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Abstract
In this thesis we study some of the problems which occur when type inference
is used in a type system with subtyping. An underlying poset of atomic types
is used as a basis for our subtyping systems. We argue that the class of Helly
posets is of significant interest, as it includes lattices and trees, and is closed under
type formation not only with structural constructors such as function space and
list, but also records, tagged variants, Abadi-Cardelli object constructors, >, and
⊥. We develop a general theory relating consistency, solvability, and solution
of sets of constraints between regular types built over Helly posets with these
constructors, and introduce semantic notions of simplification and entailment for
sets of constraints over Helly posets of base types. We extend Helly posets with
inequalities of the form a 6 τ , where τ is not necessarily atomic, and show how
this enables us to deal with bounded quantification.

Using bounded quantification we define a subtyping system which combines struc-
tural subtype polymorphism and predicative parametric polymorphism, and use
this to extend with subtyping the type system of Laufer and Odersky for ML with
type annotations. We define a complete algorithm which infers minimal types for
our extension, using factorisations, solutions of subtyping problems analogous to
principal unifiers for unification problems. We give some examples of typings
computed by a prototype implementation.
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Introduction

Subtyping

The study of Subtyping in the λ-calculus first arose in the work of Reynolds [45]
and of Coppo and Dezani [10]. One type is a subtype of another if any element of
the first may be used in any context where an element of the second is required;
this is the principle of subsumption. We will write τ1 6 τ2 to mean that τ1 is a
subtype of τ2. Operationally this may denote either inclusion between types, or
that an implicit coercion is to be inserted to transform an element of τ1 to one of
τ2. Principal motivations for subtyping as a language construct are that it is

Natural to express semantic inclusion: for example in simple record type systems
we expect a record with more fields to be usable wherever one with fewer
fields is. And N ⊆ R, so we might intuitively expect Nat 6 Real, even if at
the machine level coercions may be required to implement this.

Powerful enough to encode the constructs of object-oriented languages within
functional frameworks — see for example [37, 1], or [16, 14] for encodings
in first-order systems of the kind we consider in this thesis.

Type Inference

Realistic programming languages with complex type systems benefit greatly from
type inference, the process of reconstructing type information omitted by the
programmer. It is not without its drawbacks: the requirement that type inference
be decidable places limits on the power of the type system, and interpreting the
errors that arise during type inference generally requires more understanding of
the type system by the programmer. But usually type inference speeds and
simplifies coding tasks, and results in more elegant code.

Although many notions of inference exist, our interest will be in ver-
sions of Hindley-Milner type inference [13] for λ-calculus extended with let-
polymorphism, which is the basis for type inference in ML [27] and similar func-
tional languages. Type inference for λ-calculus in the presence of subtyping was
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first considered by Mitchell [28]. It is significantly more complicated than without
subtypes. Consider the following simple ML function:

fun max x y = if x < y then y else x

where < is a comparison of type Real→Real→Bool. Under the standard Core-
ML type system, this program has type Real→Real→Real. However, suppose
we have a subtype relation where Real has subtypes. Then if we assign the type
variable α to x and β to y, type inference tells us that the term is typable for any
α and β such that α and β are each subtypes of Real (from the <) and have a
common supertype (so that the results of the two arms of the conditional can be
combined.) The constraint graph is thus:

Real γ

α β

It is not unreasonable in general to want distinct values for α, β, and γ, all of
which are different from Real. In the ML type system, all the inequalities are
viewed as equalities and all points of this graph are identified. But in the presence
of subtyping, identifying any pair may lead to a loss of solutions: suppose the
underlying order is the (rather unrealistic) poset:

Real GaussInt

EvenInt OddInt

(Such a poset is called a 2-crown.) We can use max to produce a GaussInt from
an EvenInt and an OddInt, but it is easy to check that if we identify any two
points in the constraint set for max, we will no longer be able to use the function
in this way. Thus in general a principal type scheme will be a quantified type
subject to constraints. We will write the principal type here as

∀{α, β, γ}\{α6Real, β6Real, α6γ, β6γ} α→β→γ
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For such a simple expression this type is somewhat unwieldy, and it is shown in
[22] that in general for any sound definition of an instance relation on constrained
types there is a term of size k whose principal type scheme requires at least k
constraints. More practically, the usual way of inferring types in the presence
of subtyping yields a constraint for every application subterm, so that in typed
λ-calculus the inferred constraint set grows at least linearly with the term; let-
polymorphism can result in a much faster blowup. Thus we can expect a raw
type inference algorithm to yield principal types with constraint sets which are
too large to be understood by humans (e.g. quicksort produces approximately 300
constraints) and for inference to be practically scalable. Faced with constrained
types, several issues arise immediately:

Satisfiability Is there a solution to the constraints? If there isn’t, then we should
generate a type error. In this particular instance it is easy to check by hand;
in larger programs all but impossible.

Entailment Suppose we know what type we intended for this expression. Is
it equivalent to, or at least less general than, the inferred type? This is
the obvious question for signature matching, but it can also help during
development: we can annotate program terms for documentary reasons,
or, if a type error is encountered, to force the typechecker to check that it
is producing the results intended at intermediate points. Entailment is a
difficult problem, and not well-understood for complex type systems.

Simplification Is there a more succint representation for the constrained type?
Generating small representations is important both for the typechecking
algorithm, for reasons of scalability, and for the programmer, for compre-
hensibility.

The requirements of the type inference engine and the programmer in regard
to simplification may be different: if the programmer is forced to look at
types, it may be worth considerable effort to produce an optimally simplified
solution. For purposes of efficient inference, however, a quickly generated
but less than optimal simplification system may be more practical. In gen-
eral, simplification strategies depend on the notion of entailment chosen,
since this determines the classes of equivalent typings.

Solution Given a solvable constraint set, can we find a solution? Suppose we
have a top-level function for which we infer type ∀α\C. Int→Int. None
of the variables in C can have any effect outside the function, so the type
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scheme is unnecessarily polymorphic, and the actual instantiation of the
variables α is of no interest, save that the constraints in C are satisfied.
Picking a particular solution enables us to compile the function monomorph-
ically, which may represent a significant optimisation.

Types And Orderings

The question of what forms of subtyping can be feasibly implemented must be
addressed in the light of how well we can deal with the above issues. In order to
describe the relevant problems, we shall use some informal definitions here which
will be made precise in chapter 1.

Subtype orders are typically constructed by asserting some ordering prop-
erties of the base types (Nat, Int, etc), and defining properties of the type
constructors in the language (products, function types, lists, records etc) which
propagate the subtyping relation on the base types. For example, we expect
Int→Nat 6 Nat→Int, since the function space constructor is contravariant in
its first argument, and covariant in its second. Constructors such as →, ×, and
List are called structural: in an ordering built with such constructors from atomic
types, any two elements which are in the subtype relation must have the same
“shape”, that is, lists of integers are only subtypes of lists of types of which in-
tegers are a subtype, etc. The record constructor is an example of a constructor
that does not behave this way. Assume that we have simple records, in which our
only operations are record formation and field extraction. Since all we can do to a
record is extract a field, in any context where we need a record with a certain set
of fields, a record with additional fields is also usable. This is known as “width-
wise” subtyping: for example we have {a:Int, b:Nat} 6 {b:Int}. This obviously
doesn’t preserve the same-shape property, and consequently such constructors are
termed non-structural.

Whilst purely structural subtyping is easier to handle, in practice records and
variants are important language features, as are the object constructors of [2],
which have similar width-wise subtyping behaviour. One of the major issues of
this thesis will be the question of how to combine existing techniques for structural
subtyping to deal with non-structural constructors.

The question of whether the subtyping order may be allowed to vary is also
an important one. It seems natural that if the language permits definition of
new types, then it should be possible to create a place for them in the subtype
ordering. This could either be by inclusion (a natural circumstance for subrange
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types), or by declaring an implicit coercion (for a continued fraction datatype to
be coercible to a Real, say). We might also wish to define new types as subtypes
of constructor types. For example, if we wished to implement complex numbers
as (r, θ) pairs with −π 6 θ < π, we might expect Complex < Real × Real.
More generally, an abstract type represented by a concrete type subject to some
invariance condition may be seen as a subtype of the concrete representation.

Another reason for introducing such types is to allow bounded quantification
[7], a language construct which allows universal quantifiers to quantify over only
the subtypes of a given type, for example the ∀δ6Real. δ→δ→δ typing for max.
It is less expressive than full-blown constrained quantification, in that while all
terms can be assigned principal constrained type schemes, not all terms have
principal bounded type schemes. However, the question of when a constrained
type scheme entails a bounded type scheme turns out to be quite straightforward
to determine (whereas testing entailment between two constrained type schemes
is not a well-understood problem).

In order to justify our approach to these issues, we will outline some of the
results to date in the areas of satisfiability, entailment, and simplification.

Satisfiability

It is shown by Hoang and Mitchell in [22] that for any language which is based
on the λ-calculus and incorporates subtyping, typability is PTIME-equivalent to
satisfiability of constraint sets over the subtype ordering. Thus it is important to
choose orderings for which satisfiability is tractable.

In [50], Tiuryn distinguishes between two forms of the satisfiability problem.
The more general, UNIFORM-SSI, takes a constraint set and a poset as input, and
checks satisfiability. The problemQ-SSI specialises UNIFORM-SSI to a particular
poset. Tiuryn shows that there are posets (e.g. crowns, of which the 2-crown
is the simplest) for which Q-SSI is PSPACE-hard, and thus so is UNIFORM-
SSI (indeed it is PSPACE-complete [17]), but that for structural subtyping over
unions of lattices it is in PTIME. This result was extended in [5] to Helly posets
(a class which we will discuss further), and in [41] to a class of posets called
transitively feasible. While it is not difficult to see how crowns might arise in order
hierarchies (for example, those generated by multiple inheritance), in practice it
is not feasible to incorporate them into subtyping systems.

Satisfiability is usually checked in polynomial time using some notion of con-
sistency on the constraint set, rather than by constructing an explicit solution.
Usually dynamic transitive closure of constraints is used: we close the constraint
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set under transitivity, and propagation of constraints of the form τ1→τ2 6 τ ′1→τ ′2
to τ ′1 6 τ1 and τ2 6 τ ′2. If this closure process terminates without generating in-
equalities between mismatching constructors, or constructors and atomic types,
the constraint set is consistent and thus solvable. This technique requires the
underlying poset to be a union of lattices. If subtyping is structural, then we can
ensure this by choosing lattices for the posets of base types, since structural con-
structors always build lattices from lattices. But this is quite a strong restriction,
since the natural orderings on types (for example numeric types) that we might
wish to incorporate into a subtype hierarchy sometimes lack a natural choice of
> type, and even more often a natural choice of ⊥.

The method fails for trees even with structural subtyping: {Nat→Nat 6
α, Long→Long 6 α} is unsolvable over the tree order Long < Int, Nat < Int,
because any solution for α would have to be of the form a1→a2 with the prop-
erty that a16Long and a16Int. Yet closure of the constraint set generates no
inconsistencies.

Further, the set of records over a lattice (or even a discrete poset) does not form
a lattice: for example, the types {l:a} and {l:{l:a}} possess an upper bound {} but
no lower bound. So constraint consistency is again inadequate: the constraint set
{{l:a} > α, {l:b} > α} is unsolvable even through constraint closure generates
no inconsistencies. However, a modification of this method can be used with
object types where field subtyping is invariant [32, 20]: in this case we need also
to propagate common-lower-bound conditions to equalities between subterms:
the corresponding constraint set {[l:a] > α, [l:b] > α} using objects rather than
records, yields the constraint a = b, demonstrating unsatisfiability.

In cases where records are required, the technique of [16] is to add global > and
⊥ elements to the model of subtyping, making the ordering into one big lattice.
Unfortunately, this can create undesirable side-effects: for example, consider the
term

let f = fun(r) r.X + if r.X then 1 else 2;

The “one big lattice” technique accepts this term as well-typed: in fact it has
the minimal type {X:⊥}→Nat, since the X field of r is used at types Bool and
Int. Unfortunately the domain of this type is uninhabited, so the function cannot
be applied, which is unlikely to be what the programmer expected. If we solve
constraint sets rather than just checking consistency, the presence of > or ⊥ in an
inferred type could be enough to alert the programmer to the fact that something
is wrong, but the constraint may be propagated a long way through the program
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before it is detected. Or consider the term true = 3. If we have polymorphic
equality, this term is typable, and in a PER model where all elements are equal
at type >, will always evaluate to true. This expression could quietly form
part of a well-typed larger program, whereas a type error probably reflects the
programmer’s intuition more accurately.

These difficulties might be a fair price to pay in circumstances where > and
⊥ are themselves useful, examples cited in [48] are for heterogeneous lists, or
persistent data: weaker type systems that admit more judgements can also be
seen as more flexible type systems. On the other hand, it is quite reasonable to
want to add records, say, to a language, without the extra baggage resulting from
> and ⊥ So we are faced with the question: if the model is not then a lattice,
what is it? In fact, the model containing just those types that are syntactically
expressible turns out to have the structure of a Helly poset.

Once consistency has been checked, it may be possible (as in e.g. [16]) to
demonstrate soundness of typing directly from the closure condition, but the
usual method ([50, 5] for finite types; [34, 35] for regular infinite types) is to show
that the consistency condition can be exploited to produce a solution.

Entailment

Semantically, one type scheme entails another if all solutions to the first are
solutions to the second (e.g. [40, 52, 3]). For complex type systems no complete
algorithm for testing entailment is known. In the context of subtyping over a
lattice the entailment relation between a constraint set and a single constraint
has been studied by Henglein and Rehof [21]. Our approach to entailment will
be similar to theirs, but over a Helly poset rather than a lattice.

Simplification

Simplification techniques operate on the constraint set by using a sequence of
transformations, each of which reduces its size. In general, the validity of a
simplification transformation depends on the notion of equivalence between con-
strained types. For example, we have seen that in the inferred type of max, if
we require that the set of solutions over a 2-crown be the same in any equivalent
type, then no simplification is possible. On the other hand, if our underlying
poset of types is a lattice, then in the case of max, α and β have a least upper
bound δ, and in any solution this upper bound must be less than γ and Real.
So any inputs of type α and β can be coerced to type δ, compared by coercing δ
to Real, and an output of type δ can then be coerced to type γ. This process of
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“exporting” coercions leads us to an equivalent representation of the type of max
as ∀δ6Real. δ→δ→δ.

There are two main identifiable streams of work in the literature. The simplest
operates on constraints in atomic form. Introduced by Fuh and Mishra [18], its
complexity and completeness properties have been more recently studied by Rehof
[43]. The approach is essentially syntactic: a simplification being justified if it
results in a provably equivalent constraint set.

The other operates on systems of constraints over regular types, often in-
volving non-structural subtyping. The notion of equivalence here is semantic
rather than syntactic, based on equality of solution sets. More simplifications
are possible than in the syntactic approach, since information about the under-
lying poset (such as lattice structure) can be exploited. Early examples, such as
[12, 46] were collections of transformations applied essentially heuristically. The
most successful approach by Pottier [40] uses a powerful entailment algorithm as
a foundation for the transformations, so that as well as transformations which
known to be valid, the algorithm can speculatively transform the constraint set
then test for equivalence, resulting in a very powerful simplification system. The
incompleteness and high computational cost of the entailment algorithm are prop-
erties the simplification algorithm thus inherits. Simplification of constraint sets
over regular types in a lattice of regular types over a discrete order extended with
> and ⊥ has been studied in [3], where a procedure is given which minimises the
number of variables in a constraint set.

We will use our entailment relation over Helly posets to derive a simplification
operation which allows us to exploit the Helly structure. For example, while in a
Helly poset it is not generally the case that any pair of types possess a least upper
bound, it is the case for any pair of types which have at least some upper bound.
This suffices to demonstrate the existence of the type δ in the max example, and so
justifies the same simplification as if the underlying subtype order were a lattice.

Type Inference and Annotation

The type system in which the subtype ordering is embedded is also an important
consideration. Although for the most part we will consider the type system of
ML extended with subtyping, called ML6, we shall also consider the system of
Laufer and Odersky, which we shall call ML∀. In core ML, all function arguments
must have monomorphic types. Whilst this restriction is not impossible to lift
[53], to do so without extending the term syntax results in the loss of principal
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typing. The most attractive approach, from [31], is to use annotations, whereby
an abstraction is assumed to take a monomorphically typed argument unless the
variable bound by the abstraction is annotated with a type scheme.

This Work

Helly Posets

We will concentrate on Helly posets, which we shall formally define in chapter 2.
Helly posets possess attractive algebraic structure, and the relevance of this to
efficient satisfiability was first demonstrated by Benke in [5]. The class of Helly
posets is interesting for several reasons:

• It includes many classes of interesting posets, such as trees and lattices.
Another example of a Helly poset is the Haskell class hierarchy [36].

• It is closed under orderings generated by many interesting type constructors.

• Satisfiability over Helly posets built with non-structural subtyping con-
structors is a smooth generalisation of unification and of transitive con-
straint closure.

• Helly posets can be extended with new elements in a natural fashion.

We will study entailment over Helly posets of atomic types, and indicate how
it may be extended to the structural subtyping case, and we will introduce a
simplification technique with a useful completeness property. We will also extend
Benke’s result to non-structural and non-finite cases, which will enable us to work
with models of subtyping that do not have the problems which accompany > and
⊥.

Non-atomic Constants

We will consider the impact of choosing a (not necessarily atomic) type τ in a
Helly poset and adjoining a new type constant a with the inequality a 6 τ . This
will enable us to introduce bounded quantification, and to determine whether
a constrained type scheme entails a bounded type scheme with relatively low
computational cost, by framing the entailment problem as a satisfiability problem.
We will proceed to combine subtyping and annotations in a type system for which
we will demonstrate an inference algorithm with a form of principal type.
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Outline of the Thesis

The first part of the thesis will focus on the study of subtyping over Helly posets,
the second on subtyping and annotation.

Preliminaries

Chapter 1 contains necessary background to the work.

Helly Posets

In chapter 2 we define Helly posets, and develop the theory which we shall apply
in chapters 3 and 4.

Simplification and Entailment

In chapter 3 we define a simple entailment relation for atomic constraint sets
over Helly posets, and show how it forms the foundation for a simplification
transformation.

Satisfiability and Solution

In chapter 4 we show how constraint sets can be tested for satisfiability, and
solved, over partial orders consisting of regular types built from Helly posets.

Subtyping and Annotations

In chapter 5 we investigate the relationship between bounded quantification and
mixed-prefix unification. We define quantified subtyping problems, and show how
such problems may be solved. In chapter 6 we show that partially solved problems
have a factorisation property that is analogous to the principal solution property
of first-order unification. We use this to incorporate subtyping in the extension of
ML by annotations [31], and show that the resulting system has principal types
(although not that it has principal typings).
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Chapter 1

Preliminaries

In this chapter we will define some terms and formally state some result from the
literature which we shall call on in later chapters.

1.1 Types

We will begin with a few definitions. The syntax of our types will be as follows:

τ ::= α | a | Tτ1 . . . τn

where T is a type constructor such as →, List or a record type constructor, α
ranges over type variables, and a ranges over base types. A ground type is a
type containing no type variables. Each ground type is a base type if it is of the
form a, and a constructor type otherwise. Base types can also be considered as
constructors of arity zero. Our types will be built over some poset Q of atoms,
whose elements cannot be coerced to elements of constructor types. Atoms are
base types, but later we will allow assertions of the form a 6 τ1→τ2 (for example),
so that not all base types will necessarily be atoms. We will write τ (A) for the
set of types built over some set A of base types.

1.2 Subtyping

We shall define the ordering over a poset Q of base types by a set of rules. Since
it is an ordering, we naturally have

τ 6 τ
(Taut)

τ1 6 τ2 τ2 6 τ3

τ1 6 τ3
(Trans)

Additionally we need
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• a finite description of the subtyping behaviour of the base types

a6b ∈ Q
a 6 b

(QAx)

• a set of rules describing how subtyping between two constructor types is de-
termined by the subtyping relationship between the constructor arguments,
for example:

τ ′1 6 τ1 τ2 6 τ ′2
τ1→τ2 6 τ ′1→τ ′2

(Arrow)

It will sometimes be convenient to consider the axioms for Q as constructor rules
for zero-arity constructors.

Type Constructors

There are two classes of subtype orderings: structural and non-structural. Sup-
pose we have an underlying poset Q of atomic types. There is a natural equival-
ence relation on Q, such that two elements are equivalent if they are in the same
connected component (we shall use the term “component” to mean “connected
component”). We will choose a representative for each equivalence class, and
write paq for the representative of the class containing a. Then we define the
shape of a type as follows:

S(a) = paq
S(Tτ1 . . . τn) = TS(τ1) . . .S(τn)

A subtype ordering is structural if the components of its graph are exactly the
sets of types of identical shape. A constructor will be called structural if extend-
ing a subtyping system with its constructor rule always preserves the structural
subtyping property. For example,→ is a structural constructor, while a global >
type (such that τ 6 > for every τ ) is not, because it merges all the components
of the ordering into one.

Since non-structural constructors have rather distinctive behaviours, we will
deal with each on an individual basis. Structural constructors, however, will be
dealt with uniformly. We use T to range over such constructors. We will use
the generic term labels to indicate the set of indices used to order constructor
arguments, so that→ has labels 1 and 2. We use the function L() to refer to the
label set of a constructor, so that e.g. L(List) = {1}, L(→) = {1, 2}, L(a) = ∅,
and we extend this to types, so that L(τ ) is the set of labels of the outermost
constructor of τ .
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Structural Constructors

Structural constructors include ×, +, List, and →. Each T has a fixed arity
n, labels {1, . . . n}, and an associated n-tuple of polarities, each of which is pos,
neg, or mix, describing the subtyping behaviour of the constructor with respect
to each argument. pos will mean that the constructor type increases as that
argument does, neg that it decreases, and mix that changing that argument yields
an incomparable type. For example the polarities of→ would be (neg, pos), that
of ref, (mix). We will write piT for the polarity of the constructor in its ith
argument, and �Ti for whichever one of {6,>,=} is required by the polarity on
τi 6 τ ′i for Tτ1 . . . τ1 6 Tτ ′1 . . . τ

′
n to hold. Then for each structural constructor T

we will have a rule:

τi �Ti τ ′i for 1 6 i 6 n

Tτ1 . . . τn 6 Tτ ′1 . . . τ
′
n

(Cons-T)

Given a type τ with outermost constructor T of arity n, we use the term τ (i) to
denote the ith constructor argument of T.

Records and Variants

Record subtyping is fundamental to encodings of objects in type systems such
as that of [16]. The subtyping behaviour of the Abadi-Cardelli objects ([2]) is
similar, and tagged variant types are dual to records in their subtyping behaviour
and can be dealt with using the same techniques. The subtyping rule for records
is:

τi 6 τ ′i for all i ∈ I I ⊆ J

{lj:τj}j∈J 6 {li:τ ′i}i∈I
(Record)

The record constructor can be considered of variable arity. For each finite set of
labels I , we define a constructor {}I of arity |I |, which constructs a record with
labels exactly the elements of I . Then p

{}I
l = pos for any l ∈ I , and L({}I) = I .

If τ is a record type, we use the term τ (l) to refer to the type of the l field.

> and ⊥

> and ⊥ are the other non-structural constructors usually encountered. Their
subtyping rules are simply:

τ 6 >
(Top)

15



⊥ 6 τ
(Bot)

Obviously L(>) = L(⊥) = ∅.

Nonatomic Base Types

We can extend the ordering over the underlying poset Q by a bounded signature.
A bounded signature is a list of subtype assertions either of the form a where a

does not occur previously in the signature or in Q, or a6τ , where a is a name not
previously occurring in the signature or in Q, and τ is a type constructed using
elements of Q and atoms previously bound in the signature.

Σ ::= • The empty signature
Σ, a
Σ, a 6 τ where τ ∈ τ (Q ∪ atom(Σ))

If a is bound in Σ, we will call it a Σ-atom (by contrast to a Q-atom), and for
the set of such Σ-atoms we will write atom(Σ). It is straightforward that any
extension of Q by a forest may be topologically sorted into a representation by a
bounded signature. We have the rule Var

↑:

Σ↑(a) = τ

Q,Σ ` a 6 τ
(Var

↑)

where we write Σ↑(a) for the upper bound of the Σ-atom a. We will write Σ(a)↓
to mean that a is a Σ-atom with an upper bound, and write Σ⇑(a) for the minimal
bound of Σ which is not a base type, if such exists.

It is easy to show that with just constructors and Q-atoms, transitivity is
redundant: all occurrences of Trans can be eliminated from any proof. However
this is not the case once the rule Var

↑ has been introduced. A standard technique
[11, 38, 8] is to replace this rule with

Σ↑(a) 6 τ
a 6 τ

(Prom
↑)

whence transitivity is again redundant.

Constraint Sets

A constraint set will be a set of assertions of the form τ1 6 τ2 where τ1 and τ2

are types possibly containing variables. If C is a constraint set, a solution to C
will be a ground substitution θ on the variables such that for every τ16τ2 ∈ C,
θτ1 6 θτ2.
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The set O(τ ) of types occurring in τ is defined as follows:

O(α) = α
O(a) = a
O(cτ1 . . . τn) = {cτ1 . . . τn} ∪ O(τ1) ∪ . . . ∪O(τ2)

If C is a constraint set, the set O(C) of types occurring in C is⋃
τ16τ2∈C

O(τ1) ∪O(τ2)

1.3 Regular Types

Object systems which use subtyping typically require infinite types, and they are
also a natural way to express types such as lists and trees. There are a number of
ways in which to represent regular types, such as transition graphs ([25]), recursive
types ([4, 6]), and trees ([4]), each of which has its advantages. We shall choose
rooted transition graphs as our basic representation. A graph corresponding to
a regular type is a finite directed graph with labelled vertices and edges, rooted
at some particular vertex. The vertices are labelled with type constructors (via
a labelling function ν), and a vertex labelled with the constructor c has exactly
one out-edge for each l ∈ L(c), and no others. We shall use (G, r) to range over
such graphs, where r is the root vertex. For any vertex n in a transition graph
with out-edge l, we shall write n(l) for the vertex reached by an l-transition fron
n. We shall use ν(τ ) to mean the outermost constructor of τ , which is just ν(r),
where (G, r) is a graph of τ .

Any finite rooted graph can be unfolded from the root vertex into a regular
tree (that is, a tree with finitely many distinct subtrees). We say two graphs
(G1, r1) and (G2, r2) are isomorphic and write (G1, r1) ∼= (G2, r2) if they unfold
to the same tree: that is, if every path in either graph exists in the other, and the
path traverses the same sequence of constructors in each graph. For any given
tree, there is an infinite isomorphism class of rooted graphs which unfold to it.

