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Lay Summary

Micro-organisms are the most abundant form of life on Earth and they have
an incredible ability to tolerate stressful conditions, allowing them to colonise
many extreme environments. Microbial processes change the chemistry of the
environment which can have a big influence on the Earth as a whole. On the
other hand, the environment has a big effect on how micro-organisms behave and
evolve.

This thesis explores how microbial life is influenced by its environment, with
particular focus on the interaction between microbes and rocks. These are an
excellent system in which to explore this interaction as they are very common
habitats, both today and throughout the Earth’s history, and are relatively
simple.  Although rocks provide micro-organisms somewhere to live, these
environments can be very stressful. This thesis focusses on the response of
micro-organisms to 3 types of stress faced in rock environments: exposure to UV
radiation from the sun, exposure to changes in the amount of different chemicals
in the environment, and to lack of essential nutrients.

The first exposes samples to conditions outside the International Space Station
to show that it would be possible for photosynthetic bacteria (which need light
for energy) to survive on the early surface of the Earth, despite UV radiation
being much higher than today. The latter two studies use a technique called
“proteomics” to investigate how cells change the types of proteins they make in
response to lack of nutrients or changing chemistry caused by reactions with water
and rock, two common stresses in rock habitats. Together these results further
our understanding of the relationship between micro-organisms and rocks, both

today and over geological time.



Abstract

Micro-organisms are the most abundant and diverse form of life on Earth.
Their ability to tolerate stress has enabled them to colonise many inhospitable
environments. Microbial processes alter the chemistry of the environment which
has left a lasting mark on the geological record. On the other hand, microbial
life is heavily influenced by environmental conditions. Indeed, the history of the
Earth is shaped by the co-evolution of microbial and geological processes.

This thesis explores how micro-organisms are influenced by their environment,
with particular reference to microbial rock habitats. Rock habitats are an
interesting system to understand the inter-relationship between microbial life and
it’s environment as they are relatively simple and very common. Rock-dwelling
communities are also exposed to numerous stresses such as surface UV exposure,
desiccation, temperature fluctuations, low nutrient availability or toxicity from
elements leached from the rocks themselves. Three specific aspects of microbial
stress in rock environments are investigated here: 1) The use of rocks as a shield
from surface UV radiation stress, 2) The microbial response to chemical changes
during water-rock interactions, 3) The effect of simultaneous limitation of more
than one nutrient.

The first uses exposure facilities aboard the International Space Station to provide
empirical evidence that colonisation of the early land masses by phototrophs was
not inhibited by high surface UV radiation. The latter studies use quantitative
proteomics to investigate the cellular response of a heterotrophic bacterium to
nutrient deficiency and element leaching, two common stresses in rock habitats.
Together these results further our understanding of the relationship between

micro-organisms and rocks, both today and over geological time.
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Chapter 1

Introduction

Micro-organisms colonise a large variety of environments on Earth, from hot
springs [5, [6] to polar deserts [7], the deep sub-surface [8] and glacial environments
[9] as well as inhospitable man-made environments such as metal contaminated
sites [10], radioactive waste [I1] and acid mine drainage [12]. Central to the
capability of micro-organisms to colonise these extreme environments is their
ability to cope with extreme conditions. Micro-organisms can survive at extreme
temperatures from 121°C [I3] down to around -20°C [14}, [15], under extremely
alkaline [I6] and acidic conditions [I7], in high salinity [I8] and with very few
sources of energy or nutrients [19].

Micro-organisms have persisted in extreme environments for billions of years and
have developed diverse approaches for coping with such environmental stresses.
They can alter the cell membrane in response to temperature stress, repair DNA
damage in response to radiation exposure and produce osmoprotectant molecules
to aid in desiccation survival [20]. They can also pump out toxic metals and salts
or selectively uptake specific nutrients to tightly regulate intracellular chemistry
under conditions of toxicity or nutrient deficiency [20].

The adaptability of micro-organisms and their ability to thrive in almost any



environment makes them the most abundant and diverse form of life on Earth
[21]. Tt is estimated that there are up to 6x10%0 prokaryotic cells on Earth
[21]. In extreme environments micro-organisms are typically the only form of life
which can survive, thus many key processes in these environments are carried
out exclusively by micro-organisms. For example, methane production under
the Antarctic Ice Sheet is carried out exclusively by methanogenic archaea [22].
The incredible abundance of micro-organisms means that they control the global
cycling of numerous key elements such as carbon, nitrogen, phosphorus, sulfur and
iron [23], and consequently have shaped the fundamental chemistry of the Earth
over geological time. For example, without micro-organisms the atmosphere
would not be oxygenated [24].

Micro-organisms have been present on the Earth since at least 3.2 billion years
ago. Indeed, all life was microbial until around 1.1 billion years ago [25] and fossil
evidence of complex life on land dates from only around 475 million years ago
[26]. Over this long history, micro-organisms have actively influenced the planet;
extruding gases, cycling elements and dissolving or precipitating minerals in the
Earth’s crust. In this way, micro-organisms can be considered to be geological
agents, similar to water, wind or ice, which are responsible for the redistribution
of elements, minerals and rocks on the Earth surface over geological time [27].
Although micro-organisms influence geological processes, their evolution has, in
turn, been shaped by environmental conditions. For example, the concentration
of biologically important elements in the environment is rarely adequate to supply
optimal nutrient and energy sources to micro-organisms. Thus, micro-organisms
have been forced to evolve sophisticated mechanisms for coping with nutrient
starvation. Alternatively, the environment may contain high concentrations of
salts or toxic elements, forcing micro-organisms to evolve the ability to pump
toxins out of the cell. Physical stresses such as surface UV exposure, desiccation
and temperature stress, particularly in poorly buffered surface habitats, are also
common and require complex microbial responses.

This thesis attempts to understand the capabilities micro-organisms need to



cope with the stresses imposed by their environment, with a particular focus
on life in rock environments. Rocky habitats represent all of the habitable
space within the crust of the Earth. Biofilms on, or near, to rock surfaces were
likely the first habitats on the surface of the land masses [28]. Furthermore,
microbial life in the continental and ocean crust is thought to represent a large
proportion of the Earth’s biomass [21, 29]. Thus, rock-associated environments
are a particularly ancient and common microbial habitat. However, rocks are
reactive substrates which will evolve over time and alter surrounding chemistry.
They can simultaneously provide nutrients and a habitat, but also have associated
stresses. This makes them an interesting system in which to understand the inter-
relationship between microbial life and it’s environment. A number of key open

research questions exist.

What capabilities do micro-organisms need to survive and grow in rocky

habitats?

e What cellular machinery have micro-organisms evolved to cope with rock-

associated stresses such as toxicity or nutrient limitation?

e How might the interaction with rocks benefit or stress the microbial

community?

e Does exposure to a number of stressors elicit a different response compared

to exposure to a single stress?

e How would micro-organisms have coped in the geological past when
problems such as UV stress were more pronounced and cellular machinery

likely more primitive?

This thesis presents three studies which broadly approach these open questions.
Each of the three studies presented investigate different aspects of stress in the

rock environment:



1. The first investigates the mitigation of UV stress in rock environments, with
particular reference to the importance of rocks as a UV shield on the early

Earth when the UV flux was higher than today.

2. The second study investigates the effects of rock-induced changes in fluid

chemistry on the bacterial proteome.

3. The third study investigates the effect of both single and multiple element

limitation on the bacterial proteome.

A vast amount of literature has previously been generated which investigates
microbial responses to stress. However, most of these studies test the response
to one stress at a time. For example, they investigate the response to limitation
of one nutrient or exposure to one physical stressor such as temperature, UV or
pressure. However, the natural environment is much more complex and often
numerous stresses will exist simultaneously. For example, microbial colonisers
of deep subsurface rock environments are subject to high pressure and extreme
nutrient limitation [8], and colonisers of rock surfaces are exposed to UV radiation,
desiccation and temperature fluctuations [28]. Thus, without investigating the
effect of multiple stressors simultaneously, we cannot adequately understand how
combinations of extremes in rocky habitats will influence the survivability and
stress responses of micro-organisms.

This thesis adopts a novel approach where micro-organisms are exposed to
controlled combinations of stresses. Each of the three studies are conducted in a
controlled setting with model strains but include exposure to multiple potential
stressors. Chapter 4 investigates the survival of a rock-dwelling cyanobacterium
under extreme UV radiation exposure, temperature fluctuations and desiccation.
Chapter 5 investigates microbial response to rock-induced changes in fluid
chemistry by introducing igneous rock, which leaches numerous different cations,
into the cultures. Chapter 6 investigates the response of micro-organisms to

multiple simultaneous nutrient stress.



Together these results demonstrate that the rock environment can be beneficial
for micro-organisms by providing protection from external physical stressors and
by providing nutrients. However, the rock environment is, in itself, capable of
inflicting complex chemical stresses on micro-organisms which require tightly

regulated cellular responses.



Chapter 2

Background

2.1 Introduction

This thesis explores the microbial adaptations required to cope with the complex
stresses encountered in rock environments through investigation of three key
stresses: 1) UV exposure, 2) rock-induced changes in fluid chemistry and 3)
multiple nutrient limitation. This chapter discusses the background literature
relevant to these topics. I provide a brief history of life on Earth before outlining
the importance of microbe-rock interactions in the Earth system, both past and
present. As part of this outline, I discuss the ways in which rock habitats may
both protect micro-organisms from stress and how they may cause it. A general
overview of microbial stress responses is provided, with discussion on the lack of

experimental focus on combined stressors.



2.2. BRIEF HISTORY OF LIFE ON EARTH

2.2 Brief History of Life on Earth

The oldest evidence for life on Earth dates to around 3.8-3.5 billion years ago
[30-33]. While the evidence of life 3.8 billion years ago is controversial, most
authors agree that microbial life was present on Earth by around 3.2 billion years
ago [34].

When early micro-organisms evolved, the Earth was very different [35]. Until
around 2.4 billion years ago, the atmosphere contained only trace amounts of
oxygen and was, instead, dominated by nitrogen and carbon dioxide [36-39]. The
lack of oxygen in the atmosphere, which now acts to form the ozone shield, would
have resulted in a significantly more damaging dose of UV radiation reaching
the surface of the Earth than it does today [40]. However, an intermittent
hydrocarbon “haze” may have provided some short-lived protection during some
parts of the early history of life on Earth [41I]. The oceans would have been
primarily anoxic and have very different chemistry from today, in particular they
would have contained abundant iron [42].

The earliest estimates for the first life also coincide with a period known as the
‘Late Heavy Bombardment’. During this time, the Earth was subjected to a
much higher occurrence of asteroid and comet impacts than today [43]. This
bombardment is thought to have been most intense around 3.9 billion years ago
but may even have continued to around 3.2 billion years ago, well into the range
of the Earth’s oldest fossils [44]. Much debate surrounds the nature of this early
asteroid bombardment and its effect of the origin of life. One hypothesis is that
it may have caused a high temperature bottle-neck whereby only thermophilic
(heat-loving) micro-organisms could survive and give rise to the rest of the history
of life [45]. Alternatively, another hypothesis suggests that the Earth’s surface
may have been sterilised by these impacts which, if correct, places constraints on

the timing or location of the origin of life on Earth [46].



2.3. MICROBIAL INFLUENCE ON GEOLOGICAL PROCESSES

2.3 Microbial Influence on Geological Processes

Conditions on the Earth today are clearly very different from those when life first
evolved and organisms have been forced to adapt to these changing environments,
eventually leading to the complex life observed today. However, micro-organisms
were not, only influenced by changes in environmental conditions, they were often
the main cause. This section outlines how microbial processes lead to global

changes in geological processes.

2.3.1 Micro-organisms and the Evolution of the Atmosphere

An excellent example of microbial influences on the Earth system is the
oxygenation of the atmosphere. Oxygen concentrations rose from almost zero
to present levels in two sudden events, the first of which is termed “The Great
Oxidation Event”. This was a key transition in the history of life on Earth
and occurred around 2.4 billion years ago. Figure shows the predicted
oxygen composition of the atmosphere over geological time [39]. This record was
established using various proxies (clues from the rock record which indicate the
oxygen concentrations but do not measure them directly) [47, 48] and reveals two
sudden increases in oxygen concentration in the atmosphere. The first occurred
around 2.4 billion years ago and the second occurred around 0.85 billion years
ago.

Oxygen is produced via oxygenic photosynthesis. This is a complex process
whereby carbon dioxide and water are converted into carbohydrates using energy
from the sun. This reaction produces oxygen as a waste product. Oxygenic
photosynthesis had probably evolved by around 2.7 billion years ago [49] but
may have been around for even longer (potentially up to 3 billion years ago) [48].
The sudden rise in oxygen therefore represents a tipping point in the balance

between oxygen sources and oxygen sinks in the Earth system.
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The first rise in oxygen (to levels around 1% of present) fundamentally and
permanently changed environmental conditions. The appearance of oxygen
caused ozone to form high in the atmosphere [24]. This formed a shield from
incoming short-wave UV radiation [40]. The new oxygen level caused a shortage
of iron to micro-organisms because a great deal of the soluble iron was oxidised
and no longer readily available to life [42]. Additionally, because oxygen is toxic
to most anaerobic life, the Great Oxidation Event limited primitive anaerobes to
the remaining anoxic habitats, forced them to evolve to cope with oxygen stress
or caused them to go extinct [50]. It is likely that the oxidation of the atmosphere
resulted in the extinction of a huge number of microbial species [50].

In this way the oxidation of the atmosphere serves as an excellent example of
the co-evolution of life and the Earth system; the evolution of oxygen-producing
micro-organisms changed the composition of the atmosphere in such a way that

the environmental conditions, in turn, forced life to develop new traits.
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Figure 2.1 Oxygen concentrations over geological time from Sessions et al
(2009) as inferred from various geological proxies. White = estimate
compatible with proxies; beige = compatible with some proxies,
therefore some doubt exists on absolute Oy concentrations; brown
= not compatible with proxies, therefore these concentrations are
unlikely. This figure shows two sudden rises in atmospheric oxygen
concentrations. Os rose from trace levels to around 1% of present at
approximately 2.4 billion years ago. It rose again to around modern
day levels at approximately 0.85 billion years ago.

2.3.2 Micro-organisms as Geological Agents

The oxidation of the atmosphere is just one example of how microbial processes
exert control on global chemistry. However, the cycling of almost every element
on Earth is, in some way, under microbial control [23]. Micro-organisms exert
such a strong control on the Earth that they can be considered geological agents,
similar to water or ice, which act to redistribute elements, rocks and minerals
around the Earth’s surface [27]. For example, microbial rock dissolution reactions

transform CO, in the atmosphere to bicarbonate which is then stored away in
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sediments. It has been suggested that removal of atmospheric CO5 by microbially
enhanced rock dissolution was essential for reducing early Earth temperatures to
levels suitable for complex life [51]. This section explores how microbial energy

and nutrient acquisition drive changes in geological processes.

Microbial Energy Acquisition

Micro-organisms display a huge diversity of metabolic capabilities. Types of
metabolism are defined based on what an organism uses as a source of energy
and what they use as a source of carbon. An organism which obtains energy from
sunlight is a phototroph whilst organisms which obtain energy from molecules
in the environment are chemotrophs. Many chemotrophs respire using redox
reactions. In a redox reaction, the oxidation of one compound is coupled to the
reduction of another. For example, iron reducing micro-organisms couple the
reduction of Fe3" to the oxidation of an organic compound. In this example,
the organic compound is referred to as the electron donor and iron as the
electron acceptor. Chemotrophs are further sub-divided depending on which
electron donor they use: organotrophs use organic compounds, lithotrophs use
inorganic compounds. In all aerobic organisms, oxygen is the electron acceptor.
In anaerobic organisms, alternative electron acceptors such as sulfate (SO7 ),
nitrate (NOj3 ) or sulphur (S) can be used [52]. Organisms which use organic
compounds as a carbon source are heterotrophs whereas organisms which obtain
carbon from CO, in the atmosphere are autotrophs. These definitions can be
grouped together to give complete descriptions of an organism’s metabolism. For
example, a chemolithoautotroph is an organism which uses inorganic compounds
from the environment as an energy source and fixes atmospheric CO as a carbon

source. Table[2.1shows the definitions of different types of microbial metabolism.

This diversity of metabolism allows micro-organisms to colonise a vast array of

extreme habitats. For example, chemolithotrophy allows micro-organisms to live
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Table 2.1 Naming conventions for different types of microbial metabolism

Enerey source Sunlight photo-
&Y Environmental compounds | chemo-
Electron donor Organlc. compounds organo- -troph
Inorganic compounds litho-
Organic compounds hetero-
ool D Carbon dioxide auto-

at hydrothermal vents deep in the oceans where they use inorganic elements from
the hot fluids to gain energy. This often forms the base of the food chain for
other more complex animals [53]. These energy acquisition processes are key to
understanding how microbial processes influence the wider Earth system. For
example, microbial iron reduction may be responsible for as much as 70% of the
anaerobic recycling of organic matter in soils and sediments [54]. Lithotrophy is
one of the primary ways in which micro-organisms dissolve [55] or precipitate
minerals [I0, 56]. The influence of microbial metabolism on dissolution and

precipitation of minerals is discussed later in this section.

Microbial Nutrient Requirements

In addition to needing chemical sources of energy, micro-organisms have many
other chemical requirements they must satisfy in order to build biomass.
Satisfying these nutrient requirements is another way in which micro-organisms
influence global chemistry. For example, in some areas of the ocean the iron
requirement of heterotrophic bacteria leads them to assimilate more than 50% of
the dissolved iron [57].

All life requires carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur [5§].
In addition to these, many “micronutrients” are also required. These are mostly
metals which are used in redox reactions within the cell. Iron, for example, is
essential for the functioning of cytochromes (iron-containing proteins responsible
for ATP production via electron transport) [59]. Magnesium is essential for

numerous key cellular processes such as ATP utilisation, genome stability and
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maintenance of membranes and ribosomes [60]. Furthermore, an estimated 16%
of all microbial enzymes use magnesium as a cofactor [61]. Magnesium is also used
in chlorophyll, essential for photosynthesis [62]. Most of the elements required by
microbial life can be found within rocks but they are locked within the matrices of
the minerals and not readily available. Micro-organisms have evolved numerous
mechanisms to enhance the breakdown of rocks and minerals in order to release

elements they require. This is discussed in detail in the next section.

Micro-organisms and Mineral Alteration

Minerals and rocks can break down abiotically through reactions with water
resulting in the leaching of cations and silica, hydration of minerals and pH
changes. However, this important process can be significantly enhanced by

microbial activity [63H67]. This occurs via three primary mechanisms:

1) Altering pH to dissolve rock surfaces
Bacterial metabolism can produce a number of by-products which can act
to alter the rock surface by changing the pH which in turn enhances dissolu-
tion. For example, the CO, produced by microbial aerobic respiration can
combine with water to form carbonic acid. Since the solubility of minerals
is often dependent on pH, this in turn contributes to the dissolution of the

rocks and minerals.

2) Altering the redox state of elements
Chemolithotrophs specialize in the use of metal ions as electron donors and
acceptors to serve their energetic requirements. In the process of oxidising or
reducing metals, organisms can alter the speciation and therefore solubility
of certain elements. For example, iron commonly exists as two different
ions; Fe3T and Fe?T. Fe3t, oxidised iron, is insoluble in water. Fe?*, the

reduced ion, is soluble in water. The conversion of Fe3* to Fe?* by iron

13
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reducing micro-organisms will turn the iron into its soluble form where
it can then be washed away and precipitated elsewhere. In the opposite
reaction, iron oxidizing micro-organisms will turn soluble Fe?* to insoluble
Fe3™ and precipitate iron minerals from solution.

Microbial redox reactions leading to the precipitation of minerals are
common in the geological record. For example, large banded deposits of iron
sulfide minerals (called banded iron formations) deposited early in geological
history may have been formed by such a process [68]. Micro-organisms may
also be responsible for forming valuable mineral deposits. For example,
consortia of sulfate reducing bacteria can precipitate almost pure zinc sulfide
from dilute groundwater [69] and the Gram-negative bacterium Cupriavidus
metallidurans CH34 (used for work in most of this thesis) can precipitate
gold nanoparticles from solution [70]. These reactions are also exploited
in bioremediation of metal contaminated sites by causing immobilisation
of toxic metal species [71]. This mobilisation/immobilisation of elements
exerts control over element fluxes to other parts of the Earth system,

particularly the elemental composition of oceans, rivers and pore waters

@il

3) Production of chelating agents
Chelating agents are compounds which strongly bind to metal ions and
transport them into the bacterial cell. The most intensely studied chelating
agents are siderophores [64] which have a very high and specific affinity
for iron. These compounds will be secreted by organisms to scavenge
elements from the surrounding environment and transport them into the
cell. Siderophores are extremely important for global iron cycling. For
example, almost all of the Fe3* dissolved in the surface of the oceans is

bound to siderophores [73].

The formation of biofilms on rock surfaces is a key facilitator of these microbial

rock weathering mechanisms. By ensuring adhesion to the rock surface, these
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assist in concentrating the chemical effects of microbial activity directly on the

rock surface, enhancing weathering effects [2§].

2.4 Geological Influence on Microbial Processes

The previous section outlined the ways in which microbial metabolism influences
geological processes. However, this is a two-way interaction. Overall the story
of life on Earth is a story of feedbacks between geological processes and life.
Investigation of the metabolic and stress-tolerance strategies of micro-organisms
cannot be undertaken out-with the context of the environment. The key focus
of this thesis is the interaction between rock habitats and microbial life. Rock
habitats provide an ideal model system for understanding microbe-environment
interactions because of their simplicity. In this section I provide some background

to rock habitats and the benefits and stresses imposed by rocks on microbial life.

2.4.1 Rocks Provide Microbial Habitats

One way in which geology influences microbial life is by providing many different
habitats [72]. The following short descriptions outline broad examples of
microbial rock habitats and aim to aid in the appreciation of the great variety of

microbe-rock interactions on Earth.

Biofilms on rock surfaces
Microbial life on rock surfaces is everywhere and a thin microbial film will
exist on almost any rock surface [28] [74]. Indeed, even rock freshly created
in volcanic eruptions is colonised by micro-organisms within a matter of
weeks [75]. These habitats are poorly buffered from environmental stresses,
thus communities on rock surfaces are exposed to UV radiation exposure,

temperature fluctuations, wind and desiccation [76H79).
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Endoliths
Endolithic communities are those contained within cracks and pore spaces
in rocks rather than on the surface. These communities are buffered
from external stresses experienced in surface rock biofilm habitats and
thus are most commonly associated with harsh environments in which
these factors limit growth on rock surfaces [T6-79]. For example, in the
Antarctic Dry Valleys microbial life is rare on the surface but commonly
found under quartz stones [80] or inside sandstones [81]. Communities
also inhabit salt crusts in extremely dry regions such as the Atacama
Desert [82]. Additionally, endoliths have been found in impact craters in
the High Arctic [83] 84], igneous rocks in Svalbard and Iceland [85] [86]
and silicious volcanic deposits [87H89]. These communities are some
of the simplest ecosystems known [90]. They typically contain several
photosynthetic species (cyanobacteria, blue green algae, fungi, lichens)
along side a larger number of non-photoautotrophic bacteria [91]. The
prevalence of photosynthetic organisms in almost all endolithic communities

suggests a minimum requirement for light [92].

Sub—surface habitats
It has only become accepted in the last few decades that the biosphere
consists of more than what is observed in the near-surface environment.
Early estimates thought even the hardiest micro-organisms could only
survive a few tens of metres underground [93] but abundant, diverse
microbial communities have now been observed deep in the continental
and oceanic crust [8, 94-96]. Recent estimates suggest between 2% and
19% of the total biomass on Earth is in the terrestrial deep sub-surface
and that the abundance of prokaryotes in the oceanic sub—surface is at
least equal to that of seawater [29]. Deep sub-surface environments are
typically very isolated and receive little external light or energy input.

Potential energy sources may be buried organic carbon or Hy which can
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be released via serpentenization of basaltic rocks deep in the crust [97].
Cell turnover times can be on geological timescales [19]. Diverse microbial
communities kilometres below glacial ice have also recently been observed
[98]. These sub-glacial environments experience nutrient stress and high
pressures similar to crustal sub—surface habitats but additionally expose

the organisms to extremely cold temperatures.

2.4.2 Rock Habitats Protect Micro-organisms From Stress

Common Physical Stresses

Rock habitats impose many different stresses on microbial communities. Surface
rock environments, for example, are poorly shielded from the wind and the
sun thus microbial communities on rock surfaces are subject to stresses such
as desiccation, temperature fluctuations and radiation exposure [74]. Microbial
communities in the deep sub—surface are exposed to high pressure and low energy
and nutrient fluxes [19]. However, rocks may also protect micro-organisms from
stress.

In Chapter 4 of this thesis I focus on the protection afforded by rocks to UV
radiation stress in particular. This is particularly interesting in the context of
understanding the early evolution of life as UV stress on the surface of the Earth
was much higher before the formation of a protective ozone layer around 2.4 billion
years ago [24]. The rest of this section further explores surface UV radiation in

rock environments and the microbial response to such a stress.

Micro-organisms and UV Radiation Stress

Most humans are familiar with the damage induced by extended exposure to

the sun’s UV radiation which damages DNA. DNA damage, as well as damage
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to other cellular structures, is also common in micro-organisms. FExposure
to UV radiation causes damage to essential biomolecules such as DNA, RNA
and proteins. In cyanobacteria, UV exposure is associated with destruction
of photosystem proteins and light harvesting pigments as well as decreased
efficiency of chlorophyll synthesis, nitrogen fixation, energy production and cell
differentiation [99].

Ultraviolet (UV) radiation is electromagnetic radiation within the wavelength
range 400nm - 10nm. Biologically relevant wavelengths of UV are those which fall
into the UVC (280-100nm), UVB (315-280nm) and UVA (400-315nm) ranges.
The extent of damage during UV exposure is correlated with the wavelength of
UV, shorter wavelengths cause more damage than longer ones [40].
Long-wavelength UVA radiation is the dominant form of UV on the Earth today,
followed by UVB which is mostly absorbed by the atmosphere before reaching
the Earth’s surface. Today, all UVC radiation is absorbed by the atmosphere but
this was different early in Earth history when the atmosphere contained much

less oxygen than today [24].

UV History of the Earth

As discussed earlier in this chapter, the Earth today is protected from UV
radiation by the ozone shield [24]. Ozone reduces the biological damage caused
by incoming UV radiation by three orders of magnitude [I00]. However, the
nitrogen and carbon dioxide atmosphere dominant prior to the Great Oxidation
Event could not block incoming UV as effectively [40]. Organisms attempting to
survive on the Earths surface prior to the rise in oxygen would receive a radiation
dose up to 1000 times more damaging to DNA than today [40]. The problem is
significant even accounting for lower solar luminosity early in Earth history [101].
Indeed, it was originally proposed that the intense UV radiation flux experienced
on the early Earth might have prevented the colonization of the land masses until

after oxidation of the atmospshere [102].
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However, cyanobacteria had already evolved prior to the oxygenation of the
atmosphere [103] and significant microbial colonisation of the land masses is
thought to have occurred by at least 2.7-2.8 billion years ago [104]. How then did

micro-organisms survive on land under these harsh UV conditions?

UV Avoidance Strategies

An understanding of how micro-organisms cope with high levels of UV radiation
today can provide some clues as to how micro-organisms may have dealt with
this problem in the past.

Numerous methods for actively repairing DNA damage induced by UV exposure
are observed in prokaryotes today [99]. However, given the severity of the UV flux
on the early Earth, these mechanisms would likely have become overwhelmed in
organisms directly exposed on the surface of the land masses [40]. It is therefore
likely that any surface or near-surface dwelling life at this time would require

some kind of UV avoidance strategy.

In high UV environments on Earth today, micro-organisms are commonly found
in locations where there is a physical barrier between the micro-organisms and the
incident UV radiation. Some organisms, for example, achieve protection within
thick laminated structures called stromatolites. These are large (up to 1m across)
mound-like structures formed in shallow water by the trapping and cementation
of sediment by microorganisms, mostly cyanobacteria, to form thick mats. The
structures grow as the cyanobacteria are buried by the trapped sediment and
must move up to continue to access light.

This has long been recognized as a potential means for micro-organisms to survive
the early intense UV radiation, in part due to the discovery of fossil evidence of
micro-organisms in ancient stromatolites in Western Australia [T05H107].
Alternatively, environments which experience harsh surface conditions often

display excellent examples of organisms growing in the interior of rocky substrates
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or under them which are known as endoliths and hypoliths, respectively [79, [80,
108]. As mentioned previously, endolithic communities contain photosynthetic
organisms at a depth in the rock where they can still access some light but where
they are buffered from the extremes on the surface.

This ability to grow phototrophically in the sub—surface whilst being shielded from
most of the incident UV radiation led to the suggestion that endolithic habitats
may have been useful on the early surface of the Earth [II, [83] 84] [86] 109, [1T0].
Assessing the suitability of endolithic habitats for protecting phototrophs from
early Earth UV conditions is the main focus of the first study in this thesis.

2.4.3 Chemical Stress in Microbial Rock Habitats

As discussed in section micro-organisms have many nutrient requirements.
Often, in rock habitats, these nutrient requirements are satisfied by elements
abiotically leaching out of rocks. If abiotic processes do not supply the required
nutrients, micro-organisms can enhance this supply by dissolving the rock surface.
However, these processes may still not supply an adequate amount of the
required nutrients and consequently nutrient deficiency is a common stress in the
environment [74, TTTHIT6]. Furthermore, the dissolution of rocks often releases
other toxic chemicals such as heavy metals [I17]. In this section I outline the
concepts of nutrient deficiency and toxicity in the context of microbial rock

habitats.

Nutrient Deficiency in the Environment

Although rocks can supply nutrients, most environments on Earth remain
nutrient limited [115 [118]. Over time, soils initially rich in rock-derived nutrients
will become irreversibly depleted as these elements are washed away to the oceans

[119, 120]. Rock-derived nutrients in the oceans will be increasingly exhausted
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the further the region is from the continental margins. Sub-surface habitats are
typically very isolated and not regularly replenished with external nutrient and
energy sources [19]. Nutrient stress is therefore a key environmental stress for
microbial life. Microbial responses to nutrient stress are investigated in Chapter
6 of this thesis. The next section outlines the concepts surrounding nutrient

deficiency in micro-organisms.

Concepts in Nutrient Deficiency

The term “nutrient limitation” is commonly used to refer to a situation in which
the scarcity of nutrients results in a reduction in the growth rate of the population.
This occurs because low extracellular concentrations mean less nutrient reaches
the cell surface to be transported into the interior of the cell. This reduces the
intracellular concentration of that nutrient and limits the growth rate [118].
The effect of nutrient availability on growth rate can be described by a saturating
relationship [I21]. This means that, at low nutrient concentration, the growth
rate will increase as more nutrient is added and, in this circumstance, the
concentration of the nutrient could be considered to be limiting. When nutrient
concentration is high, the micro-organisms will see no improvement in the growth
rate when more nutrient is added as the growth has become “saturated”.
Chapter 6 of this thesis focuses on understanding multiple nutrient stress. Most
nutrient stress experiments in the lab test the effects of deficiency of one nutrient
[122-124]. However, increasingly abundant evidence from bottle incubations and
in situ gene/protein expression studies show that, often, more than one nutrient
can influence the microbial growth in the environment [IT1], TT4HIT6l 125]. The
term “nutrient co-limitation” is typically used to describe conditions where two
or more nutrients are required to stimulate the growth of the micro-organisms or
where the addition of two or more nutrients results in greater increase in growth
rate/yield than the addition of any one nutrient alone [IT8], [126].

Two differing philosophies exist regarding how micro-organisms are expected to
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respond to limitation of multiple elements. The first suggests that the effect
on growth rate would be multiplicative such that both elements will influence
the overall growth rate [121]. Alternatively, the co-limited growth rate could be
determined by the growth rate of the most limiting of the nutrients. This is
known as “Liebig’s Law of the Minimum” [127]. Significant debate exists in the
literature around which of these approaches is more realistic [126].

Very few studies have investigated the physiological response to multiple nutrient
stress but, in the few studies conducted, differences between single and multiple
limitation have been observed. For example, in Pseudomonas putida, PHA
accumulation differs under carbon, nitrogen and dual carbon-nitrogen stress
[128]. Experiments investigating the physiological response of micro-organisms
to limitation by multiple nutrients could indicate whether one nutrient had
a more dominant effect on the cell. This would help establish whether the
response to multiple nutrient limitation is influenced by both elements or follows
Liebig’s Law of the Minimum. In addition to providing insights into nutrient
controls on microbial population dynamics, investigation of physiological changes
during multiple nutrient limitation can take us a step closer to understanding
the capabilities micro-organisms require to cope with complex stresses in the

environment.

