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Abstract. 

Abstract 

This thesis describes the determination and analysis of the crystal structures of a series 

of hydrogen-bonded, organic compounds. The subjects chosen for study were targeted with 

the aim of forming closely-related structural motifs in the solid state. 

The crystal structures of five hemiadducts of paracetamol with 1 ,4-dioxane, 

N-methylmorpho line, morpho line, N,N-dimethylpiperazine and piperazine, and a related 1:1 

adduct of paracetamol with 4,4'-bipyridine are described. All structures are characterised by 

the formation of chains of paracetamol molecules, linked either via OH. ..00 interactions 

[C(9) chains in graph set notation] or NIHLO=C interactions [C(4) chains], depending on the 

presence or absence of substituent groups on the guest molecule. In all cases except for the 

morpholine and bipyridine adduct these chains are connected by H-bond interactions with the 

guest molecules residing on crystallographic inversion centres. In the bipyridine adduct this 

linkage also involves a it-stacking interaction; in the morpho line adduct it is formed between 

the OH groups of two opposed paracetamol molecules. Most adducts (that with 

4,4'-bipyridine is an exception) decompose on heating to give monoclinic paracetamol. This 

is the first systematic study of a series of co-crystals containing paracetamol. 

The crystal structures of eight new co-crystals of quinol with pyrazine, piperazine, 

morpholine, pyridine, piperidine, 4,4'-bipyridine, N-methylmorpholine and 

N,N'-dimethylpiperazine are also reported. Quinol forms 1:1 co-crystals with pyrazine, 

piperazine and N,N'-dimethylpiperazine, but 1:2 co-crystals with morpho line, 4,4'-bipyridine, 

N-methylmorpholine, pyridine and piperidine. This difference can be rationalised in most 

cases by the presence of respectively two or one strong H-bond acceptor(s) in the guest 

molecule. The exception to this generalisation is 4,4'-bipyridine, which forms a 1:2 

co-crystal, possibly to optimise crystal packing. All structures are dominated by hydrogen 

bonding between quinol and the guest molecules. A doubly-bridging motif, which connects 

pairs of quinol and guest molecules via NH.. .0 or CH. . .0 interactions, is present in all but 

the sterically-hindered NN'-dimethylpiperazine and N-methylmorpho line co-crystals. 

Co-crystals of isonicotinamide have been prepared with formic and acetic acids. In both 

structures a similar R22(8) amide-dimer motif is formed by the isonicotinamide, with the guest 

molecules forming contacts between the amide or acid groups and the pyridine moiety of the 

host. The isonicotinamide:formic acid adduct shows proton migration with a change in 

temperature. 
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Abstract. 

Existing methodologies for crystal structure prediction work tolerably well for small, 

rigid molecules, prediction tests often appear to fail to predict known polymorphs, even 

though many hundreds of energetically similar structures may be predicted instead. Many 

algorithms attempt to maximise density, it is possible that 'failed' prediction attempts have in 

fact yielded polymorphs which are stable at high pressure, but which have not yet been 

identified experimentally. Crystal structures of all isomers of monofluorophenol and 

monochiorophenol have been determined both at low temperature and high pressure. All 

except the 3-substituted isomers show some degree of polymorphism with applied pressure. 

2-chiorophenol, for example, forms H-bonded chains in the solid state; these are disposed 

about crystallographic 32 screw axes at low temperature, but 21 axes at high pressure 

(0.12 GPa). Previous work on the packing characteristics of alcohols suggests that the 

chiorophenyl group in this case is behaving as a large group at low temperature, but a small 

group at high pressure. 
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Chapter 1. Introduction 

1.1 Nature of the hydrogen bond 

1.1.1 Definition 

In the early part of the 20th Century many groups reported weak intermolecular 

interactions, that now can be attributed to hydrogen bonding, but no single definition was 

given, at that time, for these interactions. It was only in the 1920s that a formal definition of 

these weak interactions began to emerge. Latimer & Rodebush (1920) and Huggins (1922) 

provided definitions to classify intermolecular interactions, but it was Pauling who first 

defined the hydrogen bond. He wrote in his book Nature of the Chemical bond (1939): Under 

certain conditions an atom of hydrogen is attracted by rather strong forces to two atoms 

instead of only one, so that it may be considered to be acting as a bond between them. This is 

called a hydrogen bond. 

This definition satisfied the scientific community for two decades before Pimental and 

McClellan (1960) realised that the definition did not take into account the scope of the large 

range of hydrogen bonds and that it needed to be reformulated. Their definition required that 

there is a specific donor and acceptor atom present within the hydrogen bond. A hydrogen 

bond exists between the functional group, A-H and an atom or a group of atoms, B, in the 

same or different molecules when (a) there is evidence of a bond formation (association or 

chelation), (b) there is evidence that this new bond linking A-H and B specifically involves a 

hydrogen atom already bonded to A. 

In his review of hydrogen bonding Steiner (2002) highlighted a few problems with this 

definition. He realised that, as it stands, it could include other interactions such as van der 

Waals contacts. The chemical nature of each of the participating groups was not specified; 

including the overall polarities and charges. He proposed an amendment to the definition of 

Pimental and McClellan. An X-H... A  interaction is called a "hydrogen bond", if 1. It 

constitutes a local bona and 2. X-H acts as a donor to A. The second point of Steiner's 

definition excludes van der Waals contacts as it implies donation of a proton from the X group 

to the A group. This definition of a hydrogen bond is specific to a range of interactions where 

the hydrogen acts as a proton, with the X and A groups being electronegative groups, though 

this does not exclude donor atoms such as carbon. 

The notation described by Steiner (X-H ... A) is used widely in the literature to signify 

hydrogen bonding interactions. In this Thesis, however, this notation is modified to D-H.. .A 

-2- 



Chapter 1. Introduction 

where D is the donor atom and A is the acceptor atom. This simple description of a hydrogen 

bond can be defined using three geometrical parameters; two distances and one angle 

(Scheme 1.1). The two distances are defined as 1 and L and the angle defined as 0 (Scheme 

1.1) 

The determination of these parameters has become 

routine with the advancement in X-ray crystallographic 

techniques. Although X-ray crystallography is the 

method of choice for structure determination in the solid 

state, it has some disadvantages with regard to hydrogen 

bonding because it relies on scattering by electrons. 

Hydrogen has only one electron, which is involved in the 

+ 1 
..._-H.' 

D 	
o- 

0 	A 
L 	

10
1  

L 

Scheme 1.1: A simple model 
of a hydrogen bond showing 
the geometrical parameters: 1 = 
H ... A distance, L = D ... A 
distance and 0 = D-H... A 
angle. 

D-H bond, and this causes an apparent shortening of the 

covalent bond (if the electron density is seen at all). Hydrogen atoms can usually be located 

nowadays for small organic systems, though this is still problematic for crystals with heavy 

scatterers. These problems have led to the use of the D... A distances as a guide to whether 

hydrogen bonding exists between two groups. An advantage of this is that the D... A 

distances are more precisely determined in comparison to H... A distances. The disadvantage 

to this method is that some intermolecular interactions are labelled as hydrogen bonds when 

they should only be considered as van der Waals interactions. An example of this was in the 

first determination of a-glycine (Albrecht & Corey, 1939). The structure of a-glycine has 

four hydrogen bonding contacts per molecule when considering only the N ... 0 contacts 

implying the presence of a bifurcated hydrogen bond (the first reported incidence of this type 

of H-bond). Recent studies of a-glycine by neutron diffraction shows one of the H... .0 

contacts is outside that expected for a hydrogen bond (2.362(2) A) and that this interaction 

should be considered as a van der Waals contact (Figure 1. 1, Langan et al., 2002). The above 

example shows that in ambiguous cases accurate hydrogen atom determination is crucial to 

the correct assignment of interactions in the solid state. 

Figure 1.1: Intermolecular interactions observed in 
a-glycine. Classification of H-bonds with regard to N... 0 

:..:•' 
distances led to the incorrect assignment of a vdW contact 
as a hydrogen bond (circled). N... 0 distance 2.9504(10) 
A; H ... 0 2.362(2) A NH. .0 114.92(17)0 . 
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Chapter 1. Introduction 

The best method for the determination of hydrogen atom positions is neutron 

diffraction, the method by which the above problem was solved. Indeed, hydrogen atoms 

determined by X-ray diffraction are usually normalised so that D-H distances are set to those 

determined by neutron diffraction (Jeffrey, 1997). This allows the direct comparison of 

hydrogen bonds with those in the literature. Table 1.1 gives an example where the normalised 

hydrogen bond distances from the X-ray experiment are comparable with neutron diffraction 

studies. 

Carbohydrate 
O-H(A) H...0(A) 

X-ray Neutron X-ray Normalised Neutron 

Methyl 

a-D-altropyranoside 

0.81 0.971 1.90 1.74 1.736 

0.88 0.961 2.00 1.91 1.922 

Methyl 

a-D-glucopyranoside 

0.87 0.985 1.84 1.74 1.738 

0.97 0.969 1.76 1.76 1.770 

Methyl 

a-D-mannopyranoside 

0.80 0.976 1.98 1.81 1.810 

0.67 0.957 2.22 1.96 1.998 

0.96 0.959 2.07 2.05 2.052 

Table 1.1: Hydrogen bonding distances of some carbohydrates using both X-ray and Neutron 
diffraction. The H-bond distances determined using X-rays have been normalised (0-H 0.97; 
N-H 0.99; C-H 1.01) for comparison with Neutron values. 

1.1.2 ClassIcation of hydrogen bonds 

The parameters described in the previous section enabled Jeffrey to classify hydrogen 

bonds further into strong, moderate and weak hydrogen bonds (Table 1.2, Jeffrey, 1997). 
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Chapter 1. Introduction 

Strong Moderate Weak 

Interaction type mostly covalent mostly electrostatic electrostatic 

Bond lengths 

H ..... B (A) -1.2-1.5 -1.5-2.2 -2.2-3.2 

A.....B (A) 2.2-2.5 2.5-3.2 3.2-4.0 

Bond angles(o) 175-180 130-180 90-150 

Bond energy (kJ mor) 58-167 17-63 <17 

Table 1.2: Properties of strong, moderate and weak hydrogen as defined by Jeffrey (1997). 

The strong interactions are exemplified by hydrogen bifluoride (D ... A, 2.293(3) A, 

Silva et al., 2001). These hydrogen bonds have a large energy associated with them (148-

160 ld/mol) and are predominantly covalent in nature. The donor and acceptor atoms in this 

system are undefined as the hydrogen is centred within the bond. Moderate hydrogen bonds 

are wide spread and are classed as 'normal' by Steiner. Terms like 'conventional' are also 

applied. These interactions are typified by alcohol.. .carbonyl contacts such as those in 

paracetamol (Chapter 2). The 0(H).. .0(C) H-bond length in paracetamol has been 

determined as 2.724(5) A (Haisa et al.,1974), and this is typical of this type of interaction. 

Unlike the strong H-bonds the hydrogen atom resides on the alcohol rather than in the centre 

of the bond. There are some systems that have a borderline strong interaction (2.42 - 2.61 A) 

between the donor and acceptor atoms yielding unusual proton behaviour. This is exemplified 

by isonicotinaniide:formic acid (Chapter 4) (0.. .N 2.5468(16) A) where the proton is 

disordered over two sites. Other examples of this behaviour are seen in benzoic acid (Wilson 

et al., 1996); migration of the proton from one atom to the other has also been observed in 

co-crystals of pentachiorophenol with methylpyridines (Steiner et al., 2000, Steiner et al., 

2001) and in the co-crystal of urea and phosphoric acid (Wilson, 2001; Parkin et al., 2004a). 

Weak interactions, such as CH;. .0, have been an area of heated debate in the past but are now 

widely accepted as 'weak hydrogen bonds' (Desiraju & Steiner, 1999). 

Diffraction methods, and H-bonding distances derived from them, are not the only 

method for the characterisation of the H-bond. Infrared spectroscopy (IR) has been used to 

follow the formation of a hydrogen bond through the decrease in the D-H stretching frequency 

(Jeffrey, 1997). The analysis of bond stretching frequencies makes IR spectroscopy a very 

sensitive method for the study of H-bonds, weak H-bonds were first detected 
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Chapter 1. Introduction 

spectroscopically (Jeffrey, 1997). A schematic of the potential energy (P.E.) curve for a free 

and hydrogen bonded D-H is shown in Figure 1.2. 

Potential Energy 

Distance 

Figure 1.2: Schematic of a potential energy curve for a free and hydrogen bonded D-H group. 
(Jeffrey, 1997) 

The potential energy well for the free D-H group shows one deep minimum in which the 

hydrogen atom resides. On formation of a hydrogen bond the D-H distance elongates slightly 

and a second minimum is formed corresponding to the interaction of hydrogen with the 

acceptor atom. An example of the elongation of the D-H bond with increase in hydrogen 

bonding is observed in ammonia where the N-H bond was calculated to be 1.008(4) A in the 

gas phase and 1.061(5) A in the solid state where the N-H group is involved in H-bonding 

(Morrison & Siddick, 2003). The unsymmetrical RE curve shown in Figure 1.2 is typical of a 

moderate hydrogen bond. Stronger hydrogen bonds tend to form symmetrical P.E. wells 

where the minima are energetically equal (Figure 1.3). The potential energy barrier between 

the two minima is much lower than with moderate H-bonds and can allow hydrogen migration 

with a change in environment such as temperature (see Chapter 4). With even stronger 

interactions the potential energy barrier can disappear altogether leaving a single minimum (a 

centred H-bond). 
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Chapter 1. Introduction 

Potential Energy 

D 	 Hydrogen atom position 	 A 

Figure 1.3: Schematic of the potential energy diagram for a strong hydrogen bond. Note the 
low potential energy barrier. The low barrier can allow proton migration to occur with small 
changes in environment. 

The potential energy curves shown in Figure 1.2 and 1.3 show the total energy in the 

hydrogen bond. Much like the overall crystal structure lattice energy, hydrogen bond energies 

are a complex addition of many different energy terms. 

1.1.3 Theory of hydrogen bonds 

Theoretical calculations of the hydrogen bond energies have been investigated since the 

1970s where Morokuma (1977) first partitioned the hydrogen bond into five different energy 

contributions. These come in the form of electrostatics (E ei), polarisation (E1), charge 

transfer (Ed), dispersion (E) and exchange repulsion (E n). Although different theories have 

evolved since then, the separation of the hydrogen bond energies still follows the same 

general divisions as those used by Morokuma. Each energy term contributes differently to the 

overall hydrogen bonding energy depending on the strength of hydrogen bond. Calculations 

have shown that the main energy contribution to a moderate hydrogen bond is the electrostatic 

term (Morokuma, 1977). Stronger hydrogen bonds are not modelled well using simple 

electrostatic terms as the hydrogen bond is pseudocovalent in nature (Steiner, 2002). 
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Chapter 1. Introduction 

1.2 The Hydrogen bond in the solid state 

The potential energy curves described in the previous section represent the interaction 

between an isolated donor and acceptor group. When incorporated into the crystal lattice 

these simple potential energy curves change as there are many different forces that combine to 

determine the most thermodynamically stable structure. Characteristic motifs are frequently 

associated with hydrogen bonds formed between specific functional groups, for example, 

certain motifs, like the OH... OH... chains in alcohols and dimers in carboxylic acids are more 

common than other motifs. One reason behind the formation of these types of motif can be 

attributed to the effects known as a-bond co-operativity and resonance-assisted hydrogen 

bonding. 

1.2.1 if-bond co-operativity 

The effect known as a-bond co-operativity can occur when two hydrogen bonded 

groups closely interact to form a stronger hydrogen bond. An example of this behaviour is 

observed in OH.. .011.. .chains. On formation of a hydrogen bond to A, the donating group, 

D-H, becomes more polar. If this second group, A-H, hydrogen bonds to another group it too 

will become more polar increasing the strength of the D-H ... A interaction. This helps to 

explain the clustering of hydroxyl groups into chain and ring motifs. 

1.2.2 Resonance-assisted hydrogen bonding (RAHB) 

Resonance-assisted hydrogen bonding (RAHB) occurs in systems where there is 

conjugated 7t-bonding. Examples of such systems are the 3-diketone enolates, amide groups 

and carboxylic acid groups. In a hydrogen-bonded amide chain the ability of the amide group 

to form resonant forms means that there is a flow of electron density towards the acceptor 

group (Figure 1.4a). The increase of electron density on the acceptor together with the 

decrease of electron density around the donor H results in the H-bond being much more polar 

and hence stronger. Etter (1982) observed that amide carbonyls were better acceptors than 

lone carbonyl groups which could be, in part, attributed to resonance-assisted hydrogen 

bonding. Gull et al. (1989) observed RAHB in intramolecular hydrogen bonds in (3-diketone 

enolates (Scheme 1.2), comparisons were made of the bond lengths around the diketone 

moiety and a delocalisation parameter was defined: [Q = (d1-d4)+(d3-d2)] (see Scheme 1.2). 
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The value of Q is an indication of the delocalisation 

around the ring; a Q value of zero indicates that the 

system is completely delocalised. (Figure 1 .4b). 

RAHB is of great interest in the context of DNA 

base pairing where the purine adenine always pairs with 

the pyrimidine thymine. The ability of both groups to 

form resonant forms enhances the hydrogen bonds 

between the two bases (Figure 1.4c). 

H.. 	

0 

d4 dl 0

~51 

d2 	d3 

Scheme 1.2: Resonance-
assisted hydrogen bonding 
in 3-diketone enolates; dl to 
d4 are bond lengths in A. 
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Figure 1.4: a) Resonant form of an amide chain. b) The graph shows the parameter Q 
(measure of 7t-delocalisation) against the 0. . .0 distance (A) in a set of enolones (taken from 
Steiner, 2002); the amount of r-deloca1isation decreases with 0.. .0 separation. The value ? 
is the state of the fragment; a value of 1, 0.5 & 0 means that the fragment is in the ketoenol, 
fully delocalised or enolketo states, respectively. c) Resonance-assisted hydrogen bonding in 
DNA, the purine from adenine pairing with the pyrimidine of thymine. 

1.3 Prediction of hydrogen bondformation 

The two effects described above enhance H-bonding between groups that are 

predisposed to them. An investigation into the hierarchy of hydrogen bonds was first 
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attempted by Etter in 1990. She formulated rules of hydrogen bonding that could be applied 

to predict which bonds would be formed in a crystal structure. 

There are three general rules that can be applied to all types of molecules as well as 

rules that can be applied to specific molecules such as nitroanilines and diarylureas: 1) All 

good donors and acceptors are used in hydrogen bonding; 2) Six-membered-ring 

intramolecular hydrogen bonds form in preference to intermolecular bonds; and 3) The best 

proton donors and acceptors remaining after intramolecular hydrogen-bond formation form 

intermolecular hydrogen bonds to one another. These rules are still applied today although 

other statistical methods are being developed to quantify the likelihood of formation of 

different types of bonds. 

1.3.1 Cambridge Structural Database and knowledge mining 

The Cambridge Structural Database (CSD) (Mien, 2002; Allen & Motherwell, 2002), 

contains over 300,000 crystal structures of organic and organometallic compounds, and it 

provides statistical evidence to test hypotheses proposed by experimentalists. For example, 

Taylor and Kennard (1982) used the Database to show that CH. . .0 interactions can be 

classified as hydrogen bonds. With the advancement of X-ray crystallography and the speed 

with which crystal structures are determined the database has grown rapidly over recent years. 

The increase in size of the CSD implies that searches conducted on the database are becoming 

more statistically meaningful every year (though many searches still yield surprisingly few 

hits). Allen Cr al. (1999) have used the database to study the probability of formation of 75 

different biomolecular ring systems. The probability of formation parameter (Pm) was 

calculated by counting the number of times a specific motif was formed (N0b) and dividing 

that result by the number of times it could have been formed (N1,). They concluded that the 

likelihood of formation of a certain motif increases with the number of points of recognition 

in that motif a motif with three hydrogen bonds present is much more likely to form than 

those with only two bonds. One surprising result was that the carboxylic acid dimer, which is 

assumed to be a very robust motif, had a Pm of 33%. This is much lower than might have 

been expected for this motif The reason given for this low value was competition for the 

carboxyl group from other acceptors such as water. If this parameter was calculated again on 

C, H and 0 structures with no other donors or acceptors the Pm increased to 95% indicating 

that this is the likely cause for the low probability in this study. 
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Steiner (2001) studied the hydrogen bonding in carboxyl groups further by looking at 

the competition between acceptors for carboxyl donors using the CSD. He found that only 

29% of donor contacts from carboxyl are to other carboxyl groups and of these 85% formed 

the acid dimer with the other 15% forming acyclic motifs. 71% of all interactions from the 

carboxyl moiety are to a variety of different acceptors. He devised a measure of success that 

can be calculated for different acceptor groups so that they can be directly compared with one 

another. The relative success is defined as: 

succ(A) = n(OH.. . A)! [n(OH .. . A) +n(OFI... O)]. 

The success rate was high for such groups as the carboxylate (97%) and N(pyridine) 

(91%) but low for groups such as ether (13%). Both studies have great implications for 

crystal engineering and structural prediction where results of hydrogen bond competition 

could prove very useful. 

Oswald et al. (2004) took a different approach to using the CSD in which the database 

was used to rationalise the formation of a set of paracetamol co-crystals. By this method, the 

various functional groups present within the molecules studied were identified and a matrix of 

donors and acceptor molecules was created (Table 1.3 shows a sample). The CSD was used 

to search for the various combinations of donor and acceptor molecules and the average 

hydrogen bond distance (DH. . .A) was calculated. The length of interaction was taken to 

correspond to the strength of a hydrogen bond (a reasonable assumption as the H-bond is 

primarily an electrostatic interaction), and with reference to this matrix, the structures of six 

co-crystals with paracetamol were rationalised from the structure of pure paracetamol. 

Both polymorphs of paracetamol use the same two hydrogen bonds, a stronger 

OH... OC and a weaker NH.. .0(H). On co-crystallisation with a guest molecule the weaker 

of the two interactions (NH.. .0(11)) is broken first with the stronger interaction only being 

broken when increased steric factors and extra H-bonding moieties are introduced to the 

system by the guest molecule. A similar method was also applied to the analysis of 

co-crystals of quinol (Chapter 3). 
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Acceptor (0 or N in each case) 

Donor (NH or OH) 
O( 0 NH 

Sample size 1250 14 
Max NI-L.A/A 2.20 2.14 

N

- 

 H Min NH..A/A 1.73 1.79 
/  Mean NIL.A IA 1.92 2.01 

Sample size 49 256 
Max OH..A/A 2.19 2.20 
Min OH..AIA 1.60 1.67 
Mean OH..A /A 1.78 1.87 

Table 13: The matrix created to help rationalise the formation of a series of paracetamol 
adducts. On the left of the table are the donor moieties in paracetamol and on the top are the 
acceptor moieties. The values are the sample size, maximum, minimum and mean distances 
for the interactions taken from the CSD (2002). 

Recent publications by Infuntes and Motherwell (2004a, b) described a new relational 

database that contains information about interactions around a number of different functional 

groups. CSDcontact provides information on many different functional groups such as the 

number of donor and acceptor contacts to the group. This information can be correlated with 

the accessible surface area on a group or ratio of donors to acceptors to produce graphs that 

may reveal underlying trends. Figure 1.5 shows a graph for a ketone oxygen acceptor. The 

number of occurrences, for zero, one or two contacts, has been plotted against the average 

accessible surface area for the Keto-O. It can be seen from this graph that no contacts occur 

when there is low accessibility to the oxygen surface. As the accessible surface area increases 

the number of observed contacts increases also. Use of this type of database can help to give 

a better understanding of the hydrogen bonding that may occur in a molecule with certain 

functional groups so that given a molecular formula the directions of likely H-bonds may be 

calculated. 
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Figure 1.5: Diagram for a keto-O group showing the number of occurrences, Nocc, against 
average accessible surface, AS. The separate graphs are for different number of contacts. 
(Motherwell and Infantes, 2004a) 

1.3.2 Graph Set Analysis 

Analysis and description of H-bonding patterns in crystal structures can become 

daunting in cases where the molecules form complicated 3-dimensional networks. The work 

of Etter et al. (1990) simplifies the problem of crystal structure description to topological 

analysis of the structure using Graph Set Analysis. Previous attempts had been made by 

Wells (1962) and Hamilton & Ibers (1968) to simplify crystal structures to points and lines for 

molecules and hydrogen bonds, respectively. Kuleshova & Zorky (1980) developed these 

early attempts with use of graph theory to organic systems. Etter et al. furthered the idea to 

looking at molecules rather than points. Since its development Graph Set Analysis has 

become an integral part of crystal structure description and is used widely in structural papers. 

Although widely used in the literature there were still some common misinterpretations with 

regard to the assignment of Graph Sets, which Bernstein etal. (1995) addressed in their paper. 

The main advantage of this analysis is that it can be used to break complex hydrogen bonded 

structures down into small repeated motifs. 

' 

The notation used by Etter ci al. is defined as: 

Gda(fl), 

where G represents the pattern descriptor, d denotes the number of donor atoms, a 

designates the number of acceptor atoms and n represents the number of atoms used in the 

pattern or degree. There are four different pattern descriptors that can be used; C. R, S, D. C 

denotes an infinite hydrogen bonded chain, R denotes a ring pattern, S denotes an 

intramolecular bond and D represents a discrete hydrogen bond. Examples of these types of 

patterns are shown in Scheme 1.3. 
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>==O 
--- H-N \ 
	

R4/ 	~/- R 
C(4) 	

R22(8) 

S(6) 	 D 

Scheme 1.3: Possible patterns and their graph set. From top left: Amide chain motif 
comprising of four atoms, C(4); carboxylic dimer formed over an inversion centre resulting in 
a R2 (8) motif; An intramolecular hydrogen bond between an alcohol and a carbonyl group 
S(6); A discrete hydrogen bond that does not take part in any other pattern, D. 

The parameter n is the degree of the pattern. Chains motifs count the number of atoms 

in the repeating unit as the degree, a catemeric amide chain has a C(4) graph set (Scheme 1.3). 

Intramolecular patterns (5) and intermolecular ring (R) patterns count the number of atoms in 

the ring. The example of an intermolecular ring motif shown in Scheme 1.3 is a characteristic 

motif for mono functional carboxylic acids, and amides. Patterns designated D are discrete 

pattern and usually only involve one donor and one acceptor that are not part of any other 

patterns. 

The number of motifs present in the crystal structure is dependent on the number of 

crystallographically different hydrogen bonds in the system; by defmition, each motif consists 

of only one crystallographically distinct hydrogen bond. The graph sets for each motif can be 

combined to describe the crystal structure in terms of a unitary level graph set where all the 

descriptors for each motif are listed (see the following example). It may be more informative 

to describe a system using two crystallographically different hydrogen bonds. These graph 

sets are described as binary graph sets but for consistency, the unitary graph set is preferred at 

the start of an analysis. It is possible to describe the structure in terms of ternary or higher 

level graph sets should this be the most informative descriptor. 

The list of graph sets produced from this analysis should give the pathways through the 

structure that have the lowest degree (number of atoms). These graph sets are commonly 
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termed the basic graph sets. Other pathways through the structures may involve the same 

hydrogen bonds but have a higher degree; these are termed complex graph sets. 

The structure of paracetamol can be used to illustrate the technique of graph set 

analysis. Figure 1.6 shows the structure of form II of paracetamol, viewed down the b-axis. 

It is a layered structure with only two crystallographically distinct hydrogen bonds; there are 

only two unitary motifs designated for this structure. The first hydrogen bond is the 

OH. . . O=C interaction; when followed through the structure the set of these interactions form 

chains (C). The formation of the chain utilises only one donor atom and one acceptor atom 

therefore a and d, in the above definition, have a value of 1; convention states that if these 

values are 1 they are often omitted from the designator. There are nine atoms contained in the 

repeating unit resulting in a C1 1 (9) or C(9) graph set. If the same procedure is followed for 

the NH... 0(H) hydrogen bond a second unitary descriptor, C(7), is formed; the complete 

unitary graph set is then C(9)C(7). The unitary graph set may not include 'obvious' features 

in the structure such as other chain motifs and rings, because they involve more than one 

crystallographically independent H-bond. Another description of this structure uses the C(9) 

descriptor as above and also a binary chain graph set, C22(6), running perpendicular to it 

(Figure 1.6). In addition to these two chain motifs the structure can be described as consisting 

of rings containing four donor and acceptor atoms and having a degree of 22 described by a 

complex binary graph set, R44(22). Analysis of a 3-dimensional hydrogen bonded network, 

however, is a very complicated procedure and for this the CCDC has developed a routine in 

RPLUTO to help with this procedure (Motherwell et al., 1999). 
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Figure 1.6: Orthorhombic paracetamol viewed down the b-axis with its graph sets highlighted. 
C(9), black (with numbering); C(7), blue; C22(6), yellow and R44(22), red. 

The advantage of graph set analysis is that it assists in making comparisons between 

two structures. This is exemplified by a- and 'y-glycine. The similarities of these two 

structures are difficult to discern until graph set notation is applied. Despite crystallising in 

very different space groups with apparently very different motifs (spiral chains and layers) the 

same C(5) graph set motif is retained in both structures (Figure 1.7). 

Figure 1.7: The C(5) chain observed in both alpha and gamma polymorphs of glycine. it is 
the interaction of these chains that differ in each polymorph. 

Describing the structures in this way may provide a better understanding of the 

crystallisation process of glycine. This example does, however, highlight a problem with 

graph set notation. In some circumstances it can help visualise the similarities within 

structures, but it can also give identical graph sets to two completely different polymorphs. 

This is an inherent problem of reducing structures to strings of descriptors. Another example 
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is in MOGUL where 'wrong' structures are sometimes compared (Bruno et aL, 2004). By 

referring to a structure by its graph set one may neglect important information about the 

crystal structure. Paracetamol is another example, where both polymorphs have identical 

graph sets. The simple description of the crystal structure that graph set notation affords fails 

to describe the non-polar layers in Form II as opposed to the polar nature of the layers in Form 

I (Chapter 2). Graph set analysis has proved to be a useful tool in structural chemistry but the 

oversimplification of structures means that visual comparison of structures in three-

dimensions using a visualisation program like MERCURY (Bruno et aL, 2002) will always be 

necessary. 

Other groups have followed Etter et al. by applying graph set techniques to specific 

classes of structures. A recent publication by Infantes and Motherwell (2002) has shown that 

water molecules, incorporated in structures as water of crystallisation, form regular motifs. 

This study was extended to include contacts to the organic hosts (Infantes et al., 2003a). 

They established nomenclature for different water motifs observed in the CSD. Patterns 

include discrete chains (D) and rings (R), infinite chains (C), tapes (I) and layers (L); 

examples of these are shown in Scheme 1.4. The first four of these descriptors are augmented 

by the number of atoms in the pattern, n. The tape motif is composed of rings that either 

share a common water molecule (edge sharing) or are linked together through a hydrogen 

bond. This designator is given a second number in brackets that indicates how many atoms 

are shared by neighbouring rings to form the tape motif. If no atoms are shared, then a further 

descriptor, Ak is used which indicates the number of atoms linking the rings together. The 

layer motif has a much larger descriptor, Lm(r)n(s)p(t), where rings of size m,n and p are 

surrounded by r, s, t adjacent rings. 

Infantes and Motherwell found that discrete chains of water molecules were by far the 

most common motif found for water molecules. The common observation of water 'pockets' 

can be attributed to these patterns. Other popular motifs were rings with four to six atoms. 

They found that the organic molecules helped to extend these discrete entities into extended 

motifs. The promotion of hydrate formation by different functional groups was also 

investigated, and it was shown that the likelihood increased with the polarity of the functional 

groups (e.g. COO). The number of polar groups per formula unit also enhanced the 

possibility of hydration. 
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D3 	 C4 

El < 
R4 	 T4(1) 

L4(6)5(7)6(8) 

Scheme 1.4: Possible water motifs with their descriptors. D3, discrete chain of 3 water 
molecules; C4, extended chain with a repeating unit of four water molecules in a helix; R4 
ring of four water molecules; T4(1) rings of four molecules joined via a one shared water; 
L4(6)5(7)6(8), layer of waters with rings of sizes 4, 5 and 6. Each ring is surrounded by 6, 7 
and 8 other rings, respectively. 

1. 3.3 Topology 

Graph set and other analyses of hydrogen bonding patterns have focussed on the 

arrangements of the hydrogen bonding functionalities with respect to one another. The 

overall packing arrangement is a secondary factor in these analyses. Alcohols, such as those 

described in Chapters 5 and 6 by graph set analysis, usually form chain motifs, but this fails to 

describe the packing arrangement of the R-groups, which are just as important. 

A well-known investigation of molecular packing patterns was performed by 

Kitaigorodskii (1973), who showed that many molecular crystal structures can be viewed as 

arrays of close-packed spheres with distortions imposed by the deviations of the molecules 

themselves from spherical symmetry. This idea has been further developed by Blatov. This 

type of analysis is based on the packing of hard spheres. There are three different 

arrangements that can be adopted; hexagonal closed packing (HCP), cubic closed packed 

(CCP) and body centred cubic (BCC). The first two types of packing represent the most 

efficient packing arrangement with each sphere being surrounded by 12 others and differ only 

in the arrangement of layers with respect to each other. Hexagonal close packed has two 

different layers, which pack to give an ABABAB layered structure. Cubic closed packed has 

three different layers that combine to give ABCABC layering. Body centred cubic has less 

efficient packing where the co-ordination number is 14. In this arrangement eight close 
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contacts form the corners of the cube with the other six molecules taking positions at the heart 

of adjacent cubes. These packing arrangements account for the majority of elemental metallic 

crystal structures. 

The packing of spheres can be analysed using Voronoi-Dirichlet polyhedra (VDP). 

Voronoi-Dirichlet analysis is a method for partitioning space. Figure 1.8a shows a two-

dimensional example of a Voronoi-Dirichlet plot. The space is partitioned into smaller areas 

by drawing a line bisecting every pair of points on the map. The end result is a map divided 

into many different polygons. Very close points form the longest edges of the polygon and 

longer interactions forming the shortest edges. These plots can be extended to three 

dimensions to give polyhedra where the largest faces of the polyhedra correspond to the 

strongest interactions. The number of sides of the polyhedra is the co-ordination number 

associated with that point. The resulting VDPs for HCP, CCP and BCC solids are shown in 

Figure 1.8b. 

VE 

b) 

Figure 1.8: a) The partitioning of two—dimensional space into Voronoi-Dirichlet polygons 
(Byers, 1992)(http://www.wcrl.ars.usda.gov/cec/J*ava2/difichle.htm) . b) The VDPs for perfect 
body centred cubic, cubic closed packed and hexagonal closed packed. 
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Blatov & Peresypkina (2000) have developed the VDP analysis further to consider 

molecular solids. The crystal structure is simplified to an array of molecular centroids. An 

example of the use of VDPs is given by Parkin et al. (2004b), where VDPs are used to analyse 

the packing behaviour in the series of cyclohexane, piperidine, piperazine and morpho line, 

which have differing H-bonding capabilities; piperidine has one NH group substituted into the 

ring, piperazine has a further substitution of a NH group in the 4 position and morpholine 

replaces one of the NH groups with an oxygen. Cyclohexane crystallises in a layered 

structure with the molecules lying parallel to these layers. The crystal structures of all three 

derivatives show the same layered structure but with hydrogen bonding between the layers. 

As a result of the H-bonding the molecules are orientated perpendicular to the layers. 

Calculation of the VDP for cyclohexane shows the co-ordination number to be 14. 

Closer inspection of the VDP reveals that two faces of the polyhedra are very small indicating 

very little interaction with those points, and the cyclohexane is better described as 12 

co-ordinate. The VDP for cyclohexane is very similar to that of a CCP structure. The other 

molecules studied all behave similarly, where two interactions could be deemed as 

insignificant compared with the others, giving a final co-ordination number of 12. The 

derivatives pack in two different arrangements. Piperazine adopts a CCP arrangement of 

centroids, whereas piperidine and morpho line adopt HCP geometry. This is attributed to the 

location of the molecules with respect to inversion centres present in the space group 

(piperidine, P2 1 1c) or 'effective' space group (considering only the centroids in the case of 

morpholine). Distortion from ideal arrangement was correlated with H-bond formation. 

All the methods outlined in this section from analysis of hydrogen bonding patterns to 

analysis of molecular packing are of great importance to two growing areas of research, 

crystal structure prediction and crystal engineering. Crystal structure prediction is very much 

in its infancy although present research shows that is becoming more accurate (Chapter 5). 

Results from analysis of crystal structures whether it be H-bonding patterns or packing studies 

can be used to help inform the prediction procedure. Successful modelling of crystal 

structures by computer has great implications for many areas of research not least in drug 

design. The modelling of active sites in biological molecules and drug interaction with them 

is of great interest to the pharmaceutical industry. Studying intermolecular interactions via 

crystal engineering can provide information that can be incorporated into simulations to 

provide better drug designs. 
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1.4 Crystal engineering 

Crystal engineering (co-crystallisation) is described as the understanding of 

intermolecular interactions in the context of crystal packing and in the utilisation of such 

understanding in the design of new solids with desired physical and chemical properties 

(Desiraju, 1995). Many parallels have been drawn between crystal engineering and organic 

synthesis where molecules are compared to atoms and intermolecular interactions are 

compared to covalent bonds. One can trace this idea back to the early articles on graph theory 

where the molecules were represented by nodes or 'atoms' and the intermolecular interactions 

as 'bonds' to define 11-bonded patterns. So wide-spread is this analogy that green chemists 

refer to crystal engineering as 'non-covalent derivatisation' (Anastas & Warner, 2002). A 

demonstration of the power of co-crystals to mimic covalently bonded structures was 

presented by Infantes et al. (2003b). In this paper they compared the crystal structures of 

seven covalently bonded molecules with the crystal structures of their supermolecular 

analogues. In this study molecules with a tetrazine group were replaced by the carboxylic 

dimer analogues which are geometrically similar. They found that three out of the seven 

engineered structures matched the structures of the covalent compounds, two had similarities 

in the packing of the molecules but two compounds showed no similarities. No attempt was 

made to screen for different polymorphs, an attempt to do so may have yielded structures 

matching the covalent counterparts. 

Green chemists look to non-covalent derivatisation as a way of obtaining compounds 

with modified physical properties whilst reducing the side effects of organic synthesis such as 

the production of harmful side products and copious use of environmentally harmful solvents 

in the manufacturing process. Infantes' paper shows that supermolecular analogues can 

structurally mimic covalently bonded molecules in the solid state, whether these derivatives 

can also provide the chemical requirements remains to be seen. 

The engineering of crystal structures relies on synthons being formed to combine 

molecules together into larger supermolecules (Scheme 1.5). The goal of crystal engineering 

has been to try and find a hierarchy of synthon synthesis i.e. to find which synthons will be 

formed first. This is very closely related to Etter's goal with regard to single intermolecular 

interactions. Supramolecular synthons usually consist of more than one intermolecular 

interaction, but from the crystal engineering point of view are regarded as one entity. A few 

exceptions to this rule were highlighted by Desiraju (1995) in his review such as interbalogen 

contacts e.g. Cl... Cl. 
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Scheme 1.5: Typical synthons used in crystal engineering, a) the carboxylic acid/amide 
dimer; b) carboxylic acid:pyridine c) carboxylic acid catemer d) trans-amide catemer. 

Many of the synthons used in crystal engineering are familiar from the work in graph set 

analysis; carboxylic acid dimers, R22(8) and trans-amide chains, C(4). These synthons 

involving 'normal' hydrogen bonds make regular appearances in crystal engineering studies 

because they can be relied upon to form given a specific system. Other synthons that are 

receiving more attention in the literature are those that involve both strong and weak 

interactions like the carboxylic acid:pyridine synthon. This synthon involves a 'normal' 

H-bond between an oxygen and nitrogen but it is stabilised by a secondary CH. . .00 

interaction. In his recent paper, Bond (2003) has studied the crystal structures of a range of 

carboxylic acids with pyrazine where this synthon was used. 

The ultimate though, as yet, unattainable goal for crystal engineering is that 

supramolecular synthons can be added, removed or replaced from any system to create a new 

co-crystal; This would be ideal, indeed a Utopian situation (Desiraju, 1995). Unfortunately, 

for the moment, this is an unachievable goal. There are many factors that influence the 

crystallisation process, factors that are not fully understood. There are many occasions where 

co-crystals are predicted to form but for some reason they do not. It may be that during 

pre-crystallisation, in the liquid state, that polymorphs and adducts are formed. Studies of the 

liquid structures of formamide and a-glycine have shown that whilst in the liquid state the 

molecules form H-bonded dimers, which may explain the predominance of dimers in the solid 
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state structures of formamide and a-glycine (Pullman et al., 1978 & Miyake et al., 1985; 

Gidalevitz et al., 1997). 
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2.1 Introduction 

There have been a number of detailed studies on the polymorphic behaviour of 

Paracetamol (acetaminophen, p-hydroxylacetanilide or Tylenol). Form I, which is 

monoclinic, was first characterised by Haisa et al. (1976), and has since been shown to be the 

thermodynamically more stable form. Form II is orthorhombic, and was described by the 

same group in 1974. The orthorhombic form can be grown by using a single orthorhombic 

crystal as a seed from a super-saturated aqueous solution of paracetamol. This method 

however can result in the crystals changing to the monoclinic form if left in contact with the 

solution for any length of time (Nichols & Frampton. 1998). The same authors showed that 

the only method that gives the orthorhombic polymorph reproducibly is growth from the melt. 

They also showed that this form is stable if dried and stored in a stoppered vial, and that 

neither grinding nor compression induces a transition to the monoclinic form. In a very 

careful study Boldyreva (2000) has shown that application of hydrostatic pressures up to 

4.2 GPa does not induce a transition from the monoclinic to the orthorhombic form. The 

behaviour of the orthorhombic form is of interest for its ability to undergo plastic deformation 

when compressed, thereby facilitating the production of tablets of paracetamol. 

With the exception of a recent report of paracetamol trihydrate from this laboratory 

(McGregor et aL, 2002), little structural work appears to have been carried out on solvates or 

other co-crystals of paracetamol, although a thermochemical study showed the existence of a 

hemisolvate of paracetamol with 1,4-dioxane (Fachaux et al., 1995). In this chapter the 

preparation and characterisation of six new adducts of paracetamol with 1,4-dioxane, 

4,4'-bipyridine, N-methylmorpholine, NN'-dimethylpiperazine, morpholine and pipera.zine is 

described (these are referred to as guest molecules below; see Schemes 2.1 and 2.2). All 

these molecules, except for morpholine, can be considered to be at least pseudo-

centro symmetric with respect to their hydrogen bonding properties. 

2.2 Experimental 

2.2.1 Synthesis 

All starting materials were obtained from Sigma-Aldrich except for I ,4-dioxane (May 

and Baker) and were used as received. 
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Paracetamol:O.5 1, 4-Dioxane (1): A saturated solution of paracetamol (1.51 g, 10 mmol) in 

1 ,4-dioxane (2 cm3, 23 mmol) was refluxed and allowed to cool. Colourless crystals were 

formed overnight at 293 K according to the published procedure (Fachaux etal., 1995). 

Paracetamol:4, 4 '-Bipyridine (2): Paracetamol (0.51 g, 3.40 mmol) was refluxed with an 

equimolar amount of 4,4'-bipyridine (0.52 g, 3.33 mmol) in ethanol (1 cm). Pale yellow 

needle-like crystals were formed on standing overnight at room-temperature 

Paracetamol:0.5N-methylmorpholine (3): Paracetamol (0.43 g, 2.85 mmol) and 

N-methylmorpholine (1 cm 3, 9.11 mmol) were refluxed and allowed to cool. The flask was 

maintained at 277 K leading to the formation of colourless rod-shaped crystals. 

Paracetamol:0.5N,N'-dimethylpiperazine (4): Paracetamol (0.55 g, 3.64 mmol) and 

N,N'-dimethylpiperazine (3 cm 3, 22.2 mmol) were refluxed together and allowed to cool. A 

Large excess of NN'-dimethylpiperazine was required to dissolve the paracetamol completely. 

The flask was maintained at 277 K leading to the formation of colourless rod-shaped crystals. 

Paracetamol:0.5Morpholine (5): Paracetamol (0.57 g, 3.8 mmol) was refluxed with 

morpholine (0.37 g, 4.3 mmol). Colourless crystals formed directly from the reaction mixture 

after a week at 277 K. 

Paracetamol:O.5Piperazine (6): Paracetamol (0.62 g, 4.1 mmol) was refluxed together with 

piperazine (0.35 g, 4.1 mmol) in ethanol (1 cm). Colourless crystals formed on cooling to 

293 K. 

Ethanol was required in the reactions of paracetamol with piperazine and 4,4'-bipyridine 

because these compounds are both solids at room temperature. 

2.2.2 Differential Scanning Calorimetry (DSC) 

DSC traces were recorded using a Perkin Elmer Pyris DSC 1. Samples were contained 

in open aluminium pans and purged with helium during the temperature scans to facilitate the 

removal of any volatile products of thermal decomposition. Samples were heated from 298 K 

to 453 Kata rate oflOK/min. 

2.2.3 Crystallography 

X-ray diffraction intensities were collected either on a Stoe Stadi-4 diffractometer with 

Cu-Ka radiation or a Bruker SMART APEX CCD diffractometer with Mo-Ka radiation. 
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Both instruments were equipped with Oxford Cryosystems low-temperature devices (Cosier 

& Glazer, 1986). An absorption correction for the four-circle data was applied using w-scans 

(SHELXTL, 1997a, based on the procedure described by North, et al., 1968); the multiscan 

procedure SADABS (Sheidrick, 1997b, based on the procedure described by Blessing, 1995) 

was applied to the CCD data sets. All structures are in space group F211c, except the 

morpholine adduct which formed in F212121, and were solved by direct methods and refined 

by full-matrix least squares against P2  using all data (SHELXTL). H-atoms were placed in 

calculated positions and allowed to ride on their parent atoms; methyl groups were treated 

with the Sheidrick (1997a) rotating rigid group model. Hydrogen atoms involved in 

H-bonding were located in difference maps and refined freely. All non-H atoms were 

modelled with anisotropic displacement parameters. 