Shallow Approximation

It is convenient to extend the ordering on atoms (viewed as zero-arity construct-
ors) to all constructors. To this end, we define the relation v as follows:

a v b if a6b ∈ Q
→ v →
{}l∈L v {}m∈M if M ⊆ L
c v > for any constructor c
⊥ v c for any constructor c
a v c if Σ↑(a) v c, for non-atomic a

17



v on types is a “shallow” approximation of 6: ν(τ1) v ν(τ2) is a necessary
condition for τ1 6 τ2, although clearly it is not sufficient.

1.3.1 Remark: Note that for all the constructors we consider, if c1 v c2, then
for any l ∈ L(c1) ∩ L(c2), pc1l = pc2l .

Simulations

1.3.2 Definition: A simulation between types built with the→ constructor over
some poset of base types is a relation . on types such that if (G1, r1) . (G2, r2)

• ν(r1) v ν(r2)

• if ν(r1) = ν(r2) = →, then (G2, r2(1)) . (G1, r1(1)) and (G1, r1(2)) .
(G2, r2(2))

It is easy to show that simulations are closed under unions, and it is well known
(see e.g. [25]) that the 6 relation is the largest simulation. Thus in order to
demonstrate that τ1 6 τ2, it suffices to find a simulation between them.

In fact, this result extends easily to other structural constructors, to records,
>, and ⊥. We shall use a more general definition encompassing these constructors,
although it can in fact be widened further, to deal with constructors for which
remark(1.3.1) does not hold, e.g. updatable records [44].
(G1, r1) . (G2, r2) is a simulation if

• ν(r1) v ν(r2)

• if l ∈ L(ν(r1)) ∩ L(ν(r2)),

– if pν(r1)
l = pos, then (G1, r1(l)) . (G2, r2(l))

– if pν(r1)
l = neg, then (G2, r2(l)) . (G1, r1(l))

– if p
ν(r1)
l = mix, then (G1, r1(l)) . (G2, r2(l)) and (G2, r2(l)) .

(G1, r1(l))

Notice that (G1, r1) ∼= (G2, r2) iff both (G1, r1) v (G2, r2) and (G2, r2) v (G1, r1).
In fact, it is also straightforward to extend this approach to non-atomic base
types also. For any a occurring in Σ such that Σ(a)↓ let (Ga, ra) be the graph of
Σ↑(a). If τ 6= a, then a 6 τ iff Σ⇑(a) 6 τ , so it is sufficient to add to the above
definition the condition

• if ν(r1) = a such that Σ(a)↓, and ν(r2) 6= a, then (Ga, ra) . (G2, r2).
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1.4 Type Systems and Inference

In this section we will outline some of the relatives of the ML typing system which
we will discuss in later chapters.
Terms are

e ::= x | λx.e | e1e2 | let x = e1 in e2

Types τ are as before, and type schemes κ have the form ∀α\C.τ , where C is a
constraint set and α is a set of type variables.

ML6

In order to define ML6, we alter our subtyping rules to have premises and con-
clusions of the form C ` τ1 6 τ2. To the rules:

C ` τ 6 τ
(Taut)

C ` τ1 6 τ2 C ` τ2 6 τ3

C ` τ1 6 τ3
(Trans)

a 6 b ∈ Q
C ` a 6 b

(QAx)

C ` b1 6 a1 a2 6 b2

C ` a1→a2 6 b1→b2
(Arrow)

we add the rule

τ1 6 τ2 ∈ C
C ` τ1 6 τ2

(Hyp)

and write C1 ` C2 to mean that C1 ` τ1 6 τ2 for every τ1 6 τ2 ∈ C2. Note that
transitivity can no longer be eliminated. We define the type system as follows:

Γ(x) = κ

Γ;C ` x : κ
(Var)

Γ, x:τ1;C ` e : τ2

Γ;C ` λx.e : τ1→τ2
(Abs)

Γ;C ` e1 : τ1→τ2 Γ;C ` e2 : τ1

Γ;C ` e1e2 : τ2
(App)

Γ;C ` e1 : κ1 Γ, x:κ1;C ` e2 : κ2

Γ;C ` let x = e1 in e2 : κ2
(Let)
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Γ;C ` e : ∀α\C ′.τ C ` [τ/α]C ′

Γ;C ` e : [τ/α]τ
(Inst)

Γ;C ∪ C1 ` e : τ α ∩ (fv(Γ) ∪ fv(C)) = ∅
Γ;C ` ∀α\C1.τ

(Gen)

Γ;C ` e : τ1 C ` τ1 6 τ2

Γ;C ` e : τ2
(Sub)

Type Inference

Type Inference in type systems with subtyping has two phases: extracting of a
principal type and checking solvability of the resulting constraint set. As usual,
we incorporate Inst and Gen into the other rules; Sub will be subsumed into
the property of minimal typing that the algorithm possesses.

Γ(x) = ∀α\C.τ β fresh

Γ; [β/α]C `A x : [β/α]τ
(A:Var)

Γ, x:τ1;C `A e : τ2

Γ;C `A λx.e : τ1→τ2
(A:Abs)

Γ;C1 `A e1 : τ1→τ2 Γ;C2 `A e2 : τ ′1
Γ;C1 ∪ C2 ∪ {τ ′1 6 τ1} `A e1e2 : τ2

(A:App)

Γ;C1 `A e1 : τ Γ, x:close(Γ, τ, C1);C2 ` e2 : τ2

Γ;C1 ∪ C2 `A let x = e1 in e2 : τ2
(A:Let)

where close(Γ, τ, C) is ∀α\C.τ where α is the set of variables occurring free in
C and τ but not in Γ. It is easy to see that by inserting appropriate Inst and
Gen rules we can rewrite an algorithmic derivation in the standard proof system
in a canonical fashion. The constraint set obtained by this algorithm can then
be tested for solvability as described earlier. These type inference rules have a
principal typing property, for which we shall have to define an instance relation.
The relation we use is Henglein’s halbstark relation [19].

1.4.1 Definition: D1 ≡ Γ1;C1 ` e : τ1 has as an instance D2 ≡ Γ2;C2 ` e : τ2

(we write D1 � D2) if there is a substitution θ such that

1. C2 ` θ(C) ∪ {θτ1 6 τ2}

2. Γ2 = θ(Γ1)
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We extend this notion to type schemes as follows: Let α1 not be free in C1

and α2 not free in C2. Then Γ1;C1 ` e : ∀α1\D1. τ1 has as an instance
Γ2;C2 ` e : ∀α2\D2. τ2 if

Γ;C1 ∪D1 ` e : τ1 � Γ;C2 ∪D2 ` e : τ2

Then we have the following (again from [19]):

1.4.2 Proposition: If Γ;C ` e : κ, then Γ;CA `A e : τA, and

Γ;CA `A e : τA � Γ;C ` e : κ1

Thus every instance of a typing judgement is a halbstark instance of the type
returned by the inference algorithm, and thus the inference algorithm provides a
minimal type. In fact, we can also obtain all possible typing judgements for the
term from the inferred typing using the rules Inst, Gen, Sub, and weakening on
constraint sets, so the inferred typing is also principal.

ML∀

Another idea for extending ML from [31] is designed to allow passing of poly-
morphic functions as function arguments. This is done by means of annotations:
λ-bound variables are assumed to have monomorphic type unless they are annot-
ated with type schemes. Polymorphic type schemes are still impredicative: they
may only be instantiated with monomorphic types. A subtype ordering is defined
as follows:

σ 6 σ
(refl)

σ1 6 σ2 σ2 6 σ3

σ1 6 σ3
(Trans)

σ′1 6 σ1 σ2 6 σ′2
σ1→σ2 6 σ′1→σ′2

(Arrow)

[τ/α]σ1 6 σ2

∀α.σ1 6 σ2
(∀-left)

σ1 6 σ2 α does not occur free in σ1

σ1 6 ∀α.σ2
(∀-right)

Again there is a type inference algorithm with a minimal (and equivalently in
this case principal) type property: if Γ `A e : σ then for any σ′ such that
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Γ ` e : σ′, we have σ 6 σ′. In the inference algorithm, when a function
accepting a parameter of type σ is applied to an argument with type σ′, it is
necessary to derive a principal substitution for σ′ as an instance of σ; this is
computed using mixed prefix unification [26]
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Chapter 2

Helly Posets

The study of partial orders underlies any theory of subtyping. Since our interest
will be mainly in subtype orderings which possess the Helly property, in this
chapter we will present some concepts and results which we shall apply to prob-
lems in subtyping in the rest of the thesis. The notion of distance in section(2.1)
is from [42], the results on partial orders in section(2.2) are adapted from [30],
and the results in section(2.3) are adapted from [5].

2.1 Fences and Distances

A up-fence of length n between two elements a1 and a2 of a poset is a sequence
a1 = b0 6 b1 > b2 . . .bn = a2. A down-fence is defined dually.

7

a1

a2

w

a1 a2

An up-fence of length 3 A down-fence of length 2

By convention, the fences from a1 to itself have length 1. The distance from one
element to another is the pair 〈u, d〉 consisting of the lengths of the minimal up-
and down-fences.

Notice that if we have an up-fence from a1 = b0 6 b1 > . . . bn = a2, we have a
down-fence a1 = a1 > b0 6 b1 > . . .bn = a2 of length n+ 1, thus in any distance
〈u, d〉, u and d differ by at most 1. Thus we can represent e.g. 〈3, 4〉 graphically
by just an up-fence of length 3, and e.g. 〈3, 2〉 by just a down-fence of length 2;
to represent 〈3, 3〉 however, we need both fences.
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a1 a2

a1 a2

d(a1, a2) = 〈3, 3〉 d(a1, a2) = 〈3, 2〉

We will use e to range over distances, and write dQ(a, b) for the distance from
a to b in the poset Q; when Q is evident from context, we shall write simply
d(a, b). The diameter δQ of a poset Q is the least e such that dQ(a, b) 6 e for all
a, b in the same component of Q.

Operations on distances

We will make extensive use of operations on distances. Here we outline the
properties of these operations, and motivate the definitions of the less obvious
ones.

Max and Min

With pointwise ordering, the distances form a lattice:

〈1, 1〉

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 2〉

〈3, 3〉

〈2, 1〉

〈3, 2〉

〈4, 3〉

〈4, 4〉

L = {〈m,n〉 ∈ Z+ × Z+ | |m− n| 6 1} ∪ {∞}

We will use ∨ and ∧ for maximum and minimum respectively.

Reversal

If d(a1, a2) = 〈u, d〉, then the reverse 〈u, d〉−1 is d(a2, a1). Reversal flips fences
horizontally, so the effect on L and on a particular distance can be visualised
thus:
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〈1, 1〉

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 2〉

〈3, 3〉

〈2, 1〉

〈3, 2〉

〈4, 3〉

〈4, 4〉

-�

-�

e 7→ e−1

7

a1

a2

⇒ w

a2

a1

〈3, 4〉−1 = 〈4, 3〉

Reversal is monotone, and

(e−1)−1 = e
(e1 ∧ e2)−1 = (e−1

1 ∧ e−1
2 )

Conjugation

The conjugate of 〈u, d〉 is 〈u, d〉∗ = 〈d, u〉. Suppose we are dealing with structural
subtyping over some poset of atomic base types. If we have a distance inequality
d(τ1→τ2, τ ′1→τ ′2) 6 〈3, 4〉, then we know there are α1→α2 and β1→β2 such that
τ1→τ2 6 α1→α2 > β1→β2 6 τ ′1→τ ′2. By contravariance therefore, we have
τ1 > α1 6 β1 > τ ′1. In other words, contravariance causes distances to be flipped
vertically: up-fences are mapped to down-fences and vice versa. Conjugation
represents this, and we can visualise its effect thus:
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〈1, 1〉

〈1, 2〉

〈2, 3〉

〈3, 4〉

〈2, 2〉

〈3, 3〉

〈2, 1〉

〈3, 2〉

〈4, 3〉

〈4, 4〉

-�

-�

-�

e 7→ e∗

w

τ1

τ ′1

⇒
7

τ1→τ2

τ ′1→τ ′2

〈4, 3〉∗ = 〈3, 4〉

Conjugation is monotone, and

(e∗)∗ = e
(e−1)∗ = (e∗)−1

(e1 ∧ e2)∗ = e∗1 ∧ e∗2

Observe that if e1 66 e2, although we do not have e2 6 e1, we do have e2 6 e∗1.

Addition

We define e1 + e2 as the minimum distance given by the concatenation of the
fences forming e1 and e2.

7 7
〈2, 3〉 + 〈2, 3〉 = 〈4, 5〉

7

w

7
〈2, 2〉 + 〈2, 3〉 = 〈4, 3〉
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Numerically, 〈u1, d1〉+ 〈u2, d2〉 =

〈u1 + d2 − 1, d1 + u2 − 1〉 if u1 is even and d1 is even
〈u1 + u2 − 1, d1 + u2 − 1〉 if u1 is odd and d1 is even
〈u1 + d2 − 1, d1 + d2 − 1〉 if u1 is even and d1 is odd
〈u1 + u2 − 1, d1 + d2 − 1〉 if u1 is odd and d1 is odd

Addition is associative and monotone, and

(e1 + e2)∗ = e∗1 + e∗2
(e1 + e2)−1 = e−1

2 + e−1
1

(e1 ∧ e2) + (e3 ∧ e4) = (e1 + e3) ∧ (e2 + e3) ∧ (e1 + e4) ∧ (e2 + e4)

Raising and Lowering

Suppose we know that the minimal up-fence from a to b is shorter than the
minimal down-fence, for example a 6= b and there is no element c < a. If we
know also that d(a, b) 6 〈u, d〉, we may deduce that d(a, b) 6 〈max(d− 1, 1), d〉.
Thus we define

raising 〈u, d〉M = 〈max(d− 1, 1), d〉
lowering 〈u, d〉O = 〈u,max(u− 1, 1)〉

Raising and lowering are evidently monotone, and we additionally have:

(e1 + e2)M = eM1 + e2

(e1 + e2)O = eO1 + e2

Dually, we define
eN = ((e−1)M)−1

eH = ((e−1)O)−1

so that if a is as above, and we know d(b, a) 6 e, then we can deduce d(b, a) 6
d(b, a)N. We have

(e1 + e2)N = e1 + eN2
(e1 + e2)H = e1 + eH2

2.2 Helly Posets

A disc [a, e] in a poset Q is the set of elements {b ∈ Q | d(a, b) 6 e}. A set of
discs D = {[ai, ei]}i∈I constitute a hole if D has empty intersection, and no proper
subset of D has empty intersection. If P ⊇ Q is a poset, the hole D is separated
in P if the set of discs D is also a hole in P — that is, there is no element of
P −Q contained in all the discs {[ai, ei]}i∈I

If P is a poset such that Q ⊆ P , a retraction from P to Q is an order-preserving
map f : P → Q such that f(q) = q for every q ∈ Q. If a retraction exists, we
write P �Q.
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2.2.1 Proposition: If Q ⊆ P and P �Q, every hole in Q must be separated in
P .

Proof: If f : P → Q is a retraction, it is straightforward by induction on the
length of the fences that dQ(fa, fb) 6 dP (a, b). So suppose D is a hole in Q, and
there is some element of p ∈ P such that p ∈

⋂
D. Then if f : P→Q were a

retraction, for each disc [a, e] ∈ D, p ∈ [fa, e], a contradiction to D being a hole
in Q. �

Posets Q for which the separation of holes in P ⊇ Q is sufficient as well as
necessary for retractability are called absolute retracts.

2.2.2 Definition [Helly Posets]: A Helly poset Q is one in which the only holes
are of size 2, i.e. for any set of discs Di in Q, if

Di ∩Dj 6= ∅ for all i and j

then ⋂
i

Di 6= ∅

We have (from [30])

2.2.3 Proposition: Any Helly poset is an absolute retract.

That all holes have size two has the following consequence:

2.2.4 Lemma: Suppose dQ(a1, a2) 6 e. Then for every e1, e2 such that e1 +e2 >
e, there is some b such that d(a1, b) 6 e1 and dQ(b, a2) 6 e2.

Proof: If e1 > e or e2 > e, the result is trivial, so we assume otherwise and
proceed by cases on the form of e.

• Suppose e = 〈n, n+1〉.Then there is an up-fence F in Q of length n from a1

to a2. Let b be the most distant point from a1 on F such that dF (a1, b) 6 e1.
We must have dF (a1, b) = eM1 , since this is the distance along the maximal
up-fence shorter than e.

Now e1 + e2 > e, so (e1 + e2)M > eM, and since eM = e, (e1 + e2)M > e, and so
eM1 + e2 > e. Thus the distance e2 is long enough to extend from b at least
as far as a2. Thus we must have dQ(b, a2) 6 e2. And since dF (a1, b) 6 e1,
dQ(a1, b) 6 e1.
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• If e = 〈n+ 1, n〉, a similar argument applies.

• Now suppose e = 〈n, n〉. If e1 + e2 > e, then either e1 + e2 > 〈n, n + 1〉
or e1 + e2 > 〈n + 1, n〉, and we can use one of the methods above to find
b. Otherwise we must have e1 = 〈m1,m1〉, e2 = 〈m2,m2〉, since only such
a pair can sum to a distance of 〈n, n〉. Now by the argument above, the
discs [a1, 〈m1,m1 + 1〉] and [a2, 〈m2,m2〉] must intersect, as must the discs
[a1, 〈m1 + 1,m1〉] and [a2, 〈m2,m2〉]. Since the discs [a1, 〈m1,m1 + 1〉] and
[a2, 〈m1 + 1,m1〉] intersect trivially, all three discs must have a common
intersection by the Helly property, and any point in this intersection suffices
as a choice for b. �

An immediate consequence of the above lemma is that two discs [a1, e1] and [a2, e2]
intersect precisely if d(a1, a2) 6 e1 + e−1

2 , i.e. if the distance between their centres
is less than or equal to the sum of their radii

2.2.5 Proposition: If Q is a Helly poset and Q ⊆ P , then P � Q iff for every
a1, a2 ∈ Q, dQ(a1, a2) 6 dP (a1, a2).

Proof: Suppose P � Q, then every fence in P retracts to a fence in Q, so
dQ(a1, a2) 6 dP (a1, a2). Conversely, suppose P 6�Q. Then there is some hole
{[a1, e1], [a2, e2]} in Q which is not separated in P . So there is some element
b ∈ P such that dP (a1, b) 6 e1 and dP (a2, b) 6 e2, so we have

dP (a1, a2) 6 e1 + e−1
2

but we cannot have
dQ(a1, a2) 6 e1 + e−1

2

since if we did, by lemma(2.2.4) there would be an element c such that dQ(a1, c) 6
e1 and dQ(c, a2) 6 e2, which would be a contradiction to the pair of discs forming
a hole in Q �

Thus if Q is Helly, and P ⊇ Q, P �Q if all the holes of Q of size 2 are separated
in P . If such a P is also Helly, we will say P is a Q-model.

2.2.6 Proposition: Suppose Q is Helly. P is a Q-model iff for every pair a1, a2 ∈
Q, dQ(a1, a2) = dP (a1, a2).

Proof: Suppose P is a Q-model. Then every fence in Q also exists in P , so
dP (a1, a2) 6 dQ(a1, a2). And since P � Q, dQ(a1, a2) 6 dP (a1, a2). Conversely, if
dQ(a1, a2) = dP (a1, a2), P �Q by the Helly property for Q. �
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Helly posets may also be characterised in terms of irreducible elements. An
upper cover for an element a in a poset is an element b such that a < b, and
there is no element c such that a < c < b (lower cover being defined dually).
An element is doubly irreducible if it has at most one upper cover and one lower
cover. A decomposition by doubly irreducibles of a finite poset Q is a sequence
q1, q2 . . . containing all the elements of Q such that if Q1 = Q, Qi+1 = Qi\qi,
then each qi is doubly irreducible in Qi. Again from [30] we have:

2.2.7 Proposition: If Q is finite, Q is a Helly poset iff it is decomposable by
doubly irreducibles.

An easy method of demonstrating that a finite poset is Helly is to adduce such a
decomposition, which is immediate in the case of fences and trees, for example.
It was stated in the introduction that Helly posets have the following property:

2.2.8 Proposition: In a Helly poset, any set of elements with an upper bound
possess a least upper bound, and any set of elements with a lower bound possess
a greatest lower bound.

Proof: We will do the first, the second is dual. Suppose {ai} have a common
upper bound: then the intersection of the discs {[ai, 〈1, 2〉]} is non-empty: suppose
it is the set {bj}. Then for each j, [bj, 〈2, 1〉] intersects each disc [ai, 〈1, 2〉]
(since each disc contains both points), and for j1 and j2, the discs [bj1, 〈2, 1〉] and
[bj2, 〈2, 1〉] intersect at each ai. Thus each pair in the set {[ai, 〈1, 2〉]}∪{[bj, 〈2, 1〉]}
intersects, and thus the whole set of discs have non-empty intersection. If b is
contained in all of the discs, it must be an upper bound of {ai} and since it is
less than each bi, it must be the least such. �

Examples

Although not the largest class for which constraint solution can be tested in poly-
nomial time, the class of Helly posets is attractive because its algebraic character
enables us to decompose conditions involving a set of types and type variables
into a set of easily checked conditions on the set of pairs of types. It has some
simple closure properties: it is closed under products, retractions (so in fact it is a
variety) and also disjoint unions and inversion. As remarked in the introduction,
it is also closed under record type formation, we will show the case for finite types.

2.2.9 Lemma: Let Q∗ be the poset of types formed over a Helly poset Q using
structural and record type constructors. Any set of types τi in Q∗ with pairwise
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upper bounds have a least upper bound, and any set of types τi with pairwise
lower bounds possess a greater lower bound.

Proof: We will proceed by induction on the maximal depth of constructor nest-
ing of any type in the set {τi}. If the level of constructor nesting is 0, all the τi
are base types, and the result is just proposition(2.2.8). Otherwise if one of the τi
is a constructor type, say →, all must be →-types, and it is straightforward that∨

i

τi→τ ′i =
(∧

i

τi
)
→
(∨

i

τ ′i

)
and dually for greatest lower bound. Other constructors are similar.

Similarly if one of the τi is a record type, all must be. Suppose not all the τi
have an l-field, then no upper bound can have an l-field. And if all the τi have an
l-field, there are two possible cases: either the set {τi(l)} has an upper bound, in
which case by the induction hypothesis it has a least upper bound τl, so for any
upper bound τ such that τ (l) is defined, we must have τ (l) > τi(l) for each l, and
so τ (l) > τl. Or the set has no upper bound, in which case no upper bound for
the {τi} can have an l-field. Thus the least upper bound of the {τi} is∨

i

τi =
{
l :
∨
i

τi(l)
}
l∈J

where J is the set of labels l occurring in every τi such that
∨
i τi(l) is defined.

And suppose {τi} has a lower bound τ , then τ must have all the fields occurring in
any τi, and τ (l) 6 τi(l) for any i such that l ∈ L(τi). So τ (l) is a lower bound for
the set {τi(l) | l ∈ L(τi)}, and so by the induction hypothesis, {τi(l) | l ∈ L(τi)}
has greatest lower bound. So the greatest lower bound of the {τi} is∧

i

τi =
{
l :

∧
l∈L(τi)

τi(l)
}
l∈J

where J =
⋃
i L(τi). �

2.2.10 Proposition: The poset of types formed over a Helly poset using struc-
tural and record type constructors is a Helly poset

Proof: We will demonstrate that any set of discs D = [τi, ei]i∈I in the poset
which have pairwise intersection contain a common point. Again we will proceed
by induction on the maximal depth of constructor nesting in any type on which
a disc is centred.

From the subtyping rules, the τi must have the same outermost constructor.
If this is anything other than a record constructor, the result follows easily from
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the induction hypothesis. So suppose the τi are all records. We may assume that
no disc has radius 〈1, 1〉 for then the result is trivial. We define

ρ =
∧
{τ | [τ, 〈2, 1〉] ∈ D}

which exists, because the discs {[τ, 〈1, 2〉]} all intersect pairwise, so the types τ
all have pairwise lower bounds, and thus by lemma(2.2.9) they have a common
lower bound. It suffices to show that each disc in D contains ρ.

Since any set of records has the empty record {} as an upper bound, any disc
[τ, 〈u, d〉] with u > 1 and d > 2 is the entire set of record types, and thus must
contain ρ. Notice also that any disc [τ, 〈3, 2〉] contains precisely the same elements
as the disc [τ, 〈2, 2〉], since there is an up-fence of length 2 from any record to
any other (via the empty record). Thus we need consider only the discs of radius
〈3, 2〉 and 〈1, 2〉.

Suppose [τ, 〈1, 2〉] ∈ D. This disc intersects each [τ ′, 〈2, 1〉] ∈ D, so

d(τ, τ ′) 6 〈1, 2〉 + 〈1, 2〉 = 〈1, 2〉

Thus τ is a lower bound for all such τ ′, and thus τ 6 ρ, and so ρ ∈ [τ, 〈1, 2〉].
And each [τ, 〈3, 2〉] ∈ D intersects each [τ ′, 〈2, 1〉] ∈ D so we have

d(τ, τ ′) 6 〈3, 2〉 + 〈1, 2〉 = 〈3, 2〉

Thus τ has a pairwise lower bound with each τ ′, and since each pair of τ ′ also
have a pairwise lower bound, by lemma(2.2.9) the set {τ ′} and the element τ have
some greatest lower bound τ ′′. But we have τ ′′ 6 ρ, since ρ is the greatest lower
bound of just the τ ′. Thus

d(τ, ρ) 6 d(τ, τ ′′) + d(τ ′′, ρ)
6 〈2, 1〉 + 〈1, 2〉
6 〈3, 2〉

Thus ρ ∈ [τ, 〈3, 2〉]. �

A similar result is that if a subtyping system with the Helly property is augmented
with either or both of the constructors > and ⊥, the Helly property is preserved.

2.3 Distance Inequalities

A distance inequality is an assertion of the form d(τ1, τ2) 6 e. Distance inequal-
ities generalise simple inequalities: any constraint τ1 6 τ2 can be expressed by
the distance inequality d(τ1, τ2) 6 〈1, 2〉, and equally any distance inequality
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d(τ1, τ2) 6 e can be expressed as a set of constraints with fresh variables forming
the intermediate points in the up- and down-fences.

