edelman and Zolla Pazner, 1989). 

1.1.11 Epidemiology and Transmission of HIV-1 A decade have passed since the 

first reported cases of AIDS were announced in the United States (Gottlieb et al., 

1981). The World Health Organization estimates that during the last 10-12 years, 

approximately 9-11 million people have been infected with HIV (5-6 million in men 

and 4-5 million in women) and of which 1.5 million have developed AIDS (Chin, 

1991). The world-wide distribution of reported AIDS cases is not even, with 

particular high prevalence in America 277,042, Africa 151,455 and Europe 66,783 

(World Health Organization global Statistics, 1992). However, the high infection 

rates of HIV in Asia (particularly in Thailand and India) and Latin America serve a 

warning sign for the potential rapid dissemination of virus in the rest part of the 
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world. In 1988, for instance, there was an explosive increase in HIV prevalence 

among injecting drug users (IDU) in Thailand and in 1989, the subsequent spread of 

HIV has been found in male and female prostitutes, sexually-active heterosexual men, 

and blood donor (Weniger et al., 1991). In contrast, the rate of HIV infection in 

North America and West Europe remains stable in the past few years, probably due 

to the changes in behaviour (safer injection, protected sex, etc) (Chin, 1991). 

In North America and Europe, the overall distribution pattern of HIV 

prevalence in various risk groups seems consistent, with highest frequency in 

homosexual/bisexual males which constitute nearly 65% of reported AIDS cases in 

the United States (Center for Disease Control Statistics, 1992). IDUs, on the other 

hand, have consistently constituted a second largest transmission category (19%) 

(Center for Disease Control Statistics, 1992). However, within countries or different 

geographic continents, the prevalence of HIV in different risk groups varies. The 

dramatic spread of HIV infection among IDUs in Bangkok in early 1988 and in 

South-east Asia represents the major proportion (31%) of HIV-positive individuals 

in that area (Weniger et al., 1991). HIV infection through heterosexual contact 

constitutes almost 60% of reported AIDS cases in Thailand by the end of year 1990 

(Weniger et al., 1991), and may also account for the vast majorities of AIDS cases 

found in Central Africa (Chin, 1991). 

In United Kingdom, the overall distribution pattern of HIV-1 prevalence in 

various risk groups is fairly consistent with that obtained from the United States, with 

60% in homosexual men, 13% in IDUs, and 7% in haemophiliacs (AIDS News 

Supplement, CDS Weekly Report, 1992). However, the situation observed in 
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Scotland may represent a special case of HIV transmission in this country. By the 

end of June 1992, approximately 1,813 individuals have been found to be HI7V-1 

positive in Scotland and 902 of them (49.8%) are IDUs (AIDS News Supplement, 

CDS Weekly Report, 1992). HIV infection in Edinburgh is the worst of all among 

Scottish cities. About 53% of all Scottish HIV infections are found in Edinburgh 

where in Glasgow even with double amount of human population, HIV-infected 

individuals consist only 25% of Scottish HIV-positive patients. Furthermore, 59% 

of all IDUs infections in Scotland are found in Edinburgh and this has always been 

the situation from the initial outbreak of HIV infection in IDUs in early 80's in 

Scotland (AIDS News Supplement, CDS Weekly Report, 1992). 

Whereas transmission of HIV infection in North America and Europe has been 

predominately among homosexual/bisexual men and IDUs, the predominant risk 

behaviour worldwide has been heterosexual activity (Chin, 1990 and 1991). In 1984, 

all of the reported AIDS cases were in homosexual men, but since then there has 

been a gradual increase in the percentage of reported heterosexual AIDS cases to the 

extent that by 1986/1987 most reported AIDS cases were in heterosexuals (Chin, 

1990). These data clearly indicate that the incidence of HIV infection among 

heterosexuals began to increase markedly during the early to mid- 1980s (Chin, 1990). 

There is no doubt that high incidence of HIV infection in heterosexuals will also raise 

the potential for transmission of HIV infection from mother to child, either in utero, 

perinatally or postnatally. The relative contribution of each of these routes of 

transmission remains unknown. Published estimates of vertical transmission rates 

vary between 7 to 39% of birth to HIV-infected mothers (Newell et al., 1990). The 
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estimated rates of vertical transmission from the Europe Collaborative Study (13%), 

based on information from 10 European centres, is markedly different from the rates 

reported from Africa (33% in Rwanda and 39% in Zaire and Zambia) (Newell et al., 

1990). The reason for these differences are not clear. There is little information on 

maternal factors that influence vertical transmission. Mother's clinical status during 

pregnancy and the duration of her infection may be important, but evidence remains 

circumstantial (Newell et al., 1990). 

1.1.12 Vaccine Development Vaccination has proved a highly successful strategy 

in the control of a range of disease caused by viruses, including smallpox, yellow 

fever and poliomyelitis, and is one of the obvious routes in attempting to control 

AIDS. However, the development of a safe and effective vaccine for infection with 

HIV is complicated by several unique scientific, logistic and ethical issues. The first 

issue is the failure to delineate the viral components or epitopes that induce protective 

immunity in the host. Despite the enormous amount of research on the 

immunopathogenesis of HIV infection and the characterization of the immune 

response to the virus, the definition of protective immunity against initial infection 

with HIV remains unknown. The lack of an adequate and convenient animal model 

for studying HIV infection and disease is another issue which seriously limits the 

development of an effective HIV vaccine. Although chimpanzees can be readily 

infected by HIV, however, no disease has occur in these animals. Thus, these species 

can only be used as a model for developing a vaccine that prevents initial infection 

by HIV. In addition, the logistic constraints of the chimpanzee model, including the 
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availability of animals and the cost of care, make this model less than ideal. Most 

recent development in animal model studies have come in the SIV system. The 

progress have been made in several areas including 1) the first evidence of vaccine 

cross-protection induced against a divergent isolate; 2) the demonstration that serum 

plasma from infected or vaccinated animal can confer protection when administered 

passively; 3) the first evidence that recombinant-based vaccines can be efficacious 

(Marc et al., 1991; Gardner et al., 1991). 

In the light of experience with existing virus vaccines and understanding of 

the process of viral infection, several possible approaches to the development of 

vaccines against HIV have been considered. These approaches include live attenuated 

vaccines, whole killed vaccines and subunit vaccines consisting of a single viral 

polypeptide which may be obtained either from the virus directly or by recombinant 

DNA technology. In recent years novel approaches to the development of vaccines 

have been suggested as a consequence of developments in recombination DNA 

technology, chemical synthesis and immunology. These new strategies include 

genetically engineered live virus vectors, chemically defined synthetic peptides and 

anti-idiotypes. However, the very nature of HIV infection raises objections to using 

live attenuated or inactivated virus vaccines, as it is difficult to ensure that they are 

non-infectious or completely inactivated. The most promising types of vaccine will 

therefore be those involved in expression of viral antigens in acceptable vectors either 

as virus vector, or recombinant DNA product, and in synthetic peptides. Again, with 

this strategy, the problem of identifying the antigen which can induce adequate 

protective immunity remains. 
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With the advent of modern genetic engineering technology, genetic 

manipulated viruses and bacteria have improved the repertoire of antigen delivery 

systems available for vaccine development. Live recombinant viral vector have a 

number of attractive features, including the potential to resemble a live-virus-like 

infection and the ability to stimulate both humoral and cell-mediated immunity. Live 

recombinant vaccinia virus vectors were the first recombinant vectors to be 

developed, and a large number of different viral, bacterial and parasitic antigens have 

been expressed in this system. Recombinants expressing a variety of different HIV 

and SIV genes have been constructed and tested from immunogenicity in animal, and 

in some cases, man (Earl et al., 1991; Shen et al., 1991; Cooney et al., 1991). Live 

recombinant adenovirus and poliovirus vaccine are all being under extensive studies 

(Prevec et al., 1991; Cheng et al., 1991; Minor et al., 1990). 

The V3 loop of the envelop protein gp120 is the principal neutralizing 

determinant (PND) of HIV, and an immunodominant cytotoxic T cell epitope has also 

been identified in this region (Takahashi et al., 1988). However, it was recently 

shown that immunization with the PND was thought to induce only subtype specific 

immunity. However, it was recently shown that immunization with a 13-amino-acid 

residue peptide from this region induced antibodies that were cross-neutralizing from 

several HIV isolates (Javaherian et al., 1990). Furthermore, a smaller hexapeptide 

(GPGRAF) from this region, when used to immunize rabbits, also led to antibodies 

capable of neutralizing divergent isolates. Analysis of the PND sequences of gp120 

from 245 isolates of HIV- 1 suggests that peptide cocktails of limited size may be 

feasible vaccine candidates. Of interest are recent attempts to construct a hybrid 

30 



synthetic peptide immunogen containing only those HIV epitopes necessary to induce 

a protective immune response, including antiviral CTL (Hart et at., 1991). The 

complete hybrid consists of (from NH2  to COOH terminus) the first 12-amino-acid 

residues of the gp4l fusion domain, a T cell epitope of gpl2O, a gpl2O B cell epitope 

from the V3 loop region, and extending from this region, an additional five or six 

residue segment that comprises a CTh epitope. The resultant carrier-free hybrid 

peptide indeed had the ability to induce CD8+ MHC class I-restricted CTLs in vivo 

in mice. This finding demonstrate the potential of synthetic peptide-based vaccines 

to induce broad immune response toward HIV. However, because HIV can be 

transmitted as either a cell-free or cell-associated virus, a protective immune response 

against HIV will likely require both humoral and cell-mediated immunity. 

Finally, in addition to the difficulties faced in developing an safe and effective 

anti-HIV vaccine, evaluating a candidate vaccine poses another part of difficulties. 

The first problems is the lack of indicators of protective immunity that can be 

followed. There presently are no strict correlations between the development or loss 

of certain types of immunity and the onset or progression of disease. The second 

obstacle is the prolonged period between a person's initial infection with HIV and the 

development of disease symptoms. This factor is particularly important in evaluating 

vaccines that use the killed whole virus or live attenuated virus as an immunogen, 

because the antibody profile (as measured by Western blot) that develop after 

immunization with such a vaccine cannot distinguish readily between a vaccine-

induced seroconversion and a naturally acquired infection. The nature of the spread 

of HIV infection is a third obstacle to the evaluation of candidate vaccines. With an 
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infectious disease such as influenza, cohorts of volunteers can be immunized with a 

candidate vaccine in the autumn and, assuming an influenza outbreak in the winter, 

the efficacy of the vaccine can be established by spring. This situation is very 

different from the case of HIV infection in which transmission depends on behavioral 

factors and occurs over a long and variable period. Therefore, the time it would take 

to develop vaccine and then to prove its efficacy would be prolonged. 

1.2 Evolution of HIV 

Understanding the nature of sequence variation in the genome of human 

immunodeficiency virus is a crucial issue, because it is not merely relevant to 

unveiling the nature of viral pathogenesis and the human immune response but, more 

importantly, can provide information for the development of effective vaccines 

against HIV. Before the AIDS epidemic, our knowledge about retroviral variation 

was largely based on the studies of murine and avian oncoviruses. Recent 

comparisons of oncoviruses and the newly discovered retroviruses (HIVs, SIVs, and 

FIV) suggests that the immunodeficiency viruses and, more generally, the 

lentiviruses, may constitute a special case of viral and molecular evolution. High 

mutation rate with its consequent extensive diversity in their genomic sequences is 

probably the most significant feature of the lentivirus subfamily and that may relate 

to their highly replicative nature and well-recognized infidelity of reverse 

transcriptase (Preston et al., 1988; Roberts et al., 1988; Coffin, 1992). With the 

advent of DNA sequencing, and especially with the direct sequencing of PCR 

products without any in vitro manipulation (such as in vitro cloning), a large amount 
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of nucleotide sequence data has been obtained and errors generated by Taq 

polymerase during the amplification process can be readily avoided (Simmonds et al., 

1990a). By means of phylogenetic analysis, a lot of information has been extracted 

from these sequence data; information important in the understanding of the 

evolutionary processes of lentiviruses (Sharp et al., 1988; Li et al., 1988; Yokoyama 

et al., 1988; Balfe et al., 1990; Leigh Brown et al., 1988; Holmes et al., 1992). 

In phylogenetic studies, the evolutionary relationships among viral strains, or 

among other groups of organisms are illustrated by means of a phylogenetic tree. 

Currently, there are a range of phylogenetic approaches available which can be used 

to construct evolutionary trees based on molecular sequence data. All these different 

phylogenetic approaches can be divided into two main categories: one is based on a 

statistical approach (UPGMA, Fitch-Margoliash, Neighbour-joining, Maximum 

Likelihood, etc.), and the other on the principle of parsimony (parsimony, 

invariants/evolutionary parsimony). 	Statistical approach category can further 

subdivided into Distance based methods (UPGMA, Fitch-Margoliash, Neighbour-

joining, etc) and Maximum Likelihood method (Maximum Likelihood). Although 

different approach is based on different molecular evolutionary model (assumption 

about how the sequence have changed during evolution), they all try to solve the 

same problem: Having sequenced the 'same' DNA region (or 'same' protein) in 

several 'species', how do we then work out the phylogenetic relationships among the 

'species'? 

Assumptions related to different molecular evolutionary model are listed 

below (Wright et al., 1993). From these assumptions, it is easy to see why 
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Maximum Likelihood model is currently the most favourite one and has been strongly 

recommended and widely used. 

1) No variation in nucleotide frequencies during evolution: all methods assume 

this. 

No between-lineages variation in rate of evolution: this assumption is used 

by the UPGMA method but most methods do not require this, e.g. Neighbour-joining, 

Fitch-Margoliash, Maximum Likelihood, parsimony and invariants/evolutionary-

parsimony. 

No between-site variation in rate of evolution: this assumption is make by 

most methods. Recent advances in Maximum Likelihood methodology allow for 

some rate variation along the sequence. In addition, one can construct a DNA 

distance measure that allows for different classes of site, with different rates for each. 

Sites are independent: this assumption is made by most methods. Recent 

advances in Maximum Likelihood methodology allow for 'patches' of correlated 

sites. No other methods at the moment (i.e. Feb. 1993) allow this. 

As the likelihood principle is the predominant method of statistical inference 

used in this thesis, it is worthwhile spending a little time outlining the principle itself 

and how it has been used in the estimation of phylogeny. It should be emphasised 

at the outset that the statistical method of likelihood is not the critical element in the 

estimation of phylogeny; it is the particular model of molecular evolution that is the 

biological consideration and it is the model that my be reformed if we so desire. 

Likelihood estimation can proceed only on the basis of a given model. Likelihood 

requires three elements; a model (M), in this case the Felsenstein model of molecular 
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evolution, the data (D), the molecular sequences under comparison, and the 

competing hypotheses (H) which are simply the alternative tree patterns with 

associated time of divergence. There is always assumed to be a competing 

hypothesis in likelihood theory. Simply stated, likelihood theory states that 

hypotheses be judged on the basis of their likelihood. If P(D/H) is the probability 

of obtaining the data D given the hypothesis H, then the likelihood of an hypothesis 

H, given the experimentally determined data D, on the given model, is : LD(H) = 

P(DIH). To put it another way, likelihood assesses the probability of the data given 

the model under the various hypotheses - it does not assess the likelihood of the 

model. In addition, the relative merits of two competing hypotheses are contained 

in the likelihood ratio; LD(Hl)ILD(H2). 

1.2.1 Evolutionary origin of HIVs and SIVs Lentiviruses have now been isolated 

and sequenced from a number of different species; sheep (Visna virus), goat (CAEV), 

horse (EIAV), cattle (BIV), cat (Fly), monkeys (SIVs) and humans (HIVs). Simian 

immunodeficiency viruses (SIVs) are non-human primate lentiviruses which to date 

have been isolated from macaques (SIV),  sooty mangabeys (SIVSM), African green 

monkeys (SIVAGM), mandrills (SIV) and a captive chimpanzee (SIV) 

(Desrosiers, 1988 and 1990; Coffin, 1992; Feng et al., 1992; Hirsch et at., 1989a, b 

and 1990; Chakrabarti et al., 1987). These five SIVs fall into four discrete groups 

based on genetic sequence analysis, with SIVMJC  and SIVSM  forming a single genetic 

group (Figure 1.4). SIVs are the closest known relatives of the HIVs, and each of 

HIV-1 and HIV-2 can be specifically associated with one of these different groups 
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Figure 1.4 Genetic grouping pattern of primate lentiviruses. Percentages on the lines are amino acid similarities in the pol gene, 

whereas those in squares are the degree of similarities within different isolates of each virus. (Desrosiers R.C. Nature (1990) Vol. 

345, p288-289). 
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of SIVs; SIVSM  in the case of HIV-2, and SlVcpz  for HIV-1 (Desrosiers, 1990; Huet 

et al., 1990; Hirsch et at., 1989a, b, c and 1990; Feng et at., 1992), thereby 

suggesting the possibility of the independent cross-species transfer of virus from 

simian hosts to humans. SIVAGM  isolates display much greater nucleotide sequence 

diversity than other SIVs and HIVs (Johnson et at., 1989, 1990, 1991 and 1992; 

Allan et at., 1991), and form a group as distinct as HIV-1/SlVcpz  and HIV-2/SIVSM. 

Furthermore, its high seroprevalence (up to 50%) in wild populations may suggest 

that SIVAGM  has been present in the African green monkey population for a long 

period of time (Johnson and Hirsch et al., 1990, 1991 and 1992). SIVMSD  is a close 

genetic relative of SIVAGM, and therefore, the viruses related to the SlVmND  and 

SIVAGM  may serve as an ancestral virus of HIVs and SIVs (Desrosiers, 1990; Johnson 

et at., 1992). The divergence time point between SIVAGM  and HIV, HIV-1 and HIV-2 

has also been estimated to be between 40 to 280 years ago (Smith et al., 1988; Li et 

at., 1988; Sharp et at., 1988). In general, SIVs from African non-human primates fail 

to cause AIDS-like disease in their natural hosts (Kraus et al., 1989; Baler et at., 

1989; Johnson etal., 1991 and 1992). However, cross-species transmission of viruses 

may result in disease. If the origin of the pathogenic SlVmAc  in Asian rhesus 

macaques was a recent cross-species transmission event from the sooty mangabey 

(Hirsch etal., 1989a), and if the proposed genetic link between the HIV-1 and SlVcpz  

(Huet et at., 1990), and HIV-2 and SIVSM  is firmly held (Hirsch et al., 1989c), then 

pathogenesis would be closely associated with trans-species infection (Leigh Brown, 

1991). 
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1.2.2 Extreme variability of Lentivirus Genome The lentiviruses, including HIV, 

appear to be among one of the most rapidly evolving genomic molecules. Lack of 

proof-reading exonuclease activity of their reverse transcriptase and a high rate of 

replication may jointly account for this extreme variability. Purified HIV-1 reverse 

transcriptase has recently been shown to be approximately ten-fold less accurate than 

avian reverse transcriptase (Roberts et al., 1988; Preston et al., 1988). Little is 

known about the biochemical properties of simian reverse transcriptase, however, 

considering its overall genomic mutation rate being similar to that of HIV (Johnson 

et al., 1990 and 1992; Burns et al., 1991; Baler et al., 1990 and 1991; Desrosiers, 

1990), the fidelity of simian reverse transcriptase could be similar. Genetic 

hypervariability has been suggested to contribute to the pathogenicity of lentiviruses 

simply because the host immune system can not cope with this extremely large 

number of virus variants (Nowak et al., 1990 and 1991a, b.). However, recent 

analysis of the in vivo genetic variability of African green monkey SIVs has revealed 

that sequence diversity in these animals is considerably higher than that of HIVs 

(Johnson et al., 1990 and 1992). This implies that SIVAGM  has been present in non-

human primates much longer than in humans. As African green monkeys do not 

suffer severe pathological effects, hypervariability is unlikely to be the cause of viral 

pathogenicity (Leigh Brown, 1991). 

Immune selection has been reported for many members of the lentiviral family 

(Clements et al., 1980, 1982 and 1988). It is interesting to note that although the 

genetic organization of HIV's and SIV's is very similar (Baler et al., 1990; Johnson 

et al., 1992), there are differences in the location of the variable and conserved 



regions of gp120 (Johnson et al., 1992). This is of particular importance if such 

changes also involve the immunogenic epitopes. This raises a number of 

possibilities; 1) whether difference in epitope location between HTVs and SIVs is a 

consequence of cross-species transmission; 2) is there any relationship between this 

difference and pathogenesis in non-natural hosts and, 3) is the immune response in 

non-human primates so different from that of humans that SIV infected monkeys 

should be reconsidered as viable animal models. 

1.2.3 Sequence Diversity in the env Gene of HIVs As mentioned above, HIV 

shows considerable sequence variation. Such sequence diversity is not only observed 

between independent isolates (Hahn et al., 1986; Meyerhans et al., 1989; Alizon et 

al., 1986; Starcich et al., 1986 ), but also among sequential isolates from the same 

individual patient (Hahn et al., 1986; Simmonds et al., 1990a and 1991). A 

comparison of published sequences has suggested that the rate of substitution is not 

constant across the entire HIV genome, but is particularly high in the hypervariable 

regions of the env gene (14 x 10 nucleotide substitutions per site per year), and 

lower in the gag and poi regions (around 1.7 x iO nucleotide substitutions per site 

per year) (Li et al., 1988). These results suggest that the HIV env gene, in general, 

is evolving under different selective constraints from the rest of the viral genome. 

Within the env gene, there is also a distinct pattern of variation. Five hypervariable 

regions of gpl20 (V1-V5) were defined as regions with less than 25% conservation 

of amino acids between several published sequences (Modrow et al., 1987). 

Recently, a principal neutralization determinant (PND) of HIV-1 has been identified 



to localize in a loop structure within the third hypervariable region (V3) (Rusche et 

at., 1988; Palker et al., 1988; Javaherian et at., 1989), suggesting that immune 

selection may play an important role in the generation of sequence variability in the 

V3 region. This notion was supported by recent experiments showing an in vivo 

emergence of virus variants that were resistant to neutralization by autologous sera 

(Albert et at., 1990; Montefiori et at., 1991). The immunogeneity and functions of 

the other hypervariable regions have not yet been studied as extensively as those of 

the V3 region. 

Located between the hypervariable regions are sequences which are highly 

conserved or with intermediate variability. Some parts of these conserved sequences 

have been shown to be important for viral function. For example, two conserved 

regions located at the amino (residues 36 to 45) and carboxyl (residues 491 to 501) 

termini of the gp120 glycoprotein are necessary for the noncovalent association with 

gp4l transmembrane glycoprotein (Helseth et al., 1991). Of course, the major CD4 

binding domain located between the V4 and V5 hypervariable regions is the most 

studied. Monoclonal antibodies to the CD4 receptor and soluble CD4 molecules are 

both effective in blocking virus infection, suggesting that binding to this portion of 

the CD4 molecule through viral exterior glycoprotein is a vital step in the infection 

process (Putney et al., 1990a, b). Conserved sequences within the hypervariable 

regions also have indispensable functions. This is especially true for the amino acids 

Gly-Pro-Gly which are located at the tip of the V3 loop bonded by two cysteins. A 

single change in the amino acid sequence of these sequences can generate a virus that 

has either changed its tropism characteristics or substantially reduced its infectivity 



(Cordonnier et al., 1989; Bolognesi, 1990; Takeuchi et al., 1991). In addition, 

twenty-one cysteine residues in the envelope gene are also completely conserved in 

all isolated reported which suggests the vital role of these cysteine residues for 

envelope functions (Tschachler et al., 1990; Dedera et al., 1992). The relatively 

conserved region in the transmembrane glycoprotein gp4l is also believed to play a 

role in virus infection. This region, defined as the fusogenic domain, is thought to 

reside within the N-terminal portion of gp41 (Gallaher, 1987; Gonzalez- Scarano et 

at., 1987). Fusion occurs after virus binding to the CD4 molecule. This process can 

also occur between virus-infected cells exhibiting gpl20 and gp4l on their surface 

and uninfected cells bearing CD4 molecules (Lifson et al., 1986a, b; Sodroski et at., 

1986a). This results in the formation of multinucleated giant cells and represents a 

form of virus cytopathogenicity. At the same time, this process also allows HIV to 

pass directly from cell to cell. 

Whereas hypervariability in the env gene has been observed in samples from 

within individuals, and especially from those in the later stages of infection, the in 

vitro propagation of viral isolates however, significantly reduces the genetic diversity 

in the V3, V4 and V5 regions (Meyerhans et al., 1989; Kusumi et al., 1992). It has 

been shown that genetic diversity can drop to zero after in vitro culturing for about 

10 weeks (Simmonds, personal communication), suggesting some sort of selection on 

the envelope gene. In addition, such homogeneity of isolated viruses also confirms 

the role that immune selection plays in the generation of virus variants in vivo. 
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1.2.4 Sequence Diversity In the gag and poi Genes of HIVs Studies of sequence 

variation have been concentrated on the recognised hypervariable regions of the env 

gene, particularly on the V3 region simply because it is highly antigenic and is 

indispensable for virus functions (see section 1.2.3). It was not until recently that 

attention has been drawn to the gag and p0! genes. Within the gag gene the pattern 

of sequence variation is not random. The p15 and p17 gag proteins appear to evolve 

quite quickly at amino acid replacement sites, whereas the major core protein, gag 

p24 remains more conserved (Hahn et al., 1986; Coffin, 1992). The degree of 

sequence variation seen in some parts of the gag p17 or p15, may be very useful to 

track down the epidemiological and transmissive information of HIV because these 

two regions can provide enough variation information to distinguish different possible 

source of infection and, at the same time are not under sever selection which may 

cause convergent evolution (Holmes, personal communication). Phylogenetic analysis 

based on the gag nucleotide sequences has revealed a grouping pattern between 

different members of subfamily lentivirinae, consistent with their geographic and 

species collocation (Li et at., 1988; Myers et al., 1991). Moreover, recent results 

obtained in our laboratory suggested that phylogenetic analysis based on the gag p17 

nucleotide sequences can determine contact network between individuals within an 

infected community (Dr. E. Holmes, personal communication). 	Thus, an 

understanding of sequence variation can also help us to further understand the 

transmission and epidemiology of HIV-1. 

Several immunogenic epitopes have been identified in both the Gag and Pot 

proteins which can be recognised either by neutralizing antibodies or by cytotoxic T 

42 



cells (Hosmalin et al., 1989; Papsidero et at., 1989; Walker et al., 1989). Phillips et 

al., demonstrated that sequence variation in one of the gag17 CTL (cytotoxic T 

lymphocytes) epitopes (residue 21-35, L R P G G K K K Y K L K H I V) can lead 

to loss of CTL recognition, and suggested this could be one way by which HIV 

escapes immune surveillance (Phillips et al., 1991). In general, different HLA 

(Human Leucocyte Antigens) class I molecules select distinct epitopes derived from 

HIV proteins to stimulate CTL responses. Therefore, apart from the HIV sequence 

itself, HLA type could also have an impact on virus escape and possibly clinical 

progress. The relatively high frequency of HIV amino acid replacement observed in 

HLA B8 patients, compared with HLA B27 patients, suggests that the HLA 138-

restricted Gag epitope(s) are less constrained and that amino acid changes in this 

regions may result in CTL-escape (Phillips et al., 1991). To some extent, this result 

can be used to explain the association between HLA haplotype (and especially Al 

B8 DR3) and the outcome in HIV infection seen in Edinburgh haemophiliac patients. 

Relative faster progression towards AIDS among the members of the Edinburgh 

haemophiliacs is probably associated with their Al B8 DR3 haplotype (Steel et at., 

1988). Al B8 DR3 is by far the commonest haplotype in caucasians, with a 

particularly high frequency among those of northern European descent (Steel et at., 

1988). 

Immune recognition and immune escape mutants have not been studied as 

extensively in pol as that in env and gag genes. However, studies of AZT (3'-azido- 

3'-deoxythymidine), ddl (2', 3'-dideoxyinosine) and ddC (2', 3'-dideoxycytidine) 

resistant virus variants highlight the sequence variation in the p0/ gene. Larder et at., 
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firstly reported that isolates of HIV taken from patients who had been taking AZT 

for more than 6 months, were resistant to AZT in vitro (Larder et at., 1989a, b, c). 

Analysis of the coding region of reverse transcriptase (RT) from clinical isolates by 

nucleotide sequencing led to the discovery that multiple common nucleotide changes 

were associated with this resistance. These changes conferred specific amino acid 

replacements in RT at the following residues: Asp67 -> Asn, Lys70 -> Arg, Thr215-> 

Phe or Tyr, and Lys219 -> Gln (Larder et at., 1989a, b, c and 1990). The most 

resistant isolates had mutations in all four residues or the first three (Richman et at., 

1992). Recently, one more substitution at position 41 (Met -> Lys) in the RT region 

was found to contribute to AZT resistance (Kellam et al., 1992). Moreover, 

mutation in the RT regions has also been shown to be responsible for ddl resistant 

virus strains. The residue replacement at position 74 is one of the putative sites for 

this resistant effect (St. Clair et at., 1991). However, it is still not clear whether the 

resistant strains are as pathogenic and virulent as the wild strains, how the proportion 

of the resistant strains correlates with the disease stage and what determines the rate 

of development of resistant strains. Finally, in this work (see Chapter 3), the 

observation of one substitution at position 70 (Lys -> Arg) in sequence data generated 

from one of the factor VIII concentrates prepared before the use of AZT as an 

antiviral agent suggests that there was a pre-existing polymorphism (Zhang et al., 

1991). 



1.3 Previous Studies of Sequence Evolution in the Edinburgh Haemophiliac 

Cohort 

Our research group have been studying sequence variation in a group of 

haemophiliac patients who became infected between March and May in 1984 after 

exposure to a single common batch of HIV-contaminated factor VIII concentrates, 

prepared from locally donated blood by the Scottish National Blood Transfusion 

Service (SNBTS) (Ludlam et al., 1985). Of a total of 32 patients exposed to the 

batch, 18 became HIV seropositive during the subsequent ten months. Their 

seropositivity was tested by a range of enzyme-linked immunosorbent assays 

(ELISAs) detecting antibodies to different components of the virus and confirmed on 

western blotting (Simmonds et al., 1988). These seropositive patients received, on 

average, significantly more units of the putative infected batch than those who remain 

seronegative (Ludlam et al., 1985). 

Samples donated from eight patients (patients 74, 77, 79, 82, 83, 84, 87 and 

91) from this cohort, and from one non-cohort HIV-infected haemophiliac (patient 

12) were studied first (Simmonds et at., 1988 and 1990a). A double polymerase 

chain reaction procedure based on nested primers was developed in our laboratory 

and has been used to detect and quantify the provirus DNA in the peripheral blood 

mononuclear cells (PBMCs) (Simmonds et at., 1990a). The PCR amplified products 

were then Gene-cleaned to remove the non-incorporated nucleotide triphosphates and 

primers. Direct sequencing method was subsequently applied to the purified PCR 

products without in vitro cloning procedures. Direct sequencing approach can avoid 

obtaining bias sequences from the in vitro virus culture and artificial mutated 
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sequences which is due to errors introduced by Taq polymerase during the 

amplification process (Balfe et al., 1990; Simmonds et al., 1990a and 1991). 

Phylogenetic analysis of nucleotide sequences from gag p24, and the V4-V5 

and V3 regions of env gene revealed similar phylogenetic patterns; 1) sequences from 

the same patient are more similar to each other than to those from different patients, 

2) the non-cohort haemophiliac patient, who was infected in the United States from 

commercial factor VIII, has sequences distinct from those of the cohort patients, as 

are the published sequences from HIV viral isolates, 3) in the V4-V5 region, six of 

the eight Edinburgh-infected haemophiliacs (patients 77, 79, 83, 84, 87, and 91) have 

sequences which are particularly closely related to each other, whereas two others 

(patient 82, and 74) have sequences which are less so (Balfe et al., 1990; Simmonds 

et al., 1990a). According to the most recent sequence analysis based on the p17 

region of the gag gene, it is likely that more than one virus variant was present in 

the original batch of factor VIII concentrates (Dr. E. Holmes, personal 

communication). 

1.4 The Outline Research Presented In This Thesis 

The research outlined in this thesis was primarily designed to study the 

temporal changes of virus load and of viral RNA sequences during the course of 

infection. Accordingly, a highly sensitive and reliable RNA PCR method was first 

developed to enable the detection and quantification of viruses directly from plasma 

and serum of HIV- 1 positive individuals and from blood products such as factor VIII 

concentrates (Zhang et al., 1991). With the advent of direct sequencing of PCR 
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products, viral RNA sequences, in particular the V3 and V4 regions of the envelope 

gene, have been readily obtained from serial plasma samples taken from a single 

HIV-1 infected haemophiliac, and from the plasma samples of 5 independently 

infected patients prior to or immediately after seroconversion. By analyzing the 

temporal spectrum of quantitative and qualitative features of plasma viral RNA 

sequences, it has been possible to assess the contribution of viral load to the 

pathogenesis of HIV-1 and patients' clinical outcome; to improve our understanding 

of the process and pattern of viral genetic evolution; and by comparing with those 

sequences obtained from proviral DNA sequences present in PBMCs, to trace the 

viral genetic flow between these two distinct populations and compartments. 

Furthermore, by revealing the genetic features of plasma viraemia at early stage of 

the infection, the nature of viral replication before the immune response is mounted 

can be better understood which, in turn, is helpful to assess the effects and the 

consequences of the human immune response. 

My research project, and indeed this thesis, is generally separated into three 

parts. The first part (Chapter 3) is exclusively devoted to the development of a 

highly sensitive and reliable RNA PCR technique which can be used to detect, 

quantify and sequence cell-free HIV RNA directly from the plasma or serum of HIV-

I positive patients (Zhang et al., 1991). Using this RNA PCR based technique, 

plasma from 10 out of 12 haemophiliac patients tested were found to contain 

detectable levels of HIV-1 RNA. On average, HIV RNA was more abundant in the 

plasma of patients with more advanced disease compared to asymptomatic patients. 

However, in accordance with others findings (Ho et al., 1989; Coombs et al., 1989; 
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Schnittman et al., 1991), the most striking results obtained from the viral 

quantification study of these haemophiliacs is the high level of cell-free HIV RNA 

found in some of the CDC group II patients (Zhang et at., 1991), indicating the 

persistence of viral replication throughout the whole course of an HIV infection and, 

therefore, suggesting that there is no virological 'latent' period to correspond with 

that observed in the clinical outcome. At the same time, this finding may also 

suggest that early treatment of the HIV- 1 infected patients is desirable. 

The second part of the work (Chapter 4) is an extensive study of sequential 

sequence variation in the HIV envelope gene from a single HIV-1-positive 

haemophiliac (patient 82). Starting from seroconversion (1984), six serial plasma 

samples were collected at year 3 (1987), 4 (1988), 5 (1989), 6 (1990) and 7 (1991). 

Sequence analysis was largely concentrated on the V3 and V4 hypervariable regions 

of the envelope gene. A total of 89 V3 and 114 V4 viral RNA sequences were 

obtained directly from plasma samples without any in vitro manipulations. 

Phylogenetic analysis of these sequences reveals that there are complex evolution 

patterns in these two hypervariable regions. For the V3 regions, all subsequent HIV 

genotypes can be explained on the basis of the accumulation of sequence differences 

from the genotype found at seroconversion (Holmes et al., 1992). A major 

diversification of V3 genotypes had taken place in the plasma within 3 years from 

seroconversion. Several distinct lineages could be identified at year 3, but only two 

persisted and subsequently reached high frequency. Furthermore, selective constraints 

on the V3 regions, particularly in the V3 loop region, were clearly observed which 

was indicated by the dramatic fluctuations in the frequency of sequence variants and 



the extensive convergent evolution (identical amino acid changes occurring in 

independent lineages) (Holmes et at., 1992). These findings strongly suggest that 

although there is selection for replacement of amino acids which may alter the B and 

T cell epitopes once they are recognised, there is also a severe selective constraint 

as to which amino acids are functionally viable within these regions. In addition, 

because of the extensive constraints and convergent evolution of the V3 sequences, 

any interpretation of epidemiological relatedness based on this region may not be 

appropriate. 

Sequence variation in the V4 region is slightly different. Apart from frequent 

amino acid replacement through time, length variation is also observed in this region. 

Rapid sequence change, consisting of regular replacement by a succession of distinct 

viral populations, was found in the plasma (Simmonds et al., 1991). Each succeeding 

sequence type is not obviously more related to those that come before or after it than 

they are to the sequences of the original infecting viruses, suggesting the evolution 

of viral RNA V4 sequences in the plasma population of this patient is discontinuous 

and may be largely contributed by the hidden evolution in the solid tissues such as 

lymph node, brain, spleen, lung, liver and etc. More interestingly, there appears to 

be significant differences between the frequencies of sequence variants in DNA and 

RNA populations within the same sample, indicating that at any one time point, the 

predominant plasma virus variants were antigenically distinct from those viruses 

encoded by HIV DNA sequences in PBMCs. How these findings contribute to our 

understanding of HIV infection and pathogenesis is discussed in Chapter 4. 

The transient high level of viraemia present in patient plasma around 



seroconversion has been known for some time (Goudsmit et al., 1986; Gains et al., 

1987; McRae et al., 1991), however, it was not until 1991 that the quantitative assay 

of viruses present in plasma population at this stage of infection was published (Daar 

et al., 1991; Clark et al., 1991). In the final part of my work (Chapter 5), attention 

is drawn exclusively to the study of sequence variability of the envelope gene at the 

first stage of infection. Plasma samples were collected from 5 independently infected 

patients prior to or immediately after seroconversion. Two of these five patients were 

infected through sexual contact (Scl and Sc2) and the other three infected 

parenterally (p82, p74 and p84). PBMC samples were collected 3-6 months after 

seroconversion from 4 members (p28, p79, p77 and p84) of the Edinburgh 

haemophilic cohort. The sequence analysis of V3, V4 and part of p17 region of the 

gag gene reveals very different pictures of sequence variability. Contrary to what is 

observed in later stages of infection where considerable sequence variation in 

envelope gene is readily demonstrated (Balfe et al., 1990; Simmonds et al., 1990a 

and 1990; Holmes et al., 1992), no sequence variation was found in the V3 region 

in any of the samples. The closely linked V4 region was also lacking in variation 

in all but one (p82) cases investigated. Unexpectedly, sequence variation is present 

in the gag gene at this stage. Furthermore, 3 out of 4 members of the Edinburgh 

haemophiliac cohort have identical V3 and V4 proviral sequences and the fourth 

patient has only one nucleotide difference in the V3 region from the others. This 

striking finding suggest that V3 region sequences, and possibly part of V4 sequences, 

are under selection at transmission of HIV. As the V3 region contains one of the 

major targets for both B and T cells, identifying those sequences which are selected 
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for in the early stage of viral infection will be important not only in terms of 

documenting the viral sequence changes which can overcome the specific immune 

response, tracing those mutations at the molecular level which may determine the 

changes in viral tropism, but also in providing sequence information for the design 

and development of an effective vaccine. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 MATERIALS 

2.1.1 Blood Samples 	Seropositive blood samples from HIV-1 infected 

haemophiliacs, intravenous drug users and seronegative individuals with no known 

risk-factors for HIV infection, were obtained from Drs. Christopher Ludlam 

(Edinburgh Royal Infirmary) and Roy Robertson (Edinburgh City Hospital). Plasma 

and peripheral blood mononuclear cells (PBMCs) were separated by centrifugation 

over Ficoll lympaque (Nycomed). Plasma samples were stored at -70°C while 

PBMCs were in liquid nitrogen (see section 2.2.1). 

2.1.2 Plasma or Serum and PBMCs Samples 

2.1.2.1 For Viral RNA Quantification Study Plasma samples were obtained from 

12 HIV-1 infected haemophiliacs who seroconverted in 1984 following transfusion 

by a single common batch of HIV-contaminated factor Vifi (Ludlam et al., 1985). 

All 12 individuals seroconverted for antibody between 3-10 months after receiving 

the factor VIII (Simmonds et al., 1988). Patients 56, 70, 82, 83 and 84 have been 

classified as CDC (Centre for Disease Control) stage II. Patients 72, 74, 77, 79, 87 

and 95 are in CDC stage IV at the time of study (in year 1989). These CDC stage 

IV patients have been suffering from a range of opportunistic infections and 

constitutional symptoms of HIV infection. Patient 28 died in 1988. Apart from 

patient 72, all CDC IV patients but none of the CDC II patients have been receiving 

antiviral treatment (AZT) (Dr. Henry Watson, Department of Haematology, 
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Edinburgh Royal Infirmary, personal communication). 

2.1.2.2 For Sequential Sequence Variation Analysis Six plasma samples (March, 

1984; June, 1987; January, 1988; February, 1989; April, 1990 and January, 1991) 

from a single haemophiliac patient (patient 82) were collected and stored at -70°C 

before viral RNA extraction. Patient 82 was asymptomatic at the time of study and 

has never undergone any antiviral therapy but has persistently low CD4 counts of less 

than 0.2 x 109  per litre blood (Dr. Henry Watson, Department of Haematology, 

Edinburgh Royal Infirmary, personal communication). 

2.1.2.3 For Sequence Variation Study During the Primary Stage of HIV-1 

Infection Seroconversion plasma samples from 5 independently infected patients 

(p82, p74, p84, Scl and Sc2) and three follow-up plasma samples (p82, p74  and p84) 

were obtained from Drs. Roy Robertson (Edinburgh City Hospital), Christopher 

Ludlam (Edinburgh Royal Infirmary), G.E.D. Urquhart, and A.J. France (Department 

of Medical Microbiology, University of Dundee). Patient 82, 74 and 84 

seroconverted between March and May, 1984 whereas patient Scl and Sc2 in 1990 

and 1991, respectively. No patient except patient 74 is currently on, or previously 

received any anti-viral treatment. Two (Scl and Sc2) of these five patients were 

infected through sexual contact and the remaining three parenterally (p82, p74  and 

p84.). PBMC samples were collected 3-6 months after seroconversion from 4 

members (p28, p79, p77 and p84) of the Edinburgh haemophilic cohort who were 

infected from a single common batch of HIV- 1 contaminated factor VIII concentrates 
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in 1984 (Ludlam et al., 1985). One of the PBMC samples was collected from the 

same patient (p84) from whom the plasma sample was also obtained. 

2.1.3 Factor VIII Concentrates Eight batches of factor VIII concentrates, including 

both commercial and NHS (National Health Service)-produced material, were 

obtained from Dr. G. Kemball-Cook at the National Institute of Biological Standards 

(NTBSC). All batches were unheated and prepared before the introduction of donor 

screening for anti-HIV antibodies. They were distributed in the United Kingdom 

between 1981 and 1984. All factor VIII concentrates were reconstituted according 

to the manufacturer's instructions. 

2.1.4 HIV and tk Primers HIV primers were synthesised by the Oswel DNA 

Service, Department of Chemistry, University of Edinburgh, and were purified by 

HPLC. The primers were based on the consensus of several published HIV 

sequences (HIV, H1V, 2, HIVEU, HIVLJ, HIV, HIVmN  and HIV.)'. The 

primer sites were chosen for greatest conservation between these published sequences. 

No more than one mismatch with any of the above published HIV sequences was 

permitted and nor was any mismatch near the 3' terminus. The positions of these 

HIV primers along the HIV 2  genome are schematically presented in Figure 2.1. 

The primers for HSV (herpes simplex virus) tk gene and HCV (hepatitis C virus) NS3 

'According to the newly revised naming system in the HUMAN 
RETROVIRUSES and AIDS 1991 database by Los Alamos National Laboratory, Los 
Alamos, New Mexico 87545, USA. 
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Figure 2.1 Schematic illustration of HIV primers' positions along the HIV 2  genome. Those above indicated regions such as a, b, 

c, d,..., are sense primers whereas those underneath such as e, f, g, h, ..., are anti-sense ones. 
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region were kindly provided by Dr. R. Al-Shawi (Division of Biological Sciences, 

University of Edinburgh) and Dr. Peter Simmonds (Department of Medical 

Microbiology, University of Edinburgh), respectively (Al-Shawi et at., 1988; 

Simmonds et at., 1990). The sequences of the primers for HIV template, the HCV 

NS3 region and transcribed HSV tk template are given below and the coordinates 

listed in the brackets of HIV primers are from the HIV 2  sequence (+ sense; - 

anti-sense). 

HIV gag primers: 

5'GCGAGAGCGTCAGTAT7AAGCGG, (+,795), 

5'GGGAAAAAATTCGGYTAAGGCC, (+, 835), 

5'GGTACATCAGGCCATATCACC, (+, 1214), 

5'GAGGAAGCTGCAGAATGGG, (+, 1407), 

5'CTTCTACTACTITIACCCATGC, (-,1248), 

5'TCTGATAATGCTGAAAACATGGG, (-, 1296), 

5'GGTCCTTGTCTTATGTCCA, (-, 1636), 

5'ACCGGTCTACATAGTCTC, (-, 1669). 

HIV pol primers: 

5'CCCAAAAGTTAAACAATGGCC, (+,2602), 

5'AGAAATVFGTACAGAGATGG, (+, 2653), 

5'CCAlTFATCAGGATGGAGYTC, (-,3245), 

(1) 5'GCTGTC'IITFI'CTGGCAGCAC, (-,3281). 
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HIV env V1-V2 primers: 

5'GAGGATATAATCAGlTTATGG, (+, 6577), 

5'GATCAAAGCCTAAAGCCATG, (+, 6599), 

5'CAATAATGTATGGGAATT'GG, (-,6930), 

5'GTACATTGTACTGTGCTGACA, (-,7020). 

V3-V4 primers: 

5'TACAATGTACACATGGAATIT, (+, 6957), 

5'TGGCAGTCTAGCAGAAGAAG, (+,7009), 

S'CTGGGTCCCCTCCTGAGG, (-,7314), 

5'ATrACAGTAGAAAAATFCCCC, (-,7361), 

5'ATFCTGCATGGGAGTGTG, (-,7465), 

5'GGAGGGGCATACAYFGC, (-,7520). 

V4-V5 primers: 

5'TCAGGAGGGGACCCCAGAAA1IT, (+,7316), 

5'GGGGAAYITII'CTACTGTAAT, (+,7361), 

5'CTTCTCCAATT'GTCCCTCATA, (-,7645), 

5'GCCCATAGTGCTITCCTGCTGCT, (-, 7795). 

HCV NS3 primers: 

(EDT) 5'GTGGTCGACTGCAATACGTGTGTCAC (+), 

(ED2) 5 'CCGGCATGCATGTCATGATGTAT 	(-), 

NO 



5'CACCCAGACAGTCGATI'TCAG 	(+), 

5 'GTATYI7GGTGACTGGGTGCGTC 	(-). 

HSV i! primers: 

5'GCCAGTAAGTCATCGGCTCGGG 	(+), 

5'CCATCAACACGCGTCTGCGflCG 	(-). 

2.1.5 pBH10.R3 is a recombinant plasmid containing a nearly full length HIV-1 

genome (Simmonds et al., 1990a). Cesium chloride (CsC1) gradients-purified 

plasmid was quantified by absorbance measurement at 260 nm. 

2.1.6 pSV2gpt is also a recombinant plasmid containing a mouse promoter region 

and coding region of the herpes simplex virus type 1 thymidine kinase gene (HSV 

) (Al-Shawi et al., 1988). 

2.1.7 Virus isolates 

HIV112  is an infectious molecular clone obtained from a phage library of 

HIV-1 DNA obtained from HIV-1 infected H9 cells (Shaw et al., 1984). 

HIV.11  I HIVLAI  isolate originated from a French AIDS patient LAI. 

This isolate used to be called LAy- 1 to distinguish it from HIV2 (LAV-2) and 

formerly designated HWBRU  (Wain-Hobson et al., 1991). 
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HIVRF  isolate also designated as HAT because the virus was isolated from a 

patient of Haitian descent (Myers et al., 1991). 

2.1.8 Cell Line Used in in vitro Virus Culture 

C8166 cells are a T cell line containing a genome of HTLV-I that expresses 

only the tat gene (Sodroski et al., 1984). 

2.2 METHODS 

2.2.1 Separation and Storage of Plasma and PBMC from Blood About 20mls 

of heparinized whole blood sample was received at each time point and the separation 

of plasma and PBMC normally followed within 2 hours after arrival. Two 10mls of 

whole blood were layered over two lOmls of Ficoll lymphopaque (Nycomed) and 

then spun at 2,500 rpm for 15 minutes with no brake. The plasma from the top 

phase was aliquoted into Nunc freezing cryo vials in lml amounts and frozen at - 

70°C. The interphase of PBMC was aspirated off and washed twice with 20ml RPMI 

1640 (Gibco). Approximately 5 x 106  cells were resuspended in 1 ml of freezing 

media (1 volume RPMI 1640 supplemented with 10% fetal calf serum (FCS), 1% 

penicillin, streptomycin and 1 volume 20% DMSO in 80% FCS) and the mixture 

was put into a Nunc tube and stored at -70°C. Two days later, the vials were placed 

in the appropriate section in the liquid nitrogen store (vapour phase). 



2.2.2 In Vitro Culturing H1V11, 2, HIVHTLVIn1 , HIV Variants and Harvesting 

Culture Supernatant The C8166 cells infected with HIV variants (HXB2, HTLV-

TuB and RF) were cultured at 37°C in PRMI 1640 (Gibco) medium supplemented 

with 20mM L-glutamine, 10% heat-inactivated FCS, 50 units/ml penicillin and 

50.iWm1 streptomycin. The culture flasks were checked under the inverse microscope 

(Nikon) for the presence or absence of syncytia, and the cultured supernatant in 

which syncytia was formed was collected and stored in -70°C for subsequent viral 

RNA extraction and quantification. All HIV culturing work was carried out in the 

Category 3 laboratory. 