One of the two crystallographically independent dioxane molecules in the I ,4-dioxane 

adduct was disordered over two orientations about a crystallographic inversion centre. The 

occupancies of the two components were fixed at 0.75 and 0.25 after competitive refinement. 

Similarity restraints were applied to the geometries and displacement parameters of the two 

components. The program ROTAX (Cooper et al., 2002) suggested that the crystal may have 

been twinned by a two-fold rotation about the [1 0 0] direct lattice direction. Incorporation of 

this into the model reduced Ri slightly from 7.02% to 6.86%, with a twin scale factor of 

2.6(3)%. This is barely significant, and the twinning is omitted in the model presented here. 

In the N-methyhnorpholine adduct, the N-methylmorpholine is disordered over a 

crystallographic inversion centre with the nitrogen and oxygen atoms sharing an equivalent 

site. A composite scattering factor [0.51(N) + 0.51(0)] was used for this site; the occupancy of 

the methyl group was fixed at 0.5. 

A consistent numbering scheme was used for the paracetamol molecules in all structures 

and this is shown in Scheme 2.2. Where there is more than one paracetamol molecule in the 

asymmetric unit the labels in Scheme 2.2 are augmented with the letters A and B. Labels for 

atoms forming part of the guest molecules carry the letters S, T etc. A full listing of crystal, 

data collection and refinement parameters is listed in Table 2. 1, a set of H-bonding parameters 

are given in Table 2.2. The figures were produced using CAMERON (Watkin et al., 1993). 

Other analysis utilised the p.c. version of the program PLATON (Spek, 2002; Farrugia, 1999). 

Crystallographic information files for all structures reported here are available on the CD at 

the back of this Thesis. 
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N 

1H3 jCH3 	
H 

 

L) 0  
CH3 

N 

2 	 3 	 4 	 5 	 6 

Scheme 2.1: Guest molecules used to form adducts with paracetamol. From left to right the 
structures show 1,4-dioxane, 4,4'-bipyridine, N-methylmorpholine, NN'-dimethylpiperazine, 
morpholme and piperazine. The structure numbers, 1 - 6 refer to the adducts that these 
molecules form with paracetamol. 

HI 
C2C3 	I / ji 

01—cl 

Hil 	C6—05 	 02 

Scheme 2.2: Paracetamol, with atomic numbering scheme. 
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Adduct (1) (2) (3) (4) (5) (6) 

Formula C20H26N206  C 18H17N302  C21H29N305  C22H32N404  C20F127N305  C20H28N404  

Weight 390.43 307.35 403.47 416.52 389.45 388.46 

Radiation Cu-Ku Mo-Ku Mo-Ku Mo-Ku Mo-Ku Mo-Ka 

Crystal System Monoclinic Monoclinic Monoclinic Monoclinic Orthorhombic Monoclinic 

Space group F21/c F2 1 1c P2 1/c P21 1c F2 12 1 2 1  P2 1/c 

a/A 12.421(5) 11.2906(10) 10.5749(8) 10.6970(9) 7.2791(9) 15.893(5) 

b/A 12.056(4) 24.103(2) 11.0220(8) 11.0240(9) 14.6277(18) 5.1664(17) 

c/A 13.396(3) 11.5526(10) 9.3894(7) 9.4896(8) 18.303(2) 12.993(4) 

0/0 91.51(3) 96.1484(16) 101.145(2) 100.684(2) 90 113.633(5) 

Volume IA3  2005.4(11) 3125.8(5) 1073.77(14) 1099.65(16) 1948.9(4) 977.4(6) 

No. reflections 

for cell 
80 5375 2729 3488 3801 1227 

20(0) 51.26 58.36 54.98 58.16 57.94 57.10 

Z 8 8 2 2 4 2 

DC  (Mg/M3) 1.293 1.306 1.248 1.258 1.327 1.320 

t mm 0.795 0.087 0.090 0.088 0.096 0.093 

Reflections 

collected 
4865 20270 6517 7034 12312 5628 

Unique [Rmt] 3499 [0.0532] 7766 [0.02201 2444 [0.0221] 2724[0.0 164] 4733 [0.0308] 2309 [0.048] 

No. 1>2a 2508 6044 1890 2512 4265 1778 

T/ T. 0.602/0.826 0.830/1 0.792/ 0.962 0.833/1 0.868/1 0.690/1 

Parameters 285 433 147 146 276 140 

R 1  [F54a(F)] 0.0702 0.0471 0.0408 0.0525 0.0462 0.0779 

wR2 (F, all data) 0.2243 0.1280 0.1082 0.1339 0.1028 0.1652 

S 1.078 1.038 0.973 1.059 1.066 1.179 

p/ eA 3) 0.50 0.36 0.22 0.40 0.26 0.34 

pmj / eA 3  0.26 0.25 0.22 0.19 0.27 -0.47 

Table 2.1: Crystallographic data for the adducts of paracetamol with 1 ,4-dioxane (1), 4,4'-
bipyridine (2), N-methylmorpholine (3), NN'-dimethylpiperazine (4), morpholine (5) and 
piperazine (6). All data were collected at 150 K. 
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Adduct Donor Acceptor 
Obs. H ... A distances 

/normalised distance / A 

Typical normalised 

Distance IA 

 

NIA-HIA OIS 2.03 1.90 2.03 

O1A-HI1A 02B 1.82 1.67 1.78 

O1B-HIIB 02A' 1.86 1.71 1.78 

NIB-H1B OIU 1.92 1.77 2.03 

NIB-HIB O1T 2.13 2.00 2.03 

 

O1A-H11A 02B 1.755(19) 1.68 1.78 

NIA-H1A NIOS 2.047(18) 1.92 1.96 

OIB-HI1B 02Au 1.81(2) 1.71 1.78 

NIB-HIB NiTtm  2.100 (18) 2.01 1.96 

 
Ol-Hil OISIN1S'v  1.88(2) 1.81 1.90/1.82 

NI-HI 02" 1.925(16) 1.80 1.92 

 
NI-HI 02" 1.98(2) 1.84 1.92 

01-HIl NISVII 1.81(2) 1.82 1.82 

 

OIA-H11A OiB" 1.97(2) 1.76 1.87 

NIA-HIA 02B" 2.033 (18) 1.87 1.92 

O1B-H11B N4S' 1.79(3) 1.69 1.82 

NIB-H1B 02Ax1 2.061 (19) 1.86 1.92 

 

Ol-Hil N1S 1.79(3) 1.74 1.82 

NI-HI 02' 2.14(3) 2.06 1.92 

NIS-HIS OI'" 2.30(3) 2.21 2.03 

Symmetry operators: 

I 	x, y, z+1 	iv -x+1, -y+2, -z vii 	-x+1, -y, -z x 	-x+1, y+ 1/2, -z+ 1/2 

Ii 	x-1,y,z-1 	v x,-y+3/2,z-112 viii 	x+1/2, -y+3/2, -z xi 	-x+I,y-1/2,-z+I/2 

Iii 	-x, y-1 /2, -z+ 112 	vi x, -y+ 1/2, z- 1/2 ix 	x+I/2, -y+ 1/2, -z xii 	x, y+ 1, z 

Table 2.2: Table of H-bonding parameters. Standard uncertainties are omitted in the case of 
the I ,4-dioxane adduct because the H-positions were calculated and not refined. N-H and 0-H 
distances were normalised to 1.009 and 0.983 A to aid comparison with Cambridge Database 
search results (Table 2.3). 
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2.3 Results 

2.3.1 Paracetamol 

Crystal structures of the monoclinic and orthorhombic polymorphs of paracetamol have 

been reported several times, but here we have used the structures reported by Nichols and 

Frampton (1998) [Cambridge Structural Database (CSD: Allen et al., 1983) reference codes 

HXACAN07 and HXACAN08]. Our motive for discussing them here is to highlight certain 

features of their graph sets that enable structural relationships to be drawn between them and 

the adducts that form the subject of the rest of this chapter. 

Packing in both polymorphs is dominated by the formation of NH.. .OH and OH ... OC 

hydrogen bonds (Figure 2.1) giving rise to layered two-dimensional networks. Both 

polymorphs of paracetamol have identical graph sets (Bernstein et al., 1995), in which the 

OH ... O=C and NH ... OH H-bonds respectively form C(9) and C(7) motifs at the unitary level. 

In both polymorphs these are disposed about crystallographic glide planes. In the monoclinic 

form the hydrogen-bonded layers are arranged parallel to the (0 1 0) planes, which means that 

the layers are polar: in Figure 2.1a all the molecules have the methyl group on the left. This 

polarity is reversed in neighbouring layers by crystallographic inversion centres. In the 

orthorhombic form glide planes run perpendicular to the layers, so that the layers are 

non-polar: in Figure 2.1b the methyl groups lie on the left and right hand sides of the 

molecules in alternate C(9) chains. 

The angles between mean planes of the amide and phenyl groups in orthorhombic and 

monoclinic paracetamol are 17.7 and 20.5°, respectively. Analogous angles observed in this 

work are given in the figure captions and range from 3.03° to 41.72'. Pit-pit bonding between 

the phenyl ring and the amide group favours a dihedral angle of zero, and some correlation 

between this angle and the N-C(phenyl) bond length might have been expected, though none 

is evident at the precision of these structure determinations. This angle is evidently a rather 

easily deformed structural parameter, and is presumably at the mercy of crystal packing 

forces. As we now show in the following sections hydrogen bonding is the dominant feature 

in these structures, and the torsion observed is presumably a consequence of the optimisation 

of these interactions. 
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b) 

Figure 2.1 top (a): Monoclinic paracetamol (Form I) viewed along the b-axis, the c-axis runs 
diagonally from top left to bottom right, so that the C(9) chains are established by the n-glide. 

Bottom (b): Orthorhombic paracetamol (Form II) viewed along the c-axis; the a-axis runs 
horizontally, the b-axis runs from top to bottom. The C(9) chains referred to in the text run 
from left to right, and the C(7) chains run approximately vertically. Colour scheme C green, 
H grey, 0 red and N blue; the same colour scheme is used for all diagrams. 

2.3.2 The paracelamol: 1, 4-dioxane adduct (1) 

The asymmetric unit in the crystal structure of the 1,4-dioxane adduct of paracetamol 

consists of two paracetamol molecules and two half molecules of 1,4-dioxane. The latter both 

reside on crystallographic inversion centres. One of the 1,4-dioxane molecules (labelled T/U 

in the tables and supplemental data) is disordered, although both components participate in 

hydrogen bonding. The occupancy ratio is 0.75:0.25 and in the discussion that follows we 
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have ignored the minor component (U). There is some evidence from electron density 

difference maps that the other 1,4.-dioxane molecule (labelled S) is disordered as well, 

although, if present, the distinction between the components is on the limit of the resolution of 

our data set. An ordered model for this part of the structure is therefore presented here. The 

structure is depicted in Figure 2.2. 

Zr 

Figure 2.2: Paracetamol: 1 ,4-dioxane adduct viewed perpendicular to (2 1 0), the c-axis runs 
horizontally. The C(9) chains referred to in the text run from left to right and are linked 
together by 1,4-dioxane molecules. The dihedral angles between the amide and phenyl mean 
planes in the two independent paracetamol molecules are 41.72(15) and 39.37(14)° for 
molecules A and B, respectively. 

The C(9) chains formed by H-bonding between OH.. .O=C moieties of neighbouring 

molecules described above with regard to the crystal structures of paracetamol are also 

observed in the structure of the 1,4-dioxane adduct. In order to accommodate the 1,4-dioxane 

molecules these chains are sinusoidal, with the two crystallographically independent 

paracetamol molecules alternating along the chain. The Ni-I groups point towards the oxygen 

atoms of I ,4-dioxane molecules forming NH.. .0 hydrogen bonds. Since both I ,4-dioxane 

molecules reside on inversion centres the space group symmetry builds up two-dimensional 

sheets in which chains of paracetamol are linked by 1,4-dioxane bridges (Figure 2.2). In 

graph set notation the bridges can be described as D 22(6). The two-dimensional sheets are 
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parallel to the (2 1 0) lattice planes, and the rather open structure depicted in Figure 2.2 is 

'filled in' by symmetry equivalent sheets parallel to (2 10). 

2.3.3 The paracetamol: 4,4 '-bipyridine adduct (2) 

The oxygen atoms in I ,4-dioxane formally have two lone pairs of electrons, each of 

which could potentially act as an H-bond acceptor. In practice, however, motifs in which 

ethers act as double H-bond acceptors only occur rarely, and so for practical crystal-packing 

purposes it can be considered to be a centrosymmetric molecule containing two H-bond 

acceptors. 4,4'-bipyridine is similar, although a torsion about the central C-C bond breaks the 

inversion symmetry. Recrystallisation of paracetamol from a solution of 4,4'-bipyridine in 

ethanol yields a 1:1 co-crystal, rather than the hemi-solvate obtained with I ,4-dioxane, a 

possible effect of the greater basicity of 4,4'-bipyridine. 

The crystal structure of paracetamol:4,4'-bipyridine contains two independent 

molecules each of paracetamol and 4,4'-bipyridine. As in the I ,4-dioxane adduct the 

paracetamol molecules form C(9) chains through OH.. .O=C hydrogen bonds (Figure 2.3). The 

two crystallographically independent paracetamol molecules alternate along the chain. The 

disposition of the molecules within the chains is rather similar to that in orthorhombic 

paracetamol, except that alternate molecules are rotated through 1800  about the chain axis in 

order to accommodate the 4,4'-bipyridine molecules. 

The NH bonds of paracetamol act as H-bond donors to the aromatic nitrogen atoms of 

the 4,4'-bipyridine molecules, forming a discrete (D) graph set. However, since this crystal is 

a 1:1 adduct there are insufficient H-bond donors for the number of acceptors present, and 

only one of the two N-atoms in each 4,4'-bipyridine acts as an acceptor. The result is that 

there are no H-bonded pathways connecting the C(9) paracetamol chains. The structure thus 

consists of a paracetamol backbone with attached 4,4'-bipyridine molecules. These motifs are 

interconnected by 7t-stacking between the 4,4'-bipyridine molecules, building up sheets than 

run parallel to the (1 01) planes. 

-36- 



Chapter 2. The Fonnation of Paracetamol (Acetaminophen) Adducts with Hydrogen-Bond Acceptors 

Figure 2.3: Paracetamol: 4,4'-bipyridine viewed perpendicular to (1 0 1), the b-axis runs from 
top to bottom. The C(9) chains referred to in the text run from left to right and are linked 
together by a pair of 7t-stacked 4,4'-bipyridine molecules. The dihedral angles between the 
amide and phenyl mean planes in the two independent paracetamol molecules are 14.68(8) 
and 13.27(9)° for molecules A and B, respectively. 

2.3.4 The paracelamol: N-methylmorpholine/N,N '-dimethylpiperazine adducts, (3) & (4) 

N-methylmorpholine and N,N'-dimethylpiperazine are closely related to I ,4-dioxane by 

the substitution of one or both oxygen atoms by N-Me, and paracetamol forms 2:1 adducts 

with both compounds, as it does with 1,4-dioxane. The N,N'-dimethylpiperazine adduct 

consists of one crystallographically independent paracetamol molecule with the 

N,N'-dimethylpiperazine residing on a crystallographic inversion centre. The 

N-methylmorpholine adduct is isostructural with this, with the guest molecule disordered 

about the inversion centre. 

The crystal structures are similar to those of the 1 ,4-dioxane and 4,4'-bipyridine 

adducts in that the packing can be described with reference to chains of paracetamol 

molecules. However, rather than C(9) motifs formed through OH.. .0C H-bonds, the 

paracetamol molecules define a C(4) graph set through NI-i . .O=C bonds (Figure 2.4). The 

NH moiety of the paracetamol now fulfils the role of the OH groups in the 1,4-dioxane 

structure, and N,N'-dimethylpiperazine and N-methylmorpholine are similar to 1,4-dioxane 
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with regard to their H-bonding properties. Therefore, although the nature of the paracetamol 

chain differs from the 1,4-dioxane adduct, the roles of the morpholine and piperazine 

molecules are similar, and both act to link paracetamol chains via D22(6) graph set. Overall, 

this structure consists of a two-dimensional network, although the sheets formed have a 

corrugated or zig-zag appearance in cross-section. Alternate regions of the network are 

approximately parallel to the (3 1 0) and (3 1 0) planes. Just as in the 1,4-dioxane adduct, the 

open structure of Figure 2.4 is filled in by symmetry equivalent networks. 

Figure 	2.4: 	Paracetamol:N,N' -di methylpiperazine 	adduct 	(isostructural 	to 	N- 
methylmorpholine adduct) viewed along the a-axis, the c-axis runs from left to right and the 
b-axis from top to bottom. The C(4) chains referred to in the text run from left to right and are 
linked together by N,N'-dimethylpiperazine molecules. The dihedral angles between the 
amide and phenyl mean planes in the paracetamol molecules are 33.75(7) and 34.11(6)° in the 
N,N'-dimethylpiperazine and N-methylmorpholine adducts, respectively. 

2.3.5 The paracelamol:morpholine adduct (5) 

Morpholine is related to N-methylmorpholine by the substitution of the methyl group by 

hydrogen, and it is unique in this series because the H-bonding characteristics of the two 

hetero-centres are not the same: the NH group is a donor and acceptor, the ether 0-atom 

potentially a double, but more usually a single, acceptor. The asymmetric unit of the 

morpholine hemi-adduct consists of two crystallographically independent paracetamol 

molecules (labelled A and B) and one molecule of morpholine (labelled S in the tables). 
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The crystal lographically independent paracetamol molecules alternate in the pattern 

• . . ABABAB... along a chain formed by . . . HNCO. . . NHCO... linkages between neighbouring 

amide groups. Because these molecules are crystal lograp hi cal ly independent these H-bonds 

formally constitute discrete graphs at the unitary level, although it is clear from Figure 2.5 that 

they are closely related to the C(4) graphs observed in the crystal structures of the 

N-methylmorpholine and N,N'-dimethylpiperazine adducts described above. For consistency 

we continue to use this designation, although it is not formally correct [the binary graph 

C22(8) takes proper account of symmetry]. 

Figure 2.5: Paracetamol:morpholine adduct viewed along the a-axis. The c-direction runs 
from left to right, the b-direction up and down. The labels A and B refer to the 
crystallographically independent paracetamol molecules referred to in the text. The C(4) 
chains referred to in the text run from left to right and are linked together by hydrogen bonds 
between opposed OH groups. This forms a grid-like array with the morpholine molecules 
residing in the grid cavities. The dihedral angles between the amide and phenyl mean planes 
in the two independent paracetamol molecules are 36.03(6) and 3.04(3)° for molecules A and 
B, respectively. 

The chains are formed by 2 1  operations parallel to c, leading to a pair-wise alternation of 

the centres of the paracetamol molecules above and below the chain. This pattern is 

reminiscent of the structures of the N-methylmorpholine and N,N'-dimethylpiperazine 

adducts, except that in these cases the alternation applies to single molecules. The potential 

for this arrangement to lead to some steric hindrance between the phenyl groups of 
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neighbouring molecules is avoided by adjacent molecules veering slightly away from each 

other and an increase in the torsional angle between the phenyl group and amide group from 

3.04(3)° in molecule B to 36.03(6)° in molecule A. 

Lattice translation along the b-direction generates further C(4) chains, and these are 

linked together by discrete [D] H-bonds in which an OH group from an 'A' molecule in one 

chain acts as a donor to an OH group of a 'B' molecule in a neighbouring chain. This is the 

only structure in the series in which pairs of paracetamol molecules interact via their hydroxyl 

moieties. 

The two sets of H-bonds described above - the C(4) chains and the D links between 

chains- form a grid like network parallel to the (1 0 0) planes. The morpholine molecules fit 

into the cavities of the grid. As in the N-methylmorpho line adduct, the amine nitrogen atom 

acts as an acceptor to the OH group of one of the paracetamol molecules (B), but this is the 

only H-bonding interaction formed by the morpholine. The NH group of the morpholine is in 

an axial position to accommodate this interaction. 

This scheme satisfies all the H-bonding potential of the two paracetamol molecules, 

with the exception of the hydroxyl acceptor of molecule A. The weakest acceptor in the 

system (the ether function of the morpholine) does not participate in H-bonding at all. A 

rather surprising feature of this structure given the excess of acceptors present, is that the NH 

donor functionality of the morpholine amine moiety is also unsatisfied. However, this is 

consistent with the relatively long NH.. .OH hydrogen bonds observed in the piperazine adduct 

(which is described in the next section) and the generally poor H-bond donor ability of 

secondary amines (see below). 

2.3.6 The paracetamol:piperazine adduct (6) 

Piperazine is related to N,N'-dimethylpiperazine by substitution of the two methyl 

groups by hydrogen. The asymmetric unit of the piperazine adduct, in common with the 

N,N'-dimethylpiperazine adduct, consists of one paracetamol molecule and a molecule of 

piperazine on a crystallographic inversion centre. 

There are C(4) chains, consisting of NH ... O=C H-bonds, linked via 1)22(6)  motifs 

consisting of OH ... N bonds (Figure 2.6). Piperazine is a weak H-bond donor as well as being 

an acceptor, and the extra NH donor moiety is satisfied by rotating alternate paracetamol 

molecules about the C(4) chain axis, leading to D-type NH.. .OH hydrogen bonds. This 
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rotation produces ribbons, which run parallel to the b-axis, rather than the infinite 

2-dimensional networks. 

........ 	........ 

Figure 2.6: Paracetamol:piperazine adduct viewed perpendicular to (3 0 2), the h-axis runs 
from left to right. The C(4) chains referred to in the text run from left to right and are linked 
together by piperazine molecules. The latter also act as weak hydrogen bond donors. The 
dihedral angles between the amide and phenyl mean planes in the paracetamol molecule is 
33.2](1 4)0 . 

2.3.7 Differential scanning calorimetry 

Decomposition of a co-crystal of paracetamol is a potential strategy for the production 

of the orthorhombic polymorph. In all cases except for the 4,4'-bipyridine adduct, DSC traces 

exhibited thermal events attributable to loss of the guest molecule followed by a strong 

endotherm, corresponding to melting, at 438444 K. The melting point of monoclinic 

paracetamol is 442 K, respectively (Nichols & Frampton, 1998). The same authors showed 

that DSC traces for orthorhombic paracetamol either show melting at 430 K or a phase 

transition to the monoclinic form at the same temperature, depending on the method of 

preparation. The DSC traces observed in this study can therefore be interpreted in terms of 

decomposition leading to formation of the monoclinic polymorph. 

Thermal decomposition temperatures follow the trend that might be predicted on the 

basis of the boiling points of 1,4-dioxane (374 K), N-methylmorpholine (388 K), morpholine 

(401 K), N,N'-dimethylpiperazine (404 K) and piperazine (419 K). Two exotherms were 
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observed for the I ,4-dioxane solvate at 299 K and 338 K, in agreement with the previous 

study (Fachaux et al., 1995). This is plausibly interpreted as sequential loss of the two 

crystallographically independent 1,4-dioxane molecules. 1,4-Dioxane is readily lost at room 

temperature from a crystalline sample of this adduct, and the DSC trace of a sample which 

had been allowed to stand for ten minutes showed only one exotherm with an onset 

temperature of 330 K. Decomposition of the morpholine, N-methylmorpholine and 

N,N'-dimethylpiperazine adducts occur as broad exotherms with onsets at approximately 

327 K, 335 K and 373 K, respectively. The DSC trace of the piperazine adduct showed one 

endotherm at 413 K. 

4,4'-Bipyridine sublimes at 578 K under ambient pressure, and it is the least volatile 

compound to have been studied in this work. The DSC trace of the co-crystal exhibits a weak 

endotherm at 399 K followed by a strong endotherm at 402K; no thermal event attributable to 

the melting of pure paracetamol was observed. The strong endotherm occurs at a similar 

temperature to the decomposition events observed for the other adducts, and it is likely to 

correspond to a melting process forming paracetamol solvated by liquid 4,4'-bipyridine (mpt. 

374-377 K). Unlike the other solvents studied here 4,4'-bipyridine is not lost to leave pure 

paracetamol because its boiling point is well beyond the temperature of adduct decomposition. 

It is likely that the small peak corresponds to a phase transition. 

2.4 Discussion and conclusions 

This Chapter has described the formation of five new paracetamol hemi-adducts with 

1 ,4-dioxane, N-methylmorpholine, N,N'-dimethylpiperazine, morpholine and piperazine and 

a 1:1 adduct with 4,4'-bipyridine. This is the first such systematic study of paracetamol 

co-crystals to have been undertaken. As is to be expected the crystal structures of all adducts 

are dominated by hydrogen bond formation, and comparisons between them were much 

facilitated by the use of graph set analysis in the form described in the illuminating review by 

Bernstein etal. (1995). 

Although ether oxygen can potentially act as a double acceptor, it rarely does so, and so 

with the exception of morpholine all the guest molecules studies are at least 

pseudocentrosymmetric with respect to their H-bonding properties. The 1,4-dioxane, 

N-methylmorpholine, NN'-dimethylpiperazine and piperazine adducts all consist of 

H-bonded chains of paracetamol molecules linked together by the guest molecules, which all 

reside on crystallographic inversion centres. In the 4,4'-bipyridine adduct the chains are 
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linked via a pair of it-stacked pyridine rings, though the structure as a whole is still 

centrosymmetric. The morpho line adduct does not conform to this pattern, although chains of 

paracetamol are still present. The arrangements of paracetamol chains described in this 

Chapter tend to lend themselves to the formation of centrosymmetric crystal structures, and 

this seems to favour adduct formation in the centrosymmetric guest molecules. It is perhaps 

significant that we have been unable to prepare an adduct with 1 ,3,5-trioxane, a molecule 

closely related to 1,4-dioxane, but which lacks inversion symmetry. 

The donor groups which appear in this series are amidic NH, phenol OH and secondary 

amine NH; the acceptors are amidic 0, phenolic 0, secondary or tertiary amine N, ether 0 and 

pyridine N. The results of searches of the CSD for typical H-bond geometries involving these 

functionalities are listed in Table 2.3, searching criteria are given in the legend to that table. 

The pattern of adduct formation observed in this study is quite consistent with the data in 

Table 2.3 if the reasonable assumption is made that the H-bond strength is related to the 

average donor hydrogen-acceptor distance. The donor group 0- or N-H to acceptor distances 

observed in this study were normalised to typical neutron values (0-H 0.983 A and N-H 1.009 

A) to aid ready comparison with typical H-to-acceptor distances derived from our CSD 

search, and this comparison is made in Table 2.2. Our hydrogen bond distances agree 

tolerably well with typical values; they are often on the short side, as might be expected with 

low temperature data. 

-43- 



Chapter 2. The Formation of Paracetamol (Acetaminophen) Adducts with Hydrogen-Bond Acceptors 

Acceptor (0 or N in each case) 

Donor (NH or 
0=< 

/ 
I C C C 

Sample size 1250 14 11 31 40 

o==< 
Max NH..A/A (2.2) 2.14 2.17 2.19 2.19 

N-H Min NH..A/A 1.73 1.79 1.80 1.83 1.81 
/ 

Mean NIL.A IA 1.92 2.01 1.96 2.03 1.96 

Sample size 49 256 49 53 76 

Max OH. .A/A 2.19 2.20 2.19 2.20 2.18 

0_0   
\  

Mm OH..A/A 1.60 1.67 1.66 1.62 1.53 
H  Mean OH..A 1.78 1.87 1.82 1.90 1.81 

/A 

Sample size 5 1 (NOLZOD) 12 4 Not applicable 

C Max NH..A/A 2.17 - 2.20 2.18 

Mm NFL.A IA 2.08 - 2.00 2.11 

/ Mean NH..A IA 2.13 2.03 2.14 2.13 

Table 23: Summary of the results of searches of the CSD (Version 5.23, April 2002) for 
typical distances in hydrogen-bonded systems containing identical functional groups to the 
paracetarnol adducts studied. The distances to hydrogen atoms were normalised to typical 
neutron distances (C-H 1.083, N-H 1.009 and 0-H 0.983 A). Only 'organic' structures where 
the R-fiictor is less than 0.05, with no errors or disorder were included, and ionic or polymeric 
structures were excluded. The C-atoms attached to the amine moieties were specified to be SP  hybridised. The donor-H to acceptor distance was specified to be 1.50-2.20 A. 

The strongest H-bonds in Table 2.3 are formed between phenolic OH (as donor) and 

amide 0 (as acceptor). These are observed in the C(9) chains formed in structures of both 

polymorphs of paracetamol. In pure paracetamol hydrogen bonds are formed between the 

remaining NH donor and OH acceptor to form C(7) chains, but on adduct formation with 

I ,4-dioxane and 4,4'-bipyridine it is these, weaker, interactions that break to accommodate the 

guest molecules, preserving the strongly bound C(9) chains, and forming hydrogen bonds 

between the amide NH of paracetamol and either the ether oxygen or pyridyl nitrogen atoms 

of the guest molecule. These observations are consistent with the results obtained in the 

variable pressure study of monoclinic paracetamol by Boldyreva et al. (2000), where the 

NH.. .0 contacts were found to be more compressible than the OH ... O contacts. 
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Neither 1,4-dioxane nor 4,4'-bipyridine has any group attached to the donor oxygen or 

nitrogen atoms. All of the other molecules studied carry either hydrogen or methyl groups in 

these positions, and reference to Figures 2.2 or 2.3 shows that a structure based on C(9) 

paracetamol chains would suffer some steric crowding between these groups and either the 

phenyl or methyl group attached to the amide moiety. In order to avoid steric overcrowding 

in the morpholine, piperazine, NN'-dimethylpiperazine and N-methyhnorpholine adducts the 

paracetamol utilises its NH group as a donor. Table 2.3 shows that the most effective acceptor 

for this group is amide CO. and this explains the formation of C(4) paracetamol chains in all 

four of these structures. 

In the structures of N-methylmorpho line and NN'-dimethylpiperazine hydrogen bonds 

are formed between the OH group of paracetamol and the N or 0 of the guest molecule. In 

morpholine and piperazine both the OH group of paracetamol and the NH group(s) of the 

guest could act as either donors or acceptors. Table 2.3 shows that secondary aliphatic amines 

are particularly poor hydrogen bond donors, and so the hydroxyl group acts as the donor in 

both cases. In fact so poor a donor is secondary amine NH that it is left unsatisfied in the 

morpholine adduct, even in the presence of excess acceptor functions. The weakness of these 

N}1...N hydrogen bonds relative to OH. ..O or NH. ..O systems may be a consequence of the 

size of nitrogen relative to oxygen, a feature recently emphasised by Brown (2002). However 

in piperazine the NH groups do act as weak donors, and this induces a change in conformation 

of these C(4) chains relative to the NN'-dimethylpiperazine adduct which condenses the 

sheets into ribbons. 

In the case of morpholine the C(4) chains are linked by the OH group of a paracetamol 

molecule in one chain acting as an H-bond donor to a similar group in a neighbouring chain. 

On the basis of the structures of the other adducts the role might have been expected to be 

fulfilled by the ether moiety of the morpholine. Table 2.3 shows that these interactions are of 

rather similar strength, and this might explain the apparently anomalous behaviour observed 

in this adduct. 

In the 1 ,4-dioxane adduct alternate C(9) paracetamol chains have reversed polarity. In 

the adducts based on C(4) chains, the resemblance to orthorhombic paracetamol is less 

obvious, although inspection of Figure 2.1 b shows that removal of alternate molecules along 

the C(7) graph followed by a small displacement would yield NH.. .0C C(4) chains. 

Viewed in this light desolvation might have been predicted to yield the orthorhombic 

polymorph of paracetamol, although in practice it was shown by DSC that in all cases except 
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for paracetamol:4,4'-bipyridine (for which we did not observe desolvation at all) the 

thermodynamically more stable monoclinic polymorph was formed. 
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3.1 Introduction 

Quinol, or hydroquinone, is widely used to stabilise compounds that are susceptible to 

polymerisation. It has been shown to crystallise in three polymorphic forms. The structure of 

the a-polymorph (Ri) was determined by Bolte and Lemer (2001); the -polymorph was 

determined by Lindeman et al. (198 1) and found to belong to the same space group, but with 

a smaller cell (Z=  rather than Z'= 3). These two polymorphs were previously identified 

by Caspari (1926 & 1927) but there was some ambiguity in the determination of the space 

group. The y-polymorph was found to crystallise in space group P2Ic (Maartmann-Moe, 

1966). 

Quinol shows a great propensity for co-crystallising with a variety of different 

compounds. A search of the Cambridge Structural Database version 5.25 (CSD: Allen, 2002; 

Allen & Motherwell, 2002) shows that there are ninety-two co-crystals of quinol with a range 

of organic compounds. Of all the structures in the database over half were co-crystals of 

quinol with hydrogen bond acceptors, including 1,4-dioxane (Barnes et al., 1990). A previous 

paper from this laboratory (Oswald et al., 2002) described how molecules analogous to 

1,4-dioxane yielded a series of crystal structures with closely related packing motifs, and in 

this Chapter, the crystal structures of co-crystals of quinol with pyrazine, piperazine, 

morpholine, pyridine, piperidine, 4,4'-bipyridine (hereafter referred to as guest molecules) are 

reported. These all crystallise in a manner related to that of the 1 ,4-dioxane co-crystal. The 

structures of the N-methylmorpho line and NN'-dimethylpiperazine co-crystals, which were 

also determined, highlight the effect of steric hindrance on the common structural motifs 

present for the unsubstituted guest molecules. Scheme 3.1 shows all the guest molecules used 

in the series. 
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(0 	 N)  N (0 N 

1 	 2 	 3 	 4 

N 
CH3 	 CH3  

H a 	I  CH3 
N 

5 	 6 	 7 	 8 

Scheme 3.1: Guest molecules used to form co-crystals with quinoL From left to right the 
structures show, top: 1,4-dioxane, pyrazine, piperazine, morpholine, pyridine; bottom: 
piperidine, 4,4'-bipyridine, N-methylmorpholine and NN'-dimethylpiperazine. The structure 
numbers, 1 —8 refer to the adducts that these molecules form with quinol. 

3.2 Experimental 

3.2.1 Synthesis 

All starting materials were obtained from Sigma-Aldrich and used as received. 

Quinol:Pyrazine (1): Quinol (0.70 g, 6.36 mmol) was refluxed with pyrazine (0.51 g, 

6.38 mmol) in ethanol (3 cm) until the solid dissolved. The solution was allowed to cool to 

room temperature to produce crystals as colourless blocks. 

Quinol:Piperazine (2): Quinol (0.60 g, 5.45 mmol) was refluxed with piperazine (0.50 g, 

5.81 mmol) in ethanol (3 cm 3)  until the solid dissolved. The solution was allowed to cool to 

room temperature to produce crystals in the form of colourless blocks. 

Quinol:2Morpholine (3): Quinol (0.65 g, 5.90 mmol) was refluxed with morpholine (0.53 g, 

5.95 mmol) with a little ethanol until the solid dissolved. Colourless, crystalline blocks were 

obtained on cooling to 277 K. 
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Quinol:2Pyridine (4): Quinol (0.49 g, 4.45 mmol) was dissolved in an excess of pyridine and 

drawn into a glass capillary (o.d. 0.32 mm). A polycrystalline sample was obtained on 

freezing the sample at 253 K and a crystal grown using the laser-assisted zone-refinement 

procedure of Boese and Nussbaumer (1994). 

Quinol:2Piperidine (5): Quinol (0.49 g, 4.45 mmol) was refluxed in a minimum volume of 

piperidine to dissolve the solid. The solution was allowed to cool to room temperature to 

produce crystals as colourless blocks. 

Quinol:2bipyridine (6): Quinol (0.59 g, 5.84 rmnol) was refluxed with 4,4'-bipyridine 

(0.87 g, 5.58 mmol) in 3 cm3  of ethanol until the solid dissolved. The solution was allowed to 

cool to room temperature to produce colourless laths. 

Quinol:2N-methylmorpholine (7): 	Quinol (0.55 g, 5.00 mmol) was dissolved in 

N-methylmorpholine (1.00 g, 10.30 mmol) and drawn into a glass capillary (o.d. 0.38 mm). 

A crystal was grown at 240 K from a polycrystalline sample of the frozen liquid by Boese's 

method (see above). 

Quinol:N-N'-dimethylpiperazine (8): Quinol (0.65 g, 5.90 mmol) was refluxed with 

N,N'-dimethylpiperazine (3 cm3, 20.10 mmol) in a little ethanol until the solid dissolved. The 

solution was held at 277 K to produce colourless crystalline blocks. 

3.2.2 Crystallography 

X-ray diffraction intensities were collected with Mo-Ku radiation on a Bruker SMART 

APEX CCD diffractometer equipped with an Oxford Cryo systems low-temperature device 

(Cosier & Glazer, 1986). Absorption corrections were carried out using the multiscan 

procedure SADABS (Sheldrick. 1997a, based on the procedure described by Blessing, 1995). 

All structures were solved by direct methods and refined by full-matrix least squares against 

F using all data (SHELXTL, Sheidrick, 1997b). H-atoms were placed on C-atoms in 

calculated positions and allowed to ride on their parent atoms; methyl groups were treated 

with the Sheidrick (1997b) rotating rigid group model except one methyl group in the 

N,N'-dimethylpiperazine co-crystal which exhibited high thermal motion or some disorder 

(not modelled), where the positions were calculated purely on stereochemical grounds. 

Hydrogen atoms involved in H-bonding were located in difference maps and refined freely. 

All non-H atoms were modelled with anisotropic displacement parameters. 
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The diffraction pattern of the piperazine co-crystal indexed readily on the cell 

a =  7.1977(18) A, b = 8.859(2) A, c = 13.247(4) A, a = 80.420(6)°, IEI = 74.400(4) 1, 

66.153(4)1. This can be transformed to a pseudo-monoclinic C-centred cell, although the 

Laue symmetry was clearly T and not 21rn. While the structure solved and refined without 

difficulty, it appeared to be twinned by a two-fold rotation about [1 0 0] - the pseudo-

monoclinic b-axis. The R-factor was 6%, and bond distances and angles were normal-

Symmetry checking (PLATON, Spek, 2004) implied that the structure could be described 

using a smaller unit cell, and closer inspection of the intensities revealed that data with 

k +1= 3n had an average I/a(J) some eight times larger than the rest of the data. [This could 

also be readily recognised in the Patterson function, which had a peak with a height of about 

two-thirds that of the origin peak at approximately (0, 1/3, 1/3).] The data set was 

transformed using the matrix 

11 
3 3 

o_. 1, 
33 

1 _I_I 
3 3 

and refined using a two fold rotation about [1 0 1], which corresponds to the matrix: 

2 _10 . 

3 3 

3 3 
o 1 

3 3 

Reflections where h+l = 3n contain contributions from both twin domains; the twin scale 

factor was 0.1185(16). 

A consistent numbering scheme was used for the quinol molecules in all structures and 

this is shown in Scheme 3.2. Where there is more than one quinol molecule in the asymmetric 

unit the labels in Scheme 3.2 are augmented with the letters A and B. Labels for atoms 

forming part of the guest molecules carry the letters S. T etc. A full listing of crystal, data 

collection and refinement parameters is given in Table 3.1, a set of H-bonding parameters is 

given in Table 3.2. Structures were visualised using SHELXTL or MERCURY (Taylor & 

Macrae, 2001; Bruno et al., 2002); the figures were produced using CAMERON (Watkin et 

al., 1993). Other analysis utilised the p.c. version of the program PLATON (Spek, 2002; 

Farrugia, 1999). Searches of the Cambridge Crystallographic Database (Allen & Motherwell, 
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2002) were carried out with the program CONQUEST, utilising version 5.25 of the database. 

Crystallographic information files for all structures reported here are available on the CD at 

the back of this Thesis. 

C6C5 H4 

/ \ 	/ 
oi—ci C4-04 

HI 	C2—C3 

Scheme 3.2: Quinol, with atomic numbering scheme. 
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Co-crystals (1) (2) (3) (4) 

Formula C 10F1 10N202  C 10H16N202  C 14 H2 j204  C 16H 16N202  

Weight 190.20 196.25 284.36 268.31 

Radiation Mo-Ku Mo-Ku Mo-Ku Mo-Ku 

Crystal system Monoclinic Triclinic Monocimic Monoclinic 

Space Group P211c FT P2 1 1n P2 1 1c 

a/A 8.901(3) 5.7060(15) 6.6652(13) 6.4990(9) 

b/A 7.666(2) 6.7599(19) 5.5881(11) 16.459(2) 

c/A 6.984(2) 7.0771(18) 20.034(4) 7.1794(10) 

Cdo 90 100.269(4) 90 90 

0/0 90.09 1(6) 112.446(3) 94.942(4) 112.986(3) 

11° 90 90.163(3) 90 90 

Volume/A3  476.6(3) 247.50(11) 743.4(3) 707.00(17) 

No. reflections for 

cell 
834 2430 1472 1519 

20(0) 57.50 57.56 56.96 57.74 

Z 2 1 2 2 

Dc (Mg/M3) 1.325 1.317 1.270 1.260 

IL (mm 1 ) 0.095 0.093 0.093 0.084 

Reflections collected 2873 3814 4226 5091 

No. Unique [Rmt] 1141 [0.02301 1194 [0.0294] 1730 [0.0381] 1700 [0.0309] 

No. 1>2a 926 1194 1427 1345 

Tmin/ T. 0.787, 1.000 0.874, 1.000 0.675, 1.000 0.593, 1.000 

Parameters 68 73 99 95 

Table 3.1: Crystallographic data for the co-crystals of quinol with pyrazine (1), piperazine (2), 
morpholine (3), pyridine (4). All data were collected at 150 K. The table is continued on the 
next page. 
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Co-crystals (1) (2) (3) (4) 

R 1  [F4a(F)J 0.0471 0.0512 0.0845 0.0834 

wR2 (F, all data) 0.1150 0.1180 0.2105 0.1716 

S 1.067 1.091 1.175 1.330 

i\p./ek3) 0.261 0.318 0.439 0.282 

Apn,in / eA 3  -0.296 -0.331 -0.305 -0.386 

Co-crystals (5) (6) (7) (8) 

Formula C 16H28N2O2  C26H22N402  C 16H23N204  C 12H20N202  

Weight 280.40 422.49 312.41 224.30 

Radiation Mo-Ka Mo-Ka Mo-Ka Mo-Ka 

Crystal system Monoclinic Triclinic Triclinic Triclinic 

Space Group P211c PT PT PT 

a/A 10.4230(15) 7.820(4) 6.9612(10) 8.9620(8) 

b/A 5.2619(7) 8.619(4) 7.3146(11) 9.4944(8) 

c/A 15.221(2) 9.201(4) 9.659(2) 14.71 19(13) 

CVO 90 111.897(7) 106.182(3) 90.501(2) 

0/0 109.920(3) 109.851(7) 104.481(3) 92.919(2) 

90 94.657(8) 106.201(2) 99.664(2) 

Volume/A3  784.84(19) 525.7(4) 423.94(12) 1232.26(19) 

No. reflections for 

cell 
774 2247 2797 1812 

20(0) 58.04 57.40 57.50 57.86 

Z 2 1 1 4 

Dc(Mg/m3) 1.187 1.335 1.224 1.209 

t (mm-) 0.078 0.087 0.087 0.083 	- 

Table 3.1: Crystallographic data for the co-crystals of qumol with piperidine (5), 
4,4'-bipyridine (6), N-methylmorpholine (7) and NN'-dimethylpiperazine (8). All data were 
collected at 150 K. (cont'd). 
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Co-crystals (5) (6) (7) (8) 

Reflections collected 4754 4641 3788 11345 

No. Unique [R mt ] 1896 [0.0284] 2428 [0.0308] 1972 [0.0199] 5844 [0.0392] 

No. I>2a 1327 2067 1794 3873 

Tmin/ T. 0.661, 1.000 0.763, 1.000 0.774, 1.000 0.898, 1.000 

Parameters 99 150 106 308 

R 1  [F>4r(F)] 0.0561 0.0541 0.0452 0.0743 

WR 2 (F, all data) 0.1358 0.1436 0.1199 0.1615 

S 1.042 1.044 1.070 1.030 

Ap/eA 3) 0.241 0.312 0.239 0.498 

IXPmjn / ek3  -0.194 -0.260 -0.265 -0.430 

Table 3.1: Crystallographic data for the co-crystals of quinol (cont'd). 
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Co-crystal Donor Acceptor D ... A 
distance (A) 

Obs. 	H...A 	Distance/ 
normalised distance (A) 

Typical 
normalised 
distance (A) 

Angle DHA 
(°) 

 OIA-H1A N1S 2.7585(17) 1.85(2) 1.78 1.81 177(2) 

C3S-H3S O1A 3.347(2) 2.40 2.27 2.52 177 

 N1S-HIS O1N 3.0498(19) 2.35(2) 2.25 1.94 138.1(17) 

OIA-H1A N1S 2.6708(18) 1.80(3) 1.71 1.82 167(2) 

 Ni S-HiS O1A 3.032(3) 2.36(3) 2.24 1.94 137(3) 

O1A-H1A N1S11  2.686(3) 1.85(4) 1.73 1.82 164(3) 

C2S-H2S2 04S'' 3.693(3) 2.75 2.66 2.60 160 

C3S-113S1 O4S 3.672(4) 2.81 2.73 2.60 147 

 O1A-H1A N1S 2.728(3) 1.88(3) 1.75 1.82 174(3) 

C2S-H2S O1AXI 3.385(3) 2.49 2.37 2.52 156 

 N1S-HIS OlAtm  3.2782(19) 2A3(2) 2.28 1.94 168.8(18) 

OIA-H1A N1S' 2.747(2) 1.82(2) 1.77 1.82 173(2) 

 OIA-HIA N1S 2.740(2) 1.84(2) 1.76 1.81 176(2) 

C5S-H5S O1ATh  3.456(2) 2.59 2.47 2.52 152 

C9S-H9S OlAvm  3.394(2) 2.46 2.33 2.52 169 

 OIA-HIA N1S 2.7367(12) 1.87(2) 1.77 1.82 167(2) 

CIS-H1S3 04S 3.4115(15) 2.61 2.54 2.60 139 

C6S-H6S1 04Sx 3.5646(14) 2.60 2.52 2.60 163 

Symmetry operators: 

-x+1,-y+I,-z+2 	vi x,y-I,z xi 	-x,-y+1,-z+1 

ii 	-x+2, -y+2, -z 	vii x-i,y, z xii 	-x+312,y+1/2,-z+1/2 

iii 	-x+2,y+1/2, -z+1/2 	viii -x, -y+ 1, -z+2 xiii 	-x+312,y-1/2, -z+1/2 

iv 	x-1,y-1,z 	 ix x,y+l,z xiv 	x+1,y,z 

V 	-x+1, -y, -z+1 	x -x, -y, -z+2 xv 	-x+1, -Y+ 1, -z 

Table 3.2: Table of H-bonding parameters. C-H, N-H and 0-H distances were normalised to 
1.083, 1.009 and 0.983 A, respectively, to aid comparison with Cambridge Database search 
results (Table 3.3). 
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Co-crystal Donor Acceptor D ... A 
distance (A) 

Obs. 	H... A 	Distance/ 

normalised distance () 

Typical 
normalised 
distance (A) 

Angle DHA 
(°) 

(8) O1A-H1A NIT 2.733(3) 1.86(3) 1.77 1.82 167(3) 

04A-H4A Nltf' 2.744(3) 1.79(3) 1.78 1.82 166(3) 

O1B-H1B N1V 2.765(3) 1.83(3) 1.79 1.82 169(3) 

04B-H4B N1S" 2.739(3) 1.84(3) 1.79 1.82 163(3) 

C2A-H2A O1B 3.446(3) 2.67 2.57 2.60 139 

C2B-H2B 01A 3.328(3) 2.60 2.51 2.60 133 

C5B-H5B 04W 3.442(3) 2.65 2.54 2.60 142 

CIS-H1S1 04AV 3.560(3) 2.63 2.53 2.60 159 

C3T-H3T2 0113 3.405(3) 2.71 2.65 2.60 128 

Symmetry operators: 

-x+1,-yI-1,-z+2 	vi x,y-1,z xi 	-x,-y+1,-z+1 

ii 	-x+2,-y-l-2,-z 	vii x-1,y,z xii 	-x+312,y+1/2,-z+1/2 

iii 	-x+2,y+1/2, -z+ 1/2 	viii -x, -y+1, -z+2 xiii 	-x+312,y-1/2, -z+1/2 

iv 	x-1,y-1,z 	 ix x,y+1,z xiv 	x+1,y,z 

V 	-x+ 1, -y, -z+ I 	x -x, -y, -z+2 xv 	-x+l, -y+ 1, -z 

Table 3.2: Table of H-bonding parameters. C-H, N-H and 0-H distances were normalised to 
1.083, 1.009 and 0.983 A, respectively, to aid comparison with Cambridge Database search 
results (Table 3.3) (cont'd). 

