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Abstract

Group B Neisseria meningitidis (NM) is a major pathogen associated with severe and
often fatal meningococcal disease in Europe. Recently introduced group A or C
polysaccharide vaccines do not provide any protection against this predominant form
of bacterial meningitis and septicaemia in Scotland.

Carriage of the commensals Neisseria lactamica (NL) and Moraxella catarrhalis
(MC) coincides with a progressive increase in the level of natural immunity against
meningococci, and investigations to identify epitopes that might be responsible for
the induction of antibodies that are cross-reactive between meningococci and these
commensals might lead to the development of a vaccine against group B
meningococci. The most promising candidate for cross-reactive antigens is
lipooligosaccharide (LOS).

Absorption of normal human serum showing bactericidal activity against
meningococcal isolates and reference strains by commensal isolates from different
regions in Europe provided evidence for cross reactivity between epitopes shared by
NL, MC and NL LOS. Investigations into the opsonic activity of normal human
serum showed the presence of anti-meningococcal antibodies that were independent
from bactericidal antibodies.

Meningococcal LOS is associated with virulence, and is a potent inducer of
inflammatory responses to meningococcal LOS that contribute to the severity and
fatality of disease. Its use as a vaccine needs to be assessed in relation to its ability to
induce pro-inflammatory cytokines. Meningococcal meningitis and septicaemia are
exclusively human diseases, and a suitable animal model for safety assessments of
LOS vaccines does not exist. Because of the genetically controlled variability of the
inflammatory response of individuals to bacterial antigens and toxins, an in vitro
model using a human monocytic cell line was developed for initial screening of
cytokine release induced by LOS preparations from meningococci and commensal
species, providing evidence that endotoxin from commensal species was less toxic
than meningococcal LOS, and that anti-meningococcal antibodies were present in
normal human serum and immune mouse sera able to neutralise the bioactivity of
LOS.

These findings provided evidence that some commensal species share cross-reactive
antigens with pathogenic meningococci able to induce antibodies associated with the
development of protective immunity to meningococcal disease. Additionally, due to
their lower bioactivity compared to meningococcal LOS their use as a potential
vaccine, or their incorporation into meningococcal protein vaccine candidates might
provide an effective and safer alternative to meningococcal endotoxin.



Scanning confocal image of CD14 positive THP-1 (FITC, surface) cells of
attached (red) immunotype L3 meningococci eliciting rhodamine-123
oxidative burst (green, internal) (670 x magnification)
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Chapter 1 Introduction

1.1 Meningococcal disease

Disease due to Neisseria meningitidis (NM) can kill a previously healthy child or

young adult within hours of the first symptoms of illness. Meningococcal disease is
the largest single cause of childhood death in the developed world. Worldwide over

350,000 fatalities caused by NM were registered by the World Health Organisation

(WHO) per annum [Robbins & Freeman, 1988],

Incidences of meningococcal disease in Scotland increased from 200 to about 350
cases per year since 1995, with over 300 cases ofmeningococcal disease confirmed
in Scotland in 2000; the fatality rate 6-10% with young children most at risk of

meningococcal disease and death (Figures 1.1 & 1.2) [personal communications, S.

Clark, Scottish Meningococcal and Pneumococcal Reference Laboratory, SMPRL,

Glasgow; P. Christie, Scottish Centre for Infection and Environmental Health].
While the pathogen NM is the predominant causative agent of bacterial meningitis
other capsulate bacteria can also lead to rapid progressive meningitis, e.g.

Streptococcus pneumoniae and Haemophilus influenzae type B (Hib).

Meningococcal disease can manifest itself in two main forms, meningitis and

septicaemia. Meningococcal meningitis is an inflammation of the meninges, the
membrane lining the brain and the spinal cord. In both fulminant meningococcal

septicaemia and meningococcal meningitis damage is caused by an uncontrolled
localised or systemic host inflammatory response [Brandtzaeg et al., 1989, Hodgetts
et al., 1998; Vieusseux, 1805].

Meningococcal septicaemia, or blood poisoning, is caused by invasion of

meningococci into the blood system of the patient. The host's immune defence is
unable to kill and clear the invading pathogen successfully. During the evasion of the
immune response or due to treatment with antibiotics, meningococci shed endotoxin
or lipooligosaccharide (LOS) into the blood system. In the absence of specific or

cross-reactive neutralising antibodies, endotoxin induces a massive inflammatory

-7-



response characterised by increased secretion of inflammatory mediators such as

interleukin 1 (IL-1), interleukin-6 (IL-6), interleukin 8 (IL-8), tumour necrosis factor

alpha (TNF a), interferon gamma (IFN y) and acute phase proteins. Severity and

fatality of the disease has been correlated with levels of inflammatory mediators
detected in the blood (Table 1.1).

Figure 1.1 Laboratory confirmed cases of meningococcal disease in
Scotland 1993-2000 [S.Clark, SMPRL, unpublished data]

w 250-

o 50

Year

Figure 1.2 Fatality rate per 100.000 caused by meningococcal disease in
Scotland 1999-2000 [P. Christie, Scottish Centre for Infection and
Environmental Health, unpublished data].

<4 years 5-14 years 15-24 years 25-49 years >50 years
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Table1.1Associationbetweenpathologyofmeningococcaldiseaseandcytokinemediators Cytokineconcentration
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In susceptible patients, this release of endotoxin and the results of inflammatory

responses lead to rapid deterioration and failure of the normal homeostatic
mechanisms. The removal of free endotoxin and the intervention in controlling the

inflammatory response to endotoxin are crucial in preventing further damage to the
host. Disseminated intravascular coagulation or blood platelet aggregation can result
in the loss of limbs. Bleeding or leaking of peripheral blood into the surrounding
tissue of blood vessels is recognised by the typical spots under the skin. The loss of

perfusion may lead to the patient falling into a coma. Myocardial depression and

multiple organ failure can lead to death.

Because meningococci are transmitted by aerosols or close ("kissing") contact

immunisation is the only effective means for prevention of disease in individuals

lacking protective immunity. This chapter reviews:

1. the success achieved to date in development of vaccines against meningococcal

disease;

2. the problems that remain;
3. the way in which assessment of development of 'natural' immunity through

exposure to commensal flora could provide a new approach to meningococcal
vaccines.
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1.2 Cell surface structure ofmeningococci in relation to vaccine development

Named after the Passau microbiologist Albert L.S. Neisser (1855-1916), Neisser's

diplococci, NM is an exclusively human pathogen. It is Gram-negative, 1pm in

diameter, aerobic diplococcus and shows a large degree of phenotypic variation

[Kahler & Stephans, 1998].

The major antigens of the outer membrane of meningococci vary greatly and these
variations have been exploited to develop typing systems for epidemiological
surveillance. These include capsule, a variety of outer membrane proteins, pili and
endotoxin. The main antigens are found anchored to the typical Gram-negative

envelope (Figure 1.3).

Figure 1.3 Capsular polysaccharide, outer membrane proteins (OMP) and
transmembrane proteins, pili, lipooligosaccharide (LOS) of meningococci

Outer membrane

protein
Transmembrane
Protein v

Capsule
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1.2.1 Capsular vaccines

The first major success in development of vaccines against meningococcal disease
was through the recognition of the immunogenicity of the capsular polysaccharide of
these bacteria.

Originally meningococci were divided into serogroups for epidemiological purposes
based on agglutination of capsular antigens. Currently 12 major antigenically

distinguishable polysaccharide capsules have been identified: A, B, C, H, I, K, L, X,

Y, Z, 29E and W135 which vary in their composition and arrangements of

oligosaccharide units [Frasch et al., 1985 a & b]. The most prevalent serogroup

structures are presented in Table 1.2. The majority of meningococcal disease is
caused by serogroup A, B and C. Groups B and C are responsible for most disease in

Europe and the Americas while group A is more prevalent in Africa, Russia and
causes periodic epidemics in Romania [Pinner et al., 1989; Mihalcu et al., 1994],

Table 1.2 Oligosaccharide structures of the major pathogenic meningococcal
polysaccharide capsules
Serogroup Capsular Polymer Reference

A /V-acetyl-3-0-acetyl mannosamine phosphate
(a1 >6), (0-acetylated-2-acetamido-2-deoxy-D-mannose-
6-phosphate)

Gotschlich etal., 1969

B Up to 200-residue polysaccharide units of (2—>8) linked
/V-acetylneuramic acid

Gotschlich et al., 1969

C O-acetylated or non acetylated (2—>9) linked
N-acetylneuramie acid

Gotschlich et al., 1969

X A/-acetyl glucosamine phosphate (a1—>4), or
( 2-acetamido-2dedoxy-D-glucose-4-phosphate)

Evans et al., 1968

Y A/-acetyl neuraminic acid:glucose,
partially O-acetylated alternating sequences of
D-glucose and /V-acetylneuramic acid

Evans etal., 1968

W-135 4-O-a-D-galactopyranosyl-p-D-N-acetyl-neuraminic acid,
alternating sequences of D-galactose and
N-acetylneuramic acid

Evans etal., 1968

Polysaccharide capsules are an effective way for pathogens to evade the human
immune responses. Compared with non-capsulate meningococci, which are usually
eliminated by bactericidal and opsonising antibodies in human serum, heavy
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polysaccharide capsulation is thought to reduce the ability of complement to bind
and kill meningococci [McKinnon et al., 1993; Vogel et al., 1996; Klein et al.,

1996; Taylor, 1983; Hammerschmidt et al., 1994; Kahler et al., 1998], Group B

meningococci express a poorly immunogenic a2—»8 linked poly-sialic capsule
similar to some human antigens such as the Neural Cell Adhesion Molecule (N-

CAM) [Finne et al., 1983; Hayrinen et al., 1995],

1.2.1.1 Purified capsular antigen vaccines

Capsular polysaccharide vaccines against the serogroups A, C, Y, and W-135 induce

protective immunity against these meningococcal serogroups in older children and
adults. Immunoprophylaxis with the group C vaccine was effective in studies of

army recruits in the United States of America [Artenstein et al., 1970], and
vaccination with the group A vaccine was effective in Finnish army recruits [Makela
et al., 1975], While these vaccines appear to be effective in adults, vaccines based on

meningococcal polysaccharides are less effective in young children [Gold et al.,
1975; Peltola et al., 1977; Reingold et al., 1985]. Group C vaccines are thought to be
ineffective in children younger than 2 years of age, and in children under 6 months
for group A vaccines [Ceesay et al., 1993]. The duration of protection elicited by

capsular antigens is thought to be short lived, varying between two to four years after
administration of the vaccine in adults and children [Wahdan et al., 1977],

1.2.1.2 Conjugated capsular antigens

This lack of wide-scale protection within the young age group (6 months to 5 years)
that is most susceptible to meningococcal disease led to the development of

conjugated group C vaccine. The principal is that used for the successful

development of a vaccine for H. influenzae type b (Hib) in which the polysaccharide
was conjugated to a carrier protein. Conjugation of polysaccharides to protein
carriers induces a T-cell dependent response compared to polysaccharide alone
which induces a T-cell independent response. Large molecular weight

polysaccharide antigens like the meningococcal capsule bind to several receptors on

B cells followed by cross-linking of these receptors. This triggers the production of
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immunoglobulin IgM and the transformation of the stimulated B cell into plasma
cells. This T-cell independent immunity is short lived and does not generate memory.

Conjugation of polysaccharide antigens to protein carriers induces a T-cell dependent

response. The protein-carbohydrate antigen is ingested by antigen presenting cells

(APC) and expressed on their cell surface within the major histocompatible complex

type II receptor (MHC II). T-helper (Th) cells expressing the MHC II receptor (CD4)
and CD28 (B7 receptor) are activated by the APC leading to clonal proliferation and
Th cell maturation with some developing into memory T-cells. The activated Th cells
lead to differentiation of B-cells that bind directly to the hapten, i.e. a second
encounter with the antigen or antigen present on the APC, followed by proliferation
of B-cells, their differentiation into antibody producing plasma cells, or memory B-
cells. This T-cell dependent immunity is long lasting and able to produce a wide

range of classes of immunoglobulin [Weir & Stuart, 1997]. A serogroup C conjugate
vaccine was introduced as part of a mass vaccination program in the United

Kingdom in the autumn of 1999 [Richmond et al., 1999], Initial observations on the
effectiveness of the conjugated vaccine in Scotland following mass vaccination of
children and young adults indicate a reduction in disease caused by group C

meningococci, while its impact on carriage of meningococci and disease is currently

being investigated [personal communication, S. Clark, SMPRL].
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1.3 The remaining problem of serogroup B

While the conjugate C vaccine appears to have reduced disease due to this serogroup,

the NeuNAc capsule of group B meningococci is thought to be ineffective due its
low immunogenicity and its presence on some human tissues (i.e., neural cell
adhesion molecule, N-CAM) [Finne et al., 1983], Poly-sialylated N-CAM is an

antigen found in several tumours associated with the immune evasion of some

malignant metastatic cells [Roth et al., 1993]. Conflicting observations have been

reported about the ability of NeuNAc capsular antigen to induce autoimmune

responses [Wyle et al., 1972; Finne et al., 1983; Bartolonie et al., 1995]. Protein
vaccines containing the B capsular antigen did not show such effects in animal
models [Lifely & Wang, 1988] or in humans [Zollinger et al., 1979]. Vaccines based
on group B capsular polysaccharide are poorly immunogenic, and shortlived. It

rarely induces antibodies in patients [Romero & Outschoorn, 1997]. Attempts to

increase the immunogenicity by conjugation with protein carriers were not

successful. Because of the problems outlined above, other surface antigens of

meningococci have been assessed for their use as vaccine candidates for serogroup B

meningococci.
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1.3.1 Pili

Successful colonisation of epithelial surfaces in the oropharynx depends on

overcoming of mucosal flux by binding of the meningococcus to receptors on the

epithelial surface. Early studies implicated the importance of pili, protein extensions
on the bacterial cell surface [de Voe & Gilchrist, 1975],

Meningococci expressing pili during initial colonisation of epithelial tissues in vivo

and epithelial cell lines in vitro bind in greater number to such cells [Stephens &

McGee, 1981], Although the establishment of meningococcal colonisation is aided

by the expression of pili, prolonged carriage appears to reduce their expression.
Mechanical stress on the mucosal surface and the presence of proteinases in the
mucus might also remove pili from the meningococcus. Pilus expression can be
controlled by stimuli from the host leading to a phase variation of this phenotype in

vivo. This loss of the pilus surface antigen is important in reducing the formation of
secreted IgA towards pili epitopes.

There is some evidence that the loss of pili does not alter the virulence of

meningococci suggesting that these structures are not necessary for the invasion of

meningococci [Stephens & Farley, 1991]. While pili are associated with colonisation
but not with invasive disease, the pilus antigens have not been assessed as vaccines
because of the hypervariability of their terminal protein sequences.

1.3.2 Trans-membrane and outer membrane proteins (OMP)

Neisseriae species have a typical Gram-negative envelope consisting of a lipid bi-

layer around a semi-rigid peptidoglycan sheet. Proteins can be anchored to the outer

lipid layer alone, but usually form monomeric or polymeric structures penetrating
both lipids and peptidoglycan layers (trans-membrane OMP).

Five classes of outer membrane proteins have been identified in NM. The
classification is based on the molecular weight of proteins separated by sodium

dodecyl sulphate (SDS)-polyacrylamide electrophoresis (Table 1.3). Monoclonal
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antibodies to class 2 and class 3 outer membrane proteins have been used in

epidemiological typing of meningococci (serotype), as have monoclonal antibodies
to class 1 to determine the subtype [Frasch et al., 1985a; Evans et al., 1994].

Table 1.3 Characteristic of meningococcal OMPs
Class Mol.wt.

(kDa)
Characteristics Function

1 44-47 Trypsin sensitive; deoxycholate insoluble Cation porin; no known
homology with N.
gonorrhoea

2 40-42 Trypsin resistant; deoxycholate insoluble Porin; homologous to
gonococcal protein IB

3 37-39 Trypsin resistant; alternate expression to
class 2

Porin; homologous to
gonococcal protein IA

4 33-34 Trypsin resistant; common to all strains Widely homologous to
gonococcal protein III and
OmpA of Escherichia coli;
inhibits bactericidal activity

5 26-30 Protease sensitive; deoxycholate soluble;
heat modifiable; highly variable in
expression and molecular weight; more
than one class 5 protein may be
expressed

Analogous to gonococcal
protein II; associated with
invasion and colonisation of

epithelial cells

5c 26-30 Small amounts ; phase variable Invasion and colonization

1.3.2.1 Class 1 proteins

Class 1 OMP are porins selective for cations and are expressed on meningococcal
isolates obtained from carriers and patients [van der Ley et al., 1991]. There is

antigenic variability within the class 1 OMP which has been used to develop
monoclonal antibodies used in epidemiological surveillance [Suakkonen et al.,

1989]. These antigens induce antibodies in animal models, and strains expressing

multiple subtype antigens are being constructed and assessed for their potential as
vaccines against serogroup B [van der Ley et al., 1995]. Currently 14 antibodies

(P1.1-P1.7, PI.9, PI.10, and P1.12-P1.16) are used for routine subtyping by
reference laboratories.
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1.3.2.2 Class 2 and 3 proteins

All known strains of meningococci express either OMP class 2 or class 3, but never
both at the same time [Hitchcock, 1989]. A serotyping scheme is based on the use of
monoclonal antibodies to different epitopes in variable regions of these class 2/3
OMP was developed.

1.3.2.3 Class 4 proteins

Class 4 OMP are trans-membrane proteins common to all known strains of

meningococci. There is evidence for structural similarities between meningococcal
class 4 OMP and proteins from N. gonorrhoea and Escherichia coli. Although these
OMP induce an antibody response in man, they are not bactericidal. One study
indicates that antibodies against class 4 OMP's inhibit the bactericidal activity of
antibodies directed against other classes of meningococcal OMP's [Munkley et al.,

1991],

1.3.2.4 Class 5 proteins

Up to four different proteins of Class 5 OMP can be expressed at any one time by
some meningococci [Achtman, 1991]. These heat variable proteins share some

homology with protein II ofN. gonorrhoea, but no unifying epitope of this class has

yet been identified. Included in class 5 is a protein involved in the invasion and
colonisation of meningococci [Fernandez de Cossio et al., 1992]. Although
bactericidal antibodies could be raised against these class 5c proteins, their

expression appeared to undergo phase variation resulting in low or no expression on

the meningococcal surface within the bacterial population. Investigations into the

ability of OMP to elict antibodies showed that deglycolysation of all investigated
classes (1-5) resulted in no significant antibody production in vivo. This suggests that

antigenicity of OMP depends on post-translational glycolysation, or the presence of
other oligosaccharides that must be considered in evaluation of these surface

components for their use in vaccines.
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1.3.2.5 Lip and Ctr

In addition to the five major classes of outer membrane proteins, several other
molecules are present on the meningococcal surface [Frasch & Pepper, 1982; Ferron
et al., 1992; Ala'Alden et al., 1993; Stimson et al., 1995; Mackinnon et al., 1999;

Pizza et al., 2000], The H.8 or Lip antigen, a lipoprotein with porin function, is found

exclusively in pathogenic Neisseriae, but it is not found in non-pathogenic species

[Bhattacharjee et al., 1988], It failed to induce bactericidal antibodies [Bhattacharjee
et al., 1990], A meningococcal endogenous membrane-associated lipoprotein, CtrA,
was described in NM serogroups producing sialyl transferases B, C, W-135 and Y. It
is thought to be part of a capsule expression system [Frosch et al., 1992],

1.3.2.6 Iron binding proteins

Several iron binding OMP with variable molecular weights are currently under

investigation as potential vaccine candidates for meningococci (Table 1.4). Some of
these antigens show some homology with other Neisseria species [Lee, 1994;
Troncoso et al., 2000],

Table 1.4 Iron regulated OMP
kDa Characteristics Function Reference

55 Partly expressed in iron deficient and
sufficient media; cross-reactive with N.
lactamica

Flaemin-binding protein Troncoso
et al., 2000

50 Only expressed in iron deficient media
not cross reactive with N. lactamica

Haemin binding protein Lee, 1994

68-95 Minor antigen Transferrin binding
proteins TpbA and TbpB

Ferreiros et
al., 1994

70 Iron-limition-indicable OMP Specific for human
lactoferrin

Pettersson
et al., 1990

1.3.2.7 Outer membrane vesicle (OMV) vaccines

Various vaccines derived from OMV were tested in animal models [Quakyi et al.,

1999] and in clinical trials in Norway [Rosenqvist et al., 1995], Brazil [de Moraes et

al., 1992], Cuba [Rodriguez et al., 1999] and Chile [Boslego et al., 1995]. These
vaccines induced bactericidal antibodies in the immunised group but were protective

mainly against strains expressing the serotype/subtype antigens of the strain from
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which the vaccine was produced. There was limited protection against strains

expressing other OMP antigens. Due to the heterogeneity of antigens on

meningococcal strains and the introduction of new strains into the vaccinated

population, the use of OMV would only be effective in closed populations (e.g.,

Cuba). De-glycolysated OMV vaccines showed poor immunogenicity after the
removal of its toxic LOS moieties [van der Ley et al., 1998], LOS appears to be an

essential component of anti-meningococcal protein vaccines, perhaps acting as an

adjuvant in the human host.

1.4 Lipooligosaccharides (LOS)

All Gram-negative species have a family of glycolipids called endotoxin embedded
into the hydrophobic outer membrane lipid layer [Nikaido et al., 1966; Liideritz et

al., 1966; Osborn, 1966], These macromolecules share a common basic structure

consisting of:

1. a basal lipid A region anchored into the outer membrane;
2. a rough (R) core region consisting of a backbone of 2-keto-3-deoxyoctulosonic

acid (KDO) and/or heptose (Hep) phosphate;
3. a highly variable region of saccharide domains differing in length and

composition bound to the core heptose residue.

Lipid A is a phosphorylated di-glucosamine disaccharide substituted with fatty acids
of variable length, and it is responsible for the biological activity which induces
inflammation (endotoxin). Enteric Gram-negative species show a characteristic long
linear chain of polysaccharide, called O-antigen, linked to the R-core giving the
endotoxin of these species the name lipopolysaccharide (LPS). In contrast, the
saccharide chains of all Neisseria species consist of very few residues, giving its
endotoxin the name lipooligosaccharide (LOS) [ Kulshin et al., 1992],
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1.4.1 Variation in meningococcal LOS and immunotyping

Thirteen major LOS types were identified for N. meningitidis using polyclonal and
monoclonal antibodies by passive haemagglutination inhibition techniques [Zollinger
& Mandrell, 1977; Achtman et al., 1991] and whole cell ELISA [Scholten et al.,

1994], The majority of meningococcal isolates express one or more of the

immunotypes LI-LI2, while non-typable and LI 3 immunotypes are rare. The twelve

major LOS types have a relative molecular weight ranging from 3.15 to 7.1 kDa

[Kim et al., 1988], The oligosaccharide chain, also referred to as the a-chain or

variable LOS region one (Rl), is composed of the saccharides glucose (Glc),

galactose (Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc).

Sialylated forms contain the terminal saccharide N-acetylneuramic acid (NeuNAc)
which is added to terminal galactose residues by endogenous or exogenous sialyl
transferases [Kahler & Stephans, 1998; Kahler et ah, 1998]. The LOS saccharide and
core structures are shown in Table 1.5 and Figure 1.4. The following abbreviations
for core moieties were used throughout this study: glycero-D-manno-

heptopyranoside (Hep or heptose); phospho-ethanolamine (PEA); 2-keto-3-

deoxyoctulosonic (KDO).

The complete structures of immunotypes LI0 - LI3 are not elucidated, but there is
evidence that L10 contains the paragloboside residue [Scholten et ah, 1994] and LI 1
shows some homology with LI [Griffiss et ah, 1994], The PEA residue of

immunotype L2 can be expressed in two forms that undergo phase variation: The
PEA on the G3 region can be linked in (1—>6) or (1—>7) conformation; and the PEA
can be replaced by a hydrogen (H) atom. The PEA residue of immunotypes L4 and
L6 express both PEA (1—>6) and (1—>7) linkages. The expression of meningococcal

immunotypes is associated with serogroups [Tsai et ah, 1991; Vedros, 1987; Verheul
et ah, 1993; Kim et ah, 1988], Immunotypes L8, L9, L10, LI 1 and L12 are found on

group A strains [Salih et ah, 1990], while serogroup B and C meningococci express

immunotypes LI - L8.
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Figure 1.4 Schematic structure of meningococcal LOS immunotypes
[Jennings etal., 1983 and 1984; Romero & Outschoorn, 1994; Scholten eta!., 1994]

G3: PEA (1—>6) L2, L4, L6; G2: PEA (l->3) LI, L8, L(3,7,9); H (->-3) L4, L6; aGal (l-»3) L2

1.4.2 Immunotypes and pathogenicity

LOS immunotype expression is thought to be linked to the pathogenicity of the

organism. Immunotypes L(3,7,9) are isolated predominantly from patients with
invasive meningococcal disease [Scholten 1994; Dunn et 1995]. Other

immunotypes are found predominantly among carrier strains [Jones et 1992].

Immunotypes L3, L7 and L9 are thought to be similar in their immunochemical
structures [Zollinger & Mandrell, 1977; Poolman et al., 1982] with immunotype L3

being sialylated by endogenous sialyl transferases. Immunotypes L3 and L7 are

found on serogroup B and C meningococci and they have similar G2 core

components, PEA (1—>3) HepII. Immunotype L9 is expressed on group A strains.

The presence of the sialylated phenotype on invasive meningococci is associated
with resistance to complement-mediated killing by masking the terminal galactose
with NeuNAc. This mechanism is thought to reduce the recognition of the epitope by
anti-LOS antibodies directed against the non-sialylated epitopes [Estabrook et al.,

1997; Vogel et al.,1997](Figure 1.5). Free or membrane bound sialyl-L(3,7,9) also

upregulates neutrophil activation markers and results in increased injury of epithelial
cell lines [Klein et al., 1996]. Sialyl L(3,7,9) phenotypes can evade the complement
mediated bacteriolysis cascade [Mackinnon et al., 1993]. This phenotype also
reduces complement and anti-LOS antibody mediated phagocytosis by professional

phagocytes [Kim et al., 1992; Lehmann et al., 1997],
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1.4.3 Expression of major and minor immunotypes by N. meningitidis

Meningococci are able to express more than one immunotype. Isolates from patients
with meningococcal disease in the Netherlands (1989-1990) showed different

immunotype combinations [Scholten et al., 1994]:

1. Group A meningococci L9 (54%), L9,8 (8%), L10 (24%), L10,ll (8%) and

non-typable (NT) (8%).
2. Group B meningococci LI (1%), LI,8 (11%), L2 (10%), L3,7 (36%), L3,7,l

(4%), L3,7,l,8 (2%), L3,7,8 (28%), L4 (4%), and L8 (5%).

3. Group C meningococci LI,8 (2%), L2 (30%), L3,7 (37%), L3,7,l (1%),
L3,7,l,8 (3%), L3,7,8 (7%), L4 (15%), L8 (3%), and NT (3%).

The expression ofmultiple immunotypes within a meningococcal population allows
the organism to diversify its antigenic structure. Selective pressure due to the

presence of antibodies in the host to one LOS immunotype allows the strain to

express other immunotypes increasing their chance of survival. This ability of

meningococci to alter its LOS structure has to be taken into account in understanding
the development of natural immunity, and in the choice of immunotypes as potential
vaccine candidates. Sialylation [Poolman et al., 1985] and the expression of

paragloboside gene cluster IgtABE [Jennings et al., 1999] are the main phase
variable phenotypes known.
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Table1.5OligosaccharideandcorestructuresofLOSimmunotypes LOS type

Terminaloligosaccharideachain oligomeroftheG1region

[A]

Core
G2

G3

Reference

L1

Gala(1—>4)Gaip(1—4)Glcp
-

PEA (1-3)

H

DiFabioefa/.,1990; Wakarchuketat.,1998

L2

Galp(1—>4)GlcNAcp(1—3)Galp(1—4)Glcp
-

Glca (1-3)

PEAH, (1-6),(1-7)
Rahmanetat.,1998; Gamainetat.,1992

L3

NeuNAca(2—3)Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
-

PEA (1-3)

H

Pavliaketat.,1993

L4

Gaip(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
-

H (-3)

PEA

(1-6),(1-7)
Delletat.,1990

L5

Galp(1—>4)GlcNAcp(1—>3)Galp(1—4)Glcp
Glcp(1—>4)

Glca (1-3)

H

Michonetat.,1990 Koganefa/.,1997

L6

GalNAcp(1—>3)Gala(1—4)Glcp
-

H

(-3)

PEA

(1—6),(1—7)
DiFabioetat.,1990

L7

Galp(1—>4)GlcNAcp(1—3)Gaip(1—4)Glcp
-

PEA (1-3)

H

Koganetat.,1997

L8

Galp(1—>4)Glcp
-

PEA (1-3)

H

Griffissetat.,1994 Guetal.,1992

L9

Galp(1—>4)GlcNAcp(1—3)Gaip(1—4)Glcp
-

PEA (n.e.)

n.e.

Jenningsetal.,1983

L10

Galp(1—>4)GlcNAcp(1—3)Gaip(1—4)Glcp
n.e.

PEA (n.e.)

n.e.

Scholtenetat.,1994

L11

Gala(1—4)Gaip(1—4)Glcp
n.e.

PEA (n.e.)

n.e.

Griffissetat.,1994

L12

n.e.

n.e.

PEA (n.e.)

n.e.

Griffissetat.,1987 Guetat.,1992

L13

n.e.

n.e.

n.e.

n.e.

Achtmanetal.,1992

Abbreviations:Gal,galactose;GlcNAc,N-acetylglucosamine;Glc,glucose;NeuNAc,sialycacid;Hep,heptose(glycero-D-manno-heptopyranoside); PEA,phospho-ethanolamine;H,hydrogen;n.e.,notelucidated



Figure 1.5 Schematic structure of N. meningitidis immunotype L(3,7,9) (LOS)
in its un-sialylated (L7, L9) and its sialylated form (L3)
[modified from Kahler & Stephans,1998]

CH20H CH20H

CH20H CH20H
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1.4.4 Phase variability of LOS expression

The expression ofmeningococcal immunotypes undergoes phase variation due to in

vitro growth conditions [Poolman et al., 1985], and they can be modified in the

presence of exogenous sialyl transferases in vivo [Tsai el al., 1991, Mandrell et al.,

1991].

The expression rate and molecular size ofmeningococcal LOS was shown to depend
on the in vitro growth conditions. Poolman and co-workers [Poolman et al., 1985]
showed an increase in LOS molecular weight, OMP profile and the macroscopic

appearance of colonies of meningococci grown in stationary phase compared with
those grown in exponential growth conditions. It was suggested that these 'larger'
LOS molecules reflect more accurately the in vivo phenotypic characteristics of

meningococci. It is not clear if the length of meningococcal LOS observed was due
to structural modification of the LOS R-core, sialylation, or linkage of several LOS
molecules via the lipid A base forming dimers or larger cross-linked LOS polymers.
Other studies have confirmed the variability of meningococcal phenotypes and LOS

expression depending on growth rate and phase, as well as the presence of exogenous

sialyl transferases [Poolman et al., 1985; Tsai et al., 1991, Mandrell et al., 1991],

1.4.5 Structural homology between LOS and human blood group antigens

Some LOS residues mimic human blood group antigens [Mandrell et al., 1988, 1993]

(Table 1.6).

Table 1.6 Homology of human blood group antigens with meningococcal
LOS residues.
oligosaccharide a chain moiety
P1 blood group Gala (1—>4) Gaip (1—4) GlcNAcp (1—3) Gaip (1—4) Glcp
pK, CD77 Gala (1—>4) Gaip (1—4) Glcp
P globoside GalNAcp (1—>3) Gala (1—4) Gaip (M) Glcp
Paragloboside Gaip (1—>4) GlcNAcp (1—3) Gaip (1—4) Glcp
i a determinant Gaip (1—>4) GlcNAcp (1—3) Gaip (1—4) GlcNAcP(1—3) Gaip (1—4) Glcp
i b determinant Sialyl-Gaip (1—4) GlcNAcp (1—3) Gaip (1—4) GlcNAcP(1—3) Gaip (1—4) Glcp
Cer- dihexocide Gaip (1—4) Glcp
Gal, galactose; GlcNAc, N-acetylglucosamine; Glc, glucose; Sialyl, sialyc acid; cer,
ceramide; the Glcp on the reduced end is linked to (1—>1) ceramide
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The G1 regions of LI and LI 1 LOS show identical terminal oligosaccharide residues
of ceramide trihexocide, the pk blood group antigen (CD77, globoside) [Mandrell &

Apicella, 1993]. The lacto-N-neotetranose of immunotypes L2, L(3,7,9) and L5 are

identical to paragloboside [Tsai & Civin, 1991], a precursor of PI blood group

antigen found in 75% of Caucasians, and the 3 terminal sugars are present in the Ii

antigen. Immunotype L6 shares its two terminal sugars with the P blood group

antigen, and L8 shares its terminal disaccharide with the common precursor of the P
blood group system and steroid receptors. Both blood group antigens and

meningococcal LOS with a terminal galactose residue can exist as sialylated and

non-sialylated forms [Mandrell et al., 1991; Wakarchuk et al., 1998].