Given a set of distance inequalities I, we can deduce other inequalities using
reversal and addition, and the fact that L has a lattice structure. It fact, we
shall be interested in the minimal distances which can be deduced from a set of
distance inequalities. It is easy to see that the following rules are sound:

d(τ, τ ) 6 〈1, 1〉
(Refl)

d(τ1, τ2) 6 e ∈ I
I ` d(τ1, τ2) 6 e

(Ax)

I ` d(τ1, τ2) 6 e

I ` d(τ2, τ1) 6 e−1 (Dual)

I ` d(τ1, τ2) 6 e1 I ` d(τ2, τ3) 6 e2

I ` d(τ1, τ3) 6 e1 + e2
(Join)

I ` d(τ1, τ2) 6 e1 I ` d(τ1, τ2) 6 e2

I ` d(τ1, τ2) 6 e1 ∧ e2
(Min)

Since we are only interested in minimal distance between distinct elements of Q,
use of Refl is unnecessary. If I ` d(τ1, τ2) 6 e for some distance e, we will write
dI(τ1, τ2) for the least such distance; in the presence of Min this is well-defined.

2.3.1 Definition [Distance Consistency]: We say that a set of distance in-
equalities I is distance consistent over Q if for any two elements a and b of Q,
dQ(a, b) 6 dI(a, b).

A set of distance inequalities I is satisfiable if there is a ground substitution such
that dQ(θτ1, θτ2)6e for every d(τ1, τ2)6e in I. θ is then a satisfying substitution,
or, analogously with constraint sets, a solution.

2.3.2 Proposition: Let I be a set of inequalities over a Helly poset Q containing
inequalities only between variables and elements of Q. Then if I is distance
consistent, I is satisfiable.

Proof: Let C be a set of constraints (possibly containing fresh variables) which
make up the fences for the distances in I, and ≡C be defined by

τ1 ≡C τ2 if dI(τ1, τ2) = 〈1, 1〉
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We can define a poset Q′ by quotienting C by this equivalence relation, so that
distances in Q′ are the same as those in C (and those in I). Then dQ(a, b) 6
dQ′(a, b), so Q′ �Q. �

2.3.3 Definition: A chain in a set of distance inequalities I from τ to τ ′ of
length e is a set of distinct elements {τ1, . . . τn} such that τ = τ1, τ ′ = τn, and
for each i, either d(τi, τi+1)6ei ∈ I or d(τi+1, τi)6e−1 ∈ I. and

∑n−1
1 ei = e. The

length of the chain is e, the size of the chain is n. If Q is a Helly poset, and there
is a chain of length e in I between a and b such that dQ(a, b) 66 e, we say that
the chain witnesses the inconsistency of I over Q.

2.3.4 Proposition: dI(τ1, τ2) is the minimum of the lengths of all chains in I
from τ1 to τ2.

Proof: dI(τ1, τ2) is built from the distances in I using minimisation, addition
and reversal. Using the identities

(e1 + e2)−1 = e−1
1 + e−1

2
(e1 ∧ e2)−1 = e−1

1 ∧ e−1
2

e1 + (e2 ∧ e2) = (e1 + e2) ∧ (e1 + e3)
(e1 + e2) ∧ e3 = (e1 + e3) ∧ (e2 + e3)

we can permute uses of minimisation outwards over addition and reversal, and
addition outwards over reversal, so that the minimal distance can always be ex-
pressed as the minimum of the lengths of a set of chains. �

2.3.5 Proposition: Suppose I is not distance consistent over Q. Then there
is some chain a = τ1, . . . τn = b witnessing the inconsistency of I such that
τ2, . . . τn−1 are all variables.

Proof: Let {ei} be the lengths of all the chains from a to b in I. If dQ(a, b) 6 ei
for all i, then dQ(a, b) 6

∧
ei, so dQ(a, b) 6 dI(a, b). Thus if there is no chain

witnessing the inconsistency of I over Q, I must be consistent over Q.
So suppose I is not distance consistent over Q, so that there must be some

witness chain. Let X be a witness chain of minimal size, and suppose X starts
at a, ends at b, and is of length e. If X contains no base types other than a and
b, the proposition holds.

Otherwise X contains some base type c. Let X1 be the chain from a to c,
and X2 from c to b, with lengths e1 and e2 respectively. If we have dQ(a, c) 6 e1

and d(c, b) 6 e2, then dQ(a, b) 6 e1 + e2 = e, which cannot be the case since X
witnesses the inconsistency of I. Thus either X1 or X2 must also be a witness to
the inconsistency of I, contradicting the minimality of X. �
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Thus if we have a set I of distance inequalities between variables and elements of
Q, it suffices for distance consistency that the I contains no chain having variables
other than at its endpoints which witnesses its inconsistency.

2.4 Solving Constraint Sets

Over a lattice, solving sets of distance inequalities is quite straightforward.

2.4.1 Definition: Let I be a set of distance inequalities over a lattice Q. We
define

U(α) =
∧
{a ∈ Q | dI(α, a) 6 〈1, 2〉}

and
D(α) =

∨
{a ∈ Q | dI(α, a) 6 〈2, 1〉}

2.4.2 Lemma: Let Q be a lattice, and I be a set of distance inequalities between
variables and elements of Q which contains Q. If I is solvable, then θ(α) = U(α)
is a solution of I.

Proof: Suppose not, so there are e, τ1 and τ2 such that dI(τ1, τ2) 6 e but
dQ(θτ1, θτ2) 66 e. If e = 〈1, 1〉, the result is immediate. If e = 〈1, 2〉, then for
any a > τ2 we must have a > τ1, and therefore U(τ2) > U(τ1). The 〈2, 1〉 case is
similar. And since Q is a lattice, any two elements are separated by a distance of
at most 〈2, 2〉. �

Dually, θ(α) = D(α) is also a solution. Thus we have functions which extract a
solution at each variable using only the minimal distances between that variable
and the base types in Q. We may obtain a similar result for trees:

2.4.3 Lemma: Let Q be a tree, and I a set of distance inequalities between
variables and elements of Q which contains Q. If I is solvable over Q, then
θ(α) = U(α) is a solution of I.

Proof: Suppose not, so that there are τ1 and τ2 such that dI(τ1, τ2) 6 e but
dQ(θτ1, θτ2) 66 e. We will proceed by cases on e.

〈1, 1〉 U(τ1) = U(τ2) by deductive closure, so we must have θ(τ2) = θ(τ1).

〈1, 2〉 (i.e. τ1 6 τ2) Suppose dI(θτ1, θτ2) > 〈1, 2〉. There are two possibilities:
either θτ1 > θτ2, in which case there is a such that θτ1 > a > θτ2, but then
we must have I ` τ2 < a and I 0 τ1 6 a, which cannot be the case since
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I ` τ1 6 τ2. The other possibility is that θτ1 and θτ2 are incomparable,
but then again there is some a such that τ2 6 a and τ1 66 a, which again
contradicts the assumption that I ` τ1 6 τ2.

〈2, 1〉 (i.e. τ2 6 τ1) is identical to the above case

〈2, 2〉 If dI(θτ1, θτ2) 66 〈2, 2〉, we must have dI(θτ1, θτ2) = 〈2, 3〉, since this is
the maximum distance between any two elements of Q. Since θτ1 and θτ2

are not comparable, there must be a > τ1 and b > τ2 such that a and b

have no lower bound. But then τ1 and τ2 cannot possess a lower bound,
contradicting the assumption that dI(τ1, τ2) 6 〈2, 2〉. �

2.4.4 Definition [Helly Solution Functions]: A Q-state S is a function Q ⇀

L. A Q-state is Q-consistent if it is either everywhere undefined (this state we
shall call S⊥) or it is defined on exactly one component of Q, and for all a and
b in this component, dQ(a, b) 6 S(a)−1 + S(b). If S and T are Q-states, We say
dQ(S, T ) 6 e iff dom(S) = dom(T ), and for every a ∈ dom(S), S(a) 6 e+ T (a)
and T (a) 6 e−1 + S(a)

A function FQ from Q-consistent states to Q is a Helly Solution Function
(HSF) for Q if

• dQ(FQ(S), a) 6 S(a) for any a such that S(a)↓

• for any S and T such that dQ(S, T ) 6 e, dQ(FQ(S),FQ(T )) 6 e

It is easy to see that the solutions for lattices and trees are examples of Helly
solution functions: for example in the case of lattices we define Sα(a) = dI(α, a),
and

FQ(Sα) = U(α) =
∧
{a | Sα(a) 6 〈1, 2〉}

2.4.5 Proposition: Suppose I is solvable over Q and contains Q, and FQ is a
HSF for Q. If we define Sα(a) = dI(α, a), then θ(α) = FQ(Sα) is a solution of I.

Proof: Since I contains Q and is distance consistent overQ, each Sα is either S⊥
or defined on exactly one component of Q: moreover since I is distance consistent
over Q, it cannot be the case for any a and b that dQ(a, b) 66 dI(a, α) + dI(α, b),
so dQ(a, b) 6 Sα(a)−1 +Sα(b). Thus Sα is a Q-consistent Q-state. Suppose there
is some inequality d(α, τ ) 6 e in I. There are two possible cases:

• if τ is a base type a, then S(a) 6 e and so it is immediate from the definition
of HSF that d(θα, a) 6 e.
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• if τ is a variable β, by Join we have Sα(a) 6 e+Sβ(a) for any a ∈ dom(Sα),
and by Dual and Join, Sβ(a) 6 e−1 + Sα(a). So d(Sα, Sβ) 6 e, and again
from the definition of HSF, d(θ(α), θ(β)) 6 e �

In fact, we can show that all Helly posets have HSFs. In order to do so, we need
a few preliminary results.

2.4.6 Lemma: Suppose U is an up-fence of length m, and D a down-fence of
length m. We define

T = {(u, d) ∈ U ×D | |u− d| 6 1}

(u1, d1)

(u2, d1)

(u1, d2)

(u2, d2)

(u2, d3)

(u3, d2)

(u3, d3)

(u4, d3)

(u3, d4)

(u4, d4)

Then U ×D � T .

Proof: It is straightforward to check that the map

(ui, dj) 7→ (ui, di−1) if j 6 i− 1
(ui, dj) 7→ (ui, di+1) if j > i+ 1
(ui, dj) 7→ (ui, dj) otherwise

is a retraction. �

2.4.7 Lemma: If we define f : L → U ×D by

f(〈p, q〉) = (up, dq)

(f(〈1, 1〉)

f(〈1, 2〉)

f(〈2, 1〉

f(〈2, 2〉)

f(〈3, 2〉)

f(〈2, 3〉)

f(〈3, 3〉)

f(〈3, 4〉)

f(〈4, 3〉)

f(〈4, 4〉)

Suppose e1, e2, e3 6 〈m,m〉, then
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(a) if e1 = 〈n, n〉 for some n 6 m, then d(f(e1), f(e1 + e2)) = e2

(b) if e1 6 e2 6 e3, then dU×D(f(e1), f(e2)) 6 dU×D(f(e1), f(e3))

(c) dU×D(f(e1), f(e1 + e2)) 6 e2

(d) If e1 + e2 > e3 and e3 + e−1
2 > e1, then dU×D(f(e1), f(e3)) 6 e2

Proof: By lemma(2.4.6) U × D is a T -model, so dU×D(a, b) = dT (a, b) by
proposition(2.2.6). Thus it suffices to demonstrate to result for distances in T .

(a) Let e1 = 〈n, n〉, e2 = 〈u2, d2〉. We proceed by induction on max(u2, d2).
If max(u2, d2) 6 2, the results for the cases n odd and n even can easily
be observed from the diagram. Otherwise suppose the result holds for all
smaller values of max(u2, d2) Since max(u2, d2) > 2, every fence from f(e1)
to f(e1 + e2) must pass through f(〈n+ 1, n+ 1〉), and dT (e1, e1 + e2) is then

dT (f(e1), f(〈n + 1, n+ 1〉)) + dT (f(〈n + 1, n+ 1〉), f(e1 + e2))
= 〈2, 2〉 + dT (f(e1 + 〈2, 2〉), f(e1 + 〈2, 2〉 + 〈d2 − 1, u2 − 1〉))

since 〈u, d〉 = 〈2, 2〉 + 〈d2 − 1, u2 − 1〉
= 〈2, 2〉 + 〈d2 − 1, u2 − 1〉

by the induction hypothesis
= 〈u2, d2〉

(b) Suppose e1 6 e2 6 e3. Let a1 = f(e1), a2 = f(e2), a3 = f(e3). We will show
first that the shortest up-fence F from a1 to a3 is no longer than the shortest
up-fence from a1 to a2. Since a3 is strictly to the right of a2 in our picture
of T , F must pass through either f(e2) or a′2 = f(e∗2). If F passes through
a2, the result is immediate. So suppose not, then a2 6= a′2, so e2 6= e∗2, and
moreover we must have e3 > e2 ∨ e∗2, so F must pass through b = f(e2 ∨ e∗2)
But a fence from a1 to a3 via a′2 and b is at least as long as the fence from a1

to a2 via a′2 and b.

The same reasoning holds for the shortest down-fence from a1 to a3, so com-
bining these, we must have dT (a1, a2) 6 dT (a1, a3)

(c) if e1 = 〈n, n〉, then the result is immediate from (a). Otherwise, let e1 =
〈u1, d1〉. Suppose u1 is even and d1 odd, so that f(e1) is on the “bottom” of
T . Then from the definition of addition we have

〈u1, d1〉+ 〈u2, d2〉 = 〈u1 + d2 − 1, d1 + d2 − 1〉
= 〈u1, d1〉+ 〈u2, d2〉M

Thus if e2 = 〈1, 1〉 or 〈2, 1〉, e1 + e2 = e1 and the result is trivial. So suppose
d2 > 1, and let e = 〈max(u1, d1),max(u1, d1)〉. Observe from the diagram
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that dT (f(e1), f(e)) = 〈1, 2〉. Now for any e′ > 〈2, 1〉, every fence from f(e1)
to f(e1 + e′) must pass through f(e), so

dT (f(e1), f(e1 + e2)) = dT (f(e1), f(e1 + eM2 ))
6 dT (f(e1), f(e)) + dT (f(e), f(e+ eM2 ))
6 〈1, 2〉 + eM2 (by part (a))
= eM2

The final equality holds because since d2 > 1, eM2 = 〈d2 − 1, d2〉, and 〈1, 2〉 +
〈d2 − 1, d2〉 = 〈d2 − 1, d2〉. The result follows dually if u1 is odd and d1 even.

(d) Suppose e1 +e2 > e3, e3 +e−1
2 > e1. If e3 > e1, then since e1 +e2 > e3 we have

d(f(e1), f(e3)) 6 d(f(e1), f(e1 + e2)) (by (b)) and thus d(f(e1), f(e3)) 6 e2

(by (c) and transitivity). Similarly if e1 > e3, then since e3 + e−1
2 > e1,

we have we have d(f(e3), f(e1)) 6 d(f(e3), f(e3 + e−1
2 )) 6 e−1

2 , and thus
d(f(e1), f(e3)) 6 e2.

Finally if e1 and e3 are incomparable, e1 = e∗3. If e1 = 〈u, d〉 with u even and
d odd, then observe from the diagram that we must have e2 > 〈1, 2〉, and the
result follows immediately. The case where u is odd and d even is dual. �

2.4.8 Proposition: Suppose I includes Q, and is solvable over Q. Then there
is a Helly poset Q′ such that Q′�Q, and a solution θ of I over Q′ such that the
inequalities in I are satisfied exactly.

Proof: We will construct Q′ one component at a time. Suppose I is connected.
Let 〈m,m〉 be longer than any distance in I, U and D be as in lemma(2.4.6), and
the types occurring in I be τ1 . . . τk. We define Q′ = (U ×D)k, with

θ(τi) = (f(dI(τ1, τi)), f(dI(τ2, τi)), . . . , f(dI(τk, τi))

so that
dQ′(θτ1, θτ2) =

∨
i6k

(dU×D(f(d(τi, τ1)), f(d(τi, τ2)))

θ is obviously injective, so it suffices to show that it is distance preserving (for
then it is obviously order-preserving). So suppose dI(τi, τj) = e. Then θ(τi) has
f(〈1, 1〉) in the ith position, and θ(τj) has f(e), so dQ′(θ(τi), θ(τj)) is at least e
by lemma(2.4.7(a))

On the other hand, since I is closed under Join and Min, for any τh we have
dI(τh, τi)+e > dI(τh, τj) and dI(τh, τj)+e−1 > dI(τh, τi), thus by lemma(2.4.7(d))

dU×D(f(dI(τh, τi)), f(dI(τh, τj))) 6 e
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So in each position h in the k-tuples θ(τ1) and θ(τj), we have some e′ 6 e. Thus we
obtain exactly dQ′(θ(τi), θ(τj)) = e. Finally, since I contains Q, and the distances
between elements of Q in Q′ are the same as those in Q, θ is an embedding of Q
in Q′ and Q′ is distance consistent over Q, so we have Q′ �Q.

If I is not connected, we define Q′ to be the direct sum of the products for
each component. The distance inequalities in I are met exactly, and Q′ �Q. �

2.4.9 Definition: A variety V is generated by a subset U ⊆ V if every element
of V can be constructed from U using products and retractions.

As a simple corollary of proposition(2.4.8), we have the following, which is also
proven in [30]

2.4.10 Proposition: The variety of finite connected Helly posets is generated
by the set of fences.

Proof: Just take I in proposition(2.4.8) to be the closure of Q under Dual,
Min, and Join. Then Q′ is a product of fences such that Q′�Q, and since every
fence is Helly and Helly posets are closed under products, the result is immediate.

�

We can now show that all Helly posets have HSFs

2.4.11 Proposition: If Q is a fence, Q has a HSF.

Proof: Suppose Q is an up-fence a1 6 a2 > a3 . . . . If S is a Q-consistent
Q-state, the set of inequalities

{d(α, a) 6 S(a) | S(a)↓}

is distance consistent, and thus solvable over Q. So we define

j(S) = min{i | ∀b ∈ Q. dQ(ai, b) 6 S(b)}

and set FQ(S) = aj(S).
Now suppose FQ is not a HSF for Q, so that we have Q-states S and T and

e ∈ L such that dQ(S, T ) 6 e but dQ(FQ(S),FQ(T ) 66 e. Obviously we cannot
have S = T = S⊥, and we cannot have FQ(S) = FQ(T ), so j(S) 6= (T ). We may
assume j(S) < j(T ).

Let b be such that dQ(aj(T ), b) 6 T (b), but dQ(aj(T )−1, b) 66 T (b), in other
words b is an obstacle to j(T ) being any smaller. Suppose that j(S) and j(T ) are
both odd, so that d(FQ(S),FQ(T )) = 〈2n, 2n + 1〉, so d(FQ(T ), b) = 〈m,m+ 1〉,
and dQ(FQ(S), b) = 〈2n +m, 2n+m+ 1〉.
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FQ(S) FQ(T )

b

Since b is an obstacle to j(T ) being any smaller, 〈m+ 2,m + 1〉 66 T (b), and
so T (b) 6 〈m+ 1,m+ 2〉. And since dQ(FQ(S),FQ(T )) 66 e, 〈2n, 2n+ 1〉 66 e, so
e 6 〈2n + 1, 2n〉. Thus by monotonicity of addition, S(b) 6 〈2n + 1, 2n〉 + 〈m+
1,m+ 2〉 = 〈2n +m+ 1, 2n+m〉.

But by the choice of FQ(S), dQ(FQ(S), b) = 〈2n +m, 2n +m+ 1〉 6 S(b), a
contradiction. The cases where j(S) and j(T ) are not both odd result in similar
contradictions. �

2.4.12 Proposition: If Q1 and Q2 are connected and have HSFs, Q = Q1 ×Q2

has a HSF.

Proof: We define

π1(S)(a1) =
∧

a2∈Q2
{S(a1, a2))}

π2(S)(a2) =
∧

a1∈Q1
{S(a1, a2))}

and we claim that
FQ(S) = (FQ1(π1(S)),FQ2(π2(S)))

is a HSF for Q. Let S and T be Q-states. If S = T = S⊥, then the result is
trivial. Otherwise, let S1 = π1(S), T1 = π1(T ). Since dom(S) = dom(T ) = Q

dom(S1) and dom(T1) = Q1, and for any a = (a1, a2), b = (b1, b2) ∈ Q, we have
dQ(a, b) = dQ1(a1, b1) ∨ dQ2(a2, b2), so for any a2 and b2 we have

dQ1(a1, b1) 6 S((a1, a2))−1 + S((b1, b2))

so
dQ1(a1, b1) 6

∧
a2∈Q2

S((a1, a2))−1 +
∧

b2∈Q2

S((b1, b2))

thus
dQ1(a1, b1) 6

( ∧
a2∈Q2

S(a1, a2)
)−1

+
∧

b2∈Q2

S((b1, b2))

so dQ1(a1, b1) 6 S1(a1)−1 + S1(b1), and thus S1 is Q1-consistent; similarly for T1.
Moreover, if we have e such that S((a1, a2)) 6 e+ T ((a1, a2)) and T ((a1, a2)) 6
e−1 + S((a1, a2)), then for any a1 ∈ Q1 we have

S1(a1) =
∧

a2∈Q2
{S(a1, a2))}

6
∧

a2∈Q2
{e+ T (a1, a2))}

6 e+
∧

a2∈Q2
{T (a1, a2))}

6 e+ T1(a1)

41



and similarly T1(a1) 6 e−1 + S1(a1). So dQ1(FQ1(S1),FQ1(T1)) 6 e. By a similar
argument it is straightforward that dQ2(FQ2(π2(S)),FQ2(π2(T ))) 6 e, and thus
dQ(FQ(S),FQ(T )) 6 e. �

2.4.13 Proposition: If Q1 and Q2 are connected and Helly, r : Q1 �Q2, and
Q1 has a HSF, Q2 has a HSF

Proof: For S a Q2-state, we define

i(S)(a) =
∧
b∈Q2

S(b) + dQ1(b, a)

and
FQ2(S) = r(FQ1(i(S)))

and will show that FQ2 is a HSF for Q2. Let S and T be Q2-consistent Q2-states
such that dom(S) = dom(T ). If S = T = S⊥, the result is immediate. Otherwise
it is straightforward that dom(i(S)) = dom(i(T )) = Q1. Now

i(S)(a)−1 + i(S)(b) =
(∧

c∈Q2
S(c) + dQ1(c, a)

)−1
+
∧

d∈Q2
S(d) + dQ1(d, b)

=
∧

c,d∈Q2
dQ1(a, c)) + S(c)−1 + S(d) + dQ1(d, b))

But since Q1 �Q2,

dQ1(a, b) 6
∧

c,d∈Q2
dQ1(a, c) + dQ1(c, d) + dQ1(d, b)

=
∧

c,d∈Q2
dQ1(a, c) + dQ2(c, d) + dQ1(d, b)

6
∧

c,d∈Q2
dQ1(a, c) + S(c)−1 + S(d) + dQ1(d, b)

So i(S) and similarly i(T ) are Q1-consistent Q1-states. Now if we have e such
that S(a) 6 e+ T (a) and T (a) 6 e−1 + S(a) for all a ∈ Q2, then for all a ∈ Q1,
we have

i(S)(a) =
∧

b∈Q2
S(b) + dQ1(b, a)

6
∧

b∈Q2
e+ T (b) + dQ1(b, a)

6 e+ (
∧

b∈Q2
T (b) + dQ1(b, a))

6 e+ i(T )(a)

and similarly i(T )(a) 6 e−1 + i(S)(a). Thus dQ1(FQ1(S),FQ1(T )) 6 e,
and since Q1 � Q2, by proposition(2.2.5), dQ2(r(FQ1(S)), r(FQ1(T ))) 6 e, i.e.
dQ2(FQ2(S),FQ2(T )) 6 e. �

2.4.14 Proposition: Every Helly poset Q has a HSF.

Proof: By proposition(2.4.10), using propositions (2.4.11), (2.4.12), and
(2.4.13), each connected component Qi of Q has a HSF. We choose some ele-
ment v ∈ Q and define FQ(S⊥) = v. For any other Q-state S, dom(S) = Qi for
some i, and since S is Q-consistent, it is Qi-consistent, and we may apply the
HSF for Qi. �
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In chapter 4 we will extend this result to consider solvability and solution for
constraint sets over types built with type constructors.
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Chapter 3

Simplification and Entailment

In this chapter we will deal with the question of what it means for a constraint set
C1 to entail a constraint set C2, and how the relation can be tested. We will only
work with atomic constraint sets: if the subtyping system involves only structural
constructors over a poset of atomic types, it is straightforward using substitution
(although potentially expensive) to reduce any ML6 typing judgement to atomic
form. It is easy to demonstrate that the reduction yields a halbstark instance
of the original typing judgement, and that all ground instances of the original
judgement are instances of its atomic reduction.

There are several possible ways in which we might characterise entailment:
however a property we would certainly intuitively expect can be stated informally
as follows: every valid interpretation (i.e. solution) of C1 is a solution of C2.

Consider the term λfλx. f(fx). Our type inference algorithm yields the type
α→β→ε with the constraint set C = {α6β→γ, α6δ→ε, γ6δ}. By the substitu-
tion [α1→α2/α] we can reduce this to atomic form:

C ′ = {β6α1, α26γ, δ6α1, α26ε, γ6δ}

By principality, the types at which we can use this expression are precisely those
for which the constraints are solvable. But in such solutions, we only care about
the values of α, β, and ε (or in the atomic form of the judgement, α1, α2, γ and
ε). Given particular values for these variables, as long as there are some values
for γ and δ which satisfy the constraints, we don’t really care what they are. We
can think of the variables α, β, and ε as externally observable, in the sense that in
any solution their exact values are reflected in the type of the expression, whereas
the values of γ and δ are internally hidden.

Each constraint set with which we deal will have some set of variables which we
consider internal; the rest will be external. In a judgement Γ;C1 ` e : ∀α\C2.τ ,
the internal variables will be those occurring in α but not in τ ; the externals will
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be the others: in our type inference algorithm they will be those occurring in τ

and Γ, since these are the variables which can be “observed” by the operation
of the inference algorithm. We will refer to the set of base types and external
variables together as the observables.

A further consideration for entailment is the class of posets over which in-
stantiation can occur. The requirement that all solutions of C1 have solutions of
C2 which are equal on externals over a class Q of posets becomes stronger as Q
becomes larger. For example, if we know we will only work over discrete posets,
then all constraints will be instantiated as equalities and the entailment relation
will be relatively weak (i.e. it relates a lot of constraint sets); on the other hand
if entailment over all posets is required, then the relation is much stronger (i.e.
relates fewer constraint sets). The merit of a weak entailment relation is that we
obtain more equivalences (equivalence just being entailment in both directions)
and thus more effective ways of finding small representations of constraint sets,
i.e. we get better simplification. For example we have seen that simplifications
can be made to the type of max if we only consider instantiations over a Helly
poset; if we must also consider the 2-crown, no simplification is possible. And the
constraint sets {α6a} and {α6a, a6α} have the same solutions for α over a tree
Q in which if a is a leaf. But if we need to consider possible future extensions of
the tree where there is some type b < a, the two constraint sets are clearly not
equivalent: [b/α] is a solution of one but not the other.