Toxicity Caused by Elemental Leaching

Although the rock environment can supply nutrients, the leaching of elements may
be excessive and cause toxicity to the microbial community. For example, most
rocks contain trace amounts of metals which can be toxic in high concentrations
[I17]. In leaching bio-essential elements, non-essential elements may also be
leached and cause stress. For example, mobilisation of arsenic from igneous
rocks is extremely common, particularly in Asia, and causes severe human
suffering as well as stress to microbial communities [129]. Indeed, it has been

suggested that multiple metal stress resistance mechanisms, typically found in

22



2.5. MICROBIAL RESPONSE TO STRESS

microbial colonisers of anthropogenic metal contaminated sites, originally evolved
to respond to metal leaching from rocks in volcanic environments [117].

Water-rock interactions also often lead to particularly alkaline or acidic envi-
ronments. For example, where sulfide minerals are exposed to the surface by
mining, solutions containing sulfuric-acid and dissolved toxic metals. Indeed,
formation of these solutions is primarily driven by sulfide-oxidizing bacteria such
as Thiobacillus [12]. This is known as acid mine drainage and contains diverse
microbial communities adapted to these extreme conditions [12]. Experiments
presented in Chapter 5 explore the response of micro-organisms to chemical

changes induced by water-rock interactions.

2.5 Microbial Response to Stress

I have outlined the numerous types of stress which micro-organisms have to
be able to cope with in the environment. In order to understand how micro-
organisms cope with the different types of stress studied in this thesis, a general
overview of microbial stress responses is required. This section will only broadly
discuss stress responses in bacteria. Bacteria possess a wide variety of responses
to stresses they may encounter in their environment which is the subject of a
correspondingly enormous body of literature [20] 59], 122-124] [130].

Micro-organisms possess two broad stress adaptation approaches: a specific
or general response. Specific responses encompass a very specific regulation
component which regulates expression of specific genes associated with the
original stress, with the aim of repairing the damage or regaining homeostasis
within the cell. However bacteria also have a number of broad stress responses
which are more focussed on prevention of stress than avoidance of it [131 132].
The global regulators triggered by these broad stress responses are responsible for
general restructuring of cellular processes such that the cells are generally more

resistant to stress.
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This section attempts to give a broad overview of different approaches adopted by
bacteria to respond to environmental stress. Each individual specific or general
stress response has a very large associated body of literature and there will be no
attempt to cover that here. Even in their very specific review of the general stress
response in F.coli, Battesti et al [I31] emphasise their need to be selective on the
literature even when just discussing one type of response in one organism. The
aim of this section is only to familiarise the reader with typical broad strategies

employed to deal with environmental stresses.

2.5.1 How do Bacteria Sense and Respond to the

Environment?

Protein Synthesis

Micro-organisms only have a limited ability to alter their environment. Therefore,
when they find themselves exposed to a stressor (such as UV stress, nutrient
deficiency or toxicity) they must be able to alter the cell in order to cope. Central
to this ability is the synthesis of proteins. Proteins are macromolecular structures
formed of long chains of amino acids which carry out cellular processes. Thus,
when a stress is encountered, the micro-organism will alter the abundance of
proteins designed to deal with that stress.

The instructions for making proteins are encoded on DNA. When a protein is
required, the code for the protein is transcribed from DNA to RNA. First, the
RNA polymerase protein binds to the promoter region of the DNA, the part that
initiates transcription of a specific gene. The RNA polymerase separates the two
DNA strands and matches RNA nucleotides to the DNA nucleotides of one DNA
strand. The RNA nucleotides are linked by a sugar-phosphate back bone to form
an RNA strand. The RNA strand then breaks away from the DNA strand and
is known as messenger RNA (mRNA).
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This mRNA strand can then be “translated” into protein. Every three nucleotides
in the RNA code for one amino acid and, together, are called a “codon”. During
translation, the ribosome (a complex of proteins and RNA which synthesises
proteins) assembles around the mRNA. Transfer RNA (tRNA) attaches to the
corresponding mRNA, bringing the amino acid coded by the 3 bases with it. The
ribosome then moves on to the next codon, joining the amino acids together as
it goes. When the ribosome reaches the codon which indicates the end of the
protein, it releases the amino acid chain. This chain is then folded to form an

active protein.

Regulation of Gene Expression

Some genes are continually transcribed into proteins in relatively constant
amounts. Typically these are genes for proteins required for maintenance of the
cell. However, some genes are expressed (turned into protein) only when they are
required, and are typically induced in response to environmental signals.

As discussed above, protein synthesis proceeds in 3 stages: transcription (DNA
to mRNA), translation (mRNA to protein) and post—translational modification
(folding of protein etc). When micro-organisms sense a stress, they can enhance
or inhibit the synthesis of proteins at any of these stages [4]. Alternatively, micro-
organisms may selectively degrade proteins which are no longer required.

Regulation at the transcriptional level controls the rate of conversion of DNA
to RNA. A number of mechanisms exist to increase or decrease transcription
rate and they primarily involve factors which inhibit or assist the binding of the
RNA polymerase [4]. Post-transcriptional regulation controls gene expression at
the RNA level, typically by promotion or inhibition of mRNA degradation or by
controlling the abundance of protein translated from mRNA [I33]. After protein
synthesis has occurred, proteins can be selectively degraded when they are not

needed [133].
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Types of Proteins

A huge variety of proteins exist with an equally diverse array of functions. The
database used in Chapter 6 groups proteins into “product types”. Despite some
overlap in definition, this provides a good framework for describing the variety of
functions proteins carry out.

This database primarily classifies proteins as: enzymes, carriers, transporters,
receptors, factors, regulators, structures, membrane components, lipoproteins
or cell process proteins. Enzymes are the most abundant type of proteins
and are responsible for catalysing biochemical reactions in the cell. Carrier
proteins facilitate the movement of ions, small molecules or macromolecules.
Transporters facilitate transport of molecules in and out of the cell. Receptors are
proteins which bind substances for transport across the cell membrane. Factors,
or transcription factors, are proteins which bind to DNA sequences to control
the rate of transcription whereas the regulator class includes proteins which
control gene expression at other stages or via different mechanisms. Lipoproteins
are complexes consisting of lipids and proteins, typically associated with the
membrane. Membrane components include proteins integral to the membrane,
most of which are electron transport chain proteins or transmembrane proteins.
Structural proteins are those which form macromolecular structures in the cell
such as ribosomes or flagella. Cellular process proteins are those essential for key
processes such as replication and chemotaxis.

Different types of proteins come together to adapt to environmental conditions.
Some adaptations are very well characterised. An overview of typical stress

responses is provided in the following sections.
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2.5.2 The General Stress Response

The General Stress Response, best studied in FE.coli, is a global response which
induces broad changes in metabolism and gene expression that protect the cells
from a variety of different stresses, such as the transition from exponential to
stationary phase, induction of starvation, high/low pH, temperature stress or
DNA damage [131].

The general response is triggered by accumulation of sigma factor RpoS. A sigma
factor (o-factor) is a protein required only for the initation of RNA transcription
which typically regulates a large number of genes. The sigma factor used to
initiate transcription of specific genes will depend on the gene and the external
trigger. Every bacteria will have a house-keeping sigma factor which will ensure
transcription of genes needed for normal growth. Other sigma factors will
be increased or decreased dependent on the genes required. The number of
sigma factors varies between organisms. For example, F. coli has seven whereas
Cupriavidus metallidurans has 18.

The collection of genes regulated by sigma factor RpoS is termed the RpoS
“regulon”. The RpoS regulon contains genes responsible for numerous stress
adaptations. For example, induction of RpoS induces genes for oxidative stress
and desiccation tolerance [I31]. The RpoS-mediated general response also affects
cell morphology and the cell envelope, resulting in a transition to small, ovoid

cells in E. coli [134].

2.5.3 The Stringent Response

The stringent response is adopted by bacteria to quickly reorganise translational
machinery in response to nutrient stress. The trademark of this response is the
production of the molecules ppGpp (guanosine 5’-diphosphate 3’-diphosphate)
and pppGpp (guanosine 5’-triphosphate 3’diphosphate), together known as
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(p)ppGpp [132, 135]. (p)ppGpp is a secondary messenger, triggered by the
original stress cue.

Typically, induction of the stringent response results in down-regulation of
translational machinery such as ribosomes and factors promoting growth and
division, as well as up-regulation of stress response genes. Both the stringent
response and general response can occur simultaneously. This is because RpoS
(the general stress sigma factor) induces production of (p)ppGpp (the stringent

response regulator).

2.5.4 Specific Stress Responses

Instead of, or in addition to, the broad adaptive responses, micro-organisms
may employ responses with the specific aim of countering the specific stress
experienced. For example, in response to low temperatures, bacteria employ
a variety of mechanisms to replace saturated fatty acids (no double bonds)
with unsaturated fatty acids (at least one double bond) in the membrane.
Phospholipids with unsaturated fatty acids have lower melting points and greater
flexibility than those with saturated fatty acids, thus countering the temperature
effects on membrane fluidity.

Another example of a stress with a specific response is oxidative stress. This stress
is the result of an imbalance in the pro-oxidants and anti-oxidants in the cell due
to high concentrations of reactive oxygen species such as superoxide anions (O ),
hydrogen peroxide (H2O3) or hydroxyl radicals (HO), or low concentrations of
antioxidant molecules or enzymes such as glutathione. Typically this occurs as
a by-product of respiration or during exposure to UV radiation. The oxidative
stress response induces expression of numerous genes for direct detoxification,
production of antioxidants such as glutathione and repair of cellular structures
like DNA.

Specific responses exist for a huge variety of environmental stressors, each with
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its own background body of work. These include responses to acid stress [136],
osmotic stress [137], DNA damage [138] and temperature stress [139, 140]. The
response becomes even more specific in the case of metal toxicity or nutrient
deprivation where the response is unique to the element of interest. For example,
deprivation of iron induces a separate and unique response to phosphorus
deprivation [59, 141], and response to metal toxicity will be unique to each element

[142].

2.6 Multiple Simultaneous Stresses

As demonstrated in the previous section, significant understanding of the response
mechanisms to a large variety of stresses has already been gained. However,
there are very few studies which investigate the collective impact of multiple
simultaneous stresses on micro-organisms. This is extremely important as most
environments on Earth (including but not exclusive to “extreme” environments)
are characterised by numerous co-existing stressors. Indeed, “polyextremophiles”,
micro-organisms which tolerate multiple extreme conditions, are common [143].
For example, desert environments will expose microbial communities to desic-
cation, UV radiation exposure and extreme temperatures (either hot or cold).
Even in the soil environment, micro-organisms are exposed to nutrient stress
(potentially of more than one nutrient). Indeed, the most unrealistic situation is

the study of rich, rapidly growing cultures in the laboratory.

2.6.1 Multiple Physical and Chemical Stresses

The small number of studies which have investigated microbial growth and
survival under multiple stressors have found that combinations of extremes can
have surprising effects. For example, iron limitation and micro-aerobic conditions

lead to reduced sensitivity to high temperatures in Halomonas hydrothermalis
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[144]. Shewanella gelidimarina has a higher tolerance to elevated temperature
when cultivated under high salinity due to increased membrane lipid packing and
fatty acid content which aids in resistance to both stresses [145]. Natranaerobius
thermophilus uses alternative pH regulation strategies (antiporters or solute
accumulation) to tolerate alkalinity under different temperature and pressure
regimes [146].

Part of the reason for increased tolerance to one stressor during exposure to
another, is likely the cross-resistance conferred by numerous stress responses.
For example, heat shock proteins induced under temperature stress also confer
resistance to desiccation [147].

Experiments conducted in Chapters 4, 5 and 6 of this thesis expose the model
strains to multiple physical and chemical stresses simultaneously. In Chapter 4,
the model cyanobacterium is exposed to intense UV radiation exposure, extreme
temperature fluctuations and prolonged desiccation. In Chapter 5, the model
bacterium is cultured in the presence of rock which leaches out numerous cations,
alters the pH and sequesters essential nutrients. In Chapter 6, the bacterium is

exposed to limitation of multiple essential nutrients.

2.7 Use of Proteomics for Understanding

Microbial Stress Responses

As discussed, the primary way micro-organisms respond to a stress is by increasing
or decreasing production of proteins related to that stress. For example, when an
organism senses high extracellular concentrations of toxic metals, it can produce
more proteins which pump toxic metals out of the cell [I48]. Therefore, directly
comparing protein abundances under different conditions can provide clues as to
how micro-organisms respond to different stresses.

The problem is that micro-organisms typically express thousands of proteins
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simultaneously.  Until recently, the technology did not exist to investigate
expression of such a large number of proteins. This led to a reliance on gene
expression studies using techniques such a DNA micro-arrays rather than protein
expression. These have benefits as they use a specially designed micro-array
chip which will bind messenger RNA from every gene in the genome. However,
RNA is only the instructions for a process whereas proteins are the molecules
which carry out the process. Because a significant proportion of regulation occurs
post-transcriptionally, looking only at RNA abundance does not give an accurate
picture of the processes actually occurring in the cell. Indeed, it has been observed
that gene expression and protein expression results are poorly correlated when
analysed from the same treatment [149].

The past decade has seen advances in ‘omics’ technologies which have revolu-
tionised the study of microbiology. Advances in genomics have enabled the
sequencing of an ever growing list of microbial genomes and revealed great
microbial diversity in the environment. Metagenomics is now expanding on that
by potentially sequencing all genes in an environment, allowing reconstruction
of microbial metabolisms and lifestyles in different habitats. Transcriptomics
enables researchers to identify which of the genes present in the genome are
triggered under different circumstances. Advances in mass spectrometry and
bioinformatics have now revolutionised the study of protein expression. It is now
possible to accurately identify and quantify more than one thousand proteins
from a complex sample with very minimal sample preparation. The large scale
analysis of the protein complement of the cell is known as proteomics.

The use of large-scale protein expression studies has yielded fresh insights into
a wide variety of stresses such as salt stress [150], osmotic stress [151], oxidative

stress [I52] and metal resistance [I53], to name just a few.

31



2.8. THESIS FOCUS

2.8 Thesis Focus

This chapter has outlined the ways in which micro-organisms interact with,
influence and are influenced by the materials which make up planet Earth,
specifically with regards to strategies of stress and stress avoidance in the
environment. In the remainder of this thesis, three studies are presented which

investigate different aspects of stress in the rock environment:

1) UV exposure

The first study attempts to understand the importance of rocks as a UV-
shielded habitat for primitive cyanobacteria on the early Earth. The UV
radiation flux to the surface of the Earth was higher and more damaging
before the atmosphere became oxygenated around 2.4 billion years ago. It
has been suggested this would have inhibited phototrophs, which require
light energy to survive, from colonising the Earth’s land masses prior to
this time. However, shelter within cracks and pore space in rocks with
some light transmissivity have been hypothesised as a solution to this
problem. To empirically test whether these rocks could provide adequate
protection for early phototrophs, facilities on board the International Space
Station were used to expose cyanoacterial endoliths to extremely high
UV fluxes. Through post-flight analysis of viability, morphology and
biomarker preservation, this thesis provides the first empirical refutation
of the proposal that colonisation of the land by phototrophs was delayed
by the high UV flux on the early Earth.

2) Rock-induced changes in chemistry
Secondly, this thesis attempts to understand how the addition of rock to
cultures of micro-organisms in defined growth media alters fluid chemistry
and thus molecular processes within a model bacterial strain. This chapter

demonstrates that the addition of rock is both stressful and beneficial for
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the microbial population. The rock is useful as it provides nutrients such
as iron and magnesium which improves growth rate and yield in nutrient
deficient cultures. However, the addition of rock to optimal media (i.e.
all nutrients adequately supplied) results in reduced growth rate and yield
compared to the optimal media with no rock added. Detailed chemical
analysis of the effects of rock on fluid chemistry reveal that this is caused
by adsorption of phosphorus on to the rock surface and by increases in pH.
Analysis of the proteome, the protein complement of the cells, revealed that
exposure to rock required micro-organisms to actively scavenge phosphorus

and reorganise energy metabolism due to rock-induced nutrient limitation.

3) Nutrient deficiency
Finally, having observed the importance of phosphorus limitation in
rock environments, this thesis investigates the molecular response of a
model bacterium to deficiency of one or more nutrients. The proteome
response to different severities of phosphorus, iron and magnesium stress
is catalogued before comparing simultaneous deficiency of two of these
elements simultaneously i.e. magnesium and phosphorus limitation, iron
and magnesium limitation or phosphorus and iron limitation. In comparing
protein expression under single and multiple nutrient limitation, this
thesis demonstrates that the response is dominated by just one nutrient.
This has important implications for the representation of micro-organisms
in environmental models and provides a mnovel insight into microbial

capabilities under multiple nutrient stress.

The approach adopted in this thesis differs from that commonly employed in
studies of microbial stress by attempting to incorporate some of the complexity
of the natural environment into controlled studies. In Chapter 5, for example,
the response of micro-organisms to rock-induced stress is assessed by exposing
a model bacterium to liquid containing a typical rock with all of its inherent

complexity. This exposes the model organism to changes in numerous different
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elements, both increases and decreases, simultaneously. However, the controlled
laboratory setting and use of a single bacterial species enables detailed analysis
of the experiment from different analytical perspectives and allow us to unravel
the relationship between chemistry and cellular response.

This approach is also adopted in the space experiments in Chapter 4, where
exposure to UV radiation occurs in tandem with other space exposure effects
such as temperature fluctuations and desiccation, and in Chapter 6, where typical
controlled nutrient experiments are expanded to include multiple simultaneously
limiting nutrients.

This thesis represents a significant advancement in our understanding of the

microbial capabilities required to cope with stress in microbial rock habitats.
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Chapter 3

Methodology

3.1 Introduction

This chapter describes the principles of some of the key experimental and
analytical techniques adopted in this thesis. As the exact protocols used differ
in each of the following chapters, specific details of each experiment or analysis
is included within the methodology section of the relevant chapter. This chapter
instead aims to provide an overview of the principles behind the techniques used

and walk the reader through the typical workflow.

3.2 Bacteria and Culture Media

3.2.1 Bacterial Strains

The cyanobacterium Chroococcidiopsis CCMEE 029 was used for the experiments
discussed in Chapter 4. This was obtained by Prof. Charles Cockell from the

Culture Collection of Micro-organisms in Extreme Environments established by

35



3.2. BACTERIA AND CULTURE MEDIA

E. Imre Friedmann and now maintained at the University of Rome Tor Vergata.
The beta-proteobacterium Cupriavidus metallidurans CH34 (wild-type) was used
for the experiments discussed in Chapter 5 and Chapter 6. This was obtained
from Liebniz Institute DSMZ - German Culture Collection of Micro-organisms

and Cell Cultures.

3.2.2 Culture Media

Cupriavidus metallidurans CH34 was grown in Tris Salts Minimal Mineral
Medium (MM284) [154]. The composition of this medium is shown in Table
[B.1] The composition of the SL 7 Trace element solution included in this medium
[155] is shown in Table 3.2l The medium was adjusted to pH 7 and autoclaved
at 121°C for 20 minutes prior to use. If iron (III) chloride was used as the iron
source, this was filter sterilised and added after autoclaving. Modified MM284
medium was used to test various nutrient-limitation effects in Chapters 5 and
6 and is discussed in the relevant chapters. For MM284 solid medium, 1.5%
Bacteriological Agar (Sigma-Aldrich, UK) was added to the liquid medium prior

to autoclaving.

Chroococcidiopsis is cultured in BG-11 medium. The composition of this medium
is displayed in Table This was corrected to pH 7.1 and autoclaved at 121°C

for 20 minutes prior to use.
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Table 3.1 Composition of MM284 medium for growth of Cupriavidus
metallidurans CH34

Component Amount in 1L media
Trizma hydrochloride 6.6 g
Sodium chloride 4.68 g
Potassium chloride 149 g
Ammonium chloride 1.07 g
Sodium sulfate 0.43 g
Magnesium chloride hexahydrate 02¢g
Calcium(II) chloride dihydrate 0.03 g
Sodium phosphate dibasic dihydrate 0.04 g
SL 7 Trace element solution™® 1 ml
Sodium gluconate 2g
Ferric ammonium citrate 4.8 mg
OR

Iron(III) chloride 2.52 mg

* Composition of SL7 Trace element solution is shown in Table

Table 3.2 Composition of SL7 trace element solution

Component Amount in 1L stock
36% Hydrochloric acid 1.3 ml
Zinc sulfate heptahydrate 144 mg
Manganese(II) chloride tetrahydrate 100 mg
Boric acid 62 mg
Cobalt(II) chloride hexahydrate 190 mg
Copper(IT) chloride dihydrate 17 mg
Nickel(II) chloride hexahydrate 24 mg
Sodium molybdate 36 mg

Table 3.3 Composition of BG-11 growth medium

Component Amount in 1L
NaNOj 15¢g
K2HPO4 0.4 g
MgSO4.7H20 0.75 g
CaCIQ. QHQO 0.36 g
Citric Acid 0.06 g
Ammonnium Iron (IIT) Citrate 0.06 g
EDTA 001g
NaQCO;g 0.2 g
H3B03 2.86 mg
MnCl.4H50O 1.81 mg
ZHSO4.7H20 0.222 mg
NagMOO4.2H20 0.039 mg
CuS04.5H,0 0.079 mg
Co(NO3).6H20 0.0496 mg
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3.2.3 Long Term Storage of Bacteria

C. metallidurans cells were frozen at -80°C in 20% glycerol for long-term storage.
To prepare these: 10 ml of a stationary phase culture was centrifuged at 13,000
g for 5 minutes. The supernatant was discarded and 10 ml fresh MM284
medium added. Eight hundred microlitres of washed cells were vortexed with
800 microlitres 20% glycerol solution in sterile cryotubes. Before use, an
inoculating loop was flame-sterilised and inserted into the cryotube. This was
then transferred, without sterilisation, to fresh sterile medium. This was cultured
at 30°C, shaken at 90rpm for 3 days until stationary phase. This was further
transferred to fresh medium to a concentration of approximately 0.01% v/v
cells (as determined from comparison to a previously prepared standard curve
of optical density vs colony forming units) and grown to stationary phase as
before. When this culture had reached stationary phase it was ready to be used
in an experiment. At each transfer stage, cells from the culture were streaked

onto MM284 agar to visually check for contamination.

3.3 Raman Spectroscopy

Raman spectroscopy is used in Chapter 4 to detect biosignatures on impact
shocked rocks. This technique is based on the principle that if a molecule is
illuminated with a monochromatic light source, most of the light will be scattered
without a change in wavelength (an effect known as Rayleigh Scattering) but a
small fraction of the photons will exchange energy with the molecular vibrations
in the sample and the scattered light will have a slightly shifted wavelength
(Raman scattering) [I56]. The resultant “Raman shift” will depend on the mass
of the atoms, the strength of the bonds and a molecule’s interaction with nearby
atoms. This will give a characteristic spectra of Raman peaks which identify the

molecular composition of the material.
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A resonance effect is exploited in Chapter 4. In Resonance Raman Spectroscopy,
scattering occurs as in non-Resonance Raman but the frequency of the incident
radiation is selected to be near a frequency of an electronic transition in a
molecule. This excites the molecule into a higher energy state and the subsequent
scattered light will be amplified [156].

The suitability of Raman spectroscopy for the applications in this thesis is
discussed in the relevant chapter. More detail on the use of Raman spectroscopy

for the study of biomolecules can be found in Niaura (2006) [156].

3.4 Principles of ICP-OES

Changes in cation concentrations in solution during rock leaching are measured in
Chapter 5 by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-
OES). This is a common method for simultaneous measurement of many metals
in complex solutions [I57]. During ICP-OES analysis, the sample (always in
solution) is injected into an argon plasma. As the sample mist reaches the plasma
it is rapidly dried, vaporized and atomized. The atoms then become excited and
ionized. When this occurs, radiation is emitted from the excited atoms. This
emitted radiation is sampled for spectrometric measurements using a complex
array of mirrors and lenses, in either a radial mode (sampled side on to the
plasma, normal working orientation) or in axial mode (end on to the plasma,
good for low detection limits).

The wavelength of the emitted radiation is unique to the element which was
initially excited and thus acts as a fingerprint for that element. The intensity of
the signal is proportional to the abundance of the element. Solutions containing
known concentrations of each element of interest are run alongside the test
samples to produce a calibration curve against which experimental samples can
be measured. Further detail on ICP-OES analysis can be found in Hou and Jones

(2000) [158].
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3.5 Shotgun Proteomics

3.5.1 What is Proteomics?

Proteomics is the large-scale analysis of the entire protein complement of a
cell and is used extensively in Chapters 5 and 6 of this thesis. Proteomics
provides a snapshot of the processes occurring inside a cell and is extremely
useful in identifying microbial responses to environmental changes. There are
many variations on the proteomics workflow and significant discussion in the
literature about the pros and cons of each approach [159, [160]. This is beyond
the scope of this thesis. Here I will only discuss the mass-spectrometry based
shotgun proteomics approach adopted in this thesis and the specific data analysis
conducted here. Shotgun proteomics involves the analysis of large numbers of
proteins, usually using mass spectrometry. The methodology used here is closely
based on methods developed by Le Bihan et al (2010) [I61] at the Centre for
Synthetic and Systems Biology where the proteomics work for this thesis was

conducted.

3.5.2 Collection of Proteome Data

Protein Extraction and Digestion
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Step 1) Proteins broken down into peptides with a trypsin protease digest
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Step 2) Peptide mixture separated by HPLC

separation by HPLC
— > eexeme.
Ll

time/hydrophabicity

Step 3) Measurement of m/z ratio of whole peptides
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Step 4) Isolation of abundant peptide, further fragmentation and measurement of m/z ratio of fragments

Figure 3.1  Schematic of the workflow for proteomics data collection. 1)

Proteins are long chains of amino acids. They are first broken
down into peptides by trypsin (a protease enzyme) which cuts
at the C-terminal side of lysine and arginine residues. 2) The
peptide mixture is then separated based on hydrophobicity by Liquid
Chromatography. 3) The first mass spectrometry step measures the
m/z ratio of the whole peptides (precursor ions). 4) Abundant ions
are isolated for the second mass spectrometry step where the peptide
is further fragmented. The m/z ratios of these fragment ions are
measured and provide a fingerprint which can be used for peptide
identification. Adapted from T. Le Bihan [3]
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A schematic of the proteomics workflow is shown in Figure 3.1l First, proteins
are released from the cells by addition of 8M urea, vortexing and sonication. The
addition of urea also acts to unfold the proteins, making them easier to break
down during the protease digest. A trypsin digest was employed to break proteins
down to smaller, more easily analysed, peptides. Trypsin is an proteolytic enzyme

which will cut (cleave) a peptide bond at the C-terminal side of lysine and arginine

residues [162] (Figure [3.2).

N terminal C terminal
H R Ho 9 HR T @
H. _C. Oo_ * H. . C. N_ C___H
N C H H"N“C’C‘o’H — N C- C 0
[ I s condensation | I /N
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Figure 3.2 Reaction of two amino acids to form a peptide. Occurs via a
condensation reaction where HyO is removed and the amino acids
are joined by a peptide bond (in red). The side of the peptide
containing the amine group (-NHz) is known as the N terminal end
and the side with the carboxyl group (-COOH) as the C-terminal
end [4]. Trypsin cuts proteins at the C-terminal end of lysine and
arginine residues.

Trypsin is the most popular choice in mass-spectrometry based proteomics studies
because it is highly specific, stable under a variety of conditions and results
in peptides in the mass range most favourable for mass spectrometry [163].
Additionally, trypsin cuts the protein in such a way that each peptide is likely
to have at least two charged ions. This allows the peptide to be distinguished
from interfering substances (which typically have one charge) and allows the mass
spectrometer to measure m/z ratios of ions fragmented from different ends of the

peptide.
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Peptide Clean Up

For mass spectrometry it is important that interfering substances such as salts
or DNA are removed. In Chapter 5, peptides were cleaned with Millipore
C18 Zip Tips (Sigma Aldrich, UK). Zip Tips are 10 pul pipette tips embedded
with chromatography resin. In this process the sample is passed through the
chromatography resin to which the peptides bind. The peptides on the column
are rinsed and then eluted into fresh buffer (75% Acetonitrile/0.1% Trifluoroacetic
acid), separating the peptides from the interfering substances remaining in the
digest. A similar clean-up protocol is scaled up in Chapter 6 using Bond Elut C18
columns (Agilent, UK). These contain similar chromatography resin to the Zip

Tips but allow the entire digest to be purified instead of just a 10 ug sub-sample.

Reverse Phase Liquid Chromatography

Liquid Chromatography is used to separate peptides based on their hydrophobic-
ity prior to injection into the mass spectrometer. The purified peptide sample is
passed through a thin fused silica tube containing chromatography resin on the
way to the mass spectrometer. In the Reverse Phase Liquid Chromatography
used in this analytical set up, hydrophobic molecules (ones that do not dissolve
readily in water) are bound more tightly to the column and hydrophilic molecules
(which dissolve readily in water) are bound less tightly. Over the course of the
mass spectrometry run, increasing concentrations of organic solvent will be passed
through the column, eluting ever more hydrophobic peptides. For this reason
hydrophilic peptides are eluted from the column first and are referred to as having
a short retention time. The more hydrophobic the molecule, the longer it will be
retained on the column, the more organic solvent will be required for elution and
thus the longer the retention time.

This additional step prior to mass spectrometry improves the quality of the mass

spectrometry data which can be compromised if too many different species are
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introduced at once.

Mass Spectrometry

Mass spectrometry, the next step in the proteomics workflow, is a commonly
used technique to determine the intensity of ions with a certain “mass—to—charge”
(m/z) ratio. The mass-to—charge ratio is the molecular or atomic mass number
of the ion (m), divided by the charge of the ion (z). Many types of mass
spectrometers exist for the analysis of a huge diversity of sample types. They are
typically comprised of 3 parts: an ionizer which converts the atoms or molecules
to ions, a mass analyser which separates the ions depending on their mass to
charge (m/z) ratio and a detector which measures the abundance of the separate
ions based on the intensity of some signal [163].

The approach adopted in this thesis uses Electrospray lonization (ESI) coupled to
an Orbitrap Mass Analyzer [164]. Electrospray lonization uses electrical energy
to transfer ions from solution to gaseous phase before they are injected into the
Orbitrap [165]. The general principle of the Orbitrap analyser is that the injected
ions orbit around, and oscillate along, a central electrode such that the frequency
of the oscillations depends on the m/z ratio of the ions [164], [166]. The current
generated by the oscillations is used to determine the abundance of ions with that

m/z ratio.

Tandem Mass Spectrometry

Although the type of mass spectrometry above is useful in determining the
abundance of ions with specific m/z ratios, it can be difficult to identify the
specific peptide based on this information. Tandem Mass Spectrometry (MS/MS)
can be used to solve this problem. This involves an additional step where the
m/z ratio of the whole ion is measured as above (the precursor scan) before

it is further fragmented and scanned again to determine the m/z ratio of the
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fragmented ions (the fragmentation scan) [167]. This second fragmentation scan

allows much more reliable peptide identification.

3.5.3 Data Analysis

Pre-processing

Mass spectrometry data must be pre-processed using various steps before
interpretation can begin. All of the pre-processing in the following studies is
conducted using Progenesis LC-MS software (version 4.0, Nonlinear Dynamics,
UK). An overview of the pre-processing steps are shown in Figure . The first
step in this pre-processing workflow is peak alignment. As the mass spectrometry
runs progress, there may be some drift in the retention time. This means that the
same feature could be present at a slightly different point on the chromatogram of
separate samples. As the ultimate goal is to compare the abundance of individual
features between samples, the mass spectrum for each sample is aligned to a
reference sample (preferably one with abundant features which was run close to
the middle of the analysis time). Each of the runs are then normalised to one
another to correct for any discrepancies in the amount of protein injected. This
process assumes that most features will not differ in abundance such that the
average abundance of protein should be the same. In Progenesis normalisation,
the average of all of the intensities for each spectrum is calculated and the
spectrum shifted up or down such that average intensity is the same for all

samples.
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alignment normalisation

—> —>

Intensity —

Retention time Retention time Retention time

Figure 3.3 Examples of the alignment and normalisation pre-processing steps
in Progenesis LC-MS. During alignment, matching features in each
sample run are aligned to correct for drifts in retention time during
analysis. During normalisation the baseline of the spectra are shifted
up or down such that all spectra have the same average intensity.
The final plot shows two spectra which match in most features.
However, the green spectrum has one feature not detected in the
red spectrum.