3.3 Results 

3.3.1 Quinol: 1, 4-Dioxane 

The structure of the quinol: 1 ,4-dioxane co-crystal has been determined by Barnes et al. 

(1990) [CSD Refcode SENJOK]. In this Chapter co-crystals of quinol with several 

compounds which are related to I ,4-dioxane by their hydrogen bonding properties are 

discussed; the structure of the quinol: 1 ,4-dioxane co-crystal is described here in order to be 

able to make comparisons with the co-crystals that form the subject of the rest of this Chapter. 
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The asymmetric unit of quinol:1,4-dioxane (space group P2 1 1a) consists of half-

molecules of each component. The primary H-bonding motif in the structure is a C22  (12)

(Bernstein et al., 1995) chain formed by 0-H... 0(ether) hydrogen bonds which connect 

alternating quinol and I ,4-dioxane molecules; these chains run from the top left to lower right 

in Figure 3.1. The chains are staggered, which allows the acceptor functionality of the 

hydroxyl to be filled by a close contact with a C-H moiety of a 1,4-dioxane molecule in a 

neighbouring chain [CH.. .0 2.60 A, the sum of van der Waais radii of H and 0 is 2.72 Al. 
Interactions of this type link the chains together into a layer. CH. .0 interactions of similar 

dimensions are observed in both phases of I ,4-dioxane (Buschmann et al., 1986) and in 

morpholine (Parkin el al., 2004). 

Figure 3]: Quinol:1,4-dioxane (CSD refcode: SENJOK) viewed perpendicular to the (1 00) 
planes. Colour scheme: C green, H grey and 0 red. The staggered arrangement of the chains 
allows a bridging motif through the OH... 0 interaction and a close contact between a CH and 
the 0 of the hydroxyl group giving a R 44(l0) graph set (circled). The layers occupy the 
(2 0 0) planes in the structure, and alternate layers have chains running along the [0 1 1] and 
[0 Ti] directions. 

A doubly-bridging subunit composed of two quinol molecules and two 1 ,4-dioxane 

molecules is circled in Figure 3.1. Each quinol is H-bonded to one of the 1,4-dioxane 

molecules, but it also accepts a CH. . .0 interaction from the second. At this level of graph set 

analysis there are four donors consisting of pairs of OH and CH moieties, and four acceptors 

formed by pairs of ether and phenol oxygen atoms. It is useful for the purposes of drawing 
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comparisons with the other structures in this series to highlight this secondary level, R44( 10) 

ring motif in which two quinol molecules are doubly-bridged by two I ,4-dioxane molecules. 

3.3.2 Quinol:Pyrazine (1) 

Although pyrazine is chemically rather different to 1,4-dioxane, the two molecules are 

similar in that they both consist of six-membered rings with centrosyinmetrically-related 

hydrogen bond acceptors in the I and 4 positions. In addition, although the ether oxygen can 

potentially act as a double acceptor, it rarely does so, and so the N-atoms in pyrazine and the 

0-atoms in I ,4-dioxane can both be considered to be monofunctional fl-bond acceptors. 

The asymmetric unit of quinol:pyrazine contains half-molecules of quinol and pyrazine, 

both occupying inversion centres in space group P2 11c. The structure is very similar to the 

I ,4-dioxane co-crystal, and the primary graph set consists of a C22( 12) chain formed by 

alternating quinol and pyrazine molecules, which are hydrogen-bonded via OH.. .N 

interactions (H ... N 1.85(2) A, see Table 3.2); the chains run from top left to lower right in 

Figure 3.2. The orientation of pyrazine enables a close contact to be formed between a C-H 

and the 0 of the hydroxyl group (2.40 A), which serves to link chains to form a layer. Thus a 

R4 
4(10)subunit (circled in Figure 3.2) composed of two quinol molecules doubly-bridged by 

two guest molecules, which characterised the 1 ,4-dioxane co-crystal, is also observed here. 

-59- 



Chapter 3. The Formation of Quinol Co-crystals with Hydrogen-Bond Acceptors 

Figure 3.2: Quinol:pyrazine (1) viewed perpendicular to the (0 0 1) planes. A similar doubly-
bridging motif to the 1 ,4-dioxane structure is observed, here involving an aromatic CH as a 
donor to the phenolic oxygen, producing an &( 10) graph set (circled). The layers occupy the 
(0 0 2) planes, and alternate layers contain chains passing along the [1 1 0] and [1 1 0] 
directions (note that the source of the differences in Miller indices between the 1 ,4-dioxane 
and this pyrazine co-crystals is that the former has published coordinates referred to P2 1 1a, 
while the latter is in P21 1c). Colour scheme: C green, H grey, 0 red and N blue; this colour 
scheme is adopted in all Figures. 

3.3.3 Quinol:Piperazine (2) 

In quinol:piperazine both components are located on inversion centres. The amine 

hydrogen atom (the position of which was derived from a difference Fourier map) favours the 

axial position in the piperazine molecule. The structure is depicted in Figure 3.3. 

Piperazine is related to I ,4-dioxane by substitution of two NI-I groups for the ether 

oxygen atoms. As in I ,4-dioxane and pyrazine the N atoms act as monoflinctional H-bond 

acceptors, but they can, in addition, act as H-bond donors. C22( 12) chains are formed via 

OH.. .N H-bonds, and run from top left to lower right in Figure 3.3. NH ... O hydrogen bonds 

are formed between the quinol and piperazine molecules in neighbouring chains, forming 

layers. The doubly-bridging subunit (circled in Figure 3.3), which was observed in the 

I ,4-dioxane and pyrazine co-crystals, is also observed here, although it forms an R 44(8) graph, 

rather than R44(10), because the donor capacity of piperazine is 'built into' the amine group. 
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Figure 3.3: Quinol:piperazine (2) viewed perpendicular to the (1 1 0) planes. The donor-
acceptor function of the amine moiety allows the co-crystal to form an R 44(8) H-bonded 
doubly-bridging motif (circled). 

3.3.4 Quinol: 2Morpholine (3) 

Morpholine is related to 1,4-dioxane through the substitution of one of the oxygen 

atoms with protonated nitrogen. This co-crystal crystallises with one molecule of morpholine 

and half a molecule of quinol in the asymmetric unit, and in this respect it differs from the 

I ,4-dioxane, pyrazine and piperazine co-crystals which all have 1:1 stoichometry. The quinol 

resides on a crystallographic inversion centre. The hydrogen atom (HIS) attached to the 

nitrogen in the morpholine molecule was located in a difference Fourier map, and found to 

occupy the less favourable axial position. 

The hydrogen bonding functionality of the quinol molecules, which form OH.. .N 

H-bonds to the morpholine molecules, resembles that in the piperazine co-crystal. However, 

the ether oxygen atoms do not participate in hydrogen bonding, and the C22( 12) chain motif 

observed in the piperazine co-crystal corresponds to a discrete D22( 10) motif consisting of one 

quinol and two morpholine molecules in this co-crystal (see Figure 3.4a running diagonally 

from top left to lower right): the ether oxygen atoms act like chain-stoppers. Neighbouring 

quinol:2morpholine units are linked by NH. . .0 H-bonding interactions. A doubly-bridging 

subunit (ringed in Figure 3.4a) analogous to those observed in the structures described above 
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therefore also appears in this co-crystal. As in the piperazine co-crystal its secondary level 

graph set descriptor is R44(8). 

Figure 3.4a: Quinol:2morpholine (3) ribbon viewed perpendicular to the (11 2) planes. The 
morpholine co-crystal forms the same H-bonded bridging structure as piperazine (R44(8), 
circled), however, this does not extend into a layer due to the relatively weak acceptor ability 
of the ether oxygen, which does not take part in H-bonding. 

The ether oxygen atom does not participate in any interactions which would be 

considered significant using a criterion based on sums of van der Waals radii, with the result 

that the structure is based on ribbons, and not layers. The structure partitions into one set of 

regions at c = 0, 1.. etc. where the ribbons run parallel to [1 1 0], and a second set through the 

middle of the unit cell (c = 0.5) where the ribbons run parallel to [T 1 0] (Figure 3.4b). The 

overall effect is to interleave morpholine molecules. The angle between the mean planes of 

morpholine molecules in neighbouring ribbons passing along [1 1 0] and [11 0] is 78.4(4) 0  

and the closest contacts made by 04S are to H-atoms attached to C2S and OS (2.75 and 

2.81 A, respectively) 
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Meow 

61  iN - 
Figure 3.4b: The structure of quinol:2morpholine (3) viewed down the a-axis showing the 
interleaved morpholine molecules. The ribbons at c = 0,1.. .etc. run parallel to [1 1 0] and the 
second set of ribbons at c = 0.5 run parallel to [1 101. 

3.3.5 Quinol:2Pyridine (4) 

Pyridine is related to pyrazine through the substitution of one of the nitrogen atoms by 

CH. This co-crystal crystallises with one molecule of pyridine and a half molecule of quinol 

in the asymmetric unit. The quinol molecule resides on a crystallographic inversion centre. 

The H-bonding activity in the quinol molecules is identical to that observed in the 

pyrazine co-crystal (see above and Figure 3.2). The quinol donates to two symmetrically 

equivalent pyridine molecules through a OH.. .N interactions (Figure 3.5a) to form a discrete 

D22(10) motif consisting of one quinol and two pyridine molecules. This is analogous to the 

structure of the morpholine co-crystal, with the CH group in the 4-position of the pyridine 

acting as a chain-stopper, and, as a result, this structure consists of ribbons. The CH adjacent 

to the nitrogen atom of a pyridine in a neighbouring quinol:2pyridine unit acts as the donor 

group to the phenolic oxygen, yielding the same doubly-bridging R.44( 10) motif as observed in 

the pyrazine co-crystal (ringed in Figure 3.5a). Neighbouring ribbons interact with each other 
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through 7t-stacking of the pyridine molecules in which the stacking distance is 3.45 A and the 

angle between the mean planes of stacked pyridine molecules 5.32(6)° (Figure 3.5b). 

* 

Figure 3.5 top (a): Quinol:2pyridine (4) co-crystal viewed perpendicular to the (2 1 2) planes. 
The doubly-bridging motif is present OH.. .N and CH.. .0 interactions giving a R 44(1O) graph 
set (cf pyrazine, circled). 

Figure 3.5 bottom (b): Quinol:2pyridine (4) viewed down the a-axis. Colour scheme: C green, 
H grey, 0 red and N blue. The 7t —stacking of pyridine molecules from neighbouring ribbons 
can clearly be seen. 
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3.3.6 Quinol:2Piperidine (5) 

Piperidine is related to morpholine through the substitution of the oxygen atom with a 

methylene group. This co-crystal crystallises with one molecule of piperidine and half a 

molecule of quinol in the asymmetric unit (cf the morpholine and pyridine co-crystals). The 

quinol resides on a crystallographic inversion centre. The hydrogen atom (HIS) attached to 

the nitrogen in the piperidine molecule was located in a difference Fourier map, and occupies 

the axial position. 

This co-crystal forms a similar structure to morpholine and pyridine in that it consists of 

discrete D22( 10) units, consisting of one quinol and two piperidine molecules, which are 

linked into a ribbon via NH.. .0 hydrogen bonds. Rather than forming an R22(8) motif the 

doubly-bridging subunit forms an &( 18) graph set (this is circled in Figure 3.6). 

Figure 3.6a: Quinol:2piperidine (5) viewed perpendicular to the (1 0 1) planes. Piperidine 
structure possesses a doubly-bridging structure observed in the other co-crystals, however, the 
ring graph set formed is much larger, R44( 18) (circled), due to the relative orientation of the 
quinol molecules. Ribbons are formed rather than an extended layer motif, this follows from 
the absence of strong H-bonding functions in the 4-position in piperidine. 

There are a larger number of atoms in this graph set descriptor than in the structures 

discussed previously because of the difference in the relative orientations of the quinol and 
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piperidine molecules: compare, for example, Figures 3.3, 3.5a and 3.6a. A view of the 

packing along the direction of the ribbons ([0 1 0]) is shown in Figure 3.6b. 

El py 
r 

Figure 3.6h: Quinol:2piperidine (5) viewed down the b-axis. 	The structure is based on 
ribbons which form along the [0 1 0] direction and are arranged in the (2 0 2) planes. 
Piperidine molecules in neighbouring chains occupying the same (2 02) plane are interleaved. 

3.3.7 QuinoI.2(4, 4 '-bipyridine) (6) 

Co-crystals 	of quinol 	with 	4,4'-bipyridine, 	N-methylmorpholine 	and 

N,N'-dimethylpiperazine were studied in order to investigate the effect of steric hindrance on 

the doubly-bridging motif that has been observed in all the structures so far described. Like 

morpholine, 4,4'-bipyridine forms a 1:2 co-crystal with quinol, and the asymmetric unit 

contains half  molecule of quinol and one molecule of 4,4'-bipyridine. The angle between the 

C5N planes in the 4,4'-bipyridine molecules is 28.59(6)°. 
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Predictably, the quinol interacts with the 4,4'-bipyridine molecule through a H-bond 

between OlA... NIB. In terms of the symmetry of its H-bond acceptor functions bipyridine 

resembles I ,4-dioxane, pyrazine and pipera.zine. It is, however, much larger, and a structure 

built on a network resembling those described above would presumably have a prohibitively 

low density; this may explain the stoichiometry of this co-crystal. As in the other 1:2 

co-crystals in this series, the structure contains D22( 10) unit consisting of one quinol and two 

bipyridine molecules. These are then linked into ribbons via a subunit (ringed in Figure 3.7a) 

in which two quinol molecules are doubly-bridged by CH.. .0 interactions with two 

bipyridine molecules. The C-H groups adjacent to the N-atoms in bipyridine sometimes act 

as donors. This is not at all uncommon, and it has even been used in crystal structure design, 

but it is not observed here. Instead the quinol oxygen atom acts as an acceptor for the 

hydrogen atom adjacent to the central C-C bond of the bipyridine (C9S-H9S ... OIA, 2.46 A, 
169°). 

A second CH.. .0 bond exists between C5S-H5S and O1A (2.59 A, 1520) that connects 

the ribbons together to form layers. When viewed along the b-axis the structure consists of 

regions of quinol molecules occupying different layers at c = 0, 1.. .elc. and regions of 

bipyridine molecules at c = ½ in which bipyridine molecules in different layers interleave 

(Figure 3.7b). The layers are connected by weak N ... H interactions measuring 2.9 to 3.0 A 
involving N7S in one layer and H-atoms in another (these contacts are not shown in Figure 

3.7b for the sake of clarity). 

Figure 3.7a: Quinol:2(4,4'-bipyridine) (6) viewed perpendicular to the (1 1 2) planes. The 
'built-in' donor ability is not present in bipyridine therefore the guest uses an aromatic 
CH. . .0 interaction to build up the bridging motif The graph set for this motif is the same as 
the piperidine structure, R44( I 8)(circled). 
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1P 

Figure 3.7b: Quinol:2(4,4'-bipyridine) (6) viewed perpendicular b-axis. The different regions 
of quinol molecules at c = 0, 1... etc. and bipyridine molecules at c = /2. The bipyridine 
molecules in different layers interleave. 

3.3.8 Quinol:2N-methylmorpholine (7) 

Crystals of N-methylmorpholine were grown by Boese's laser-assisted zone refinement 

method from a 1:2 mixture of quinol and N-methylmorpholine held in a capillary mounted on 

the diffractometer. Crystal growth experiments by more conventional procedures failed to 

yield anything but crystals of quinol. 

The crystal structure contains half a molecule of quinol and a whole molecule of 

N-methylmorpholine in the asymmetric unit. The methyl group of the N-methylmorpholine 

molecule adopts the expected equatorial position. As in the other 1:2 co-crystals there is a 

1)22(10) motif consisting of one quinol and two N-methylmorpholine molecules connected by 

centrosym metrical ly-related OH...N hydrogen bonds (Figure 3.8). In the morpholine 

co-crystal (see above) the D22( 10) units were linked together via a doubly-bridging subunit 

involving NFL. .0 interactions, but substitution of the NH group by N(CH 3) means that this 

can not occur in the N-methylmorpholine co-crystal. The steric bulk of the methyl group also 

forces a change in the relative orientation of the quinol and guest molecules preventing the 

alternative 0.. .CH(ring) interaction seen elsewhere in this series. The steric effect of the 

N-methyl group has therefore been to disrupt formation of the doubly-bridging unit 
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highlighted in Figures 3.1-3.7. 1)22(10)  units are instead linked via CH 3  ... 0 interactions 

between N-methylmorpholine molecules, forming ribbons. The ribbons are then linked into a 

layer by further CH. . .0 interactions between N-methylmorpholine molecules. 

Figure 3.8: Quinol:2N-methylmorpholine (7) viewed perpendicular to the (1 0 1) planes. The 
methyl group on the nitrogen has prevented formation of a bridging motif. 

3.3.9 Quinol:N,N'-dimethylpiperazine (8) 

In the asymmetric unit of the N,N'-dimethylpiperazine co-crystal there are two 

molecules of quinol and four half-molecules of N,N'-dimethylpiperazine, so that the 

co-crystal has overall 1:1 stoichiometry. In all cases the methyl groups of the 

N,N'-dimethylpiperazine are in the expected equatorial positions. 

The strongest intermolecular interactions are OH. . . N hydrogen bonds which build up 

C22(12) chains (Figure 3.9), similar to those observed in quinol:piperazine co-crystal. There 

are two symmetrically inequivalent chains present in the structure, both involving one quinol 

molecule and two independent guest molecules. The quinol is present in a non-

centrosymmetric conformer, which results in the chains becoming more sinusoidal than in the 

piperazine co-crystal. As in the N-methylmorpholine co-crystal described above, the 

N-methyl groups prevent formation of bridging interactions between chains, which are, 
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instead, linked by CH. . .0 interactions with other chains that pass through the rather open 

structure depicted in Figure 3.9. 

Figure 3.9: Quinol:N,N'-dimethylpiperazine (8). The methyl groups on the nitrogen cause 
major structural rearrangement away from the bridging structure observed in other co-crystals 
in this series. The inequivalent chains run perpendicular to these chains filling the space 
between the two chains. 

3.4 Discussion and conclusions 

The previous Chapter on paracetamol co-crystals utilised the Cambridge Structural 

Database (CSD) in rationalising the formation of a series of co-crystals from pure paracetamol 

(Oswald et al., 2002, Oswald et al., 2004), and a similar procedure can be used for this series 

of compounds. There are only two classical H-bond donor-groups in this series, the phenol 

OH and a secondary amine NH. The aromatic or aliphatic CH groups, adjacent to the 

heteroatom, with the phenolic oxygen, can also act as donors. The acceptor groups in the 

series are a phenolic 0, secondary or tertiary amine N, ether 0 and pyridine N. The results of 

searches of the CSD for typical H-bond geometries involving these flinctionalities are listed in 

Table 3.3, searching criteria are given in the legend to that table. 

In interpreting the data in Table 3.3, the assumption is made that the strength of 

hydrogen bonds is related to the donor-hydrogen - acceptor distance with the D-H bond 

normalised to typical neutron distances (0-H 0.983 A, N-H 1.009 A and C-H 1.083 A). 
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Amine nitrogen atoms are more strongly basic than phenolic or ether oxygen atoms, and the 

strongest bonds in Table 3.3 are those from a phenol donor to a secondary or tertiary amine or 

a pyridine N. In co-crystals of this type H-bonds are formed to the guest in preference to the 

weaker OH.. .0(H) found in pure quinol, and where nitrogen atoms are present in the I and 4 

positions of the guest (i.e. in pyrazine, piperazine and N,N'-dimethylpiperazine) 1:1 

co-crystals are formed. H-bonds in which the phenolic and ether oxygen atoms act as 

acceptors to weak CH donors are similar in strength. This observation helps to rationalise the 

formation of the 1 ,4-dioxane co-crystal. It was formed from a solution of quinol in 

I ,4-dioxane that was allowed to evaporate at room temperature. Under these conditions there 

is excess I ,4-dioxane present in the system, which would favour the OH... O(ether) 

interaction, leading to a 1:1 co-crystal of quinol and 1,4-dioxane. 

In the co-crystals of quinol with molecules with N, NH or We and 0, CH or CH2 

respectively in the 1 and 4 positions, the quinol H-bonds exclusively to the nitrogen moiety. 

In the case of morpholine and N-methylmorpho line the ether 0-atom is a much less effective 

acceptor than the amine nitrogen (Table 3.3); in piperidine and pyridine the CH2 and CH 

groups in the 4-positions can, of course, not act as acceptors at all. Quinol selectively binds to 

the nitrogen group, and, in order to satisfy the H-bonding capacity of quinol, all four of these 

co-crystals crystallise in a 1:2 quinol-to-guest ratio. 

Considerations of H-bonding strength based on the data in Table 3.3 enable the 

stoichiometries of the majority of co-crystals studied here to be rationalised. The exception is 

the co-crystal of quinol with 4,4'-bipyridine, which would be predicted to form a 1:1 

co-crystal, whereas the observed stoichiometry is 1:2, with only one of the two N-atoms in 

each bipyridine molecule used in H-bonding; this may be a size effect. 
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Acceptor (0 or N in each case) 

C C\  C\  \ 
Donor (NH or OH) \ ,N 

/ 
/0 

Sample size 334 54 57 95 

Max OH..A/A 2.20 2.19 2.20 2.18 0-0\ 
H Min OH. .A /A 1.67 1.66 1.62 1.53 

Mean OH..A/A 1.87 1.82 1.90 1.81 

Sample size 3 15 5 Not Applicable 

C\ Max NH..A/A 2.03 2.20 2.18 

NH 
Mm NH..A/A 1.87 

C 

2.00 2.11 

Mean NH..A/A 1.94 2.14 2.13 

Sample size 217 109 4273 Not Applicable 

C\ Max CH..A /A 2.75 2.75 2.75 

/CH Mm CH..A/A 2.13 2.40 1.87 

0/N Mean CH..A /A 2.60 2.64 2.58 

Sample size 67 Not Applicable Not Applicable 328 

C Max CH..A /A 2.75 2.75 

Min CH..A/A 2.18 2.26 

N' Mean CH..A /A 2.52 2.59 

Table 3.3: Summary of the results of searches of the CSD (Version 5.25, November 2003) for 
typical distances in hydrogen bonded systems containing identical functional groups to the 
quinol co-crystals studied. The distances to hydrogen atoms were normalised to typical 
neutron distances (C-H 1.083, N-H 1.009 and 0-H 0.983 A). Only 'organic' structures where 
the R-factor is less than 0.05, with no errors or disorder were included, and ionic or polymeric 
structures were excluded. The C-atoms attached to the amine moieties were specified to be 
sp2  or sp3  hybridised. The donor-H to acceptor distance was specified to be 1.50-2.20 A or 
1.50-2.75 A in the case of the Cl-I donor atoms. 
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All the 1:1 co-crystals are based on C22(12) chains of alternating quinol and guest 

molecules. All the 1:2 co-crystals are based on discrete D22( 10) motifs containing one quinol 

and two guest molecules. In all but the two sterically-hindered cases (N-methylmorpholine 

and N,N'-dimethylpiperazine) the C22( 12) chains or D22( 1 0)-based motifs are linked about an 

inversion centre by NI-i ... 0 or CH. . .0 interactions in which quinol molecules are doubly-

bridged by pairs of guest molecules. This linking of chains builds layers in the 1:1 

co-crystals; linking of the discrete units in the 1:2 co-crystals builds ribbons. 

These observations also apply to the crystal structure of quinol itself. Three polymorphs 

of quinol are known, but the simplest is the monoclinic y-polymorph, and the co-crystals 

discussed in this Chapter are related to this structure. In the asymmetric unit there are two 

half molecules of quinol residing on inversion centres. The primary graph set is C22  (14) 

formed by OH... 0(H) H-bonds; this corresponds to the C 22(12) chains of the 1:1 co-crystals 

described above. These chains are parallel to one another and H-bond together to form a 

doubly-bridging R44(18) graph set at the secondary level (Figure 3.10). 

Figure 3.10: y-quinol viewed down the a-axis. Colour scheme: C green, H grey and 0 red. 
y-quinol is a layered structure where the primary graph set is C22  (14); these chains are 
parallel to one another and H-bond together to form an R44( 18) graph set. 
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4.1 Introduction 

The design of molecular assemblies has received much interest in recent years with its 

application to drug processing and green chemistry. The assemblies made from the 

co-crystallisation of two components can be utilised to alter the macroscopic properties of the 

host compound such as the solubility and hardness. Traditional methods to change the 

physical properties include the direct derivatisation of the host compound i.e. modifying the 

covalently attached functional groups. The synthetic methods to achieve the desired 

derivatisation rely heavily on the use of solvents and toxic reagents; such procedures are 

becoming less applicable as a result of the tightening of environmental legislation. 

Co-crystallisation of a host compound with a guest molecule avoids the use of solvents and 

the production of toxic side products but yields a change in the overall physical properties 

(Anastas & Warner, 2002). For the use of 'non-covalent derivatisation' to become wide 

spread in manufacturing industries it is important that a series of reliable supramolecular 

reactions be found so that they may be utilised in manufacturing processes. 

The systematic investigation of co-crystals gives an insight into the variety of hydrogen 

bonding patterns that can be formed given certain functional groups. Recent studies by 

Aakeroy et al. (2003) and by Vishweshwar et al. (2003) have investigated the hydrogen 

bonding patterns in a series of co-crystals of isonicotinamide (4-amidopyridine) with a view 

to finding reliable supramolecular reactions. Isonicotinamide has two functional groups that 

can participate in H-bonding; a pyridine moiety and an amide moiety. It was originally 

highlighted as a possible co-crystallising agent by Aakeroy et al. (2003) because of the 

structural flexibility which is implied by its existence in two polymorphic forms. Form I 

crystallises in space group F21 1c with one molecule in the asymmetric unit whereas form II 

also crystallises in F21 1c but with two molecules in the asymmetric unit. All possible types of 

interactions using amide and pyridine moieties are utilised in the polymorphs of 

isonicotinamide. Form I shows preference for a homomeric dimer between amide groups (a 

head-to-head arrangement) whereas form II prefers to form a H-bond between the amide 

group and the pyridine moiety (a head-to-tail arrangement). 

In addition to these two polymorphs, isonicotinamide crystallises in thirty different 

binary and ternary co-crystals (Aakeroy et al., 2002; Aakeroy et al., 2003; Vishweshwar et 

al., 2003). This clearly shows the flexibility of isomcotinamide as a host molecule for various 

carboxylic acids and alcohols. The only systematic study of isonicotinamide with a series of 

guest molecules was by Vishweshwar et al. (2003). In their paper, a series of homologous 
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alkanedicarboxylic acids with isonicotinamide was investigated to reveal the hydrogen 

bonding patterns formed with varying alkyl chain length. In all other studies of 

isonicotinamide the R-group attached to the carboxylic acid was changed dramatically. In this 

study we look at co-crystals of the simple carboxylic acids, formic acid and acetic acid, with 

isonicotinamide to understand the rearrangement that occurs on addition of a methyl group. 

The proton involved in the hydrogen bond between formic acid and isonicotinamide shows 

some disorder, which has been studied with respect to temperature. This behaviour is not 

seen in acetic acid. Scheme 4.1 shows the guest molecules used in the study. Scheme 4.2 

shows the host molecule with numbering scheme. 

H 	0H 
	

H3COH 

a) 
	

b) 

Scheme 4.1: Guest molecules used to form co-crystals with isonicotinamide; a) formic acid; 
b) acetic acid. 

H6 H5 

\ / 
C6=C5 041 

Ni C4—C41 

C2—C3 N41—H411 

/\ I H2 H3 H412 

Scheme 4.2: Isonicotinamide, with atomic numbering scheme. 
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4.2 Experimental 

4.2.1 Synthesis 

All chemicals were bought from Sigma Aldrich and used as received. 

Isonicotinamide:formic acid (1): Isonicotinarriide (0.51 g, 4.18 mmol) was dissolved in an 

excess of formic acid (1.50 g, 32.61 mmol) and warmed until all the solid dissolved. On 

cooling to room temperature colourless rods were produced. 

Isonicotinamide.acetic acid (2): Isonicotinamide (0.49 g, 4.02 mmol) was dissolved in an 

excess of acetic acid (1.95 g, 32.50 mmol) and warmed until all the solid dissolved. The 

solution was then cooled to room temperature producing colourless blocks. 

4.2.2 Crystallography 

X-ray diffraction intensities were collected with Mo-Ku radiation on a Bruker SMART 

APEX CCD diffractometer equipped with an Oxford Cryosystems low-temperature device 

(Cosier & Glazer, 1986). Absorption corrections were carried out using the multi-scan 

procedure SADABS (Sheidrick, 2004, based on the procedure described by Blessing, 1995). 

All structures were solved by direct methods and refined by full-matrix least squares against 

F using all data (SHELXTL, Sheidrick, 2001). H-atoms were placed on C-atoms in 

calculated positions and allowed to ride on their parent atoms. Hydrogen atoms involved in 

H-bonding were located in difference maps and refined freely. All non-H atoms were 

modelled with anisotropic displacement parameters. 

4.2.3 Variable Temperature study of isonicotinamide.formic acid 

X-ray diffraction patterns were collected and treated as above at temperatures of 100 K, 

115 K, 130 K, 175 K and 240 K. The dataset taken at 240 K suffered from a split in the 

crystal, which complicated integration of the full dataset. Successful integration was 

performed on each run separately and the data merged in SORTAV (Blessing, 1997); the 

absorption corrections were performed before merging. 

The co-ordinates obtained from the original structural refinement were input into 

CRYSTALS (Betteridge et al., 2003) and refined against F2. All the hydrogen atoms except 

for Hi, H411 and H412 were geometrically placed and allowed to refine. Hydrogen atoms 

H411 and H412 were located from the difference map and allowed to refine. The hydrogen 
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involved in proton disorder was clearly seen in the difference Fourier map produced in 

MAPV[EW (WINGX, Farrugia, 1999) using only strong data (1/o(1)> 3.00). The automatic 

peak selection in CRYSTALS highlighted only one peak situated between 01 and Ni at 

100 K although two peaks could clearly be observed in the difference map. The positional 

parameters of the disordered hydrogen atom sites were taken from the 115 K model and used 

as a starting point for the refinement of the 100 K model. The occupancies of each site (Hi 

attached to N  & H21 attached to 01) were refined competitively against one another and the 

positions of the hydrogen refined with a distance restraint of 0.90(1) A applied to HI-NI; this 

value is consistent with that observed in the difference maps and with typical distances for 

such systems. A single isotropic displacement parameter was refined for all the hydrogen 

atoms. The refinement at all temperatures was stable, converging to A/a < 0.001. 

A full listing of crystal, data collection and refinement parameters is given in Table 4. 1, 

a set of H-bonding parameters is given in Table 4.2. Structures were visualised using 

SHELXTL or MERCURY (Taylor & Macrae, 2001; Bruno et al., 2002); the figures were 

produced using CAMERON (Watkin et al., 1993). Other analysis utilised the p.c. version of 

the program PLATON (Spek, 2002; Farrugia, 1999). Searches of the Cambridge 

Crystallographic Database (Mien, 2002; Allen & Motherwell, 2002) were carried out with the 

program CONQUEST, utilising version 5.25 of the database. Crystallographic information 

files for all structures reported here are available on the CD at the back of this Thesis. 
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Adduct (1) (2) 

Formula C7H8N203  C3H10N203  

M 168.15 182.18 

Radiation Mo-Ku Mo-Ku 

Temperature/K 150 150 

Crystal System Monoclinic Triclinic 

Space group P211c PT 

a/A 3.7287(5) 3.8267(6) 

b/A 27.33 1(3) 10.6429(16) 

c/A 7.4848(9) 10.7328(16) 

90 85.25 8(2) 

0/0  96.386(2) 85.479(2) 

90 84.739(2) 

Volume /A3  758.05(16) 432.67(11) 

No. reflections for 
cell  4513 2210 

20(°) 57.88 57.14 

Z 4 2 

D (Mg/M3) 1.473 1.398 

0.117 0.109 

Reflections collected 6691 3813 

Unique [Rmt] 1843[0.0207] 1982[0.0271] 

No. 1>2cr(1) 1792 1809 

T/ T 0.731/1.000 0.701/1.000 

Parameters 123 132 

R 1  [F>4a(17)1 0.0514 0.0510 

wR2  (F2 , all data) 0.1279 0.1377 

S 1.192 1.067 

p/ ek3) 0.299 0.291 

pnfin / ek3  -0.309 -0.350 

Table 4.1: Crystallographic data for the co-crystals of isonicotinainide with formic acid (1), 
acetic acid (2) (data collected at 150 K). 
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Adduct VT100 VTII5 VT130 VT175 V17240 

Formula C7H8N203  C7H3N203  C71713N203  C7118N203  C71718N203  

M - 	168.15 168.15 168.15 168.15 168.15 

Radiation Mo-Ku Mo-Ku Mo-Ku Mo-Ku Mo-Ku 

emperaturelK 100 115 130 175 240 

Crystal System Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P211c P21 1c P211c P21 1c P2 

3.7055(3) 3.7131(3) 3.7182(3) 3.7388(4) 3.762(2) 

b/A 27.337(3) 27.342(3) 27.346(3) 27.365(3) 27.296(14) 

c/A 7.4760(8) 7.4843(6) 7.4833(7) 7.4995(7) 7.499(4) 

90 90 90 90 90 

1310  96.675(7) 96.582(6) 96.521(7) 96.238(7) 95.717(13) 

90 90 90 90 90 

Volume /A3  752.16(13) 754.83(11) 755.95(12) 762.73(13) 766.2(7) 

No. reflections for cell 1467 2882 1487 1234 816 

20(°) 61.02 61.13 61.11 61.00 61.75 

Z 4 4 4 4 4 

D (Mg/M3) 1.485 1.480 1.477 1.464 1.458 

tmm' 0.118 0.118 0.118 0.117 0.116 

Reflections collected 7943 11649 7999 8059 14776 

Unique [Rmt] 22 12[0.0401 2229[0.0831 2229[0.036] 2244[0.042] 2286[0.0869] 

No. J>2c(1) 1408 1342 1339 1275 1772 

T/ T 0.63/0.98 0.68/0.98 0.64/0.98 0.65/0.98 0.50/0.98 

Parameters 138 138 138 138 138 

R 1  [F4y(P)] 0.0473 0.0451 0.0506 0.0511 0.1093 

wR 2 (F, all data) 0.1099 0.1010 0.1093 0.1200 0.2436 

S 0.7845 0.7402 0.8637 0.8283 1.0552 

p/ eA 3) 0.70 0.56 0.54 0.48 0.55 

p1, / ek 3  -0.51 -0.52 -0.49 -0.53 -0.54 

Occupancy (Hl); 

normal weights 
0.60(3) 0.55(3) 0.53(4) 0.50(3) 0.49(8) 

Occupancy (HI); 

Modified Weights 
0.571(18) 0.534(19) 0.474(19) 0.38(3) 0.43(2) 

Table 4.1 (cont'd): Crystallographic data for the co-crystals of isonicotinamide with formic 
acid at various temperatures (100 K, 115 K, 130 K, 175 K & 240 K). 
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Adduct Donor Acceptor Obs. H ... A Distance/ 
normalised distance /A 

Typical 

normalised 

distance /A 

Angle DHA 

(1) 

NI-Hl 01 1.36(3) 1.57 1.69 174(3) 

N41-H411 041' 2.00(2) 1.90 1.93 174(2) 

N4i-H412 02" 1.96(2) 1.85 1.93 165(2) 

C2-142 02 2.72 2.66 2.54 119 

C6-H6 01" 2.41 2.28 2.54 165 

Ci-Hil 01w 2.71 2.60 2.54 141 

01-Hi Ni 1.769(10) 1.69 1.66 176(3) 

(2) 
N41-1-1411 041' 2.05(2) 1.89 1.93 177.6(18) 

N41-H412 02" 2.01(2) 1.93 1.93 169.4(17) 

C2-1-12 0i1 2.70 2.62 2.54 125 

Symmetry Operators: 

-x, -y+ 1, -z+2 	v 	-x- 1, -y+ 1, -z+ I 

ii 	x-1,y,z+1 	vi 	-x+1,-y+1,-z 

iii 	x, 112-y, 112+z 	vii 	-x, 2-y, -z 

iv 	x, 112-y, -112+z 

Table 4.2: Table of H-bonding parameters. C-H, N-H and 0-H distances were normalised to 
1.083, 1.009 and 0.983 A, respectively. 

4.3 Results and Discussion 

4.3.1 Isonicotinamide:formic acid (1) 

Isonicotinamide crystallises in a 1:1 ratio with formic acid in the monoclinic space 

group P21 1c. The acid and isonicotinamide molecules hydrogen bond together via an 

interaction between the carboxylic acid group of formic acid and the pyridine nitrogen atom 

of isonicotinamide. The hydrogen bond is very short (0.. .N, 2.5468(16) A) in comparison 

with other such interactions in the Cambridge Structural Database (average COOH ... ArN is 
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2.63(6) A). At 100 K electron density difference maps show that the H-atom is 

predominantly bound to the pyridine, so that the crystal is more correctly described as a salt of 

formula [isonicotinamideH][HCO0f. This situation changes as the temperature is increased, 

and this temperature dependence is discussed in more detail below. The C=O bond of the 

formic acid is on the same side of the molecule as the C=O bond of the amide group in a 

cis-conformation. A secondary CH. . .0 interaction is formed between the acid and the 

hydrogen atom in the 2-position of the pyridine ring (2.72 A), which supports the OH.. . N 

H-bond. This motif is observed extensively in crystal engineering studies (for example, Bond, 

2003). 

The amide function of the isonicotinamide forms a centrosymmetric R22(8) dimer via 

NH.. .0 hydrogen bonds (H411 .. .04 1, 2.00(2) A) with the amide group of a symmetry 

equivalent molecule to form a 'supermolecule'. The supermolecule, which contains two 

molecules of both the amide and acid components, is a commonly observed motif in many 

co-crystals of isonicotinamide (Figure 4.1a). The supermolecules hydrogen bond together 

through an interaction between H412. . .02 of the amide and acid to form large ring motifs, of 

with a graph-set descriptor &6(26)  (H412 . . .02, 1.96(2) A) (Figure 4.1 b). 

041 

Figure 4. la: The supermolecule of isonicotinamide with formic acid. This supermolecule is 
formed over an inversion centre creating a R 22(8) amide dimer. The C=O bond of the formic 
acid is on the same side of the molecule as the C=O bond of the amide group in a 
cis-conformation. 
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R66 
(26) 

02 

Figure 4. lb: The supermolecules H-bond together through interactions between H41 I and 02 
forming a ribbons along the [1 0 1]. Large R 66(26) rings are formed which are characteristic 
of cis-trans-cis supermolecules. Colour scheme: C green, H white, N blue, 0 red, the same 
scheme is used in all figures. 

These hydrogen bonding interactions produce ribbons that are orientated along the 

[1 0 1] direction. The ribbons are stacked along the a-direction with the ribbons at y = 1/2 

interleaving the ribbons at y = 0, 1, etc. so  that when viewed along [1 0 1] each ribbon is seen 

to be surrounded by six others in a close-packed arrangement (Figure 4.2a). Neighbouring 

ribbons interact with one another through two CH. . .0 hydrogen bonds between H6. . .01 

(2.41 A) and HI 1... 01(2.71 A) (Figure 4.2b). 

a 

Figure 4.2a: The ribbons are stacked along the a-direction with neighbouring ribbons 

interleaving one another. 
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Figure 4.2b: Neighbouring ribbons interact through CH. . .0 contacts between H6. . .01 
(2.41 A) and H11...01 (2.71 A). 

4.3.2 Isonicolinamide:acelic acid (2) 

The acetic acid adduct forms a structure which is in many ways similar to the formic acid 

co-crystal. Centrosymmetric supermolecules are formed, consisting of two isonicotinamide 

units connected through their amide groups, and two carboxylic acid molecules hydrogen 

bonding to the pyridine groups. By contrast to the formic acid co-crystal, the C=O bond of the 

acid is on the opposite side of the molecule from the C=0 bond of the amide group in a 

trans-conformation (Figure 4.3a). The supermolecules interact through the same H-bonding 

interaction as the formic acid adduct (H412. . .02 2.01(2) A), but here the large ring motifs 

have the descriptor R 44(22) (Figure 4.3b). These interactions produce a ribbon which runs 

along the [2 0 1] direction 
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70. 	...... 

4 	

...... _ 	_4  
041 

R(22) 

Figure 4.3 top a: The supermolecule of isonicotinamide with acetic acid again formed over an 
inversion centre [R 22(8)]. In contrast to the formic acid adduct the CO bond of the acetic acid 
is on a different side of the molecule to the C0 bond of the amide group in a 
irans-conformation. The different orientations of the carbonyl groups with respect to each 
other affect the way the supermolecules interact with one another. 

Bottom b: The supermolecules have a much greater horizontal displacement than those in the 
formic acid adduct as a result of the bulkier R-group attached to the acid. This increase in 
displacement creates smaller ring motifs in the ribbons. The ribbons run along [2 0 1]. 

The length of the H-bond formed from the acid to the pyridine N (2.6331(15) A), which 

was short in the formic acid co-crystal (2.5468(16) A), is more comparable with those 

observed in the CSD in the acetic acid co-crystal. Moreover, difference maps show that the 

hydrogen atom is attached to the acid, so that the designation [isonicotinamide][MeCOOH] is 

most appropriate for this co-crystal. This observation can be ascribed to the lower acidity of 

acetic acid compared to formic acid (J)Ka values: formic acid 3.76 acetic acid 4.75, 

[isonicotinamideH] 3.58). There is no evidence of proton migration in this moiety at 

increased temperatures. 

In contrast to 1, neighbouring ribbons are directly adjacent to one another forming a layer 

of ribbons parallel to (1 1 2) with close contacts formed between a hydrogen atom in the 

2-position of the pyridine ring and the OH group of a neighbouring acid (1-12 ... 01, 2.70 A) 

(Figure 4.4). There are no contacts between the layers in this structure, however, the pyridine 
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rings do lie parallel with each other at a distance of 3.45 A between the planes with the 

molecules horizontally displaced from one another (ring centroid displacement, 1.65 A). 