We will work with Helly posets, and since we are interested in languages with
an extensible subtyping relation, we will consider entailment relations which are
valid over various classes of Q-models for some Helly poset Q which represents the
current ordering. We will thus always assume that Q is included in the constraint
set, since by proposition(2.2.6) this doesn’t change the set of solutions over any
Q-model.

We will start with a study of entailment and equivalence of constraint sets,
and then proceed to define our simplification technique.

3.1 Entailment

Suppose we have two constraint sets C1 and C2 which share the same set α
of externals. We may regard the internal variables as implicitly existentially
quantified: If C is a constraint set and Q is a poset, we will say Q |= C if there
is a ground substitution θ : fv(C)→Q such that all the constraints in θC are
satisfied over Q. Then if α is the set of externals in C, we will say θ:α→Q is a
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(Q,α)-solution of C for α over Q if Q |= θC.
Our relation will be parameterised by a set of externals α and a class of posets

Q. Given constraint sets C1 and C2, we say C1 entails C2 for α over Q and write
C1 |=Qα C2 iff

∀Q∈Q ∀θ:α→Q (Q |= θC1 ⇒ Q |= θC2)

Then C1 and C2 are equivalent (for α over Q) if C1 |=Qα C2 and C2 |=Qα C1.
As might be expected, since we are considering Helly posets, we can charac-

terise the set of (Q,α)-solutions of a constraint set C in terms of the minimal
distances between the observables. In fact, we have a stronger result: that we
can also characterise the (Q′, α)-solutions of C over any Q′�Q in terms of these
distances.

3.1.1 Proposition: Suppose I is a set of distance inequalities which is distance
consistent over Q, Q′ is a Q-model, and α is the set of externals in I. Then for
any substitution θ : α→ Q′, θI is distance consistent (and hence solvable) iff for
every pair τ1, τ2 ∈ Q ∪ α, dQ′(θτ1, θτ2) 6 dI(τ1, τ2).

Proof: If θI is distance consistent over Q′, then for any pair τ1, τ2 ∈ Q ∪ α,
dQ′(θτ1, θτ2) 6 dθI(θτ1, θτ2). Any proof I ` d(τ1, τ2) 6 e translates to a proof
of θI ` d(θτ1, θτ2) 6 e, so dθI(θτ1, θτ2) 6 dI(τ1, τ2), and thus dQ′(θτ1, θτ2) 6
dI(τ1, τ2).

Conversely, suppose for every pair τ1, τ2 ∈ Q ∪ α, dQ′(θτ1, θτ2) 6 dI(τ1, τ2).
If θI is not solvable, then by proposition(2.3.5) there must be some chain in θI
between θτ1 and θτ2 of length e containing only variables other than at its end-
points, such that dQ′(θτ1, θτ2) 66 e. But these variables are exactly the internals
in I, so the chain exists in I, and thus dI(τ1, τ2) 6 e, a contradiction to the
assumption dQ′(θτ1, θτ2) 6 dI(τ1, τ2). �

Tautness

In order to characterise the solutions of constraint set, we will use a notion of
closure:

3.1.2 Definition [tautness]: A set I of distance inequalities is taut for some
set of variables α over some class Q of posets if for any inequality d(τ1, τ2) 6 e in
I and any e′ < e, there is a poset Q ∈ Q and a (Q,α)-solution of I which is not
a (Q,α)-solution to I ∪ {d(τ1, τ2) 6 e′}. J is a tautening of I on α over Q if it
is taut, and equivalent to I for α over Q.
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If I and J are both taut for some set of variables α over Q, then there is
no scope for decreasing any of the distances between observables without losing
some solutions. So they are equivalent over Q iff the minimum distances between
their observables are the same. Moreover, the set of solutions of I will be a strict
subset of the solution set of J if some of the distances in I are shorter than those
of J and none are longer. Thus the notions of entailment and equivalence can be
tested by computing tautenings.

Over a poset Q, the weakest (in the sense of giving fewest entailment judge-
ments) equivalence that we shall study using this notion is equivalence over the
whole class of Helly posets which retract to Q. We have the following easy result:

3.1.3 Proposition: Suppose I is a set of distance inequalities containing Q and
solvable over Q, and closed under Dual, Min, and Join, and α is some set of
external variables in I. Then I is taut for α over the class of Helly posets which
retract to Q.

Proof: By proposition(2.4.8) there is a Helly poset Q′�Q in which the distances
in I between the observables α ∪ Q are satisfied exactly, and by decreasing any
of these distances this solution is lost. �

3.2 Simplification

Suppose we are interested in simplifications which preserve all solutions over
a particular class of posets. Returning to the example of max, defining C =
{α6Real, β6Real, α6γ, β6γ}, we have

∅;C ` max : α→β→γ � ∅; δ 6 Real ` max : δ→δ→δ

with the substitution θ(α) = θ(β) = θ(γ) = δ. But it is easy to see that there is
no substitution θ′ such that

{α 6 Real, β 6 Real, α 6 γ, β 6 γ} ` {θ′(δ) 6 Real, θ′(δ→δ→δ) 6 α→β→γ}

so
∅; δ 6 Real ` max : δ→δ→δ 6� ∅;C ` max : α→β→γ

in other words, although we know that the two typings for max are equivalent
over the class of Helly posets, the halbstark relation is too strong to validate
the equivalence. Of course we expect this: the ` relation between constraint
sets uses syntactic entailment and so is independent of the choice of underlying
order, but as we have seen, the simplification is not valid over a 2-crown. Thus
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we introduce a weaker instance relation on typing judgements, which exploits our
notion of semantic entailment.

3.2.1 Definition: D1 ≡ Γ1;C1 ` e : τ1 has as an instance D2 ≡ Γ2;C2 ` e : τ2

(we write D1 ≪ D2) if there is a substitution θ such that

1. C2 |=Qα θ(C1) ∪ {θτ1 6 τ2}

2. Γ2 = θ(Γ1)

where α is the set of variables occurring in τ2 and Γ2.

It is hard to see how this instance relation can be shown to be sound in the
syntactic sense of [22]: that if we have a typing derivation of D1 and D1 ≪ D2

then we have a typing derivation of D2; rather we would need some semantic
notion of the soundness of an instance relation. There are, however, good reasons
to adhere to syntactic soundness: we can expect compilation to be defined on
elaborated terms produced by type inference, so simplification on constraint sets
had better have an operational interpretation on the corresponding elaborated
terms. For example, the derivation

∅;C ` max : α→β→γ

can be interpreted as building, in the presence of the coercions c1:α→Real,
c2:β→Real, c3:α→γ, c4:β→γ, the elaborated term

λx:α.λy:β.if c1(x) < c2(y) then c3(x) else c4(y)

The statement

∅;C ` max : α→β→γ � ∅; δ6Real ` max : δ→δ→δ

then constructs, via the substitution [δ/α] ◦ [δ/β]◦ [δ/γ] the coercions c5:δ→Real

and c6:δ→δ, and the term

λx:δ.λy:δ.if c5(x) < c5(y) then c6(x) else c6(y)

This observation extends to simplification: if we decrease the size of the coercion
set for a term, it is necessary to be able to build a term elaborated with appropri-
ate coercions chosen from the reduced constraint set. If the simplified constrained
type is a halbstark instance of the original (and we have the substitution and proof
terms to justify this) then we can always do so, and in this sense simplification of
a judgement to one of its halbstark instances is constructive simplification. It is
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harder to see how we might operationally interpret simplification to a semantic
instance. However, we will demonstrate a practical, constructive approach to
simplification based on our semantic entailment relation. When simplifying D1

to D2 we shall ensure always that

1. D1 � D2, and we shall be able to derive the necessary substitution and
proofs which justify entailment

2. D2 ≪ D1

Syntactic soundness will ensure that simplification has the required operational
nature; semantic completeness that no possible solution will be lost in any pos-
sible context where the constraints might be instantiated. In this setting we can
simplify max, because with the substitution [δ/γ] ◦ [δ/β] ◦ [δ/γ] we obtain

δ6Real ` δ6δ, δ6δ, δ6Real, δ 6 Real, δ→δ→δ6δ→δ→δ

and using the empty substitution for semantic entailment,

α6γ, β6γ, α6Real, β6Real, |=Q{α,β,γ} δ6Real, δ→δ→δ6α→β→γ

over any class of Helly posets Q, since in any solution θ for the LHS, we can set
δ to be the least upper bound of θα and θβ, which exists in any Helly poset by
prop(2.2.8).

Our strategy for simplification will operate on the set of distance inequalit-
ies which are the closure of the set of constraints. We will define a simplifying
transformation, H-contraction on sets of distance inequalities, which will reduce
distances whilst preserving semantic equivalence, and from a set of distance in-
equalities thus contracted we will extract a simplifying substitution and additional
constraints which generate a halbstark instance of the original constraint set.
There is a slight difference in the notion of completeness when dealing with con-
strained type schemes rather than just constraint sets: in the latter case we must
preserve all solutions, whereas in the former we need only preserve those ground
instances of the type scheme which are minimal (amongst ground instances);
then for any type τ at which we intended to use the original type scheme we are
guaranteed to have an instance of the simplified type which can be coerced to τ .

Our simplification algorithm is based on an entailment relation, and we will
choose the simplest: entailment over the class of Helly posets. So tautness is
simply closure under Dual, Join, and Min. We will also assume that our set of
distance inequalities is connected, since if it is not, we simplify it component-wise.

49



Contraction

Suppose that I is C’s closure under Dual, Symm, and Join. For variables
constrained by C is semantically the same as to be constrained by I, so we will
consider Γ; I ` e : τ to have the obvious meaning, and to be semantically
equivalent to Γ;C ` e : τ .

Our simplification algorithm operates by reducing the distances in I. Suppose
we have a derivation Γ; I ` e : τ , and we wish to add d(τ1, τ2) 6 e to I to obtain
I ′ such that Γ; I ′ ` e : τ is semantically equivalent. Let θ = [β/α] be a
renaming substitution on the internal variables in I ′ using fresh variables β; then
the conditions we require are that

θI ′ |= I ∪ {τ 6 θτ}

and
I |= θI ′ ∪ {θτ 6 τ}

for the variables in Γ and τ over the class of Helly posets which retract to the
underlying base poset. Since every solution of I ′ is a solution of I, the first
is immediate. So writing J = θI ′ ∪ {θτ 6 τ}, our condition is equivalent to
requiring the distances in I between observables to be less than (or equal to) the
distances in J . In fact, for observables α1 and α2, we must have

dJ (α1, α2) = dJ (α1, θα1) + dJ (θα1, θα2) + dJ (α2, θα2)

since for any observable α, either α occurs in τ , in which case the only path from
an α to any other atom in J is via θ(α), or α = θα, so d(α, θα) = 〈1, 1〉. And
since θ is just a renaming on I,

dJ (θα1, θα2) = dθI(θα1, θα2) = dI(α1, α2)

Now since for any variable α occurring in τ the only inequalities relating α and
θα are derived from the decomposition of the inequality d(θτ, τ ) 6 〈1, 2〉, by
structural induction on the type τ

• dJ (α, θα) = 〈2, 1〉 if α occurs only positively in τ

• dJ (α, θα) = 〈1, 2〉 if α occurs only negatively in τ

• dJ (α, θα) = 〈1, 1〉 otherwise.
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So choosing 〈k, k〉 larger than any distance in J , we define the polarity function
ζ on the atoms occurring in I:

ζ(α) = 〈2, 1〉 if α occurs only positively in τ
ζ(α) = 〈1, 2〉 if α occurs only negatively in τ
ζ(α) = 〈k, k〉 if α is an internal
ζ(α) = 〈1, 1〉 otherwise

so that ζ(α) = dJ (α, θα) for each external α, and our condition is equivalent to
requiring for every pair of atoms α1 and α2 occurring in I that

dI(α1, α2) 6 ζ(α1) + dJ (θα1, θα2) + ζ(α2)−1

We can now define a transformation on sets of distance inequalities:

3.2.2 Definition [Contraction]: Suppose I is a set of distance inequalities over
atomic types with a polarity function ζ, and τ1 and τ2 are types occurring in I.
d(τ1, τ2) 6 e is a contraction of I if

• dI(τ1, τ2) 66 e

• for any α1, α2 occurring in I

dI(α1, α2) 6 ζ(α1) + dI(α1, τ1) + e+ dI(τ2, α2) + ζ(α2)−1

Although it is convenient to use the condition dI(τ1, τ2) 6 e, obviously the con-
traction decreases the distance from τ1 to τ2 to e ∧ dI(τ1, τ2). A contraction is
thus exactly any reduction of a single distance inequality in I which preserves
semantic equivalence.

Verifying that an inequality is a contraction requires time quadratic in the size
of the constraint set. Thus we introduce a transformation which equally effective
but easier to validate.

3.2.3 Definition [H-contraction]: Suppose I is a set of distance inequalities
over atomic types with a polarity function ζ, and τ1 and τ2 are types occurring
in I. d(τ1, τ2) 6 e is a H-contraction of I if

• dI(τ1, τ2) 66 e

• for every τ , dI(τ, τ2) 6 ζ(τ ) + dI(τ, τ1) + e

3.2.4 Proposition: If d(τ1, τ2) 6 e is an H-contraction of I, it is a contraction
of I.
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Proof: Let α1, α2 be atoms occurring in I, and J = I ∪{d(τ1, τ2) 6 e. We will
show that for any pair of atoms α1, α2 occurring in I,

dI(α1, α2) 6 ζ(α1) + dJ (α1, α2) + ζ(α2)−1

which is equivalent to showing that for any chain X of minimal length from α1

to α2,
dI(α1, α2) 6 ζ(α1) + eX + ζ(α2)−1

where eX is the length of X. So suppose X is a chain of minimal length. If X does
not contain a link from τ1 to τ2 or vice versa, then the result follows immediately
from the fact that X is a chain in I. Otherwise, since X is of minimal length, we
may assume the link occurs at most once in the chain. So suppose X contains a
link from τ1 to τ2, then the length of X is at least

dI(α1, τ1) + e+ dI(τ2, α2)

So

ζ(α1) + eX + ζ(α2)−1 > ζ(α1) + dI(α1, τ1) + e+ dI(τ2, α2) + ζ(α2)−1

> dI(α1, τ2) + dI(τ2, α2) + ζ(α2)−1

since d(τ1, τ2) 6 e is a H-contraction
> dI(α1, α2)

The case where X has a link is from τ2 to τ1 is dual. �

Although not every contraction is a H-contraction, we can use H-contractions to
obtain exactly the same distance reductions as can be performed with contrac-
tions.

3.2.5 Proposition: Suppose no H-contraction is possible on I. Then no con-
traction is possible.

Proof: Suppose no H-contraction is possible, and we have d(τ1, τ2) 6 e with
dI(τ1, τ2) 66 e. Since d(τ1, τ2) 6 e is not a H-contraction, there is some α1 such
that

dI(α1, τ2) 66 ζ(α1) + dI(α1, τ1) + e

Thus
dI(τ2, α1) 66 e−1 + dI(τ1, α1) + ζ(α1)−1

But dI(τ2, α1) 6 e−1 + dI(τ1, α1) + ζ(α1)−1 is not a H-contraction, so there must
be some α2 such that

dI(α2, α1) 66 ζ(α2) + dI(α2, τ2) + e−1 + dI(τ1, α1) + ζ(α1)−1
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But then

dI(α1, α2) 66 ζ(α1) + dI(α1, τ1) + e+ dI(τ2, α2) + ζ(α2)−1

so d(τ1, τ2) 6 e is not a contraction. �

From Distances to Constraints

Having completely H-contracted a set of distance inequalities, it remains to sim-
plify the constraint set from the set of minimal distances. Our strategy will be
as follows: If we obtain a minimal distance of 〈1, 1〉 between two types, then
they must have the same value in any solution, and we can identify them in the
constraint set by substitution. If we obtain 〈1, 2〉 or 〈2, 1〉, we can choose to add
this to the constraint set if its transitive reduction is thereby decreased. Since
adding these distance inequalities to I preserves the possible minimal typings of
∀α\I. τ , adding them to C will do the same. Thus we have:

3.2.6 Proposition: Suppose we have a derivation D1 ≡ Γ ` e : ∀α\C. τ , and
using H-contraction we obtain the substitution θ and additional constraint set
C ′. Let D2 ≡ θΓ ` e : ∀α\θC ∪ C ′. θτ . Then D1 � D2, and D2 ≪ D1.

Proof: It is easy to see that substitution and weakening of constraint sets results
in a halbstark instance.

From the discussion of H-contraction, it should be clear that for any ground
instance θg of the D1, θg is a solution of θC ∪ C ′, and we have (θg ◦ θ)τ 6 θτ .
Thus D2 ≪ D1. �

3.2.7 Remark: If I cannot be contracted (or equivalently, cannot be H-
contracted), then any reduction of any distance inequality results in set in which
some solution is lost. Thus if a type scheme has a constraint-free equivalent rep-
resentation, i.e. one in which all distances have been contracted to 〈1, 1〉, it will
be found by repeated H-contraction.

Comparison with other approaches

While we have only considered this approach in the context of atomic types,
in principle simplification techniques over Helly posets have wider applicability
than model-based approaches which operate over lattices only. A fairly direct
comparison is possible with the system of Fuh and Mishra [18], also based on
atomic constraint sets, which uses syntactic rather than semantic criteria for
simplification. They define two kinds of transformation on constraint sets: S-
simplification and G-simplification.
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3.2.8 Definition: Let ↑C (α) be the set of atoms α′ such that α 6 α′ is in
the transitive closure of C, and ↓C (α) the set of atoms α′ such that α′ 6 α

correspondingly.
A G-simplification on a constraint set C is a substitution [α2/α1] where α1

is an internal variable, and ↑C (α1)\{α} ⊆ ↑C (α2) and ↓C (α1)\{α} ⊆ ↓C (α2).
G-minimisation is similar, but uses multi-point substitutions which generate prov-
ably equivalent constraint sets.

An S-simplification is a substitution [α2/α1] where either

• α1 is an external occurring only positively such that α2 ∈ ↑C (α1), and
↑C (α1)\{α1} ⊆ ↑C (α2)

• α1 is an external occurring only negatively such that α2 ∈ ↓C (α1), and
↓C (α1)\{α1} ⊆ ↓C (α2)

In fact, this version of S-simplification is weaker than Fuh and Mishra’s in that it
operates on external variables in τ but not in Γ. Fuh and Mishra use a slightly dif-
ferent form of instance relation which allows subtyping on contexts, for example,
a term variable bound in Γ with type Nat can be replaced with a binding to Int.
Whilst weakening the hypotheses in Γ in this way results in a stronger judgement,
on partial derivations (where later we may for example apply f :Nat→Int to x,
it is not sound.

Substitution of α1 for α2 is equivalent to asserting that d(α1, α2) = 〈1, 1〉, and it
is not hard to see that the form of S-simplification defined here is thus a special
cases of H-contraction. In fact G-minimisation can be expressed as a sequence
of H-contractions: If θ is a multipoint substitution on C which constitutes a G-
minimisation, since θC is provably equivalent to C, it has the same solution set.
And since the combined substitution does not reduce the solution set, neither
does any of the single point substitutions of which it consists: thus they are all
H-contractions.

However, since it operates over a narrower class of posets, we would expect
H-contraction to be capable of transformations which cannot be derived by S-
simplification and G-minimisation, and we will demonstrate that this is indeed
the case.

3.3 Examples

Simplifying constraint sets is the special case of H-contraction where ζ(α) = 〈1, 1〉
for every observable α. Under these circumstances, a H-contraction is just a
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contraction which does not change the minimal distances between pairs of ob-
servables. And if the contraction is to a distance of 〈1, 1〉, it is equivalent to a
substitution. The following two examples of problem constraint sets are taken
from [43].

α

γ

β
δ3

δ2

δ1
α

γ

β

Here α, β, and γ are external and δ1, δ2, and δ3 internal. While G-minimisation
simplifies the constraint set on the left immediately to that on the right by the
multi-point substitution [γ/δ1]◦[γ/δ2]◦[γ/δ3], there is no single-point substitution
which satisfies the criteria for being a G-simplification. On the other hand none
of the substitutions (applied in any order) [γ/δ1], [γ/δ2], [γ/δ3] change any of
the minimal distances between α, β, and γ, so we obtain the simplification as a
sequence of H-contractions. Notice that by a different sequence of H-contractions
we could obtain (for example) the simplifying substitution [α/δ1] ◦ [α/δ2] ◦ [γ/δ3].

0

α

γ

β

1

1

γ

1

Here the constraint set on the left has external γ, and internals α and β, and
base types 0 < 1. It is shown in [43] that this type cannot be simplified by
G-minimisation and S-simplification, but neither substitution in the sequence
[0/α] ◦ [1/β] changes any of the minimal distances, so both are H-contractions.

Our third example, this time of a constrained type, is max:

Real γ

α β
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Here we have
ζ(α) = 〈1, 2〉
ζ(β) = 〈1, 2〉
ζ(γ) = 〈2, 1〉
ζ(Real) = 〈1, 1〉

We can verify the requirement for H-contracting d(α, β) from 〈2, 3〉 to 〈2, 1〉, that
for each τ , d(τ, β) 6 ζ(τ ) + dI(τ, α) + 〈2, 1〉.

d(α, β) 6 〈1, 2〉 + 〈1, 1〉 + 〈2, 1〉
d(β, β) 6 〈1, 1〉 + 〈2, 3〉 + 〈2, 1〉
d(γ, β) 6 〈1, 2〉 + 〈2, 1〉 + 〈2, 1〉
d(Real, β) 6 〈1, 1〉 + 〈2, 1〉 + 〈2, 1〉

So this is a valid H-contaction. An informal explanation of this transformation is
that since any solution θ is over a Helly poset, θα and θβ have an upper bound
which is a lower bound for γ and Real. If we were to insert a fresh variable ε into
the constraint set with this property, then we would obtain the substitution [ε/α]
as an S-simplification. In any case, the remaining simplifying substitutions [α/γ]
and [α/β] are just H-contractions equivalent to S-simplifications.

It should be mentioned that it is not always the case that H-contraction can
be usefully exploited to simplify types. For example, in the following case, with
all variables external and ζ(γ) = 〈1, 2〉, ζ(α) = ζ(β) = ζ(δ) = ζ(ε) = 〈1, 1〉 the
constraint set on the left, where γ is internal, can be H-contracted to that on the
right, but the number of constraints does not decrease.

α β

γ δ

ε

α β

γ

δ

ε

3.4 Tautness over Smaller Classes

Tautness over Lattices

We will show that over lattices, to obtain tautness, we need only apply the obvious
rules:

I ` d(τ1, τ2) 6 e

I ` d(τ1, τ2) 6 〈2, 2〉
(Truncate)
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I ` d(α, a) 6 〈1, 2〉 I ` d(α, b) 6 〈1, 2〉
I ` d(α, a ∧ b) 6 〈1, 2〉

(Inf)

I ` d(α, a) 6 〈2, 1〉 I ` d(α, b) 6 〈2, 1〉
I ` d(α, a ∨ b) 6 〈2, 1〉

(Sup)

3.4.1 Proposition [Soundness & Completeness of Deductive Closure]:

If J is the closure of I by Dual, Min, Join, Inf, Sup, and Truncate. then
for any lattice Q′ which is a Q-model, θ is a solution of I iff θ is a solution of J .

Proof: Straightforward. �

3.4.2 Proposition [Tautness of Deductive Closure]: Let Q be a lattice,
and I be a solvable set of distance inequalities between variables and elements of
Q. If I is closed under Dual, Min, Join, Inf, Sup, and Truncate then I is
taut over the class of lattices which retract to Q.

Proof: We will proceed by demonstrating that if dI(τ1, τ2) = e, then there is
a Q-model Q′ and a solution θ such that dQ′(θτ1, θτ2) = e. We will ensure the
equality holds by adding sufficient inequalities to I and demonstrating that the
resulting set of inequalities is still distance consistent. We proceed by cases on e:

〈1, 1〉 is immediate

〈1, 2〉 We must have U(τ1) 6 U(τ2), since for every a > τ1 we also have a > τ2.
If U(τ1) < U(τ2) then the distance equality holds exactly in the maximal
solution. If U(τ1) = U(τ2), we must have D(τ1) < U(τ1), since other-
wise we have τ1 > D(τ1) = U(τ1) > τ2, contradicting the assumption that
dI(τ1, τ2) = 〈1, 2〉. Thus we can choose some a such that D(τ1) 6 a < U(τ1),
and set I ′ = I ∪ {τ1 6 a}. Now if I ′ is not consistent, there must be some
chain not in I which is not in I, and thus must include d(τ, a) 6 〈1, 2〉 as
a link; indeed the shortest such chain must start or end with such a link.
Suppose the latter. Then we must have some b 6 τ1 such that b 66 a, which
cannot occur since D(τ1) 6 a. Now the required inequality holds in the
maximal solution of I ′.

〈2, 1〉 is dual to the above case

〈2, 2〉 Here we cannot have U(τ1) 6 D(τ2) or U(τ2) 6 D(τ1) by the assumption
that dI(τ1, τ2) = 〈2, 2〉. We set Q′ = Q ∪ {c1, c2} with the inequalities

D(τi) < ci < U(τi)
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It is straightforward that this is a lattice and a Q-model via the retraction
r(ci) = U(τi), and that dQ′(c1, c2) = 〈2, 2〉. By a similar argument to the
previous case

I ∪ {d(τ1, c1) = 〈1, 1〉, d(τ2, c2) = 〈1, 1〉}

is distance consistent over Q′, and so there is a solution θ such that
dQ′(θτ1, θτ2) = 〈2, 2〉

Tautness over Trees

Trees have two interesting features from the point of view of computing taut-
enings: firstly, every tree contains a top element, hence the minimal distance
between two elements is at most 〈2, 3〉. Secondly, any two elements in a tree
which share a lower bound are comparable: i.e. if d(α, β) 6 〈3, 2〉, then for any
solution θ either θα 6 θβ or θα > θβ. So if we have the following situation:

a b

c

α

where a and b have no common lower bound, we may deduce that since α is
comparable with both a and b, we must have α > c.

It turns out that these two observations are sufficient to characterise trees.
We introduce two rules which formalise these observations.

I ` d(τ1, τ2) 6 e

I ` d(τ1, τ2) 6 〈2, 3〉
(Truncate)

I ` d(τ, a) 6 〈3, 2〉 I ` d(τ, b) 6 〈3, 2〉
a, b have no common lower bound

I ` d(τ, a ∨ b) 6 〈2, 1〉
(NoInf)

3.4.3 Proposition [Soundness & Completeness of Deductive Closure]:

Let Q be a tree, and I some set of distance inequalities over variables and ele-
ments of Q. Suppose I ′ is the deductive closure of I under Dual, Join, Min,
Truncate, and NoInf. Then for any tree Q′ which is a Q-model, I ′ and I ′ are
equivalent over Q′.
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Proof: For every pair of variables or base types, the minimal distance from one
to the other will be at least as short in I ′ as in I. So if a substitution satisfies
I ′, it also satisfies I.