These steps are conducted using the built in algorithms of Progenesis LC-MS.
There are many options for which algorithms to use at each of these stages.
However, this thesis is focussed only on interpreting biological response so these
will not be discussed here. This section aims only to provide a broad overview
of each step in the proteomics workflow to assist in the understanding of the

following chapters.

Peptide Identification

The output from each mass spectrometry run is a huge number of mass spectra
and fragmentation spectra which, alone, are not very biologically interesting. In
order to use this data to interpret the effect of the treatments on cells, the peptides
must be identified and matched to their parent protein. There are a number of
ways to approach this problem [I68] but, in the studies used here, a database
searching approach is adopted. This is the most common approach for peptide

identification in large shotgun proteomics studies.

This method is summarised in Figure [3.4] and involves searching the experimental

fragment spectra against theoretical fragment spectra in a database. Protein
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Figure 3.4  Schematic of the identification process for experimental peptide
fragment spectra. Experimental fragment spectra are compared to
theoretical fragment spectra based on the “theoretical digest” of
proteins encoded by the genome. The search engine finds the best
match in the database.

databases are constructed from the genome sequence of an organism. For best
results, the original genome annotation should have identified the protein-coding
sequences in the genome. These can then be translated into protein sequences.
The database will then contain the amino acid sequence for all of the known
proteins encoded by the genome. In the work presented here, the MASCOT search
engine was used to match experimental MS/MS data (from the fragment ion scan)
to proteins predicted in the NCBI protein database subset [169] for Cupriavidus
metallidurans. This contains 6766 amino acid sequences for proteins encoded by
the C. metallidurans CH34 genome, the organism used in these studies.

In order to match sequences, the search algorithm theoretically digests each of
the proteins into its constituent peptides and uses this to predict a theoretical
fragment spectrum. The protease enzyme used in the digest will determine where
the proteins should break apart and this information must be provided during the
search. MASCOT matches each experimental spectrum to a theoretical spectrum

and awards the match a “score”. This proprietary algorithm takes into account
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a number of factors such as the quality of the fragment spectrum, the length of
the peptide and the size of the database. The higher the score the less probable
the result is a false positive. A global false discovery rate, i.e. the likelihood
that a significant match is a random event, was established by comparing the
MS/MS spectra to a decoy database of randomly generated sequences. For the
data presented here, a peptide with a MASCOT score of 20 has a false discovery
rate of approximately 0.1%.

Peptides to Proteins

After the peptides have been identified from their fragment spectra, these have
to be matched up to their parent protein. It is possible that the same peptide
sequence would come from different proteins. Therefore, peptide sequences are
identified which are unique to one protein. Adequate identification can be
assumed if a protein has been identified by two or more unique peptides and
meets the MASCOT score threshold [I60]. A confidence score on the protein
identification is obtained from the sum of the MASCOT scores on all of the
peptides used for protein quantification [160].

A spectral counting approach is used to quantify proteins [160]. This is based on
the idea that more abundant peptides are selected for fragmentation, therefore
more abundant peptides have a higher number of fragment spectra. This means
the number of fragments is proportional to protein abundance [I70]. To quantify
each protein, Progenesis LC-MS sums all of the unique peptide ion abundances

identified to be from that specific protein.

Comparing Between Experiments

In order to determine how protein expression varies in different experimental
treatments, the normalised abundance of the protein in one condition is compared

to the normalised abundance in another condition. Significance criteria is based
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on that used in LeBihan et al (2010) [I61]. In all of the experiments in this thesis,
changes in protein expression are reported relative to a control (cells grown in
optimal MM284 medium). If a protein has a higher normalised abundance in
the test condition than in the control it is referred to as “up-regulated”. If
the normalised abundance in the test condition is lower than in the control it
is referred to as “down-regulated”. The fold change in the protein abundance
is simply calculated by dividing the average normalised abundance in the test
condition by the average normalised abundance in the control and is therefore
the ratio of the experimental abundance to the control abundance. In Chapter
5, up or down-regulated fold changes are indicated by a + or — sign. In Chapter
6, where fold changes were manually calculated, an up-regulated protein shows a
fold change greater than 1 and a down-regulated protein shows a fold change less
than one. For example, if the fold change between the experimental treatment
and the control is 0.5, the abundance of protein in the experimental treatment is
half that in the control.

The significance of the differences in abundance is calculated by one way analysis
of variance (ANOVA) on arcsinh transformed protein intensities. In Chapter 5
this is done automatically in Progenesis LC-MS and in Chapter 6 it is calculated
manually in MS Excel. One-way ANOVA determines whether there is any
significant difference between the means of different groups. In this work, the
replicates in the experimental treatments are compared to the replicates from the
control. In this thesis, the difference between treatments is considered significant
if the P value is less than 0.05.

Four criteria must be satisfied for a protein to be considered significantly up or

down-regulated:

1. The protein must have been identified by two or more unique peptides.

2. The protein must have a MASCOT score of at least 20, however a score of

at least 40 is ideal.
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3. The difference between the experimental treatment and the control must

be 2 fold or greater.

4. The P value, calculated by one-way ANOVA, must be below 0.05

Comparison of Overall Similarity of Treatments

In Chapter 5 and Chapter 6, the similarity of the protein profiles in different
treatments is demonstrated using multivariate statistical analysis. The Bray-
Curtis dissimilarity index determines how similar the protein abundance profiles
are for each treatment. A score of 100 indicates that they are exactly the same.
A score of 0 indicates that they have no similarity. These results are visualised
on an nMDS plot which is a 2-dimensional representation of the n-dimensional
Bray-Curtis similarity matrix. The closer the points are on the nMDS (non-
metric multidimensional scaling) plot, the more similar they are.

Following non-metric multidimensional scaling ordination, post-hoc pairwise
comparisons were performed by 2-way nested permutational analysis of vari-
ance (PERMANOVA; [I71]). The 2-way nested PERMANOVA calculates the
significance of the treatment type accounting for the replicate samples in each

treatment.

Functional Annotation

Once identification and quantification has been conducted and differentially
regulated proteins highlighted, the biological function of proteins can then be
identified. Annotation of function, and hence identification of important cellular
responses, relies on previous annotation efforts from other authors. Protein
functions in this thesis were primarily assigned using expert manual annotation
of the C. metallidurans CH34 genome, available on the MaGe platform [172].

This database contains information on the protein name, description and protein
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functions.
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Chapter 4

Rocks as a UV Shielded Habitat on
Early Earth

4.1 Introduction

As described in Chapter 2, endolithic communities are buffered from external
stresses such as radiation, temperature fluctuations, wind and desiccation [76-
79]. Thus, they are most commonly associated with harsh environments in which
these factors limit growth on rock surfaces [S0HEG].

This ability to grow phototrophically in the subsurface whilst being shielded from
most of the incident UV radiation led to the suggestion that endolithic habitats
may have been useful on the early surface of the Earth when the UV radiation
was thought to be much higher (See Chapter 2) [II, 83], [84] 86, 109 110].
Although this strategy offers a plausible mechanism for phototrophs to exist on
the early land masses, the usefulness of this habitat as a refuge for early surface-
dwelling life has not been tested over long periods. In this chapter I outline
work which aims to empirically test whether photosynthetic organisms could have

survived on the land masses of the early Earth (before atmospheric oxidation
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around 2.4 billion years ago) by sheltering just millimetres below the surface in
rocks.

Samples were obtained from the European Space Agency’s EXPOSE-R mission.
EXPOSE-R is a facility mounted outside of the International Space Station which
was used to expose a variety of different biological and chemical samples to space
conditions. The EXPOSE-R mission was the first use of this facility.Samples were
exposed to space conditions for 833 days.

In the experiments discussed here, cyanobacteria were integrated into a known
endolithic substrate and exposed to a putative “worse than worst-case” early
Earth-like UV radiation flux. This chapter describes the post-flight analysis of
these samples and discusses their implications for the early colonisation of the land
masses by phototrophs. The work presented in this chapter was published in the
International Journal of Astrobiology as part of a Special Issue on EXPOSE-R

1.

4.2 Background

4.2.1 Low Earth Orbit as an Early Earth Analogue

Exposure of samples to the conditions outside the International Space Station
(ISS) presents a good analogue for studies of early earth-like UV radiation flux.
The ISS orbits the Earth at an altitude of around 450 km, in a region termed low
Earth orbit. Conditions here are characterised by low pressures (1076 to 107* Pa),
intense radiation bombardment from solar and galactic sources (including the full
spectrum of UV radiation) and extreme and variable temperatures [100]. Indeed,
the International Space Station itself is designed to withstand temperatures from
+120°C to —120°C [100].

Using the high UV radiation flux in low Earth orbit, it is possible to recreate

the early Earth UV radiation environment using various filters. This allows more
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natural exposure conditions than can be artificially created on Earth as even the
most sophisticated UV radiation lamps fail to exactly mimic the UV spectrum
emitted by the sun [40]. By taking the samples above the atmosphere we can
expose them to the full extraterrestrial spectrum and use cut-off filters to create

an analogue for the early Earth UV environment.

4.2.2 The EXPOSE-R Mission

Overview

A detailed description of the European Space Agency’s EXPOSE-R mission can
be found in Rabbow et al., (2014) [I73]. To summarise, EXPOSE-R is a box-
shaped core facility with dimensions 48cm x 39cm x 14cm (1 x w x h). The lower
part of the facility houses the electronics and the upper parts contain 3 sample
exposure trays. The top tray is exposed to all parameters of space including UV
radiation and the bottom two are exposed to all of the parameters except UV

exposure. A schematic of the EXPOSE-R facility is shown in Figure [4.1

Y Filter Frame

Exposed Cells (20x)

Upper Sample Carrier

Dark cells (20x)

Lower Sample Carrier

Figure 4.1  Features of the EXPOSE-R facility A) Facility is composed of
many cells which each contain 3 layers of trays B) Drawing of an
individual compartment showing a top UV exposed layer and a
lower dark layer. There is another dark layer below this (source:
smsc.cnes.fe/EXPOSE)

The top (UV exposed) tray has windows which allow definition of the amount
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and wavelength of radiation which can pass through to the samples.

Before the launch the compartments were filled with argon gas to a pressure of
102kPa. Some of the compartments were fitted with venting line valves to allow
evacuation to space vacuum during exposure and some remained sealed for the
duration.

Samples were integrated into the facility at the German Aerospace Centre (DLR),
Cologne on August 14th 2008. The entire, sealed exposure facility was then
transferred to Baikonur, Kazakhstan in a protective cover and launched on
November 26th 2008. The samples were placed outside of the ISS on March
10th 2009 and the experiment was active until January 21st 2011. The complete,
sealed EXPOSE facility was returned to Earth on March 9th 2011 and received
by DLR 3 days later. Samples were removed from the facility and kept at room
temperature during return to research teams in April 2011.

Nine hundred and fifty days passed between closure and re-opening of the sample
trays. Exposure to UV radiation occurred for 833 days making this the longest
exposure of biological samples outside of the International Space Station to date.

Images of EXPOSE-R during different stages of the mission are shown in Figure

4.2

Figure 4.2 The EXPOSE-R facility A) During sample integration B) Awaiting
launch C) Outside of the International Space Station (source:
NASA)
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ROSE-1 ENDO

The specific samples obtained for this chapter were one of six experiments
in the ROSE consortium (Response of Organisms to Space Environment) and
consisted of glass discs and discs of impact-shocked gneiss to which cells of the
polyextremophile phototroph Chroococcidiopsis sp. CCMEE 029 had been added.
A total of 36 0.5cm glass discs and 12 lem rock discs were tested. Half of the
glass discs were housed in containers which were vented to allow exposure to the
vacuum of space whilst half were in sealed containers filled with argon gas. These
experiments therefore investigate the effects of UV radiation alone, but do not
take into account any potential confounding effects of interactions between UV
radiation and atmospheric components that might have been present in the early
Earth atmosphere such as carbon dioxide. Twelve glass discs in each condition
were exposed to UV radiation whilst the rest were kept dark.

Of the 12 UV exposed glass discs, half were exposed to UV wavelengths greater
than 110nm whilst half were only exposed to wavelengths greater than 200nm.
The >110nm cut-off was achieved using MgFy; windows (MaTeck GmbH,
Germany; Wisag AG, Switzerland). The >200nm cut-off was achieved using
quartz glass windows.

Neutral density filters made from MgF, (MaTeck GmbH, Germany; Wisag AG,
Switzerland) or coated quartz (Moltech GmbH, Germany) were used to reduce
intensity of all wavelengths equally to 0.01 or 1% of the incident radiation whilst
some samples had no neutral density filter and thus were exposed to 100% of the
incident radiation of the prescribed wavelength.

Three glass discs in each container (sealed or vented) were exposed to 100% of the
UV wavelengths greater than 200 nm, two exposed to 1% of the UV wavelengths
greater than 200 nm and three exposed to 0.01% of the UV wavelengths greater
than 200 nm. These conditions were repeated for UV wavelengths greater than
110 nm to investigate the effects of very short wavelengths of UV radiation.

All of the samples on rock discs were housed in vented containers. Six rock
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discs were exposed to 100% of the UV radiation greater than 110 nm and the
remaining six kept dark. These rocks were exposed to 80 nm (110-190 nm) of
UVC radiation not expected to have been encountered on the early Earth and
therefore experienced a UV spectrum on their surface more severe than the worst-
case early Earth spectrum. Identically prepared control samples were kept dark

in the laboratory for the duration of the experiment.

Exposure Conditions

Various instruments were employed to monitor temperature, cosmic radiation
and UV radiation exposure throughout the experiment. A problem with the on
board computer system meant that approximately 42% of this data was lost. A
private company were contracted to model whole mission data based on the 58%
of data which was not lost [I73].

The details of exposure conditions are discussed in detail in Rabbow et al., (2014)
[T73] and are summarised below. These data are included here and not in the
Methods or Results sections of this chapter as the investigation of exposure
conditions was conducted by other EXPOSE-R teams and is not the focus of
this thesis.

Temperature sensors were installed below each tray and were designed to shut
down the electronics at temperatures > 52°C to avoid further heating. Heaters
were triggered at temperatures below -25°C to keep the electronics functioning.
Maximum temperature reached was +49.47°C and the minimum was -24.65°C.
A slow oscillation between high and low temperatures was observed due to the
position of the ISS relative to the Sun. This was overlain by a faster oscillation
with a period of approximately 90 minutes due to day/night cycles as the ISS
orbited the Earth.

The simulations calculated the temperature range in the trays to be between -27
to 46 °C (based on the average temperatures across multiple sensors at different

positions). Overall average temperature was +19°C. The simulated average tray
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temperature predicts that 285 freeze-thaw cycles were exprienced during the
experiment. This included 274 short duration cycles and 11 long-duration freeze

periods.

UV dose at each of the sample sites was modelled based on the available
data. These data included measured doses from the EXPOSE-R UV dosimeters,
ISS mission flight data of ISS position and attitude, positions of solar arrrays
and radiators and data about visiting space craft and their docking positions.
Calculated UV fluences for the samples relevant to this experiment are shown in
Table 4.1.

These values incorporate the influence from window contamination which oc-
curred in vented containers during the course of the experiment [I74] and blocked

some transmission in these compartments.
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4.2.3 Substrate Selection

The substrate used for the rock discs was taken from the Haughton Impact Crater
in the Canadian High Arctic located on Devon Island in Nunavut (75°22°N,
89°41’W). This formed during an asteroid impact around 23 million years ago
[T75]. The discs are composed of highly impact-shocked gneiss which formed
during the impact. The rocks used in this study were obtained from the private
collection of Professor Charles Cockell and are the same rocks discussed in Cockell
et al., (2002). This work compared the characteristics of low-shocked gneiss and
high-shocked gneiss which had experienced shock levels less than 10GPa and
greater than 20GPa respectively. This work suggested that the impact resulted
in geological changes which were ultimately beneficial for endolithic life.

The main differences were:

1. Low shocked gneiss is very dark, almost black, whereas high shocked gneiss

is grey or white.

2. Porosity was 25 times higher in shock levels >20 GPa than at shock levels
<10 GPa.

3. 22% of incident light passed through 0.5 mm of rocks shocked >20 GPa
compared to 0.2% in rocks shocked <10 GPa.

4. Presence of green bands of endolithic phototrophs was much more prevalent

in high shocked rocks compared to low shocked rocks.

Cockell et al., (2002) [83] ascribe the prevalence of endoliths in highly shocked
rocks to the creation of microhabitats in the new pore spaces and increased light
transmissivity which provides adequate light for photosynthesis.

These rocks were chosen for this study for 3 reasons.

1. The field observations of endolithic phototrophs in these rocks show that
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this habitat is at least good enough to support phototrophic growth in one
of the most extreme environments found on Earth today. Therefore, it could

be a good candidate for a UV-shielded habitat on the early Earth.

2. Impact cratering is likely to have been even more common on the early Earth
than it is today [I76]. Therefore, when life appeared, impact craters would
have been widespread. These could contain impact shocked rocks which are
more easily colonised than the crystalline lithologies which dominated the

carly land masses [43].

3. Impact craters are a universal phenomenon, therefore the use of these rocks
enables us to discuss the possibility that impact shocked rocks could provide

UV-shielded habitats on any rocky planet lacking an atmospheric UV shield.

4.2.4 Organism Selection

The use of the polyextremotolerant cyanobacterium Chroococcidiopsis sp. CCMEE
029 is particularly appropriate for this study. Chroococcidiopsis is one of the most
tolerant to extremes of all of the known cyanobacteria. It is very versatile with
strains having been described from a wide range of extreme habitats such as
hypersaline [I77] and freshwater [I78] environments and hot and cold deserts
[T79-181]. In the most extreme hot, cold, arid and saline habitats on Earth, it is
generally found to be the dominant cyanobacterium [182]. It is also very common
for Chroococcidiopsis to adopt an endolithic lifestyle [I79].

The long-term survival of Chroococcidiopsis aboard the ISS has been previously
demonstrated as part of the EXPOSE-E mission where cells of Chroococcidiopsis
sp. 029 were used to artificially augment a natural phototroph biofilm which was
exposed to space conditions [I83]. Viable cells were cultured after 534 days in
low Earth orbit, exposed to the full extraterrestrial UV radiation spectrum in a
set up similar to that used here [183].

The previous experiments differ from those reported here in that the exposure
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time was extended (22 months compared to 18 for EXPOSE-E) and pure
cultures of Chroococcidiopsis used in sample preparation instead of exposure of

Chroococcidiopsis as part of a biofilm.

4.3 Methods

4.3.1 Sample Preparation

Chroococcidiopsis sp. CCMEE 029 was obtained from the Culture Collection of
Microorganisms from Extreme Environments (CCMEE) established by E. Imre
Friedmann and now maintained at the University of Rome Tor Vergata. Cells
were cultured in BG-11 medium as described in Chapter 3.

An aliquot of cells (around 1.5x10° cells) were transferred evenly onto the surface
of 0.5 cm-diameter sterile glass discs or 1 cm-diameter discs of impact-shocked
gneiss (Figure. The impact-shocked gneiss was 5 mm thick, a thickness within
which visible light transmission in the majority of the substrate is sufficient to
support photosynthetic growth in natural communities that inhabit these rocks
[83].

A complete set of replica samples were prepared in tandem and stored in the
laboratory until the space-exposed samples were returned. These steps occurred

prior to the commencement of this PhD project.
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Figure 4.3 Examples of rock and glass discs used as substrates for the
experiment

4.3.2 Post-flight Culturing

On return, the rock discs were split into three using a flame-sterilised hammer and
chisel. One-third of each rock disc was placed in 100 ml of BG-11 medium with
triplicate cultures for each exposure condition: UV-exposed in low Earth orbit,
dark in low Earth orbit and a lab control (prepared at the same time as the
space samples and stored in the dark at room temperature until sample return).
Cultures were incubated at room temperature for 4 months.

Subsequent growth was confirmed using bright field microscopy. Cells were
unevenly distributed throughout the pore space and rock samples had to be
split to provide enough samples for analysis. Therefore, calculation of the exact
number of viable cells on each fragment of rock used for the inoculation was not
possible. A positive or negative result for growth is reported here. For the glass

discs, one disc for each exposure condition was added to fresh BG-11 medium.
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4.3.3 Raman Spectroscopy

To determine whether or not essential biomolecules had been damaged by
exposure to the UV exposure in low Earth orbit, Raman spectroscopy was used to
establish whether carotenoids had been destroyed in each sample. The principles

behind Raman Spectroscopy are outlined in Chapter 3.

Carotenoids as a Proxy for UV Destruction

Carotenoids, the target biomarkers of this study, are a group of ubiquitous
coloured pigments which are particularly common in photosynthetic organisms
like cyanobacteria and plants [I84]. These compounds have two main functions:
as light harvesting pigments in photosynthesis and for protection against photo-
oxidative stress.

One problem in using traditional Raman Spectroscopy to analyse complex
biological samples is that the signals are often noisy, difficult to detect in low
abundances or obscured by fluorescence effects caused by excitation in visible
laser wavelengths. However, carotenoids make an excellent biomarker in a study
such as this, as a Resonance Raman effect can be exploited.

In Resonance Raman, scattering occurs as in non-Resonance Raman but the
frequency of the incident radiation is selected to be near a frequency of an
electronic transition in a molecule. This excites the molecule into a higher
energy state and the subsequent scattered light will be amplified. Excitation
of a carotenoid containing sample at 514nm will reveal a characteristic spectrum
(Figure [4.4)), where the peaks relate to the stretching of the C=C and C-C bonds
and to the bending of the C-CH groups within the molecule [85].

This technique has been used by numerous authors to detect cyanobacterial
biomarkers from extreme environments and has proved extremely useful for

the analysis of complex, low abundance biological samples, particularly within
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Figure 4.4 Raman spectrum of typical carotenoid signature obtained from a
lawn of Chroococcidiopsis sp.029 on BG-11 agar

mineral matrices [82) 85 183], 185]. The technique is also non-destructive and

therefore excellent for this study where samples are extremely precious.

Analysis Details

A Renishaw inVia laser Raman microscope (Renishaw, UK) was used and samples
were excited at a wavelength of 514 nm. The laser was typically operated at
5% power with each spectrum being an average of ten acquisitions. Data were
analysed using the commercial WiRE 3.2 software package (Renishaw, UK).

Before analysis of the rock discs, a cross-section was obtained with a sterile chisel.
A positive or negative result for the carotenoid spectra both on the UV-exposed
surface of the disc and the interior was recorded. Selection of the spot on which to
sample within the rock was guided by the location of patches of cells as, owing to
irregularities in pore spaces, they are not homogeneously distributed throughout

the rock. For samples which were highly fluorescent at this level, the laser power
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was reduced to 1% to ensure that the signal was not hidden by the fluorescence
generated. Control spectra were also obtained from a segment of rock on which
there were no cells and from dried cells of Chroococcidiopsis sp.029 on BG-11

agar.

4.3.4 Scanning Electron Microscopy

Both rock discs and glass discs were imaged using scanning electron microscopy.
The rock discs were coated in gold before imaging using a Philips XL30CP
scanning electron microscope (SEM) (Philips, UK) operated at 1 mbar pressure.
Images were obtained using the absorbed current detector (AEI) at a voltage
of 20 kV. Observations on the glass discs were carried out using a CamScan
MX2500 SEM (CamScan, UK) operated in controlled pressure mode (Envac,
30 Pa). Images were recorded at a working distance of 20mm using the AEI
at a voltage of 20 kV. Gold coating was carried out by the Scanning Electron

Microscope Technician, School of Geosciences, University of Edinburgh.

4.4 Results

4.4.1 Post-flight Culturing

Within 4 weeks of inoculation of the fragments of rock discs, numerous 0.5-1mm
green specks were observed on the rock fragments suggesting viable cells within
the rock had begun to expand into larger colonies. After 2 months, growth
was clearly observed on the rock and in the growth medium of all experimental
samples (Figure . Chroococcidiopsis cells were confirmed under bright field
microscopy. It was found that no samples on glass discs, whether in in low Earth

orbit or stored in the lab, had remained viable.
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Figure 4.5 Growth of Chroococcidiopsis in BG-11 medium inoculated with
rock discs from all conditions. Left to right: stored in lab, dark
in low Earth orbit and UV exposed in low Earth orbit. Growth is
observed in all flasks. Picture taken after 2.5 months of incubation

4.4.2 Raman Spectroscopy

Carotenoid Detection on Glass Discs

Glass discs which had been inoculated with cells of Chroococcidiopsis and either
stored under laboratory conditions or kept dark whilst in the EXPOSE-R facility
clearly exhibited the characteristic carotenoid bands shown in Figure 4.4. This
indicates that despite the complete loss of viability of the cells during the period
of desiccation, the carotenoids had not undergone degradation.

In the UV-exposed samples on glass discs the carotenoid peaks were only
detectable at a very low level in one sample which had been exposed to 0.01%
of the incoming radiation greater than 110nm in a vented container (Table |4.2]).
All other UV-exposed samples tested exhibited no spectral peaks. Variations in

the background fluorescence emission intensity were observed in several of these
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Table 4.2 Detection of carotenoids on glass discs using Raman spectroscopy. +
refers to a positive identification, — indicates no detection

Exposure | Sealed >110nm | Sealed >200nm | Vented >110nm | Vented >200nm
Dark + + + +
100% - - - -
1% - - - -
0.01% - - + -

UV-exposed samples.

Carotenoid Detection on Rock Discs

Rock discs which had been exposed to UV in low Earth orbit exhibited a browning

of the surface which was not observed in rock discs which had been kept dark

(Figure [4.6).

Figure 4.6

icm

Examples of rock discs after return from the ISS. Browning of cells

observed on rock discs exposed to UV radiation in low Earth orbit
(left) and not on those kept dark in low Earth orbit (right)

The spectra obtained from cells in the rock discs are displayed in Figure For

cells on rock discs stored in the lab or kept dark in low Earth orbit, the carotenoid
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signal was detected both on the surface and in the subsurface (Figure and
).

In the rock discs it was found that cells on the UV-exposed surfaces of the
rocks had experienced similar destruction to carotenoids as that exhibited by
cells on glass UV-exposed discs (Figure ) When imaged through the Raman
microscope, these cells had turned brown during exposure and they did not exhibit
any characteristic Raman peaks when probed (Figure )

However, below the surface in the cleaved samples, green flecks were observed
which, when probed at 514nm, exhibited the typical carotenoid Raman spectral
signals (Figure [1.7c). This demonstrates that the rocks were effective in
adequately protecting the cells housed internally from 100% exposure to the full

extraterrestrial radiation dose at wavelengths greater than 110 nm.

By probing rock which had not been inoculated with cells it was determined
that, whilst some fluorescence contribution from glassy minerals in the rocks is
present, there is no interference that would confuse the interpretation of these

characteristic carotenoid spectral signals.
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Figure 4.7
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4.4.3 Microscopy

SEM images of cells in the pore space of the rocks in the control, dark and
UV exposed samples are shown in Figure Morphologically intact cells
were observed in the UV-exposed rocks, even in pores directly exposed to the
surface. This could suggest that UV bleaching of the cells had occurred and the

biomolecules destroyed whilst the cells still maintained their shape.

Figure 4.8 Scanning electron microscope images of Chroococcidiopsis cells
inside the rock discs. A) Laboratory control B) Dark in low Earth
orbit C) UV exposed in low Earth orbit. Shows morphology is
preserved in all samples.

SEM images of the glass discs confirm that this is possible with the distinctive
spherical shape of Chroococcidiopsis being observed on glass discs which had been
kept dark and on discs exposed to UV radiation within vented containers (Figure

4.9). The latter of these received no shielding from the incident UV radiation.
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However, intact cells were not observed on glass discs which had been kept sealed
(data not shown).
No quantification of cell numbers was carried out as the cells were not homoge-

neously distributed throughout the substrate, making quantification unreliable.

Figure 4.9  Scanning electron microscopy images of Chroococcidiopsis cells on
the glass discs from each condition. From left to right: laboratory
control, kept dark in low Earth orbit (vented), UV exposed in low
Earth orbit (vented)

4.5 Discussion

In this chapter cyanobacteria inside rocks were exposed to the UV radiation
conditions found in low Earth orbit to determine if an endolithic lifestyle could
provide suitable micro-habitats for phototrophs on the pre-ozone early Earth.
Impact shocked gneiss from the Haughton Impact Crater was chosen as it is known
to support endolithic phototrophs in the extreme environment of the Canadian
High Arctic.

Phototrophs have the requirement for photosynthetically active radiation (PAR)
for growth, meaning that they must be exposed to sunlight with the concomitant
exposure to UV radiation. Therefore, growing at a depth where UV radiation
is completely extinguished is not an option. It is shown here that organisms
within impact-shocked gneiss exposed to the intense UV radiation environment
in low Earth orbit for 833 days were viable on their return to Earth. No viable

cells remained on any of the glass discs regardless of exposure conditions (and
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in controls). This could be a result of extreme desiccation of the thin layer of
cells, as cells which were clumped inside the rocks due to the necessary space
constraints might have been shielded by other cells as has been observed with
other cyanobacteria [186].

It is also observed that essential biomolecules, carotenoids, are destroyed during
long-term exposure to the UV radiation environment in low Earth orbit and
that these are unaffected by the other space parameters. However, the positive
detection of carotenoid signatures by Raman spectroscopy in cells exposed to
0.01% of the UV radiation of wavelengths greater than 110nm in vented containers
suggests that the radiation dose received at this level may be close to a threshold
level at which biological molecules can survive.

Carotenoids were detected in all samples (rock and glass) which had been kept
dark, supporting earlier observations that UV radiation exposure is the most
destructive aspect of exposure to space conditions [T00].

Results on the UV-exposed glass and surface of the rock discs show that direct
exposure to the worst case early Earth UV radiation conditions over a long period
will have a destructive effect on biomolecules, destroying essential pigments even
when this was attenuated to only 0.01% of the incoming UV. These results
emphasize the low survivability of photosynthetic life on the surface of the early
Earth in the absence of shielding or active repair.

However, carotenoids were detected in the subsurface of the rock discs exposed
to UV radiation in low Earth orbit for 22 months. These results indicate that it
would be possible for cyanobacteria to persist in a desiccated state for at least this
long under the worst-case UV radiation conditions predicted for the early Earth.
Indeed, this estimate should be considered conservative as the samples were
exposed to shorter wavelengths of UV radiation (thus more damaging radiation)
than is predicted from the carbon dioxide and nitrogen atmosphere on the early
Earth.

This work provides strong evidence that endolithic phototrophs, such as those

sheltering in the rocks at the Haughton Impact Crater, could have survived
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long periods of time under early Earth-like UV fluxes. Since impact cratering is
ubiquitous in the universe, this work also demonstrates the general principle that
impact shocked rocks can provide protection against the worst-case UV radiation

fluxes on any anoxic planet, including planets such as Mars.

4.6 Limitations and Future Directions

There are a number of limitations to this study which should be addressed in
future work. Firstly, as with all space experiments, there is limited sample
numbers so some of the analyses could not be conducted with replicates. Further
samples would be required for SEM analysis on glass discs to compare whether
morphological preservation was higher in vented containers compared to sealed
containers.

Linked to this, it is unclear if the presence of an atmosphere would have a
detrimental effect on cyanobacterial survivability under high UV radiation stress
and further ground-based studies should focus on testing this. Preliminary work
on this topic in the Cockell Lab has suggested higher moisture content may
negatively influence survivability during UV exposure in this organism (Charles
Cockell/Sarah Brown, Unpublished).

In this experiment it was only possible to test desiccated cells therefore all
viability is maintained in the absence of active repair. Future work should focus on
studying actively growing cells during the period of UV exposure. Additionally,
protection afforded to cyanobacteria from other substrates such as quartz or
gypsum in the space environment would be interesting to test as these also provide
endolithic habitats in high UV environments on Earth [80), [187].