2.2.3 DNA Extraction from PBMCs There are a number of procedures which have 

been developed to extract DNA from cells and clinical specimens. The following 

procedure which has been used in this work represents a reasonable compromise 

between quality of DNA and ease of use, yielding fairly pure high molecular weight 

DNA, which can be stored at -20°C without obvious degradation (Simmonds et al., 

1990). Pelleted cells (approximately 5 x 106)  were suspended in 400.I of lysis 

buffer (50mM Tris-HC1 pH8.0; 50mM EDTA pH8.0; 100mM NaCl; 0.01% w/v 

Proteinase K; 1% N-lauroylsarcosine) and incubated at 65°C for 2 hours. Phenol and 

chloroform extraction followed and DNA was precipitated with two volumes of 100% 

ethanol at -20°C for 2 hours. The precipitated DNA was collected by centrifugation 

and then dried at 50°C for 10-15 minutes. Finally the DNA was resuspended in 20-

200I of distilled water and DNA concentration and purity were assessed by 

spectrophotometry at an absorbance of 260 and 280nm. 
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2.2.4 Viral RNA Extraction from Plasma, Factor VIH Concentrates and Cell 

Culture Supernatant Considerably more care is required to successfully extract 

RNA from plasma samples, factor VUl concentrates and cell cultured supernatant in 

view of its greater sensitivity to degradation than DNA. 500i! of patient plasma or 

500.tI of HIV infected C8166 culture supernatant was mixed with 8.5ml of phosphate 

buffered saline (PBS, pH7.3); alternatively, 3ml of factor VIII reconstituted with the 

recommended volume of water was mixed with 6ml of PBS; in both cases, virus was 

pe!leted at 45,000 x g in a swing out rotor (Sorvall SH80) at 4°C for 2 hours 

(centrifuge Sorvall RC28S). The pellet was resuspended in 1.2m1 of a denaturing 

solution (2M guanidinium thiocyanate; 12.5mM sodium citrate pH7.0; 0.25% 

sarcosyl; 0.05M 2-mercaptoethano!, 50% water-saturated distilled phenol and lug 

carrier RNA) and mixed thoroughly with 200il chloroform (Chomczynski et at., 

1987). After vigorous shaking for 15 seconds, the solution was incubated on ice for 

15 minutes. The sample was then spun at 14,000 x g for 15 minutes and the aqueous 

phase, which contained the HIV RNA, was precipitated with an equal volume of 

isopropanol for at least 45 minutes at -20°C. Precipitated RNA was pelleted by 

spinning for 15 minutes at 14,000 x g at 4°C. The pellet was washed once with imi 

75% ethanol, dried under vacuum for 10 minutes and dissolved in 20p1 of autoclaved 

RNase-free Analar water (BDH). Sometimes, a second phenol-chloroform extraction 

was necessary to remove remaining protein, and this was carried out either after 

aqueous phase transfer or after dissolution of the RNA pellet, If HIV was present 

in a large amounts (in long term culture supernatant for instance) the high speed 

centrifugation step could be eliminated simply by mixing 250M1  supernatant with 



750 p1 denaturing solution and 200p1 chloroform in the first step, and using the same 

procedures as before in subsequent steps. The presence of carrier RNA, which may 

protect HIV RNA from RNase degradation and stabilize reverse transcriptase was 

critical in the subsequent DNase digestion and cDNA synthesis steps. The source of 

carrier RNA was probably not critical, total cellular RNA from either adult mouse 

liver or cultured sheep fibroblast cell lines have been used with equivalent results. 

2.2.5 Reverse Transcription of Viral RNA The successful PCR (polymerase chain 

reaction) amplification of viral RNA is largely dependent on the success of viral 

cDNA synthesis in the reverse transcription step. A highly sensitive and reliable in 

vitro reverse transcription method has been developed in this work and has been used 

to detect cell-free HIV-RNA and HCV-RNA directly from the plasma or serum of 

seropositive patients and factor VIII concentrates (Zhang et al., 1991). This method 

uses a virus-specific primer for initiation of cDNA synthesis from the viral RNA 

template. 	Others investigators have used random priming with hexameric 

oligonucleotides (Garson et al., 1990). There has been no data so far that formally 

compared effectiveness of these two methods. In this work, viral RNA was firstly 

incubated with RNase-free DNase (BCL) at 37°C for 20 minutes in a lOj.il volume 

of DNase reaction buffer (50mM Tris-Cl pH7.5; 10mM MgC12; 4mM DTI'; 10 units 

RNAsin and 15 units of RNAse-free DNase) to remove any possible HIV DNA 

contamination. The sample was then incubated at 80°C for 10 minutes to terminate 

the reaction. cDNA synthesis was carried out by adding an equal volume of reverse 

transcriptase reaction buffer (50mM Tris-Cl pH8.0; 5mM MgC12; 5mM DT'!'; 50mM 
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KC1; 0.05ug/pl BSA; 600j.iIvI of each dGTP; dATP; dTTP; dCTP; 20% DMSO; 

1.5MM outer anti-sense primer; 10 units RNAsin [Promega] and 10 units AMY 

reverse-transcriptase [Promega]) to the DNase-digested HIV RNA sample and 

incubating at 42°C for 30 minutes. 

2.2.6 Measurement of Reverse Transcriptase (RT) Reaction Efficiency by 

Plasmid RNA Transcription Construct pSV2gpt, containing a mouse promoter 

region and coding region of the herpes simplex virus type 1 thymidine kinase gene 

(HSV ) was obtained from R. Al-Shawi (Division of Biological Sciences, 

University of Edinburgh). RNA was transcribed in vitro from lOOng of the construct 

plasmid DNA at 37°C for 1 hour (200 volumes; of 4mM Tris-HCl pH8.0; 8mM 

MgC12; 2mM spermidine; 50mM NaCl; 0.01M DTT; 0.4mM of each rATP, rTTP, 

rCTP and rGTP; 30 units of RNAsin; 100ng/d BSA; 10 units of Ti RNA 

polymerase). The concentration of pSV2gpt RNA transcripts used for subsequent 

cDNA synthesis and of HSV tk plasmid DNA used for quantitative comparison was 

estimated by spectrophotometry at 260nm. The ration of optical density at 260nm 

and 280nm was also estimated to check the purity of synthesised RNA. Two fold 

serial titrations of tk cDNA after reverse transcription with anti-sense primer and of 

HSV tk plasmid DNA were made prior to PCR amplification with HSV tk specific 

primers. 25 cycles were employed and the products of PCR were analyzed by 

agarose gel electrophoresis and ethidium bromide staining. The amount of cDNA 

was estimated by reference to a dilution series of HSV tk DNA after amplification 

with the same primers. This was then compared with the number of RNA sequences 
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from which the cDNA was made. 

2.2.7 Detection and Quantification of HIV DNA and cDNA by Double 

Polymerase Chain Reaction Using Nested Primers Polymerase chain reaction is 

powerful in vitro method for the enzymatic synthesis of specific DNA sequences, 

using two oligonucleotide primers that hybridize to opposite strands and flank the 

region of interest in the target DNA. A repetitive series of cycles involving template 

denaturation, primer and template annealing, and the extension of the annealed 

primers by DNA polymerase results in the exponential accumulation of a specific 

fragment whose termini are defined by the 5' ends of the primers (see Figure 2.2). 

The double PCR method, which has been developed in our lab and has been used to 

detect and quantify HIV-1, was carried out in two consecutive steps. After the first 

PCR reaction finished, a small amount (usually ipi) of the PCR product was 

transferred to a new tube which contained exactly the same solution as before except 

the primers which lie in the inner part of first pair of primers. This net effect is an 

overall increase in sensitivity and specificity of the PCR reaction, producing a 

10,000-fold increase in amplification over that achieved by the only one pair of 

primers (Simmonds et al., 1990a). Furthermore, the double PCR method is the only 

approach so far which is sensitive enough to amplify a single copy of the target 

sequences, and therefore can be used as a means of quantification of FIIV DNA and 

RNA directly from patient materials (Simmonds et al., 1990a). In experimental 
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details, the template DNA or cDNA was firstly limit diluted' and then presented in 

20 to 50p1 volume of 67mM Tris hydrochloride pH8.8; 16.7mM ammonium sulphate; 

6.7mM MgC12, 10mM 2-mercaptoethanol; 6.7jiM EDTA, 3.3pM each of dGTP, 

dATP, dTTP and dCTP, 170ug of bovine serum albumin per ml, 10% dimethyl 

suiphoxide, 0.5iM of each of the outer nested primers, and 20 units/ml of Taq 

polymerase [Cetus]. Twenty-five heat cycles were used, each consisting of 25 

seconds at 94°C, 35 seconds at 50°C, and 2.5 minutes at 68°C. One microlitre of the 

product was then transferred to a second tube containing the same buffer as before 

but with the inner pair of nested primers. A further 25 cycles were carried out under 

the same conditions. The products of the second reaction (20i1) were analyzed by 

agarose gel electrophoresis and ethidium bromide staining. The outline of the whole 

procedure start from cDNA synthesis to agarose gel electrophoresis of PCR products 

is illustrated in Figure 2.2. 

2.2.8 Agarose Gel Electrophoresis of PCR Products Six grams of low melting 

agarose (IBI) was dissolved in 300m1 (2%) of 1 x TBE (0.089M Tris-borate and 

0.089M boric acid, 0.01M EDTA; pH8.2 - 8.9) buffer at 90°C. After the gel solution 

had cooled to around 45°C, ethidium bromide was added (final concentration 

0.5ug/ml), mixed and the gel was poured onto a pre-levelled 20cm x 20cm 

electrophoresis gel plate (Pharmacia) and left to polymerize at 4°C. 	The 

electrophoresis was carried out at 150 volts for about 10-30 minutes depending on 

2  Dilution at which less than 25% of the subsequent PCR amplification products 
are positive. 
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Figure 2.2 Outline of cDNA synthesis, double PCR amplification and direct 

sequencing of PCR products. Both first and second rounds of PCR amplification 

consist of 25 repeated cycles of template denaturing, template and primer annealing 

and new strand synthesizing (for more details, see section 2.2.7). 



eDNA synthesis 

Ir 

RNA 

-No 	cDNA 

first round of PCR with outer pair of primers 

IF 

second round of PCR with inner pair of primers 
IF 

electrophoresis and 
if 

ethidium bromide staining 

Gene-cleaning and direct sequencing of PCR products 

sequence reading, alignment and phylogenetic analysis 



the length of the PCR products. The gel was then observed under the UV light and, 

if necessary, a photograph was taken using a Polaroid camera. 

2.2.9 Analysis of Length Variation of Double PCR Products by Polyacrylamide 

Gel Electrophoresis The length variation of the double PCR product (either 

amplified from a single molecules or from undiluted DNA and cDNA) could be 

clearly resolved by polyacrylamide gel electrophoresis due to its high resolution. In 

this case, the second PCR reaction was performed exactly the same as before (in 20p1 

reaction solution) but with the half concentration of dNTPs (1.5 pM) and 0.25p1 of 

additional c-35S-dATP (1000ciImM, Amersham). One microliter of the PCR product 

was mixed together with 4pl of loading buffer (95% Formamide, 20mM EDTA, 0.1% 

Bromophenol Blue and 0.1% Xylene Cyanol FF); 2pl of distilled water, and then 

heated at 95°C for 2 minutes before loaded on a 8% denaturing polyacrylamide gel 

(for 150m1 sequencing gel mix: 75g urea, 30m1 40% acrylamide/bisacarylamide, lSml 

10 x TBE pH8.2 - 8.9, 0.15g ammonium persulfate, H20 to 150ml) . The 

electrophoresis was proceeded at 75 watts for around 3 hours and the gel was fixed, 

dried and exposed to X-ray film (Kodak XAR-2 or AGFA CUR1X) as described 

below (section 2.2.11). 

2.2.10 Direct Sequencing of Double PCR Products The PCR fragment for 

subsequent sequencing reaction was amplified in a larger volume (50p1). The PCR 

product was then purified by treating the reaction mixture with Gene-Clean Kit (Bio 

101, Inc.) and eluting with 1 x TE buffer (10mM Tris.Cl pH7.4, 1mM EDTA, pH8.0) 
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in order to remove the non-incorporated nucleotide triphosphates and primers. The 

sequencing was performed using the Sequenase Kit from United States Biochemical 

Corporation (USB), following a modification of the protocol of Winship (Winship, 

1989). In this protocol, the use of culture grade DMSO at 10% in the sequencing 

reactions is recommended to enhance the intensity of the signal and to reduce 

background. Briefly, the purified PCR product (100-200ng) was mix with annealing 

mix (10% DMSO; 200mM Tris.HC1 pH7.5; 100mM MgC12; 250mM NaCl; lOng 

primer) and was boiled for 3 minutes to denature the template. This mixture was 

then immediately put on ice for 10 minutes to minimise template renaturation. The 

cooled annealed template/primer was mixed together with extension mix (0.025M 

DTT, 1 in 20 diluted labelling mix (7.5.il dGTP, 7.5pl dCTP, 7.5j.d dTTP), (x-35S-

dATP and 2 units Sequenase) on ice and aliquoted into appropriate pre-warmed 

(37°C) termination mix (80pM dNTP [dGTP, dATP, dCTP, dTFP]; 8iM ddNTP 

[ddGTP, ddATP, ddCTP, ddTTP, respectively]; 50mM NaCl and 10% DMSO). The 

termination was stopped after 5 minutes incubation at 37°C by adding 4pl of Stop 

solution (95% Formamide, 20mM EDTA, 0.1% Bromophenol Blue and 0.1% Xylene 

Cyanol FF). The resulting sample was heated up to 95°C for 2 minutes before loaded 

on a 8% denaturing polyacrylamide gel. 

2.2.11 Analysis of Nucleotide Sequence of Double PCR Product by 

Polyacrylamide Gel Electrophoresis Eight percent wedge sequencing gels were 

used (0.4mm at the top to 1.2mm at the base) as they can give better resolution and 

allow more nucleotides to be read. For 150m1 of 8% gel, 75g urea (IBI), 12g 
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acrylamide (BDH), 0.6g bis-acrylamide (BDH), 0.15g ammonium persulphate (Sigma) 

and 15m1 10 x TBE (pH 8.8 - 8.9) were dissolved in 50m1 of distilled water. Twenty 

microlitres of TEMED (N,N,N'N'-Tetramethylethylenediamine, Sigma) was added 

before pouring the gel between thoroughly ethanol cleaned wrapped glass plates. Just 

before loading, heat denaturing the sequencing sample at 95°C for 2 minutes, and 

then load onto a pre-run (10 minutes) polyacrylamide gel. Electrophoresis was 

applied at 75 watts until the bromophenol blue reached the bottom of the gel 

(equivalent to 45 base pairs away from the 5' of primer). Following electrophoresis, 

the gel was fixed by soaking in 1 litre of 5% acetic acid and 5% methanol for 15 

minutes, followed by a second wash in another litre of fixative for another 10 

minutes. The gel was then dried on a gel dryer (Model 583 Gel Dryer, BlO-RAD) 

for 2-3 hours at 80°C, and exposed to Xay film (Kodak XAR-2 or AGFA CURIX) 

in a cassette for about 15-24 hours. Films were developed in a automatic X-ray film 

processor (X-ograph Xl). As one example, Figure 2.3 shows a developed film which 

had been exposed to a sequencing gel for 24 hours. The sequences on the film are 

part of the V4 region of HIV-1 in patient 82 (for more sequence detail, see Chapter 

4). 

2.2.12 Sequence Alignment, Determination of Nucleotide Distance and 

Phylogenetic Tree Construction The nucleotide sequences obtained from the 

developed films were collected and aligned using PILEUP and LINEUP programs on 

the University of Wisconsin GCG package (Devereux et al., 1984). The PHYLIP 

package (version 3.4) of programs provided by Dr. J. Felsenstein (Department of 

72 



Figure 2.3 Direct nucleotide sequencing of double-stranded PCR products. The PCR 

products were derived from single molecules of HIV cDNA, reverse transcribed from 

viral RNA and limit diluted prior to PCR amplification. Sequencing reaction was 

carried out using HIV primer (x) (see section 2.1.4). Sequences shown are part of 

the V4 region of HIV-1 in patient 82 (for more sequence details, see Chapter 4). 
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Genetics, University of Washington, Seattle) was used to perform phylogenetic 

analysis (Felsenstein, 1988). First, a matrix of nucleotide sequence distances were 

estimated using the program DNADIST. Average sequence diversities both within 

and between samples could be calculated on the basis of this matrix. Phylogenetic 

trees were constructed in two ways; first, by clustering the matrix of nucleotide 

sequence distances under the neighbor-joining algorithm of Saita and Nei (PHYLIP 

program NEIGHBOR) and second, by the more complex (and probably more reliable) 

maximum likelihood method (PHYLIP program DNAML). The evolutionary models 

underlying these different methods of phylogenetic reconstruction are outlined in the 

documentation to PHYLIP (Felsenstein, 1988) (see section 1.2). 

2.2.13 Slot blot of Viral RNA A piece of HybondTM-N membrane (11cm long and 

3.5cm wide, Amersham) was soaked briefly in distilled water and then in 20 x SSC 

(3M NaCl [175g/1], 0.3M Na3citrate.2H20 [88g/l], adjust Ph to 7.0 with 1M HC1) for 

30 minutes. Meanwhile, clean the manifold carefully with 0.1M NaOH and then 

rinse it well with distilled water. The wet HybondTM-N membrane was put onto the 

manifold avoiding any air bubbles between the manifold and the membrane. Clamp 

the parts of the manifold together, and connect the vacuum unit to a vacuum pump. 

The slots were washed twice with 10 x SSC by applying gentle suction before 

loading the samples. The pre-treated (in 50% formamide; 7% formaldehyde and 1 

x SSC solution at 68°C for 10 minutes and cooled on ice) HIV viral RNA (HTVJIJ2, 

HIV and HIV) for cDNA synthesis was serially diluted (in DEPC-treated 

sterilized water) in two-fold steps and were deposited onto a HybondTM-N 
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hybridization transfer membrane by vacuum suction on a 24 slots HYBRISLOTTM 

MANIFOLD (142.2cm long and 6.3cm wide, BRL). A dilution series of known 

amounts of the pre-treated (95°C for 10 minutes and chilled on ice) HIVBHO1R.3 

plasmid DNA were also slot blotted onto the same membrane as a quantification 

standard. After all the samples have passed through the filter, the slots were rinsed 

again twice with 10 x SSC. The HybondTM-N membrane was removed from the 

manifold, and allow it to dry completely at room temperature followed by UV 

fixation for 3 minutes. The membrane, at this stage, is ready for hybridization. 

2.2.14 Probe Synthesis The selection of an appropriate combination of label and 

labelling method for a particular experiment depends mainly on the level of 

sensitivity and resolution required. For most filter hybridization applications, 

sensitivity is considered to be of greater importance. Accordingly, for maximum 

sensitivity in filter hybridization, phosphorus-32 is the most widely used radiolabel 

as it is available at high specific activity and can be detected with a high degree of 

efficiency. Several methods are available for making probes. End-labelling with 

polynucleotide kinase has been employed with short oligonucleotides, whereas longer 

DNA fragment have been labelled by nick translation and random priming methods. 

2.2.14.1 Random Priming Method In this work, random primer 

(Multiprimer) labelling method was employed which was firstly suggested by 

Feinberg and Vogelstein (Feinberg et al., 1983). This approach utilizes the ability 

of DNA polymerase I to synthesize a new DNA strand complementary to a template 

strand, starting from a free 3'-hydroxyl. In this case the latter is provided by random 
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hexanucleotides derived either from DNase I digestion of calf thymus DNA or by 

oligonucleotide synthesis. The 'Kienow' fragment of DNA polymerase I is used 

because it lacks the 5'-3' exonuclease activity which would otherwise degrade the 

primers. The absence of the 5'-3' exonuclease also ensures that incorporated 

nucleotides are not subsequently removed as monophosphates. Random primer 

labelling reactions can be carried out at room temperature or at 37°C for about 30 

minutes. Linear single-stranded or denatured double-stranded DNA molecules are 

usually used as substrates. Covalently-closed circular DNA can also be used, but 

slightly lower incorporations are obtained. In this work, the HIVBH10.R3 plasmid 

DNA (50ng in DEPC-treated sterilized water) was denatured by boiling for 3 minutes 

and chilled on ice. The mixture of 6u1 of OLB3, 1.21.11 of 10mg/mi of bovine serum 

albumin (BSA), 51.11  of [ct-32P] dATP and 1 unit of Kienow fragment (BCL) were 

then added to denatured DNA template and incubated at 37°C for 30-60 minutes. 

This procedure routinely allows to obtain specific activities of 1 x 109  dpm/ug. 

2.2.14.2 Removal of Unincorporated Nucleotides and Proteins In general, 

the denatured labelled DNA can be used directly as a hybridisation probe without 

stopping the reaction or removing unincorporated label. Sometimes, when only very 

small amount of target RNA or DNA molecules are present on the hybridization 

membrane, further purification of labelled probe is necessary in order to get rid of 

any possible interference either from unincorporated nucleotides and from protein 

OLB is made up by SOul solution A (1.25M Tris-HCl pH8.0; 0.125M MgCl2; 
25mM-mercaptoethanol; 0.5mM each of dGTP, dTTP, dCTP), 125u1 solution B (2M 
HEPES buffer titrated to pH6.6 with NaOH) and 75u1 solution C (random 
hexanucleotides OD2 = 90 units/ml in 3mM Tris-HC1 and 0.2 mM EDTA, pH7.0) 
(Feinberg and Vogeistein et al., 1984). 
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debris. In the latter case, the labelling reaction is stopped by adding 1!A1 of 0.5M 

EDTA solution followed by phenol and chloroform extraction. The aqueous phase, 

which contains DNA probe, is precipitated with 400 of 5M ammonium acetate 

(NH4)2Ac and 200.il of 100% ethanol at -70°C for about 30 minutes to an hour. The 

precipitated DNA was collected by centrifugation at 4°C for 10 minutes and finally, 

the pellet was washed with 70% ethanol and resuspended in 100.il of distilled water. 

This relatively clean probe was boiled for 5 minutes before it was put into use in 

hybridization process. 

2.2.15 Hybridization with Homologous DNA Probe The hybridization reaction 

is influenced by a number of factors, some related to the nature of the probe used, 

others to the general conditions under which the reaction is carried out. In general, 

to maximise the rate of annealing of the probe with its target, hybridizations are 

usually carried out in the presence of 10% dextran sulphate or 10% polyethylene 

glycol, in a solution of high ionic strength at a temperature that is 20-25°C below the 

melting temperature (Tm4). This is especially true when oligonucleotide probes are 

used. To minimize background problems, pre-hybridization with a blocking agent (5 

Denhardt's reagent5, 0.5% SDS, and lOOugIml denatured, fragmented salmon 

sperm DNA) should be employed and the washing conditions should be as stringent 

Thi (melting temperature) : the temperature at which 
hybrids of a particular probe and its complementary 
sequence are 50% dissociated or denatured. Ttn is mainly 
dependent on ionic strength, base composition and 
denaturing agents. 

(0.1% BAS-Pentax Fraction V; 0.1% Ficoll and 0.1% polyvinylpyrollidone) 
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as possible. Pre-hybridization and hybridization with homologous DNA probe was 

performed in rather stringent conditions (0.5M Na2HPO4/NaH2PO4, pH 7.2;, 1mM 

EDTA and 7% SDS at 65°C overnight) to reduce non-specific annealing. Non-

specifically bound nucleotides were removed by washing the membrane twice with 

pre-warmed (57°C) washing solution (40mM sodium phosphate Na2HPO4INaH2PO4, 

pH 7.2;, 1mM EDTA and 1% SDS) for 20 minutes each. Filters were then ready for 

autoradiography. 

2.2.16 Autoradiography Damp filter was placed on a sheet of Saran Wrap and 

exposed to X-ray film (Kodak XAR-2 or AGFA CURIX) in a cassette. The exposure 

time is normally 16-24 hours at -70°C with an intensifying screen. 

in 
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3.1 Summary 

A highly sensitive and reliable RNA polymerase chain reaction method has 

been developed which can be used to detect, quantify and sequence cell-free HIV 

RNA directly from the plasma or serum of seropositive individuals. Plasma from 10 

out of 12 haemophiliacs tested was found to contain detectable levels of HIV- 1 RNA 

[geometric mean value: 1.2 x io copies for CDC (Centres for Disease Control) group 

II patients, 5.5 x iO copies for CDC group IV patients]. The presence of cell-free 

circulating virus in both symptomatic and asymptomatic individuals suggests that 

viral replication continues throughout the course of infection. The same procedure 

has also been applied to detect, quantify and sequence HIV-1 RNA in two batches 

of unheated commercial factor VIII concentrates distributed in 1981 and 1983. The 

sequences obtained revealed a closer relationship to North American than to African 

variants of HIV- 1. The amounts of HCV RNA present in factor VIII concentrates 

are substantially higher than those of HIV RNA. 

3.2 Introduction 

By means of the polymerase chain reaction (PCR), HIV provirus (DNA) can 

not only be detected (Ou et at., 1988; Saiki et at., 1988), but also accurately 

quantified directly in peripheral blood mononuclear cells (PBMCs) of HIV- 1 positive 

individuals (Simmonds et al., 1990a; Oka et al., 1990). However, the detection of 

HIV DNA in PBMCs does not indicate whether such cells are expressing viral RNA 

sequences or whether free virus is present in plasma or other body fluids. Recently, 

several investigators have coupled a reverse transcriptase (RT) reaction step to the 



polymerase chain reaction (RNA PCR) and have successfully detected HIV RNA 

both in cultured HIV-1 infected cell lines and in PBMCs from HIV-1 seropositive 

subjects (Hart et al., 1988; Byrne et al., 1988). Unfortunately these reports have not 

included an assessment of the sensitivity of the methods used, either in terms of the 

efficiency of the reverse transcriptase reaction or of minimum number of HIV RNA 

molecules required to produce a positive PCR signal. Therefore, these studies, 

though capable of measuring relative quantities, have not determined the absolute 

amounts of RNA present in the study subjects. In this work, a highly sensitive and 

quantitative RNA PCR assay has been developed. After reverse transcription, cDNA 

was amplified in two sequential PCRs. As the nested PCR can detect single 

molecules of target DNA sequence (Simmonds et al., 1990a), quantitation of HIV-

specific cDNA, and by implication of HIV RNA sequences present in the original 

samples, can be achieved as described previously for provirus quantification in 

PBMCs (Simmonds et al., 1990a). The absolute quantification of RNA requires 

knowledge of the efficiency of the reverse transcriptase reaction. This was obtained 

by estimating the yield of cDNA from known amounts of specific RNA sequences 

after reverse transcription. These measurements were made both with a transcribed 

HSV tk (herpes simplex virus type 1 thymidine kinase gene) RNA template amplified 

with HSV tk specific primers, and HIV RNA template amplified with env-gene 

specific nested primers. The efficiency of the RNA PCR was studied under different 

reaction conditions and the optimum has been established. The method was then 

used to detect and quantify the amount of BuY RNA present in plasma of HIV- 

infected individuals. The amount of circulating virus in infected patients was 



compared with clinical status, CD4+ lymphocyte counts and the amount of virus in 

PBMCs. The presence of HIV- 1 RNA and HCV (hepatitis C virus) RNA sequences 

in 8 batches of unheated factor VIII concentrate distributed between 1981 and 1984 

has also been investigated. The levels of HIV and HCV RNA in the factor VIII was 

then compared. HIV RNA was detected in two and HCV in six out of eight batches 

of commercial factor VIII concentrates distributed in 1981 and 1983 (including the 

two positives for HIV RNA). The identity of the HIV RNA was confirmed by 

nucleotide sequencing the PCR product. Sequences obtained in the poi and env 

regions from these concentrates provide some information on the geographical origins 

of the infected blood donors. 

3.3 Results 

3.3.1 Optimizing the Reaction Conditions of Reverse Transcription The known 

amount of HIV RNA, measured by its optical density at 260nm, was reverse 

transcribed under the different reaction condition. The cDNA product was then 

serially diluted (10-fold) before the subsequent double PCR reaction. The last 

dilution at which amplified DNA was detectable by agarose gel electrophoresis and 

ethidium bromide staining was recorded and used subsequently to find out the better 

reaction condition. Firstly, the reverse transcription reaction was carried out at 

different temperature, 37°C or 42°C and for 3 different periods (10 minutes., 20 mm. 

and 30 mm.). The dilution limit of the reaction which was carried out at 42°C for 

30 minutes was at least 10 fold lower than for reactions carried out under the other 
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conditions (Fig. 3.1, lanes 19 to 24). The longer period of time (one or two hours) 

were applied to the same reaction condition (42°C) and that seems to not increase the 

yield of cDNA products (data not shown). Interestingly , the presence of carrier 

RNA (sheep fibroblast total RNA) in 0.5 ug to 1.5 ug quantities in the reaction buffer 

can greatly enhanced the reverse transcription efficiency with both gag and env anti-

sense primers (Fig. 3.2). However, an inhibitory effect of carrier RNA was also 

observed if a large amount was present in the reaction (Fig. 3.2). Therefore, the lug 

quantity of carrier RNA is included in all of the subsequent reverse transcription 

reactioims carried out in this work. The presence of DMSO and BSA in the buffer 

seems also to increase the yield of the RT reaction (data not shown), and therefore 

were included in the reaction mix (Methods section 2.2.5). 

3.3.2 Reverse Transcriptase Reaction Efficiency from Plasmid RNA 

Transcription RNA was transcribed by T7 RNA polymerase from the construct 

pSV2gpt, containing a mouse promoter region and coding region of the HSV type 1 

thymidine kinase gene (HSV ) (see section 2.2.6), and quantified by 

spectrophotometry at 260nm. cDNA synthesized from 8ng (nanogram, iO gram) of 

HSV tk transcript was serially diluted prior to single PCR amplification with - 

specific primers. A dilution containing cDNA synthesized from 16 fg RNA gave a 

positive result and the next dilution containing cDNA from 8 fg was negative (Fig. 

3.3, lanes 1 to 11). Using the estimated molecular mass of the RNA transcript (2400 

base x 330g/mol per base), the minimum detectable amount of cDNA corresponded 

to an input of 1.2 x 104  copies of RNA. This result was compared with the results 
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Figure 3.1 Difference in Efficiency of the Reverse Transcription Reaction under Various Reaction Conditions. cDNA were ten-fold 

serially diluted prior to PCR amplification. Lanes 1 to 6, and 7 to 12: cDNAs were synthesized at 37°C for 20 minutes and 30 minutes, 

respectively. Lanes 13 to 18, and 19 to 24: cDNA were synthesized at 42°C for 20 minutes and 30 minutes, respectively. PCR 

amplification of cDNA were carried out in two consecutive steps using nested primers (outer primer pair are [w], [z] and inner ones 

are [x] and [y]).  The products of the second reaction were analyzed by agarose gel electrophoresis and ethidium bromide staining (see 

section 2.2.7). 
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Figure 3.2 Difference in HIV RNA Detection Efficiency with and without Carrier RNA. cDNA were ten-fold serially diluted before 

double PCR amplification. Lanes 1 to 6: no carrier RNA presented in the reverse transcription reaction mix. Lanes 7 to 12: 0.5ig 

carrier RNA was added to the reaction mix. Lanes 13 to 18, 19 to 24, 25 to 30, ljig, 1.5.tg and 3pg of carrier RNA were present during 

reverse transcription. PCR amplification and detection of PCR products were carried out as described in the Legend to Figure 3.1. 
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of single PCR amplifying a dilution series of cloned tk DNA. The cut-off point was 

5.12 fg (femtogram, 10 15  gram) for the tk plasmid (Fig. 3.3, lanes 12 to 22). Using 

the known molecular mass of the tk plasmid DNA (7270 bp x 660g/mol per bp), this 

figure corresponded to 630 molecules of tk plasmid, or 1260 copies of target 

sequences (630 x 2 for double-stranded DNA). The efficiency of the RT reaction, 

in terms of the number of molecules of amplifiable cDNA synthesized from the RNA 

template, is the ratio of the two figures obtained above (1260/12,000), or 

approximately 10%. 

3.3.3 Reverse Transcriptase Reaction Efficiency Using HIV RNA Six HIV-1 

RNA samples were extracted from culture supernatant of C8166 cells infected with 

HIV, HIV -1  and HIV 2  (see section 2.2.4). The viral RNA was slot blotted 

and quantified by hybridization with HIVBH1O.R3 plasmid probe, in comparison with 

a dilution series of known amount of HIVBH10.R3 DNA (Figure 3.4). Reverse 

transcription reactions containing 19.8, 9.9, 7.0 and 0.6 pg (picogram, 1012  gram) 

HIV viral RNA, 3.0 pg HIV 	viral RNA and 1.5 pg HIV 2  viral RNA were 

then carried out with an HIV V4-V5 outer anti-sense primer (primer z; see section 

2.1.4 and Figure 2.1). The number of copies of cDNA in each sample after reverse 

transcription was estimated by limiting dilution prior to PCR amplification with 

nested primers (outer pair [w] and [z] and inner pair [x] and [y],  see section 2.1.4 and 

Figure 2.1). 

The frequency of positive reactions at limiting dilution was used to calculate 

the molecular concentration of cDNA using a Poisson correction for positive reactions 
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Figure 3.3 Measurement of Reverse Transcriptase Reaction Efficiency from Plasmid RNA Transcription. Lanes 1 to 11: two-fold serial 

dilution of cDNA synthesized from 8ng of HSV tk transcript before single step PCR amplification with a pair of HSV tk-specific 

primers. Lanes 12 to 22: two-fold serial dilution of known amount of plasmid tk DNA, prior to single PCR amplification. PCR 

amplification and detection of PCR products were carried out as described in the Legend to Figure 3.1. 
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Figure 3.4 Quantitation of viral RNA by slot blot and hybridization method (for 

details see sections 2.2.13 and 2.2.15). Lanes 1-12, two-fold serial dilutions of 

known amount of HIVBH1O.R3 DNA (3ng, 1.5ng ... lpg in slot 1, 2... 12, 

respectively). Lanes 13-16, two-fold serial dilution of viral RNA samples from 

HIV; lanes 17-20, from HIV; lanes 21-24, from HIV. 
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which contain more than one template molecule. [The mean number of template 

molecules per reaction (m) is equal to -In(fo), where f0  is the fraction of negative 

reactions.] The molecular mass of one copy of HIV-1 RNA was 6.5 ag (attogram, 

10 18  gram) (Simmonds et al., 1990a) from which the RT reaction efficiency was 

calculated. In each case, 24 (or 20) replicates were tested at limiting dilution, and 

the estimates were reasonably reproducible (Table 3.1). For the first sample for 

instance, at a 1 in 78,125 dilution, there were two PCR positives out of 24 replicates. 

Using the Poisson formula to correct for multiple positives, the total number of 

molecules of HIV RNA detected at this dilution was estimated to be 2.1. As the 

molecular mass of single HIV RNA was 6.5 ag, the total amount of cDNA 

synthesized by the reverse transcription reaction was therefore equivalent to 1.06 pg 

(2.1 x 6.5 x 106  x 78,000). The ratio of the amount of HIV RNA reverse transcribed 

and the initial amount of HIV RNA available for reverse transcription gave the RT 

efficiency (1.06/19.8 = 5.3%). The results of dilution and distribution of six 

independent eDNA reactions after double PCR amplification were shown in Table 

3.1, along with the calculated RT efficiencies. 

3.3.4 Quantitation of HIV Particles in the Plasma or Serum of Seropositive 

Individuals 200-500ul of plasma samples from 12 haemophiliacs was diluted in PBS 

(phosphate-buffered saline) and centrifuged at 20,000 x g for 2 hours at 4°C to pellet 

virus (for details see section 2.2.4). 	The pellet was resuspended in 

guanidinium/phenol solution (Chomczynski et al., 1987). RNA was purified as 

described in section 2.2.4. and finally dissolved in 20u1 of DEPC-treated distilled 
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Table 3.1 Titration of lilY cDNA after RT reaction by dilution, distribution and double PCR amplification. 



Sample (pg) 

Amount 
of RNA 
inRT 
reaction (pg) 

Dilution factor of cDNA 
(no. positives/no, tested) 

125 625 3125 15625 78125 390625 

Calculated 
amount of 	6 RT 
cDNA (pg) 	efficiency 

RF1 

RF2 

RF3 

RF4 

IIIB 

HXB2 

19.8 ND 4/4 4/4 3/4 2/24 0/4 1.06 5.4 

9.9 4/4 4/4 4/4 4/24 0/4 0/4 0.44 4.4 

7.0 4/4 4/4 4/4 4/24 0/4 0/4 0.44 6.3 

0.6 3/4 5/24 0/4 0/4 0/4 0/4 0.02 3.3 

3.0 4/4 3/4 1/4 2/20 0/4 ND 0.21 7.0 

1.5 2/4 2/4 4/20 0/4 0/4 ND 0.09 6.0 

ND, not done 



water. 7u1 of this RNA solution was treated with RNAse-free DNAse first and then 

reverse transcribed in a 20u1 volume of reverse transcription reaction mix (for details 

see section 2.2.5). lOul of cDNA was then detected and quantified in a nested PCR 

reaction using primers z,w and x,y (see figure 2.1). 

Plasma from 10 out of 12 haemophiliacs contained detectable levels of HIV- 1 

RNA. The threshold of detection can be calculated to be 228-571 (on average 400) 

copies of RNA per ml plasma, based on the volume of plasma from which RNA was 

extracted, the input volume of RNA in the reverse transcription reaction, the 

proportion of cDNA used in the first PCR reaction and the efficiency of reverse 

transcription (e.g. 1 x 103/{200-500u1[plasma used for RNA extraction] x 7/20[input 

volume of RNA] x 10/20[input  of cDNA in subsequent PCR reaction] x 5% [reverse 

transcription efficiency) = 228-571 viral RNA per ml of plasma). The estimated 

concentration of virus particles in plasma ranged from 1 x iO to 3 x 10 copies per 

ml in the positive samples (Table 3.2), with a geometric mean value of 1.2 x iO 

copies for CDC group II patient, and 5.5 x iO copies for CDC group IV patients. 

There was a significant positive association between the concentration of viral RNA 

in plasma and the proviral abundance in PBMC DNA. The correlation coefficient 

between the log-transformed RNA and DNA estimates is 0.74 (0.01<P<0.02), 

indicating that over 50% of the variance in DNA proviral abundance can be explained 

by the RNA concentrations (Dr. Andrew.J. Leigh Brown, personal communication). 

Thus the patients with the lowest proviral abundance (83 and 84 with an average of 

one provirus in 14,000 and 10,000 PBMC, respectively) had less than 200 copies of 

RNA per ml in their plasma. On the other hand in patient 82 and 87, relatively 
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Table 3.2 Comparison of the amount of circulating virus from patients' plasma with the amount of provirus in PBMCs, plasma p24 

antigen concentration, CD4+ counts, and clinical status. 



Patient 
Virions per ml 

in plasma 

Number of 
cells per 

single provirus 

p24 
antigen 
(pg/mi) 

CD4+ 
lymphocytes 
(x 10 9/1) 

Zidovudine 
treatment 
(months) 

Disease 
stage 
(CDC) 

p83 <10 2  14000 - 0.27 - II 

p84 <10 2  10000 - 0.05 - II 

p77 1.26 x 10 3  2500 - 0.07 14 IVA 

p56 1.29 x 10 3  ND 15 0.51 - II 

p74 3.49 x 10 3 2000 - 0.38 10 IVC2 

p95 3.50 x 10 3  455 - 0.06 - IV 

p28 3.97 x 10 3 2718 300 0.09 - IV 

p79 4.39 x 10 3 3300 63 0.21 15 IVC2 

p70 6.12 x 10  3 ND - 0.39 - II 

p82 8.53 x 10 3  700 53 0.65 - II 

p72 2.76 x 10 4  2720 - 0.33 - IVC 

p87 2.96 x iO 4  589 20 0.05 17 IVC/E 



higher concentrations of virus (8.5 x 103  and 3.0 x 10 per ml plasma) were 

associated with high frequencies of provirus-bearing PBMC (one in 700 and one in 

589 PBMC infected, respectively). However, no correlation was found, regardless 

of the stage of infection, between the amount of virus in plasma and the level of p24 

antigen. Five patients who were negative for p24 antigen (70, 72, 74, 77 and 95) 

contained over 1.0 x 103  virus particles per ml plasma. Furthermore, no correlation 

between CD4+ lymphocyte depletion and amount of circulating virus was found in 

these individuals. For example, relatively normal CD4 counts were found in p82 

despite containing 8.5 x iO copies of viral RNA per ml. Conversely, p84 had low 

CD4 counts (0.05 x io per litre) yet no detectable circulating virus. Zidovudine 

treatment appeared to have had little long term effect on the level of circulating virus. 

Those on long-term treatment (p74, 77 and 79) contained comparable levels to the 

two untreated symptomatic individuals (p95 and 72). 

3.3.5 Detection and Sequencing of HIV-1 in Factor VIII Concentrates Eight 

batches of factor VIII concentrates, including both commercial and NHS (National 

Health Service)-produced material, were obtained from Dr. G. Kemball-Cook 

(National Institute for Biological Standards and Control [NIBSC]). All batches were 

unheated and prepared before the introduction of donor screening for anti-HIV 

antibodies. They were distributed in the United Kingdom between 1981 and 1984. 

All factor VIII concentrates were reconstituted according to the manufacture's 

instructions. 

RNA was prepared from these batches of factor VIII by high-speed 



centrifugation at 20,000 x g and solubilization of the virus pellets with 

guanidiniumlphenol solution as described in section 2.2.4. One third of each RNA 

samples was reverse transcribed with HIV p0! primer (1), or env primer (z) or HCV 

primer ED2, respectively. One-quarter of the cDNA was amplified by PCR with 

corresponding nested primers (see sections 2.2.5 and 2.2.7). Two factor VIII batches 

(both commercially derived) out of eight tested gave positive results for HIV- 1 RNA; 

in one case with the env primers, the other with the pol primers. Single molecules 

of target cDNA were isolated by limiting dilution of the cDNA and were directly 

sequenced as described in section 2.2.10. In the env region, two HIV RNA 

sequences, obtained from batch no. 1, were identical in the V4 and C3 regions. The 

sequences were distinct from those of all published HIV isolates and from any HIV 

sequence obtained previously in our laboratory (Balfe et al., 1990; Simmonds et al., 

1990a). This is particularly apparent in the V4 hypervariable region, which is clearly 

distinct from all published sequences (see Figure 3.5). The C3 region showed its 

92% similarity with HlV 21  90% with HIV, and 77% with HIVSF2. In the poi 

region, two HIV RNA sequences obtained from batch no. 8 were also identical and 

distinct from any published sequence (Figure 3.5). In this region, the sequence was 

96% identical to H1V 21  94% with HIV and HIVSFZ  and 92% with HIV 6. The 

amount of RNA present in this material was close to the threshold of sensitivity for 

the RNA PCR method used. Allowing 5% efficiency of reverse transcription with 

these primers, the calculated amount of FIIV RNA in both batch of reconstituted 

factor VIII was only 2.5 copies per ml. 
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Figure 3.5 Comparison of sequences detected in factor VIII with those of known geographical variants of HIV-1. (a) Nucleotide and 

amino acid sequences of the V4 and C3 region (em') of RNA detected in factor VIII batch No. 1. (b) Sequences in two regions of pol 

f RNA from batch No. 8. The location of these sequences in the genome of the HIVIIIBB2  is indicated. Differences between the 

factor VIII sequences and those of the HIVRF  and HIV L  isolates from that of HIVIIIBJIJB2  are shown in the body of the figure. Amino 

acid replacement from lysine to arginine at position 70, which conferring AZT resistance, is underlined in Pol 1 Region. 



(a) V4/C3 Region 

FVIII...............aattcaacacaactg ................a.ggt ........ a ------------------- a.atcacactc .....a..................... 
...AenSerThrGlnLeu ............... AenGly ............. ..............AsnlleThrLeu ........................... 

RF.........................................................................g.....a.---  ..........a..................... 
............................................................Gly. . .Asn.................................... 

MAL...........a... - -----cagaataatgg.gca. .acta---.. .aat.gcac. .a .....c .......... .t. . .- --------a ..................... 
.........GlnAnAnGlyAlaArgLeu ...... AenSerThrGlu.. .Thr ................................................... 

HXB2 TTTAATAGTACTTGG --------------- TTTAATAGTACTPGGAGP --- ACTGAAGGGTCAAATAACACTGAAGGAAGT--- GACACAATCACCCTCCCATGCAGAATAAAACAA 
PheAenSerThrTrp --------------- PheAsnSerThrTrpSer --- ThrGluGlySerAnABnThrGluGlYSer --- A9PThrIleThrLeUPrOCYSArgIleLY9Glfl 
7394 	 7490 

YVIII .g ..................................a ......................................................... 
.Glu ..............................Arg ......................................................... 

RF. . .g..............g .............................................a... .at ..................a .................g... 
.Val ............Glu ..........................................Lys. . .Ile ....................................... 

MAL........t ............ac .........t .................. gca ... tc. .c.ac. .. .t ...................a ...................a 
....Thr ...........................Ala. . .Val. . .Asn. . .Leu ..................Ile .................. 

HXB2 ATTATAAACATGTGGCAGAAAGTAGGAAAAGCAATGTATGCCCCTCCCATCAGTGGACAAATTAGATGTTCATCAAATATTACAGGGCTGCTATTAACAkGAGATGGTGGT 
IlelleAsriNe tTrpGlnLysValGlyLysAlaMetTyrAlaPrOPrOIleSerGlYGlflhleArgCYBerSerA5flI leThrGlyLeuLeuLeuThrArgAepGlyGly 
7490 	 7601 



(b) Pol 1 Region 

viii ...........c ............................................a.a ............ ................................ a ................... ..................................................sor  .............................. Arg .................. 
RP 

MAL 	.... .................................................c ....................ga..........g ........a...........t. .t ............ ........................................................An............................................. 

HXB2 
GlyProOluAsnProTyrAonThrProValPheAlaIleLyaLyaLysAspSerThrITaTrpArgLyaLeuValAspPheArgOluLouAonLysArgTbrGlnAopPbeTrpGluValGln  
2699 	 2822 

Pol 2 Region 

FvIII ...............................................................................C .........a... ............................................Ser............ 
RP................a ...............a............................................t ............... 

Tye ............Olu ............................................................ 
HAL ........a..c .......C.a .......... a .....c..&..0 ............... ........... a ..... t ........... a..a 

Thri.y9 ......Glu ............................................................ 
HXB2 ATCTTAGAOCCTTTTAGAAAACAAAATCCAGACATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAG  

I leLeuGluProPheAraLygGlnAaflPrOAaPI leValIleT rG1OTYrMetACPAePLeUTYrV&lG1YSerAaPLeuGluI leGlyGin 
3047 	 3140 

?VIII 	....................a ...................a.......t .......C .................................... 
Lye ......Phe .......................................... 

RF.......t ............a......9 ..........a.a ......t .......... a ..... a....................... 
Ile ..................Glu .........Lye ......Phe .......................................... 

HAL .................... a. .a. . .g ....... a .... aa ......t ...................a..............C .....t... 
Olu .........Lye ......Ph .......................................... 

HXB2 CATAGAACAAAAATAGAGGAGCTGAGACAACATCTGTTGAGOTGGGGACTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCCTT  
HisArgThrLyalleGluGluLauArgGlnHisLauLeuArgTrpGlyLauThrThrProAspLyeLynHioGlnLysOluProProPheLou  

3140 	 3233 



3.3.6 Detection and Quantitation of HCV RNA in Factor Vifi Concentrates Six 

out of eight batches of factor VIII concentrate tested contained detectable levels of 

HCV RNA. All the commercial-derived batches were RNA PCR positive for HCV, 

including the two positive for HIV RNA. However, two National Health Service-

derived batches were negative for HCV RNA. The amounts of HCV RNA present 

in these factor VIII concentrates were substantially higher than that of HIV, in two 

batches that were quantified by limiting dilution method, between 30,000 and 100,000 

copies of HCV RNA per ml were found (Simmonds et al., 1990b). 

3.4 Discussion 

3.4.1 Detection and Quantitation of Cell-free HIV RNA in Plasma of HIV-1 

Seropositive Individuals A highly sensitive and reliable RNA PCR method was 

developed which can be used to detect, quantify and subsequently sequencing directly 

from the patient plasma and serum without any in vitro cloning. By this means, the 

errors introduced by Taq polymerase during the PCR amplification process can be 

avoided. An efficiency of around 5% was obtained in the RT reaction of HIV-1 

template and primers (spacing 480 bp). The overall efficiency of the procedure 

declined with wider primer spacing; amplification of cDNA using primer pairs 

separated by 858 bp gave an efficiency of 1.8% (data not shown). 

All plasma samples used in these experiments were obtained during 1988 and 

1989 from HIV-seropositive haemophiliacs who were infected in 1984 (Ludlam et al., 



1985). Five were asymptomatic and seven had AIDS or AIDS-related complex. Of 

the five asymptomatic (CDC group II) patients, three were RNA PCR-positive, while 

all seven CDC group TV patients were positive for RNA PCR (Table 3.2). There was 

no correlation between RNA titre and presence of circulating p24 antigen. All 

samples that were p24 antigen-positive were positive in the RNA PCR, however, high 

level of viral RNA sequences were also found in some p24 antigen-negative plasma 

samples (p70, 72, 74 and 77) while similar or lower amounts of circulating RNA 

have been found in other plasma samples that were antigen-positive (Table 3.2). 

Previous studies have shown that p24 antigen present in patient plasma is 

readily detectable at certain stage of HIV infection. Antigenaemia is detectable for 

several weeks on primary infection with HIV (Goudsmit et at., 1986; Allain et at., 

1986; Gaines et al., 1987), although this normally subsides on development of 

specific antibodies. However, antigen may subsequently reappear, often in 

association with disease progression (Allain et at., 1986). One problem with 

quantifying circulating HIV by this method is that the viral proteins may be partially 

or completely complexed with anti-HIV antibody, and thus be undetectable by the 

conventional antigen assay, but positive after prior dissociation of the immune 

complexes (Lange et at., 1987; Ujhelyi et at., 1987). Antigen levels therefore reflect 

the balance of virus and antibody production. In this study, high levels of viral RNA 

sequences in antigen-negative plasma samples were frequently found (patients 77, 74, 

95, 70, and 72), yet similar or lower amounts of circulating RNA have been found 

in other plasma samples that are antigen-positive (patients 56, 28, 79, 82, and 87). 

This is a clear indication that differences in antibody levels do play a part in the 



variability in detection of p24 antigen. In other studies, a similar lack of correlation 

between p24 antigen levels and titres of infectious virus in plasma has also been 

reported (Ho et al., 1989; Coombs et al., 1989). 

Compared with the p24 antigen assay, the RNA PCR method provides a direct 

way to detect and quantify virus production regardless of immune complex formation, 

hence it may provide a better marker for the progression of disease. On average, 

HIV RNA was more abundant in the plasma of patients with more advanced disease 

compared with asymptomatic (Table 3.2). However, a wide range in the amount of 

cell-free HIV RNA was found among patients in similar stages of disease (between 

200 to 8.5 x 103  in CDC stage II patients studied, see Table 3.2). These results can 

be explained by a variation in the level of p24 antibody as concluded following a 

recent study of antigen levels after dissolution of immune complexes. Total levels 

of p24 antigen, both free and immune complexed, have been found to vary little 

during the course of primary infection and subsequently (Goudsmit et al., 1986; 

Allain et al., 1986; Gaines et al., 1987). Therefore, the relative high levels of HIV 

RNA, and/or reappearance of p24 antigenaemia at the later stage of an HIV infection 

may be largely a consequence of a reduction in levels of specific antibody (Nishanian 

et al., 1990). 

The lack of association between the levels of HIV-1 in plasma and the CD4+ 

cell counts is really unexpected. This result is consistent with some investigators' 

results (Ragni et al., 1989; Clumeck et al., 1989) but different from others' where the 

positive correlation has been found between the increasing amount of plasma levels 

of HIV-1 and the depletion of CD4+ cells (Goedert et al., 1987; Laga et al., 1989). 
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There maybe several explanations for the lack of correlation between the plasma viral 

load and CD4+ cell levels. However, one that is most likely may be that the 

quantitative feature of HIV- 1 itself will not be the sole responsible factor for the 

CD4+ cell depletion. The differences in viral phenotypes, such as viral tropism, 

cytopathogenicity and virulence, have been noted for some time (Cheng-Mayer et al., 

1988; Tersmette et al., 1989a, b). Viruses with different phenotypic features will 

therefore have different impact on the ultimate fate of infected CD4+ cells; less 

cytopathic variants will permit relative longer life-span of infected CD4+ cell whereas 

more virulent variants may kill infected CD4+ cell in a very short period of time. 

Thus, the quantitative as well as qualitative features of HIV-1 will therefore jointly 

determine the fate of infected CD4+ cells. As one of the consequences, the 

increasing amount of HIV- 1 in plasma is not necessarily reflected by the substantial 

drop of CD4+ cells in the blood stream. 