1.4.6 LOS vaccines

The use of meningococcal LOS as a vaccine would have several advantages over

other vaccines. The most common LOS immunotype associated with disease is

L(3,7,9) found in both group B and C outbreak strains of meningococci in Europe
and America. An anti-L(3,7,9) vaccine would be effective against more than 90% of
outbreak strains. Meningococcal LOS is highly immunogenic in all age groups,

including young children, leading to long lasting protective immunity.

Meningococcal LOS is closely associated with the severity and fatality of disease.
This is mainly due to its involvement in inducing large amounts of pro-inflammatory

cytokines in a CD14 dependent mechanism (Table 1.1). Anti-meningococcal LOS
antibodies are not only bactericidal, but also opsonising in nature [Sjursen et al.,

1990], resulting in the phagocytosis of invading bacteria and LOS containing blebs

by human monocytes. Normal human serum of adults usually contains antibodies

against meningococcal LOS [Goldschneider et al., 1969], suggesting its important
role in development of natural immunity to meningococcal disease.

Meningococcal LOS vaccine would induce a strong and potentially fatal

inflammatory response due to the toxicity of its lipid A component. The

oligosaccharide from which lipid A has been removed is not immunogenic [Verheul
et al., 1993],
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1.5 Development of natural immunity to meningococci

The majority of people who encounter a pathogenic strain of NM do not develop

disease, nor do they necessarily become carriers of this organism. The development
of invasive disease in susceptible individuals is associated with the lack of antibodies
to the strain of N. meningitidis encountered, referred to as an "immunologically

virgin population" [Goldschneider et al., 1969].

The protection induced by asymptomatic carriage ofmeningococci was considered to

be an important factor in the development of natural immunity to meningococcal
outbreak strains [Goldschneider et al., 1969], Newborn children have high levels of
bactericidal antibodies to meningococci, passive immunity derived from the mother.
This protection rapidly declines within the first 6 months of life and coincides with
the beginning of greater vulnerability to meningococcal disease at about 6 months to

5 years of age.

1.5.1 Acquisition of antibodies to meningococci by non-groupable meningococci

Goldschneider and colleagues [1969] suggested that there was a steady increase in

protective antibodies during early childhood and adult life induced by naso-

pharyngal carriage of serogroup B or C meningococci. Later studies found an

association between carriage of non-serogroupable meningococci and increased

protection against serogroupable meningococci [Reller et al., 1973; Turner et al.,

1982; Ross et al., 1985]. Long term carriage of meningococci was reported to induce
serum antibodies of the IgG class [Craven & Frasch, 1982; Rosenqvist et al., 1988].
These IgG antibodies were usually directed against outer membrane proteins. Due to

antigenic variability and regional variations of these OMP antigens, development of

protection would involve the carriage of several strains with different antigenic

phenotypes. Sequential carriage of different strains of NM is unlikely to occur in
95% of adults. The involvement of other species in the development of natural

immunity is, therefore, more likely to explain "natural" protection against

meningococcal disease.
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1.5.2 Epitopes on bacterial species cross-reactive with meningococci

Other species were reported to share common antigens with some meningococci. The
N. meningitidis group A polysaccharide capsule shares cross-reactive epitopes with
Bacillus pumilis [Robbins et al., 1972], The K1 antigen of Escherichia coli, an

exopolysaccharide, is immunologically identical to the poly-a-NeuNAc capsule of

group B meningococci [Grados & Ewing, 1970]. There is also evidence that

pyocines produced by Pseudomonas species recognise different meningococcal and

gonococcal LOS epitopes [Blackwell et al., 1979; Blackwell & Law, 1981]. Other
mucosal pathogens also share LOS epitopes with meningococci. These include
common childhood pathogens such as Campylobacter [Aspinall et al., 1992],
Bordetella pertussis [Masked et al., 1995], and some Haemophilus species [Schweda
et al., 1995].

1.5.3 Neisseria species

There is a growing body of evidence that epitopes other than proteins or capsular

polysaccharides are involved in the development of natural immunity to

meningococci. Early studies to phenotypic similarities between meningococci and

gonococci showed common LOS epitopes identical to the paragloboside precursor of
the PI blood group [Apicella et al., 1987, Mandrell et al., 1988]. These studies

suggest a high degree of genetic and phenotypic similarity between members of the

genus Neisseria in relation to LOS biosynthesis and structure.

N. lactamica (NL) is a non-pathogenic commensal [Rio et al., 1983], rarely reported
to cause disease in humans [Herbert & Rusken, 1981], Although it is carried with a

frequency between 5-14 % among young children [Cartwright et al., 1987], other
studies observed a much higher carrier rate ofup to 59% within the first four years of

life, which was linked to an increase in bactericidal activity against meningococci

[Gold etal., 1978].

This development ofprotective immunity coincides with incidence ofmeningococcal
disease with children under the age of 5 making up the largest group affected (Figure
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1.1). There is evidence that carriage of N. lactamica coincides with the progressive
increase in the level of natural immunity [Goldschneider et al., 1969; Coen et al.,

2000],

1.5.3.1 OMP

There is no evidence that carriage of NL induced antibodies to outer membrane

protein obtained from meningococcal isolates causing disease in Greece

[Kremastinou et al., 1999b]. Other OMP, including the the H.8 and some iron

regulatory proteins were reported to share some structural homologous epitopes
found in several Neisseria species [Cannon et al., 1984; Mietzner et al., 1986,
Troncoso et al, 2000],

1.5.3.2 Capsule

Several authors reported that a minority of NL isolates were able to produce small
amounts of exo-polysaccharide that resulted in agglutination by serogroup B anti-
sera [Saez-Nieto et al., 1985]. Another study revealed, that a maximum of 6 % of
isolates from children cross-reacted with group B, and 3 % with group 29E capsular
serum [Gold et al., 1978]. Other studies suggested the absence of capsules on NL,
because NL isolates did not react with commercially available anti-capsular
antibodies routinely used for serogrouping [Kim et al., 1989; Zorgani et al., 1996;
Kremastinou et al., 1999a],

1.5.3.3 LOS

The structures and expression of LOS of NL appear to be as diverse as those of

meningococci. Kim and colleagues [1989] identified epitopes common to NL which
were recognised by two monoclonal antibodies produced against NM. The antibody
D6A bound to meningococcal immunotypes LI, L8, L(3,7,9), L10 and Lll. The

antibody 06B4 bound to L2, L4, L8 and L(3,7,9) immunotypes.

None of these immunotypes share any of the P-blood group related saccharides of the
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G1 terminal a-chain of meningococcal LOS. Later analysis of the LOS structure

revealed that these immunotypes share a common core structure, the G2 and G3

region of the second core heptose (HepII) (Table 1.4). The third carbon shares an

hydroxyl (-OH) group, and the fourth carbon contains a PEA residue [Plested et al.,

1999]. These findings might partially explain the ability of some NL strains to absorb
cross-reactive bactericidal antibodies against meningococcal outbreak strains

[Zorgani et al., 1996]. The binding of the 6DA and 06B4 monoclonal antibodies to

NL suggests that these two antibodies recognise the common HepII/H/PEA core

domain present in some NL strains.

1.5.4 Moraxella catarrhalis

M. catarrhalis (MC) is a commensal Gram-negative diplococcus previously
classified within the genera Branhamella and Neisseria [Murphy, 1996; Catlin et al.,
1982, 1990]. Recent genetic studies resulted in the re-classification of MC into the

genus Moraxella [Enright & McKenzie, 1997].

Although MC is associated with some childhood diseases [Hager et al., 1987], it is

frequently isolated as a commensal from the respiratory tract in healthy young

children. Children were reported to be colonised with 3-4 different strains of MC
within the first two years of life [Faden et al., 1994; Ejlersten et al., 1994], It is
isolated more frequently than Neisseria species during the first 6 months of life when
infants are developing antibodies to the bacteria in their environment [Harrison et al.,

1999]. One member of the genus, Moraxella nonliquefaciens expresses a capsular

antigen similar to group B meningococci and E. coli Kl, and it is isolated from about
20% of healthy carriers [Devi et al., 1991].

Several surface antigens are thought to be involved in the development of immunity
to MC. Carriage and infections with MC are associated with the development of

protective IgG from an early age [Goldblatt et al., 1990]. These include protein

antigens and glycoconjugates. Two OMP are associated with protective immunity,

UspAl and UspA2 [Aebi et al., 1997; Cope et al., 1999] possibly due to structural

homology and cross-reactivity detected with monoclonal antibodies [Klingman &
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Murphy, 1994].

Although LOS from MC differs structurally from meningococcal LOS [Schneider et

al., 1984], both species share some homology in their oligosaccharide chain moieties.
Terminal oligosaccharide residues found on the non-reducing end of MC LOS share
some homology with human blood group antigens [Vaneechoutte et al., 1990;
Rahman & Holme, 1996]. Combination of five different saccharide residues of the a

or (3 chains determine the immunotype of MC LOS (Gal, galactose; Glc, glucose;

GlcNAc, N-acetylglucosamine; KDO, 2-keto-3-deoxyoctulosonic):

1. Gala (1—>4) Gaip (1 -*4) GlcNAca (1 -*2) Glcp;

2. Gala (1-+4) Galp (H4) Glca (1^2) Glcp;

3. GlcNAca (1—>2) GlcP;

4. Glca (1^2) Glcp;

5. Glcp.
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1.6 Aims

The aims of this study were to assess the role of cross-reactive antigens found on

commensal bacteria (NL and MC) in the development of natural immunity to

meningococci, and to identify potential vaccine candidates that would be safe and
effective in children and adults against meningococcal disease caused by group B

meningococci.

The objectives of this study were to address the following questions:
1. Are there antigens on NL that induce antibodies bactericidal for

meningococci ofdifferent LOS immunotypes?
2. Are there antigens on MC that induce antibodies bactericidal for

meningococci of different LOS immunotypes?
3. Are there oligosaccharide antigens common to NL, MC and

meningococcal immunotype reference strains?
4. Are the antibodies to NL and MC cross-reactive with meningococci

capable of neutralising the bioactivity of LOS?
5. Do the antibodies to NL and MC cross-reactive with meningococci have

opsonising activities?
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Chapter 2 General Material and Methods

2.1 Procedure for handling infectious specimens and hazardous substances

All biological specimen were treated as potentially infectious material and marked
with appropriate safety labels and hazard signs. Laboratory coats and gloves were

worn throughout when handling specimen, and eye, face or respiratory protection
used when appropriate. All carcinogenic and toxic substances were prepared in a

fume hood. Once the substance had been diluted to the appropriate concentration it
was handled in accordance with COSHH risk assessment procedures. Sharps were

disposed for incineration in safety boxes, and biological material autoclaved. Risk
assessments for each procedure were completed, approved by the supervisor and
filed before the work began.

2.2 Phosphate buffered saline

Phosphate buffered saline (PBS) contained sodium chloride (6.8 g) (Sigma), di-

sodium-phosphate (1.43 g) (Na2HP04 2H20) (BDH) and potassium-di-hydro-

phosphate (0.43 g) (KH2P04 2H20) (Fisons) in 1 litre of distilled water and adjusted
to pH 7.2 with hydrochloric acid (0.1 N) (HC1) (BDH) or sodium hydroxide (0.1 N)

(NaOH) (Sigma).

2.3 Formalin

Bacteria were fixed with formalin buffered PBS (0.5, % v/v) containing formalin

(6.25 ml, 40 % v/v) (BDH) in PBS (494 ml).

2.3 Paraformaldehyde

Eukaryotic cells were fixed in paraformaldehyde (2%, w/v) which is used as a

crosslinking reagent for membrane proteins and cell markers, allowing fixed cells to

be stored for extended periods with little degradation. Paraformaldehyde (10 g) and
FA Bacto buffer (5 g) (Difco) were dissolved in distilled water in the dark overnight.
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Once the solution cleared, the pH was adjusted to 7.3-7.4 with HC1 (0.1 N) or NaOH

(0.1 N). Distilled water was added to a final volume of 500 ml. The solution was

stored in the dark for up to one month [Crissan & Steinkamp, 1999].

2.4 Vindelov's Propidium Iodide (VPI)

Tris buffer (1 N) was prepared by dissolving Tris HC1 (8.88 g) (Sigma) and Tris base

(5.3 g ) (Sigma) in 100 ml distilled water and the pH adjusted to pH 8. Tris (IN pH
8 (10 ml), RNAse (700 mg) (Sigma), Nonidet P-40 (1 ml) (Sigma), NaCl (58.4 g),
and propidium iodide (PI) (50 mg) (Sigma) were dissolved in 1 litre distilled water.

The VPI solution was stored in the dark at 4°C for up to three months. The solution
was sterilised by filtration before use [Vindelov, 1977].

2.5 Growth of Neisseria species

2.5.1 Human Blood agar (HBA)

Whole blood (100 ml) obtained from the Scottish National Blood Transfusion
Service (SNBTS) was frozen at -20°C to lyse red blood cells. The lysed blood was

allowed to thaw at 37°C. Special peptone (23 g) (Difco), corn starch (lg) (Sigma),
NaCl (4.5 g) (Sigma), D-glucose (1 g) (Sigma), technical grade agar (10 g)

(OXOID), K2HPO4 (4 g) and KH2PO4 (1 g) were added to 900 ml of distilled water

and autoclaved at 121°C for 15 min. After allowing the agar to cool to approximately

50°C, lysed human blood (100 ml) was added aseptically. The human blood agar (15

ml) was poured into sterile plastic plates (Greiner) and allowed to cool at room

temperature overnight. The HBA plates were kept sealed in plastic bags for up to two
weeks at 4°C.

2.5.2 Commercially obtained media

Other growth media were purchased from OXOID: GC selective agar plates

containing lincomycin (1 pg ml"1), trimethoprim (6 pg ml"1), colistin (6 pg ml"1),
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amphoteracin B (1 pg mr1) and trimethoprim lactate (6.5 pg ml"1); horse blood agar

plates (Oxoid).

2.6 Growth conditions:

Bacterial strains were inoculated onto plates pre-warmed to room temperature (RT)
and were incubated at 37°C for 18 h in a humidified atmosphere with 5 % (v/v)
carbon dioxide (CO2).

2.7 Complement source

Human serum was co-incubated with 18 h cultures of the test strains (1010- 1012 ml"1)
and incubated at 4°C overnight. The serum was centrifiiged at 1000 x g for 30 min,
the supernatant filtered through a 0.22 pm filter (Nu-flow OXOID) and tested for

sterility by culturing 100 pi on HBA medium. Aliquots were stored at -70°C for up
to 6 months. Fresh sheep rbc obtained from the Scottish Antibody Production Unit

(SAPU) were washed with PBS at 200 x g for 5 min and re-suspended in PBS to a

final concentration of 4% (v/v). Equal volumes of 4% sheep rbc and donkey anti-

sheep rbc serum (SAPU) diluted 1 in 100 were incubated at 37°C for 30 min.

Doubling dilutions of the absorbed complement source (25pl) were prepared in PBS.

Sensitised rbc (25 pi) diluted 1 in 2 were added to the diluted serum and incubated at

37°C for 30 min. Lysis of the cells was analysed macroscopically. The working titre
was the one preceding the highest serum dilution showing full haemolysis.

2.8 Bacterial strains

The serogroup, serotype and subtype (e.g., B:2a:P1.5,2) of meningococcal or NL
strains were assessed by commercially available typing reagents (Wellcome

Diagnostics) or by the standard whole cell ELISA used by reference laboratories
from which the isolates were obtained. All Scottish M. catarrhalis isolates (Chapter

5) were obtained from our culture collection (Dr. O. El-Ahmer). Standard

immunotype strains of meningococci LI-LI2 were obtained from Dr. W. D.

Zollinger, Walter Reed Army Institute of Research, Washington D.C., USA (Table



2.l.a). Additional strains of NM (Table 2.l.b) and NL (Table 2.2) were obtained
from our culture collection or from: Dr. P. Krizova, National Reference Laboratory
for Meningococcal Disease, Prague, Czech Republic; Dr. K. Jonsdottir, University

Hospital, Reykjavik, Iceland; Dr. G. Tzanakaki, National Meningococcal Reference

Laboratory, National School of Public Health, Athens, Greece; and Dr. S. Clarke,
Scottish Meningococcal and Pneumococcal Reference Laboratory (SMPRL),

Glasgow, Scotland.

Table 2.1 .a N. meningitidis immunotypes reference strains
Strain Code Major LOS Minor LOS Origin

C:NT:P1.2 126E L1 8 Washington
C:2c:P1.1 35E L2 3,7 Washington
B:2a:P1.5, 2 6275 L3 8 Washington
C:11:P1.16 89I L4 Washington
B:4:P1 .NT M981 L5 3,7 Washington
B:5:1.7, 1 M992 L6 Washington
B:9:P1.7, 1 6155 L7 3, 8 Washington
B:8:P1.7, 1 M978 L8 3, 4, 7 Washington
A:21:P1.10 120M L9 6, 8 Washington
A:21 :P1? 7882, A39 L10 8 Washington
A:21:P1.10 7889, A44 L11 Washington
A:21:P1.NT 7897, A42 L12 Washington

Table 2.1 .b N. meningitidis strains
Strain Code Origin

B:NT:NT l&l, 99-760 Scotland

B:15:NT l&l B15 Scotland

B:14:P1.16 B14, ICE99 Iceland

B;15:P1.16 l&l, B08, A11 England
NG:4:NT NG4 Greece

B:2a:P1.2, 1.5 STB SMPRL

C:2a:P1.2 STC SMPRL
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Table 2.2 N. lactamica strains

Phenotype CODE Geographical source
NG:NT:NT CZ1 Czech Republic
NG:NT:NT CZ2 Czech Republic
NG:NT:NT CZ3 Czech Republic
NG:NT:NT CZ4, NL7 Czech Republic
NG:NT:NT GRE162, NL6 Greece
NG:NT:NT GRE179 Greece
NG:NT:NT GRE184ns Greece
NG:NT:NT GRE184SW Greece
NG:NT:NT GRE211 Greece
NG:NT:NT GRE213 Greece
NG:NT:NT GRE213 Greece
NG:NT:NT GRE227ns Greece
NG:NT:NT GRE227sw Greece
NG:NT:NT GRE228NS Greece
NG:NT:NT GRE228SW, NL4 Greece
NG:NT:NT GRE268ns Greece
NG:NT:NT GRE268sw Greece
NG:NT:NT GRE309 Greece
NG:NT:NT GRE334 Greece
NG:NT:NT GRE359NS, NL5 Greece
NG:NT:NT GRE359SW Greece
NG:NT:NT GRE409 Greece
NG:NT:NT GRE534 Greece
NG:NT:NT GRE538 Greece
NG:NT:NT GRE619ns Greece
NG:NT:NT GRE619sw Greece
NG:NT:NT GRE634ns Greece
NG:NT:NT GRE634sw Greece
NG:NT:NT GRE806 Greece
NG:NT:NT GRE854ns Greece
NG:NT:NT GRE854SW Greece
NG:NT:NT ICE, NL3 Iceland
NG:NT:NT l&l SCO 1751 Scotland
NG:NT:NT l&l NL1 Scotland
NG:NT:NT l&l SC01567 Scotland
NG:NT:NT l&l SC01568L Scotland
NG:NT:NT l&l SC01568S Scotland
NG:NT:NT l&l SC0318 Scotland
NG:NT:NT l&l SCO390 Scotland
NG:NT:NT l&l SC0393 Scotland
NG:NT:NT l&l SC0395NS Scotland
NG:NT:NT l&l SC0395SW Scotland
NG:NT:NT l&l Sco99/248F, NL2 Scotland
NG:NT:NT l&l Sco99/141, NL8 Scotland
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2.9 Procedure for handling adherent cell lines and cell lines in suspension

Products of human and animal origin are potential biohazards. Growth media were

prepared by adding aseptically appropriate amounts of supplements to basal media.

Sterility was checked by suspending 2 ml of medium in 50 ml nutrient broth in glass
bottles (SNBTS), followed by incubation overnight aerobically at 37°C and plating 1

ml of the broth onto nutrient agar to detect contamination. If there was concern that

sterility was compromised during cell culture procedures, media were sterilised by
filtration using a 0.22 pm filter.

2.9.1 Thawing frozen cultures

Cell lines were obtained from the European Collection of Animal Cell Cultures

(ECACC, UK) (Table 2.3). Gloves were worn while handling frozen ampoules
stored in the gaseous phase of liquid nitrogen. Eye and face protection was used

throughout to avoid injury due to the risk of ampoules exploding during thawing.

Table 2.3 Cell lines
Name Description Source

Number
L929 Mouse C3H/An areolar and adipose tissue, fibroblasts 85103115

CB2400
THP 1 Human monocytic leukaemia, monocyte 88081201

Lot 98/K/018
Bristol 8 Human B lymphocyte 85011436

CB2452

Ampoules were kept at room temperature briefly and transferred to a 37°C water

bath for 2 min until fully thawed. The outside of the ampoule was disinfected with a

tissue soaked in ethanol (70 %, v/v) and the contents of the vials were slowly

pipetted into 30 ml pre-warmed (37°C) medium supplemented with foetal calf serum

(FCS) (10%, v/v), penicillin (100 U ml"1), streptomycin (100 pg ml"1), and L-

glutamine (ImM) (PSG, Sigma). The suspension was split into halves and each part
transferred into a sterile cell culture flasks (Nunc) with an effective growth area of 75
cm2 and incubated in a humidified atmosphere with 5 % (v/v) CO2. Every 2-3 days
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medium was partly exchanged by replacing 10 ml with fresh pre-warmed medium
until approximately 70% confluent growth was achieved.

2.9.2 Culture of adherent cells

To split cells that had reached confluence of 70-80 %, the medium was decanted, the

cell sheet washed twice in pre-warmed (37°C) sterile PBS, and cells were incubated
with 2 ml of pre-warmed porcine trypsin (0.5 g f1)/ EDTA (0.2 g l"1) (Sigma) or
EDTA (0.2 g f1 EDTA 4Na in HBSS) alone (Sigma) at 37°C for a maximum of 10
min until all cells detached. Alternatively, cells were carefully scraped with a sterile
cell scraper (Greiner). Cells were resuspended in pre-warmed medium at the

appropriate cell densities and cultured.

2.9.3 Culture of non-adherent cells

Once the cell culture reached a density of 5 x 103 cells ml"1, the cell suspension was

decanted carefully into 25 ml sterile pyrogen free universal tubes (Greiner) and

centriguged at 100 x g for 5 min. The cells were suspended in one part current

medium and 2 parts of fresh medium to a final recommended cell density (THP-1

cells, 2x105 - 9x105) and grown in tissue culture flasks as described above.

2.9.4 Freezing cells

Cells were harvested, centrifuged at 100 x g for 5 min and the pellet washed once in
medium omitting antibiotics. The pellet was re-suspended in heat inactivated foetal
calf serum (FCS) and transferred into an equal volume of 80 % (v/v) FCS and 20 %

(v/v) cryopreservant dimethyl sulphoxide (DMSO, Sigma) in cryovials (Greiner).
Vials were placed into an iso-propanol freezing box (Nalgene) and frozen at a rate of
1-3°C min"1 in a -70°C freezer overnight. Vials were transferred into the gaseous

phase of liquid nitrogen.
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2.10 Extraction of LOS

LOS was extracted by the hot phenol water method of Westphal & Luderitz [1954]

as described by Hancock & Poxton [1988].

2.10.1 Hot phenol water method

Bacteria grown on HBA were harvested, washed in sterile pyrogen free PBS,

centrifuged at 1000 x g, re-suspended in pyrogen-free distilled water and aliquots
were kept frozen (-70°C). The bacteria were freeze-dried and re-suspended in

pyrogen free water (5%, w/v). The cell suspension was heated to 67° C in a water

bath, and an equal amount of pre-warmed (67° C) phenol (90%, w/v) (Sigma)
dissolved in pyrogen free water was added in a fume cabinet. The cells were

incubated for 30 min at 67° C and transferred to an ice bath. The phenol-soluble

protein and cell fragments were removed from the water-soluble LOS by ultra-

centrifugation at 10,000 x g. The top aqueous solution was carefully removed and

dialysed against tap water for 18 h in a 2 kDa permeable membrane (Spectra Por)

(Fisher). The contents of the dialysis membrane were centrifuged for 4 h at 100,000
x g. The pellet was recovered, frozen at -70° C and freeze-dried. The purified LOS
contained protein contamination of <1% (w/w) as assessed (2.10.2) against a

standard of bovine serum albumin (BSA) (Sigma). The LOS was re-suspended in
RPMI-1640 medium (Sigma), and filtered through a 0.22 pm membrane filter.

Aliquots were stored at -70° C and two samples from each batch were incubated in
normal nutrient broth (1 ml) (SNBTS) at 37° C for 18 h to test for sterility.

2.10.2 Protein assay

The Bradford reagent contained Coomassie blue G250 (0.01%, w/v) (Sigma), ethanol

(4.7% v/v) and phosphoric acid (8.5%, w/v) (BDH) in pyrogen-free distilled water.

The solution was filtered through Whatman No. 1 filter paper prior to use.

Serial dilutions of BSA (0.01 pg ml"1 to 1 mg ml"1) (Sigma) and freeze-dried LOS
stock were dissolved in sterile distilled water. Each solution was mixed with
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Bradford reagent at a ratio of 1 to 5 and incubated at room temperature for 5 min.
The absorbance of the solution was measured at OD595 using distilled water as a

blank. The amount of the protein contamination (pg ml"1) was calculated by

comparing the absorbance value of the LOS samples with the absorbance values of
the BSA protein standard [modified from Bradford, 1976].

2.11 Immune mouse sera

N. lactamica strain NL1 or N. meningitidis immunotype strain L3 (B:2a:P1.5,2) were

killed by heating for 60 min at 100°C. Individual strains (109 bacteria , 100 pi) were

injected in adjuvant free and pyrogen free saline (SIGMA) into the tail vein of three
six week old male BALB/c mice. Eight consecutive injections were given allowing
the mice to rest for three weeks between each injection. The final injection was LOS

(10 ng ml"1) obtained from the corresponding strain (2.10) dissolved in adjuvant free
and pyrogen free saline [Yount et al., 1968; Harlow & Lane, 1988],

Antibodies to the bacterial strains in samples collected prior to immunisation and

samples collected 24 h prior to the final injection were assessed by whole cell ELISA
as detailed in chapter 6. Three days after the final injection, blood was collected

aseptically by cardiac puncture, allowed to clot, centrifuged at 500 x g for 15 min at

4°C. The supernatant was collected and diluted in pyrogen free saline (1 in 100).

Complement was inactivated by heat treatment (56°C for 30 min) and the sera were

stored in aliquots (1 ml) at -70°C. Antibodies (IgG) to the bacteria were assessed by
whole cell ELISA (5.2.4). The production of antibodies was covered by an animal
licence obtained from the British Home Office.

2.12 Analysis of surface antigens and ingested bacteria by confocal microscopy

Cell suspensions (50 pi) of test and control samples were added to clean microscope
slides (Menzel), and a glass cover slide was carefully placed to avoid air bubbles.
The sides of the coverslip were sealed with clear nail polish (Boots) and allowed to

air dry in the dark at RT. The samples were kept in the dark for not more than 24
hours before being analysed by confocal microscopy (Dr. J. Bard, Department of
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Anatomy, University of Edinburgh Medical School). Magnifications used were 1,000

x using water immersion fluorescence and dark field lenses. Sections of 0.9-1.2 pm

were used to build up a three dimensional image of the stained cell. Compensation
was used to account for wavelength interference for samples in which two different
colour stains were used. Images were analysed by Imaging for MS-Windows and
Adobe Photoshop 3.0 for Apple Macintosh computers. Slides and photographic hard

copies were produced by the Department for Medical Illustrations, University of

Edinburgh Medical School.

2.13 General flow cytometric method for cell surface and intracellular staining

analysis

2.13.1 Optimising flow cytometric procedures

Initial optimisation of the assay procedures required the assessment optimal working
dilutions. Although the manufacturer's recommended dilution or previously

published dilutions for the reagents were used as a guideline, each batch of
antibodies was assessed for optimal working dilutions [Robinson, 1993; Lenkei et

al., 1998; Serke et al., 1998; Smith & Ellis, 1999; Horsburgh et al., 2000]. Two-fold
dilutions of the antibody were prepared in PBS above and below the recommended
dilution and were used in a standard single colour flow cytometry assay using a

known positive cell line or bacterial strains reported to express a particular antigen.
The analysis of fluorescence histograms showed a range of percentages of positive
cells in the different populations (two percent of background method) and
fluorescence intensities (Mnl). The optimal titre was selected by comparing these
two parameters against published literature.The optimal assay conditions for each

antibody and cell type were used throughout. To avoid release of bound antibody
from the cell surface or loss of fluorescence, all cells samples were fixed in

paraformaldehyde (2%, w/v) and were kept in the dark on ice for not more that 60
min until analysed with an Epics XL flow cytometer (Coulter, Luton).

Directly conjugated primary antibodies were analysed using the appropriate class of

immunoglobulin (i.e. non-specific iso-matched fluorochrome-conjugated mouse IgG
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when antibodies raised in mice were used) as a negative control. A distinctive cell

population with a fluorescence greater than the control (>2%) was considered to be

positive. If the fluorescence of the control was >5% of the auto fluorescence of cells

alone, the data were rejected and the experiment repeated due to high non-specific

binding of the secondary antibody. A blocking solution containing PBS and bovine
serum albumin (BSA) (1%, w/v) (Sigma) was then used throughout the staining

procedure. Mean fluorescence intensity (MnXI, MnYI), the mean fluorescence

(MnX, MnY), the median (MdX, MdY), the standard deviation of the appropriate
cell population, and the percentage of fluorescent cells (F %) were recorded (Figure

2.2).

Figure 2.2 Analysis of THP1 cells on a forward and side scatter histogram:
The population on the right (A) contains THP-1 cells, the population on the
left (B) cell debris and un-bound bacteria. Fluorescence alignment beads
(marked by arrow)
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2.13.2 Flow cytometry analysis sample preparation

The cell samples were kept in the dark on ice for not more that 60 min until analysed.
The EPICS XL flow cytometer contained an air-cooled 15 MW argon laser operating
at 488 nm, and an air-cooled 10 MW helium-neon laser operating at 633 nm.

Forward angle light scatter detection was measured via a split photo diode detector,
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while right angle light scatter and fluorescence was measured by four photo-

multiplier tubes with a spectral range from 200 to 800 nm, and dichroic splitting and

bandpass filters. Not less that 5,000 events were sorted (Region A) by size and

granularity using graphical logarithmic forward scatter (logFS) and graphical

logarithmic side scatter (logSS) respectively.

Prior to analysis, the flow cytometer was aligned to avoid day to day variation in
laser strength, gating, or channel settings. Fluorescence alignment beads (10 pi

containing 5x 106 beads) (ImmunoCheck, Coulter) were added to 1 ml PBS and
vortexed. Samples were gated on a forward light scatter (logFS) and side light scatter

(logSS) and quantified by exciting the fluorochromes embedded within the beads
with an argon laser operating at 488 nm. The emitted green fluorescence of the beads
was measured between 505 and 545 nm (logFLl) and for red fluorescence between
595 and 645 (logFL3). The mean fluorescence intensity (Mnl) of the beads was

adjusted daily to a signal reading of 500. After each reading session the EPICS XL
was cleaned using reagents provided by Coulter.

Compensation was used to account for wavelength interference in two colour stains.
In two colour assays, fluorescein isothiocyanate (FITC) (green) or R-phycoerythrin

(PE, R-PE) (red) wavelength interference can be reduced by subtracting the green

fluorescence (FITC) from the red (PE) in a logFLl, logFL2 (logFL3 for PI)

histogram. The compensation was set to a red fluorescence of less than 1%. All

settings of laser strength and compensation were recorded for future references.

2.13.3 Guidelines for identification of positive and negative samples

Flow cytometry was used to assess the expression of cell surface antigens on bacteria

(Chapter 5), on eukaryotic cells (Chapter 6) and the quantitative enumeration of

ingested or bound bacteria in phagocytosis assays (Chapter 7).

Several models can be used for the analysis of histograms including: the channel-by-
channel subtraction method; cumulative subtraction and maximum positive
difference methods; the two-percent-of-background method; and the relative mean
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fluorescence intensity analysis [Lampariello & Aiello, 1998]. The most commonly
used methods are the "two-percent-of-background" method and the "relative-mean-

fluorescence-intensity" methods and were used in this study.

2.13.3.1 Two-percent-of-background method

This method is based on the assumption that the primary monoclonal antibodies used
are specific for the epitope to be investigated. The use of polyclonal antibodies does
not allow the detection of a single epitope, but of an antigen that might possess more

than one epitope to be investigated. Secondly, the epitope must be accessible,
otherwise pre-treatment with biological (i.e., enzymes) or chemical (i.e., ethanol)

reagents is needed to make the cell membrane permeable to the antibodies. This
method assumes that each epitope is occupied by an antibody or the true expression
of the antigen would be under-estimated. The affinity of the secondary conjugated

antibody (sandwich method) must ensure that all primary antibodies are recognised

by the secondary antibody. The secondary antibody must not cross-react with non¬

specific epitopes on the cell surface in greater numbers than the number of primary
antibodies bound to specific antibodies.