Protection afforded by Mars-like soil to cyanobacteria, including Chroococcidiop-
sis, is the subject of one EXPOSE-R2 experiment (follow up to EXPOSE-R)
which was launched in May 2014 [18§].
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4.7 Conclusions

In conclusion, the protection afforded to organisms within impact-shocked rocks
is adequate to preserve viable cyanobacterial cells in a desiccated state for at least
833 days under a UV flux at least equal to the worst-case scenario on the early
Earth. This result could extend to other terrestrial-type rocky planets lacking
a sufficient atmospheric UV radiation shield. Cells actively growing, unlike the
desiccated cells studied here, would have the potential to actively repair UV
radiation-induced damage (assuming the dose is sublethal), suggesting that these
results are conservative. This work highlights the potential of impact craters
and endolithic habitats as protective habitats on rocky planets with a high UV
radiation flux and it empirically demonstrates that phototrophic microorganisms
could have colonized early land masses under a worst-case UV radiation flux,

even without active repair or protection under thick layers of cells.
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Chapter 5

Rock-induced Changes in the

Bacterial Proteome

5.1 Introduction

As described in Chapter 2, numerous studies describe the microbial release of
bioessential elements from rocks [63], [67] and microbially induced changes in rock
redox chemistry [56]. However, even in the absence of active microbial weathering,
rock geochemistry can affect the structure, composition and metabolic activities
of rock-dwelling microbial communities [94), [96] [189]. Rocks will release elements
and alter surrounding fluid chemistry which can have stressful effects on the
microbial community [117]. This chapter aims to investigate a highly simplified
microbe-rock interaction by exposing one model organism in a well-defined growth
medium to one rock type. The chemical and microbial processes involved in even
such a highly simplified experiment are very complex but allow us to begin to
build up a picture of mechanisms required by micro-organisms to live in a rock
environment.

This chapter explores two hypotheses:
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1. Changes associated with the release of elements from rock, whilst potentially
providing nutrients, would also introduce physiological stresses in individual

cells.

2. Micro-organisms will alter protein expression to respond to these stresses.

This is investigated by the quantification of changes in protein expression in the
presence of rock using the bacterium Cupriavidus metallidurans CH34 as a model
strain.

These data show that specific chemical changes occur because of the presence
of the rocks and that these can be correlated with changes in the proteome
expression profiles. These are primarily associated with nutrient limitation and
stress responses despite the fact that the rock can act as an alternative source of
important elements.

The work presented in this chapter is currently under review at The ISME

Journal.

5.2 Methods

5.2.1 Experimental Overview

The experiments described in this chapter proceeded in three broad phases:
1. Comparison of growth, chemical changes and protein expression with and
without basaltic rock added to optimal growth media.

2. Investigation of the effect of increased pH (pH 8) and high calcium in
isolation, as both are observed to occur in these experiments when basalt

is added.
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3. Comparison of growth, chemical changes and protein expression with
basalt added to nutrient-limited growth media, to assess the ability of C.

metallidurans to use basalt as an alternative nutrient source.

5.2.2 Organism Selection

The Gram-negative Beta-proteobacterium Cupriavidus metallidurans CH34 (for-
merly Wautersia, Ralstonia, Alcaligenes [190]) is the model organism for this
study. Cupriavidus metallidurans CH34 is a motile, non-spore forming, rod-
shaped bacteria which is commonly used as a model organism for studying
bacterial resistance to heavy metal contaminated environments [191H193]. This
organism is capable of utilising a diverse suite of carbon and energy sources
which make it well-suited to stressful environments. It can respire aerobically via
oxidative phosphorylation but will reduce nitrate under low oxygen conditions
[154, 172]. It also has the ability to oxidise sulfur and hydrogen [I72]. It can
metabolise heterotrophically but, in low carbon environments, it will adopt an
autotrophic lifestyle, fixing COy to synthesise organic molecules. It can also
obtain organic compounds and energy from alcohols (e.g propanol, butanol and
acetone) or monoaromatic hydrocarbons such as benzene [172].

This huge versatility can be explained by the genetic flexibility of C. metallidurans
CH34 which has picked up many new capabilities via horizontal gene transfer.
Indeed, Janssen et al. (2010) [I72] describe the strain’s 2nd chromosome as a
“patchwork of gene clusters and sub-clusters generated by multiple integration
events and subsequent gain (or loss) of acquired genes”.

With these capabilities it is unsurprising that C. metallidurans has been
isolated from a great diversity of extreme environments including heavy-metal
contaminated sludge [194], spent nuclear fuel pools [195], spacecraft clean rooms
[196, [197] and even the human body in the lungs of a patient with cystic fibrosis
[198].
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After the isolation of two related Cupriavidus species (C. pinatubonesis and C.
laharis) from volcanic rocks in Mt. Pinatubo, Sato et al. (2006) suggested that
volcanic environments which experience temperature fluctuations, desiccation
cycles, scarce organic material and nutrient limitation could be the first natural
habitats for Cupriavidus species. Adapting to life in a rocky environment would
leave these species well placed to colonise industrial, contaminated habitats when
they appeared. This has since been echoed in Diels et al. (2009) [192] and Olsson-
Francis et al. (2010) [I117]. Olsson-Francis et al. conducted a microarray study
to determine the mechanisms of iron uptake from rock by C. metallidurans CH34
and concluded that the eflux mechanisms useful for heavy metal resistance were
also employed during exposure to basalt [117].

The full genome is sequenced and gene functions well-annotated which makes C.

metallidurans CH34 an excellent model organism for proteomics studies [172].

5.2.3 Substrate Selection

A poorly crystalline basaltic rock was used as the substrate. Basalt is a common
igneous rock and the dominant rock type in oceanic crust. By selecting a
poorly crystalline rock it can be assumed that the elements of interest are more
homogeneously distributed throughout the substrate which could aid in making
the experiments more controlled and reproducible.

The basalt used was collected from Skaptafell, Iceland (64°45'58” N 23°38°59” W).
The rock composition, as determined by X-Ray Fluorescence (PANalytical
PW2404, PANalytical, UK), was 44% SiO,, 15% AlyO3, 11% Fe;03, 7% MgO,
12% CaO, 1% Nay0, 1% K0, 3% TiO,, 0.2% MnO, 0.4% P05 with 5.6% lost on
ignition. The rock also contained trace elements in the following concentrations:
111ppm Zn, 139ppm Cu, 98ppm Ni, 303ppm Cr, 353ppm V, 284ppm Ba, 45ppm
Sc, 22ppm La, 55ppm Ce, 29ppm Nd, 1.5ppm Th, 1.2ppm Pb, 36ppm Nb, 128ppm

Zr, 19ppm Y, 426ppm Sr and 17ppm Rb. The basalt was crushed and sieved to

79



5.2. METHODS

isolate the 1 - 2.5 mm size fraction. This was rinsed thoroughly in ultrapure
H5;0O and dried overnight at room temperature before autoclaving at 121°C for

20 minutes.

5.2.4 Culturing and Growth

C. metallidurans was routinely cultured at 30°C in Tris salts minimal medium at
pH 7 with 0.2% (w/v) sodium gluconate and ferric ammonium citrate as the iron
source, as described previously [154] (See Chapter 3 for media composition).
Reagent grade chemicals were used for media preparation (Sigma Aldrich, UK).
Previously described MM284 has only enough phosphorus (as NagHPO,4.2H50)
for complete consumption of the carbon source. The onset of the stationary phase
is triggered when the carbon source is exhausted but phosphorus is also low by
this time point. The medium is not supplemented with an excess of additional
phosphorus.

In order to assess stresses induced by the presence of rock, cells were cultured
(starting cell concentration = 2 x 10* CFU ml™!) in 50 ml of “optimal growth
medium” (i.e. MM284 + gluconate) with 5 g of sterile basalt added. All cultures
were grown in acid-washed, sterile 100 ml Nalgene polymethylpentene flasks as
in Olsson-Francis et al., (2010) [I17]. Cultures were capped with sterile foam
bungs to allow gas exchange with the atmosphere. Each test condition was run
in triplicate (n = 3). As it was unclear whether the presence of rock would
subject the cells to physical shear stress during continuous shaking, experiments
were conducted under static conditions with manual mixing at 24-hour intervals.
Optical density was measured daily by visible spectrometry (absorbance at 600
nm, FLUOstar Optima, BMG Labtech, UK) as a proxy for cell growth. Optical
density was measured on 200 pul of culture in a 96 well microplate (path length
= 6.31lmm). The experiment was conducted for 260 hours after which cells from

all flasks were harvested and all following analysis conducted.

80



5.2. METHODS

A complete set of abiotic controls were run in tandem by adding 50 ml of medium
to 5 g sterile basalt in triplicate. These were not inoculated with cells and were
kept at 30°C alongside the biotic replicates and also shaken every 24 hours. The
control samples were used to quantify abiotic leaching from the rocks and to
ensure that no particulate material interfered with optical density measurements.
To isolate effects related to pH changes and changes in calcium concentration
induced by the rocks, the proteomes of cells grown in the same medium with the
pH altered to pH 8 (with NaOH) and with the addition of 10 mM of calcium
chloride were investigated.

The high calcium experiments were conducted to follow up on observations from
the initial experiments. As no rocks were involved, these cells were cultured at
30°C in a shaking incubator at 90 rpm. The proteome of cells in this condition
were compared to cultures in optimal medium which were also shaken. This
shortens the length of the experiment but will not affect the interpretation of
results as the calcium effect is considered in comparison to the proteome of shaken
control treatments (optimal medium + gluconate).

To compare the proteomes of cells initially limited of a specific element, and
thus required to obtain that element from the rock, media with the iron or
magnesium source omitted and basalt added as before was used. These elements
were selected as they are two of the main inorganic cations required for bacterial
growth and are major constituents of basaltic rocks [58]. Optical density was also
monitored in the iron or magnesium limited media alone (no rock) to establish if
the basalt was providing elements essential to growth. Abiotic triplicates of iron-
and magnesium-limited media with rock were conducted as before.

The experimental protocol is summarised in Figure [5.1]
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| Rocks crushed, sieved and washed ‘

‘ 59 added to flasks ‘

/ 50ml media added )\1
Inoculated with 50ul mid- Not inoculated
exponential culture '
3 Stored at 30°C for 12
Stored at 30°C for 12 days with regular mixing
days with regular mixing and OD measurements
and OD measurements ¥
¥ ‘ pH measured ‘
‘ pH measured ‘ }
& ‘ 15ml culture removed ‘
‘ 30ml culture removed ‘ }
I | Filtered for ICP-OES |
‘ centrifuged ‘
— ——
15ml removed filtered for Remaining supernatant
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i
Pellet stored at -80°C
until proteomics
analysis

Figure 5.1 Summary of experimental protocol

5.2.5 Quantifying Chemical Changes

Inductively Couple Plasma - Optical Emission Spectroscopy was used to monitor
chemical changes in the presence of rock and was conducted in collaboration with
Dr Lorna Eades, School of Chemistry, University of Edinburgh.

Fifteen millilitres of supernatant were removed from the flasks at the time of cell
harvest and passed through a 0.22 pum syringe filter. The filtered supernatant
was acidified with 15 pl 70% nitric acid solution.

The samples were analysed using a Perkin Elmer Optima 5300 DV. Using a
peristaltic pump, sample solutions were taken up into a Gem Tip cross-flow
nebuliser and Scotts spray chamber at a rate of 1.5 mL min~".

The instrument was operated in axial mode for Fe and radial mode for all others.

A range of calibration standards were prepared using single element 1000 mg

171 stock solutions (Fisher Scientific, UK), diluted with deionised water (18€2,
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Table 5.1 Wavelengths used to report results for ICP-OES

Element Wavelength

Fe 259.945nm
P 214.914nm
Al 396.153nm
Ca 317.933nm
Mg 280.271nm
Si 288.158nm
7n 206.205nm
Mn 257.613nm

Elga USF). A multi element standard (ICP Multi element standard solution VI
CertiPUR, Merk, UK) was used as a reference standard for Fe.

The selected wavelengths for each element were analysed in fully quantifiable
mode (three points per unit wavelength). Three replicate runs per sample were
employed. Initially 4 wavelengths were selected for each element and three
replicate runs per sample were employed. The wavelengths used to report results
are shown in Table 5.1} Standards of 0, 0.01, 0.1, 1, 2, 5, 10, 20, 50 and 100 mg
17! were prepared for each element. Al, Co, Cr, Cu, Fe, Mn, Ni, P, Ti and Zn
were calibrated using standards 0-1 mg 1= whereas Ca, Mg and Si were calibrated
using the full range of standards. With all of the calibration lines the correlation

coefficients for the linear regression were 0.999 or better.

5.2.6 Protein Quantification

Cells were harvested at the time of the last optical density measurement for each
condition (ie. after 260 hours) except in the high calcium condition where cells
were harvested in the early stationary phase (approx. 40 hours). Thirty millilitres
of culture was transferred to 50 ml falcon tubes and centrifuged for 10 minutes at
13,000 g. The supernatants were discarded and 10 ml phosphate buffered saline
(PBS) solution added to the pellet before re—centrifuging. The supernatant was
discarded and pellets stored at —80°C.
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Amount of protein in each sample was determined by a Bradford protein assay
[199] and proteins were broken down into their constituent peptides using a
trypsin digest [I61]. For the extraction and digest, 250ul 8M urea was added
to each pellet and left to stand for 1 hour with regular vortexing. Fifty
microlitres 1M ammonium bicarbonate, 50 pl 200nM dithiothreitol (DTT) and
50 pl iodoacetamide was then added. The digest was made up to 1 ml with sterile
H0O. After 1 hour, trypsin was added to a concentration of 1 ug per 40 ug protein
and the digest left overnight. Ten micrograms of protein was purified using C18
Millipore Ziptips (Sigma-Aldrich, UK; See Chapter 3). Purified peptides were
vacuum dried and stored at —20°C.

Peptides were analysed on a reverse phase microcolumn using a 140 minute
gradient (controlled by a binary HPLC system 1200, Agilent, UK) coupled to
a hybrid LTQ-Orbitrap XL mass spectrometer (Thermo-Fisher, UK) in data
dependent mode, controlled through Xcalibur 2.0.7 as described previously [161].
Eight microliters of sample in loading buffer was injected.

Peak selection, normalisation and quantification were performed using Progenesis
LC-MS (version 4.0, Nonlinear Dynamics, UK). Peptides (charges 2%, 3" and
47) were identified by MASCOT (Matrix sciences, UK, version 2.3) searches of
MS/MS data against the NCBI protein database subset [169] for Cupriavidus
metallidurans (6766 sequences), using a trypsin/p enzyme restriction with a
maximum missed-cut value of 2 i.e. the protease failed to cut the peptide where
expected at one or two points. Variable methionine oxidation and fixed cysteine
carbamidomethylation were used in all searches. Precursor mass tolerance was
set to 7 ppm and MS/MS tolerance to 0.4 amu.

P-values on fold changes between experimental condition and control (optimal
media without rock) were determined by one-way ANOVA on arcsinh-transformed
protein intensities in Progenesis LC-MS [I61]. Differentially expressed proteins
were considered significant with an average intensity ratio of at least two-fold and
a P-value less than 0.05 if detected with two or more peptides per protein with a

MASCOT identification score greater than 20 (although greater than 40 is ideal).
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Protein functions were assigned using expert manual annotation of the Cupri-

avidu2Scope Project on the MaGe platform [I72] (Chapter 3).

5.2.7 Comparison of Protein Profiles

A Bray-Curtis similarity matrix based on the protein expression data was
analysed using the PRIMER statistical package (version 6.1.13) with the
PERMANOVA+ add-on (version 1.0.3) [200} 201] with assistance from Dr. J.
Harrison, University of Edinburgh. Following non-parametric multidimensional
scaling ordination (nMDS), a 2-way nested permutational analysis of variance
(PERMANOVA; [171]) was performed with 'Medium type’ and 'Presence of
rock’ as the factors (Type III sums of squares, 9999 unrestricted permutations of
the raw data). Since different sets of growth media were used in the presence
and absence of rock, the factor Medium type was nested under the factor
Presence of rock. Post-hoc pairwise comparisons were performed using the same
PERMANOVA settings, with the exception of P-values being derived by a Monte
Carlo approach due to low numbers of permutations [201]. Variation in within-
group dispersion was assessed using a test for the homogeneity of multivariate

dispersions (PERMDISP, 9999 permutations) [202].

5.2.8 Phosphorus Partitioning Assays

To better understand phosphorus chemistry in the experiments, phosphorus
partitioning assays were conducted by collaborators Dr Bryan Spears and
Dr Alanna Moore at the Centre for Ecology and Hydrology, Edinburgh to
complement the ICP-OES analysis. The ICP-OES phosphorus analysis indicates
only the phosphorus concentrations after the sample has been filtered and does
not indicate what form of phosphorus is present. This analysis quantifies

the concentration of phosphorus which is partitioned into Soluble Reactive
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Phosphorus (SRP), Total Soluble Phosphorus (TSP) and Total Phosphorus (TP).
Abiotic and biotic treatments were prepared as before and optimal media was used
for all phosphorus partitioning experiments. The four conditions tested were:
inoculated optimal media with and without rocks and non-inoculated optimal
media with and without rocks. The Soluble Reactive Phosphorus (SRP) fraction
is largely comprised of the inorganic orthophosphate (PO,) form of phosphorus.
Soluble reactive phosphorus concentrations were determined following the method
of Murphy and Riley (1962) [203]. This method uses a reagent of ammonium
molybdate, potassium antimony tartrate, and L-ascorbic acid in 1 M of sulfuric
acid, which reacts with the phosphate ion to form a phospho-molybdenum blue
complex. Concentrations were determined by measuring absorbance at 882 nm
in relation to known standards.

Total phosphorus (TP) is the sum of all of the phosphorus components. TP
concentrations were determined on unfiltered samples, which were digested using
a solution of sulphuric acid and potassium persulphate to convert all forms
of phosphorus to soluble reactive phosphorus, which was then measured in a
similar way to that described above. The method used was as described for total
phosphorus by Wetzel and Likens (2000) [204], with an added acidification step
(0.1 ml of 30% H2SO, was added to the samples before addition of persulfate).
Total Soluble Phosphorus (TSP) is the total of all of the phosphorus forms which
passed though the filter. TSP was determined in the same way as described for
Total Phosphorus, but using a filtered sample. By subtracting TSP from TP, the

amount of particulate phosphorus is calculated.
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5.3 Results

5.3.1 Changes in Chemistry and Cell Division

Elemental Changes

Addition of rock was associated with several chemical changes in both Cupri-
avidus-inoculated (biotic) and non-inoculated (abiotic) experiments. The sim-
plest way to view chemical forcing from the rock is to compare abiotic conditions
with and without rock. At the end of the experiment (after 260 hours),
phosphorus concentrations in the media had decreased when rock was added
compared to media without rock (two-way t-test P = 0.0002, t = 73.2, df =
2, Figure ) All abiotic conditions involving the presence of rock resulted
in increased iron, calcium, aluminium and silicon concentrations in relation to
control samples (two way t-test P-value for Fe = 0.0004, Ca = 0.0006, Si =
0.0001, Al = 0.0002; Figure , b, e, f). Zinc and manganese concentrations in
the supernatant of all rock-amended growth media were consistently lower than
in the non-inoculated, non-rock control medium (two-way t-test P-value for Mn
= 0.007, Zn = 0.002); Figure and h). Cupriavidus-inoculated cultures had
approximately the same concentration of phosphorus with rock as without rock,
both of which were much lower than in the original medium (Figure [5.2{d). Co,
Cr, Cu, Ni and Ti are not reported in Figure [5.2] as they were either not detected

or unchanged.

Aluminium and silicon are not typically taken up by micro-organisms and thus
are sometimes used to assess whether the organisms increase elemental release
from the rock. In these experiments, aluminium and silicon concentrations are in

fact lower in biotic treatments than in abiotic treatments.
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Figure 5.2 Comparison of final inorganic ion concentrations in culture
supernatant of optimal media condition and optimal media with
rock added (biotic and abiotic) at the end of the experiment as
analysed by ICP-OES. Light grey = rock added, Dark grey = no
rock. A) Iron B) Calcium C) Magnesium D) Phosphorus E) Silicon
F) Aluminium G) Zinc H) Manganese. Abiotic = non-inoculated
treatments, Biotic = inoculated treatments. Data shown are means
+ SD (n=3).

pH Changes

In both Cupriavidus-inoculated and non-inoculated treatments, an increase from
pH 7 to approximately pH 8 in the presence of rock was observed, regardless of
initial media composition. In abiotic conditions without rock, the pH remained
stable at pH 7 but rose to approximately pH 7.5 in biotic treatments without

rocks.
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Microbial Growth

Cultures grown in optimal media in the presence of rock, or in medium without
rock but at higher pH, showed lower growth rates and lower final cell densities
than cultures grown in optimal media (pH 7) without rocks (Figure [5.3).
No growth was observed in non-inoculated experiments, indicating successful

sterilisation of the basalt.
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Figure 5.3 Growth curves of Cupriavidus metallidurans CH34 in optimal
medium at pH 7, at pH 8 and with basaltic rock. The data shown
are means =+ SD (n=3). Uninoculated flasks were also measured,
and optical density in all cases was very close to that of the blank
(data not shown).
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Phosphorus Partitioning Assays

Despite loss of phosphorus in abiotic treatments with rock added, the ICP-
OES results displayed no difference in phosphorus concentrations between biotic
treatments with rock and without. However, the ICP-OES phosphorus analysis
can determine only the phosphorus concentrations after the sample has been
filtered and does not indicate what form of phosphorus is present. To address
this, phosphorus partitioning assays were conducted to gain a more detailed
understanding of the changes in phosphorus chemistry. These assays can indicate
the concentration of phosphorus which is: soluble and reactive, soluble and
unreactive and in a particulate form, whereas ICP-OES only indicates total
soluble phosphorus. The cause of phosphorus loss was assessed by determining
the concentrations of soluble reactive phosphorus, total soluble phosphorus, total

phosphorus and, by inference, particulate phosphorus (see Methods).

As a large amount of calcium was measured to have leached from the rocks
(Figure, we may have expected calcium phosphate minerals to precipitate and
thus, the assays to show higher particulate phosphorus in the presence of rock.
However, no significant difference was observed in the particulate phosphorus
concentrations between abiotic treatments with and without rock at the end of
the experiment (two-way t-test: P = 0.28; Figure ) showing no precipitate
had formed due to calcium leaching. The majority of total phosphorus in non-
inoculated treatments with and without rock was present as soluble reactive
phosphorus (Figure[5.4D). However, the total concentration of phosphorus in the
presence of rock was lower than total phosphorus without rock (two-way t-test:
P = <0.001; Figure ) This indicated a loss of phosphorus, but rules out loss
through precipitate formation. In Cupriavidus-inoculated cultures, although the
particulate phosphorus fraction was much higher (as available phosphorus was
partitioned into cells), the total phosphorus was lower in the presence of rock,

compared with conditions where rock was absent (two-way t-test: P = <0.001,
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inoculated and non-inoculated cultures. Data are shown as means

+ SD (n = 3).

Figure [5.4)A). This shows that there is a difference in phosphorus availability in

biotic cultures in the presence of rock and explains why this was not picked up

by the ICP-OES analysis.

5.3.2 Proteome Changes in Optimal Media with Basalt

A total of 1685 proteins were identified and quantified across all experimental

treatments. This represents nearly 25% of all of the protein-coding genes in the

C. metallidurans CH34 genome. Good technical reproducibility across triplicates

was observed with each triplicate having a correlation coefficient of >0.99 when

compared to the mean of the triplicates.
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Proteome Response to Phosphate Removal

When the proteomes of cultures grown in optimal medium with and without rock
were compared, fifty-two proteins are up-regulated (3% of the detected proteins).
Table 5.2 lists the proteins which were up-regulated in cells grown in the presence
of rock compared to cells grown in optimal media without rock. Most of these
were from genes located on chromosome 1 (38) with fourteen on chromosome 2.
These included a diverse suite of proteins associated with low levels of phosphorus
(Table 5.2). This is in agreement with the chemical results which show phosphorus
concentrations in abiotic cultures was lower in the presence of rock (See Figure
. Up-regulated proteins were associated with two phosphate limitation-related
strategies: increase of phosphate uptake from outside of the cell and scavenging

of phosphate from intracellular reserves.
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Proteins involved in increased import of phosphorus represent pathways for
transport of phosphorus in four forms: phosphate, phosphonate, organophosphate
and phosphite. These include the PstS protein from the phosphate specific
transport system which is involved in free phosphate import, the high affinity
phosphate uptake system protein PhnD which transports phosphonate and
organophosphate esters [205] and PtxB which is involved in transport of
phosphonate or phosphite.

Proteins associated with intracellular scavenging typically do so by degrading
larger phosphate—containing compounds. The up-regulated patatin (PatD)
and phospholipase C (PIcN) enzymes, for example, release phosphorus from
phospholipids [206, 207]. The high affinity phosphate uptake system protein
PhnL is a component of the C-P lyase system which generates free phosphate
groups by the degradation of organophosphates [208-210].

Phosphoglycolate phosphatase (CbbZ1) metabolises the phosphate-containing
molecule 2-phosphoglycolate, typically produced during the repair of DNA
damage caused by oxidative stress [211]. PhoD is an alkaline phosphatase enzyme
thought to be a scavenging mechanism by which bacteria generate free phosphate
groups from many types of molecule. Whilst Rmet_0550 is annotated as a
hypothetical protein in the C. metallidurans CH34 genome, a BLAST search
revealed that this protein shares an 81% similarity to polyphosphate kinase 2 in
Herbaspirillum sp. YR522. Polyphosphate kinase is a membrane protein which
catalyses the formation of polyphosphate from ATP and participates in oxidative

phosphorylation.

Other Proteins Up-regulated in the Presence of Rock

In addition to the low phosphorus response, an up-regulation of proteins involved
in alternative energy generating pathways in the membrane, and cellular redox
homeostasis are observed (Table 5.2). These included proteins associated with

hydrogen oxidation (i.e. hydrogenotrophy) (oxygen-tolerant membrane-bound
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hydrogenase formation protein HoxQ) and an enzyme involved in sulphite
oxidation (sulfite:cytochrome ¢ oxidoreductase SorA). Also observed is an up-
regulation of the entire set of proteins involved in formate oxidation (FdhA, FdhB,
Rmet_2759, FdhC). These Fdh enzymes catalyse the oxidation of formate to CO4
and H* and have been associated with stress responses in Desulfovibrio vulgaris
[212].

The remaining up-regulated proteins were primarily associated with diverse
membrane and periplasmic transport processes, and regulatory processes such

as signalling and transcription regulation (Table 5.2).

Proteins Down-regulated in the Presence of Rock

Forty-five proteins are significantly down-regulated in the presence of rock and are
shown in Table 5.3. These represent 2.7% of the detected proteins. Twenty-eight
of these are from genes located on chromosome 1, fourteen from chromosome 2 and
one each from plasmid pMOL28 and pMOL30. Down-regulation of metal cation
responses and efflux systems was observed with rock present and included ZniA,
ZniB and ZntA proteins which have a specific affinity for zinc and cadmium. Also
down-regulated was the HmzP two-component transcriptional regulator, a metal

cation resistance protein, and a ferric reductase (Rmet_3017) which is downstream

of hmzP.
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5.3. RESULTS

A down-regulation of proteins associated with consumption of high energy,
phosphorus-containing compounds such as ATP and NADPH are observed.
For example, three ATPases are down-regulated (Rmet_0297, Rmet_2164 and
Rmet_3358) as are oxidoreductase enzymes associated with energy metabolism.
Other down-regulated proteins included those involved in transcription, biotin
synthesis, oxidoreductase reactions, transport and signalling (Table 5.3). Al-
though typically associated with phosphorus homeostasis, alkaline phosphatase
and the phosphoesterase down-regulated in the presence of rock were also down-
regulated in the proteome of cells grown at pH 8. All proteins also down-regulated

in cells cultured at pH 8 are highlighted in Table 5.3.

5.3.3 Proteome Changes at pH 8 and with 10mM Additional

Calcium

Across all experimental treatments, rock-induced variation in protein expression
was accompanied by increased pH and calcium concentrations in the growth

media. Proteome responses to these conditions in isolation were characterised.

Proteome Changes at pH 8

Growth at pH 8 (Figure was reduced in comparison with cells at pH 7.
Growth at pH 8 was indistinguishable, with reference to both mean growth rates
and final optical densities, from those observed in the presence of rock.

Cells grown in medium at pH 8 up-regulated 21 proteins and down-regulated
25 proteins compared with cells grown in medium at pH 7, 5 of which were also
down-regulated in the proteome of cells grown in rock-amended media (Appendix
Table . These proteins are not functionally related to one another and no

overall pattern is observed.
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Proteome Changes at High Calcium Concentrations

At high calcium concentrations, increased expression of phosphate-related pro-
teins was observed. Figure[5.5], shows the fold change of proteins up-regulated in
cells grown in medium with an additional 10 mM of calcium chloride compared
with cells grown in optimal medium. Whilst rates of cell division were unchanged
by the addition of calcium (data not shown), the up-regulation of a similar suite
of proteins related to phosphate uptake was observed at 10 mM of calcium
chloride, as seen in the presence of rock. These proteins represent processes
such as phosphate transport (PhoB and PhoU), phosphonate metabolism (PhnD
and PhnM), phosphite transport (PtxB and PtxD) and the phosphate specific
transport system (PstS). Proteins related to intracellular phosphate scavenging

were not up-regulated in the presence of high calcium.

Despite the association between high calcium and the up-regulation of phosphate-
limitation related proteins, ICP-OES analysis showed no decrease in phosphorus
concentrations between optimal media and media with 10mM additional calcium

(data not shown).
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Figure 5.5 Fold change of proteins up-regulated with additional 10 mM
of calcium compared to optimal medium shows up-regulation
of phosphate-limitation proteins. High calcium also causes up-
regulation of a small number of transmembrane transport proteins
such as the Hmy heavy metal transmembrane transport system
(HmyB and HmyC), a gluconate transporter (GntT), a cold shock
regulatory response protein (Csp) and an RNA chaperone (Hfq)
which binds sRNAs and mRNAs to facilitate mRNA translational
regulation in response to envelope stress, environmental stress and
changes in metabolite concentration. All P-values less than 0.05 and
proteins identified by 2 or more peptides.

5.3.4 Effect of Initial Element Limitation

Experimental Set Up

To assess the importance of the rocks as providers of elements, experiments were
conducted with basalt added to growth media deprived of iron or magnesium.
These experiments were conducted at the same time, and under the same
conditions, as those with optimal media and rock. Again, abiotic triplicates

were conducted in tandem.

103



5.3. RESULTS

Changes in Chemistry and Growth

Figure shows that, when iron or magnesium are omitted from the medium,

they are re—supplied by the rock.
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Figure 5.6 Bar graph showing rock supplies iron and magnesium to culture
medium which can replace artificial sources omitted from the
optimal media. A) Comparison of final magnesium concentrations
in culture supernatant of optimal medium, no magnesium medium,
no magnesium medium with rock and optimal media with rocks. B)
Comparison of final iron concentrations in culture supernatant of
optimal medium, no iron medium, no iron medium with rock and
optimal media with rock. All conditions are abiotic. Data shown
are means + SD (n=3).

A greater than two fold decrease in cell density relative to the control was
observed in medium without iron and no growth was observed in medium without
magnesium (Figure . The addition of rock to all of these media resulted
in almost identical growth curves across all conditions, with these data being

indistinguishable from the growth curves obtained for optimal medium with rock

(Figure [5.7).
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Figure 5.7 Comparison of growth of Cupriavidus metallidurans CH34 in
different nutrient availability conditions. Shows improvement in
growth compared to magnesium and iron starved cultures when
rock is added. Rock curves fall within a similar range regardless
of initial nutrient conditions. Data are shown as means + SD (n =
3). Labels: optimal pH7 = optimal media at pH 7 with no rock,
optimal + rock = optimal media with rock present, - Fe + rock =
media with no iron added but rock present, - Fe no rock = media
with no iron added and no rock present, - Mg no rock = media with
no magnesium added and no rock present, - Mg + rock = media
with no magnesium added but rock present.

Comparison of Proteome

Multivariate analysis of the protein expression data was performed for cultures
incubated in optimal medium in the absence of rock, and three types of growth
media in the presence of rock (see Methods). This identified two main clusters
defined by the presence or absence of rocks (Figure . While these clusters
were only 20% dissimilar (based on a group-average clustering of Bray-Curtis
similarity values), the observed difference was highly significant (2-way nested

PERMANOVA: pseudo-F; 19 = 19.552, P = < 0.001). A significant effect of
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medium type was also observed (2-way nested PERMANOVA: pseudo-F3 19 =
4.060, P = 0.002). No significant variation in multivariate dispersion was observed
between samples incubated in the presence or absence of rock (PERMDISP:
Fi10 < 0.001, P = 0.983), or in different types of media (PERMDISP: F,q
= 0.440, P = 0.916). These results give confidence that the differences shown by
PERMANOVA are real and not just due to differences in multivariate dispersion

(which can also influence P-values).