The levels of HIV in patients' plasma, whether they were from CDC group 

II or from patients undergoing antiviral treatment, were much higher than previously 

estimated (Table 3.2). Zidovudine treatment has previously been shown to decrease 

the amount of cell-free circulating HIV initially both in plasma of infected humans 

(Ho et al., 1989) and of severe combined immunodeficiency infected mice (McCune 

et al., 1990). The high concentration of cell-free circulating HIV in our patients, who 

have been undergoing zidovudine therapy for over 10 months, may imply that some 

resistant viral strains have emerged. 

The most striking feature of the results is the high level of cell-free HIV 

found in some CDC group II patients (p56, 70 and 82, see Table 3.2). Serial samples 
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from one CDC group II patient (p82) without antiviral treatment showed persistently 

high levels of plasma virus for several years and rapid turnover of sequence variants 

(see chapter 4). The detection of high levels of cell-free HIV from the plasma of 

both CDC group II and IV patients suggests that viral replication occurs continuously 

throughout the course of an HIV infection. There is no virological evidence for a 

'latent' period. 

3.4.2 Detection of HIV RNA from Factor Vifi Concentrates This is the first 

direct demonstration of contamination of factor VIII by HIV-1. Two out of eight 

batches of factor VIII concentrate were positive for HIV- 1 RNA by PCR; in one case 

with env primers and the other with pol primers. Both were confirmed by sequencing 

the PCR product. The amount of HIV RNA present in factor VIII is very low (2.5 

copies per ml), and close to the threshold of detection. These two factor VIII 

sequences, which were both found in commercial products, are distinct from those 

of any published HIV isolates, but are more closely related to North American 

variants than to African ones. One problem with detection of HIV-1 RNA in blood 

products, such as those factor VIII or IX or immunoglobulin, is the extremely low 

levels of viral RNA present in these blood products. if viral RNA could be readily 

detected and subsequently sequenced from these blood products, it would surely 

provide clearer picture of virus population in the original contaminated source, and 

therefore will help us to understand the viral sequential changes which enable viruses 

to persist in the face of potent anti-HIV immune response. 
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3.4.3 Detection and Quantitation of HCV RNA from Factor Vifi Concentrates 

Previous studies by ourselves and others have detected hepatitis C virus (HCV) RNA 

sequences in factor VIII using similar methods (Simmonds et al., 1990b; Garson et 

al., 1990). In fact, out of the eight batches of factor VIII concentrates tested for 

HIV-1 RNA in this study, all six of the commercially-derived batches contain 

detectable amounts of HCV RNA, including the two positives for HIV RNA (the two 

National Health Service-derived batches were negative for HCV RNA). The amounts 

of HCV RNA were higher than HIV; in two batches that were quantified by limiting 

dilution, between 30,000 and 100,000 copies of HCV RNA per ml were found 

(Simmonds et al., 1990b). There are many possible explanations for the difference 

in the concentration of HIV and HCV RNA presented. In one of our studies (Dr. 

Henry Watson, personal communication), comparison of the levels of HIV with those 

of HCV in plasma have shown that HCV is present in 10 and 100-fold greater 

amounts in infected individuals. Second, the prevalence of HCV infection may be 

higher in paid donors. Third, HIV may be less stable during the factor VIII 

fractionation process than HCV, or may be excluded with greater efficiency. 

Higher titres of HCV RNA present in factor VIII concentrates may partially 

explain the higher rate of HCV infection in haemophiliac patients (Simmonds et al., 

1990b). Our cross-section study has shown that the prevalence of HCV infection is 

much higher in haemophiliacs infected with HIV compared to those not infected (Dr. 

Henry Watson, personal communication). Haemophiliacs who were HCV PCR-

positive and HCV antibody-negative all had AIDS and low CD4 cell counts (<200 

x 10/1) (Dr. Henry Watson, personal communication). HCV negative antibody 
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results may be due to either the immunodeficient state caused by infection of HIV 

or to high rates of HCV viral protein expression that could adsorb circulating 

antibody by immune complex formation. 

3.4.4 Proposed Substitution for AZT Resistance Was a Pre-existing 

Polymorphism Larder et al., firstly reported that isolates of HIV, taken from 

patients who had been taking AZT for more than 6 months, were resistant to AZT 

in vitro (Larder et al., 1989a, b, c). Analysis of the coding region of reverse 

transcriptase (RT) from clinical isolates by nucleotide sequencing led to the discovery 

that multiple common nucleotide changes were associated with this resistance (Larder 

et al., 1989b). These changes conferred specific amino acid substitutions in RT at 

the positions 67, 70, 215 and 219 (for more details see section 1.2.4). It was noted 

from the poi sequences obtained from the factor VHI concentrates batch no.8 that one 

of the four proposed AZT resistant mutations was found at position 70 in the RT 

domain (Figures 3.5 and 3.6). The discovery of this substitution in factor VIII 

concentrates prepared before the use of zidovudine as an antiviral agent suggests that 

proposed mutation at position 70 is a pre-existing polymorphism. Recently, AZT-

resistant virus was detected in PBMCs of a few patients who had never received 

AZT, and therefore confirm our observation of pre-existing polymorphism at 

proposed sites which conferring AZT-resistance (Mohri et al., 1993). 
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Figure 3.6 Polyacrylamide sequencing gel showing the amino acid replacement from 

Lysine to Arginine at position 70 in HIV pol gene, which is proposed to be 

associated with resistance to zidovudine, is a pre-existing polymorphism. F81  and F82  

represent two molecules from factor VIII concentrate No.8. WT is a wildtype 

sequence. 
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CHAPTER 4 

SEQUENTIAL SEQUENCE 

VARIATION OF HIV-1 ENV GENE IN 

PLASMA VIRAL POPULATION OF 

PATIENT 82 
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4.1 Summary 

In an investigation of the evolution of the envelope gene of HIV-1 during the 

course of an infection, a total of 89 V3 and 114 V4 viral RNA sequences were 

obtained from serial samples from an HIV- 1 positive haemophilic. Sequence analysis 

of these two regions reveals that there are complex evolutionary patterns. For the V3 

region, sequence variation has been found in both the V3 loop and the flanking 

regions. However, the frequent changes were mostly accumulated at sites in the V3 

loop which have been proposed to be the targets recognised by the immune system. 

Moreover, selective constraints on the V3 region, particularly in the V3 loop, have 

also been observed, indicated by the dramatic fluctuations in the samples sizes of 

sequence variants, and extensive convergent evolution has been detected (Holmes, 

et al., 1992). These findings strongly suggest that although there is selection for 

replacement of amino acids which may alter the B and T cells epitopes to evade 

immune recognition, there is also a severe selective constraint as to which amino 

acids are functionally viable within these regions. 

Phylogenetic analysis of the V3 region reveals that there are several different 

evolutionary lineages in the plasma population after three years of infection. 

However, only two of them reach high frequency in the subsequent years. The 

variants found in the later stage of infection can all be identified as the progeny of 

the early sequence variants found at seroconversion. 

Sequence variation in the V4 region is slightly different. Apart from frequent 

amino acid replacement through time, length variation is also observed in this region. 

The length variation of PCR amplified cDNA and DNA in V4 region was 
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investigated and a distinctive length pattern for coexisting variants in each sample 

was identified. In V4, each succeeding sequence type is not obviously more related 

to those that come before or after it than they are to the sequences obtained at the 

early stage of infection. This finding suggests that the evolution of viral RNA V4 

sequences in the plasma population of this patient is different from those of the V3 

region, and that the plasma viraemia may be contributed by virus variants in the solid 

tissues such as lymph node, brain, spleen, etc. In addition, there are significant 

differences between the frequencies of sequence variants in proviral DNA and viral 

RNA populations from the same sample, indicating that at any one time point, the 

predominant plasma virus variants may be antigenically distinct from some of those 

viruses encoded by HIV DNA sequences in PBMCs. 

4.2 Introduction 

The surface glycoprotein of HIV-1, gpl20, like those of other retroviruses, 

shows considerable sequence diversity between independent isolates. Independent 

isolates from North American differ in almost 10-20% of amino acid residues in the 

env gene, whereas isolates from Africa can differ in up to 25-30% of these sites (Balfe 

et al., 1990). In common with visna virus and equine infectious anaemia virus (EIAV) 

(Clements et al., 1988), HIV also exhibits variability within infected individuals. 

Sequence analysis of consecutive isolates obtained by in vitro culturing with primary 

lymphocytes from the same individuals showed rapid sequence change over time 

(Meyerhans et al., 1989; Simmonds et al., 1990a and 1991). Genetic divergence has 

also been observed even within the same isolate, suggesting that the HIV isolate is a 
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heterogenous population (Putney et al., 1990a, b). 

Recently, it has been demonstrated that some parts of the Env region are 

crucial for viral functions. The major CD4 binding domain, through which the virus 

facilitates its attachment to the membrane of target cells, has been located between the 

V4 and V5 hypervariable regions (Lasky et al., 1987). A number of reports have 

recently suggested that major determinants for macrophage and T-cell tropism are also 

located in a region of gpl20 which encompasses the third hypervariable region V3 

(Cheng-Mayer etal., 1990a, b; Hwang et al., 1991; Westervelt etal., 1991 and 1992). 

The V3 region may also play an assisting role in membrane fusion after gp120 

binding to CD4 (Freed et al., 1991 and 1992). 

A highly antigenic epitope for both B and T cells has been identified in the 

third hypervariable region (V3) (Rusche et al., 1988; Palker et al., 1988; Javaherian 

et al., 1989). A peptide encompassing the V3 domain elicits type-specific neutralizing 

antibody titers that are comparable to those elicited by the entire gpl6O or gpl2O, and 

most neutralizing antibodies elicited by immunization with recombinant gp160 or 

gpl20 proteins can be absorbed with a V3 peptide (Javaherian et al., 1989). This 

segment of the envelope has therefore been termed the principal neutralization 

determinant (PND) of the envelope protein. The coincidence of the hypervariable 

nature of the V3 region and its high antigenicity may suggest that the high rate of 

changes in the V3 region could generate a succession of mutants which allow the 

variants to escape from of immune surveillance. This notion was recently supported 

by experiments showing an in vivo emergence of virus variants that were resistant to 

neutralization by autologous sera (Albert et al., 1990; Montefiori et al., 1991). 
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Moreover, an HIV-1 'escape' mutant has also been selected by neutralizing antibody 

in vitro, due to selection for a point mutation in the V3 loop (McKeating et al., 1989). 

In the early studies of sequence variation, viral sequences were largely obtained 

from isolates cultured with primary lymphocytes (Hahn et al., 1986; Starcich et al., 

1986). However, it has been shown that the in vitro propagation of viral isolates can 

reduce genetic diversity in the viral envelope region (Meyerhans et al., 1989; Kusumi 

et al., 1992). Therefore, studies of genetic variation based on the sequences obtained 

from in vitro cultured isolates may not truly reflect sequence variation in vivo. 

In the current work, the sequential variation in HIV- 1 env genes in plasma viral 

population has been studied. Using the highly sensitive and reliable RNA PCR 

method developed previously in this work (see chapter 3), viral RNA was detected 

directly from patient plasma samples, amplified and sequenced without further in vitro 

manipulation. By this means, not only can errors introduced by Taq polymerase 

during the amplification process be avoided, but also any bias due to in vitro culturing 

(Meyerhans et al., 1989; Simmonds et al., 1990a). As such, the sequences obtained 

by this direct detection and sequencing technique will be more representative of those 

in vivo. Starting from seroconversion at year 0 (1984), a total of six serial plasma 

samples were collected from a single HIV-1 positive haemophiliac at years 3 (1987), 

4(1988), 5(1989), 6(1990) and 7(1991). Sequence analysis has largely concentrated 

on the V3 and V4 hypervariable regions of the envelope gene. 
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4.3 Results 

The patient studied was a haemophiliac(p82) who was infected with HIV-1 

from a contaminated factor VIII concentrate and seroconverted in 1984 (Ludlam et al., 

1985). This patient was seroconverted around March 1984, and asymptomatic at the 

time of study and has never undergone any antiviral therapy. The virological and 

immunological data on this patient are shown in Table 4.1. The levels of plasma 

viraemia were quantified by RNA PCR method previously described in this work. 

The other data in the Table 4.1 are kindly provided by Dr. Peter Simm onds [proviral 

DNA load]; Mrs. Selma Rebus [p24 antigen level] (Department of Medical 

Microbiology, University of Edinburgh) and Dr. Henry Watson [CD4+ count] 

(Department of Haematology, Royal Infirmary of Edinburgh). Nucleotide sequences 

were aligned using LINEUP and PILEUP programs on the University of Wisconsin 

GCG package (Devereux et at., 1984). The nucleotide distance matrices were 

estimated by program DNADIST. Maximum likelihood and neighbor-joining trees 

were then inferred using the DNAML and Neighbor programs respectively from the 

PHYLIP (version 3.4) of Felsenstein (see section 2.2.12). 

4.3.1 Rapid Changes of Plasma Viraemia During the Early Stage of HIV Infection 

Quantitative analysis of plasma viraemia was carried out using previously developed 

RNA based PCR method (see Chapter 3 for more detail). At seroconversion, the 

levels of plasma viraemia were exceptionally high at approximately 108  viral RNAs 

per ml of plasma (see Table 4.1). However, the subsequent samples all showed a 

substantially lower viral load in the plasma, nearly 4 orders of magnitude less than 
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Table 4.1 Standard virological and immunological markers of HIV infection in p82. Viral load in plasma and PBMCs was quantified 

by limiting dilution of viral cDNA and DNA prior to double PCR amplification. Proviral DNA load and p24 antigen level in plasma 

were kindly provided by Dr. P. Simmonds and Mrs. Selma Rebus respectively (Department of Medical Microbiology, University of 

Edinburgh). CD4+ count is kindly provided by Dr. Henry Watson (Department of Haematology, Edinburgh Royal Infirmary), a  Time 

from first positive serum sample. b  Detection of serum antigen by ELISA (>15 pg/ml; Dupont). NA, not applicable C  Proportion of 

PBMCs bearing provirus. ND, not done. 



Sample 
Times 
(months)' 

CD4 
Lymphocytes 

(x 1O/1) 

p24 
antigen  

Provirus- bearing 
 PBMCsC 

Viral RNA in 
plasma 

1983 -14 1.45 NA NA NA 

1984 0 0.93 + ND 1.0 x 108 

1987 36 0.53 - 1/2000 2.8 x iO 

1988 43 0.34 - 1/2270 5.7 x iO 

1989 56 0.65 + 1/700 8.5 x 103 

1990 70 0.10 - ND 8.2 x iO 

1991 79 0.10 - ND 5.8 x 10 



that at seroconversion. This drop in viral titre implies an effective immune response 

during the early stage of HIV infection. However, a persistently high level of plasma 

viraemia during the asymptomatic stage was also observed ranging from 5.7-8.5 x iO 

viral RNAs per ml of plasma (see Table 4.1). This suggests that despite the strong 

immune reaction, viral replication continues. There is no virological silent phase 

corresponding to the latent period observed clinically. 

4.3.2 Nucleotide Sequences from Plasma Viral RNAs A total of 89 nucleotide 

sequences of the V3 region and 114 of the V4 region were obtained directly from 

double PCR amplified single cDNA molecules (Figure 4.1 [a] and [b],  respectively). 

Each sequence represents an individual viral genome (or RNA molecule), isolated by 

limit dilution of cDNAs prior to PCR amplification (see section 2.2.7). In many 

cases, the V3 and V4 sequences were obtained from the same genome (indicated by 

the identical sequence name in the figures) and can therefore be used for studies of 

linkage and recombination between these two regions. The sequences were aligned 

and gaps (indicated by '-') were introduced where it was necessary to preserve the 

alignment. 

4.3.3 Low Frequency of Inactivating Substitutions As shown in Figure 4.1 the 

sequences in the V3 and V4 regions of env gene of patient 82 exhibit an enormous 

degree of variation. Frequent nucleotide substitutions have been observed in both 

hypervariable regions. In addition deletion or insertion events have been identified, 

particularly in the V4 hypervariable region (see Figure 4.1 [b]. In many cases, a 
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Figure 4.1. Viral RNA sequences from patient 82. Sequences from (a) the V3 region, 

and (b) from the V4 region. Each sequence represents a single viral RNA sequence 

obtained directly from plasma. Nucleotide positions are numbered according to HIV 2. 

Only nucleotides that differ from those obtained at year 0 are shown. Gaps were 

introduced to preserve the alignment and indicated by dashes. Dots denote to the 

identical nucleotides shown above. The same name was given to the V3 and V4 

sequences when they were obtained from the same molecule. Year 0 = 1984; year 3 = 

1987; year 4 = 1988; year 5 = 1989; year 6 = 1990; year 7 = 1991. 



(a) 
Year SequenceB 7051 7110 

Z 8 2r0 01 TTPCACGGAC AATGCTAAAA CCATAATACT ACAGCTGAAG GAAPCTGTAG AAAPPAATTG 
Z82r00a 
Z82r00b 
Z82r00c 
Z82r00d 

0 Z82r00e 
Z82r00f 
Z82r00g 
Z82r00h 
Z82r00i 
Z82r00j 
Z82r001c 

Z82r003 AA ...............................5' .................... 
Z82r004 AA ...............................5' .................... 
Z82r005 . . . ..A ................................5' .................... 
Z82r007 . . . .G.A ................................'P .0 .................. 

..................................................... 
Z82r009 A...........................................5' ......... 
Z82r0i. ..................................................... 

3 Z82r02 ..................................................... 
Z82r03 A ...........................................¶ ......... 

... .......... .......... .......... .......... .......... 

.A 

Z82r05 A.................................5' ..........'P ......... 
Z82r06 A 

..A 

...........................................'P ......... 

Z82r04 .A 

Z82r07 A................................¶ ..........¶ ......... 
Z82r08 A ... .......... .......... ......... 'P ...........P ......... 
Z82r09 A ... .......... .......... .......... .......... 'P ......... 

Z83r10 A ................................¶ ..........'P ......... 
Z82r11 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r12 A ................................'P ..........'P ......... 
Z82r13 A ................................'P ..........'P ......... 

Z82r008 ..A 

Z82r15 A. .5' .............................'P ..........¶ ......... 
4 Z82r16 A ... .......... .......... ......... T ..........'P ......... 

Z82r17 A ................................'P ..........'P .....C... 
Z82r18 A..'P .............................'P ..........'P ......... 
Z82r19 A ... .......... .......... ......... 'P .0 ........'P ......... 
Z82r20 A ... .......... .......... ......... 'P ..........¶ ......... 
Z82r21 A ... .......... .......... ......... 'P ..........5' ......... 

Z82r22 A................................5' ..........¶ ......... 
Z82r24 A................................5' .....C P ..... C... 
Z82r25 A ................................5' ..........'P ......... 
Z82r26 A ................................5' ..........5' ..... C... 
Z82r27 A ... .......... .......... ......... .P ..........'P ......... 
Z82r28 A ................................'P ..........'P ......... 
Z82r29 . . . .G.A................................'P . . .0 ......'P ......... 
Z82r30 .. . .G.A................................'P ......AC 'P ......... 
Z82r31 .. . .G.A................................'P ......AC 5' ......... 
Z82r32 A ... .......... .......... ......... 'P ..........5' ......... 

S Z82r33 . . .A. .A................................5' ..........'P ......... 
Z82r34 . . .A. .A ................................'P ...........P ......... 
Z82r35 A ... .......... .......... ......... 'P ......AC 'P ......... 
Z82r37.0 .... A................................'P ..........'P ......... 
Z82r38 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r39.. .'P..A................................5' ..........'P ......... 
Z92r40 A ................................5' ..........'P ......... 
Z82r41 A ................................'P ..........'P ......... 
Z82r42 A ................................'P ..........'P ..... C... 
Z82r43 . . .5'. .A................................'P ..........'P ......... 
Z82r44 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r45 . . .5'. .A................................'P ..........'P ......... 
Z82r46 . . .5'. .A................................'P ..........'P ......... 

Z82r70 A..'P .............................'P ..........'P ......... 
Z82r71 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r72 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r75 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r76 A ................................'P ..........'P ......... 
Z82r77 A ... ... A .........................'P ..........'P ......... 
Z82r78 A ... ... A .........................'P ..........P ......... 

6 Z82r79 A..'P . 	.A .........................'P ..........'P ..... C... 
Z82r80 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r81 A ... .......... .......... ......... 'P .0 ........'P ..... C... 
Z82r82 A ... .......... .......... ......... 'P ..........P ......... 
Z82r83 A ... ... A .........................'P ..........'P ..... C... 
Z82r84 A ... .......... .......... ......... 'P .0 ........'P .....C... 
Z82r85 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r86 A ... .......... .......... ......... 'P ..........'P ......... 

Z82r91 A ... ... A .........................'P A .........'P ..... C... 
Z82r92 A ................................'P ..........P ......... 
Z82r93 A ... .......... .......... ......... P ..........'P ......... 

...........0 .................... 'P .......... 'P ......... Z82r94 . ...... 
Z82r95 A 

. 
................................'P ..........'P ......... 

Z82r96 A ................................'P ..........'P ......... 
7 Z82r97 A ................................'P ..........'P ......... 

Z82r98 A .........................'P ......'P A ......... 'P ......... 
Z82r99 A ... .......... .......... ......... P ..........'P ......... 
Z82r100 A ... ... A ...... .......... ......... P ..........'P ......... 
Z82r101 A ... .......... .......... ......... P ..........'P ......... 
Z82r102 A ... .......... .......... ......... 'P ..........'P ......... 
Z82r103 A ................................'P ..........'P ......... 



Ot18Z 
• Ot18Z 

tOt18Z 

DOL
... .......... ... . ...... .......... 

668Z 86.8Z  
L68Z 

L 968Z  

9
68Z  

.oot1sz 

618Z E68Z  

68Z 
1

68Z  

9818Z  

•••••••••••••••••••••••••••••••••••••• 
58-'8Z 

 
£818Z 

•••••••••••••••••••••••••••••••••••••• 
T98Z  

0

8.'8Z  
6L18Z 

9 
8L8Z  
LL28Z  9L8Z  

SL8Z  

•••••••••••••••••••••••••••••••••••••• Z L.I Z BZ  
OL8Z  

919z  

cP18Z 
1z8z•••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••••••••••• 

O.'8Z  

6E8Z  

8E8Z 
LC8Z cez 

••••••••••••••••••••••••••••••••••••• • 

•••••••••••••••••••••••••••••••••••••• zEaz8z  
OE8Z  
68Z  
88Z  
L18Z  

98Z 

OZ82  
6t18  
9T8Z  
LT8Z  

9T'Z8Z S138Z  

•••••••••••••••••••••••••••••••••••••• 
E18Z 

 
tT18Z  
OE18Z  

608Z  

8018Z  

LO18Z 
908Z SO82  

O18Z  
£O18Z  

O1Z8Z 
£ TO8Z  

6008Z 

8O08 

LOO18Z 
OO18Z  
OO18Z  £OO'8Z  

{OO18Z  

TOO8Z  
OO8Z  
oo18z  

OO8Z 
e15 

0 POO8Z  
3OO8Z  
qoo8z  
2OO18Z  

YL.M,.L3DVD WDDYD3Y ILVLY3YJ.Y.L TO O-O8Z 

691L TTTI. Be3uenbe9 1OA 



Year Sequences 7170 7229 

Z 92 rO 01 TACAACAGGA OAAATAATAG GAOATATAAO ACAAGCACAT TOTAACCTTA GTAGACCAAA 
082r00a 
Z82r00b 
Z82r00c 
Z82r00d 

0 Z92r00e 
Z82r00f 
ZO2rOOg 
ZB2rOOh 
Z82r00i 
ZB2rOOj 
Z82r00k 

Z82r003 ................................................. 
Z82r004 ................................................. 
Z82r005 ......... .......... .......... ...... A ............. 

................................................. 
Z82r008 .0 .......................................... 
Z82r009 .... C .......................................... 

............................................... 
3 Z82r02 

.C 

C ................................................. 
Z82r03 C 

..C 

.C 

................................................. 

Z82r007.C 

Z82r04.C 

..C... 

....... .......... .......... ...... A ............. 
Z82r05 

Z82r01.C 

.0 ..........C 

.C 

............................................... 
Z82r06 C ................................................. 
Z82r07 ............. 
Z82r09 
. A 

............. 
Z82r09 C 
. .A 

................................................. 
Z82r10 C ................................................. 
Z82r11C ......... .. ........ .......... .......... ...... A ............. 
Z82r12.0 ........ .. ........ .......... .......... ...... A ............. 
Z82r13 A. C ......... ..A ....... .......... ...... A ............. 
Z82r15.0 ............................0 ......... ...... A ............. 

4 Z02r16 A. C ......... ..A ....... .......... ...... A ............. 
Z82r17 A. C ......... ..A ....... .......... ...... A ............. 
Z82r18.0 ........COG ....... .......... .......... ...... A ............. 
Z82r19 A. C ......... ..A ....... .......... ...... A ............. 
Z82r20 A. C ......... ..A ..................................... 
Z82r21 A. C ......... ..A ..................................... 
Z92r22 .0 ........ .. ........ .......... C ......... ...... A ............. 
Z82r24 A. C ......... ..A ....... .......... ...... A ............. 
Z82r25 .G ........ .. ........ .......... .......... ...... A ............. 
Z82r26 A. C ......... ..A ....... .......... ...... A ............. 
Z82r27 .0 ........ .. ........ ..A ....... .......... ...... A ............. 
Z82r28 .0 ........ ..C ....... .......... .......... ...... A ............. 
Z82r29 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r30 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r31 .G ........ .. ........ .......... .......... ...... A ............. 
Z82r32 .0 ........ .. ........ .......... .......... ...... A ............. 

5 Z82r33 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r34 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r35 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r37 .0 ............................0 ......... ...... A ............. 
Z82r38 .0 ........ .. ........ .......... .......... ...... A ... .......... 
Z82r39 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r40 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r41 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r42 A. C ......... ..A ....... .......... ...... A ............. 
Z82r43 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r44 .0 ........ .. ........ ..A ....... .......... ...... A ............. 
Z82r45 .0 ........ .. ........ .......... .......... ...... A ............. 
Z82r46 .0 ........ .. ........ .......... .......... ...... A ............. 
Z92r70 . .. .0.. .A. C ......... ..A ....... .......... ...... A ............. 
Z82r71 .0 ........ ..C ....... .......... .......... ..... T .............. 
Z92r72 .0 ........ ..C .................0 ......... ...... A ............. 
Z82r75 . . . .0.. .A. C ......... ..A ....... .......... ...... A ............. 
Z82r76 .0 ........ ..C .................0 ......... ...... A ............. 
Z82r77 . . . .0.. .A. C ......... ..A ....... .......... ...... A ... .......... 
Z82r78 ....... .......... .......... ...... A ............. 

6 Z82r79 AT C ......... .......... .......... ...... A ............. 
Z82r90 .0 ........ ..C  ....... .......... .......... ...... A ............. 
Z82r81 AT C ......... ..A ....... .......... ...... A ............. 
Z82r82 .0 ........ 

. C 

..C ....... .......... C ......... ...... A ............. 
Z92r83 AT C ......... ..A ....... .......... ...... A ... ......... C 
Z82r84 AT C ......... ..A ....... .......... ...... A ... ......... C 
Z82r85 .0 ........ ..C .................0 ......... ...... A ............. 
Z82r86 .0 ........ ..C .................0 ......... ...... A ............. 
Z82r91 AT C ......... ..A ....... .......... ...... A ............. 
Z82r92 .0 ........ ..C ....... .......... .......... ...... A ............. 
Z82r93 .0 ........ ..C .................0 ......... ...... A ............. 
Z82r94 .0 ........ ..C .................0 ......... ...... A ............. 
Z82r95 .0 ........ ..C ....... .......... .......... ...... A ............. 
Z82r96 .0 ........ ..C .................0 ......... ...... A ............. 

7 Z82r97 .0 ........ ..C ....... .......... .......... ...... A ............. 
Z82r98 .0 ........ ..C  ....... .......... C ......... ...... A ............. 
Z82r99 .0 ........ ..C ....... .......... .......... ...... A ............. 
Z82r100 . . . .0 	.A. C ......... ..A ....... .......... ...... A ... ....... C.. 
Z82r101 .0 ........ ..C ....... .......... .......... ...... A ............. 
Z92r102 C ......... .. ........ .......... .......... ...... A ............. 
Z92r103 .0 ........ ..C  ....... .......... .......... ...... A ............. 
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Year Sequences 7376 7461 

82r0 02 TGGAATTCAA CA -------- ---- CAACPO' AATAGPACTP GGAATPCAAC ACAACPTAAT AGTOCT003A APAAPACTGA AGAAAA 
82r005 ---------- 

---------- 
---------------- 

82=003 P................I................................................0 ......... 
82=004 -----. .......... 

0 82r00. ................... 
82rOOb 

....A.AP-- 

..........................C..- ---------------- 
82r00C 

....P......................................C 

----------------
---- - 82r00d 

....P........ 

 

.... 
....P......................................C..- - ....P......................................C.. 

..... ...........C..- ............. 

82=5572 

.....P.. 

APP Al.....................0 

... ....... ..... ..... 

.....................A.... -------------------- 
82r5571 APP .P................... . .0 .....................A.... ---------------. . . .0 ...... 
82r5575 APr 	.T................... . .0 .........P...........A.... -------------------------- 
82=5577 0k........0 ...... ..... A.... 
82r5579 

APP 	.P ........ 	.... ......... 
ATT APP 	.P................... . .0.. .A.....0...........A.... -------------------------- 

82=5576 APP 	.1................... . .3.. 	A.....C ...... ..... A---- -------------------------- 
82=5573 APP 	.P ........ 	.......... ... 3.. .A.....3...........A.... -------------------------- 
82r5578 APP 	.1................... . .0.. .A.....0 ...........A.... -------------------------- 

3 82=5580 APP 	.P................... . .0.. .A.....3 ...........A.... -------------------------- 
Z82r01 APT PT................... ... ........A.--- ---------------... .0 ...... 
Z82r02 APP 	.1................... . .0.. .A.....0 ...........A.... -------------------------- 
Z82r03 APP 	.P................... . .0.. .A.....C ...........A.... ---------------.. . .0 ...... 

Z82r04 APP 	.T................... 

. .0 .......... 

. .0k........0 ...........A.... ------------------------0. 
Z82r05 

......P......................................C..- 

.. .0.. .APP 	.1....................................0.....A............................... 
Z82r06 APP 	.1 ................... . .0.........3...........A.... 
Z82rO7 APP .P ................... . .0.........0...........A.... 

-----------------***'**'*' 
.......................... 

Z82r08 APP 	.1.................... .0.........I...........A.... -------------------------- 
Z82r09 AT .1................... . .3.. .A.....3 ...........A.... -------------------------- 

82=122 . .0.. .A.....0 ...........A.... ---------------. . . .0 ...... 
82r1210 

..TOGAAPPA PPCP------. 
. . . .0. .APP 	.1.....................0.. .A.....0 ...........A.... ---------------. . . .0 ...... 

82=125 . ...0..APP 	.1................... . .3 .....................A.... -------------------0 ...... 
82=1212 ..P003APPP AACA...............C A---------------- ----------  
82r1213 
82r1214 .P303APPP AACA...............C .... 	. 
82r1223 AACA...............C A--------------:.........: .... 	-----------------------------  .AA........ 
82r126 .P300APPP AACA...............C A---------------------------------- .AA........ 

4 Z82r10 . . . .C. .APP 	.1................... . .0k....................A.... -------------------G ...... 
Z82r11 .PGGGAPPP MCA..... ........C A.... 	-----------------------------.AA........ 
Z82r12 .T000AIPT MCA..... -C A...*------------------------------ .AA........ 
Z82r13 .P300APPP AACA  ..... ..........C A....-------- 

----- - - 

.... 	----------------------------- .AA........ 
Z82r15 AACA...............C A.... 	----------------------------- .Ak........ 
Z82r16 AACA...............C A.... -------------------------------M..  
Z82r17 .P333APPP AACA...............C A.... 	-----------------------------.AA.G ...... 
Z82r18 AACA...............C A----------------------------------.AA........ 
Z82r19 

.T000APTP 

.P303APPP AACA...............C A----------------------------------.AA........ 
Z82r20 ....0..APT 	.1.....................3 .....................A.... ---------------....0 ...... 
Z82r21 ............ ........ .0.....................A.... 

A...................................AA... 

---------------. 

----- - Ak........ 

. . .0 ...... 

82=821 

.P30 GAT PP AACA...............C 

AACA.............P.0 

A.... 	---- ---- 

A...................................OA........ 
82=825 AACA...............C A.... 	-----------------------------.AA........ 
82r8215 AkCA...............C A.... 	------------------------------ Ak........ 
82=1091 

.T330APPP 

.............P330APTT 

.............P300APPP 

AACA...............C A---------------------------------- .AA........ 
82r1092 AACA...............C A---------------------------------- .AA........ 

82r1094 MCA.... **C A.... 	-----------------------------.AA........ 
82r1095 AACA...............C A.... 	-----------------------------.AA........ 
82r1097 AACA...............C A.... 	-----------------------------.AA........ 
82=1098 

.............P030APPP 

.............P300APIP 

AACA...............C A.... 	-----------------------------.AA........ 
82r1096 AACA...............C A-----------------------------------M........ 
82r1099 

.T030APIT 

AACA...............C A-----------------:-----------------AA........  
82r1093 AACA...............C A ---------------------------- ------A........ 
82r1100 AACA...............C A-----------------------------------M........  
82=984 AACA.........0.....C A.... 	-----------------------------.AA........ 
82r9814 MCA... A.... 	-----------------------------.AA........ 
82=986 

.............PGGGAPPP 

.............I333APPP 

A--------------------------------*M.:
82r986 AACA.. . ------------C A:-----------------:----------------M........ 
82r9810 

.............P330APPP 

.............POGGAPIP 

AACA...............C AG-------  ------------------------.AAA. . . .C.. 
82r988 

.P333APPP 

.............P303APPT 

.............P303AIPP 

AACA...............C A.0. . 	---------------------------- .AAA. . . .C.. 
82=9817 A... - --------------C A.................  -------- .........Ak........ 
82=9820 

. ............T300APPP 

AACA. . . .0..........C A----------------  Ak........ 
5 Z82 22 

.............PGGGAPPT 

.............P303ATPT 

AACA...............C A...................................AA........ 
Z82r24 

.............T303APPT 

.............P330ATPP 

AACA...............C A....------------------------- ----- ....... 
Z82r25 

.............POGGAPIP 

.............IGOGATIP 

AACA...............C A.... 	-----------------------------.Ak........ 
Z82r26 

. ............PGGGAPPP 

AACA...............C A.... 	-----------------------------.AA........ 
Z82 27 

. ............I330APIP 

AkCA...............C A----------------------------- ------M........ 
Z82r28 AkCA...............C A.... 	-----------------------------.Ak........ 
Z82r29 AACA...... .........C 
Z83r30 AACA...............C 

A.... 	
---- A.... 	-----------------------------.Ak........ 

Z82 3l 

.............P000APPP 

.............PGGGAPPP 

. ............P030APPP 

AACA...............C A.... 	-----------------------------Ak........ 
Z82r32 AACA........CPACP. 

. ............PGOGATPP 

.0 A----------------------------- ------A....... 
Z82r33 MCA ...AG 	.0 A-----------------------------------M........ 

--- .Ak........ 

Z82 34 AACA...............C A-----------------------------------M........ 
Z82r35 

. ............PGGGAPPP 

. ............P3331.101 

AACA......GO.......C A-----------------------------------A........ 
Z82r37 

.............TGGGAPPP 

.............IGGGATPP 

0. 	. .P333APTT AACA...............C 

. ............13337.111 

. ............TGGGAITI 

A-----------------------------------AA........ 
Z82r38 

.............P330APTP 

.............P300APPT 

. ............P033APOP 

AAC.A...............C 

---------------------- 

A-----------------------------------M........ 
Z82r39 

.............P033APPI 

AACA...............C A.... 	-----------------------------.Ak........ 
Z82r40 AACA...............C A----------------------------------  .AA........ 
Z82r41 AACA...............C A----------------::::---------------.........  
Z82r42 

.............T333ATPT 

AACA...............C A------------------------------.AA........ 
Z82r43 

.............T003APPP 

.............TGGOAPPP 

AACA...............C A.... 	------------------------------ Ak........ 
Z82r44 

.............T003APPO 

.............TGGGAPPP 

AACA...............C A.... 	-----------------------------.Ak........ 
Z82r45 

.............T333APPP 

.............P333ATTT 
AACA...............C A...................................Ak........ 

Z82r46 
.............I303AIPT 
.............P303ATTT AACA...............C A.... 	-----------------------------.Ak........ 



Z82r70 . 'GGGATFC AACA C.G 	. ---------- ---- 3. 
Z82r71 .C A --------- -------------------------.AA........ 
Z82r72 AACOA.T 0. .3.. .A.0 A. 	------------------------------3AA.0 ...... 
Z82r76 .G0GGAPTP AACA ...... ......... C A --------- -------------------------.AA.. 
Z82r77 .I'OOOAPTT AACA ...... ......... C A.3. . 	--------------------------------A. -.0 ... 
Z82r76 .000ATFT AACA ...... ... 0 .....C A.0. . 	----------------------- -AA.0 ...... 

6 Z82r79 .T000ATTT AACA ...... .... A. .A.A CTC.0 ----- --------- ----------- ------ A.A0 . . . .0. 
----- ---------- -------------------- -------- -- --------- 3 ...... 

Z82r81 AACA...... ......... C A.0 ---- --- ---------- -----. .A.. CA.T.T 

Z 2r82 AACO. 	.TC C.0.A ----- -----------------------------------CAA........ 
Z82r83 

.P000APPT 

AACA...... .... A. .A.A CTC.0 ----- --------- ----------- ------ A.AG . .. .3. 
Z82r84 AACAA.....  ......... C A.G. . 	--------------------------------.. .A. .0. 
Z82r85 AACA...... ......... C A....--------------- ---------- ---------- -- .... 
Z82r86 . 

.T030APTT 

.T000ATTT 

. . .0. .ATC 	.1'................... . .0 ...... .......... ..... A---- ---------- --------- G ...... 
Z82r91 

.T000ATTT 

.TGGGGTFT 

. TG0OAGT AACA........  ....... A CPC.G ----- ---------- ---------- ----- OA.A.....0. 
Z82r92 

Z82r80.A.....C 

AACA......C.O-------  . .A.0 ...... 
Z82r94 

.T000AGTT 

A. ----------------------------------AA........ 
Z82r95 . . . .0. .ATP 	.1 ................... . .3.. .T.................A.... ---------- ----- ----------- 
Z82r96 A. ---------------------------------.AA........ 

7 Z82r97 ....0..ATF 	.T .....................G...T .. .......... ..... A---- ---------- --------- G ...... 
Z82r98 

.TG00ATIC 

.C 

A.. A ----- ---------- ---------- ----- GAA .. ...... 
Z82r100 

.C 

AACA.. . .0 ..........C A.0. . 	-----------------------------.AA........ 

Z82r101 . . . .0. .AT' 	.T .................... 
.C 

.0.. . 	.. ..... ..........A.... ---------- ----- - -. .0 ...... 
Z82r102 

.T000APT'P 

AACA. . . .0 .....C... .0 A.0. . 	-----------------------------.AA........ 

Z82r103 
.TG00AP7'P 
.T00GA 	AACA. . . .0 .....C... .0 A.0. .----- -------- ------------ ----- -l.A........ 



large number of gaps needed to be introduced to preserve the alignment. For 

example, 12 gaps were needed for sequence 82r986 to preserve alignment with 

sequences like 82r9814 (see Figure 4.1 [b]). However, despite the frequent sequence 

changes, not one inactivation mutation was observed in a total of approximately 

35,000 bases obtained directly from plasma viral RNAs. 

4.3.4 Nucleotide Distances of the V3 and V4 Sequences Within and Between 

Samples Pairwise nucleotide sequence distances were estimated among the sequences 

presented in Figure 4.1, using program DNADIST implemented in the PHYLIP 

package. Average sequence diversities both within and between samples were 

estimated on the basis of the pairwise distances and the results are presented in Tables 

4.2 and 4.3. 

Examination of Table 4.2 reveals that the distances between the seroconversion 

V3 sequence and that of the subsequent samples increased from 4.55% at year 3 

(1987) to 8.02% at year 6 (1990), suggesting that later sequences diverge continually 

from the earliest sequence (see Table 4.2). However, comparison of nucleotide 

distances between years shows that they were not additive. Thus the mean nucleotide 

distance between samples from years 4 (1988) and 5 (1989) is 4.06% and that between 

years 5 (1989) and 6 (1990) was 5.21%. The mean distance between samples from 

years 4 (1988) and 6 (1990), however, is not (4.06 + 5.21 = 9.27%) but 5.14% (see 

Table 4.2). This non-additivity can be explained by the maximum likelihood 

phylogeny where two lineages are shown to split off from each other at year 3 (1987) 

and each fluctuates in frequency while continuing to diverge after that period (see 

117 



Table 4.2 Mean Pairwise Nucleotide Distances in the V3 Region of Patient 82 

Sample' Year 0 Year 3 Year 4 Year 5 Year 6 Year 7 

Year 0 0.0000b  

Year 3 0.0455 0.0326  

Year 4 0.0648 0.0460 0.0360  

Year 5 0.0683 0.0510 0.0406 0.0250  

Year 6 0.0802 0.0633 0.0514 0.0521 0.0575 

Year 7 0.0796 0.0616 0.0548 0.0466 0.0577 0.0467 

a  Year 0 = 1984; year 3 = 1987; year 4 = 1988; year 5 = 1989; year 6 = 1990 and year 7 = 1991. 

b  Distances were estimated using program DNADIST implemented in PHYLIP package. Intra-sample distances are presented in italics 
on the diagonal. Mean distances from all pairwise inter-sample comparisons are presented below the diagonal. 



Table 4.3 Mean Pairwise Nucleotide Distances in the V4 Region of Patient 82 

Sample   Year 0 Year 3 Year 4 Year 5 Year 6 

Year 0 0.0726b  

Year 3 0.2230 0.0506  

Year 4 0.1593 0.2984 0.1974  

Year 5 0.1355 0.4209 0.1471 0.0172 

Year 6 0.2243 0.5107 0.2508 0.1417 0.2393 

Year 7 0.2038 0.3775 0.2425 0.1908 0.2853 

Year 0 = 1984; year 3 = 1987; year 4 = 1988; year 5 = 1989; year 6 = 1990 and year 7 = 1991. 

b  Distances were estimated using program DNADIST implemented in PHYLIP package. Intra-sample distances are presented in italics 
on the diagonal. Mean distances from all pairwise inter-sample comparisons are presented below diagonal. 



section 4.3.5). 

One of the most striking findings in this study is the homogenous nature of the 

viral population of V3 sequences at the time of seroconversion. Twelve sequences 

obtained are identical in both the nucleotide and amino acid levels. This contrasts 

strongly to what was observed in the later stage of infection where a substantial 

amount of sequence variation has been observed. A similar phenomenon has also 

been observed for another 4 samples collected prior to seroconversion (see Chapter 

5). 

In contrast to the between samples distances, the intra-sample distances do not 

show an persistent increase with time. Apart from that at seroconversion, the average 

intra-sample distance is approximately 3.9%. However, it is interesting to note that 

in year 5 (1989) the intra-sample distance was 2.05% and thus much lower than those 

of previous and subsequent years, suggesting the presence of a homogenous viral 

population with one type of virus variant dominating at that sampling time point. 

The mean pairwise nucleotide distances in the V4 region, both between and 

within samples, were considerably higher than those of the V3 sequences in all but 

one case, suggesting the V4 region is under less constraint compared to the V3 region 

(see Table 4.3). The exceptionally low intra-sample distance in the V4 region observed 

at year 5 (1989) exactly corresponded to the lowest intra-sample distance of the V3 

region illustrated above (Figure 4.1 and Tables 4.2 and 4.3), indicating that a 

homogenous viral population bearing very similar V3 and V4 sequences dominated 

the plasma population at the sampling period. Different from what was observed in 

the V3 region, the mean pairwise inter-sample nucleotide distances of the V4 region 
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do not show a persistent increase over time. Between year 0 and year 3, the mean 

inter-sample distance is 22.3% whereas between year 0 and year 5, it decreases to 

13.6%. However, it increases again between the year 0 and 6 and is comparable to 

that between year 0 and year 3 (see Table 4.3). 

4.3.5 Phylogenetic Relationships among the V3 and V4 Nucleotide Sequences 

Phylogenetic relationships among HIV sequences were estimated by the programs 

DNAML (DNA Maximum Likelihood) and NEIGHBOR (neighbor-joining) 

implemented in the PHYLIP package (version 3.4). Phylogenetic trees were 

constructed by Dr. Edward Holmes (Division of Biological Sciences, I.C.A.P.B., 

University of Edinburgh). 

Phylogenetic analysis of the sequences obtained the from envelope genes of 

samples of patient 82 revealed that there are complex evolutionary patterns in the V3 

and V4 hypervariable regions. For the V3 region, all the later sequences can be 

explained as progeny of the sequences found at seroconversion. At year 3 (1987), 

several equally distinct evolutionary lineages could be identified, but only two of them 

subsequently reached high frequency in the plasma population. This striking result 

was repeatedly obtained using different phylogenetic approaches such as Neighbor-

Joining and Maximum Parsimony. Figure 4.2 depicts the global maximum likelihood 

tree for 89 V3 nucleotide sequences of plasma virions from patient 82 (courtesy of Dr. 

Edward Holmes, Division of Biological Sciences, I.C.A.P.B., University of 

Edinburgh). Individual sequences are presented by a dot, and a single sequence from 

HIV VU  clone HXB2 was used as outgroup sequence (root sequence). The two 
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Figure 4.2. Maximum likelihood tree depicting evolutionary relationships among V3 

sequences presented in Figure 4.1 (a). The tree is rooted by the HXB2 outgroup 

sequence. The seroconversion sequences (labelled as solid circle) are closest to the 

root sequence and therefore are suggested to be the ancestors of subsequent 

sequences. The major division into two main lineages is clearly seen and they are 

indicated as lineage D or E respectively. Each dot at the tips of the lineages 

represent a single individual sequence and all the branches are drawn to scale. 



5% divergence 
HXB2 (USA outgroup) 

F,] 

e E 



major lineages which were identified at year 3 and subsequently reached high 

frequency in the plasma population are indicated by Lineage D and E. Twelve 

identical V3 sequences found at seroconversion are closest to the root sequence and 

have been shown by different phylogenetic trees (constructed by Maximum Likelihood 

and Neighbor-Joining Methods) to be the ancestors of all subsequent sequences. 

Finally, all branch lengths of the tree are drawn to scale, which permits an assessment 

of the relative amounts of evolutionary change along different lineages. 

The phylogenetic relationships among the 114 V4 viral RNA sequences of 

patient 82 are depicted in Figure 4.3. As for V3 sequences, individual V4 sequences 

are also represented by a dot at the tip of the branches (see Figure 4.3). All the 

branches are drawn to scale which enable the assessment of relative amount of 

evolutionary relatedness among these sequences. There is no outgroup sequence for 

the V4 tree because of the impossibility of sequence alignment with other published 

sequences. Examination of Figure 4.3 reveals that all the V4 sequences can be 

clustered into three main groups: group a includes the seroconversion sequences only 

(1984); group b sequences are those found frequently in year 4 (1988); and group c 

comprised the majority of sequences obtained in year 5 (1989) and onwards. The 

sequences from group a are likely to be the ancestors of those in group b and group 

c because of the availability of information on the order in which these sequences 

were found. As it is unlikely that sequences found at later stages of the infection 

could be the ancestors of sequences found at the first stage of HIV infection. At the 

same time, the branching pattern of the tree suggests that the sequences of group b 

and c may diverge independently from group a. Although the majority of sequences 
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Figure 4.3. Phylogenetic relationships among 114 V4 viral RNA sequences presented 

in Figure 4.1(b). As for the V3 sequences, individual V4 sequences are also 

represented by a dot at the tip of all the branches. All the branches are drawn to 

scale. Three sequence groups identified are labelled as group a, group b and group 

c, respectively. Sequences in subgroup group c2 identified within group c sequences 

are indicated as solid circles, and they are frequently found in years 6 and 7. 

Sequences labelled as solid triangle in group b are those detected in years 6 and 7 

after their disappearance in plasma population for more than two years (see section 

4.3.11). 



to aivergence 



in group c are found at year 5 (1989) and onwards, the mean inter-group nucleotide 

sequence distance between group a and c is (11.0%) no bigger than that between 

group a and b (18.6%). This finding suggests that succeeding sequences in group c 

may have evolved independently from those in group a and are not necessarily derived 

directly from those in group b. Interestingly, when sequences in group c were 

examined in more detail, two subgroups could be identified. One, designated as group 

ci, includes approximately 57 sequences mainly found at year 5 (1989) locating at the 

core of the branching pattern of group c sequences. The other, named as group c2, 

comprises the sequences stretching out from the group ci sequences and the majority 

of them are found in years 6 (1990) and 7 (1991) (labelled as solid circle in Figure 

4.3). The close phylogenetic relationships between the sequences of group ci and c2 

indicates that the majority of sequences found in years 6 and 7 are directly derived 

from those found in year 5, although a couple of sequences found in year 6 and 7 also 

group with group b sequences (labelled as solid triangle in Figure 4.3). 

4.3.6 Amino Acid Sequence Variation in the V3 Region of Plasma Viral RNAs 

The translated amino acid sequences of the 89 V3 nucleotide sequences are presented 

in Figures 4.4. As can be seen from the Figure 4.4, the deduced amino acid sequences 

obtained over this study period showed a high degree of sequence variation. Many 

of the variants found in the V3 loop region of 245 North American isolates (LaRosa 

et al., 1990) can also be found in this single patient. However, the distribution of 

amino acid replacements is not constant across the V3 region. If the deduced V3 

region is further subdivided into three regions; the 35 amino acid V3 loop itself 
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Figure 4.4. Deduced amino acid sequences of the V3 region in patient 82. These amino 

acid sequences are deduced from nucleotide sequences presented in Figure 4.1(a). Dots 

denote to the identical residues shown above. Hypervariable sites within the V3 loop 

are indicated as asterisk. Amino acid positions are numbered according to HIV 2. Two 

cystein residues for the V3 loop disulphide bridge bond are at positions 296 and 330. 

Potential N-linked glycosylation sites are indicated as W. As before, year 0 = 1984; 

year 3 = 1987; year 4 = 1988; year 5 = 1989; year 6 = 1990 and year 7 = 1991. 



Year Sequences 277 296 330 	336 

Z82r001 FTDNAKTIIV QLXEBVEI*C TRPNBWORXS IBIOPORAFY T1GEII0DIR QABCBLBRAIO 
Z82r00a 
Z82r00b 
Z82r00c 
Z82r00d 

0 Z82r00e 
ZS2rOOf 
Z82r00g 
Z82r00h 
Z82r001 
Z82r00j 
Z82r00k 

Z82r003 ..N ....... .. *  ................. .. ........ ... Q ...... .......... 
Z82r004 ..N ....... .. #  .......................0......Q................ 
Z82r005 .A..........* ....... .......... ...... 0 ... ... Q ...... ..... I.... 
Z82r007 .A ........ ..*0 ...... .......... ...... 0 ... ... 3 ................ 
Z82r008 0.0.............. 
Z82r009 . V..........................0.0.............. 
Z82r01 0................ 