Conversely let θ be a solution of I over Q′. It is straightforward that the
solution satisfies those distance inequalities generated by Truncate and NoInf.

�

3.4.4 Proposition [Tautness of Deductive Closure]: Suppose I is a set of
distance inequalities between variables and atomic types over a tree Q. If I is
deductively closed under Dual, Join, Min, Truncate, and NoInf, then I is
taut over the class of trees Q′ which are Q-models.

Proof: Suppose I is closed under these rules, τ1 and τ2 are types occurring in I,
and dI(τ1, τ2) 6 e. We will demonstrate tautness by adding suitable inequalities
to I and choosing a suitable extension of Q to ensure either than this distance
holds exactly, or in the case where e is 〈2, 2〉, that both the distances 〈1, 2〉 and
〈2, 1〉 can be made to hold exactly. We will proceed by cases on e: note that over
a tree the minimal distance between two elements is at most 〈2, 3〉.

〈1, 1〉 Any substitution θ which solves I must have θτ1 = θτ2.

〈1, 2〉 It suffices to find a solution θ such that θτ1 < θτ2. Let b0 = U(τ2). Note
that I 0 τ1 > b0, since otherwise we would have I ` d(τ1, τ2) = 〈1, 1〉 by
Min. There is at most one child b1 of b0 such that d(τ1, b1) 6 〈3, 2〉, since
if there were more than one we would have d(τ1, b0) 6 〈2, 1〉 by NoInf. If
such a b1 exists, we set Q′ = Q, else Q′ = Q ∪ {b1 6 b0} for b1 fresh, and
in either case set I ′ = I ∪ {τ1 6 b1}.

We need to show I ′ is solvable over Q′, which we will derive from the dis-
tance consistency of I. Suppose we have dI′ (c, d) < dI(c, d). By induction
on a minimal chain in I ′ from c to d we must have a chain from b1 to either
c (we will suppose c) or d which is shorter in I ′ than in I, whose first link
is from b1 to τ1 (and thus of length 〈2, 1〉), and whose other links are all in
I. Thus it will suffice to show that for any c, dI′(b1, c) = dI(b1, c). We will
proceed by cases:

• if c > b0 we have dI(τ1, c) = dI(b1, c) = 〈1, 2〉. And 〈2, 1〉 + 〈1, 2〉 >
〈1, 2〉.

• if c 6 b1, then dI(b1, c) is either 〈1, 1〉 or 〈2, 1〉, and in either case
〈2, 1〉 + dI(τ1, c) > dI(b1, c).
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• if c is incomparable with b0, then we cannot have dI(τ1, c) 6 〈2, 3〉,
since then, as we have I ` d(τ1, b0) 6 〈3, 2〉, we would have I `
τ1 > b0 ∧ c by NoInf. Thus the minimal distance in I ′ from b1 to c

via τ1 is at least 〈2, 3〉.

• if c < b0 but c 6< b1 and dI(τ1, c) 6 〈3, 2〉 we have I ` τ1 > b0 by
NoInf. Thus again the minimal distance in I ′ from b1 to c via τ1 is
at least 〈2, 3〉.

In all cases we have dI′(b1, c) = dI(b1, c).

〈2, 1〉 If d(τ1, τ2) = 〈2, 1〉, then d(τ1, τ2) = 〈1, 2〉, so the construction is as above.

〈2, 2〉 Notice it is impossible to produce a solution in which dQ(θτ1, θτ2) = 〈2, 2〉.
Instead we demonstrate the existence of solutions in which dQ(θτ1, θτ2) =
〈1, 2〉 and dQ(θτ1, θτ2) = 〈2, 1〉. Again we define b0 = U(τ2), and again we
cannot have I ` τ1 > b0, since otherwise we would have I ` d(τ1, τ2) 6
〈2, 1〉 by Join. Now if I ′ is as before, its distance consistency follows by
exactly the same argument as the 〈1, 2〉 case.

〈2, 3〉 (i.e. θτ1, θτ2 are incomparable). We define

b0 = ∧{b | dI(b, τ1) 6 〈3, 2〉 and dI(b, τ2) 6 〈3, 2〉}

This set is non-empty since > is in the set, and down-closed: if there are
incomparable c1 and c2, then for each of dI(c1, τ1) 6 〈3, 2〉 and dI(c2, τ1) 6
〈3, 2〉 so τ1 > c1 ∧ c2 by NoInf, which together with τ1 6 c1 and τ1 6 c2

implies c1 = c2. so the two cannot be incomparable. Again we cannot have
I ` τ1 > b0 or I ` τ2 > b0. Now there is at most one child b1 of b0

satisfying dI(b1, τ1) 6 〈2, 3〉, and one satisfying dI(b2, τ2) 6 〈2, 3〉, if either
of these children do not exist we set Q′ = Q ∪ {b1, b2} (as required) and
I ′ = I ∪ {τ1 6 b1, τ2 6 b2}. Note that b1 and b2 are guaranteed distinct.

Again we can show the distance consistency of I ′ from that of I: if I is
not distance consistent there must be some down-fence from b1 (or b2) via
τ1 (or τ2) which is shorter in I ′ than I and whose other links are all in I.
Again the reasoning is essentially the same as the 〈1, 2〉 case for each chain
from b1 via τ1 or b2 via τ2. �

3.4.5 Remark: In fact, the proof of tautness only requires the ability to extend
trees at their leaf nodes. Since tautness over any class of posets implies tautness
over any superclass, the result is equally applicable to tautness over the class
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of trees generated by adding new children to existing nodes, for example single
inheritance hierarchies.

3.5 Conclusion

The technique presented here can be seen as specialising techniques for simpli-
fication over the class of all partial orders such as those of [18], to Helly posets.
We have seen that our system is more powerful, and the restriction on possible
orderings seems a reasonable tradeoff for better simplification. It would be inter-
esting to investigate further properties of contraction, particularly in respect to
completeness and confluence.

Since we have a theory about entailment relations over particular classes of
posets such as lattices and trees, it should be possible to design more powerful
simplification algorithms which exploit the fact that these relations verify more
equivalences.

Although we envisage simplification occurring only prior to let-bindings, an
additional refinement might be to simplify previous let-bound types as more
information about distances between common λ-bound variables is discovered.
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Chapter 4

Solvability and Solution

Although we have seen how systems of constraints can be tested for solvability
and solved over atomic Helly posets, in practice this is not a realistic approach
to constraint sets obtained by type inference, which may well contain constraints
of the form e.g. α 6 τ1→τ2. Although if we are dealing with finite types and
structural subtyping it is possible (subject to a simple unification-like check for
circularity) to reduce the constraint set to atomic form with substitutions of the
form e.g. [α1→α2/τ ], this results in a potentially exponential increase in the
number of terms in the constraint set, and moreover when working with non-
structural subtyping the reduction is less straightforward, and in the case of
regular types, is not available at all.

In this chapter we will consider the issues of working with posets of regular
types built with type constructors from some base Helly poset. We will generalise
the notion of simulation to allow us to test the distance relation in such orderings,
and show how sets of constraints over the orderings may be efficiently tested
for solvability and solved. We will treat base types as constructors of arity 0
throughout.

4.1 Decomposition and Simulation

In chapter 1 it was shown how the subtype relation on regular types can be char-
acterised as a maximal simulation: that is, the maximal relation consistent with
v and closed under certain propagation rules. Thus to test the subtype relation
between two types, it suffices to find a simulation between them. The simula-
tion which justifies the 6 relation has two components: a shallow approximation
relation between type constructors, and rules for propagating the simulation to
the constructor arguments. The propagated inequalities must be necessary for
the original inequality to hold, and, together with the shallow approximation,
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sufficient. We can demonstrate similar properties for the distance relation.
It is straightforward to construct from our shallow approximation v on con-

structors a shallow approximation of the distance relation:

dQ(c, c) = 〈1, 1〉 for any constructor c
dQ(a, b) = dQ(a, b) for all a, b ∈ Q
dQ({}I , {}J) = 〈1, 2〉 if I ⊃ J
dQ({}I , {}J) = 〈2, 1〉 if I ⊂ J
dQ({}I , {}J) = 〈2, 2〉 otherwise
dQ(c,>) = 〈1, 2〉 for any c 6= >
dQ(⊥, c) = 〈1, 2〉 for any c 6= ⊥

and in order to propagate the constructor inequalities to their arguments, we
introduce the following notion:

4.1.1 Definition: An ordering is decomposable if for any τ = c1τ1 . . . τm and
ρ = c2ρ1 . . . ρn (perhaps containing free variables) and any e ∈ L such that
d(c1, c2) 6 e, there is a decomposition set D(ρ, τ, e) where every element of D is
of the form (ρ′, τ ′, e′) and such that

• every ρ′ is either one of the ρi or a ground type, and every τ ′ is either one
of the τi or a ground type

• each τi and ρi occurs at most once, and if both occur, then they occur in
the same tuple

• for any substitution θ on the variables in ρ and τ , dQ(θρ, θτ ) 6 e iff
dQ(θρ′, θτ ′) 6 e′ for every (ρ′, τ ′, e′) ∈ D(ρ, τ, e).

If τ1 and τ2 are both ground types, then any substitution is just the identity on
τ1 and τ2. So then

• if d(τ1, τ2) 6 e, each of the distance inequalities in D(τ1, τ2, e) holds

• if d(ν(τ1), ν(τ2)) 6 e then d(τ1, τ2) 6 e if each of the distance inequalities
in D(τ1, τ2, e) holds.

4.1.2 Definition: A set S of tuples (τ1, τ2, e) is closed under decomposition if
for any (τ1, τ2, e) ∈ Z, d(ν(τ1), ν(τ2)) 6 e and D(τ1, τ2, e) ⊆ Z. For e0 ∈ L a
e0-simulation Z(τ1, τ2, e0) between two regular types τ1 and τ2 is a finite set of
tuples containing (τ1, τ2, e0) which is closed under decomposition.
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We will use graph representations of types to build simulations, and read the
existence of a vertex ((G1, r1), (G2, r2), e) in the simulation as a requirement
that dQ((G1,m), (G2, n)) 6 e. It is easy to see that this notion of sim-
ulation corresponds with the definition for the 6 relation in the case e =
〈1, 2〉, where ((G1,m), (G2, n), 〈1, 2〉) corresponds with (G1,m) v (G2, n) and
((G1,m), (G2, n), 〈2, 1〉) with (G2, n) v (G1,m)

Structural Constructors

Let Q0 be Helly a poset of base types, and Q built from Q0 with structural
constructors. Suppose we have a distance inequality d(Tτ1 . . . τn, Tτ

′
1 . . . τ

′
n) 6 e.

Since constructor types are only comparable with other types headed by the same
constructor, the points making up the fences which generate the distance e must
also be of the form Tρ1 . . . ρn. So there is an up-fence in Q from Tτ1 . . . τn to
Tτ ′1 . . . τ

′
n of length r exactly if

• for each i such that pTi = pos, there is an up-fence in Q from τi to τ ′i of
length n.

• for each i such that pTi = neg, there is a down-fence in Q from τi to τ ′i of
length n

• for each i such that pTi = mix, τi = τ ′i .

Thus
D(Tτ1 . . . τk, Tτ ′1 . . . τ

′
k, e) = {(τi, τ ′i , e) | piT = pos}

∪ {(τi, τ ′i , e∗) | piT = neg}
∪ {(τi, τ ′i , 〈1, 1〉) | piT = mix}

4.1.3 Proposition: Let Q be the order defined by the base types in Q0 and the
→-constructor rule. There is a simulation Z(τ1, τ2, e0) iff dQ(τ1, τ2) 6 e0.

Proof: Suppose dQ(τ1, τ2) 6 e0, and (G1, r1) and (G2, r2) are graphs of τ1 and
τ2. Let Z be the minimal set containing ((G1, r1), (G2, r2), e0), and for every
((G1,m), (G2, n), e) ∈ Z with ν(m) = ν(n) = → ((G1,m(1)), (G2,m(1)), e∗) ∈
Z, and ((G1,m(2)), (G2,m(2)), e) ∈ Z, i.e. the minimal closure of
{((G1, r1), (G2, r2), e0)} under decomposition. It is straightforward to demon-
strate that Z is a simulation.

Conversely, suppose there is a simulation Z. In order to prove that for every
((G1,m), (G2, n), e) ∈ Z, d((G1,m), (G2, n)) 6 e, we will construct types on
the up-fences and down-fences which make up this distance. For every vertex
z = ((G1,m), (G2, n), 〈u, d〉) of Z we define an up-fence U(z) and a down-fence
D(z) of length u and d respectively, labelled with type constructors as follows:
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• if ν(m) = ν(n) =→, then ν(U(z)(i)) = ν(D(z)(i)) =→ for all i

• if ν(m) = a, ν(n) = b, so that dQ(a, b) 6 〈u, d〉 and there is an up-fence of
length u and a down fence of length d from a to b, then ν(U(z)(i)) is the
ith point on the up-fence, and ν(D(z)(i)) the ith point on the down-fence.

So for any z ∈ Z, if i is even, then ν(U(x)(i)) v ν(U(x)(i + 1)) for any x and
ν(D(x)(i+1)) v ν(D(x)(i)), and similarly if i is odd, ν(U(x)(i+1)) v ν(U(x)(i))
and ν(D(x)(i)) v ν(D(x)(i + 1)).
We add transitions

U(m,n, e)(i) 1→ D(m(1), n(1), e∗)(i)
U(m,n, e)(i) 2→ U(m(2), n(2), e)(i)
D(m,n, e)(i) 1→ U(m(1), n(1), e∗)(i)
D(m,n, e)(i) 2→ D(m(1), n(1), e)(i)

to form a transition graph GZ. Now we can define the fences which make up
the distance e0 from τ1 to τ2. Let z0 = ((G1, r1), r2, e0). Let ui = U(z0)(i), and
di = D(z0)(i). Then it is easy to show by induction that if i is even, there is
a simulation between the graphs (GZ , ui) and (GZ , ui+1), and if odd, between
(GZ, ui+1) and (GZ , ui), and dually for the points di. Notice that

(GZ, U(z0)(0)) = (GZ , D(z0)(0)) ∼= (G1, r1)
(GZ, U(z0)(u)) = (GZ , D(z0)(d)) ∼= (G2, r2)

and so the graphs rooted at (GZ, ui) and (GZ , di) form the required up- and down-
fences to generate the distance e0. �

4.1.4 Example: In order to illustrate this construction, we will take a simple
case the underlying order Q given by

a

b

d

c

and the inequality d(b→a, c→d) 6 〈2, 2〉. Defining

x = (b→a, c→d, 〈2, 2〉)
y = (b, c, 〈2, 2〉)
z = (a, d, 〈2, 2〉)
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the simulation is simply {x, y, z} and we take

U(x) = →,→,→
D(x) = →,→,→
U(y) = b, d, c an up-fence from b to c
D(y) = b, a, c a down-fence from b to c
U(z) = a, d, d an up-fence from a to d
D(z) = a, a, d a down-fence from a to d

d→ a

b→ a c→ d

a→ d

D(y)

a

D(z)

a

U(y)

d

U(z)

d

(solid lines are inequalities, dashed lines are inferred fences, dotted lines indicate
the source of the derived types).
Observe that since → is contravariant in its first argument, the first argument
of the type of U(x)(1) comes from D(y)(1), and the first argument of D(x)(1)
is drawn from U(y)(1). Then the point u1 on the up-fence from b→a to c→d is
D(y)(1) → U(z)(1) = a→d, and the point d1 on the down-fence is U(y)(1) →
D(z)(1) = d→a.

Record Types

If we add a record constructor, the situation becomes more interesting. When
e < 〈2, 2〉, for any d({}I .{}J) 6 e we inherit from the rules for the 6-constructor,

D({li:τi}i∈I, {lj:τ ′j}j∈J , e) = {(τj, τ ′j , e) | j ∈ I ∩ J}

For longer distances, notice that any two records have an upper bound, so that
the decomposition set for e > 〈2, 3〉 is empty. This leaves the cases e = 〈2, 2〉 and
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e = 〈3, 2〉. If two record types have a common lower bound, then the subterms
for any common label must also have a lower bound, e.g suppose we have the
distance inequality d({l:τ1,m:τ2}, {l:τ ′1, n:τ ′2}) 6 〈2, 2〉, then the two records have
a lower bound. Now any lower bound must have fields labelled l, m, and n, and
the type of the l field must be a common lower bound for τ1 and τ ′1, so we require
d(τ1, τ ′1) 6 〈3, 2〉. Observe that no such deductions can be made about τ2 and τ ′2.
Thus if 〈2, 2〉 6 e 6 〈3, 2〉,

D({li:τi}i∈I , {lj:τ ′j}j∈J , e) = {(τi, τ ′i , 〈3, 2〉) | i ∈ I ∩ J}

4.1.5 Proposition: Let Q be the order defined by the base types in Q0 and the
→ and {} constructor rules. If there is a simulation Z(τ1, τ2, e0), then dQ(τ1, τ2) 6
e0.

Proof: The proof extends the proof for → in a fairly straightforward fashion.
We define U and D for vertices (m,n, e) where ν(m) = {}I and ν(n) = {}J and
e = 〈u, d〉 as follows:

u = 1 U(m,n, e) = ({}I , {}J)
u > 2 U(m,n, e) = ({}I , {}, {}, . . .{}, {}J) u even

({}I , {}, {}, . . .{}, {}J , {}J) u odd
d = 1 D(m,n, e) = ({}I , {}J)
d = 2 D(m,n, e) = ({}I , {}I∪J , {}J)
d > 3 D(m,n, e) = ({}I , {}I , {}, . . .{}, {}J , {}J) d even

({}I , {}, {}, . . .{}, {}J) d odd

observe that U(m,n, 〈u, d〉) is an up-fence of constructors of length u, and
D(m,n, 〈u, d〉) is an up-fence of constructors of length d.
There is also a further necessary extension of the construction: suppose we have
d((G1, r1), (G2, r2)) 6 〈3, 4〉, where r1 = {}I , and r2 = {}J . Then the simulation
is just {(G1, r1), (G2, r2), 〈3, 4〉}. D(z0) is then

{}I

{}I

{}

{}J

{}J

when we build the down fence between (G1, r1) and (G2, r2), the constructors {}I
and {}J must be given out-edges, which unlike the case of → cannot be con-
structed from the fences between constructor arguments, because the constructor
arguments do not occur in the simulation. In fact, the distance inequality will
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hold irrespective of the arguments we use, so the only constraints upon their
construction are the boundary conditions, that

(GZ, U(z0)(0)) = (GZ , D(z0)(0)) ∼= (G1, r1)
(GZ, U(z0)(u)) = (GZ , D(z0)(d)) ∼= (G2, r2)

The obvious solution is simply to augment the construction with the argument
vertices in the graphs G1 and G2 themselves. In this case, for each i ∈ I , we will
have D(z0)(0) i→ (r1(i)) D(z0)(1) i→ (r1(i)) and for each j ∈ J , D(z0)(3) j→
(r2(j)) and D(z0)(4)

j→ (r2(j)), and the constructed types now form the required
down-fence.

It remains to define the transitions which generate the simulations. Suppose
we have a vertex (m,n, 〈u, d〉) ∈ Z

u = 1 U(m,n, e)(0) l→ U(m(l), n(l), e)(0) for each l ∈M
U(m,n, e)(1) l→ U(m(l), n(l), e)(1) for each l ∈ N

u > 2 U(m,n, e)(0) l→ m(l) for each l ∈M
U(m,n, e)(u− 1) l→ n(l) for each l ∈ N , if u odd
U(m,n, e)(u) l→ n(l) for each l ∈ N

d = 1 D(m,n, e)(0) l→ D(m(l), n(l), e)(0) for each l ∈M
D(m,n, e)(1) l→ D(m(l), n(l), e)(1) for each l ∈ N

d = 2 D(m,n, e)(0) l→ D(m(l), n(l), e)(0) for each l ∈M
D(m,n, e)(1) l→ D(m(l), n(l), e)(0) for each l ∈M −N

l→ D(m(l), n(l), e)(1) for each l ∈M ∩N
l→ D(m(l), n(l), e)(2) for each l ∈ N −M

D(m,n, e)(2) l→ D(m(l), n(l), e)(2) for each l ∈ N

d > 3 D(m,n, e)(0) l→ m(l) for each l ∈M
D(m,n, e)(1) l→ m(l) for each l ∈M
D(m,n, e)(d− 1) l→ n(l) for each l ∈ N , if d even
D(m,n, e)(d) l→ n(l) for each l ∈ N

The rest of the proof goes through as before. �

> and ⊥
Introducing > and ⊥ into the subtyping order has a more wide-ranging effect.
Now any two types are an upper and a lower bound (> and ⊥ respectively) and
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so the decomposition set for any inequality of distance 〈2, 2〉 or greater is empty.
For smaller distances the decomposition sets are unchanged. It is quite straight-
forward to extend propositions(4.1.3) and (4.1.5) to deal with these constructors.

Nonatomic base types

We can also use this technique to deal with nonatomic base types. We will
consider the case of → constructors only. Suppose we have an inequality of
the form d(a, τ1→τ2) 6 e, where Σ⇑(a) is an →-type, and suppose the minimal
distance from a to τ1→τ2 is 〈u, d〉. Since any fence from a to τ1→τ2 must pass
through Σ⇑(a), the shortest down-fence of length d must have the form a > a′ 6
τ ′1→τ ′2 > . . . for some a′ 6 a, where Σ⇑(a) 6 τ ′1→τ ′2. So there will be an up-fence
Σ⇑(a) 6 τ ′1→τ ′2 > . . . from Σ⇑(a) to τ1→τ2 of length d− 1. Thus we know that
d(a, τ1→τ2) 6 e iff d(Σ⇑(a), τ1→τ2) 6 eM, and so D(a, τ, e) = D(Σ⇑(a), τ, eM).

So if a is a non-atomic base type and c is not a base type, our shallow approx-
imation extends as follows:

d(a, c) = d(ν(Σ⇑(a)), c)M

d(c, a) = d(c, ν(Σ⇑(a)))N

And our decomposition sets, if Σ⇑(a) = ρ1→ρ2 are

D(a, τ1→τ2, e) = D(Σ⇑(a), τ1→τ2, e
M) = {(ρ1, τ1, (eM)∗), (ρ2, τ2, e

M)}
D(τ1→τ2, a, e) = D(τ1→τ2,Σ⇑(a), eN) = {(τ1, ρ1, (eN)∗), (τ2, ρ2, eN)}

4.2 Solvability and Solution

Closure and Consistency

Let Q be a decomposable ordering. A distance inequality d(τ1, τ2) 6 e possibly
containing type variables is Q-consistent if at least one of τ1 or τ2 is a variable, or
d(ν(c1), ν(c2)) 6 e. A set of distance inequalities is Q-consistent if every member
is Q-consistent.

4.2.1 Definition [Closure]: If Q is decomposable ordering, I is Q-closed if I
is closed under Dual, Min, and Join, the rule Truncate

d(ρ, τ ) 6 e

d(ρ, τ ) 6 e ∧ δQ
(Truncate)

and the rule Decomp

d(ρ, τ ) 6 e dQ(ν(ρ), ν(τ )) 6 e (ρ′, τ ′, e′) ∈ D(ρ, τ, e)
d(ρ′, τ ′) 6 e′

(Decomp)

The Q-closure of I closeQ(I), is the minimal Q-closed superset of I.
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We include the rule Truncate because it ensures that the closure is finite, since
it can only contain types occurring in I and distances at most δQ.

4.2.2 Proposition: Let Q be a decomposable partial order of diameter δQ, I a
set of distance inequalities, and J be the Q-closure of I. Then any solution of I
is a solution of J and vice versa.

Proof: Let θ be a solution of J . Since for any τ1 and τ2, dJ (τ1, τ2) 6 dI(τ2, τ2),
θ is a solution of I. Suppose conversely that θ is a solution of I. We proceed
by induction on the height of the derivation an inequality dQ(θτ1, θτ2) 6 e in J .
The last rule in deriving this from the distance inequalities in I is either Min,
Dual, Join, Truncate, or Decomp. For each rule if θ satisfies the premises,
then θ also satisfies the conclusion. Thus since θ is a solution of I over Q, it is a
solution of J . �

Clearly if theQ-closure of I is inconsistent, then I is unsolvable. Our fundamental
result will be that under certain quite general conditions, a set of constraints
is solvable iff its Q-closure is Q-consistent. Before we prove this result, a few
examples will demonstrate the use of distance closure, particularly its advantage
over the usual notion of constraint closure.

With structural subtyping over the tree order Long < Int, Nat < Int, the con-
straint set {Nat→Nat 6 α, Long→Long 6 α} is unsolvable even though transitive
and subterm closure of constraints yields no inconsistencies. Distance closure en-
ables us to deduce d(Long, Nat) 6 〈3, 2〉:

d(Nat→Nat, α) 6 〈1, 2〉
d(Long→Long, α) 6 〈1, 2〉
d(α, Long→Long) 6 〈2, 1〉

d(Nat→Nat, Long→Long) 6 〈2, 3〉
d(Nat, Long) 6 〈3, 2〉

Note that although d(Long, Nat) 6 〈3, 2〉 is enough to demonstrate inconsistency,
we can deduce the stronger inequality d(Long, Nat) 6 〈2, 2〉.
Similarly from {{l:a} > α, {l:b} > α} we can deduce d(a, b) 6 〈3, 2〉.
The reason that constraint closure is sufficient over a lattice is that in a lattice
the only distances of any interest are 〈1, 1〉, 〈1, 2〉, and 〈2, 1〉. All elements in
a component are at most 〈2, 2〉 apart, so beyond limiting a type to a particular
component, a distance inequality of length 〈2, 2〉 or greater provides no inform-
ation. Thus if the ordering is just one big lattice, or if shape matching can be
used to decompose the constraint set into separate components, all remaining
information can be expressed as constraints.
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Constructing a Solution

In this section we will demonstrate a quite general method for constructing solu-
tions of constraint sets over subtype orderings of regular types. Our technique
can be seen as an extension of that of [33], using distance inequalities instead of
constraints.