/// . \\\ ///A Z\\\\
// |_IEENN / N
N N
Vi . N // \
/ N\ / A‘\l
7 )\ / y/
I \ I /
\ u \ | /
\ Y/
\\- u \ \ //
N | X =7 i
N i S Medium
\\\\\\ L4 optimal pH 7
=== Similarity| |A optimal pH 8
80 | |m optimal + rock
———-85 | |m -Fe+rock
90 ||m -Mg+rock

Figure 5.8 Non-metric multidimensional scaling (nMDS) ordination of
Cupriavidus metallidurans CH34 cultures incubated in different
types of growth media in the presence or absence of basalt. The
ordination (stress = 0.07) was derived from a Bray-Curtis similarity
matrix calculated from normalised protein expression data (see
Methods). Similarity thresholds (%) are based on group-average
clustering. See Figure 5.7 for label descriptions.

All of the media types in the presence of rock were 85% similar regardless of
initial element limitation (Figure . However, cultures which were limited by
magnesium or iron in the original medium before rocks were added were more
similar to one another than to optimal media in the presence of rock (Monte
Carlo P = optimal + rock vs no Fe + rock: 0.0327; optimal + rock vs no Mg
+ rock: 0.0228; no Mg + rock vs no Fe + rock: 0.209). In the absence of rock,
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cultures at pH 8 showed a higher similarity to cultures at pH 7 than they did to
any of the culture conditions involving the presence of rock (Figure .

Global test results for 2-way nested PERMANOVA with factor Medium type
nested within factor Presence of rock are shown in Table 5.4 PERMANOVA

pair-wise comparisons are shown in Table [5.5]
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5.4. DISCUSSION

Overlapping sets of up- and down-regulated proteins were identified in each of
the experimental conditions (Figure [5.9)). These data showed that a core set of
proteins was always up-or down-regulated in the presence of rock, regardless of
whether the cultures were starved of a specific element (Fe or Mg) or not. This
observation is consistent with the results shown in Figure 5.8 supporting our
finding that differences in protein expression were primarily attributable to the

presence or absence of rock, as opposed to elemental starvation.

Up-regulated Down-regulated

optimal + rock
21

optimal + rock
11

Figure 5.9 Venn diagrams displaying up- and down-regulated proteins
common to different experimental groups.

[{a}]

Proteins differentially regulated in all conditions are marked with an “x
in the “Common?” column of Tables 5.2 and 5.3. The up-regulation of
phosphate limitation proteins, the formate dehydrogenase regulon and proteins

also differentially regulated at pH 8 dominated this group of common proteins.

5.4 Discussion

5.4.1 Microbial Response to Presence of Rock

Motivated by a desire to better understand the mechanisms micro-organisms
require to inhabit a rock environment, this chapter investigated whether rocks

induce specific microbial responses that are directly linked to chemical changes
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induced by the presence of rock.

The first experiments used quantitative label-free proteomics to explore the
molecular adaptations used by a model micro-organism (Cupriavidus metallidu-
rans CH34) grown in the presence of basalt. Two observed chemical changes
in the growth media, increased pH and high calcium concentrations, were then
investigated in isolation to unravel the driving factors behind the proteome
changes. The use of elements leaching from the rock as alternative sources of
iron or magnesium for the microbial population was then investigated.

These results show that, whilst the rock did provide an alternative source of iron
and magnesium, growth was reduced compared to that in optimal (pH 7) media
without rock (Figure [5.7). This reduced growth is not a result of lack of iron or
magnesium, but is caused by the presence of rock in general, as it is also observed
when rock is added to optimal media.

Slow cell division and reduced final optical density in the presence of rock are,
most likely, the result of increased pH as growth profiles at pH 8 without rock were
almost identical to growth in optimal media with rock (Figure . An increase
in pH in the presence of rock is consistent with current knowledge on basalt glass
dissolution, which begins with the release of monovalent and divalent cations
via metal-proton exchange which consumes protons and could increase fluid pH
[213]. Decreased growth in the presence of rock, driven by abiotic rock-water
interactions is a good example of rock-induced stress. However, whilst rock-
induced shifts in pH appeared to drive the decrease in growth rate, multivariate
analysis of the proteome data (Figure revealed that increased pH is not the
main factor influencing protein expression.

A common factor in the proteome of all conditions with rocks present was the
up-regulation of proteins associated with phosphate limitation. Phosphorus is
partitioned differently in biotic and abiotic treatments ie. biotic treatments
have high particulate phosphorus concentrations (as phosphorus is partitioned
into cells) and abiotic treatments have the highest concentration partitioned into

soluble phosphorus. However, the key finding is that regardless of partitioning
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effects, the total phosphorus concentration in the system is lower in the presence
of rock in both abiotic and biotic treatments. As there is a substantial amount
of calcium leaching in the presence of rock, the loss of phosphorus could,
theoretically, have been driven by calcium phosphate precipitation. However,
the lack of particulate phosphorus in the abiotic partitioning assays with rock
rules out abiotic precipitate formation (Figure ) Particulate phosphorus
is high in biotic cultures and soluble (total and reactive) phosphorus is low
but this is a result of soluble phosphorus uptake by cells and not mineral
precipitation. Together, the low abiotic precipitate abundance and low total
phosphorus concentrations when rock is added, are consistent with phosphate
sorption onto the rock surface rather than phosphate mineral formation. This
would completely remove it from the phosphorus speciation assays and lead to
low total phosphorus concentrations as observed.

Investigation of increased calcium in isolation also showed that no phosphorus loss
occurred at these calcium concentrations. However, despite phosphorus concen-
trations being unchanged by the addition of 10mM calcium, the proteomes of cells
cultured in high calcium media displayed a similar up-regulation of phosphorus
uptake proteins as was observed in the presence of rock. This demonstrated
a previously unknown link between extracellular calcium concentrations and
phosphorus homeostasis which should be further investigated.

The sorption of phosphates to mineral surfaces has been studied extensively and
occurs when phosphates sorb to metal oxyhydroxides via ligand exchange, an
OH™ or an H>O molecule is released from the surface and a phosphate surface
complex forms [214]. Tt is likely that this phosphorus sequestration results in
exhaustion of available phosphorus before all the carbon source has been used
and drives cells into an early, phosphorus limitation-induced stationary phase in
the presence of rock as well as acting to limit biomass yield and drive protein
expression.

It is unclear whether C. metallidurans CH34 has the ability to solubilise mineral

phosphates, facilitating the direct scavenging of phosphorus from a rock surface,
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or whether the up-regulated proteins assist in accumulation of phosphates from
organic sources. However, the genetic capabilities that C. metallidurans possesses
to overcome phosphorus sequestration within natural environments could confer
a key advantage in the colonisation of rock habitats characterised by numerous
pathways for phosphate removal.

Additionally, an up-regulation of proteins involved in alternative metabolisms
such as hydrogen and sulphite oxidation was observed. This may result from
a need to utilise a diverse range of energy-producing processes because of the
lack of phosphorus and the need to respond to a stressful environment. In
particular, the up-regulation of the formate dehydrogenase operon (observed here
in all conditions in the presence of rocks) has been linked to stress responses
by previous studies. For example, in Desulfovibrio wvulgaris, the expression
of the fdhBAC genes is associated with diverse stress responses [212] where
all stress responses which down-regulate energy metabolism see a concomitant
increase in the expression of one or more fdh genes. Consistent with this is the
down-regulation of proteins associated with high energy phosphorus-containing
compounds such as ATP which probably act to limit the consumption of these
molecules due to their low availability.

The down-regulation of various zinc efflux proteins are also linked to the changing
chemistry. It is unclear why the zinc and manganese concentrations are lower with
rock present in both biotic and abiotic treatments but the lower concentrations
cause the cells to limit efflux of zinc, presumably retaining higher intracellular
stocks.

From both the element and proteome analysis, there is no evidence that C.
metallidurans CH34 has an active role in rock weathering in this case. These
data are more consistent with passive uptake of abiotically leached elements,
and cellular responses to abiotic surface reactions induced by the fluid-rock

Interaction.

112



5.4. DISCUSSION

5.4.2 Significance

These results highlight the importance of proteomics in understanding the
complex interaction between micro-organisms and their environment. Feedbacks
between micro-organisms and geochemistry are poorly understood because
environmental studies generally focus on the abundances of different taxa or
functional genes, ignoring the fact that microbes are highly versatile, and thus
will respond to environmental changes by altering which genes they express. The
proteome of a micro-organism encompasses these highly complex responses and
is therefore an essential tool if we are to understand the role of microbial life
in shaping the geochemistry of the Earth, and concurrently, how microbial life
responds to chemical changes.

As far as I am aware, this is the first time a label-—free proteomics approach has
been adopted to investigate microbe — rock interactions in laboratory microcosms.
The only similar study which exists is that by Olsson-Francis et al., (2010)
[T17] which used DNA microarrays to investigate iron uptake from basalt by
Cupriavidus metallidurans CH34, the same organism adopted in this study. These
authors observed an up-regulation of metal efflux genes which they attributed
to leaching of toxic trace metals such as copper. The data presented in this
chapter does not observe this phenomenon. Indeed, a down-regulation of zinc
efflux proteins was observed and correlated with decreased zinc concentrations in
the presence of rock as measured by ICP-OES. Whilst Olsson—Francis et al.,
included trace element concentrations in the rock they failed to publish any
elemental changes in the culture media. The observed decrease in phosphorus,
zinc and managanese in the experiments discussed in this chapter shows that
the influence of rock on growth conditions is complex and not readily predicted
by rock compositon. Thus, studies which investigate molecular responses to the
presence of rock yet do not conduct detailed chemical analysis of the growth
media are limited at best.

However, if we were to speculate on the differences between this study and the

113



5.4. DISCUSSION

previous microarray study, it is most likely that these differences are attributable
to differences in rock geochemistry and subsequent effect on growth media. It is
also known that transcriptomics data is typically poorly correlated with protein
expression data [149].

In addition to being the first study to use label-free proteomics to investigate
microbe-rock interactions, this study has also yielded new insights into the
links between extracellular calcium concentrations and regulation of phosphorus

homeostasis which should be further investigated.

5.4.3 Future Work

Complete interpretation of these data would be aided by better fundamental
understanding of elemental controls on protein expression. It is relatively easy to
identify driving factors behind well-characterised responses such as phosphorus
uptake. However, the global proteome response to such a stress in this organism
is not well-known and likely to involve differential regulation of secondary
targets, not directly associated with phosphorus homeostasis. This is particularly
complicated in this case as the concentrations of several elements are altered
at once. Included in this are some very poorly characterised elements such as
magnesium, the effects of which have been the subject of few proteomics studies.
Future studies should focus on characterising responses to relevant elements.
Additionally, it is unclear how differing concentrations of multiple elements at
once will will influence the proteome. This is essential if we are to unravel
responses to elemental changes in complex, natural environments.

Whilst gaining more fundamental understanding of elemental controls on protein
expression would aid in interpreting laboratory data, proteomics studies of rock-
dwelling communities in situ would be the most effective way to unravel microbe-
rock interactions in the natural environment. This field of metaproteomics is

extremely new with the first ever MS-based metaproteomics study conducted in
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2005 [215].

5.5 Conclusions

In conclusion, by modifying the ambient pH, releasing elements and sequestering
phosphorus, rocks impose upon cells a multiple stress extreme environment that
influences cell growth and requires the up and down-regulation of a diverse suite
of proteins. The use of label-free quantitative proteomics has helped capture
the diversity of this response and highlights the complex array of physiological
responses that micro-organisms elicit in response to rock environments. It
also demonstrates that a comprehensive understanding of the chemistry of the
environment must be coupled with detailed knowledge of microbial nutrient and
stress responses, if we are to truly understand the factors that drive the ability
of micro-organisms to colonise and actively persist within rock environments.
More broadly, this study highlights the need to quantify the subtle complexities
of microbial interactions with their environment. This cannot be achieved on a
taxa or genome level alone but must also look to the proteome to gain a complete

picture of microbial responses to environmental changes.
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Chapter 6

Proteome Response to Single and

Multiple Nutrient Deficiency

6.1 Introduction

The previous chapter described how rocks can act as an alternative source of
nutrients for bacteria. However it also shows that rocks themselves can induce
nutrient stress. Nutrient limitation is an important stress in the biosphere and
influences processes as diverse as crop yield [216], bioremediation efficiency [113]
and ocean primary productivity [I18]. Furthermore, rock habitats are typically
nutrient limited and thus the micro-organisms rely heavily on the leaching of
elements from the rocks themselves [74, [112].

Almost all proteomics studies on nutrient limitation in micro-organisms focus on
limitation by a single nutrient [122-124]. This is despite studies showing that,
in the natural environment, multiple nutrients are often limiting (See Chapter
2, e.g. [I11, IT4HIT6]. In the mathematical modelling community, debate has
existed for many years on the most accurate way to represent multiple limiting

substrates when modelling microbial nutrient limitation. Some argue that the
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effect of multiple limiting substrates will be multiplicative, where the limitation
of two elements is worse than the additive effect of each element on growth.
Others argue that growth with multiple limiting substrates follows “Liebig’s law
of the minimum” and only the most limiting nutrient will influence the growth
rate. Indeed, to this day, the approach adopted in models of microbial growth is
simply related to which side of the debate the researcher falls on. For example,
Huisman et al., [217] follow Liebig’s law in their model of primary productivity
in the oceans and Bethke et al., [218] use multiplicative growth kinetics in their
model of microbial zoning in groundwater. Therefore, an experiment which could
demonstrate that growth under multiple limiting substrates followed either of
these approaches would be very valuable to modelling efforts.

By understanding the cellular response to multiple limiting nutrients we can gain
some fresh insight into this problem, as we will be able to observe directly which
stresses the organism is responding to, and the relative severity of each element
stress. This chapter characterises the changes in the proteome of C. metallidurans
CH34 (discussed in Chapter 5) in response to dual limitation by iron-phosphorus,
iron-magnesium and magnesium-iron, and compares this to the proteome of cells
grown under single limitation. These are three key elements for microbial growth
and are discussed later in this section.

These experiments reveal the complex influence dual limitation of these elements
has on the physiology of microbial cells. In doing so, we gain fresh insight into
the old problem of multiple nutrient limitation and expand our understanding of
microbial nutrient stress response capabilities in the environment.

The three elements chosen for this study are particularly interesting with regards
to their environmental and microbial importance. Below, each element is

discussed in turn.
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Iron

Iron is the fourth most abundant element in the Earth’s crust and is essential for
almost all micro-organisms [42] [59]. Many enzymes contain iron in their redox
centres making iron a key element in a vast array of metabolic processes such as
respiration, DNA synthesis and the synthesis of metabolites [59)].

Despite this importance, iron demand is typically higher than available supply
in aerobic environments [42]. Indeed, iron is a key limiting nutrient in most
of the world’s oceans [116], 219, 220]. One of the main reasons for this is that
micro-organisms evolved to use iron early in Earth history when the atmosphere
was anoxic. The anoxic Earth contained abundant iron in its soluble, reduced
Fe?* redox state which can be readily taken up by cells. The atmosphere became
oxygenated around 2.4 billion years ago, after which iron was mostly available in

its oxidised, insoluble Fe3" state [221].

Phosphorus

Phosphorus is a constituent of key cellular components such as membrane
lipids and nucleic acids, making it essential for the fundamental structure of
cells. Additionally, phosphorus is required for phosphorylation, one of the
primary methods of cell signalling, and for production of ATP, the energy
storage molecule of all life [I30]. The high requirement for phosphorus combines
with low environmental availability to make phosphorus deficiency an important
environmental stress [222].

Low terrestrial environmental concentrations of phosphorus are caused, in part,
by the reaction of phosphorus with mineral surfaces as observed in the previous
chapter. However, phosphorus in terrestrial environments is supplied primarily
from rock weathering, and thus phosphorus bioavailability is closely tied to this
process [222, 223]. This also means that an environment starts with a fixed

complement of phosphorus which is difficult to replace if even small amounts are

118



6.2. METHODS

lost e.g. from run-off [223]. Phosphorus limitation is also a key factor limiting

ocean primary productivity [224-22§].

Magnesium

Magnesium stress is less well studied than iron or phosphorus stress. However,
magnesium is the second most abundant cation in prokaryotic cells [229] and is
essential for numerous key cellular processes such as ATP utilisation, genome
stability and maintenance of membranes and ribosomes [60]. Furthermore,
an estimated 16% of all microbial enzymes use magnesium as a cofactor [61].
This importance is reflected in experiments in the previous chapter which show
complete growth inhibition of C. metallidurans when no magnesium is added to

the medium.

6.2 Methods

6.2.1 Experimental Overview

This section presents a broad overview of the experimental strategy, before going
on to discuss the methods in more detail in the rest of the section. The aim of this
chapter is to understand the differences between the microbial response to single
and multiple nutrient limitation. First, growth experiments were conducted to
identify concentrations of nutrients which limit bacterial growth rate, on their
own and in combination with another nutrient. Proteomics analysis was then
conducted on sets of experiments consisting of: cells limited by nutrient A only,
cells limited by nutrient B only and cells simultaneously limited by nutrients A

and B. An overview of the experimental strategy is provided in Figure [6.1
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6.2. METHODS

Preliminary growth experiments were required because, in order to investigate
limitation by combinations of nutrients, it is important to first ensure that the
individual nutrient concentrations we are going to test are in fact, limiting. By
limiting, I mean that the concentration chosen results in a growth rate that
is lower than the growth rate in optimal media. In the optimal media, the
concentration of all nutrients is in the “saturated” range i.e. any further increase
in nutrient will not result in further increase in growth rate. In order to determine
limiting concentration ranges for each element, simple growth experiments were
first conducted by testing 9 concentrations of nutrient, for iron, phosphorus and
magnesium, ranging from none to the concentration in the optimal media.

For reasons of cost, only one set of experiments for each combination (phos-
phorus/iron, magnesium/phosphorus or iron/magnesium) could be analysed
with proteomics. Therefore, it was decided that priority should be given to
combinations of concentrations in which both elements had an influence on growth
rate i.e. where the growth rate in the co-limited culture was lower than in either
of the single-limited cultures.

A large number of growth experiments had to be run to identify suitable concen-
trations for each combination. Firstly, five (of the original nine) concentrations of
each nutrient tested in the first experiment were chosen for multiple stress growth
experiments. Each of the five concentrations of one element were combined with
each of the five concentrations of the other element. For example, magnesium
concentration 1 was paired with phosphorus 1 and phosphorus 2 and phosphorus
3, and so on, such that all possible combinations were tested. However, these
initial experiments did not identify any combination in which the growth rate was
lower in the co-limited condition than both of the single limitation conditions.
Additional combinations were tested and, eventually, suitable concentration
combinations for proteomics were identified.

For the multiple limitation proteomics experiments three treatments were
prepared for each combination: one limited by nutrient A, one limited by nutrient

B and one where both nutrients were in the limiting range (the co-limited
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treatment). Additionally, cells grown in optimal media were used as a control
for all of the experiments. Cells were harvested and the proteome was analysed
for each treatment.

In the results section later in this chapter, I present the results of the
proteome analysis of the single-limited treatments before presenting the co-limited
treatments so as to provide a good base understanding of the effect of each element
on the proteome. The single-limitation descriptions are expanded to include
comparisons of different severities of phosphorus and iron stress. This is made
possible because the concentrations of phosphorus chosen for proteomics analysis
for the iron—phosphorus and magnesium—phosphorus combinations were different,
thus the phosphorus-limited treatment from the Fe-P set and phosphorus-limited
treatment from the P-Mg set can be compared to each other in order to assess the
effect of different severities of phosphorus stress on the proteome. Comparison
between different severities of iron-limited conditions is also conducted for iron
for the same reason.

In each of the sets which included magnesium (iron—magnesium and phosphorus—
magnesium), the concentration of magnesium deemed most suitable (i.e. which
resulted in a co-limited culture when used in combination with the other element)
was the same for both experiments. Therefore, it was not possible to analyse
different severities of magnesium stress.

Finally, in the second results section of this chapter, I compare the proteome
profile of the co-limited treatment to its corresponding single-limited treatments

via a combination of statistical and functional analysis.

6.2.2 Growth Under Single Nutrient Stress

This section describes the methods used for the single nutrient stress growth
experiments (Figure[6.1]). As discussed in Chapter 3, C. metallidurans is routinely
cultured in Tris Salts Minimal Medium with 0.2% w/v sodium gluconate [154].
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Table 6.1  Concentrations used for single element depletion experiments

Nutrient | Concentration

P 450 225 112 56 28 14 7 35 0
pMopM oM M M M M M M

Mg 1.97 984 492 246 123 61 31 15 O
mM M M M M M M M M

Fe 31 15 8 4 2 969 434 242 0
pM oM o pM M pM nM oM oM oM

For nutrient stress experiments, medium without added phosphorus, iron or
magnesium was used as the base medium. The pH of this base medium was
adjusted to pH 7 with 1M NaOH and autoclaved at 121°C for 20 minutes.
Thirty millilitres of sterile base medium was added to acid—washed, sterile,
polymethylpentene flasks.

Separately, stocks of 2% w/v sodium phosphate dibasic dihydrate, 0.0502%
w/v iron (III) chloride and 4% w/v magnesium chloride hexahydrate were filter
sterilised. A concentration range was generated by creating a 2-fold dilution
series of these stock solutions. These diluted stocks were added to each flask
to the concentrations displayed in Table [6.1] The maximum concentrations
were: 450 uM Na,HPO,4.2H50, 1.97 mM MgCl;.6H,0O and 31 uM FeCls. These
maximum concentrations are double those suggested for the standard MM284
growth medium to ensure growth rate saturation at the maximum concentration

(see Chapter 3).

Before the experiment, cells were rejuvenated from frozen stocks in optimal
medium at 30°C and shaken at 90 rpm for 3 days. Thirty microlitres of culture
was transferred to fresh medium and grown in the same conditions until cells
reached the early stationary phase (ODggonm > 1.1, approximately 46 hours), 10
ml of culture was transferred to a fresh tube, centrifuged and re-suspended in
the base (no P/Mg/Fe) medium. Thirty microlitres of washed cells were then
transferred to each experimental flask (starting cell concentration approximately

1x10® CFU ml~1).
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Each nutrient concentration was tested in duplicate. This resulted in 72
concurrent experiments. Triplicate experiments were out with the culturing
capabilities of the lab as large (mimimum 10 ml) culture volumes were required
for proteomics analysis and thus running automated experiments in 96 well
microplates was not feasible.

Growth rates were monitored by optical density (absorbance at OD 600 nm) by
transfer of 100 pl culture from the culture flasks to a 96 well microplate. The
path length (the distance through which the optical density is measured i.e. from
the top to the bottom of the liquid) was automatically corrected to 1 cm by the
plate reader software.

Growth rates in each experiment were calculated by Timothy Bush (PhD student,
School of Physics and Astronomy, University of Edinburgh) by performing a linear
regression on the natural logarithm of the average optical density measurements

taken in the exponential growth phase.

6.2.3 Growth Under Multiple Nutrient Stresses

Initial Experiments

Growth experiments were conducted to assess the effect of multiple nutrient
stress on the growth of C. metallidurans and explore the best parameters to
use for the proteomics experiments. The nutrient combinations tested were:
iron and phosphorus, magnesium and phosphorus, magnesium and iron. Five
concentrations for each element were selected for multiple deficiency experiments,
based on the results of the single nutrient deficiency experiments and with the aim
of sampling growth profiles for each element from no growth to optimal growth
rate. Tables [6.2] and show the combinations of concentrations used in
each experiment. For these experiments I have returned to using the element

concentration in the original media recipe for iron and magnesium (see Chapter
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3) as this concentration was found to be adequate for optimal growth rate in the
single-limitation growth experiments. For phosphorus I continued to use double

the concentration in the original media recipe.
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Additional Concentrations

Despite testing a large number of concentrations, these initial experiments did
not yield any combinations where low levels of two nutrients reduced the growth-
rate more than low levels of one nutrient alone, as was required for proteomics
analysis. The was true for all of the co-limiting conditions tested (ie. Fe-Mg, P-
Mg or Fe-P). Therefore, a small number of additional combinations were tested
separately to attempt to find combinations where both elements had an effect
on the growth rate. The additional concentrations for iron and phosphorus are
listed in Table[6.5] Additional concentrations for iron and magnesium are listed
in Table[6.6] Additional concentrations for magnesium and phosphorus are listed
in Table 6.7

Based on these additional experiments, one combination was selected for
proteomics analysis. These were: 56 uM phosphorus and 15 M magnesium,

434 nM iron and 15 pM magnesium, 969 nM iron and 112 gM phosphorus.
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Table 6.5  Additional iron and phosphorus combinations tested for multiple
element stress experiments. Concentrations of all other elements was
optimal.

450 pM 969 nM
225 uM 969 nM
112 pM 969 nM
56 M 969 nM
450 uM 434 nM
225 uM 434 nM
112 pM 434 nM
56 uM 434 nM

Table 6.6  Additional iron and magnesium combinations used for multiple
element stress experiments. Concentrations of all other elements was
optimal.

Fe Mg
61 uM 969 nM
15 pM 969 nM
61 uM 434 nM
15 uM 434 nM

Table 6.7  Additional phosphorus and magnesium combinations used for
multiple element stress experiments. Concentrations of all other
elements was optimal.

P Mg
225 pM 984 uM
225 uM 61 uM
225 uM 15 pM
56 pM 984 pM
56 UM 61 uM
56 M 15 uM

129



6.2. METHODS

6.2.4 Protein Expression

Culturing and Cell Harvest

Protein abundances were determined for cells grown under different single and
multiple nutrient stress conditions. Three experiments were conducted for each
set of elements: low concentrations of each of the two elements separately (e.g
iron alone; phosphorus alone) and deficiency of both elements simultaneously
(e.g. low concentrations of both iron and phosphorus). Concentrations were
chosen for proteomics based on the results of the additional growth experiments
to select the condition where the co-limited culture had less growth than either
single limited culture. Each experiment was prepared as before (Section 2.1) and
treatments were tested in triplicate. Growth was monitored by optical density.
When cultures reached mid-exponential phase, 5 ml culture was transferred to a
15 ml falcon tube and centrifuged. The supernatant was discarded and the cell
pellet frozen at —80°C. Cells were not washed as there is no interference of the
medium with the protein analysis and this allows minimal disruption to the cells.
As the same concentration of magnesium was used in both the P-Mg and Fe-Mg
sets, the same low magnesium—only triplicate was used as the “low magnesium”

condition in both sets (see Figure [6.1).

Protein Extraction and Peptide Digest

To extract proteins, 200 ul 8M filter sterilised Urea was added to the cell pellet
and left for 1 hour with regular vortexing and sonicating until particulate material
was dissolved. Protein concentration was measured by Bradford assay [199]. One
hundred micrograms of protein was transferred from each sample to a fresh tube
for protease digestion. This was made up to 250 pl with 8 M Urea. Twenty
five microlitres of 1M ammonium bicarbonate and 25 pul DTT were added and

the solution left to stand for 30 minutes. Twenty five microlitres 500 mM
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iodoacetamide and 670 ul HyO was then added. Five micrograms (5 ul of 1
pg pl7t) trypsin was added and the digest left to stand overnight.
Peptides were purified using Bond Elut C18 columns (Agilent, UK). Purified

peptides were vacuum dried and stored at —20°C until analysis.

Mass Spectrometry

Peptides were analysed, as in Chapter 5, on a reverse phase microcolumn using
a 140 minute gradient (controlled by a binary HPLC system 1200, Agilent, UK)
coupled to a hybrid LTQ-Orbitrap XL mass spectrometer (Thermo-Fisher, UK)
in data dependent mode, controlled through Xcalibur 2.0.7 software. Eight

microliters of sample in loading buffer was injected.

Data Analysis

Peak picking and quantification were performed using Progenesis LC-MS (version
4.0, Nonlinear Dynamics, UK). Peptides (charges 2%, 3* and 4T) were identified
by MASCOT (Matrix sciences, UK, version 2.3) searches of MS/MS data against
the NCBI protein database subset [169] for Cupriavidus metallidurans (6766 se-
quences), using a trypsin/p enzyme restriction with a maximum missed-cut value
of 2. Variable methionine oxidation and fixed cysteine carbamidomethylation
were used in all searches.

Progenesis LC-MS normalisation used in the previous chapter was found to
be inadequate and a more stringent manual normalisation was conducted.
Each raw protein intensity was multiplied by 1 x 10® and divided by the
sum of the total raw protein intensities. P-values on fold changes between
experimental condition and control were determined by one-way ANOVA on
arcsinh-transformed protein intensities. The arcsinh transformation is not linear
at the low original abundances hence the multiplication of all raw intensities by 1 x

108. Differentially expressed proteins were considered significant with an average
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intensity ratio of at least two-fold and a P-value less than 0.05 if detected with
two or more peptides per protein with a MASCOT identification score greater

than 20.

Comparison of protein profiles

A Bray-Curtis similarity matrix (see Chapter 3) based on the protein expression
data was analysed using the PRIMER statistical package (version 6.1.13) with
the PERMANOVA+ add-on (version 1.0.3) [200, 201] by Dr. J. Harrison.
Following non-metric multidimensional scaling ordination, post-hoc pairwise
comparisons were performed by 2-way nested permutational analysis of variance
(PERMANOVA; [I71]) with “type of deficiency” as the factor. P values were

derived by a Monte Carlo approach due to low numbers of permutations [201].

Functional annotation

Once identification and quantification has been conducted and differentially
regulated proteins highlighted, the biological function of proteins can then be
identified. Annotation of function, and hence identification of important cellular
responses, relies on previous annotation efforts from other authors. Protein
functions in this thesis were primarily assigned using expert manual annotation
of the C. metallidurans CH34 genome, available on the MaGe platform [172].
This database contains information on the protein name, description and protein
functions.

This chapter relies heavily on the hierarchical approach to functional annotation
adopted by the authors of the MaGe database [I72]. In their annotation,
specific processes are nested under high level processes e.g the high-level “Cellular
process” group contains numerous sub-functions such as motility and adaptation
to stress. Table lists the high-level biological functions used in this chapter

and gives examples of sub-functions contained within them.
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Table 6.8

Groups of biological functions assigned to each protein and examples

of sub-functions contained within that group

Functional group

Sub-functions

Amino acid biosynthesis and

metabolism

synthesis, catabolism, degradation and uti-
lization of amino acids

Purine, pyrimidines, nucleosides and
nucleotides

proteins involved in synthesis of ribonu-
cleotides, nulceotide and nucleoside salvage
and interconversions, sugar-nucleotide synthe-
sis and conversion

Fatty acid and

metabolism

phospholipid

biosynthesis and degradation of fatty acids
and phospholipids

Biosynthesis of cofactors, prosthetic

groups and carriers

biosynthesis of e.g. biotin, folic acid, heme,
molybdopterin, glutathione or siderophores

Central intermediary metabolism

metabolism of phosphorus compounds, sulfur
and nitrogen, one-carbon metabolism, elec-
tron carrier regeneration, nitrogen fixation

Energy metabolism

aerobic/anaerobic respiration, electron trans-
port, glycolysis/gluconeogenesis, TCA cycle,
synthesis and degradation of polysaccha-
rides, pentose phosphate pathway, Entner-
Doudoroff pathway

Transport and binding proteins

proteins which transport any substance across
the membrane e.g cations, amino acids,
peptides, carbohydrates etc

DNA metabolism

DNA replication, recombination, repair,
degradation and chromosome-associated pro-
teins

Transcription

degradation of RNA, DNA-dependent RNA
polymerase, transcription factors and RNA
processing

Protein synthesis

tRNA aminoacylation, ribosomal proteins,
translation factors, tRNA/rRNA base modi-
fications

Protein fate

protein/peptide secretion, trafficking and
degradation; protein modification, repair,
folding and stabilisation

Regulation

regulation of gene expression at transcription-,
post-transcriptional- or DNA-level

Signal transduction

proteins which translate extracellular signal to
cell response, e.g two-component systems

Cell envelope

surface structures, biosynthesis and degrada-
tion of peptidoglycan, polysaccharides and
lipopolysaccharides

Cellular processes

cell division, motility, detoxification, adhesion,
adaptation to stress

Biological process

construction of biomass, control, energy man-
agement, replication, respiration, scavenging,
shape, storage

Mobile and extrachromosomal element
functions

plasmid, prophage or transposon functions

Unassigned

function unknown

133




6.3. RESULTS: PROTEOME CHANGES UNDER SINGLE NUTRIENT
STRESS

For ease of representation, high level functional associations are used for the
plots used in this chapter and further detail provided in the text. In the MaGe
database, 2 lines of evidence can be used to assign function: biological function
and role. The biological function and role of a protein in a cell are manually
assigned by the authors of the MaGe project based on both experimental evidence
and similarity to genes with known functions in other organisms.