Each sample requires of a positive and a negative control. The negative control for

conjugated-primary antibodies consists of iso-antibodies, i.e., FITC-labelled mouse

IgGl antibodies if the primary antibody is of mouse IgGl origin. Using a sandwich

method, the negative control consists of cells incubated with the conjugated

secondary antibody in the absence of the primary antibody. In both cases, this

negative control is assessed for fluorescence. This population is gated for a region
that contains less than 2% of the total events (Figure 2.5). Measuring the sample
incubated with the conjugated primary or un-conjugated primary and conjugated

secondary antibody identifies the positive population (>2%) (Figure 2.5). A more

stringent definition was applied in Chapter 5, where a population showing less than
5% was considered as borderline and scored as not expressing the epitope or antigen.
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2.13.3.2 Relative mean fluorescence intensity method

By converting the geometric mean of the fluorescence signal (logFLl) into units of
relative fluorescence, the mean fluorescence intensity (Mnl) can be calculated. The
relative Mnl in relation to fluorescence standard beads (Immunocheck, Coulter)
allowed the expression of fluorescence intensity in units of bound fluorochrome

[Gratama et al., 1998]. This method is based on the assumption that the affinity of
the secondary conjugated antibody, if any, must ensure that all primary antibodies
bind an equal number of secondary antibodies. Otherwise multiple binding of

secondary antibodies to the primary antibody would result in over-estimation of the

antigen present. Calculation of the percentage of positive cells in a population from
the two-percent-of-background method with the Mnl allows an accurate semi¬

quantitative enumeration of antigen present. In addition to assessment of cell surface
markers, this method could be used to assess quantitative phagocytosis described in

Chapter 7.
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Figure 2.5 Forward and side scatter histogram of red blood cells stained with
(a) FITC-labelled anti-mouse IgM, (b) anti-paragloboside (mouse IgM) and
FITC-labelled anti-mouse IgM;
the corresponding FITC-histograms of the two populations are shown in c
and d, respectively

a. Z0041565.LMD Negative CONTROL b. Z0041603.LMD POSITIVE SAMPLE

c. File: Z0041565.H02 Total Events 62873

System: Log Parameter Means: Geometric
Param Low,High Events %Total %Gated
FITC 145,1000 1221 1.94 1.94
GMean CV Peak,Value BI
5.01 42.09 59, 3.75162 10.7

d. File: Z0041603.H02 Total Events 14412

System: Log Parameter Means: Geometric
Param M Low,High Events %Total %Gated
FITC 1 145,1000 13849 96.09 96.09
GMean CV Peak,Value BI
20.08 26.66 82,15.9634 2335
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Chapter 3 Assessment of the antigenic cross-reactivity between Neisseria
lactamica and N. meningitidis

3.1 Introduction

Carriage of both non-serogroupable and groupable strains of meningococci is
considered to be an important factor in the development of natural immunity to

meningococcal outbreak strains [Goldschneider et al., 1969; Reller et al., 1973;
Turner & Hendley, 1982; Ross et al., 1985], There is evidence that carriage of
another member of the genus Neisseria, the non-pathogenic commensal N. lactamica

(NL), coincides with a progressive increase in the level of natural immunity against

meningococci [Coen et al., 2000]. Between 5-59% of children under the age of four
have been reported to be carriers of NL, and their carrier status was linked to an

increase in bactericidal antibodies against meningococci [Gold et al., 1978].

It has not been established which epitopes are responsible for the induction of
antibodies that are cross-reactive between NL and other Neisseria species. Some
OMP ofNL were reported to share homology with meningococcal OMPs [Troncoso
et al., 2000]. Carriage of NL does not, however, induce significant production of
either IgG or IgM to OMP derived from meningococcal strains causing disease in
Greece [Kremastinou et al., 1999a]. Very few NL strains react with monoclonal
antibodies used for serotyping and subtyping [Kremastinou et al., 1999b; Zorgani et

al., 1996], and several studies have reported that NL is not serogroupable using anti-

capsular sera [Kim et al., 1989; Zorgani et al., 1996],

The most promising candidate for cross-reactive antigens is the LOS structure ofNM
and NL. Kim and colleagues [1989] identified common epitopes on meningococcal

immunotypes LI, L(3,7,9), L4, L8, L10 and Lll and some strains of NL. The

immunotype L(3,7,9) is isolated most frequently from patients with meningococcal
disease (>90%) compared with other immunotypes which were found primarily

among carriers [Jones et al., 1992; Romero & Outschoorn, 1994], This homology
between immunotype L(3,7,9) LOS from NM and some NL isolates and the
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observation that high levels of antibodies to NL strains were associated with the

killing of serogroupable strains of meningococci [Zorgani et al., 1996] suggest the
endotoxin of these bacteria might be one of the antigens that induces protective
antibodies against disease causing strains.

The objective of this part of the study was to investigate NL isolates from different

European countries for their ability to absorb bactericidal antibodies to

meningococcal strains of different immunotypes.
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3.2 Materials and Methods

3.2.1 Bacterial strains

Standard immunotype strains of meningococci LI-LI2 were obtained from Dr. W.

D. Zollinger, Washington D.C (Table 2.1). NL isolates used in this part of the study
were obtained from Scotland (NL1 and NL2), the Czech Republic (NL7), Iceland

(NL3) and Greece; (NL4, NL5 and NL6).

3.2.2 Bactericidal Assay

The microtitre plate method described by Zorgani et al. [1996] was used to screen for
bactericidal activity.

3.2.2.1 Serum source

A pool was prepared with serum from eight healthy adult donors with no known

history of meningococcal disease. None of the donors had been vaccinated with the
new conjugate meningococcal group C vaccine or had taken antibiotics within the
two weeks before collection of the blood sample. One donor had received the A/C

polysaccharide vaccine. The pool was inactivated at 56°C for 30 min, divided into

aliquots which were absorbed twice at 4°C overnight with viable individual strains of
NL (1010 bacteria ml"1), centrifuged at 1000 x g and filter sterilised using a 0.22 prn

membrane (Nu-flow, Oxoid). Aliquots of the absorbed sera were tested for sterility
and stored at -70°C.

3.2.2.2 Complement Source

The complement source was prepared from a blood sample from a healthy adult
volunteer with no known history of meningococcal disease. Serum was

supplemented with ImM EDTA to stabilise the complement activity and to ensure

the bactericidal activity observed reflected the classical antibody-mediated

complement killing and not the alternative pathway. The serum was absorbed twice
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with a pool of the meningococcal test strains grown overnight at 37°C in a

humidified atmosphere with 5% (v/v) C02 on human blood agar HBA. The absorbed

serum was filter sterilised through a 0.22 pm membrane. The complement source

was tested for sterility and stored in aliquots (50 pi) at -70°C. Complement titres
were assessed with sensitised sheep red blood cells and used in the assays at a

dilution of 1 in 16 (2.7).

3.2.2.3 Bacterial cultures

Cultures were grown overnight at 37°C on HBA, washed twice in PBS by

centrifugation at 2000 x g. The total count for each strain was determined

microscopically with a Thoma counting chamber and adjusted to approximately 103
colony forming units (cfu) per ml in sterile D-PBS containing MgCl2 (0.5 mM),

CaCl2 (0.9 mM) and glucose (0.1%, w/v) (Sigma) (pH 7.2).

3.2.2.4 Bactericidal assay

Triplicate samples containing equal volumes (40pl) of the test strain (approximately
400 cfiiAvell) and the heat inactivated serum pool were incubated with 20 pi of the

complement source for 30 min in sterile U-bottomed 96 well microtitre plates. Three

drops (10 pi) from each sample well were placed on HBA plates which had been
dried for 48 hours at room temperature. The plates were incubated overnight at

37°C, the mean cfu recorded and used to calculate the serum bactericidal activity.

Each assay included two controls: 1) bacteria + complement source + D-PBS but no

serum; 2) bacteria + heat inactivated complement source + absorbed or unabsorbed
heat inactivated serum pool.

The absorbed and unabsorbed pools were tested in parallel and the bactericidal

activity of the absorbed and unabsorbed pools were compared. Compared with
results obtained with the unabsorbed serum, reduction in bactericidal killing > 80%

with the absorbed serum was taken as evidence that the NL strain absorbed

significant levels of bactericidal activity.
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3.3 Results

In three independent experiments, the absorbed and unabsorbed pools were tested for
bactericidal activity against 7 isolates of NL from the following countries: Scotland

(2); Iceland (1); the Czech Republic (1); and Greece (3) (Table 3.1). The results
obtained were consistent in each of the experiments. Eighteen NM isolates, including
the twelve immunotype reference strains, were also tested in the bactericidal assays

(Table 3.2). The unabsorbed pool killed all the strains tested; the cfu of each strain
was reduced by > 80% that of their respective controls.

3.3.1 NL1 (Scotland)

Bactericidal activity against the following NL strains was absorbed by NL1: NL2
from Scotland; NL3 from Iceland; NL4 and NL5 from Greece; NL7 from the Czech

Republic. One strain from Greece (NL6) was killed by the absorbed sera.

Bactericidal activity against the following NM strains was absorbed by NL1:

immunotype reference strains C:NT:P1.2:L1,8, B:2a:P1.5,1.2:L3, C:11:P1.16:L4,
B:4:P1.NT:L5, B:9:P1.1:L7, B:8,19:P1.7:L8, and A:21:P1.10:L9; B:15:P1.16 from

England; B:15:P1.16 from Iceland; B:NT:NT, B:15:NT, from Scotland; B:2a:P1.2
from Greece.

3.3.2 NL7 (Czech Republic)

Bactericidal activity against the following NL strains was absorbed by NL7: NL1
from Scotland; NL3 from Iceland. Bactericidal activity against the following NM
strains was absorbed by NL7: immunotype reference strains C:NT:P1.2:L1,8,
C:2c:Pl.l:L2, B:5:1.7,l:L6, B:9:P1.1:L7, and B:8,19:P1.7:L8; B:15:NT and

B:NT:NT from Scotland; and NG:4:NT from Greece. All other strains were killed

by the absorbed serum pool.

3.3.3 NL3 (Iceland)

Bactericidal activity against the following NL strains was absorbed by NL3: NL1
and NL2 from Scotland; NL7 from the Czech Republic. Bactericidal activity against
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the following NM strains was absorbed by NL3: immunotype reference strains

C:2c:Pl.l:L2, B:5:P1.7,1:L6, and B:9:P1.1:L7; B:15:NT and B:NT:NT from

Scotland; NG:4:NT from Greece.

3.3.4 NL6 (Greece)

Bactericidal activity against NL4 one of the other Greek isolates, was absorbed by
NL6. Bactericidal activity against the following meningococcal isolates was

absorbed by NL6: immunotype reference strain B9:P1.1:L7; and the Greek carrier
isolate NG:4:NT. All other strains were killed by the unabsorbed and the absorbed
serum pools.

Table 3.1 Absorption of bactericidal antibodies of adult human pooled serum
by N. lactamica
Phenotype Origin NL1 NL6 NL7 NL3
NG:NT:NT Scotland NL1 + - + +

NG:NT:NT Scotland NL2 + - - +

NG:NT:NT Iceland NL3 + - + +

NG:NT:NT Greece NL4 + + - -

NG:NT:NT Greece NL5 + - - -

NG:NT:NT Greece NL6 - + - -

NG:NT:NT Czech Republic NL7 + - + +

Table 3.2 Absorption of bactericidal activity against meningococcal strains by
N. lactamica isolates from different parts of Europe

Phenotype Origin NL1 NL6 NL7 NL3
B: 15:P1.7,16 England + - - -

C:2a:P1.2 Greece + - - -

NG:4:NT Greece - + + +

B;15:P1.7,16 Iceland + - - -

B:15:NT Scotland + - + +

B:NT:NT Scotland + - + +

C:NT:P1.2: L1,8 USA + - + -

C:2c:P1.1: L2 USA - - + +

B:2a:P1.5,1.2:L3 USA + - - -

C:11: P1.16; L4 USA + - - -

B:4:P1.NT:L5 USA + - - -

B:5:1.7,1 :L6 USA - - + +

B:9:P1.1 :L7 USA + + + +

B:8,19:P1.7:L8 USA + - + -

A:21: P1.10; L9 USA + - - -
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3.4. Discussion:

3.4.1 Diversity of NL isolates

NL strains from countries of northern, central and southern Europe showed
variations in their ability to absorb bactericidal antibodies against different strains of
NM. These findings suggest that NL strains in different areas of Europe are

phenotypically and genetically diverse, as has been demonstrated for meningococcal
strains [Tzanakaki et al., 1993, 1997; Krizova et al., 1996, Caugant et ah, 1994],

The Scottish strain NL1 and the Icelandic strain NL3 had similar absorption patterns.

The NL7 strain from the Czech Republic showed some homology with these two

strains, but the strains from north and central Europe differed markedly from the
Greek isolates tested (Table 3.1). NL1 absorbed bactericidal activity against a broad

range of meningococcal strains tested. The NL3 strain from Iceland and the NL7
strain from the Czech Republic gave similar results, while the Greek isolate NL6
showed little cross reactivity.

The findings of phenotypic heterogenicity ofNL isolated from different geographic

regions were consistent with those of Kim et al. [1989] who showed antigenic

variability and different binding patterns for monoclonal antibodies against

meningococcal immunotypes among NL strains isolated from the People's Republic
ofChina, Africa and Romania.

While the pooled human serum was able to kill all of the NL and NM strains tested,
the targets of the bactericidal antibodies were unknown. Although the initial

hypothesis that NL might play an important role in the acquisition of natural

immunity to meningococci was supported, the absorption studies provide evidence
that carriage ofmore than one strain is probably required to develop a broad range of
cross-reactive antibodies to meningococci. These findings are consistent with

preliminary observations by Bennett et al. [2000] who showed that infants carried

genetically different strains ofNL.
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3.4.2 Conditions for the bactericidal assay

Several studies on the bactericidal activity of normal human serum found that the
choice of complement source affected bactericidal killing [Zollinger et al. 1983].
While baby rabbit complement has been successfully used in several studies [WHO,

1976; Maslanka et al., 1997], Craven et al. [1982] showed that the complement
source affected the results obtained. Human complement induced killing of only
some meningococcal strains, but the use of heat inactivated human serum with baby
rabbit complement killed all meningococcal strains tested. A human complement
source was used in these studies to try to keep the conditions as similar as possible to

those in vivo.

Growth conditions were also reported to affect the colony morphology of group B

meningococci due to increased capsular expression [Masson & Holbein, 1985] as

well as accessibility of OMP and variation in LOS phenotypes [Poolman et al.,

1985], Meningococci grown in stationary phase express longer chain LOS, probably
due to its sialylation compared to strains grown in log phase. It has been suggested
that outer membrane antigens were more exposed to typing antibodies in strains

grown in stationary phase [Poolman et al., 1985], Most standard bactericidal assays
used strains grown in exponential phase [Anderson et al., 1987, 1988; Maslanka et

al., 1997]. Although it is impossible to mimic growth conditions found during oro-

pharyngal carriage, all strains were harvested in stationary phase to reflect more

closely the phenotype ofNeisseria species during carriage.

3.4.3 Cross reactive antigens

3.4.3.1 Capsule

Capsular antigens are unlikely to be the source of cross reactivity. NL are non-

capsulate, and several studies have reported that NL is not serogroupable using anti-

capsular typing sera [Kim et al., 1989; Zorgani et al., 1996; Kremastinou et al.,

1999a]. None of the NL strains used for absorption reacted with anti-capsular

polyclonal typing sera (Gibco) for serogroups A, B or C. The absorption of
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bactericidal antibodies by NL was independent of the serogroup of the test strains of

meningococci.

3.4.3.2 OMP antigens

Normal human serum usually contains IgG antibodies to OMP antigens used for the

serotyping and subtyping of meningococci [Poolman & Zanen, 1980], but none of
the NL strains tested bound the monoclonal reagents used for typing. Although it is

possible that NL expresses epitopes homologous to meningococcal OMP not used for

serotyping, the evidence that successful absorption of bactericidal antibodies was

independent of serotype or subtype makes these OMP unlikely sources of cross
reactive antigens. Other proteins have been assessed for a role in the development of
natural immunity to meningococci: 1) transferrin binding antigens over expressed
under iron deficient growth [Ferron et al., 1992; Ferreios el al., 1994; Troncoso et al.

2000]; 2) a highly conserved surface protein of 18-22 kDa [Martin et al., 1997].

The use of complete genome sequencing to identify genetic homology and

structurally similar proteins between NM strains and NL might identify some

common OMP able to induce bactericidal antibodies and antigens responsible for the

development of natural immunity to meningococci. So far, 570 putative secreted or

surface proteins of meningococci have been identified, their corresponding DNA

sequences expressed in E. coli, and tested as vaccines in mice. Two highly conserved
OMPs were identified that were able to elicit bactericidal antibodies, but their

homology between different strains of meningococci or NL have not been
demonstrated [Pizza et al., 2000], The data from the current study suggest that more
than one NL strain would need to be assessed to identify antigens cross-reactive with
different NM phenotypes.

Carriage of meningococci was associated with detection of IgG and IgM antibodies
to OMP isolated cases of meningococcal disease in Greece. IgG antibodies to

meningococcal OMP were predominant among teenagers and young adults (military

recruits) but IgM to the meningococcal OMP were predominant among school
children. Carriage ofNL was not associated with the detection of either IgG or IgM
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antibodies to meningococcal OMP [Kremastinou et al., 1999b], These findings
indicate that in vivo carriage ofNL does not induce significant levels of IgG and IgM

against OMP ofNM strains isolated from patients with meningococcal disease.

3.4.3.3 LOS

The most promising candidates are shared LOS epitopes. The basic structure ofNM
LOS is shown in Figure 1.4. Kim et al. [1989] identified two epitopes common to

meningococcal immunotypes LI, L(3,7,9), L4, L8, L10 and Lll and some strains of
NL. The epitope that bound the D6A monoclonal antibody was shared between some

NL isolates, all serogroup A isolates tested, and some group B and C immunotypes.
None of these immunotypes had similar oligosaccharides in the G1 a chain moiety,
but these immunotypes exclusively shared a common core structure, in the G2 and
G3 regions.

So far, four main inner core structures have been identified in meningococcal LOS

(Figure 3.1, Table 1.5):

1) a glucose present at the 3rd carbon ofHepII;
2) PEA linked to the 3rd carbon ofHepII (G2);
3) PEA linked to the 6th or 7th carbon ofHepII (G3);
4) PEA and a glucose residues are absent from the inner core.

The immunotypes found on group A meningococci are not fully defined.

The PEA on the carbon 3 of the HepII core structure was also identified as a possible
source of cross reactivity among meningococcal strains. This anti-core antibody

(Mab B5) was cross reactive with most common immunotypes: LI, L3, L7 to L12

[Plested et al., 1999], Another antibody (9-2-L3,7,9) eliciting bactericidal activity

recognised the saccharide lacto-N-tetranose. Gal(3 (1 —>4) GlcNAcP (1—>-3) Gaip,
contained in the L2, L3, L4, L5, L7, and L9 immunotypes and blood group pk in
combination with the core phosphotidyl-ethanolamine at carbon 3 of HepII
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[Zollinger et al.,2000]. This combination ofG1 a chain oligosaccharide and core G2
structure is found in immunotype L(3,7,9).

Figure 3.1 Main inner core structures of meningococcal LOS [modified from
Scholten et al., 1994]

L1, L8, L(3,7,9)
core region

L4, L6
core region

L2
core region
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3.4. Conclusions

1) The results indicate that there are epitopes on NL that can absorb bactericidal

activity against other NL isolates and a variety of meningococcal phenotypes.
There are, however, variations in the ability of individualNL strains to absorb the
bactericidal activities.

2) The results highlight the need to assess stains from different geographical regions
as illustrated in previous studies on serotype and subtype characteristics of

meningococcal isolates from different areas of Europe [Tzanakaki et al., 1993;
Krizova et al., 1996],

3) Epitopes on LOS are the most likely source of cross-reactivity between NL and
NM eliciting bactericidal activity against meningococci. If carbohydrate domains
on LOS or glycoconjugate epitopes are found to be cross-reactive between the
two species, examination of the genetic homology of glycosyltransferases ofNL
and NM and other commensals might be useful.

4) If vaccine candidates were being prepared using antigens from NL to cover the

immunotype strains tested, a mixture of antigens from the NL1 strain and the
NL3 or NL7 strains would be needed.
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Chapter 4 Assessment of the role of M.catarrhalison the induction of natural

immunity to meningococcal disease

4.1 Introduction

4.1.1 Carriage of MC

In the previous chapter, NL strains from different geographic areas were

demonstrated to express a variety of antigens that absorb bactericidal activity to

some but not all strains ofmeningococci [Chapter 3]. Another commensal respiratory

species isolated much more frequently from infants and young children is Moraxella

(Branhamella) catarrhalis (MC) which is increasingly reported to play a role in
some childhood diseases [Catlin, 1990; Murphy, 1996].

During the first 6 months of life when infants are developing their immunity to

microbial flora, MC is isolated much more frequently than Neisseria species from
babies [Harrison et al.,1999](Figure 4.1).

Figure 4.1 Carriage of M. catarrhalis and Neisseria species during the first 6
months of life [adopted from Harrison et al., 1999]

carriage (months after birth)
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4.1.2 Epidemiology of MC

4.1.2.1 Classification

MC is a Gram-negative, pilate diplococcus with a diameter of 2-4 pm. It was

previously classified within the Neisseria or Branhamella genera. There is still

uncertainty about the appropriate classification ofMC. It has little genetic homology
with most Neisseria species [Catlin & Reyn, 1982], and opinion is divided if MC
should be classified within the mostly rod-shaped Moraxella [Enright & McKenzie,

1997] or within the Branhamella [Murphy, 1996].

4.1.2.2 Association with disease

MC is usually a non-pathogenic respiratory tract commensal, but it is the third most

common pathogen isolated from children with otitis media (approximately 20% of all

cases) [van Hare et al., 1987], It is also an important pathogenic agent of lower

respiratory tract infections in adults [Hager et al., 1987].

4.1.2.3 Carriage rate

In comparison with NL and meningococci, there is a much higher pharyngal carriage
rate ofMC in healthy children (average 56%) which decreases with age [Ejlertsen et

al., 1994; Faden et al., 1991]. Repeated infections and carriage with a variety ofMC
strains from an early age results in high serum IgG antibody titres within the normal

population [Goldblatt et al., 1990]. Most children were exposed to 3 - 4 different
strains ofMC [Faden et al., 1994], with colonisation rates varying between 66% of
children carrying MC within the first year of life, increasing to 77.5% in the second

year. Young adults were found to carry MC rarely [Jousimies-Somer et al., 1989].
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4.1.3 Development of immunity to NM and MC

Antigens involved in the development of natural immunity to MC are thought to be

glycoconjugates. The main virulence factors are thought to be LOS and OMP

including iron-regulated proteins [Storm et al., 1991; Murphy & Bartos, 1989].

4.1.3.1 OMP ofMC

Several OMP were recently investigated for their ability to induce protective
antibodies between different strains of MC, and one promising candidate for the
induction of cross-reactivity between strains ofMC is thought to be the ubiquitous
surface protein (UspA). This is a high molecular weight OMP complex comprised of
two different proteins with molecular masses greater than 250 kDa, UspAl and

UspA2 respectively [Aebi et al., 1997; Cope et al., 1999], Both proteins share a

common antigenic region of 140 identical amino acids recognised by monoclonal
antibodies. Molecular analysis identified an oligomeric structure of several
monomeric peptide units [Klingman & Murphy, 1994], While UspAl is associated
with adhesion of MC to human epithelial cell lines, the second high molecular

weight complex, UspA2, was found to be involved in resistance to bactericidal action
of normal human serum and can function as adhesions to human epithelial cells

[Lafontaine et al., 2000].

Both protein complexes show some functional homology with some strains of NM.

UspAl shows a high affinity for human fibronectin and vitronectin, proteins
involved in the adherence of meningococci to the epithelial surface [McMichael et

al., 1998]. Adherence of meningococci to human epithelial cell lines is partly
associated with vitronectin and fibronectin acting as bridges to the human epithelial

receptor complexes CD41/CD66 and CD51/CD66, respectively. The close functional

homology might reflect cross-reactive epitopes found on MC and NM vitronectin
and fibronectin binding proteins, Opa. There might be antigenic similarities between
these proteins which could correlate with the development of natural immunity to

meningococci in response to childhood carriage or infection with MC.
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4.1.3.2 LOS

Serological typing ofMC is based upon its LOS. All serotypes ofMC have LOS of a
similar molecular weight, about 5.5 kDa [Holme et al., 1990]. This differs greatly
from immunotypes found in meningococci and N. gonorrhoeae which have variable
sizes ofLOS, 4.1-5.0 kDa and 3-5 kDa, respectively [Schneider et al., 1984],

There are three major LOS types (A, B, and C) found in approximately 95 % of all
MC isolates identified in 61%, 29%, and 5% of isolates, respectively [Vaneechoutte
et al., 1990; Rahman & Holme, 1996; Edebrink et al., 1994, 1995, 1996; Masoud et

al., 1994]]. Lipid A is anchored in the outer membrane of the bacterial envelope
linked to KDO-I that is linked to KDO-II (Figure 4.2). A Glcp (3—>T) Glc moiety is
linked to (1—>5) KDO-I forming the backbone of all known MC immunotypes. The
LOS P-chain is linked to the 4th carbon, the a-chain to the 6th carbon of the glucose

(1—>5) KDO-1 residue. Both chains are variable in length and oligosaccharide

composition that determines the MC immunotypes. In contrast to the LOS of

meningococci (Figure 4.3), heptose is not present in the LOS of MC (Figure 4.4)

(Table 4.1) [Holme et al., 1990]. The major difference between the immunotypes of
MC is that group A and C contain GlcNAca within its P-chain, while group B

contains Glca in its place.
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Figure 4.3 Schematic structure of N. meningitidis LOS

Figure 4.4 Schematic structure of M. catarrhalis LOS
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Table4.1PrimarystructureofaandpchainsofMCLOSofMCimmunotypesA,BandC LOStype
Chain

Terminaloligosaccharides(variableregions)
Homologywithhuman oligosaccharides
HomologywithNM immunotypes

A

a

Gala(1—>4)Gal(3(1-»4)Glca(1->2)Glc(3
bloodgroup

L1,L11

P

GlcNAcu(1-*2)Glc|S

B6

a

Glca(1—>2)GlcB

P

GlcP

B7

a

Glca(1—*-2)Glcp

p

Glca(1—>2)GlcP

B8

a

Glca(1—>2)Glcp

p

Gaip(1-»4)Glca(1—>2)GlcP
Ceramidedihexoceramide
L8

B9

a

Gaip(1—>4)Glca(1->2)Glcp
Ceramidedihexoceramide
L8

p

Gaip(1-»4)Glca(1-»2)GlcP
Ceramidedihexoceramide
L8

B10

a

Gala(1-»4)Gaip(1—>4)Glca(1-»2)Glcp
pKbloodgroup

L1,L11

p

Gaip(1—>4)Glca(1—>2)Glcp
Ceramidedihexoceramide
L8

B11

a

Gala(1—>4)GaiP(1—>4)Glca(1-»2)Glcp
p^bloodgroup

L1,L11

p

Gala(1—>4)Gaip(1—>4)Glca(1-+2)GlcP
pKbloodgroup

L1,L11

C8

a

Glca(1->2)Glcp

p

Gaip(1—>4)GlcNAca(1—>2)Glcp
Paragloboside

L2,L(3,7,9),L5

C10

a

Gala(1—>4)GaiP(1—>4)Glca(1-»2)Glcp
p1^bloodgroup

L1,L11

p

Gaip(1—>4)GlcNAca(1—>-2)Glcp
Paragloboside

L2,L(3,7,9),L5

C11

a

Gala(1—>4)Gaip(1—>4)Glca(1->2)Glcp
pKbloodgroup

L1,L11

p

Gala(1—>4)Gaip(1->4)GlcNAca(1-*2)Glcp
P1bloodgroup



4.1.3.3 Phenotypic characterisation of MC and potential virulence factors

Previous studies ofMC indicate there are at least two groups of these bacteria with
different characteristics that could contribute to virulence. These were represented by
strains MCI and MC2. MCI grew on modified New York City (MNYC) medium,
was serum resistant and bound in greater numbers to the Hep-2 cell line infected with

respiratory syncytial virus (RSV). MC2 was sensitive to the selective antibiotics in
MNYC (colistin, lincomycin, trimethoprim), serum sensitive and bound in

significantly lower numbers to RSV-infected cells [El Ahmer et al., 1996, 2000].

4.1.4 Serum resistance as a virulence factor ofNM and MC

Protective immunity against meningococcal disease is associated with the presence

of serum antibodies against the invading strain [Goldschneider et al., 1969], The

importance of functional complement mediated and opsonising activity is thought to
be crucial. Evasion of bactericidal killing by NM includes expression of capsular

antigen [Kahler et al., 1998], and sialylation of LOS [Vogel et al., 1996; Klein et al.,

1996; Estabrook et al., 1997]. Both mechanisms were associated with reduced

binding of antibodies, opsonins, and complement [McNeil et al., 1994; Read et al.,

1996] and are major virulence factors of NM [Jones et al., 1992]. MC does not

express a polysaccharide capsule; therefore, other factors must contribute to the

ability of some MC to resist complement mediated killing. The UspA2 and another

protein the 81 kDa CopB are associated with serum resistance [Helminen et al.,

1993]. As has been noted for meningococcal LOS, sialylation of terminal galactose
moieties in MC LOS by exogenous sialyl-transferases might contribute to increased
virulence.

The objective of this part of the study was to determine if MC of the two types

represented by strain MCI and MC2 expressed antigens cross-reactive with those on

meningococci as reflected in their abilities to absorb bactericidal activity against NM

isolates, immunotype reference strains and NL strains from different regions of

Europe.
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4.2 Materials and methods

4.2.1 Bacterial strains

In addition to the meningococcal strains tested in Chapter 3, additional isolates were

included from our culture collection. The strains ofMC and NL used in Chapter 3
were also examined in these experiments.

4.2.2 Bactericidal assay

The microtitre plate method described in Chapter 3 was used. A human complement
source absorbed with a pool of the strains to be tested in the bactericidal assay was

prepared as outlined in 3.2.

4.2.3 Bacterial cultures

Cultures were grown overnight at 37°C on HBA, washed twice in PBS by

centrifugation at 2000 x g and adjusted to 104 colony forming units (cfu) per ml in
sterile D-PBS, containing MgCl2 (0.5 mM), CaCl2 (0.9 mM) and glucose (0.1%

w/v) (Sigma) (pH 7.2).

4.2.3 Assessment of bactericidal activity

The unabsorbed pool of human serum and aliquots of the pool absorbed with MCI or
MC2 were tested in parallel and the bactericidal activity of the absorbed and
unabsorbed pools were compared. Compared with results obtained with the
unabsorbed control serum, reduction in bactericidal killing > 80% by the absorbed
serum was taken as evidence that the MC strain bound significant levels of
antibodies with bactericidal activity.

4.2.4 Statistical analyses:

The chi square test with Yates correction was used to compare the numbers of strains
for which bactericidal activity was absorbed by MCI and MC2 [Gardiner, 1997],
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4.3 Results

The unabsorbed serum pool killed all strains tested (>80 % killing).

4.3.1 MCI

In three independent experiments, MCI absorbed bactericidal activity against MC2
and MC3 but not the other two MC isolates tested. It absorbed bactericidal activity

against NL3 from Iceland and NL4 and NL5 from Greece (Table 4.2). MCI
absorbed bactericidal activity against 13/30 (43%) meningococcal isolates tested:

immunotype reference strains LI, L4, L5, and L9 (Table 4.3); B:15:P1.7,16 from

England; B:15:P1.7,16 and C:4:P1.15 from Iceland; B:2a:P1.2, B:15:NT and
B:NT:NT from Scotland; B:2a:1.2, B:NT:P1.9 and B:4:P1.15 from Greece (Table

4.4).

4.3.2 MC2

In three independent experiments, MC2 absorbed bactericidal activity against MCI,
the Greek NL4 and NL8 from Scotland (Table 4.2). It absorbed bactericidal activity

against 5/30 (17%) meningococcal strains tested: B:2a:P1.2, and B:NT:NT from

Scotland; B:2a:P1.2, B:NT:P1.9 and B:4:P1.15 from Greece. All the immunotype
reference strains were killed by the sera absorbed with MC2 (Tables 4.3 and 4.4).

Table 4.2 Absorption of bactericidal activity against MC and NL isolates by
MC1 and MC2 (results of 3 independent experiments)

Code Source MC1 MC2
MC1 Scotland + +

MC2 Scotland + +

MC3 Scotland + -

MC4 Scotland - -

MC5 Scotland - -

NL1 Scotland - -

NL2 Scotland - -

NL8 Scotland - +

NL3 Iceland + -

NL4 Greece + +

NL5 Greece + -

NL6 Greece - -

NL7 Czech Republic - -

+ Reduction in bactericidal activity >80% compared with the unabsorbed pool
- Reduction in bactericidal activity < 80% compared with the unabsorbed pool
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Table 4.3 Absorption of bactericidal activity against meningococcal
immunotype reference strains by MC1 or MC2 (results of 3 independent
experiments)
Phenotype LOS oligosaccharide a chain MC1 MC2
C:NT:P1.2: L1 NeuNAcot (2—3) Gala (1—4) Gaip (1—4) Glcp + -

C:2c:P1.1 :L2 (2—>3) Gaip (1—>4) GlcNAcp (1—3) Gaip (1—4) Glcp - -

B:2a:P1.5,2:L3 NeuNAca (2—3) Gaip (1—4) GlcNAcp (1—3) Gaip (1—4) Glcp - -

C:11:P1.16:L4 (2—3) Gaip (1—>4) GlcNAcp (1—3) Gaip (1—4) Glcp + -

B:4:P1.NT:L5 (2—3) Gaip (1—4) GlcNAcp (1—>3) Gaip (1—4) Glcp + -

B:5:P1.7,1:L6 NeuNAca (2—3) GalNAcp (1—3) Gala (1—4) Glcp - -

B:9:P1.7,1:L7 Gaip (1—4) GlcNAcp (1—3) Gaip (1—4) Glcp - -

B:8,19:P1.7,1:L8 NeuNAca (2—3) Gaip (1—4) Glcp - -

A:21:P1.1.10:L9 Gaip (1—4) GlcNAcp (1—3) Gaip (1—4) Glcp + -

A:21:P1.10:L10 Gaip (1—4) GlcNAcp (1—3) Gaip (1—4) Glcp - -

A:21:P1.10:L11 Gaip (1—4) Gaip (1—4) Glcp - -

A:21:P1.NT:L12 - -

+ Reduction in bactericidal activity >80% compared with the unabsorbed pool
- Reduction in bactericidal activity < 80% compared with the unabsorbed pool
Meningococcal immunotypes are highlighted in red.