3 Z82r02 
Z82r03 .V...................3 ... ... Q ...... .......... 
Z82r04 . .0...........I.... 
Z82r05 .V............0 ...... B... A 	.0................ 
Z82r06 .V ... .......... .. ........ ... Q ...... .......... 
Z82r07 .6... 

..9 

V ... .......... .......... ... 0 ...... ..... I.... 
Z82r08 .6... V ... .......... .......... ... 0 ...... ..... I.... 
Z82r09 . V..........................3................ 

Z82r10 .V.....................V. ---Q ...... 
Z82r11 
. B.. 
.*. . .V..........................3...........0. 

Z82r12 .6.. .V............3 ...... B... A. .0 ...... ..... I.... 
Z82r13 .6.. .V............0 ........V. . .EQ. . .10.......I.... 
Z82r15 .6.. .V............0 ......B... A. .0...........I.... 

4 Z82r16 .9.. .V ... ......... R ........V. . .EQ. . .10.......I. 
Z82r17 .9. ..V.T..........R ........V. . .EQ. . .10.......I.... 
Z82r18 .6.. .V............3 ......B... A. .10...........I.... 
Z82r19 .*0. .V............R ........V. . .EQ. . .10.......I.... 
Z82r20 .......... B ... V............P ........V. . .EQ. . .10............ 
Z82r21 .6.. .V............R ........V. . .EQ. . .10............ 
082r22 .6.. .V............0 ......B... A. .3...........I.... 
Z82r24 .6.. .V.T . ......... R .Y ...... V. . .EQ. . .10.......I.... 
Z82r25 .V............0 ......B.V. A. .0...........I.... 
Z82r26 .6.. 

. 6.. 
.V.P..........R .Y .... S.V. . .EQ. . .10.......I.... 

Z82r27 ... V............3 ...... B... A. .3.. .10.......I.... 
062r28 .V............3 ...... B... A. .0...........I.... 
082r29 .A..........*.P.V ... ......... 3 ...... B... A. .3...........I.... 
082r30 .A..........#. .TV............0 ...... B... A. .0...........0.... 
Z82r31 .A..........6. .011............3 ...... B... A. .3...........I.... 
Z82r32 .#...V............3 ...... B... A..0 ........... 

5 Z82r33 L ...........B.. .V............3 ...... B... A. .3...........I.... 
Z82r34 L...........B.. .V............3 ...... B... A. .3 ...... ..... I.... 
Z82r35 .6. .TV............3 ...... B... A. .3 ...... ..... I.... 
Z82r37 0............B.. .V............0 ...... B... A. .0 ...... ..... I.... 
Z82r38 ... V............3 ...... B... A. .3 ...... ..... I.... 
Z82r39 

.6.. 

.11............0 ......B... A. .3 ...... ..... I.... 
Z82r40 .V............3 ...... B... A. .0...........I.... 
Z82r41 .V............0 ......B... A. .3...........I.... 
Z82r42 .B.. .V.P..........R .Y ...... V. . .EQ. . .10.......I.... 
Z82r43 .6.. .V............3 ...... B... A. .0...........I.... 
Z82r44 .6.. .V............3 ...... B... A. .3.. .10.......I.... Z82r45 .*. . .V............3 ...... B... A. .0...........I.... 
Z82r46 .B.. .V............0 ...... B... A. .0...........I.... 

Z82r70 

.* 

.V........Y. . .R .0 .....By. .AZQ ... 10.......I.... 
Z82r71 .V............0 ......S... A. .D ................ 
Z82r72 

.B.. .9.. 

.V............0 ......B.V. A. .0...........I.... 
Z82r75 .V........Y. . .10 .0 .....By. .AEQ ... 10.......I.... 
Z82r76 .11............0 .......... A. .0 ...... ..... I.... 
Z82r77 . . . .P.......B.. 

.B.. 

.11........Y. . .10 .0 .....By. .AQ.. .10.......I.... 
Z82r78 . . . .1'.......B.. .11............0 ........V. ...D ...... ..... I .... 

6 Z82r79 

.B.. 

. . . .T.......B.. .V.T..........P. .Y ...... V. ..Do ...... ..... I .... 
Z82r80 

.B.. 

.6.. .V............0 ......B... A. .0...........I.... 
Z82r81 

.B 

.V.T..........P. .Y ...... V. . .33.. .10.......I.... 
Z82r82 

.B.. 

.V............3 ......B... A. .0 ...... ..... I.... 
Z62r83 

.B.. 

. . . .T.......B.. .V.T..........P. .Y ...... V. . .DQ. . .10.......I.. .1 
Z82r54 .V.T..........R .Y ...... V. . .DQ.. .10.......I.. 
Z82r85 .V............0 ...... S... A. .3...........I.... 
Z82r86 

.6.. 

.11............0 ...... B... A. .0...........I.... 

Z82r91 

.BA. 

.. . .10.......*10. .V.P..........R .Y ...... V. . .03.. .N.......I.... 
Z82r92 

.6.. 

.B.. 

.V............0 ...... B... A. .0 ...... ..... I....  
Z82r93 .V............3 ...... B... A. .0...........I.... 
Z82r94 

.BA. 

.............B.. 

.............B.. 

.B.. 

.............B.. .V............0 ...... B... A. .3 ...... ..... I.... 
Z82r95 .V............0 ...... B... A. .0 ...... ..... I.... 
Z82r96 .V............0 ......S... A. .0...........I.... 

7 Z82r97 ... V............0 ...... B... A. .0...........I.... 
Z82r98 .11............0 ...... B... A. .0...........I.... 
Z82r99 

.............B.. 

... V............0 ...... B... A. .0...........I.... 
Z82r100 

.............B.. 

.............B 

. . . .10.......B.. .V........Y. . .R .0.....511. .AEQ ... 10.......I.... 
Z82r001 

...........0.610. 

.............B 

... V............0 ...... B... A. .0...........I.... 
Z82r102 

.............B ... V..........................3 ...... ..... I.... 
Z82r103 

.............B 

.............B ... V............3 ...... B... A. .0 ...... ..... I.... 



Year Sequences 337 	 353 

Z82r001 WTDTLRQIVM KLREQFG 
Z82r00a 
Z82r00b 
Z82r00c 
Z82r00d 

0 Z82r00e 
Z82r00f 
Z82r00g 
Z82r00h 
Z82r001 
Z82r00j 
Z32r00k 

Z82r003 .6K ...... I 	..G .... 
Z82r004 .6K ......I 	......K 
Z82r005 .6K. .K. . .1 	......K 
Z82r007 .6K. .K. . .1 	..GK ... 
Z82r008 .6K. .K 

... 
1 	..G 

Z82r009 .8K. .K. ..I 	. .G.....  
Z82r01 .IE ......I 	..GK.. 

3 Z82r02 .8E ......I 	. .0.... 
Z82r03 .6K ......I 	. .0.... 
Z82r04 .#..G 	.....0.... 
Z82r05 .8K. .K. . .1 	. .3.. .3 
Z82r06 .63 ......I 	..G 

... 
.0... 

Z82r07 .63. .K. . .1 	......E 
Z82r08 .83. .K. . .1 	......K 
Z82r09 .#E......I 	..G .... 
Z82r10 .63......I 	..G .... 
Z82r11.63. .K. . .1 	....... 
Z82r12 .63. .K. . .1 	......K 
Z82r13 .63. .K. . .1 	......K 
Z82r15 .63. .K.. .1 	......K 

4 Z82r16 .63. .K. . .1 	......K 
Z82r17 .63. .K. . .1 	......E 
Z82r18 .63. .K. . .1 	......E 
Z82r19 .*E. .1.. .1 	......K 

.83......I 	
..G  ... 

Z82r20 
' 

.3.... 
Z82r21 .63......I 	..G... 

Z82r22 .63. .3.. .T 	......K 
Z82r24 .63. .3.. .1 	......E 
Z82r25.63. .K. . .1 	....... 
Z82r26 .63. .K. . .1 	......K 
Z82r27 .23. .K. . .7 	....... 
Z82r28.63. .K. . .1 	......K 
Z82r29 .63. .3.. .1 	....... 
Z82r30 .83. .K.. .1 	....... 
Z82r31 .63. .3.. .1 	....... 
Z82r32 .63. .3.. .1 	......K 

5 Z82r33 .63. .K 
... 

1 	....... 
Z82r34 .63. .3.. .1 	....... 
Z82r35 .#E. .3.. .1 	......K 
Z82r37 .83. .K ... T 	

...... 
K 

Z82r38 .83. .K ... 1 	....... 
Z82r39 

	

.83. .K 
... 

1 	....... 

	

.K 
... 

1 	....... Z62r40.83. 
Z82r41 .63. .3.. .7 	....... 
Z62r42 .6E. .K. . .1 	......K 
Z82r43 .63. .3.. .1 	....... 
Z82 r44 .63. .K. . .1 	....... 
Z82r45 .63. .K. . .1 	....... 
Z82r46 .63. .K. . .1 	....... 
Z82r70 .63. .K. . .1 	....... 
Z82r71 .63. .3.. .1 	....... 
Z82r72 .63. .K 	. .1 	....... 
Z82r75 .83. .K.. . .L 	......E 
Z82r76 .83. .K. . .7 	....... 
Z82r77 .63. .K. . .1 	......B 
Z82r78 .83. .K. . .7 	......B 

6 582r79 .63. .K. . .1' 	......K 
Z82r80 .3.. .1 	....... 
Z82r81 .23. .K. . .7 	....... 
Z82r82 .83. .K. . .1' 	....... 
Z82r83 .8.. .K. . .1' 	....... 
Z82r84 .6.. .K 

... 1 
	....... 

Z82r85 .3.. .1 	....... 
Z82r86 .63. .3.. .7 	....... 

Z82r91 .8E. .K. . .1 	......K 
Z82r92 ....... 
Z82r93 .6K. .2.. .1 	......E 
Z82r94 .6K. .3.. .7 	......K 
Z82r95 .6K. .3.. .7 	......K 
Z82r96 .63. .3.. .1 	....... 

7 Z82r97 .6K. .E. . .7 	......K 
Z82r98 

.K ... 
7 	....... 

Z82r99 .3.. .7 	......K 
Z82r100 .83......L 	......K 
Z82r101 .6K. .3.. .7 	......E 
Z82r102 .83. .K.. .1 	....... 
782=103 .63. .2.. .7 	....... 



(bounded by 2 cysteine residues at positions 296 and 330) and two flanking regions 

(a 20-residue 5' region and a 24-residue 3' region), the rate of amino acid replacement 

is much higher in the V3 loop than in the 5' and 3' regions flanking (Figure 4.4). In 

the entire sequence data, there were a total of 24 different V3 loop amino acid 

sequences. Based on their amino acid sequences on all the variable sites with the 

loop, these sequences can be further categorised into different sequence types, 

designated from A to F, which are presented in Table 4.4, together with the 

frequencies at which they are found in each year (courtesy of Dr. E. Holmes, Division 

of Biological Sciences, I.C.A.P.B., University of Edinburgh University). Each of these 

sequences can be seen as having one or more amino acid differences from that found 

at seroconversion (designated as sequence A). As shown in the Table 4.4, the amino 

acid replacements within the V3 loop are largely concentrated at positions 306, 308, 

313, 315, 317, 319, 320, 324, some of which have been shown to be within the target 

sequence recognized by neutralizing antibodies (306, 308) (Looney et at., 1988; 

Mckeating et at., 1989) and cytotoxic T cell (Takahashi et at., 1988), and responsible 

for conversion for one phenotype to another (De Jong et al., 1992a, b; Fouchier et al., 

1992). At amino acid residue position 306, the most commonly found residue at year 

3 was serine (S), subsequently it changed to arginine (R) at year 4 and in year 7 was 

glycine (G). Similarly at positions 319 and 320, at the time of seroconversion (at year 

0), the respective amino acid sequences were glycine (G)-Glutamate (E), however, 

they changed to glycine (G)-glutamine(Q) at year 3; glutamate(E)-glutamine(Q) at year 

4; glycine(G)-glycine(G) at year 5 and glycine(G)-aspartate(D) at year 6. The 

coincidence of the hypervariable nature and the high degree of antigenicity in the V3 
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Table 4.4. The 24 V3 loop amino acid sequences and their samples frequencies in 

the plasma. Only residues that differ from the seroconversion sequences (lineage 

A) are shown. As before, amino acid positions are numbered according to 

HIV 2. Hypervariable sites within the V3 loop are indicated as asterisk. 

Potential N-linked glycosylation Sites are indicated as W. The frequency of each 

sequence in each year are presented, with total number of nucleotide sequences 

obtained given at bottom. As before, year 0 = 1984; year 3 = 1987; year 4 = 1988; 

year 5 = 1989; year 6 = 1990 and year 7 = 1991. 

Sequence genotype 	 Frequency in Year 

0 	3 4 5 6 7 
296 	........330 

A 	CTRPN#NTRXSIHIGP0R7.FYrTGEII3DIRQAC 1.000 
B 	* ..................C 0.067 
Cl 	* ......P...........D 0.067 
C2 	* ...... P ........... Q 0.267 
C3 	6 ...........G ......Q 0.267 
C4 	* ......P ...........D.T 0.067 
CS 	S ..................3.1' 0.067 
Dl 	6 ............. V .... Q 0.091 
02 	S .... R........V.. .EQ. . .00 0.455 
D3 	6... .0........V.. .EQ. . .00 0.091 
04 	6... .R.Y......V...EQ. . .10 0.087 
05 	* .... R.Y .... S.V. ..EQ. ..N 0.043 
06 	6... .R.Y......V.. .OQ 0.067 
D7 	6... .R.Y......V.. .DQ. . .10 0.200 0.077 
08 	*Y. . .00.0 .....By. .72Q.. .10 0.200 0.077 
El 	6... .G ......0.. .A. .0 0.067 0.043 0.333 0.769 
E2 	6... .0......S.. .A. .3 0.182 0.696 
E3 	6.. ..G ...... S ... A. .00 0.091 
E4 	6... .3 ...... S.V.A. .0 0.043 
ES 	S... .G ...... S ... A. .0.. .N 0.087 

56 	6... .3 ...... B.V.A. .0 0.067 
El 	4... .3 .......... A. .D 0.067 
56 	6... .0 ........ V .... D 0.067 
F 	S ..................0 0.133 0.091 0.077 

Total 	 12 	15 	11 	23 	15 	11 



region indeed support the notion that high rates of amino acid changes in this region 

may facilitate virus variants to escape from immune clearance (Albert et al., 1990; 

Montefiori et al., 1991). 

In the flanking regions of the V3 loop, several amino acid replacements (at 

position 289, 295 and 338) alter the potential sites for N-linked glycosylation 

(indicates as '#' in Figure 4.4 ). Take amino acid residue at the position 289 for 

example; at year 3, over 50% (8 out of 15) of viral RNA sequences were Lysine (K) 

and they all became Asparagine (N) in the subsequent years (Figure 4.4). Similarly, 

at position 295, some of the virus variants found after 3 years of infection had lost 

their potential glycosylation sites (Molecules Z82r17, Z82r24, Z82r26, Z82r42, 

Z82r79, Z82r81, Z82r83, Z82r84 and Z82r91, see Figure 4.4). The regaining and loss 

of these sites may also have direct effect on virus antigenicity and infectivity 

(Montefiori et al., 1988; Hansen et al., 1990). 

Despite the hypervariability at some sites within the V3 loop, there are several 

segments, namely CTRPNNNTRK, IGPG and IRQAHC which constitute the 

'framework' of the V3 loop, and show much less variability. The IGPG tetrapeptide, 

for instance, was present in all sequences obtained and so were the two cysteines (at 

position 296 and 330) for the V3 loop disulphide bridge bond. Moreover, the twelve 

sequences obtained from the plasma sample from patient 82 at seroconversion are 

identical among themselves at both nucleotide and amino acid levels, and the amino 

acid sequence is the same as the 'global consensus V3 sequence' identified by LaRosa 

et al., from 245 North American isolates (LaRosa et al., 1990). This finding contrasts 

strongly to what has been observed at the later stage of infection where the plasma 
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viral population is extremely heterogenous (Figure 4.4 and Table 4.4). The 

seroconversion sequences differed at many sites from viral RNA sequences identified 

after 3-years of infection, but was identical to three of the five proviral DNAs 

obtained from the same year (DNA sequence data was kindly provided by Dr. Peter 

Simmonds and Mrs Fiona McOmish, Simmonds et al., 1991). Therefore, it appears 

that seroconversion sequences can persist much longer in proviral DNA than in viral 

RNA form. Similarly, V4 sequence type (group a) found only in the plasma sample 

at seroconversion were still present in proviral DNA 3 years later (Simmonds et al., 

1991). 

4.3.7 Evolution of the V3 Loop If the phylogenetic relationships of the nucleotide 

sequences from the V3 region can be established, evolution of the antigenic structure 

of the V3 loop can be studied. This has been done by superimposing the V3 loop 

amino acid sequences onto a phylogenetic tree inferred from the nucleotide sequences 

using the DNAML program. The resulting evolutionary pattern relating the 24 

different amino acid sequences is depicted in Figure 4.5 (courtesy of Dr. Edward 

Holmes, Division of Biological Sciences, I.C.A.P.B., University of Edinburgh). As 

shown in Figure 4.5, many amino acid changes in the V3 loop correspond to the 

evolutionary pattern observed at nucleotide level (see Figure 4.2). It is quite clear that 

evolutionary lineages D and E are two distinct lineages derived from early sequences 

which subsequently reached high frequency (Table 4.4). These two lineages dominate 

the whole viral population and they seem to do so by alternating in abundance from 

year 4 and onwards (Table 4.4). This is reflected by changes in their frequency within 
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Figure 4.5. Evolutionary process relating the defined 24 amino acid sequences found in the V3 loop. Lineages are designated by letters 

A to F. Proposed evolutionary relationships are indicated by arrows. Lineages that persist through the study are labelled by asterisk. 

Time scale is shown along the top (courtesy of Dr. Edward Holmes). 
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the whole viral population. At year 4, for instance, lineage D composed nearly 50% 

of the whole viral population, whereas lineage E composed less than 20%. However, 

at year 5, more than 70% of virus variants were from lineage E while less than 15% 

were from lineage D. At year 6, lineages D and E were at comparable levels and each 

consists of roughly 50% of the viral population. At year 7, however, lineage E 

frequency rises once again and nearly 80% of virus variants present in the plasma 

were from this lineage (see Table 4.4). 

4.3.8 Amino Acid Sequence Variation in the V4 Region of Plasma Viral RNAs 

The deduced amino acid sequences of the 114 V4 nucleotide sequences are presented 

in Figure 4.6. Of these sequences, three groups or lineages, designated as A, B and 

C, have been identified based on their nucleotide sequence and sequence length. 

These amino acid sequences are presented in Table 4.5, together with their frequencies 

found each year. The length of the consensus sequence in Group A is 22 amino acids 

between the highly conserved flanking segments FNSTW and 1TLPCR, whereas that 

of Group B and Group C are 17 and 18 amino acids long respectively. The consensus 

sequences of these three groups are clearly distinct from each other, whereas the 

individual sequences within each group are very similar, although some sequences are 

shorter or longer. Similarly, the potential sites for N-linked glycosylation (indicated 

as '#') in this region are also different between these identified sequence groups (see 

Figure 4.6). Interestingly, the sequences obtained at the years 0 (1984), 3 (1987), 

4 (1988) and 5 (1989) fit these defined groups much better than those obtained in the 

later samples (see Figure 4.6). The burst of length and sequence variation in the years 
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Figure 4.6 Deduced amino acid sequences of the V4 region in patient 82. These amino 

acid sequences are deduced from nucleotide sequences presented in Figure 4.1 (b). Gaps 

were introduced to preserve the sequence alignment and indicated by dashes. Dots 

denote to the identical residues shown above. Potential N-linked glycosylation sites are 

indicated as W. Amino acid positions are numbered according to HIVJ2. As before, 

year 0 = 1984; year 3 = 1987; year 4 = 1988; year 5 = 1989; year 6 = 1990 and year 7 

= 1991. 



Year Sequences 389 	 424 

82r002 F*STW #STQL*STW#STQL#SAG*#TEE# ITLPCR 
82r005 .*... 	#STQL#STW#---------#TEE# 	...... 
82r003 .#... 	#SIQF*STW#STQL#S ----- EE* 	...... 
82r004 .*... #STQF#STW#STQL#SA--RTEE* ...... 

0 82r00a .#... *STQF*SPW#STQL#SA--RTEE 	...... 
82r00b .*... #STQF#STW#STQL#SA--RTEE# ...... 
82r00c .#... *STQF#STW#STQL#SA--RTEE# ...... 
82r00d .... 	*STQF#STWffSTQL#SA--RTEE# 	...... 
82r00e .*... #STQF#STW*STQL#SA--RTEE# ...... 
82r5571 .#... 	#--YS#GTW#-----STQH#TGE# 	...... 
82r5572 .#... 	#--YY#GTW# ----- STQH*TEE# 	...... 
82r5575 .#... 	#--YS#GTWI-----STQH#TEE# 	...... 
82r5577 .#... 	#--YS#DTWS ----- STQH#TEE* 	...... 
82r5579 .#... 	#--YS#G#WS ----- STQH*TEE# 	...... 
82r5576 .#... #--YS#G*WS ----- STQH#TEE# 	...... 
82r5573 .*... *--YS#G#WS ----- STQH#TEE* 	...... 
82r5578 .#... 	*--YS#G#WS ----- STQH*TEE# 	...... 

3 82r5580 .#... 	#--YS*G#WS ----- STQH#TEE# 	...... 
Z82r01 .#... *--YF*GTW# ----- STQH#TGE# ...... 
Z82r02 .#... 	*--YSG#WS ----- STQH#TEE 	...... 
Z82r03 .#... 	#--YS*G#WT ----- STQH#TGE# ...... 
Z82r04 .*... 	*--YS#DTWS ----- STQH#TEE# 	...... 
Z82r05 .#... D--YS#STW# ----- SAQI*TEE* 	...... 
Z82r06 .t... 	#--YS*GTWS ----- STQH#TEE* 	...... 
Z82r07 .#... *--YS*GTWS ----- STQH*TEE# ...... 
Z82r08 .#... 	#--YStGTWI ----- STQH#TEE* 	...... 
Z82r09 .#... *--YS*G#WS ----- STQH#TEE* ..... 
82r122 .#... #W*YS*G*WS ----- STQH*TGE* ...... 
82r1210 .*... 	S--YS#GWS ----- STQH#TGE* 	...... 
82r125 .#... S--YS*GTW# ----- STQR*TGE# ...... 
82r1212 .*... 	-----*STWDLTQL*STQ#K-EE# ...... 
82r1213 .#... 	-----#STWDLTQLSTQ#K-EE# ...... 
82r1214 .#... 	-----STWDLTQL#STQ#K-EE* ...... 
82r1223 .#... 	-----*STWDLTQL*STQ#K-EE# ...... 
82r126 .#... 	-----#STWDLTQL#STQ*K-EE# ...... 
Z82r10 .#... T--YS*DPW* ----- STQHfTGE# ...... 

4 Z82r11 .#... 	-----*STWDLTQL#STQ*K-EE* ...... 
Z82r12 .#... 	-----*STDLTQLtSTQtK-EEt 	...... 
Z82r13 .*... 	-----#STWDLTQL*STQ#K-EE* ...... 
Z82r15 .#... 	-----*STWDLTQL#STQ#K-EE* ...... 
Z82r16 .#... 	-----#STWDLTQL#STQ*K-EE# ...... 
Z82r17 .1*... 	-----*STWDLTQL#STQ#K-CE* ...... 
Z82r18 .#... 	-----#STWDLTQL#STQ#K-EE# ...... 
Z82r19 .#... 	-----#STWDLTQL*STQ#K-EE* ...... 
Z82r20 .#... 	S--YS#G# ----- STQH*TGE* 	...... 
Z82r21 .*... S--YS*GTW# ----- STQH#TGE# 	...... 
82r821 .#... 	-----#STWDLTQL#SIQ#R-EEU ...... 
82r825 .#... 	-----*STWDLTQLSTQ*K-EE# ...... 
82r8215 .#... 	-----*STWDLTQL#STQ*K-EE* ...... 
82r1091 .*... 	-----STWDLTQL#STQ#K-EE* ...... 
82r1092 .#... 	-----#STWDLTQL#STQ*K-EE* ...... 
82r1094 .#... 	-----#STWDLTQL#STQ#K-EE* ...... 
82r1095 .*... 	-----#STWDLTQL#STQ#K-EE# ...... 
82r1097 .#... 	-----#STWDLTQL*STQ#K-EE# ...... 
82r1098 .#... 	-----*STWDLTQL#STQ#Ic-EE# 	...... 



82r1096 .#... - *STWDLQL*STQ#K-EE# 
82r1099 .#... -----*STWDLTQL#STQ#K-EE* 
82r1093 .#... -----#STWDLTQL#STQ#K-EE* 
82r1100 .# ---  -----#STWDLTQL#STQ#K-EE# 
82r984 .*... -----#STWDLTQL#GTQ*K-EE* ...... 
82r9814 .#... ----- #STWDLTQL*STQ#K-EE 	...... 
82r986 .#... ----- #SPWDLTQ ---- Q#K-EE# ...... 
82r9810 .*... -----#STWDLTQL#STQDK-KD# ...... 
82r988 .#... -----*STWDLTQL*STQDK-KD* ...... 
82r9817 .#... ----- #STWDL#S --- TQ#K-EE# ...... 
82r9820 .*... -----#STWDLTQP#STQ#K-EE# ...... 
Z82r22 .#... -----#STWDLTQL*STQ#K-EE# ...... 
Z82r24 .*... -----#STTDLTQL*STQ#K-EE# ...... 
Z82r25 .#... -----#STWDLTQL#STQ*K-EE# ...... 
Z82r26 .*... -----#STWDLTQL#STQ*K-EE# ...... 
Z82r27 .*... -----*STWDLTQL#STQ#K-EE# ...... 
Z82r28 .#... -----*STWDLTQL#STQ#K-EE* ...... 
Z82r29 .#... -----#STWDLT-L#STQ#K-EE# ...... 
Z82r30 .#... -----#STWDLTQL#STQ#K-EE* ...... 
Z82r31 .#... -----#STWDLTQL#STQ#K-EE# ...... 
Z82r32 .#... -----*SPWDLTQL#YSQ#K-EE# ...... 
Z82r33 .#... -----#STWDLTQL#RAQ#K-EE# ...... 
Z82r34 .#... -----#STWDLTQL#$TQ#K-EE# ...... 
Z82r35 .*... -----*STWDLPQLGSTQ#K-EE* ...... 
Z82r37 .#... -----*STWDLTQL#STQ#K-EE# ...... 
Z82r38 .*... -----*STWDLTQL#STQ#K-EE# ...... 
Z82r39 .*... -----*STWDLTQL#STQ#K-EE# ...... 
Z82r40 .#... -----#STWDLTQL#STQ#K-EE# ...... 
Z82r41 .#... -----#STWDLTQL*STQ*K-EE* ...... 
Z82r42 .#... -----#STWDLTQL*STQ#K-EE* ...... 
Z82r43 .#... -----#STWDLTQL*STQ*K-EE* ...... 
Z82r44 .#... -----#STWDLTQL*STQ#K-EE# ...... 
Z82r45 .#... -----*STWDLTQL*STQ#K-EE* ...... 
Z82r46 .#... -----*STWDLTQL1*STQ#K-EE* ...... 
Z82r70 .#... 	----- #STWDSTQLQST ---- EE# 	...... 
Z82r71 .*... 	----- *STQL*STQ ----- K-EE# 	...... 
Z82r72 .#... 	-----#STWDLT#LDG#Q--EGE* ...... 
Z82r76 .#... 	-----#STGDLTQL*STQ-K-EG# ...... 
Z82r77 .#... 	-----*STWDLTQL#STQDK-G-# 	...... 
Z82r78 .#... 	-----#STWDLTQL*GTQDK-GE* ...... 

6 Z82r79 .#... 	-----#STWDLTQL*#*TQ#REE# ...... 
Z82r80 .*... 	--------- - ----- STQH*TGE# 	...... 
Z82r81 .#... 	-----#STWELTQL#STQDT-D## 	...... 
Z82r82 .#... 	----- *STWDLTQ --- SQ*Q-EE# 	...... 
Z82r83 .*... 	-----#STWDLTQL*#*TQREE* ...... 
Z82r84 .#... 	-----*STWDLTKL*STQD--EK# ...... 
Z82r85 .41... 	-----#STWGLTQL*STQ#--EK* 	...... 
Z82r86 .41... S--YP#GTW# ----- STQH#TGE* 	...... 
Z82r91 .#... 	-----#STWELTQL41STTQD-KE* 	...... 
Z82r92 .41... 	----- *STWDSTQLQST ---- GE# 	...... 
Z82r94 .41... 	----- *STQL*STQ ----- K-EE* 	...... 
Z82r95 .*... 	S--YS#Gfl7# ----- STQH#TEE* 	...... 
Z82r96 .41... 	----- #STQL#STQ ----- K-EE# 	...... 

7 Z82r97 .#... S--YS*CIW# ----- STQH*TGE* ...... 
Z82r98 .41... 	----- #STQL*STQ ----- KEEE* 	...... 
Z82r100 .41... 	-----#STWDLTQP#STQDK-EE* 	...... 
Z82r101 .41... 	S--YS*GIW# ----- STQH*TCE* 	...... 
Z82r102 .41... 	-----*STWDLTQP41TTQDK-EE* 	...... 
Z82r103 .*... 	-----#STWDLTQP#TTQDK-EE# ...... 
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Al F#STW *STQF*STW*8IQLNSA--RPEE# ITtPCR 0.667 

A2 .6... *8I'QL*STW*S'1QL008AO8NTEE# 0.111 

A3 .6... *SIQ?*8I'W*STQLNS ----- 33* 0.111 

A4 .6... *s'OQL*BTW* --------- NTEE* 0.111 

31 .6... N--YSNG#WS8TQB ----- NTEE# ...... 

32 .6... OOWNYBNG*WSSTQR ----- NPEE* ...... 

83 .6... --------- *STQH ----- NTGE* 	...... 

ci .6... #SPWDLTQL*BTQ ------ NKEE* ...... 

C2 .6... #8 ---- PQL*STQ ------- KE.E* 	...... 

C3 .6... #STWCL --- #STQ ------ 06333* 	...... 

C4 .6... #STWDLTQQ ---------- 06133* ...... 

C5 .6... *STWflLTLN*N1'Q ----- 06333* 	...... 

C6 .6... #STWD8TQLQ8I' -------- OEZ* 	...... 

Cl .6... *BTWDLTNLDGNQ ------- EGE* ...... 

CS .6... *50'WDKTQSQ --------- NQEE* 	...... 

C9 .6... *STWDS?QL.QST --------- 33* ...... 

1.000 	0.263 

0.052 

0.684 0.953 

0.023 

0.023 

0.071 

0.071 

0.142 

0.071 

0.142 

0.357 

0.071 

0.071 

0.272 

0.363 

0.272 

0.091 

Table 4.5. The 16 sequence genotypes of the V4 region and their samples 

frequencies in the plasma over the study period. Only residues that differ from Al 

sequences are shown. Gaps were introduced to preserve the alignment and 

indicated by dashes. Dots denote to the identical residues shown at the top (Al 

sequences). Potential N-linked glycosylation sites are indicated as W. The 

frequency of each sequence in each year are presented, with total number of 

nucleotide sequences obtained given at bottom. As before, year 0 = 1984; year 3 

= 1987; year 4 = 1988; year 5 = 1989; year 6 = 1990 and year 7 = 1991. 

Sequence genotype 
	 Frequency in Year 

0 	 3 	 4 	 5 	 6 	 7 

Total 	 9 	 18 	19 	 43 	 14 	11 



6 (1990) and 7 (1991) is obviously the reason that the sequences are distinct from the 

defined group consensus sequences. In consequence, shorter and longer forms were 

both frequently found. For example, the Group B sequences were exclusively 17 

amino acids long between the relatively conserved flanking regions FNSTW and 

ITLPCR at years 3 and 4. However, at year 6, a Group B sequence (Z82r80) became 

10 amino acids long (see Figure 4.6). Similarly, the length of the Group C type 

sequence was 18 amino acids in length between segments FNSTW and ITLPCR 

before the year 6 (1990). However at years 6 (1990) and 7 (1991), both longer and 

shorter forms of Group C sequences were frequently found (see Figure 4.6). 

Sequences Z82r71, Z82r94 and Z82r96 are 13 residues in length between segments 

FNSTW and ITLPCR whereas sequences Z82r79 and Z82r83 have 19 residues (see 

Figure 4.6). The length of Group A sequences are somewhat variable during the early 

stage of infection. Four length types in total were found shortly after seroconversion 

with one type domination (see Figure 4.6). 

4.3.9 The Evolution of the V4 Region As for the V3 region, the 114 V4 amino acid 

sequences were superimposed on to the phylogenetic tree defined from 114 V4 

nucleotide sequences (see section 4.3.7) to study the relationships between grouping 

pattern defined at both amino acid and nucleotide levels. Not unexpectedly, the 

sequence groups defined at the amino acid level correlated very well with the lineages 

identified by phylogenetic analysis; with amino acid sequences of Group A 

corresponding to nucleotide sequences of group a, Group B to group b and Group C 

to group c, indicating that many amino acid changes in the V4 region correspond to 
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the evolutionary pattern observed at nucleotide level. The consequent evolutionary 

pattern of the various genotypes between and within defined groups is depicted in 

Figure 4.7. In contrast to what was observed in the V3 region, the evolutionary 

pattern in the V4 region is more clear and can be assessed more easily. First of all, 

two lineages, derived from group a sequences, can be clearly seen and they are 

labelled as lineages B and C. Lineage B sequences are very abundant during the third 

year after seroconversion (1987) and were subsequently almost undetectable for more 

than two years. Lineage C sequences consist primarily of those found at years 5, 6 

and 7. Although these sequences appeared a year after of those in lineage B, the 

evolutionary distance between lineage C and A sequences is no bigger than that 

between lineage B and A sequences (see Table 4.3). Therefore, lineage B and C are 

likely to derive independently from lineage A, which once again suggests a 

discontinuous evolutionary process. It is quite clear that C2-C8 genotype sequences 

are derived from Cl whereas B2 and B3 are from Bi. 

4.3.10 Distinct but Related Plasma Viral and Lymphocyte-associated Proviral 

Populations The rapid sequence turnover observed in the plasma viral population can 

also be identified coincidently in the lymphocyte-associated proviral population of the 

same patient, although this change turns out to lag behind that of the plasma viral 

RNA population. Figure 4.8, depicts the changes in the type and frequency of proviral 

DNA V4 sequences present in PBMCs over the 5 years post-infection (proviral DNA 

sequences are kindly provided by Dr. Peter Simmonds and Mrs. Fiona McOmish, 

Department of Medical Microbiology, University of Edinburgh) and compared with 
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Figure 4.7. Evolutionary process relating the defined 16 amino acid sequences found in the V4 region. Lineages are designated by 

letters A to C. Proposed evolutionary relationships are indicated by arrows. Lineages that persist through the study are labelled by 

asterisk. Time scale is shown along the top. 
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Figure 4.8. Frequency of detection of group a, b and c sequences in sequential 

PBMCs and plasma samples from patient 82. Viral RNA sequences from plasma are 

shown above the x axis, and proviral DNA sequences from PBMCs are shown below 

the x axis. 
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those found in the plasma viral population (Simmonds et al., 1991). At year 3 (1987), 

for example, both group a and group b sequences were found in the proviral DNA 

population whereas in the viral population only group b were detected. However, in 

the following year (1988), virtually all proviral DNA sequences were in group b 

whereas the majority of the viral RNA sequences (72%) became group c sequences. 

At year 5 (1989) when the complete replacement by group c sequences had finished 

in the plasma viral population, the process of this replacement was still going on in 

the proviral DNA population. 

Having studied the similarities and the differences between the plasma viral 

and lymphocyte-associated proviral populations, a general trend was found that RNA 

sequences turned over more rapidly than the corresponding DNA sequences, hence the 

new virus variants appeared and became dominant firstly in the plasma rather than in 

the PBMCs populations. For example, the seroconversion group a sequence was 

completely replaced in plasma at year 3 (1987) yet formed a substantial proportion of 

the sequences in PBMCs at that time. Similarly, the difference in the relative numbers 

of group b and group c sequences in the sample collected at year 4 could be 

interpreted as a more rapid transition to a new sequence type in the plasma. The 

possible mechanisms and the consequences of this observation are discussed in 

sections 4.4.4 and 4.4.5. 

The relative frequencies of sequences differing in length in the V4 region were 

also estimated by high-resolution gel electrophoresis of amplified non-diluted cDNAs 

(containing 100-200 copies of target sequences) and DNAS (containing approximately 

100-220 target molecules), providing a more comprehensive analysis of the variants 
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present in the samples than would be obtained by sequencing alone. The relative 

numbers of group b and group c sequences on the polyacrylamide gel were then 

quantified by scanning densitometry (carried out by Drs. P. Simmonds and A.J. Leigh 

Brown, see Figure 4.9). The relative proportions agree closely with those determined 

by sequence analysis. For example, at year 4 (1988), DNA samples contained 74 to 

75% group b sequences while the cDNA samples contained only 42 to 48% 

(Simmonds et al., 1991). The corresponding numbers of group b sequences are 10 

out 11 and 3 of 11 in these two samples. Similarly, the DNA samples at year 5 

(1989) contained 84 to 85% group c sequences by densitometry, compared with 10 

of 11 by sequence analysis, while the eDNA population was uniformly group c by 

both methods (Simmonds et al., 1991). 

4.3.11 Linkage and the recombination of the V3 Loop and the V4 region of 

gp120 Examination of the sequential sequences obtained in the V3 and V4 regions 

of patient 82 reveals some other interesting phenomena. Despite the continuous 

sequence change of the overall plasma viral RNA population with time, some variants 

with identical V3 loop persist and actually increase their frequency over the whole 

population. This is especially the case for the El and F genotype sequences (see 

Table 4.4). While the frequency of F genotype sequences kept more or less constant 

over the study period (13.3% in year 3, 9.1% in year 4 and 7.7% in year 7), the 

proportion of the El genotype sequences increased from 6.7% in year 3 to 33.3% in 

year 6, and in year 7 it began to dominate the plasma viral population (76.9%). 

Furthermore, the reappearance of some early sequences in the later samples was also 

I  ME 



Figure 4.9. Length analysis of the V4 hypervariable region to confirm the existence 

of population differences in the in vivo proviral DNA and viral RNA populations. 

Lane: a, negative human DNA amplified with primers (w, v and x, u) spanning the 

V4 region (see Figure 2.1); b and d, PCR product from V4 region of proviral DNA 

at years 4 and 5, respectively; c and e, PCR product from viral RNA in the 

corresponding plasma samples. Expected sizes of group b and group c sequences are 

indicated as B and C, respectively (Simmonds et al., 1991). 
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observed in the V3 region. After being completely undetectable for over two years 

(years 5 and 6) in the plasma viral population, a sequence of class F, which is quite 

common at year 3, re-emerged at year 7 (see Table 4.4). Similarly, the reappearance 

of the early group b sequences at years 6 and 7 was also observed after it was 

completely replaced by group c sequences at year 5 (see Figure 4.6, Molecules 

Z82r86, Z82r95, Z82r97 and Z82r101). 

To address whether this pattern is the consequence of linkage or recombination, 

the V3 and V4 viral RNA sequences obtained from the same PCR amplified cDNA 

molecules were studied. A total of 68 full-length V3-C2-V4 viral RNA sequences 

were obtained (approximately 400bp in length). The genotypes for both V3 and V4 

regions of the same molecule are presented in Figure 4.10. There is no fixed 

relationship between V3 and V4 genotypes. V3 loop sequences of the El type contain 

both group b sequences, Z82r05 for example, or group c sequences at V4 (Z82r7 1, 

see Figure 4.10). Conversely, sequences with the same V4 genotype could have 

completely different V3 genotype sequences. For example, group c sequences at V4 

could be linked to V3 loop sequences either of El (Z82r28), or E2 (Z82r29), or D5 

(Z82r26) genotypes. In view of the substantial difference between both V4 group b 

and V4 group c sequences and between V3D and V3E sequences, the lack of a 

complete association between them implies that recombination must occur repeatedly. 

The hypothesis is supported by the recent discovery that viral recombination indeed 

occurred frequently among variants found in a single HIV-1 positive individual 

(Howell et al., 1991). New recombinants may have some selective advantages over 

pre-existing ones and, if so, will reach high frequency in plasma population until they 
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Figure 4. 10 Genotype comparison of the V3 and V4 regions from the same 

molecules. Sequence genotypes for the V3 and V4 region were determined according 

to previously defined sequence types (see sections 4.3.6 and 4.3.8). Year 0 = 1984; 

year 3 = 1987; year 4 = 1988; year 5 = 1989; year 6 = 1990 and year 7 = 1991. 



genotypes 
Year Sequences 

V3 	V4 

Z82r01 Cl 	El 
Z82r02 C2 	El 
Z82r03 C3 	Bl 
Z82r04 B 	Bl 

3 Z82r05 El 	B1 
Z82r06 C2 	El 
Z82r07 F 	El 
Z82r08 F 	Bl 
Z82r09 C2 	Bl 

Z82r10 Dl 	Bl 
Z82rll F 	Cl 
Z82rl2 E2 	Cl 
Z82r13 D3 	Cl 
Z82rl5 E2 	Cl 

4 Z82r16 D2 	Cl 
Z82r17 D2 	Cl 
Z82rl8 E3 	Cl 
Z82r19 D2 	Cl 
Z82r20 D2 	Bl 
Z82r21 D2 	El 

Z82r22 E2 	Cl 
Z82r24 D4 	Cl 
Z82r25 E4 	Cl 
Z82r26 D5 	Cl 
Z82r27 E5 	Cl 
Z82r28 El 	Cl 
Z82r29 E2 	Cl 
Z82r30 E2 	Cl 
Z82r31 E2 	Cl 
Z82r32 E2 	Cl 

S Z82r33 E2 	Cl 
Z82r34 E2 	Cl 
Z82r35 E2 	Cl 
Z82r37 E2 	Cl 
Z82r38 E2 	Cl 
Z82r39 E2 	Cl 
Z82r40 E2 	Cl 
Z82r41 E2 	Cl 
Z82r42 D4 	Cl 
Z82r43 E2 	Cl 
Z82r44 ES 	Cl 
Z82r45 E2 	Cl 
Z82r46 E2 	Cl 

Z82r70 D8 	C9 
Z82r71 El 	C2 
Z82r72 E6 	C7 
Z82r76 E7 	C7 
Z82r77 D8 	C7 
Z82r78 E8 	Cl 

6 Z82r79 D6 	CS 
Z82r80 El 	B3 
Z82r8l D7 	Cl 
Z82r82 El 	C8 
Z82r83 D7 	CS 
182r84 D7 	C7 
Z82r85 El 	C7 
Z82r86 El 	Bl 

Z82r9l D7 	Cl 
Z82r92 El 	CS 
Z82r94 El 	C2 
Z82r95 El 	El 
Z82r96 El 	C2 

7 Z82r97 El 	Bl 
Z82r98 El 	C2 
Z82rl00 D8 	Cl 
Z82r10l El 	Bl 
Z82rl02 F 	Cl 
Z82r103 El 	Cl 



too encounter an immune response. Within the relatively homogenous plasma viral 

population observed at year 5 (1989) (see Table 4.2 and 4.3) this is likely to be the 

case. Another consequence of the variable association between these two hypervariable 

regions is that the frequencies of sequences varied independently from each other. 

Combination of the V3 and V4 sequences will show a higher rate a turnover than that 

of the different sequences considered separately. Also, this will lead to even greater 

differences between the plasma viral and lymphocyte-associated proviral population 

at a given time point. 

4.4 Discussion 

Analysis of the plasma viral RNA sequences obtained from serial samples of 

a single haemophiliac patient (patient 82) has revealed tremendous sequence diversity 

in both the V3 and V4 hypervariable regions. This rapid sequence evolution consists 

not only of emergence and disappearance of distinct viral variants, but also of 

frequency changes of these variants over time, indicating persistent changes in genetic 

composition of the plasma viral population. This finding was anticipated by our 

previous cross-sectional studies of sequence evolution in a cohort of haemophiliac 

patients infected from a common source (Balfe et al., 1990). Similar results were also 

obtained from the study of the V3 sequence variation of six children infected from a 

single plasma donation by Wolfs et at., (Wolfs et al., 1990). However, one of the 

most striking findings of the analysis of patient 82 is the observation that the spectrum 

of variation develops from a homogenous population of V3 sequences at 

seroconversion. Examination of V3 and V4 sequences obtained from the same 
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molecule reveals that there is very restricted number of sequence linkages between 

these two regions. Lack of a complete association between the V3 and V4 region 

suggests that a recombination event must occur. Because of the functional importance 

of the V3 region, and also because the V3 is a major target for both the antibody and 

cytotoxic T-cell recognition, it is reasonable to assume that the evolutionary process 

of the V3 region may be different from that of the V4 region, with more selective 

constraints on the V3 than on the V4 region (see section 4.3.4). Significant 

differences between the frequencies of sequence variants in plasma viral and 

lymphocyte-associated proviral populations within the same sample were also observed 

for both V3 and V4 regions, suggesting that at any one time point, the predominant 

plasma virus variants may be antigenically different from sequences encoded by 

proviral DNAs present in PBMCs. The implications of the above findings for our 

understanding of the biology of HIV are discussed below. 

4.4.1 Low Frequency of Inactivating Substitutions In this study, approximately 

35,000 bases of viral RNA were directly sequenced from patient materials and no 

inactivating substitutions were found. This finding is consistent with our previous 

studies of sequence variation of proviral DNA sequences present in PBMCs amongst 

members of Edinburgh haemophiliac cohort where the calculated frequency of 

inactivating substitutions is approximately 1 in every 20 kilobases (Balfe et al., 1990). 

Low frequency of inactivating substitutions has also been reported for those infected 

by vertical transmission (Wolinsky et al., 1992). Therefore, it is likely that the 

inactivating substitution is extremely low in the in vivo situation, and that defective 
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virus variants may not play a major role in the pathogenesis of HIV. This result is 

somewhat in contrast to that described by Meyerhans et at. (Meyerhans et al., 1989), 

who observed that the frequency of detective mutations was about 10-fold higher than 

that found in our experiments. The discrepancy between the results could be due to 

the fact that different parts of HIV-1 genome were assessed in each study or due to 

the different technical procedures applied to obtain nucleotide sequences. Their 

sequences were obtained from clones of isolates propagated in in vitro culture whereas 

our sequences were obtained directly from PCR products. It has been known for some 

time that in vitro culturing virus will result in reducing the variability of virus variants 

(Meyerhan et at., 1989; Kusumi et at., 1992), and that the cloning of PCR products 

into plasmid vectors could amplify possible errors generated during the process of 

PCR amplification (Simmonds et al., 1990a). Thus the high frequency of defective 

virus variants observed by Meyerhans et at., could partly be an artifact generated 

during in vitro manipulation. 

4.4.2 Effective Immune Response at Early Stage of 11W Infection In this work, 

clear evidence has been presented for the rapid decline of plasma viral load during the 

early stage of infection (see section 4.3.1). This result was anticipated by the studies 

of viral and proviral loads in homosexual men during the period of primary infection, 

where the virus load in both plasma and PBMCs population has been shown to 

decrease rapidly and spontaneously (Daar et at., 1991; Clark et al., 1991). Although 

it is possible that other factors maybe involved in the decline of viral load, it is likely 

that the fast reduction in virus quantity in vivo reflects the development of an effective 
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immune reaction in the host. At the present stage, it is difficult to determine the 

immunological factors that govern viral replication during the early period of HIV 

infection. Recent studies, however, favour the hypothesis that an effective response 

from cytotoxic T-cells may play major role in restricting viral replication and 

transmission. In an investigation of the cell-mediated immune response to HIV-1 in 

seronegative homosexual men with recent sexual exposure to HIV-1, cytotoxic T 

lymphocyte responses were detected in the absence of a humoral immune response 

(Clerici et al., 1991 and 1992). The sharp decline of plasma viraemia was also 

observed before the appearance of neutralising antibodies (Ariyishi, St Mary's Hospital 

Medical School, personal communication). 

4.4.2 In Vivo Sequence Evolution of the V3 and V4 regions in Patient 82 It has 

been shown in this work that there is a high degree of sequence variation in the V3 

and V4 hypervariable regions of gpl20 in patient 82. In the V3 region, virtually all 

the sequence variation is due to frequent nucleotide substitutions whereas in the V4 

region, deletion and/or insertion events are also involved. However, the substitutions 

do not seem to accumulate steadily with time. This is reflected by the presence of an 

extremely homogenous plasma viral population observed at year 5 (1989) for both the 

V3 and V4 regions (see section 4.3.4). 

Sequence evolution in the V3 region is a complex process. There is no simple 

relationship between successive plasma viral RNA sequences, nor is there clear 

replacement of one V3 genotype with another. The evolutionary tree of the V3 region 

obtained repeatedly by different phylogenetic methods (see section 4.2.4) shows a 
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striking and consistent evolutionary pattern. All the later sequences can be explained 

as progeny of the sequences found at seroconversion. 	Three years after 

seroconversion, a major phylogenetic division into two distinct lineages has been 

observed and both of which persisted throughout the course of the infection. The 

rapid and continuous evolution of each lineage results in persistent changes of the 

genotype distribution and therefore of the genetic composition of the plasma viral 

population. It has been argued for some time that the rapid sequence change in the 

V3 region is a consequence of a continual process of immune escape. Several studies, 

including this work, have indeed shown that high rates of amino acid replacement are 

precisely located in those areas that can be recognized by the immune system (see 

section 4.3.6.; and Holmes et at., 1992). Furthermore, frequent sequence changes lead 

to rapid alterations in the relative distribution of different genotypes, suggesting that 

the frequency-dependent element may well be involved in the evolutionary process of 

plasma viral population. In this aspect, the process of sequence changes could be 

partially explained by a simple host-parasite model; the higher the frequency a viral 

variant reaches in the plasma population, the higher probability of its recognition and 

clearance by the immune system. From the data obtained in this work, it can be 

clearly seen that in each year investigated it is indeed the most frequent genotype that 

appears to be cleared away (shows the greatest reduction in frequency). Consequently, 

variants found at low frequency will have a greater selective advantage and will rise 

in frequency until they too are countered with an effective immune response. The 

frequency dependent nature of viral evolution is made more complicated by the 

possibilities that; 1) the selection process may not be constant in the long term 
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because of the loss of normal functions of B and T cells that are associated with 

prolonged HIV infection, and 2) the qualitative changes in virus phenotype may result 

in the emergence of virus variants that are more virulent and cytopathic for CD4+ T 

cells (Cheng-Mayer et at., 1988; Tersmette et al., 1989a, b). 

The pattern of sequence variation in the V4 region is slightly different. Apart 

from frequent amino acid replacement through time, length variation is also observed 

in this region. Sequence change in patient 82 consists of a series of replacements of 

one particular sequence type with another over the first 5 years of infection. 