Figure 4.4: Neighbouring ribbons in isonicotinamide:acetic acid are directly adjacent to one 
another forming a layer of ribbons parallel to (1 1 2). The ribbons interact through close 
contacts between H2 of the pyridine ring and 01 of a neighbouring acid (H2. . .01(2.70 A). 

4.3.3 comparison of isonicotinamide adducts 

Co-crystals of isonicotinamide and carboxylic acids have been studied extensively by 

AakerOy et al. (2002, 2003) and Vishweshwar et al. (2003). The adducts isolated crystallise 

as supermolecules consisting of two isonicotinamide and two acid molecules. These 

structures exhibit 'supermolecular isomerism', which arises by rotation around the 

acid.. . pyridine H-bond. The two possible conformations are exemplified by the formic acid 

and acetic acid co-crystals, and are referred to cis-trans-cis and trans-trans-trans, 

respectively. The first and third positions in this nomenclature refer to the relative orientation 

of the carbonyl groups of the acid and amide; the second position refers to the conformation in 

the R22(8) amide dimer. In a centrosymmetric supermolecule the first and third positions will 

be the same, and the second trans. 

The hydrogen bonding patterns that are present in the adducts are dictated by the 

conformations of the supermolecules. In both the formic and acetic acid derivatives the 

supermolecules are connected into ribbons by NI-I ... 0 hydrogen bonds formed between amide 

and acid moieties of neighbouring supermolecules. Figures 4.1 and 4.3 show that if 

cis-Irans-cis supermolecules are formed the orientation of the amide groups are such that they 
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build R66(26) rings, whereas trans-trans-trans molecules build R66(22) rings. The former 

involve four amide and two acid molecules, while the latter are built from just two of each. 

Figure 4.1 b shows that if the C-H group of the formic acid were to be replaced by a 

C-Me group, the cis-trans-cis arrangement would incur steric repulsion between the methyl 

group and a phenyl ring. The formation of the trans-trans-trans conformer with its larger 

displacement between supermolecules alleviates this steric hindrance, and presumably 

explains why this conformer is observed in the acetic acid co-crystal. 

There are ten examples of isonicotinamide co-crystals with various carboxylic acids that 

crystallise in the same pattern as those observed in this study. These co-crystals use much 

bulkier guest molecules than acetic acid. From the behaviour observed in this study one 

might presume that the trans-trans-trans conformer would be preferred by these larger 

molecules, however this is not the case. The majority of them crystallise as cis-trans-cis 

conformers, but, in general, there is an increase of up to 170  in the amide-phenyl torsion angle 

(N41-C41-C4-0) which lessens the steric hindrance between molecules. As a result the 

stabilising CH. . .0 interaction is lost in all but two of the cis-trans-cis structures; a third 

structure possesses four isonicotinamide molecules in the asymmetric unit where two have 

lost the CH. . .0 interaction. In the formic and acetic acid complexes the torsional angle are 

169.010 and 170.570,  respectively. An example of a cis conformer showing an increase in 

torsional angle is the co-crystal with fumaric acid monoethyl ester (CSD entry LUNNEN, 

Aakeroy et al., 2002). This compound crystallises with a torsional angle of 153.04° along the 

amide-phenyl bond in the cis conformation. Steric effects also work in favour of the 

cis-conformer as in this example. The ethyl moiety of this R-group would possibly incur 

steric repulsion from a pyridine group of an adjacent supermolecule. 

4.3.4 Variable temperature study 

The conventional refinement of the crystal structure of the isonicotinamide:formic acid 

adduct showed that the hydrogen involved in the acid.. .pyridine H-bond was situated closer 

to the nitrogen atom; this model is the one used in the discussion of the structures given 

above. However, proton transfer behaviour has been seen in numerous crystal structures, 

although in most of the compounds studied so far, the donor and acceptor sites are both 

oxygen atoms. Steiner et al. (2001) have studied a co-crystal of pentachlorophenol and 

4-methylpyridine by variable temperature neutron diffraction in which the migration of a 
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hydrogen atom in a N... 0 H-bond occurred; this was the first study of proton migration in a 

heteronuclear H-bond. 

Parkin et al. (2004) have recently shown, in a study of urea:phosphoric acid (which 

contained an 0.. .H. . .0 hydrogen bond), that although neutron diffraction is the method of 

choice for location of hydrogen atom positions, examination of Fourier images from X-ray 

data can show the bonding activity of the hydrogen atom, Le. to which atom the hydrogen is 

bonded during the migration process. The two techniques are therefore complementary, and 

Parkin et al. actually conclude that the Fourier images give a clearer and more realistic 

picture of the hydrogen behaviour in non-standard hydrogen bonds in the X-ray case than a 

refinement of the atomic position A variable temperature study was therefore conducted on 

the isonicotinamide:formic acid adduct to observe whether the proton migrated across the 

Ni . . .01 hydrogen bond with increasing temperature. 

The difference Fourier maps from the variable temperature study are presented in Figure 

4.5 (p93-95). In each of the maps the electron density corresponding to the hydrogen atom 

can be clearly seen. At 100 K the map shows one main peak and a smaller secondary peak 

in the region between the Ni and 01; the main peak situated closer to the nitrogen, the 

smaller peak near the midpoint between the two. This suggests that the proton is disordered 

over two sites at 100 K. As the temperature increases (Figures 4.5b - e) the heights of the two 

peaks become more equal, suggesting that the weighting of the two sites changes with 

temperature. 

There are two possible ways to assess the extent of the hydrogen-atom disorder. A 

qualitative measure can be derived by simply comparing observed peak heights (in ek 3) from 

the Fourier difference maps (Parkin et al., 2004). A more quantitative comparison is obtained 

by refinement of the occupancies of different hydrogen atom sites. The latter was also 

necessary to ascertain whether the minor-weight H-atom position (H21) occupies a central 

position between Ni and 01 (i.e. 01 ...H21 . ..Nl, such as occurred in Steiner's study), or 

whether is becomes attached to 01 (i.e. 01-H21 .. ..N1). In order to make this distinction a 

distance restraint of 0.90(1) A was applied to NI-H1 (hydrogen nearest the nitrogen) and the 

positional parameters for H21 were allowed to refine freely; further details of the refinement 

strategy are given in the Experimental section. 

The Fourier map calculated using the data collected at 100 K showed that the peak nearer 

the nitrogen is 0.19 ek3  higher than the secondary peak, suggesting that the hydrogen is 

situated mainly on the nitrogen (Figure 4.5a). This is supported by the refinement of the 

occupancies of each hydrogen atom site. The occupancy of Hi was refined to be 0.60(3) at 
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100 K. The standard uncertainty of the occupancy of Hi is rather high; a refinement weighted 

towards the data most sensitive to this parameter (Prince, 1994; Parsons, 2004) yielded a 

value of 0.571(18). [Although this procedure is still under development, it has been shown to 

yield improved estimates of the Flack parameter; this is the first occasion that it has been 

applied to occupancies]. 

The hydrogen positions were refined to reasonable distances (NI-HI 0.902(10) A; 
01-H21 0.90(6) A); this shows that the hydrogen atom migrates from Ni to 01, rather than to 

the mid-point between these two atoms. The equilibrium being observed in this study is 

therefore: 

CONH2 	 CONH2 

H 	 + a 	H 	 + 

OH 	 N 	
LJ 

H 

As the temperature is raised to 115 K, the difference in the heights of the two peaks falls 

to 0.09 eA 3  (Figure 4.5b). The reduction in the difference in peak heights implies that the 

occupancies for each site equalise, and this is reflected in the refined occupancies where the 

occupancy of HI has dropped to 0.534(19). 

The two Fourier peaks have very similar heights at 130, 175 K, though at 240 K the peak 

closer to the oxygen (H21) is 0.04 eA 3  bigger than the peak nearer the nitrogen (Hl)(Figures 

4.5c-e). This suggests that as the temperature increases the site attached to 01 becomes 

slightly favoured. This view is supported by the refined occupancies; at 175 and 240 K the 

occupancies are essentially the same at ca 0.4. 

In aqueous solution the equilibrium constant for the reaction above can be estimated to 

be 0.66 [ = Ka(HC00H)/Ka(isonicotinamideH)], which suggests that the occupancy of Hi 

should be near 0.45. This is not significantly different from the limiting value obtained 

crystallographically. 

This is only the second example of a system where hydrogen-atom migration occurs 

between two heteroatoms; the first example occurred in pentachlorophenol:4-methylpyridine 

(Steiner et al., 2001). In that study only one Fourier peak corresponding to the H-atom 

position was observed under all conditions; the hydrogen bond could be classified as 'strong', 

with the H-atom residing at approximately the mid-point between the N and 0 atoms. At low 
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temperature the centre of gravity of the H-atom position was displaced slightly from the 

middle of the N... 0 vector toward the nitrogen; at higher temperature the position was 

displaced towards the oxygen. Similar behaviour was observed in urea:phosphoric acid using 

X-ray and neutron methods by Parkin et al. (2004). The hydrogen bond in 

isonicotinamide:formic acid is unsymmetrical, and this feature is more characteristic of 

medium-strength H-bonds. Accordingly, in our study at all temperatures two distinct peaks 

are present in the difference Fourier maps giving a clear sign of migration from one position, 

primarily bonded to nitrogen, to an alternative, primarily bonded to oxygen. These two 

positions are energetically similar, and at no stage was a fully ordered structure obtained. 

However, this is the first time that migration has been observed in an unsymmetrical 

heteroatomic H-bonded system. 

Although we have been able to refine the occupancies of the hydrogen atom sites it has 

yet to be seen whether these correspond to those obtained by a more accurate method such as 

neutron diffraction. Neutron diffraction is necessary here in order to characterise this process 

more precisely, and beam-time on station SXD at ISIS has recently been granted for this 

study. The same experiment will enable the behaviour at temperatures far below those 

accessible in this work to be investigated. 
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e) 

Figure 4.5: Difference Fourier maps (coefficients F0  - F) of isonicotinamide:formic acid 
adduct obtained at temperatures of (from top) a) 100 K, b) 115 K, c) 130 K, a) 175 K, 
e) 240 K. The maps are calculated on a plane though atoms C2, C6, NI and 01. The contour 
levels for each temperature are, 100 K & 240 K, 0.28 ek 3 ; 115 K & 130 K, 0.24 eA 3; 175 K, 
0.20 e 3 . 
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5.1 Introduction 

In 1999 and 2001, the Cambridge Crystallographic Data Centre held two blind tests of 

crystal structure prediction (CSP 1999, Lommerse et al., 2000 & CSP2001, Motherwell et al. 

2002). The aim of these projects was to test how well currently available methods of crystal 

structure prediction perform when given only the atomic connectivity for an organic 

compound. Several groups active in the field of crystal structure prediction attempted to 

predict the crystal structures of compounds of varying size and flexibility. The crystal 

structures were all previously unpublished, contained less than 40 atoms and crystallised in a 

common space group with Z' = 1. All predictions were carried out assuming ambient pressure 

conditions. The results of the tests showed that rigid molecules are most amenable to crystal 

structure prediction, the authors concluding that, 'Crystal structure prediction, although beset 

by fundamental and technical difficulties, is no longer scandalously hopeless.' 

Most of the subjects used for the crystal structure prediction blind tests had only been 

characterised in one polymorphic form, though it is well-known that many organic systems 

may crystallise as different polymorphs under different conditions. The observed structures 

were thus not guaranteed to be the most thermodynamically stable. This must have relevance 

with regard to the predictability of their crystal structures, as most prediction methodologies 

aim to locate the global minimum in lattice energy as the most probable crystal structure. A 

frequent observation in crystal structure prediction studies is that there are many possible 

crystal structures within a small energy range of the global minimum in lattice energy 

(CSP 1999 & CSP2001). While the calculations usually locate many more potential 

polymorphs than are likely to ever be observed, it seems likely that some of the previously 

unobserved structures from these studies should be accessible through changes in the 

crystallisation conditions. 

Previous results from this laboratory have shown that high-pressure (0.1 - 10 GPa) is a 

powerful means for investigating polymorphism in organic systems, for example, new high-

pressure phases in alcohols (Allan et al., 1998, Allan & Clark, 1999, Allan et al., 2001, Allan 

et al., 2002), carboxylic acids (Allan & Clark, 1999, Allan et al., 2000), acetone (Allan et al., 

1999), and, very recently, glycine (Dawson et al., 2004b) and serine (Moggach et al., 2004) 

have all been characterised. The area is still relatively underdeveloped, however, and 

systematic trends are still emerging. 

Computational studies of isolated molecules have had an enormous influence on the 

development of structural chemistry, and it is thus of great interest to test the effectiveness of 
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computational approaches to the prediction of high-pressure crystal structures. It is not 

immediately obvious, for example, that potentials developed for ambient pressure predictions 

should be of any use at high-pressure. High-pressure phases have higher densities than their 

ambient-pressure counterparts, and, since there is often a reasonable variation of densities 

amongst the lowest energy predicted structures for a given molecule (Beyer et al., 2001; 

Anghel et al., 2002), the application of pressure could reorder their thermodynamic stability. 

Thus, it seems possible that, the highest density predicted crystal structures could in fact be 

accessible at high-pressure. 

The compounds selected for our first investigation to test this idea were the 

mono-halophenols. Crystal structures in this series have only been lightly investigated: 

4-Chiorophenol was studied by Perrin & Michel (1973a, b) and shown to exist in two 

polymorphic forms. However, these systems are ideal for structure prediction tests because 

the molecules are small and rigid. The compounds are mostly liquids under ambient pressure, 

and so in situ crystal growth by application of pressure can yield new polymorphs directly, 

avoiding the complications, which can arise by applying pressure to a solid sample. They are 

also a good test of the two major aspects of prediction methodologies: the location of all 

possible crystal structures and the calculation of their relative energies. Results of the latest 

crystal structure prediction blind test (Day et al., 2004a) highlighted the prediction of 

structures with Z'> 1 as a major challenge for the search methodologies. Monoalcohols have 

a tendency to crystallise with more than one molecule in the asymmetric unit, so a complete 

search for structures must include Z'> 1. Furthermore, the strong orientational dependence of 

close contacts with halogen atoms presents problems for atomistic calculations and their 

presence tests the quality of inter-atomic potentials that have recently been developed for 

these atoms. 

In this Chapter we describe the crystal structures of two halophenols, 2-chiorophenol 

and 4-fluorophenol, that exhibit pressure induced polymorphism and also describe the results 

of crystal structure prediction calculations on the two systems. The intra-molecular structures 

of 2-chiorophenol and 4-fluorophenol as derived at low-temperature are illustrated in Scheme 

5. 1, which also shows the atomic numbering scheme used. 
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Scheme 5.1: Conventional structure diagram and numbering scheme for 2-chiorophenol 
(Left), 4-fluorophenol at low temperature (Centre) and 4-fluorophenol at high-pressure 
(Right). The high-pressure crystal structure is disordered over an inversion centre hence those 
atoms augmented by an A are generated by inversion symmetry. 

5.2 Experimental 

5.2.1 General Procedures 

2-Chiorophenol and 4-fluorophenol were obtained from Sigma-Aldrich and used as 

received. 

X-ray diffraction intensities were collected with Mo-Ka radiation on a Bruker SMART 

APEX CCD diffractometer equipped with an Oxford Cryosystems low-temperature device 

(Cosier & Glazer, 1986) and an OHCD laser-assisted crystal growth device. 

5.2.2 Crystal Growth at Ambient Pressure 

2-Chlorophenol (m.pr. 280 K) was drawn into a glass capillary (o.d. 0.52 mm) and 

flame-sealed. The sample was mounted on the diffractometer, and a polycrystalline mass 

obtained by freezing the sample at 273 K. A crystal was grown using the laser-assisted zone-

refinement procedure of Boese and Nussbaumer (1992). 

Colourless crystals were grown from a saturated solution of 4-fluorophenol (m.pt. 

321 K) in ethanol at 277 K. 

5.2.3 Crystal Structure Determination ofAmbient Pressure Phases 

Diffraction data were collected for 2-chlorophenol at 100 K and for 4-fluorophenol at 

150 K. Data collection and integration were carried out using the programs SMART (Bruker - 
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Nonius, 2001) and SAINT (Bruker-Nonius, 2003). The diffraction data were corrected for 

absorption and other systematic errors using the multiscan procedure SADABS (Sheidrick, 

2004, based on the procedure described by Blessing, 1995). The structure was solved by 

direct methods (S1R92, Altomare et al., 1993) and refined by full-matrix least squares against 

F2  using all data (CRYSTALS, Betteridge et at., 2003). H-atoms were placed on C-atoms in 

calculated positions and allowed to ride on their parent atoms. Hydroxyl hydrogen atoms 

were located in difference maps and refined with a distance restraint of 0.85 A to the parent 

oxygen. All non-H atoms were modelled with anisotropic displacement parameters. In the 

case of 2-chlorophenol the value of the Flack parameter [0.00(3); Flack, 1983] verified the 

correct assignment of the absolute structure. Data collection and refinement statistics are 

collected in Table 5.1. We refer to the low-temperature phases as 2-chlorophenol-I and 

4-fluorophenol-I. 

5.2.4 Crystal Growth at High-pressure 

Pressure was applied to the samples using a Merrill-Bassett diamond anvil cell (DAC) 

equipped with 600 pm culets, a tungsten gasket with a 300 jnn hole, beryllium backing disks 

and a chip of ruby for pressure measurement (Merrill & Bassett, 1974). Pressures were 

measured by the ruby-fluorescence method by excitation with a 632.817 rim line from a 

He-Ne laser using a Jobin-Yvon LabRam 300 Raman spectrometer. 

2-Chiorophenol and 4-fluorophenol were loaded into the Merrill-Bassett cell as liquids. 

In the case of 4-fluorophenol, both the sample and the cell were heated with a hot-air gun 

before loading to prevent crystallisation at ambient temperature. In each case, the cell was 

closed, and pressure was applied until a polycrystalline mass was produced; the temperature 

of the cell was increased using a hot-air gun until a single crystallite remained. Slow cooling 

to ambient temperature yielded a single crystal that filled the entire gasket hole. 

Crystallisation was monitored visually using a polarising microscope. The crystallisation 

pressures were 0.12 GPa for 2-chlorophenol and 0.28 GPa for 4-fluorophenol. 

5.2.5 Structure Determinations of 2-Chiorophenol and 4-F7uorophenol at High-pressure 

Data were collected with the cell mounted in two different orientations for 

2-chlorophenol but only one for 4-fluorophenol; the diffraction pattern was indexed with the 

program GEMINI (Sparks, 2000). Data integration (to 20 = 45°) was performed using 
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SAINT with dynamic masking to account for the shading from the DAC steel body 

(ECLIPSE, Parsons, 2004a). The program SHADE (Parsons, 2004b) was used to take 

account of absorption effects of the pressure cell; further systematic errors were treated using 

SADABS before merging in SORTAV (Blessing, 1997). More detailed data collection and 

processing procedures used in our laboratory have been described by Dawson et al. (2004a). 

Indexing the diffraction patterns showed that the phases obtained at high-pressure were 

different from those obtained on cooling. We refer to the high-pressure phases as 

2-chloropheno 1-fl and 4-fluoropheno 1-Il. 

High-pressure data sets obtained by applying DAC techniques to crystals in low-

symmetry crystal systems have a low completeness because of shading by the cell-body. This 

is exacerbated if a crystal happens to grow in an unfavourable orientation inside the cell, and 

there is very little that can be done to control this. In the case of 2-chlorophenol the 

completeness obtained was just 37%, and this meant that structure solution by direct methods 

failed to yield a recognisable solution, while Patterson methods were frustrated by the 

elongation of the peaks in the direction most affected by pressure-cell shading. This is a 

common problem with high-pressure data, but fortunately the problem may be overcome by 

using global optimisation methods originally devised for structure solution from powder 

diffraction data (Shankland & David, 2002). The structure of phase-11 of 2-chiorophenol was 

solved using the simulated annealing procedure in the program TOPAS (Bruker-Nonius, 

2004). The structure was refined by full-matrix least-squares against F 2  (CRYSTALS). Free 

refinement of the positional parameters of the non-H atoms yielded carbon-carbon bond 

lengths varying from 1.34-1.40 A. The phenyl ring was therefore constrained to be a rigid 

hexagon. H-atoms were placed on C-atoms in calculated positions and allowed to ride on 

their parent atoms. The hydroxyl hydrogen atom, which is involved in H-bonding, was 

located in a difference map; its position was initially refined subject to distance and angular 

restraints, but later fixed. Only the oxygen and fluorine atoms were modelled with anisotropic 

displacement parameters, these being subject to rigid body and rigid bond restraints. The final 

R-factor calculated on F for data with Fa(I) > 2.0 was 6.79%. 

The structure of 4-fluorophenol-I1 was solved by direct methods (SIR-92). The 

molecule occupies an inversion centre with the oxygen and fluorine disordered. The structure 

was refined by similar procedure to those described above. All non-H atoms were modelled 

with anisotropic displacement parameters that were subject to displacement parameter 

restraints. The carbon-carbon bonds lengths are slightly shorter than is expected, possibly 

because of librational motion of the ring. The displacement parameter for C3 is slightly 
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elongated along the bond, which supports this hypothesis. The final R-factor calculated on F 

for data with JIa(1)> 2.0 was 10.60%. Final data collection and refinement statistics are 

collected in Table 5.1. A table of hydrogen-bonding parameters for 2-chlorophenol and 

4-fluorophenol is shown in Table 5.2. 

Compound 2-Chlorophenol-I 2-Chiorophenol-H 4-Fluorophenol-I 4-Flüorophenol-H 

T/P 100KIOGPa R.T/0.12GPa 150K/OGPa R.T/0.28GPa 

Formula C6H6C1O C6H6CIO C6H6FO C61716FO 

Weight 128.56 128.56 112.10 112.10 

Radiation Mo-Ka Mo-Ka Mo-Ka Mo-Ka 

Crystal system Trigonal Monoclinic Trigonal Monoclinic 

Space Group P32  P211n 112 1 1c 

a/A 16.0721(8) 6.4638(12) 22.620(2) 6.2807(7) 

b/A 16.0721(8) 4.9086(4) 22.620(2) 5.7241(9) 

c/A 5.8959(6) 18.131(3) 5.5690(11) 7.7982(12) 

a!0  90 90 90 90 

0/0  90 98.111(13) 90 106.060(11) 

120 90 120 90 

Volume/A3  1318.94(16) 569.49(15) 2467.8(6) 269.41(7) 

No. reflections for 
8931 cell  539 1550 268 

29(°) 57.87 52.79 57.86 46.43 

Z 9 4 18 2 

Dc (Mg/m') 1.457 1.499 1.358 1.382 

0.534 0.550 0.114 0.166 

Reflections 
collected 11871 3522 5190 764 

Unique [Rmt] 3897[0.0261 400[0.087] 1349[0.0191  197[0.032] 

No. I>2cy 3738 249 955 132 

T/ T 0.44/0.76 0.58/0.91 0.97/0.98 0.62/0.97 

Parameters 227 31 76 29 

R 1  [F4a(F)] 0.0274 0.0679 0.0469 0.1060 

wR2  (Fe , all data) 0.0704 0.1484 0.0903 0.3259 

S 0.9947 1.0517 1.1435 1.3200 

Ap/ ek3) 0.27 0.34 0.48 0.39 

Apmi,, I ek3  -0.24 -0.30 -0.40 -0.17 

Table 5.1: Crystallographic data for 2-chlorophenol and 4-fluorophenol at both ambient and 
high-pressure. 
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Compound Donor Acceptor 
H-bond distances (A) 

Low temperature High-pressure 

2-Chlorophenol-I 

071 071' 2.754(2) - 

072 072 2.748(1) - 

073 073" 2.762(2) - 

H42 C181Iv 2.89 - 

H52 C181" 2.94 - 

H43 CI82 2.88 - 

H53 C182 2.81 - 

2-Chiorophenol-1I 
07 07" - 2.809(11) 

H3 C18"' - 2.98 

4-Fluorophenol-I 

07 07 2.650(1) - 

H2 F8x 2.57 - 

H5 F8"' 2.65 - 

4-Fluorophenol-I1 07 07'6 ' - 3.017(4) 

Symmetry Operators: 

Vii 

Viii 

ix 

x 

xi 

xii 

-
y, x-y, z-113 

ii 	I -y,  x-y, z-1/3 

iii 	-y, x-y-1, z-113 

iv 	-x+y, -x, 113+z 

V 	-x+y, -x, z-213 

Vi 	l -y, x-y, 213+z 

3/2-x, y- 1/2, '/2-z 

2-x, -y, -z 

I+y, 1-x+y, 2-z 

413-y,  x-y-113, 2/3+z 

5/3-i, 1/3-y, 113-z 

-x-1,y-112, -z-1/2 

Table 5.2: Table of Hydrogen bonding parameters. The H-bonding distances are from donor 
to acceptor due to the imprecise determination of hydrogen atom positions. Low temperature 
datasets were taken at 100 K and 150 K for 2-chiorophenol and 4-fluorophenol, respectively. 
The high-pressure datasets were collected at room temperature. 

5.2.6 Inter-conversion of 4-fluorophenol-I and II. 

The high melting-point of 4-fluorophenol (321 K) in principle means that crystals 

formed at high-pressure may be recoverable at ambient pressure without the sample melting. 

In the event an attempt to release the pressure on the sample of 4-fluorophenol transformed 

the crystal into a polycrystalline mass, suggesting that the solid underwent a destructive phase 

transition, presumably to the ambient pressure phase. 
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A single crystal of 4-fluorophenol (prepared as described above) was loaded into the 

Merrill-Bassett cell with paraffin as a hydrostatic medium. Pressure (1.7 GPa) was applied, 

and data collected as described above. The sample indexed on phase-I of 4-fluorophenol 

though the diffraction data were very weak; the structure of phase-I refined to RI = 8.9% 

based on 146 data out of 346 with I> 2o(J). The appearance of the crystal changed overnight 

from being transparent to having regions where the crystal had become opaque, suggesting 

that the sample was becoming polycrystalline. The Raman spectrum of the polycrystalline 

material showed a band with a shoulder at 847 cm -1  (Figure 5.1). The Raman spectrum of 

phase-I contains a prominent doublet in this region, whereas that of phase-11 consists of one 

strong peak with a smaller peak to high frequency. On this basis it is possible that the 

polycrystalline material is 4-fluorophenol-I1, though this is a rather tentative conclusion. 

Wavelength (cm') 

Figure 5.1: Raman spectra of 4-fluorophenol under various conditions; ambient pressure (blue 
line); 4-fluorophenol (phase-1) compressed to 1.7 GPa (red line); 4-fluorophenol (phase-11) 
grown from the melt at 0.36 GPa (pink line). 

Intriguingly, on release of pressure, the crystal became transparent and was identified as 

a single crystal of 4-fluorophenol-I (by single crystal diffraction methods). The behaviour 

described above was reproducible for the same sample. Increasing the pressure on the single 

crystal resulted in growth of polycrystalline regions; release of pressure returned the crystal to 

its original condition. 
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5.2.7 Software and other general crystallographic procedures 

The structures were visualised using SHELXTL (Sheidrick, 2001) or MERCURY 

(Bruno et al., 2002); the figures were produced using CAMERON (Watkin et al., 1993). 

Other analysis utilised the p.c. version of PLATON (Spek, 2002; Farrugia, 1999). Searches of 

the Cambridge Structural Database (CSD) were carried out with the program CONQUEST, 

utilising version 5.25 of the database (Allen, 2002; Allen & Motherwell, 2002). 

Crystallographic information files for all structures reported here are available on the CD at 

the back of this Thesis. 

5.2.8 Computational Details 

Note: The work described in this section was carried out by Dr Graeme Day of the Pfizer 

Institute. University of Cambridge. The section is included here for the sake of completeness. 

The crystal structure prediction part of this study was performed separately from the 

experimental crystallisations. In keeping the prediction "blind" from the experimental results, 

the only information about the observed crystals known in advance of the computational work 

was that two forms were isolated for each molecule, all crystallising with three or fewer 

molecules in the asymmetric unit. As the choice of space groups is crucial for the success of 

crystal structure prediction, it was also revealed that at least one form crystallises in a trigonal 

space group. Searches were performed for low energy crystal structures of 2-chiorophenol and 

4-fluorophenol using the simulated annealing search method (Karfunkel & Gdanitz, 1992; 

Karfunkel et al., 1994; Verwer & Leusen, 1998) implemented in the Cerius2 modelling 

package. Planar, rigid molecular structures were used throughout the modelling. Two planar 

conformations of the 2-chlorophenol molecule are possible, so the CSD was searched for 

structures with neighbouring hydroxyl and chioro- substituents on aromatic rings. In almost 

all cases where hydrogen positions are reported, the hydroxyl hydrogen points away from the 

chlorine atom; we therefore assumed the chiorophenol conformation with hydroxyl pointing 

away from the chlorine atom. Molecular structures were taken from density functional theory 

optimisations, using the VWN-BP functional (Vosko et al., 1980; Becke, 1988; Perdew & 

Wang, 1992) and the DNP numerical basis set (Delley, 1990) within the program DMoI3. 

The initial searches for low energy crystal structures were performed using the exp-6 

model potential parameters for C, H, and 0 fitted to hydrocarbons (Williams, 1999) and 

oxohydrocarbons (Williams, 2001), and parameters for chlorine and fluorine fitted to 
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perchiorohydrocarbons (Hsu & Williams, 1980) and perfluorohydrocarbons (Williams & 

Houpt, 1986). For this model, all C-H and 0-H bonds were foreshortened by 0.1 A, moving 

the interaction site for hydrogen atoms away from the nucleus, towards the true maximum in 

charge density. For both molecules, the electrostatics were modelled by atomic charges fitted 

to the quantum chemically calculated (DFT) electrostatic potential. This exp-6 + atomic 

charge model is limited by the assumption that the interaction between atoms is independent 

of orientation. This isotropic atom approximation can seriously limit the accuracy of crystal 

structure modelling, especially for the electrostatic interactions in hydrogen bonding crystals 

and the close contacts with halogen atoms. Hence, for final lattice energy minimisations, we 

replaced the atomic point charges with an atomic multipole model, calculated from a DFT 

wavefunction using the 133P91 functional and 6-3 1G(d,p) basis set. This calculation was 

performed within the program CADPAC (Amos et al., 1995) and multipoles, up to 

hexadecapole (Le. charge, dipole, quadrupole, octupole, and hexadecapole) were derived 

using a distributed multipole analysis (Stone, 1981; Stone & Alderton, 1985). 

In the final energy minimisations of the predicted 4-fluorophenol structures, we kept the 

spherical atom exp-6 model used in the initial search. However, including anisotropy in the 

repulsive wall around chlorine atoms appears to be crucially important for modelling crystals 

of chlorinated molecules (Munowitz et al., 1977; Day & Price, 2003). We therefore used a 

more elaborate model for the repulsion and dispersion interactions in the final energy 

minimisations of 2-chiorophenol crystal structures. Recent advances in models for 

intermolecular interactions involving chlorine atoms have led to successful crystal structure 

predictions for other chlorinated aromatic molecules (Day & Price, 2003; Tremayne et al., 

2004), so we adapted a non-empirical model potential originally derived for chlorobenzenes 

(Day & Price, 2003). The model has the exp-6 form for repulsion and dispersion interactions, 

allowing for anisotropy in the repulsive wall through an orientation-dependent term in the 

exponential: 

" 
= >2 [A" exp(—a'K[RIk - p()])_C/ / 

ik 

 +Ue,U' (DMA,Qik ,Rj",n :!~ 5 

(1) 
R 

p"'(c~)=p( . Rk)+PI  (—zk .R Ik )±P2 (3[Z I  .RIk] _0/2 +P'(3[k . RIk] 	 2 	(2) 
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Here, Rjk is the distance between atoms i and k, of type z and ç in molecules M and N 

R"Ik is the corresponding unit vector and z"k is the unit vector along the atomic z-axis. The 

atomic axes for this model are shown in Scheme 5.2. 

NZ H 

x 
/ (X=HorCI) 

Scheme 5.2: Atomic axes used in the anisotropic repulsion model. 

For carbon, chlorine and the hydrogen atoms bonded to carbon, parameters were taken 

directly from Day & Price (2003) and parameters for oxygen and the hydroxyl hydrogen were 

empirically fitted to reproduce the known crystal structures and sublimation enthalpies of a set 

of similar molecules: resorcinol, 3,4-dichlorophenol, 3,5-dichiorophenol and 

tetrachiorohydroquinone. No anisotropy was used for the repulsion on oxygen atoms, while 

the pj  coefficients from Hc hydrogen atoms were transferred to the hydroxyl hydrogen. This 

anisotropic term accounts for the shift of electron density away from the nucleus on hydrogen 

atoms and has a similar effect to the X-H bond foreshortening that was used with the isotropic 

exp-6 model. The final parameters are given in Table 5.3. 
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Atom types AtK 

Id mol' 

B 1' 

A 

C6tK  

A6  kJ moF' 

Pi 

A 

P1K 

A 

P2 
I 

A 

P2   

A K 

ci ci 569746 3.3427 8366.9 +0.0156 +0.0156 -0.0939 -0.0939 

C0 C0 28957 3.2131 2146.4 -0.2054 -0.2054 -0.3109 -0.3109 

C0 C0 107333 3.1936 2146.4 -0.0026 -0.0026 +0.0419 +0.0419 

0 0 - 	 94728 3.4600 1221.8 0.0 0.0 0.0 0.0 

Hc  FL 2220 3.2575 200.0 -0.0449 -0.0449 +0.0036 +0.0036 

H0  H0  673 3.6900 15.1 -0.0449 -0.0449 0.0 0.0 

Cl CC] 277307 3.5474 4234.3 +0.0156 0.2054 -0.0939 -0.3109 

CI Cwo 219400 3.2465 4234.3 +0.0156 -0.0026 -0.0939 +0.0419 

Ci 0 232316 3.4014 3176.5 +0.0156 0.0 -0.0939 0.0 

Cl I-Ic 30829 3.2597 1293.1 +0.0156 -0.0449 -0.0939 +0.0036 

Cl H0  19575 3.5163 355.6 +0.0156 -0.0449 -0.0939 0.0 

Cc, CH 61374 3.2443 2146.4 -0.2054 -0.0026 -0.3109 ±0.0419 

CO 0 52378 3.3365 1608.9 -0.2054 0.0 -0.3109 0.0 

C0 0 100838 3.3268 1608.9 -0.0026 0.0 +0.0419 0.0 

CO H1, 11254 3.3709 653.7 -0.2054 0.0449 -0.3109 +0.0036 

CO Ho 4413 3.4515 180.1 -0.2054 0.0449 -0.3109 0.0 

Cwo I-Ic 16950 3.2654 653.7 -0.0026 -0.0449 +0.0419 ±0.0036 

Co Ho 8497 3.4418 180.1 -0.0026 -0.0449 +0.0419 0.0 

Bc Ho 1222 3.4738 55.0 -0.0449 0.0449 +0.0036 0.0 

Table 5.3. Final parameters of the 2-chlorophenol model potential. Cci  is a carbon bonded to 
chlorine, Co is a carbon bonded to hydrogen or oxygen. Hc is a hydrogen bonded to carbon, 
Ho is a hydroxyl hydrogen. Atomic z-axes are defined along the bonds pointing out from the 
aromatic ring (Scheme 5.2). 

In most crystal structure prediction studies, it is common to search only the most 

common space groups; approximately 95% of homomolecular organic crystal structures are 

found in fewer than 10 space groups. In this work, we knew in advance that one of the 

polymorphs of 2-chlorophenol crystallises in a trigonal space group. Therefore, in addition to 

the most common space groups for organic molecular crystals, the most common trigonal 
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space groups were also searched (Table 5.4). Furthermore, we did not limit our search to 

having one molecule in the asymmetric unit; monoalcohols sometimes crystallise with Z'> 1 

to optimise their hydrogen bonding, so we searched for crystals with one, two and three 

molecules in the asymmetric unit. The computing time was only available to repeat the 

simulated annealing search 4 times for each of these space group / Z' combinations. Four 

repeats usually results in a complete search in Z' = 1 (Day et al., 2004b), but we risk missing 

some low energy structures with Z' =2 and 3. 

Most common space groups searched Trigonal space groups searched 

Z'= 1 P211c, PT, P2 1 2 1 21, P21, C2/c, Pbca, F, P3 1 21 (P3221), R, P3, P31 (P32), R3, 

Pnma, Pna21, Pbcn R3c 

Z'= 2 P21 1c, PI, P2 1 2 1 21, P21, C21c, P1 P, P31 21 (P3221), R, P3, P3 1  (P32), R3, 

R3c 

Z'= 3 P2Ic, PI, P2 1 2121, P21, 621c, P1 F, P3121 (P3221), R, P3, P31 (P32), R3, 

R3c 

Table 5.4. Space groups searched during crystal structure prediction calculations. 

All structures within 15 U mor' of the global minimum from the search with the simple 

model potential were then re-minimised using the more elaborate anisotropic model within the 

program DMAREL (Willock et al., 1995; Price et al., 2001). Ewald summation was used for 

charge-charge, charge-dipole and dipole-dipole interactions, while all higher order 

electrostatic terms (up to R 5) and the exp-6 interactions were summed to a 15 A cutoff 

between molecular centres of mass. All structures were energy minimised using symmetry 

constraints, then tested for stability by calculating (k = 0) phonon frequencies and the elastic 

stiffness matrix. Any structures with instabilities were pushed away from saddle points and 

re-minimised with all symmetry constraints removed. The final energy minimised structures 

were clustered using the COMPACK program (Chisholm & Motherwell, 2004) to remove 

repeats of identical structures. 

5.3 Results 

The intra-molecular structures of 2-chlorophenol and 4-fluorophenol as derived at 

low-temperature are illustrated in Scheme 5. 1, which also shows the atomic numbering 
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scheme used. Pressures of a few tenths of a GPa are unlikely to affect intramolecular 

geometry significantly, and intramolecular distances and angles in the refinements of the 

high-pressure structures were restrained to be equal to those observed at low-temperature. 

This is often necessary in high-pressure work to control the effects of low data completeness, 

and it means that comparison of intramolecular geometry at high and ambient pressures is not 

possible. It is the effect of pressure on intermolecular geometry and crystal packing which we 

address in this Chapter. 

5.3.1 2-Chiorophenol at 100 K 

Phase-I of 2-chlorophenol crystallises at low-temperature in the trigonal space group 

P32 with three molecules in the asymmetric unit; in the accompanying tables these molecules 

are numbered C11-081, C12-C182, C13-C183, and are referred to as molecules 1, 2 and 3 

below. The bond distances and angles are normal, and do not differ between the components 

of the asymmetric unit. The molecules interact via . .OH. .OH.. H-bonds to form helices 

disposed about crystallographic 32  screw-axes, conforming to a C(2) graph set (Bernstein et 

al., 1995)(Figure 5.2). Each helix is composed of crystallographically equivalent molecules. 

All the hydrogen bonds are of similar strength: the distances 07x...  07x' measure 2.754(2), 

2.748(1) and 2.762(2) A for x = 1, 2 and 3 respectively. 

H... Cl contacts are formed between the helices composed of molecules 1 and 2 and 2 

and 3; there are no contacts between molecules 1 and 3. In each case the chlorine of one helix 

interacts with two hydrogen atoms from the other helix. The contact distances (A) are: 

Cl(81) ... H(42) 2.89 and Cl(8l) ... H(52) 2.94; Cl(82) ... H(43) 2.88 and Cl(82) .. . H(53) 

2.81 A. The sum of the van der Waals radii of H and Cl is 2.95 A, though this has been 

criticised as a criterion for assessing the importance of hydrogen bonds (Steiner, 2002). 

Figure 5.2 shows the hydrogen bonding and close contacts in the structure, but, for clarity, 

only the shortest contact between two groups has been labelled. 
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Figure 5.2: Crystal structure of 2-chiorophenol at ambient pressure and 100 K. Helices are 
formed about 3 2 axes by OH.. .OH hydrogen bond formation. The helices are linked through 
close contacts between the chlorine atom of one chain and two hydrogen atoms of the next. 
Only the shortest H... Cl contacts are labelled for the sake of clarity. Colour scheme: C green, 
Cl light green, H white, 0 red, the same scheme is used in Figures 5.3. 

5.3.2 2-(hiorophenol at 0.12 GPa 

Phase-I! of 2-chlorophenol was obtained on crystallisation from the liquid at 0.12 GPa. 

The structure crystallises in space group P21 1n with one molecule in the asymmetric unit. As 

in phase-I, the molecules interact via . . OH.. OH.. hydrogen bonds, forming C(2) chains, but by 

contrast to phase-I, where helices were formed, these chains zig-zag about a 2 1  screw axis 

(Figure 5.3a). The hydrogen bond connecting the equivalent molecules is actually slightly 

longer than in phase-I [07...O7' measures 2.809(11) A versus 2.748(1) - 2.762(2) A in 

phase-I]. The distance between the ring centroids of neighbouring molecules within a chain 

decreases from 5.90 A in phase-I to 4.91A in phase-H. The elongation of the H-bond in 

phase-11 relative to phase-I may therefore reflect relief of the steric interaction between the 

phenyl groups in this arrangement. 

The H-bonded chains are connected across inversion centres by pairs of weak 

C3-H3...C18 interactions measuring 2.98 A (the sum of the van der Waals radii of H and Cl is 
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2.95 A). Similar 'dimer-like' interactions have been observed by Thalladi etal. (1998) in the 

fluorobenzenes. 

b 	 Oa 

Figure 5 .3a: The crystal structure of 2-chiorophenol at 0.1 2GPa. The application of pressure 
has changed the behaviour of the chiorophenyl substituent to that of a small group, allowing 
chains to be formed where molecules are related by a 2 1 -screw axis. Weak H... Cl 'dimer' 
interactions are shown between the chains. 

In the structure, the chains lie along the b-direction at c = '/4 and 3/4 and are aligned 

parallel to one another in the (1 0 3) planes. When the structure is viewed parallel to this, an 

A-B-A-B layer structure is observed where regions of chlorine and oxygen atoms are 

separated by the regions of carbon and hydrogen sites (Figure 5.3b). 
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Er C Q±ric) 

Figure 5.3b: The ribbons (circled) lie parallel to one another over the (1 0 3) planes. This 
diagram shows the separation of regions of 'organic' structure by chlorine and oxygen atoms. 

5.3.3 4-Fluoropheno! at 150 K 

4-Fluorophenol is solid at ambient temperatures and pressures and crystallises in space 

group ,??3 with one molecule in the asymmetric unit. Six molecules interact via . . OH. OH.. 

H-bonds forming an R66(12) ring motif disposed about a 1 special position. The 

six-membered hydrogen-bonded R66(12) rings are connected together through F.. .H 

interactions between H2. . . F8 (2.57 A) and H5. . .F8 (2.65 A). The fluorine in this structure 

thus acts as bifurcated acceptor for weak CH. . . F interactions. The contact to H5 forms a 

dimer, which is a motif common in fluorinated benzenes (Thalladi etal., 1998) (Figure 5.4). 

The 01-I... OH hydrogen bond at 150 K structure is the shortest to be observed in any of 

the monohalophenols with an 0. . .0 separation of 2.650(1) A, and we speculated that we 

might be able to induce a phase transition by applying pressure to a single crystal of phase-I 

grown ex situ. Though no phase transition was observed up to 1.7 GPa, the crystal of 

4-fluorophenol developed regions of polycrystaHinity over the course of two days, which 

suggests that the crystal was undergoing a phase transition. When the pressure was released 

on this sample the polycrystalline regions disappeared to produce single crystal of 

4-fluorophenol. This crystal was subsequently identified as phase-I. This process was 

reproducible in that on application of pressure the crystal became polycrystalline and with the 

release of pressure it reverted back to the single crystal. 
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Figure 5.4: Crystal structure of 4-fluorophenol at 150 K viewed down the c-axis. 
4-Fluorophenol crystallises around a 1 special position. This type of molecular packing 
allows close interaction of the hydroxyl groups to form strong hydrogen bonds. The discrete 
hydrogen bonded motifs are connected through a dimer interaction between H5. .F8 (Thalladi 
el al., 1998). Colour scheme: C green, F light green, H white, 0 red; the same scheme is used 
in Figures 5.5. 

The unit cell dimensions showed a significant contraction along the a-direction but not 

along the c-direction. The contraction of the a- and b-axes pushes the H-bonded groups 

disposed about the 1 site closer together. The c-direction corresponds to a very short axis 

perpendicular to the H-bonded rings, so any contraction along this direction would severely 

disrupt the conformation of the six-member hydrogen-bonded rings. 
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5.3.4 4-Fluorophenol at 0.28 GPa 

Growth of a crystal of 4-fluorophenol at 0.28 GPa yields another polymorph. The new 

polymorph crystallises in space group P2 1 1c with half  molecule in the asymmetric unit. The 

molecule is disordered over an inversion centre. 

The molecules are connected into a chain; the contact involved is presumably 

OH.. . OH, as OH... F is unlikely to be energetically competitive. The chains interact via F... F 

contacts to form layers (Figure 5.5). Support for this view comes from the optimised 

(ordered) structure obtained during the crystal structure prediction study (see below). The 

hydrogen bonding in this structure appears to be rather long with an 07.. .07' distance of 

3.017(4) A. This relatively long distance is likely to be the result of the disorder, which 

averages OH.. .0(H) and F... F distances. A search of the CSD for OH ... O(H) and 

C(ar).-F. . . F-C(ar) contacts show that the mean distance for 0. . .0 and F... F contacts are 

2.78(9) and 3.1(2) A, respectively; the average of these values is 2.94 A. 