Table 4.4 Absorption of bactericidal activity against meningococcal isolates
from different geographic regions by MC1 or MC2 (results of 3 independent
experiments)

Phenotype No. Origin MC1 MC2

B:15:P1.7,16 A11 England + -

B:NT:P1.9 1766 Greece + +

B:NT:P1.13 PE255 Greece - -

NG:NT:NT ST776 Greece - -

NG:NT:NT P481 Greece - -

B:2a:P1.2 TH39 Greece - -

B:2a:P1.2 TH44 Greece + +

B:4:P1.15 A43 Greece + +

C:2a:P1.2 A14 Greece - -

C:4:NT A26 Greece - -

NG:4:NT A48 Greece - -

B:15:P1.7,16 B14 Iceland + -

C:4:P1.15 Ice155 Iceland + -

B:15:NT 99-1787 Scotland + -

B:2a:P1.2,5 Sto B Scotland - -

B:NT:NT 99/760 Scotland + +

C:2a:NT A25 Scotland - -

C:2a:P1.2 StoC Scotland - -

B:2a:P1.2 SNMP Scotland + +

+ Reduction in bactericidal activity >80% compared with the unabsorbed pool
- Reduction in bactericidal activity < 80% compared with the unabsorbed pool
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4.4 Discussion

The aim of this part of the study was to examine the ability of MC to absorb
bactericidal activity against meningococci and NL from the pool of normal human

serum, and to determine if this species might, like NL and NM, play a role in the

development ofnatural immunity to meningococcal disease.

4.4.1 Absorption of bactericidal antibodies by MCI and MC2

The results provide evidence for antigenic cross reactivity between MC and some,

but not all strains of NM and NL. There were variations in the spectrum of

absorption patterns. MCI absorbed bactericidal activity against a significantly higher

proportion ofMC strains tested (43%) compared with 17% for MC2 (X2=6.18, df=l,
P=0.013). MCI absorbed bactericidal activity against immunotype reference strains

LI, L4, L5, and L9, some meningococcal strains from the UK, Greece and Iceland.
MC2 was able to absorb bactericidal antibodies only against meningococcal strains
from Scotland and Greece.

Antigens involved in the development of natural immunity between different strains
ofMC are thought to be glycoconjugates, and the main virulence factors LOS, OMP
and iron-regulated proteins [Murphy & Bartos, 1989], As there is no evidence of

cross-reactivity between meningococcal capsular, serotype or subtype antigens and

MC, the published structures for LOS of the two species suggest that these might be
the cross-reactive antigens (Table 4.1).

MCI absorbed bactericidal activity against L4, L5, and L9 which express the

paragloboside moiety, a precursor of the PI blood group antigen (Table 4.1) [Naiki
& Kato, 1979; Hakmori & Kannagi, 1986]; however, immunotypes L2, L3, and L7
which also express paragloboside were killed by the absorbed serum.

Carriage of or infection with MC strains might contribute to the development of
natural immunity to meningococci by eliciting bactericidal antibodies cross-reactive
with meningococcal LOS. Proposed vaccination with anti-MC LOS vaccines to
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prevent otitis media [Gu et al., 1998] might induce cross-reactive protection against

meningococcal disease. Alternatively, vaccine candidates that eliminated carriage of
MC might interfere with development of natural immunity against meningococci.
Further studies investigating common antigens on MC, NM and NL LOS were

carried out and are summarised in Chapter 5.

4.4.4 Conclusions:

1. This study provided evidence that MC strains express antigens that absorbed
bactericidal antibodies against NM.

2. MCI absorbed bactericidal activity against a significantly higher proportion of

meningococcal isolates (43%) than MC2 (17%) (P=0.013).
3. The absorption studies indicated some of the cross-reactivity between MC and

NM could be due to expression of carbohydrate moieties similar to epitopes
found on human blood group antigens and meningococcal LOS oligosaccharides.

4. These antigens on MC might be involved in the development of natural immunity
to some meningococcal phenotypes; their toxicity, therefore, reflected in their

ability to induce pro-inflammatory cytokines needs to be investigated.
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Chapter 5 Assessment of meningococci and commensal species for cross-

reactive surface antigens

5.1 Introduction

The previous two chapters provided evidence that there are antigens present on

commensal species that can absorb antibodies bactericidal for meningococci.
Evidence for oligosaccharide structures common for meningococci and NL or

meningococci and MC has been reported [Mandrell et al. 1988], Meningococci and
MC also appear to share oligosaccharide antigens with some found on human tissues

including paragloboside, P, PI, pK, and Ii blood group antigens (Tables 3.4 and 4.1).
The expression of blood group related LOS on meningococcal carrier strains and
outbreak strains differs greatly. While disease is mainly associated with

meningococcal immunotype L(3,7,9) showing homology with the paragloboside

antigen (a precursor of the PI blood group antigen), carrier strains isolated in Britain
were found to express LOS immunotypes similar to the pK (LI) and ceramide-
dihexocide (L8) blood group antigens [Jones et al., 1992]. There has been no

systematic screening of commensal NL or MC isolates from different regions of

Europe with the immunotype antibodies used to classify NM immunotypes or

antibodies to human blood group antigens.

5.1.1 P-related blood group system

Carbohydrate antigens are widely distributed on human blood cells and tissues. Then-

expression is facilitated through glycosyl-transferases during the post-translational
modification of proteins (glycoproteins) or linkage to ceramide (N-linked fatty acyl

sphingosine). The ABO blood group antigens can be expressed either as

glycoproteins or as ceramide glycolipids. The P-blood group system is thought to be

expressed in glycolipid form on red blood cells and other tissues [Prokop &

Uhlenbruck, 1965; Race & Sanger, 1975; Hakomori & Kannagi, 1986; Bailly et al.,

1992; Brown et al., 1993]. It consists of a single oligosaccharide chain linked to a

membrane anchored ceramide (Table 5.1) (Figure 5.1). One member of the P-system,
the globotriaosylceramide (pK or CD77) is associated with the differentiation and
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maturation of human B cells [Butch & Nahm, 1992] and B-cell Burkitt lymphomas

[Wiels et al., 1981], While other members of the P-system are readily expressed on

human red blood cells, the expression of pK is relatively rare [Marcus et al., 1976]. It
is thought that oligosaccharides with a terminal galactose residue can be found in

sialylated or non-sialylated forms due to the sialyl-transferases found in human

serum, an enzyme that is also associated with the sialylation of meningococcal LOS

[Mandrell et al., 1993; Wakarchuk et al., 1998].

5.1.2 Ii-blood group system

Similar to the pK antigen, Ii determinants are associated with developmental
maturation in humans. Although, pK might be expressed in children and adults, i-

antigens are found in foetal tissue but rarely in children or adults. I-antigen

expression coincides with the loss of i-blood group moieties [Marsh & Jenkins, 1960;

Marsh, 1961; Wiener et al., 1973]. The i-determinant has a single chain

oligosaccharide structure (Table 5.1) linked to a membrane anchored ceramide

(Figure 5.1), while the I-blood group antigens consist of a branched structure at the
third terminal saccharide. Ia and lb are glycolipids linked to ceramide, while the

carbohydrate antigens Ic and Id form the glycosyl structure of glycoproteins linked to

the amino acids serine and threonine.

Table 5.1 Blood group antigens of the P- system.
The glucose is linked to the membrane anchored ceramide (Glcp (1—»1) Ceramide)

a chain moiety
P1 Gala (1—>4) Galp (1^4) GlcNAcp (1-+3) Galp (1^4) Glcp
pK, CD77 Gala (1—>4) Galp (1^4) Glcp
P globoside GalNAcP (1 —>-3) Gala (1-+4) Galp (1^4) Glcp
Paragloboside Galp (1 —>4) GlcNAcp (1^3) Galp (1—>4) Glcp
i a
determinant

Galp (1—>4) GlcNAcp (1^3) Galp (1->4) GlcNAcp (1^3) Galp (1-M) Glcp

i b
determinant

S-Galp (1 —>4) GlcNAcp (1^3) Galp (1^4) GlcNAcp (1->3) Galp (1-^4) Glcp

CDH Galp (1—>4) Glcp
CDH, ceramide-di-hexocide; S, sialyl
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Figure 5.1 Oligosaccharide structures of human P and li blood group
antigens, and oligosaccharide moieties of meningococcal and MC LOS
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5.1.3 Structural homology of N. meningitidis LOS with blood group antigens

The oligosaccharide moiety of the a-chain ofNM LOS shares structural homology
with some human blood group antigens (Figure 5.1), and these structures have been
identified in the LOS of several isolates ofNM and N. gonorrhoea [Mandrell el al.,

1988; Kim et al., 1989],

The G1 region of LI and LI 1 meningococcal LOS immunotypes show identical
terminal oligosaccharide residues of ceramide trihexocide, Gala (1—>4) Gal(3 (1—>4)

Glcp, identical to the human pk blood group antigen (CD77) [Griffiss et al., 1994].

The lacto-N-neotetranose residue, Gaip (1 —>4) GlcNAcP (1—>3) Gaip, a 4.5

kilodalton LOS component of immunotypes L2, L(3,7,9), L4 and L5 is identical to

paragloboside with different distributions in NM, N. gonorrhoea and NL [Kim et al.,

1989]. Additionally, paragloboside, a precursor of PI blood group antigen found in
75% of Caucasians, is the terminal structure of the human I-erythrocyte antigen and
the embryonic i-antigen (Figure 5.1) [Mandrell et al., 1988, Hakomori & Kannagi,

1986; Tsai & Civin, 1991], It is also an epitope homologous to type XIV

pneumococcal polysaccharide capsules [Siddiqui & Hakomori, 1973].

Immunotype L6 shares its two terminal sugars, Gaip (1 —>4) GlcNAcP, with the P

blood group antigen, and L8 shares its terminal disaccharide with ceramide

dihexocide, Gaip (1—>-4) Glcp, the common precursor of the P blood group system

and steroid receptors.

5.1.4 Objectives

The objectives of this part of the study were:
1. to compare ELISA and flow cytometry methods for detection of blood group

related antigens and immunotype antigens on bacterial cells;
2. to assess NL and MC isolates for binding of antibodies to blood group antigens

and NM immunotype antigens;
3. to compare binding of these antibodies by commensal isolates from different

geographical regions ofEurope.
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5.2 Material and Methods

5.2.1 Bacterial strains

Standard immunotype strains of meningococci LI-LI 2, strains of NM and NL
examined in Chapters 3 and 4 were used in these experiments. Meningococci, NL
and MC isolates were used from our culture collection (Tables 2.1 and 2.2).

5.2.3 Flow cytometry method for detection of binding of antibodies to bacterial
isolates

The primary and secondary antibodies used for flow cytometry are listed in Tables
5.2 and 5.3. Positive controls for blood group expression were red blood cells (rbc)
from healthy donors with different blood group phenotypes. The human B

lymphocyte Bristol 8 cell line (CB 2452) was used as a positive control for the anti-
CD77 antibody. It was obtained from the European Collection of Animal Cell
Culture (ECACC), grown in RPMI 1640 supplemented with 2 mM glutamine and
10% (v/v) foetal bovine serum.

Table 5.2 Primary antibodies
Antigen Species/

isotype
dilution Code Source

Anti-meningococcal L1 Mouse IgG 1 in 1000 L1(17-1-L1) Zollinger
Anti-meningococcal L(3,7,9) Mouse IgG 1 in 1000 12C10 Zollinger
Anti-meningococcal L8 Mouse IgG 1 in 1000 6E7-10 Zollinger
Anti-meningococcal L10 Mouse IgG 1 in 1000 14-1-L10 Zollinger
Anti-paragloboside Mouse IgM 1 in 400 1B12-1B7 Zollinger
Anti-human P1 Mouse IgM 1 in 10 Z202 Diagnostic Scotland
Anti-human P rabbit 1 in 10 A0302 118 DAKO
Anti-human p1"1 Rat IgM 1 in 10 MCA579 Serotec
Anti-li human 1 in 100 Z248 Diagnostic Scotland
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Table 5.3 Secondary antibodies used to detect binding of primary antibodies
in flow cytometry assays
Primary antibody

(Table 5.2)
Secondary
antibody

Species dilution Source

Mouse IgG to
immunotypes

FITC-anti-mouse IgG (whole
molecule) F(ab') fragment

Sheep 1 in 400 Sigma

Mouse IgM to
paragloboside

FITC-anti-mouse IgM p-chain
specific

Goat 1 in 400 Sigma

Rabbit anti-human P FITC-anti-rabbit IgG Goat 1 in 400 Sigma
Rat anti-human p^ FITC-anti-rat IgM p chain specific Mouse 1 in 400 Serotec

Human anti-li IgG FITC anti human Ig Goat 1 in 400 Sigma

A flow cytometric method was developed for the detection of binding of antibodies
to blood group antigens to bacterial cells based on the method of Apicella et al.

[1987], Overnight cultures grown on HBA were killed by incubation for 30 min in
formalin (1%, v/v) and washed twice in PBS (2 ml) by centrifugation at 2000 x g for

5 min. The pellet was resuspended in 100 pi PBS. Primary antibody to the blood

group antigens (5pl) was added to the cell suspension (100 pi 108 bacteria ml"1),
vortexed, incubated for 30 min at RT and washed twice in 2 ml PBS. The FITC-

labelled secondary antibody (100 pi) was added to the pellet, vortexed, incubated for
30 min at RT, washed twice and re-suspended in buffered paraformaldehyde (Sigma)

(0.5%, w/v). The specimens were stored in the dark until assessed by flow cytometry.

Positive controls for the assessment of binding of the monoclonal immunotype
antibodies were meningococcal reference strains for which immunotype data had
been published: LI expressing LI and L8; L3 expressing L(3,7,9) and L8; L10

expressing L10 and L8. Negative controls included strains L4 and L6 (Table 2.1).

The positive population (cells with fluorescence greater than the control cells treated
with the FITC-labelled secondary antibody alone) were assessed for percentage of

positive cells and mean fluorescence intensity of the positive cell population. A

population of bacteria was scored as expressing the antigen when the test population
was positive (> 5%) compared with the negative control (< 2%) incubated with the

secondary fluorochrome-conjugated antibody. This was a more stringent application
of the two-percent-of-background method (Chapter 2.13).
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5.2.4 Whole cell ELISA (WCE) for the detection of antibodies bound

meningococcal surface antigens

WCE was developed to screen for binding of antibodies to blood group and

immunotype antigens on bacteria based on previously published methods for the
detection of antigens on meningococci [Abdillahi & Poolman, 1987; Scholten et al.,

1994],

5.2.4.1 Reagents

5.2.4.1.1 Washing solution

Washing solution was prepared by adding Tween 80 (0.25 ml) (Sigma) to 1 litre of

tap water.

5.2.4.1.2 Sodium acetate buffer

Sodium acetate buffer (1.1 mM) was prepared by dissolving of sodium acetate (0.18

g) (Sigma) in 2 litres of distilled water. The pH was adjusted to 5.5 with saturated
citric acid (Sigma) containing citric acid (130 g) in 100 ml distilled water.

5.2.4.1.3 Casein Tween (CT) buffer

For the casein Tween buffer, casein Hammarsten (3 g) (BDH) was dissolved in 1
litre of distilled water containing Tween 80 (0.11 ml).

5.2.4.1.4 Antibodies

The HRP-conjugated reagents used to detect antibodies bound to bacteria in the
WCE are listed in Table 5.4. One vial of protein A peroxidase conjugate (Sigma P-

8651) was diluted 1 in 500 in CT buffer, and 100 pi aliquots were stored at -20°C.
Protein A was used to detect mouse and human IgG antibodies.
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Table 5.4 Antibodies used in WCE
Primary antibody

(Table 5.2)
Secondary
antibody

Species dilution Source

Anti- L1 HRP-anti-mouse IgG (whole
molecule) F(ab') fragment

Sheep 1 in 1000 Sigma

Anti- L(3,7,9) HRP-anti-mouse IgG (whole
molecule) F(ab') fragment

Sheep 1 in 1000 Sigma

Anti- L8 HRP-anti-mouse IgG (whole
molecule) F(ab') fragment

Sheep 1 in 1000 Sigma

Anti- L10 HRP-anti-mouse IgG (whole
molecule) F(ab') fragment

Sheep 1 in 1000 Sigma

Anti-paragloboside HRP-anti-mouse IgM p-chain Goat 1 in 400 Sigma

Anti-human P1 HRP-anti-mouse IgM p-chain Goat 1 in 400 Sigma

Anti-human P HRP-anti-rabbit IgG y chain Rat 1 in 400 Biosource

Anti-human pK HRP-anti-rat IgM p chain Mouse 1 in 400 Biosource

Anti-li IgG HRP-anti human IgG y chain Goat 1 in 400 Sigma

Anti-li IgM HRP-anti human IgM p chain Goat 1 in 400 Sigma

Anti-li Ig HRP-protein A S. aureus 1 in 500 Sigma

5.2.4.1.5 Substrate

An aqueous stock solution of the substrate 3,3',5,5' tetramethyl-benzidine (TMB)
was purchased from Sigma and kept in the dark at 4°C. Immediately before use in
the assay, TMB was diluted 1 in 5 in distilled water.

5.2.4.1.6 Stopping solution

Sulphuric acid (2N) was prepared by adding 10 ml of concentrated sulphuric acid to

170 ml of distilled water. Concentrated sulphuric acid and its vapours are extremely

toxic, and the 2 N solution was prepared inside a fume cupboard wearing appropriate

protective clothing (safety goggles, and gloves). For neutralisation of spillage, a

solution of 0.5 N NaOH was available. Colour change resulting from peroxidase

activity was terminated by adding stopping solution (25 pi) to each well.
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5.2.4.2 Assay procedure

The method for WCE determination of meningococcal subtypes, serotypes and

immunotypes was adapted for use in the present study [Abdillahi & Poolman, 1987;
Scholten et al., 1994],

5.2.4.2.1 Coating of plates with bacteria

Bacteria were grown overnight on HBA, harvested in sterile filtered 0.5% (v/v)
buffered formalin and washed twice in sterile filtered PBS. The cell suspension was

heat inactivated (56°C, 60 min) and adjusted to a final concentration of 1010 bacteria
ml"1 which correlated to an absorption of OD546=0.600 (or OD62o=0.1). The cell

suspension (100 pi) was distributed into sterile flat bottom 96 well PVC microtitre

plates (Greiner) and allowed to dry overnight at 37°C. The coated plates were kept at
room temperature for up to three months.

5.2.4.2.2 Assay

The coated plates were washed 3 times with washing solution, aspirated, and blocked
for 15 min with 50 pi CT buffer at 37°C. The blocking buffer was removed and 50

pi of primary antibodies were added to the appropriate wells. The plates were

incubated at 37°C for 30 min in a moist chamber. The samples were washed three

times in washing solution. The peroxidase-conjugated secondary antibody (100 pi)

was added to each appropriate well and incubated for 30 min at 37°C in a moist
chamber.

The wells were washed three times with washing solution (100 pi), and 100 pi of

freshly prepared substrate diluted 1 in 5 in distilled water was added to the

appropriate wells. The plates were incubated at room temperature in the dark for 15

min. The peroxidase activity was stopped by adding 50 pi of stopping solution to

each well. The absorption of each well was measured at an optical density of 450 nm

with a reference filter at 630 nm using a 96 well plate reader (Dynex MRX II) and

analysed with the Dynex Revelation software for PCs .
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Two separate batches of bacteria were assessed in duplicate in three independent

experiments. Each ELISA plate contained a negative control for non-specific binding
of the HRP-conjugated secondary antibody tested for each individual strain. This

sample was used to set the negative value against which the samples incubated with
the primary and secondary antibody was judged as negative or positive. An increase
in the absorbance of more than 0.5 in the reading for the test compared to the

negative control was considered to be positive for binding of the antibody (+).
Values below 0.5 were scored as negative (-) [Scholten et al., 1994],

Every ELISA plate contained a positive control, reported to express the immunotype

antigens, immunotype reference strains LI, L3, L7, L8 and L10. Quality control
between plates was assessed by adding 5 pi of the HRP-conjugated secondary

antibody and TMB substrate (lOOpl) to an empty well. Variability in absorbance
between plates was less than 0.100. Table 5.5 shows the layout for a typical ELISA

plate used.

Table 5.5 Layout of a representative 96-well plate for the assessment of
cross-reactive antigens using whole cell ELISA

1 2 3 4 5 6 7 8 9 10 11 12
A S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
B S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
D S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24
E S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24
F S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24
G NL1 NL3 NL7 MC1 MC2 L1 L3 L7 L8 no - QC
H NL1 NL3 NL7 MC1 MC2 L1 L3 L7 L8 L10 - B

S, bacteria sample; -, QC, quality control containing 5pl secondary antibody and substrate;
B, blank; Rows A1-A12, B1-B12, D1-D12, E1-E12, and G1-G11 were incubated with
primary, secondary antibody, and TMB substrate to assess the binding of the primary
antibody. Rows C1-C12, F1-F12, and H1-FI11 were incubated with the secondary antibody
and TMB substrate to assess non specific binding (background or negative control).
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5.2.5 Assessment of total IgG and IgM in anti-human li blood group reagent

5.2.5.1 Coating buffer

Coating buffer contained Na2C03 (1.59g) (BDH), NaHC03 (2.93g) (BDH) and NaN3

(0.20g) (Sigma) dissolved in 1 litre ofdistilled water and adjusted to pH 9.6.

5.2.5.2 Washing buffer

The buffer was prepared by dissolving of NaCl (8 g) (Sigma), KH2PO4 (0.2 g)

(Fisons), Na2HP04 (1.15g) (BDH) and KC1 (0.2 g) (BDH) in 1 litre of distilled
water. Washing buffer was prepared prior to use by addition of Tween-20 (0.05%,

v/v) (Sigma).

5.2.5.3 Blocking buffer

Blocking buffer contained bovine serum albumin (1%, w/v) (BSA) (Sigma) in sterile
PBS.

5.2.5.4 Substrate

TBA (Sigma) was diluted 1 in 5 in distilled water.

5.2.5.5 Stopping solution

The stopping solution contained H2SC>4(12.5%, v/v).

5.2.5.6 Assay procedure

To determine the concentration of human IgG and IgM antibodies in the anti-Ii blood

group typing serum (Diagnostic Scotland), 50 pi of the serum were diluted in an

equal volume of coating buffer and two-fold duplicate dilutions were prepared in a

sterile 96 well ELISA plate. Two-fold serial dilutions of reagent grade human IgG

(Sigma) (1-2511, Lot 69H4839) or human IgM (1-8260, Lot 87H4832) were made in
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coating buffer and used as standards. The plates were incubated at 37°C for 2 h,
washed three times in washing buffer, and peroxidase-conjugated anti-human IgM

(diluted 1 in 400 in blocking buffer) or anti-human IgG (diluted 1 in 400 in blocking

buffer) was added to the appropriate wells and incubated at 37°C for 1 h in a moist
chamber. The plates were washed three times in washing buffer, and TMB substrate

(100 pi) diluted 1 in 3 in distilled water was added to all wells except the blank and

incubated for 15 min at RT in the dark. The reaction was terminated by adding 25 pi
of stopping solution and the absorbance was read at an optical density of 450 nm

with a reference filter of 650 nm. The concentration of human antibodies in the Ii-

reagent was calculated by plotting the IgG and IgM standards (pg ml"1) against their
corresponding absorbance values.
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5.3 Results

5.3.1 Assessment of IgG and IgM antibodies in the Ii reagent

The mean concentration of anti-Ii antibodies were 12.5 j_rg ml"1 human IgG, but no

IgM was detected (<0.01 pg ml"1).

5.3.2 WCE assays for binding of antibodies to blood group and immunotype
antibodies by meningococcal immunotype strains

5.3.2.1 Blood group antibodies

The immunotype reference strains bound the following blood group antibodies: LI
reacted with P and pK; L2 with P, paragloboside and Ii; L3 with P, pK, paragloboside
and Ii; L4 with paragloboside; L5 with paragloboside and Ii; L6 with PI; L7 and L8
reacted with all blood group antibodies used; L9 with PI, pK, paragloboside and Ii;
L10 with pK, paragloboside and Ii; Lll P, pK and Ii; L12 reacted only with

paragloboside (Table 5.6). The detection of anti-I antibodies to meningococcal
reference strains using either HRP-conjugated protein A or HRP-conjugated anti-
human IgG were identical.

5.3.2.2 Meningococcal immunotype antibodies

The immunotype reference strains bound the following anti-LOS antibodies: LI
reacted with LI and L8; L2 with L(3,7,9); L3 with L(3,7,9) and L8; L4 with none;

L5 with L(3,7,9); L6 did not bind any of the antibodies used; L7 reacted with

L(3,7,9) and L8; L8 with L8 and L(3,7,9); L9 with L(3,7,9) and L8; L10 with L10
and L8; Lll with L8; and L12 reacted with L10 (Table 5.6).
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Table 5.6 WCE to detect binding of antibodies to blood group antigens by
meningococcal immunotype strains

Reference
strain

P
E

P1
Blood

PK
group

Para-

globoside
I L1

Immun
L379

otype
L8 L10

L1 + - + - - + - + -

L2 + - - + + - + - -

L3 + - + + + - + + -

L4 - - - + - - - - -

L5 - - - + + - + - -

L6 + + - - - - - - -

L7 + + + + + - + + -

L8 + + + + + - + + -

L9 - - + + + - + + -

L10 - - + + + - - + +

L11 + - + - + - - + -

L12 - - - + - - - - +
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5.3.3 Flow cytometry assays for binding of antibodies to blood group and

immunotype antigens to meningococcal immunotype strains

5.3.3.1 Blood group antibodies

The following meningococcal immunotype strains bound anti-P antibody: LI, L2,

L3, L6, L7, and LI 1. The anti-Pi typing serum bound: immunotype reference strains

L7, L8 and L9; the antibody bound weakly to immunotype L9 (6.5%, Mnl 27.7), but
did not bind to L3 (4.5%, Mnl 2.17).

Binding of the anti-pK monoclonal antibody by 5% or more of the bacterial

population was observed for the meningococcal immunotype reference strains LI,

L3, L7, L8, L9, L10 and LI 1.

For the li reagent, high percentages of the bacterial population with high Mnl were
observed in strains LI, L3, L6, LI0, LI 1 and LI2. A high percentage with small Mnl
were observed in L2, L4, L5, and L9. Less than 5% of cells of immunotypes L7 and
L8 bound the Ii reagent (Table 5.7).

Table 5.7 Flow cytometry assay to detect binding of antibodies to blood
group antigens by meningococca immunotype strains

Reference
strain

F
% Mnl

F
%

31
Mnl

P
%

K

Mnl %
I

Mnl
L1 25.3 44.8 1.3 8.33 33.3 17.0 32.4 14.4
L2 10.8 104.0 3.5 2.0 2.1 3.3 21.8 3.44
L3 1.4 80.7 4.5 2.2 15.2 16.1 23.8 14.7
L4 3.5 2.1 1.9 4.0 1.9 3.2 38.8 4.54
L5 3.2 2.5 2.1 5.1 2.8 5.7 29.3 5.7
L6 8.7 93.8 3.1 3.1 2.1 3.1 32.4 11.7
L7 13.3 186.0 8.1 135.1 12.1 13.6 2.5 7.33
L8 26.2 60.4 39.9 24.2 26.3 17.9 2.75 39.3
L9 4.6 7.8 6.5 27.7 11.1 15.2 20.1 4.72
L10 2.6 1.5 3.1 2.6 7.5 12.44 54.4 39.8
L11 11.1 87.8 2.8 1.8 27.4 17.0 17.4 21.1
L12 5.2 1.9 1.5 6.2 1.7 2.4 13.9 35.8

%, percentage positive bacteria; Mnl, mean fluorescence intensity in relation to fluorescence
standard beads (Mnl = 500)
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5.3.3.2 Immunotype antigens

The meningococcal reference strains bound the immunotye monoclonal reagents as

predicted from the published results. Strain LI bound monoclonals for LI and L8

epitopes. Strains L2 and L5 bound the monoclonal antibody for L(3,7,9). Strains L3,

L7, L8 andL9 bound monoclonal antibodies for the L(3,7,9) and L8 epitopes. Strain
L10 bound antibodies for the L8 and L10 epitopes. Strain Lll bound only the L8

antibody. Strain L12 bound the L10 antibody. L4 and L6 did not bind any of the
monoclonals used for immunotyping (Table 5.8).

Table 5.8 Flow cytometry assay to detect binding of immunotype antibodies
by meningococcal immunotype reference strains
Reference
strain %

L1
Mnl

L(3
%

,7,9)
Mnl

L
%

8
Mnl

L1
%

0
Mnl

L1 37.2 16.2 1.9 3.2 36.1 19.8 1.6 2.2
L2 1.4 2.1 21.8 17.1 1.1 2.7 2.2 3.1
L3 1.7 2.5 62.4 21.2 31.5 21.3 3.4 2.0
L4 0.9 3.1 1.2 2.0 2.4 3.0 2.1 1.8
L5 2.1 2.7 23.4 21.6 2.9 3.5 1.3 2.2
L6 3.4 3.1 2.3 2.2 1.9 3.7 4.1 1.8
L7 1.1 4.3 73.8 19.2 14.2 16.5 1.6 5.3
L8 4.7 1.3 42.2 16.5 27.8 21.8 2.3 3.3
L9 1.0 3.2 55.9 24.1 13.2 16.7 1.2 3.7

L10 2.2 1.2 3.6 2.0 9.1 15.3 17.3 8.9

L11 1.1 4.6 2.4 2.4 31.8 21.6 2.8 2.2
L12 3.5 2.1 3.3 1.9 1.6 2.9 14.6 7.9

%, percentage positive bacteria; Mnl, mean fluorescence intensity in relation to fluorescence
standard beads (Mnl = 500)

-88-



5.3.4 Comparison of results obtained by the two method

The binding of blood group antibodies to meningococcal immunotype reference
strains using WCE and flow cytometry (FC) methods were compared (Table 5.9).

5.3.4.1 Blood group antigens

The results for binding of the antibodies to PI and pK were the same for both
methods for all 12 immunotype strains (Table 5.9) . For the antibody to P, strain L3
was positive by WCE but negative by flow cytometry; however, all the other results
were in agreement. The percentage of cells positive for binding the anti-P antibody
was small (1.4%); however, the Mnl was 80.7 (Table 5.7). This might account for the
difference in the two tests.

The results were less comparable for binding of the Ii reagent: Strains LI, L4, L6 and
L12 were negative by WCE but positive in flow cytometry. Strains L7 and L8 were

positive by WCE but negative by flow cytometry.

Table 5.9 Comparison of methods to detect binding of antibodies to blood
group antigens by meningococcal immunotype strains
Strain P

WCE FC
P

WCE
1

FC
P

WCE

K

FC WCE FC

L1 + + - - + + - +

L2 + + - - - - + +

L3 + - - - + + + +

L4 - - - - - - - +

L5 - - - - - - + +

L6 + + - - - - - +

L7 + + + + + + + -

L8 + + + + + + + -

L9 - - + + + + + +

L10 - - - - + + + +

L11 + + - - + + + +

L12 - - - - - - - +

WCE, whole cell ELISA; FC, flow cytometry
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5.3.4.2 Immunotype antigens

The WCE and flow cytometry methods agreed for each of the immunotype antigens
tested (Table 5.10).

Table 5.10 Comparison of methods to detect binding of immunotyping
antibodies by meningococcal immunotype strains
Strain L'

WCE FC
L(3,

WCE
7,9)

FC
L

WCE
8

FC
L1

WCE
0

FC

L1 + + - - + + - -

L2 - - + + - - - -

L3 - - + + + + - -

L4 - - - - - - - -

L5 - - + + - - - -

L6 - - - - - - - -

L7 - - + + + + - -

L8 - - + + + + - -

L9 - - + + + + - -

L10 - - - - + + + +

L11 - - - - + + - -

L12 - - - - - - + +

WCE, whole cell ELISA; FC, flow cytometry
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5.3.5 Binding of antibodies to blood group and immunotype antigens by NL

5.3.5.1 Binding of blood group and immunotype antibodies to immunotype
strains detected by WCE

The following NL strains bound both anti-P and anti-Pi antibodies (Table 5.11),

NL3, NL4, NL5, NL6 and NL7; NL1 and NL2 bound anti-pK antibodies. Antibodies
to paragloboside bound to NL2, NL3, NL4, NL7 and NL8; NL1, NL3, NL4, NL5,
and NL7 bound anti-human Ii blood group antibodies.