Here the biological function is presented where available. If no biological function
is available I have assigned it to a functional category based on the available role
assignment. These are assigned manually by the person annotating the genome
and, at the high levels, are very similar. The functional role assignments are
typically more specific than the biological function assignments. Proteins missing

all of this information are categorised as “Unassigned”.

6.3 Results: Proteome Changes Under Single

Nutrient Stress

Before understanding how dual limitation influences the proteome, we must
first characterise the effects of each element individually. In this section I
separately discuss the response of C. metallidurans CH34 to iron, phosphorus
and magnesium stress. For each element, I first provide a brief overview of the
capabilities C. metallidurans CH34 is known to possess to cope with this stress,
in order to predict what we might expect to observe. The changes in growth
which occur as a result of varying concentrations of the element of interest is
then shown. I then outline the differences in the proteome between limited and
non-limited cells. For iron and phosphorus, two different concentrations were
tested which also allows comparison of the proteome at two different severities of
iron or phosphorus limitation.

These results form the basis of the analysis in the next section where I will then
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compare the proteome of cells grown under dual limitation to the proteome of
cells grown under single limitation. Full lists of proteins differentially regulated

under each condition can be found in Appendix B.

6.3.1 Response to Iron Stress

Known Capabilities for Response to Iron Stress

[ron exists in a huge variety of mineral forms in nature but it is taken up directly
in two forms: Fe?" ions or heme. Heme is an organic compound, consisting of an
Fe?* ion in the centre of a porphyrin ring. In cells, heme is typically contained
within hemoproteins. The most well-known hemoprotein is hemoglobin which is
what forms the red pigment in blood. In micro-organisms, heme proteins are
typically associated with redox enzymes such as cytochromes. Fe?* is highly
insoluble at circum-neutral pH and can only be taken up into cells after being
bound to organic compounds called siderophores (discussed below).

C. metallidurans CH34 has a number of tools for coping with iron stress which

have been elucidated from the genome sequence [172]:

1) Production of siderophores The C. metallidurans genome contains a set
of genes for synthesis and uptake of siderophores. These are small iron-
binding molecules, secreted by bacteria, to bind insoluble Fe3* and allow
uptake into the cell. C. metallidurans produces an uncommon siderophore,

staphyloferrin B, that was first identified in this organism [230].

2) Uptake of Fe?" and heme This organism also possesses genes for the
uptake of Fe?* and heme [172]. The heme uptake proteins utilise free
heme from the extracellular environment which is released when dead cells

degrade [231], 232].
3) Regulation by Fur Expression of the siderophore and iron uptake response
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is tightly regulated by the Fur (ferric uptake regulation) protein. This
is a “negative transcription factor regulator”. When iron concentrations
are high, the Fur protein is expressed and represses transcription of genes
for siderophore production. When iron concentrations are low, Fur is not
expressed and siderophore production proceeds [I72], 230]. In bacteria, Fur
regulation of siderophore synthesis is common and the protein may also be

involved in wider regulation in the cell [59, 233].

Based on the known capabilities of C. metallidurans CH34 with regards to
responses to iron stress, it could be expected that abundance of siderophores and
iron transporters would increase in response to low iron conditions and that this
will be Fur-regulated. Decreased abundance of Fur proteins would be expected

at low iron.

Growth Response to Variations in Iron Concentration

Figure [6.2] shows the growth curves for C. metallidurans with different concen-
trations of iron (FeCls). This shows that growth limitation does not occur at
iron concentrations above 969 nM. Even when no iron is added, some growth is
still observed. This is consistent with observations in the previous chapter which

showed some growth in medium with no iron added, or detected by ICP-OES.
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Figure 6.2  Growth of C. metallidurans CH34 with varying concentrations of
iron

Protein Expression Under Iron Stress

Proteome changes in response to two different severities of iron stress were
investigated: 969 nM and 434 nM. This section compares the protein abundances
in each of these two iron-limited concentrations to the protein abundances in
cells grown with optimal iron (15 uM). For simplicity, the 969 nM iron condition
will be subsequently referred to as “low iron” and the 434 nM iron condition as
“lowest iron”.

Each condition had a similar number of up-regulated proteins: 68 for “low iron”,

74 for “lowest iron”. However, the “lowest iron” condition had more down-
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regulated proteins: 103 compared to 68 for “low iron”. Forty-three proteins were
up-regulated in both conditions and forty-one down-regulated in both conditions,

relative to the control.

Up-regulated Down-regulated
< > € r
low Fe lowest Fe low Fe lowest Fe
100%
transporter transporter
80%
60%
40% CIZVIDE enzyme
enzyme
20% enzyme
0%
n=68 n=74 n=68 n=103
Ecarrier mcell process
Oenzyme Ofactor
® lipoprotein @membrane
B ORF of unknown function — ®Eregulator
mreceptor W structure

Figure 6.3 Type of proteins differentially regulated under “low” and “lowest”
iron concentrations reveals coarse grain changes in abundance
of transporters and cell structures under both severities of iron
limitation. See Chapter 3 for description of classes.

Figure [6.3 shows the types of proteins which are differentially regulated in each
condition. In addition to differential regulation of numerous enzymes in both
conditions, an up-regulation of transporters and down-regulation of structural
proteins is observed to be a key feature of this type of limitation. Despite different
numbers of differentially regulated proteins, the proportion of each type of protein
is very similar in both conditions. Descriptions of each type class can be found

in Chapter 3.
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Figure shows the biological functions of proteins up- and down-regulated in

both iron concentrations. A group of proteins classified to be involved in the
“biosynthesis of cofactors, prosthetic groups and carriers” are up-regulated in
both conditions as are proteins involved in “transport”. Within these groups are
proteins for siderophore synthesis, siderophore uptake, heme uptake and Fe?*

transport. One Fur-like ferric uptake regulator is also up-regulated.
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Figure 6.5 Fold change of siderophore synthesis/uptake and iron uptake
proteins in “low iron” and “lowest iron” conditions. A) Fe?* uptake.
B) Regulation. C) Siderophore synthesis. D) Siderophore uptake.
E) Heme uptake. * indicates proteins which meet strict significance
criteria outlined in Chapter 3 and can be considered differentially
regulated compared to the optimal control cultures. Fold change
greater than 1 is up-regulated, less than 1 is down-regulated.

Fold change of proteins known to be associated with iron uptake are shown in
Figure . This emphasises that the typical iron uptake response (increase in
siderophore synthesis/uptake, Fe?™ uptake and heme uptake) has been induced
in both conditions. Siderophore synthesis proteins are slightly more abundant in
“low iron” conditions than in “lowest iron”. However, SbnA is the only protein
which would meet the criteria for significant up-regulation in “low iron” compared
to “lowest iron” (2.8 fold higher at “low iron” compared to “lowest iron”, P =

0.018). Therefore, expression of proteins for iron uptake is not higher at the
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“lowest iron” concentration compared to “low iron” as might be expected.

Compared to the control, 68 proteins were down-regulated in the “low iron”
concentration whereas 103 were down-regulated in the “lowest iron” condition.
Forty-one of these down-regulated proteins are common to both of the conditions.
The largest commonly down-regulated functional groups are associated with
transport and energy metabolism (Figure . Most of these are iron—binding
enzymes involved in electron transport and are listed in Table 6.9 The “lowest
iron” condition contains an additional 14 down-regulated iron-binding proteins

which are not down-regulated in the “low iron” condition (Table [6.10]).
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Table 6.10 Iron-containing enzymes down-regulated only in the “lowest iron”
condition
Locus Tag Protein Description Fold P-value
change
Rmet_0061  LipA Lipoate synthase 0.45 6.7E-03
Rmet 0931 NuoE NADH dehydrogenase chain E 0.21 5.0E-03
Rmet_1146  EtfD Electron transfer flavoprotein-ubiquinone oxi-  0.43 4.0E-05
doreductase
Rmet_1206  YkgE Putative hydroxyacid oxidoreductase (Fe-S 0.09 6.4E-03
centre)
Rmet_1297  HoxG HoxG hydrogenase 1, large subunit 0.37 7.9E-05
Rmet_1524  HoxY NAD-reducing hydrogenase delta subunit 0.47 2.3E-02
Rmet 2475  LeuC 3-isopropylmalate isomerase subunit, dehy- 0.36 2.1E-04
dratase component
Rmet_ 2483  SdhB Succinate dehydrogenase, FeS subunit 0.43 1.3E-03
Rmet 2747 HemY Uncharacterized enzyme of heme biosynthesis 0.10 1.4E-04
Rmet_3228  PetC Cytochrome cl precursor (transmembrane 0.48 2.2E-04
protein)
Rmet_3284 Cytochrome c4 0.35 6.5E-03
Rmet_ 3419  SoxX Sulfur oxidation protein 0.19 6.1E-03
Rmet_3420  SoxA Sulfur oxidation protein 0.50 2.5E-03
Rmet_4943 Putative iron-containing alcohol dehydroge- 0.47 2.8E-02
nase

Summary and Interpretation of Iron Stress Response

Three main observations about the response of C. metallidurans to iron stress

have been highlighted in these experiments:

1) Up-regulation of iron uptake proteins Firstly, the comparison of two
severities of iron deficiency indicate that induction of siderophore synthesis
and uptake, heme uptake and Fe?* uptake occurs at both of the iron
concentrations tested (“lowest iron” = 434 nM, “low iron” = 969 nM).
However, the abundance of these proteins was slightly higher in the “low
iron“ condition (Figure, despite a lower growth rate at the “lowest iron”
(Figure . This suggests that, below 969 nM, the siderophore/iron uptake
response has reached a maximum abundance and cannot be further up-
regulated in response to reduced iron availability. Indeed, the “lowest iron”

condition had slightly less siderophore proteins. Although the difference
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in abundance in not significantly higher in the “low iron” conditions, this
small difference between the “low” and “lowest” iron condition could be
a result of a general lack of energy available to form siderophores at the

“lowest iron”.

2) Induction of an iron-sparing response If it is the case that the iron
uptake response cannot be further up-regulated to respond to lower
concentrations of iron, an alternative response is required. The results
presented here show decreased abundance of iron-containing enzymes in
response to iron stress. These are mostly related to electron transport and
energy metabolism. Furthermore, the “lowest iron” condition shows down-
regulation of an additional fourteen iron-binding proteins which are not
differentially regulated in the “low iron” condition. This suggests that there
may be a hierarchical down-regulation of iron-binding enzymes depending
on the severity of iron stress. This iron sparing response is typical of that
described for E. coli and Bacillus subtilis where small regulatory RNAs
(controlled by Fur) enhance degradation of iron-containing proteins [234]
in response to iron stress. Together these results suggest iron-sparing can
be increased in response to increasing severity of iron deficiency even if
iron uptake cannot. The mechanisms which facilitate iron-sparing in this

organism should be further investigated.

3) Suggestion of opposite roles for different Fur proteins Two copies of
the fur (ferric uptake regulator) gene exist in the C. metallidurans genome,
annotated as furl and fur2. These results strongly suggest the two copies
of this gene have different functions (Figure . Expression of Fur2
is consistent with a typical ferric uptake regulator (decreased expression
as siderophore expression is increased). However, Furl shows increased
expression at low iron. This suggests that Fur2 acts as a typical negative
regulator of siderophore synthesis and Furl may have a positive role in

siderophore regulation. This information could be used to update the
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genome information for these genes.

The proteins up-regulated in response to iron stress are consistent with the
known capabilities of C. metallidurans CH34 discussed at the beginning of this
section. However, the down-regulation of numerous iron-binding enzymes in
response to iron-limitation has not been predicted for this organism before. The
down-regulation of iron-binding proteins is consistent with mechanisms of “iron-

sparing” only reported in other organisms e.g. B. subtilis [234].

6.3.2 Response to Phosphorus Stress

Known Capabilities for Response to Phosphorus Stress

The response of the C. metallidurans proteome to phosphorus deficiency has
not been tested. However, the genome of the organism is very well understood.
By understanding the genes possessed by this organism to tolerate phosphorus
stress, we can predict what we might expect to happen to the proteome under
phosphorus limitation [172]. The genome study suggests that C. metallidurans
has the capability to uptake phosphorus in diverse forms. Phosphates (PO}")
are used directly in cellular processes and are taken up via the phosphate specific
transport system (pstSCAB-phoU). Alternatively C. metallidurans can uptake
and degrade organo—phosphonate compounds via the phn system. Organo—
phosphonates are a diverse group of organic compounds which contain a C-
P bond. C. metallidurans can also oxidise reduced phosphite compounds to
phosphate, the latter of which is used as a phosphorus source. This is done via
the pttABCDE genes [235].

The alkaline phosphatase genes phoA1, phoA2 and phoD are also present in
the genome. These remove phosphate groups from molecules and can aid
in intracellular phosphate scavenging and enabling access to the extracellular

dissolved organic phosphorus pool [236]. These are often observed to be up-
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regulated under phosphorus stress [130].

In this organism, as in more well-characterised organisms such as FE.coli [130],
extracellular phosphate concentrations are sensed by a two-component regulator
consisting of components PhoB and PhoR. PhoR is an inner membrane histidine
kinase and PhoB is a DNA-binding response regulator [141]. When PhoR senses
low phosphorus, it phosphorylates (adds a phosphate, PO}, group to) PhoB.
When PhoB is phosphorylated, genes related to uptake and metabolism of various
phosphorus compounds are transcribed. At high phosphorus concentrations,
PhoR controls the activity of PhoB by prevention of phosphorylation (inhibition)
or dephosphorylation of Phospho—PhoB (deactivation) [I30].

Growth Response to Variations in Phosphorus Concentrations

Figure shows the growth curves for C. metallidurans grown with different
concentrations of phosphorus (NasHPO4.2H50). These experiments achieved
good coverage of different growth ranges from maximal to almost zero at the

lowest phosphorus concentration.
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Figure 6.6  Growth of C. metallidurans CH34 with varying concentrations of
phosphorus

Protein Expression Under Phosphorus Stress

The two phosphorus concentrations tested were 56 puM and 112 pM. This
section compares the protein abundances of these two concentrations to the
protein abundances of cells grown under phosphorus replete conditions (450 uM).
For simplicity, the 112 uM condition will be subsequently referred to as “low
phosphorus” and the 56 M phosphorus condition as “lowest phosphorus”.

Compared to the phosphorus-replete control, cells grown in the “low phosphorus”
condition had 115 up-regulated and 86 down-regulated proteins whilst cells

grown in the “lowest phosphorus” condition had 165 up-regulated proteins and
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209 down-regulated proteins. Many of the proteins differentially regulated
are common to both phosphorus-limited conditions. This includes ninety-one
proteins up-regulated across both conditions and 61 down-regulated in both

conditions.
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Figure 6.7 Types of proteins up- or down-regulated under “low” or “lowest”
phosphorus concentrations

Overall patterns in the types of proteins differentially expressed is shown in
Figure The profiles of each phosphorus deficient condition are very similar
despite different absolute protein numbers. Both show a high proportion of
enzymes and unknown products. Transporters form the third largest group of
up-regulated proteins (9% of “low” phosphorus and 8% of “lowest” phosphorus).
Structural components and factors comprise a large proportion of the down-

regulated response.
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Figure displays the functions of proteins up/down-regulated at both phospho-
rus concentrations. This plot displays that a diverse array of protein functions
were changed in response to phosphorus limitation in both conditions. Key

features of this response are:

1) Up-regulation of phosphorus metabolism: The “Phosphorus metabolism”
functional group contains proteins which facilitate transport of phosphates
and phosphonate from the extracellular environment into the cell. The

fold change of all detected phosphorus-related proteins in each condition is

shown in Figure[6.9

2) Up-regulation of oxidative stress responses: Proteins from the “cellu-
lar processes” function are observed in both up- and down-regulated
groups. The up-regulated cellular process proteins are associated with stress
responses. Four of these proteins are associated specifically with oxidative
stress. Oxidative stress occurs when there are more reactive oxygen species
(e.g. hydrogen peroxide) than the cell can adequately detoxify, ultimately
disrupting the redox balance in the cell. Up-regulated proteins include KatA
and KatG oxidative stress response proteins, and two proteins associated
with glutathione metabolism (Gst and GshB). Glutathione is involved in

detoxification during oxidative stress.

3) Down-regulation of protein synthesis: In the “low phosphorus” condi-
tions, 24 proteins associated with protein synthesis were down-regulated and
in the “lowest phosphorus”, 54 were down-regulated. Nineteen of these were
common to both conditions. This shows that down-regulation of protein
synthesis is a key feature of phosphorus deficiency. Many of the proteins
in this group are structural components of ribosomes, the protein-making

machines of the cell.

4) Down-regulation of biosynthesis and energy functions: Down-regulation

of proteins for synthesis of various biomolecules is particularly strong
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in the “lowest phosphorus” conditions. Down-regulated is observed in
proteins for: amino acid synthesis and metabolism (28), energy metabolism
(14), transcription (11), biosynthesis of cofactors, prosthetic groups and
carriers (11), and proteins for cell division (3). This is characteristic of an
extreme shut down of high energy consuming processes in the most severe
phosphorus-limiting condition such that, in simple terms, the cell makes

less and uses less energy.
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Figure 6.9  Fold change of known phosphorus-regulated proteins in cultures
grown in “low phosphorus” and “lowest phosphorus” compared to
cultures grown in optimal medium. Fold change greater than 1 is
up-regulated, less than 1 is down-regulated.

Summary and Interpretation of Phosphorus Stress Response

The proteins differentially regulated under phosphorus stress are consistent with
what we would expect from the known capabilities of C. metallidurans CH34
discussed at the beginning of this section. Low levels of phosphorus correlate with
increased expression of the phosphate specific transport system, phosphonate and

phosphite transport as well as phospholipases and phosphatases, representing an

151



6.3. RESULTS: PROTEOME CHANGES UNDER SINGLE NUTRIENT
STRESS

attempt by the cells to increase intracellular phosphorus supply.

At the most severe phosphorus limitation tested (“lowest phosphorus”), an
extreme shut-down of many cellular processes was observed, particularly proteins
associated with protein synthesis, energy metabolism and synthesis of amino
acids. The re-organisation of translational machinery under nutrient deficiency
is typical of that associated with the Stringent Response (see Chapter 2).
Particularly when the concomitant increase in proteins related to oxidative stress

responses is considered.

6.3.3 Response to Magnesium Stress

Known Capabilities for Response to Magnesium Stress

The C. metallidurans genome encodes a modest inventory of mechanisms to
transport magnesium into the cell. Magnesium is transported via three CorA
family proteins: CorAl, CorA2 and CorA3. CorA proteins probably regulate
intracellular magnesium concentrations via cytoplasmic gating domains which
cause the channel to open when magnesium is low [237]. Kirsten et al., (2011)
found that only CorAl was differentially regulated with varying magnesium
concentrations and suggest this is the primary protein used for magnesium uptake
in this organism. CorA2 and CorA3 are thought to be back up transporters [142].
It has been suggested that divalent metal deficiency in this organism may lead
to non-specific uptake of divalent metal ions [142] (Figure[6.10). Some organisms
co-ordinate uptake systems with efflux systems to form a “shunt” which is specific
for that metal. Divalent metal uptake in C. metallidurans is very non-specific,
occurring through non-specific channel proteins, and there is no evidence for
metal shunts. Thus, during divalent metal ion deficiency, increases in intracellular

concentrations of other metals may occur [142].

Other magnesium uptake proteins exist in other bacterial species but, as these
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extracellular Mg
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Zn  <—— {— Zn
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Figure 6.10  Schematic of the hypothesis of Kirsten et al., (2011). Magnesium
deficiency results in divalent metal eflux because magnesium
transport proteins (orange) are not specific to magnesium (pink).
During uptake of magnesium, these transporters also allow other
divalent cations into the cell e.g. zinc (purple) which may be toxic.
Efflux proteins (green) are thus required to export unwanted ions
back out of the cell to avoid toxic effects.

are not present in C. metallidurans they will not be discussed here.
Based on the known capabilities of C. metallidurans we may expect magnesium
deficiency to lead to changes in the abundance of CorA family proteins and

changes in metal transport.

Growth Response to Variations in Magnesium Concentrations

Figure shows the growth curves for C. metallidurans grown at different
magnesium concentrations (MgCly.6H20). These curves indicate that the require-
ment for magnesium is very low and that additional, lower concentrations will be
required to cover the full range of growth profiles between optimum magnesium

and no added magnesium. Very little growth was observed under no added
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Figure 6.11  Growth of C. metallidurans CH34 with varying concentrations of
magnesium

magnesium, consistent with the previous chapter.
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Protein Expression Under Magnesium Stress

Only one concentration of magnesium is tested in these experiments. In cells

grown at 15 puM magnesium, 47 proteins were up-regulated and 147 down-

regulated compared to the control (1.97 mM Mg).

The type of proteins up- and down-regulated at low magnesium are shown in

Figure Aside from the differential regulation of enzymes in both groups,

transporters are a key part of the up-regulated response.

Up-regulated

Down-regulated

100%
80%
— unknown
60% unknown
40%
enzyme
enzyme
20%
00/0 I S N ——
n=47 n=147
Ecarrier @cell process
Oenzyme Ofactor
mlipoprotein OORF of unknown function
mregulator mreceptor
m structure Otransporter
Figure 6.12  Types of proteins up- or down-regulated under magnesium limited

conditions. Reveals differential regulation of transporters and
structural proteins as well as numerous enzymes.

Figure [6.13] shows the biological functions differentially regulated under magne-

sium stress.
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Figure 6.13  Functions of proteins differentially regulated under magnesium
stress

A number of key features of can be highlighted from Figure [6.13

1) Magnesium transporters not detected: Surprisingly, none of the known
magnesium transporters in C. metallidurans were detected in this analysis.
Therefore, it is not possible to compare the abundances of magnesium

uptake proteins in each condition directly.

2) Divalent metal transporters up-regulated: Up-regulated transport pro-
teins in Figure |6.13] were observed and were primarily associated with
divalent metal cation eflux. These proteins are listed in Table [6.11] These
proteins facilitate transport of metals such as nickel, cobalt, zinc and
cadmium. Also up-regulated is the sigma factor RpoE, known to be up-

regulated in response to divalent metal ion stress in this organism [238].

3)Up-regulated phosphorus uptake: Another group of up-regulated proteins

are those involved in phosphorus uptake. These proteins are responsible for
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the transport of phosphate and phosphite.

4)Up-regulated stress response: Proteins representative of stress are up-
regulated. These include three proteins for detoxification, and regulation of
cell redox homeostasis. Also up-regulated is CstA, a known starvation—
induced protein [239] and PhcB required for synthesis of a cell to cell
communication molecule (3-OH-PAME) in a closely related organism

[172, 240].

5)Down-regulation of protein synthesis: The down-regulated proteins in-
cluded proteins associated with protein synthesis. These included 11
ribosomal proteins and ribosome maturation factor RimP involved in
ribosome biogenesis. Down-regulation of the house-keeping sigma factor
RpoD1, the primary sigma factor used during exponential growth, and

sigma factor RpoZ was also observed.

Table 6.11 Membrane transport proteins up-regulated under magnesium

deficiency
Label Gene Product Fold P-value
change
Rmet 1121  AcrD  Aminoglycoside/multidrug efflux system 7.0 1.5E-04

Rmet_5329 ZneA  Heavy metal cation tricomponent eflux pump 11.3 1.1E-04
Rmet_5330 ZneB  Membrane fusion protein heavy metal cation 20.6 4.3E-05
tricomponent efflux

Rmet_5408 Putative eflux outer membrane protein 55.7 2.2E-02

Rmet_5682 NimB Heavy metal cation tricomponent eflux mem- 5.3 3.0E-05
brane fusion protein

Rmet_5981 CzcB  Cation proton antiporter efflux system in- 5.3 3.5E-04
volved in Cd(IT), Zn(IT), Co(II) resistance

Rmet_ 6209 CnrB  Cation proton antiporter efflux system, in- 4.4 4.0E-04

volved in Co(IT)/Ni(II) resistance

Summary and Interpretation of Magnesium Stress Response

The up-regulation of divalent metal eflux under magnesium deficiency observed

here supports observations made by Kirsten et al., (2011). These authors
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measured increased intracellular zinc concentrations under conditions of mag-
nesium deficiency which led them to suggest a new hypothesis for how C.
metallidurans manages metal stress that they term the “worry-later approach”
(Figure [6.10). This suggests that, when uptake of one metal is increased, the
cell will inadvertently uptake similar metal cations which may be toxic. This is
a result of the fact that most metal uptake proteins have the ability to transport
numerous types of element. These unwanted metals must then be transported
back out of the cell. The up-regulation of divalent metal efflux proteins observed

here could be explained by such a mechanism.

The lack of detection of any of the known magnesium uptake proteins is
unfortunate and highlights an important limitation of proteomics approaches.
Whilst proteomics is excellent at capturing the complexity of a response, it
favours detection of the most abundant proteins because the most abundant
ions are selected for fragmentation. This means that low abundance features
will sometimes be missed. It is not clear from these results if magnesium uptake
proteins were not expressed in any condition, or if they were simply not detected

in all experiments.

6.4 Results: Proteome Changes Under Multiple

Nutrient Stress

The previous section showed that the limitation of one nutrient alone caused
very complex changes to the physiology of the cell. The following sections now
investigate the changes in the proteome when cells are exposed to deficiency of
two of these elements simultaneously. In each of these sections, I first compare the
growth rates of cells grown under single- and dual-limitation which were gained
from the “Additional experiments” described in the Methods section. These

concentrations were chosen for the proteome analysis as single limitation caused
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some decrease in growth rate, whilst co-limitation by both elements resulted in
further decreases in growth rate.

I then compare the proteome profiles in the co-limited treatment to the single-
limited treatments through a combination of multivariate statistical analysis and
identification of proteins which are commonly regulated between conditions.

I then explore the functions of the proteins differentially regulated under nutrient
co-limitation in order to identify the influence exerted on the co-limited treatment
from each of the elements of interest. Lists of all of the proteins which were

differentially regulated in each treatment can be found in Appendix B.

6.4.1 Simultaneous Iron and Phosphorus Stress

To assess the effect of low concentrations of both iron and phosphorus simultane-
ously, the proteome was characterised for cells grown in 969 nM iron and 112 M
phosphorus. This is equivalent to the “low phosphorus” and “low iron” described
in the previous sections.

Comparison of growth rate under both single nutrient stress, multiple nutrient
stress and optimal conditions is found in Figure |6.14, Iron deficiency and
phosphorus deficiency alone result in a similar reduction in growth rate from
the optimal. The multiple limited growth rate is slightly lower than the single

limited conditions.
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Figure 6.14  Comparison of average growth rate under single nutrient stress
(Fe, P), under multiple nutrient stress (Fe & P) and optimal growth
conditions.

As discussed in the last section, single deficiency of phosphorus increased
expression of 115 proteins and single deficiency of iron increased expression of 68
proteins. Single deficiency of each element caused down-regulation of 86 proteins
for phosphorus and 68 for iron. Under deficiency of both phosphorus and iron,
95 proteins were up-regulated and 58 proteins were down-regulated compared to

the replete control.

Comparison of Multiple Stress Profile to Single Stress Profile

The nMDS plot in Figure displays the similarity in the proteome profiles
for each condition. The closer the points are to one another, the more similar
they are. Statistics for this analysis are found in Table [6.12, The co-limited
treatment is most similar to the phosphorus-limited treatment (87%). Indeed,
the Monte Carlo P value for the comparison between the P-limited and the Fe-P
co-limited treatment shows that there is no significant difference in expression
profiles between these treatments (MC P = 0.1353). Similarity between the iron-

limited and Fe-P co-limited treatments is lower (79%).
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Figure 6.15 Non-metric multidimensional scaling ordination showing similar-

ity of the proteome of cells only limited of iron or phosphorus to
cells limited of both and to the optimal control. Ordination derived
from a Bray-Curtis similarity matrix calculated from normalised
protein expression data. Similarity thresholds based on group—

average clustering. (See Chapter 3 for details on production of
nMDS plots.)

Table 6.12  Pairwise PERMANOVA results for iron-phosphorus co-limitation
experiments
Groups Similarity t Unique P(MC)
permuta-
tions
Optimal vs. P limited 7% 4.5225 10 0.002
Optimal vs. Fe limited 82% 3.7227 10 0.0036
Optimal vs. Fe & P limited 5% 3.8763 10 0.0033
P limited vs. Fe limited 79% 3.8639 10 0.0039
P limited and Fe & P limited 87% 1.4934 10 0.1353
Fe limited and Fe & P limited 79% 3.1126 10 0.0092

Figure[6.16| shows the number of proteins differentially regulated in the co-limited
condition which are also differentially regulated in one of the single limited
conditions. The majority of both up- and down-regulated proteins in the co-
limited condition are shared with the phosphorus-limited treatment. Only ten

up-regulated proteins and five down-regulated proteins are shared with the iron-
limited treatment.
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A) Up-regulated B) Down-regulated

Fe & P
15

Figure 6.16 Venn diagram indicating the number of proteins differentially
regulated in more than one treatment

Function of Proteins Differentially Regulated Under Dual Iron and

Phosphorus Stress

Figure [6.17 shows the functional profiles of proteins up- or down-regulated under
phosphorus limitation, iron limitation, and iron—phosphorus co-limitation. The
co-limited condition, as might be expected from Figures and [6.15] shares a
lot of similar functions to the phosphorus-limited culture such as up-regulation of
phosphorus metabolism and cellular processes, and down-regulation of protein
synthesis. However the co-limited condition also shares a small number of
key features with the iron-limited culture such as up-regulation of proteins for

synthesis of cofactors, prosthetic groups and carriers.
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The proteins shared between phosphorus limited and co-limited treatments have
similar features to those differentially regulated under phosphorus deficiency

alone. Three main functional groups are shared between these treatments:

1) Up-regulated phosphorus metabolism Proteins associated with phos-
phorus uptake and metabolism are up-regulated in both conditions (Figure
. These are listed in Table and the fold change of phosphorus-
related proteins is shown in Figure [6.18]

2) Up-regulation of cellular processes This group represents a small num-
ber of stress-related proteins common to both Fe-P co-limited and P-
limited conditions. These include the universal stress protein UspAS,

hydroperoxidase KatG and an osmotically induced protein.

3) Down-regulation of protein synthesis Proteins associated with protein
synthesis are down-regulated in both Fe-P co-limited and P-limited
conditions as are proteins associated with transcription. This indicates

a common down-regulation of high energy protein-making processes.
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Figure 6.18 Fold change of known phosphorus-related proteins in the co-
limited and phosphorus-limited treatments compared to the
optimal control media. Less than one is down-regulated and greater
than one is up-regulated. * indicates protein meets stringent
significance criteria for differential regulation outlined in Chapter
3.
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Only ten proteins were commonly up-regulated in both co-limited and iron-only
limited treatments (Figure but almost all were related to iron metabolism.
Five of these up-regulated proteins (SbnH, SbhnG, SbnC, SbnB and SbnA) are
known to be responsible for the synthesis of siderophores. Additionally, the one
up-regulated transport-related protein is HmuV, a heme transport protein.

Figure [6.19 compares the fold change of known iron-related proteins in the co-
limited and iron-only limited conditions. This shows that whilst there is some
common up-regulation of siderophores, the response is not as strong as under iron

deficiency alone.

1000
()]
o 100
c
g * * % ¥ *® *
*
010 » «f F L
* **
-U *
©
o 1
0.1
L WU oo Do NN W — o
EE eSS 5223283583583
DAV 3o n < S5 e g uwaa @@
W w

Rmet_0837
Rmet_1109
Rmet 1819

m Co-limited mFe-limited

Figure 6.19 Fold change of known iron-regulated proteins in the Fe-P co-
limited treatment and the iron-limited only treatment compared to
the optimal control. Less than one is down-regulated and greater
than one is up-regulated. * indicates protein meets stringent
significance criteria for differential regulation outlined in Chapter
3.

Summary

In summary, these results show that phosphorus stress is the dominant influence
on the proteome of cells exposed to both iron and phosphorus deficiency. However,

some very specific aspects of the iron stress response are still observed in the
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multiple stress cultures.