However, in years 6 (1990) and 7 (1991) after infection, multiple types of V4 

sequences coexist in the plasma viral population. Furthermore, some viral variants 

found in early infection reappeared in the plasma viral population probably due to the 

loss of normal memory functions of immune system. Supporting this hypothesis is 

the observation that CD45RO+ memory cells appears to be preferentially infected in 

vivo by both HIV and SlY (Schnittman et at., 1989 and 1990; Willerford et al., 1990). 

Sequence analysis of the V4 region reveals that the succeeding V4 sequence type was 

not necessarily directly derived from the previous sequence; for example, group c 

succeeded group b at year 4 (1988) to year 5 (1989), yet group b probably was not 

the immediate ancestor of any of the group c sequences which reflected by the less 

evolutionary distance between group a and group c than that of between group a and 

group b (see section 4.3.4). The discontinuous evolutionary pattern observed in 

plasma is likely to be a consequence of the evolutionary process of virus variants in 

different solid tissues. CD4+ cells in solid tissues have long been shown to be 

infected frequently (Fauci, 1992; Meltzer et at., 1990) and recent discoveries have 
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indicated that the distinct pattern of V3 and V4 variants are present in different organs 

of HIV- 1 positive patients (Ball et at., Regional Virus Laboratory, East Birmingham 

Hospital, Birmingham, personal communication; Dr. P. Simmonds, personal 

communication; Epstein et al., 1991; Steuler et at., 1992). Contribution to the plasma 

viraemia by these distinct V4 sequences at different times and/or at different levels 

may therefore partially explain the replacement of one V4 sequence type with another 

as well as the existence of the discontinuous evolution of this region. 

4.4.3 Constraints on the V3 Sequences Having analyzed the nucleotide and amino 

acid sequences of the V3 region, a unique pattern of sequence variation has been 

observed. Apart from its general hypervariable nature shown above, high conservation 

of some amino acid segments were identified within the V3 region, implicating their 

functional importance. This is especially true for the amino acid segments 

CTRPNNNTRK, IGPG, and IRQAHC which constitute the frame-structure of the V3 

loop. Indeed, several biological functions have been proposed for the V3 region from 

the in vitro study of biological clones with mutations in the V3 loop. It has been 

suggested that the V3 region is implicated in virus-cell fusion, possibly mediated by 

protease cleavage near the tip of the loop (Clements et al., 1991). The region 

encompassing the V3 loop has also been shown to be the major determinant of T-cell 

and macrophage tropism (Cheng-Mayer et at., 1990a,b; Hwang et al., 1991). Certain 

amino acid mutations, particularly in the conserved regions of the V3 loop, could 

generate a virus that has either lost or substantially reduced its infectivity in the in 

vitro assays (Bolognesi, 1990). 
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This functionally critical region can, at the same time, be recognized by both 

neutralizing antibodies and cytotoxic T cells (Rusche et al., 1988; Palker et al., 1988; 

Cease et al., 1987; Takahashi et al., 1988). Although the amino acid sites between 

conserved segments are highly variable and have been postulated as one of the major 

means of viral escape from immune clearance, detailed sequence analysis has revealed 

that only a limited number of amino acid are allowed to change at these sites. 

Phylogenetic analysis has demonstrated that identical amino acid changes have 

occurred in independent lineages, suggesting extensive convergent evolution is 

implicated in the process of V3 sequence variation (this thesis and Holmes et al., 

1992). In this aspect, it is likely that two major elements are governing the evolution 

process of the V3 sequences. One is the hypervariable element which will facilitate 

viruses to escape once they are recognized by the immune system. The other is the 

restricting element which would allow the sequence changes as long as these changes 

are functionally viable for further virus infection. 

4.4.4 Long-term Persistence of Seroconversion Sequences Analysis of sequence 

variation in the plasma viral population and comparison with that of lymphocyte-

associated proviral populations revealed the existence of differences in the frequencies 

of different sequence types of virus present in these two populations (see section 

4.3.10). While substantial sequence evolution has taken place in the plasma viral 

RNA population, several proviral DNA sequences obtained several years (up to 3 

years in patient 82) after primary infection were still identical to those detected at 

seroconversion. This finding suggests that these proviral DNA sequences correspond 
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to the seroconversion-type sequences may not replicate to any significant extent during 

the intervening years. Although there is a sharp decline in the number of CD4+ cells 

around seroconversion (Clark et al., 1991; Daar et al., 1991), a fraction of these 

infected cells which are somehow resistant to the cytopathic effect of HIV can survive 

and continue to circulate in the blood stream. It is possible that these cells are a 

subset of memory cells which appear to be preferentially infected in vivo by both HIV 

and SIV (Schnittman et al., 1989; Willerford et al., 1990). Consistent with their 

function in antigenic recall, these memory cells can have essentially unlimited life 

span (Simmonds et al., 1991). Thus, differentiated memory cells will persist in vivo 

for quite a long time bearing within them unchanged seroconversion proviral 

sequences. The persistence of group b DNA sequences in patient 82, when almost all 

RNA sequences were of group c type, might also have been the consequence of long-

term persistence of cells non-productively infected in 1987 (see section 4.2.9). 

There are several possible explanations for the proposed long-term survival of 

infected T-cells (Simmonds et al., 1991). Firstly, proviral sequences in those PBMCs 

that survive infection may contain inactivating mutations that prevent subsequent virus 

replication. High frequencies of defective proviral sequences have been reported to 

exist in vivo (Meyerhans et al., 1989). However, using the limiting dilution PCR 

method that can eliminate in vitro copying errors during amplification, an extremely 

low rate of inactivating substitutions has been observed (see section 4.3.3). 

Furthermore, it has been demonstrated that a high proportion of proviral sequences 

present in PBMCs can be activated in vitro to give replication-competent viruses 

(Brinchmann et al., 1991). Therefore, defective viruses probably contribute little to 
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persistent infection of lymphocytes. An alternative explanation for the failure of HIV 

to kill the cell it infects is that virus which exists at the early stage of infection may 

be less virulent and cytopathic for T cells. This notion is supported by the emergence 

of HIV variants that are more T-cell cytopathic in vitro as the disease progresses. The 

phenotype of these variants was classified as 'rapid/high' (Tersmette et al., 1989a, b). 

Cell tropism studies of HIV-1 from a number of investigators has also suggested that 

Macrophage-and-T-cell (MT) tropic isolates are the predominant HIV variants detected 

early after infection of humans, whereas T-cell-tropic isolates became more prevalent 

as the disease progresses (Hwang et al., 1991). These phenotypic changes have been 

shown to correlate with HIV envelope sequence change, especially in the V3 region 

(Hwang et al., 1991). The isolates from primary HIV infection which are defined as 

MT-tropic V3 loop sequences are all similar to each other, and to the 'global 

consensus' V3 loop sequence identified from 245 isolates from North American 

(Hwang et al., 1991). In contrast, T-cell-tropic isolates appear to be characterized by 

the V3 loop sequences that are dissimilar to this 'global consensus'. The sequence 

analysis in this work also fits above hypothesis. The seroconversion V3 sequences 

obtained from patient 82 are identical to the 'global consensus' while sequences found 

at later stages are all clearly different from the 'global consensus'. Taken together, 

the above observations are consistent with the idea that the envelope-gene evolution, 

particularly in the V3 region, may reflect the selection of T-cell-tropic and T-cell 

cytopathic variants with nonconsensus V3 region sequences during the later stage of 

HIV-1 induced disease. Less virulent and less T-cell cytopathic viral variants at 

seroconversion may be one of the reasons for long-term persistence of seroconversion 

153 



sequences in the proviral DNA population. Thirdly, it could also be because of the 

silent nature of the host cells. As has been know for some time, viral replication 

requires an "activated" T cell environment and the presence of various inducible host 

transcription factors. Quiescent T cells, which make up a large proportion of the T 

cell pool in vivo, appear deficient in these factors (Zack et al., 1990a, b; Bukrinsky 

et al., 1991; Stevenson et al., 1990; Varmus etal., 1977). Thus, as one of the latent 

forms (see section 1.1.9), seroconversion proviral sequences can also persist in the 

body for quite a long period. 

4.4.5 Origin of Plasma Viral Population Differences between plasma viral and 

lymphocyte-associated proviral populations were observed in this work. The more 

rapid sequence turnover in the plasma population than in PBMCs also suggests that 

the new virus variants may appear and become dominant firstly in the plasma 

population. Consistent with this hypothesis, the sequence variants found in the earliest 

plasma sample (seroconversion sequence) were not seen subsequently in the plasma, 

but were relatively abundant 3 years later as provirus in the PBMCs of patient 82 

(Simmonds et al., 1991). With disease progression, the proportion of infected PBMCs 

will increase and the proviral population will begin to reflect the more recent plasma 

sample. Consequently, the proportion of PBMCs bearing the seroconversion sequence 

type will become smaller and smaller. 

There are several possible explanations for the original source of the plasma 

viral population. First of all, it could be from a subset of transcriptionally active 

CD4+ lymphocytes. It has been shown that plasma of both symptomatic and 
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asymptomatic individuals is infectious, and thus infection of PBMCs may be a self-

sustaining process. However, the only small proportion of infected CD4+ cells in the 

blood and an even smaller proportion of CD4+ actively expressing HIV mRNA in the 

course of infection can hardly explain the plasma abundances of cell-free circulating 

virus in vivo and the high titre of plasma virus infectivity in vitro (Simmonds et al., 

1990a; Ho et al., 1989; Coombs et al., 1989). Although, in most cases, blood 

monocytes have been documented at normal levels even when patients were in late-

disease stage (Poli et al., 1985), examination of tissue macrophages in HIV-1 infected 

patients suggests a completely different picture. In certain body tissues, such as those 

of the central nervous system, lymph nodes, or lung, the frequency of HIV-1 infected 

cells may be 10,000- to 100,000-fold higher than that in blood. In each of these 

tissue, the predominant cell type infected is not the CD4+ T cells, but rather the 

macrophages (Meltzer et al., 1990). Recent studies have suggested that the 

predominant HIV- 1 isolates obtained early after infection are more macrophage-tropic, 

whereas T-cell-tropic isolates became more prevalent as disease progress (Ross et al., 

1992; Schuitemaker et al., 1991 and 1992). Taken together, it may suggest that, in 

the early infection, macrophage may serve as reservoir for virus and also as a vehicle 

for virus dissemination. Large proportions of infected macrophages in certain tissues 

may therefore account for the main source of plasma virus through the course of 

infection, although other origins such as dendritic cells in the blood circulation cannot 

be ruled out. 

155 



CHAPTER 5 

SEQUENCE VARIABILITY 

OF PLASMA VIRAL RNA AND 

LYMPHOCYTE-ASSOCIATED 

PROVIRAL DNA DURING THE 

PRIMARY INFECTION OF HIV-1 
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5.1 Summary 

An investigation was undertaken of the levels of plasma viraemia and the 

sequence variation of HIV-1 during the primary stage of infection. Five plasma 

samples were obtained from five independently infected individuals prior to, or 

immediately after seroconversion. Four PBMCs samples were also collected 3-6 

months after seroconversion from 4 members of the Edinburgh haemophiliac cohort 

who were infected from a single common batch of HIV-1 contaminated factor VIII 

(see section 1.3, Chapter 1). 

High levels of plasma viraemia were observed in all samples studied ranging 

from 105 - 108  virus particles per ml of plasma, indicating an explosive replication 

of viral population at very early stage of HIV infection. Five years after infection, 

however, there was a substantial drop in viral load in plasma, suggesting an effective 

and rapid immune response limiting viral replication in vivo. 

Surprisingly, there is no sequence variation in the V3 region within any of the 

samples studied. This finding contrasts strongly to the situation seen in the follow-up 

samples where substantial sequence variation was observed. The closely linked V4 

region is also lacking in sequence variation in all but one cases investigated. At the 

same stage, however, sequence variation is present in the p17 region of gag, a 

genomically distant region from the V3 and V4 regions. Sequence analysis of the 

V3 sequences from these pre- and post-seroconversion samples has revealed their 

substantial similarity to the 'global consensus' V3 loop sequence identified from 245 

North American isolates (LaRosa et al., 1990), and maybe to the sequences carried 

by some monocyte-tropic virus variants (Fouchier et al., 1992; Chesebro et al., 1992; 
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De Jong et al., 1992a, b; Westervelt et al., 1991 and 1992). In addition, 3 out of 4 

members of the Edinburgh haemophiliac cohort have identical V3 and V4 proviral 

sequences and the forth patient has only one nucleotide difference in the V3 region 

from the others. The uniformity of the V3 and V4 regions compared to the 

heterogeneity in the p17 region strongly implies that 1) viral infection is not initiated 

by a single viral particle, 2) the homogeneity of the V3 and V4 regions is not 

because of the random outgrowth of certain viral genotypes, and 3) strong selective 

pressure has been imposed on the envelope gene in the initial phase of viral infection. 

As the V3 region contains one of the major targets for both B and T cells, 

identifying those sequences which are selected for in the early stage of viral infection 

will be important not only in terms of documenting the viral sequence changes 

which can overcome the specific immune response, but also in providing sequence 

information for the design and development of an effective vaccine, especially if such 

sequence homogeneity in env found in blood stream can also be extended to viruses 

found in different organs during the same stage of HIV infection. 

5.2 Introduction 

Primary infection with HIV-1 is most commonly manifested as an acute 

illness characterised by fever, myalgia, rash, gastro-intestinal symptoms, and 

occasionally neurological manifestations (Ho, et al., 1985). The period from the 

onset of acute illness to seroconversion can range from eight days to three months 

(Ho et al., 1985), with virus detectable in the semen, cerebrospinal fluid, peripheral 
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blood mononuclear cells (PBMCs), and plasma before the development of an 

antibody response (Ho et al., 1985; Goudsmit et al., 1986; Tindall et at., 1992). 

During this period high levels of p24 antigen has been detected at levels comparable 

to or even higher than those detected in patients in the later stage of HIV infection 

(Goudsmit et at., 1986; McRae et al., 1991). High levels of viraemia have been 

found in both plasma and lymphocyte populations (Clark et al., 1991; Daar et at., 

1991; Jurriaans et at., 1992) implying that HIV-1 is capable of explosive replication 

in vivo in the very early stage of infection. Following seroconversion, however, a 

rapid decline of cell-free virus in plasma and of lymphocyte-associated provirus in 

PBMCs was observed in an interval of 9 to 39 days and 6 to 34 days respectively 

(Daar et al., 1991; Jurriaans et al., 1992). This indicates the presence of an highly 

effective and rapid anti-HIV immune response at this time. Furthermore, the titers 

of infectious virus in plasma and PBMCs samples from seroconversion patients, 

measured by the end-point-dilution method, are very high and some are even 

substantially higher than those from some symtomatic patients (Daar et al., 1991; 

Clark et at., 1991), suggesting that the majority of the virus variants present during 

the primary stage of infection are infection-competent (Dr. David Ho, VIH 

International Conference on AIDS, Amsterdam, The Netherlands, 1992). The patients 

therefore possess an enormous amounts of infectious viruses at the primary infection 

and will be highly infectious, particularly as anti-HIV antibodies are undetectable by 

current antibody-based immunosorbent assay (Daar et al., 1991; Leigh Brown, 

personal communication). 

More interestingly, phenotypic studies of those virus variants obtained from 
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patients during the primary stage of HIV infection reveal that nearly 85% of them are 

non- syncytiurn-inducing (NSI) variants and preferentially infect monocyte-lineage 

cells (Roos et al., 1992). Such findings are consistent with the study of Cichutek et 

al., who demonstrated that seroconversion viruses could not be isolated in T-cell lines 

such as Molt-4/8, MT-4 and CEM, but were isolated when purified primary human 

macrophage were used (Cichutek et al., 1991). Recently, Schuitemaker et al., have 

shown that the progression towards AIDS is associated with a shift of the viral 

population from monocyte- to T-cell-tropic variants (Schuitemaker et al., 1991 and 

1992). Such a finding also supports the notion that monocyte-tropic NSI variants are 

predominant in the primary stage of HIV infection (Tersmette et al., 1989a, b; Ross 

et al., 1992). Therefore, low-level yet persistent infection of monocytes may 

therefore have greater selective advantage and survive the potent anti-HIV-1 immune 

response during the early period of infection. 

There is currently little information on the sequences of virus variants present 

in the early stage of HIV infection. Such data will be of great value as it will 

provide information in the study of sequential sequence variation in vivo, and will 

enable to trace those mutations at the molecular level which may determine the 

changes in viral tropism for particular cell types and escape from the immune 

response. At the same time, such information will also provide valuable information 

for the design and development of vaccine. 

In this part of the work, attention has been drawn exclusively to the study of 

sequence variability of plasma viral and lymphocyte-associated proviral populations 

during the stage of primary infection, aiming to provide some insight into the process 
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affecting the viral population during this period. In addition to the seroconversion 

sample obtained from patient 82 (see section 4.1), another 4 plasma samples were 

collected from 4 independently infected patients (p74, p84, Scl and Sc2) prior to or 

immediately after seroconversion. Patients 82, 74 and 84 represent haemophiliacs in 

Edinburgh whereas patients Sc 1 and Sc2 are two cases of heterosexual transmission 

from Edinburgh (1988) and from Dundee (1991), respectively. Four PBMC samples 

were also collected 3-6 months after seroconversion from 4 members (p28, p77, p79 

and p84) of the Edinburgh haemophiliac cohort who were infected from a single 

common batch of HIV- 1 contaminated factor VIII (Ludlam et al., 1985). Sequence 

analysis is largely concentrated on the V3 and V4 regions of the env gene, and part 

of the p17 region of the gag gene. 

5.2 Results 

Seroconversion plasma samples from 5 independently infected patients and 

three following-up plasma samples out of five patients (p82, p74  and p84) were 

obtained from Drs. Roy Robertson (Edinburgh City Hospital), Christopher Ludlam 

(Edinburgh Royal Infirmary), G.E.D. Urquhart and A.J. France (both Department of 

Medical Microbiology, University of Dundee) via Dr. Peter Simmonds (Department 

of Medical Microbiology, University of Edinburgh). No patient, except patient 74 

is currently on, or has previously received any anti-viral treatment. Four PBMCs 

samples from 4 members of Edinburgh haemophiliac cohort were also obtained. 

Plasma viral RNA titre, quantified by previously developed RNA based PCR, the p24 
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antigen level in plasma and the serological status of anti-HIV-1 antibody of the 5 

independently infected patients are present in Table 5.1. Apart from patient 82 whose 

antibody to HIV proteins was weakly positive when sample was collected, the other 

four patients were all negative for anti-HIV antibodies. 

5.2.1 High Levels of Plasma Viraemia During the Primary Infection of HIV-1 

Comparison of plasma viral loads at seroconversion and five years after has revealed 

a striking difference (Table 5.1). The viral loads are 3-5 orders of magnitude higher 

at seroconversion than after 5 year of infection. For example, there were 

approximately 108  and 105  virus particles per ml of plasma at seroconversion in 

patient 82 and 84, respectively. However, five years after infection, plasma viral 

loads were dropped to 10 in patient 82 and was not detectable in patient 84 (<100, 

see Table 5.1). High levels of plasma viraemia observed in seroconversion plasma 

samples suggests that HIV- 1 could replicate rapidly and efficiently in a short period 

of time. Substantial decline of viral loads after 5 years infection, however, may 

indicate the potent anti-HIV-1 activity of the immune system at early stage of 

infection. The persistence of viral production in plasma after several years of 

infection, however, may equally suggest that the latent period observed clinically is 

not necessary reflected by non-replication of viruses in vivo. 

5.2.2 Plasma Viral RNA Sequences of env and gag Genes During the Primary 

Infection Plasma viral RNA were extracted and detected by an RNA based PCR 

technique developed previously in this work (see Chapter 3). Single cDNA 
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Table 5.1 Viral RNA titre, p24 antigen level and serological antibody status in plasma samples of five individuals collected during the 

stage of primary infection, a  virion titre in the plasma were quantified by RNA-based PCR method developed in this work. b  p24 antigen 

level and c  anti-HIV-1 antibodies results were kindly provided by Dr. Peter Simmonds and Mrs. Selma Rebus (Department of Medical 

Microbiology, University of Edinburgh). NA, not applicable. 



Patients Virion per ml plasma by PCR p24 Ag (pg/ml)b Antibody to HIV' 

at seroconversion / 5 years after 

82 1.0 x 108  / 	8.5 x 103  0 weakly positive 

74 1.0 x io 	/ 	3.49 x 103 50 negative 

84 1.0 x iO 	/ 	< 1.0 x 102  20 negative 

SO  1.0 x 104  / 	NA 15 negative 

Sc2 1.0 x 108  / 	NA 500 negative 



molecules were obtained by limiting dilution prior to the double PCR amplification 

(see section 2.2.7). Plasma viral RNA sequences were obtained by directly 

sequencing the PCR amplified products without any further in vitro manipulation (see 

section 2.2.10). From those seroconversion plasma samples, 12 V3 loop sequences 

were determined from patient 82, 22 from patient 84, 40 from patient 74, 26 from 

Sic, and 29 from S2c. These nucleotide sequences are presented in Figure 5.1, 

together with their respective deduced amino acid sequences lined underneath. The 

V4 plasma viral RNA sequences from these 5 samples have also been obtained and 

they are presented in Figure 5.2. From patient 82, 9 V4 sequences were determined, 

whereas from patients 84, 74, Sic and S2c, 22, 21, 26, and 11 sequences were 

obtained respectively. Part of p17 region of the gag gene, when the samples were 

available, were also determined. From patient 74, total of 15 sequences were 

obtained while from patients 84, Scl and Sc2, 8, 19 and 18 sequences were obtained 

respectively. These gag sequences are presented in Figure 5.3. 

5.2.3 Proviral DNA Sequences of env and gag genes from 4 Members of the 

Edinburgh Haemophiliac Cohort Proviral DNA were extracted from 4 members 

of the Edinburgh haemophiliac cohort as described (see section 2.2.3). Detection and 

sequencing of proviral DNA molecules from these PBMCs samples were carried out 

as described previously (see section 2.2.10). The V3 and V4 sequences were 

obtained from the same HIV-1 DNA molecules. From patient 28, 11 V3 and V4 

sequences were obtained while from patients 77, 79 and 84, 11, 9 and 11 V3 and V4 

sequence were obtained respectively. For the p17 region of the gag gene, 9 
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Figure 5.1 Nucleotide and deduced amino acid sequences of the V3 loop obtained at or immediately after seroconversion. Amino Acid 

positions are numbered according to HIV 112. V3 loop sequence from HIV is presented according to the HUMAN RETRO VIRUSES 

and AIDS 1991 database by Los Alamos National Laboratory, Los Alamos, New Mexico 8754, USA. The 'global V3 loop' consensus 

sequence identified from 245 North America isolates is also presented (LaRosa et al., 1990). 



V3 	Loop 	Sequences No. of Sequences No. of Sequence 

330 obtained Variants 
Patient 296 

82 TGTACAAGACCCAACAACAATACAAGAAAKAGTATACATATAGGACCAGGILAGAGCATTTTATACAACAGGAGAKATAATAGGAGATATAAGACAAGCACATTGT 12 

74 TGTACKAGACCCAGCAACAATACAAGAAAAAGTATACATATGGGACCGGGGAGAGCATTTTATGCAACAGGAGAAATAATAGGAGATATAAGACAAGCACATTOT 40 1 

84 22 
.C. .T. .R. .9. .8. .N. .N. .T. .R. .R. .8. .1. .8. .1. .0..?. .0. .R. .A. .F. .Y. .A. .T. .0. .3. .1. .1. .0. .D. .1. .R. .Q. .A. .81. .C. 

Scl T0TACAA0ACCCAACAACAATACAAOAAAAA0ThThCATATA00ACCA00CA0A0CATTTATAcACA0GACGAATAATA00AATAT0ACACATT0T 26 1 
.C. .T. .R. .9. .N. .N. .N. .r. .R. .K. .8. .1. .81. .1. .0. .9. .0. .R. .A. .F. .Y. .T. .T. .0. .R. .1. .1. .0. .N. .1. .R. .Q. .A. .81. .C. 

Sc2 TGTACAAGACCCAACAACAATACAAGAAAAGGTATACATATAGGACCAWCAGAGCATTTTATACAACAGGAGAAATAATAGGAGATATAAGACJLAGCATATTGT 29 1 

HIV,, .C. .T. .R. .9. .N. .Y. .81. .K. .R. .K. .81. .1. .81..!. .0. .9. .0. .81. .A. .P. .Y. .T. .T. .K. .81..!..!. .0. .T. .1. .81. .Q. .A. .H. .C. 1 1 

Lakosa.con .C. .T. .81..?. .81. .81. .81. .T. .R. .1. .8..!. .81. .X. .0. .9. .0. .81. .A. .F. .Y. .T. .T. .0. .3. .1..!. .0. .D. .1. .81. .Q. .A. .H. .C. 1 1 



Figure 5.2 Nucleotide and deduced amino acid sequences of the V4 region obtained at or immediately after seroconversion. Amino 

acid positions are numbered according to HIV B2. 

Patient V4 	Sequences No. of sequences No. of sequence 

389 	 423 obtained variants 

TTTAATAGTACTTOGAATTCAACACAACTTAATAGTACTTGGAATTCAACACAACTTAATAGTGCTGGGAATAATACTGAAGAAAATATCACACTCCCATOTAGA 

.P.  

TTTAATAGPACTT0GATTCAACACAATTTAATAGTACTT0GAATTCAACACAACTTAATA0T0CTCG0ACTGTCTCACACTCCCAPGTAOA 
.F. .14. .8. 

 
4 82 

TTTAATAOTACTT00ATTCAACACAACTTAATAGTACTP00AATAATACTGAA0AAAATATCACACTCCCATGTAI 
6 

TPTAATA0TACTT00AATTCAACACAATTTAATA0TACTP00AATTCAACACAACTTAATA0T0AAQAJsAATATCACACTCCCAT0TA 

74 TTTAATAGTACTTOOAATAATAATGATACTAOTACTPOOAATOAOACTGOAAAGPCAOATAACATCACACTCCCATGCAOA 21 1 

.P. .14. .8. .T. .8. .14. .14. .14. .D. .T. .8. .T. .8. .14. .8. .T. .0. .K. .9. .D. .14. .1. .P. .L. .P. .C. .8. 

84 TTTAATA0TACTT0G.ATGATACThCA000TCAAATACTACA000TCAAATAACACT0A1LACTATCACACTCCCATGCA0A 22 1 

SCI TTTAATAOTATTTGGAAOOTTAATAOThCTTOGAATOOTACTOOAOOATCAAATAACACOOAGAAAQOACACAATCACACTCCCATOCAOA 26 1 

Sc2 TTTAATAGTACTT0QXAT00TAAT00TACTT000ATGTTACT00AGG0TCAATAACACT0AA00AAAT0ACACAATCACACTTCCAT0CA0A 11 1 



Figure 5.3. Viral RNA Sequences of the p17 region of gag gene in patients 74, 84, Sc I and Sc2 during the primary infection. Sequence 

of HIV B2  is obtained from HUMAN RETROVIRUSES and AIDS 1991 database by Los Alamos National Laboratory, Los Alamos, 

New Mexico 87545, USA and is used for sequence comparison. Nucleotide sequence positions are numbered according to HIV B2. 

Only nucleotides that differ from HIVHXB2  are shown. Dots denote identical nucleotides to HIV 2. 'n' is the number of each variant 

sequence obtained. 



451 	 713 

HIVHXB2 

	

p74-a 	 . ta g . t 	 e .g.... 

	

-b 	. .. .c .............................t ..... a.. ......... ............................... a ................... ....t  ................C ...........................................5.... 

	

-e 	..................................t ..... a ...... .................................... g ........5...............................C ...........................................5.... 

	

-d 	..................................t .....a ..........................................a ........................................C ...........................................0.... 

	

p84-a 	.. . 	a .............................t .....p ..........................................5....................................t ...................................a ................ 

	

-b 	..................................t .....a ..........................................9,*::::::* ............................... 	.................................................... 

	

-e 	... .a .............................t .....a............................... ...........5................... ............. ....t ...................................a ................ 

	

-d 	a.. 	a ...................... ....... t .....p .........a ................aa ..............g ....................................t ...................................a ................ 

	

-. 	a .............................t  ..... p  .... ....... ........................ .... ........................................t ...................................a ................ 

	

-f 	a. .a .............................t .....a..........................................5 ....................................t .................................................... 

	

Sd-a 	....................C .............a ................................at...................a..............................t ...................................a... .a.tg ........ 

	

8c2-a 	...............................ta ..............................t. . .a.............5 ....................................t ...................................a .......p........ 
HIVKXB2 

714 	 793 

EIVHXB 

	

p74-a 	...........e .........................................a...........................a......gc .................................c.t ............................................ 

	

-b 	...........e .........................................p...................C .......a......ge.................................e.t............................................ 

	

-e 	...........C .........................................a..................................Sc. ................................C .............................................. 

	

-d 	...........e ............................ ............................... ..e..............ge .................................C .............................................. 

	

p84-a 	.................5 ...................................5.........a.................a......pc. 	ag ..................... .... ...C .............................................. 

	

-b 	......... ........5...................................5 ................. ..........a ...... 5C... .5 ............................C ...................a .......................... 

	

-c 	.................a...................................5.........a .................a ......gC. . 	ag ............................C ...................a..  ................ ........ 

	

-d 	.....a...........a........a...a ......................a.........a .................a......gc...ag ............................C .............a........a ....................... 

	

-. 	.................a...................................a.........a ........................go.. 	ag ...........C ................C .............................................. 

	

-e 	..................................................... g ... ...............................CC... .0 ............................C .............................................. 

	

Sd-a 	.................g. .a ....................................................a.......a......SC .................................c.t ............................................ 

	

Sea-a 	.................5...............................................................a......gC.e ...............................C .............................................. 

HIVHXB3 



sequences were obtained from patient 28, 9 from patient 77, 6 from patient 79 and 

8 from patient 84. The deduced amino acid sequences from the V3 and V4 regions 

of env and nucleotide sequences of p17 region of gag gene are presented in Figures 

5.4, and 5.5, respectively. 

5.2.4 Plasma Viral RNA Sequences from Follow-up Samples For the purpose of 

sequence comparison, three follow-up plasma samples were obtained from patients 

82, 74 and 84. From these samples, 23 V3 loop sequences were obtained from 

patients 82, 6 from patient 74 and 15 from patient 84. These sequences were aligned 

and the final nucleotide sequence alignment is shown in Figure 5.6 (nucleotide 

sequences from patient 82 are presented in Figure 4.1, see section 4.2.3). 

5.2.5 Lack of Sequence Variation in the V3 Hypervariable Region During the 

Primary Infection Examination of nucleotide and amino acid sequences presented 

in Figures 5.1 and 5.4 reveals a striking feature of sequence variation during the first 

stage of HIV infection. No sequence variation in the V3 hypervariable region in any 

of the pre- and post-seroconversion samples was observed. Three out of four 

members of the Edinburgh haemophiliac cohort have identical V3 proviral sequences 

and the forth patient (p77) has only one residue difference from the others (see Figure 

5.4). This finding contrasts strongly to the situation observed in the later on samples 

where a high degree of sequence variation has been observed (Figure 5.6). In one 

patient (p84) whose pre-seroconversion plasma sample and post-seroconversion 

PBMC sample are both available, the sequences obtained from the V3 region are 
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Figure 5.4 Deduced amino acid sequences of the V3 and V4 regions from four members of the Edinburgh haemophiliac cohort. 

These amino acid sequences are direct translation of proviral DNA sequences obtained from 4 samples 3-6 months after seroconversion. 

Gaps between the V3 and V4 regions are indicated by dashes. Only residues that differ from p28 are shown. Dots denote identical 

residues to p28 sequence. 'n' is the number of sequences obtained from each patient. N.Y., number of sequence variant observed. 

Patient 	 V3 loop 	 V4 region 	n 	N.V. 

p28 CTRPSNNTRRSISIGPGRAFYATGEIIGDIRQAHC-----FNSTWNDTTGSNTTGSNNTETITLPCR 11 1 
p79...................................................................9 	1 
p77............P ......................................................11 	1 
p84...................................................................11 	1 



Figure 5.5 Proviral DNA Sequences of the p17 region of gag gene in 4 members of the Edinburgh haemophiliac patients (p28, p79, 

p77 and p84) during the primary infection. Sequence of HIV B2  is obtained from HUMAN RETRO VIRUSES and AIDS 1991 database 

by Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA and is used for sequence comparison. Nucleotide sequence 

positions are numbered according to HIV B2. Only nucleotides that differ from HIVB2  are shown. Dots denote identical nucleotides 

to HIVPB2. 'n' is the number of each variant sequence obtained. 



451 713 
RXVBXB2 

p28-a .....a ............................t .....p ..........................................P ....................................t .................................................... 

-b ..................................t .....p ..........................................P ....................................t ...................................a ................ 

p79-a .....a ............................t .....p ..........................................p ...... 	.............................. t ...................................a ................ 

-b ..... a............................ t..... p ................ 	.................. ...p... 	p ........ 	...... ...................... t ................... 	................a ................ 

p77-a .....a ............................t. 	.a.g ...........a ..............................p...........................a ........t ...........................a .......a ................ 

-b .....a............................t .....p ...........a ............ .......................................................t ...................................a ................ 

-o .....a............................t .....p ....... 	....a. ............. .......... 	. 	..... p  ........... 	...... 	.......... .........t  ..  ....... 	..........................a ................ 

-d .....a ........p...................t .....p...........a . ............ ................. p ................................... .t .. 	......... 	........................a ................ 

- .....a............................t .....p ...........a ...... ........................ .....................................t .............. 	. 	.............. 	.... 	..a ................ 

a............................t .....p...........a .....................t.......... ...................................t ...................................a ................ 

p84-a .....a ............................t .....P ..........................................P  ....................................t ...................................a ................ 

-b ..................................t ................................................p ....................................t .................................................... 

-o .....a...........................t .....p ..........................................P  ....................................t ...................................a ................ 

-d............  .......................t .....p .........a................aa ..............p ....................................t ...................................a ................ 

- .....a ............................t ......... 	............. ..........................p ....................................t ......................... 	.......... a ................ 

-f . 	.a 	.a ............................t .....p ..........................................5 .................... ... 	........ 	.....t .................................................... 

EIVHXB2 

714 	 783 
RIVHXB2 U  

	

P28_ 
	..................p...................................p.........a .................a......pa.. 	ag ............................C ..............................................8 

	

-b 	..................p.............................a .....p.........a ...............a.a......Pc.. 	ag ............................C ..............................................1 

	

p79-a 	.................. p ... .. ....... .......................p.........a.................a...... 	............................C ..............................................5 

	

-b 	..................p...................................p.........a .................a......PC ... ag ............................C ..............................................1 

	

p77-a 	..................p...................................p.........a .................a......PC.. .ag ............................C ..............................................4 

	

-b 	..................p...................................p.........a .................a......gc. - 	ag .......... ....... ........... C ..............................................1 
........... ..... ........ ...p... ...... a .................at... 	pc. - .ag ............................C ..............................................1 

	

-d 	..................p...................................p.........a................. a ...... PC. - 	ag ............................C ..............................................1 

	

-. 	..................p...................................p.....a...a ................. a......go.. .ap ............................C ..............................................1 

	

-f 	..................g......................   .............p.........a ................. a......PC.. 	ag............................c ..............................................1 

	

p84-a 	..................p ...................................p.........a .................a......PC.. 	ag ............................C ..............................................3 

	

-b 	..................p ................................... p .................. . ........ a......PC... .5 ............................C ...................a ..........................1 

	

-C 	..................p ...................................p.........a .................a......pc.. .ap ..........................::C::: .C ...................a ..........................1 

	

-d 	......a...........p ........a...a ......................p.........a .................a......5C...ag .......................... ..C .............a........a .......................1 

	

-. 	..................p .......... ......................... p.........a .................a......pc. 	.ap ...........C ................C ..............................................1 

	

-f 	.....................................  ................. p..................................pc.. 	
9, 	

............ c  ..............................................1 

HIVHXB2 



Figure 5.6 Nucleotide sequences of the V3 loop obtained from follow-up sampled of patients 74 and 

84. Nucleotide sequences of the V3 region from patient 82 after 5 years infection are presented in 

Figure 4.1 (a) (Chapter 4). Consensus sequence are generated by most frequent nucleotide at each 

position. Nucleotide positions are numbered according to the HIV 82  sequence. Each sequence 

represents a single viral RNA molecule obtained directly from plasma. Only nucleotides that differ 

from the consensus are shown. Dots denote identical nucleotides to the consensus sequences. 

Sequences 888 947 

74v38916 .......... .......... 	.......... 
74v38917 
. a. 

74v38918 
74v38920 
74v38921 ........................t...... 
74v38923 
Consensus TGTACAAGAC CCAACAACAA TACAAGAAGA GOTAThCATA TAGGACCAGG OAGAGCA1T 

948 

.a 

992 

74v38916 ................................ 
74v38917 
74v38918 
74v38920 

.g 

74v38921 ................................ 
74v3 8923 
.g 

Consensus TATGCAACAG GAAACATAAT AGGAGATATA AGACAAGCAC ATTGT 

Sequences 888 947 

84v31 .t ...... 	.......... 	.......... 
84v35 
84v37 

84v310 
84v312 .aa..................t ........................... 
84v319 
84v323 
84v325 

84v3r02 
84v3r03 
84v3r04 
84v3r06 
84v3r08 ...................t .....c ..................... 
84v3r10 ..................t ........................... 
84v3r12 
Consensus TGTACAAGAC CCGGCAACAA TACAAGAAAA AGGATATCAA TAGGACCGGG GAGAGCA'IPT 

948 992 

84v31 
84v35 

.a 

84v37 

.aa 

84v310 
84v312 ta .......g g.g.t ..................c ........... 
84v319 
84v323 
84v325 

84v3r02 
84v3r03 . . .a ......g .................................. 
84v3r04 
84v3r06 
84v3r08 ta .......g g. 	.......... ..........c ........... 
84v3r10 ta.a .....g g.g.t ..................c.  ..... 	..... 
84v3r12 ta ........................................... 
Consensus ATTGCAACAA AACAAAPAAT AGGAGATATA AGAAAAGCAC ATTOT 



identical between these two populations, suggesting sequences present in the post-

seroconversion DNA sample, to a large extent, may represent the situation of those 

pre-seroconversion RNA samples. 

Moreover, substantial similarity has been found in the V3 loop sequence 

between seroconversion amino acid sequences and 'global consensus' V3 loop 

sequence identified from 245 North American isolates (LaRosa et al., 1990). In one 

case (p82), the amino acid sequence is identical to the 'global consensus' V3 loop 

sequence. Furthermore, if these seroconversion V3 sequences are compared with 

those carried by virus variants with distinct phenotypes, it appears that the 

seroconversion sequences may be more similar to those sequences carried by 

monocyte-tropic virus variants (see Figure 5.7) than to those possessed by T-cell-

tropic virus variants, suggesting virus variants present during the primary stage of 

infection may have some common biological characteristics. 

Examination of V4 sequences obtained from these pre- and post- 

seroconversion samples reveals similar results. There was no sequence variation in 

4 (patients 84, 74, Sic, and S2c) out of 5 plasma samples studied while in one case 

(patient 82), 6 out of 9 sequences were the same (see Figure 5.2). Sequence 

heterogeneity observed in the V4 region in patient 82 could be due to the fact the this 

sample was collected slightly after seroconversion (antibody was weakly positive 

from HIV-1, see Table 5.1). Unexpectedly, proviruses from the 4 members of the 

Edinburgh haemophiliac cohort bear identical V4 sequences, suggesting: 1) that these 

4 haemophiliac patients were indeed infected from the same source and 2) that the 

homogeneity of the envelope gene during seroconversion can not be due to the 
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Figure 5.7 Comparison of V3 loop sequences obtained from pre- and post-

seroconversion samples with those carried by distinct phenotypic virus variants 

identified in the in vitro culture (Fouchier et al., 1992; Chesebro et al., 1992). M, 

V3 loop sequences from macrophage tropic variants. T, sequences from T cell-tropic 

variants. 	?, indicates the uncertainty about virus phenotype bearing these 

seroconversioh V3 loop sequences. LaRosa.con., V3 loop consensus sequence of 245 

North American isolates (LaRosa et al., 1990). Only residues that differ from 

LaRosa.con are shown. Dots denote identical residues to LaRosa.con. Amino acid 

positions are numbered according HIV2. 



A.a sites 296 	 330 

LaRosa .con CTRPNNNPRKSIHIGPGRAFYTTGEIIGDIRQAHC 

p82 
p74 . . . .S ........M ..................... 
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random growth of one particular virus variants. 

Analyzing sequences obtained from the gag p17 region, which are presented 

in Figures 5.3 and 5.5, has revealed another striking pattern. In contrast to the 

situation observed in the V3 and V4 regions where no sequence changes have been 

encountered, sequence variation in the gag gene was frequently found. Sequences 

obtained from gag p17 region, including those from plasma viral RNAs and PBMC-

associated proviral DNAs, have shown a comparable degree of variation in 5 out of 

7 patients studied, with exception from patients Scl and Sc2 where no sequence 

variation has so far been observed. The number of sequences obtained and the 

numbers of sequence variants from the V3, V4 and p17 regions are summarized in 

Figure 5.8. In most the cases (p74, p28, p77, p79  and p84) while there are only one 

sequence variant in the V3 and V4 regions, more than one sequence variants were 

observed in the gag p17 region. How this finding contributes to our understanding 

of HIV infection and transmission will be discussed below. 

5.3 Discussion 

5.3.1 Rapid Changes of Viral Loads During the Primary Stage of HIV-1 

Infection One of the major features associated with primary HIV-1 infection is the 

rapid changes of virus loads in both plasma and PBMCs populations. Irrespective 

of the route of transmission, high levels of viraemia in both plasma and PBMCs 

appears to be a constant phenomenon during the primary stage of HIV-1 infection. 

The quantification results presented in this work has once again confirmed the 

175 



Figure 5.8 Comparison of env and gag sequence variation during the primary and secondary infection, a  RNA, viral RNA sequences 

obtained from pre-seroconversion plasma samples; DNA, proviral DNA sequences obtained from PBMC samples collected 3-6 months 

after seroconversion. b  Pr, samples were collected at pre-seroconversion; Po, post-seroconversion and Fo, following-up samples collected 

5 years after seroconversion. N.A., not applicable. N.D. not done. 



V3 Region 	 p17 gag  Region 
patient 	Samplea 	 Stage' 	 Total No. 	 Total No. 

sequences / variants 	 sequences / variants 

p74 RNA Pr 40 / 1 15 	/ 	4 
p82 RNA Pr 12 / 1 N.A. 
p84 RNA Pr 11 / 1 N.A. 
SO RNA Pr 26 / 1 19 	/ 	1 
Sc2 RNA Pr 29 / 1 18 	/ 	1 

p28 	 DNA 	 Po 	 11 / 1 	 9 I 2 
p79 	 DNA 	 Po 	 9 / 1 	 6 / 2 
p77 	 DNA 	 Po 	 11 / 1 	 9 / 6 
p84 	 DNA 	 Po 	 11 / 1 	 8 / 6 

p82 RNA Fo 23 	I 5 N.D 
p74 RNA Fo 6 	/ 3 N.D 
p84 RNA Fo 15 	I 6 N.D 



extremely high levels of plasma viraemia during the first stage of HIV- 1 infection. 

Dramatic increase in virus loads to the level which is only comparable to, or even 

higher than that found in patients with AIDS or AIDS-related complex, suggests HIV-

l's capability of explosive replication within a short period of time. These results 

lead to the suggestion that the majority of the virus variants present during the 

primary stage of infection are infection-competent (Dr. David Ho, VIII International 

Conference on AIDS, Amsterdam, the Netherlands, 1992). These findings, as 

suggested by Drs. David Ho and Leigh Brown, imply that there is a window period 

during the primary stage of HIV- 1 infection when the patient has tremendous amount 

of infectious virus although anti-HIV antibodies are not detectable by current 

antibody-based immunosorbent assay. The pre-seroconversion patients therefore are 

highly likely to be one of the major sources for the transmission of HIV-1 (Daar et 

al., 1991; Leigh Brown, personal communication). 

However, the extremely high level of virus loads during the acute infection 

is temporary and transient. Not long after the infected host developed specific 

immune response to HIV- 1 proteins, marked drop of virus loads were observed in 

both plasma and PMBCs populations, suggesting that immune response during the 

period is effective and efficient (Daar et at., 1991; Clark et at., 1991; Jurriaan et al., 

1992). Although in general, it is believed that both humoral and cellular immunity 

have both played roles in limiting the viral replication during the primary stage of 

HIV-1 infection, recent reports, however, suggest that anti-HIV-1 specific T-cell 

response may play the major role. Clerici et at., have demonstrated the appearance 

of anti-HIV-1 specific T-cell response prior to the emergence of serum anti-HIV-1 

177 



antibodies (Clerici et al., 1991 and 1992). Ariyishi et al., have also shown that the 

sharp decline of plasma viraemia happened before the appearance of neutralising 

antibodies (Ariyishi, St. Mary's Hospital Medical School, personal communication). 

At present stage, there is not enough data to elucidate the relationship between the 

appearance of anti-HIV-1 humoral and cellular immunity and their relative roles in 

restricting viral replication, yet it will be a important step if the precise immune 

mechanisms that are responsible from the potent anti-HIV-1 activity can be defined. 

A better understanding of these processes will help us to exploit the beneficial anti-

HIV-1 immune responses to develop more effective treatment strategies for AIDS. 

5.3.2 Genetic Variability of mV-i Genome During the Primary Infection In this 

work clear evidence has been presented for the lack of sequence variation in the V3 

and V4 regions of env in both plasma viral and PBMC-associated proviral 

populations during the primary stage of HIV-1 infection. This finding contrasts 

strongly to what has been observed for the same regions in the later stages of 

infection, where enormous sequence diversity have been frequently found (see 

Chapter 4). In the gag gene, however, sequence variation has been observed in the 

most cases studied including those sequences directly obtained from both plasma and 

peripheral blood mononuclear cells. 

There are several possible explanations from the homogeneity of the envelope 

gene during the primary stage of HIV-1 infection. First of all, viral infection could 

be initiated by a single virus. The first and successful infection of certain cell type 

with a single virus variant will subsequently result in homogeneous population 
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because of the rapid explosive replication of the virus variant. Low transmission rate 

of HIV-1 infection through sexual contact (Clumeck et al., 1989) may indeed support 

the notion that the HIV-1 infection is initiated only by a limited number of virus 

variants present in the inoculum. However, the sequence variation observed in the 

gag gene at the same period can hardly be reconciled with this hypothesis. Different 

viral sequences found in the gag gene suggests that the viral population is a 

heterogenous one during the early stage of primary infection. Secondly, the genetic 

homogeneity in the envelope gene could be due to the random outgrowth of a certain 

virus variant. This hypothesis can be explained by population genetic theory. As the 

effective population number (Ne) of an expanding population is much lower than the 

census number (N), the enormous increase in population size would itself be expected 

to cause a substantial reduction in nucleotide diversity on a simple neutral model 

(Crow and Kimura, 1970). The enormous increase in viral population size that 

occurs during the period immediately after infection is therefore itself be expected 

to cause substantial reduction in nucleotide diversity (Dr. A. J. Leigh Brown personal 

communication). In other words, unless a substantial numbers of virus variants were 

sampled, then a homogeneous population would be expected to be observed because 

of sampling errors associated with the fast expanding viral population. However, 

considerable sequence similarity among 4 members of the Edinburgh haemophiliac 

cohort infected from a single common source tends to rules out the second 

possibility. The sequence similarity among the seroconversion sequences and to the 

'global consensus' V3 loop sequences and perhaps to the sequences carried by those 

monocyte-tropic virus variants favour the third theory, which implies that there 
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appears some kind of directional selection 1) genetically for sequences which 

resemble the 'global consensus' V3 loop sequence and 2) biologically for those virus 

variants with monocyte-tropic capability (see Figure 5.7). If this is the case, then the 

sequence variation observed in the gag gene will not have any effect on the initiation 

and initial stages of viral infection and the env gene will be one of the major targets 

on which the action of multiple selective forces is imposed. This notion is supported 

by the recent discovery that 1) majority of virus variants isolated during the primary 

stage of HIV-1 infection are indeed monocyte-tropic as indicated by their failure to 

grow on T-cell lines and their non-syncytium-inducing (NSI) phenotype (Ross et al., 

1992; Cichutek et al., 1991; Daar et al., 1991) and 2) seroconversion V3 region 

sequences, particularly the V3 loop sequences, obtained worldwide so far, are very 

similar (Drs. Peter Simmonds and Edward Holmes, personal communication). 

According to this hypothesis, successful initiation of HIV-1 infection is therefore 

dependent on qualitative criteria which certain V3 loop genotypes viruses must posses 

like viral tropism for certain cell types and less virulent and cytopathic effect on the 

infected host cells. If this is really the case, it will suggest that: 1) whatever virus 

variants are present in the inoculum, those that are monocyte-tropic will be selected 

during the primary infection; 2) the monocyte-tropic HIV-1 isolates are important for 

viral persistence during the early stage of infection and for dissemination of HIV-1 

to compartments outside the peripheral blood; 3) the virus variants existing in tissue 

macrophages, which are more frequently infected than those present in the peripheral 

blood (Koening et at., 1986; Gendelman et al., 1989; Meltzer et al., 1990a, b, c), are 

the progeny of variants selected during the early stage of infection and arising later, 



probably serve as one of the main reservoirs contributing to the plasma viraemia; and 

4) that in terms of early diagnosis, treatment and vaccine development, the monocyte-

tropic virus variants and their host cells should be the target for future therapeutic 

strategies. 
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6.1. LEVEL OF CIRCULATING HIV RNA IN PLASMA IS A GOOD 

VIROLOGICAL MARKER FOR HIV INFECTION AND EFFICACY OF 

ANTI-VIRAL THERAPY The natural history of HIV infection is manifested by 

a number of changes in virological and immunological markers, together with the 

gradual onset and resolution of clinical symptoms (Phillips, 1992; Fauci, 1988). 

Among these markers, the levels of cell-associated virus (Oka et at., 1990; 

Schnittman et at., 1991; Simmonds et al., 1990a), p24 antigenaemia (Allain et al., 

1986; Goudsmit et al., 1986), CD4 lymphocytes (Goedert et al., 1987; Laga et al., 

1989), viral antibody (Allain et al., 1986; Nishanian et al., 1990), and infectious 

plasma viraemia (Ho et al., 1989; Coombs et al., 1989; Simmonds et al., 1991) are 

the most commonly used references for monitoring the course of viral infection as 

well as the outcome of clinical treatment. In this work, a new quantitative technique 

has been developed which can be used to detect, quantify and sequence HIV RNA 

genomes directly from plasma and serum of HIV-1 positive individuals. Thereby, 

more direct virological information can be readily obtained. Using this technique, the 

amount of HIV RNA present in plasma and serum was quantified. On average, HIV 

RNA is more abundant in the plasma of patients with more advanced disease 

compared with asymptomatic (see section 3.2.4). A sharp decrease in plasma viral 

load has been observed after patients received anti-viral treatment (AZT) (data not 

shown). Similar results have also been obtained from other laboratories (Ho et al., 

1989; Coombs et al., 1989). 