We will consider first a simple example: an ordering formed by → over the
poset Q = {Long6Int, Nat6Int}. Consider how we might go about constructing
a solution to the constraint set

C = {α6γ→Nat, α6β, Long→Long6β, γ6Nat}

I, the closure of C has two components, one of which is

Long→Long

β

α

γ→Nat

It’s easy to see that α and β must be → types (clearly they cannot be atomic
types), say α1→α2 and β1→β2. Propagating the above constraints to the con-
structor arguments we obtain

Long

β1

α1

γ Long

β2

α2

Nat

Combining these with the inequalities in Q0 and the inequality γ6Nat (and with
a little cosmetic reshaping of the diagrams) we obtain:

Long

β1

α1

Int

γ

Nat

Int

Long

β2

α2

Nat

Applying the HSF f(α) =
∧
{a | a > α} of proposition(2.4.3), we obtain the

solution
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{α1 = Int, α2 = Nat, β1 = Long, β2 = Int, γ = Nat}

Notice however, that we could have solved for each of α, and β, independently
using distance inequalities: the points labelled with other variables become “an-
onymous”. For example, we can obtain

d(α, Long→Long) 6 〈2, 3〉
d(α, γ→Nat) 6 〈1, 2〉

by distance closure from the original constraint set, then having determined the
substitution [α1→α2/α], we obtain

d(α1, γ) 6 〈2, 1〉
d(α1, Long) 6 〈3, 2〉

then by closure with the original constraint set and Q0 we obtain

d(α1, Nat) = 〈3, 2〉
d(α1, Long) = 〈3, 2〉
d(α1, Int) = 〈3, 2〉

whence we can apply the HSF. We can consider the process of solving for a
variable α to have three steps:

choice decide on a constructor c for a variable (e.g. α) using the minimal dis-
tances from α to all the constructor types.

decomposition generate a set of inequalities on each argument to c, using the
decomposition rules

I-expansion close this set of inequalities with those in I to obtain the full set
of conditions on each argument

If we are going to solve for α, β, and γ independently, we need to find a function
g for choosing constructors which ensure that the types we build do indeed form a
solution. In particular, if we have two variables α and β such that e.g. d(α, β) 6
〈1, 2〉, we require that g(α) v g(β), and that we generate sufficient conditions
on the arguments of g(α) and g(β) to ensure that we will obtain a simulation,
e.g. if g(α) = g(β) = →, we shall want to ensure that d(α1, β1) 6 〈2, 1〉, and
d(α2, β2) 6 〈1, 2〉.

We identify three important concepts in deriving a solution for some set of
distance inequalities I

1. A Q-state S expresses the minimal distance between some unknown and a
set of types in I.
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2. A choice function g defines the constructor for a particular state.

3. Given a state S and g(S), for each label l ∈ L(g(S)) the l-successor state
for S at l is obtained as the I-expansion of the inequalities derived using
the decomposition rules.

4.2.3 Definition [States]: An state is a partial function

S : τ → {e ∈ L | e 6 δQ}

If P is any set of pairs {(τ, e)}, the Q-reduction of P is the state

red(P )(τ ) = δQ ∧
∧
{e′ | (τ, e′) ∈ P} if (τ, e′) ∈ P for some e′

Similarly the Q-reduction of a state S is the state

red(S)(τ ) = δQ ∧ S(τ ) if S(τ )↓

The binary closure B(S) of a state S is the set of inequalities

{d(τ1, τ2) 6 S(τ1)−1 + S(τ2) | τ1, τ2 ∈ dom(S)}

S is Q-consistent if B(S) is Q-consistent.
We define a relation . on states: S1 . S2 if dom(S1) = dom(S2), and

• S1(τ ) 6 δQ ∧ (〈1, 2〉 + S2(τ ))

• S2(τ ) 6 δQ ∧ (〈2, 1〉 + S1(τ ))

4.2.4 Example: Returning to our earlier example, if Sα and Sβ are the initial
states for α and β, we have

Sα(γ→Nat) = 〈1, 2〉 Sβ(γ→Nat) = 〈3, 2〉
Sα(α) = 〈1, 1〉 Sβ(α) = 〈2, 1〉
Sα(β) = 〈1, 2〉 Sβ(β) = 〈1, 1〉
Sα(Long→Long) = 〈2, 3〉 Sβ(Long→Long) = 〈2, 1〉

and from the definition we can see that Sα . Sβ. Indeed we also have Sα .
Sγ→Long, and SNat→Int . Sβ .

4.2.5 Remark: Suppose Q is a Helly poset of base types with HSF FQ. Our
definition of Q-consistency here coincides with that of definition(2.4.4). Moreover
if S and T are Q-consistent states defined only on base types in Q and variables
and S . T , then d(S|Q, T |Q) 6 〈1, 2〉, and so FQ(S1|Q) 6 FQ(S2|Q).
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4.2.6 Definition [I-expansion]: Let I be a set of distance inequalities. The
I-expansion of a state S is

expI(S)(τ ) = δQ ∧
∧
{S(τ ′) + dI(τ ′, τ )} if there is τ ′ such that S(τ ′)↓ and

dI(τ ′, τ ) < e for some e
undefined otherwise

S is a I-state if for every τ1, τ2 ∈ dom(S), dI(τ1, τ2) 6 dB(S)(τ1, τ2), so if I is
Q-consistent, then so is any I-state.

4.2.7 Proposition [Properties of I-expansion]: Suppose Q is a partial order
of diameter δQ. Let I be a Q-closed set of distance inequalities.

1. if S is an I-state, then so is expI(S).

2. if S1 . S2, then expI(S1) . expI(S2)

Proof:

1. Let T = red(expI(S)), and suppose T (τ1) = e1, T (τ2) = e2, so that
dB(T )(τ1, τ2) = e−1

1 + e2.

e−1
1 + e2 = (δQ ∧

∧
{S(τ ′1) + dI(τ ′1, τ1) | S(τ ′1)↓})−1+

(δQ ∧
∧
{S(τ ′2) + dI(τ ′2, τ2) | S(τ ′2)↓})

which is at least

δQ ∧
∧
{dI(τ1, τ

′
1) + dB(S)(τ ′1, τ

′
2) + dI(τ ′2, τ2) | S(τ ′1)↓, S(τ ′2)↓}

Now since S is a I-state, we have dI(τ ′1, τ ′2) 6 dB(S)(τ ′1, τ ′2), so

dI(τ1, τ2) 6 dI(τ1, τ
′
1) + dB(S)(τ ′1, τ

′
2) + dI(τ ′2, τ2)

for any τ ′1 and τ ′2, so

dI(τ1, τ2) 6
∧
{dI(τ1, τ

′
1) + dB(S)(τ ′1, τ

′
2) + dI(τ ′2, τ2) | S(τ ′1)↓, S(τ ′2)↓}

And so, since I is closed under Truncate, we have

dI(τ1, τ2) 6 δQ ∧
∧
{dI(τ1, τ

′
1) + dB(S)(τ ′1, τ

′
2) + dI(τ ′2, τ2) | S(τ ′1)↓, S(τ ′2)↓}

2. Suppose S1 . S2. Let T1 = expI(S1) and T2 = expI(S2). If T2(τ2) = e2.
Then we must have

e2 = δQ ∧
∧
{e′2 + e | S2(τ ) = e′2 and dI(τ, τ2) 6 e}
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But for any τ such that S2(τ ) = e′2, we have S1(τ ) 6 δQ∧(〈1, 2〉+e′2). Thus
τ ∈ dom(T1), and moreover

T1(τ1) = δQ ∧
∧
{e′1 + e | S1(τ ) = e′1 and dI(τ, τ1) 6 e}

6 δQ ∧
∧
{〈1, 2〉 + e′2 + e | S2(τ ) = e′2 and dI(τ, τ1) 6 e}

= δQ ∧ (〈1, 2〉 +
∧
{e′2 + e | S2(τ ) = e′2 and dI(τ, τ1) 6 e})

= δQ ∧ (〈1, 2〉 + e2)

The reasoning for the other condition is dual. �

4.2.8 Definition [Descent Functions]: Suppose Q is a decomposable order-
ing. Let c be a constructor, τ and e ∈ L be such that such that dQ(c, ν(τ )) 6 e.
Let ρ = cαl1 . . . αln We define the descent function for Q as follows:

P lc(τ, e) = (τl, e′) if (ρ′, τl, e′) ∈ D(ρ, τ, e) for some ρ′

We extend this to states: if c is a constructor such that d(c, ν(τ ) 6 e for every
constructor type τ such that S(τ ) = e

P lc(S)(τ ) = red{P lc(τ, e) | S(τ ) = e and P lc(τ, e)↓}

4.2.9 Example: If we take Sα and Sβ as before, it is clear that we have to choose
→ as the constructor for each state.

P1
→(Sα)(γ) = 〈2, 1〉 P1

→(Sα)(Long) = 〈3, 2〉
P1
→(Sβ)(γ) = 〈2, 3〉 P1

→(Sβ)(Long) = 〈1, 2〉
P2
→(Sα)(Nat) = 〈1, 2〉 P2

→(Sα)(Long) = 〈2, 3〉
P2
→(Sβ)(Nat) = 〈3, 2〉 P2

→(Sβ)(Long) = 〈2, 1〉

Notice that P1
→(Sβ) . P1

→(Sα), and P2
→(Sα) . P2

→(Sβ)

4.2.10 Definition [Choice Function]: Let S be a state, g be a total function
from Q-consistent states to constructors. If I is a set of distance inequalities,
l ∈ L(g(S)) we define the l-successor of S

K l
I(S) = expI(P lg(S)(S))

Then g is a choice function for Q if for any Q-closed I and any Q-consistent
I-state S

G1 dQ(g(S), ν(τ )) 6 e for every constructor type τ such that S(τ ) = e (so K l
I(S)

exists).

G2 for any l ∈ L(g(S)), the successor state K l
I(S) is an I-state.
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and for any pair S1, S2 of consistent I-states such that S1 . S2,

G3 g(S1) v g(S2)

G4 For each l ∈ L(g(S1)) ∩ L(g(S2)))

• if plg(S1) = pos, K l
I(S1) . K l

I(S2)

• if plg(S1) = neg, K l
I(S2) . K l

I(S1)

• if plg(S1) = mix, K l
I(S2) . K l

I(S1) and K l
I(S1) . K l

I(S2)

(note that by G3 and remark (1.3.1), plg(S1) = plg(S2))

4.2.11 Theorem: Let Q be a decomposable ordering and g a choice function for
Q. Suppose C is a constraint set whose Q-closure I is Q-consistent. Then C is
solvable.

Proof: For each τ occurring in I we define the start state for τ to be the I-state

startτ = expI({τ, 〈1, 1〉})

Let SC , the set of C-states be the smallest set such that

• startτ ∈ SC for every τ ∈ O(C)

• K l
I(S) ∈ SC for every S ∈ SC .

By induction using property G2, every state in SC is a I-state, and since I is
Q-consistent, every state in SC is Q-consistent.
We define the state graph HC to be the transition graph whose vertex set is SC
and whose transition function is:

S
l→ K l

I(S)

Then we define ν(S) = g(S), and for each τ ∈ O(C) we take θ(τ ) = (HC , startτ).
Since SC is finite, θ(τ ) is a regular type.

To show that θ is a substitution, it suffices to demonstrate that for any con-
structor type τ , g(startτ ) = ν(τ ) and that for any l ∈ L(τ )

startτ
l→ startτ (l)

The first follows immediately from G1, since startτ (τ ) = 〈1, 1〉, For the second,
suppose S = K l

I(startτ). Then we will show that S = startτ (l). S(τ (l)) = 〈1, 1〉,
so by I-expansion, for any τ ′ such hat dI(τ (l), τ ′) 6 e for some e,

S(τ ′) 6 dI(τ (l), τ ′)
= startτ (l)(τ ′)
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but since by G2 S is an I-state, we have

startτ (l)(τ ′) = dI(τ (l), τ ′)
6 dB(S)(τ (l), τ ′)
= 〈1, 1〉 + S(τ ′) = S(τ ′)

Thus S = startτ (l).
To see that θ is a solution, observe that if τ16τ2 ∈ C then startτ1 . startτ2, and
by a simple induction using G3 and G4, for any τ16τ2 ∈ C, there is a simulation
θ(τ1) . θ(τ2), and thus θ(τ1) 6 θ(τ2) �

4.3 Examples

Atomic Subtyping and →
The case of structural constructors over some base poset Q0 is easy. We will
work with just →, although others are equally straightforward. Notice that the
diameter δQ of Q is δQ0 ∧ δ∗Q0

. Our descent function is

P1
→(τ1→τ2, e) = (τ1, e∗)
P2
→(τ1→τ2, e) = (τ2, e)

As a choice function, we take

g(S) = → if S(τ1→τ2)↓ for some τ1→τ2

FQ(S|Q) if S(a)↓ for some a ∈ Q
c otherwise

For consistent S, dom(S) cannot contain both an atom and a constructor type,
and can contain at most one component of Q, so this is well-defined. It remains
to verify that it satisfies conditions G1–G4.

G1 immediate using remark(4.2.5) for the atomic case

G2 We will prove that P l→(S) is a I-state for l = 1, 2, for then by
proposition(4.2.7) K l

I(S) = expI(P l→(S)) is also. We will do the l = 1
case, l = 2 is similar. We need to show that for any τ1, τ2 such that
P1
→(S)(τ1) = e, P1

→(S)(τ2) = e′, dI(τ1τ2) 6 e−1 + e′. It suffices to demon-
strate that for every τ ′1, τ

′
2 such that S(τ1→τ ′1) = e1 and S(τ2→τ ′2) = e2,
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that dI(τ1, τ2) 6 δQ ∧ ((e∗1)−1 + e∗2), for then

dI(τ1, τ2) 6
∧
τ ′1,τ

′
2
{δQ ∧ ((e∗1)−1 + e∗2) | S(τ1→τ ′1) = e1, S(τ2→τ ′2) = e2}

= δQ ∧
(∧

τ ′1,τ
′
2
{(e∗1)−1 + e∗2 | S(τ1→τ ′1) = e1, S(τ2→τ ′2) = e2}

)
= δQ ∧

(∧
τ ′1

(S(τ1→τ ′1)∗)−1 +
∧
τ ′2
S(τ2→τ ′2)∗

)
by distributivity of + over ∧

=
(∧

τ ′1
S(τ1→τ ′1)−1

)∗
+
(∧

τ ′2
S(τ2→τ ′2)

)∗
=

(∧
τ ′1
S(τ1→τ ′1)∗

)−1
+
(∧

τ ′2
S(τ2→τ ′2)

)∗
= (P1

→(S)(τ1))−1 + P1
→(S)(τ2)

But if S1(τ1→τ ′1) = e1 and S2(τ2→τ ′2) = e2, then dB(S)(τ1→τ ′1, τ2→τ ′2) 6
e−1

1 +e2, so since S is a I-state, dI(τ1→τ ′1, τ2→τ ′2) 6 e−1
1 +e2, so by Decomp,

dI(τ1, τ2) 6 (e−1
1 + e2)∗ = (e∗1)−1 + e∗2.

G3 Suppose S . T . Then dom(S) = dom(T ). If the set contains →-types, or
only variables, the result is immediate, and if dom(S) and dom(T ) both
contain base types, by remark(4.2.5) we have FQ(S|Q) 6 FQ(T |Q).

G4 Suppose S . T , we will take l = 1, although the l = 2 case is similar. We
define S1 = P1

→(S), T1 = P1
→(T ). By proposition (4.2.7), it suffices to show

that T1 . S1. Suppose T1(τ ) = e, then we must have

S1(τ ) = δQ ∧
(∧

τ ′ S(τ→τ ′)
)∗

over all τ ′ such that S(τ→τ ′)↓
6 δQ ∧

(∧
τ ′ δQ ∧ (〈1, 2〉 + T (τ→τ ′))

)∗
6 δQ ∧

(
〈2, 1〉 +

(∧
τ ′ T (τ→τ ′)

)∗)
6 δQ ∧ (〈2, 1〉 + T1(τ ))

Similarly T1(τ ) 6 δQ ∧ (〈1, 2〉 + S1(τ )), so T1 . S1

Atomic Subtyping, →, and {}
The argument for records is very similar. Our descent function is

P1
→(τ1→τ2, e) = (τ1, e∗)
P2
→(τ1→τ2, e) = (τ2, e)
P l{}I({lj:τj}, e) = (τl, e) e < 〈2, 2〉 and l ∈ I ∩ J
P l{}I({lj:τj}, e) = (τl, 〈3, 2〉) 〈2, 2〉 6 e 6 〈3, 2〉 and l ∈ I ∩ J
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and our choice function

g(S) = → if S(τ1→τ2)↓ for some τ1→τ2

FQ(S|Q) if S(a)↓ for some a ∈ Q
{}L(S) if S({li:τi})↓ for some {li:τi}

where L(S) =
⋃
{L(τ ) | S(τ ) 6 〈1, 2〉}

c otherwise

Again notice that exactly one of the above cases can hold by consistency of S.

G1 immediate

G2 The → case follows as in example(4.3) So suppose g(S) = {}L. Again it
suffices to show that P l{}L(S) is an I-state for each l ∈ L, then the result
follows by proposition(4.2.7). So suppose Sl = P l{}L, and Sl(τ1) = e1,
Sl(τ2) = e2. There are many possible cases to consider, where each of e1, e2

is 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈3, 2〉. We will do the case where e1 = e2 = 〈3, 2〉, the
others are similar.

l l l

τ1 ρ τ2

Sτ ′1

ρ′

τ ′2

Since l ∈ L(g(S)), there must be ρ′ such that S(ρ′) 6 〈1, 2〉, and l ∈ L(ρ′).
By inspection of the descent function, we must have τ ′1 and τ ′2 such that
τ ′1(l) = τ1, τ ′2(l) = τ2, and 〈2, 2〉 6 S(τ ′1) 6 〈3, 2〉, and 〈2, 2〉 6 S(τ ′2) 6
〈3, 2〉. If ρ′(l) = ρ, we thus have {dI(τ ′1, ρ) 6 〈3, 2〉, dI (τ ′2, ρ) 6 〈3, 2〉} ⊆
B(S), so since S is a I-state, dI(τ ′1, ρ) 6 〈3, 2〉 and dI(τ ′2, ρ) 6 〈3, 2〉. Thus
by Decomp, we have dI(τ1, ρ) 6 〈3, 2〉 and dI(τ2, ρ) 6 〈3, 2〉, and so by
Dual and Join, we have dI(τ1, τ2) 6 〈5, 4〉 as required.

G3 Suppose S . T . If dom(S) = dom(T ) contains no record types, the result
follows in the manner of example (4.3). Otherwise for any τ = {li:τi} such
that T (τ ) 6 〈1, 2〉, S(τ ) 6 〈1, 2〉, so L(S) ⊇ L(T ), and thus g(S) v g(T ).
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G4 The → case is as for example(4.3). Suppose S . T , and g(S) = {}LS , and
g(T ) = {}LT , where LS ⊆ LT . We define Sl = K l

I(S), Tl = K l
I(T ).

Suppose Tl(τl) = e, we need to show that Sl(τl) 6 〈1, 2〉 + e. The cases
where e 6 〈1, 2〉 are as in example(4.3); the interesting cases are 〈2, 1〉 6
e 6 〈3, 2〉. As all these cases are essentially similar, we will do the case where
Tl(τl) = 〈2, 1〉, and show that Sl(τl) 6 〈2, 3〉. There are two possibilities:

• there is some τ such that P l{}T (T )(τ ) = 〈1, 1〉 and dI(τ, τl) = 〈2, 1〉,
in which by reasoning similar to example(4.3) we have P l{}S(S)(τ ) 6
〈1, 2〉, and so Sl(τl) 6 〈1, 2〉 + 〈2, 1〉 = 〈2, 3〉.

• there is some τ such that P l{}T (T )(τ ) = 〈2, 1〉 and dI(τ, τl) = 〈2, 1〉. In
this case, we must have some τ ′ such that T (τ ′) = 〈2, 1〉, with τ ′(l) = τ .
But since l ∈ L(g(T )), there must also be ρ′ such that T (ρ′) = 〈1, 2〉
and l ∈ L(ρ). In this case, since T is an I-state, we must have

dI(ρ′, τ ′) 6 dB(T )(ρ′, τ ′)
= T (ρ′)−1 + T (τ ′)
= 〈2, 1〉 + 〈2, 1〉
= 〈2, 1〉

and thus if ρ′(l) = ρ, dI(ρ, τl) 6 〈2, 1〉. But since S(ρ′) 6 〈1, 2〉, we
have P l{}S(S)(ρ) 6 〈1, 2〉 and thus Sl(τl) 6 〈2, 3〉 as required.

The reasoning for the other condition is dual.

Atomic Subtyping, →, > and ⊥
Observe that in this case we have δQ = 〈2, 2〉 and Q has only one component.
Our descent function is

P1
→(τ1→τ2, e) = (τ1, e∗) e < 〈2, 2〉
P2
→(τ1→τ2, e) = (τ2, e) e < 〈2, 2〉

and our choice function

g(s) = > if there is no S(a) 6 〈1, 2〉 or S(τ1→τ2) 6 〈1, 2〉
⊥ otherwise, if there is no S(a) 6 〈2, 1〉 or S(τ1→τ2) 6 〈2, 1〉
→ otherwise if there is some S(τ1→τ2) < 〈2, 2〉
FQ′(S|Q′) otherwise, if there is some S(a) < 〈2, 2〉

where Q′ = Q ∪ {>,⊥}, which by proposition(2.2.8) is a lattice.
Unlike the previous examples, S is defined on all types occurring in I. However,
at most one of the last two cases is possible for any consistent S: if g(S) 6= > and
g(S) 6= ⊥, then we must have τ1 and τ2 such that S(τ1) 6 〈1, 2〉 and S(τ2) 6 〈2, 1〉,
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and such that each of τ1 and τ2 is either an →-type or a base type. It cannot
be the case that one is an →-types and one a base type, for then we would have
d(τ1, τ2) 6 〈2, 1〉 ∈ B(S), and B(S) would not be consistent.

G1 immediate

G2 The only case where L(g(S)) is non-empty is when g(S) = →, whence the
result follows in a similar manner to example(4.3)

G3 Suppose S . T . if g(T ) = > then the result is immediate. If g(T ) = ⊥, then
we must have T (τ ) = 〈1, 2〉 for some→-type or atom τ , so S(τ ) = 〈1, 2〉, and
furthermore there can be no →-type or atom τ ′ such that S(τ ′) 6 〈2, 1〉,
since then we would have T (τ ′) 6 〈2, 1〉, contradicting g(T ) = ⊥. Thus
g(S) = ⊥. If g(T ) = →, then we must have some T (τ1→τ2) 6 〈1, 2〉, and
thus S(τ1→τ2) 6 〈1, 2〉, so g(S) =→ or ⊥. Finally, if g(T ) = a, by similar
reasoning either g(S) = ⊥, or g(S) = b where b 6 a by the fact that FQ′ is
a HSF.

G4 Suppose l ∈ L(g(S)) ∩ L(g(T )). We must have g(S) = g(T ) = →. We will
do the l = 2 case. Since K2

I(S)(τ ) 6 〈2, 2〉 for every τ ∈ O(S), it suffices to
demonstrate that for every τ such that K2

I(T ) 6 〈1, 2〉, K2
I(S)(τ ) 6 〈1, 2〉,

and for every τ ′ such that K2
I(S)(τ ) 6 〈2, 1〉, K2

I(T )(τ ) 6 〈2, 1〉. Since these
are dual, we will do just the first: suppose we have K2

I(T )(τ ) 6 〈1, 2〉, then
we must have τ ′ such that P l→(T )(τ ′) 6 〈1, 2〉, and dI(τ ′, τ ) 6 〈1, 2〉. But
then we must have T (τ ′′→τ ′) 6 〈1, 2〉 for some τ ′′, and thus S(τ ′′→τ ′) 6
〈1, 2〉. Hence P l→(S)(τ ′) 6 〈1, 2〉, and thus K2

I(S)(τ ) 6 〈1, 2〉.

Atomic Subtyping, →, and Nonatomic Base Types

In order to guarantee regular solutions, we require the underlying poset of types
to have finite diameter. In general, bounded quantification can result in posets of
arbitrarily large diameter, but a finite signature always results in a poset of finite
diameter.

4.3.1 Proposition: Suppose QΣ is the set of regular types built using the →
constructor over a Helly poset Q0 of finite diameter extended with a bounded
signature Σ. Then QΣ has finite diameter.

Proof: We proceed by induction over the signature. It is easy to show that if
Q0 has diameter δQ0, the poset of regular types over Q has diameter δQ0 ∧ δ∗Q0

.
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So suppose the poset of regular types over Q extended by Σ has diameter δ(Q,Σ),
and Σ′ = Σ, a6τ .

For any two types τ1, τ2 containing a, let τ ′1 = [τ/a]τ1, and τ ′2 = [τ/a]τ2. Then
d(τ1, τ ′1) 6 〈2, 2〉, since we obtain an up-fence of length 2 from τ to τ ′ by first
promoting all occurrences of a at positive parity paths, then all occurrences at
negative parity , and by doing the reverse, we obtain a down-fence of length 2 from
τ1 to τ ′1; similarly d(τ2, τ ′2) 6 〈2, 2〉. Now since τ ′1 and τ ′2 contain no occurrences
of a, we must have d(τ ′1, τ ′2) 6 δ(Q,Σ), and thus d(τ ′1, τ ′2) 6 〈2, 2〉 + δ(Q,Σ) + 〈2, 2〉,
which is an upper bound for the diameter of δ(Q,Σ′). �

Unfortunately, even if Q is a low-diameter poset such as a tree, so that the
component of types of shape a→a has diameter 〈3, 3〉, adjoining a bounded con-
stant results in a component of diameter 〈3, 4〉. Then the component of shape
(a→a)→(a→a) has diameter 〈4, 4〉, and by extending the signature the diameter
of the poset can become arbitrarily high.
A base type in Σ is atomic if either Σ(a)↑, or Σ↑(a) is an atomic base type (in Q
or Σ.)

4.3.2 Proposition: Let Q′ be the extension of Q by all the atomic base types
in Σ. Q′ is a Helly poset.

Proof: By induction on the number of bindings for atomic base types Σ.
If Σ(a)↑, {a} ∪ Q′ is obviously Helly, otherwise the result follows from
proposition(2.2.7). �

Since Q′ is Helly, it has a HSF. Our descent function P lc is:

P1
→(τ1→τ2, e) = (τ1, e∗)
P2
→(τ1→τ2, e) = (τ2, e)
P1
→(a, e) = (τ1, (eN)∗) where Σ⇑(a) = τ1→τ2

P2
→(a, e) = (τ2, eN) where Σ⇑(a) = τ1→τ2

P1
a (τ1→τ2, e) = (τ1, (eM)∗)
P2
a (τ1→τ2, e) = (τ1, eM)

and our choice function

→ if S(τ1→τ2)↓ for some τ1→τ2∧
{a | S(a) 6 〈1, 2〉} if S(a) 6 〈1, 2〉 for some non-atomic base type a

FQ′(S|Q′) if dom(S) contains an atomic base type
c otherwise

Now we need to demonstrate that G1–G4 are met.