NL1 bound L(3,7,9) and L8. Strains NL2, NL3, NL4 and NL8 bound L(3,7,9). NL5
and NL6 did not bind any of the immunotyping antibodies. NL7 bound LI and

L(3,7,9) (Table 5.11).

Table 5.11 WCE to detect binding of antibodies to blood group antigens and
meningococcal immunotype antigens to N. lactamica strains

Strain P
Bio

P1
od cjroup antibodies

Paragloboside I
Imr

L1
nunotype
L379

3 antiboc
L8

ies
L10

NL1 - - + - + - + + -

NL2 - - + + - - + - -

NL3 + + - + + - + - -

NL4 + + - + + - + - -

NL5 + + - - + - - - -

NL6 + + - - - - - - -

NL7 + + - + + + + - -

NL8 - - - + - - + - -

5.3.5.2 Binding of blood group and immunotype antibodies to NL isolates
detected by flow cytometry

Polyclonal anti-P bound to the following NL isolates: NL3 from Iceland, NL4, NL5
and NL6 from Greece, and NL7 from the Czech Republic: strain NL5 reacted only

weakly with anti-P using the two-percent-of background analysis, but were

considered to be negative after assessment with the relative-mean-fluorescence-

intensity analysis (Chapter 2.13).

The anti-Pi serum bound the following NL strains: NL3 from Iceland; NL4, NL5,
and NL6 from Greece; NL7 from the Czech Republic. None of the three Scottish
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isolates reacted with anti-Pi. Binding of the anti-pK monoclonal antibody by 5% or

more of the bacterial population (two-percent-of background analysis) was observed
for the Scottish strains NL1 and NL2. Polyclonal human anti-I antibodies bound to

strains NL1, NL3, NL4, NL5 and NL7 (Table 5.12).

Table 5.12 Flow cytometry assay to detect binding of antibodies to blood
group antigens by N. lactamica strains
Strain P P1 I
Strain % Mnl % Mnl % Mnl % Mnl
NL1 1.56 11.5 2.7 1.11 55.5 22.4 36.2 14.3
NL2 2.1 2.16 1.3 2.73 42.5 36.7 2.7 3.8
NL3 21.7 74.0 28.4 17.4 2.5 8.9 17.1 13.2
NL4 15.6 236.1 27.6 54.1 1.1 3.6 29.4 16.8
NL5 5.6 3.75 42.9 15.7 1.2 2.5 31.4 14.6

NL6 32.2 184.3 18.2 77.1 1.8 8.3 3.1 2.9
NL7 34.9 103.2 41.1 19.3 3.5 9.61 28.5 15.3
NL8 1.2 1.7 2.2 3.5 2.6 6.2 1.2 4.6

%, percentage positive bacteria; Mnl, mean fluorescence intensity in relation to fluorescence
standard beads (Mnl = 500)

The NL isolates bound the following immunotype antibodies: NL1, L(3,7,9) and L8;

NL2, NL3, NL4 and NL8 bound L(3,7,9); NL7 bound LI and L(3,7,9); NL5 and
NL6 did not bind any of immunotype antibodies tested (Table 5.13).

Table 5.13 Flow cytometry assay to detect binding of antibodies to
immunotype antigens by N. lactamica
Strain L1 L(3,7,9) L8 L10

% Mnl % Mnl % Mnl % Mnl
NL1 3.2 4.8 32.9 17.5 19.1 9.5 2.2 4.1

NL2 2.5 3.9 28.3 15.4 2.6 1.3 1.9 2.7

NL3 1.0 2.2 19.8 19.3 3.1 2.2 4.1 1.5
NL4 2.9 4.1 21.1 17.9 2.9 4.7 1.1 2.7
NL5 3.7 2.4 2.7 3.1 4.2 1.8 2.1 3.4
NL6 3.3 3.1 2.9 1.9 2.8 2.4 2.9 2.8
NL7 24.8 8.9 22.9 14.7 2.3 4.1 1.2 3.4
NL8 3.9 2.1 14.9 17.8 1.2 2.2 3.1 1.9

%, percentage positive bacteria; Mnl, mean fluorescence intensity in relation to fluorescence
standard beads (Mnl = 500)
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5.3.5.3 Comparison of results obtained by the two methods

The results for the flow cytometry method and the whole cell ELISA agreed for all
strains for the detection of P, PI, pK and I (Table 5.14). There was no difference in
the detection of binding ofanti-I antibodies using HRP-conjugated protein A (pA) or

HRP-conjugated anti-human IgG.

Table 5.14 Comparison of methods for detection of binding of antibodies to
blood group antigens by N. lactamica strains
Strain

WCE

D

FC
P

WCE
1

FC
P

WCE

T:

Tlo WCE FC

NL1 - - - - + + + +

NL2 - - - - + + - -

NL3 + + + + - - + +

NL4 + + + + - - + +

NL5 + + + + - - + +

NL6 + + + + - - - -

NL7 + + + + - - + +

NL8 - - - - - - - -

WCE, whole cell ELISA; FC, flow cytometry

The results for binding of antibodies to meningococcal LOS antigens LI, L(3,7,9),
L8 and L10 to NL strains using WCE and flow cytometry methods agreed for all
strains (Table 5.15).

Table 5.15 Comparison of methods for detection of binding of immunotyping
antibodies by N. lactamica strains
Strain L'

WCE FC
L(3,

WCE
7,9)

FC
L

WCE
8

FC
L1

WCE
0

FC

NL1 - - + + + + - -

NL2 - - + + - - - -

NL3 - - + + - - - -

NL4 - - + + - - - -

NL5 - - - - - - - -

NL6 - - - - - - - -

NL7 + + + + - - - -

NL8 - - + + - - - -

WCE, whole cell ELISA; FC, flow cytometry

-93-



5.3.6 Detection of blood group or immunotype antigens on NL from different
sources

The binding of antibodies to blood group antigens and LOS immunotypes to NL
isolates from the Czech Republic (n=4), Greece (n=27), Iceland (n=l) and Scotland

(n=12) were assessed by WCE in three independent experiments. The binding of
blood group antibodies (Table 5.16) and meningococcal immunotype antibodies

(Table 5.17) are summarised by country. The binding pattern of individual strains are

presented in Table 5.18.

5.3.6.1 Comparison of the binding of blood group antibodies of NL isolates

There was no significant difference in the number of isolates from the Czech

Republic (n=4) and Scotland (n=12) expressing blood group antigens of the P-system
or I. Significantly fewer NL isolates from Greece (n=27) expressed pK (P=0.039)

paragloboside (P<0.001), and I (P=0.042) (Table 5.16). There was no significant
difference in the expression of P or PI antigen between the samples from different
countries tested. The Icelandic strain was excluded from the statistical analysis.

Table 5.16 Binding of antibodies to blood group antigens by N. lactamica
isolates from different European countries detected by WCE

Scotland n=12 Iceland n=1 Greece n=27 Czech Rep. n=4
No (%) No (%) No (%) No (%)

p 1 (8.3) 1 (100) 10 (37) 1 (25)
P1 2 (16.7) 1 (100) 4(14.8) 2(50)
p* 8 (66.7) 0(0) 8129.6) 2(50)
paragloboside 8 (66.6) 1 (100) 1 (3.7) 4(100)
I 7 (58.3) 1 (100) 8 (29.6) 4(100)
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5.3.6.2 Comparison of binding of meningococcal immunotyping antibodies to

NL

There was no significant difference in the distribution of LOS immunotype cross-

reactivity between NL samples from the Czech Republic (n=4) and Scotland (n=12)

(Kruskal-Wallis analysis of variance by ranks). Meningococcal immunotypes

L(3,7,9) (P<0.02) and L10 (PO.Ol) were expressed by fewer NL isolates from
Greece (n=27) compared to samples from either Scotland or the Czech Republic

(Table 5.17). The Icelandic strain (n=l) was excluded from the statistical analysis.

Table 5.17 Binding of immunotyping antibodies by N. lactamica isolates from
different European countries detected byWCE

Scotland n=12 Iceland n=1 Greece n=27 Czech Rep. n=4
No (%) No (%) No (%) No (%)

L1 1 (8.3) 0(0) 4(14.8) 1 (25)
L(3,7.9) 9(75) 1 (100) 9 (33.3) 4(100)
L8 2 (16.7) 0(0) 4 (14.8) 2(50)
L10 4 (33.3) 0(0) 1 (3.7) 1 (25)
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Table 5.18 WCE assay for binding of immunotype antibodies and antibodies
to blood group antigens by N. lactamica isolates from different European
countries

Strain CODE P T>CD Ood grou
PK

p antibodies
Para-

globoside
I

Imn
L1

nunotype
L379 COc± cr DdiesL10

CZ1 - - + + + - + + -

CZ2 - + - + + - + - +

CZ3 - - + + + - + + -

NL7 CZ4 + + - + + + + - -

NL6 GRE162 + + - - - - - - -

GRE179 - - - - - - - - -

GRE184ns - - - - + - + - -

GRE184SW - - + - - - - - -

GRE211 - - - - + - + + -

GRE213 - - + - + - - - -

GRE213 + - + - - - - - -

GRE227ns + - - - - - - - -

GRE227sw + - - - - + - - +

GRE228NS + + - - - - + - -

NL4 GRE228SW + + - + + - + - -

GRE268ns - - - - - - + - -

GRE268sw - - - - + - - - -

GRE309 - - - - - - - - -

GRE334 - - - - + - - - -

NL5 GRE359ns + + - - + - - - -

GRE359SW - - + - - - - - -

GRE409 - - - - - - - - -

GRE534 + - - - - - + - -

GRE538 - - + - - - - - -

GRE619ns - - + - + + + + -

GRE619sw - - + - - + + + -

GRE634ns - - + - - - - - -

GRE634sw + - - - - - - - -

GRE806 + - - - - + + + -

GRE854ns - - - - - - - - -

GRE854SW - - - - - - - - -

NL3 ICE + + - + + - + - -

SCO 1751 - - + - + - + + -

NL1 SCONL1 - - + - + - + + -

SC01567 + - + + - - + - +

SC01568L - - + + - - + - +

SC01568S - - + + - - + - +

SC0318 - + + + + - - - -

SCO390 - + - + + - - - +

SC0393 - - + + + + + - -

SC0395NS - - - - + - + - -

SC0395SW - - - - + - - - -

NL2 SC099/248F - - + + - - + - -

NL8 SC099/141 - - - + - - + - -

CZ, Czech Republic; GRE, Greece; ICE, Iceland; SCO, Scotland; All NL isolates from
Greece are AUT: NT: NT
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5.3.7 Binding of antibodies to blood group and L(3,7,9) antigens by MC isolates
from Scotland

Clinical isolates ofMC (n=126) from our culture collection were kindly provided by
Dr. El-Ahmer. The binding of blood group antibodies against P, PI, pK,
paragloboside, I and meningococcal immunotype L(3,7,9) were measured by WCE.
Because of the large number of strains to be tested and the limited amount of

reagents, WCE was used and only the L(3,7,9) monoclonal tested as this epitope is
most likely to be the one involved in induction of protective antibodies against
disease causing strains.

5.3.7.1 WCE for binding of antibodies to blood group antigens and L(3,7,9) by
M. catarrhalis

Antibodies to blood group antigens bound to the MC isolates used in the previous

chapters (Table 5.19): MCI bound antibodies to P, PI, pK and I; MC2 bound only
antibodies to pK; MC3 bound antibodies to P, pK, and I; MC4 bound antibodies to PI
and pK; MC5 bound antibodies to pK and paragloboside. None of the strains bound
the L(3,7,9) monoclonal antibody.

Table 5.19 WCE assay to detect antibodies to blood group antigens and anti-
L(3,7,9) by M. catarrhalis isolates
Strain P P1 PK Para¬

globoside
I L(3,7,9)

MC1 + + + - + -

MC2 - - + - - -

MC3 + - + - + -

MC4 - + + - - -

MC5 - + + - -
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5.3.7.2 Flow cytometry assay for binding of antibodies to blood group antigens

by M. catarrhalis

The binding of antibodies to human blood antigens by MC isolates in the flow

cytometry assay were as follow (Table 5.20): MCI and MC2 bound antibodies to pK
and PI; MC3 bound antibodies to P, PI and pK; MC4 did not bind any of the
antibodies tested; MC5 bound only the antibody to paragloboside. Binding of the

L(3,7,9) antibody was not assessed.

Table 5.20 Flow cytometry assay for binding of antibodies to blood group
antigens by M. catarrhalis (3 independent experiments)
Strain

%
P
Mnl

F
%

1
Mnl

P
%

K

Mnl
Paraglc
%

)boside
Mnl

MC1 3.7 8.4 27.3 14.7 41.7 15.6 2.0 2.3
MC2 2.0 5.2 18.2 17.5 38.1 16.1 1.8 5.2
MC3 26.5 17.2 31.1 12.5 22.7 14.3 29.2 13.3

MC4 1.9 2.1 3.7 3.5 2.0 2.77 3.8 2.6
MC5 1.3 4.1 2.7 3.7 2.7 4.1 31.2 17.3

%, percentage positive bacteria; Mnl, mean fluorescence intensity in relation to fluorescence
standard beads (Mnl = 500)
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5.3.7.3 Comparison of WCE and flow cytometry methods

Detection of binding of antibodies to blood group antigens by MC by WCE and flow

cytometry agreed except for the following strains (Table 5.21). MCI bound the

antibody to P in WCE but was negative in flow cytometry (3.7%, Mnl 8.4). MC2
was negative for PI in WCE but positive in flow cytometry (18.2%, Mnl 17.5). MC3
was negative for PI in WCE but positive in flow cytometry (31.1%, Mnl 12.5), and a

similar pattern was observed to binding of the activity to paragloboside (29.2%, Mnl

13.3). MC4 was positive for PI in WCE but was negative in flow cytometry (3.7%,
Mnl 3.5) as was binding of the antibody to pK (2.0%, Mnl 2.77). MC5 was positive
for pK in WCE but was negative in flow cytometry (2.7%, Mnl 4.1).

Table 5.21 Comparison of methods for detection of binding of antibodies to
blood group antigens by M. catarrhalis strains
Strain P

WCE FC
P

WCE
1

FC
P

WCE

K

FC
Paraglc
WCE

)boside
FC

MC1 + - + + + + - -

MC2 - - - + + + - -

MC3 + + - + + + - +

MC4 - - + - + - - -

MC5 - - - - + - + +
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5.3.7.4 Screening of MC isolates for binding of antibodies to blood group

antigens and immunotype L(3,7,9) by WCE

Most clinical isolates of MC bound one or more antibody to the following antigens

(Table 5.22): P (12.7%); PI (23.8%); pK (63.5%); paragloboside (17.5%); and I

(19.0%); L(3,7,9) (31%).

Table 5.22 WCE for binding of antibodies to blood group antigens and
L(3,7,9) by M. catarrhalis strains
Antigen Positive MC strains n=126, No (%)
P 16 (12.7)
P1 30 (23.8)

80 (63.5)
Paragloboside 22 (17.5)
I 24 (19.0)
No binding of blood group antibodies tested 33 (26.2)
L(3,7,9) 39 (31.0)

Binding pattern of antibodies to blood group and immunotype L(3,7,9) to individual
MC isolates are presented in Table 5.23. The most striking observation was the

significantly higher proportion of strains from children that bound the L(3,7,9)

antibody (16/26, 61%) compared with isolates from adult patients (23/100, 23%)

0C2=12.59, pO.OOl).
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Table 5.23 WCE assay for binding of antibodies to blood group antigens and
immunotype L(3,7,9) to Scottish M. catarrhalis strains

Strain P P1 PK Paragloboside I L(3,7,9)
MC1 + + + - + -

MC2 - - + - - -

MC3 + - + - + -

MC4 - + + - - -

MC5 - - + + - -

MC6 - + - - - -

MC7 - + + - + +

MC8 - + + + + +

MC9 - - - - - -

MC10 - - - - - -

MC11 + + + + - +

MC12 - - - - - -

MC13 + + - - - -

MC14 - + + + - +

MC15 + + + + - -

MC16 - - + - + +

MC17 - - - - - -

MC18 - + - - - -

MC19 - - - - - -

MC20 - + + + - -

MC21 - - + - - -

MC22 - + - - - -

MC23 - - + + - -

MC24 - - + - + +

MC25 + - - - + -

MC26 - - + - - -

MC27 - - - - - -

MC28 - - + - - -

MC29 - - + - - -

MC30 + - - - - -

MC31 - - - - - -

MC32 - + - - - +

MC33 - - + - - +

MC34 - - - - + -

MC35 - - - - - -

MC36 - - - - - -

MC37 - - - - - -

MC38 - + + + - -

MC39 - - - - - -

MC40 - - + + + -

MC41 - - - + - -

MC42 " - - - -
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Table 5.23 (continued)

Strain P P1 pk Paragloboside i L(3,7,9)
MC43 - - + - - +

MC44 - - - - - -

MC45 - - - - - +

MC46 - - + + - +

MC47 - - - - - -

MC48 - - + + - +

MC49 - - - - - -

mc50 - - + - - +

MC51 - - - - - -

MC52 - - + - - -

MC53 + + + + - +

MC54 - - + - - -

MC55 - - + - + -

MC56 + + + + + -

MC57 - - + - - +

MC58 - - + - - -

MC59 + + + + + +

MC60 - - + - + -

MC61 - - + - - -

MC62 - - + - - +

MC63 - - - - - -

MC64 - - + + + -

MC65 - + + - + -

MC66 - + + - + +

MC67 - + + - - -

MC68 + - - - - -

MC69 - - - - - -

MC70 - - - + + -

MC71 - - + - - -

MC72 - - - - - +

MC73 - - - - - -

MC74 - - - - - +

MC75 - - + - + -

MC76 - + + + - -

MC77 - + + - - -

MC78 - - + - - -

MC79 - - + - - +

MC80 - - + - - -

MC81 - - - - - -

MC82 + + + + - -

MC83 - - - - - -

MC84 - - + - -
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Table 5.23 (continued)

Strain P P1 PK Paragloboside I L(3,7,9)
MC85 + + + - - +

MC86 - - + - + -

MC87 - - - - + -

MC88 - - - - - -

MC89 - - + - - -

MC90 - - + - + -

MC91 - - + - - -

MC92 - - + - - +

MC93 - + + - - -

MC94 - - - - - -

MC95 + + + + - -

MC96 - - + - - -

MC97 - + - - - -

MC98 - - + - + -

MC99 + + + + + -

MC100 - - + - - +

MC101 - - + - - +

MC102 - + + - - -

MC103 - - + - - -

MC104 - - - - - +

MC105 - - + - - +

MC106 - + + - - +

MC107 - - - - - +

MC108 - - + - - +

MC109 - - - - - +

MC110 - - - - - +

MC111 - - + - - -

MC112 - - + - - -

MC113 - - - - - +

MC114 + - + - - +

MC115 - - - + - -

MC116 - - + - + +

MC117 - - - - - +

MC118 - - + - - +

MC119 - - + - - +

MC120 - - + - - +

MC121 - - + - - -

MC122 - - + - - -

MC123 - - + - - -

MC124 - - + - - -

MC125 - - + - - -

MC126 + - - -
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5.4 Discussion

5.4.1 Comparison of results obtained by WCE and flow cytometry

The aim of this part of the study was to determine if the two methods used yielded
similar results in assessing the binding of antibodies to meningococci and commensal
bacteria. The WCE can accommodate larger numbers of specimens and requires less

sophisticated equipment than flow cytometry. This methodology is available in
reference laboratories that carry out serotyping and subtyping with monoclonal
antibodies against protein antigens of meningococci.

Detection of binding of immunotype monoclonal antibodies and antibodies to blood

group antigens by meningococcal reference strains agreed for both methods. The
results using WCE and flow cytometry methods agreed except for results obtained
with human anti-I and meningococcal immunotypes LI, L4, L6 and L12. Binding of
antibodies by these strains was not detected using HRP-conjugated protein A or

HRP-conjugated anti human IgG, but binding was measured using FITC-conjugated
anti-human immunoglobulin antibodies in the flow cytometric method. The affinity
of protein A for immunoglobulins is limited to medium and high affinity IgG of
several species, human IgGl, IgG2 and IgG4, but not IgG3 [Harlow & Lane, 1988],
The difference was not related to the FITC-labelled anti-human immunoglobulin

binding IgM antibodies in the I reagent as the levels of IgM were below the level of
detection by the ELISA (5.3.1).

5.4.2 N. lactamica

Detection of binding of immunotype monoclonal antibodies to NL agreed for both
methods. Only binding of antibodies to blood group P to NL5 differed in the two

methods used. The stringent application of the flow cytometric two-percent-method

(Chapter 2.13.3) suggested that binding of anti-P was considered to be negative

(5.6%). It could be argued that a less stringent application should have been used,
and the binding of anti-P to NL5 should have been considered to be weakly positive

(Table 5.12). The reason why this value was considered negative was due to the
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observation that all other NL strains binding anti-P had a high proportion of positive
cells (15.6-77.1%) and 20 x greater Mnl values (Table 5.12).

5.4.3 M. catarrhalis

The binding of blood group antibodies agreed except for the following: binding of P
to MCI; PI to MC2 and MC3; pK to MC4 and MC5; and paragloboside to MC3.
This suggests that both methods did not assess accurately the binding of blood group

antigens to cross-reactive antigens. The reasons for these differences are not clear as
there was no change in methodology, reagents or solutions used and all strains were

tested in the same experiments.

5.4.4 Assessment of the two methods

These findings suggest that both methods are effective in assessing the binding of
antibodies to carbohydrate antigens on meningococci and NL. While WCE alone
could provide accurate information for meningococci and NL, both methods are

needed to obtain an accurate picture of binding of these antibodies by MC. Because
of the limited quantities of the antibodies, the flow cytometry method was not used to
assess binding of immunotype antibodies to the 126 strains ofMC.

5.4.5 Binding of antibodies to blood group and meningococcal immunotype

antigens by meningococci in relation to previous studies

All immunotype antibodies used bound to strains previously reported to express

these antibodies (Chapter 2, Table 2.1) [Scholten et al., 1994], The anti-

paragloboside antibody bound to all immunotype reference strains reported to

express this antigen. In addition, immunotype L8 that bound anti-paragloboside IgM

co-expresses immunotype L(3,7,9). Immunotype L12 bound anti-paragloboside an

antigen found on immunotype L10. The antibody against immunotype L(3,7,9), an

antigen that contains the paragloboside moiety, did not bind to immunotypes L4, or
L10 that bound anti-paragloboside antibodies. These findings suggest that the

L(3,7,9) antibody recognises an epitope that is either not accessible in these
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immunotypes, or that the L(3,7,9) antibody is directed against an epitope other than
the oligosaccharide moiety. This epitope might be present in the core structure of the

L(3,7,9) antigen, or it might include a combination of core and paragloboside
structure.

The binding of blood group antibodies corresponds to the presence of these antigens
within the published structures of meningococcal LOS. These findings provide
evidence that antibodies used for blood group typing can detect similar antigens on

meningococci. Antibodies found in human serum directed against blood group

antigens might also cross-react with meningococcal oligosaccharide moieties, for

example anti-I antibodies found in human serum. Their possible biological functions
in relation to complement dependent bactericidal activity (Chapters 3 and 4), ability
to neutralise the toxicity of meningococcal LOS (Chapter 6), or ability to opsonise

meningococci and commensal species has not been evaluated.

5.4.6 Binding of antibodies to blood group and meningococcal immunotype

antigens by NL isolates from different countries in Europe

Significantly fewer NL isolates from Greece bound antibodies to the blood group

antigens pK, paragloboside, Ii, and immunotypes L(3,7,9) and L10 compared to

isolates from the Czech Republic and Scotland (5.3.6). The Greek isolates were

obtained from ethnic Greek school children and children from Russian immigrant
families in Athens [Kremastineou et al., 1999a & b], the Czech strains were isolates
from children who were carriers, while the Scottish isolates were obtained from adult

(student) carriers (n=10) and post mortem isolates from children who died of sudden
infant death syndrome (SIDS) (n=2).

Several authors have investigated carriage rates of meningococci and NL within
normal populations in the USA [Gold et al., 1978], Norway [Holten et al., 1978],

Nigeria [Blakebrought et al., 1982], Spain [Saez-Nieto et al., 1985], England

[Cartwright et al., 1987; Coen et al., 2000], Faroe Islands [Olsen et al., 1991], Wales

[Davies et al., 1996], Greece [Kremastineou et al., 1999a], and New Zealand

[Simmons et al., 2000], There has, however, been no systematic survey of antigens
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on NL cross-reactive with those on meningococci. All of these surveys investigating

carriage ofNL reported that carriage rates ofNL were higher in young children (12-

65%) compared to young adults (2-5%). Carriage ofNL were found to exceed those
for carriage of meningococci within the younger age groups by up to 6 to 1 and the
two species are not isolated from the same individual [G. Tzanakaki, personal

communications]. This demonstrates that NL is a commensal found world-wide in

young children, and its association with the development of natural immunity to

meningococcal disease appears to be of great importance in many communities.

The significant differences in the binding antibodies to carbohydrate antigens by
strains isolated from Greece, Scotland and the Czech Republic indicate that regional

phenotypic differences of NL isolates might contribute to the development of
different herd immunities. This could lead to greater susceptibility to meningococcal
disease in some populations for example those in which there is a low proportion of
commensal strains expressing the L(3,7,9) or L8 epitopes. Little is known about the
LOS immunotypes of meningococcal isolates from Eastern Europe, Australia or

African countries.

5.4.7 Binding of antibodies to blood group and L(3,7,9) antigens by M.
catarrhalis

The majority of MC isolates (73.8%) bound one or more antibodies to blood group

antigens or L(3,7,9) immunotype (Tables 5.22 and 5.23). Antibodies to the blood

group pK were bound by most of the isolates (63.5%) and the monoclonal antibody to

L(3,7,9) was bound by 30.2%. These findings support our hypothesis, that carriage of
MC might induce protective immunity against meningococcal disease. Most of these
isolates were from adults with respiratory tract infections. Strains isolated from
children with otitis media showed a higher proportion of binding of L(3,7,9)
antibodies to those MC isolates (n= 26, 61%) compared to isolates causing disease in
adults (n=100, 23%) (Table 5.23). Although these findings were highly significant,
caution has to be taken due to the unreliability of the WCE method used for MC
isolates. Similar studies with MC isolates from children from different geographical

regions and ethnic groups with respiratory or ear infections and carrier isolates need
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to be carried out. Little is known about natural antibodies induced by MC cross-

reactive to meningococci or NL. Naturally occurring IgG2 antibodies that bound to

whole cells of MC were detected in children older than 5 years [Goldblatt et al.,

1990], The presence of anti-MC antibodies in older children, its frequent presence in
the pharyngeal cavities of children, and apparent high levels of strains with L(3,7,9)

epitope isolated from children with otitis media provide evidence that MC might be
involved in the development of natural immunity to meningococcal LOS.

5.5 Conclusions

1. Assessment of binding of antibodies by flow cytometry and whole cell ELISA

provided evidence that antibodies used for blood group typing could detect
similar antigens on meningococci and commensal species.

2. Commensal species express antigens that bound antibodies used for

meningococcal immunotyping.
3. Significant differences in the binding of antibodies to carbohydrate antigens were

observed among NL strains isolated from Greece, Scotland and the Czech

Republic. This indicates that regional phenotypic differences of NL isolates

might contribute to the development of different herd immunities that could lead
to greater susceptibility to meningococcal disease in some of these populations.
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Chapter 6 Pro-inflammatory responses elicited from THP-1 cells by LOS ofN.

meningitidis, N. Iactarnica and M. catarrhalis

6.1 Introduction:

Meningococcal LOS and LOS from related species are being examined as potential
vaccine candidates for serogroup B meningococcal disease because they induce
antibodies in young children [Verheul et al., 1993]. A major problem is that

inflammatory responses to meningococcal LOS contribute to the severity and fatality
of disease caused by NM [Brandtzaeg et al., 1989; Westendorp et al., 1995, 1997;
Jensen et al., 1996], Although there are 12 immunotypes of LOS described. L(3,7,9)
is associated with rapid progressive meningitis and septicaemia and is isolated from
over 90% of patients with disease due to serogroup B or C. Immunotypes L10-L12
are found exclusively on group A meningococci. Other types are obtained primarily
from asymptomatic carriers [Romero & Outschoorn, 1994; Jones et al., 1992], In

Chapters 3-5, isolates ofNL and MC were screened for antigens cross-reactive with

meningococci. Evidence was found indicating that there are common

oligosaccharides in the LOS of these species (Chapter 5).

Meningococcal meningitis and septicaemia are exclusively human diseases, and a

suitable animal model for safety assessments of LOS vaccines does not exist.
Because of the genetically controlled variability of the inflammatory response of
individuals to bacterial antigens and toxins [Westendorp et al., 1995, 1997; Nadel et

al., 1996; Gordon et al., 1999; Read et al., 2000], an in vitro model with a human

monocytic cell line was developed for initial screening of cytokine release induced

by LOS preparations from meningococci and commensal species.

Although several models were described to investigate the role of MC in the

pathogenicity of otitis media [Karalus & Campagnari, 2000], as well as to evaluate
effectiveness ofMC vaccines [McMichael, 2000], none accurately reflects the events

observed on human mucosal membranes, or corresponds to the human immune

response in vivo.
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The objectives of this part of the study were:

1. to develop an in vitro model using a human monocytic cell line for initial

screening of potential vaccine candidates for their ability to induce inflammatory

responses;

2. to use the model system to compare the inflammatory responses to LOS isolated
from meningococci and commensal species which absorbed bactericidal activity

against different immunotypes ofNM;
3. to test the hypothesis that the L(3,7,9) LOS induced higher levels of

inflammatory responses than other immunotypes;
4. to use the model system to assess the ability of normal human serum and immune

mouse serum to neutralise the effect of meningococcal LOS as reflected in the
reduction of pro-inflammatory cytokine responses.
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6.2 Materials and Methods

6.2.1 THP-1

THP-1 cells [Tsuchiya et al., 1980] were grown to 104 to 106 cells ml"1 in RPMI-
1640 cell culture medium (Sigma) for not more than 18 weeks after establishing the
cell line. The calf serum did not contain antibodies against any of the tested bacterial
strains as determined by whole cell ELISA (5.2.4).

6.2.2 Analysis of cell surface antigens

THP-1 cells were induced to express the lipopolysaccharide (LPS) receptor CD14 by
incubation with 10"7 M 1,25-dihydroxyvitamin D3 (VD3) (Calbiochem) for 72 h

[Schwende et al., 1996; James et al, 1997], The primary and secondary antibodies
used to detect cell surface antigens in the flow cytometry assay are listed in Tables
6.1 and 6.2.
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Table 6.1 Primary antibodies and primary fluorochrome-conjugated
antibodies used for flow cyometry and confocal microscopy
Anti-human antigen- Species Clone Isotype Code

Lot
Company Dilution

CD4 (R-PE)/
CD3 (FITC)

Mouse S4.1/S3.5 lgG2a/
lgG2a

CD3-4 A Caltac Neat

CD8 (R-PE)
/CD3 (FITC)

Mouse S4.1/3B5 lgG2a/
lqG2a

CD3-8-A Caltac Neat

CD11/18 Mouse 191b FD11 igG BC95F
191-1

Seralab 1 in 20

CD11b (PE) Mouse 2LPM19C igG 078(201)
R0841

DAKO 1 in 50

CD11c Mouse MCA551 igG 200T SAPU 1 in 10

CD14 (FITC) Mouse TUK4 igG 068(201)
F0844

DAKO 1 in 10

CD15 Mouse 2-35-14 igM hCD15 SAPU 1 in 20

CD16 (R-PE)
/CD3 (FITC)

Mouse 3/16/56 igG 08010102 Caltac Neat

CD18 (LFA-1 beta
chain of complement
receptor)

Mouse MHM23.(1) IgGlK M783
064

DAKO Neat

CD25 (FITC)
(IL-2 receptor)

Mouse ACT-1 igGK F0801
078

DAKO Neat

CD29 (FITC) (T cell
fibronectin receptor)

Mouse K20 lgG2aK F7068
087

DAKO 1 in 10

CD35

(C3b receptor)
Mouse To5 IgGlK M0710

048(101)
DAKO 1 in 10

CD41 (FITC) a chain
(fibronectin receptor)

Mouse 5B12 IgGlK F7088
018

DAKO Neat

CD45 (leukocyte
common antigen)

Mouse T29/33 IgGlK M0855

067(201)
DAKO Neat

CD51 (FITC)
a chain integrin

Mouse 51F igG 1855 Immuno
tech

Neat

CD61 GPIIIa p3
vitronectin receptor

Mouse Y2/51 IgGlK M0753
029

DAKO Neat

CD64
(FcRI receptor)

Mouse 10.1 MCA756 Serotec 1 in 20

CD77
(anti-pK)

Rat 38-13 IgM MCA579
221097

Serotec Neat

Blood group antigen
H

Mouse 92FR-A2 IgMK A0583
058A

DAKO Neat

Mo Mouse UCHM1 igG 5076L SAPU 1 in 10

k kappa, mAb monoclonal antibody, pAb polyclonal antibody, FITC, fluorescein
isothiocyanate -labelled; R-PE, PE, R-phycoerythrin labelled
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Table 6.2 Secondary fluorochrome-conjugated antibodies used for flow
cyometry and confocal microscopy

Antigen Species Isotype Code
Lot/batch

Company Dilution

Mouse IgG (whole molecule)
F(ab') fragment FITC
conjugate

Sheep IgG F2883
048H9180

Sigma 1 in 100

Mouse IgG (whole molecule)
F(ab') fragment R-PE
conjugate

Sheep IgG P9287
056H8890

Sigma 1 in 100

Rat IgM FITC conjugate Mouse IgG MCA189F
P10802

Serotec 1 in 200

Mouse IgMp-chain specific
FITC conjugate

Goat IgG F9259
086H8824

Sigma 1 in 200

Rabbit IgG (whole molecule)
FITC conjugate

Goat IgG F0382
125H8826

Sigma 1 in 200

Mouse IgG (whole molecule)
FITC conjugate

Sheep IgG S121-201
8241B

SAPU 1 in 100

6.2.3 Extraction of LOS from meningococcal immunotype strains and
commensal isolates

The expression ofLOS immuno types of the NM reference strains are shown in Table
6.3. NL1, MCI and MC2 examined in Chapters 3-5 were used in this part of the

study.