Compared with the other virological and immunological markers, the amount 

of circulating HIV RNA measured by the RNA-PCR based techniques reflect more 



accurately the status of those replicative viruses in vivo. p24 antigenaemia is 

detectable at certain stages of HIV infection, and is probably one of the most 

commonly used markers for monitoring the course of HIV infection (Allain et al., 

1986). However, viral protein p24 can be partially or completely complexed with 

antibodies (Lange et al., 1987; Ujhelyi et al., 1987), and thus undetectable by 

conventional antigen assay. The levels of p24 antigen detected, in this sense, do not 

reflect directly the rate of viral replication but rather the joint outcome of p24 and 

anti-p24 antibody production. The levels of CD4+ cell (expressed as either an 

absolute number, or a percentage of lymphocytes, or a ratio of CD4+ to CD8+ T 

cells) have been shown to be one of the best single predictor of the progression to 

AIDS and has been recommended as a marker for anti-viral treatment (Phillips, 1992; 

Schnittman et al., 1989). However, by the time when there is a obvious reduction 

of CD4+ cells, in most cases, patients have already entered the stage where any anti-

viral treatment may not have any effective results. Ho et al., and Coombs et al., 

have measured the infectious viral titre by in vitro culturing of primary lymphocytes 

with plasma, and have found that around 3,000 infectious particles per ml plasma in 

symptomatic patients, and around 30 per ml plasma in asymptomatic (Ho etal., 1989; 

Coombs et al., 1989). Although the use of in vitro culture technique to quantify 

infectious HIV- 1 is very specific, it is very time consuming and tiresome, and 

therefore, may not be suitable for quantifying large numbers of samples. 

The RNA-PCR based quantitative technique developed in this work is rapid, 

efficient and independent of the presence of virus-antibody complexes (see Chapter 

3), and can be used before the serological response developed (see Chapter 5). Using 
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this technique, transient high levels of plasma viraemia were observed during the 

primary infection, suggesting the explosive replication of incoming viruses during a 

very short period of time. High and intermediate levels of plasma viraemia were also 

observed in some patients during their asymptomatic stage, indicating viral replication 

continues throughout the course of infection. Virologically, there is no latent stage 

to correspond to the clinical latent period observed in almost all the HIV-1 positive 

patients. In addition, this technique also provides a means of detection and 

quantitation of viruses present in other body fluids such as semen and saliva (Tindall 

et al., 1992; Barr et al., 1992), as well as in blood products such as factor VIII and 

factor IX concentrates. With direct sequencing of the PCR products, the virus 

sequences present in the original batch of blood products can be determined, and that 

knowledge will be extremely valuable for the understanding of the transmission and 

variation of HIV. However, one problem facing the RNA-PCR based quantitative 

technique, as facing any other PCR related techniques, is the possible cross-

contamination from either other samples and/or recombinant plasmid containing HIV 

sequences. Extra care must always be taken, and proper negative and positive 

controls have to be included in the assay. 

6.2 QUANTITATIVE AND QUALITATIVE VARIABILITY OF HIV DURING 

THE COURSE OF INFECTION IN VIVO Sequential studies of viruses present 

in both plasma viral and lymphocyte-associated proviral populations reveal an extra-

ordinary degree of variability in both virus loads and sequences. When viruses firstly 

enter the human body, they will always undergo a rapid and explosive replication in 



a very short period of time, which is reflected by a transient high level of virus loads 

in both plasma and lymphocytes (Daar et al., 1991; Clark et al., 1991). Because of 

the lack of specific immune recognition of any specific viral antigens during this 

period, the rapid expansion in viral population suggests that there is a strong selection 

for the most rapidly replicating viral variant, with the consequent loss of variation 

due to either selection and/or genetic linkage. 

Sequence analysis of plasma viral RNA sequences obtained prior to 

seroconversion and proviral DNA sequences present in PBMCs 3-6 months after 

seroconversion have shown the existence of homogenous viral and proviral sequences 

in the envelope gene, while noticeable sequence variation was found in the 

comparable gag sequences, indicating that selection early in the infection acts most 

strongly on the envelope gene. Furthermore, the observation that the V3 loop 

sequences in patient 82 at seroconversion was identical to the 'global consensus' V3 

loop sequence and those of other patients very similar probably suggests some 

biological significance of the seroconversion virus variants. Although the detailed 

studies of biological phenotypes of seroconversion viruses has yet to come, the 

available information at present related to these viruses suggests that there is a strong 

selection for viruses with certain biological features. One of these features may be 

the preferential infection of macrophages or monocyte-derived cells. This notion is 

strongly supported by recent experiments showing that virus isolates obtained from 

seroconversion samples have failed to grow in T cell lines, but replicate well in 

PBMCs and macrophage cell lines in the in vitro culture (Cichutek et al., 1991; Ross 

et al., 1992). With the progression of infection, a shift of viral population from 
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macrophage-tropic to T-cell-tropic has been observed which further confirmed the 

macrophage-tropic feature of seroconversion viruses (Tersmette et al., 1989; Hwang 

et al., 1991; Schuitemaker et al., 1992). Macrophages, therefore, may serve as a 

major reservoir for virus during the early stage of infection and also as a vehicle for 

virus dissemination to different organs. Virus variants homing at different organs 

may have different genetic and biological features at the later stages of infection 

(Cheng-Mayer et al., 1990a; Ball et al., Regional Virus Laboratory, East Birmingham 

Hospital, Birmingham, personal communication). HIV variants present in brain have 

been shown to differ biologically from those exist in the blood circulation at the later 

stage of infection (Cheng-Mayer et al., 1990a; Hwang et al., 1991). A study of viral 

phenotype of SIVmac  from different organs suggested that the viruses localized in 

spleen, lymph nodes and plasma are lymphocyte-tropic while those found in brain 

and lungs are macrophage-tropic (Sharma et al., 1992). However, the genetic and 

biological characteristics of HIV variants present in different organs during the 

primary stage of infection are not yet known. If the homogeneity in both genetic and 

biological features of seroconversion virus variants found in blood circulation can be 

extended to those viruses localized in different organs during the same period, this 

will indeed bring some encouraging news for the design and development of an 

effective vaccine against AIDS. 

The high proportion of infected CD4+ cells and high levels of plasma 

viraemia observed during the primary stage of infection will sooner or later bring 

about a response of the immune system. A sharp reduction in the levels of both 

plasma viraemia and HIV infected CD4+ cell during the seroconversion period have 



been observed, suggesting a strong effect of the immune response. Although the 

immune response during this period has not been extensively studied, recent reports 

suggest that anti-HIV-i T-cell cytotoxicity may play an important role (Clerici et al., 

1991 and 1992). Sequence variability of HIV after seroconversion is very different 

from what observed before seroconversion. A highly heterogenous viral population 

is generated and sequence variation in the envelope gene has been observed within 

a couple of weeks (Pang et at., 1992). In the work presented here, a major 

diversification of V3 sequences from patient 82 has been observed in plasma within 

3 years from seroconversion. It has frequently been argued that the rapid sequence 

changes in the envelope gene, particularly in the third hypervariable region, are the 

consequence of continual process of immune escape. Albert et al., have shown the 

emergence of virus variants in vivo that were resistant to neutralization by autologous 

sera (Albert et at., 1990). 'Escape' mutants of HIV-1, due to selection for a point 

mutation in the V3 loop, have also been selected by neutralizing antibody in vitro 

(McKeating et at., 1989). Other studies, including this work, have indeed shown the 

high rates of amino acid replacements precisely located in the areas that are the 

targets for both the serological and cytotoxic T cells recognition (Phillips et at., 

1991). 

Rapid evolution of the viral population during this period occurs also by 

changes in the relative abundance of different sequences (see chapter 4), suggesting 

that the frequency-dependent element is involved in the evolutionary process of viral 

population. Thus the process of sequence change is in accordance with antigenic 

variation can be explained by a simple host-parasite model of frequency-dependence; 
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the higher the frequency a viral variant reaches in the population, the higher 

probability of its recognition and clearance by the immune system. From the data 

obtained in this work, it can be clearly seen that in each year it is indeed the most 

frequent virus variants that show the greatest reduction in frequency. Consequently, 

variants found at low frequency will have a greater selective advantage and will rise 

in frequency until they too are countered with an effective immune response. 

Finally, the assessment of antigenic diversity in the V3 loop with consequent escape 

from immune recognition is complicated by the fact that mutations outside principal 

neutralization domain (PND) can also confer resistance to immune clearance 

(McKeating et at., 1989), suggesting that the PND is an conformational epitope. 

Evidence that the V3 region is an conformational epitope was demonstrated by 

successful isolation of several neutralizing antibodies which can recognize and bind 

to the V3 region irrespective of amino acid sequences variation (Steimer etal., 1991; 

Sattentau et al., 1991; Ho et al., 1991). 

The immune defect caused by HIV infection is progressive and irreversible. 

Virtually all the HIV-1 positive individuals will finally enter the symptomatic stage 

although some patients may stay on in asymptomatic stage for years (Fauci, 1988). 

The turning point is surely determined by multiple factors, including at least the 

effectiveness of host immune system and the degree of pathogenicity of invading 

viruses. Based on the current available information of interaction between the virus 

and the immune system, Nowak et al., have proposed a mathematical model which 

suggests the existence of an antigen diversity threshold below which the immune 

system is able to control viral population growth but above which the virus 



population will induce the collapse of the immune system (Nowak et al., 1990, 

1991a, b). Quantitative analysis of virus loads in both plasma viral and lymphocyte-

associated proviral populations indeed demonstrated the existence of more and 

viruses in symptomatic than asymptomatic patients (see Chapter 3). Viral sequence 

of the envelope region of gp 120 shows greater variability during the symptomatic 

than asymptomatic stage (see chapter 4). Antigenic diversity overrides the 

effectiveness of immune responses and could therefore be one of the explanations of 

the onset of AIDS. However, the process of viral evolution during this stage 

becomes more complicated by the fact: 1) that the selection process may not be 

constant in the long term because of the loss of normal functions of B and T cells 

during prolonged HIV infection and, 2) that the qualitative changes of viral 

phenotype may result in the emergence of virus variants that are more virulent and 

cytopathic for CD4+ T cells (Hwang et at., 1991; Schuitemaker et at., 1992). The 

sequence and antigenic diversity will therefore be determined by multiple factors. 

If all the selective forces are removed then the level of sequence diversity will 

remain the same. However, if there is a expansion of the viral population, then 

selection for replication rate will again favour the most fit viral variant with certain 

genetic and biological features, probably the same as those found in the early stage 

of infection. The reappearance of some early sequences in the later plasma samples 

of patient 82 may, to some extent, support this hypothesis (Chapter 4). 

Apart from the viral quantitative elements which involved in the final 

breakdown of the immune system, there could also be some qualitative factors which 

hinder the normal functions of immune system. One of these factors could be the 
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changes in viral tropism. It has been known for some time that viral isolates 

obtained at later stages of infection are more T-cell-tropic rather than macrophage-

tropic (Ross et a,!., 1992; Schuitemaker et al., 1992; Hwang et al., 1991). In this 

aspect, viral evolution in vivo could therefore equally be described as the process of 

selection of T-cell-tropic virus variants with disease progression. This tropism shift 

to the T cells could be one of the reasons for the rapid reduction and dysfunctions 

of CD4+ cells in the blood circulation at the later stages of infection. Furthermore, 

the emergence of virus variants that are more virulent and cytopathic has been 

observed during the later stage of infection (Tersmette et al., 1989a, b; Cheng-Mayer 

et al., 1988). These results suggest that the development of disease symptoms in 

HIV-1 infected individuals could also be associated with the emergence of more T-

cell tropic and pathogenic virus variants in vivo. 

6.3 ORIGIN OF PLASMA VIRAEMIA Significant differences between the 

frequencies of sequence variants in plasma viral and lymphocyte-associated proviral 

population observed in this study indicated that at any one time point, the 

predominant plasma virus variants were antigenically distinct from those viruses 

encoded by HIV DNA sequences in PBMCs (see Chapter 4). The more rapid 

sequence turnover of viral RNA sequences than of proviral DNA sequences suggests 

that the new virus variants may appear and become dominant firstly in the plasma 

viral rather than in lymphocyte-associated proviral population. If this is the case, 

then it will be very reasonable to ask: where is the origin of plasma viraemia. There 

are several possible sources that could contribute to the plasma viraemia. First of all, 



CD4+ T lymphocytes have been shown to be the major reservoir for HIV-1 in the 

peripheral blood compartment (Schnittman et at., 1989). Quiescent as well as 

activated T lymphocytes can harbour HIV DNA, although proviral DNA may exist 

in different forms (see section 1.1.9). Quiescent T lymphocytes are able to produce 

HIV RNA as soon as they are activated by antigens or other stimulating factors 

(Zack et at., 1990a, b; Stevenson et at., 1990; Bukrinsky et at., 1991), and therefore 

can become another major and inducible HIV reservoir in infected individuals. 

However, the low percentage of T lymphocytes (0.01 to 1%) that contain viral DNA 

and even lower percentage of these infected T lymphocytes (0.001-0.01%) actively 

expressing viral RNA is difficult to reconcile with the enormous amounts of plasma 

viraemia observed during the course of infection (Schnittman et al., 1989; Simmonds 

et at., 1990a). 

HIV has been detected in several body tissues, such as those of lymph nodes, 

spleen, central nervous system, liver, bone marrow and lungs (Meltzer et at., 1990a, 

b, c). In some of the patients studied, distinct virus variants have been found in 

different organs (Epstein et al., 1991, Ball et at., Regional Virus Laboratory, East 

Birmingham Hospital, Birmingham, personal communication). The uneven 

distribution of virus variants in the body may be due to the different biological 

features of virus variants present in these organs or due to other unknown factors. 

Examination of HIV- 1 infected cells in these tissues demonstrated that the frequency 

of HIV-1 infected cells could be 10,000- to 100,000-fold higher than that in the 

blood compartment. The amount of HIV RNA per infected cell is at least 10-fold 

higher than that found in the blood CD4+ T lymphocytes (Meltzer et at., 1990a, b, 
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c). The highly replicative nature of HIV-1 infected cells in these bodily tissues could 

therefore generate enormous amounts of virus variants which could then be shed into 

the plasma. If this is the case, the viruses present in different bodily tissues should 

be under more extensive study. These viruses as well as their host cells should be 

the target for the therapeutic strategies. 
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The polymerase chain reaction (PCR) detected 
specific hepatitis C viral (HCV) RNA sequences in 
plasma from 15 of 21 haemophiliacs (12 HCV-
antibody positive) and 7 of 27 intravenous drug 
users (13 HCV-antibody positive). Quantification 
of RNA-positive samples showed high levels of 
HCV (101  to 106  copies of RNA/ml) in infected 
patients. HCV was more frequently found in 
haemophiliacs 	infected 	with 	human 
immunodeficiency virus (11/11 HIV-positive and 
4/10 HIV-negative patients). HCV-RNA was 
detected in all batches of commercially available 
factor VIII tested and in low concentrations in 
some pools of plasma donations from volunteers. 
Factor VIII, manufactured from volunteer 
donations, was uniformly negative by PCR. 
Phylogenetic analysis of viral sequences showed 
two distinct groups: one was associated with 
intravenous drug users and the other with 
haemophiliacs infected with Scottish factor VIII 
preparations. Both were distinct from sequences 
found in commercially available factor VIII. 

Lancet 1990; 336:1469-72. 

Introduction 

Hepatitis C virus (HCV)' has been identified as an 
important cause of non-A, non-13 (NANB) post-
transfusional hepatitis .2  Many epidemiological studies are 
based upon the Ortho enzyme immunoassay (ETA) but, 
there may be a delay of up to a year between exposure to 
HCV and seroconversion.2  Furthermore, this test may give 
false-positive results .3  An anti-HCV recombinant 
imrnunoblot assay (RIBA) failed to confirm the presence of 
specific antibody in over 70% of ETA-reactive blood 
donations.' 

HCV-RNA sequences have been found in liver' and 
plasma" of infected individuals with the polymerase chain 
reaction (PCR). We now report on the relation between 
HCV viraemia (measured by PCR) and HCV antibody 
status, together with RNA quantification and sequencing, in 
haemophiliacs and intravenous drug users (IVDUs). 

Patients and methods 

Patients 

Plasma samples from 21 haemophiliacs were stored at -70°C 
before PCR analysis. Sees from 27 IVDUs were kept at 4°C for 3-7 
days with long-term storage at -20°C before testing. Blood 
products were obtained from the National Institute of Biological 
Standards and Controls, and the Protein Fractionation Centre, 
Edinburgh. Freeze-dried preparations (factor VIII, factor IX) were 
stored at 4°C before reconstitution. Serum and plasma samples 
were tested by the Ortho EIA for HCV antibodies. Results are given 
as the optical density (OD) of the test sample divided by control OD  

to give the OD index (ODI). A sample was EIA-positive if ODI 
> 1. Most samples were further tested by the Ortho RIBA. 

200 il plasma or reconstituted blood products, 600 p1 denaturing 
solution D, and 600 pi water-saturated phenol were mixed' and 
supplemented with 1 pgiml purified carrier RNA (sheep 
fibroblast). 100 p1 chloroform was added and the tube incubated on 
ice for 15 miss. After centrifiigation (14 000 g, 4°C, 15 mm), the 
aqueous phase was removed and re-extracted with an equal volume 
of chloroform. RNA was precipitated with an equal volume of 
isopropanol at - 20°C to - 70°C for a minimum of 2 h. After 
further centrifugation (14 000g. 4°C, 15 mm), RNA was washed in 
I ml 70% ethanol solution, air-dried at 45°C, and redissolved in 20 
p1 water. RNA from larger samples (1 ml) was extracted by dilution 
with 9 ml phosphate-buffered saline, ultracemrifugation (50 000g, 
4°C, 3 h), and by the method described above. 

RNA detection, quantification, and sequencing 

Sense (ED 1, GTGGTCGACTGCAATACGTGTGTCAC) 
and antisense (ED2, CCGGCATGCATGTCATGATGTAT) 
primers were used for the first reaction in a double PCR. 
ED3 (CACCCAGACAGTCGATfl'CAG) and ED4 
(GTATTTGGTGACTGGGTGCGTC) were inner (nested) 
primers used for the second reaction. Some samples were amplified 
with primers d94, d95, NI, and N2.6  However, these primers 
consistently detected fewer positive samples than ED l-ED4—eg, 
4/13 IVDUS were positive with d94-d95, compared with 7/13 
positives with primers EDI-ED4, and were not used further. 
eDNA synthesis of 3 0 RNA was carried out at 42°C for 30 miss 
with 7 units of avian myeloblastosis virus reverse transcriptase 
(Promega, Madison, USA) in 50 n,inol/I "ths"-HCI, pH 80; 5 
mmol/I MgCl2;  5 mmol/l dithiothreitol; 50 mmol/l KC1; 005 jig/j.tl 
bovine serum albumin (molecular biology grade, BCL, Lewes, 
UK); 600 pmol/l dAT?, dCTP, dGTP, and TTP; 15% dimethyl 
sulphoxide; 15 pmol/l primer ED2; 01 .ig/pi carrier RNA (sheep 
fibroblast); and 10 U RNAsin (Promega). Part of the cDNA (4 tI) 
was amplified over twenty-five cycles with primers ED  and ED2 
in 50 p1 PCR buffer.' I 41 of product was amplified for a further 
twenty-five cycles with ED3 and ED4. Amplified DNA was 
detected by agarose-gel-electrophoresis and ethidium bromide 
staining. Quantification was by limiting dilution analysis of eDNA 
reverse transcribed from RNA.' Sequence analysis was carried out 
as described previously.' Each sequence was read in both directions, 
by priming with either ED3 or ED4. Phylogenetic analysis by the 
maximum likelihood procedure was completed with the Phylip 
package.xo Sequence differences were taken as significant if the 
inferred G statistic exceeded the tabulated value at a probability of 
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Chiron, published sequence; fl -S. 5 commercial factor VIII batches; 
h 1-5. 5 haemophiliacs; i 1-5, 5 Edinburgh IVDUs; p  1-3. 3 Scottish 
plasma pools. 

001. All distances indicated in the figure were significant by this 
method. 

PCR sensitivity was assessed by equivalent experiments to those 
described above, but with cloned herpes simplex virus thymidine 
kinase (tk) gene" (unpublished data). An estimated 10% of cDNA 
transcripts extended sufficiently to be amplifiable by a pair of 
primers spaced 260 base-pairs apart. Equivalent experiments with 
known amounts of human immunodeficiency virus RNA yielded 
efficiencies of reverse transcription that varied with the spacing of 
the primers. By extrapolation we calculated an overall efficiency for 
detection of HCV-RNA sequences with ED 1-ED4 of 5%. 

Results 
HCV detection and quantification 

HCV antibody (EIA and RIBA) and RNA status in both 
IVDUs and haemophiliacs are shown in table i. HCV-RNA 
was more frequently detected in haemophiliacs who were 
also infected with human immunodeficiency virus type 1 
(HIV- 1). Of the 15 PCR-positive haemophiliacs, 11 were 
HIV-positive, whereas all 6 PCR-negative haemophiliacs 
were HIV seronegative. All 4 of the PCR-positive 
haemophiliacs who had no detectable antibody to HCV had 
HIV-related symptoms at the time of plasma collection, and 
had CD4 lymphocyte counts of <2 x  105/ml. The average 
CD4 count of the PCR-positive group was 250 x 106/I, and 
in the negative group 550 x  10/l (p  <005). No association 
between HCV infection and either annual factor VIII use or 
increases in alanine aminotransferase (ALT) was found. 

The amount of RNA in samples from 4 positive IVDUs 
and 4 haemophiliacs was estimated by titration of cDNA. 
PCR with nested primers detects single molecules of target 
DNA sequence. Tests on multiple replicates at a suitable 
limiting dilution give a Poisson distribution of positive and 
negative results that reflects the concentration of target 
DNA." To obtain an RNA concentration from 
quantification of cDNA, we have assumed an overall 
efficiency of 5% for the reverse transcription step. The 
amounts of circulating RNA in 4 haemophiliacs and 4 
IVDUs ranged from 3-5 x  10 to 1-I x 106  copies of 
RNA/ml. The amounts recovered in IVDUs were similar to 
those of haemophiliacs. The cutoff limit of this assay was 
4 x  103  copies of RNA/ml. 

TABLE —ANTIBODY (EIA AND RIBA) AND HCV-RNA STATUS 
IN IVDUs AND HAEMOPHILIACS 

IVDUs 	 Haemophiliacs 
(n27) 	 (n=21) 

- 	Ab+ 	Ab- 	Ab+ 	Ab- 

PCRRNA+ 	7 	 0 	11 	 4* 

PCR RNA — 	6 	 14 	 I 	 5t 

*1 sample EIA-positive (001 >5 8) but RIBA-negative. 
11 sample EIA-positive (ODI = 1 04) but RIBA-negative 

TABLE II—HCV-RNA STATUS IN BLOOD PRODUCTS 

Factor VIII 

UK Corn- Scottish 
non- mercial BTS 

PCR 	Corn- Scottish corn- heat- heat- Factor iv Plasma 
RNAImerclaI* BTSt mercial5 treated* treated' (Xt (gCtpools' 

10 0 0 0 0 0 0 3 
- 0 4 5 I 4 

1  
5 6 4 

BTS = blood transfusion service; *expiry date 1980-83; tvolunteer donations 1983; 
tuolunteer donations 1982-83; wet heat-treated (60C, 20f); 'dry heal-treated 
(80C. 72h); and "1000 Scottish blood donations 1990 

All unheat-treated commercial batches factor VIII tested 
were RNA-positive (table Ii). Quantification by limiting 
dilution of two of these samples gave RNA concentrations in 
the original material of 2 x  10 to I Os copies of RNA/ml. All 
9 of the non-commercial factor VIII concentrates prepared 
from volunteer blood donations were negative. The cutoff 
limit of the PCR assay for initial screening was 2000 RNA 
molecules,ml. To investigate whether factor VIII prepared 
from volunteer blood contained quantities of HCV below 
the threshold of sensitivity for the RNA PCR, RNA from 
larger volumes of Scottish concentrate was retested in an 
assay with a cutoff sensitivity of 200 copies of RNA/ml. All 4 
batches tested remained negative. All batches of factor IX 
and intravenous lgG were negative for HCV-RNA. To 
examine whether these negative results were due to an 
absence of infectious blood donors, seven plasma pools that 
each contained 1000 volunteer donations, were tested by the 
PCR. Three of seven pools were positive for HCV-RNA. 
Samples contained 200-1900 copies of RNA/ml (test 
threshold 200 copies/ml). This result suggested an average 
frequency of <I PCR-positive donation, thousand in the 
local donor population. All plasma pools were negative for 
HCV antibody by the Ortho EIA (ODIs <02). However, 
as antibody titres in this test were extremely low in positive 
sera (ranging from only 1/10 to 1/100 in sera from 8 IVDUs) 
the Ortho EIA cannot detect contamination of plasma pools 
by low numbers (< 10) of antibody-positive donations. 

Phylogenetic analysis 

Nucleotide sequencing of HCV was completed by 
isolation of single cDNA molecules, amplification with 
nested primers ED1—ED4, and direct sequencing.' 
Sequences corresponded to those for a non-structural 
protein homologous to NS3 in flaviviruses.0  Nucleotide 
substitutions were seen at 42 of 216 sites. No gaps or stop 
codons that would interrupt the reading frame of the 
nucleotide sequence were found. Almost all nucleotide 
changes left the encoded peptide sequences unchanged 
(snonvmous substitutions). 17 times more synonymous 
nucleotide substitutions were in HCV sequences than 
would be expected in randomly mutating DNA '13  which 
indicates a strong selection pressure on HCV against 
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changes in the encoded protein. Almost all substitutions 
were transitions, whereby a purine is substituted for another 
purine, or a pyrimidine is substituted by a pyrimidine. 

The likely evolutionary relations between the variants of 
HCV are shown in the figure. The extent of differences 
(evolutionary distance) between variants is shown by 
horizontal lines. Closely related sequences are found in all 
IVDUs (i 1-5), which suggests that they were infected from a 
common source. These sequences are also similar to two 
from an 8-year-old haemophiliac, who was first infected 
from factor VIII produced in Scotland in 1984 or 1985 (h4). 
Three haemophiliac sequences (hl-3), and an HCV 
sequence present in one of three positive plasma pools (p3) 
were also closely related, but distinct from the IVDU group. 
These 3 haemophiliacs may have been infected at the same 
time from crvoprecipitate in the mid-1960s. Sequences in 
two other plasma pools (p1, p2) form a third closely related 
group. All five batches of commercial factor VIII (fl-5) 
contained similar sequencies to that of the published HCV 
genome)4  Finally, one sequence from an Edinburgh 
haemophiliac (h5) was highly divergent from the 
commercial factor VIII group, and from the 2-3 groups 
identified in Edinburgh individuals. 

Discussion 

Haemophiliacs had higher rates of detectable HCV infection 
by PCR (15i2l) than by antibody tests (12/2 1). Of the 5 who 
showed no evidence of infection, 1 was a 3-year-old boy who 
received dry heat-treated concentrate only. The other 4 
were moderate to severe haemophiliacs with high annual 
factor VIII use (>19000 U/year; mean 3 years); all 
previously received unheated concentrates and have 
intermittently or persistently increased ALTs. The 
observation that I of the 4 seronegauve haemophiliacs was 
previously antibody positive (ODI 32 in 1987 and 22 in 
1988) suggests that these individuals had been infected with 
HCV, but had cleared the virus more rapidly than the others 
after the introduction of heat-treated factor VIII in 1985. 
The continued liver enzyme abnormalities may be due to an 
uncharacterised viral agent. Alternatively, as titres of 
antibody in the Ortho EIA are extremely low in positive 
samples (1/10-1/100), apparent sero-reversion may take 
place despite continued infection. Weiner et alt failed to 
detect HCV antibody in 2 patients with chronic 
posttransfusional liver disease, despite finding HCV-RNA 
in liver tissue. 

Higher rates of HCV infection were found in 
haemophiliacs infected with HIV. Haemophiliacs who were 
PCR-positive and antibody-negative all had AIDS and low 
CD4 cell counts (<200 x  10/1). Negative antibody results 
may be due to either this immunodeficient state or to high 
rates of viral protein expression that could adsorb circulating 
antibody by immune complex formation. 

In contrast to the haemophiliacs, almost half of IVDU 
antibody-positive sera were negative by PCR. The use of 
serum rather than plasma, and the uncertain storage 
conditions of IVDU samples may have contributed to the 
failure to detect HCV-RNA. Alternatively, the viraemia 
may have been below the level of detection of the assay 
because the lower limit of the observed range was close to the 
assay threshold. 

The finding of high rates of HCV-RNA in infected 
individuals is not consistent with a previous report that only 
1 of 6 HCV antibody-positive blood donations transmitted 
infection to recipients.' It is possible that only individuals  

with high levels of circulating HCV are infectious but this is 
not consistent with the high rates of HCV infection 
associated with use of English and Scottish factor VIII that 
have low or undetectable levels of HCV-RNA15  (table u). It 
is more likely that the 5 non-infectious, HCV-RNA 
donations had given false-positive results in the Ortho EIA. 

The considerable sequence diversity of HCV in different 
patient groups resembled that of other RNA viruses with 
geographically separated variants --- eg, the poi gene 
sequences of African and North American HIV-1)617  HCV 
sequences were divided into three distinct groups: IVDUs 
(il-5), locally infected haemophiliacs (hl-3), and those who 
received commercial factor VIII concentrates (fl-5). The 
finding of related sequences in IVDUs is not surprising 
because needle sharing was common. The close relation 
between the second group of sequences obtained from five 
batches of factor VIII from different manufacturers is 
surprising in view of the wide geographical area from which 
paid donations are collected. 

3 of 5 Edinburgh haemophiliacs were infected with a 
different HCV variant which was also found in one of the 
Scottish blood donations (p3). These 3 individuals are aged 
20-30 years and were probably first infected in the 1960s 
with locally collected fresh frozen plasma or cryoprecipitate. 
These 3 individuals differ from h4, who is now aged 8 and 
was infected no earlier than 1984 or 1985, and from h5, who 
has received commercial factor VIII. The group hl-3 may 
consist of a variant of HCV common in Scotland 25 years 
ago with the IVDU/h4 sequence types becoming more 
prevalent in the early 1980s. However, it is not known 
whether reinfection with HCV can take place, and it is 
possible that variants in hl-3 are the results of reinfection at 
any time between the mid-1960s and mid-1980s. 

We thank Dr G. Kemball-Cook and Dr D. P. Thomas for samples of 
commercial and UK non-commercial factor VIII for PCR testing; Dr R. J. 
Perry, Dr H. Hart, and Dr A. Todd for the supply of blood products 
manufactured by the Protein Fractionation Centre, Edinburgh; and Dr R. 
Al-Shawi for cloned Lk sequences and tk primers. 
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Effacement of glomerular foot processes 
in kwashiorkor 

MICHAEL H. N. GOLDEN STANLEY E. H. BROOKS DAN D. RAMDATH 
ELAINE TAYLOR 

In a study of the pathogenesis of the oedema of 
kwashiorkor the ultrastructure of the kidneys from 
6 children was examined shortly after they died 
from oedematous malnutrition. There was a 
generalised effacement of the glomerular 
epithelial cells onto the basement membrane. The 
filtration slits that remained were narrowed. The 
picture was similar to that seen in minimal-change 
nephrotic syndrome—but none of the children had 
albuminuria. The degree of effacement was 
statistically related to treatment with gentamicin. 
The findings suggest that there is a defect in the 
anionic charge of the glomerular basement 
membrane in oedematous malnutrition, that the 
membrane charge is more easily neutralised by 
cations such as gentamicin, and that, because 
proteinuria is not a feature of oedematous 
malnutrition, the proteinuria in other conditions 
associated with glomerular epithelial cell 
effacement (eg, minimal-change nephrotic 
syndrome) is due to something more complex than 
simple loss of charge. 

Lancet 1990; 336:1472-74. 

Introduction 

The kwashiorkor syndrome is a generalised disorder 
characterised by oedema. There are changes in the cellular 
metabolism of sodium and potassium' and abnormalities in 
the renal handling of salt, water, acid, and osmolal loads; 
proteinuria, however, is uncommon.'-' How these 
abnormalities arise is unknown.' We have thus examined 
the ultrastructure of kidneys taken immediately after death 
from children with oedematous malnutrition. 

Subjects and methods 

6 children aged 4-18 months, were studied. 3 had kwashiorkor and 3 
marasmic-kwashiorkor; all had nutritional oedema, fatty liver, and 
bacterial infection, and all had been treated according to published 
regimens.' Their plasma urea (range 10 to 28 mrnol/l) and plasma 
creatinine (30 to 100 pmol!l) were not raised, and no patient had 
proteinuria. The only recognised nephrotoxin given to the children 
was gentamicin (5mg/kg per day). Tissues taken within 2 h of death 
(table) were fixed in glutaraldehyde and processed by standard 
procedures. Sections from at least three blocks were stained with 
uranyl acetate and lead citrate.6  Between 15 and 19 positive prints 
were recorded of glomeruli from each child. These prints were 
coded and scored blindly. A score of 0 to 4 was assigned to each 
photograph on the basis of whether there were no filtration slits (0), 
occasional narrow slits (1), moderate narrow and/or occasional 

normal slits (2), numerous narrow or moderate normal slits (3), or 
normal filtration slits (4). The scores for each picture from a subject 
were added up and expressed as a percentage of the maximum score 
achievable: a low score thus represents podocyte foot-process 
effacement. 

The study was approved by the ethnics committee of the 
University of the West Indies. 

Results 

Case 5 had terminal acute renal failure secondary to 
hypovolaemia. None of the other children showed clinical 
evidence of renal abnormality. 

Light microscopy 

Light microscopy did not reveal any abnormality of the 
glomeruli or tubular necrosis except in case 5, in which there 
was some suggestion of mesangial proliferation, and in 
which the proximal tubules showed oedema and inclusion 
bodies with tubulorrhexis. 

Electron microscopy 

All sections showed glomerular basement membranes of 
uniform thickness, with clear delineation of the three 
laminae. No dense deposits were present in the glomerular 
loops or in the mesangium (fig 1). Both visceral and parietal 
epithelial cells were prominent. There were varying degrees 
of epithelial cell oedema, but vacuolation was not a feature. 
In all subjects the epithelial cell foot processes were effaced, 
(fig I) and occurred throughout the glomeruli (fig 2). The 
degree of effacement varied between patients (table) but 
within an individual the pattern of effacement was uniform. 
Many of the filtration slits were narrow. 

Simple regression analyses were done with height, 
weight, age, gentamicin total dose (per kg), time-on-
gentamicin, length of time from stopping gentamicin to 
death, time from admission to death, admission urea, and 
admission creatinine as the independent variables and the 
podocyte effacement score as the dependent variable. 
Multiple regression analysis was then done with the 
variables most closely associated with the podocyte score. 
None of the variables except those associated with 
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Use of several second generation serological assays 
to determine the true prevalence of hepatitis C virus 
infection in haemophiliacs treated with non-virus 

inactivated factor VIII and IX concentrates 
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Summary. To investigate the prevalence of hepatitis C virus 
infection in two risk groups. stored serum samples from 
treated haemophiliacs and intravenous drug users were 
tested for anti-HCV by both anti-C-100 based and second 
generation ELISAs tAbbott and Ortho) followed by testing in 
two confirmatory immunoblot assays that incorporate core 
as well as other non-structural antigens (Innogenetics LIA 
and Chiron RIBA-HCV test). Clear evidence of HCV infection 
was found in all but one of 78 haemophiliacs treated with 
non-virus inactivated clotting factor concentrates, but in 
none exposed only to super dry heat-treated concentrates. 
Only tour samples gave rise to conflicting serological results 
between the four tests, two of these occurred in patients with 

advanced HL' related disease and almost certainly reflected 
loss of humoral immunity associated with disease progres-
sion. and the others occurred in the only two patients tested 
who were chronic carriers of hepatitis B infection and may 
reflect an interaction between the two viruses. Comparison of 
anti-C- 100 versus second generation tests in immunocompe-
tent drug users revealed a false negative rate of 20% using 
C-lOU alone, indicating the advantage of using second 
generation assays for detection of past or current HCV 
infection. Of all of the antigens used in the confirmatory 
assay, positive sera showed strongest and most frequent 
reactivity with the C22 and C3 3c proteins (Ortho RIBA). 

Assays for antibodies directed against the non-structural 
C- I 00 peptide. detect the majority of cases of HCV infection 
(Kuo etal. 1989). Such assays are, however, hindered by the 
frequent occurrence of false positive and negative results 
(Skidmore. 1990: Alter et al. 1989). It has previously been 
demonstrated that all recipients of non-virus inactivated 
factor VIII concentrates develop non-A non-13 hepatitis 
(Fletcher et a!, 1983): however despite this, testing with C-
100 based assays has shown a prevalence of infection of 
between only 59% and 85% (Makris ci al. 1990: Ludlam etal. 
1989). Therefore using such assays, a significant proportion 
of haemophiliacs with a history of exposure to non-virus 
inactivated concentrates, many of whom have biochemical 
evidence of chronic liver disease. show no evidence of 
infection with HCV. Additionally. HCV RNA has been 
detected by polymerase chain reaction (PCR) in haemophi- 

Correspondence: Dr P. Simmonds. Department of Medical Micro-
biology. University of Edinburgh. Teviot Place. Edinburgh EH8 9AG. 

liacs who are seronegative for HCV by C-100 testing 
(Simmonds et al. 1990). 

Further problems have arisen in the field of blood donor 
screening in order to prevent post-transfusional non-A non-13 
hepatitis (PTNANBH). Studies in which the value of screen-
ing for HCV antibodies have been evaluated show a decrease 
in incidence, but not abolition of PTNANBH. when units 
positive for anti-C-100 are excluded (Esteban et al. 1990). 

New antibody assays which use structural HCV antigens 
have recently become available and initial studies have 
shown high prevalence of HCV infection in patients with both 
PTNANBH and sporadic chronic active hepatitis (Marcellin ci 
al. 1991:Craxietal. 1991). 

We have re-evaluated the serological status of a large 
group of haemophiliacs attending one haemophilia centre 
and a group of immunocompetent HIV-negative individuals 
with a history of intravenous drug use (IVDU5), for evidence 
of 1-ICy infection. Our results demonstrate the different 
prevalence of HCV infection in the patient groups and 
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Table I. Detection of HCV antibody in different risk groups 

Abbott Ortho Abbott Confirmatory assay Confirmatory assay 
I st gen. ELISA 2nd gen. ELISA 2nd gen. ELISA Chiron RIBA Innogenetics LIA 

Pos. 	Neg. Pos. 	Neg. Pos. 	Neg. Pos. 	End. 	Neg. Pos. 	End. 	Neg. 

Haemophilia A 
HIV pos. 16 	4 20 0 20 	0 19 	1 0 	18 

I-lIVneg. 36 	4 39 1 39 	1 38 	1 1 	40 

Haemophilia B )HIV neg. 16 	2 18 0 18 	0 18 	0 0 	18 

HIT concentrate only* 0 	7 0 7 0 	7 0 	0 7 	0 

IVDIJ (HIV neg.) 20 	13 25 8 25 	8 24 	1) 9 	22 

Recipients of heat-treated factor VIII (n=6) or factor IX (n = 1) inactivated at 80°C for 72 h(dry). 

compares the performance of the different antigens used in 
the assays to detect anti-HCV antibodies. 

METHODS AND SUBJECTS 

Stored serum samples from 85 haemophiliacs attending the 
Edinburgh Regional Haemophilia Centre were randomly 
chosen for testing. The characteristics of the group were as 
follows: Haemophilia A (ii=66) of which 20 were HIV-
positive, 40 HIV-negative. and six were recipients of exclusi-
vely virus-inactivated concentrate. Haemophilia B (n= 19). 
of which none were HIV-positive. and one had received only 
heat-treated products. IVDUs (a = 33) of which all were HIV_ 
negative both at the time of testing and in a subsequent 
sample at least 2 months later. 

HCV testing was carried out according to the manufac-
turers instruction. In the ELISAs (Abbott anti-C-100 ErA. 
Abbott HCV EIA second generation and Ortho HCV ELISA 
test system second generation) samples with an optical 
density over the calculated cut-off were scored as positive. 
Second generation assays for anti-HCV include core and 
further non-structural antigens in addition to C-100 coated 
on the solid phase. In the immunoblot assays antibody 
reactivity to structural and non-structural antigens con-
tained in the Chiron RIBA-HCV (RIBA) (C- 100. 5-1-1. C3 3c. 
and C22). and Innogenetics-LIA HCV (LIA) (NS-4. NS-S. Cl. 
C2. C3 and C4), was measured. As instructed by the 
manufacturers. samples were considered positive if reactive 
with two antigens with scores of 1 + or greater. or with one 
band if 2 + or greater) LIA only). Indeterminate samples were 
those that were reactive with only one antigen (with a score 
of 1 + in the LIA or 1 + to 4+ in the RIBA). The frequency of 
positive bands was calculated in different patient groups by 
dividing the number of positive outcomes by the total number 
tested, and the average band intensity calculated by dividing 
the total score of all positive bands by the number of positive 
results. PCR using nested primers was performed on 200 p1 of 
serum as previously described (Simmonds et al. 1990). 
Hepatitis B surface antigen (HBsAg) and core (anti-EIBc) and 
surface (anti-HBs) antibodies were detected by radioimmu-
noassay. Patients with intermittent or persistent elevation of 
alanine aminotransferase (ALT) over the period of approxi-
mately 1 year around testing were designated as having 
biochemical evidence of chronic liver disease. 

Table II. Reactivity of haemophiliac samples in Inno-
genetics and Chiron confirmatory assays 

Anti-C- 11)1) Abbott) positive samples 

Innogenetics LIA 

Chiron RIBA 	Pos. 	Ind. 	Neg. 

Pos. 	 67 
End. 	 () 
Neg. 	 0 

Anti-C- 100 Abbott I negative samples 

Innogenetics LIA 

Chiron RIBA 	Pos. 	Ind. 	Neg. 

Pos. 
End. 
Neg. 

RESULTS 

Of the 78 haemophilia A and B patients previously exposed to 
non-virus inactivated concentrates. 68 were positive by anti-
C-100 testing (Table I). These results were true positives, as 
all were positive in the second generation Abbott ELISA (2nd-
GAE) and Ortho ELISA (2nd-GOE), and all were confirmed in 
the Chiron RIBA. All but one were positive by the LIA (Table 
[1a). Ten samples were anti-C-100 negative. Of these, nine 
were positive by 2nd-GOE and 2nd-GAE. nine were positive 
and one indeterminate by the LIA, and seven positive, two 
indeterminate and one negative by the Chiron RIBA (Table 
[lb). Patients who had received only heat-treated concen-
trates were uniformly negative by all assays (Table I). Twenty 
of 33 IVDUs were positive by anti-C-100 testing: however. 
further testing in the second generation assays showed 25 
positive results leaving eight negative sera and demonstrat-
ing a false negative incidence of five in 25 using the C-100 
based assay alone (Table I). 
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-IV Positive 	 HIV Negative 	 -V Negative 
-iaernoohivacs 	 -1aemooniI:acS 	 V 0rq Users 

NS-U NS-5 Core  Core2 Core3 CoreU 	 5-- 0-00 C23C 022 

Inno - LIA Antigens 	 RIBA Antigens 

Fig 1. Frequency of positive results for individual antigens. 
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Fig 2. Mean intensity of reaction for individual antigens. 
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however, our data would suggest that these alternative 
serological assays would detect most HCV infected samples. It 
is. however, still possible that despite screening of donors by 
more sensitive second generation assays, cases of PTNANBH 

will occur as virus with a different serotype. not detectable by 
present assays may exist. In addition the long period to 

seroconversion may still provide a window by which infec-
tion in donors may be missed. 

The finding of indeterminate, or in one case possibly 

negative, results of HCV serology in the only HBV surface 
antigen carriers is consistent with a previous study that 
showed a decreased prevalence of anti-HCV in patients with 
hepatocellular carcinoma and liver cirrhosis and who are 
HBsAg-positive (Tanaka et al. 1991), suggesting that concur-
rent infection interferes with viral replication (Brotman et a! 
(1983). 

The high frequency of positive results obtained using the 
antigens C22 and C3 3c, and the intensity of the bands seen in 
the immunoblot assays, suggests that these antigens are both 
conserved and strongly immunogenic and are the most 
useful of the antigens evaluated for the detection of HCV 
infection. 
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nate. All 5 RIBA -2 positive donations and 1 of the 4 RIBA-2 indeterminates 
were shown to be viraemic by HCV-RNA polymerase chain reaction (PCR) 
assays performed at three independent reference laboratories. The remaining 
56 screen test reactive donations proved negative by RIBA-2 and, with 1 
exception, negative by PCR. We conclude that while first generation anti- 
HCV screening assays generate a high proportion of false reactions when 
screening low prevalence populations, results of the RIBA-2 confirmatory test 
correlate well with PCR findings and thus indirectly with both hepatitis C 
viraemia and infectivity. 

Introduction 

Following the introduction of blood donor screening 
for hepatitis B surface antigen in the 1970s, it became ap-
parent that most residual cases of post-transfusion hepati-
tis were of the non-A. non-B (NANB) type. The agent 
responsible remained unknown until the discovery of hep-
atitis C virus (HCV) by Choo et al. [1] in 1989. Cloning and 
expression of a segment (designated C100) of the non- 

structural region of the HCV genome rapidly led to the 
development of commercially available assays for anti-
bodies to the virus [21. Although these 'first generation' 
assays have proved to be relatively reliable when used to 
test high seroprevalence groups. such as haemophiliacs. 
their specificity in the context of low seroprevalence pop-
ulations has repeatedly been questioned [3-5]. 

Studies in the United Kingdom and the Netherlands [6. 
7] have shown that the correlation between screen test 
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reactivity (anti-C100) and infectivity of individual dona-
tions is poor. although better than earlier tests for 'surro- 
gate markers of NANB hepatitis. In contrast. polvmerase 
chain reaction (PCR) techniques [5. 8] for the detection of 
circulating HCV-RNA have been shown to he capable of 
differentiating between infectious and non-infectious do- 
nations. However. PCR techniques are not currently suit-
able for mass donor screening, and doubts have been 
raised concerning the reliability and reproducibility of 
PCR results between different laboratories [9]. Although 
HCV-RNA can be detected by dot blot hybridization [10], 
in the absence of a culture system or assay for circulating 
HCV antigen. PCR is the only adequately sensitive means 
of direct viral detection. 

The introduction of donor screening for anti-HCV in 
the UK was considered by a committee advising the 
Health Departments. The members included representa- 
tives of the National Blood Transfusion Service in En- 
gland and Wales and of the Scottish Blood Transfusion 
Service. In order to obtain information regarding the 
prevalence of hepatitis C in the UK donor population, a 
prospective multicentre study, coordinated by the Nation-
al Directorate of the National Blood Transfusion Service, 
was funded by the Department of Health (London. UK). 
Three regional transfusion centres tested donations with 
two commercially available first generation anti-HCV as-
says. Donations that were repeatedly reactive in either or 
both assays were referred to three independent reference 
laboratories for supplementary serology [11] and PCR 
analysis for the detection ofviraemia. In this initial report. 
we present in detail the results of the PCR analysis from 
the three reference laboratories, together with an outline 
of the relevant serological findings. Full data from the first 
generation anti-HCV screening tests, the second gener-
ation screening tests subsequently performed on the same 
samples and the results of further confirmatory serology 
will be presented in a second report. 

Con trmarorv Serological A ssav 
The referred specimens ere tested with the Chiron second gener-

ation recombinant ininiunoblot assay (RIBA-2. Ortho Diagnostics) 
[11]. This assay has four recombinant HCV antigens. 5-1-1. C100-3. 
63c and C22-3. and a specificity control antigen. superoxide dismu-
tase. SOD. According to the manufacturers criteria, a sample was 
judged positive' it it was reactive with two or more of the HCV 
antigens and'; ndeterminate' if it reacted with one HCV antigen only. 

Viraenua Detection by PCR 
In each of the three independent reference laboratories. PCR was 

performed 'blind' by operators who had no knowledge of the resultsof 
the confirmatory serological assay. Each laboratory used a different 
protocol as described below. Nucleotide numbering of primers and 
probes are given according to the system of Kato et al. 1121. unless 
otherwise stated. 

At UCMS\1. the methods employed for extraction at viral RNA 
from plasma and for eDNA synthesis were exactly as previously 
described [13]. but ith random hexamers used for priming eDNA 
synthesis in place of anti-sense primer. Nested PCR was performed 

ith the NS5 region primer set [ 5 1 and also with the 5' non-coding 
reizion primer set [14]. as previously described. 

At \'Rl.. viral RNA wasextracted from 5O-itlaliquotsof plasma by 
the method at Boom er al. [15] and reverse transcribed using murine 
leukaemia virus reverse transcriptase and random hexamer primers. 
PCR was performed with the following four sets of nested primers: (1) 
the NS3 primer set [161 with inner primers and probe developed at 
VRL [9]: (2) the NS3 pruner set and probe [17] with inner primers 
5'-AGA TGC GGTTTC GCG CACT(3.089. numbered according to 
the Chiron patent [181) and 5'-CCA CAT TTG ATC CCA CGAT 
(3.476. numbered according to [181): (3) the 5' non-coding region 
primers [141 with the addition of5'-AGTGGTCTG CGG AAC CGG 
TGA GTA CAC CGG (130) as an internal probe.and (4) a novel set of 
5' non-coding region primers, outer 5'-GCG ACA CTC CAC CAT 
AGA (7) and 5'CAC GGT CTA CGA GAC CIt CC (325). inner 
5' -GTG AGO AACTACTGTCYI'(35) and 5 '-CGC AAG CAC CCT 
ATC AGG CA (297) with the same internal probe as in (3) above. The 
specificity of the PCR products was confirmed by oligomer hybrid-
ization [19]. 

At UE. the RNA-PCR was performed as described previously [8]. 
Primers for the 5' non-coding region [14] and new primers in NS3 were 
used. The sequence of the NS3 primers was based on comparative 
sequence data obtained in the NS3 region with primers ED1-4 [8]. The 
sequences are: ED5 (outer. 4.991) 5'-TCT TGA ATT iTO GGA 
GGG COT CIT. ED6 (outer. 5.156) 5-CIT CCA CAT CTG GTC 
CCA COA TOG. ED7 (inner. 5.013) 5'-CAT AlA OAT 0CC CAC 
iTC cTA TC and ED8 (inner. 5.116) 5'-CTA GCG CAC ACG GTG 
GCT TGG TA. The expected sizes of the PCR bands are 165 and 104 
base pairs for the outer and inner products. respectively. HCV ge-
name titres of PCR-positive plasma samples were estimated (with UE 
NS3 primers) by limiting dilution analysis of eDNA as described 
previously [8]. 