° c 	 b 

Figure 5.5: Crystal structure of 4-fluorophenol at 0.28 GPa viewed down the c-axis. The 
4-fluorophenol molecule sits on an inversion and is disordered about it. The orientation of the 
molecules has been fixed here for clarity. Pressure alters the behaviour of the fluorophenyl 
group to act like a small alcohol. The chains lie parallel to each other over the (1 0 2). 
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5.3.5 Crystal Structure Prediction: 2-Chiorophenol 

Approximately 60 possible crystal structures of 2-chiorophenol were predicted within 

5 kJ mol' of the global minimum in lattice energy (Figure 5.6). 

density (glcc) 
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Figure 5.6: Plot of lattice energy against density for the predicted structures of 2-chlorophenol 
within 5 Id moF' of the global minimum (top) and of lattice energy + PV at 0.12 GPa 
(bottom). 
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Unit cell parameters, space groups, densities and energies for the 20 lowest in energy 

are given in Table 5.5. As expected, all of these lowest energy structures contain OH.. .0 

hydrogen bonding. About half of these form closed hydrogen-bonding rings (trimers, 

tetramers or hexamers), while the remainder form OH.. .0 chains. 7 of the 20 lowest energy 

predicted crystals show the same helical hydrogen bonding as in the observed phase-I 

structure. However, only two of these (ranks 3 and 6 on lattice energy) form chains around a 

true 3-fold axis. The remainder make pseudo 3-fold axes in non-trigonal space groups by 

crystallising with three symmetrically inequivalent molecules, as in the ambient pressure 

monoclinic polymorph of phenol. 

Many of the predicted polymorphs have very long unit cell axes ranging up to 43.4 A, 

and this is unusual. The unit cell dimensions of crystal structures of molecules of less than 

twenty atoms crystallising with three molecules in the asymmetric unit were extracted from 

the databases CSDsymmetry (Yao et al., 2002) and CSD. The results were plotted as a 

histogram (Figure 5.7), which showed that unit cell axes with dimensions over 30 A are rare 

even with three molecules in the asymmetric unit. This enables 5 of the 12 lowest structures 

to be ruled-out on the grounds that, though they are not impossible, they are rather unlikely. 

40 

30 

}20 

10 

0 
6 	12 	is 	24 	30 	36 

Cell dimensions (A) 

Figure 5.7: Distribution of the cell dimensions for crystal structures of molecules with twenty 
atoms or less crystallising with three molecules in the asymmetric unit extracted from 
CSDsymmetry and CSD. 
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Rank on Lattice parameters Lattice E + PV, 

lattice Space Density energy (E) 1.2kbar Hydrogen 

energy group g (g cm4) (kJ mol') (kJ mol 1) bonding 
a/A b/A c/A 

[ 
Angles/* 

F212121 OH ... O and 
1 

(Z'=3) 
7.746 5.391 39.562 90 1.551 -80.36 -70.41 OH ... Cl 

chains 

2 P2 1 2 12, 4.325 13.904 28.767 90 1.481 -79.24 -68.82 OH.. .0 
(Z'=3) trimers 

3-fold 

31 P32 18.313 18.313 4.508 90,90, 1.467 -79.22 -68.71 helical 
(Z'=3) 120 OH ... O 

chains 

4 P2 1 2 12 1  
9.452 5.554 32.980 90 1.480 -78.44 -68.02 OH.. .OH... 

(Z'=3) OH trimers 

5 
P212121 9.001 40.483 4.685 90 1.501 -78.35 -68.07 OH. ..O 2 
(Z'=3) chains 

3-fold 

6 P3 2  11.141 11.141 4.074 90, 90, 1.463 -78.20 -67.65 
helical 

(Z'=l) 120 OH ... O 
chains 

pseudo 3- 

7 P2, 
(Z'=3) 4.799 10.296 17.717 90.00 1.463 -78.16 -67.62 

fold helical 
OH.. .0 
chains 

P2 1 2 12, OH ...O and 
8 (Z'=3) 8.447 43.358 4.830 90 1.448 -78.10 -67.45 OH.. .Cl 2, 

chains 

pseudo 3- 
P2,2,2 1  

36.125 4.697 10.367 90 1.456 -77.90 -67.31 
fold helical 

(Z'=3) OH.. .0 
chains 

pseudo 3- 

10 P2, 
(Z'=3) 4.217 18.745 11.027 3=9l.38 1.470 -77.86 -67.37 

fold helical 
OH...O 
chains 

Table 5.5: Lowest energy predicted structures of 2-chlorophenol. ' Corresponds to the 
experimentally observed phase-I. 2  Corresponds to the experimentally observed phase-11 
(cont'd overleaf). 
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Rank on Lattice Paramters Lattice E + PV, 

lattice Space  Density 
energy (E) 1.2kbar Hydrogen 

a/A b/A c/A Angles/* energy group (g cm5 (kJ mor ') (kJ mor') bonding 

pseudo 3- 

11 P2 1 2 12 1  4.834 17.895 20.306 90 1.458 -77.81 -68.50 fold helical 
(Z'=3) OH ... O 

chains 

12 2 P211c 6.538 4.788 18.666 3 = 103.02 1.500 -77.64 -67.62 OH ... O 2 
(Z'=1) chains 

a = 68.68 
13 PT 7.463 10.373 12.297 = 79.70 1.468 -77.06 -66.67 OH...O 

(Z 	3) hexamers 
= 87.24 

a= 114.19 
OH O ... 14 

(Z'=3) 
9.596 10.008 10.433 3 = 100.72 1.462 -76.95 -66.82 hexamers 

7=96.94 

PT 
a= 111.88 

OH...O 15 
(Z'=3) 

7.332 10.938 12.144 f3 = 100.44 1.471 -76.94 -66.47 hexamers 
y96.70 

PT 
a= 109.97 

OR..O 16 
(Z'-3) 

10.350 10.573 8.844 =95.78 1.485 -76.94 -66.39 hexamers 
y= 104.35 

17 P2 1  
6.883 4.8 19 8.769 3 = 100.33 1.492 -76.69 -66.27 

OH...02, 
chains 

pseudo 3- 

18 P2 1 2 12 1  
4.170 32.195 12.997 90 1.468 -76.68 -66.35 

fold helical 
(Z'=3) OH. ..O 

chains 

19 P2 1 1c 
(Z'=2) 12.747 7.847 14.743 l= 127.77 1.465 -76.68 -66.34 

OH..O 
::tetrarners]  

P a = 95.49 
OH...O  2 0 

(Z'=2) 7.718 7.907 10.282 3 = 94.25 1.501 -76.67 -66.17 tetramers 
7=113.40 

Table 5.5 (cont'd): Lowest energy predicted structures of 2-chiorophenol. ' Corresponds to 
the experimentally observed phase-I. 2  Corresponds to the experimentally observed phase-11. 
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The remaining structures are viewed with MERCURY in order to exclude any structures 

that have unusual intermolecular interactions. The structure corresponding to the global 

minimum in lattice energy lies 1.6 Id mol-1 lower than any other, but while two of the three 

independent molecules take part in OH.. .0 hydrogen-bonded chains, the third molecule 

instead forms OH. . . Cl chains (Figure 5.8). Such interactions are unlikely to be competitive 

with OH. . . OH chains, and the prediction of this structure could be a failing of the partly 

empirical model potential; the set of crystal structures used to parameterise the hydroxyl 

parameters did not include OH... CI contacts, so the calculated energy of such interactions may 

be overestimated. Other low-energy structures take the form of hydrogen bonded trimers; a 

search of the CSD revealed that this motif is unusual (only 12 such structures were identified), 

and so structures 2 and 4 might be ruled-out on these grounds. From the observations above, 

of the lowest energy structures 3, 6, 7, 10, 11 and 12 seem reasonable. 

N 	 N 	 N 

Figure 5.8: OH.. . Cl chains in the global minimum predicted structure of 2-chlorophenol. 
These are not expected to be energetically competitive with OH... OH hydrogen bonds and 
their presence in this structure may reflect the parameterisation of the potential used. 

The lowest energy structure remaining after the exclusions (No. 3) is a reasonable 

reproduction of the observed phase-I structure - the same structure is found by replacing the 

molecules in the experimental crystal structure by the gas phase optimised molecular structure 

and minimising the lattice energy. This crystal structure is the third lowest in lattice energy of 

the predicted structures, just 1.14 U moI above the global minimum. The P2 1 /c phase-11 

crystal structure was also located as one of the densest structures located in the search - 
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twelfth in lattice energy, 2.72 kJ mol' above the global minimum, (Figure 5.6). It has the 

highest density of structures 3, 6, 7, 10, 11 and 12. The predicted crystal structures were not 

allowed to relax under pressure (this feature is not yet implemented in the code available to 

us), but we estimated the effect of the high-pressure by adding the PV contribution to the 

energy at 0.12 GPa. The PV term favours the higher density structures and improves the 

ranking of the high-pressure phase-Il structure, which has the 8th lowest lattice energy + PV 

amongst the predicted structures. 

The predictions were performed with a rigid planar molecular structure, while the 

hydroxyl group in the experimentally observed structures is distorted significantly out of the 

plane of the aromatic ring, presumably to optimise hydrogen bonding interactions in the 

crystal. To test the effect of this molecular distortion, we energy-minimised the phase-I and II 

structures with the hydroxyl out-of-plane angle fixed at the experimentally observed values 

(-8.1°, -13.4° and -19.1° for molecules 1, 2 and 3 in phase-I, and 21.3° in phase-H). The 

results of these minimisations (Tables 5.6 & 5.7) demonstrate the effect of the assumed 

molecular structure on the modelling of these structures. For phase-I, the lattice energy 

minimised structure is improved dramatically with the torsion angles fixed to the experimental 

values - the RMS error in the lattice parameters, a, b and c are decreased from 17.7% with the 

planar molecular structure down to 2.2% with the experimentally observed torsion angle. 

While the crystal structure is very sensitive to the orientation of the hydroxyl groups, the 

lattice energy is nearly unaffected (Table 5.6). The phase-11 lattice energy minimum with the 

hydroxyl group torsion angle fixed at 21.3' is in slightly worse agreement with the 

experimentally observed structure than the crystal structure calculated with the planar 

molecular structure (Table 5.7). However, in this case, the lattice energy is decreased 

significantly and the density is increased slightly; the molecular distortion appears to have an 

important stabilising effect on this crystal structure. 
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Volume / Lattice Energy / 
a 	b/A c/A 

A 3  kJmor' 

Experimental 16.072 5.896 1318.9 - 

Lattice energy minima 

with gas phase (planar) 18.313 4.508 1309.5 
-7922 

molecular structure (+13.9%) (-23.5%) (-0.7%) 

with experimentally 
16.311 5.708 1315.2 

observed torsion -79.14 
(+1.49%) (-3.19%) (-0.29%) 

angles 

Table 5.6. Lattice-energy-minimised unit cells of the ambient pressure crystal structure of 
2-chiorophenol. 'The lattice energy minimised crystal structure with the hydroxyl group 
out-of-plane torsion angles adjusted to the experimentally observed values (-8.1 0,-13.40 , 
19. 1 0) 

Volume / Lattice Energy 
a/A b/A c/A 

A 3  / kJmol' 

Experimental 6.464 4.909 18.131 98.11 569.57 

Lattice energy minima 

with gas phase 
6.538 4.788 18.666 103.02 569.36 

(planar) molecular -77.64 
(+1.14%) (-2.460/.) (+2.95%) (+5.00%) (-0.04%) 

structure 

With 

experimentally 6.465 4.563 19.201 94.65 564.55 
-82.44 

observed torsion (+0.01%) (-7.05%) (+5.90%) (-3.53%) (-0.88%) 

angle' 

Table 5.7. Lattice-energy-minimised unit cells of the high-pressure crystal structure of 
2-chiorophenol. ' The lattice energy minimised crystal structure with the hydroxyl group 
out-of-plane torsion angle adjusted to the experimentally observed value (21.3 0). 

5.3.6 Crystal Structure Prediction: 4-Fluorophenol 

The predictions for 4-fluorophenol produced structures with similar packing motifs as 

the 2-chiorophenol predictions; about half of the 20 lowest energy structures (Table 5.8) form 

closed hydrogen-bonded rings, while the rest show OH ... O chain motifs (Figure 5.9). 
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Rank on Lattice parameters Lattice E + PV, 

lattice Space ________ ________ ________ _________ Density 
energy (L) 1.2kbar Hydrogen 

energy group (g cm3) (kJ mor') bonding 
a/A b/A c/A Angles/* 

(kJ mof 
 

') 

pseudo 4- 

1 P212121 5.617 21.687 8.871 90 1.3780 -63.37 -40.59 
fold helical 

(Z'=2) OH ... O 
chains 

2 P211c 19.744 11.423 4.540 13 = 82.92 1.3747 -63.16 -40.33 OH ... O 
(Z'=2) tetramers 

PT 
a85.06 

OH O ... 
(Z'=2) 

4.907 10.137 11.042 13 = 86.30 1.3735 -62.91 -40.06 tetramers 
y= 82.78 

4 P21/C 
(Z'=2) 8.069 15.243 8.862 [3=90.86 1.3664 -62.83 -39.86 OH ... 021  

chains 

pseudo 3- 

5 Pca21 19.705 4.991 16.456 90 1.3803 -62.52 -39.78 
fold helical 

(Z'=3) OH. ..O 
chains 

pseudo 3- 

6 9.489 16.685 5.201 13 = 88.42 1.3568 -62.48 -39.35 
fold helical 

(Z'=3) OH ... O 
chains 

pseudo 4- 

7 F2 1 2 1 2 1  
22.896 8.245 5.711 90 1.3813 -62.46 -39.74 

fold helical 
(Z'=2) OIL.O 

chains 

OH.. .OH... 

8 
Pna21  
(1=3) 10.669 8.714 17.986 90 1.3358 -62.44 -38.94 

F...OH 
pseudo 4- 
fold chains 

F2/c 
(Z'=2) 12.499 20.137 4.845 [3= 116.12 1.3601 -62.33 -39.25 

OH...O 
tetramers 

10 P2 1  
(V = 1) 2 8.115 5.346 6.438 [3= 106.40 1.3893 -62.26 -39.67 

OH...02 1  
chains 

Table 5.8: Lowest energy predicted structures of 4-fluorophenoL ' Corresponds to the 
experimentally observed phase-i. 2  Corresponds to the experimentally observed phase-11 
(cont'd overleaf). 
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Rank on Lattice parameters Lattice 
E + PV, 

lattice Space  Density 
energy (1 

1.2kbar Hydrogen 

energy Group (g CM-3)  
(kJ mol') (kJ mor') bonding 

a/A b/A C/A Angles/* 

pseudo 3- 

11 P32 15.796 15.796 6.101 90,90,120 1.2708 -62.23 -37.53 fold helical 
(Z'=3) OH ... O 

chains 

12 C21c 20.417 10.402 16.242 13 = 97.83 1.3074 -62.21 -38.20 OH...O 
(Z'=3) hexamers 

pseudo 3- 

13 6.037 9.181 15.854 90.00 1.2710 -62.19 -37.49 fold helical 
(Z'=3) OH ... O 

chains 

3-fold 

14 P31 9.183 9.183 6.016 90,90,120 1.2713 -62.17 -37.48 helical 
(Z'=l) OH...O 

chains 

15 AS 
(V = 1)1 22.264 22.264 5.934 90,90,120 1.3154 -62.12 -38.26 

OH...O 
hexamers 

P1 a83.32 
OH...O  16 

(Z'-  2) 7.332 8.127 10.437 13=73.91 1.3475 -62.09 -38.80 tetramers - 
= 67.65 

17 P2, 
(Z'=2) 8.767 5.501 11.398 13 = 102.69 1.3885 -62.07 -39.46 

OH...02, 
chains 

PT a95.41 
OH O ... 18 - (Z' 2) 7.436 8.100 9.249 f3 = 98.99 1.3660 -61.99 -39.01 tetramers - 

y = 94.70 

P1 a = 99.80 
OH O ... 19 

(Z'2) 8.124 7.909 8.773 13=94.76 1.3477 -61.95 -38.66 tetramers 
y 	92.71 

20 P2 1  
(Z'=2) 7.922 5.502 12.772 13=105.16 1.3858 -61.93 -39.28 

OH...02, 
chains 

Table 5.8(cont'd): Lowest energy predicted structures of 4-fluorophenol. 'Corresponds to the 
experimentally observed phase-I. 2 Corresponds to the experimentally observed phase-11. 
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Figure 5.9: Four-fold chains in the global minimum (top) predicted structure of 
4-fluorophenol. 

The lattice energy was minimised to yield the observed phase-I crystal structure with the 

molecular structure replaced by the planar model used in the search (Table 5.9), the resulting 

structure matches exactly to the 15th lowest energy predicted crystal, 1.25 kJ mor' above the 

global minimum. This model also energy minimised with the hydroxyl out-of-plane torsion 

angle set to the observed value of 9° ; the unit cell dimensions are almost unaffected by this 

change, while the lattice energy is lowered by more than I kJ mol' (Table 5.9). 

a = b / A c I A volume I A3  lattice energy / kJmol 

Experimental 22.620 5.569 2467.7 

lattice energy minima 

with gas phase (planar) 22.263 5.935 2547.4 
-62.12 

molecular structure (-1.58%) (+6.56%) (+3.2%) 

with experimentally 
22.294 5.925 2550.4 

observed torsion -63.42 

angle 1  (-1.440/6) (+6.39%) (+3.4%) 

Table 5.9 - Lattice energy minimised unit cells of the ambient pressure crystal structure of 
4-fluorophenol. ' The lattice energy minimised crystal structure with the hydroxyl group 
out-of-plane torsion angle adjusted to the experimentally observed value (9.0 0). 
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The prediction methodology can only generate ordered crystal structures, so the high-

pressure polymorph of 4-fluorophenol could not be predicted exactly. However, the 10th 

lowest energy predicted structure is an ordered version of the observed phase-11 - the same 

lattice energy minimum (Table 5.10) is found by replacing the disordered molecular structure 

in the observed crystal by the planar molecular model, fixed in one of the two orientations (as 

in Figure 5.6). As with 2-chlorophenol, this high-pressure crystal is amongst the densest of 

the predicted structures. As a result, the PV contribution to the energy favours this crystal 

over most of the other predictions (Table 5.8 & Figure 5.10). 

a/A b/A c/A 010 Volume/A3 
Lattice Energy 
 

/ 

kjmol' 

Experimental 6.281 5.724 7.798 106.06 267.98 - 

lattice energy 6.438 5.346 8.115 106.40 267.98 
-62.26 

minimum (+2.51%) (-6.60%) (+4.06%) (+0.32%) (-0.53%) 

Table 5.10. Lattice energy minimised unit cell of an ordered model of the high-pressure 
crystal structure of 4-fluorophenol. 

Such sensitivity of the lattice energy to small changes in the molecular structure 

prevents any better results with the rigid body approximation than achieved here (i.e. the 

observed structure within 1-2 kJ molT' of the global minimum). This means that selection of 

likely structures from the list presented in Table 5.8 is more difficult than in 2-chiorophenol, 

though a few structures (e.g. 8 and 9) can be ruled out by the presence on unreasonable 

OH... F or 0.. .0 intermolecular interactions. We note, though, that almost none of the 

unobserved predicted polymorphs contain the common H... F motifs described by Thalladi et 

al. (1998), and it may be that there is some room for improvement of methodologies for 

modelling weak H... halogen interactions. 
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Figure 5.10: Plot of lattice energy against density for the predicted structures of 
4-fluorophenol within S kJ moF' of the global minimum (top) and of lattice energy + PV at 
0.28 GPa (bottom). 
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5.4 Discussion 

5.4.1 Crystal Packing at low-temperature and high-pressure 

Packing in the crystal structure of monoalcohols was investigated first by Brock & 

Duncan (1994) and subsequently by Taylor & McRae (2000). Both studies showed that the 

size of the R-group attached to the alcohol functionality is a major factor in the packing 

behaviour of the molecules. When the R-group is small then the molecules are usually related 

by a 2 1  screw axis or a glide plane. If the R-group is bulky then the molecules tend to 

aggregate around 3-, 4- or 6-fold screw, rotation or rotoinversion axes. These operations may 

be crystallographic - i.e. crystallisation occurs in a high-symmetry space group - or non-

crystallographic, implying that crystallisation occurs in a low-symmetry space group with Z' 

>1. 

At ambient pressure 2-chlorophenol and 4-fluorophenol behave typically for alcohols 

with bulky R-groups. Both form structures containing molecules connected by . .OH. .OH.. 

interactions. At ambient pressure, chains are formed in 2-chlorophenol about crystallographic 

32 screw axes. In 4-fluorophenol the molecules hydrogen bond to form rings about 

rotoinversion sites. On application of pressure, however, the structures change to ones in 

which the chains lie along 21 screw axes. In effect, pressure has altered the packing behaviour 

of the halophenyl groups from being characteristic of a large group to more typical of a small 

group. 

In Chapter 6 we show that, rather unusually for simple alcohols, the other monofluoro-

and chioro-phenols display quite complicated packing motifs (Oswald et al., 2004). We have 

only been able in those cases to examine the effects of pressures up to 0.36 GPa (a modest 

figure by the standards of modern high-pressure crystallography), and it remains to be seen 

what happens to those systems at higher pressures. The alteration in packing behaviour is 

observed in phenol itself, however (Allan et al., 2002). Phase-I crystallises at ambient 

pressure in space group P2 1  with three molecules in the asymmetric unit; these H-bond 

together to form a pseudo three-fold helix (Figure 5.11 a). At high-pressure (0.16 GPa) 

another structure with Z' = 3 in P2 1  is obtained, the structure consisting of two 

crystallographically independent chains. The first chain is formed about a 2 1  screw axis, 

while the second comprises two independent molecules disposed about a pseudo 2 1  screw axis 

(Figure 5.1 1 b). 
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Figure 5.11 Left (a): The crystal structure of phenol at ambient pressure and 123 K. The 
phenyl ring acts like a bulky substituent. It crystallises with three molecules in the 
asymmetric unit that emulate a three-fold helix along b in the low-symmetry space group P2 1 . 

Right (b): Phenol at 0. 16GPa. The behaviour of the phenyl group resembles that of a small 
substituent, with symmetry equivalent molecules related by crystallographic or pseudo-2 1  
screw axes. There are three molecules in the asymmetric unit with the blue and red molecules 
forming a pseudo-2 1  screw axis and the green molecules forming a chain where the molecules 
are related by a crystallographic 2 1  screw axis. Colour-coding represents crystallographic 
equivalence. 

Although alcohols tend to crystallise about screw axes, Brock & Duncan recognised that 

it should, in principle, be possible to generate hydrogen-bonded chains by simple transition in 

the case of a very small alcohol. They cited no examples of where this has been observed. 

however. In fact the effect of high-pressure on the crystal structure of methanol can also be 

interpreted in terms of a shift from small alcohol packing to very small alcohol packing. This 

is illustrated in Figure 5.12: at ambient pressure and 163 K the crystal structure of methanol 

contains chains of molecules that are related by a glide plane in an alternating 1-1-1 motif 

(Figure 5.12a) (Tauer & Lipscomb, 1952). At 7 GPa the high-pressure polymorph exhibits 

chains forming a 2-1-2-1 motif with three molecules in the asymmetric unit (Figure 5. 12b). 

The pairs of molecules on the same side of the hydrogen-bonded chains in Figure 5.12b are 

related by a pseudo-translation (Allan el al., 1998), confirming Brock & Duncan's intuitive 

argument. 
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Figure 5.12 top (a): Ambient pressure phase of methanol at 163 K showing packing behaviour 
typical of a small monoalcohol: symmetry-equivalent molecules are related by a c-glide in a 
1:1:1 sequence (i.e. one molecule on one side of the chain, one on the other, and so one). 
Colour scheme: C green and 0 red. 

Bottom (b): At pressure (7 GPa) methanol undergoes a phase transition to three molecules in 
the asymmetric unit in a 2-1-2-1 sequence. Colour-coding represents crystallographic 
equivalence. 

To the side of the main diagrams, a view down the chains in each of the phases. The pseudo 
translational symmetry can be seen in the high-pressure phase. The bulky methyl group is 
preventing the molecules from coming closer together to form perfect translational symmetry 
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Despite the change in packing behaviour in alcohols with application of high-pressure, 

the size of the group is important in determining the lengths of intermolecular interactions. In 

the OH.. .OH chains of 2-chlorophenol the intermolecular 0.. .0 distances are longer at 

0.12 GPa than at ambient pressure [2.809(11) A versus 2.748(1) to 2.762(2) A at 100 K]. The 

elongation of the hydrogen bond can be seen in 4-fluorophenol where the 07... 07' distance is 

2.650(1) A at 150 K and about 3 A at 0.28 GPa (it is not possible to be precise because of the 

ON disorder in that structure). 

This increase in hydrogen bond lengths is also observed in other high-pressure phases 

of alcohols. The crystal structure of phenol has three different hydrogen bonds in both the 

ambient and high-pressure phases. All three hydrogen bonds show an increase in length from 

an average length of 2.671 A at ambient pressure to 2.964 A at high-pressure. The high-

pressure phase of phenol shows both forms of molecular aggregation in the formation of the 

two ciystallographically unique chains as discussed previously. Interestingly, the H-bond 

used in the chain formed from symmetry equivalent molecules disposed about a 2 1  axis is 

longer than the others (disposed about a pseudo 2 1  axis); crystallographically inequivalent 

molecules that are H-bonded into a chain can deviate from exact symmetry to accommodate 

the large R-groups whilst minimising the 0. . .0 distance. 

In methanol at ambient pressure the 0. ..0 distance is 2.67 A. At 7 GPa, 0_0 

distances between molecules on opposite sides of the chain (i.e. those which bear a similar 

spatial relationship to the molecules in the ambient pressure structure) decrease to 2.43 A and 

2.52 A, while the H-bond that connects molecules on the same side of the chain elongates to 

2.70 A. 

That intermolecular contacts should lengthen under pressure is counter-intuitive, but 

this occurs in order to accommodate the bulkier R-group in the 'small monoalcohol' packing 

arrangement. The preference for 'small alcohol packing' at high-pressure is a consequence 

of the higher densities that appear to be achievable with these motifs. Inspection of space-

filling plots of the high and low pressure phases described here shows that the low 

temperature phases are both characterised by the presence of voids (Figure 5.13). The voids 

present in the crystal structure of 2-chlorophenol are much less obvious than those in 

4-fluorophenol but are formed between the helices formed along the c-axis (Figure 5.13b). It 

has recently been shown that the effects of pressure on the crystal structures of amino acids 

can also be understood by compression of the voids present at ambient pressure (Dawson el 

al., 2004, Moggach et al., 2004). Similar conclusions have recently been reached by 

Slebodnick et al. (2004). The voids are found to contract under pressure until intermolecular 
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interactions become so short that the structure becomes unstable, then a phase transition 

occurs. This effect often leads to destructive phase transitions, but the advantage of studying 

low melting compounds is denser polymorphs are formed at the time of crystal growth. This 

has occurred in the two compounds in this study. 

- 	
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w 	 . 	w 
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, 

Air 

: 	p_f I 

Figure 5.13 top (a): The space filling diagram of 4-fluorophenol. The voids present in the 
structure are clearly seen running down the c-direction. 

Bottom (b): The space filling diagram of 2-chiorophenol. The voids in this structure are 
present between the symmetry inequivalent helices. High-pressure crystal growth of these 
two compounds induces molecular rearrangement to a denser structure without voids. 
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5.4.2 Crystal Structure Predictions 

The low and high-pressure polymorphs of both halophenols were predicted amongst the 

lowest in lattice energy and within a few kJ mot' of the lowest energy predicted structures. In 

both cases, the two forms have similar calculated lattice energies and the high-pressure form 

was predicted as one of the densest possible crystal structures. 

Although elaborate models for the intermolecular energy were used, we cannot expect 

to calculate relative stabilities any better than a few kJ mol', given the lack of entropy and 

explicitly including pressure effects in the energy minimisations. Furthermore, the position of 

the hydroxyl hydrogen is influenced by the crystal environment, twisting the hydroxyl group 

up to about 200  out of the plane of the molecule. Thus, the rigid molecule assumption also 

limits the possible accuracy of the crystal structure prediction. 

The results of the crystal structure prediction are especially encouraging because of the 

success in locating the 2-chlorophenol crystal structure with three symmetrically independent 

molecules - predicting structures with more than one molecule in the asymmetric unit is one 

of the major challenges for crystal structure prediction methods (Day et al., 2004a). Many of 

the methods used to search for possible crystal structures are extensible to multiple molecules 

and it is mainly a matter of the large increase in computing time required for such searches. 

Disordered structures are another challenge for crystal structure prediction. Although 

current methodologies only predict perfectly ordered crystal structures, such predictions can 

be useful in interpreting disordered crystals (Tremayne et al., 2004). Here, the packing of 

some of the lowest energy structures of 4-fluorophenol hinted that disorder is possible in 

crystals of this molecule. More systematic approaches to predicting disorder in crystals have 

shown promise (van Eijck, 2002) when there is a suspicion that such behaviour may be 

important. 

5.5 Conclusions 

High-pressure is potentially a very valuable tool for tuning the balance between 

intermolecular interactions such as hydrogen bonding and van der Waals interactions. In this 

Chapter we have shown that the packing behaviour of 2-chlorophenol and 4-fluorophenol can 

be transformed from being characteristic of bulky alcohols to that of small alcohols. We have 

shown that this trend is also followed by phenol and methanol. The transition from bulky to 
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small behaviour under high-pressure is accompanied by an increase in hydrogen bonding 

distances; this counter-intuitive effect occurs in order to optimise packing. 

Crystal structure predictions almost always generate more hypothetical structures than 

known polymorphs, and we hypothesised that high-pressure could be a useful method of 

accessing some of the structures that are not observed under ambient conditions; this view is 

supported by the results of this study. However, energy-ordering is sensitive to assumed 

intramolecular conformation; halogen.. .H interactions also seem to be poorly modelled. We 

are currently unable to energy-minimise structures under applied pressure, and this was 

treated in an approximate way. These are evidently serious problems with the approach used 

here. Nevertheless, the observed low-temperature and high-pressure structures did appear 

amongst the lowest energy predicted structures, even though one of these had Z' =  3. This is a 

very encouraging result indeed. Furthermore, many proposed structures could be ruled-out on 

the basis that they seemed unlikely - e.g. because they exhibited unusual intermolecular 

interactions. Though it is clearly not yet possible to draw a general conclusion on the ability 

of current methodologies to predict high-pressure crystal structures, our results should 

encourage the further combined use of extreme conditions and computational approaches to 

the study of polymorphism and intermolecular interactions in crystals. 
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6.1 Introduction 

Packing in alcohols has been studied by Brock & Duncan (1994) and subsequently by 

Taylor & Macrae (2001). Both studies showed that the size of the R-group attached to the 

alcohol functionality is a major factor in the packing behaviour of the molecules. We have 

recently investigated (Oswald et al., 2004) the effect of high-pressure on the crystal structures 

of phenols, 2-chlorophenol and 4-fluorophenol, which both exhibit polymorphic behaviour on 

application of pressure. At ambient pressure 2-chiorophenol and 4-fluorophenol crystallise in 

high symmetry space groups with the molecules disposed about 32  and 3 symmetry operators. 

Under pressure both systems crystaffise in low symmetry space groups with the molecules 

disposed about a 21 screw axes. Figure 6.1 illustrates the change in structure between ambient 

and high-pressure for 2-chlorophenol. At ambient pressure the molecules adopt a molecular 

arrangement in which the halophenyl group behaves as a bulky substituent. At high-pressure, 

both compounds undergo a phase transition to a packing motif characteristic of a small 

alcohol. This Chapter describes the crystal structure determination of the remaining chioro-

and fluoropheno is at low temperature and high-pressure to investigate whether the packing 

behaviour of these phenols can be altered with the application of pressures <I GPa. 
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C 

b 	 Oa 

Figure 6.1 top (a): Crystal structure of 2-chiorophenol at ambient pressure and 100 K. Helices 
are formed about 3 2 axes by OH.. OH hydrogen bond formation. The helices are linked 
through close contacts between the chlorine atom of one chain and two hydrogen atoms of the 
next. Only the shortest H... Cl contacts are labelled for the sake of clarity. 

Bottom (b): The crystal structure of 2-chlorophenol at 0. 12GPa. The application of pressure 
changes the behaviour of the chlorophenyl substituent so that chains are formed where 
molecules are related by a 2 1 -screw axis. Weak H.. . Cl 'dimer' interactions are shown 
between the chains. Colour scheme: C green, Cl light green, H white, 0 red. This colour 
scheme is used in Figures 6.3, 6.4 & 6.5. 
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6.2 Experimental 

All samples were obtained from Sigma-Aldrich and used as received. 

62.1 Low temperature crystal growth 

2-Fluorophenol (m.pt. 289 K), 3-fluorophenol (m.pr. 287 K) and 3-chiorophenol (mpr. 

306 K) were drawn into a capillaries, and polycrystalline masses obtained by freezing at 

260 K, 263 K and 283 K, respectively. The samples were then crystallised using the laser-

assisted procedure of Boese and Nussbaumer (1994). All capillaries (o.d. 0.32 mm - 

0.52 mm) were hand-drawn from Pyrex glass. Phase-I of 4-chiorophenol (m.pt. 316 K) was 

obtained by fusing a sample in a vial and leaving it to recrystallise at room temperature. 

Small, colourless crystals appeared on the side of the vial. Colourless crystals of phase-11 of 

4-chlorophenol were obtained by holding a saturated benzene solution at 277 K. 

62.2 Crystal structure determination at low temperature 

X-ray diffraction intensities were collected with Mo-Ka radiation on a Bruker SMART 

APEX CCD diffractometer equipped with an Oxford Cryosystems CRYOSTREAM-PLUS 

variable-temperature device (Cosier & Glazer, 1986) and an OHCD laser-assisted 

crystallisation device. Absorption corrections were carried out using the multiscan procedure 

SADABS (Sheldrick, 2004, based on the procedure described by Blessing, 1995). All 

structures were solved by direct methods (S1R92, Altomare et al., 1993) and refined by full-

matrix least squares against F 2  using all data (CRYSTALS, Betteridge et al., 2003). H-atoms 

were placed on C-atoms in calculated positions and allowed to ride on their parent atoms. 

Hydrogen atoms involved in H-bonding were located in difference maps and refined with 

distance restraints. All non-H atoms were modelled with anisotropic displacement 

parameters. 

62.3 High-pressure: General Procedures 

Pressure was applied to the samples using a Merrill-Bassett diamond anvil cell (DAC; 

Merrill-Bassett, 1974) equipped with 600 pm culets, a tungsten gasket with a 300 pm hole, 

beryllium backing disks and a chip of ruby for pressure measurement. Pressures were 
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measured by the ruby-fluorescence method by excitation with a 632.817 rim line from a 

He-Ne laser using a Jobin-Yvon LabRam 300 Raman spectrometer. 

62.4 High-pressure crystal growth 

The samples were loaded as liquids into the cell. In the case of 4-chiorophenol, both the 

sample and the cell were heated with a hot-air gun before loading to prevent crystallisation at 

ambient temperature. In each case, pressure was applied until a polycrystalline mass was 

produced; the temperature of the cell was increased using a hot-air gun until a single 

crystallite remained. Slow cooling to ambient temperature yielded a single crystal that filled 

the entire gasket hole. Crystallisation was monitored visually using a polarising microscope. 

The crystallisation pressures for each sample were; 3-fluoropheno1, 0.12 GPa; 3-chioropheno1, 

0.10 GPa; 4-chlorophenol, 0.02 GPa; and 2-fluorophenol, 0.36 GPa. 

62.5 Crystal structure determinations at high-pressure 

Data were collected on a Bruker SMART APEX diffractometer with Mo-Ku radiation. 

Collection and processing procedures followed those described by Dawson et al. (2004a). 

Shading by the body of the DAC leads to low data completeness for crystals belonging 

to low-symmetry crystal systems. In all cases, except 2-fluorophenol, datasets were collected 

with the cell mounted in two different orientations in order to improve completeness. The 

diffraction patterns were indexed with the program GEMINI (Sparks, 2000). Data integration 

(to 20 = 45°) was performed using SAINT (Bruker-Nonius, 2003) with dynamic masking to 

account for the shading from the DAC steel body (ECLIPSE, Parsons, 2004a). The program 

SHADE (Parsons, 2004b) was also used to take account of absorption effects of the diamonds 

and beryllium; further systematic errors were treated using SADABS before merging in 

SORTAV (Blessing, 1997). 

The phases obtained for 3-fluorophenol, 3-chlorophenol and 4-chiorophenol 

corresponded to compressed forms of known ambient-pressure phases. Refinement against 

the high-pressure data therefore used the ambient-pressure coordinates as a starting model. 

The structures were refined by full-matrix least-squares against F (CRYSTALS) using 

all data. Free refinement of the positional parameters of the non-H atoms yielded carbon-

carbon bond lengths varying from 1.34 to 1.40 A. The phenyl rings were therefore 
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constrained to be rigid hexagons. H-atoms were placed on C-atoms in calculated positions. 

The hydroxyl hydrogen atom, which is involved in H-bonding, was geometrically placed 

except for 4-chiorophenol where the hydroxyl hydrogen was identified from the difference 

map and refined with distance and angular restraints. All oxygen and halogen atoms were 

modelled with anisotropic displacement parameters. The refinement of the crystal structure of 

3-fluorophenol was subject to distance and angle restraints. 2-Fluorophenol, 3-chiorophenol 

and 4-chiorophenol were refined so that chemically similar bond distances and angles were 

subject to similarity restraints. 

62.6 2-Fluorophenol 

Several attempts to grow a single crystal of 2-fluorophenol at high-pressure resulted in 

the crystal fracturing after cooling to ambient temperature. Though the diffraction patterns 

obtained from these samples were characterised by broad, split reflections, they could, 

nevertheless, be indexed on an orthorhombic unit cell with dimensions: a = 5.8952(17) A, 

b = 10.9466(19) A, c = 16.459(4) A. This is different to the cell obtained at 150 K (see Table 

6.1). A solution was obtained using DASH (David et al., 2001, see below), but after 

refinement the residual stuck in the region of R 1  = 0.17. The refined structure, which contains 

two molecules in the asymmetric unit in space group P212121, was characterised by high 

displacement parameters (0.2 - 0.3 A) on the F-atoms, while the data, though strong at low 

angle, had no significant intensity above about 20 = 35°. These observations imply that at 

0.36 GPa and room temperature 2-fluorophenol forms a disordered phase. Difference maps 

failed to provide any clue as to how the structure might be better modelled, probably because 

of the relatively low completeness or poor reflection peak-shapes. Since we are unable to 

improve modelling of the data, no further details on this phase are reported here. 

A new crystal was grown as above and then maintained at high temperature during 

data collection with the variable temperature device set at 403 K. This is a nominal 

temperature, there was presumably a significant temperature gradient across the cell as a 

whole, though across the sample itself the variation in temperature would have been small. 

The high temperature dataset indexed on a slightly smaller orthorhombic unit cell with 

dimensions: a = 5.7168(7) A, b = 9.9997(19) A, c = 17.868(2) A. Both the b- and c-axes 

show a large change in length compared to the ambient temperature/0.36 GPa cell given 
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above (Ab = +0.95 A; Ac = -1.41 A). This cell is also different from that obtained at low 

temperature (Table 6.1). 

Conventional direct methods applied to the 403 K data set failed to yield a recognisable 

solution. This is a recurrent problem in high—pressure crystallography, and is the result of low 

data-completeness, but this can be overcome by using global optimisation methods, originally 

devised for structure solution from powders. The crystal structure of 2-fluorophenol at high-

pressure was therefore solved using the simulated annealing procedure in the program DASH. 

The refinement of the structure followed the procedures outlined in the preceding section. 

62.7 Recovery of 4-chiorophenol grown at high-pressure 

The high melting-point of 4-chiorophenol allowed the crystals of phase-II formed at 

high-pressure to be recovered without the sample melting. On release of pressure the sample 

remained as a single crystal with a slight reduction in size due to melting around the edges. 

Diffraction data were collected at ambient pressure and 293 K, which showed the crystal to be 

4-chlorophenol-I (see Table 6.1). 

62.8 Software and other general procedures 

A consistent numbering scheme was used for all the structures described here, and this 

is shown in Scheme 6.1. Where there is more than one molecule in the asymmetric unit the 

labels are augmented with the numbers 1, 2 etc. A full listing of crystal, data collection and 

refinement parameters is given in Table 6. 1, a set of H-bonding parameters is given in Table 

6.2. The structures were visualised using SHELXTL (Sheldrick, 2001) or MERCURY 

(Bruno et al., 2002); the figures were produced using CAMERON (Watkin et al., 1993). 

Other analysis utilised the p.c. version of PLATON (Spek, 2002; Farrugia, 1999). Searches of 

the Cambridge Structural Database (Allan, 2002; Allen & Motherwell, 2002) were carried out 

with the program CONQUEST, utilising version 5.25 of the database. Calculations involving 

projected vectors followed the methods of Sands (1995). Crystallographic information files 

for all structures reported here are available on the CD at the back of this Thesis. 
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Cl 

C6 	C2 

C5.., 

C4 F/C18 

Scheme 6.1: Conventional structure diagram and numbering scheme for the halophenols 
under study. 
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Compound 3-fluorophenol 3-fluorophenol 3-chiorophenol 3-chiorophenol 

Code in Table 6.2 3F 3FP 3CL 3CLP 

Temperature   150 293 150 293 

Pressure GPa - 0.12 - 0.1 

Formula C6H5FO C6H5FO C6H5C1O C6H5CIO 

Weight 112.10 112.10 128.56 128.56 

Radiation Mo-Ka Mo-Ka Mo-Ka Mo-Ka 

Crystal system Monoclinic Monoclinic Orthorhombic Orthorhombic 

Space Group P2 1  P2 1  P2 1 2 1 2 1  P2 1 2 12 1  

a/A 5.6510(12) 5.6747(9) 3.9846(5) 4.0949(4) 

b/A 5.0642(10) 5.0760(4) 13.9272(19) 13.875(3) 

c/A 9.3185(19) 9.4753(13) 20.699(3) 20.716(3) 
cdo 90 90 90 90 

107.518(4) 107.832(11) 90 90 

71° 90 90 90 90 

Volume/A3  254.3 1(9) 259.82(6) 1148.7(3) 1177.0(3) 

No. reflections for 

cell 
711 398 1504 983 

20,(°) 57.27 46.40 50.05 46.53 

Z 2 2 8 8 

Dc (Mg/m7
) 1.464 1.433 1.487 1.451 

t(rnm) 0.123 0.120 0.545 0.532 

Reflections 

collected 
1603 1310 4548 6533 

No. Unique [Rmt] 672[0.014] 159[0.041] 1977[0.0521 780[0.147] 

No. 1>2a 608 146 1376 476 

T/ T. 0.67/0.96 0.67/0.98 0.22/0.95 0.85/0.91 

Parameters 77 32 152 62 

R 1  [F4a(F)] 0.0373 0.0638 0.0685 0.0978 

wR 2 (F, all data) 0.0921 0.1604 0.1425 0.2444 

S 1.0473 1.1471 0.9424 0.9863 

Ap/ eA 3) 0.22 0.17 0.56 0.59 

Ap.,in  -0.22 -0.16 -0.58 -0.56 

Table 6.1: Crystallographic data for the halophenols at both at ambient pressure and at high-
pressure. All ambient pressure data were collected at 150 K and all high-pressure datasets 
were collected at ambient temperature except for 2-fluorophenol, which was collected at 
403 K- 
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Compound 4-chlorophenol 

Phase-I 

4-chiorophenol 

Phase-11 

4-chiorophenol 

Phase-11 

2-fluorophenol 

Phase-I 

2-fluorophenol 

Phase-il 

Code in Table 6.2 4CLI 4CL2 4CL2P 2F1 2F2P 

Temperature K 150 150 293 150 403 

Pressure GPa - - 0.02 - 0.36 

Formula C6H5C1O C6H5CIO C6H5CIO C6HFO C6H5FO 

Weight 128.56 128.56 128.56 112.10 112.10 

Radiation Mo-Ka Mo-Ka Mo-Ka Mo-Ka Mo-Ka 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Orthorhombic 

Space Group P2 1 1c P21 1c P21 1c C2/c P2 1 2 12 1  

a/A 8.7086(11) 3.9724(5) 4.1096(4) 17.1336(10) 5.7168(7) 

b/A 15.4523(19) 12.7328(17) 12.7665(10) 8.2766(5) 9.9997(19) 

c/A 8.7414(11) 23.155(3) 23.181(3) 11.4975(7) 17.868(2) 

90 90 90 90 90 

131° 93.954(2) 94.126(2) 94.201(14) 100.234(2) 90 

90 90 90 90 90 

Volume/A 3  1173.5(3) 1168.2(3) 1212.9(2) 1604.50(17) 1021.4(3) 

No. reflections for 

cell 
3307 2464 1170 2044 397 

20(°) 57.69 57.81 46.47 57.40 46.50 

Z 8 8 8 12 8 

Dc (Mg/rn3) 1.455 1.462 1.408 1.392 1.458 
(S1)  0.534 0.536 0.516 0.117 0.122 

Reflections 

collected 
7471 7449 7359 7505 469 

No. Unique [R mj] 2839[0.024] 2843[0.016] 710[0.063] 1956[0.021] 461[0.099] 

No. 1>2cy 2442 2219 397 1302 261 

Tm jn/ T.  0.69/0.88 0.49/0.82 0.68/0.91 0.58/1.00 0.96/0.98 

Parameters 152 152 61 125 62 

R 1  [F54(F)] 0.0387 0.0434 0.0549 0.0562 0.0834 

wR 2 (F, all data) 0.1006 0.1102 0.1604 0.1107 0.2506 

S 0.7348 0.7469 1.0321 1.0751 0.9365 

Ap/ eA 3) 0.33 0.44 0.21 0.32 0.27 

Ap, 	/ ek 3  -0.31 -0.44 -0.20 -0.40 -0.20 

Table 6.1(cont'd): Crystallographic data for the halophenols at both ambient pressure and at 
high-pressure. All ambient pressure data were collected at 150 K and all high-pressure 
datasets were collected at ambient temperature except for 2-fluorophenol, which was collected 
at 403 K. 
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Compound Donor Acceptor D... A distance (A) 

Low Temperature 

(150 K) 
High-pressure 

07 
3F  

07' 2.819(1) 2.843(8) 

H6 F86  2.61 2.62 

071 
3CL  

072th 2.734(7) 2.693(4) 

072 071 2.700(6) 2.753(4) 

4CL1 

071 072" 2.767(2) - 

072 071 2.779(2) - 

H62 C181" 2.93 - 

H21 C182 2.93 - 

4CL2/4CL2P 

071 072 2.762(2) 2.819(5) 

072 07 2.779(2) 2.749(5) 

H31 C182' 2.83 2.85 

071 071 2.774(3) - 

071 
2F I  

072 2.707(2) - 

071 F81 2.690(2) - 

071 F81 2.942(2) - 

071 072x 
- 2.860(4) 

072 071 - 3.097(3) 

F81 
2F2P  

H62c 
- 2.56 

F82 H61x1 
- 2.56 

F82 H52 - 2.63 

071 F82 - 2.941(7) 

Symmetry Operators: 

X, V2+y, -z 	V 
	

2-x, y- V2, -',4-z 	ix 	1-x, -y, 1-z 

ii 	1+x,1+y,z 	v 
	1+x, y, z 	x 	'/2+X, V2-y,1-z 

iii 	x-Y, -Y2-y, -2-z 	vu 
	

2-x, l-y, 1 -z 	xi 	1 +xy,z 

iv 	x, 312-y,  V2+z 
	vu' 
	

I -x, 2-y, I -z 	xii 	-x, -Y2+y, 3t2-z 

Table 6.2: Table of Hydrogen-bonding parameters. The H-bonding distances are from donor 
to acceptor due to the imprecise determination of hydrogen atom positions. The high-pressure 
crystal structure of 2-fluorophenol was determined at 403K. 
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63 Results 

63.1 3-Phiorophenol 

3-Fluorophenol crystallises at 263 K in space group P2 1  with one molecule in the 

asymmetric unit. Diffraction data were collected at 150 K. The molecules interact via 

.OH. OH.. H-bonds to form chains disposed about the crystallographic 2 1  screw-axes, 

conforming to a C(2) graph set (Bernstein el al., I 995Figure 6.2a). This packing motif is 

more commonly associated with small alcohols, and was quite unexpected. It appears that 

stabilisation of this motif occurs through the formation of H6.. . F8 interactions (2.61 A) 
between the chains (Figure 6.2b). Taken on their own these H... F form chains which run 

along the <11 0> directions. The hydrogen bond present in this system is slightly longer than 

those present in the other systems (07... 07' 2.819(1) A) described here. In projection onto 

(0 1 0) each chain is surrounded by six others. 

oo . o 

oLH 
C,  

Figure 6.2a: Crystal structure of 3-fluorophenol at 150 K viewed down the a-axis. 
3-fluorophenol crystallises with one molecule in the asymmetric unit in space group P21 
thereby forming a chain motif adopted by smaller alcohols. Colour scheme: C green, F light 
green, H white, 0 red. This colour scheme is also used in Figures 6.2b, 6.6 & 6.7. 
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Figure 6.2b: Close contacts formed between H6. . .F8 of different chains (they appear in Figure 
6.2a to be formed within the chains, but this is an artefact of the projection). 