All strains were grown for 18 h in 5% (v/v) C02 on HBA. Cells were harvested from

plates, washed in sterile pyrogen free PBS, centrifuged at 1000 x g and resuspended
in pyrogen free distilled water. The purified Escherischia coli LPS (strain 026:B6)
was purchased from Sigma, UK.

Table 6.3 LOS immunotypes of NM reference strains [Scholten et al., 1994]
Major LOS Strain Major

L(3,7,9)
Minor LOS PEA (1 —>3) Hepll PEA (1—>6/7)

Hepll
L2 35E - 3,7,9 - +

L3 6275 + 8 + -

L4 89I - - +

L5 M981 - 3,7,9 - -

L6 M992 - - +

L7 6155 + 8 + -

L8 M978 - 3,4,7 + -

L9 120M + 6, 8 + n.e.

L10 7880 - 8 + n.e.

L11 7889 - + n.e.
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6.2.3.1 Extraction of LOS

LOS was extracted by the hot phenol water method ofWestphal & Luderitz [1954]
as described by Hancock & Poxton [1988], Bacteria grown on HBA were harvested,
washed in sterile pyrogen free PBS, centrifuged at 2000 x g, re-suspended in

pyrogen-free distilled water and frozen (-70°C). The bacteria were freeze-dried and

resuspended in pyrogen-free water (5%, w/v). The cell suspension was heated to 67°
C in a water bath, and an equal amount of pre-warmed (67° C) 90% (w/v) phenol

(Sigma) dissolved in pyrogen free water was added in a fume cupboard. The cells
were incubated for 30 min at 67° C and transferred to an ice bath. The phenol-soluble

protein and cell fragments were removed from the water-soluble LOS by ultra-

centrifugation at 10,000 x g for 60 min. The top aqueous solution was carefully
removed and dialysed against tap water for 18 h in a 2 kDa permeable membrane

(Fisher). The contents of the dialysis membrane were centrifuged for 4 h at 100,000
x g. The pellet was recovered, frozen at -70° C and ffeeze-dried. The purified LOS
contained protein contaminants of <1% (w/w) as assessed against a standard of
bovine serum albumin (BSA) (Sigma) (6.2.3.2). The LOS was resuspended in RPM3-
1640 medium (Sigma), and filtered through a 0.22 pm membrane filter. Aliquots
were stored at -70° C and two samples from each batch were incubated at 37° C for
18 h to test for sterility.

6.2.3.2 Protein assay

The Bradford reagent contained Coomassie blue G250 (0.01%, w/v) (Sigma), ethanol

(4.7%, v/v) and phosphoric acid (8.5%, w/v) (BDH) in pyrogen-free distilled water.

The solution was filtered through Whatman No. 1 filter paper prior to use. Serially
diluted amounts (1 mg ml"1 to 0.01 pg ml"1) of BSA (Sigma) and freeze-dried LOS
stock were dissolved in sterile distilled water. Each solution was mixed with

Bradford reagent at a ratio of 1 in 5, and incubated at room temperature for 5 min.
The absorbance of the solution was measured at OD595 using distilled water as a

blank. The amount of the protein contamination (pg ml"1) was calculated by

comparing the absorbance value of the LOS samples with the absorbance values of
the BSA protein standard [modified from Bradford, 1976],
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6.2.4 Immune mouse sera

NL1 and the meningococcal immunotype strain L3 (B:2a:PI.5,2) were killed by

heating for 60 min at 100°C (2.11). Individual strains (109 bacteria , 100 pi) were

injected in adjuvant free and pyrogen free saline (SIGMA) intravenously (/.v.) into
the tail vein of three six week old male BALB/c mice on three consecutive days. This
was followed by repeated /'. v. inoculations with the same dose and batch of antigen at

weeks 4, 8, 12 and 16. In week 20, LOS (100 pi, 100 ng ml"1) obtained by hot phenol
water extraction of the immunotype L3 or NL1 strain was injected. Three days after
the final injection, blood was collected aseptically by cardiac puncture, allowed to

clot, centrifuged at 500 x g for 15 min at 4°C. The supernatant was collected and
diluted in pyrogen free saline (1 in 100). Complement was inactivated by heat
treatment (56°C for 30 min) and the sera were stored in aliquots (1 ml) at -70°C. The

production of antibodies was covered by an animal licence obtained from the British
Home Office.

Antibodies to NL1 and L3 in samples taken from the mice before immunisation and
at the end of the immunisation schedule were detected by WCE against the

respective strain (5.2.4).

6.2.5 Induction of pro-inflammatory cytokines

The immature human monocyte cell line THP-1 was incubated for 72 h with 10"7 M
VD3 to induce expression of the CD 14 cell surface antigen [Schwende et al., 1996;
James et al, 1997], Triplicate samples of the differentiated cells were challenged for
6 h with tenfold dilutions ranging from 1 pg ml"1 to 100 ng ml"1 of LOS from the
individual immunotypes or E. coli endotoxin [Brandtzaeg et al., 1996] in the absence
or presence of pooled human serum or immune mouse serum (0.1%, v/v). To
determine the concentration to be used in the neutralising assays, human serum or

immune mouse serum was serially diluted and tested using WCE (6.2.4) for binding
to meningococcal immunotype L3 and NL1. A final dilution of 1 in 1,000 was used
in the neutralisation experiments.
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6.2.6 ELISA for detection of IL-6

6.2.6.1 Coating buffer

Coating buffer contained Na2C03 (1.59g) (BDH), NaHC03 (2.93 g) (BDH) and

NaN3 (0.2 g) (Sigma) dissolved in 1 litre ofdistilled water and adjusted to pH 9.6.

6.2.6.2 Washing buffer

The buffer was prepared by dissolving of NaCl (8 g) (Sigma), KH2PO4 (0.2 g)

(Fisons), Na2HP04 (1.15 g) (BDH) and KC1 (0.2 g) (BDH) in 1 litre of distilled
water. Washing buffer was prepared prior to use by addition of Tween-20 (0.05%,

v/v).

6.2.6.3 Blocking buffer

Blocking buffer contained BSA (1%, w/v) (Sigma) in sterile PBS.

6.2.6.4 Substrate

TMB (Sigma) was diluted 1 in 5 in distilled water.

6.2.6.5 Stopping solution

The stopping solution contained 12.5% (v/v) H2SC>4.

6.2.6.6 Detection of cytokine production by ELISA

The wells of microtitre plates were incubated overnight at 4°C with 50 pi of mouse

monoclonal anti-IL-6 (1 pg ml"1) diluted 1 in 500 (R&D Systems, UK) in coating
buffer. The wells were washed 3 times with washing buffer, aspirated and blocked
with 50 pi of blocking buffer at room temperature (RT) for 30 min. The wells were

washed 3 times and the test samples (neat, 50 pi) were added to duplicate wells. For

each plate, dilutions of standard recombinant human IL-6 (R&D) (50 pi) ranging

-116-



from 0.19-100 ng ml"1 in blocking buffer were added to duplicate wells. The plates
were incubated for 2 h at 37°C. The plates were washed 3 times, aspirated and 50 pi

of goat polyclonal anti-IL-6 antibody (1 fig ml'1) diluted 1 in 1000 in blocking buffer

(R&D) was added to each well except the blank well. The plates were incubated at

37°C for 2 h, aspirated and washed 3 times. The HRP-conjugated donkey anti-goat

IgG (50 pi) diluted 1 in 20,000 in blocking buffer (Sigma) was added to each well

except the blank well., and the plates were incubated at 37°C for 1 h. The plates were

washed 3 times, aspirated and 100 pi of substrate was added. The colour change of

the substrate was stopped after 10-15 min by adding 25 pi of stopping solution.

The absorbance was measured at 450 nm and a reference wavelength of 620 nm

(Dynex MRX II) and analysed with the Dynex Revelation software for PCs. The
concentration of IL-6 (ng ml"1) in each sample was calculated from the standard
curve obtained with the recombinant IL-6 samples. The mean IL-6 concentration and
standard deviation (SD) were recorded.

Quality control between plates was assessed by adding 5 pi of the HRP-conjugated

secondary antibody and TMB substrate (lOOpl) to an empty well. Variability in
absorbance between plates was less than 0.100. The principles ofELISA method are

outlined in Figure 6.1.
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Figure 6.1 Principle of ELISA
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6.2.7 Detection of TNFa by a bioassay

This method was modified from that described by Delahooke et al. [1995].

6.2.7.1 L929 cells

The mouse fibroblast cell line L929 was obtained from the ECACC. Cells were

grown in 75 cm3 tissue culture flasks (Greiner) in growth medium containing DMEM
medium (Sigma) supplemented with FCS (5%, v/v) (Gibco), L-glutamine (1%, w/v)

(Gibco), penicillin (100 IU ml-1) and streptomycin (200 mg ml-1) (Gibco) at 37 °C
with 5% CO2.

6.2.7.2 Seeding of cells into 96-well plates

The semi-confluent monolayer covering approximately 70% of the surface of the
flask was washed twice in pre-warmed PBS and dispersed from the plastic surface by

adding 1.5 ml trypsin (0.005%, w/v) - EDTA (0.02%, w/v). Excess trypsin-EDTA
was discarded after 30 sec and the cells left for 10 - 15 min to detach. The cells were

resuspended in growth medium, washed twice by centrifugation for 10 min at 300 x

g. The cells were counted following a 1 in 10 dilution in trypan blue (0.4%, w/v)
using an improved Neubauer counting chamber. The cell count was adjusted to 3 x

105 cells ml"1 in the growth medium. Cells (100 pi) were added to a sterile 96-well
tissue culture plates (Nunc); 6 wells per plate contained medium only to act as

negative controls. The plates were incubated at 37 °C in 5% (v/v) CO2 for 24 h.

6.2.7.3 Sensitising L929 cells for TNFa

The assay medium was prepared by supplementing pre-warmed RPMI 1640 medium

(Sigma) with FCS (5%, v/v) (Gibco), L-glutamine (1%, w/v) (Gibco) and

actinomycin D (2mg ml"1) (Sigma).

The growth medium was aspirated from all wells and replaced with 100 pi of assay
medium and the plates were incubated for 2 h at 37 °C with 5% (v/v) CO2.
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6.2.7.4 Detection of TNFa

The assay medium was aspirated and replaced with duplicate samples (100 pi)

diluted 1 in 2 or 1 in 4 in assay medium. Assay medium (100 pi) was added to six
wells of cells acting as a negative control. A standard curve was obtained for each

plate by adding duplicate samples of human recombinant TNFa (National Institute
for Biological Standards and Control) diluted in assay medium ranging from 0 to 100
IU ml"1. The plates were incubated for 20 h at 37 °C in a humidified atmosphere with
5% (v/v) C02.

Crystal violet solution contained crystal violet (0.5%, w/v) and methanol (20% v/v)
in distilled water. The solution was filtered through a Whatman No. 1 filter paper.

Crystal violet (100 pi) was added to each well and the cells were incubated for 2 min

followed by gentle washing with running tap water. The plates were allowed to dry at

RT. The dye was dissolved in 100 ml of acetic acid (20%, v/v) in distilled water for
10 min. The absorbance was assessed using an ELISA plate reader (Dynex) at OD570
blanked on the mean of the negative controls. The results were expressed as IU ml"1
of recombinant human TNFa derived from the standard curve.
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6.2.8 Confocal microscopy

After flow cytometric analysis, immature and VD3 differentiated THP-1 cells (50jli1)
stained with FITC-idiotypic antibodies (control), anti-CD 14, anti-CD64, or anti-
CD11/18 were place on a microscope slide (Greiner) and sealed under a cover slip
with clear nail polish (Boots). Images were taken by scanning confocal microscopy

(3pm depth) and phase contrast microscopy (670 x magnification) (J. Bard,

Department of Anatomy, University of Edinburgh). Images were analysed using

imaging software for Windows (Microsoft).

6.2.9 Statistical analysis

The mean, standard deviation (SD) and Student's t-test were calculated using Minitab
for the Apple Mackintosh. To determine if the data were normally distributed,
normal probability plots were used [Gardiner, 1997]. Regression and analysis of
variance showed that cytokine levels were normally distributed. Probability values
were calculated with a confidence interval of 5% against the negative control treated
with PBS only or the E.coli 026:B6 LPS. Two-sided analysis (5% confidence level)
was carried out using a paired t-test for different endotoxin samples.

To assess the inflammatory response of known LOS antigens, samples were grouped
and a two-sided analysis was performed for:

1) immunotype strains expressing the major L3, L7, and L9 immunotypes were

grouped and assessed to determine if the inflammatory response was greater than
the response elicited by non-L(3,7,9) immunotypes (L4, L6, L10, and LI 1) or
strains expressing L(3,7,9) as a minor antigen (L2, L5 and L8) (Table 6.1);

2) immunotypes with a PEA (1—*3) HepII in their LOS core structure but that did
not express L(3,7,9) as a major antigen were grouped (L8, L10, and LI 1) and

compared to meningococcal LOS that did not have PEA moieties in the core of
the major immunotype (L5).
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6.3 Results

6.3.1 Expression of cell surface antigens

Incubation of THP-1 cells with VD3 for 72 h resulted in expression of most of the
cell surface markers tested except H. The greatest increase was observed for CD 14

(Table 6.4). Binding of FITC-labelled anti-CD14 antibodies to undifferentiated and

VD3 differentiated cells detected by flow cytometry is shown in Figure 6.3. The

negative control contained differentiated and undifferentiated cells incubated with
FITC-labelled anti-idiotypic mouse antibodies and did not show any detectable

staining. Confocal microscopy confirmed that CD 14 was expressed in VD3
differentiated cells, but undifferentiated THP1 did not bind any FITC-labelled anti-
CD14 antibodies.

Table 6.4 Expression of cell surface markers following incubation of THP-1
cells with VD3 (% of FL1 positive population pre- or post- differentiation)
(mean of 6 experiments, ±SD)

Cell surface marker Positive population%

Description THP-1 THP-1
+ VD3

Control FITC labelled secondary antibody 1.0 1.0
CD4 MHC class II receptor 4.06 ±1.5 # 92.7 ±3.2
CD11/18 Complement receptor 99.3 ±0.4 91.2 ±0.8
CD14 Matrix LPS binding receptor 4.3 ±0.8 # 89.9 ±7.9
CD15 Lewis x 65.6 ±4.8 #83.4 ±5.1
CD45 Leukocyte common antigen 87.8 ±6.1 91.9 ±4.5
CD64 lgG3 high affinity phagocytic FcyRI receptor 57.9 ±3.1 53.3 ±2.9
CD77 Pk blood group antigen 47.7 ±4.4 57.8 ±0.8
H Blood group H 80.0 ±8.1 * 33.2 ±9.2
Mo Monocyte activation antigen 37.1 ±2.3 41.7 ±1.9
CD29 Fibronectin receptor (3 chain 78.3 ±6.1 86.1 ±9.3
CD41 Common a chain for CD29 and CD51 92.1 ±2.3 91.2 ±5.2
CD51 Vitronectin receptor (3 chain 87.2 ±6.1 86.1 ±5.2
# statistically significant up-regulation of cell surface marker (p<0.05) compared to the VD3
undifferentiated THP-1 cells
* statistically significant down-regulation of cell surface marker (p<0.05) compared to the
VD3 undifferentiated THP-1 cells
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Figure 6.3 Scanning confocal (left) and phase contrast (right) images of (a)
undifferentiated THP-1 cells incubated with FITC-anti human CD14 and (b)
VD3 differentiated cells incubated with FITC-anti human CD14
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6.3.2 Time course for induction of TNFa and IL-6 from differentiated THP-1

cells

In three independent experiments, TNFa was detected from 3 h post exposure to

LOS from the L3 immunotype strain ranging from 1 pg ml-1 to 100 ng ml"1. The

peak level was observed at 6 h at an optimal concentration of 100 pg ml"1. IL-6 was

detected from 3 h and the peak level reached by 6 h (Figure 6.4). In the subsequent

experiments, samples were challenged with 100 pg ml"1 purified LOS and were taken
at 6 h and assessed for TNFa and IL-6.

Figure 6.4 Time course of TNFa (IU ml"1) and IL-6 (ng ml"1) production by
CD14 positive THP-1 cells challenged with 100 pg ml"1 LOS from
immunotype strain L3 (mean of 3 independent experiments)

incubation time (h)
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6.3.3 TNFa responses to LOS of different species in the presence and absence of
VD3

In six independent experiments in which each control and test condition was carried
out in triplicate, incubation of undifferentiated THP-1 cells with LOS (100 pg ml"1)
from immunotypes L3, L6, NL1, MCI, MC2 and E. coli resulted in detection of low
levels (50-92 IU ml"1) of TNFa compared with cells incubated with PBS (Figure

6.5.a).

Compared with levels obtained with the undifferentiated THP-1 cells, there was a

significant increase in TNFa activity (p<0.01) for each of the LOS preparations with
the VD3-differentiated cells (Figure 6.5.b). All endotoxin samples except MC2
showed significant increases of TNFa release compared with the E.coli LPS. With

the VD3 differentiated cells, the highest TNFa levels were obtained with LOS from

the L3 immunotype. TNFa levels for NL1, MCI, MC2 and E.coli were all

significantly lower than those elicited by immunotype L3 LOS.

6.3.4 IL-6 responses to LOS of different species in the presence and absence of
VD3

In six independent experiments, a similar pattern was observed for induction of IL-6.

Compared with cells incubated with PBS, incubation of undifferentiated THP-1 cells
with LOS from the different strains resulted in low levels of IL-6 production (Figure

6.6.a). Compared with IL-6 levels obtained with the undifferentiated THP-1 cells,
there was a significant increase in IL-6 levels for each of the LOS preparations for
the differentiated cells (p<0.01) (Figure 6.6.b). All except LOS from MC2 induced

significantly higher levels of IL-6 compared with the E. coli LPS (Figures 6.6.a,b).
NL1, MC2 LOS preparations and E. coli LPS elicited IL-6 levels significantly lower
than those obtained with LOS from the L3 strain.
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Figure 6.5 TNFa (IU ml"1) responses to LOS from meningococci (L3, L6),
commensal species (NL1, MC1, MC2) or endotoxin (100 pg ml"1) by (a)
undifferentiated, (b) differentiated THP-1 cells
(n=6, error bars = SD)
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Figure 6.6 IL-6 (pg ml"1) responses to LOS of meningococci (L3, L6),
commensal isolates (NL1, MC1, MC2) or E. coli endotoxin (100 pg ml"1) by
(a) undifferentiated, (b) differentiated THP-1 cells
(n=6, error bars = SD)
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6.3.5 Effect of LOS immunotype on cytokine levels

In six independent experiments, equivalent amounts of endotoxin (100 pg ml"1) from
E. coli and NM were assessed for their induction ofpro-inflammatory cytokines.

E. coli endotoxin induced significantly lower levels of TNFa and IL-6 than LOS

from each meningococcal immunotype tested (P<0.003) (Figures 6.7.a and 6.8.a).

Immunotypes L3, L7, L8 and L9 induced significantly higher levels of TNFa and

IL-6 compared with strains expressing non-L(3,7,9) immunotypes (pO.Ol) (Figures
6.7 and 6.8).

L7 LOS elicited the highest levels of TNFa compared with all other immunotypes
tested including those expressing L(3,7,9) (P<0.01) (Figure 6.7.a). L3 LOS elicited
TNFa levels significantly higher than those of non-L(3,7,9) strains and L8 (3,7,9)

(P<0.01), but there were no significant differences observed between results for L3
and L9. L9 LOS elicited TNFa levels significantly higher than those of non-L(3,7,9)
strains and L8 (3,7,9) (P<0.006), but there were no significant differences observed
between results for L3 and L9 (P>0.19). LOS of L7 elicited the highest levels of IL-6

compared with all other immunotypes tested including those expressing L(3,7,9)

(PO.Ol). L3 LOS elicited IL-6 levels significantly higher than those all non-

L(3,7,9) strains tested (P<0.006) but not L8 (P=0.980) or L9 (P=0.864). Similar

patterns were observed for L9.

6.3.6 Cytokine levels in relation to the presence or absence of the major L(3,7,9)
structure

To assess the inflammatory response of known LOS antigens, samples were grouped
and a two-sided paired analysis was performed as follows: immunotypes L3, L7, and
L9 were grouped to assess the inflammatory responses in comparison with

immunotypes not expressing L(3,7,9) as their major LOS antigen (Table 2.1) (L2,

L4, L5, L6, L8, L10, and Lll). The results with immunotypes containing L(3,7,9)

were significantly higher for TNFa (PO.Ol) and IL-6 (PO.Ol).

- 128 -



6.3.7 Cytokine levels induced by LOS immunotypes in relation to core structure

To assess the role of different core structures, cytokine responses to LOS from

immunotypes known to have PEA (1—>3) HepII structure in their major LOS

immunotype were grouped (L3, L7, L8, L9, L10, and LI 1) and assessed in relation to

responses elicited by LOS from strains that do not have the PEA (1—>3) Hepll core

structure (L2, L4, L5, and L6) (Table 6.3). Levels of TNFa and IL-6 responses

induced by LOS structures containing PEA (1 —>3) HepII were significantly higher.
TNFa (PO.Ol) and IL-6 (P<0.006) compared to those without PEA (1 —>3) HepII.

The analysis was repeated excluding immunotypes expressing L(3,7,9) as their major
LOS antigen. Cytokine levels induced by LOS of immunotypes possessing the PEA

(1—>-3) core structure (L8, L10, and LI 1) induced significantly higher responses than
LOS from immunotypes with other core structures (L2, L4, L5, L6) although L2 and
L5 expressed 3,7,9 as a minor antigens {TNFa (PO.Ol), IL-6 (PO.Ol)}.

6.3.8 Effect on cytokine levels following treatment of LOS with pooled human
serum

In six experiments, cytokine levels for LOS from the different NM immunotypes
incubated with the pooled human serum were significantly reduced compared with
the results obtained with the LOS alone. In the presence of serum, the levels of both
TNF and IL-6 were reduced to the levels obtained with the PBS control (P<0.01)

(Figures 6.7.b and 6.8.b).

6.3.9 Effect on cytokine levels following treatment of LOS with immune mouse

serum induced by the L3 strain

In six experiments, cytokine levels for LOS from the different immunotypes
incubated with the mouse serum induced by the immunoype L3 strain were

significantly lower for LOS of immunotype strains L3, L5, L7 and L9 compared with
results obtained with the LOS in the absence of serum (P<0.03). Treatment of the E.

coli LPS with the immune mouse serum did not significantly reduce release of either
TNFa or IL-6 (Figures 6.7.c and 6.8.c). The pooled non-immune serum sample
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obtained from mice prior to immunisation did not significantly reduce cytokine
levels for any of the LOS or E. coli LPS samples (P>0.65).

Compared with results obtained with LOS alone, TNFa levels induced by LOS co-

incubated with immune mouse serum was reduced sixfold for immunotypes L3 and
L7 (P<0.01), and fourfold for immunotype L9 (P<0.01). Immunotype L8 co-

expressing the L(3,7,9) immunotype showed reduction of TNFa levels by

approximately 40% (P<0.01). Release ofTNFa by immunotype L5 was also reduced

significantly (40%) by treatment with the mouse serum (P<0.01) (Figure 6.7.c).

Compared with results obtained with the LOS alone, IL-6 release was reduced by
treatment of the LOS preparations with immune mouse serum by 85-90% for

immunotypes L3, L7, and L9 (P<0.01). Immunotypes L5 and L8(3,7,9) were reduced

by 50 and 35 %, respectively (P<0.01), L2 by 12% (P<0.02); Lll by 5% (P<0.01)

(Figure 6.8.c)

6.3.10 Effect on cytokine levels of treatment of LOS with immune mouse serum

induced by the NL1 strain

In six experiments, TNFa and IL-6 levels for LOS from different meningococcal

immunotypes co-incubated with immune serum of mice vaccinated with strain NL1

were significantly lower compared with cytokine levels obtained with LOS in the
absence of serum: L2 (P<0.01); L3 (PO.Ol); L7 (PO.Ol); L8 (P<0.01); L9

(P<0.01); Lll (PO.Ol). TNFa levels were lower for immunotypes L5 (P<0.01) and
L10 (PO.Ol), but IL-6 levels for these immunotypes were not significantly reduced

(P>0.13). IL-6 levels were significantly lower for immunotype L6 (P<0.01), but
TNFa levels were not significantly reduced (P=0.34). Cytokine levels for

immunotype L4 were not significantly lower (P=0.27). Treatment of E. coli LPS
with the immune mouse serum induced by NL1 reduced TNFa and IL-6 levels by
not more than 15% (Figures 6.7.d and 6.8.d). The non-immune serum did not reduce

cytokine levels in any of the endotoxin samples (PO.89).
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Figure 6.7 (a) Release of TNFa (IU ml"1) from VD3 differentiated THP-1 cells
challenged with meningococcal LOS or E. coli LPS (100 pg ml"1), (b)
endotoxins co-incubated with pooled human serum (final dilution 1 in 1000),
(c) endotoxins co-incubated with immune mouse serum produced by
vaccination with the immunotype L3 (final dilution 1 in 1000), (d) endotoxins
co-incubated with immune mouse serum produced by vaccination with NL1
(final dilution 1 in 1000) (n=6; error bars = standard deviation)
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Figure 6.8 (a) Release of IL-6 (pg ml"1) from VD3 differentiated THP-1 cells
challenged with meningococcal LOS or E. coli LPS (100 pg ml"1), (b)
endotoxins co-incubated with pooled human serum (final dilution 1 in 1000),
(c) endotoxins co-incubated with immune mouse serum produced by
vaccination with the immunotype L3 (final dilution 1 in 1000), (d) endotoxins
co-incubated with immune mouse serum produced by vaccination with NL1
(final dilution 1 in 1000) (n=6; error bars = standard deviation)

PBS L2 L3 L.4 L5 L6 L7 L8 L9 L10 L11 E.coli

(a)

L2L3L4 15L6L7L8L9 L10

- 132-



6.4 Discussion

6.4.1 Results in relation to objectives

6.4.1.1 Development of model system

The first aim of the study was to develop an in vitro model to assess human

inflammatory responses to LOS from meningococci and commensal species.
Maximal IL-6 and TNFa production was observed between 6-8 hours after exposure
of the VD3-differentiated THP-1 cells to meningococcal LOS. THP-1 cells

expressing low levels of CD14 responded to the LOS preparations with very low
levels of IL-6 and TNFa. VD3-differentiated, CD14-positive THP-1 cells produced

significantly higher levels TNFa (P<0.01) and IL-6 (P<0.01) in response to all
endotoxin preparations tested (Figures 6.4 and 6.5).

6.4.1.2 Comparison of inflammatory responses induced by meningococci and
commensal species

The second objective was to compare pro-inflammatory responses of THP-1 cells
induced by LOS from meningococci with those induced by commensal species.
TNFa and IL-6 responses in the model system were used to test the hypothesis that
LOS isolated from commensal species would elicit lower levels of pro-inflammatory

cytokines than LOS of meningococci. The meningococcal immunotype L3 showed

significantly higher TNFa and IL-6 responses compared to LOS of the other isolates

tested. The LOS from commensal species elicited lower levels ofTNFa than LOS of
the L3 immunotype. All results except those for MC2 were significantly higher than
the response obtained with commercially available E. coli LPS. LOS ofNL1, MCI,
MC2 and E. coli endotoxin elicited significantly lower levels of IL-6 than LOS of the
L3 immunotype (Figures 6.5 and 6.6).
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6.4.1.3 Assessment of inflammatory responses of meningococcal immunotypes

The third objective was to compare TNFa and IL-6 responses to LOS of different

immunotype strains to test the hypothesis that the L(3,7,9) immunotypes obtained
from group B and C meningococci had more toxic LOS. Immunotypes L3, L7, and
L9 induced significantly higher levels of TNFa and IL-6 compared to strains

expressing non-L(3,7,9) immunotypes or endotoxin from E. coli. This could partly

explain why strains expressing the L(3,7,9) immunotype are isolated more frequently
from patients with disease [Jones et al., 1992; Romero & Outschoorn, 1994] (Figures
6.7.a and 6.8.a).

6.4.1.4 Assessment of neutralisation of LOS in the model system

The fourth objective was to use the model to screen for neutralising activities against
the LOS of different immunotypes. Treatment of the LOS with pooled human serum

significantly reduced cytokine release by all LOS immunotypes. This indicates that
antibodies to endotoxin are not only bactericidal but also neutralise the ability of
LOS to induce release of pro-inflammatory cytokines from monocytic cells. Immune
serum induced in mice to NL1 or L3 strains had narrower ranges of neutralising

activity (Figures 6.7.b and 6.8.b).

6.4.2 Methodology

6.4.2.1 Existing models

Several studies investigating the pro-inflammatory responses to meningococcal LOS
used either in vivo observations in patients with meningococcal disease [Brandtzaeg
et al., 1989, 1996], ex vivo experiments with peripheral blood mononuclear cells

(PBMC) [Cavaillon & Haeffner-Cavaillon, 1986; Petrov et al., 1994; Blondin et al.,

1997; Kalmusova et al., 2000], PMN [Lien et al., 1995; Jenson et al., 1996], in vivo

mouse studies [Andersen et al., 1997; Quakyi et al., 1999], or whole blood samples
from patients or first degree relatives of patients who died of meningococcal disease

[Westendorp et al., 1995; 1997, Gordon et al., 2000].
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While these models for the assessment of inflammation reflect the diversity of the

inflammatory responses to LOS challenge, some factors might limit their use as a

standardised model system for the safety assessment ofLOS based vaccines:

Findings from in vivo studies using mouse models are only partially transferable to

the inflammatory responses in humans. Meningococci are exclusively human

pathogens. Patients developing fulminant septicaemia showed plasma levels between
210 and 170,000 ng l"1 circulating LOS, and patients with meningitis 25 to 260 ng l"1
LOS [Brandtzaeg et al., 1989]. This indicates that relatively small amounts of LOS
are associated with the pathology of meningococcal disease in humans. The lethal
dose of purified LOS in mice is approximately 10-100 ng LOS/mouse [Petrov et al.,
1994; MacKinnon et al., 1992], The typical weight of a mouse is 20 g which reflects
a level ofLOS in mice that is 50 times greater than that in humans.

Because of the genetically controlled variability of the inflammatory response of
individuals to bacterial antigens and toxins [Westendorp et al., 1995, 1997; Nadel et

al., 1996; Gordon et al., 2000; Read et al., 2000], the use ofPBMCs and PMNs from
individual donors will result in a wide range of inflammatory responses to LOS

challenge. The effect of cigarette smoking and viral infections needs to be considered
in relation to the results obtained with blood samples from individual donors [Stuart
et al., 1989; Cartwright et al., 1991; Hubert et al., 1992; Zorgani et al., 1992;
Stanwell-Smith et al., 1994; O'Mahony et al., 1998; Gordon et al., 2000]. For the
initial screening of a large range of potential vaccine candidates, a number of donors
would have to be included in the screening process.
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6.4.2.2 Advantages of the model

The use of the monocyte cell line was considered to have several advantages:
1. THP-1 cells and another monocytic cell line, U937 [Schwende et al., 1996], are

readily available through national cell culture collections.
2. Large numbers of cells can be produced within a relatively short period of time

for use in studies on inflammatory responses, or protective effects of monoclonal
and polyclonal antibodies produced against candidate vaccine antigens or

covalescent and normal human serum.

3. The use of cell lines provides a greater reproducibility between different
laboratories over time.

4. The method reduces the effects of genetically controlled individual variation in
the inflammatory responses and the effects of environmental factors such as

exposure to cigarette smoke [Gordon et al., 2000] or effects of recent or current
virus infections [Raza et al., 2000].