Materials and Methods 

Specimens 
Blood donations were screened at three regional blood trans-

fusion centres (North London. Glasgow and Newcastle. UK) with 
Ortho and Abbott first generation anti-HCV tests, in accordance with 
the manufacturer's instructions Aliquots of each of the repeatedly 
reactive samples were referred to three reference laboratories (Virus 
Reference Laboratory. VRL. at Colindale. UK: University College 
and Middlesex School of Medicine. UCMSM. London. UK: Region-
al Virus Laboratory. RVL. Glasgow. UK). PCR analysis was per-
formed for RVL by the Department of Medical Microbiology. Uni-
versity of Edinburgh. UK (UE). 
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Table 1. PCR analysis of RIBA-2-positive and -indeterminate donations 

Donation 	Ortho RIBA-2 

No. 	 5-1-1 	C100 C33 022 SOD Result 

PCR 

VRL 
NS3 5 

UCMSM 
NS5 5 

UE 
NS3 	5' 

1 R 	R R R NR P P P P P P 	P 

2 R 	R R R NR P P P P P P 	P 

3 R 	R R R NR P P P P P P 	P 

4 NR 	R R R NR P E P N P P 	P 

5 R 	R R R NR P P P N P P 	P 

6 NR 	NR NR R NR I N P N P P 	P 

7 R 	NR NR NR NR I N N N N N 	N 

S R 	NR NR NR NR I N N N N N 	N 

9 NR 	R NR NR NR I N NT N N N 	N 

10 NR 	E NR NR NR N N N N N P 	N 

R = Reactive: NR = non-reactive: P = positive: I = indeterminate: N = negative: E Equivocal, hand visible but less intense than manu- 

facturer's recommended cut-off in the RIBA-2 test or an ambiguous result by PCR: NT = not tested: = 	non-coding region. 

Result when tested at RVL. 
Result when tested at VRL. 

Table 2. HCV genome titres of PCR-positive donations 

Donation cDNA volume 	Frequency 	HCV genome titre 

No. 	td 	 of positives 	copies/ml plasma 

lx 10 	 18/23 	2x 10' 

	

2 	1x10 	 12/23 	1x10 

	

3 	1x10 	 8/13 	1x106  

	

4 	1x10 	 5/13 	5x10 

	

5 	lx 10 	 7/13 	lx 106  

	

6 	ix l0 	 6/23 	5 X 10 

	

10 	4 Lll 	 3/3 	50 

cDNA volume = Amount of cDNA in replicates at the limiting 
dilution used forquantitation. The frequencvof positives/the number 
tested at the limiting dilution and the estimated minimum number of 
HCV-RNA molecules per millilitre of plasma. calculated asdescribed 
[81, are given. 

Positive results reproducibly obtained when 4 tl cDNA was am-

plified: negative at all dilutions used for titration. 

Results 

A total of 10,633 blood donations were tested by the 
three regional blood transfusion centres. Sixty-five 
(0.61%) were repeatedly reactive in either one or both of 
the commercial (anti-C100) screening assays. and these 
were referred to each of the three reference laboratories. 

Five of the 65 were confirmed positive on RIBA-2 testing, 
4 gave an indeterminate result, and the remaining 56 were 
RIBA-2 negative (table 1). 

The 65 referred samples were also tested by PCR for 
the presence of HCV-RNA. Six samples were found to be 
PCR positive by all three reference laboratories working 
independently and employing different experimental pro-
tocols (table 1). Five of the 6 PCR-positive samples were 
RIBA-2 positive, and the other was RIBA-2 indetermi-
nate. All 6 were reactive in both the Abott and the Ortho 
screening assays. 

Several different sets of nested PCR primers amplify-
ing different regions of the HCV genome were used in the 
studs'. The NS3 primers used by VRL (two sets) detected 4 
of the 6 positives, whereas the NS3 primer set used by UE 
detected all 6. The NSS primer set used by UCMSM de-
tected only 3. The most consistent results were generated 
by the NS' primers from UE and the 5' non-coding region 
primers which detected all 6 of the positives at VRL. UE 
and UCMSM. Quantification of HCV-RNA was perform-
ed at UE by limit dilution analysis as previously described 
[8]. Viraemia titres of the 6 agreed PCR-positive samples 
ranged from iO to 10 HCV genomes/mI of plasma (ta-
ble 2). 

In addition to the 6 agreed PCR positives, a further 
sample (donation No. 10. tables 1. 2) was found to be PCR 
positive with the UE NS3 primer set only. Repeat testing 
at UE of the UE aliquot and of a separate aliquot of the 
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same donation sent from UCMSM confirmed the UE NS3 
primer set result. Titration experiments demonstrated 
that the HCV genome titre of the sample was just at the 
cut-off level of the UE NS3 PCR assay (approximate-
ly 50-100 HCV genornes/mi). Sequencing studies re-
vealed that the NS3 sequence from donation No. 10 was 
quite distinct from that of other HCV 'isolates' present in 
the CE laboratory at that time. A repeat donation from 
the same donor given approximately 9 months later was 
found to he negative by RIBA-2, negative by PCR with 5' 
non-coding region primers at UCMSM and UE, but posi-
tive as before with the UE NS3 primer set. Once again, the 
HCV genome titre was just at the cut-off level of the UE 
NS3 PCR 

Discussion 

What does this study tell us about the 'true' prevalence 
of HCV infection in the UK blood donor population? The 
0.61% (65 of 10.633) crude' seroprevalence observed here 
is consistent with a number of other reports of blood do-
nor screening using the first generation Ortho anti-C100 
ELISA [6. 71. It is apparent however that the majority (55 
of 65; 85%) of screen-reactive donations identified by this 
test were false since they showed no reactivity in the 
RIBA-2 assay and were negative by PCR. If the calcula-
tion is based exclusively on confirmed RIBA-2-positive 
donations, a seroprevalence of 0.047% (5 of 10,633) is 
obtained. Although this figure is likely to be more accu-
rate than the 'crude' 0.65% seroprevalence it is probably 
an underestimate because at least some RIBA-indetermi-
nate donations (e.g. No. 6 of table 1) may be from HCV-
infected individuals [20]. Furthermore, the anti-C100-
based first generation tests will miss those donors whose 
serum contains antibodies to HCV proteins other than 
C100. Antibody assays will also fail to identify those do-
nors in the acute phase of HCV infection prior to serocon-
version. The existence of infectious but anti-C100-nega-
tive donations has been reported previously [21, 221. 

The pattern of RIBA-2 reactivity (C22 band only), ex-
hibited by the PCR-positive donation No. 6, suggests that 
the RIBA-2 assay may not be sufficiently sensitive to con-
firm all genuine anti-HC V-positive donations. Antibodies 
against C100 were almost certainly present in this serum 
because it was repeatedly reactive in both the Abbott and 
the Ortho anti-C100 screening assays, and yet the RIBA-2 
C100 band was scored as non-reactive by all three refer-
ence laboratories. Similar observations relating to inade-
quate sensitivity of the RIBA-2 test have been made pre- 

viously [23]. RIBA-2-'indeterminate' donations, especial-
ly those with C22 only or C33 only patterns, should 
therefore be regarded with due caution. 

The most striking finding of the present study is the 
clear association between RIBA-2 positivity and PCR 
positivity. The association implies that most if not all 
RIBA-2-confirmed anti-HCV-positive donors are vi-
raemic and therefore potentially infectious. This knowl-
edge will undoubtedly facilitate the donor counselling that 
will he necessitated by the introduction of anti-HCV 
screening. A similar association between confirmed anti-
HCV positivity and viraemia has also been observed in 
patients with community-acquired chronic NANB hepati-
tis [241 and in patients with haemophilia [25]. If subse-
quent blood donor studies confirm that RIBA-2 positivity  
is invariably or almost invariably accompanied by virae-
mia, then the requirement for PCR analysis of blood do-
nations should decline greatly. Further studies, funded by 
the Department of Health, are underway to determine 
whether the close association between RIBA-2 positivity 
and viraemia also exists when the same 10.633 donations 
are tested by second generation screening assays. i.e. EL-
ISAs incorporating both structural and non-structural 
HCV proteins. 

In view of the complexity of the technique and doubts 
about the feasibility of avoiding contamination, it is reas-
suring to note that the three independent reference lab-
oratories. using different PCR protocols, agreed on the 
same 6 PCR-positive samples from a total of 65 tested. 
These results suggest that PCR for HCV-RNA is a reliable 
and reproducible diagnostic technique particularly when 
primers from the highly conserved 5' non-coding region 
[261 are used. 

However, 1 donation (No. 10) was found to be repeat-
edly PCR positive, on two separate aliquots, when tested 
with the NS3 primer set at UE. although, in agreement 
with VRL and UCMSM, it proved to be PCR negative 
with 5' non-coding region primers. Since the titre of HCV-
RNA in this sample was just at the cut-off level of the UE 
NS3 PCR it seems likely that minor sensitivity differences 
between the CE NS3 primer set and the other primer sets 
may have been responsible for the discordant result. Se-
quence analysis of this sample appears to exclude the pos-
sibility of contamination from previously or concurrently 
amplified PCR products in the UE laboratory. The pres-
ence of HCV-RNA (once again detected by the UE NS3 
set only) in a later sample from the same donor also ap-
pears to rule out contamination. It seems therefore that 
this donor has a persistent very low level viraemia below 
the threshold of detection by PCR. except with the CE 
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NS-3) primer set. Further samples from this donor will be 
investigated to look for changes in viral titre over time and 
for evidence of an evolving immune response. It will he 
interesting to see whether subsequent studies confirm that 
the UE NS3 primer set is consistently more sensitive than 
primers based on the 5' non-coding region. 

Follow up studies are planned to determine whether 
the HCV-PCR-positive donors identified here have evi-
dence of hepatic dysfunction or evidence of other blood 
borne viral infections. It is of interest to note that. with the 
exception of donation No. 10, the HCV-RNA titres ob-
served in these plasma samples are similar to those previ-
ously reported in patients with chronic NANB hepatitis 
[24]. Attempts will be made to discover how these donors 
became infected with HCV and whether or not they have 
transmitted the infection to other family members. 

We conclude that first generation anti-HCV tests gen-
erate a high proportion of false reactions when used to 
screen UK blood donations. At the time of writing, the 
first generation tests have been replaced with assays which 
incorporate both structural and non-structural HCV pro-
teins. and it will he interesting to determine whether the  

high frequency of false reactions has been reduced. Fortu-
nately, in this population of UK donors. the RIBA-2 test 
generally appears to differentiate well between true and 
false reactivity as judged by the results of PCR analysis for 
HCV-RNA. From the data presented here. it would seem 
Prudent to regard RIBA-2-reactive donations, whether 
positive' or 'indeterminate, as likely to be viraemic and 

therefore capable of transmitting HCV infection. 
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Detection, quantification and sequencing of HIV-1 from the 

plasma of seropositive individuals and from factor 

VIII concentrates 

Lin Qi Zhang, Peter Simmonds, Christopher A. Ludlam* 

and Andrew J. Leigh Brown 

A highly sensitive and reliable RNA polymerase chain reaction method has been 
developed which has been used to detect, quantify and sequence cell-free HIV 
RNA directly from the plasma of seropositive individuals. Plasma from 10 out of 
12 haemophiliacs tested was found to contain detectable levels of HIV-1 RNA [log 
mean value: 1.2 x 103 copies for Centers for Disease Control (CDC) group II patients, 
5.5 x 103 copies for CDC group IV patients]. The presence of cell-free circulating 
virus in both symptomatic and asymptomatic individuals suggests that viral replication 
continues throughout the course of infection. The same procedure has been used to 
detect and sequence HIV-1 RNA in two batches of unheated commercial factor VIII 
concentrate distributed in 1981 and 1983. The sequences obtained revealed a closer 
relationship to North American than to African strains of HIV-1. 

AIDS 1991, 5:675-681 

Keywords: HIV detection, polymerase chain reaction, plasma viraemia, factor VIII, 
quantification, nucleotide sequence. 

Introduction 

Using the polymerase chain reaction (PCR), HIV 
provirus can be not only detected [1-4], but also accu-
rately quantified directly in patient's peripheral blood 
mononuclear cells (PBMC) [5,6]. However, detection 
of H1V DNA in PBMC does not indicate whether such 
cells are expressing viral RNA sequences or whether 
free virus is present in plasma or other body flu-
ids. Several investigators have coupled a reverse tran-
scriptase (RT) reaction step to the PCR (RNA PCR) 
[7-91 and have successfully detected HIV RNA both 
in cultured HIV-infected cell lines and in PBMC from 
seropositive subjects. Unfortunately these reports have 
not included an assessment of the sensitivity of the 
methods used and therefore have not determined ab-
solute quantities of RNA. 

Using the nested PCR method, we have developed a 
highly sensitive and quantitive RNA PCR assay. After re- 

verse transcription, complementary (c) DNA was am-
plified in two sequential PCRs. As the nested PCR can 
detect single molecules of target DNA sequence, quan-
titation of HIV-specific cDNA, and by implication of 
FIIV RNA sequences present in the original sample, 
can be achieved by limiting dilution as described previ-
ously for provirus quantification in PBMC [5]. The ef-
ficiency of the RT reaction was estimated by measure-
ment of the yield of cDNA from known amounts of 
specific RNA sequences after reverse transcription. We 
have used the methods to estimate the plasma virus 
load in a group of 1-flY-infected individuals including 
both symptomatic and asymptomatic patients. 

We have also investigated the presence of HIV-1 RNA 
sequences in eight batches of unheated factor VIH con-
centrate distributed between 1981 and 1984. HIV-1 
RNA was detected in two batches of commercial fac-
tor VIII concentrate distributed in 1981 and 1983. The 
identity of the RNA was confirmed by nucleotide se- 
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quencing the PCR product. Sequences obtained in the 
pol and env regions from these concentrates provide 
some information on the geographical origins of the 
infected blood donors. 

Materials and methods 

Plasma 

Plasma samples were obtained from 12 HIV-1-infected 
haemophiliacs who had been exposed to H1V-contam-
mated factor VIII early in 1984 [10]. All 12 individuals 
seroconverted for antibody 3-10 months after receiv-
ing the factor VIII [10,11]. Patients 56, 70, 82, 83 and 
84 have been classified as stage II according to Centers 
for Disease Control (CDC) clasification, while patients 
72, 74, 77, 79, 95 and 87 are in CDC group IV and have 
been suffering from a range of opportunistic infections 
and constitutional symptoms of HIV infection. Patient 
28 died in 1988. Apart from patient 72, all CDC group 
N patients but none of the CDC group H patients have 
been receiving antiviral treatment (zidovudine). Three 
samples from a seronegative individual, who has no 
known risk factors for HIV infection, were used as neg-
ative controls. Plasma samples and cell culture super-
natant were assayed for HIV-1 p24 core antigen with 
a commercial enzyme immunoassay (Du Pont, Steve-
nage, Herts, UK) according to the manufacturer's in-
structions. This assay was capable of detecting 7 pg/mI 
p24 antigen. 

Factor VIII concentrates 
Eight batches of factor VIII concentrate, including both 
commercial and National Health Service-produced ma-
terial, were obtained from the National Institute of 
Biological Standards (Potters Bar, UK). All batches 
were unheated and prepared before the introduction 
of donor screening for anti-HIV antibodies. They were 
distributed in the UK between 1981 and 1984. 

HIV and tk primers 
HIV primers were synthesized by the Oswel DNA 
Service, Department of Chemistry, University of Ed-
inburgh, and purified by high-pessure liquid chro-
matography (HPLC). The primers were based on 
the consensus of several published HIV sequences 
(HNBRU; HIVEU;  HNjp; HIV; HIVMN  and HIV). 
The primer sites were chosen for greatest conservation 
between these published sequences. No more than 
one mismatch with any of the above published HIV 
sequences was permitted, nor was any mismatch near 
the 3' terminus. The primers for herpes simplex virus 
(HSV) tk gene were provided by R. Al-Shawi (Centre 
for Genome Research, University of Edinburgh, Edin-
burgh, UK). The sequences of the primers for both 

HIV template and transcribed HSV tk template are 
given here and the coordinates listed in the brackets 
of HIV primers are from HNB2 (+, sense; —, anti-
sense). HIV pol primers: (a) 5'-CCCAAAAGTrAAA-
CAATGGCC (+, 2602), (b) 5'-AGAAAlTFGTACA-
GAGATGG (+, 2653), (c) 5'-CCATTFATCAGGATG-
GAGTTC (—, 3245), (d) 5'-GCTGTCFITFICTG-
GCAGCAC (_, 3281); V4-V5 primers: (e) 5'-TCAGGA-
GGGGACCCCAGAAATF (+, 7316), (f) 5'-GGGGAAT-
flTIICTACTGTAAT (+, 7360), (g) 5' C'TTCTC-
CAATI'GTCCCTCATA (—, 7665), (h) 5'-CCATAGT-
GCTTCCTGCTGCT (—, 7814). HSV tk primers: 5'-
GCCAGTAAGTCATCGGCTCGGG (+), 5'-CCATCAA-
CACGCGTCTGCGT17CG (—). 

Viral RNA extraction 
Five hundred microlitres of patient plasma or 500 j.tl 
I-nv-infected C8166 culture supernatant was mixed 
with 8.5 ml phosphate-buffered saline (PBS); alterna-
tively, 3 ml factor VIII reconstituted with the recom-
mended volume of water was mixed with 6 ml PBS. In 
both cases, virus was pelleted at 45000 g in a swing out 
rotor (Sorvall SH80, Du Pont) at 4°C for 2 h. The pel-
let was resuspended in 1.2 ml of a denaturing solution 
[2 mol/lguanidinium thiocynate, 12.5 mmol/l sodium 
citrate (pH 7.0), 0.25% sarcosyl, 0.05 mol/12-mercap-
toethanol, 50% v/v water-saturated distilled phenol] 
and RNA purification was continued as described [12]. 

cDNA synthesis 
RNA was incubated with ribonuclease (RNase)-free de-
oxyribonuclease(DNase; Boehringer-Mannheim, Lewes, 
UK) at 37°C for 20 min in a lOj.tl volume of DNase 
reaction buffer [SomnmoVl Tris-Cl pH7.5, lOmmol/l 
MgCl2, 4 rnmol/l DTF, 10 units RNAsin, 1 ig carrier 
RNA (sheep fibroblast cell total RNA) and 15 units 
RNase-free DNase]. The sample was then incubated at 
80°C for 10 min to terminate the reaction. eDNA syn-
thesis was carried Out by adding an equal volume of 
RT reaction buffer [50 mmol/l Tris-CI pH 8.0; 5 mmol/l 
MgCl2; 5 mmol/l DYF; 50 mmol/l KC1; 0.05 .tg/pJ 
bovine serum albumin (BSA); 600 .tmoVl each of 
dATP, dGTP, dT[P, dCTP; 20% dimethyl sulphoxide 
(DMSO); 1.5 p.moVl outer antisense primer (d or h); 
10 units RNAsin (Promega, Southampton, UK) and 10 
units AMy reverse-transcriptase (Promega) to the di-
gested HIV RNA sample and incubating at 42°C for 
30 min. 

Measurement of RT reaction efficiency using double 

PCR method 
The HIV RNA for eDNA synthesis was serially di-
luted in twofold steps, slot-blotted and quantified by 
hybridization with HIVBH10R.3 plasmid in compar-
ison with a dilution series of known amounts of 
HIVBH10R.3 DNA SOng HIVBH10R.3 plasmid DNA 
was used to make an HIV-specific probe using the 
Pharmacia Oligolabeffing Kit (Milton Keynes, UK). Blot 
hybridization was carried out following the method of 
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Church and Gilbert [13]. cDNA samples were diluted, 
amplified in the PCR with products sequenced as de-
scribed previously [5]. 

Measurement of RT reaction efficiency by plasmid 
RNA transcription 
Construct pSV2gpt, containing a mouse promoter re-
gion and coding region of the HSV type 1 thymi-
dine kinase gene (HSV tk) was obtained from R Al-
Shawi [is]. RNA was transcribed in vitro from 100 ng 
of the construct plasma DNA at 37°C for 1 h (20 pJ 
volumes of 4 mmol/l Tris-Cl pH 8.0; 8 mmoVl MgC12; 

2 mmol/l spermidine; 50 mmol/l NaCl; 0.01 moVi DTF; 
0.4 mmol/l each of rATP, rCTP and rGTP; 30 units 
of RNAsin; 100 ng/pi BSA; 10 units of T7 RNA poly-
merase). The concentration of pSV2gpt RNA tran-
scripts used for subsequent cDNA synthesis and 
HSV tk plasmid DNA used for quantitative compari-
son was estimated by spectrophotometry at 260 nm. 
Twofold serial titrations of tk cDNA after reverse tran-
scription with antisense primer and of HSV tk plasmid 
DNA were made prior to PCR amplification with HSV 
tk specific primers (spacing = 260 bp). Twenty-five cy-
cles were employed and the product of PCR was anal-
ysed by agarose gel electrophoresis and ethidium bro-
mide staining. The amount of cDNA was estimated by 
reference to a dilution series of HSV tk DNA after am-
plification with the same primers. This was then com-
pared with the number of RNA sequences from which 
the cDNA was made. 

Controls for PCR 
In order to remove any possible HIV DNA contami-
nation, either from plasmid itself [18] or from other 
sources, all HIV RNA samples were treated with RNase-
free DNase (Boehringer-Mannheim) prior to reverse 
transcription. All experiments included appropriate 
negative controls. In order to confirm that carrier RNA 
itself did not generate results in the experiment, carrier 
RNA was subjected to double PCR with V4-V5 primers 
and pol primers. None of the samples was positive in 
any assay. IHIIV RNA samples amplified without RT also 
gave negative double PCR results (data not shown) 
demonstrating that the positives obtained were from 
HIV cDNA, not from HIV DNA contamination. 

Results 

RT reaction efficiency from plasmid RNA 
transcription 
A known amount of RNA transcript from a cloned tk 
gene was reverse transcribed, and the cDNA titrated 
prior to amplification in the PCR with tk-specific 

primers. This was compared with the results of am-
plifying a dilution series of cloned tk DNA. The cut-off 
point, below which amplified DNA was not detectable 
by agarose gel electrophoresis and ethidium bromide 
staining, was 5.12 fg for the tk plasmid. Using the 
known molecular mass of the tk plasmid DNA (7270 
bp x  660 g/mol per bp), this figure corresponded to 
630 molecules of tk plasmid, or 1260 copies of target 
sequence (630 x 2 for double-stranded DNA). cDNA 
synthesized from 8 ng of HSV tk transcript was seri-
ally diluted prior to amplification. A dilution contain-
ing cDNA synthesized from 16 fg RNA gave a posi-
tive result and the next dilution containing cDNA from 
8 fg was negative. Using the estimated molecular mass 
of the RNA transcript (2400 bases x 330 g/mol per 
base), the minimum detectable amount of cDNA cor-
responded to an input of 1.2 X 104 copies of RNA. The 
efficiency of the RT reaction, in terms of the number 
of molecules of amplifiable cDNA synthesized from the 
RNA template, is the ratio of the two figures obtained 
above (1260/12 000), or approximately 10%. 

RT reaction efficiency using HIV RNA 
Six HIV-1 RNA samples were extracted from cul-
ture supernatant of C8166 cells infected with HIV, 
HTV1m3 and HIV 2  The viral RNA was slot-blot-
ted and quantified by hybridization with H1VBH10R.3 
plasmid probe, in comparison with a dilution se-
ries of known amounts of HIVBH1OR.3 DNA, 19.8, 
9.9, 7 and 0.6pg MVRF  viral RNA, 3.0 and 1.5 pg 
H1V111B and H1V 2, respectively, were then re-
verse transcribed with an HIV V4-V5 outer anti-
sense primer (h). The number of copies of cDNA 
in each sample after reverse transcription was es-
timated by limiting dilution and amplification with 
nested primers. The frequency of positive reactions 
at limiting dilution was used to calculate the molecu-
lar concentration of cDNA using a Poisson correction 
for positive reactions which contain more than one 
template molecule. [The mean number of template 
molecules per reaction (m) is equal to - ln(f0), where 
f0  is the fraction of negative reactions.] The molecular 
mass of one copy of FIIV-1 RNA was 6.5 ag [5] from 
which the RT reaction efficiency was calculated. In 
each case, 20 (or 24) replicates were tested at limiting 
dilution, and the estimates were reasonably accurate. 
For the first sample for instance, at a 1 in 78000 dilu-
tion, there were two PCR positives out of 24 replicates. 
Using the Poisson formula to correct for multiple pos-
itives, the total number of molecules of HIV RNA de-
tected at this dilution was estimated to be 2.1. As the 
molecular mass of single FIIV RNA was 6.5 ag, the to-
tal amount of cDNA synthesized by the reverse tran-
scription reaction was therefore equivalent to 1.06 pg 
(2.1 x 6.5  x 106 X 78000). The ratio of the amount 
of HIV RNA reverse transcribed and the initial amount 
of I-IIV RNA available for reverse transcription gave the 
RT efficiency (1.06/19.8 = 5.3%). We show the results 
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of dilution and distribution of six independent cDNA 
reactions after double PCR amplification in Table 1, 
along with the calculated RT efficiencies. 

Quantification of HIV virus particle in the plasma or 
serum of seropositive individuals 
Plasma from 10 Out of 12 haemophiliacs contained de-
tectable levels of HIV-1 RNA. The threshold of detec-
tion can be calculated to be 200 copies of RNA per ml 
plasma, based on the volume of plasma from which 
RNA was extracted, the input volume of the reverse 
transcription reaction, the efficiency of reverse tran-
scription and the proportion of cDNA used in the first 
PCR reaction. The estimated concentration of virus 
particles in plasma ranged from 1 x  103  to 3 X 104  
copies per ml in the positive samples (Table 2), with 
a logarithmic mean value of 1.2 x  103  copies for CDC 
group II patients, and 5.5 x 103  copies for CDC group 
IV patients. There was a significant positive associa-
tion between the concentration of viral RNA in plasma 
and the proviral abundance in PBMC DNA. The cor-
relation coefficient between the log-transformed RNA 
and DNA estimates is 0.74 (0.01 <P < 0.02), indicat-
ing that over 50% of the variance in DNA proviral 

abundance can be explained by the RNA concentra-
tions. Thus the patients with the lowest proviral abun-
dance (83 and 84 with an average of one provirus in 
14000 and 10000 PBMC, respectively) had less than 
200 copies of RNA per ml in their plasma On the 
other hand in patients 82 and 87, relatively higher 
concentrations of virus (8.5 X 103  and 3.0 x 104 per 
ml plasma) were associated with high frequencies of 
provirus-bearing PBMC (one in 700 and one in 589 
PBMC infected, respectively). However, no correlation 
was found, regardless of the stage of infection, be-
tween the amount of virus in plasma and the level 
of p24 antigen. Five patients who were negative for 
p24 antigen (70, 72, 74, 77 and 95) contained over 
1.0 x  103  virus particles per ml plasma. Further, no 
correlation between CD4 + lymphocyte depletion and 
amount of circulating virus was found in these individ-
uals. For example, relatively normal CD4 counts were 
found in p82 despite containing 8.5 x 103  copies of vi-
ral RNA per ml. Conversely, p84 had low CD4 counts 
(0.05 x 109/1) yet no detectable circulating virus. Zi-
dovudine treatment appeared to have little effect on 
the levels of circulating virus. Those on long-term treat-
ment (74, 77 and 79) contained comparable levels 

Table 1. Titration of HIV cDNA after reverse transcriptase )Rfl reaction by dilution, distribution and double polymerase chain reaction (PCR) amplification. 

Amount 
	

Dilution factor of cDNA 

of RNA 
	

(no. positive cells/no, tested) 
	

Calculated 

in RT 
	

amount of 	% RI 

Sample (pg) 	reaction (pg( 	125 	620 	3100 	15600 	78000 	390000 	cDNA (pg) 	efficiency 

RF1 19.8 ND 4/4 4/4 3/4  2/24 0/4 1.06 5.0 

RF2 9.9 4/4 4/4 4/4 4/24 0/4 0/4 0.44 4.0 

RF3 7 4/4 4/4 4/4 4/24 0/4 0/4 0.44 6.0 

RF4 0.6 3/4 5/24 0/4 0/4 0/4 0/4 0.02 3.3 

IIIB 3.0 4/4 3/4  1/4  2/20 0/4 ND 0.22 7.0 

HXB2 1.5 2/4 2/4 4/20 0/4 0/4 ND 0.09 6.0 

ND, not done. 

Table 2. comparison of the amount of circulating virus from patients' plasma with the amount of provirus in peripheral blood mononuclear cells (PBMC), 

plasma p24 antigen concentration, CD4+ counts, and clinical status. 

Number of p24 CD4+ Zidovudine Disease 

Virions per ml cells per antigen lymphocytes treatment stage 

Patient in plasma single provirus (pg/ml) (x 10/1) (months) (CDC) 

p83 <102 14000 - 0.27 - II 

p84  <102  10000 - 0.05 - II 

p77  1.26 X 103 2500 - 0.07 14 IVA 

p56 1.29 X  10 ND 15 0.51 II 

p74  3.49 X 103 2000 - 0.38 10 IVC2 

p95 3.50 X 103 455 - 0.06 - IV 

p28  3.97 X 10 2718 300 0.09 - IV 

p79  439 X 103 3300 63 0.21 15 1Vc2 

p70  6.12 X 10 ND - 0.39 - II 

p82  8.53 X 103 700 53 0.65 - II 

p72  2.76 x 10' 2720 - 0.33 - vc 

p87  2.96 X 104 589 20 0.05 17 IV/E 

less than 7 pg/ml; ND, not done; CDC, centers for Disease control 
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(a) 
	

V4/C3 Region 

FVIII 	 aattcaacacaactg 	 a ggt 	a ...............a atcacactc 	a 

	

AsnSerlhrGinLeu 	 AsnGiy 	 As,,! ielhrLeu 

	

RF 	 g 	a 	 a 
Giy Asn 

	

MAL 	 a 	......cagaataatgg gca acta 	aat gcac a 	c .........t 	 a 
GinAsnAsnGiyAiaArgLeu AsnSerlhr0iu Thr 

HX82 T1TAATAGTACTTGG --------------- TTTAATAGTACTTGGAGT --- ACTGAAGGGTCAAATAACACTGAAGGAAGT--- GACACAATCACCCTCCCATGCAGAATAAAACAA 
PheAsnSerlhrlrp --------------- PheAsnSerThrTrpSer --- ThrGtuGiySerAsrAsnThrGiuGiySer --- AspThrl ieThrLeuProCysArgl ieLysGin 
7394 	 7489 

	

FVIII 	 g 	 a 
Giu 	 Arg 

	

RF 	g 	 g 	 a 	at 	 a 	 g 
Vat 	 Giu 	 Lys lie 

	

MAL 	t 	 ac 	t 	 gca gtc C ac 	t 	 a 	 a 
Thr 	 Ala Vat As,, Leu 	 lie 

HXB2 ATTATAAACATGTGGCAGAAAGTAGGAAAAGCAATGTATGCCCCTCCCATCAGTGGACAAATTAGATGTTCATCAAATATTACAGGGCTGCTATTAACAAGAGATGGTGGT 
I tel teAsretTrpGtnLysVaLGLyLysAtaMetTyrAtaProProI LeSerGtylinl teArgCysSerSerAsnl telhrGiyLeuLeuLeulhrArgAspGiyGiy 
7490 	 7601 

(b) 	 poll Region 

FVlll 	 C 	 a 	 C 	 9 
Mg 	Ser 	 Arg 

RF 	 9 

MAL 	 C 	 ga 	 9 	a 	 t t 
Asn 

HX82 GGGCCTGAAAATCCATACAATACTCCAGTATT1GCCATAAAGAAAAAAGACAGTACTAAATGGAGAAAATTAGTAGATT TCAGAGAACTTAATAAOAGAACTCAAGACTTCTGGGAAGTTCAA 

	

2699 	 2822 

po12 Region 

	

FVIII 	 c 	a 
Ser 

	

RF 	 a 	 a 	 t 

	

Lye 	 GLu 

	

MAL 	a c 	ca 	a 	c a C 	 g 	t 	 a a 

	

ThrLys 	Giu 
HX62 ATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTTATCTATCAATACATGGATGATTTGTA1GTAGGATCTGACTTAGAAATAGGGCAG 

It eLeuG I ProPheArgLysGt nAsnProAspl ieVa ill elyrOt ntyrMetAspAspLeulyrVaio iySerAspLeus I UI leG I yG in 
3047 	 3140 

	

FVIII 	 a 	 a 	t 	C 

Lys 	Phe 

	

RF 	 t 	 a 	g 	a 	gt 	g 	g 	 t 
lie 	 Giu 	Lye 	Phe 

	

MAL 	 a 	g 	a 	aa 	t 	 9 	 C 	t 
Glu 	Lye 	Phe 

HXB2 CATAGAACAAAAATAGAGGAGCTGAGACAACATCTGTTGAGGTGGGGACTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCCTT 
HsArgThrLys I I eG I uG tuLeuArgGt nIl isLeuLeuArgl rpG iyLeulh nh rP roAspLysLysHisG1rLysGiuProp ropheLeu 
3140 	 3233 

Fig. 1. Comparison of sequences detected in factor VIII with those of known geographical variants of HIV-1. (a) Nucleotide and amino 
acid sequences of the V4 and C3 region (env) of RNA detected in factor VIII batch no. 1. (b) Sequences in two regions of pol of RNA 
from batch no. 8. The location of these sequences in the genome of the HIVIJIB  isolate (clone HXB2, Genbank accession number K03455( 
is indicated. Differences between the factor VIII sequences and those of the HIV  and HIVMAL  isolates from that of HIV111B  are shown 
in the body of the figure. 

to the two untreated symptomatic individuals (95 and 
72). 

Detection of HIV-1 in factor VIII concentrate 
RNA was prepared from eight different batches of fac-
tor Vifi (distributed between 1981 and 1984), by high-
speed centrifugation and solubilization of the pellets 
as described previously. One-third of each RNA sam- 

pie was reverse transcribed with primers d and h (pol 
and env genes), and one-quarter of the cDNA was am-
plified by PCR with primers a—d or e—h (see Methods). 
Two factor VIII batches (both commercially derived) 
out of eight tested gave positive results: in one case 
with the env primers, the other with the p01 primers. 
Single molecules of target DNA were isolated by limit- 
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ing dilution of the cDNA and were directly sequenced 
as previously described (Fig. 1) [5,15]. In the env re-
gion, two HIV RNA sequences, obtained from batch 
no. 1, were identical in the V4 and C3 regions. The se-
quence was distinct from those of all published HIV 
isolates and from any HIV sequence obtained previ-
ously in our laboratory [15,16]. This is particularly ap-
parent in the V4 hypervariable region, which is clearly 
distinct from all published sequences, including those 
illustrated in Fig. 1. The C3 region showed 92% ho-
mology with HIV 2, 90% with HIV, and 77% with 
H1VSF2 (Fig. 1). In the pol region, two H1V RNA se-
quences obtained from batch no. 8 were also iden-
tical and distinct from any published sequence (Fig. 
1). In this region, the sequence was 96% identical to 
HIVtpx2, 94% with HIVRF  and HIVsp2  and 92% with 
HIVz6. The amount of RNA present in this material was 
close to the threshold of sensitivity for the RNA PCR 
method used. Allowing 5% efficiency of reverse tran-
scription with these primers, the calculated amount of 
HIV RNA in both batches of reconstituted factor VIII 
was only 2.5 copies per ml. 

Discussion 

Detection and quantification of circulating HIV RNA 
in plasma 
An efficiency of 5% was obtained in the RT reaction for 
HIV- 1 template and primers e—h (spacing 480 bp). The 
overall efficiency of the procedure declined with wider 
primer spacing; amplification of cDNA using primer 
pairs separated by 858 bp gave an efficiency of 1.8% 
(data not shown). We are therefore able to obtain a di-
rect estimate of the amount of cell-free HIV in plasma 
in absolute terms. 

All plasma samples used in these experiments were 
obtained during 1988 and 1989 from HIV-seropositive 
haemophiliacs who were infected in 1984 [10]. Five 
were asymptomatic and seven had AIDS or AIDS-re-
lated complex. 

Of the five asymptomatic (CDC group TI) patients, 
three were RNA PCR-positive, while all seven CDC 
group N patients were positive for RNA PCR (Table 2). 
All samples that were p24 antigen-positive were posi-
tive in the RNA PCR High levels of viral RNA sequences 
were found even in some p24 antigen-negative plasma 
samples (patients 70, 72, 74 and 77) while similar or 
lower amounts of circulating RNA have been found in 
other plasma samples that were antigen-positive. The 
RNA PCR method provides a direct way to detect and 
quantify virus production regardless of immune com-
plex formation, hence it may provide a better marker 
of the progression of disease. 

On average, HIV RNA was more abundant in the 
plasma of patients with more advanced disease corn- 

pared with asyrnptomatics (Table 2). However, a wide 
range in the amount of cell-free HIV RNA was found 
among patients in similar stages of disease. In other 
studies, a similar lack of correlation between p24 anti-
gen and titers of infectious virus in plasma has been 
reported [19,20]. These results can be explained by 
a variation in the level of p24 antibody as concluded 
following a recent study of antigen levels after disso-
lution of immune complexes [21].  Total levels of p24 
antigen, both free and immune complexed, have been 
found to vary little during the course of primary infec-
tion and subsequently [211. 
The levels of HIV in patients' plasma, whether they 
were from CDC group II or from patients undergo-
ing antiviral treatment, were much higher than previ-
ously estimated (Table 2). Zidovudine treatment has 
previously been shown to decrease the amount of cell-
free circulating HIV virus initially both in plasma of in-
fected humans [19] and of severe combined immuno-
deficiency infected mice [22]. The high concentra-
tion of cell-free circulating HIV in our patients, who 
have been undergoing zidovudine therapy for over 10 
months, may imply that some resistant viral strains 
have emerged. 

The most striking feature of the results is the high level 
of cell-free I-nV found in some CDC group II patients 
(patient 56, 70 and 82; Table 2). Serial samples from 
one CDC group H patient (patient 82) without antivi-
ral treatment showed persistently high levels of plasma 
virus for several years and rapid turnover of sequence 
variants (Simmonds et cil in preparation). The detec-
tion of high levels of cell-free I-nV from the plasma of 
both CDC group II and N patients suggests that viral 
replication occurs continuously throughout the course 
of an HIV infection. We find no evidence for a virolog-
ical 'latent' period. 

Detection of HIV RNA from factor VIII 
Two out of eight batches of factor \1ffl  concentrate 
were positive for FIN-i RNA by PCR; in one case with 
env primers and the other with pol primers. Both 
were confirmed by sequencing the PCR product. The 
amount of HIV RNA present in factor Vifi is very 
low (2.5 copies per ml), and close to the threshold 
of detection. These two factor VIII sequences, which 
were both found in commercial products, are dis-
tinct from those of any published HIV isolates, but are 
more closely related to North American strains than to 
African ones. 

We believe that this is the first direct demonstration of 
contamination of factor VIII by FIN-i. Previous stud-
ies by ourselves [23] and others [24] have detected 
hepatitis C virus (HCV) RNA sequences in factor VIII 
using similar methods. In fact, out of the eight batches 
of factor VIII concentrate tested for HIV-1 RNA in this 
study, all six of the commercially-derived batches also 
contained detectable amounts of HCV RNA, including 
the two positive for HIV RNA (the two National Health 
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Service-derived batches were negative for HCV RNA). 
The amounts of HCV RNA were higher than FIIY; in 
two batches that were quantified by limiting dilution, 
between 30 000 and 100 000 copies of HCV RNA per 
ml were found [23]. There are many possible expla-
nations for the difference in the concentration of HIV 
and HCV RNA. Comparison of the levels of HIV vi-
raemia with that of HCV shows that HCV is present 
in 10-100-fold greater amounts in infected individu-
als. Second, the prevalence of HCV infection may be 
higher in paid donors. Third, HIV may be less stable 
during the factor Vifi fractionation process than HCV, 
or may be excluded with greater efficiency. The last 
possibility could be the most likely if most plasma HIV 
is held in immune complexes. 

We note that the pol sequence obtained from batch 
no. 8 contains an arginine residue at position 70 in the 
RT domain. This substitution was one of four found to 
be associated with resistance to zidovudine [25, 26]. 
The discovery of this substitution in factor VIII con-
centrate prepared before the use of zidovudine as an 
antiviral agent suggests that it was a pre-existing poly-
morphism. 
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Sequence change in different hypervariable regions of the external membrane glycoprotein (gpI20) of human 
immunodeficiency virus type I (HIV-1) was studied. Viral RNA associated with cell-free virus particles 
circulating in plasma and proviral DNA present in HIV-infected peripheral blood mononuclear cells (PBMCs) 
were extracted from blood samples of two currently asymptomatic hemophiliac patients over a 5-year period. 
HIV sequences were amplified by polymerase chain reaction to allow analysis in the V3, V4, and VS 
hypervariable regions of gp120. Rapid sequence change, consisting of regular replacements by a succession of 
distinct viral populations, was found in both plasma virus and PBMC provirus populations. Significant 
differences between the frequencies of sequence variants in DNA and RNA populations within the same sample 
were observed, indicating that at any one time point, the predominant plasma virus variants were antigenically 
distinct from viruses encoded by HIV DNA sequences in PBMCs. How these findings contribute to current 
models of HIV pathogenesis is discussed. 

The high degree of sequence variability that exists be-
tween different isolates of human immunodeficiency virus 
type 1 (HIV-1) (1, 38) poses a major problem for the 
development of effective methods of immunization against 
the virus. In particular, a major site for antibody-mediated 
virus neutralization in the em' gene (the V3 hypervariable 
region [15, 17, 22, 25, 27]) shows considerable sequence 
heterogeneity and rapid rates of sequence change (1. 3. 12, 
20, 36, 38, 43, 46). Furthermore, many of the amino acid 
changes in this region have been shown to modulate immu-
nological recognition (22, 24, 30, 40). 

We have used phylogenetic analysis of nucleotide se-
quences from a set of five serial samples from a (currently) 
asymptomatic hemophiliac patient infected with HIV-1 to 
investigate the rate and direction of sequence change in each 
of three hypervariable regions (V3, V4. and V5 [27]).  By 
using a nested polymerase chain reaction (PCR) to amplify 
viral nucleic acids in vivo (37, 49), sequences of proviral 
DNA from peripheral blood mononuclear cells (PBMCs) 
were compared with those of viral RNA in plasma. We 
observed significant differences between the two populations 
in all three hypervariable regions at different points after 
infection. We present and discuss a model of HIV pathogen-
esis that takes these results into account along with the 
results of previous investigations of biological heterogeneity 
of HIV (2, 6, 41), the cell types infected with HIV in vivo 
(34, 35), and the evidence for positive selection for sequence 
change in hypervariable regions of the cmiv gene (5, 36, 46). 

* Corresponding author.  

MATERIALS AND METHODS 

Patient samples. Sequential samples from a hemophiliac 
patient, p82, infected with HIV-1 from factor VIII prepared 
from Scottish blood donations in 1983 (23), were used for 
sequential studies of HIV sequence change. Seroconversion 
took place in June 1984, at which time a plasma sample was 
stored. Subsequent samples (from both plasma and PBMCs) 
from this patient were collected in June 1987, January 1988, 
February 1989 (1989A), and August 1989 (1989B). Several of 
the batches of factor VIII transfused to p82 were given to 
another hemophiliac patient, p80, who also seroconverted in 
1984. A PBMC sample from this second patient was taken in 
February 1989 and was used for sequence comparisons. 

PCR product length analysis. Sequence variants that dif-
fered in length in the V4 and V5 hypervariable regions were 
visualized by high-resolution gel electrophoresis of amplified 
DNA (36, 45). For V4 sequences, proviral DNA or cDNA 
was amplified first with primers e and h and then, in a second 
PCR, with primer f and a new antisense primer lying in the 
C3 region (5' ATGGGAGGGCATACATTGC: position 7539 
in pHIVHXB2). To amplify VS sequences, the second PCR 
was carried out with primer g and a new sense primer in the 
C3 region (5' GGAAAAGCAATGTATGCCC; position 7515 
in pHIVHXB2). The relative proportions of sequence vari-
ants of different molecular weights within a sample was 
obtained by replicate amplification of undiluted proviral 
DNA (or viral cDNA) samples containing typically 100 to 
200 molecules of target sequence. Bands were quantified by 
scanning densitometry of the autoradiographic image of the 
polyacrylamide gel with a Shimadzu densitometer. 

Sequencing of HIV gp120. Proviral DNA was extracted 
from PBMCs as previously described (37). Single molecules 
of provirus were amplified after prior limiting dilution and 
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directly sequenced to avoid errors introduced by the ampli-
fication of DNA in vitro (3, 36). Viral RNA was extracted 
from plasma, reverse transcribed, and sequenced as previ-
ously described (49). The region amplified spanned the V3, 
V4, and V5 hypervariable regions (27) and was amplified 
with primers a to h in three sequential nested PCRs as 
previously described (36). This method gave continuous 
sequence from nucleotides equivalent to positions 6957 to 
7814 in clone pHX132 of HIVIITLVIIIB. Sequences from V3, 
V4, and V5 and surrounding nucleotides are presented in this 
article. A fuller analysis of the V3 sequences is in prepara-
tion. 

Evolutionary analysis of gpl20 sequences. Sequences ob-
tained in this and our previous study were aligned by the 
Needleman and Wunsch algorithm as implemented by the 
program GAP on the University of Wisconsin GCG Package 
(8) and subsequently edited by hand. A matrix of evolution-
ary distances was generated by using the two-parameter 
model of Kimura (18); alignments that gave the minimum 
evolutionary distance between sequences were used in this 
study. Phylogenetic trees were constructed on the basis of 
the distance matrices by using the Fitch-Margoliash proce-
dure (10) as available in program FITCH of the PHYLIP 
package supplied by J. Felsenstein. The validity of the trees 
was assessed by reentering the tree obtained by FITCH 
into the maximum-likelihood-based program DNAML as a 
user-defined tree. This gave confidence intervals for each of 
the interriodal distances. 

Nucleotide sequence accession numbers. Sequences ob-
tained in this study have been submitted to GenBank under 
accession numbers M77541 through M77636. 

RESULTS 

Nucleotide sequence variation in V4 and V5. A longitudinal 
study of HIV sequence change was carried out with samples 
from p82, a hemophiliac patient infected with HIV-1 from 
factor VIII concentrate. Sequences in the V4 and VS regions 
were obtained from stored plasma from this individual at the 
time of acute seroconversion (May 1984) and subsequently 
from plasma and PBMCs at each of four time points follow-
ing infection (June 1987, January 1988, February 1989 
[1989A], and August 1989 [1989131). This individual remained 
asymptomatic during the course of the study and has not 
received zidovudine or other antiviral therapy at any time. 
The results of standard virological and immunological inves-
tigations of this individual are shown in Table 1. 

For comparative purposes, proviral DNA in a PBMC 
sample from another hemophiliac patient, p80, taken 5 years 
after infection, was also sequenced. This patient was in-
fected by contaminated factor VIII around the same time as 
p82 (May 1984) and has also remained asymptomatic over 
the study period. 

A total of 86 sequences in the V4 hypervariable region and 
70 in the VS region of env were obtained from p82; 9 V4 and 
9 VS sequences were obtained from the single PBMC sample 
from p80. The sequences obtained over the 5-year course of 
the longitudinal study were highly variable in the V4 and VS 
regions, indicating rapid and continuous sequence change 
over the asymptomatic period of the infection. Each V4 and 
VS nucleotide sequence was aligned against all the others by 
using a standard algorithm (GAP; see Materials and 
Methods), and a nucleotide distance matrix was obtained 
from pairwise comparisons. The evolutionary relationships 
between the different sequences were estimated by the 
FITCH program. In the resulting phenograms (Fig. la and 

TABLE 1. Standard virological and immunological markers of 
HIV infection in p82 and p80 

Sample 
Time 

(months)" 

CD4 
lymphocytes 

(10) 

p24 
antigen" 

Provirus-bearing 
PBMCs 

p82 
1983 —14 1.45 NA NA 
1984 0 0.93 + ND 
1987 36 0.53 - 1/2,000 
1988 43 0.34 - 1/2,270 
1989A 56 0.65 + 1/700 
1989B 63 0.16 - 1/800 

P80 (1989) 32 0.42 - 1/50,000 

Time from first positive serum sample. 
Detection of serum antigen by capture enzyme-linked immunosorbent 

assay (ELISA) (>15 pg/mL Dupont). NA, not applicable. 
Proportion of PBMCs bearing provirus, estimated by limiting dilution (37). 

ND, not done. 

b), evolutionary distances are shown by the horizontal 
separation between pairs of sequences (the vertical lines are 
of no significance). 

A notable feature of this analysis is the apparent clustering 
of sequence variants into a small number of groups. In the 
V4 region (Fig. la), three groups can readily be identified (A, 

and C). Only one sequence, lying between groups A and 
does not fit into the classification. Clusters of distinct 

sequence types are also discernible in the VS region (Fig. 
lb), although in this case there are more groups (here 
labelled A to E) and some sequences that do not fit any of the 
groups (indicated by ?). Sequence variation within the V4 
and VS groups is considerably less than that which exists 
between groups. Unexpectedly, some of the sequences from 
p80 were identical to those of p82 in the V4 region (group A), 
while some had diverged to form a group clearly distinct 
from V4A, -B, or -C (Fig. la). Similarly, some of the VS 
sequences from p80 were identical to those of p82 (VSA), 
while others fit none of the other p82 groups (Fig. lb). As p80 
and p82 shared several batches of noncommercial factor 
VIII in the year prior to seroconversion, and in view of the 
presence of identical V4 and VS sequences in both, we infer 
that they were infected from the same source. Sequences of 
the V4A and VSA type are likely to have formed a major 
component of the virus population that infected both pa-
tients. 

The mean within-group distances were 4.6, 5.6, and 1.0% 
for the V4A, -B, and -C groups, respectively, while the mean 
intergroup distances ranged from 11.0% (V4A to V4C) to 
30.4% (V413 to V4C). In the V5 region, intergroup distances 
ranged from 16 to 55%, while within-group variability in no 
case exceeded 6.5%. In the V4 region, the branching pattern 
suggests that V413 and V4C sequence types diverged inde-
pendently from V4A, the group that contains sequences 
found at seroconversion and those that are shared between 
p80 and p82. The major VS groups also appear to have 
evolved independently from VSA. However, the distances 
between groups are so large that definite conclusions about 
such relationships cannot be made with these sequence data. 

Amino acid sequence variation in V4 and VS. Figure 2 
shows the translated sequences in the V4 region, divided 
into the groups indicated by the phenogram, to illustrate the 
differences between sequences within groups and the much 
greater differences between groups. The consensus se-
quences of V4A, -B, and -C are clearly distinct from each 
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FIG. 1. Phylogenetic analysis of V4 (a) and VS (b) nucleotide sequences from p80 (0) and p82 (S) over a 5-year period from the time of 
seroconversion. Sequence types are indicated as A to C (V4) or A to E (V5): intermediate and unclassified sequences are indicated by ?. 
Evolutionary distances between pairs of sequences are proportional to horizontal separation, as indicated on the scale. Maximum-likelihood 
analysis indicated that the distances between all nodes represented were significantly different from 0. 

other, whereas in each of the three groups, individual 
sequences rarely differ from each other by more than two to 
three amino acid residues. Similarly, the potential sites for 
N-linked glycosylation in the hypervariable regions differ 
considerably between groups (indicated by 4r  in Fig. 2). 
Within groups, the number and spacing of sites are relatively 
constant, although V4B is more variable in this respect, 
containing similar numbers of variants that differ at one or 
two of the four potential sites in the region. 