The same phase is obtained on crystallisation at 0.12 GPa. Neither the hydrogen bond 

nor the stabilising CH. . . F interaction are significantly different to those in the low 

temperature structure (07. . .07' 2.843(8) A; H6. . .F8 2.62 A). 

6.3.2 3-Chiorophenol 

3-Chiorophenol is a liquid under ambient pressure with a melting point of 306 K. At 

283 K it crystallises in space group P2 1 2 1 2 1  with two molecules in the asymmetric unit; 

diffraction data were collected at 150 K. The molecules interact via . .OH. .OH.. H-bonds to 

form pseudo four-fold helical chains (Figure 6.3a). The two crystallographically independent 

molecules alternate along the chains. The angle between successive Cli -071 and Cl 2-072 

vectors in the chain when projected onto the (1 0 0) plane is 89.75°; in a perfect four-fold 

helix this value would be 90°. While the departure from projected four-fold symmetry in the 

.OH. . OH.. interaction is slight, the orientations of the chioro groups do not conform to the 
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pseudo-symmetry - the angle between Cl-C vectors projected onto (1 0 0) is 17.74°. In 

addition, the molecules are not regularly spaced along the helix; the separations between the 

oxygen atoms projected onto [1 00] are 0.44 A or 1.55 A (Figure 6.3b). 

Figure 6.3a: Crystal structure of 3-chlorophenol at 150 K. Distorted pseudo four-fold helices 
are formed through OH... OH hydrogen bonds between the two molecules in the asymmetric 
unit. The structure at high-pressure (0.1 GPa) is similar to the low temperature structure. 

The chains conform to a C22(4) graph set, and are disposed about the 21 axes parallel to 

the a-axis direction (Figure 6.3a). The two crystallographically independent hydrogen bonds 

are moderate in strength 071 . . .072 (x-112, -112-y, -2-:) 2.734(7) A and 072.. .071 

2.700(6) A (Table 6.2). The chains appear to be close-packed when viewed in projection onto 

(1 0 0), and, by contrast to the fluoro-derivative, there are no contacts between the chains that 

fall within the sums of the van der Waals radii. 
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Figure 6.3b: Though in projection on [1 0 0] the positions of the C-0 bonds resemble those in 
a four-fold helix, the positions of the molecules along the axis of the helix are irregular. 

Crystallisation at 0.1 GPa results in the same structure as at ambient pressure. The 

interactions between molecules are significantly different to those at ambient pressure 

(071.. .072 (x-1/2, -112-y, -2-z) 2.693(4), 072.. .071 2.753(4) A). The interaction between 

071 . . .072 appears to decrease in length at pressure, while 072.. .071 increases, though it is 

not possible to differentiate between the effects of pressure and temperature, since the ambient 

pressure structure was determined at 150 K, while the high-pressure determination was at 

room temperature. 

63.3 4-Chlorophenol phase-I a! 150 K 

4-Chlorophenol is a solid at room temperature and was characterised by Perrin and 

Michel (1973a, b). It crystallises in two polymorphic forms, and the structures of these have 

been redetermined at 150 K as part of this study. 

Phase-I crystallises from the melt at ambient pressure in space group P2 1 1c with two 

molecules in the asymmetric unit; it is the more stable of the two phases. The two 

independent molecules alternate along the c-direction, forming ..OH.-OH..  hydrogen bonds 
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resulting in a (22(4)  graph set (Figure 6.4a). The hydrogen bonds formed in this structure 

are of similar strength; 071.. .072 (x, 3/2-y, Y2+z) 2.767(2) A and 072.. .071 2.779(2) A. 

Figure 6.4a: Crystal structure of phase-I of 4-chlorophenol at 150 K viewed along the b-axis 
showing chains of molecules linked by OH... OH hydrogen bonds. 

The graph-set descriptor is the same as that in 3-chiorophenol, but the chain is built by 

successive application of c-glide operations, rather than a screw-axis. Although the chain is 

helical, with a repeat at every fourth molecule, the pseudo-four-fold symmetry is even less 

ideal than in 3-chiorophenol (Figure 6.4b). The angle between 071-Cl I and 072-C 12 when 

projected onto (0 0 1) is 133.17°, which compares to 89. 75° in 3-chiorophenol. Moreover, the 

spacing of molecules along the direction of the helix is irregular: projection of the oxygen 

atoms onto [0 0 1] yields separations of 1.98 and 2.39 A. 
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Figure 6.4b: View down [0 0 1], along the chains. The Cl ... H interactions occur between 
C182. . .H2 1 and C181 .. .H62 and lie parallel to the b-axis. 

The chains are linked by H21 . . . C182 and H62. . .C181 interactions, both measuring 

2.93 A (Figure 6.4b). Taken on their own these Cl... H interactions build spiral chains which 

are disposed about the 2 1  axis parallel to b. Neighbouring chains interact with one another 

through a t-stacking interaction between molecule I and a symmetry equivalent. The 

distance between the phenyl ring planes is 3.45 A with the centroids separated by 3.77 A 
which equates to a 1.74 A centroid displacement. 

63.4 4-Chlorophenol phase-Il at 150 K and at 0.02 GPa 

The second phase of 4-chiorophenol is obtained by recrystallisation from benzene; it is 

in the same space group as phase-I, P21/c, with two molecules in the asymmetric unit. 

Phase-11 is metastable, and transforms spontaneously to phase-I if placed in contact with it 

(Pemn & Michel, 1973b). 

As in phase-I, the molecules interact via . .OH. . OH.. H-bonds but the interactions form 

an R.44(8) graph set instead of H-bonded chains (Figure 6.5). These rings stack along the 

a-direction. The hydrogen bonds are of a similar strength to those in phase-I; 071.. .072 

2.762(2) A and 072... 071 (2-x, l-y, 1-z) 2.779(2) A. Within the R44(8) rings a secondary 

CH. . . it interaction is formed between H21 and the it-system of molecule 2 (comprising atoms 
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C12-C62). The H21 . . .ir-centroid is 3.95 A, near to the limit for these interactions (4 A) as 

defined by Malone et al. (1997), and it adopts a 'Type V motif as defined by the same 

authors. 

Figure 6.5: Crystal structure of phase-IT of 4-chiorophenol at 150 K viewed along the a-axis. 
The molecules crystallise in a ring motif that forms around an approximate four-fold axis. 
The discrete H-bonded groups are linked through an interaction between C182.. .H3 1. The 
structure at high-pressure is similar to the low temperature structure. 

There are close contacts between chlorine and hydrogen atoms (Cl82 ... H31 2.83 A c.f 

sum of vdW 2.95A) that join the R 44(8) groups together into a ribbon. The ribbons lie along 

the [11 0] direction at c = ½ and [11 0] direction at c = 0,1 etc. 

Under ambient conditions crystallisation of 4-chiorophenol from the melt yields phase-I, 

but when crystallised from the melt under pressure (0.02 GPa), phase-11 is formed. This 

pressure is very slight indeed by the standards of high-pressure crystallography and is barely 

measurable using the ruby fluorescent technique. The molecular arrangement is the same as 

the ambient pressure structure, though 071 . . .072 is significantly longer than at ambient 
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pressure (2.819(5) A), while 072.. .071 (2-x, l-y, I -z) is significantly shorter (2.749(5) A). A 

similar effect was observed in 3-chlorophenol. 

The crystal of phase-IT grown at high-pressure transformed to a single crystal of phase-I 

when the pressure was released, but this transformation is not reversible i.e. applying 

hydrostatic pressure to a crystal of phase-I does not yield phase-I!. It is possible that the Il-to-

I transformation occurs by conversion of the R44(8) ring motifs, which are stacked by lattice 

repeats along the a-direction in phase-I, into C44(8) chains, developed by a c-glide, in phase-

II. This would approximately double the length of the lattice repeat in this direction in going 

from phase-! to II (a = 3.97 A and c = 8.74 A in phases I and II, respectively). In both phases 

Cl... H interactions build chains which spiral along the 2 1 -axes along the b-directions. These 

similarities presumably promote the preservation of the single crystal through the phase 

transition. 

63.5 2-Fluorophenol-I at 150 K 

2-Fluorophenol crystallises in space group C2/c with one and a half molecules in the 

asymmetric unit; this is referenced as phase-I. One molecule (molecule 1, C1  - F81) 

occupies a general position, and is ordered. A second molecule (molecule 2. C12 - F82) 

occupies a 2-fold axis with the axis running through atoms 072.. .C12...C42, and so the 

hydroxyl hydrogen and the fluorine atoms are disordered. 

The molecules interact via ..OH..OH.. H-bonds forming chains; the direction of the H_ 

bonding in these chains must be disordered as a result of the disorder in molecule 2. A pair of 

molecules of type I are connected by a hydrogen bond formed across an inversion centre. 

These 'dimer' sub-units are then bridged by disordered molecules of type 2 (Figure 6.6a). 

When projected along a the chains have a marked zig-zag structure. When viewed in 

projection along c the chain of molecules somewhat resembles a helix, this is an artefact of the 

projection: the displacement along c of one molecule to another is quite irregular, being 

2.18 A across the inversion centre and 5.75 A across the two-fold axis, while the angles made 

between successive OC vectors alternate between 180° and 89.83° (Figure 6.6b). The H-

bond lengths are similar to those observed for other compounds in the study: 071.. .071(1 -x, 

-y, I -z) 2.774(3) A and 071 ...O72 2.707(2) A. There are it-stacking interactions between 

molecule I and a symmetry equivalent molecule in the next chain along the a-axis. The 
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phenyl rings lie parallel to one another 3.62 A apart with a centroid displacement in the plane 

of the ring of 1.48 A. 

071 

7  

b 

a 

Figure 6.6 top (a): Crystal structure of phase-I of 2-fluorophenol at 150 K showing the 
disordered H-bonded chain. Molecule I forms a dimer with a symmetry equivalent molecule. 
These dimers are linked through a H-bonding interaction to molecule 2. H-atoms are omitted 
for clarity. F82 is disordered by the 2-fold axis, which runs through 072-C 12. 

Bottom (b): View down the H-bonded chain. 
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63.6 2-Fl uorophenol-II at 0.36 GPa and 403 K 

A crystal of 2-fluorophenol was grown at 0.36 GPa but the crystal fractured a few 

hours after cooling to ambient temperature. Despite the poor X-ray diffraction data, the 

diffraction pattern could be indexed on an orthorhombic unit cell (a = 5.8952 A, 
b = 10.9466 A, c = 16.459 A); this is different to that determined at ambient pressure at 

150 K, indicating that a different phase had formed under high-pressure. A tentative 

structural solution was obtained, but the refinement residuals were unacceptably high, and it is 

likely that on cooling to room temperature the compound forms a disordered phase. 

We found that the crystal obtained at high-pressure was stable if the cell was held 

above about 363 K, and so a data collection was carried out in which the cell was held at 

403 K. This phase of 2-fluorophenol crystallises in space group P2 1 2 1 2 1  with two molecules 

in the asymmetric unit. In one molecule the C-F bond refined to an unrealistically short 

distance, which may indicate high librational disorder of the molecule. This is not 

unreasonable for a structure at 403 K, though it is difficult to assess from the displacement 

parameters because of the low data completeness which resulted from shading by the pressure 

cell. 

Oxygen and fluorine have similar X-ray scattering factors, and so assignment of these 

sites was made on the basis of interatomic contacts. The assumption that oxygen atoms are 

likely to make at least one hydrogen bond in which the distance between the non-hydrogen 

atoms is between 2.6 and 3.1 A serves to identify 071 as an oxygen atom. The shortest 

contact (3.37 A) made by F81 is to C62 in a neighbouring ring; this distance is similar to 

those quoted by Thalladi et al. (1998) for C ... F distances in CH. . .F hydrogen bonds, which 

therefore lends support to the assignment. 

Atom assignments, 072 and F82, in the second of the two independent molecules were 

made by refinement of two alternative models with part-weight hydroxyl H-atoms placed in 

two alternative positions on each oxygen atom. The R I-factors of the model presented here 

and the alternative were 12.09 % and 12.44%, respectively. The occupancies of alternative 

H-atom positions refined to 0.85:0.15(13); only the major occupancy H-atoms were retained. 

The alternative model contains OH.. .F interactions; organic fluorine is not expected to be 

competitive with hydroxyl oxygen as a hydrogen bond acceptor. 

The ..OH..OH.. chain that is formed (along the a-direction) conforms to a C22(4) graph 

set. The 071 . . .072 distances are 2.860(4) and 3.097(3) A. In common with other structures 
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in this series, each chain is surrounded by six others, and there are F82. . . H52 interactions 

formed between the chains (2.63 A, Figure 6.7a). The second of these is the longest observed 

in this series, and this may reflect the steric effect of F72 (071.. .F72 = 2.94 1(7) A). This 

arrangement is stabilised by a secondary F81 . . .H62 and F82. . .F61 interactions (both 2.56 A) 
formed within the chains (Figure 6.7b). 

0•••• •• 	 0 

Figure 6.7 top (a): Crystal structure of phase-11 of 2-fluorophenol at 0.36 GPa viewed along a 
showing chains of molecules linked by OH.. . OH hydrogen bonds. The chains are linked by 
H... F hydrogen bonds between H52 and F82. Bottom (b): The hydrogen bonded chains 
viewed side-on. 

-162- 



Chapter 6. The Crystal Structures of the Monofluoro- and Monochioro- Phenols at Low Temperature and High- 
Pressure. 

6.4 Discussion 

Compounds that are crystallised under ambient conditions and then subjected as single 

crystals to high-pressure may be reduced to powder during a phase transition. Low-melting 

compounds are therefore useful for the study of pressure-induced polymorphism because 

high-pressure phases can be accessed directly by in situ crystal growth in a high-pressure cell. 

A particularly striking example of the simplification in phase behaviour that can be gained by 

in situ crystal growth is that of S g : the solid region temperature/pressure phase diagram 

contains no less than twelve different phases when studied by compression of a solid sample, 

but there are only three when the liquid is allowed to crystallise from the melt (Mezouar, 

2001). This series of molecules was chosen for its well-defined hydrogen bonding 

characteristics and the rigidity of the molecules. 

The structures of 2-chiorophenol and 4-fluorophenol have been described in a previous 

Chapter, and the aim of this Chapter is to complete the survey of the monofluoro- and mono-

chiorophenols. 2-Fluorophenol, 3-fluorophenol and 3-chiorophenol are all liquids under 

ambient conditions, and crystals for study at low-temperature were grown by the laser-assisted 

zone-refinement method of Boese and Nussbaumer. They were crystallised at high-pressure 

using the procedure of Allan el al. (1998). 4-Chiorophenol is a solid under ambient 

conditions, and its two polymorphic forms were crystallised from the melt and from benzene. 

It was crystallised from a liquid under high-pressure by ensuring that the Merrill-Bassett cell 

was hot prior to introduction of the sample. 

The packing in the crystal structures of monoalcohols has been studied by Brock & 

Duncan (1994) and Taylor & Macrae (2001). Alcohols with bulky R-groups aggregate around 

3-, 4- or 6-fold screw, rotation or rotoinversion axes or crystallise in low-symmetry space 

groups with Z'> 1. Small alcohols tend to pack about 2 1  axes or glide planes. Previous work 

in our laboratory has shown that phenol, 2-chiorophenol and 4-fluorophenol behave like bulky 

alcohols under pressure (packing about a pseudo three-fold axis in P2 1 , a 32  axis in P32  or a 

site in R, respectively). Under high-pressure these compounds behave as small alcohols, and 

pack about 21 axes or glide planes. 

3-Chiorophenol behaves typically, and packs with two independent molecules about a 2 

axis to emulate a four-fold screw axis, though there are significant departures from this ideal 

arrangement. This structure is obtained both at low-temperature (283 K) and high-pressure 

(0.1 GPa). The geometric parameters characterising the packing were slightly different. 
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All or most of the interactions would decrease on further application of pressure, but one 

disadvantage of the methods used here is that hydrostatic conditions are lost on crystallisation 

under pressure (the liquid behaves as its own hydrostatic fluid). Increasing the pressure on 

such samples therefore tends to degrade them. 

3-Fluorophenol is unique in this series in crystallising at ambient pressure like a small 

alcohol, and forming chains disposed about a 2 1  screw axis. The 0.. .0 distances in the chain 

are slightly longer than in the other phenols studied here, and this may reflect steric effects of 

neighbouring phenyl groups. The structure is stabilised by F... H interactions. The same 

phase is obtained on crystallisation at 0.12 GPa. 

Both 2-fluorophenol and 4-chlorophenol exhibit more interesting phase behaviour with 

increasing pressure. Neither adopt the packing motif associated with small alcohols at high-

pressure; nor do they form very regular helical structures at ambient pressure. 

The structure of phase-I 2-fluorophenol at 150 K is depicted in Figure 6.6. The packing 

is characterised by chains built by . .OH. . OH.. hydrogen bonds. Pairs of molecules are linked 

across inversion centres, and these are bridged by molecules disordered about two-fold axes. 

The pairs of molecules connected across the inversion centres have a similar spatial 

relationship to a pair of molecules related by a glide plane or 2 1  axis, as in the structures of 

small alcohols. The steric effect of the 2-fluorine atom means that this cannot be propagated 

further though, and the other molecules in the chain are rotated about the chain axis (the 

c-direction) by about 90°. The 2-fluorine atoms point towards the chain axis and there is no 

scope for the formation of stabilising F ... H contacts either within the chains or between them. 

A different polymorph (phase-11) was obtained for 2-fluorophenol at 0.36 GPa. The 

crystal of this phase was stable only above ca 363 K, and data were obtained at 403 K. The 

structure has two molecules in the asymmetric unit, and is also characterised by ..OH. .OH.. 

chain formation. In projection, the chain resembles a four-fold helix, but the repeat along the 

chain is irregular. The most important difference between this phase and phase-I is the 

presence of F... H interactions which occur both within the H-bonded chains and between 

them. Tlialladi el al. (1998) have shown that that the C-H... F interactions are as important as 

C-H ... 0 interactions in structure stabiisation. The observation that more of these weak 

interactions are formed at high-pressure is consistent with results observed in other high-

pressure studies, for example on glycine, where high-pressure induces extensive CH. . .0 

hydrogen bond formation (Dawson et al., 2004b). A feature exhibited by high-pressure 

structures of 2-chlorophenol and 4-fluorophenol is the lengthening of . .OH. . OH.. hydrogen 
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bonds in order to accommodate more efficient packing motifs. A similar feature is observed 

in phase-il of 2-fluorophenol, in which one 0.. .0 interaction is 3.097(3) A. 

The two phases of 4-chiorophenol presented here have been described previously, and 

these structures are redetermmations. Phase-I, which is based on an irregular helical 

arrangement of molecules linked by OH.. . OH interactions, crystallises at ambient pressure 

from the melt. Under a modest pressure of 0.02 GPa, crystallisation from the melt yields 

phase-I!, which is based on cyclic hydrogen-bonded tetramers. In both phases the chlorine 

atoms link the hydrogen bonded units together through Cl... H interactions. These are 

somewhat shorter in phase-I1 than in phase-I. Moreover, the R(8) ring has inversion 

symmetry rather than the 4 symmetry that might be expected for such a motif for a bulky 

alcohol. Neighbouring phenyl groups approach each other with centroid-centroid distance of 

6.22 A, mediated by a CH.. .aryl hydrogen bond. The more extensive set of contacts in phase-

II, and its more efficient packing of phenyl groups perhaps explains the preference for this 

phase at high-pressure. 

6.5 Conclusions 

The behaviour of 3-fluoro-, 3-chloro, 4-chioro- and 2-fluorophenol shows a departure 

from the behaviour observed in phenol, 2-chiorophenol and 4-fluorophenol. The transition 

to a small alcohol packing from bulky alcohol packing is not seen in any of these compounds. 

In general, this study has shown that they crystallise in pseudo helices and ring motifs, though 

these are markedly distorted from three- or four-fold symmetry often observed in alcohol 

structures. Only one compound, 2-fluorophenol, shows a phase that is only stable at pressure. 

Those compounds that do undergo a phase transition, 4-chiorophenol and 2-fluorophenol 

show a transition to a phase which possesses a greater number of weaker intermolecular 

contacts in the form of CH. . .ir and CH. . . F interactions, respectively. 
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7.1 Conclusions 

This thesis has described the determination and analysis of the crystal structures of a 

series of hydrogen-bonded, organic compounds. The subjects chosen for study were targeted 

with the aim of forming closely-related structural motifs in the solid state. 

Chapters 2 and 3 have shown that it is possible to rationalise the formation of several 

co-crystals through knowledge-mining the Cambridge Structural Database. The choice of 

guest molecule was key to the success of these projects. Systematic modification of the guest 

molecules yields crystal structures that have similar hydrogen bonding motifs. These motifs 

are only disrupted when steric effects are introduced into the system. Chapter 4 has also 

shown that knowledge gained from previous experiments in the CSD can help to achieve 

successful crystallisations; hydrogen bonding in the subject of this Chapter was also shown to 

be temperature dependent. 

Chapter 5 described the alteration of the packing characteristics of 2-chiorophenol and 

4-fluorophenol with the application of pressure. 2-Chiorophenol and 4-fluorophenol 

crystallised in a manner that is associated with bulky alcohols at ambient pressure; around a 

32 screw axis and a 3 site, respectively. At pressure, the packing is more characteristic of a 

small alcohol,, crystallising around a 21 screw axis. Although the arrangement of molecules 

has changed, the hydrogen bonding chain motif observed in the ambient pressure phase of 

2-chiorophenol was still observed at high-pressure. However, the hydrogen-bonded ring 

motif of 4-fluorophenol is altered to a hydrogen-bonded chain motif on application of 

pressure. 

Most of the remaining chloro- and fluorophenols do not show a change in their packing 

characteristics. Only 2-fluorophenol crystallises as a new polymorph at pressure; the packing 

characteristics, however, do not change from those of a bulky alcohol. 3-Fluorophenol shows 

a different behaviour to the other halophenols as it crystallises in a small packing motif at 

ambient pressure. This can be attributed to stabilising H ... F interactions that occur in the 

crystal structure. The investigation of these compounds with pressure, however, is limited by 

the experimental procedure used to grow the crystals. Knowledge gained from Chapter 5may 

lead to the conclusion that those compounds that crystallise in an arrangement associated with 

bulky alcohols may undergo a phase transition at higher pressure to a structure similar to 

those observed in 2-chiorophenol and 4-fluorophenoL 

The experiments performed in this Thesis have given insight as to the hydrogen bonding 

and packing behaviour of a range of molecules at ambient and high-pressure. Systematic 
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studies of molecules can provide knowledge that may be utilised in further computational and 

crystal engineering studies. 
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Ada Crystallographica Section E 	 A paracetamol—morpholine adduct 
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ISSN 1600-5368 

lain D. H. Oswald,'* W. D. Sam 	Paracetamol [also known as acetaminophen or N-(4-hydroxy- 

Motherwell," Simon Parsons' 	phenyl)acetamide] is an important analgesic drug that has 

and Cohn R. Puthan? 	 recently been cocrystallized with a series of cyclic N- and 0- 
donor compounds. This paper describes the formation of a 

School of Chemistry, The University of 	 paracetamol adduct with morpholine, viz. paracetamol— 
Edinburgh. King's Buildings, West Mains Road, 	morpholine (1/2.5), C8H9NO2-2.5C4119N0. There are five 
Edinburgh EH9 3J1,  Scotland, and "Cambridge 

morpholine molecules and two paracetamol molecules in the 
Crystallographic Data Centre, 12 Union Road, 

Cambridge CB2 1EZ, England 	 unit cell. The paracetamol molecules are held together by 
hydrogen bonding via morpholine molecules, one of which is 

Correspondence e-mail: iain.oswald@ed.ac.uk 	disordered about an inversion centre. 

Comment 
Key indicators 

Paracetamol (acetaminophen) in its various polymorphic 
Single-crystal X-ray study forms has been studied extensively in recent years. It has been 
T= 150K 

Mean a(C—C) = 0.005 A shown (Fachaux et aL, 1995) that the different polymorphs 
Disorder in solvent or counterion (monodlinic and orthorhombic) have different compressive 
R factor = 0.054 properties. This ability for plastic deformation is of great 
wR factor = 0.178 interest to the pharmaceutical industry. The monoclinic form 
Data-to-parameter ratio = 13.9 is the thermodynamically more stable form of paracetamol 

For details of how these key indicators were under normal conditions, but shows no plastic deformation. 
automatically derived from the article, see The orthorhombic polymorph is much harder to prepare and, 
http:fljoumals.iucr.orgle. so far, can only be obtained reproducibly from the melt or by 

seeding a saturated solution (Nichols & Frampton, 1998). This 
pofymorph possesses plastic deformation and, therefore, mass 
production of this form would facilitate the manufacture of 
paracetamol for pharmaceutical purposes. In a recent study, 
our group has explored the use of cocrystals as a means of 
producing the orthorhombic polymorpk Paracetamol was 
found to cocrystallize with a number of different solvents 
(Oswald et aL, 2002). Though the majority of the cocrystals 
formed were hemisolvates, we also produced a 1:2.5 cocrystal, 
(I), of paracetamol with morpholine. 

H 

II 
2.5 (14 

0 

(1) 

There are two and a half morpholine molecules (designated 
A, B and C; see Fig. 1) present in the asymmetric unit of (I). 
One of the morpholine molecules (C) is disordered over a 
crystallographic inversion centre, with the N and 0 atoms 
sharing an equivalent site. A composite scattering factor 
[0.5jtN) + 05ft0)J was used for this site. The hydrogen 
occupancy was fixed at 0.5 in an axial position, which was 
inferred from a difference map. 

© 2002 International Union of Crystallography 	The amine function of morpholine is a weak hydrogen-bond 
Printed in Great Britain - all rights reserved 	 acceptor and a moderately strong donor The ether moiety is a 
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Figure 1 
A plot of adduct (I), with ellipsoids at the 30% probability level. 
Morpholine molecule C is disordered about a crystallographic inversion 
centre, with atoms N1C and OIC refined as 50% occupied with equal 

x,y,z coordinates and isotropic displacement parameters. All crystal-

lographically independent non-H atoms are labelled. 

rather weak acceptor. In paracetamol, the amide and hydroxyl 
groups are strong donors, and the carbonyl group a strong 
acceptor; the hydroxyl group is a weak acceptor. The structure 
of adduct (I) is consistent with this hierarchy of interactions. 
All direct links between paracetamol molecules are absent in 
the structure of (I) (Fig. 2). Successive paracetamol molecules, 
related by lattice repeats along c, are linked via pairs of 
crystallographically independent morpholine molecules 
through =O . H—N, 0 ... H—N and N. H—N interac-
tions. This scheme establishes a chain of molecules in the 
series paracetamol-morpholine (B)--morpholine (A )-para-
cetamol, which can be described with a C

3  3(11) graph at the 
ternary level (Bernstein etal.. 1995). A second chain is related 
to this via a crystallographic inversion centre, and is linked to 
the first via 0 - H ... N hydrogen bonds to morpholine B, to 
form a ribbon-like structure. This scheme satisfies all the 
hydrogen- bonding characteristics of the paracetamol mol-
ecules, with the exception of the weak OH acceptor func-
tionality. although this arguably interacts with an aromatic CH 
group (0- . H = 2.62 A). The hydrogen-bonding functionality 
of the morpholine is also satisfied with the exception of the 
donor character of the ether moiety in molecule A. It is 
notable that, in order to accommodate this scheme, the 
morpholine molecules A and B are in different conformations, 
with the amino H adopting the expected equatorial position in 
molecule B, but the less favourable axial position in molecule 
A. 

Neighbouring ribbons are related to each other by inversion 
centres, which are occupied by a third crystallographically 

Figure 2 
A section of the structure of the title paracetamol-morpholine (112.5) 
adduct. The view is along the b axis. 0 atoms are shown in red. N atoms in 
blue, C atoms in green and H atoms in grey. Paracetamol molecules 
within the outlined Unit cell are generated from those shown by 

translation along the (210) direction. 

independent molecule of morpholine (C). This molecule is 
disordered about the inversion centre, but forms weak 
hydrogen bonds [2.59 (5) Al to one of the ether moieties of 
the two morpholine A molecules related by the inversion 
centre. Overall then, the structure of (1) consists of layers 
formed by weakly connected ribbons. The layers are formed 
parallel to the (120) planes. The distance between the mean 
paracetamol planes in successive layers alternates between 
5.32 and 4.03 A. The average distance, 4.68 A, is commensu-
rate with d(120) (4.55 A). The mean planes of all the 
morpholine molecules are perpendicular to the plane of the 
paracetamol molecule. The angles that the mean planes of 
molecules A, B and C make with the paracetamol plane are 
83.73 (10), 79.60 (10) and 75.15 (16)°. respectively. The para-
cetamol molecules thus form a 'groove' in the layers, which 
align so that the morpholine molecules lie above and below 
this 'groove in successive layers. 

The large number of solvent molecules within this structure 
has resulted in the formation of solvent bridges between the 
paracetamol molecules, with no paracetamol-paracetamol 
interactions, as seen in our previous study. 

Experimental 

Starting materials were obtained from Sigma-Aldrich and were used 

as received. Paracetamol (0.49g. 3.24 mmol) was refluxed in 1 ml 
morpholine (11.42 mmol) and allowed to cool. Pale-yellow crystals 
were formed on maintaining the solution at 277 K. 

Ada Cryst. (2002). E58, o1290-o1292 	 lain D. H. Oswald etal. - C8H9 NO.2.5C4 119NO o1291 
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calculated positions and allowed to ride on their parent atoms, except 
for those involved in hydrogen bonding, which were located in a 

Z 2 	 difference map; these were treated with a riding model, following 
1.260 Mg m-' 	 several cycles of refinement in which a c-I-I distance restraint of 

Cu Ka radiation 
0.9 A was applied. Cell parameters from 48 

reflections 	 Data collection: DIF4 (Stoe & Cie, 1990); cell refinement: DIF4; 
0 20-22° 	 data reduction: REDU4 (Stoe & Cie. 1990): program(s) used to solve 

0.74 mm' 	 structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine 
T = 150 (2) K 	

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Plate, colourless 
027 x o.23 x 0.06 mm 	 SIIELXTL (Sheldrick. 2001); software used to prepare material for 

publication: SI-lI-. LXTI.. and CAMERON (Watkin et al., 1996). 

The authors thank the EPSRC and Cambridge Crystal-

lographic Data Centre for funding. 
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Crystal data 

CH.NO7.23C4H.$o 
M, = 368.97 
Triclinic, pT 
a = 8.710(4) A 
6 = 9.920 (5) A 
c = 12385 (5) A 
a = 19235 (3)' 

= 108.33 (2)' 
= 96.68 (3)' 

V = 972.7 (7) A 
Data collection 

Stoe Stadi-4 Four-circle 
diffractometer 

w-9 scans 
Absorption correction: empirical 

via scans LSHELXTL 
(Sheldrick (2001) based on 
method of North et al. (1968)] 
Trrin  = 0.717. T,,,,. = 0.889 

3596 measured reflections 
3416 independent reflections 

Refinement 

Refinement on F2  
R]F'> 2o(F2)J = 0.054 
wR(F 2) 0.178 
S= 1.03 
3416 reflections 
246 parameters 
H-atom parameters constrained 

1951 reflections with I> 2o(i) 
R,0, = 0.028 

= 70.3° 
6 = -10-+ 10 
k = -12-+ 11 
1= -14-4 15 
3 standard reflections 

frequency: 120 mm 
intensity decay: 5% 

W 1I102(F.,2 ) f (0.0983P) 2  
0.3346PJ 

where P (F2  ± 2F 2 )13 
(1a),..,, < 0.001 

0.35 e A 3  
Isp,,,,. -0.26 e A 3  
Extinction correction: SHELXL97 
Extinction coefficient: 0.0077 (14) 

The diffractometer was equipped with an Oxford Cryosystems 
low-temperature device operating at 150 K. H atoms were placed in 
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lain D. H. Oswald,'* W. D. Sam A co-crystal of quinol and pyridine would be expected to form 
Motherwell" and Simon Parson? with 1:2 stoichiometry because quinol has two hydrogen-bond 

donors and pyridine has one hydrogen-bond acceptor which is 
'School ol Chemistry, The University of  more basic than phenolic oxygen. We report the structure of a 
Edinburgh, King's Buildings, West Mains Road, 1:1 	co-crystal, 	viz. 	quinol-pyridine 	(1/1), 	( 6H602-05H5N, 
Edinburgh EH9 31J,  Scotland, and bCamb ge  

which does not conform to this expectation. Its stability 
Crystallographic Data Centre, 12 Union Road, 

Cambridge Cs.) 112, England appears to imply that a combination of individually relatively 
weak C--H-- 0, C - H. 	'r and ,r-,r stacking interactions are 

Correspondence c-ma-h lain oswalded.ac.uk  energetically competitive with 0—H-• -N hydrogen bonds. 
Quinol molecules lie on inversion centres, while pyridine is in 
a general position. 

Icy iidicaIoe 

Single-crystal X-ray study Comment 
I = 150K 

Mean a(CC) 	0.002 A Quinol shows a great propensity for forming co-crystals. and it 
R factor = (1.048 is widely used to stabilize compounds that are susceptible to 
wR factor = 0.1211 polymerization. A search of the Cambridge Structural Data- 
Data-to-parameter ratio 	16.7 

base (CSD, Version 5.25; Allen & Motherwell, 2002) shows 

For default of how these key indicators were that there are 92 co-crystals of quinol with a range of organic 
automatically derived from the article, see compounds. Of all these structures in the CSD, over half 
httpJ/journals.iucr.org/e.  contain hydrogen-bond acceptors, e.g. 1,4-dioxane (Barnes et 

al., 1990). We have recently reported (Oswald et al.. 2004) a 
series of crystal structures of co-crystals of quinol with pyra- 
zine, piperazine, morpholine, pyridine, piperidine and 4.4'-bi- 
pyridine (hereafter referred to as guest molecules). These all 
have closely related packing motifs in which pairs of quinol 
and guest molecules are connected via N—H ... 0 or C- 
H- . -0 interactions. 

0+4 

OH 
(1) 

Amine N atoms are more strongly basic than phenol 0 
atoms and the shortest, and by implication strongest, 
hydrogen bonds formed in our previous studies were those 
from a phenol OH donor to an amine or a pyridine N atom. 
Pyrazine and piperazine, which both have two acceptor sites 
per molecule, were found to form 1:1 co-crystals with quinol, 
which contains two strong donor functions. In the co-crystals 
of quinol with molecules with N, NH or NMe and 0, CH or 
CH2, respectively in the I and 4 positions of a six-membered 
ring, qwnol was found to form hydrogen bonds exclusively to 

it' 2(104 International Union of Crystallography 	the nitrogen moiety, promoting the formation of quinol -guest 
Printed in Coral klaN, - all rights teserved 	 co-crystals in a 12 ratio. This trend is exemplified by pyridine, 
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Figure 1 
Displacement ellipsoid plot of (I), showing the two crystal lographical ly 
independent quinol molecules (labelled A and B) and the pyridine 
molecule (labelled S). Ellipsoids are drawn at the 30% probability level. 
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Figure 2 
Strong 0—H ... 0 hydrogen bonds connect quinol molecules into chains 
Pyridine molecules are connected on either side of the chains by 0-
H ... N hydrogen bonds. r-r Stacking and C—H ... 0 interactions 
involving the pyridine molecules also link the chains into a layer. The 
0—H .0 and 0—H '-N hydrogen bonds are shown as heavy dashed 
lines and the weaker C—H ... 0 interactions as open dashes. This view is 
along the (112) reciprocal lattice direction. 

which forms a co-crystal containing quinol and pyridine in 1:2 

ratio. 

In this paper, we report the crystal structure of a 1:1 co-

crystal of quinol and pyridine. (I), which is an exception to the 

general stoichiometry rules described above. It was obtained 

2 lain D. H. Oswald et al. C,H60,C 5 HN 
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Figure 3 
The layers (see Fig. 2) are connected through C—li.- yr and C—H ... 0 
interactions to the layers above and below. X1B is the centroid of the 
benzene ring (see Table 1). This view is along I0101. 

by refluxing and then cooling a solution of quinol dissolved in 

a minimum quantity of pyridine. 

Co-crystal (1) crystallizes in space group PT and the asym-

metric unit consists of one molecule of pyridine in a general 

position and two half-molecules of quinol (labelled A and B) 

residing on crystallographic inversion centres (Fig. 1). Primary 

bond distances and angles are normal and are listed in the 

deposited CIE 

The shortest and strongest intermolecular interactions in 

the structure are 0-H.. O and 0-H.. N hydrogen bonds 

(Fig. 2 and Table 1). Quinol molecules A and B alternate along 

a chain built by 0-H ... 0 hydrogen bonds, in which molecule 

A provides the OH-donor functions, while molecule B acts as 

the acceptor. The chains run along the 11101 direction and 

form a C(14) graph set (Bernstein et al., 1995). Molecule B 

donates to pairs of pyridine molecules, which lie on either side 

of the chain. Successive pyridine molecules are related by the 

I operations centred in the middle of the quinol rings. Co-

crystal (I) is the only co-crystal in our study that we have 

observed in which quinol molecules are directly hydrogen 

bonded to one another. 

The only conventional hydrogen-bonding function unsat-

isfied' by the N-H.. O and 0-H ... 0 hydrogen bonding 

described above is the phenol 0 atom of molecule A. There is 

a close contact between this phenol group and a pyridine 

attached to an adjacent chain (C4S -H4S .. . OIA = 2.57 A and 

127°). 

Inter-chain connections are also formed by ,r-,r stacking 

between pairs of pyridine molecules. The distance between the 

atoms in one ring and the mean plane of the other varies in the 

range 3.532-3.538 (2) A; the planes are exactly parallel by 

symmetry. The symmetry code relating the rings in this 

Arta CrysI. (2004). E60, 1 

Fg a6O31k6O31 3d 9w4ifi0316t31 .sgn E042454-WK6031 CO PU-0413/19(4)10 411i7(30)9 	 EE020045011 01-1 



organic papers 

interaction is (2 - x, I - y. -z). 
The C4S --H4S -.'OIA and r-r stacking interactions 

connect the chains into a layer parallel to (112). The layers are 
stacked, with quinol molecules above and below the rather 

open' region between the pairs of 7r-stacked pyridine rings in 

Fig. 2. The layers are connected in this region by C6S•-
H6S ... r and C2S- H2S ... OIB interactions, where the Yr 

acceptor is the aromatic ring from a quinol (molecule B, see 
Fig. 3). The distance between H6S and the centroid of the 
benzene ring (X1 B) in this interaction is 2.53 A, with an angle 

of 162° subtended at the H atom. The weak C2S - H2S ... O1B 
interaction measures 2.69 A. with an angle at 112S of 136° . 

C- H• .0 hydrogen bonding is now widely accepted 

(Desiraju & Steiner. 1999). and weak hydrogen bonding can 

be exploited in supramolecular chemistry and crystal structure 
design. For example, C--H ... O bonds may play a very 

important role in protein folding (Derewenda etaL. 1995). The 
CH groups in pyridine rings are often observed to act as donor 

groups in CH- 'acceptor interactions. Related interactions 

also occur in heterocyclic compounds related to pyridine. for 
example, in quinol-pyrazine (Oswald et al., 2004). Such 
interactions are strong enough that they can be used in crystal 

engineering, as demonstrated, for example, by Bond (2003) in 
a series of co-crystals of pyrazine with carboxylic acids. 7r-7r 
Stacking has also been observed to be competitive with 

conventional hydrogen bonding in, for example. the 1:2 co-
crystal of quinol with 4,4'-bipyridine (Oswald et al.. 2004). 

That a co-crystal with 1:1 stoichiometry should be obtained 

from a mixture of quinol and pyridine must imply that the 
combination of C-H ... O, ,r-,r stacking and C-H . 
interactions is competitive with 0-H ... N hydrogen bonding, 
even for a relatively basic centre such as pyridine. 

Experimental 

Starling materials were obtained from Sigma-Aldrich and were used 
as received. Quinol (0.49 g. 4.45 mmol) was reflused in a minimum 
volume of pyridine to dissolve the solid. The solution was allowed to 
cool to room temperature to produce colourless blocks. 

Crystal data 

c4tlO7.C,H,N Z-2 
M, = 189.21 D, = 1.310 Mg m 3  
Thclinic. 11 1 Mo Ka radiation 
a = 5.7451 (5) A Cell parameters from 2033 
b 	9.1570(9) A reflections 
c=9.6247(9)A 9=2-29° 
a 	89.002 (2)' A 	0.09 mm' 

76.222 (2) -  T = 150 (2) K 
= 77.478 (2)° Block, colourless 

V = 479.76(8) A3  033 x 0.18 x 0.18 mm 

Data collection 

Bruker SMART APEX CCD area- 	4349 measured reflections 
detector diffractometer with 

	
2248 independent reflections 

Cryostream cooler (Cosier & 
	

1853 reflections with I> 2o(I) 
Glazer, 1986) 	 = 0.018 

Ca scans 	 = 28.7° 
Absorption correction: multi-scan 	I, = -7 -.+ 7 

(SADABS; Sheldrick, 2004) 
	

k -12-+ 12 
Tenin = 0.841, T,, = 0.980 
	

I = -12-s 13 

Ada Cryst. (2004). E60, 1 

Refinement 

Refinement on F w 	111a2(F02) + (0.049P) 2  
RIF2 > 2o'(F2 )J = 0198 + 0.1585PJ 
wR(F 2 ) = 0.120 where P = (F,,2  + 2F 2)/3 
S = 1.04 (&a),,,,,, = 0.001 
2248 reflections 0.28 e A 3  
135 parameters p,.,,, = -0.21 e A 3  
H atoms treated by a mixture of 

independent and constrained 
refinement 

Table 1 
Hydrogen-bonding geometry (A, 

D-H ... A D-H A D . .4 D-H ... A 

01A - H1A. . OJ' 0.94(3) 1.81(3) 2.7392 (16) 168 (2) 

OIB-HIB . .N1S' 0.93(2) 1.79(2) 2.7178(17) 178 (2) 
C2S-l-12S ... O1B 0.95 2.69 3.436(2) 136 
C4S- l-14S . O1A 0.95 2.57 3.225(2) 127 
CAS-H6S . .'3°' 0.95 2.53 3.45 162 

Symmetry coder (I) 1 +x.y.z: (ii) 1 -x.1-y.-z; (iii) 1+x.y.z- 1. X18 is the 
centroid of the benzene ring. 