5. Other factors associated with meningococcal disease can be investigated. These
include the exposure to cigarette smoke where water soluble smoke extracts can

be co-incubated with the cell line [Raza et al., 1999], Alternatively, THP-1 cells
can be infected with viruses associated with the susceptibility to invasive

meningococcal disease [Raza et al., 2000],

6.4.2.3 Limitations of the model:

Limitations of this model include the following:

1. The use of cell lines does not take into account the genetic and environmental

variability found in human populations [Westendorp et al., 1997; Read et al.,

2000; Gordon et al., 2000],
2. Tumour cell lines are immature cells and do not express all the cell surface

antigen phenotypes found in normal human monocytes and macrophages.
3. The involvement of PMN, other leukocytes and antigen presenting cells on the

inflammatory process can not be assessed.
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6.4.3 Comparison of responses elicited by commensal species

Challenge of VD3-differentiated THP-1 cells with LOS from meningococci and
commensal species showed that meningococcal LOS tested induced significantly

higher release of cytokines compared with levels obtained with E. coli endotoxin.
These findings were consistent with reports from a previous study investigating
interleukin-1 release after challenge with meningococcal LOS and endotoxins from
other Gram-negative species in the absence of LOS specific antibodies [Cavaillon &

Haeffner-Cavaillon, 1986], They support the clinical observations that

meningococcal LOS structures are more potent biomodulators compared to

endotoxins of enteric bacteria, a key virulence factor contributing to the severity of

disease; and CD14-positive monocytic cells might play an important role in the

inflammatory response and pathology ofmeningococcal disease [Petrov et al., 1992],

6.4.3.1 N. lactamica

NL1 absorbed bactericidal activity against a broad range of meningococcal

immunotype reference strains, isolates from carriers and patients, including strains

expressing the L(3,7,9) and L8 immunotypes (Chapter 3). The current study indicates

that its LOS induces significantly lower levels of both TNFa and IL-6 compared

with LOS from the L3 immunotype. Further assessment of this strain is needed to

determine its value as a vaccine candidate and the role of similar commensal strains

in the development of natural immunity to meningococcal disease. The ability of
antibodies to LOS of NL1 to reduce inflammatory responses to LOS of several

meningococcal immunotypes indicates there are cross-reactive components on the
LOS structures of both NM and NL. The I-blood group and pK antigens are structures

identified on both these species. NL1 bound monoclonal antibodies specific for

L(3,7,9) and L8 epitopes. Other strains ofNL also bound immunotype antibodies to

L(3,7,9) (23 of 44 strains, 52%) and L8 (8 of44 strains, 18%) (Table 5.18).

6.4.3.2 M. catarrhalis

MCI has also been shown to absorb bactericidal activity against meningococcal
isolates including one expressing the L(3,7,9) immunotype although MCI did not
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bind the monoclonal antibody to this epitope (Chapter 4). It induced higher levels of

pro-inflammatory cytokines in VD3 differentiated cells compared to LOS obtained
from MC2, immunotype L6, NL1 and E. coli endotoxin. Carriage of MC is more

frequent than carriage ofNeisseria species in young infants and children [Harrison el

al., 1999; Karalus & Campagnari, 2000], and the structural analysis of MC LOS
shows similarities to meningococcal LOS [Vaneechoutte et al., 1990; Rahman &

Holme, 1995]. MC is a common causative agent of otitis media in young children,
but it is unclear if differences in LOS immunotypes correlate to the severity ofMC
infections. The findings presented here suggest that the ability of MC to induce
inflammation is associated with LOS immunotypes. MCI bound antibodies to the
human blood group antigens pK, PI and I similar to MC immunotype CI 1 [Holme et

al., 1990], while MC2 only expressed the pK antigen (Chapter 5).

Although the L(3,7,9) immunotype was associated with higher levels of

inflammatory mediators in experiments with meningococcal LOS immunotype

strains, neither MCI nor MC2 bound the anti-L(3,7,9) antibody. The L(3,7,9) epitope

was, however, present on 38 of 126 (30.2%) of the Scottish MC isolates tested.

Carriage or infection with MC could induce protective bactericidal antibodies against

meningococcal LOS, but its use as a potential vaccine candidate has to be carefully
assessed due to the ability of some MC LOS to induce high pro-inflammatory

cytokines.

6.4.4 Comparison of responses elicited by NM immunotypes

In this model system, immunotypes L3, L7, L8 and L9 induced significantly higher
levels of TNFa and IL-6 compared to other immunotypes. These findings could

partly explain why the immunotype L(3,7,9) is most frequently isolated from patients
with serogroup B or C meningococcal disease, and other immunotypes are

associated with carriage [Jones et al., 1992; Romero & Outschoorn, 1994]. The LOS
moieties responsible for different pro-inflammatory responses are not clear.
Differences in LOS core, oligosaccharide or lipid A structure might affect the

inflammatory responses in the absence of LOS specific antibodies. The

oligosaccharide chain length was shown to affect the bioactivity of meningococcal
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LOS with mutants expressing short LOS moieties being less active than their wild

type forms [Andersen et al., 1997]. Immunotypes L(3,7,9), L2, and L5 express

identical oligosaccharide moieties, but their ability to induce inflammatory cytokines
varied greatly. Sialylation of the terminal galactose residue might play a role in the

ability to induce inflammation. Immunotype reference strains LI, L2, L3, L4, L5, L6,

L7, and L8 are thought to be fully or partially sialylated; however, LOS of

immunotype L7 induced the highest levels of both TNFa and IL-6 (Figures 6.7 and

6.8).

Immunotype L7 induced the highest levels of cytokines but these were not

significantly higher when compared to the structurally related immunotypes L3 and
L9. Core antigens might also contribute to induction of these responses. With the

exception of immunotype L10 and Lll, LOS from strains expressing PEA on the
second core heptose induced significantly higher cytokine levels (P<0.01) compared
to immunotypes expressing either glucose (1—>3) or those that lacked a functional

group. LOS from immunotypes L(3,7,9) expressing PEA (1—>-3) HepII core antigen
induced the highest levels of cytokines, suggesting that both core structure and en¬

chain moieties might alter the bioactivity of meningococcal LOS. The lipid A moiety
of meningococcal LOS is thought to be heterogenous [Kulshin et al., 1998a & b;
Rietschel et al., 1993; Rahman et al., 1998] and differs from the lipid A moiety of
MC in composition and chain length of fatty acid. Monophoshorylation found on

lipid A from MC and non-pathogenic meningococci is thought to be less toxic

compared to diphosphorylated LOS found on meningococcal, but is absent from MC
lipid A [Kahler & Stephens, 1998]. There is no published model of the lipid A ofNL.
With such limited information on the lipid A moieties from meningococci and
commensal species, and little published evidence for correlation between lipid A
structure and bioactivity, is not possible to assess the findings of this study in relation
to the structure of lipid A (8.4).
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6.4.6 Assessment of results in relation to vaccine development

In the model system, antibodies found in normal human serum neutralised the pro¬

inflammatory responses to LOS of each of the meningococcal immunotypes tested.
The same serum pool was used to measure bactericidal activity against the

immunotype reference strains (Chapters 3 & 4). All meningococcal immunotype
reference strains and commensal isolates were killed, > 80 % killing compared to the
control to which no serum was added. While complement-mediated bactericidal

killing has been used as a major test to assess the protective effect of vaccines for

meningococci, the role of neutralising antibodies and opsonic activity in protection

against meningococcal disease needs to be considered.

6.4.6.1 Common antigens and neutralising activities

Antibodies elicited in mice by immunisation with L3 or NL1 were able to reduce

inflammatory responses against LOS from meningococcal immunotypes with

epitopes cross-reactive with the L(3,7,9) immunotype. Co-incubation of LOS with
serum obtained from mice vaccinated with the immunotype L3 strain significantly
reduced release of TNFa and IL-6 by LOS of L3, L7 and L9 (PO.Ol) by over 85%.
IL-6 release in response to LOS of immunotype L5 and L8 (3,7,9) co-incubated with
the immune serum was significantly reduced by 53% and 64%, respectively

(PO.Ol). TNFa release by L5 was reduced by 62% (PO.Ol) but was not reduced for
cells challenged with L8 LOS. The reduction in inflammation of immunotype L5,

which shares a terminal saccharide (sialyl) Gaip (1—>3) GlcNAcP (1—>3) Gaip(l—>-4)

Glcp with the L(3,7,9) is evidence that the polyclonal serum contained neutralising

antibodies against the terminal oligosaccharide chain, as well as against LOS core

antigens. These findings suggest that antibodies to both the oligosaccharide chains
and core antigens contribute to neutralising activity.

6.4.6.2 N. lactamica LOS vaccine

Antibodies induced by NL1 neutralised inflammatory responses for a broader range
of LOS immunotypes than serum obtained by immunising with the L3
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meningococcal strain. Co-incubation of LOS with serum obtained from mice

vaccinated with NL1 significantly reduced induction ofTNFa and 1L-6 by LOS from

immunotype strains of L2, L3, L5, L7, L8, and L9 (PO.Ol) by 30-75%. TNFa levels
were also reduced in samples challenged with L10, Lll and E. coli LOS, but IL-6
levels were not significantly lower in these samples (Table 6.3).

6.4.6.3 LOS as an adjuvant

Endotoxin-depleted or endotoxin-free outer membrane vesicle (OMV) vaccines are

poorly immunogenic, and LOS-containing OMV vaccines were more effective at

inducing protective antibodies [Alving, 1992; Andersen et al., 1997; Quakyi et al.,

1999]. It could be argued that potential vaccine candidates might include LOS from
commensal strains that induce neutralising antibodies against the L(3,7,9)

immunotypes but induce lower levels ofpro-inflammatory cytokines.

6.4.6.4 Potential adverse effects of LOS vaccines

While the paragloboside and I antigen epitopes are common to many immunotypes,
vaccines based solely on this structure need to be carefully assessed due to their

homology with some host antigens [Mandrell et al., 1988]; 75% of humans express

the paragloboside related PI antigen on their erythrocytes [Naiki & Kato, 1979],
Levels of antibodies to paragloboside, the I antigens need to be assessed in

longitudinal studies of infants to determine if they are produced in response to

carriage of commensal species expressing these epitopes.
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6.5 Conclusions:

1. The THP-1 cell line was useful for screening for induction of pro-inflammatory

cytokines by LOS preparations and eliminated the variability of genetic or

environmental factors [Westendorp et al., 1995; 1997, Nadel et al., 1996; Gordon

etal., 1999, 2000],

2. LOS of meningococci induced higher levels of TNFa and IL-6 than LOS from

commensal strains.

3. The LOS from strains expressing the L(3,7,9) moiety as the major immunotype
induced significantly higher levels of pro-inflammatory cytokines compared with
LOS obtained from other meningococcal immunotypes or commensal species.
The results obtained in the in vitro model complement the clinical and

epidemiological findings and could partly account for the predominance of

L(3,7,9) strains among isolates from patients with meningococcal disease.
4. This in vitro model could provide a basis for screening vaccine candidates as a

first step in toxicity studies or assessment of neutralising antibodies obtained in
studies of animal models or human volunteers.
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Chapter 7 Opsonophagocytosis of meningococci and commensal species by
THP-1 cells

7.1 Introduction

The contributions of commensal species to induction of bactericidal and neutralising
antibodies to meningococci were assessed in chapters 3, 4 and 6. In this chapter the
effect of cross-reactive antibodies on phagocytosis was assessed.

7.1.1 The role of phagocytosis in meningococcal disease

Some sub-classes of IgG have opsonic functions facilitating phagocytosis and
intracellular killing of bacteria by PMN, monocytes, and macrophages through the

complement receptor C3 (CD11/18) or IgG affinity receptors (CD16, CD32, CD64)

[Halstensen et al., 1989; Guttormsen et al., 1992; Lehmann el al., 1997; Sjursen et

al., 1990; Fougerolles et al., 2000], In the absence of antibodies, meningococci can
bind to blood group antigens (Lewisx, Lewis3) found on monocytes. They are

ingested but avoid the classical intracellular killing mechanism of lysozyme release
and oxidative burst which leads to intracellular survival [Twite et al., 1994],

Opsonin-independent intracellular uptake followed by the oxidative burst was

reported to involve the binding ofNeisseria species to receptors for vitronectin and
fibronectin on PMN (CD51, CD41 and CD66) [Dehio et al., 1998],

7.1.2 Phagocytosis and inflammation

Invading meningococci shed outer membrane vesicles (blebs) containing some

proteins and LOS [de Voe & Gilchrist, 1973]. PMN are able to phagocytose and kill

opsonised meningococci, but they are not able to detoxify endotoxin and release the
debris (egestate) of the killed meningococci approximately two hours after

phagocytosis [de Voe, 1976, 1982]. Antibodies to meningococcal LOS found in
normal human serum can neutralise the inflammatory responses to LOS, but they

might also be opsonising in nature [Sjursen et al., 1990], While IgGl and IgM are

associated with bactericidal action of human serum, the presence of anti-
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meningococcal LOS IgG antibodies allows LOS to be detoxified successfully by

monocytes through the IgG high affinity FcyRI receptor (CD64) eliciting some

release of pro-inflammatory cytokine [Isakov, 1997a & b; Gessner et al., 1998].

Antibody dependent phagocytosis and neutralisation without elicting inflammation is

thought to be mediated through the two low affinity IgG receptors FcyRII (CD32)

and the FcyRIII receptor (CD16) expressed on natural killer cells, monocytes

(FcyRIIIa) and PMN (FcyRIIIb) [Bredius et al., 1994a & b].

7.1.3 Avoidance of phagocytosis by NM as a virulence factor

Meningococci possess virulence factors associated with avoidance of opsonisation,

phagocytosis or intracellular killing. Over-expression of capsular polysaccharide
shields epitopes on the bacterial cell surface from antibodies and complement and is
associated with increased bacterial survival in vivo [Taylor, 1983; McKinnon et al.,

1993; Hammerschmidt et al., 1994; Vogel et al., 1996; Klein et al., 1996; Kahler et

al., 1998],

Sialyl-LOS phenotypes are important not only in evading the complement cascade

[Hammerschmidt et al., 1994; Mackinnon et al., 1993] but also in resisting

complement and anti-LOS antibody mediated phagocytosis [Kim et al., 1992], The

presence of the sialylated LOS phenotypes found on invasive meningococci is linked
to the ability of these strains to evade complement mediated killing by masking the
immunoactive terminal galactose residue of some immunotypes [Estabrook et al.,

1997; Vogel et al., 1997]. Sialylated LOS was found to up-regulate PMN activation
markers and was associated with increased injury of epithelial cell lines [Klein et al.,

1996],
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7.1.4 Aims and objectives

The aim of this part of the study was to test the hypothesis that antibodies directed

against commensals can act as opsonins.

The specific objectives were:
1. to develop a flow cytometric method for assessment of CD14-independent,

immunoglobulin-dependent phagocytosis using the human monocytic cell line

THP-1;

2. to use the THP-1 assay to assess opsonic activity of pooled human serum

absorbed with individual strains of commensal species examined in the
bactericidal assays.
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7.2 Materials and Methods

7.2.1 Preparation of THP-1 cells

The THP-1 cell line (ECACC, Lot/CB 98/K/018 33629) was cultured as described

(2.9) in the absence ofVD3.

7.2.1.1 Growth of THP-1 cells

For the phagocytosis assays, the THP-1 suspension (50 ml) was washed twice at 300
x g in warm RPMI-1640 assay medium supplemented with 1 mM L-glutamine. The
cells were resuspended to a final cell concentration of lxlO6 ml"1 in assay medium
and incubated at 37°C for 30 min. The assay medium contained Dulbecco's

phosphate buffered saline (pH 7.4) supplemented with 5 x 10~3 M glucose, 9 x 10"4 M
CaCl2, and 5 x 10"4 M MgS04 [Lehmann et al., 1997],

7.2.1.2 Phenotyping of THP-1

THP-1 cells were assessed by flow cytometry for expression of the cell surface
markers as described in chapter 2.13 and Chapter 6. Tables 6.1 and 6.2 list the

antigens screened, the species of origin, source and dilution of antibodies used.

7.2.2 Preparation of propidium iodide (PI) labelled bacteria

7.2.2.1 Bacterial strains

The strains listed in Table 7.1 were used in these studies. All strains were grown for
18 hr on HBA. The colonies were suspended in 4 ml 2% (v/v) PBS buffered

paraformaldehyde and stained with Vindelov's propidium iodide (2.4) for 15 min at

RT. The cells were washed three times by centrifugation in PBS.
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7.2.2.2 Enumeration of fluorescent bacteria

Prior to use. aliquots ofPi-labelled bacteria were counted and the mean fluorescence

intensity assessed by flow cytometry. To assess the number of bacteria in relation to

a known number of fluorescence alignment beads, a method modified from Antal-
Szalmas et al. [1997] and Lebaron et al. [1998] was used. Immunocheck beads

(Coulter) (10 pi containing 5x 106 beads) were added to the Pi-labelled bacteria

(lOpl) and diluted to a final volume of 1 ml with PBS and vortexed. The samples
were gated on a forward angle light scatter (logFS) and side angle light scatter

(logSS) and quantified simultaneously exciting the fluorochromes by an argon laser

operating at 488 nm. The emitted green and red fluorescence intensities of the beads
were measured between 505 and 545 nm (logFLl) and between 595 and 645

(logFL3), respectively. The suspension of bacteria and beads was simultaneously
counted and the number of bacteria determined in relation to the events elicited by
the beads as follow:

Number of events of PI positive bacteria * 5x10b

Number of events of alignment beads

The concentration of the bacteria in the original sample was approximated by

Number ofbacteria ml"1 = number of bacteria present in 10 pi * 100

The numbers ofbacteria estimated by flow cytometry were compared to results using
a Thoma counting chamber.

To account for day to day variation, the mean fluorescence intensity (Mnl) of the
fluorescent beads was adjusted daily to a signal reading of 500. The fluorescence

intensity of the Pi-labelled bacteria was measured using the FL3 log channel and the

percentage and Mnl recorded. Aliquots of labelled bacteria (108 ml"1) were stored in
the dark at 4°C for up to one month. Prior to use in the phagocytosis assay, the

appropriate volume was removed and warmed to 37°C.

Number of bacteria

present in 10 pi"1

- 147-



Table 7.1 Bacterial strains used
Code LOS

(Table 2.1)
Blood group epitopes Major core

LOS
NL1 L(3,7,9), L8 I,
NL3 L(3,7,9) I, P, P1, paragloboside
NL7 L(3,7,9), L1 I, P, P1, paragloboside
L3 L3 (1,8) I, P, p*\ paragloboside C3-PEA
L5 L5 (3,7,9) I, paragloboside PEA free
L6 L6 I, P, P1 C7-PEA
L7 L7 (3, 8) I, P, P1, p^, paragloboside C3-PEA
L8 L8 (3, 4, 7) I, pK, paragloboside
B:NT:NT - I, P, paragloboside
MC1 - I, P, P1, P
MC2 - P1, P*
MC27 - -

7.2.3 Phagocytosis assay

7.2.3.1 Sera and antibodies

The unabsorbed and absorbed preparations of the pooled human serum tested in

Chapters 3, 4, and 6 were used in this part of the study.

7.2.3.2 Opsonising of bacteria

The bacteria (100 pi, 108 ml"1) were opsonised with 5% (v/v) of the unabsorbed or

absorbed serum for 30 min at 37°C and washed twice in sterile PBS. The Pi-labelled

bacteria were diluted in opsonising buffer (OB) containing PBS supplemented with

CaCl2 (0.13 g) and MgS04 (0.12 g) per litre PBS.

7.2.3.3 Phagocytosis

THP-1 cells (1 06 ml"1) were pre-warmed (37°C) in the assay medium for 30 min.

Opsonised bacteria (100 pi) were added to duplicate samples of THP-1 cells (1 ml)
and incubated at 37°C at 100 rpm for 15 min in an orbital incubator (Gallenkamp).

Phagocytosis was terminated by adding 3 ml ice cold PBS supplemented with 0.02%
EDTA. To assess the optimal number of Pi-labelled bacteria, several ratios of
bacteria : cells were tested (1:1 to 200:1) and bacteria bound and ingested measured.
To quench fluorescence of adherent bacteria on the surface of the THP-1 cells, the

suspension was washed once by centrifiigation at 300 x g in 4 ml of ice cold PBS
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supplemented with trypan blue (3 mg l"1) [Bjerknes & Bass0e, 1984], The pellet was

re-suspended for flow cytometric analysis in 1 ml ice cold 2% (w/v) PBS buffered

paraformaldehyde. The samples were stored on ice and analysed by flow cytometry

within 1 hour.

7.2.4 Flow cytometric analysis

7.2.4.1 THP-1 cell population

THP-1 cells were gated around the FS and SS channels. These gates were used to

measure the red fluorescence (logFL3) of phagocytosed Pi-labelled bacteria. The

percentage and Mnl of the positive cell populations showing phagocytosis were

recorded. A combination of the two-percent and mean-intensity method to

discriminate positive population in flow cytometry were used (Chapter 2.13).

7.2.4.2 Assessment of phagocytosis

The percentage of positive cells in the population (%) was multiplied by the mean

fluorescence intensity (Mnl) of the positive cell population to provide the mean

ingestion index (II). The II was used to compare phagocytosis in populations of cells.
A similar method has been used to calculate binding index (BI) for analysis of
attachment of bacteria to buccal epithelial cells or cell lines under different

experimental conditions [Alkout et al., 1997; El Ahmer et al., 1999a & b; Gordon et

al., 1999; Raza et al., 1993], The results were compared to the numbers of bacteria

per cell determined by confocal and fluorescence microscopy (7.2.4.3). The same

batch of fluorescence alignment beads (ImmunoCheck, Coulter) was used to

calibrate the logFLl, logFL2 and logFL3 fluorescence intensity to 500 to account for

day to day variability.
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7.2.4.3 Analysis of samples by confocal and fluorescence microscopy

Following fixation, the suspension of cells and bacteria (50 pi) was prepared for
confocal and fluorescence microscopy and analysed at the Department of Anatomy

(6.2.8).

7.2.5 Statistical analysis

A two-sided paired Mann-Whitney test (confidence interval, 95%) was used to assess

the data.
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7.3 Results

7.3.1 Detection of cell surface antigens on phagocytic cells

THP-1 cells did not bind antibodies to CD3, CD4, CD8, CDllc, CD14, CD16 or

CD25 antibodies. They bound antibodies to the following antigens: CD lib;

CD11/18; CD15; CD41; CD45; CD51; CD64; CD77; and H blood group antigen

(Table 7.2).

Table 7.2 Expression of cell surface markers on immature THP-1 cells
(mean of 6 expperiments, ±SD)

% positive population
Control 1.0
CD4 4.06 ±1.5
CD8 1.76 ±0.9
CD11/18 99.3 ±0.4
CD11b 45.3 ±2.9
CD11c 5.94 ±1.5
CD14 4.3 ±0.8
CD15 67.5 ±2.1
CD16 1.53 ±0.4
CD25 5.09 ±2.4
CD41 52.5 ±2.8
CD45 87.8 ±6.1
CD51 59.7 ±2.1
CD64 57.9 ±3.1
CD77 37.7 ±4.4
H 80.0 ±8.1

7.3.2 Experimental design

Bacteria : cell ratios were tested ranging from 1:1 to 1:200 bacteria : cell.

Quantitative ingestion of bacteria was assessed by the mean fluorescence intensity
value (Mnl). Increases in the numbers of bacteria ingested correlated with increased
Mnl (Figure 7.1). To assess the validity of the model, the mean fluorescence

intensity index was correlated to the number of phagocytosed Pi-labelled bacteria
assessed by fluorescence microscopy of 100 THP-1 cells at the individual ratios of
bacteria : cell tested [Gardiner, 1997]. The Spearman's correlation coefficient (R2 =
96.6%) suggested a linear relationship (P<0.01) between phagocytosis and the Mnl

given by the linear regression equation as calculated with Minitab (Figure 7.1):
Number of phagocytosed Pi-labelled bacteria = 14.809 * Mnl - 14.074
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To test if the regression model was not only statistically but also practically linear,
the normal plot of residuals and a plot of residuals against fits were used (Minitab).
Both supported the linearity of the model between number of neisseriae

phagocytosed and the Mnl if the numbers of ingested bacteria were between 4 and 75
with a lower limit Mnl of 1.3, and an upper limit of 2.8.

Figure 7.1 Linear relationship (regression) between Mnl and number of
bacteria perTHP-1 cells

MnIdata.DAT + Mnl index

Number of phagocytosed bacteria

7.3.3 Effect of quenching

To discriminate between bound and ingested bacteria, THP-1 cells were assessed by
flow cytometry and fluorescence microscopy in the presence and absence of the

quenching agent trypan blue (Figure 7.2). All strains tested showed similar ingestion
indices in the absence of trypan blue. Quenching of bound bacteria resulted in a

significant reduction of the ingestion index of NL1 (P<0.024), L7 (PO.Ol) and
B:NT:NT (PO.Ol), but not MCI (P=0.13). Most of MCI (87.0%) were ingested,
with NL1 showing slightly lower uptake (74.6%). The meningococcal immunotype
reference strain L7 (38.1%) and the carrier strain B:NT:NT (34.6%) were

phagocytosed in significantly lower number compared to both NL1 and MCI

(PO.Ol). Quenching reduced the autofluorescence ofTHP-1 cells (control).
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Figure 7.2 Effect of trypan blue quenching on the mean ingestion index after
15 min incubation with opsonised Pl-labelled M. catarrhalis strains or
neisseriae strains

NL1 MC1 L7 B:NT:NT control

In six independent experiments, the unabsorbed serum pool opsonised all

meningococcal and commensal strains tested at a ratio of 50 bacteria : THP-1 cell.

Compared to the unquenched samples, the meningococcal immunotype reference
strains were ingested by THP-1 cells as follows (percentage in the quenched sample

compared to the unquenched control = 100% ± standard error): L3 (41.3% ±4.2); L5

(42.7% ±6.2); L6 (41.9 ±5.3); L7 (38.1% ±7.2); L8 (44.7 ±4.9). The values for the
commensal strains were nearly twice that of the meningococcal strains: NL1 (73.6%

±5.6), NL3 (78.1 ±7.7); NL7 (77.5 ±3.5); MCI (87.0 ±3.3); MC2 (79.3 ±9.1); and
MC27 (76.1 ±4.7). Pre-treatment of the bacterial strains with the absorbed

complement source used for bactericidal assays in Chapters 3 and 4 resulted in low
levels of ingestion of all strains tested, less than 25% compared with the unabsorbed

pool.
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7.3.3.1 Enumeration of ingested bacteria

In eleven independent experiments the mean intensity was used to calculate the mean

number of ingested bacteria per THP-1 cell (± standard error) using the regression

equation presented in 7.3.2 (Figure 7.3.a, Table 7.3).

Table 7.3 Mean number of (a) commensals or (b) meningococci ingested per
THP-1 cell after 15 min incubation

(mean of eleven independent experiments ± standard deviation)
(a)

. .

NL1 NL3 NL7 MC1 MC2 MC27
25.1 25.5 19.6 29.8 33.3 20.2

±4.2 ±2.9 ±2.2 ±4.5 ±2.0 ±2.0

(b)
L3 L5 L6 L7 L8 B:NT:NT
10.8 12.9 16.4 12.7 13.6 13.7
±3.9 ±3.5 ±1.2 ±5.9 ±1.8 ±6.6

7.3.3.2 Analysis of differences in ingestion of individual strains by species

Mean number of ingested bacteria per THP-1 cell were grouped by species and

analysed using two-sided non-parametric Mann-Whitney test (confidence at 95%) to

compare differences between the mean number of opsonised meningococci and
commensals ingested (Figure 7.3.b): NL mean=23.4, median=22.0, SD=10.66; MC

mean=27.78, median=26.4, SD=11.38; NM mean=13.34, median=12.95, SD=13.75.

There were no significant differences between the number of ingested N. lactamica
and M. catarrhalis (P=0.1335). Significantly greater number ofNL (P<0.001) or MC

(P<0.001) were ingested per THP-1 cell compared to group B meningococci.
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Figure 7.3 Mean number of phagocytosed commensals or meningococci per
THP-1 cell (a) individual strains; (b) distribution of pooled values by species
(mean of eleven independent experiments)
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7.3.4 The effect of antibody and complement on ingestion of commensal species
and meningococci by THP-1 cells

7.3.4.1 N. lactamica

Non-opsonised NL1 and NL1 opsonised with the complement source were ingested
at a constant rate reaching a maximum ingestion index of approximately 90 after 45
min (Figure 7.4.a). NL1 opsonised with the serum pool showed a linear increase in
the ingestion index after 5 min reaching a maximum after 25 min (11=200). NL1

opsonised with the serum pool and the complement source showed a sigmoid

relationship after 5 min reaching a plateau after 15 min.

7.3.4.2 N. meningitidis L7

Non-opsonised L7 and L7 opsonised with the complement source were ingested

reaching a maximum ingestion index of approximately 30 after 45 min (Figure

7.4.b). L7 opsonised with the serum pool showed an increase in the ingestion index
after 5 min reaching a maximum of 90 after 20 min. L7 opsonised with the serum

pool and the complement source reached a maximum ingestion index of 90 after 15
min.

Time curves for other commensals and meningococci yielded similar results with
NL1 representing commensal NL and MC strains, and L7 representing

meningococci.
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Figure 7.4 The effect of antibody and complement on ingestion of (a) NL1
and (b) L7 meningococci by THP-1 cells
(mean of six independent experiments)

-complement+serum
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30 45
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- 157-



7.3.5 Absorption experiments

Three independent experiments with unabsorbed and absorbed sera are summarised
in Table 7.4. The ingestion index of the unabsorbed pool co-incubated with the

complement source was given a value of 100 and the ingestion index obtained with
the absorbed serum is presented as a percentage of the control. A reduction in

ingestion index of more than 50% compared with the unabsorbed serum pool was
scored as negative (-) reflecting significant reduction in opsonising activity. A

reduction of 25 - 50 % was scored as partly absorbed (4^). A reduction of less than 25

% was considered to be positive (+) for opsonic activity. None of the absorbed

samples eliminated phagocytic activity completely which indicates that bacteria
and/or cell receptors other than immunoglobulin receptors were involved in binding
and ingestion of the bacteria.

7.3.5.1 Absorption with N. lactamica strains

Absorption with the Scottish strain NL1 reduced opsonic activity against the

following strains: L3 (61%); L5 (12%); L7 (69%); L8 (7%); NL1 (3%); NL3 (5%);
NL7 (65%).

Absorption with the Icelandic strain NL3 reduced opsonic activity against the

following strains: L6 (71%); L7 (57%); MCI (72%); NL1 (11%); and NL3 (8%).

Absorption with the Czech strain NL7 reduced opsonic activity against the following
strains: L6 (55%); NL1 (6%); and NL3 (4%); NL7 (3%).

7.3.5.2 Absorption with M. catarrhalis strains

MCI reduced opsonic activity against NL3 (18%), MC2 (11%) and the homologous
strain MCI (4%). MC2 reduced the activity against MCI (13%) and the homologous
strain MC2 (9%) only. MC27 reduced opsonic activity against the meningococcal

immunotype L3 (71%) and the homologous strain MC27 (4%).
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7.3.5.3 Absorption with TV. meningitidis strains

Absorption of the pool with immunotype L3 reduced opsonic activity against the

following strains: L3 (8%); L5 (12%); L6 (53%); L7 (8%); L8 (73%); NL1 (55%);
NL3 (68%); NL7 (57%); and MC27 (73%).

Absorption with immunotype L7 reduced opsonic activity against the following
strains: L3 (9%); L5 (13%); L7 (8%); L8 (69%); NL1 (61%); NL3 (52%); and NL7

(70%).

Absorption with immunotype L8 reduced opsonic activity against the following
strains: immunotypes L3 (67%); L5 (15%); L7 (57%); L8 (9%); the commensal
strains NL1 (7%); NL3 (18%); andNL7 (63%).
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Table 7.4: Ingestion indices for phagocytosis of (a) meningococcal
immunotype strains and (b) N. lactamica, M. catarrhalis with the unabsorbed
pool and samples of the pool absorbed with meningococcal immunotypes or
commensal species
(mean of three independent experiments)
(§) . .

Test strain L3 L5 L6 L7 L8
% S % S % S % S % S

Unabsorbed pool 100 + 100 + 100 + 100 + 100 +

Absorbed with NL1 61 12 - 96 + 69 I 7 -

Absorbed with NL3 89 + 91 + 71 57 I 92 +

Absorbed with NL7 94 + 93 + 55 93 + 99 +

Absorbed with MC1 88 + 92 + 97 + 95 + 96 +

Absorbed with MC2 96 + 87 + 98 + 95 + 95 +

Absorbed with MC27 71 94 + 95 + 96 + 92 +

Absorbed with L3 8 - 12 - 53 8 - 73 I
Absorbed with L7 9 - 13 - 92 + 8 - 69 I
Absorbed with L8 67 1 15 - 91 + 57 1 9 -

M
Test strain NL1 NL3 NL7 MC1 MC2 MC27

% S % S % S % S % S % S
Unabsorbed pool 100 + 100 + 100 + 100 + 100 + 100 +

Absorbed with NL1 3 - 5 - 65 95 + 99 + 93 +

Absorbed with NL3 11 - 7 - 4 - 72 97 + 98 +

Absorbed with NL7 6 - 4 - 3 - 94 + 93 + 95 +

Absorbed with MC1 96 + 18 - 94 + 8 - 11 - 91 +

Absorbed with MC2 92 + 92 + 97 + 13 - 9 - 95 +

Absorbed with MC27 93 + 95 + 94 + 91 + 91 + 4 -

Absorbed with L3 55 I 68 57 I 87 + 98 + 72 1
Absorbed with L7 61 52 i 70 4 91 + 94 + 98 +

Absorbed with L8 7 - 18 - 63 4 89 + 93 + 91 +

+ opsonic activity, - no activity <25% of unabsorbed pool, I reduction in opsonic activity by
25%>75% of unabsorbed pool
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7.4 Discussion

Several studies on phagocytosis of meningococci used polymorphonuclear

leukocytes [de Voe & Gilchrist, 1973; de Voe, 1976] and peripheral blood

monocytes (PBMC) [Lehmann et al., 1997] or both [Bassoe et al., 2000]. PBMC
show variation in their response to meningococcal challenge which might result
from: donor variability, different stages of monocyte activation or maturation,
differences in the phagocytic response within an PBMC population [Lehmann et al.,

1997], the presence of abnormal non-specific functions of PBMC [Nielsen et al.,

1988], or contamination with leukocytes or lymphocytes. The method used in this

chapter was developed to attempt to reduce some of these problems. Flow cytometry

was chosen because it is objective, rapid, and can produce semiquantitiative
estimates of the numbers of bacteria per phagocyte and quenching with trypan blue
allowed discrimination between surface bound and ingested bacteria.