6.4.2 Simultaneous Phosphorus and Magnesium Stress

To assess the effect of simultaneous phosphorus and magnesium-deficiency, the
proteome was characterised for cells grown in 15 pM magnesium and 56 puM
phosphorus. This is equivalent to the “lowest phosphorus” treatment described
in the single element deficiency section. Growth rates at the chosen conditions
are shown in Figure [6.20l Both magnesium deficient and phosphorus deficient
conditions show decreased growth rate from the control which is slightly lower
in the phosphorus-deficient condition. The magnesium and phosphorus depleted
condition (P & Mg) has a lower growth rate than the treatments with only one
deficient nutrient.
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Figure 6.20 Comparison of average growth rate under single nutrient stress
(Mg, P), under multiple nutrient stress (Mg & P) and optimal
growth conditions.
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Comparison of Multiple Stress Profile to Single Stress Profiles

Cells grown at this concentration of phosphorus (56 pM) showed up-regulation

of 165 proteins and down-regulation of 209 proteins (see previous sections). Cells

grown at this concentration of magnesium (15 uM) showed up-regulation of 47

proteins and down-regulation of 147 proteins. Simultaneous deficiency of both

phosphorus and magnesium resulted in 157 up-regulated proteins and 106 down-

regulated proteins. Figure demonstrates that the proteome profile of the

co-limited condition is much more similar to the phosphorus-limited condition

(81%) than to the magnesium-limited condition (76%). Statistics of this analysis
are shown in Table [6.14]).
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Figure 6.21

Non-metric multidimensional scaling ordination showing simi-

larity of the proteome of cells only limited of magnesium or
phosphorus to cells limited of both and to the optimal control.
Ordination derived from a Bray-Curtis similarity matrix calculated
Similarity thresholds
based on group-average clustering. (See Chapter 3 for details on
production of nMDS plots.)

from normalised protein expression data.
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Table 6.14  Pairwise PERMANOVA results for phosphorus-magnesium co-
limitation experiments

Groups Similarity t Unique P (MC)
permuta-
tions
Optimal vs. Mg limited 82% 4.4871 10 0.0021
Optimal vs. P-limited 65% 7.9381 10 0.0004
Optimal vs. P & Mg limited 70% 4.7969 10 0.0018
Mg limited vs. P limited 69% 7.5705 10 0.0003
Mg limited vs. Mg & P limited 76% 3.8779 10 0.0036
P limited vs. P & Mg limited 81% 2.7042 10 0.0122

The high similarity between the P-limited and the P-Mg co-limited condition is
reflected in the high number of commonly regulated proteins in these conditions
(Figure [6.22)). In the P-Mg co-limited and phosphorus-limited treatments, 103
proteins were commonly up-regulated in both conditions compared to the control,
and 61 were commonly down-regulated. Only five proteins were commonly up-
regulated in the magnesium-limited and P-Mg co-limited treatment, and 7 were

down-regulated.

A) Up-regulated B) Down-regulated
Mg & P
33 14

e/
v Vs

Figure 6.22 Venn diagram showing the number of proteins differentially
regulated in more than one condition

We’

Function of Proteins Differentially Regulated Under Dual Magnesium and

Phosphorus Stress

The functions of proteins differentially regulated in phosphorus-limited, magnesium-

limited and phosphorus-magnesium co-limited tratements are shown in Figure
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A number of key features can be highlighted from these results:

1) Up-regulation of phosphorus metabolism in all conditions Consistent
with the results from single deficiency of both magnesium and phosphorus,
numerous proteins associated with phosphorus metabolism are up-regulated
in all three treatments. It is not clear why magnesium stress induces an

increase in phosphorus-related proteins.

2) Divalent metal uptake in Mg-limited and co-limited condition The very
small number of up-regulated proteins common to both magnesium-limited
and co-limited treatments are metal eflux proteins, consistent with the

results for deficiency of magnesium alone.

3) Stress response in co-limited and phosphorus-limited A large number
of proteins associated with protein synthesis were down-regulated in both

the co-limited and P-limited treatments.
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Summary

In summary, these results show that phosphorus stress is the dominant influence
on the proteome of cells exposed to both magnesium and phosphorus deficiency.
However, the up-regulation of divalent metal eflux proteins, a key feature of the

magnesium response, is still observed in the multiple stress cultures.

6.4.3 Simultaneous Iron and Magnesium Stress

This section describes the proteome response of cells grown in low concentrations
of iron and magnesium simultaneously. The magnesium concentration used was
15 uM magnesium and the iron concentration used was 434 nM iron. This
correlates with the “lowest iron” condition discussed previously. Treatments
deficient in iron only and magnesium only, showed similar decreases in growth rate
compared to the control. The iron and magnesium deficient treatment showed

decreased growth rate relative to the single limitation treatments.

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02 -

0

Fe & Mg Fe-only Mg-only Optimal

Growth rate (change in ODsoonm
per hour)

Treatment

Figure 6.24  Comparison of average growth rate in iron—magnesium co-limited,
iron—limited, magnesium—limited and optimal media.
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Comparison of Multiple Stress Profile to Single Stress Profile

Cells grown at this concentration of magnesium showed 47 up- and 148 down-
regulated proteins. Cells grown at this concentration of iron showed 74 up-
regulated proteins and 103 down-regulated proteins compared to the control.
Simultaneously low concentrations of both nutrients resulted in and 107 up- and
83 down-regulated proteins. Figure [6.25| reveals that the co-limited treatments
show more similarity to cultures only limited of iron (87%) than to cultures only
limited of magnesium (77%). PERMANOVA statistics for this analysis are shown
in Table [6.15]

|[Resemblance: S17 Bray Curtis similarity |

2D stress: 0.03 || Type of limitation
4N v Fe limited
A Fe & Mg limited
“5 € Mg limited
f‘ Optimal
M Similarity
\ \ ) 75
\ -/ | 80
\ 85

-

Figure 6.25 Non-metric multidimensional scaling ordination showing similar-
ity of the proteome of cells only limited of iron or magnesium to
cells limited of both and to the optimal control. Ordination derived
from a Bray-Curtis similarity matrix calculated from normalised
protein expression data. Similarity thresholds based on group-—
average clustering. (See Chapter 3 for details on production of
nMDS plots.)
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STRESS
Table 6.15  Pairwise PERMANOVA results for iron—-magnesium co-limitation
experiments.
Groups Similarity t Unique P (MC)
permuta-
tions
Optimal vs. Fe limited 79% 4.1594 10 0.0029
Optimal vs. Fe & Mg limited 78% 4.6997 10 0.0014
Optimal vs. Mg limited 82% 4.4871 10 0.0022
Fe limited vs. Fe & Mg limited 87% 2.2569 10 0.0316
Fe limited vs. Mg limited 81% 3.9258 10 0.0022
Mg limited vs. Fe & Mg limited 7% 5.3906 10 0.0013

The high similarity of the proteomes of cells grown in Fe-only limited media
and Fe-Mg co-limited media is emphasised in Figure [6.26, Fe & Mg co-limited
cultures shared 40 up-regulated proteins and 22 down-regulated proteins with the
Fe-limited condition. Only 9 up-regulated and 7 down-regulated proteins were

shared between co-limited and magnesium-limited cultures.

A) Up-regulated B) Down-regulated

Fe & Mg
42

79

Figure 6.26  Venn diagram indicating the number of proteins differentially
regulated in more than one treatment

Function of Proteins Differentially Regulated Under Dual Iron and

Magnesium Stress

Functions of proteins differentially regulated in Fe & Mg co-limited cultures, and
proteins differentially regulated with limitation of each individual element are
shown in Figure Both co-limited and iron-limited treatments show large

proportions of up-regulated proteins in the “Transport and binding proteins” and
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“Biosynthesis of cofactors, prosthetic groups and carriers” groups. Proteins in
these groups were associated with siderophore synthesis, siderophore uptake and
heme uptake.

Similar levels of abundance were observed in siderophore/iron metabolism
proteins in both Fe-limited and Fe-Mg co-limited treatments and none of these
proteins were significantly differentially regulated compared to the other. Proteins
down-regulated in both co-limited and iron-limited treatments were in the
“Energy metabolism” group. Most of these proteins were iron-binding enzymes

associated with the electron transport chain.
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Three of the nine proteins up-regulated in both co-limited and magnesium-limited
treatments were associated with efflux of metal ions. These include CnrB (Co(1I)
and Ni(II) resistance), CzcB (Zn(II), Cd(II) and Co(II) resistance) and ZneB
(Zn(II) resistance) which is consistent with our observations of up-regulation of
metal efflux during deficiency of magnesium alone. Additionally, three proteins
related to phosphorus metabolism are up-regulated in both of these conditions.
These are PstB and PstS associated with phosphate uptake and PtxD associated
with phosphonate uptake.

Summary

In summary, these results show that iron stress is the dominant influence on the
proteome of cells exposed to both iron and magnesium deficiency. However, again,
the up-regulation of divalent metal eflux proteins is still in the multiple stress

cultures, indicating a small but specific contribution from magnesium deficiency.

6.4.4 Is a unique response to co-limitation exhibited?

The venn diagrams in Figures [6.26] and show that, in each of
the pairwise experiments, there are some proteins which are only significantly
differentially regulated in the co-limited treatment and not in either of the
treatments limited by only one nutrient. This section explores the function of
these proteins with a view to understanding whether the cells adopt unique
responses to cope with limitation of multiple nutrients.

Lists of proteins differentially regulated only in the co-limited treatments are

shown in Appendix tables [B.9] [B.10] and [B.11] In the iron-phosphorus co-limited

treatment, 15 proteins were uniquely up-regulated and 15 proteins uniquely down-
regulated. In the magnesium-phosphorus co-limited treatment, 33 proteins were

uniquely up-regulated and 14 down-regulated. In the magnesium-iron co-limited
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treatment, 42 proteins were up-regulated and 27 proteins were down-regulated
only in the co-limited condition. There is very little overlap in the proteins
contained in each of the groups, suggesting there is not a general “co-limited”
response. Rather the response appears to be dependent on which nutrients are
co-limiting.

In the phosphorus-iron co-limited treatment, the main group of down-regulated
proteins were associated with protein synthesis. There does not appear to be a
strong up-regulation of any particular functional group. Indeed, the majority of
up-regulated proteins (8 out of 15) are of unknown function.

In the iron-magnesium co-limited treatment, proteins down-regulated only in
iron or magnesium limited treatments alone include proteins associated with
protein synthesis. Additionally, six proteins associated with the transport and
binding proteins functional group are down-regulated, three of which are Bug
proteins. These are a family of extra-cytoplasmic solute receptors of which
C.metallidurans has an unusually large number [I72]. The over-representation
of these proteins in C. metallidurans is speculated to assist in the uptake of
carboxylated compounds from the environment [I72]. Two other proteins in
this group (NuoC and NuoD) are associated with aerobic respiration. Proteins
associated with central intermediary metabolism, energy metabolism and stress
are up-regulated. In particularly, six Cbb proteins associated with autotrophic
metabolism [I72] are up-regulated.

There does not appear to be strong up- or down-regulation of any particular
functional group unique to the P-Mg co-limited condition. Interestingly, the
Fur2 ferric uptake regulator is up-regulated in this treatment, as well as heme
uptake protein HemY. More than half of the uniquely up-regulated proteins are
of unknown function.

Although we do not observe a general response to co-limitation, each of the
treatments discussed above appear to suggest co-limitation induces changes in
energy metabolism, protein synthesis and stress responses which are not observed

under limitation of only one element. This is possibly a result of the slower growth
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rates observed under co-limitation.

6.5 Discussion

In each of the conditions with two deficient nutrients, the proteome profiles
share a lot of similarities with single limitation of one of the nutrients and
not with the other. This suggests that one of the elements has a much more
significant effect on the processes occurring in the cell than the other element.
This result has implications for the modelling of microbial growth limited by
multiple nutrients. Two approaches to this problem exist. The first modelling
approach assumes that, under limitation by multiple nutrients, the most limiting
nutrient will ultimately limit growth, with the concentration of the other nutrient
having no effect. This is commonly referred to as “Liebig’s law of the minimum”
(see Chapter 2). The other approach predicts that both nutrients influence
growth, with a combined multiplicative effect. The proteomics analysis presented
here supports the “Liebig’s law interpretation” because it shows that one of the
multiple limiting nutrients dominates the cellular response. More detailed growth
data and modelling would be required to definitely assess how these results fit
models.

However, although the proteome of cells in multiple stress treatments is primarily
driven by response to one of the elements, the multiple stress cultures exhibit
very specific features related to the other element. For example, in simultaneous
deficiency of phosphorus and iron, only 10 proteins are commonly up-regulated
in both iron-deficient and iron-phosphorus deficient cultures. However, 6 of these
proteins were specifically related to iron uptake. Additionally, when comparing
magnesium-limited cultures to iron-magnesium or phosphorus-magnesium co-
limited cultures, the only common up-regulated response across the conditions
was the increase in divalent metal eflux proteins, a key feature of magnesium

deficiency. This suggests that whilst one nutrient causes global re-structuring of
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cellular processes, the other nutrient only induces an attempt to uptake more
nutrient.

Furthermore, this analysis may have relevance to the detection of multiple
nutrient limitation in the natural environment. For example, a recent, high
profile study by Saito et al., [I16] used a small number of protein biomarkers
to identify simultaneous iron and phosphorus limitation in the Pacific Ocean. In
contradiction to this, the results presented here suggest that using only a small
number of biomarkers to identify simultaneous multiple nutrient stress in the
environment may lead to misleading results. For example, in the phosphorus
and iron limited experiments shown here, markers for both iron and phosphorus
stress are detected. However, the proteome profiles show that phosphorus controls
almost all of the cellular response in the co-limited cultures whereas iron had a
very minor role.

As well as having broad implications for microbial stress responses in the
environment, these findings are specifically applicable to microbial life in the rock
habitats discussed in this thesis. In terrestrial environments, nutrient availability
is determined by a complex inter-play of geological processes. As observed in the
previous chapter, micro-organisms require tightly regulated cellular responses to
avoid starvation or toxicity during microbe-rock interactions as element leaching
changes the concentrations of numerous elements simultaneously. By gaining
some insight into the cellular response to multiple simultaneous nutrient stresses
in a controlled fashion, we can begin to build up a picture of how complex nutrient
stresses manifest in bacterial cells. Although these laboratory-based nutrient
stress experiments are much less complex than those encountered in the natural
environment, they allow us to better understand how micro-organisms respond to
complex nutrient stresses which will aid in our appreciation of microbial survival

in, often nutrient poor, rock habitats.
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6.6 Conclusion

These experiments reveal complex adaptations to iron, phosphorus and magne-
sium deficiency where specific stress responses are layered upon more general
responses. The multiple stress results show that, in all cases, the co-limited
treatment shares most features with only one of the single-limited treatments.
This supports the idea that, at the cellular level, one element will dominate
the response to multiple nutrient stress, similar to the concept proposed by
“Liebig’s law of the minimum”. This has important implications for modelling
the growth of micro-organisms by multiple limiting nutrients. In particular,
improving the representation of microbial growth in environmental models will
require an understanding of how the growth dynamics of these micro-organisms
is influenced by different nutrient regimes. The fact that our experiments suggest
that “Liebig’s law of the minimum” is a more realistic way to understand
microbial growth limited by multiple nutrients could have implications in many
areas, from global geochemical models, to our understanding of microbial life in
the ocean.

It is likely that multiple nutrient stress is common in rock environments which are
typically nutrient poor. This is a result of adsorption of elements to rock surfaces,
slow release rates from rocks or low fluxes from external nutrient sources. These
results demonstrate the need for tightly controlled regulation of cellular machinery
in response multiple simultaneous nutrient stress. The ability to prioritise the
response to deal with the most limiting element whilst partitioning only a small
amount of energy into dealing with the other stress could be an important trade

off in these environments.
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Chapter 7

Conclusions

7.1 Contribution to the Field

Each study presented in this thesis represents a significant contribution to
the understanding of the interaction between microbial life and geology. The
first study (Chapter 4) provides an important advance in our understanding
of the history of land mass colonisation on the Earth. Although it has been
appreciated for at least the last 30 years that endolithic lifestyles could buffer
microbial communities from harsh surface conditions [180], the suitability of this
environment on the early Earth has not been tested over long periods of time.
This work demonstrates that Chroococcidiopsis sp. (a primitive and extreme-
tolerant cyanobacterium) and its biomolecules can survive under UV radiation
conditions more severe than the predicted “worst-case” early Earth scenario when
protected just millimetres below the surface in rocks. This demonstrates that
sheltering within rocks is a plausible stress avoidance strategy for phototrophs
on the early Earth and provides the first empirical refutation of the idea that
high UV flux on the early Earth would have prevented early colonisation of the

land masses before the oxygenation of the atmosphere. Endolithic rock habitats
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would have allowed micro-organisms to survive far from any water body, without
the matting habit and without active repair.

The results presented in Chapter 5 demonstrate that, whilst rocks can provide
nutrients for microbial communities, they can alter local chemistry and bind
elements such that other nutrients become deficient. In the study presented, the
addition of rock induced phosphorus deficiency, altered pH and caused changes
in energy metabolism. Further chemical analysis revealed that phosphorus
adsorption to rock surfaces was the key driver of the microbial response. This
work demonstrates that rock geochemistry alone can drive the regulation of
microbial metabolism by changing local chemistry, showing a new route by which
geology can influence microbial growth and metabolism.

Chapter 6 investigated the response of a model bacterium to multiple nutrient
stress, a common yet poorly understood environmental stress. These experiments
revealed complex adaptations to iron, phosphorus and magnesium deficiency
where specific stress responses are layered upon more general responses. Multiple
stress results presented in Chapter 6 reveal the complex dynamics of the nutrient
limitation response. The experiments in this chapter support the idea that, at the
cellular level, one element will dominate the response to multiple nutrient stress,
similar to the concept proposed by “Liebig’s law of the minimum”. However,
a small contribution from the other element is also observed. This provides
a novel contribution to the long-running debate on the dynamics of microbial
growth with multiple limiting substrates and provides insight into the complex
regulatory controls on microbial nutrient stress responses in the environment.
Together these results demonstrate that numerous advantages could be conferred
to micro-organisms in rock habitats including protection from UV radiation
(Chapter 4) and provision of nutrients (Chapter 5). However, in addition to the
external environmental stresses encountered by rock-dwelling micro-organisms,
rock-induced changes in chemistry can also induce stress. Chapters 5 and 6
highlight the complexity of microbial responses to extra-cellular chemical stress

and reveal that a broad arsenal of tightly regulated stress responses are required
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to cope with changing chemistry in the environment.

7.2 Future Work

There are numerous new research directions opened by each of the studies
presented here. Work expanding on that presented in Chapter 4 could investigate
how the presence of a primitive atmosphere would influence survival in high
UV conditions. We may expect this to have an influence on survivability as,
in the limited number of samples available for SEM analysis, it appeared that
preservation of cell morphology was improved in samples exposed to space vacuum
compared to those housed in an argon atmosphere. Future work should aim to
elucidate the influence of atmospheric components on cell viability and biomarker
preservation under extended periods of high UV exposure.

It would also be interesting to test UV survival of endoliths in other rock types
such as gypsum. Gypsum, a calcium sulfate mineral, often houses phototrophic
endolithic communities in deserts [I87]. It is moderately water soluble at
room temperature and will experience changes in chemistry in the temperature
fluctuations observed during space exposure. Potentially, changes to a gypsum
substrate would create an additional stress for micro-organisms. Gypsum deposits
are known far back in Earth history and are therefore relevant for studies into
early Earth endoliths and gypsum dunes are thought to exist on Mars (e.g.
[241], 242]).

Work expanding on that presented in Chapter 5 could identify the dependence
of these results on rock type. The rocks used here are a glass with very reactive
surfaces, which resulted in phosphate adsorption and starvation. A previous
study of microbe-rock interactions with Cupriavidus metallidurans suggested
metal leaching was the key stress [117]. Disparity between these data suggest
small differences in substrate could have a big effect on microbial responses.

Future experiments could also aim to investigate the proteome under conditions
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of active weathering. No active weathering occurs in Chapter 5. Therefore, it
would be useful to repeat these experiments either under conditions where C.
metallidurans actively contributes to rock weathering or with an organism which
has a very strong effect on weathering.

Work expanding on that presented in Chapter 6 could map the experimental
growth data on to popular mathematical models of double substrate-limited
growth. The proteomics data suggest that the results are likely to mostly
follow Liebig’s law of the minimum where one nutrient dominates the effect on
growth limitation but modelling would be required to confirm this. It would
also be interesting to investigate the response to deficiency of nutrients which are
dependent on each other (ie. one required for uptake of the other) or substituting
(ie. one can be substituted for the other). It would also be interesting to more
clearly establish the importance of multiple nutrient stress in rock environments.
Numerous studies have focussed on identifying conditions for multiple nutrient
stress in oceans and lakes. It is likely that multiple nutrient stress is also a
terrestrial problem but this has not been extensively investigated. This analysis
could be done via traditional nutrient addition experiments or n situ analysis of
gene or protein expression in rock habitats.

More generally, future work which aims to better understand interactions
between microbial life and geological processes should focus more attention
on understanding multiple simultaneous stresses. For example, it has recently
been shown that iron limitation combined with microaerobic conditions can
reduce temperature sensitivity in some organisms [144]. It is likely that many
of these co-dependencies exist and will be common in diverse rock habitats.
However, a systematic characterisation of these dependencies, and a biochemical

understanding of what drives them, is lacking.
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Appendix A

Chapter 5 Tables

Appendix A contains a list of proteins differentially regulated in C. metallidurans
CH34 when grown in media at pH 8 compared to media at pH 7, as discussed in
Chapter 5.
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Appendix B

Chapter 6 Tables

The tables presented in Appendix B list the proteins which are differentially
regulated in the various experimental treatments discussed in Chapter 6. Proteins
are considered differentially regulated if they are 2-fold higher or lower than in
the control i.e. the fold change (FC) is greater than 2 (up-regulated) or lower
than 0.5 (down-regulated). Descriptions and functional annotations were derived
from the MaGe database [I72]. Proteins without a functional annotation in the

MaGe database are classed as “unassigned”.
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B.9. PROTEINS DIFFERENTIALLY REGULATED ONLY IRON AND
PHOSPHORUS CO-LIMITED TREATMENTS

B.9 Proteins differentially regulated only iron and

phosphorus co-limited treatments

Table B.17 — Proteins differentially regulated only in P-Fe co-limited treatments

Locus tag Protein name Description

Up-regulated vs. control

Cellular processes

Rmet_4751 MscS Mechanosensitive ion channel

Central Intermediary Metabolism

Rmet_0572 CpdB 2’:3’-cyclic-nucleotide 2’-phosphodiesterase
Energy metabolism

Rmet_1511 CbbF2 Fructose-1,6-bisphosphatase I

Rmet_5927 MocA Aldo/keto oxidoreductase, NADP-binding
Protein fate

Rmet_0283 Peptidase M16-like protein
Transcription

Rmet_1601 Regulatory protein, MarR family
Rmet_5818 Csp Cold-shock responsive transcriptional repressor
Transport and binding proteins

Rmet_1702 AcrF Multidrug efflux system protein
Unknown

Rmet_0564 Conserved hypothetical protein
Rmet_1394 Acyl-CoA-binding protein

Rmet_1418 Hypothetical protein

Rmet_1704 Conserved hypothetical protein
Rmet_1830 GevT Putative glycine cleavage T protein
Rmet_4584 Conserved hypothetical protein
Rmet_5311 Isochorismatase hydrolase

Rmet_6396 Hypothetical protein

Down-regulated vs. control

Amino acid synthesis and metabolism

Rmet_4583 GItI glutamate/aspartate transport protein
Biosynthesis of cofactors, prosthetic groups and carriers
Rmet_0162 ThiC thiamin biosynthesis protein
Cellular processes

Rmet_3123 FtsZ GTP-binding tubulin-like cell division protein
Energy metabolism

Rmet_2483 SdhB succinate dehydrogenase, FeS subunit
Fatty acid and phospholipid metabolism

Rmet_2464 AccD acetyl-CoA carboxylase, beta subunit
Protein synthesis

Rmet_3106 RplU 50S ribosomal subunit protein L21
Rmet_3299 RpmD 50S ribosomal subunit protein L30
Rmet_3310 RplP 50S ribosomal subunit protein L16
Rmet_3312 RplV 50S ribosomal subunit protein L22
Rmet_3316 RplD 50S ribosomal subunit protein L4
Rmet_3327 RpsL 30S ribosomal subunit protein S12
Rmet_3336 RplJ 50S ribosomal subunit protein L10
Rmet_3337 RplA 50S ribosomal subunit protein L1
Transcription

Continued on next page
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B.9. PROTEINS DIFFERENTIALLY REGULATED ONLY IRON AND
PHOSPHORUS CO-LIMITED TREATMENTS

Table B.17 — Proteins differentially regulated only in P-Fe co-limited treatments

Locus tag Protein name Description

Rmet_2034 pseudouridine synthase
Unknown

Rmet_1135 conserved hypothetical protein
Rmet_2657 conserved hypothetical protein

Table B.17 — Proteins differentially regulated only in P-Fe co-limited treatments
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B.10. PROTEINS DIFFERENTIALLY REGULATED ONLY IN THE
MAGNESIUM AND PHOSPHORUS CO-LIMITED TREATMENT

B.10 Proteins differentially regulated only in the
magnesium and phosphorus co-limited

treatment

Table B.18 — Proteins differentially regulated only in P-Mg co-limited treatments

Locus tag Protein name Description

Up-regulated vs. control

Amino acid synthesis and metabolism

Rmet_2902 ArgF Ornithine carbamoyltransferase
Biosynthesis of cofactors, prosthetic groups, and carriers
Rmet_0728 RfaD ADP-L-glycero-D-mannoheptose-6-epimerase
Rmet_2689 RibC Riboflavin synthase alpha chain

Rmet_2976 Fur2 Ferric uptake regulation protein

Cellular processes

Rmet_2021 NADPH-dependent FMN reductase
Rmet_3618 Ohr Organic hydroperoxide resistance protein
Central intermediary metabolism

Rmet_0992 Nit Nitrilase

Rmet_4943 Putative iron-containing alcohol dehydrogenase
Energy metabolism

Rmet_1511 CbbF2 Fructose-1,6-bisphosphatase 1

Rmet_1537 HypF2 Carbamoyl phosphate phosphatase

Fatty acid and phospholipid metabolism

Rmet_2850 HutG1 N-Formylglutamate amidohydrolase
Phosphorus metabolism

Rmet_2177 Ppx Exopolyphosphatase

Protein synthesis

Rmet_1085 CysS Cysteinyl-tRNA synthetase

Rmet_3190 DsbC Protein-disulfide isomerase

Transport and binding proteins

Rmet_1701 AcrA Cation/multidrug efflux system, mebrane-fusion component
Rmet_4789 MetQ DL-methionine transporter subunit
Unknown

Rmet_0137 Conserved hypothetical proteinn

Rmet_0186 GlmU Fused N-acetyl glucosamine-1-phosphate uridyltransferase
Rmet_1021 Conserved hypothetical protein

Rmet_1646 Putative MscS Mechanosensitive ion channel
Rmet_2063 Rhodanese-related sulfurtransferase
Rmet_2587 GstN Glutathione s-transferase protein

Rmet_2747 HemY Uncharacterized enzyme of heme biosynthesis
Rmet_3071 Histone H1-like protein HC2

Rmet_3579 Conserved hypothetical protein

Rmet_4086 Conserved hypothetical protein (membrane)
Rmet_5007 Conserved hypothetical protein

Rmet_5267 Putative alpha/beta hydrolase

Rmet_5374 Hypothetical protein

Rmet_5638 ABC-type transporter, periplasmic component
Rmet_6330 Hypothetical protein

Rmet_6396 Hypothetical protein

Continued on next page
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B.10. PROTEINS DIFFERENTIALLY REGULATED ONLY IN THE
MAGNESIUM AND PHOSPHORUS CO-LIMITED TREATMENT

Table B.18 — Proteins differentially regulated only in P-Mg co-limited treatments

Locus tag Protein name Description

Rmet_6558 Putative hypothetical protein

Down-regulated vs. control

Amino acid synthesis and metabolism

Rmet_1134 MetY O-Acetylhomoserine sulfhydrylase

Rmet_2813 CysD Sulfate adenylyltransferase

Rmet_0402 GItL Glutamate and aspartate transporter subunit
Biosynthesis of cofactors, prosthetic groups, and carriers

Rmet_2688 RibD 5-amino-6-5-phosphoribosylamino uracil reductase
Cell envelope

Rmet_0727 RfaE Fused heptose 7-phosphate kinase

Rmet_2674 Pal Peptidoglycan-associated outer membrane lipoprotein
Rmet_2733 RibA Glucose-1-phosphate thymidylyltransferase

Energy metabolism

Rmet_1524 HoxY NAD-reducing hydrogenase

Rmet_2483 SdhB Succinate dehydrogenase, FeS subunit

Fatty acid and phospholipid metabolism

Rmet_2428 FabG 3-oxoacyl-[acyl-carrier-protein] reductase

Rmet_2464 AccD Acetyl-CoA carboxylase

Protein synthesis

Rmet_1435 RpsB 30S ribosomal subunit protein S2

Rmet_2885 IleS Isoleucyl-tRNA synthetase

Transport

Rmet_0452 PhoL Putative enzyme with nucleoside triphosphate hydrolase domain

Table B.18 — Proteins differentially regulated only in P-Mg co-limited treatments
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B.11. PROTEINS DIFFERENTIALLY REGULATED ONLY IN THE IRON
AND MAGNESIUM CO-LIMITED TREATMENT

B.11 Proteins differentially regulated only in the

iron and magnesium co-limited treatment

Table B.19 — Proteins differentially regulated only in Fe-Mg co-limited treatments

Locus tag Protein name Description

Up-regulated vs. control

Amino acid synthesis and metabolism

Rmet_4606 MetY O-acetylhomoserine/O-acetylserine sulfhydrylase

Rmet_2471 Asd Aspartate-semialdehyde dehydrogenase

Biosynthesis of cofactors, prosthetic groups, and carriers

Rmet_0839 (S)-2-hydroxy-acid oxidase 1

Cell envelope

Rmet_ 0712 OmpA Outer membrane protein or related peptidoglycan-associated
(lipo)protein

Rmet_5339 CsgG Curli production assembly/transport component

Cellular processes

Rmet_3346 UspAS8 Universal stress protein

Rmet_1951 AhpD Alkyl hydroperoxide reductase D

Rmet_3616 Osmotically inducible protein

Central intermediary metabolism

Rmet_1498 CbbO Rubisco activation protein

Rmet_1499 CbbQ Rubisco activation protein

Rmet_5402 Putative alkyl sulfatase

Rmet_4929 Gst Glutathione S-transferase enzyme

DNA metabolism

Rmet_2101 Hfq Host factor I protein

Rmet_2940 DpsA Metalloregulation DNA-binding stress protein

Rmet_4549 UvrA2 Excinuclease ABC, A subunit

Energy metabolism

Rmet_0386 Putative 3-hydroxyacyl-coa dehydrogenase oxidoreductase protein

Rmet_1511 CbbF2 Fructose-1,6-bisphosphatase 1

Rmet_1512 CbbP Phosphoribulokinase

Rmet_1513 CbbT1 Transketolase 1, thiamin-binding

Rmet_1521 CbbI1 Ribose 5-phosphate isomerase

Rmet_4859 Putative NADH-depentdent flavin oxidoreductase

Rmet_5128 AldB Aldehyde dehydrogenase 2

Fatty acid and phospholipid metabolism

Rmet_0565 Fabl Enoyl-[acyl-carrier-protein] reductase, NADH-dependent

Mobile and extrachromosomal element functions

Rmet_1516 Pgkl Phosphoglycerate kinase

Phosphorus metabolism

Rmet_ 2177 Ppx Exopolyphosphatase

Rmet_2178 Ppk Polyphosphate kinase, component of RNA degradosome

Rmet_4084 PhoAl Alkaline phosphatase

Protein fate

Rmet_0283 Peptidase M16-like protein

Rmet_0876 PepN Aminopeptidase N

Rmet_1028 HscB DnalJ-like molecular chaperone specific for IscU

Rmet_1029 HscA DnaK-like molecular chaperone specific for IscU

Protein synthesis

Continued on next page
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B.11. PROTEINS DIFFERENTIALLY REGULATED ONLY IN THE IRON
AND MAGNESIUM CO-LIMITED TREATMENT

Table B.19 — Proteins differentially regulated only in Fe-Mg co-limited treatments