H atoms were placed on C atoms in calculated positions (C-0 = 
0.95 A) and allowed to ride on their parent atoms [U1,.,(H) = 
1.211eq(C)j. Hydroxyl H atoms were located in difference maps and 
refined freely. 

Data collection: SMART (Bruker-Nonius, 2001); cell refinement: 
SAINT (Bruker-Nonius, 2003); data reduction: SAINT: program(s) 
used to solve structure: S1-IELXTL (Sheldrick. 2001): program(s) 
used to refine structure: SI-IEI.XTL; molecular graphics: SHELXTL; 
software used to prepare material for publication: SIIELXTL. 
PLA TON [Spek (2004) as incorporated in WsnGX (Farrugia, 1999)] 
and enCiFer (Version Li; Allen el aL, 2004). 

The authors thank the EPSRC, The University of Edin-
burgh and The Cambridge Crystallographic Data Centre for 

funding. 
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Abstract 

Isonicotmamide has been shown to form many 1:1 co-crystals with monofunctional carboxylic 

acids, but with propionic acid it forms a co-crystal containing two acid molecules per formula 

unit. The crystal structure consists of 'supermolecules' consisting of one isonicotiriamide and two 

acids hydrogen bonded to the pyridine and amide functions. Further NH.. 0 hydrogen bonds 

connect these supermolecules into chains. 

Comment 

Isonicotinamide has been shown to crystallize with carboxylic acids in a 1:1 stoichiometry to 

form a robust building block or 'supermolecule' consisting of two amide and two acid molecules, 

I (Aakeroy et al., 2002). When a saturated solution of isonicotinamide in warm propionic acid 

was allowed to cool, colourless crystalline laths were obtained. Single crystal X-ray diffraction 

revealed these to be a co-crystal consisting of isonicotinamide and propionic acid in 1:2 ratio 

(11). Similar preparative routes with formic and acetic acids both yielded 1:1 co-crystals (Oswald 

et al., 2004). Attempts to prepare a 1:1 co-crystal with propionic acid failed. For example, a 1:1 

mixture of propionic acid and isonicotinamide in ethanol yielded only crystals of H; even in the 

presence of excess isonicotinamide the only crystals obtained were isonicotinamide itself and II. 

The crystal structure of II consists of supermolecules comprising two acid and one isonicotin-

amide molecule. One acid forms an R22 (8) motif with the amide moiety (Bernstein et al., 1995). 

Another acid molecule forms a hydrogen bond to the pyridine nitrogen, supported by a weaker 

CH ... O hydrogen bond (Fig. 1, Table 1). There are two supermolecules in the asymmetric unit, 

and, in the terminology of Aakeröy et al. (2002) both are in the trans-trans conformation. 

The independent supermolecules H-bond together using the second amide donor and the 

carbonyl group from the propionic acid molecules located at the pyridine end of the supermol-

ecutes. This builds-up a chain in which successive supermolecules are aligned perpendicular 

to one another (Fig. 2a; H-bond dimensions are listed in Table 1). These motifs comprise all 

the conventional NH.. -0 and OH ... O hydrogen bonds in the crystal (see Table 1); additional 

CTL..O interactions (05A-115A. . . oij and C5B-115B. . - 02V) are also formed within the 



chains (Desiraju & Steiner, 1999). 

Supermolecules in neighbouring chains are interleaved (Fig 2b). There are no direct hydrogen 

bonding interactions between interleaved supermolecules, though the pair of molecules shown in 

outline in Fig. 2b interact via a a CH ... O interaction; (C2A-112A.. 03T; other such interactions 

involve C213--11213 . 

The array of interleaving chains builds-up a layer which is parallel to (0 1 0) (Fig. 2c). 

The layers are connected ma CH ... O hydrogen bonds involving pairs of C4T—H4T1 .02T 

and C4V—H4VI ... 02S interactions disposed about inversion centres (for clarity these are not 

shown in Fig. 2c). 

Experimental 

All materials were obtained from Aldrich and used as received. lsonicotinamide (050g, 

4.10 mmol) was dissolved in an excess of propionic acid (2.40g, 32.43 mmol) and warmed until 

all the solid dissolved. The solution was cooled to room temperature producing colourless laths. 

Crystal data 

C6H6N20.2(C3H602) 

Mr  = 270.28 

Thclinic 

P1 

a = 10.038 (3) A 
b = 11.559 (4) A 
c = 12.740 (4) A 

= 103.203 (6)° 

= 90.140 (6)° 

-y = 102.247 (6)° 

V = 1404.5 (8) A 3  
Z=4 

D1  = 1.278 Mg m 3  

Dm  not measured 

Mo Ka radiation 

A = 0.71073 A 

Cell parameters from 1107 reflections 

o = 2.58-22.20° 

= 0.100 mm 

T = 150 (2) K 

Lath 

Colourless 

0.75 x 0.20 x 0.08 mm 



Data collection 
CCD area detector diffractometer 

Phi and w scans 

Absorption correction: 

multi-scan SADABS (Sheidrick, 2004) 

Please give reference 

Tmin = 0.783, Tm .jc  = 1.000 

12519 measured reflections 

6498 independent reflections 

Refinement 

Refinement on 1 

> 2u()] = 0.0876 

wR(F 2 ) = 0.1975 

S = 1.044 

6498 reflections 

379 parameters  

riding or All 11-atom parameters refined 

3362 reflections with 

>2sigma(1) 

R i.t  0.0441 
n a m x 

-'ea'° - 
h = -13 -, 13 

k = -15 -+ 15 

1 = -17 - 17 

intensity decay: none 

u1/[ 2 (F) + (0.0681P)2  + 0.3798P] 

where P = (F + 2F)/3 

(/°)max = 0.000 

= 0.362 e 

Pmin = -0.209 e 

Extinction correction: none 

Scattering factors from International Tables 

for Crystallography (Vol. C) 

Table 1. Hydrogen-bonding geometry (A, 0) 

D-H D-H . D. . D-H...  

03S-H3S ... 08A 0.79(4) 1.86 (4) 2.639(4) 170 (4) 

03T-H3T•. •08B 0.76(5) 1.89 (5) 2.639 (4) 169 (5) 

03U-H3U ... N1B' 0.87(4) 1.78(4) 2.649 (4) 177 (5) 

03V-H3V ... N1A" 0.87(5) 1.79(5) 2.657(4) 174 (5) 

N9A-H91A ... 02S 0.96(5) 1.92 (4) 2.868 (4) 170 (5) 

N913-119113• .07[' 0.93(4) 1.96(4) 2.880 (4) 168 (3) 

N9A-H92A.. 02U11  0.92 (3) 2.02 (3) 2.901(4) 161 (3) 

N9B-H92B ... 02V 0.93(3) 2.01 (3) 2.900(4) 160 (3) 

C2A-H2A.. .03TiV 0.95 2.50 3.267 (5) 138 

C213-14213.. .03SV 0.95 2.51 3.281(5) 138 

C5A-H5A ... 02U" 0.95 2.40 3.328 (4) 167 

C5B-H5B ... 02V 0.95 2.39 3.322 (4) 168 

C6A-H6A ... O2VVi 0.95 2.73 3.348 (4) 123 

C6B-H6B ... 02U' 0.95 2.72 3.333 (4) 123 

C4T-H4T1 ... 0.99 2.58 3.513 (5) 157 

C4V-H4V1 ... 025V111 0.99 2.57 3.551 (4) 170 

Symmetry codes: (i) 1-x,2-y,-z; (ii) 1+x,1+y,z-1; (iii) 1 -x,1-y,1-z; (iv) z-1,y-1,z; 

(v) x,1 +y,z; (vi) x- l,y- 1,1 + z; (vii) 2-x,1 - y, -z; (viii) x,y,z - 1. 



X-ray diffraction intensities were collected on a Brulcer SMART APEX CCD diffractometer 

equipped with an Oxford Cryosysterns low-temperature device (Cosier & Glazer, 1986). H-atonm 

were placed on C-atoms in calculated positions [with Uj,(H) = 1.2 U(C)J and allowed to ride 

on their parent atoms. Amide and hydroxyl H-atoms were located in difference maps and refined 

freely, the former subject to the restraint r(N—H) = 0.95 (3). All non-H atoms were modelled 

with anisotropic displacement parameters. 

Data collection: SMART (Bruker–Nonius, 2001). Cell refinement: SMART. Data reduction: 

SAINT (Bruker–Nonius, 2003). Program(s) used to solve structure: SHELXTL (Sheldrick, 2001). 

Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL MERCURY 

(Taylor & Macrae, 2001) . Software used to prepare material for publication: SHELXTL EnCIFer 

(CCDC, 2004) PLA TON (Spek, 2004) ans incorported into WinGX (Farrugia, 1999).. 

We thank the EPSRC, The University of Edinburgh and The Cambridge Crystallographic 
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Supplementary data for this paper are available from the IUCr electronic archives (Reference: 

PREVIEW). Services for accessing these data are described at the back of the journal. 
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Fig. 1: 'Supermolecules' are formed in the crystal structure of!!, which consisting of one isonicotin-

ainide and two acids hydrogen-bonded to the pyridine and amide functions. There are two 

crystallographically independent supermolecules these are shown in (a) and (b) with atomic 

numbering. Probability ellipsoids enclose 30% probability surfaces. Conventional hydrogen 

bonds are shown in heavy dashes, and the H . .0 distances span 1.78 (4) to 1.96 (4),k (see Table 

1). The CH ... O hydrogen bonds (shown as open dashes) quite weak for this type of interaction 

(2.73 and 2.72A). 

Fig. 2: Packing in the crystal structure of II. (a) Hydrogen bonds link spermolecules into chains. 

This view is appoximately along (0 1 0). (b) Successive chains are interleaved. Supermolecules 

from two neighbouring chains are shown in outline. Molecules A, S and V are vertical, molecules 

B, T and U are horizontal. This forms layers which are parallel to the (0 1 0) planes (c). 
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The tables of data shown below are not normally printed in Acta Cryst. Section C but the data 

will be available electronically via the online contents pages at 
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Table Si. &nctional atomic coordinates and equivalent isotropic displacement parameters (A 2) 

= (1/3)EiE3 UZJaiaJ ai.aj.  

Z Ueq 
NIA 0.0374(3) -0.1364(2) 0.5184 (2) 0.0340(6) 
C2A 0.0899(3) -0.1354(3) 0.4224 (3) 0.0399(9) 
H2A 0.0424 -0.1899 0.3598 0.048 
C3A 0.2125(3) -0.0566(3) 0.4114 (3) 0.0367(8) 
H3A 0.2482 -0.0576 0.3423 0.044 
C4A 0.2807(3) 0.0225(3) 0.5023(2) 0.0307(7) 
C5A 0.2266(3) 0.0211 (3) 0.6018(3) 0.0358(8) 
H5A 0.2724 0.0739 0.6659 0.043 
C6A 0.1023(3) -0.0605(3) 0.6056(3) 0.0372(8) 
H6A 0.0635 -0.0610 0.6734 0.045 
C7A 0.4134(3) 0.1076(3) 0.4875(3) 0.0300(7) 
08A 0.4515(2) 0.1028(2) 0.39475 (18) 0.0422(6) 
N9A 0.4801 (3) 0.1821(3) 0.5743(2) 0.0400(7) 
H91A 0.559(4) 0.239(4) 0.561 (4) 0.13(2) 
H92A 0.448(4) 0.177(4) 0.641(2) 0.075 (14) 
NiB 0.6050(2) 1.1345(2) -0.0179(2) 0.0347(7) 
C2B 0.6559(3) 1.1321(3) 0.0769(3) 0.0363(8) 
H2B 0.6352 1.1865 0.1396 0.044 
C3B 0.7394(3) 1.0525(3) 0.0886(3) 0.0372(8) 
113B 0.7738 1.0521 0.1580 0.045 
C4B 0.7705(3) 0.9749(3) -0.0022(2) 0.0318(8) 
C5B 0.7187(3) 0.9781(3) -0.1016(3) 0.0343(8) 
H5B 0.7395 0.9262 -0.1658 0.041 
C6B 0.6340(3) 1.0601(3) -0.1058(3) 0.0358(8) 
H6B 0.5967 1.0620 -0.1738 0.043 
C713 0.8617(3) 0.8898(3) 0.0125(3) 0.0315(8) 
08B 0.9029(2) 0.8942(2) 0.10510 (18) 0.0435(6) 
N9B 0.8926(3) 0.8168(3) -0.0743(2) 0.0402(7) 
H9113 0.943(4) 0.761(3) -0-064(3) 0.079 (14) 
H92B 0.855(3) 0.817 (3) -0.141(2) 0.059 (11) 
C1S 0.7475(3) 0.3193(3) 0.4192(3) 0.0380(8) 
02S 0.7115(3) 0.3378(2) 0.5096(2) 0.0546(7) 
03S 0.6802(3) 0.2306(2) 0.34051 (19) 0.0442(7) 
H3S 0.618(4) 0.189(3) 0.361(3) 0.052 (13) 
C4S 0.8744(4) 0.3943(3) 0.3861(3) 0.0473(9) 
H4S1 0.8645 0.4799 0.4013 0.057 
H4S2 0.9519 0.3916 0.4329 0.057 
C5S 0.9112(4) 0.3599(4) 0.2720(3) 0.0597 (11) 
H5S1 0.9249 0.2763 0.2558 0.090 
H5S2 0.9955 0.4155 0.2611 0.090 
H583 0.8374 0.3652 0.2241 0.090 
CIT 1.0981(3) 0.6806(3) 0.0803(3) 0.0374(8) 
02T 1.0571(2) 0.6652(2) -0.0116(2) 0.0521 (7) 
03T 1.0671(3) 0.7648(3) 0.1601(2) 0.0468(7) 
H3T 1.029(5) 0.809(4) 0.145(4) 0.10(2) 
C4T 1.1877(4) 0.6048(3) 0.1135(3) 0.0468(9) 
H4T1 1.1369 0.5189 0.0955 0.056 
H4T2 1.2686 0.6099 0.0691 0.056 
C5T 1.2363(4) 0.6365(4) 0.2284(3) 0.0621 (12) 
H5T1 1.2872 0.7214 0.2480 0.093 
H5T2 1.2960 0.5829 0.2395 0.093 



H5T3 1.1579 0.6263 0.2736 0.093 
C1U 0.5951 (3) 0.7137(3) 0.1200(3) 0.0331(8) 
02U 0.5695(2) 0.7875(2) 0.19782 (18) 0.0417(6) 
03U 0.5494(3) 0.7069(2) 0.02220 (19) 0.0440(6) 
H3U 0.496(4) 0.757(4) 0.021 (3) 0.086 (16) 
C4U 0.6782(3) 0.6226(3) 0.1251 (3) 0.0442(9) 
H4U1 0.7507 0.6291 0.0730 0.053 
H4U2 0.6191 0.5400 0.1026 0.053 
05U 0.7439(4) 0.6374(4) 0.2361(3) 0.0574 (11) 
H5U1 0.8006 0.7198 0.2602 0.086 
H5U2 0.8010 0.5777 0.2326 0.086 
H5U3 0.6727 0.6243 0.2873 0.086 
C1V 0.7618(3) 0.7141(3) -0-3789(3) 0.0319(8) 
02V 0.8246(2) 0.7852(2) -0.30190 (18) 0.0417(6) 
03V 0.8021 (3) 0-7075(2) -0.47843 (18) 0.0410(6) 
H3V 0.876(5) 0.763(4) -0.479(4) 0.11(2) 
C4V 0.6318(3) 0.6233(3) -0.3745(3) 0.0419(9) 
H4V1 0.6485 0.5401 -0.3985 0.050 
H4V2 0.5621 0.6322 -0.4254 0.050 
C5V 0.5763(4) 0.6378(4) -0.2626(3) 0.0572 (11) 
H5V1 0.6443 0.6283 -0.2118 0.086 
H5V2 0.4925 0.5756 -0.2645 0.086 
H5V3 0.5561 0.7189 -0.2393 0.086 

Table 82. Anisotropic displacement parameters (A2 ) 

U11 U22 U33 U12 U13 U23 
MA 0.0336 (15) 0.0404 (17) 0.0301 (16) 0.0147 (13) 0.0006 (12) 0.0068 (13) 
C2A 0.044 (2) 0.048(2) 0.0270 (19) 0.0148 (18) 0.0026 (15) 0.0027 (16) 
C3A 0.039(2) 0.043(2) 0.0292 (19) 0.0145 (16) 0.0062 (15) 0.0059 (16) 
04A 0.0311 (18) 0.0397 (19) 0.0268 (18) 0.0192 (15) 0.0031 (14) 0.0082 (15) 
C5A 0.040(2) 0.041(2) 0.0266 (18) 0.0118 (16) -0.0037 (14) 0.0062 (15) 
C6A 0.038(2) 0.051(2) 0.0258 (18) 0.0168 (17) 0.0034 (15) 0.0081 (16) 
C7A 0.0331 (18) 0.0347 (19) 0.0273 (18) 0.0168 (15) 0.0033 (14) 0.0086 (15) 
08A 0.0419 (14) 0.0506 (15) 0.0308 (14) 0.0072 (11) 0.0074 (11) 0.0053 (11) 
N9A 0.0385 (18) 0.053(2) 0.0293 (17) 0.0112 (15) 0.0020 (14) 0.0098 (15) 
NIB 0.0327 (15) 0.0389 (17) 0.0283 (16) -0.0003 (12) 0.0036 (12) 0.0066 (13) 
0213 0.0356 (19) 0.042(2) 0.0260 (18) 0.0049 (16) 0.0013 (14) 0.0008 (15) 
C3B 0.0333 (19) 0.045(2) 0.0300 (19) 0.0028 (16) -0.0016 (14) 0.0074 (16) 
0413 0.0247 (17) 0.0384 (19) 0.0256 (18) -0.0044 (14) 0.0012 (13) 0.0041 (15) 
C5B 0.0316 (18) 0.041(2) 0.0261 (18) 0.0027 (15) 0.0051 (14) 0.0039 (15) 
0611 0.0305 (18) 0.047(2) 0.0277 (19) 0.0027 (16) 0.0031 (14) 0.0097 (16) 
0711 0.0240 (17) 0.040(2) 0.0267 (18) 0.0002 (14) 0.0046 (14) 0.0058 (15) 
0811 0.0443 (14) 0.0561 (16) 0.0298 (14) 0.0148 (12) -0.0054 (11) 0.0060 (12) 
N913 0.0369 (17) 0.057(2) 0.0296 (17) 0.0164 (15) 0.0024 (13) 0.0105 (15) 
C1S 0.037(2) 0.036(2) 0.041(2) 0.0110 (16) -0.0024 (17) 0.0075 (17) 
02S 0.0603 (17) 0.0601 (18) 0.0367 (16) 0.0011 (13) 0.0122 (13) 0.0086 (13) 
03S 0.0406 (15) 0.0520 (17) 0.0380 (16) 0.0037 (13) 0.0121 (12) 0.0123 (14) 
04S 0.048(2) 0.046(2) 0.048(2) 0.0055 (18) 0.0052 (18) 0.0144 (19) 
C5S 0.051 (2) 0.051(3) 0.068(3) -0.001(2) 0.015 (2) 0.007(2) 
CiT 0.0295 (18) 0.038(2) 0.044(2) 0.0010 (15) 0.0086 (16) 0.0140 (18) 
02T 0.0605 (17) 0.0616 (17) 0.0381 (16) 0.0204 (13) -0.0049 (13) 0.0128 (13) 
03T 0.0473 (16) 0.0573 (18) 0.0402 (16) 0.0202 (14) -0.0039 (12) 0.0122 (14) 
C4T 0.041(2) 0.053(2) 0.048(2) 0.0085 (18) -0.0012 (17) 0.0167 (19) 
C5T 0.071(3) 0.062(3) 0.055(3) 0.027(2) -0.011(2) 0.005(2) 
C1U 0.0280 (17) 0.038(2) 0.032(2) 0.0005 (15) 0.0009 (14) 0.0135 (16) 
02U 0.0442 (14) 0.0499 (15) 0.0316 (14) 0.0156 (12) 0.0041 (11) 0.0058 (12) 
03U 0.0492 (15) 0.0549 (17) 0.0311 (14) 0.0223 (14) 0.0019 (11) 0.0066 (12) 
C4U 0.043(2) 0.044(2) 0.050(2) 0.0134 (17) 0.0062 (17) 0.0182 (18) 
C5U 0.055(3) 0.055(3) 0.069(3) 0.018(2) -0.008(2) 0.023(2) 
Clv 0.0361 (19) 0.038(2) 0.0297 (19) 0.0199 (16) 0.0084 (15) 0.0135 (16) 
02V 0.0384 (13) 0.0551 (16) 0.0276 (14) 0.0075 (12) 0.0012 (11) 0.0042 (12) 
03V 0.0427 (15) 0.0500 (16) 0.0279 (13) 0.0070 (13) 0.0062 (11) 0.0070 (11) 
C4V 0.041 (2) 0.039(2) 0.048(2) 0.0101 (17) 0.0103 (16) 0.0142 (17) 
C5V 0.051 (2) 0.059(3) 0.064(3) 0.010(2) 0.023(2) 0.022(2) 



Table S3. Geometric parameters (A, 0) 

NIA-C6A 1.318 (4) C4S-H4S1 0.9900 
N1A-C2A 1.333 (4) C4S-H4S2 0.9900 
C2A-C3A 1.396(5) C5S-H5S1 0.9800 
C2A-H2A 0.9500 C5S-H5S2 0.9800 
C3A-C4A 1.375(4) C5S-H5S3 0.9800 
C3A-H3A 0.9500 C1T-02T 1.201(4) 
C4A-05A 1.383(4) CIT-03T 1.325(4) 
C4A-C7A 1.519(4) C1T-C4T 1.502(5) 
C5A-C6A 1.404 (4) 03T-H3T 0.75(5) 
C5A-H5A 0.9500 C4T-05T 1.479(5) 
C6A-H6A 0.9500 C4T-H4T1 0.9900 
C7A-08A 1.235(4) C4T-H4T2 0.9900 
C7A-N9A 1.315(4) C5T-H5T1 0.9800 
N9A-H91A 0.96(3) C5T-H5T2 0.9800 
N9A-H92A 0.91(2) C5T-H5T3 0.9800 
N113-C213 1.318(4) CIU-02U 1.218(4) 
N1B-C613 1.321(4) C1U-03U 1.307(4) 
C2B-C313 1.401(4) C1U-C4U 1.488(5) 
C2B-H2B 0.9500 03U-H3U 0.87(4) 
C3B-C413 1.375(4) C4U-05U 1.517(5) 
C3B-H313 0.9500 C4U-H4U1 0.9900 
C4B-0513 1.378(4) C4U-H4U2 0.9900 
C4B-C7B 1.518(4) C5U-H5UI 0.9800 
C513-C613 1.411(4) C5U-H5U2 0.9800 
C5B-H5B 0.9500 C5U-H5U3 0.9800 
C6B-H6B 0.9500 C1V-02V 1.201(4) 
C713-08B 1.236(4) C1V-03V 1.323 (4) 
C7B-N9B 1.310(4) C1V-C4V 1.502(4) 
N9B-H9113 0.93(2) 03V-H3V 0.87(5) 
N9B-H92B 0.93 (2) C4V-05V 1.518(5) 
CIS-02S 1.194(4) 04V-114V1 0.9900 
CIS-03S 1.321(4) C4V-H4V2 0.9900 
CIS-C4S 1.501(5) C5V-H5V1 0.9800 
03S-H3S 0.79(4) C5V-H5V2 0.9800 
C4S-05S 1.485(5) C5V-H5V3 0.9800 



C6A-NIA-C2A 119.4 (3) C4S-05S--H5S1 109.5 
NIA-C2A---C3A 121.9(3) C4S-05S--H5S2 109.5 
NIA-C2A-H2A 119.1 H5S1-05S-H5S2 109.5 
C3A-C2A-H2A 119.1 C4S-05S--H5S3 109.5 
C4A-C3A-C2A 118.9(3) H5S1-05S-H5S3 109.5 
C4A-C3A-H3A 120.5 H5S2-05S-H5S3 109.5 
C2A-C3A---H3A 120.5 02T-C1T-03T 122.7(3) 
C3A-C4A---05A 119.2(3) 02T-C1T-C4T 122.4 (3) 
C3A-C4A-C7A 117.6(3) 03T-C1T-C4T 114.9(3) 
C5A-C4A-C7A 123.2(3) C1T-03T--H3T 117 (4) 
C4A-05A-C6A 118.2(3) C5T-C4T-C1T 117.1(3) 
C4A-05A-H5A 120.9 C5T-C4T-H4T1 108.0 
C6A-05A-H5A 120.9 C1T-C4T-H4T1 108.0 
NIA-C6A-05A 122.4 (3) C5T-C4T---H4T2 108.0 
NIA-C6A---H6A 118.8 C1T-C4T-H4T2 108.0 
C5A-C6A--H6A 118.8 H4T1-C4T-H4T2 107.3 
08A-C7A-N9A 124.2(3) C4T-05T-H5T1 109.5 
08A-C7A--C4A 118.0(3) C4T-05T-H5T2 109.5 
N9A-C7A-C4A 117.8(3) H5T1-05T-H5T2 109.5 
C7A-N9A-H91A 115 (3) C4T-05T-H5T3 109.5 
C7A-N9A-H92A 119 (3) H5T1-05T-H5T3 109.5 
H91A-N9A--H92A 126 (4) H5T2-05T-H5T3 109.5 
C2B-NIB-C6B 119.4(3) 02U-C1U-03U 122.0(3) 
NIB-C2B-C3B 122.4 (3) 02U-C1U-04U 124.7(3) 
NIB-C2B-H2B 118.8 03U-C1U-C4U 113.2(3) 
C3B-C2B--H2B 118.8 C1U-03U-H3U 112 (3) 
C4B-C3B-C2B 118.7(3) C1U-C4U-05U 113.9(3) 
C4B-C313--H3B 1206 C1U-C4U----H4UJ 108.8 
C2B-033-H3B 120.6 C5U-C4U-H4U1 108.8 
C3B-C4B-05B 118.9(3) C1U-C4U-H4U2 108.8 
C3B-C4B-C713 117.8(3) C5U-C4u-H4U2 108.8 
C5B-C4B-C7B 123.3(3) H4U1-C4U-H4U2 1077 
C4B-05B-C613 118.6(3) C4U-05U-H5U1 109.5 
C4D-05B-H513 120.7 C4U-05U-H5U2 109.5 
C6B-05B-H5D 120.7 H5UI-05U---H5U2 109.5 
N113-C6B-05B 121.9(3) C4U-05U-H5U3 109.5 
NIB-C6B-H6B 119.0 H5U1-05U-H5U3 109.5 
C5B--C6B-H6B 119.0 H5U2-05U-H5U3 109.5 
08B-C7B-N9B 124.1(3) 02V-C1V-03V 122.6(3) 
08B-C7B-C4B 118.2(3) 02V-C1V-C4V 125.0(3) 
N9B-C7B-C4B 117.7(3) 03V-C1V-C4V 112.5(3) 
C7B-N913-H91B 117 (3) C1V-03V-H3V 110 (3) 
C713-N913--H9213 119 (2) C1V-C4V-05V 113.2(3) 
H9113-N9B-H9213 123 (3) C1V-C4V-H4V1 108.9 
02S-CIS-03S 122.9(3) C5V-C4V-H4V1 108.9 
02S-CIS--C4S 122.5 (3) C1V-C4V-H4V2 108.9 
03S-C1S---c4S 114.5(3) C5V-c4V-H4V2 108.9 
CIS-03S-H3S 112 (3) H4V1-C4V-H4V2 107.7 
C58-C4S---CIS 117.6(3) C4V-05V-H5V1 109.5 
C5S-C4S--H4S1 107.9 C4V-05V--H5V2 109.5 
CIS-C4S-H4S1 107.9 H5V1-05V--H5V2 109.5 
C5S-C4S-H4S2 107.9 04V-05V-H5V3 109.5 
CIS-C4S--H4S2 107.9 H5V1-05V-H5V3 109.5 
H4S1-C4S-H4S2 107.2 H5V2-05V-H5V3 109.5 



Appendix. A 1:2 co-crystal of isonicotinamide and propionic acid 
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Scheme 1: Conventional structure diagram of robust building block or 'supermolecule' 
consisting of two amide and two acid molecules, I, formed in a number of co-crystals of 
isonicotinamide and carboxylic acids (Aakeroy et al., 2002). Many attempts to crystallise I 
from isonicotinamide and propionic acid yielded 'supermolecule' II. 
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Figure 1: 'Supermolecules' are formed in the crystal structure of II, which consisting of one 
isonicotinamide and two acids hydrogen-bonded to the pyridine and amide functions. There 
are two crystallographically independent supermolecules these are shown in (a) and (b) with 
atomic numbering. Probability ellipsoids enclose 30% probability surfaces. Conventional 
hydrogen bonds are shown in heavy dashes, and the H...0 distances span 1.78(4) to 1.96(4) A 
(see table 1). The CH. . .0 hydrogen bonds (shown as open dashes) quite weak for this type of 
interaction (2.73 and 2.72 A). 
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Figure 2: Packing in the crystal structure of II. (a) Hydrogen bonds link supermolecules into 
chains. This view is approximately along (0 1 0). (b) Successive chains are interleaved. 
Supermolecules from two neighbouring chains are shown in outline. Molecules A, S and V 
are vertical, molecules B, T and U are horizontal. 



Appendix. A 1:2 co-crystal of isonicotinanude and propionic acid 

Figure 2c: The interleaved chains form layers, which are parallel to the (0 1 0) planes. 
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Abstract 

Lsonicotinamide has been shown to form many co-crystals with various guest molecules ranging 

from carboxylic acids to alcohols and amides. The carboxylic acid derivative, isonicotinic acid, 

forms very few co-crystals. We report the crystal structure of a co-crystal of isonicotinic acid and 

formic acid, formed with 1:2 stiochiometry. The structure is composed of chains of isonicotinic 

acid molecules interacting through a hydrogen bond between the acid and the pyridine moieties. 

Formic acid hydrogen bonds to the carbonyl group of isonicotinic acid with the second formic 

acid molecule hydrogen bonding to the carbonyl moiety of the first. 

Comment 

Lsonicotina.mide has been shown to crystallize with various molecules including carboxylic acids, 

alcohols and amides. Aakeröy et al. (2003) have associated polymorphism with an ability to form 

co-crystals, because it implies some flexibility in the types and geometries of interactions that 

a molecule can form. The existence of two polymorphic forms of isonicotinamide may therefore 

explain its propensity towards co-crystral formation. 

Isonicotinic acid is related to isonicotinamide by substitution of the amide group by a carboxyl-

ic acid group. However, the physicochemical properties of isonicotinic acid are quite different: 

it is, for example, less soluble in common solvents, only one polymorph is known (Takusagawa 

& Shimada, 1976), and the only structurally authenticated co-crystal is with with 3,5-dinitro-

salicylic acid (AJECAT, Smith et al., 2003). We now report the crystal structure of another 

co-crystal, isonicotinic acid: 2formic acid (I). 

Crystallization of isonicotinic acid with formic, acetic, propionic acids, formamide, acetamide 

and propionninide by conventional co-crystallisation methods failed to yield any new co-crystals, 

only isonicotinic acid itself. However, laser-assisted zone-refinement (Boese & Nussbaumer, 1994) 

of a frozen mixture of isonicotinic acid and formic acid at 250 K yielded a crystal of I. 

I crystallises in space group PT with one molecule of isonicotinic acid and two molecules of 

formic acid in the asymmetric unit (Fig. 1). Hydrogen sites were clearly visible in difference 

maps, and the isonicotinic acid is in its zwitterionic tautomer in I; this contrasts with the crystal 



structure isonicotinic acid itself, where the proton resides on the acid group. The formic acid 

molecules are present in the anti conformation. 

The crystal structure of isonicotinic acid consists of chains of molecules interacting via OH.. .N 

hydrogen bonds in a head-to-tail fashion. The chains have a C(7) graph-set descriptor (Bernstein 

et al., 1995). Weaker CH.O interactions are formed between the carbonyl group and a CH group 

adjacent to the N atom of the pyridine moiety. Further CII ... O interactions link the chains into 

layers. (Fig. 2) 

Likewise, in I, the isonicotinic acid molecules form C(7) chains through NH- . .0 interactions. 

The chains run along the [I 0 1] direction (Fig. 3). In isonicotinic acid the C—N ... 0—C 

torsion angle formed between successive molecules in the C(7) chains is 178.4°; the corresponding 

value in I is 74.9 (4)°. The rotation about the OH.. .N H-bond breaks the supporting C—H ... O 

interaction that is observed in isonicotinic acid. In addition, rather than being linear, as they 

are in isonicotinic acid, the chains display a shallow undulation. These features occur in order to 

accommodate two formic acid molecules, which link alternate members of the C(7) chain through 

discrete OH ... 0(carboxylate), OH...O(carboxylic acid) and CH0(carboxylic acid) hydrogen 

bonds. The last of these involves the C2—H2 group adjacent to the nitrogen of the pyridinium 

nng. 

In both isonicotinic acid and I the chains are surrounded by six other chains in a close-packed 

arrangement (Fig. 4a and b) with CII. 0 interactions formed between the chains. The network 

of CW..O interactions produces two-dimensional sheets in isonicotinic acid, but a more three-

dimensional array in I. When viewed along the [I 0 1] direction the structure of I partitions 

so that formic acid molecules occupy regions at b = 0, 1, etc, whilst the isonicotinic acid 

molecules occupy regions at b = 1/4, 3/4 etc.. Overall the carbonyl moieties of both formic 

acid molecules are acceptors in two further CH. - .0 interactions which link different chains into 

a three-dimensional array. This scheme means that one 0 atom (022) does not accept any 

conventional hydrogen bonds, and instead takes part only in CH. ..O hydrogen bonds (112 ... 022 

2.51 A ;  1-111- --022 2.39A) (Fig. 5). 

Experimental 

Lsonicotinic acid (0.150g, 4.10 mmol) was dissolved in an excess of formic acid (1.50g, 32.61 mmol) 

and drawn into a. glass capihiary (o.d. 0.32 mm). A polycrystalline sample was obtained on freezing 

the sample at 250 K and a crystal grown using the laser-assisted zone-refinement procedure of 

Boese and Nusabaumer (1994). 



Crystal data 

C6H5NO2.2(C11202) 

Mr  215.16 

Monoclinic 

Cc 

a = 3.7154 (14) A 
b = 17.504 (7) A 

= 14.444 (5) A 
= 91.084 (7)° 

V = 939.2 (6) A 
Z=4 

D = 1.522 Mg m 3  
D, not measured 

Mo Ka radiation 

A = 0.71073 A 

Data collection 
CCD area detector diffractometer 

Phi and scans 

Absorption correction: 

multi-scan SADABS (Sheldrick, 2004) 

Please give reference 

Tmin 	0.737, Trii  = 1.000 

3981 measured reflections 

2088 independent reflections 

Refinement 
Refinement on F 

R[F > 2a(P2 )] 0.0613 

wR(F 2 ) = 0.1366 

S = 1.213 

2088 reflections 

149 parameters 

riding/All H-atom parameters refined 
?iJ=l/[a2 (F) + (0.0392P)2  + 1.0260PJ 

where P = (F + 2F)/3  

Cell parameters from 2233 reflections 

o = 3.45-28.31° 

0.133 mm -1  

T= 150 (2) K 

Cylinder 

oIourlea 

1.00 x 0.32 x 0.32 mm 

1939 reflections with 

>2sigma(1) 

R1 = 0.0370 
fl

max 
OQO 

- 

h = —4 - 4 

k = —23 -+ 23 

1= —18 -+ 18 

intensity decay: none 

(L/a)max 0.005 

= 0.283 e A- 
AP,nin =  —0.264 e A-3 

Extinction correction: none 

Scattering factors from International Tables 

for Crystallography (Vol. C) 

Absolute structure: Flack H D (1983), Acta 

Cryst. A39, 876-881 

Flack parameter = 1.4 (19) 



Table 1. Hydrogen-bonding geometry (A, 0) 

D-H H .. . A 13-HO . .A 

Ni-Hi.. .041 0.79(4) 1.84(4) 2.606(4) 162 (5) 

031-1131• .042 0.83 (5) 1.71(5) 2.498(4) 160 (5) 

032-II32 .021 0.84(4) 1.80(4) 2.618(4) 163 (4) 

C2-112- - .022 0.95 2.51 3.430(4) 163 

C3-113 ... 021 0.95 2.48 3.268(4) 140 

C6-H6. 032i% 0.95 2.44 3.150 (5) 131 

C11-H1F 022" 0.95 2.39 3.342(5) 178 

C12-1112 . .04Vi 0.95 2.57 3.450 (5) 154 

Symmetry codes: (i) J +x,-y,+z; (ii) 1+x,y,1+z; (iii) x,1-y,.+z; (iv) J +x,-y,.+z; 

(v)1+x, 1- y,+z;(vi)x, 1- y,z - . 

X-ray diffraction intensities were collected on a Bruker SMART APEX CCD diffractometer 

equipped with an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986). H-atoms 

were placed on C-atoms in calculated positions [with Uj,(H) = 1.2 U(C)] and allowed to ride 

on their parent atoms. Hydroxyl H-atoms were located in difference maps and refined freely 

subject to the restraint r(0-H) = 0.85 (3). All non-H atoms were modelled with anisotropic 

displacement parameters. 

Data collection: SMART (Bruker-Nonius, 2001). Cell refinement: SMART. Data reduction: 

SAINT (Bruker-Nonius, 2003). Program(s) used to solve structure: SHELXTL (Sheidrick, 2001). 

Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL MERCURY 

(Taylor & Macrae, 2001) . Software used to prepare material for publication: SHELXTL EnCWer 

(CCDC, 2004) PLA TON (Spek, 2004) as incorported into WinGX (Farrugia, 1999).. 

We thank the EPSRC, The University of Edinburgh and The Cambridge Crystallographic 

Data Centre for funding. 



Supplementary data for this paper are available from the IUCr electronic archives (Reference: 

PREVIEW). Services for accessing these data are described at the back of the journal. 
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Fig. I: The asymmetric unit of isonicotinic acid:2formic acid with numbering scheme. Colours 

scheme: Carbon green; nitrogen, blue; oxygen, red. The same colour scheme applies for all figures. 

Fig. 2: The crystal structure of isonicotinic acid (Tákusagawa & Shimada, 1976). The structure 

is composed of I-D chains where the molecules are Il-bonded through an OH ... N interaction 

[1.51 (4),k]. These interactions are stabilised by a secondary CH ... O interaction [2.66(3) A]. 

Neighbouring chains are linked by more CII ... 0 interactions [2.46(3) Al. 
Fig. 3: Intermolecular hydrogen bonding in I. The isonicotinic acid molecules are linked directly ma 

O ... HN hydrogen bonds forming a C(7) graph set. Pairs of formic acid molecules link alternate 

members of the C(7) chains. Geometric parameters are listed in Table 1 and in the cation to Fig. 

5. 

Fig. 4: a) Structure of isonicotinic acid viewed along the b-axis. b) Structure of I viewed along [I 

01]. In both crystal structures the chains (see Figs. 2 and 3) pack in a similar way, with chain 



surrounded by six others. 

Fig. 5: Neighbouring chains interact through a number of weaker interactions between the 

isonicotinic acid and formic acid molecules (H3. . .021 2.48 A; H2.. .022 2.51 A; 1111-022 .022 

2.39,k). 022 does not accept any hydrogen bonds from NH or OH groups, and forms two CII ... 0 

interactions instead. 

Supplementary data 

The tables of data shown below are not normally printed in Acta Gryst. Section C but the data 

will be available electronically via the online contents pages at 

http://journals.iucr.org/c/journalhomepage.html  

Table Si. Fractional atomic coordinates and equivalent isotropic displacement parameters (A2) 

= 
X Y Z Ueq 

Ni 0.3460(8) 0.25689 (17) 1.1057(2) 0.0196(6) 
Hi 0.383 (13) 0.243(3) 1.157 (3) 0.036 (14) 
02 0.1903 (10) 0.3250(2) 1.0928(2) 0.0220(7) 
H2 0.1548 0.3582 1.1438 0.026 
03 0.0816(9) 0.3467(2) 1.0049(2) 0.0200(7) 
H3 -0.0324 0.3946 0.9949 0.024 
C4 0.1402(9) 0.29774 (19) 0.9313(2) 0.0171(6) 
C5 0.3089(8) 0.22727 (18) 0.9474(2) 0.0171(7) 
H5 0.3524 0.1931 0.8978 0.020 
06 0.4103(9) 0.20854 (19) 1.0369(2) 0.0195(7) 
HO 0.5260 0.1612 1.0494 0.023 
041 0.0120(9) 0.31800 (19) 0.8336(2) 0.0182(7) 
041 0.0976(7) 0.27247 (15) 0.77155 (18) 	 0.0275(6) 
042 -0.1719(7) 0.37744 (15) 0.82566 (17) 0.0254(6) 
Cii -0.3244 (10) 0.4787(2) 0.6494(2) 0.0224 (7) 
Hil -0.1661 0.5043 0.6916 0.027 
021 -0.4085(7) 0.51108 (15) 0.57728 (18) 	 0.0289(6) 
031 -0.4391(8) 0.41189 (15) 0.67127 (18) 	 0.0251(6) 
H31 -0.351(17) 0.390(3) 0.717(3) 0.08(2) 
C12 -0.6431 (11) 0.4561(2) 0.3643(3) 0.0258(8) 
H12 -0.4500 0.4914 0.3602 0.031 
022 -0.7645(9) 0.42862 (18) 0.2942(2) 0.0373(7) 
032 -0.7662(9) 0.43925 (18) 0.4459 (2) 0.0363(7) 
H32 -0.663(11) 0.470(2) 0.482(3) 0.026 (11) 

Table 82. Anisotropic displacement parameters (A 2 ) 

U11 U22 U33 U12 U13 	 U23 
Ni 0.0253 (15) 0.0246 (15) 0.0088 (13) -0.0034 (12) -0.0010 (11) 	0.0044 (11) 
02 0.0262 (19) 0.0265 (18) 0.0132 (16) 0.0001 (14) 0.0015 (14) 	-0.0038 (13) 
C3 0.0206 (19) 0.0215 (16) 0.0179 (16) -0.0021 (14) -0.0019 (13) 	0.0008 (14) 
04 0.0177 (16) 0.0216 (16) 0.0119 (15) -0.0037 (13) -0.0016 (12) 	0.0028 (12) 
05 0.0221 (18) 0.0177 (15) 0.0114 (15) -0.0019 (13) 0.0010 (13) 	-0.0021 (13) 
06 0.0230 (18) 0.0182 (16) 0.0175 (17) 0.0011 (13) 0.0004 (13) 	0.0077 (13) 
041 0.0220 (17) 0.0186 (15) 0.0136 (15) -0.0053 (13) -0.0065 (13) 	0.0026 (13) 
041 0.0391 (16) 0.0303 (14) 0.0128 (12) 0.0044 (12) -0.0063 (11) 	-0.0010 (10) 
042 0.0384 (15) 0.0242 (13) 0.0135(11) 0.0075(11) -0.0041 (10) 	0.0060 (10) 
Cii 0.0233 (18) 0.0245 (18) 0.0194 (16) 0.0026 (14) 0.0007 (13) 	0.0001 (13) 
021 0.0403 (17) 0.0253 (12) 0.0208 (13) -0.0016 (12) -0.0046 (11) 	0.0072(11) 
031 0.0390 (15) 0.0210 (12) 0.0152 (12) 0.0017(11) -0.0055 (10) 	0.0074 (10) 
012 0.028(2) 0.0271 (18) 0.0225 (18) 0.0011 (15) 0.0021 (15) 	0.0034 (15) 
022 0.0452 (18) 0.0416 (16) 0.0246 (15) 0-0030(15) -0.0091 (13) 	-0.0070 (13) 
032 0.0461 (18) 0.0382 (16) 0.0244 (14) -0.0199 (14) -0.0009 (12) 	-0.0006 (12) 



Table S3. Geometric parameters (A, 0) 

N1-C6 1.330(5) C6-H6 0.9500 
N1-C2 1.336 (5) C41-041 1.245 (4) 
N1-H1 0.79(5) C41-042 1.249(4) 
C2-C3 1.378 (5) C11-021 1.221(4) 
C2-H2 0.9500 011-031 1.287(4) 
C3-04 1.386(4) Cil-H11 0.9500 
C3-H3 0.9500 031-H31 0.83(3) 
C4-05 1.401 (4) C12-022 1.201 (5) 
C4-C41 1.524 (4) C12-032 1.306(5) 
C5-C6 1.379(4) C12-H12 0.9500 
05-H5 0.9500 032-H32 0.83(3) 
C6-N1-C2 123.1(3) Ni-406--05 119.9(3) 
06-N1-Hi 118 (4) Ni-C6-H6 120.0 
02-N1-Hi 118 (4) C5-4C6-H6 120.0 
N1-C2---C3 119.5(3) 041-C41-042 127.9(3) 
N1-C2-H2 120.2 041-C41-C4 116.0(3) 
C3-C2-H2 120.2 042-C41-C4 116.1(3) 
C2-C3-04 119.3(3) 021-C11-031 123.4 (3) 
C2-C3---H3 120.4 021-Cil-H11 118.3 
C4-C3-H3 120.4 031-Cil-Hil 118.3 
C3-C4-05 119.6(3) C11-031-H31 119 (5) 
C3-C4-041 121.1(3) 022-012-032 122.6(4) 
C5-C4--C41 119.3(3) 022-C12-H12 118.7 
C6-05---04 118.6(3) 032-C12-H12 118.7 
C6-05----H5 120.7 012-032-H32 105 (3) 
C4-05---H5 120.7 



Appendix. A 1:2 co-crystal of isonicotinic acid and formic acid 
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Scheme I: Conventional structure diagram for isonicotinic acid:2formic acid (I). 
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Figure 1: The asymmetric unit of isonicotinic acid:2formic acid with numbering scheme. 
Colours scheme: Carbon green; nitrogen, blue; oxygen, red. The same colour scheme applies 
for all figures. 