G1 straightforward
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G2 It suffices to prove that P lg(S)(S) is an I-state for then by proposition(4.2.7)
so is K l

I(S). Suppose g(S) =→, l = 2. If S(a)↑ for any a, the case is
as in example(4.3). So suppose we have S(a) = f such that e1 = fN,
Σ⇑(a) = τ ′1→τ1, and S(τ ′2→τ2) = e2. Then dB(S)(τ ′1→τ1, τ ′2→τ2) 6 f−1 + e2,
so since S is an I-state, dI(τ ′1→τ1, τ ′2→τ2) 6 f−1 + e2. Then

dI(τ1, τ2) 6 (f−1 + e2)M by Descent

6 (f−1)M + e2

= (fN)−1 + e2

= e−1
1 + e2

The other possibilities are similar.

G3 Suppose S . T .

• If g(S) = g(T ) =→, the result is immediate.

• If g(S) = a and g(T ) = b, there are two cases: either a, b ∈ Q′, whence
by remark(4.2.5) we have FQ′(S|Q′) 6 FQ′(T |Q′). Or a and b are
nonatomic base types, in which case for every c such that T (c) 6 〈1, 2〉,
we must have S(c) 6 〈1, 2〉, so by the definition of g, a 6 b.

• If g(T ) = a, we must have T (a) 6 〈1, 2〉, so S(a) 6 〈1, 2〉, and so it
cannot be the case that g(S) =→.

• If g(S) = a and g(T ) = →, by consistency Σ⇑(a) must be an arrow
type and so a v→

G4 Suppose S . T and g(S) = g(T ) =→, again we will do the l = 2 case. If we
have T2(τ ) = e, and T (τ ′→τ ) = e, then the result follows as in example(4.3).
Otherwise suppose we have T (a) = f , with Σ⇑(a) = τ ′→τ , and fN = e.
Then we have S(a) 6 δQ ∧ (〈1, 2〉+ f), and thus S2(τ ) 6 δQ ∧ (〈1, 2〉+ f)N,
so S2(τ ) 6 δQ ∧ (〈1, 2〉 + fN). If g(S) or g(T ) is a base type, the argument
is similar.

If g(S) = a and g(T ) = b then a 6 b and so for any τ such that S2(τ ) = e

and e = fN, for any S(τ ′→τ ) = f we have T (τ ′→τ ) 6 〈2, 1〉 + f , and thus

T2(τ ) 6 δQ ∧ (〈2, 1〉 + f)N

= δQ ∧ (〈2, 1〉 + fN)
= δQ ∧ (〈2, 1〉 + e)

and similarly S2(τ ) 6 δQ ∧ (〈1, 2〉 + T2(τ )) so S2 . T2.

One application of this result is to rephrase an entailment problem as a solvability
problem. We introduce bounded quantifiers, which quantify only over a single
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variable and a single constraint which bounds that variable above; and unbounded
quantifiers, which quantify only over a single variable without constraint.

4.3.3 Definition [Types and Type Schemes]:

Types τ ::= a | α | Tτ1 . . . τn
Bounded Type Schemes σ ::= τ | ∀α.σ | ∀α6τ.σ
Constrained Type Schemes κ ::= ∀α\C.τ

where C is a set of inequalities of the form τ 6 τ ′.

Bounded type schemes are relatively easy to read, and thus provide a programmer-
friendly way to print out those constrained types which may be rendered in such
a form.

4.3.4 Definition [Instances and Entailment]: We say that τ is a (Q,Σ)-
instance of ∀α\C.τ ′ if there is a substitution θ : α→τ (Q ∪ atom(Σ)) such that
Q,Σ ` θc for each c ∈ C, and θτ ′ = τ .

We define Q,Σ ` κ 4 σ if for any extension Σ′ of Σ and Q-model Q′,
for any (Q′,Σ′)-instance τσ of σ, there is a (Q′,Σ′)-instance τκ of κ such that
Σ′ ` τκ 6 τσ

Like other entailment relations in the literature, and like the semantic notion of
entailment of chapter 3, this definition is based on the existence of an instance
of τκ which is a subtype of any notion of τσ under any possible extension of the
underlying order. The relation given here is much weaker than that of [52] or
[40], where the underlying order may be extended by arbitrary constraints, or
even recursive constraints in which a type variable is allowed to occur on both
sides of an inequality. However, we gain the ability to test the entailment relation
efficiently by checking solvability of an appropriate constraint set.

4.3.5 Proposition: Suppose σ = ∀α1(6τ1)∀α2(6τ2) . . . ∀αn(6τn).τσ and κ =
∀β\C.τκ. Then Q,Σ ` κ 4 σ iff for

Σ′ = Σ, a1(6τ1), a2(6[a1/α1]τ2) . . . , an(6[a1/α1, . . . , an−1/αn−1]τn)

there is some substitution θ from β to τ (Q∪Σ′) such that Q,Σ′ ` θ(c) for every
c ∈ C ∪ {θτκ 6 [ai/αi]τσ}.

Proof: Suppose Q,Σ ` κ 6 σ. Then by the definition of the relation 6, we
know that for any (Q,Σ′)-instance of σ, there is a (Q,Σ′)-instance of κ which
is a subtype of it. Now [ai/αi]τσ is an instance of σ, so we must have some
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substitution θ on the variables β quantified over in κ, such that Q,Σ′ ` θ(c) for
every c ∈ C, and moreover Q,Σ′ ` θτκ 6 [ai/αi]τσ as required.

Now suppose we have θ such that Q,Σ′ ` θ(c) for every c ∈ C ∪ {θτκ 6
[ai/αi]τσ}, and suppose Σ1 is an extension of Σ and Q1 � Q. Without loss of
generality we may assume that the new base types in Σ1 and Q1 are distinct
from the ai. Let θ1 be a substitution from the αi to τ (Q1 ∪ atom(Σ1)) such
that Q1,Σ1 ` θ1αi 6 θ1τi, so that θ1τσ is a (Q1,Σ1)-instance of σ. Let θ′ =
θ1 ◦ [α/a] ◦ θ. We claim that Q1,Σ1 ` θ′τκ 6 θ1τσ, and that Q1,Σ1 ` θ′C.

These follow from the fact that if Q,Σ′ ` τ1 6 τ2, then Q,Σ1 ` (θ1 ◦
[αi/ai])τ1 6 (θ1 ◦ [αi/ai])τ2, which we will show by induction on the structure of
the proof of Q,Σ′ ` τ1 6 τ2.

Suppose the result holds for the premises of a rule. If the rule is Refl or
QTax, the result is immediate, and if it is Cons, then the result is follows
from the induction hypothesis. The remaining case is Prom

↑: If the variable
being promoted is not one of the ai, then the result follows from the induction
hypothesis. Otherwise, the conclusion of the rule is Q,Σ′ ` am 6 τ2, and it
has as a premise Q,Σ′ ` Σ(am) 6 τ2. So by the induction hypothesis, we have
Q1,Σ1 ` (θ1 ◦ [αi/ai])(Σ′↑(am)) 6 (θ1 ◦ [αi/ai])τ2. But (θ1 ◦ [αi/ai])(Σ′↑(am)) is
just θ1τm, and we have Q1,Σ1 ` θ1αi 6 θ1τi, so by transitivity we obtain the
required result Q1,Σ1 ` (θ1 ◦ [αi/ai])(am) 6 (θ1 ◦ [αi/ai])τ2 �

This presents us with an alternative formulation of the subtyping relation which
is not parameterised over all possible extensions of Σ, and which will be the basis
for checking the relation: We simply extend the signature as relevant and check
for solvability.

4.4 Conclusion

We have demonstrated a single framework which encompasses both atomic sub-
typing over Helly posets, and the various possibilities for structural and non-
structural subtyping. In particular, our techniques allow us to deal with the
expressions given in the introduction, illustrating the problems that can result
from the inclusion of > and ⊥ in a type system. We now have the ability to
check the subtype relation without them, but retaining records. In the context
of record and function types only, we return to the term:

let f = fun(r) r.X + if r.X then 1 else 2;
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The “One big lattice” technique accepts this term as well-typed: in fact it has
the minimal type {X:⊥}→Nat, since the X field of r is used at types Bool and
Int. However, using the results of this chapter we have an effective technique
which enables us to denounce this term as containing a type error. Similarly, in
the presence of polymorphic equality, we reject the term true = 3.

Our main theorem for solvability are also applicable to other type systems

• AC-object constructors [2] whose inference problem is studied in [32, 20],

• systems with > and not ⊥ (or conversely), introduced in [48], whose infer-
ence problem is studied in [24, 33]

• Systems of records with covariant and invariant field subtyping [44]

Our main extension to the studies of type inference in these systems is the in-
corporation of atomic subtyping, and the development of a unifying framework
in which to consider combinations of the various distinctive features of such con-
structors.

Polynomial Time Solution

It is not had to see that for the orderings we have considered, the Q-closure of
a constraint set can be accomplished by dynamic transitive distance closure in
polynomial time, thus providing a test for solvability. However, in [49], Tiuryn
shows that even when solutions are represented as directed acyclic graphs, the
size of a minimal solution grows exponentially with respect to the size of the
constraint set, and so we cannot expect to construct solutions in polynomial
time. For finite structural subtyping over a lattice, Tiuryn gives a method for
constructing an augmented DAG for each variables in a solvable constraint set: a
graph of polynomial size from which the solution at any particular node in the
solution tree can be recovered in polynomial time.

Instead of constructing distinct graphs for each variable, we can use a single
graph (the Helly Closure Graph for the constraint set C) whose vertices are O(C),
with edges from τ1 to τ2 of length dI(τ1, τ2) where I is the Q-closure of C. Using
such a graph, it is easy to perform I-expansion, choice, and descent in polynomial
time, and thus the process of computing the label at ant path π in the solution for
a type τ in the constraint set is linear in the length of π, and polynomial in the size
of the constraint set. In the case where the diameter of the poset is 〈1, 1〉, i.e. we
have no subtyping, an obvious optimisation of Helly graph closure is to contract
all 〈1, 1〉 edges, and we obtain as our solvability criterion that the constraints
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are unifiable as equalities, and as our closure graph, the usual unification DAG.
This observation can also be made for the technique of [33]: our extension of that
method allows incorporation of atomic subtyping over Helly posets and of record
subtyping without need for > and ⊥.

Simplification

It would be interesting to extend the techniques of chapter 3 to deal with con-
structor types.

In the finite structural case, we can naively compute the shape of each variable
α (as in e.g. [18]), and reduce the constraint set to atomic form by substitution.
However it is easy to show that in a non-atomic constraint set, substituting an
internal variable in this way does not alter the distances between observables
which are obtained using the Decomp rules in addition to Dual, Join and Min.
Since the algorithms for computing tautenings operate only on those distances, in
order to test entailment on non-atomic constraint sets it is sufficient to substitute
only for the externals. Whilst this can still result in an exponential increase in the
size of the constraint set, such would correspond to extremely large observable
types, which are rare in practice. This observation is similar to that of [21] where
a proof is given that the problem of determining whether a set of constraints
entails a single constraint is co-NP complete, even over lattices.

Reduction of a constraint set to atomic form may be relatively expensive, so
in practice it is more sensible to use a hybrid approach: to first apply general,
easily-validated simplifications (such as moving a negative observable to a least
upper bound), and when the constraint set is thus simplified, to reduce to atomic
form and H-contract.

However, in order for simplification over Helly posets to be competitive with
the approach for lattices of [39], it will be necessary for to extend the techniques
to cases where constraints cannot necessarily be reduced to an equivalent atomic
form, such as when using regular types, or non-structural subtyping.

87



Chapter 5

Subtyping and Unification

The polymorphic instance relation can be seen as a kind of subtyping, and one
that has received considerable discussion in the literature (recent work includes
[51, 31]) since defined by Mitchell in [29]. If we consider the type inference
algorithm of ML in a subtyping perspective, substitutions can be viewed as coer-
cions between type scheme, principal types are then minimal types, and principal
substitutions are the coercions which must exist to generate a minimal type from
the two minimal types combined in an application term.

Suppose we have inferred an argument type scheme σ1 for a function and
we attempt to apply the function to a term with inferred type scheme σ2. The
application will be well-typed exactly if σ2 is an instance of σ1. Thus we need to
seek a substitution on the free variables of σ1 and σ2 and a suitable instantiation
of their bound variables, which makes this the case. However, we cannot use just
any such substitution: in order to obtain a principal type property, we need to
use a principal substitution: one which is more general than any other possible
substitution we might use.

Although type systems like F6[11] combine subtype and parametric poly-
morphism, it is hard to see how one might incorporate a decidable instance re-
lation of the sort necessary for ML style type inference, since even in System
F the containment relation is undecidable [51]. Instead, we shall start with the
predicative fragment of [31] as outlined in chapter 1, which we shall refer to as
ML∀, and show how subtyping may be incorporated into that framework.

In this chapter we will define a subtyping system using bounded quantifica-
tion which combines both kinds of polymorphism, and whose subtyping relation
provides a notion of instance suitable for type inference. We will show how the
relation can be decided using a method similar to that of the last chapter but
with scoping restrictions on possible substitutions involved in removing essen-
tial occurrences. The technique bears a considerable similarity to mixed-prefix
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unification [26] which is used in [31] to generate the principal substitutions.
In chapter 6, we will extend the subtyping system to deal with constrained type

schemes, and demonstrate the existence of factorisations, analogous to principal
substitutions. We shall use these to define a type system with annotations and a
type inference algorithm for it which is complete.

In order to simplify the treatment, we will for the moment dispense with the
poset of base types Q, so that all our base types, and their subtyping relation,
will be introduced in a bounded signature Σ. We will describe in section 5.5 how
our results may be generalised to a base poset of atomic types.

5.1 First Class Type Schemes

We will delay the discussion of type inference until chapter 6, and thus for the
moment we will not consider constrained quantification. We will deal with the
→ constructor specially, as it is the only constructor which we shall allow to
operate on type schemes as well as types. Other constructors, e.g. pairing, can
be dealt with using similar techniques, but as we shall see in chapter 6, our type
inference system will require us to deal with constructor arguments of polarity
pos differently to those of polarity neg, in that the latter may require annotations
on the term constructors which introduce them.

5.1.1 Definition [Types and Type Schemes]:

Types τ ::= a | α | τ1→τ2 | Tτ1 . . . τn
Type Schemes σ ::= τ | σ1→σ2 | ∀α.σ | ∀α 6 τ.σ

Our rules are a combination of two natural notions of subtyping: that given
by instantiation, so that ∀α.σ is a subtype of [τ/α]σ for any τ , and that given
by the consequences of subtype polymorphism. They bear some similarity to
the subtyping relation of F6, although our ∀ rules are more in the ML-style,
and also to ML∀, although naturally we have to take the subtyping behaviour of
arrow types and constructors into consideration, and we have bounded quantifiers,
where it’s necessary to check that any instantiation respects the bound. Note that
σ is well-formed with respect to Σ if Σ contains all the base types in σ.

Rules for Subtyping

Σ↑(a) = τ

Σ ` a 6 τ
(Var)
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Σ ` σ1 6 σ2 Σ ` σ2 6 σ3

Σ ` σ1 6 σ3
(Trans)

Σ ` σ 6 σ
(Taut)

Σ ` τi �Ti τ ′i
Σ ` Tτ1 . . . τn 6 Tτ ′1 . . . τ

′
n

(Cons)

Σ ` σ′1 6 σ1 Σ ` σ2 6 σ′2
Σ ` σ1→σ2 6 σ′1→σ′2

(Arrow)

Σ ` ∀α.σ 6 [τ/α]σ
(∀-left)

Σ, a ` σ1 6 [a/α]σ2 a does not occur in σ1 or σ2

Σ ` σ1 6 ∀α.σ2
(∀-right)

Σ ` τ1 6 τ

Σ ` ∀α6τ.σ 6 [τ1/α]σ
(∀6-left)

Σ, a6τ ` σ1 6 [a/α]σ2 a does not occur in σ1 or σ2

Σ ` σ1 6 ∀α6τ.σ2
(∀6-right)

Reflexivity and Transitivity

Algorithms for testing the subtyping relation (e.g. [11]) typically involve build-
ing a derivation of the sequent in question. Usually this involves building an
algorithmic set of rules that is equivalent to the original set, and which is syntax
directed, so that we always know which was the last algorithmic rule applied
to build a sequent. This involves some notion of canonical derivation, in which
Trans is redundant, and use of Taut restricted

To develop an algorithm we will construct an equivalent system of rules for
which it is the case that all proofs will, if not completely directed, will be directed
in the sense that the conclusion of the judgement will determine the last rule
applied. Our first step will be to greatly restrict the use of the Taut rule:

5.1.2 Proposition: Suppose we replace the Taut rule in the above proof system
with

Σ ` a 6 a
(Refl)

Then for any σ which is well-formed with respect to Σ, Σ ` σ 6 σ
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Proof: We will proceed by structural induction on the type σ. If σ is a variable,
or the outermost constructor of σ is T or→, the result follows from the induction
hypothesis. The remaining cases are when the outer constructor is a bounded or
unbounded universal quantifier; since the two cases are very similar, we will just
do the bounded case. Suppose σ = ∀α6τ.σ′, then Σ, a6τ ` [a/α]σ′ 6 [a/α]σ′

by the induction hypothesis. So

Σ, a6τ ` a 6 τ

Σ ` a6τ ` ∀α6τ.σ 6 [a/α]σ′

Σ ` ∀α6τ.σ 6 ∀α6τ.σ

�

In order to generate an algorithmic proof system, it remains to eliminate Trans.
We replace the Var rule by

Σ ` Σ↑(a) 6 σ
Σ ` a 6 σ

(Prom
↑)

and ∀-left and ∀6-left by

Σ ` [τ/α]σ1 6 σ2

Σ ` ∀α.σ1 6 σ2
(∀-left

′)

Σ ` [τ1/α]σ1 6 σ2 Σ ` τ1 6 τ

Σ ` ∀α6τ.σ1 6 σ2
(∀6-left

′)

since in the presence of Refl and Trans these rules are equivalent. Further,
we shall show that in the presence of these rules, Trans can be completely
eliminated.

5.1.3 Definition: We shall call the proof system containing the rules Refl,
Prom

↑, Arrow, Cons, ∀-left
′, ∀-right, ∀6-left

′, ∀6-right, and Trans

the canonical proof system.

For the rest of this chapter, ` will denote provability in the canonical proof
system. We will begin with a simple structural lemma, then a limited form of
transitivity elimination. We use this to derive a result relating elimination and
substitution, and thence full transitivity elimination.

5.1.4 Lemma [Signature permutation]: Suppose that

Σ = Σ1, a1(6τ1), a2(6τ2),Σ2

91



and further that
Σ′ = Σ1, a2(6τ2), a1(6τ1),Σ2

is well-formed. If Σ ` σ1 6 σ2, then Σ′ ` σ1 6 σ2

Proof: By induction on the structure of the proof of Σ ` σ1 6 σ2. �

5.1.5 Lemma [Renaming]: Suppose Σ ` σ1 6 σ2, a is a Σ-atom, and b is an
atom that occurs nowhere in the derivation. Then [b/a]Σ ` [b/a]σ1 6 [b/a]σ2.

Proof: By induction on the structure of the proof of Σ ` σ1 6 σ2. �

5.1.6 Lemma [Weakening]: If Σ ` σ1 6 σ2 and a 6∈ dom(Σ), then there are
derivations with the same structure of Σ, a ` σ1 6 σ2, and of Σ, a6τ ` σ1 6 σ2

for any τ ∈ τ (Σ).

Proof: By induction on the structure of the proof of Σ ` σ1 6 σ2, using
signature permutation for the case where the last rule in the derivation is a
∀-right rule, and renaming if the situation occurs in a ∀-left rule that the new
variable appended to Σ is a. �

5.1.7 Lemma [Partial Transitivity Elimination]: If there are Trans-free
derivations Di ≡ Σ ` σ1 6 τ and D2 ≡ Σ ` τ 6 σ2, then there is a
Trans-free derivation of Σ ` σ1 6 σ2.

Proof: We proceed by induction on the size (i.e. the number of rule applic-
ations) in the derivation. Suppose we have a derivation of size n, and every
derivation of size less than n can be rewritten as a Trans-free derivation. If the
last rule in the derivation is not Trans, the result is immediate. Otherwise we
proceed by case analysis on the rules immediately above Trans. Some combina-
tions are impossible, either because they result in syntactically inconsistent types
for τ , or require τ to be a type scheme.

Refl Prom
↑

Cons Arrow ∀-l ∀6-l ∀-r ∀6-r

Refl × ×
Prom

↑ × ×
Cons × × × ×

Arrow × × × ×
∀-left

′ × ×
∀6-left

′ × ×
∀-right × × × × × × × ×
∀6-right × × × × × × × ×
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The cases where one of the derivations is an instance of Refl are trivial, and
allowable combinations of Arrow, Cons, and Prom

↑ are straightforward using
the induction hypothesis. The remaining cases are when ∀-left

′ ends D1, or
∀-right ends D2. With ∀-left on the left we have

Σ ` [τ2/α]σ 6 τ Σ ` τ2 6 τ1

Σ ` ∀α6τ1.σ 6 τ Σ ` τ 6 σ1

Σ ` ∀α6τ1.σ 6 σ1

becomes

Σ ` [τ2/α]σ 6 τ Σ ` τ 6 σ1

Σ ` [τ2/α]σ 6 σ1 Σ ` τ2 6 τ1

Σ ` ∀α6τ1.σ 6 σ1

and with of ∀6-right on the right

Σ ` σ 6 τ
Σ, a6τ1 ` τ 6 [a/α]σ1 (a does not occur in τ or σ1)

Σ ` τ 6 ∀α6τ1.σ1

Σ ` σ 6 ∀α6τ1.σ1

which becomes

Σ, a6τ1 ` σ 6 τ Σ, a6τ1 ` τ 6 [a/α]σ1

Σ, a 6 τ1 ` σ 6 [a/α]σ1 a does not occur in σ or σ1

Σ ` σ 6 ∀α6τ1.σ1

the use of weakening and the alteration of the side-condition from a not occurring
in τ to a not occurring in σ being justified by the fact that since a does not occur
in Σ, nor can it in σ.

In either case, we have a use of transitivity at the base of a derivation of
smaller size, so we can use the induction hypothesis. (The cases for ∀-left on
the left and ∀-right on the right are similar.) �

5.1.8 Definition: Suppose Σ = Σ1, a(6τ1),Σ2, and we have τ ∈ τ (Σ1) such that
if Σ↑(a)↓ then Σ1 ` τ 6 τ1 by a Trans-free derivation. We define 〈τ/a〉Σ to be
Σ1, [τ/α]Σ2.
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5.1.9 Lemma: Suppose there exists a Trans-free derivation of Σ ` σ1 6 σ2.
Then for any τ such that 〈τ/a〉Σ is defined, there is a Trans-free derivation of
〈τ/a〉Σ ` [τ/a]σ1 6 [τ/a]σ2.

Proof: Consider a derivation for some Σ ` σ1 6 σ2, such that the result holds
for all derivations of lesser height. We proceed by cases on the last rule in the
derivation.

Refl Straightforward

Arrow by the induction hypothesis.

Cons by the induction hypothesis.

Prom
↑ If the base type σ1 is other than a, then it follows from the induction
hypothesis that there is a Trans-free proof of 〈τ/a〉Σ ` [τ/a](Σ↑(b)) 6
[τ/a]σ2, and thus since (〈τ/a〉Σ)(b) = [τ/a](Σ↑(b), there is one of 〈τ/a〉Σ `
b 6 [τ/a]σ2.

So suppose σ1 = a, and that Σ↑(a) = τ ′. Then the rule contains the premise
Σ ` τ ′ 6 σ2, and so by the induction hypothesis (and since a does not
occur in τ ′) we have a proof of 〈τ/a〉Σ ` τ ′ 6 [τ/a]σ2. We can apply
lemma(5.1.7) to this together with the proof of Σ1 ` τ 6 τ ′ to obtain a
Trans-free proof of the required judgement.

∀6-left Suppose the last rule is

Σ ` [τ2/β]σ1 6 σ2 Σ ` τ2 6 τ1

Σ ` ∀β6τ1.σ1 6 σ2

By the induction hypothesis, we have proofs of 〈τ/a〉Σ ` [τ/a][τ2/β]σ1 6
[τ/a]σ2 and 〈τ/a〉Σ ` [τ/a]τ1 6 [τ/a]τ1. But since [τ/α][τ2/β]σ1 =
[([τ/α]τ2)/β][τ/α]σ1, we may apply ∀6-left to obtain the required proof.

∀-left Similarly.

∀6-right Suppose the last rule is

Σ, b6τ2 ` σ1 6 [b/β]σ2 b does not occur in σ1

Σ ` σ1 6 ∀β6τ2.σ2

since a occurs in Σ, b 6= a. Then by the induction hypothesis we have a
proof of 〈τ/a〉Σ, b6[τ/a]τ2 ` [τ/a]σ1 6 [τ/a][b/β]σ2. But since β does
not occur in τ , [τ/a][b/β]σ2 = [b/β][τ/a]σ2, so an application of ∀6-right

suffices.
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∀-right Similarly. �

5.1.10 Lemma [Full transitivity]: if there is a derivation of Σ ` σ1 6 σ2,
then there is a Trans-free derivation.

Proof: Suppose we have a derivation of Σ ` σ1 6 σ2 where the final rule is
Trans with mediating type σ3, and the subderivations are Trans-free. We define
an ordering on such derivations to be (q, s) ordered lexicographically, where q is
the depth of quantifier nesting of σ3 and s is the size of the derivation. Suppose all
such derivations of measure less than (q, s) can be rewritten to be transitivity-free.

Consider the possibilities for the last rule in the subderivations: almost
all cases are straightforward using the induction hypothesis in the manner of
lemma(5.1.7). The interesting combinations are when we have ∀6-right on the
left and ∀6-left on the right, or ∀-right on the left and ∀-left on the right,
the two cases being essentially similar. Suppose then the rule is

Σ, a6τ3 ` σ1 6 [a/α]σ3

Σ ` σ1 6 ∀α6τ3.σ3

Σ ` [τ/α]σ3 6 σ2 Σ ` τ 6 τ3

Σ ` ∀α6τ3.σ3 6 σ2

Σ ` σ1 6 σ2

where a does not occur in σ1 or σ3

Now 〈τ/a〉Σ = Σ, so we may apply lemma(5.1.9) to obtain a Trans-free
derivation of Σ ` [τ/a]σ1 6 [τ/a][a/α]σ3. But since a does not occur in σ1, this
is just Σ ` σ1 6 [τ/α]σ3. Now we may rewrite the derivation above as

Σ ` σ1 6 [τ/α3]σ3 Σ ` [τ/α]σ3 6 σ2

Σ ` σ1 6 σ2

where the subderivations to the Trans are Trans-free, and the size of the rule
is (q − 1, n′) since the depth of quantifier nesting in [τ/α]σ3 is less than that of
∀α6τ3.σ3. The result follows from the induction hypothesis. �

5.1.11 Definition [Canonical Derivations]: A derivation in the canonical
proof system is canonical if it contains no instance of Trans, and no instance of
∀-right or ∀6-right directly above an instance of Prom

↑, ∀-left
′, or ∀6-left

′.
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5.1.12 Theorem: Suppose there is a derivation of Σ ` σ1 6 σ2. Then there is
a canonical derivation.