7.4.1 Method

7.4.1.1 THP-1 phenotype

The high affinity IgG receptor (FcyRI) (CD64) associated with immune phagocytosis
is constitutivly expressed on THP-1 cells, as is the complement receptor (C3bR)

(CD11/18) [van Furth & van den Berg, 1996],

7.4.1.2 Bacteria : cell ratio

The bacteria count using the flow cytometric method was in general agreement with
the enumeration using the Thoma counting method.A linear relationship (r2=96.6%)
was observed between the number of bacteria phagocytosed and the Mnl at ratios
between 4:1 and 75:1 bacteria per THP-1. These findings are consistent with

published PBMC models in which the optimal ratio to assess phagocytosis of

meningococci and fluorescent latex beads coated with meningococcal antigens was

1:20 [Lehmann et al., 1997; Bassoe et al., 2000],
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7.4.1.3 Discrimination between bound and ingested bacteria

Quenching of bound but not ingested bacteria was an effective way to assess

intracellular uptake of Pi-labelled bacteria to THP-1 cells, and the results were

consistent with other models for the assessment of phagocytosis [Lehmann et al.,

1997],

Differences in the binding and ingestion were observed between commensals and

group B meningococci. THP-1 cells bound a similar number of all strains tested

(approximately 30 - 40 bacteria per cell). THP-1 cells ingested greater numbers of
commensal strains after 15 min (20.2 - 33.3) compared to group B meningococci

(10.8 - 16.4) (P<0.01). These findings are similar to previous observations that

capsulate strains associated with invasive meningococcal disease are phagocytosed
less efficiently by human monocytic cell lines than non-capsulated meningococci

[Kalmusova et al., 2000].

7.4.1.4 Kinetics of opsonophagocytosis of commensals and meningococci

All commensal and meningococcal strains showed similar time curves for ingestion
of opsonised bacteria. Maximal ingestion of opsonised bacteria with pooled human
serum and complement was observed after 15-20 min; 75% of bacteria were

ingested after 7.5 min. These findings are consistent with observations using PBMC

[Lehmann et al., 1997], Differences in the number of bacteria ingested depended on

the availability of human serum. Low levels of phagocytosis occurred when
commensals or meningococci were incubated in the absence of serum or in the

presence of the complement source. The kinetics of phagocytosis of serum opsonised
bacteria in the presence or absence of complement suggest that both IgG [Sjursen et

al., 1990; Lehmann et al., 1997] and complement receptors might be involved in

opsonophagocytosis ofmeningococci and commensal species.

These findings are consistent with previous studies in which complement or

properdin deficient individuals showed an increased susceptibility to meningococcal
disease due to inefficient phagocytic function [Fijen et al., 2000] or in which
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successful phagocytosis of meningococci depended on the presence of human
subclasses of IgG and complement using the human monocytic cell line U937 [Aase
& Michaelsen, 1994],

7.4.5 Effect on phagocytosis of absorption of pooled human serum by
commensals and meningococci

Opsonophagocytic activity of homologous strains was absorbed by all strains tested.

7.4.5.1 N. lactamica

All NL strains tested reduced opsonophagocytic activity of the pooled serum against
the NL strains tested. Phagocytosis ofMCI was reduced with serum absorbed with
NL3. Activity against meningococcal imunotypes L3, L5 and L8 was reduced by

absorption with NL1. Phagocytosis of L6 was reduced with the serum absorbed with
NL3 or NL7 and phagocytosis of L7 was reduced with serum absorbed with NL1 or

NL3. Opsonophagocytic activity against other strains was not affected by absorption
with NL strains.

7.4.5.2 M. catarrhalis

Although absorption with MCI removed bactericidal activity against a number of

meningococcal strains (Tables 4.3 & 4.4), the absorbed sera still contained

opsonising activity. None of the MC isolates absorbed opsonins for the NL strains
tested. MCI absorbed opsonins against MC2 and MC2 absorbed opsonins against
MCI. Absorption of the serum with MC27 reduced phagocytosis of meningococcal

immunotype L3. All other strains were not affected by absorption with MC.

7.4.5.3 N. meningitidis

Opsonophagocytic activity for immunotypes L3, L5 and L7 was absorbed by

Immunotypes L3, L7, and L8. Opsonins for L3 and L8 were absorbed by
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immunotype L3. Activity against NL1 and NL7 was reduced by absorption with L3,
L7 or L8. Absorption of serum with L7 or L8 reduced phagocytosis of NL3.

Absorption with immunotype L3 reduced opsonising activity against MC27. All
other strains were not affected by absorption with meningococci.

Complement-dependent bactericidal activity of pooled human serum correlated with

opsonophagocytic activity in most cases (Table 7.5). These findings suggest that
antibodies found in normal human serum can be both bactericidal and opsonic in
nature.

Table 7.5 Comparison of bactericidal (B) and opsonic (O) activities against
(a) meningococcal immunotype reference strains, and (b) commensal
species for human pooled serum absorbed by commensal species
la)

Test strain L3 L5 L6 L7 L8
Serum absorbed with B O B O B O B O B O
Unabsorbed serum + + + + + + + + + +

NL1 - I - - + + - - -

NL3 + + + + - - + +

NL7 + + + + - - + - +

MC1 + + - + + + + + + +

MC2 + + + + + + + + + +

MC27 + I + + + + + + + +

Correlation coefficient 0.645 0.645 1 0.73 0.645

(b)
Test strain NL1 NL3 NL7 MC1 MC2 MC27

Serum absorbed with B o B O B o B O B o B O
Unabsorbed serum + + + + + + + + + + - +

NL1 - - - - + + + + + - +

NL3 - - - - - - + 1 + + - +

NL7 + + + + - +

MC1 + + - - + + - - - - - +

MC2 + + + + + + - - - - - +

MC27 + + - + - + + + + + - -

Correlation coefficient 1 0.73 0.417 0.730 1 na

+, bactericidal or opsonising activity
absence of bactericidal or opsonising activity
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7.5 Conclusions

1. The human monocytic cell line THP-1 was a reliable model for the assessment of

opsonophagocytic activity of human serum which eliminated the variability due
to genetic, maturational and environmental factors.

2. Strains of the commensal species N. lactamica and M. catarrhalis were more

readily phagocytosed in the absence or presence of human serum compared to

meningococci.
3. Assessment of functional activity of normal human serum provided evidence that

there was a correlation between the presence of bactericidal and opsonic
antibodies against most strains tested.

4. The results provide evidence that there are epitopes on commensal strains that
can absorb opsonising activity against a variety of group B meningococcal

phenotypes; however, there is considerable variability in the cross-reactive

antigens between species and among strains within a species.
5. The cross-reactivity between commensals and meningococci suggest that

carriage of these induce opsonising antibodies that could contribute to protection

against meningococcal disease.
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Chapter 8 Discussion

The aims of this study were to assess the role of cross-reactive antigens found on

commensal bacteria (NL and MC) in the development of natural immunity to

meningococci, and to identify potential vaccine candidates against meningococcal
disease caused by serogroup B meningococci that would be safe and effective in
children and adults.

The objectives of this study were to address the following questions:
1. Are there antigens on NL that induce antibodies bactericidal for meningococci of

different LOS immunotypes? (Chapter 3)
2. Are there antigens on MC that induce antibodies bactericidal for meningococci of

different LOS immunotypes? (Chapter 4)
3. Are there oligosaccharide antigens common to NL, MC and meningococcal

immunotype reference strains? (Chapter 5)
4. Are the antibodies to NL and MC cross-reactive with meningococci capable of

neutralising the bioactivity of LOS? (Chapter 6)
5. Do the antibodies to NL and MC cross-reactive with meningococci have

opsonising activities? (Chapter 7)
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8.1 Does N. lactamica induce antibodies that cross-react with meningococci?

Normal adult serum was absorbed with NL isolates from Scotland, Iceland, the

Czech Republic and Greece. The absorbed and unabsorbed serum pools were tested
for bactericidal activity against isolates of NL from different areas of Europe and

meningococci strains expressing different phenotypes.

The results obtained showed that NL shared antigens with meningococci of different

phenotypes including immunotypes L1-L9 of the twelve immunotype reference
strains. The results suggested that the isolates tested varied greatly in their

phenotype, as has been previously reported for NL [Kim et al., 1989; Bennett et al.,

2000]. The Scottish strain NL1 and the Icelandic strain NL3 showed similar

absorption patterns, while the isolate from the Czech Republic showed some

variation to these two strains. Nevertheless, these three isolates from north and

central Europe differed markedly from the Greek isolate tested.

To identify the common antigens, NL and meningococcal strains tested were

assessed for their ability to bind monoclonal antibodies used for meningococcal

immunotyping [Scholten et al., 1994] and antibodies to blood group antigens. These

findings indicate that several carbohydrate moieties homologous with blood group

and meningococcal LOS antigens were present on NL. These included terminal

oligosaccharide moieties of Ii, paragloboside, PI, and pk blood group antigens.

Meningococcal immunotype structures were also identified. Antibodies to L(3,7,9),
the immunotype isolated most often from patients with invasive disease, bound to

75-100% ofNL isolates from Scotland, the Czech Republic and Iceland, compared to

33% of isolates from Greece (Table 5.13). Antibodies against immunotype L8
associated with both carrier and disease isolates bound to NL isolates from Scotland

(16.7%), Greece (14.8%) and the Czech Republic (50%).

Evidence that NL induced antibodies that are cross-reactive with meningococci was

provided in experiments in which immune mouse serum raised against NL1
neutralised inflammatory activity induced by LOS from a broad range of

meningococcal immunotypes.
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These findings provide evidence that carriage of NL might be associated with the

development of natural immunity to meningococcal disease. Phenotypic variations of
strains from different geographic regions suggest that these strains induce immune

protection that could contribute to herd immunity as illustrated in previous studies of

meningococcal isolates from different areas in Europe [Tzanakaki et al., 1993;
Krizova et al., 1996]. Epitopes on LOS are the most likely source of cross-reactivity
between NL and meningococci. To develop immunity to all major meningococcal

immunotypes, exposure to several NL isolates during childhood might be required,
and epidemiological studies indicate that children are colonised by genetically
different strains [Bennett et al., 2000].

8.2 Does M. catarrhalis induce antibodies cross-reactive with meningococci?

The pool of normal adult serum was absorbed with two individual MC isolates from
Scotland. The absorption studies with MCI and MC2 provided evidence for antigens
common to MC isolates, NL and meningococcal strains. The two MC strains tested

represented different phenotypes and differed in expression of OMP antigens
associated with virulence in animal models. MCI was resistant to antibiotics

selective for pathogenic Neisseriae, serum resistant and bound in greater numbers to

Hep-2 cell line infected with RSV. MC2 was sensitive to selective antibiotics, serum
sensitive and bound in significantly lower numbers to RSV-infected cells [El Ahmer
et al., 1996, 2000],

MCI absorbed bactericidal activity against 43% of meningococcal strains tested

compared to 17% by MC2 (Chapter 4.4.1). These included immunotype reference
strains LI, L4, L5, and L9 and meningococcal isolates from England, Greece,
Iceland and Scotland. MC2 absorbed bactericidal activity against Greek and Scottish

meningococcal isolates, but did not absorb bactericidal activity against any of the

immunotype reference strains, or the meningococcal isolates from England or

Iceland.

There was no evidence that MC shared capsular or OMP antigens with meningococci
but there are structural similarities between the oligosaccharide moieties of
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meningococcal immunotypes and the immunotypes ofMC found on different in LOS
structures (Table 8.1) (Figure 8.1).

The development of natural immunity to MC is thought to be facilitated by

glycoconjugates [Murphy & Bartos, 1989], Carriage rates ofMC are higher in early
childhood compared to NL and meningococcal carriage rates combined [Faden et al.,

1991; Ejlersten et al., 1994; Flarrison et al., 1999] and consecutive carriage of

genetically and phenotypically different MC strains are common among young

children [Faden et al., 1994],

Analysis of the binding of antibodies to blood group antigens and meningococcal

immunotypes by WCE showed that the majority of MC isolates from Scotland bound
one or more of these antibodies. Most MC strains bound antibodies to pK, and a third
of strains tested bound anti-L(3,7,9) antibodies (Table 5.18). The presence of
antibodies to MC in older children, the frequent carriage rate of multiple strains by

children, and its cross-reactivity with some of meningococcal antigens provide
evidence that MC might be involved in the development of natural immunity to

meningococcal disease. The higher frequency of carriage ofMC compared to NL and

meningococci further suggests that MC might play an important role in the

development of antibodies that protect against meningococcal disease.
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Table8.1Oligosaccharidestructurescommontohumanbloodgroupantigensandoligosaccharide chainsofLOSofN.meningitidisandM.catarrtialis
LOS

TerminaloligosaccharideachainoligomeroftheG1region
L1

Gala(1—4)Galp(1—4)Glcp
L11

Gala(1—4)Galp(1-4)Glcp
pk,CD77

Gala(1—4)Galp(1—4)Glcp
MCIV

Gala(1—4)Galp(1—4)Glca(1—>2)Glcp
P1bloodgroup

Gala(1—4)Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
MCVII

Gala(1—4)Galp(1—4)GlcNAca(1—2)Glcp
L8

Galp(1-4)Glcp

Cer-dihexocide

Galp(1—4)Glcp

MCIII

Galp(1—4)Glca(1—2)Glcp

Pgloboside

GalNAcp(1-3)Gala(1-4)Galp(1-4)Glcp

L6

GalNAcp(1—3)Gala(1—4)Glcp

Icpadultbloodgroup

Galp(1—4)GlcNAcp(1—6)GalNAcp
Idapadultbloodgroup

Galp(1—4)GlcNAcp(1—6)GalNAcp
MCVI

Galp(1—4)GlcNAca(1—2)Glcp

L2

Galp(1-4)GlcNAcp(1-3)Galp(1-4)Glcp
L3

Sialyl—Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
ibfoetalbloodgroup

Sialyl—Galp(1—4)GlcNAcp(1—3)Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
Ibaadultbloodgroup

Sialyl—Galp(1—4)GlcNAcp(1—3;1—6)Galp(1—4)GlcNAcp(1—4)Galp(1—4)Glcp
L4

Galp(1-4)GlcNAcp(1-3)Galp(1-4)Glcp
L5

Galp(1-4)GlcNAcp(1-3)Galp(1-4)Glcp
L7

Galp(1-4)GlcNAcp(1-3)Galp(1-4)Glcp
L9

Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
L10

Galp(1-4)GlcNAcp(1-3)Galp(1-4)Glcp
Paragloboside

Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
iafoetalbloodgroup

Galp(1—4)GlcNAcp(1—3)Galp(1—4)GlcNAcp(1—3)Galp(1—4)Glcp
Iaap,Ibpadultbloodgroup

Galp(1-4)GlcNAcp(1—3;1-6)Galp(1-4)GlcNAcp(1—4)Galp(1—4)Glcp
Icaadultbloodgroup

Galp(1—4)GlcNAcp(1—3)Galp(1—6)GalNAcp
MCV

GlcNAca(1—2)Glcp

MCI

Glcp

MCII

Glca(1—2)Glcp

Abbreviations:Gal,galactose;GlcNAc,N-acetylglucosamine;GalNAc,N-acetylgalactosamine;Glc,glucose;NeuNAc(Sialyl),sialycacid MCI-VIIidentifythevariableregionsfoundonMCLOSaandpchains(Chapter1.5)



Figure8.1OligosaccharidestructurescommontohumanbloodgroupantigensandoligosaccharidechainsofLOS fromN.meningitidisandM.catarrhalis Pbloodgroupoligosaccharides
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8.3 Are antibodies to NL and MC capable of neutralising the bioactivity of
LOS?

The majority ofwork on development of vaccines against meningococcal disease has
concentrated on bactericidal activity induced by various candidate antigens. The role
that neutralising antibodies might playing in prevention of meningococcal disease
has not been considered; however, the damage to the host is mediated by the

inflammatory responses to meningococcal antigens, mainly LOS.

Numerous in vivo and in vitro studies have identified the role of pro- and anti¬

inflammatory mediators elicited by LOS in mortality or severity of the disease.
Endotoxin plasma levels were associated with septic shock (Table 1.1). Serum levels
ofTNFa correlated with survival, while plasma IL-6 levels were associated with the

severity of septic shock in patients with meningococcal disease. Successful
neutralisation of free endotoxin through specific or cross-reactive antibodies to

meningococcal LOS is a crucial factor in the prevention of septic shock. The LOS of
commensals shares a number of oligosaccharide structures with the LOS of

meningococcal immunotype strains (Chapter 5) (Figure 8.1). These oligosaccharide
structures on commensal species induce neutralising antibodies as suggested by the
studies of serum from mice immunised with LOS of strain NL1. If the LOS of

commensal species were less toxic than those of meningococci, they might be
candidates for vaccine development.

8.3.1 Assessment of release of inflammatory mediators using an in vitro model

system

A suitable animal model to assess the safety of meningococcal vaccine candidates
does not exist. Because of genetically controlled variability of the inflammatory

response of individuals to bacterial antigens and toxins [Westendorp et al., 1995,

1997; Nadel et al., 1996; Gordon et al., 1999; Read et al., 2000], an in vitro model

using the human monocytic cell line THP-1 was developed to assess the induction of

cytokines by LOS preparations from meningococci, NL and MC.
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The model was considered to have several advantages over models using whole
blood or peripheral blood mononuclear cells (PBMC). Whole blood from a variety of
donors might contain antibodies able to neutralise the effects of endotoxin challenge.
Environmental factors such as exposure to cigarette smoke [Gordon et al., 2000] and
viral infections [Raza et al., 2000] were shown to have an effect on the inflammatory

response. Monocytic cell lines are readily available through national cell culture

collections, sufficient cells can be produced within a relatively short period and the
use of cell lines would result in greater reproducibility between different laboratories.

CD 14 expression on THP-1 cells can be induced by VD3 allowing the assessment of
a wide range of biological functions: toxicity studies; the effect of natural antibodies
in normal or convalescent serum from donors of different age groups or ethnic

origin; the neutralising activity of antibodies to potential vaccine candidates on

inflammatory responses; studies on opsonophagocytosis and intracellular killing.

In vitro models have limitations. The use of cell lines does not take into account

genetic and environmental factors that contribute to susceptibility to or severity of
the infection. Monocytic tumour cell lines express immature phenotypes and do not

express all the cell surface antigens found on PBMC. The involvement of other

leukocytes in inflammatory responses to endotoxin challenge are absent.

The in vitro model fulfilled the criteria set out in the objectives of this part of the

study to assess CD14-dependent inflammatory responses to meningococcal and
commensal LOS, and to assess the neutralising activity of normal human serum and
immune mouse serum in endotoxin challenge assays.

8.3.2 Comparison of inflammatory responses elicited by LOS from

meningococci and commensal species

Meningococcal immunotype L3 induced significantly higher levels of TNFa and IL-
6 compared to LOS obtained from NL and MC (Figures 6.4 and 6.5). NL1 absorbed
bactericidal activity against a broad range of meningococcal immunotype reference
strains including strains expressing the L(3,7,9) immunotype, and isolates from

- 173-



carriers and patients (Chapter 3). The ability of mouse antibodies to LOS of NL1 to

reduce inflammatory responses to LOS of several meningococcal immunotypes
indicated there are similar oligosaccharide components on NM and NL. The I-blood

group and pK antigens are structures common to many strains of these species. NL1
bound monoclonal antibodies specific for L(3,7,9) and L8 epitopes. Other strains of
NL also bound immunotype antibodies to L(3,7,9) (23 of 44 strains, 52%) and L8 (8
of44 strains, 18%) (Table 5.18).

MCI absorbed bactericidal activity against meningococcal isolates expressing a

variety of oligosaccharide phenotypes (Chapter 4). Its LOS induced higher levels of

pro-inflammatory cytokines compared to LOS obtained from MC2, immunotype L6,
NL1 and E. coli endotoxin. MC is a common causative agent of otitis media, but it is
unclear if differences in LOS immunotypes correlate with the severity of MC
infections. Further assessment of MC strains is needed to determine their value as

vaccine candidates, and the role of these commensal strains in the development of
natural immunity to meningococcal disease.

Although the L(3,7,9) immunotype was associated with higher levels of

inflammatory mediators in experiments with meningococcal immunotype strains,
neither MCI nor MC2 bound the anti-L(3,7,9) antibody. The L(3,7,9) epitope was,

however, present on 38 of 126 (30.2%) of the Scottish MC isolates tested. Carriage
or infection with MC could induce protective bactericidal antibodies against

meningococcal LOS, but its use as a potential vaccine candidate has to be carefully
assessed due to the ability of some MC LOS to induce levels of pro-inflammatory

cytokines equivalent by those elicited by meningococci.

8.3.3 Comparison of inflammatory responses elicited by LOS of meningococcal

immunotypes

In this model system, immunotypes L3, L7, L8 and L9 induced significantly higher
levels of TNFa and IL-6 compared to other immunotypes. These findings could

partly explain why the immunotype L(3,7,9) is most frequently isolated from patients
with serogroup B or C meningococcal disease, but other immunotypes are identified
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among strains obtained from asymptomatic carriers [Jones et al., 1992; Romero &

Outschoorn, 1994], The LOS moieties responsible for different pro-inflammatory

responses are not clear. Differences in LOS core, oligosaccharide or lipid A structure

might alter the inflammatory responses in the absence of LOS-specific antibodies.
The oligosaccharide chain length was shown to affect the bioactivity of

meningococcal LOS with mutants expressing short LOS moieties being less active
than their wild type forms [Andersen et al., 1997]. Immunotypes L(3,7,9), L2, and
L5 express identical oligosaccharide moieties, but their ability to induce

inflammatory cytokines varied greatly. Sialylation of the terminal galactose residue

might play a role in the ability to induce inflammation. Immunotype reference strains

LI, L2, L3, L4, L5, L6, L7, and L8 are thought to be fully or partially sialylated;

however, LOS of immunotype L7 induced the highest levels of both TNFa and IL-6

(Figures 6.6 and 6.7).

Immunotype L7 induced the highest levels of cytokines, but these were not

significantly higher when compared to the structurally related immunotypes L3 and
L9. Core antigens might also contribute to induction of these responses. With the

exception of immunotypes L10 and LI 1, LOS from strains expressing PEA on the
second core heptose induced significantly higher cytokine levels (P<0.01) compared
to immunotypes expressing either glucose (1—>3) or those that lacked a functional

group (5.3.9). LOS from immunotypes L(3,7,9) expressing PEA (1—>3) HepII core

antigen induced the highest levels of cytokines, suggesting that both core structure

and a-chain moieties might alter the bioactivity ofmeningococcal LOS.

8.4 Lipid A

The lipid A moiety of meningococcal LOS is thought to be heterogenous with
different phosphorylation patterns in the trans-membrane moiety [Kulshin et al.,

1992; Rietschel et al., 1993; Rahman et al., 1998a & b].

The fatty chain composition differs between meningococcal LOS and LOS from

serogroup A M. catarrhalis (Table 8.2) (Figure 8.2). Meningococcal LOS lacks 10
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carbon fatty acid chains (0:10) and contains hydroxylated C14 chains (O:14-OH) that
are absent in MC lipid A. The structure of LOS from N. lactamica has not been

published. The chemical composition of LOS from NL [Wieseman & Caird, 1977]
indicates the presence of fatty acid chains with 10, 12 and 14 carbons in a ratio of 3
to 1 to 2. NM lipid A with six fatty acid chains compared to seven found in MC. The

degree of phosphorylation of lipid A is thought to be associated with its toxicity.

Meningococcal lipid A contains of one or two phosphate groups on the first

glucosamine, while MC has only one phosphate group. It is thought that

monophosphorylated LOS structures are less bioactive compared to diphoshorylated
LOS [Kahler & Stephens, 1998]. Differences in phosphorylation, fatty acid chain

length and composition might contribute to lower biological activity of LOS of
commensal MC and NL compared to meningococcal LOS. These differences might
be exploited in the choice ofLOS vaccine candidates against meningococcal disease.

Table 8.2 Predicted ratio of the composition of lipid acid chain length found in
meningococcal and commensal li pid A

Lipid acid chain length 0:10 0:12 0:14-OH
N. meningitidis 0 4 2
M. catarrhalis 2 5 0
N. lactamica 3 1 2
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(a)

(b)

meningococcal lipid A may have one or two phosphate groups on
the first glucosamine, while MC has only one phosphate group,
(red arrow).

► MC LOS contains an additional 0:10 lipid acid moiety compared to
meningococcal lipid A (blue arrow)

Figure 8.2 Structure of lipid A from (a) N. meningitidis [Kahler & Stephens,
1998] and (b) M. catarrhalis [Holme etat,1990]

H->N'V

L
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8.5 Are the antibodies to N. lactamica and M. catarrhalis cross-reactive with

meningococci associated with opsonophagocytic activity?

Phagocytosis has a dual role within the immune system:

Invading meningococci can be effectively removed and killed by professional

phagocytes [Lehmann et al., 1997] and monocytic phagocytes are able to detoxify

opsonised bacterial endotoxin.

Phagocytes are involved in the development of cellular immunity to bacterial
infections. Monocytes, tissue, spleen and lymph node macrophages, and Kupffer
cells are important antigen presenting cells (APC) able to phagocytose invading
bacteria.

The first aim of this part of the study was to develop an in vitro model to assess the

opsonophagocytic activity of human serum. The undifferentiated monocytic cell line
THP-1 expressed the high affinity IgG receptor (FcyRl, CD64) and the complement

receptor (C3bR, CD11/18) associated with phagocytosis [van Furth & van den Berg,

1996]. The use of an in vitro model reduced variations phagocytic responses within
PBMC populations [Nielsen et al., 1988; Lehman et al., 1997], and there was a high

degree of control over the phenotype of the cells and experimental conditions.

An optimal bacteria : cell ratio of 50 : 1 was found to yield results similar to other
methods which used phagocytic cells isolated from human blood [Lehmann et al.,

1997; Bassoe et al., 2000], Quenching was an effective method to discriminate
between external binding and intracellular uptake of Pi-labelled bacteria [Lehmann
et al., 1997].

THP-1 cells ingested a greater number of non-capsulate commensal strains compared
to serogroup B meningococci. Commensal strains ofNL and MC were more readily

phagocytosed in the absence or presence of human serum compared to

meningococci. These finding were comparable to previous observations that

capsulate meningococci resist uptake by human phagocytes compared to non-

capulate meningococci [Kalmusova et al., 2000] or other bacterial species [Bassoe &
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Bjerknes, 1985], Maximal ingestion of opsonised bacteria was observed between 15
- 20 min, and assessment of functional activity of normal human serum provided
evidence that there was a correlation between the presence of bactericidal and

opsonic antibodies (7.4.5) (Table 7.5).

The model system supported the key role of immunoglobulin and complement

dependent phagocytosis in meningococcal disease [Aase & Michaelsen, 1994; Fijen
et al., 2000], Absorption of normal human serum with meningococcal immunotype
strains and commensals provided evidence that serum contained natural, cross-

reactive, functional antibodies to carbohydrate antigens expressed on NL, MC and a

variety of serogroup B meningococci.

The presence of functional cross-reactive antibodies between commensal and

meningococcal strains capable of mediating complement dependent-bactericidal

activity and phagocytosis provide further evidence that carriage of commensal
bacteria contributes to protection against meningococcal disease.
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8.6 Choosing candidates for vaccine development

8.6.1 LOS based vaccines

NL1 induced antibodies in mice able to neutralise the pro-inflammatory response

against a wide range of meningococcal immunotypes. Bactericidal and opsonising

activity against the corresponding immunotypes was absorbed from the human serum

pool with NL1. This suggests that antigens present on NL1 might be prospective
candidates for a vaccine against meningococcal disease. NL1 bound antibodies to

immunotypes L(3,7,9) and L8 associated most frequently with meningococcal

disease, but its LOS induced significantly lowerlevels of pro-inflammatory cytokines
than LOS from meningococcal immunotype strains expressing the L(3,7,9) or L8

epitopes.

In order to develop a vaccine candidate against all meningococcal immunotypes,

antigens present on additional NL isolates such as NL3 or NL7 should be considered
to complement those on NL1. Toxicity tests on the LOS of the NL3 and NL7 LOS

phenotypes using human leukocytes should be carried out as a further step if an

injectable vaccine is to be considered.

8.6.2 Live vaccines

Young children are often carriers of commensal species. The use of live non¬

pathogenic NL or MC strains expressing phenotypes with antigens cross-reactive to

meningococci might be considered. While NL rarely causes disease, MC is the third
most common isolate from children with otitis media. The potential for causing
disease is much greater and makes MC a less promising candidate for live vaccines.
Ethical considerations and public opinion are also major challenges in pursuing such
an approach. NL1 complemented by the Icelandic or the Czech NL isolates might be
candidates to cover the major LOS immunotypes of serogroup B.

Due to the lack of suitable animal models for the assessment of mucosal immunity
induced by bacterial carriage, further investigations into carriage of commensal

species and development of natural immunity to meningococcal disease are crucial.
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The main benefit of such a vaccine would be the mimicing the natural development
of protective immunity to meningococcal disease in young children who are most

susceptible to meningococcal disease.

8.6.3 Commensal LOS as adjuvants for serogroup B OMP vaccines

Endotoxin-depleted or endotoxin-free outer membrane vesicle (OMV) vaccines
based on meningococcal OMP are poorly immunogenic, and LOS-containing OMV
are more effective at inducing protective antibodies [Alving, 1992; Andersen et al.,

1997; Quakyi et al., 1999], Substituting commensal LOS for meningococcal LOS

might boost antibodies to the protein antigens, inducing neutralising antibodies

against the L(3,7,9) immunotypes but induce lower levels of pro-inflammatory

cytokines.

Several studies have shown that OMV protein vaccines with low LOS content

(<0.01%) could be applied directly to the mucosal membrane of animals and human
volunteers eliciting both serum and secretory antibodies [Oftung et al., 1999;

Haneberg et al., 1998 a & b]. This route of vaccination might be an alternative way

using OMV vaccines obtained from N. lactamica isolates.

8.7 Future work

This study provided evidence that there are oligosaccharide antigens on the
commensals N lactamica and M. catarrhalis cross-reactive with those on N.

meningitidis. Further assessment of cross-reactive natural antibodies and antibodies
in immune mouse serum are required to identify the molecules involved and the

epitopes recognised by natural antibodies. Of particular interest are structures

identified by the immunotypes L8 or L(3,7,9) monoclonal antibodies as these

epitopes are found on >90% of isolates from patients with disease. In addition to

bactericidal protection, assessment of neutralising and opsonophagocytic antibodies
need to be considered.
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8.7.1 Antigens

Little is known about the heterogenicity of meningococcal lipid A, and how this
structural diversity might affect the toxicity of LOS in vivo (8.4). Diverse, truncated
or mutant lipid A moieties can easily be assessed for induction of cytokine levels

using the THP-1 model. Structural analysis of lipid A in commensals and

meningococci could yield insights into its role in pathogenesis. This might identify a

vaccine candidate that contains cross-reactive core or oligosaccharide epitopes, but
that is less toxic that natural meningococcal LOS.

8.7.2 Epidemiology of commensal isolates

Epidemiological studies in different countries are needed to compare commensal

species for expression of cross-reactive oligosaccharide antigens. These studies are

particularly important in relation to the findings that commensals from different

European regions were significantly different in their phenotypes. Population
movements following the opening of the borders with Eastern Europe might lead to

introduction of new meningococcal and commensal strains. Greece which has

migrants from Balkan, middle East and ex-Soviet block countries should be one

focus for these studies.

8.7.3 Antibodies blood group antigens

Further investigations into antibodies that recognise carbohydrate antigens similar to
blood group antigens are required. Assessment of antibodies to Ii and P antigens for
their interaction with meningococci and commensal species is needed to determine if

they correlate with bactericidal, opsonophagocytic, or neutralising activity.

8.7.4 Longitudinal studies

The need for longitudinal studies on development of serum and salivary antibodies

against NM is crucial to establish the role that carriage of commensals plays in the

development of protection against meningococcal disease in children and young
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adults. The systematic screening of isolates, sera and saliva from infants, children
and teenagers from different geographic regions for evidence of antibodies to

commensals and meningococci is currently planned with colleagues across Europe.
The study should include the assessment of neutralising, opsonophagocytic and
bactericidal activity against NM strains causing disease in the corresponding regions.

8.7.5 The main questions to be addressed in future studies are:

• Is reduction in carriage of NL and MC with increasing age associated with
increased susceptibility to NM as a result of lower levels of antibodies to the
commensal strains?

• Does continuous or repeated carriage maintain natural immunity? The
increase in risk ofmeningococcal disease during late puberty might be related
to the loss of natural booster effects of mucosal carriage of NL and MC as

well as changes in social behaviour and exposure to new strains of

meningococci.
• What effect does the conjugate vaccine for serogroup C meningococci have

on carriage of commensals?
• If vaccines against MC are introduced to prevent otitis media, what effect

would this have on carriage rates ofmeningococci and commensal species?
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