Locus tag Protein name Description

Rmet_1025 IscS Cysteine desulfurase

Transport and binding proteins

Rmet_2071 YggX Fe(II) trafficking protein

Rmet_3549 TctC Periplasmic tricarboxylate binding receptor
Rmet_5329 ZnaA Heavy metal cation tricomponent efflux pump ZneA
Rmet_5330 ZneB Membrane fusion protein heavy metal cation tricomponent efflux
Unknown

Rmet_0563 Ptb Phosphate acetyltransferase

Rmet_1050 Conserved hypothetical protein

Rmet_1109 Conserved hypothetical protein

Rmet_1187 Hypothetical protein

Rmet_1394 Acyl-CoA-binding protein

Rmet_1830 GevT Putative glycine cleavage T protein

Rmet_1864 Conserved hypothetical protein

Rmet_5007 Conserved hypothetical protein

Rmet_5043 Conserved hypothetical protein

Rmet_5267 Putative alpha/beta hydrolasee

Down-regulated vs. control

Amino acid synthesis and metabolism

Rmet_2480 LivK1 Leucine/isoleucine/valine transporter subunit
Rmet_3181 TrpC Indole-3-glycerol phosphate synthase
Rmet_3249 HisG ATP phosphoribosyltransferase

Biological processes

Rmet_3513 ABC-type transporter, periplasmic component
Biosynthesis of cofactors, prosthetic groups and carriers
Rmet_2688 RibD Fused diaminohydroxyphosphoribosylaminopyrimidine deaminase
Cellular processes

Rmet_3226 SspB ClIpXP protease specificity-enhancing factor
DNA metabolism

Rmet_6191 Bph2 Histone-like DNA-binding protein (Orf41)
Fatty acid and phospholipid metabolism

Rmet_2464 AccD Acetyl-CoA carboxylase

Protein synthesis

Rmet_2455 RpsU1 30S ribosomal subunit protein S21

Rmet_2904 RpsT 30S ribosomal subunit protein S20

Rmet_3290 RplQ 50S ribosomal subunit protein L17

Rmet_3300 RpsE 30S ribosomal subunit protein S5

Rmet_3313 RpsS 30S ribosomal subunit protein S19

Rmet_3327 RpsL 30S ribosomal subunit protein S12

Purines, pyrimidines, nucleosides and nucleotides

Rmet_0506 PurK Phosphoribosylaminoimidazole carboxylase ATPase subunit
Transcription

Rmet_1232 YhgF Putative RNA-binding transcription accessory protein
Transport and binding proteins

Rmet_0130 bug Extra-cytoplasmic Solute Receptor
Rmet_0929 NuoC NADH dehydrogenase chain C

Rmet_0930 NuoD NADH-ubiquinone oxidoreductase D subunit
Rmet_1769 bug Extra-cytoplasmic Solute Receptor
Rmet_3488 ABC-type transporter, periplasmic component
Rmet_5616 bug Extra-cytoplasmic solute receptor protein
Unknown

Rmet_0095 Conserved hypothetical protein

Continued on next page
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B.11. PROTEINS DIFFERENTIALLY REGULATED ONLY IN THE IRON
AND MAGNESIUM CO-LIMITED TREATMENT

Table B.19 — Proteins differentially regulated only in Fe-Mg co-limited treatments

Locus tag Protein name Description

Rmet_0298 Conserved hypothetical protein

Rmet_2190 RNA-binding protein, containing KH domain
Rmet_2547 Conserved hypothetical protein

Rmet_2626 Conserved hypothetical protein

Rmet_3473 Cytochrome ¢ family protein

Rmet_6408 Putative rhodanese-related sulfurtransferase

Table B.19 — Proteins differentially regulated only in Fe-Mg co-limited treatments
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Abstract: On Earth, microorganisms living under intense ultraviolet (UV) radiation stress can adopt
endolithic lifestyles, growing within cracks and pore spaces in rocks. Intense UV irradiation encountered by
microbes leads to death and significant damage to biomolecules, which also severely diminishes the
likelihood of detecting signatures of life. Here we show that porous rocks shocked by asteroid or comet
impacts provide protection for phototrophs and their biomolecules during 22 months of UV radiation
exposure outside the International Space Station. The UV spectrum used approximated the high-UV flux on
the surface of planets lacking ozone shields such as the early Earth. These data provide a demonstration that
endolithic habitats can provide a refugium from the worst-case UV radiation environments on young planets
and an empirical refutation of the idea that early intense UV radiation fluxes would have prevented
phototrophs without the ability to form microbial mats or produce UV protective pigments from colonizing

the surface of early landmasses.
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Introduction

For the last 2.5 billion years, the Earth has been protected from
harmful ultraviolet (UV) radiation by the ozone shield
(Kastings & Siefert 2002). However, the first 1 billion years
of life’s evolution occurred under a nitrogen and carbon
dioxide atmosphere which does not have the same ability to
absorb UV radiation (Cockell & Horneck 2001). Organisms
attempting to survive on the Earth’s surface prior to the rise in
oxygen would receive a radiation dose up to 1000 times more
damaging to DNA than today (Cockell & Horneck 2001).
Indeed, it was originally proposed that the intense UV
radiation flux experienced on the early Earth might have
prevented the colonization of the land masses (Berkner &
Marshall 1965).

In high-UV environments on Earth today a number of
survival strategies are observed. One such strategy is the
matting habitat, whereby organisms achieve protection within
thick laminated structures such as stromatolites. This has long
been recognized as a potential means for early surface-dwelling
organisms to have been protected from early intense UV
radiation (Margulis et al 1976; Westall et al 2006).
Alternatively, organisms commonly grow in the interior of
rocky substrates or under them (Friedmann 1980). These
organisms are known as endoliths and hypoliths, respectively.

The depth of penetration of UV radiation into a rock will
depend on the substrate. One rock substrate suitable for

colonization is crystalline rocks shocked by asteroid and comet
impacts, including gneisses, which become more porous as a
result of the intense pressures and temperatures of impact
shock (Cockell et al. 2002). Cockell et al. (2002) calculated that
organisms at 2mm depth in porous impact-shocked gneiss
under these early Earth radiation conditions would only
encounter a maximum of one tenth of the DNA damage
encountered on the surface of the Earth today, whilst still
receiving sufficient photosynthetically active radiation for
(anoxygenic or oxygenic) photosynthesis.

Previous work has only tested the protection afforded by
rocks to UV radiation for a short period (Cockell ez al. 2003)
and only using the present-day terrestrial flux. One location in
which the putative early earth UV radiation flux can be
simulated is low Earth orbit (LEO) (Rettberg et al. 1998),
where cut-off filters can be used to attenuate the extraterrestrial
UV flux to simulate early Earth UV fluxes.

In the study presented here, we used the long-term exposure
facility, EXPOSE-R, aboard the International Space Station to
test the ability of an impact shocked endolithic substrate to
provide adequate protection for phototrophs under a simu-
lated worst-case prediction for early Earth’s UV radiation
regime. Here oxygenic phototrophs are studied. There are
numerous lines of evidence which suggests oxygenic photo-
synthesis had evolved well before the atmosphere became
oxygenated on a large scale (Buick 2008). Therefore oxygenic
photosynthesis would almost certainly have exisggggbefore
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UV-protection from the ozone shield was achieved. However,
the principle we demonstrate is equally applicable to anoxy-
genic photosynthesizers.

Materials and methods

Organism and substrate selection

In this exposure experiment impact-shocked gneiss from the
Haughton Impact Crater in the Canadian High Arctic was
selected as a test substrate. A detailed outline of the geology of
the Haughton Impact Structure from which the rocks were
obtained can be found in Osinski et al. (2005). For a rock to be
colonized it has to be suitably porous. Sandstones or vesicular
volcanic rocks are porous under normal geological conditions
making them good candidates for colonization (Cockell &
Osinski 2007). Crystalline rocks are generally low porosity and
a poor prospect for colonization. However, asteroid and comet
impacts, widely considered to be a purely destructive force,
have the ability to alter crystalline rocks in a way which
increases the porosity, and therefore the availability of
microhabitats within the rock structure (Cockell et al. 2002,
2003; Fike et al. 2002; Pontefract et al. 2012). Cockell et al.
(2002) describe a 25 times increase in the porosity of gneiss
(a crystalline, low-porosity metamorphic rock) which had been
highly shocked by impact compared to nearby lightly shocked
or non-shocked gneiss of the same parent material. They
observe that this increased porosity allows bands of photo-
trophic cyanobacteria to colonize below the surface of the rock
in a high-radiation natural environment.

The exposed land on the early Earth, whilst containing some
sedimentary lithologies, would most likely have been pre-
dominantly comprised of crystalline rocks (Moorbath 2005).
In the period between 4.1 and 3.8 billion years ago, asteroid
impacts were many orders of magnitude more common than
today (Chyba & Owen 1994). Thus, when life appeared,
impacts would have been widespread and could have altered
the crystalline surface to provide suitable habitats in which the
first microbes could survive under the harsh UV conditions
encountered on the Earth’s land masses.

Since asteroid and comet impacts are ubiquitous throughout
the universe, we can extend our hypothesis that impact-
shocked rocks provide important habitats to any rocky planet
which lacks atmospheric oxygen and is therefore subject to
intense UV radiation exposure. This could be particularly
important on planets where the geology is dominated by low-
porosity crystalline rocks rather than sedimentary lithologies
and thus where potential endolithic habitats would be in short
supply.

Further details on the shocked gneiss can be found in Fike
et al. (2002) and Cockell et al. (2002). Cockell et al. (2002)
discuss the improvements for life which resulted from the
impact which altered the gneiss used here to its current state.

The polyextremotolerant cyanobacterium Chroococcidiopsis
sp.029 was selected as a model organism. Chroococcidiopsis is
one of the most tolerant to extremes of all of the known
cyanobacteria. It is remarkably versatile with strains having

been described from a wide range of extreme habitats such as
hot springs (Geitler 1933), hypersaline (Dor et al. 1991) and
freshwater (Komarek & Hindak 1975) environments, hot and
cold deserts (Friedmann 1980; Friedmann & Ocampo-
Friedmann 1985; Budel & Wessels 1991) and within lichens
as cyanobionts (Budel & Henssen 1983). In the most extreme
hot, cold, arid and saline habitats on Earth, it is generally
found to be the dominant cyanobacterium (Friedmann &
Ocampo-Friedman 1995). Chroococcidiopsis commonly
adopts an endolithic lifestyle. The rocks it inhabits act as a
shield from harmful environmental conditions (Friedmann
1980).

The long-term survival of Chroococcidiopsis aboard the ISS
was demonstrated as part of the ESA EXPOSE-E mission
(Cockell et al. 2011). Cells of Chroococcidiopsis sp. 029 were
used to artificially augment a natural phototroph biofilm which
was exposed to space conditions. These cells were shown to be
viable after 534 days in LEO exposed to the full extraterrestrial
UV radiation spectrum. This survival was attributed to the
high numbers of Chroococcidiopsis cells relative to the
abundance of other species in the natural phototroph
community and protection of live cells by dead cells under a
biofilm of cells, which was not a monolayer. In the experiment
reported here, the exposure time was extended (22 months
compared to 18 for EXPOSE-E) and pure cultures of
Chroococcidiopsis used in sample preparation. The samples
on glass discs have both high numbers of Chroococcidiopsis
cells and a thin layer of cells so we will be able to test if these are
the only attributes contributing to survival in the previous
EXPOSE-E experiment.

Sample preparation

Chroococcidiopsis sp. CCMEE 029 was obtained from the
Culture Collection of Microorganisms from Extreme
Environments (CCMEE) established by E. Imre Friedmann
and now maintained at the University of Rome ‘“Tor Vergata’.
Cells were cultured in BG-11 media as described previously
(Cockell et al. 2005). An aliquot of cells (~ 1.5 % 10° cells) were
transferred evenly onto the surface of 0.5 cm-diameter sterile
glass discs or 1cm-diameter discs of impact-shocked gneiss
(Fig. 1). The impact-shocked gneiss was Smm thick, a
thickness within which visible light transmission in the
majority of the substrate is sufficient to support photosynthetic
growth in natural communities that inhabit these rocks
(Cockell et al. 2002).

Exposure conditions

The International Space Station (ISS) orbits the Earth at an
altitude of around 450 km, in a region termed ‘low Earth orbit’
(LEO). In this region, our organisms are exposed to a variety of
extremes: space vacuum, intense radiation bombardment from
both solar and galactic sources as well as extreme and variable
temperatures (Horneck et al. 2010).

The samples were fixed into the European Space Agency
Expose-R facility in March 2009. The technical specifications
of this facility have been described previously by Rabbow et al.
(2009). The EXPOSE facility, run by the EuropegpfSpace



Fig. 1. Image displaying the impact-shocked gneiss (right) and
borosilicate glass (left) used as substrates for the experiment.

Agency (ESA), is a multi-user facility which was designed to
host medium- to long-term experiments (around 1.5 years)
aboard the ISS. It is comprised of three trays containing
hundreds of individual compartments in which samples are
housed. The trays can be vented to the space environment or
sealed and pressurized with defined gases to simulate an
atmosphere. A variety of filters are used to control the
wavelength and intensity of radiation the samples are exposed
to. A range of bacteria, cyanobacteria, fungi, plants and some
invertebrates have previously been shown to survive exposure
to the full range of space conditions or selected parameters of it
(summarized in Horneck et al. 2010).

A total of 36 glass discs and 12 rock discs were tested. Half of
the glass discs were housed in containers which were vented to
allow exposure to the vacuum of space whilst half were in
sealed containers filled with argon gas. These experiments
therefore investigate the effects of UV radiation alone, but do
not take into account any potential confounding effects of
interactions between UV radiation and atmospheric compo-
nents that might have been present in the early Earth
atmosphere such as carbon dioxide. Twelve glass discs in
each condition were exposed to UV radiation whilst the rest
were kept dark. MgF, or Suprasil windows were used which let
through UV > 110 nm or >170 nm, respectively. In the Suprasil
windows further cut-off filters were used to reduce the final UV
cut-off to >200 nm. Neutral density filters were used to control
radiation dose to 0.01, 1 or 100% of the total radiation (no
neutral density filter). Three glass discs in each container
(sealed or vented) were exposed to 100% UV >200 nm, two
exposed to 1% UV>200nm and three exposed to 0.01%
UV>200nm. These conditions were repeated for
UV>110nm to investigate the effects of very short wave-
lengths of UV radiation.

The UV conditions encountered by each sample type are
summarized in Table 1. For the glass discs we report the
averages across the two compartments (vented or sealed) as
this should not influence the UV flux. The method of
calculating UV fluences throughout the experiment are
discussed in detail in Rabbow et al. (2014, this issue).

Impact shocked habitats on early Earth

All of the samples on rock discs were housed in vented
containers. Six rock discs were exposed to 100% of the UV
radiation >110nm and the remaining six kept dark. These
rocks were exposed to 80 nm (110-190 nm) of UVC radiation
not expected to have been encountered on the early Earth and
therefore experienced a UV spectrum on their surface more
severe than the worst-case early Earth spectrum. Identically
prepared control samples were kept dark in the laboratory for
the duration of the experiment. The experiment was conducted
for 22 months (10 March 2009-21 February 2011).

Raman spectroscopy

Raman spectroscopy was used to investigate the destruction of
biomolecules on exposure to the extreme conditions in LEO.
We used the presence or absence of carotenoids as a proxy for
biomolecule destruction in our experiments. Carotenoids are a
group of coloured pigments which are ubiquitous in nature,
particularly in photosynthetic organisms like cyanobacteria
and plants. Excitation of a carotenoid containing sample at
514 nm will reveal a characteristic spectrum (Fig. 2), where the
Raman shifts relate to the stretching of the C=C and C-C
bonds and to the bending of the C—~CH groups within the
conjugated molecule (Jorge Villar & Edwards 2006).

The observed Raman peaks arise from a resonance effect
which causes an amplification of the band intensities above the
background. This has proved to be extremely effective in the
analysis of biological samples which are complex, of low
concentration or which, as is common in cyanobacteria, are
prone to being obscured by the significantly stronger fluores-
cence emission excited by visible laser wavelengths. The
technique is particularly suited to the analysis of organic
materials in mineral matrices, is also non-destructive and is
therefore excellent for studies such as these where samples are
extremely precious. It has been used on numerous occasions to
detect cyanobacterial biomarkers from extreme environments
(e.g. Jorge Villar & Edwards 2006; Wang et al. 2010; Vitek
et al. 2010; Cockell et al. 2011).

A Renishaw inVia laser Raman microscope (Renishaw,
UK) was used and samples were excited at a wavelength of
514 nm. The laser was typically operated at 5% power with
each spectrum being an average of ten acquisitions. Data were
analysed using the commercial WiRE 3.2 software package
(Renishaw, UK)

Before analysis of the rock discs, a cross-section was
obtained with a sterile chisel. A positive or negative result for
the carotenoid spectra both on the UV-exposed surface of the
disc and the interior was recorded. Selection of the spot on
which to sample within the rock was guided by the location of
patches of cells as, owing to irregularities in pore spaces, they
are not homogeneously distributed throughout the rock. For
samples which were highly fluorescent at this level, the laser
power was reduced to 1% to ensure that the signal was not
hidden by the attendant fluorescence generated. Control
spectra were also obtained from a segment of rock on which
there were no cells and from dried cells of Chroococcidiopsis
sp.029 on BG-11 agar. 305
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Table 1. Average radiation doses experienced by each sample type during the experiment

Total irradiation at

PAR at sample site

(kJ m?)

UV (100-400 nm)

UVC at sample site

(kJ m?)

UVB at sample site

(kJ m?)

UVA at sample site

(kJ m?)

External irradiation

% Of
(kJ m?)

Cut-off

sample site (kJ m?)

at sample site (kJ m?)

exposure

wavelength

Sample type

8.2x10° (+1.5% 10
1.3x10° (£1x10%

1314 (£160)

3.7%x10° (£7x10%)
5.1x10* (£5055)

521 (£70)

5.7 x10° (£1.3x10%)
6034 (+1004)
61 (£12)

3.1x10* (£9266)

205 (£52)

8.5 10% (£2.2x 10%

867 (£176)
8.8 (£2)

4.6x10° £1x 10°)
4x10% (£777)

51 (£9.1)

1.7%107 (£5 116)
1.7% 107 (£5392)
1.7%107 (£5116)

110 nm 100

Glass disc

2.1 (+0.6)

0.01

7.3 x10° (£1.3 x10°)
1.1x10° (+7588)

1176 (£137)

3.3%10% (+6.2% 10%)
4.6 % 10* (£3499)

479 (+58)

4.8%10° (£1x10°%)
5132 (+649)
53 (£8)

2.4%10* (+6732)

166 (£37)
1.7 (£0.4)

6.9%10% (+1.7x 10%

709 (£129)
73 (£1.5)

3.9 x10° (+8x 10%)

4270 (£487)
44 (£6.6)

1.7x107 (3% 10%)
1.7%x107 (£3x10%)
1.7x107 (3% 10%)

200 nm 100
1.7% 107

Glass disc

0.01

1.5%10* (£2.9x10%)  4.3x10%(%8.1 x10% 3.8%x10° (£7x10%) 8.7%10° (£ 1.6 % 10°

5.2x10* (£9676)

3.7x10° (£7x 10%

110 nm 100

Rock disc

c=C

c-C

C-CH

800 10060 1200 1400 16400 1804

Raman shift (cm)

Fig. 2. Raman spectra taken from Chroococcidiopsis cells displaying
the typical carotenoid signature where peaks correspond to the
stretching of the C=C and C-C bonds and the bending of the C~-CH

group.

One glass disc from each condition was probed in triplicate
with a positive or negative result for the typical carotenoid
spectra recorded.

Both the glass and the rock used for this experiment were
investigated in an identical manner to the experimental
samples to ensure that the substrate did not have an
independent signal which could confuse the results.

Amplification of 16S rRNA genes from Chroococcidopsis on
glass discs

To assess the effect of direct UV radiation exposure on DNA
preservation, 16S rRNA was amplified from the glass discs in
UV radiation exposed and dark conditions. Cells were
recovered from glass discs by vortexing the discs in 200 ul of
sterile MilliQ water. Cells were lysed by cryogenic grinding to a
fine powder following sequential freeze—thawing cycles in
liquid N,.

Polymerase chain reaction (PCR) was performed using
cyanobacteria specific primers, forward primer CYA106F
and reverse primer CYC781R (Nubel et al. 1997). CYA718
was an equimolar mixture of CYA781R(a) and CYA78IR
(b). The primers were synthesized commercially (Sigma-
Aldrich, UK).

PCR amplifications were performed with an Eppendorf
epgradient S mastercycler. Touchdown PCR was performed
(Korbie & Mattick 2008), to maximize sensitivity and
specificity. 100 ul PCR reactions contained 50 pmoles of each
primer, 25 nmol each of ANTP (Roche, Penzberg, Germany),
200 pg of BSA (New England Biolabs, Herts, UK), 10 ul of
10xPCR buffer and 20 pul of DNA sample. The MgCl,
concentration present in the reaction mixture was supplemen-
ted to give a final concentration of 2.5 mM. Reactions were
started by the addition of 4 U of SuperTaqg DNA polymerase
(Cambio, Ltd, Cambridge, UK) after an initial denaturation
step (5 min at 94 °C), at 80 °C. The first incubation cycle was
1 minat94 °C, 1 minat 65 °C and 1 min at 72 °C. In the second
cycle, the annealing temperature was decreased by 1-64 °C, in
the third cycle by 1-63 °C, and so on in the same3gjgpwise



manner until the annealing temperature was 54 °C (after 12
cycles). Twenty-five further cycles were performed at this
annealing temperature followed by a final elongation step of
10 min at 72 °C. The results shown are of a minimum of two
independent amplifications. The amplification products were
resolved on a 1% TAE agarose gel (40 mM Tris-acetate, | mM
EDTA, pH 8.0) stained with SYBR Safe DNA gel stain
(Invitrogen).

The PCR aims only to provide a qualitative assessment of
DNA destruction. Since each sample was prepared identically,
a negative result indicates DNA destruction compared to the
control samples which consistently display a band.

Post-flight culturing

On return, one-third of each rock disc was placed in 100 ml of
BG-11 media with triplicate cultures for each exposure
condition. Subsequent growth was identified using bright
field microscopy. Since the rock could not be broken into
segments with adequate accuracy and cells were unevenly
distributed throughout the pore space, calculation of the exact
number of cells on each fragment of rock used for the
inoculation was not possible. Therefore, only a positive or
negative result for growth could be obtained. For the glass
discs, one disc for each exposure condition was added to fresh
BG-11 media.

Scanning electron microscopy

Both rock discs and glass discs were imaged using scanning
electron microscopy. The rock discs were coated in gold before
imaging using a Philips XL30CP scanning electron microscope
(SEM) (Philips, UK) operated at 1 mbar pressure. Images were
obtained using the absorbed current detector (AEI) ata voltage
of 20k V.

Observations on the glass discs were carried out using a
CamScan MX2500 SEM (CamScan, UK) operated in
controlled pressure mode (Envac, 30Pa) and coupled to
energy dispersive X-ray analysis (EDX) with Noran Vantage
system and Vista software. Images were recorded at a working
distance of 20 mm using the AEI at a voltage of 20 kV.

Results

Post-flight culturing

Within 4 weeks of inoculation of the fragments of rock discs,
numerous 0.5-1 mm green specks were observed on the rock
fragments. After 2 months, growth was clearly observed in the
media of all experimental samples whether stored in the
laboratory, kept dark in LEO or UV exposed in LEO.
Chroococcidiopsis cells were confirmed under bright field
microscopy. Some variability in the growth rates and
concentrations of cells between conditions was observed but
this was not quantifiable due to the necessary inaccuracies in
the number of cells used for inoculation.

It was found that no samples on glass discs, whether in LEO
or stored in the lab, had remained viable for the duration of the
experiment.

Impact shocked habitats on early Earth

lcm

Fig. 3. Image showing colour change in UV-exposed rocks (left)
compared to rock kept dark in LEO (right).

Raman spectroscopy

In our samples, we found that glass discs which had been
inoculated with cells of Chroococcidiopsis and either stored
under laboratory conditions or kept dark whilst in the
EXPOSE-R facility clearly exhibited the characteristic car-
otenoid bands described above. This indicates that despite the
death of the cells during the period of desiccation the
biomolecular carotenoids had not undergone degradation.

In the UV-exposed samples on glass discs the carotenoid
peaks were only detectable at a very low level in one sample
which had been exposed to 0.01% of the incoming radiation
>110 nm in a vented container. All other UV-exposed samples
tested exhibited no spectral peaks. Variations in the back-
ground fluorescence emission intensity were observed in
several of these UV-exposed samples.

Rock discs which had been exposed to UV in LEO exhibited
a browning of the surface which was not observed in rock discs
which had been kept dark (Fig. 3). The spectra obtained from
cells in the rock discs are displayed in Fig. 4. For cells on rock
discs stored in the lab or kept dark in LEO the carotenoid
signal was detected both on the surface and in the subsurface
(Fig. 4(a) and (b)). In the rock discs it was found that cells on
the UV-exposed surfaces of the rocks had experienced similar
destruction to carotenoids as that exhibited by cells on glass
UV-exposed discs (Fig. 4(c)). Cells on the surface of the rocks
imaged through the Raman microscope had turned brown
during exposure and they did not exhibit any characteristic
Raman peaks when probed (Fig. 4(c)). However, below the
surface in the cleaved samples, green flecks were observed
which when probed at 514 nm exhibited the typical carotenoid
Raman spectral signals (Fig. 4(c)). This demonstrates that the
rocks were effective in shielding the cells housed internally
from 100% exposure to the full extraterrestrial radiation dose
>110nm. We have determined that whilst some fluorescence
contribution from glassy minerals in the rocks is present there
is no interference that would confuse the interpretation of these
characteristic carotenoid spectral signals.

Polymerase chain reaction

The results of the PCR reactions are displayed in Fig. 5. 16S
rRNA was successfully amplified from all of the celigyqn glass
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Lab control A

surface

subsurface

800 1000 1200 1400 1600 1800
Raman shift (cm™)

Dark in LEO B

surface

subsurface
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Raman shift (cm™)

UV Exposed in LEO C
surface
subsurface

800 1000 1200 1400 1600 1800

Raman shift (cm")

Fig. 4. Raman shift at 514 nm of the patches of cells in the surface and
subsurface of rock discs from each condition. The spectral bands
indicative of carotenoids is present in the surface and subsurface of the
laboratory controls and the dark samples from low Earth orbit as well
as the subsurface of the UV-exposed rocks. The brown cells on the
surface of the UV-exposed rocks do not show any distinct peaks but
exhibit an increased fluorescence.

discs which had been kept in dark conditions, but not on any
exposed to UV radiation. There was some variation between
the intensity of the bands that were detected. The use of the
PCR aimed to provide a proxy for DNA damage to the
samples. The successful imaging of bands gives a qualitative
assessment of the destruction of DNA since all discs were

Fig. 5. Amplification of 16S rRNA genes from Chroococcidiopsis on
glass discs exposed to various space conditions. (a) Amplification of
genes from cells on three glass discs kept dark in sealed containers, (b)
amplification of genes from cells on three glass discs kept dark in
vented containers, (c, d) no gene bands observed from cells on UV-
exposed glass discs in sealed (c) or vented, (d) containers, (e) positive
control (left), negative control (middle) and marker lane (right).

originally inoculated with the same numbers of cells. For this
reason normalization of the DNA was not required.

Scanning electron microscopy

Figure 6 displays SEM images of cells in the pore space of the
rocks in the control (a), dark (b) and UV exposed (c) samples. It
was observed in the UV-exposed rocks that morphologically
intact cells were present even in pores directly exposed to the
surface. This could suggest that UV bleaching of the cells had
occurred and the biomolecules destroyed whilst the cells still
maintained their shape.

SEM images of the glass discs reveal that samples which had
been kept dark, despite being dead on their return to Earth,
had also retained their morphology (not pictured). This was
also the case for the glass discs exposed to UV radiation within
vented containers but intact cells were not observed on glass
discs which had been kept sealed.

Discussion

In this study, we used the UV radiation conditions found in low
Earth orbit (LEO) to determine if an endolithic lifestyle could
provide suitable shelter for phototrophs on the anoxic early
Earth, or on other anoxic planets, which receive a higher UV
radiation dose than the Earth’s surface today. Impact shocked
gneiss was chosen as the rock substrate to determinggygether
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Fig. 6. SEM images of the rock discs show that cell morphology
observed in the control was preserved during exposure to space
conditions, both dark and UV radiation exposed (a) rock control disc
kept dark in the lab for the duration of the experiment, (b) rock disc
kept dark in LEO and(c) rock disc exposed to 100% UV >110 nm in
LEO.

new habitats created by impact events could provide adequate
protection from the higher UV radiation.

Phototrophs have the requirement for photosynthetically
active radiation (PAR) for growth, meaning that they must be
exposed to sunlight with the concomitant exposure to UV
radiation. Therefore, simply growing at a depth where UV
radiation is completely extinguished is not an option.

We report that organisms within impact-shocked gneiss
exposed to the intense UV radiation environment in LEO for

Impact shocked habitats on early Earth

22 months were viable on their return to Earth. This reveals
that it would be possible for cyanobacteria to persist in a
desiccated state for almost 2 years in these rocks under the
worst-case UV radiation conditions.

The complete loss of viability in cells on all of the glass discs
regardless of exposure conditions (and in controls) could be a
result of extreme desiccation of the thin layer of cells on the
glass disc. Cells within clumps inside the rocks might have been
protected by the extracellular polysaccharide of other cells as
observed with other cyanobacteria (Tamaru et al. 2005) or
have had reduced rates of desiccation when they were prepared.
The thin layer of cells desiccated onto the flat glass surface will
have dried out quickly. Inside the rocks, cells contained within
the liquid would have pooled in pore spaces allowing cells to
desiccate more slowly, where it would form thick clumps as
seen in Fig. 6(a).

Our results on the UV-exposed glass discs show that direct
exposure to the worst-case early Earth UV radiation condi-
tions over a long period will have a destructive effect on
biomolecules, destroying both essential pigments and breaking
up DNA even when this was attenuated to only 0.01% of the
incoming UV. Our PCR and Raman spectroscopy results
demonstrate that this damage was not as extensive in discs
which had been kept dark compared to those exposed to UV
radiation. This supports the general consensus that UV
radiation exposure is the most destructive aspect of exposure
to space conditions (Horneck ez al. 2010). This also emphasizes
the low survivability of photosynthetic life on the surface of the
early Earth in the absence of active repair.

The positive detection of carotenoid signatures observed by
Raman spectroscopy in cells exposed to 0.01% UV radiation of
>110 nm in vented containers suggests that the radiation dose
received at this level may have been close to a threshold level at
which biological molecules can survive.

We also observed that UV radiation exposure, death and
biomolecule destruction does not necessarily destroy the
morphology of cells. SEM images of the rock discs showed
that the morphology of some cells within the rocks remained
intact regardless of exposure condition or proximity to the
surface. The morphology could also be discerned from cells on
glass discs from all conditions in vacuum but not on discs
housed in argon gas. This could suggest that space vacuum
might be advantageous to the preservation of morphology
under extreme UV radiation stress. With only one sample
available for this imaging analysis this result would require
further confirmation; however, this could suggest that the
presence of a thick atmosphere may be detrimental to
biomarker preservation and detection on a planetary surface
with a high-UV flux.

The extent of carotenoid destruction on directly exposed
cells (either on the glass discs or the surface of the rocks)
compared to those within the impact-shocked rocks highlights
the importance of a shielding mechanism in high-UV radiation
conditions whether on the early Earth or other rocky planetary
surfaces. These data show that impact-shocked rocks provide
protection against biomolecule destruction and ultimately loss
of cell viability. 309
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We conclude that the protection afforded to organisms
within impact-shocked rocks is adequate to preserve viable
cyanobacterial cells in a desiccated state for at least 22 months
under a UV flux at least equal to the worst-case scenario on the
early Earth. This result could extend to other terrestrial-type
rocky planets lacking a sufficient atmospheric UV radiation
shield. Cells actively growing, unlike the desiccated cells we
studied here, would have the potential to actively repair UV
radiation-induced damage (assuming the dose is sublethal),
suggesting that our results are conservative. This work
highlights the potential of impact craters and endolithic
habitats as protective habitats on rocky planets with a high-
UV radiation flux and it empirically demonstrates that
phototrophic microorganisms could have colonized early
land masses under a worst-case UV radiation flux even without
a matting ability.
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