Appendix. A 1:2 co-crystal of isonicotinic acid and formic acid 

Figure 2: The crystal structure of isonicotinic acid (Takusagawa & Shimada, 1976). The 
structure is composed of 1-D chains where the molecules are H-bonded through an OH ... N 
interaction [1.5](4) A]. These interactions are stabilised by a secondary CH ... 0 interaction 
[2.66(3) A]. Neighbouring chains are linked by more CH. . .0 interactions [2.46(3) Al. 

Figure 3: Intermolecular hydrogen bonding in I. The isonicotinic acid molecules are linked 
directly via 0.. .1-IN hydrogen bonds forming a C(7) graph set. Pairs of formic acid molecules 
link alternate members of the C(7) chains. Geometric parameters are listed in Table 1 and in 
the caption to Figure 5. 



Appendix. A 1:2 co-crystal of isonicotinic acid and fonnic acid 

a) 

Figure 4: a) Structure of isonicotinic acid viewed along the b-axis. b) Structure of I viewed 
along [T 0 1]. In both crystal structures the chains (see Figures 2 and 3) pack in a similar way, 
with chain surrounded by six others. 



Appendix. A 1:2 co-crystal of isonicotinic acid and formic acid 
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Figure 5: Neighbouring chains interact through a number of weaker interactions between the 
isonicotinic acid and formic acid molecules (H3...021 2.48 A H2...022 2.51 A, H11...022 
2.39 A). 022 does not accept any hydrogen bonds from NH or OH groups, and forms two 
CH.. .0 interactions instead. 
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1. Introduction 

There have been a number of detailed studies on the poly-
morphic behaviour of paracetamol (acetaminophen, 
p-hydroxylacetanilide or Tylenol). Form I. which is mono-
clinic, was first characterized by Haisa et al. (1976), and has 
since been shown to be the thermodynamically more stable 
form. Form II is orthorhombic and was also described by 
Haisa eta!, in 1974 (Haisa etal., 1974). The orthorhombic form 
can be grown using a single orthorhombic crystal as a seed 
from a super-saturated aqueous solution of paracetamol. This 
method, however, can result in the crystals changing to the 
monoclinic form if left in contact with the solution for any 
length of time (Nichols & Frampton. 1998). The same authors 
showed that the only method that gives the orthorhombic 
polymorph reproducibly is growth from the melt. They also 
showed that this form is stable if dried and stored in a stop-
pered vial and that neither grinding nor compression induces a 
transition to the monoclinic form. In a very careful study. 
Boldyreva et al. (2000) have shown that application of 
hydrostatic pressures up to 4.2 GPa does not induce a transi-
tion from the monoclinic to the orthorhombic form. The 
behaviour of the orthorhombic form is of interest for its ability 
to undergo plastic deformation when compressed, thereby 
facilitating the production of tablets of paracetamol. 

With the exception of our own recent report of paracetamol 
trihydrate (McGregor et al.. 2002), little structural work 
appears to have been carried out on solvates or other co-
crystals of paracetamol, although a thermochemical study 
showed the existence of a hemisolvate of paracetamol with 

Acts Clyst. (2002). B58, 1057-1066 	 lain D. H. Oswald et al. 	Formation of paracetamol (acetaminophen) adducts 	1057 
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1,4-dioxane (Fachaux et aL, 1995). In this report, we describe 
the preparation and characterization of six new adducts of 
paracetamol with 1,4-dioxane. 4,4'-bipyridine, N-methylmor-
pholine, NN-dimethylpiperazine. morpholine and piperazine 
(these are referred to as guest molecules below: see Schemes). 
All these molecules, except for morpholine, can he considered 
to be at least pseudo-centrosymmetric with respect to their 
hydrogen-bonding properties. 

H 1  
c2 —c3  

o i _c i" 3ei_N1 C7_C8 

H 	c6  c "  02 

Paracetamol, with atomic numbering scheme. 

H 

Guest molecules used to form adducts with paracetamol. 
Left to right: dioxane, bipyridine. tV-methylmocpholine. 
NN-dimethytpiperazine, morpholine and piperanne. 

2. Experimental 

2.1. Synthesis 

All starting materials were obtained from Sigma-Aldrich 
except for 1,4-dioxane (May & Baker) and were used as 
received. 

ParacetamoLi).5 1,4-dioxane. A saturated solution of para-
cetamol (1.51 g, 10 mmol) in 1,4-dioxane (2 cm 3, 23 mmol) was 
refluxed and allowed to cool. Colourless crystals were formed 
overnight at 293 K according to the published procedure 
(Fachaux et al., 1995). 

ParacetamoL4,4'-bipyri4ine. 	Paracetamol 	(0.51 g, 
3.40 mmol) was refitixed with an equimolar amount of 4,4'-
bipyridme (0.52 g, 333 manol) in ethanol (1 cm 3). Pale-yellow 
needle-like crystals were formed on standing overnight at 
room temperature. 

Paracetwnol:0.5 N-methylmorpholine. Paracetamol (0.43 g, 
2.85 mmol) and N-methylmorpholine (1 cm 3. 9.11 mmol) were 
refluxed and allowed to cool. The flask was maintained at 
277 K. leading to the formation of colourless rod-shaped 
crystals. 

ParacetamoL0.5 NN-dimethylpiperazine. 	Paracetamol 
(035 g. 364 mmol) and NN-dimelhylpiperazine (3 cue. 
222 mmol) were refluxed together and allowed to cool. A 
large excess of dimethylpiperazine was required to dissolve 
the paracetamol completely. The flask was maintained at 
277 K leading to the formation of colourless rod-shaped 
crystals. 

Paracetamol: 0.5 piperazine. Paracetamol (0.62 g, 4.1 mmol) 
was refluxed together with piperazine (0.35 g, 4.1 mmol) in 
ethanol (1 CM).  Colourless crystals formed on cooling to 
293 K. 

Paracetamol:0.5 	morpholine. 	Paracetamol 	(0.57 g. 
3.8 mmol) was refluxed with morpholine (037 g. 43 inmol). 
Colourless crystals formed directly from the reaction mixture 
after a week at 277 K. 

Ethanol was required in the reactions of paracetamol with 
piperazine and 4,4'-hipyridine because these compounds are 
both solids at room temperature. 

2.2. Differential scanning calorimetry (DSC) 

DSC traces were recorded using a Perkin Elmer Pyris DSC 
1. Samples were contained in open aluminium pans and 
purged with helium during the temperature scans to facilitate 
the removal of any volatile products of thermal decomposi-
tion. Samples were heated from 298 K to 453 K at a rate of 
10K min'. 

2.3. Crystallography 

X-ray diffraction intensities were collected on either a Stoe 
Stadi4 diffractometer with Cu Ka radiation or a Bruker 
SMART APEX CCD diffractometer with Mo Ka radiation. 
Both instruments were equipped with Oxford Cryosystems 
low-temperature devices. An absorption correction for the 
four-circle data was applied using scans [SHELXTL 
(Sheidrick. 1997a), based on the procedure described by 
North et aL (1968)1; the multiscan procedure SADABS 
[(Sheldrick, 1997b), based on the procedure described by 
Blessing (1995)] was applied to the CCD data sets. All struc-
tures were in space group F211c, except the morpholine 
adduct, which formed in P2 1 2 1 21 . All structures were solved by 
direct methods and refined by full-matrix least squares against 
F2  using all data (SIIELXTL). I-I atoms were placed in 
calculated positions and allowed to ride on their parent atoms; 
methyl groups were treated with the Sheldrick (1997) rotating 
rigid group model. H atoms involved in hydrogen bonding 
were located in difference maps and refined freely. All non-H 
atoms were modelled with anisotropic displacement para-
meters. 

One of the two crystallographically independent dioxane 
molecules in the 1,4-dioxane adduct was disordered over two 
orientations about a crystallographic inversion centre. The 
occupancies of the two components were fixed at 0.75 and 025 
after competitive refinement. Similarity restraints were 
applied to the geometries and displacement parameters of the 
two components. The program ROTAX (Cooper et al., 2002) 
suggested that the crystal may have been twinned by a twofold 
rotation about the 11001 direct lattice direction. Incorporation 
of this into the model reduced Ri slightly from 7.02% to 
6.86%, with a twin scale factor of 2.6 (3)%. This is barely 
significant, and the twinning is omitted in the model presented 
here. 

In the N-methylmorpholine adduct. the N-methylmorpho-
line is disordered over a crystallographic inversion centre with 
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4,4'-Bipyridine adduct 	Morpholine adduct 

CsH9NO2}LC 10HgN2J 
30735 
Monoclinic, P2 1  Ic 
11.2906 (10), 24.103 (2), 

11.5526 (10) 

2[C,,H9NO2]LC4 1-I90] 
389.45 
Orthorhombic, F22,2, 
7.2791 (9), 14.6277 (18), 

18.303(2) 
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Table 1 
Experimental details. 

All data were collected at 150 K. 

Crystal data 
Chemical formula 
Chemical formula weight 
Cell setting, space group 
a, b, c (A) 

,6 (-)  
V (A3) 
Z 
D, (Mg m 3) 
D,, (Mg m 3) 
Radiation type 
No. of reflections for cell 

parameters 
Orange (') 
i (mm-') 

Temperature (K) 
Crystal form, colour 
Crystal size (mm) 

Data collection 
Diffractometer 

Data collection method 
Absorption correction 

No. of measured, inde- 
pendent and observed 
reflections 

Criterion for observed 
reflections 

Rmi  
0_.V) 
Range of h, k, F 

No. and frequency of 
standard reflections 

Intensity decay (%) 

Refinement 
Refinement on 
14F2  > 20(F2 )], 

wR(F 2), S 
No. of reflections and 

parameters used in 
refinement 

H-atom treatment 

Weighting scheme 

APm,,, Ap, (e A 3) 
Extinction method 
Extinction coefficient 

Crystal data 
Chemical formula 
Chemical formula weight 
Cell setting, space group 
a, b, c (A) 

1,4-Dioxane adduct 

21C5H902NJ1C4H502J 
390.43 
Monoclinic, P2 1  /c 
12.421 (5), 12.056 (4), 

13.396(3) 
91.51 (3) 
2005.4 (11) 
4 
1.293 
Not measured 
Cu Ku 
80 

20-22 
0.795 
220 (2) 
Lath, colourless 
0.78 x 0.19 x 0.16 

Stoe Stadi4 

w-8 scans 
Empirical 
0.602 
0.826 
4865,3499,2508 

I>2c(I) 

0.0532 
69.79 
-15 -+ h -* 15 
0 -+ k - 14 
0 -* I 	15 
3 every 60 mm 

10.9 

F2  
0.0702,0.2243, 1.078 

3499,285 

Riding 

W = 11[o(F) + 

(0.125P)2  + 1.1494P] 
where P = (F 2, + 

2F)/3 
0.002 
0.503, -0.260 
SHELXL 
0.0019(6) 

Piperazine adduct 

2[C51i9NO2]LC4H,0N2 ] 
388.46 
Monoclinic, P2 1 1c 
15.893 (5), 5.1664 (17), 

12.993(4)  

Dimethylpiperazine 
	

N-methylmorpholmne 
adduct 
	

adduct 

2ICSH9NO2]LCSHI4N2J 
	

2CS HSNO2]LCS HIINOJ 
416.52 
	

403.47 
Monoclinic, 1`2 1 /c 
	

Monoclinic, P21 1c 
10.6970 (9), 11.0240 (9), 	10.5749 (8), 11.0221 (8), 

9.4896(8) 
	

9.3894(7) 
100.694(2) 
	

101.145(2) 
1099.65 (16) 
	

1073.77 (14) 
2 
	

2 
1.258 
	

1.248 
Not measured 
	

Not measured 
Mo Ku 
	

Mo Ku 
3488 
	

2729 

2.5-29 
	

2.5-27.5 
0.088 
	

0.090 
150(2) 
	

150 (2) 
Plate, colourless 
	

Rod, colourless 
0.56 x 0.18 x 0.08 
	

0.34 x 0.09 x 0.07 

Bruker SMART APEX Bruker SMART APEX 
CCD 
	

CCD 
and w scans 	 93 and a scans 

Multiscan 
	

Multiscan 
0.833 
	

0.792 
0.962 

7034, 2724, 2512 
	

6517, 2444, 1890 

I>2u(I) 

0.0164 
	

0.0221 
29.08 
	

27.49 
-8-+ It - 14 	 -13 - h -+ 13 
-15 -+ k --)~ 14 	-14 	k - 14 
-12 -+ / -+ 12 	 -11 --). / -+ 12 
Not measured 
	

Not measured 

0 

p 2  

0.0525, 0.1339, 1.059 

2724, 146 

Riding/All H-atom 
parameters refined 

w = 1Io2(F,) + 

(0.069P)2  + 0.46251') 
where P = (F ± 
2F)/3 

0.009 
0.401, -0.193 
None 
0 

the N and 0 atoms sharing an 
equivalent site. A composite scat -

tering factor [0.5f(N) + 0.5f(0)] was 
used for this site; the occupancy of 
the methyl group was fixed at 0.5. 

A consistent numbering scheme 
was used for the paracetamol mole-
cules in all structures and this is 
shown in the schemes above. Where 
there is more than one paracetamol 
molecule in the asymmetric unit the 
labels in the schemes are augmented 
with the letters A and B. Labels for 
atoms forming part of the guest 
molecules carry the letters S, Tetc. A 
full listing of crystal, data collection 
and refinement parameters is given 
in Table 1; a set of hydrogen-bonding 
parameters is given in Table 2.1  The 
figures were produced using 
CAMERON (Watkin et aL, 1993). 
Other analyses utilized the PC 
version of the program PLA TON 
(Spek, 2002; Farrugia, 1999). 

3. Results 

Crystal structures of the mono-
clinic and orthorhombic polymorphs 
of paracetamol have been reported 
several times, but here we have used 
the structures reported by Nichols & 
Frampton (1998) [Cambridge Struc-
tural Database (CSD; Allen et aL, 
1983) reference codes HXACAN07 
and HXACAN08]. Our motive for 
discussing them here is to highlight 
certain features of their graph sets 
that enable structural relationships 
to be drawn between them and the 
adducts that form the subject of the 
rest of this paper. 

Packing in both polymorphs is 
dominated by the formation of 
NH. . .OH and OH ... O=C 
hydrogen bonds (Fig. 1) giving rise to 
layered two-dimensional networks. 
Both polymorphs of paracetamol 
have identical graph sets (Bernstein 
et al., 1995), in which the 

'Supplementary data for this paper are 
available from the IUCr electronic archives 
(Reference: AN0622). Services for accessing 
these data are described at the back of the 
journal. 

F2  
0.0408, 0.1092, 0373 

2444, 147 

Riding/All H-atom 
parameters refined 

W = 14o2(F) + 

(0.0658P)2 J where P = 
(F + 2F)/3 

0.000 
0.216, -0.220 
SHELXL 
0.008(3) 

I>2u(l) 	 3.1. Paracetamol 
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Weighting scheme 

('V') 
AP_, Ap mj. (e A 3) 

Extinction method 
Extinction coefficient 

Piperazine adduct 

113.633(5) 
977.4(6) 
2 
1320 
Not measured 
Mo Ka 
1227 

2.5-29 
0.093 
150 (2) 
Plate, colourless 
0.77 x 0.28 x 0.11 

Bruker Smart Apex 
CCD 

w and t'  scans 
Multiscan 
0.690 
1 
5628, 2309, 1778 

I> 20(1) 

1)0458 
28.55 
-17 -+ h -+ 21 
-6 k - 6 
-17 1 -+ 16 
Not measured 

0 

F2  
0.0779, 0.1652, 1.179 

2309, 140 

Riding/All H-atom 
parameters refined 

w= 1I[o2(F) + (0.052P)2  
+ 03663P) where P = 
(F + 2.F )I3 

0.002 
0336, -0.447 
None 
0 

4,4'-Bipyridine adduct 	Morpholine adduct 

96.1444 (16) 
	

90 
3125.8(5) 
	

1948.9(4) 
8 
	

4 
1306 
	

1.327 
Not measured 
	

Not measured 
Mo Ka 
	

Mo Ka 
5375 
	

3801 

2-28.5 
	

2.5-24.5 
0.087 
	

0.096 
150 (2) 
	

150 (2) 
Block, colourless 
	

Block, colourless 
0.46 x 0.28 x 0.18 
	

0.54 x 0.52 x 0.28 

Bruker SMART APEX 
CCD 

w and V scans 
Multiscan 
0.830 

20270, 7766, 6044 

1> 2.r(I) 

0.0220 
29.18 
-14 .- h .-+ 14 
-19-4 k —# 31 
-15 —* 1 --+ 15 
Not measured 

0 
	

0 

F2 
	

F2  
0.0471, 0.128, 1.038 
	

0.0462, 0.1028, 1.066 

7766, 433 
	

4733, 276 

Riding/All H-atom 
	

Riding/All H-atom 
parameters refined 
	

parameters refined 
w = 11[o2(F) + 	w=1Ilo1(F)+ 

(0.0676P)2  + 0.5691'J 
	

(0.049P)2  + 02716/'J 
where P = (F + 	where P = (F + 
2F)/3 
	

2F)/3 
0.001 
	

0.001 
0.357, -0.246 
	

0.256, -0270 
None 
	

SIIELXL 
0 
	

0.0031 (7) 

rhombic form, glide planes run 
perpendicular to the layers, so that 
the layers are non-polar: in Fig. 1(b) 
the methyl groups lie on the left-
and right-hand sides of the mole-
cules in alternate C(9) chains. 

The angles between mean planes 
of the amide and phenyl groups in 
orthorhombic and monoclinic para-
cetamol are 17.7° and 20.5°, respec-
tively. Analogous angles observed in 
this work are given in the figure 
captions and range from 3.03° to 
41.72°. pr-pn bonding between the 
phenyl ring and the amide group 
favours a dihedral angle of zero, and 
some correlation between this angle 
and the N—C(phenyl) bond length 
might have been expected, though 
none is evident at the precision of 
these structure determinations. This 
angle is evidently a rather easily 
deformed structural parameter, and 
is presumably at the mercy of 
crystal-packing forces. As we show 
in the following sections, hydrogen 
bonding is the dominant feature in 
these structures, and the torsion 
observed is presumably a conse-
quence of the optimization of these 
interactions. 

3.2. The paracetamol:1,4-dioxane 
adduct 

Table 1 (continued) 

fi (°) 
V (A3) 

Z 
D, (Mg m 3) 

D. (Mg m 3) 

Radiation type 
No. of reflections for cell 

parameters 
Orange (°) 
IL (mm) 
Temperature (K) 
Crystal form, colour 
Crystal size (mm) 

Data collection 
Diffractometer 

Data collection method 
Absorption correction 

T 

No. of measured, inde- 
pendent and observed 
reflections 

Criterion for observed 
reflections 

R,,, 

mm (°) 
Range of 6, k, I 

No. and frequency of 
standard reflections 

Intensity decay (%) 

Refinement 
Refinement on 
R[F' > 20(F2 )], 

wR(F 2), S 
No. of reflections and 

parameters used in 
refinement 

H-atom treatment 

Jlruker SMART APEX 
CCD 
and co scans 

Multiscan 
0.868 

12312, 4733, 4265 

1>20(1) 

0.0308 
28.97 
-9 -+ It —* 7 
-19 -4 k -+ 18 
—24 —# I —* 22 
Not measured 

The asymmetric unit in the crystal 
structure of the dioxane adduct of 
paracetamol consists of two para-
cetamol molecules and two half 
molecules of dioxane. The latter 
both reside on crystallographic 

Computer programs used: Stoe 01F4 (Stoe & Cie, 1990a), Stoe REDU4 (Stoe & Cie, 1990b), Broker SMART(Bruker, 1) 	
inversion centres. One of the 

Bruker SAINT (Bruker, 2002), SIIELXTL (Sheldrick, 1997a). 	 dioxane molecules (labelled TIU in 

OH- - .(YrrC and NIH ... OH hydrogen bonds, respectively, 
form C(9) and C(7) motifs at the unitary level. 2  In both 
polymorphs, these are disposed about crystallographic glide 
planes. In the monoclinic form, the hydrogen-bonded layers 
are arranged parallel to the (010) planes, which means that the 
layers are polar: in Fig. 1(a) all the molecules have the methyl 
group on the left. This polarity is reversed in neighbouring 
layers by crystallographic inversion centres. In the ortho- 

2 	that where no sub- and superscripts appear in the graph-set descriptor, 
one donor and one acceptor are implie(L 

the tables and supplemental data) is 
disordered, although both compo-

nents participate in hydrogen bonding. The occupancy ratio is 
0.75:0.25 and in the discussion that follows we have ignored 
the minor component (U). There is some evidence from 
electron-density difference maps that the other dioxane 
molecule (labelled S) is disordered as well, although, if 
present, the distinction between the components is at the limit 
of the resolution of our data set. An ordered model for this 
part of the structure is therefore presented here. The structure 
is depicted in Fig. 2. Primary bond lengths and angles are 
normal and have been deposited; hydrogen-bonding para-
meters are listed in Table 2. 
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The 	C(9) 	chains 	formed 	by Table 2 
hydrogen 	bonding 	between Hydrogen-bonding parameters. 

OH. . •O=C moieties of neighbouring Standard uncertainties are omitted in the case of the dioxane adduct because the H-atom positions were 

molecules described above with regard calculated and not refined. N-H and 0-H distances were normalized to 1.009 A and 0.983 A, respectively, 

to the crystal structures of paracetamol 
to aid comparison with Cambridge Structural Database search results (Fig. 7). 

are also observed in the structure of Typical 

the 1,4-dioxane adduct. In order to Adduct 	 Donor Acceptor 
Observed 
distance (A) 

Normalized 
distance (A) 

normalized 
distance (A) 

accommodate the dioxane molecules 
these chains are sinusoidal, with the 1,4-Dioxane 	 NIA-H1A O1S 2.03 1.90 1.96 

O1A-H11A 02B 1.82 1.67 1.78 
two crystallographically independent 01B-11I1B 02A' 1.86 1.71 1.78 
paracetamol 	molecules 	alternating NIB-HIB OIL' 1.92 1.77 1.96 

along the chain. The NH groups point N1B-H1B 01T 2.13 2.00 1.96 
4,4'-Bipyridine 	 OIA-HI1A 028 1.755 (19) 1.68 1.78 

towards the 0 atoms of dioxane NIA-H1A NIOS 2.047 (18) 1.92 1.96 
molecules forming NH- - -0 hydrogen 018-111B 02A' 1.81(2) 1.71 1.78 

bonds. Since both dioxane molecules N1B-111B N1 T 111  2.100(18) 2.01 1.96 
N,N-dimethylpiperazine 	NI-H1 O2' 1.98(2) 1.84 1.92 

reside on inversion centres, the space- Oi-}HI N1S° 1.81(2) 1.82 1.82 
group symmetry builds up two-dimen- N-methylmorpholine 	01-Hil O1S/N19" 1.88(2) 1.81 1.8111.82 

sional sheets in which chains of para- Ni -Hi 02°" 1.925 (16) 1.80 1.92 
Piperazine 	 01-I-ill N1S 1.79(3) 1.74 1.82 

cetamol are linked by dioxane bridges Ni-HI 2.14 (3) 2.06 1.92 
(Fig. 2). In graph-set notation, the N1S- HiS Oi° " 2-30(3) 2.21 2.03 

bridges can be described as D(6). The Morpholine 	 0IA-H1IA 01B'° 1.97(2) 1.76 1.87 
NIA-HIA 02B° 2.033 (18) 1.87 1.92 

two-dimensional sheets are parallel to 018-HuB N45'° 1.79(3) 1.69 1.82 
the (210) lattice planes, and the rather NIB-NIB 02A'°  2.061 (19) 1.86 1.92 

open structure depicted in Fig. 2 is 
'filled 	in' 	by 	symmetry-equivalent 

(i) x, y, z + 1; (ii) x - 1, y, z - 1; (iii) -x, y -j" -z + ?; (iv) x, -y +,Z1 , z - ; (v) -x + 1, -y. -z; (Vi) -x + 1, -y + 2, -z; 

sheets parallel to (210). -z + il 

3.3. The paracetamol:4,4'-bipyridine adduct 

The 0 atoms in 1,4-dioxane formally have two lone pairs of 
electrons, each of which could potentially act as a hydrogen-
bond acceptor. In practice, however, motifs in which ethers act 
as double hydrogen-bond acceptors occur rarely, and so for 
practical crystal-packing purposes it can be considered to be a 
centrosymmetric molecule containing two hydrogen-bond 
acceptors. 4,4'-Bipyridine is similar, although a torsion about 
the central C-C bond breaks the inversion symmetry. 
Recrystallization of paracetamol from a solution of 
4,4'-bipyridine in ethanol yields a 1:1 co-crystal rather than the 
hemisolvate obtained with dioxane, a possible effect of the 
greater basicity of bipyridine. 

The crystal structure of paracetamol:bipyridine contains 
two independent molecules each of paracetamol and bipyr-
idine. Primary bond lengths and angles are normal and have 
been deposited; hydrogen-bonding parameters are listed in 
Table 2. As in the dioxane adduct, the paracetamol molecules 
form C(9) chains through OH- - -O=C hydrogen bonds 
(Fig. 3). The two crystallographically independent para-
cetamol molecules alternate along the chain. The disposition 
of the molecules within the chains is rather similar to that in 
orthorhombic paracetamol, except that alternate molecules 
are rotated through 180° about the chain axis in order to 
accommodate the bipyridine molecules. 

The NH bonds of paracetamol act as hydrogen-bond donors 
to the aromatic N atoms of the bipyridine molecules, forming a 
discrete (D) graph set. However, since this crystal is a 1:1 
adduct there are insufficient hydrogen-bond donors for the  

number of acceptors present, and only one of the two N atoms 
in each bipyridine acts as an acceptor. The result is that there 
are no hydrogen-bonded pathways connecting the C(9) 
paracetamol chains. The structure thus consists of a para-
cetamol backbone with attached bipyridine molecules. These 
motifs are interconnected by pr-stacking between the bipyri-
dine molecules, building up sheets than run parallel to the 
(101) planes. 

3.4. The paracetamol adducts with N-methylmorpholine and 
N,N-dimethylpiperazine 

N,N-dimethylpiperazine and N-methylmorpholine are 
closely related to 1,4-dioxane by the substitution of one or 
both 0 atoms by N-Me; paracetamol forms 2:1 adducts with 
both compounds, as it does with dioxane. The 
N,N-dimethylpiperazine adduct consists of one crystal-
lographically independent paracetamol molecule with the 
N,N-dimethylpiperazine residing on a crystallographic inver-
sion centre. The N-methylmorpholine adduct is isostructural 
with this, with the guest molecule disordered about the 
inversion centre. Primary bond lengths and angles are unre-
markable and have been deposited; hydrogen-bonding para-
meters are listed in Table 2 

The crystal structures are similar to those of the dioxane 
and bipyridine adducts in that the packing can be described 
with reference to chains of paracetamol molecules. However, 
rather than C(9) motifs formed through OH- - -O=°C H bonds, 
the paracetamol molecules define a C(4) graph set through 
NH- - .O'C bonds (Fig. 4). The NH moiety of the para- 
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cetamol now fulfils the role of the OH groups in the dioxane 

structure, and NN-dimethylpiperazine and N-methylmor- 

pholine are similar to dioxane with regard to their hydrogen- 

 

 
Figure 1 
(a) Monoclinic paracetamol (Form I) viewed along the b axis; the c axis 
runs diagonally from top left to bottom right, so that the C(9) chains are 
established by the n-glide. ( b) Orthorhombic paracetamol (Form II) 
viewed along the c axis; the a axis runs horizontally, the b axis runs from 
top to bottom. The C(9) chains referred to in the text run from left to 
right and the C(7) chains run approximately vertically. (Colour versions 
of this and the other figures are available in the online edition of this 
journal] 

bonding properties. Therefore, although the nature of the 

paracetamol chain differs from that of the dioxane adduct, the 

roles of the N-methylmorpholine and dimethylpiperazine 

molecules are similar, and both act to link paracetamol chains 

via the D(6) graph set. Overall, this structure consists of a 

two-dimensional network, although the sheets formed have a 

corrugated or zigzag appearance in cross section. Alternate 

regions of the network are approximately parallel to the (310) 

and (310) planes. Just as in the dioxane adduct, the open 

structure of Fig. 4 is filled in by symmetry-equivalent networks. 

3.5. The paracetamol:morpholine adduct 

Morpholine is related to N-methylmorpholine by the 

substitution of the methyl group for hydrogen, and it is unique 

in this series because the hydrogen-bonding characteristics of 

the two hetero-centres are not the same: the NH group is a 

donor and acceptor. the ether 0 atom potentially a double, 

but more usually a single, acceptor. The asymmetric unit of the 

morpholine hemiadduct consists of two crystallographicaHy 

independent paracetamol molecules (labelled A and B) and 

one molecule of morpholine (labelled S in the tables). Primary 

bond lengths and angles are normal and have been deposited; 

hydrogen-bonding parameters are listed in Table 2. 

Figure 2 
Paracetamol:1,4-dioxane adduct viewed perpendicular to (210); the c axis 
runs horizontally. The C(9) chains referred to in the text run from left to 
right and are linked together by dioxane molecules. The dihedral angles 
between the amide and phenyl mean planes in the two independent 
paracetamol molecules are 41.72 (15)° and 3937 (14) for molecules A 
and B. respectively. 

Figure 3 	 - 
l'a race tamok4,4-bipyridine viewed perpendicular to (101); the b axis runs 
from top to bottom. The C(9) chains referred to in the text run from left 
to right and are linked together by a pair of ,r-stacked bipyridiite 
molecules. The dihedral angles between the amide and phenyl mean 
planes in the two independent paracetamol molecules are 14.68 (8)° and 
13.27 (9) for molecules A and B, respectively. 
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The crystallographically independent paracetamol mole-

cules alternate in the pattern . ABABAB ... along a chain 

formed by •HNCO ... NHCO. linkages between neigh-

bouring amide groups. Because these molecules are crystal-

lographically independent, these hydrogen bonds formally 

constitute discrete graphs at the unitary level, although it is 

clear from Fig. 5 that they are closely related to the C(4) 
graphs observed in the crystal structures of the N-methyl-

morpholine and NN-dimethylpiperazine adducts described 

above. For consistency we continue to use this designation, 

although it is not formally correct [the binary graph C(8) 
takes proper account of symmetry. 

The chains are formed by 2 1  operations parallel to c, leading 

to a pairwise alternation of the centres of the paracetamol 

molecules above and below the chain. This pattern is remi-

niscent of the structures of the N-methylmorpholine and 

N,N-dimethylpiperazine adducts, except that in these cases the 

alternation applies to single molecules. The potential for this 

arrangement to lead to some steric hindrance between the 

phenyl groups of neighbouring molecules is avoided by adja-

cent molecules veering slightly away from each other and an 

increase in the torsional angle between the phenyl group and  

amide group from 3.04 (3)° in molecule B to 36.03 (6)° in 

molecule A. 
Lattice translation along the b direction generates further 

C(4) chains, and these are linked together by discrete [DJ 
hydrogen bonds in which an OH group from an A' molecule 

in one chain acts as a donor to an OH group of a 'B' molecule 

in a neighbouring chain. This is the only structure in the series 

in which pairs of paracetamol molecules interact via their 

hydroxyl moieties. 

The two sets of hydrogen bonds described above - the C(4) 
chains and the D links between chains - form a grid-like 

network parallel to the (100) planes. The morpholine mole-

cules fit into the cavities of the grid. As in the N-rnethylmor-

pholine adduct, the amine N atom acts as an acceptor to the 

OH group of one of the paracetamol molecules (B), but this is 

the only hydrogen-bonding interaction formed by the 

morpisoline. The NH group of the morpholine is in an axial 

position to accommodate this interaction. 

This scheme satisfies all the hydrogen-bonding potential of 

the two paracetamol molecules, with the exception of the 

hydroxyl acceptor of molecule A. The weakest acceptor in the 

system (the ether function of the morpholine) does not 

L194 
Figure 4 

Paracetamol:N,N-dime thy [pipe razine adduct (isostructural to the N -
methylmorpholine adduct) viewed along the a axis; the c axis runs from 
kit to right and the b axis from top to bottom. The C(4) chains referred to 

in the lest run from left to right and are linked together by N,N-
dimetbylpiperazine molecules. The dihedral angles between the amide 
and phenyl mean planes in the paracetamol molecules are 3375 (7)° and 
34.11 (6)' in the NN-dimetbylpiperazine and N-melliylmorphotine 
adducts respectively. 

Figure 5 
Paracetamol:morpholine adduct viewed along the a axis. The c direction 

runs from left to right, the b direction up and down. The labels A and B 
refer to the crystallographically independent paracetamol molecules 
referred to in the text. The C(4) chains referred loin the text run from left 

to right and are linked together by hydrogen bonds between opposed OH 
groups. This forms a grid-like array with the morpholine molecules 
residing in the grid cavities. The dihedral angles between the amide and 
phenyl mean planes in the two independent paracetamol molecules are 

3603 (6) and 3.04 (3)° for molecules A and B. respectively. 
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participate in hydrogen bonding at all. A rather surprising 

feature of this structure, given the excess of acceptors present, 

is that the NH donor functionality of the morpholine amine 

moiety is also unsatisfied. However, this is consistent with the 
relatively long NH- - -OH hydrogen bonds observed in the 

piperazine adduct (which is described in the next section) and 

the generally poor hydrogen-bond-donor ability of secondary 

amines (see below). 

3.6. The paracetamol:piperazine adduct 

Piperazine is related to NN-diniethylpiperazine by substi-

tution of the two methyl groups by hydrogen. The asymmetric 

unit of the piperazine adduct. in common with the 

N,N-dimethylpiperazine adduct, consists of one paracetamol 

molecule and a molecule of piperazine on a crystallographic 

inversion centre. Primary bond lengths and angles are normal 

and have been deposited; hydrogen-bonding parameters are 

listed in Table 2. There are C(4) chains, consisting of 

NH- - -O==C hydrogen bonds, linked via 1Y(6) motifs 

consisting of OH- - -N bonds (Fig. 6). Piperazine is a weak 

hydrogen-bond donor as well as an acceptor, and the extra 

NH-donor moiety is satisfied by rotating alternate para-

cetamol molecules about the C(4) chain axis, leading to D-

type NH- - -OH hydrogen bonds. This rotation produces 

ribbons that run parallel to the b axis rather than the infinite 

two-dimensional networks. 

3.7. Differential scanning calorimetry 

Decomposition of a co-crystal of paracetamol is a potential 

strategy for the production of the orthorhombic polymorph. In  

all cases except for the 4,4'-bipyridine adduct, DSC traces 

exhibited thermal events attributable to loss of the guest 

molecule followed by a strong endotherm, corresponding to 

melting, at 438-444 K. The melting point of monoclinic 

paracetamol is 442 K (Nichols & Frampton, 1998). The same 

authors showed that DSC traces for orthorhombic para-

cetamol show either melting at 430 K or a phase transition to 

the monoclinic form at the same temperature, depending on 

the method of preparation. The DSC traces observed in this 

study can therefore be interpreted in terms of decomposition 

leading to formation of the monoclinic polymorph. 

Thermal decomposition temperatures follow the trend that 

might be predicted on the basis of the boiling points of 

1,4-dioxane (374 K), N-methylmorpholine (388 K), morpho-

line (401 K). NN-dimethylpiperazine (404 K) and piperazine 

(419 K). Two exotherms were observed for the dioxane 

solvate at 299 K and 338 K, in agreement with the previous 

study (Fachaux et al., 1995). This is plausibly interpreted as 

sequential loss of the two crystallographically independent 

dioxane molecules. Dioxane is readily lost at room tempera-

ture from a crystalline sample of this adduct, and the DSC 

trace of a sample that had been allowed to stand for 10 mm 

showed only one exotherm with an onset temperature of 

330 K. Decomposition of the morpholine, N-methylmorpho-

line and N,N-dimethylpiperazine adducts occur as broad 

exotherms with onsets at approximately 327, 335 and 373 K, 

respectively. The DSC trace of the piperazine adduct showed 

one endotherm at 413 K. 

4,4'-Bipyridine sublimes at 578 K under ambient pressure, 

and it is the least volatile compound to have been studied in 

this work. The DSC trace of the co-crystal exhibits a weak 

endotherm at 399 K followed by a strong endotherm at 402 K; 

no thermal event attributable to the melting of pure para-

cetamol was observed. The strong endotherm occurs at a 

similar temperature to the decomposition events observed for 

the other adducts, and it is likely to correspond to a melting 

process forming paracetamol solvated by liquid bipyridine 

(m.p. 374-377 K). Unlike the other solvents studied here, 

bipyridine is not lost to leave pure paracetamol, because its 

boiling point is well beyond the temperature of adduct 

decomposition. It is likely that the small peak corresponds to a 

phase transition. 

Figure 6 
ParacetamoL-piperazine adduct viewed perpendicular to (302); the b axis 
runs from left to right. The C(4) chains referred to in the text run from left 
to right and are linked together by piperazine molecules. The latter also 
act as weak hydrogen-bond donors. The dihedral angles between the 
amide and phenyl mean planes in the paracetamol molecule is 
33.21 (14)- . 

4. Discussion and conclusions 

This paper has described the formation of five new para-

cetamol hemiadducts with 1,4-dioxane, N,N-dimethylpipera-

zine, N-methylmorpholine, morpholine and piperazine and a 

1:1 adduct with 4.4'-bipyridine. This is the first such systematic 

study of paracetamol co-crystals to have been undertaken. As 

is to he expected, the crystal structures of all adducts are 

dominated by hydrogen-bond formation, and comparisons 

between them were much facilitated by the use of graph-set 

analysis in the form described in the illuminating review by 

Bernstein et al. (1995). 

Although ether oxygen can potentially act as a double 

acceptor, it rarely does so, and so with the exception of 
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Acceptor (Oar N in each caw) 

D(NHcw0H) / 
C 

C 

()_ N 0 "N 

/ C"  I 
Sample size 1250 14 11 31 40 

MaxNH_AJA (22) 2.14 2.17 2.19 2.19 

MInNFLA/A 1.73 1.79 1.00 153 151 

/ PA. NRA 1.92 201 1.06 2.03 1.06 

San,le size 49 256 49 53 76 

Max OH..A/A 2.19 2.20 219 220 2.111 

H 
MmOIt/A 160 1.67 1.66 162 1.53 

Mn OH..A iA 1.711 157 1.112 150 1.01 

C\ 
Sample size 5 1 (IIOLZOD) 12 4 Not applicable 

Max NH..A/A 2.17 . 2.20 2.111 
N- H Min NILA iA ZOO 2.OD 2.11 

/ Mn NH.A íA 2.13 1.03 2.14 213 

C 

Figure 7 
Summary of the results of searches of the CSD (Version 5.23, April 2(102) for typical distances (in A) in hydrogen-bonded systems containing identical 
functional groups to the paracelamol adducts studied. The distances to H atoms were normalized to typical neutron distances (C-H 1.803, N -U 1.009 
and 0-H 0.983 A). Only 'organic' structures where the R factor is less than 0.05 with no errors or disorder were included, and ionic or polymeric 
structures were excluded. ,  The C atoms attached to the amine moieties were specified to be sp 3  hybridized. The donor-H-to-acceptor distance was 
specified to be 1.50-2.20 A. The asterisk denotes the limit of search. 

morpholine all the guest molecules studied are at least 
pseudo-centrosymmetric with respect to their hydrogen-
bonding properties. The dioxane, N-methylmorpholine, 
N.N-dimethylpiperazine and piperazine adducts all consist of 
hydrogen-bonded chains of paracetamol molecules linked 
together by the guest molecules, which all reside on crystal-
lographic inversion centres. In the bipyridine adduct the 
chains are linked via a pair of 7r-stacked pyridine rings, though 
the structure as a whole is still centrosymmetric. The 
morpholine adduct does not conform to this pattern, although 
chains of paracetamol are still present. The arrangements of 
paracetamol chains described in this paper tend to lend 
themselves to the formation of centrosymmetric crystal 
structures, and this seems to favour adduct formation in the 
centrosymmetric guest molecules. It is perhaps significant that 
we have been unable to prepare an adduct with I,3,5-trioxane, 
a molecule closely related to dioxane but which lacks inver-
sion symmetry. 

The donor groups that appear in this series are amidic NH, 
phenol OH and secondary amine NH: the acceptors are amidic 
0, phenolic 0. secondary or tertiary amine N. ether 0, and 
pyridine N. The results of searches of the CSD for typical 
hydrogen-bond geometries involving these functionalities are 
shown in Fig. 7; searching criteria are given in the legend to 
that figure. The pattern of adduct formation observed in this 
study is quite consistent with the data in Fig. 7 if the reason-
able assumption is made that the hydrogen-bond strength is 
related to the average donor-hydrogen - acceptor distance 

The donor group 0-H or N-H to acceptor distances 
observed in this study were normalized to typical neutron 
values (0-H 0.983A and N-H 1.009A) to aid ready 
comparison with typical H-to-acceptor distances derived from 
our CSD search, and this comparison is made in Table 2. Our 
hydrogen-bond distances agree tolerably well with typical 
values; they are often on the short side, as might be expected 
with low-temperature data. 

The strongest hydrogen bonds in Fig. 7 are formed between 
phenolic OH (as donor) and amide 0 (as acceptor). These are 
observed in the C(9) chains formed in structures of both 
polymorphs of paracetamol. In pure paracetamol, hydrogen 
bonds are formed between the remaining NH donor and OH 
acceptor to form C(7) chains, but on adduct formation with 
I ,4-dioxane and 4,4'-bipyridine it is these, weaker, interactions 
that break to accommodate the guest molecules, preserving 
the strongly bound C(9) chains and forming hydrogen bonds 
between the amide NH of paracetamol and either the ether 0 
or the pyridyl N atoms of the guest molecule. These obser-
vations are consistent with the results obtained in the variable-
pressure study of monoclinic paracetamol by Boldyreva et al. 
(2000), where the NH ' .0 contacts were found to be more 
compressible than the OH. . .0 contacts. 

Neither dioxane nor bipyridine has any group attached to 
the donor 0 or N atoms. All of the other molecules studied 
carry either hydrogen or methyl groups in these positions and 
reference to Fig. 2 or Fig. 3 shows that a structure based on the 
C(9) paracetamol chains would suffer some steric crowding 
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between these groups and either the phenyl or the methyl 
group attached to the amide moiety. In order to avoid steric 
overcrowding in the morpholine, piperazine, N,N.dimethyl-
piperazine and N-methylmorpholine adducts, the paracetamol 
utilizes its Nil group as a donor. Fig. 7 shows that the most 
effective acceptor for this group is amide CO and this explains 
the formation of C(4) paracetamol chains in all four of these 
structures. 

In the structures of N-methylmorpholine and N,N-di-

methvpiperazine, hydrogen bonds are formed between the 
OH group of paracetamol and the N or 0 of the guest 
molecule. In morpholine and piperazine, both the OH group 
of paracetamol and the NH group(s) of the guest could act as 
either donors or acceptors. Fig. 7 shows that secondary 
aliphatic amines are particularly poor hydrogen-bond donors, 
and so the hydroxyl group acts as the donor in both cases. In 
fact, so poor a donor is secondary amine NH that it is left 
unsatisfied in the morpholine adduct. even in the presence of 
excess acceptor functions. The weakness of these NH. . 
hydrogen bonds relative to OH . 0 or NH. . .0 systems may 
be a consequence of the size of N relative to 0, a feature 
recently emphasized by Brown (2002). However, in piperazine 
the NH groups do act as weak donors, and this induces a 
change in conformation of these C(4) chains relative to the 
N,N-dimethylpiperazine adduct that condenses the sheets into 
ribbons. 

In the case of morpholine. the C(4) chains are linked by the 
OH group of a paracetamol molecule in one chain acting as a 
hydrogen-bond donor to a similar group in a neighbouring 
chain. On the basis of the structures of the other adducts, the 
role might have been expected to be fulfilled by the ether 
moiety of the morpholine. Fig. 7 shows that these interactions 
are of rather similar strength, and this might explain the 
apparently anomalous behaviour observed in this adduct. 

In the 1,4-dioxane adduct, alternate C(9) paracetamol 
chains have reversed polarity. In the adducts based on C(4) 

chains, the resemblance to orthorhombic paracetamol is less 
obvious, although inspection of Fig. 1(b) shows that removal 
of alternate molecules along the C(7) graph followed by a 
small displacement would yield NH.. O=C C(4) chains. 
Viewed in this light, desolvation might have been predicted to 
yield the orthorhombic polymorph of paracetamol, although 
in practice it was shown by DSC that in all cases except for 
paracetamol:bipyridine (for which we did not observe desol- 

vation at all) the thermodynamically more stable monoclinic 
polymorph was formed. 

We thank Mrs A. Dawson and Dr A. Parkin for assistance 
with data collection, and the EPSRC, the Cambridge Crys-
tallographic Data Centre and the University of Edinburgh for 
funding. 
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