The V4 region is known to show considerable variability in 
length among different isolates (1, 12, 27. 38) and also 
between proviral sequence variants within a single sample 
(36, 45). Comparison of the consensus sequences in this 
region from p82 (Fig. 2) reveals that virtually all V413 
variants consist of 17 amino acid residues between the 
relatively more-conserved flanking regions (..FNSTW----
<V4> ---- ITLPCR ... ), with only three exceptions (se-
quences 7, 8. and 16) which are two or three amino acids 
longer. Similarly, the lengths of all but three (2. 3. and 4) of 
the V4C sequences are constant, at 18 amino acids between 
the conserved flanking regions. 

The lengths of the V4A sequences are somewhat more 
variable. Sequences of type 1 of V4A from p82 and the four 
sequences of type 1 of p80 are identical at both the amino 
acid and nucleotide levels and are all 15 amino acids long, 
the same length as V4A-2 and V4A-3. However, in both 
individuals, longer V4 sequences are also found: in p82,  

there were three additional sequences of 20, 22, and 24 
residues (sequences 5, 4, and 3 respectively), and in p80, 
there were four sequences of 27 amino acids and one of 26. 

Variation in the V5 region (Fig. 3) shows many of the 
characteristics of variation seen in V4. The consensus se-
quences of the five groups (V5A to E) differ considerably 
from one another, while sequence variation within groups 
is minimal, particularly in groups B to E. Group A se-
quences, defined by the phylogenetic tree (see above), 
appear to contain two types of sequences at the amino acid 
level (sequences 4 and 5 appear distinct from the others), 
although for the purposes of analysis (see below), the 
numbers of sequences are so small as not to justify further 
subgrouping. The pattern of N-linked glycosylation sites 
is also well conserved within groups, and the overall lengths 
of the regions (between . . .TRDGG---< VS>---FRPGG....) are 
7 to 10, 8, 12. 8. and 8 residues in groups A to E, respec-
tively. Sequence type 1 from p80 (a = 3) in the V5 region is 
identical to V5A-1 (a = 3) of p82 (Fig. 3), while the other 
relatively small number of other sequences from p80 differ 
considerably from the common type and from each other. 
Further analysis would be necessary to find out whether 
sequences from this patient grouped into distinct types as 
they appear to do in this region from p82. 

Sequence change in the V4 and VS regions. Having defined 
and analyzed the sequence groups in the two hypervariable 
regions, the classification can be used to study sequence 
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FIG. 2. Peptide sequences of the three phylogenetic groups in 
the V4 hypervariable region. Con, consensus sequence for each 
group) nonconserved residues are shown in boldface lowercase 
letters. Differences from consensus are shown for each sequence 
entry, and frequency of detection of each sequence type is shown in 
the rightmost column. Symbols: ?, no majority at this position:.. 
unsequenced -, gap introduced to preserved sequence alignment 
within group) %, all potential sites of N-linked glycosylation (non-
conserved sites shown in boldface). 

changes over time in samples from p82. Figure 4a records 
the numbers of sequences detected in plasma (above the x 
axis), and PBMCs (below the x axis). Although the numbers 
of sequences obtained at any one time point are relatively 
low, there is clear evidence for turnover of sequence vari-
ants. Type A variants were found in all four of the serocon-
version RNA sequences in 1984, while only sequences of 
type B were found in 1987. In the following year, the most 
commonly found sequence was type C, which appears to 
have completely replaced type B in the two samples taken in 
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FIG. 3. Peptide sequences of the five phylogenetic groups in the 
VS hypervariable region. Arrangement and symbols are same as for 
Fig. 2. 

1989. Turnover of sequence variants may also be observed in 
the provirus population. Both V4A and V413 sequences were 
found in 1987, while in the following year almost all se-
quences were of type B. The replacement of V413 with V4C 
was completed in the following year. 

Comparable turnover of sequence variants is also found in 
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FIG. 4. Frequency of detection of V4 (a) and V5 (b) sequence types in sequential samples from p82 (1984 to 1989B). RNA sequences are 
shown above the x axis, and DNA sequences are shown below the x axis. 

the VS hypervariable region (Fig. 4b). Whereas V5A se-
quences were found at seroconversion in the plasma, these 
were replaced successively by V513 in 1987, V5C in 1988, 
and finally by V51) and -E in 1989. A similar progression was 
also observed in the proviral population. In 1987, approxi-
mately half of the sequences were of seroconversion type A. 
The almost complete replacement of these sequences by 
V513 and V5C took place in the following two years. In turn. 
V51) and -E appeared to be in the process of replacing V5C 
by the end of the study period. 

Differences between DNA (proviral) and RNA (viral) popu-
lations. At several time points, there were considerable 
differences in the frequencies of different sequence types in 
the DNA and RNA samples. For example, the 1988 DNA 
sample contained predominantly V413 sequences in PBMCs 
(10 of 11) yet mainly V4C sequences in the plasma samples 
(8 of 11). Similarly, the preponderance of V5C sequences in 
the two 1989 DNA samples (6 of 9 and 8 of 13) contrasted 
with the infrequency of their detection in the corresponding 
plasma samples (2 of 13 and 2 of 7). The appropriate 
statistical procedure for comparing frequencies in small 
samples, Fisher's exact test, was used to test the significance 
of these differences. The frequencies of V4 variants in the 
1988 sample and of VS variants in the 1989A sample were 
found to be significantly different between the PBMC provi-
ral and plasma RNA populations (P < 0.01 and P < 0.05, 
respectively). 

The relative frequencies of the various sequence types in 
the V4 and V5 regions was also estimated by high-resolution 
gel electrophoresis of amplified DNA (36, 45). As indicated 
previously (Fig. 2), 25 of the 28 V413 sequences had an  

overall length of 17 amino acids, while 47 of the 50 V4C 
sequences were 18 amino acids long. Aliquots of DNA (2 p.g) 
extracted from the PBMC samples in 1988 and 1989A 
containing approximately 70 and 220 molecules of provirus 
(Table 1) and undiluted cDNA after reverse transcription of 
RNA sequences present in plasma (containing 100 to 200 
copies of target sequence; data not shown) were amplified in 
two stages with primers specific for the V4 region (see 
Materials and Methods). The product DNA consisted of two 
size variants, differing in electrophoretic mobility by 3 bp 
(Fig. 5). As indicated, the smaller band corresponds to the 
predicted size of V413 and the larger band corresponds to 
V4C. The 1988 DNA sample (lanes b) consists of mainly 
V413 sequences, while the corresponding RNA sample (lanes 
c) consists of predominantly V4C. The almost complete 
replacement of V413 sequences by V4C between 1988 and 
1989 (Fig. 4)is also shown by this length analysis: both DNA 
(lanes d) and RNA (lanes e) contain predominantly V4C 
sequence types. 

The relative numbers of V413 and V4C sequences were 
quantified by scanning densitometry (Table 2). To show that 
representative numbers of sequence variants had been am-
plified, each sample was amplified in replicate to allow two 
independent samplings of the populations present. The rea-
sonably close agreement between all of the replicates con-
firmed that the populations studied (>100 sequences in each 
sample) were sufficiently large to prove that the differences 
between the populations at both time points were not due to 
sampling error. Furthermore, the relative proportions agree 
closely with those determined by sequence analysis (Fig. 4). 
For example, the 1988 DNA sample contained 74 to 75% 
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FIG. 5. Length analysis of amplified DNA in the V4 (a) and VS 
(b) hypervariable regions to confirm existence of population differ-
ences in the in vivo DNA and RNA populations. (a) Lanes: a, 
negative human DNA amplified with primers spanning the V4 
region; b and d, PCR product from V4 region of proviral DNA from 
the 1988 and 1989A samples, respectively, from p82; c and e. PCR 
product from viral RNA in the corresponding plasma samples. 
Expected sizes of V413 and V4C sequences are indicated. (b) Lanes: 
a and c, PCR product from VS region of proviral DNA from the 
1989A and 1989B samples, respectively; b and d, corresponding 
RNA samples. Expected sizes of V4C and V41) and -E are indi-
cated. 

V4B sequences while the RNA sample contained only 42 
to 48%. The corresponding numbers of V4B sequences are 
10 of 11 and 3 of 11 in these two samples. Similarly, the 
1989 DNA sample contained 84 to 85% V4C sequences by 
densitometry, compared with 10 of 11 by sequence analysis, 
while the RNA population was uniformly V4C by both 
methods. 

TABLE 2. Serial changes in the frequencies of V4 and VS length 
variants in plasma (RNA) and PBMC (DNA) samples from p82 

estimated by densitometry 

Variant" 
Sample Year" 

V413 1%) V4C (%) Ratio V5C (Si) V5D. -E 1%) Ratio 

DNA 1988 	75, 74 25, 26 2.92 ND' 	ND 	ND 
RNA 1988 	48, 42 52, 58 0.82 ND 	ND 	ND 

DNA 1989A 15, 16 	85, 84 0.18 77, 63 	23, 37 	2.33 
RNA 1989A 0, 0 100, 100 0.00 	32 	68 	0.47 

DNA 1989B ND 	ND 	ND 75, 78 	25, 22 	3.26 
RNA 1989B ND 	ND ND 	18 	82 	0.22 

1989A, samples were taken in February 1989: 198913. samples were taken 
in August 1989. 

" Percents are replicate densities of independently amplified aliquots of the 
original DNA or cDNA. Repeat samples were not available from RNA 
samples in the VS region. 

'ND, not done.  

TABLE 3. Frequencies of the combinations of V4 and VS types 
in the 75 complete sequences obtained in the study 

VS sequence V4 sequence type 
type 	 A 	 B 	 C 

A 5 2 
B 11 
C 9 25 
D 7 
E 16 

An equivalent analysis of the V5 region was carried out, 
and the discrepancy between the relative numbers of (i) V5C 
and (ii) V5D and V5E in the two populations was investi-
gated. V5C differs in length from V5D and -E by 12 nucleo-
tides (Fig. 3). Figure Sb confirms the existence of a marked 
difference in the relative numbers of the two sequence types 
in both the 1989A and 1989B samples. Ignoring the se-
quences that are of intermediate length between the two 
main types and whose classification is uncertain, the major-
ity of DNA sequences are V5C in both the 1989A and 1989B 
samples (63 to 78%), which is comparable to the numbers of 
sequences found previously (6 of 9 and 8 of 13). By contrast, 
68 to 82% of the corresponding RNA sequences were of type 
D or E, reflecting their frequency of detection by sequence 
analysis (11 of 13, 5 of 7) at the two time points. 

Having established by two methods that significant differ-
ences exist between the two populations at at least three 
time points, a more detailed consideration of the origin of 
these differences is justified. A general trend that is found 
in both the V4 and V5 regions is for RNA sequences to 
turn over more rapidly than the corresponding DNA se-
quences (Fig. 3). For example, the seroconversion type V4A 
sequence is completely replaced in plasma by 1987 yet 
forms a substantial proportion of sequences in PBMCs at 
that time. Similarly, the difference in the relative numbers 
of V413 and -c sequences in the 1988 sample and the re-
placement of V5C with the V5D and -E variants in the 
1989 sample could be interpreted as a more rapid transition 
to a new sequence type in the plasma. The possible mecha-
nisms and the consequences of this observation are dis-
cussed below in relation to current models of HIV patho-
genesis. 

Linkage of V4 and VS sequences. To obtain the sequences 
in this study, single molecules of HIV provirus or RNA 
reverse transcript were isolated by limiting dilution prior to 
amplification with primers spanning the entire V3-C2-V4-
C3-V5 region. With this method, we have obtained se-
quences that are not only free of errors associated with 
copying of DNA in vitro but also have avoided the problems 
of producing sequences that are hybrids of two or more HIV 
sequences present in the patient sample because of switching 
between different templates during the amplification process 
(26). These sequences can therefore be used for studies of 
linkage and recombination in vivo. 

A very restricted number of combinations of V4 and VS 
sequences were observed in our datum set (Table 3). We 
found that there was no fixed relationship between a given 
V4 sequence type with those of VS. For example, HIV 
sequences of type V4A could contain either VSA or V5B 
sequences; similarly, V4B was associated with V5A, -B, and 
-C. Finally, as well as being linked to V5C, V4C was also 
found in viral sequences containing the V5D and V5E 
sequence types. A consequence of the variable associations 
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SAMPLE n 10 20 30 3] 

1984 Plasma 1 N N T R K S I H I G P G R A F Y T T G E I I G D I R Q 

Patient #80 8 N N T P. K S 	I H4  I G P G R A F Y T6  T G E6  I I G7  D I P. Q 
(1989 	PBMC) P2  A2  D2  

N2  

1987 PBMC 5 N N T R K S I H4  I G P G R A F Y T T G E3  I 13  G D I P. Q 
P1  Q1  M1  

G1  V1  

1987 Plasma 9 N N T R K S 	I H5  I C P G R9  A F Y P8  T G E3  I I G D I P. Q 
G1  P4 G, Al  D3  

G2  

1988 PBMC 11 N N T R K 57  I He  I C P G R9  A10F6  Y P T G Q5  I I G D101 R Q 
R3  P3  S1 T1 V3  G4  N1  
G1  G1  D2  

1988 Plasma 11 N N T R K R5  I H I G P G R8  A V7  Y P5  T E6  Q7  I I G N6  I R Q 
53  F4  A3  G, G3 D5  

S2  R1  

1989A PBMC 8 N N T R K R6  I H4  I G P G R6  A V6  Y T6  T E5  Q6  I I G N4  I R Q 
G2  Y4  S2 F2  A2  G3  G2  D3  

1989A Plasma 13 N N T R K G111 H111 G P G 512A F10Y A11T G11G101 I G D111 R Q 
R2  Y2  R1  V3  T2  E2  Q2  N2  

Al  

HIV-MN 	 IF Y N K R K R I  I G P G R A F Y T T K N I I CT IRQI 

FIG. 6. Sequences at the center of the V3 loop in sequential samples from p82 and a single DNA sample from p80 (sequence of HIVMN  
included for comparison). Numbering begins from the cysteine residue at the start of the V3 loop. Variable residues are shown in boldface 
type, numbers of the major and minor Variants at variable sites are shown in subscript, and numbers of sequences obtained from each sample 
are indicated (n). 

between hypervariable regions was that the frequencies of 
sequence types varied independently from each other. For 
example, it can be seen from Fig. 4 that the predominant 
virus type in the V4 region remained V4C at a time when V5 
sequences were changing from VSC to V5D and -E. Simi-
larly, while V4A sequences were being replaced by V4B in 
1987 to 1988, V5 sequences underwent two replacements 
from V5A to V513 and then to V5C over the same interval. 
However, the changes in the frequencies precluded a statis-
tical investigation of association between variants (linkage 
disequilibrium). 

Combinations of V4 and VS sequences showed a higher 
rate of turnover than that of the different sequences consid-
ered separately. This led to even greater differences between 
the DNA and RNA populations at a given time point. For 
example, in 1987, most of the RNA sequences were of 
combined type BB, while the DNA was predominantly BA. 
In 1988, RNA genotypes were almost exclusively CC, while 
those of DNA were mainly BC (data not shown). Significant 
differences between the frequencies of V4-V5 combinations 
between the DNA and RNA populations were found at all 
four time points (data not shown). 

By using the data on the frequencies of V4 and V5 
combinations, the following succession of genotypes was 
observed over the 5-year follow-up period: 

AA —s BA— BB -* BC --->CC— CD 

- CE 

This temporal succession of genotypes does not necessar-
ily imply that each preceding form was ancestral to the 
variant that succeeded it. In the V4 region (Fig. 1), V413 and 
V4C appear as lineages entirely independent from V4A, 
although the accuracy of the phylogenetic analysis is limited 
by the extremely high rate of sequence change in this region. 
If the derived V4 and VS sequences have evolved indepen-
dently from the seroconversion type, then recombination 
must have occurred in vivo to generate the combinations of 
sequences found (Table 3). 

Sequence change in the V3 region. The role of the V4 and VS 
regions in antigenic recognition has not yet been defined. To 
investigate whether the difference in the sequence types in the 
DNA and RNA populations would lead to alterations in the 
susceptibility of the virus to antibody-mediated neutraliza-
tion, a set of sequences similar to those of the V4 region were 
obtained in V3. In Fig. 6, we show the sequences obtained 
from these samples at the center of the V3 loop which include 
epitopes that have been implicated in both antibody-mediated 
and cytotoxic T-cell recognition (22, 40). The single sequence 
obtained from the plasma sample from p82 at seroconversion 
differed from that of HIV,, at many of the sites shown. This 
sequence was identical to three of the five sequences in the 
1987 DNA sample from p82 and to four of the eight sequences 
in the 1989 sample from p80. It is therefore likely to have 
formed a major component of the infectious virus population 
in the factor VIII given to both patients. 

While the 1987 DNA and RNA samples were similar in V3 
sequences, considerable differences between the DNA and 
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RNA samples in the frequencies of amino acids were ob-
served in both the 1988 and 1989 samples from p82. For 
example, at residue 10 of the V3 loop, the majority of DNA 
sequences had an arginine in the 1989 sample, whereas the 
corresponding RNA sequences were generally glycine. Sim-
ilar discrepancies were found at residues 17, 19, 21, 23, and 
24. Substitutions at many of these residues have been 
previously shown to abolish serological or T-cell reactivity. 
Thus, most of the viruses encoded by the RNA sequences 
are probably quite different antigenically from those encoded 
by proviral sequences in the PBMCs. The significance of this 
finding for sequential studies of virus neutralization is dis-
cussed below. 

DISCUSSION 

Rate of sequence change in gp120. In this study, we have 
produced evidence for rapid sequence change in three hy-
pervariable regions of em'. This finding was anticipated by 
our own cross-sectional studies of sequence evolution in a 
cohort of hemophiliac patients infected from a common 
source (3, 36) and of the V3 sequences of six children 
infected from a single plasma donation (46). Although nei-
ther study determined the infecting sequence population, the 
existence of substantial sequence variation among individu-
als 3 to 5 years after infection allowed an estimate of the rate 
of sequence change from a calculated common ancestor (in 
terms of percent nucleotides per year) to be made (3). The 
model used for this calculation allows for differences in the 
rate of sequence change among individuals, and the nucleo-
tide distance estimates are corrected for multiple substitu-
tions (18), but this approach does not account for conver-
gence of sequences due to selection. It also assumes a steady 
accumulation of substitutions with time. 

We have shown here that sequence evolution in p82 was 
indeed more rapid than that in p80, but, more important, that 
substitutions do not accumulate steadily with time. Se-
quence change in p82 over the five years of follow-up 
consisted of a series of replacements of one particular 
sequence type with another. We have shown that succeeding 
sequence types were not necessarily directly derived from 
the previous sequence; for example, V4C succeeded V413 in 
1988 to 1989, yet V413 may not be the immediate ancestor of 
any of the V4C sequences (Fig. 1). 

That evolution of HIV in vivo can be discontinuous is 
shown by the failure to detect intermediate forms between 
the major sequence types, despite the fact that numerous 
base changes and more than one insertion or deletion event 
have occurred in the development of variant V4 and V5 
sequences from the seroconversion type. Further evidence 
for the existence of hidden evolution is provided by the 
repeated observations in both the V4 and VS regions that 
each succeeding sequence type is not obviously more related 
to those that come before or after it than they are to the 
sequence of the original infecting virus. 

It has frequently been argued that sequence change in the 
em' region may be an adaptive response by HIV to evade 
recognition by the immune system. Several studies have 
shown high rates of amino acid substitutions precisely in 
those areas of the immunodominant loop that are the targets 
of B-cell and T-cell recognition (1, 3. 12, 20, 36, 38, 44, 46) 
and in the equivalent region of the simian immunodeficiency 
virus genome of infection of rhesus monkeys (5). Indirect 
evidence for positive selection for sequence change in V3 is 
provided by a depressed synonymous-to-rlonsynonymous 
ratio ()QK [21]) of nucleotide substitutions., significantly  

below 1, in the V3 loop region (36). In the current study, we 
have also found high rates of sequence change in these areas 
and could interpret the turnover of V3 sequence variants as 
a succession of escape mutants whose evolution is favored 
by a transient failure by the host immune system to neutral-
ize the newly emergent forms. As was found in the V4 and 
V5 regions, succeeding V3 sequences are not necessarily 
direct derivatives of the previous V3 types. The predominant 
sequence in the 1989 RNA sample differs less from the 
seroconversion sequence than it does from the preceding 
variant (found at high frequency in the 1988 RNA sample and 
in the DNA population of the 1989 sample). As argued 
previously, whether the high rate of sequence change in the 
V4 and V5 regions is also a consequence of immune selec-
tion is not clear. Mouse antiserum to a peptide correspond-
ing to the VS region could neutralize HIV (15), although 
titers were lower than that of the antiserum raised against the 
V3 peptide, consistent with other peptide mapping studies 
(11, 17, 25, 28, 30, 32). However, the mature HIV gp120 
protein is heavily glycosylated (19), and many of the poten-
tial sites for N-linked addition of carbohydrate are concen-
trated in the V4 and VS hypervariable regions. These post-
translational modifications and long-range interactions with 
other regions of env on folding of the mature protein are 
likely to contribute to the formation of predominantly con-
formational epitopes in these regions. 

Long-term persistence of seroconversion-type sequences. 
Many of the proviral sequences from p80 and p82 in samples 
taken several years after primary infection were identical to 
those detected at seroconversion. The absence of sequence 
change in the some of the most variable areas of the HIV 
genome is, at first sight, inconsistent with the generally high 
mutation rates associated with HIV replication (3, 33, 46). 
One explanation for complete absence of either silent or 
nonsilent changes over the entire V3-C2-V4-C3-V5 region is 
that the HIV proviral sequences detected in the PBMC 
samples in 1987 (p82) or 1989 (p8°) that correspond to the 
seroconversion-type sequences have not replicated to any 
significant extent during the intervening years. 

Supporting this hypothesis is the observation that HIV 
preferentially infects a long-lived cell subset of PBMCs in 
vivo. Almost all of the provirus detected in PBMCs is 
present in the CD4 lymphocyte fraction (35), of which the 
memory cell subset (CD45RO; CD29) appears to be 
preferentially infected in vivo by both HIV (34) and simian 
immunodeficiency virus (43). Consistent with their function 
in antigenic recall, it has been shown in humans (7) and by 
adoptive transfer in mice (16) that T memory cells can have 
essentially unlimited life spans relative to that of the host. 
Although HIV is normally considered cytopathic for T 
lymphocytes, a proportion of activated T lymphocytes may 
survive infection during the primary HIV infection and 
continue to circulate as differentiated memory cells with an 
unchanged proviral sequence. Thus, the persistence in p82 
of V413 DNA sequences until 1988, when almost all RNA 
sequences were of the V4C type, may have been the 
consequence of long-term persistence of cells nonproduc-
tively infected in 1987. 

There are many possible explanations for the proposed 
long-term survival of T cells infected at seroconversion and 
in subsequent years. Firstly, proviral sequences in those 
PBMCs that survive infection may contain inactivating mu-
tations that prevent subsequent virus replication. High fre-
quencies of defective proviral sequences have been reported 
to exist in vivo (26). However, using the limiting dilution 
PCR method that eliminates in vitro copying errors during 
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amplification (37), we have found an extremely low rate of 
inactivating substitutions in the gag and env regions (1 in 
over 40,000 bp sequenced) [3] and 3 in 110,000 bp [unpub- 
lished observations]). Furthermore, it has been shown that a 
high proportion of proviral sequences present in PBMCs can 
be activated in vitro to give replication-competent virus (4). 
Thus, defective viruses probably contribute little to persist-
ent, nonlytic infection of lymphocytes. 

An alternative explanation for the failure of HIV to kill the 
cell it infects is that the provirus may integrate into sites in 
the human genome that preclude or reduce the efficiency of 
cellular and viral mechanisms of transcription initiation, as 
has been described for other retroviruses (42). 

Finally, the variants detected in the PBMC population 
may be replication competent and capable of activation but 
may contain mutations that make them less cytopathic for 
lymphocytes and allow the infected cells to survive. Sup-
porting this latter possibility is the extensive in vitro evi-
dence that isolates from HIV-infected individuals taken in 
early stages of infection are often noncytopathic for T 
lymphocytes, grow poorly in culture, and are incapable of 
any growth in T cell lines ("slow/low variants") (2, 6, 41). 
Virus variants in cells that have survived infection with HIV 
may therefore be a highly selected subset of the original 
infecting virus strain, whose noncytopathic (or defective) 
properties ensure their long-term survival without any need 
for continuous replication. 

Origin of plasma and PBMC virus populations. We have 
provided extensive evidence for the existence of differences 
in the frequencies of different sequence types of virus 
present in plasma compared with those of proviruses present 
in HIV-infected PBMCs. Corroboration of the results ob-
tained from sequencing (Fig. 3) was obtained by length 
analysis of amplified PCR products (Fig. 5 and Table 2), 
which discounted any effect of sampling error due to the 
small number of sequences. That there should be a differ-
ence between the two populations was unexpected, although 
it is not necessarily inconsistent with current theories of the 
pathogenesis of HIV (see below). 

A consistent observation of this study was that each of the 
sequence types that initially appeared in the plasma RNA 
population eventually became the predominant PBMC se-
quence type. For this reason, the hypothesis that the un-
equal distribution of sequence types can be explained by 
their differing cell tropisms cannot be sustained. Similarly, 
comparisons of V3 proviral sequences in brain and spleen 
biopsy samples from three HIV-infected individuals has 
failed to reveal any systematic tissue-specific sequence 
differences (9). Only one of the three individuals showed 
major differences in the frequencies of distinct sequence 
types between the two tissues, and in the light of the data 
presented here, it is clearly possible that this difference was 
merely temporal. 

The source of virus in the plasma could therefore be a 
subset of transcriptionally active CD4 lymphocytes, or 
virus could be secreted into the circulation by cells seques-
tered in solid tissue. It has been shown that plasma of both 
symptomatic and asymptomatic individuals is infectious 
(14), and thus infection of PBMCs may be a self-sustaining 
process. Infection, and continued sequence evolution of 
HIV, may indeed take place in peripheral CD4 lympho-
cytes. 

Despite the high titers of infectivity of plasma in vitro, 
only a low proportion of T lymphocytes are infected in vivo 
(31, 35, 37), and an even lower proportion expresses detect-
able levels of virally encoded mRNA (13). Productive infec- 

tion of T lymphocytes is thought to require T-cell activation 
by specific antigen or mitogen (39, 47, 48); thus, the obser-
vation that only 1 in 100 to 1 in 100,000 T lymphocytes 
contains provirus reflects the low frequency of activated 
cells in peripheral circulation. Although there is some evi-
dence that the block to complete replication in nonactivated 
lymphocytes is at the level of integration and virus expres-
sion (39), it has been recently shown that virus replication 
may be prevented by incomplete reverse transcription of the 
incoming viral RNA (47). Furthermore, the truncated tran-
script is unstable and rapidly degraded, helping to explain 
the low frequency of provirus-bearing PBMCs in vivo. 

According to the model advanced here, at any one time, 
proviral DNA sequences are composed of two distinct 
populations. Firstly, there are complete integrated copies of 
provirus in CD45 lymphocytes with no or minimal virus 
expression. Within the same sample, there would also be 
CD4 lymphocytes containing proviral DNA that were ac-
tively infected with HIV of the sequence types present in the 
plasma. The relative proportions of the two types of DNA 
would depend on the degree of infectivity of the plasma. We 
have previously shown that the amount of viral RNA present 
in plasma of HIV-infected individuals varies considerably, 
although there is a trend for symptomatic individuals to 
show higher concentrations than asymptomatic individuals 
(49). Similarly, the infectivity titers of plasma samples from 
patients with AIDS and AIDS-related complex were consid-
erably higher than in those from patients with no evidence of 
clinical progression (14). Thus, in the early asymptomatic 
stages of infection, the majority of DNA sequences may 
remain of the seroconversion type, while, on progression, 
higher levels of infectious virus lead to increasing numbers 
of proviral sequences from secondary infection of lympho-
cytes, whose sequences would correspond to those of the 
plasma virus. It is notable that the apparent replacement of 
HIV sequences in PBMCs took place at a time when the 
proportion of infected cells was increasing (Table 1). En-
tirely consistent with the data given is the hypothesis that 
PBMCs containing the seroconversion type sequences re-
mained in similar numbers for several years but were not 
detected after 1987, because they were numerically over-
taken by the increasing numbers of PBMCs containing 
proviral sequences of the derived V4 and V5 sequence types. 

The most direct test of whether plasma viral sequences are 
preferentially expressed in PBMCs is to compare the popu-
lation of HIV mRNA sequences with those of PBMC provi-
rus and plasma sequences. Unfortunately, it would not be 
possible to differentiate genuine mRNA sequences from viral 
RNA sequences that are present in the cytoplasm as a result 
of infection from plasma. According to the model advanced 
by Zack et al. (47), even nonactivated T cells may be 
susceptible to HIV attachment and entry; thus, within a 
PBMC sample, a large proportion of T lymphocytes may 
contain intact RNA templates from exogenous virus. 

A major consequence of the difference in the compositions 
of the DNA and RNA populations is that sequential studies 
of virus evolution that are based on viral isolations from 
PBMC samples may be misleading. Because new sequence 
variants are initially more common in plasma than they are in 
PBMCs, isolations from the latter source may be composed 
predominantly or exclusively of previous virus types, possi-
bly even of the seroconversion sequence. We are currently 
studying antigenic recognition of sequence-dependent 
epitopes in the V3 region to investigate the time course of 
development of specific immunity in p82, using oligopeptides 
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corresponding to each of the different RNA and DNA 
sequences obtained in this study. 
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ABSTRACT 	In an investigation of the evolution of the 
third hypervariable loop of gp120 (V3), the principal neutral-
ization determinant of human immunodeficiency virus type 1, 
we have analyzed 89 V3 sequences of plasma viral RNA 
purified from peripheral blood samples donated over 7 years by 
an infected hemophiliac. Considerable sequence diversity in the 
V3 region was found at all time points after seroconversion. 
Phylogenetic analysis revealed that an important diversifica-
tion had occurred by 3 years postinfection and that, subse-
quently, most sequences could be allocated to either one of two 
major lineages that persisted throughout the remainder of the 
infection. Rapid changes in frequency of the most common 
sequences and the observation that the same hexapeptide motif 
(GPGSAV) at the crown of the V3 loop has evolved conver-
gently provide strong evidence that selective processes deter-
mine the evolutionary fate of sequence variants in this region. 

Analyses of nucleic acid sequences from human immunode-
ficiency virus type 1 (HIV-1) have revealed a large amount of 
variation both between and within patients (1-10). This 
variation is not evenly distributed across the HIV-1 genome; 
rates of nucleotide substitution are particularly high in hy-
pervariable regions (V1—V5) of the env gene (11) and are 
lower in pol and the p24 coding region of gag (1, 11, 12). This 
suggests that the levels of sequence variation are not simply 
reflections of the intrinsic mutation rate. 

There are good grounds for expecting that natural selection 
will be important in determining HIV-1 variability. This may 
be manifest as selective constraint against variation in amino 
acid sequence, as in the poi gene and the p24 region of gag 
(11, 12). On the other hand, studies of two other lentiviruses, 
equine infectious anemia virus and visna virus, suggest that 
much of the variability seen in env may be adaptive. In both 
of these viruses, antigertically distinct isolates were found to 
arise progressively during infection, always appearing before 
their associated neutralizing antibodies (refs. 13 and 14 and 
references therein). Differences between isolates could be 
assigned to mutations clustered in the env genes, the majority 
of which resulted in amino acid replacement. Thus, it was 
proposed that viral mutants arise that can "escape" from 
recognition by neutralizing antibodies. This change in the 
genetic composition of the viral population, referred to as 
"antigenic drift" although it is a selective process, is gener-
ally considered to be one of the principal mechanisms by 
which lentiviruses evade host immune systems (reviewed in 
ref. 15). However, high levels of variability are also seen in 
the nef and tat genes (2, 6). 

The publication costs of this article were defrayed in part by page charge 
payment. This article must therefore be hereby marked 'advertisement" 
in accordance with 18 U.S.C. §1734 solely to indicate this fact. 

The env gene encodes the principal neutralization deter-
minant of HIV-1 (5, 16), which has been mapped to an 
"35-amino acid residue disulfide-bonded loop structure in 
the third hypervariable region of surface envelope glycopro-
tein gp120 (V3) (16-18). There have been a number of 
attempts to assess in vitro the fitness of sequential V3 loop 
isolates by serological techniques (19) and to examine pat-
terns of sequence change in vivo (9, 10). Simmonds et al. (20) 
analyzed sequence change in the adjacent V4 and VS hyper-
variable regions of env over a 5-year period after serocon-
version in an asymptomatic hemophiliac (9). It was con-
cluded that analysis of HIV sequence change in env within a 
patient based only on the lymphocyte-associated proviral 
population could be misleading because of significant differ-
ences in the frequency and persistence of sequence variants 
compared with the plasma (considered to be recently repli-
cated) virus population. Therefore, analysis of variation in 
the V3 region presented here is based on sequences detected 
in plasma virus particles. 

To assess the role and nature of selection acting on V3 
sequences, we have carried out a detailed analysis of the 
process of viral evolution in this region during the course of 
an infection. 

MATERIALS AND METHODS 

Nucleotide Sequences. Eighty-nine viral RNA sequences 
(plasma derived) of 240 base pairs were obtained directly 
from nested PCR amplified single molecules from an Edin-
burgh hemophiliac patient (p82) infected from a locally pre-
pared batch of factor VIII in 1984 (1). Sequences were 
obtained in varying numbers (n) from seroconversion [year 0 
(1984, n = 12); year 3 (1987, n = 15); year 4 (1988, n = 11); 
year 5 (1989, n = 23); year 6 (1990, n = 15); year 7 (1991, n 
= 11) postinfection]. These sequences have been assigned 
GenBank accession numbers M84240—M84317. Methods 
used for extraction and PCR amplification of single cDNA 
molecules are described by Zhang et al. (21) and those for 
nested PCR amplification and direct sequencing are de-
scribed by Simmonds et al. (20). Clinical data for this patient 
are given in ref. 9. The patient has been asymptomatic 
throughout the period of study and has never received 
antiviral therapy. 

Phylogenetic Analysis. V3 sequences from six isolates from 
the USA [HIVRF, HIVW MJ2, HIVMN, HIVSF,, HIV v22, and 
HIVHTLVI[IB  (clone HXB2)] were used as outgroups (all were 
taken from the Los Alamos Human Retroviruses and AIDS 

Abbreviations: HIV-1, human immunodeficiency virus type 1; V3, 
third hypervariable region of surface envelope glycoprotein gp120. 
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data base). Sequences were aligned by hand, as the only 
length variation was the dipeptide insertion of QR between 
residues 309 and 310 in isolates HIVpv22  and HIV HTLVII I B 

(HXB2). 
All phylogenetic analysis programs used were taken from 

the PHYLIP package (version 3.4) provided by J. Felsenstein 
(Department of Genetics, University of Washington). The 
principal program used was DNAML, which implements a 
maximum likelihood method. Global branch swapping was 
used, as this increases the proportion of trees searched. The 
default settings were used for the other options. We also used 
the neighbor-joining distance matrix method of Saitou and 
Nei (22) as implemented in the PHYLIP program NEIGHBOR. 

Distances were estimated by using the same evolutionary 
model as underlies the DNAML program by the program 
DNA DIST. 

RESULTS 

Phylogenetic Analysis of the V3 Region. Phylogenetic rela-
tionships can be inferred with greatest confidence when there 
is no homoplasy (convergence) in the data. As selection can 
cause convergence even at the sequence level (23), we 
divided the region under study into three sections—the 
35-amino acid V3 loop itself and two flanking regions (a 
19-residue 5' region and a 23-residue 3' region)—and carried 
out all phylogenetic analyses on nucleotide sequences. Trees 
were inferred from different combinations of these regions 
taken separately, as well as from the entire sequence, in order 
not to bias the analysis toward any spurious phylogenetic 
patterns found only in the loop. 

An unusual feature of the data was that, whereas in most 
phylogenetic analyses sequences are contemporaneous, se-
quences in this data set were sampled from different time 
points during the evolution of the viral population within an 
infected patient. Therefore, trees were also inferred for each 
year separately, in addition to analyses of the whole data set. 

Relationships of V3 Sequences. The most striking and 
consistent result from the phylogenetic analyses of the nu-
cleotide sequence data was that a major division into two 
distinct lineages had occurred by 1987. This is depicted in the 
global maximum likelihood tree for all distinct V3 sequences 
of plasma virions from p82 (Fig. 1). For reasons of clarity, 
only branches connecting the 46 p82 sequences that were 
separated by branch lengths found to be significantly differ-
ent from 0 under the DNAML model are shown. Individual 
sequences are represented by a dot. A single USA outgroup 
sequence, HIVHTLVIIIB clone HXB2, is also included. The 
subdivision into two major descendent lineages, D and E (see 
below), is indicated. Although not drawn so, this tree may be 
rooted by HXB2 (as labeled), in which case evolution may be 
thought of as running from left to right. Twelve identical V3 
sequences were obtained at seroconversion. All trees showed 
this sequence to be the ancestor of all others in that it is 
closest to the root (as labeled in Fig. 1). Finally, all branch 
lengths are drawn to scale, which permits an assessment of 
the relative amounts of evolutionary change along different 
lineages. 

Other, smaller, bifurcations were also consistently ob-
served and these, like the major subdivision, were found to 
accord with the pattern of amino acid replacements in the V3 
loop (see below). Conversely, a few sequences were more 
difficult to place and frequently changed position in different 
analyses. These were mainly sequences from year 3, a sample 
in which most sequences had diverged to a similar extent (see 
below). By year 4, however, the major lineages were clearly 
distinguished. 

Evolution of the V3 Loop. Having established the phylo-
genetic relationships between sequences from the V3 region 
from this patient, we wished to determine, because of the 
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FIG. 1. Maximum likelihood tree depicting evolutionary relation-
ships among V3 sequences obtained from plasma virus from p82. 
This tree may be rooted by the HX132 outgroup sequence. Given this 
rooting, the first p82 sequence to appear is that found at serocon-
version, as indicated. The major evolutionary subdivision is clearly 
visible and the two major descendent lineages, D and E, are also 
labeled. Dots at the tips of the lineages represent individual se-
quences; all branch lengths are drawn to scale. 

functional importance of the V3 loop itself, whether the 
lineages we have identified correspond to changes in the 
antigenic structure of the loop. In the entire data set, there 
were a total of 24 different V3 loop amino acid sequences. 
These sequences are listed in Table 1, together with the 
frequencies at which they are found in each year. Each can 
be seen as having one or more amino acid differences from 
that found at seroconversion (designated sequence A). If we 
superimpose the V3 loop amino acid sequences onto the trees 
deduced from the nucleotide sequences (Fig. 1, for example), 
we obtain the evolutionary framework" depicted in Fig. 2. 
Distinct evolutionary lineages of V3 loop sequences have 
been identified and assigned a letter (A—F) and each different 
sequence within these lineages has been assigned a number 
(Fig. 2 and Table 1). The proposed relationships and the 
directions of changes between the sequences of a lineage are 
indicated by arrows (Fig. 2). Sequences which have persisted 
through time points are indicated by dashed arrows. Rela-
tionships between some lineages were difficult to assign, as 
different analyses produced different phylogenies, so affili-
ations between lineages have only been indicated when they 
were unequivocal. For example, the relationships between 
lineages B, E, and F are uncertain and the symbol ? that 
connects them is used to signify this uncertainty. Finally, 
unlike most molecular phylogenies, real ancestors may be 
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Table 1. The 24 V3 loop amino acid sequences and their sample frequencies in the plasma 

Frequency in year 

Lineage Sequence 0 	3 4 5 6 7 

A 
296 	 330 
CTRPNNNTRKSIHIGPGRAFYTTGEI IGDIRQAHC 1.000 

B ........................D 0.067 
Cl ............P 	...........D 0.067 
C2 ............P ...........Q 0.267 

C3 .................C .....Q 0.267 
C4 ............P 	...........D.T 0.067 
CS ........................D.T 0.067 
Dl ...................V .Q 0.091 
D2 R ........ V ... EQ. . .N 0.455 
D3 C 	........ V ... EQ. . .N 0.091 
D4 R.Y ...... V ... EQ. . .N 0.087 
D5 R.Y. . 	. 	.S.V. 	. 	.EQ. 	. .N 0.043 
D6 R.Y ...... V ... DQ 0.067 
D7 R.Y ...... V ... DQ. 	. .N 0.200 0.077 
D8 Y ... R.G ..... SV. .AEQ.. .N 0.200 0.077 
El C 	...... S... A. 	. D 0.067 0.043 0.333 0.769 
E2 G ...... S ... A. .G 0.182 0.696 
E3 G ...... S ... A. .R 0.091 
E4 C ......S.V.A. .0 0.043 
ES C ...... S ... A. 	.0 ... N 0.087 
E6 C ......S.V.A. .D 0.067 
E7 G ..........A. .D 0.067 
E8 C ........ V .... D 0.067 
F ............................... 0.133 0.091 0.077 

Total 12 	15 11 23 15 11 

Amino acid sequences are listed according to their evolutionary lineage (A-F). Only residues that differ from those in sequence A (detected 
at seroconversion) are shown, with a dot denoting identical residues. Amino acid positions are numbered according to Wolfs et al. (10). The 
frequencies of each sequence in each year from which a sample was available are presented, with the total number of sequences obtained given 
at the bottom. Blank space indicates that the sequence was not detected in that particular year. 

present in the data and the framework expresses the postu-
lated ancestor-descendent relationships. 

Many of the evolutionary patterns observed at the nucle-
otide level, and depicted in Fig. 1, correspond to amino acid 
changes in the loop itself. From Figs. 1 and 2 and Table 1, it 
is clear that evolutionary lineages D and E dominate the data 
set. Lineage D can be distinguished by 2 amino acid replace-
ments from its apparent ancestor-C2. These are valine for 
phenylalanine at position 315 and glutamine for glutamic acid 
at position 320. A number of other replacements are also 

YEAR 

D5 
D4 	-> D6 07 -- 07 

D2 

C2 	

Dl 	 D8 - - - - - -  - D8 

,2T 	C3 
Cl 

C4 
CS 	 E3 

? -. El -? E2 -------. E2 

	

F E4 	
E6 

F 	 El 	 E8 
El - - - - > El 

F 

FIG. 2. Evolutionary framework relating the 24 different amino 
acid sequences found in the V3 loop. Distinct evolutionary lineages 
are designated by letters A-F and sequences within lineages are 
designated by numbers. Proposed relationships are indicated by 
arrows. Lineages that persist through years are indicated by dashed 
arrows. Time scale is given along the top.  

found in most of the lineage D variants, such as aspartic acid 
to asparagine (N) at position 324. The relationship of the 
lineage E sequences to each other is characterized by a serine 
to glycine substitution at position 306. Most members of this 
lineage also have a serine at position 313 and an alanine at 
position 317. 

Comparison of lineages D and E reveals some interesting 
features in the evolution of the 6 amino acids that correspond 
to the crown of the V3 loop (10). In the seroconversion 
sample, these were GPGRAF (Table 1). The same motif has 
also been found in 146/256(60%) isolates of HIV-1 from the 
USA examined by La Rosa et al. (5). Lineages D and E have 
undergone a number of changes in this sequence; GPGRAV 
is most frequently found in lineage D [although only 12 times 
(5%) in the set of isolates from the USA (5)1, while GPGSAF 
[not reported by La Rosa et al. (5)] characterizes the early 
evolution of lineage E. Remarkably, both lineages acquired 
the motif GPGSAV independently. 

As already noted, the relationships of lineages found in 
year 3 (B, C, E, and F) and of the sequences within the C 
lineage are harder to interpret. All analyses suggested that 
sequence B, characterized by a single amino acid change 
(glutamic acid to aspartic acid at position 320) from the 
seroconversion sequence A and found only once in the data 
set, is the ancestor of all later variants. The similarity 
between sequences A and B, in the face of the diversity found 
in year 3, suggests that B probably arose early in infection. 

All members of the C lineage can be derived from sequence 
B. C4 and CS are grouped through their possession of a 
threonine at position 322, while the relationship between C2 
and C3 is suggested by their possession of a glutamine at 
position 320. The remaining intersequence relationships are 
even harder to define but, as depicted (Fig. 2), it seems most 
likely that Cl is the ancestor of all others. 
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Changes in Sequence Frequency. The frequencies at which 
the sequences are found in the plasma are listed in Table 1. 
This table highlights the dramatic changes in frequency of the 
most abundant sequences. The most notable examples are 
provided by sequence A, the only sequence found at sero-
conversion but not seen subsequently; E2, which constituted 
almost 70% of the sample in year 5 but was not found in any 
later samples; and D2, which made up 45% of the sample in 
year 4 but was not found afterward. 

It is unlikely that these changes in frequency are simply 
sampling artifacts for two reasons. First, we have shown in 
a study of the V4 and V5 sequences from the same patient (9) 
that the sample frequencies estimated from nucleotide se-
quence data (where n was 10) accorded well with the 
relative frequencies of length variants observed by scanning 
densitometry in much larger samples of the same material 
(where n, the input copy number, was ='100). Second, 
random sampling would affect most strongly those variants 
found at low frequency. The striking feature of the evolution 
described here (Table 1) is that the most dramatic changes 
involve those sequences that reach high frequency. 

Convergent Evolution. One of the most unexpected obser-
vations stemming from the phylogenetic analysis of V3 
sequences was that the same amino acid has been fixed 
independently at the same site in more than one sequence. 
The most spectacular examples involve the hexapeptide at 
the crown of the V3 loop. The evolution of variants of this 
motif, as inferred from the evolutionary framework (Fig. 2), 
is shown in Fig. 3. We infer the motif found at seroconversion 
(GPGRAF) to be the ancestor of all later motifs, including 
GPGSAV (indicated by an asterisk in Fig. 3), which appears 
to have evolved independently three times within p82—in 
sequences D5, E4, and E6—and twice in 1989 alone. Other 
instances of convergent evolution in this motif are GPGRAV, 
found in most of the D lineage sequences and in E8, and the 
original GPGRAF motif, which reappears in E7. Convergent 
evolution in this hexapeptide is evidently frequent. In a 
second hemophiliac patient from Edinburgh also infected in 
1984 with a virus of the same sequence (9), the independent 
evolution of the GPGSAV motif has also been observed (data 
not shown), making four times in all. Further convergence 
occurs outside this motif; the glycine at position 308 appears 
to have arisen twice (in D3 and the E lineage) as does the 
glycine at position 320 (in three members of the E lineage—
E2, E4, and ES—as well as in genotype F) and the asparagine 
at position 324 (in the D lineage and ES). Overall, this level 
of convergence seems to be most compatible with the inter-
pretation that sequence change in this region represents 
adaptive evolution (23). 

DISCUSSION 

We have used a number of different methods of phylogenetic 
inference. This is particularly necessary when natural selec- 

_, GPGsAv* 
GPGRAv 

/ 	 GPGRsv 
GPGRAF - GPGgAF 

GPGsAF 	
GPGsAv* 

GPGRAF 
GPGsAv* 

GPGRAv 

FIG. 3. Evolutionary relationships between the different 
hexapeptide motifs found at the crown of the V3 loop. The motif 
found at seroconversion (year 0) is GPGRAF and, as this is the 
inferred ancestor of all later motifs, is written in capital letters. From 
this, five different motifs evolve during the course of the infection, 
with the amino acids that differ from that found at seroconversion 
written in lowercase letters. Convergent evolution of the motif 
GPGSAV is denoted by an asterisk. 
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tion may be important. From simulation studies, it has 
become clear that maximum likelihood inference (as imple-
mented in DNAML) performs extremely well, in terms of the 
proportion of times it retrieves the correct tree, under a 
neutral (Poisson based) model of molecular evolution (24). It 
is unclear, however, how any method fares under evolution-
ary processes that deviate from neutrality, and thus it is 
probably best not to rely solely on one. 

Evolution of HIV Sequences in p82. During the infection of 
p82 there has been an evolutionary diversification of V3 
sequences. This diversification can be assigned to evolution 
along a number of major lineages, themselves characterized 
by successive substitutions at residues of (presumed) anti-
genie importance. Selection for viral mutants that can escape 
from the neutralizing capability of host antibodies is likely to 
be the principal mechanism that drives this evolutionary 
change (25). The rapid change in the composition of the V3 
sequence population—the rise and fall of variants—is a 
consequence of this continual process of neutralization— 
escape. This is also reflected as alterations in the relative 
prominence of different lineages, specifically D and E, in 
samples from successive years. Thus, antigenic drift, instead 
of being the sequential replacement of one antigenically 
distinct variant by another, may involve a complex interac-
tion between the different, and competing, evolutionary 
lineages present in the plasma. 

The rapid changes in the plasma population also suggest 
that antigenic evolution has an important frequency- 
dependent element. Standard host—parasite models (26) sug- 
gest that the higher the frequency a viral variant reaches in 
the plasma, the higher the probability of its recognition and 
neutralization. Table 1 shows that in each year it is generally 
the most frequent sequence that appears to be neutralized 
(i.e., shows the greatest reduction in frequency). Conse- 
quently, variants found at low frequency will have a greater 
selective advantage and will increase in frequency until they 
too are countered with an effective immune response. 

The evolution of the viral population is made more com-
plicated by the fact that selection pressures may not be 
constant during the course of the infection. Nowak et al. (27, 
28) suggest that the move from the asymptomatic to the 
symptomatic stage of infection is triggered by the loss of a 
specific immune response that contains a highly diverse viral 
population during the early stages and that, in AIDS, new 
antigenic variants may no longer be favored. It is interesting 
to note that no new V3 amino acid sequences were found in 
year 7—at which time the CD4 cell count of p82 had fallen 
below 200 (9), although the patient remained asymptomatic. 

Constraints on V3 Loop Sequences. We interpret the ob-
servation of extensive convergent evolution to be due to the 
interplay between selection for variability and for conserva- 
tion. Specifically, although there is positive selection for 
replacement of amino acids that remove B-cell (or T-cell) 
epitopes once these are recognized, there is also a selective 
constraint as to which amino acids are functionally viable 
within this region. Interestingly, many of the differences 
between the V3 loop sequences from p82 only involve a 
limited number of amino acid replacements. This is most 
clearly seen in the case of sequence El, which replaces E2 as 
the most frequent in the population, although distinguished 
by only a single amino acid change (glycine to aspartic acid 
at position 320; Table 1). It is also possible that there are 
conformational changes elsewhere in the protein, which may 
compensate for changes in the loop itself. 

Finally, the high proportion of nucleotide substitutions that 
lead to amino acid replacements (Ka) compared to silent 
substitutions (Ks) (9) is also consistent with the action of 
selection (data not shown). 

Rate of Sequence Evolution. Several studies, including our 
own, have attempted to estimate a mean rate of sequence 
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evolution for HIV-1 (1, 4, 10, 11, 29). If, as we suggest, 
natural selection is the major mechanism of sequence change 
in this region of the HIV-1 genome, then any attempt to 
estimate a mean rate of evolution within a patient is likely to 
be misleading. In p82, the mean nucleotide distance between 
samples from years 5 and 6 was actually greater than that 
between years 4 and 6 (data not shown), and similar phe-
nomena have been observed before (4, 10). This can now be 
seen to arise from the alternation between the two predom-
inant evolutionary lineages in p82. Even within a lineage, we 
observe substantial variation in the rate of change. The 
concept of a mean rate of sequence evolution is almost 
meaningless in the context of a region such as V3, which is 
so strongly influenced by selection. 
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