Proof: By transitivity elimination, then simple permutation of the rules. �

The notable property of a canonical derivation is that the choice of the last
rule in a canonical derivation of Σ ` σ1 6 σ2 is exactly determined by σ1 and σ2.
However, this does not enable us to derive the premises of the rule in all cases;
in particular, in the algorithmic equivalent of the ∀-left rules, we are unable to
derive the substitution term. A similar phenomenon is exhibited, for example,
in the typed λ-calculus, where the type of the bound variable in an application
term is lost.

Algorithmic Subtyping

In order to perform type inference in the ML style, we need to be able to address
the question of how we might decide the subtype relation between two terms
containing free variables. Suppose we have Σ = Nat, Int 6 Nat, the assertion

Σ ` ∀α.γ→α 6 ∀β6Nat.β→Int→β

with γ a free variable which can be instantiated with any type in τ (Σ). Now
if there is a substitution τγ for γ in τ (Σ) such that the above holds, using our
knowledge about canonical derivations, the last rule in such a derivation must be
∀6-right, whose premise must be

Σ, b6Nat ` ∀α.τγ→α 6 b→Int→b

and the one preceding that must be ∀-left
′. Suppose the substitution used in

that rule for α is τα ∈ τ (Σ, b6Nat), then the premise is

Σ, b6Nat ` τγ→τα 6 b→Int→b

Now the preceding rule must be Arrow, so we have two sequents.

Σ, b6Nat ` b 6 τγ and Σ, b6Nat ` τα 6 Int→b

Let us consider the first of these. Since τγ cannot be b, (by scoping restrictions)
the last rule in the derivation must be a Prom

↑ rule. So we must have Σ, b6Nat `
Nat 6 τγ. Such a derivation cannot involve b, so it must be the case that Σ `
Nat 6 τγ.
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Now we consider the second. By syntactic examination of the rules, the last
one can only be Prom

↑ (if τα is a Σ-atom) or Arrow (if τα is an arrow type).
Now suppose τα is a Σ-atom, then after a sequence of promotions, we must reach
an arrow type, say τ1→τ2, with the property that Σ, b6Nat ` τ2 6 b, So τ2 must
be b. Therefore, we must have in Σ an atom whose bound is of the form τ1→b,
which is impossible by well-formedness of Σ, b6Nat, so τα must be an arrow type.
Substituting τ1→τ2 for α, and decomposing using an arrow rule, we have

Σ, b6Nat ` Int 6 τ1 and Σ, b6Nat ` τ2 6 b

Evidently the only possibility for τ2 is b. And for any value of τ1 such that
Σ, b6Nat ` Int 6 τ1, we have Σ ` Int 6 τ1. So the inequality holds iff we
can find τγ, τ1 with the property that Σ ` Nat 6 τγ and Σ ` Int 6 τ1.

In order to regularise this kind of reasoning, we need a way of dealing with
the variables which appear in several sequents, and thus a way of reasoning with
many sequents at once. To proceed more formally, we introduce quantified subtype
problems, similar to unification problems. The above inequality is represented by
the QSP

∀Int∀Nat6Int∃γ∀b6Nat∃α. γ→α6b→Int→b

In order to deal with sequents that contain variables, we must modify slightly
our notion of what constitutes a well-formed sequent: we will now allow types to
contain free variables (i.e. variables not occurring in the domain of the signature),
but in order to ensure that substitution instances of such sequents are well-formed,
we annotate free variables with an initial (non-empty) segment of the signature.
If such a variable occurs in Σ, it may only do so after the segment with which it
is annotated.

Given a sequent Σ ` τ1 6 τ2, a well-scoped atomic substitution [τ/αΣ′] will
be such that any variable in τ is either in dom(Σ′), or βΣ′′ for some Σ′′ a non-
empty initial segment of Σ′. A well-scoped substitution will be one composed of
well-scoped atomic substitutions.

We will also define substitutions on base types: for a sequent D ≡ Σ ` τ1 6
τ2, if 〈τ/a〉 is defined, we define [τ/a]D = 〈τ/a〉Σ ` [τ/a]τ1 6 [τ/a]τ2.

The scoping issues here are more complicated than mixed-prefix unification.
In that case, a scope check occurs exactly if some existentially bound variable
is bound to a term containing a universally quantified variable such that the
existential quantifier is not within the scope of the universal. In the current
situation, it may be possible to resolve such an occurrence by promotion (such as
in the b 6 τγ case) and thus a scope check will not occur.
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5.2 Leaves and Essential Occurrences

Before proceeding, we shall investigate further properties of the subtyping sys-
tem which generalise and strengthen the ad-hoc deductions used above. Our first
action will be to decompose an inequality between type schemes into inequalit-
ies between types, creating new variables to correspond to substituted values in
∀-left

′ rules. Once we have done this, our attention naturally focuses on the
quantification-free fragment of the proof system.

5.2.1 Remark: Suppose we have a derivation of Σ ` τ1 6 τ2, then we have a
Trans-free derivation. A simple induction suffices to show that this derivation
uses only the rules Refl, Cons, Prom

↑, Trans, and the Arrow

Our strategy proceeded by removing the binding b6Nat from the signature, by
solving for those variables which had to contain b, and promoting b to Nat in
other constraints. We were able to deduce from Σ, b6Nat ` τ2 6 b that τ2 could
only take the value b. This was possible because b was guaranteed not to occur
as the bound of another Σ-atom. We will call a Σ-atom with this property a
leaf. We also used the result that if τ 6 τ ′, and τ ′ is a constructor type in which
b occurs positively, then τ must also be a constructor type in which b occurs
positively. We will generalise this latter result to occurrences of b which we shall
call essential.

5.2.2 Definition: a ∈ atom(Σ) is a leaf if it does not occur in the range of Σ.
We write Σ\a for Σ with the binding for a removed; it is easy to see that if Σ is
a valid signature, so is Σ\a.

The following are straightforward:

5.2.3 Proposition: Suppose a is a leaf in Σ

Weakening If Σ\a ` τ1 6 τ2, then Σ ` τ1 6 τ2.

Strengthening If Σ ` τ1 6 τ2, and a does not occur in τ1 or τ2, then Σ\a `
τ1 6 τ2.

5.2.4 Definition [Type Shape and Size]: We need to extend the notion of
type shape to deal with non-atomic base types.

S(a) = a if a ∈ atom(Σ) and Σ↑(a)↑
S(a) = S(Σ↑(a)) if Σ↑(a) = τ
S(Tτ1 . . . τn) = T S(τ1) . . .S(τn)
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In order to show this definition terminates, we will use a size measure on types,
an argument similar to that of [8]. Since we will use this definition later, it is
given in a slightly more general form than is required here. Let Σ be a bounded
signature.

sizeΣ(α) = 1
sizeΣ(a) = 1 if Σ↑(a)↑ or a ∈ Q
sizeΣ(a) = sizeΣ(τ ) if Σ↑(a) = τ
sizeΣ(Tτ1 . . . τn) = 1 + sizeΣ(τ1) + . . . + sizeΣ(τn)

5.2.5 Proposition: the computation of SC(τ ) terminates.

Proof: We define the index of i(a) in Σ to be the number of bindings prior to a

in Σ. We define m(τ ) to be (i(τ ), sizeΣ(τ )), with the usual lexicographic ordering
on N× N. Each step in the computation of S(τ ) decreases m(τ ). �

5.2.6 Remark: If Σ ` τ1 6 τ2, then S(τ1) = S(τ2).

We will assume the constraint set is shape consistent – that is, that there is a
substitution θS : fv(c)→τ (atom(Σ)) such that S(θSτ1) = S(θSτ2) for any τ1 6
τ2 ∈ C. The existence of such a substitution is clearly a necessary condition for
solvability.

5.2.7 Definition [Essential Occurrence]: Suppose a is a leaf in Σ. We define
a to occur essentially in τ1 6 τ2 if

• Σ↑(a)↓ and a occurs in τ1 other than positively (i.e. with positive or mixed
polarity), or a occurs in τ2 other than negatively.

• Σ↑(a)↑ and a occurs in τ1 or τ2.

5.2.8 Lemma:

1. If Σ ` a 6 τ and a occurs in τ , then the proof is an instance of Refl.

2. If Σ ` τ1 6 τ2, and a occurs essentially in τ1 6 τ2, Then either the last rule
in the derivation (and thus the whole derivation) is an instance of Refl, or
a occurs essentially in one of the rule’s premises.

3. Suppose Σ ` τ1 6 τ2, and a occurs essentially in τ1 6 τ2. Then a occurs
in each of τ1 and τ2.

Proof:
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1. τ cannot be of the form Tτ , since it contains a, and we must have S(a) =
S(τ ). So τ must be a base type, and since a occurs in τ , τ = a. Then
obviously the last rule in the derivation cannot be Cons. Now suppose the
last rule in the proof is Prom

↑, then the premise of this rule cannot be of
the form Σ ` Tτ 6 a, since no rule has a consequence of this form, so it
must be of the form Σ ` b 6 a. And similarly, if the previous rule is an
instance of Prom

↑, then its premise must be of the form Σ ` c 6 a.

So by induction the proof must consist of a sequence of zero or more in-
stances of Prom

↑ below an instance of Refl, and for each Prom
↑ rule, the

variable on the LHS of its premise must occur earlier in Σ than the variable
on the LHS of its consequent. But the variable immediately below the in-
stance of Refl must have a as its bound, so must occur later in Σ than a.
So if there are any instances of Prom

↑ we have an immediate contradiction.

2. If the last rule is Cons, and τ1 = Tτ , the result is straightforward by case
analysis on the polarity of T in each of its arguments.

So suppose the last rule is Prom
↑. If τ1 = a then we must have Σ↑(a)↓,

so an essential occurrence is exactly an occurrence in τ2 with positive or
mixed polarity, but by part 1, a cannot occur in τ2 unless the derivation is
an instance of Refl. So τ1 must be some other variable b, in which case,
a must occur positively or with mixed polarity in τ2, and thus it occurs
essentially in Σ↑(b) 6 τ2.

3. We proceed by induction on the proof of Σ ` τ1 6 τ2. Suppose the
proposition is true for each of the premises in the last rule. We proceed by
cases

Refl Trivially true.

Prom
↑ We will show that the last rule cannot be an instance of Prom

↑:
suppose it were, then τ1 = b, and a 6= b by part 1. By the induction
hypothesis, if a occurs essentially in Σ↑(b) 6 τ2 it must occur in Σ↑(b).
But this cannot be the case since a is a leaf.

Cons If a occurs essentially in Tτ1 6 Tτ2, then by part 2, there must
be some premise τ1 6 τ2 in which it occurs essentially. Thus by the
induction hypothesis it occurs in each of τ1 and τ2, and thus in each of
Tτ1 and Tτ2 �

5.2.9 Corollary: Suppose Σ ` τ1 6 τ2, and a occurs essentially in τ1 6 τ2.
Then
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1. if one of τ1 and τ2 is a, so is the other.

2. if one of τ1 and τ2 has the form Tτ ′1 . . . τ
′
n, then the other has the form

Tτ ′′1 . . . τ
′′
n .

Proof: Suppose a occurs essentially in τ1 6 τ2. Then from lemma(5.2.8(3)) we
know that a must occur in each of τ1 and τ2. Now

1. is immediate since the derivation must be an instance of Refl.

2. Note that the only other syntactically allowable possibility from the form
of the rules is that τ1 is a base type and τ2 not, with the last rule in the
derivation being Prom

↑. But since a occurs in τ1, we must have τ1 = a,
with Σ↑(a)↓, and so by lemma(5.2.8(1)) a does not occur in τ2. So, since
Σ↑(a)↓ and a occurs only positively in τ1 and not at all in τ2, it does not
occur essentially in τ1 6 τ2, contradicting the hypothesis. �

5.3 Quantified Subtype Problems

Quantified subtype problems (QSPs) bear a strong similarity to first order mixed
prefix unification problems. The essential differences are that we have inequality
instead of equality, that we incorporate a bounded universal quantifier, and that a
quantifier prefix is replaced by a more general form of quantifier nesting. The last
difference is not strictly necessary, however: we simply adopt the more flexible
format in order to avoid generating additional solutions to inequalities such as
e.g. β 6 β which might be created by moving quantifiers outwards.

We shall assume all the problems we work with are closed, i.e. every variable
is in the scope of either an existential or universal quantifier which binds it, and
that they begin with an unbounded universal quantifier. The latter restriction
can easily be relaxed, but we shall ignore here the question of an underlying order
on atomic types, and consider only the order defined by Σ.
QSPs have the following syntax:

Π ::= > | τ1 6 τ2 | Π ∧Π . . . ∧ Π | ∀a.Π | ∀a6τ.Π | ∃α.Π

where ∧ represents conjunction, and > the solved problem.
It will be appropriate to view a QSP as a notation for a set of sequents for

inequalities between types. For example

∀Int ∀Nat6Int ∃α ∀a6Nat ∃β .β6α ∧ Int6β ∧ β6a
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can be viewed (writing Σ1 = Int, Nat6Int and Σ2 = Σ1, a6Nat) as representing
the sequents

Σ2 ` βΣ2 6 αΣ1

Σ2 ` Int 6 βΣ2

Σ2 ` βΣ2 6 a

We define the set of sequents S(Π) corresponding to a subtyping problem to be
S(Π)•, where S(Π)Σ is as follows:

S(>)Σ = ∅
S(τ16τ2)Σ = Σ ` τ1 6 τ2

S(Π1 ∧ . . . ∧Πn)Σ = S(Π1)Σ ∪ . . . ∪ S(Πn)Σ

S(∀a.Π)Σ = S(Π)Σ,a

S(∀a6τ.Π)Σ = S(Π)Σ,a6τ

S(∃α.Π)Σ = S([αΣ/α]Π)Σ

When we wish to refer to a subproblem Π′ occurring in a context P within Π, we
will write Π = P{Π′}. We will write ΣP for the environment built up from the
universal quantifiers in P in whose scope is the “hole” in which Π occurs, and
ΣΠ to denote the environment corresponding to a the context in which Π occurs
– (the two notions differ in the case of e.g. P{∀α.Π})

5.3.1 Definition [Substitution]: For α existentially quantified in Π, we define
the atomic substitution [τ/α]Π as follows: let β be the set of variables in τ not
bound in Π. Then [τ/α]Π is the problem obtained by substituting τ for α in Π
and replacing the existential quantifier for α by existential quantifiers for β. Such
an operations is well-scoped if every occurrence of β is within the scope of every
variable in τ which occurs in Π.

For example, [γ→a/β] is well-scoped for the problem

∀a∃β.β 6 a→a

and substitution yields the problem

∀a.∃γ.γ→a 6 a→a

For a universally quantified, if Π = P{∀a(6 τ ).Π1}, we define [τ ′/a]Π to be
P{Π′1}, where Π′1 is obtained by replacing all occurrences of α by τ . We will only
allow substitutions such that [τ/a]Π is well-formed.
A substitution θ on Π is a composition of well-scoped atomic substitutions.

5.3.2 Proposition: Suppose θ is a substitution on Π. Then θ is well-formed on
the sequents in S(Π), and (S(θΠ)) = θ(S(Π)).
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5.3.3 Definition [Solution of a QSP]: A solution θ of a QSP Π is a ground
substitution such that all the sequents in S(θΠ) are provable.

For Example, the QSP

∀Int∀Nat6Int∃γ∀a6Nat∃α.γ→α6a→Int→a

has solutions [Int→a/α] ◦ [Int/γ] and [Int→a/α] ◦ [Nat/γ].

5.4 Transitions

We will solve QSPs by using transitions: each transition will preserve well-
formedness of the QSP. There are three kinds of transitions: flattening, binding,
and projection. Flattening is the process of applying all the possible decompos-
itions between types whose applicability is immediately obvious from the form
of the types in question. Binding uses corollary(5.2.9) to justify variable substi-
tutions which simplify the problem, and binding removes redundant quantifiers
from the problem.

Flattening We define Π[ = Π[
•.

(∀a.Π)[Σ = ∀a.(Π)[Σ,a
(∀a6τ.Π)[Σ = ∀a6τ.(Π)[Σ,a6τ
(∃α.Π)[Σ = ∃α.(Π)[Σ
(Π1 ∧ . . . ∧ Πn)[Σ = (Π1)[Σ ∧ . . . ∧ (Πn)[Σ

(τ 6 τ )[Σ = >

(Tτ1 . . . τn 6 Tτ ′1 . . . τ
′
n)[Σ = (τ1 �T1 τ ′1)[Σ ∧ . . . ∧ (τn �Tn τ ′n)[Σ

(a 6 τ )[Σ = (Σ↑(a) 6 τ )[Σ Σ↑(a)↓, τ 6= a
(α 6 τ )[Σ = α 6 τ
(τ 6 α)[Σ = τ 6 α

(τ1 6 τ2)[Σ = Fail other τ1, τ2

We will call Π flat if Π[ = Π.

5.4.1 Proposition: (τ1 6 τ2)[ terminates.

Proof: It suffices to demonstrate termination of (τ1 6 τ2)[, which we shall do
by well-foundedness of the sum of sizeΣ(τ1) + sizeΣ(τ2). If τ1 or τ2 is a variable
or τ1 = τ2, the result is immediate. The case where both are constructor types
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results in a decomposition into inequalities of strictly smaller size. Finally suppose
we are flattening a 6 τ where τ is not a variable. If τ is b by a finite sequence of
promotions either flattening fails or the constraint disappears. Otherwise, τ is of
the form Tτ1 . . . τn, and a must eventually either promote to Tτ ′1 . . . τ

′
n whence we

proceed as in the constructor-constructor case, or promote to a base type with
no upper bound, or constructor type with a constructor other than T, in which
case flattening fails. �

Binding Let Π = P{∀a(6τ )Π′}, where Π′ is flat and contains some constraint π
in which a occurs essentially. Since Π′ is flat, there are only four possibilities
for the form of π, and each of them gives rise to a substitution: If the
substitution variable is existentially bound outside Π′, there is no solution
to the problem.

π substitution
β 6 Tτ1 . . . τn [Tβ1 . . . βn/β]
Tτ1 . . . τn 6 β [Tβ1 . . . βn/β]

β 6 a [a/β]
a 6 β [a/β]

where all the βi are fresh.

Projection Let Π = P{∀α(6τ )Π′}, where Π′ is flat and contains no constraint
π in which a occurs essentially. The transition is as follows:

Old New
P{∀a.Π′} P{Π′}
P{∀a6τ.Π′} {[τ/a]Π′}

We demonstrate the use of these transitions on the problem seen earlier:

∀Int ∀Nat6Int ∃γ ∀a6Nat ∃α. γ→α 6 a→Int→a
flatten ⇒ ∀Int ∀Nat6Int ∃γ ∀a6Nat ∃α. a 6 γ ∧ α 6 Int→a
bind [α1→α2/α] ⇒ ∀Int ∀Nat6Int ∃γ ∀a6Nat ∃α1, α2. a6γ

∧ α1→α2 6 Int→a
flatten ⇒ ∀Int ∀Nat6Int ∃γ ∀a6Nat ∃α1, α2. a6γ

∧ Int 6 α1 ∧ α2 6 a
bind [a/α2] ⇒ ∀Int ∀Nat6Int ∃γ ∀a6Nat ∃α1. a6γ

∧ Int 6 α1 ∧ a 6 a
flatten ⇒ ∀Int ∀Nat6Int ∃γ ∀a6Nat ∃α1. a 6 γ ∧ Int 6 α1

project a ⇒ ∀Int ∀Nat6Int ∃γ, α1. Nat 6 γ ∧ Int 6 α1

project Nat ⇒ ∀Int ∃γ, α1. Int 6 γ ∧ Int 6 α1

5.5 Soundness and Completeness

In order to demonstrate that we can decide this subtyping relation, we will demon-
strate that the transitions form a sound and complete system for solving QSPs.
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5.5.1 Definition: A QSP is trivial if there are no constrained quantifiers

If all subtyping is generated from Σ, then all trivial QSPs can be solved directly
by unification. We can generalise this condition to the case, for example, where
Σ extends some underlying Helly poset of atomic types; once the QSP is reduced
to triviality, we can use the usual mechanisms for solvability and solution over
Helly posets.

Soundness and completeness mean that given a problem Π, a finite sequence
of transitions will completely reduce the QSP to a trivial QSP if and only if the
problem has a solution. The definitions and results given here will enable us to
prove a stronger property of factorisation in the next chapter.

The property that we need for this is: given a problem P{Π1} which is trans-
formed to P{Π2} by some sequence of transitions, for any solution θ1 of P{Π1}
there will be a corresponding solution θ2 of P{Π2} which agrees with θ1 on the
variables existentially quantified in P outside of Π1.

We will demonstrate this strong form of completeness by considering each of
the transitions in turn.

Flattening

5.5.2 Lemma: Suppose Π is a subtyping problem

1. if Π has a solution, then flattening succeeds on Π.

2. θ is a solution of Π[ iff it is a solution of Π.

Proof:

1. The cases for τ1 6 τ2 in which flattening can fail are exactly those where
neither of τ1 and τ2 is an existentially quantified variable, and either they
have different shapes, or they are both Σ-atoms such that τ2 cannot be
obtained by a sequence of promotions from τ1. Thus there can be no solution
to Π.

2. Proofs of the sequents in S(θΠ) can be obtained from those S(θ(Π[)) just
by use of the inference rules, and similarly if θ is a solution to Π, a canonical
proof of a sequent in S(Π) must (by consideration of shape) end with the
inference rule used in flattening that sequent. �
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Binding

5.5.3 Lemma: Suppose P{Π1} is transformed to P{Π2} by a binding transition
using a substitution [τ/β]. Let V be the set of variables other than β which are
existentially bound in P{Π1}.

1. if θ1 is a solution of P{Π1}, then there is some solution θ2 of P{Π2} such
that θ1|V = θ2|V

2. if θ2 is a solution of P{Π2}, there is a solution θ1 of P{Π1} such that θ1|V
= θ2|V

Proof:

1. Suppose the binding transition arises from an essential occurrence of a in a
constraint of the form β 6 Tτ1 . . . τn, and θ1 is a solution of P{Π1}. In this
case Σ, a(6τ0) ` θ1β 6 T(θ1τ1) . . . (θ1τn), and since a occurs essentially in
T(θ1τ1)→(θ1τn) we know from lemma(5.2.9(2)) that θ1β must be Tτ ′1 . . . τ

′
n.

Now τ is of the form Tβ1 . . . βn for fresh variables βi. So θ1|V ◦ [τ ′i/βi] is a
solution of P{[τ/β]Π1}.

2. By similar reasoning, if θ2 is a solution of P{[Tβ1 . . . βn/β]Π1}, and the
substitution comes from a binding transition, then θ2|V ◦ [θ2(Tβ1 . . . βn)/β]
is a solution to P{Π1}.

The cases for the form of constraint β 6 a are straightforward. �

Projection

We need the following preliminary lemma:

5.5.4 Lemma: Suppose Σ is well-formed. Let a be a leaf in Σ, Σ↑(a) = τ ′

1. if a occurs only negatively in τ , Q,Σ ` τ 6 [τ ′/a]τ

2. if a occurs only positively in τ , Q,Σ ` [τ ′/a]τ 6 τ .

Proof: We proceed by simultaneous induction on the structure of τ . Suppose
τ is a type constant, b. If a 6= b, the result is obvious. And if a = b, we must
be in case (1), and a proof of Σ, a6τ ′ ` a 6 τ ′ is immediate by use of Prom

↑.
Otherwise τ is a constructor type, and thus so is [τ ′/a]τ ; the result follows by
decomposition by Cons and the induction hypothesis. �
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5.5.5 Lemma: Suppose P{Π1} is transformed to P{Π2} by a projection trans-
ition.

1. Let V be the set of variables existentially bound in the context P . If θ1

is a solution of P{Π1}, then there is some solution θ2 of P{Π2} such that
θ1|V = θ2|V

2. if θ2 is a solution of P{Π2}, there θ2 is a solution of P{Π1}.

Proof:

1. Suppose θ1 is a solution to P{∀a.Π}, it suffices to show that [τ/a] ◦ θ1 is
a solution to P{Π} for any τ ∈ τ (ΣP ). This follows by induction on the
derivation of any sequent in S(θ1(P{∀a.Π})): every rule containing a is
either Cons, Prom

↑ on a base type other than a, or Refl on a.

In the bounded case, where θ1 is a solution to P{∀a6τ.Π} and a does not
occur essentially in Π, [τ/a]◦θ1 is again a solution to P{[τ/a]Π}: again this
follows by induction on the derivation.

In either case, the new substitution must agree with θ1 on the existentially
quantified variables in P , since these can contain no occurrences of a.

2. The unbounded case is simple: Suppose θ2 is a solution to P{Π}. Then by
weakening, it’s also a solution to P{∀a.Π}.

The bounded case is slightly more difficult: suppose θ2 is a solution to
P{[τ/a]Π}, and we have a sequent θ2ΣP ` θ2([τ/a]τ1) 6 θ2([τ/a]τ2)
corresponding to some inequality τ1 6 τ2 in Π. We know that

θ2ΣP , a6θ2τ ` θ2([τ/a]τ1) 6 θ2([τ/a]τ2)

Now since θ2(α) does not contain a for any α, θ2 ◦ [τ/a] = [θ2τ/a] ◦ θ2, so
by rearranging substitutions we have:

θ2ΣP , a6θ2τ ` [θ2τ/a](θ2τ1) 6 [θ2τ/a](θ2τ2)

Now from lemma(5.5.4) we get

θ2ΣP , a6θ2τ ` θ2τ1 6 [θ2τ/a](θ2τ1)

and
θ2ΣP , a6θ2τ ` [θ2τ/a](θ2τ2) 6 θ2τ2

Two uses of Trans yield the required proof. �
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5.5.6 Theorem: Suppose P{Π1} is transformed to P{Π2} by a sequence of
transitions. Let V be the set of variables existentially bound in P .

1. if θ1 is a solution of P{Π1}, there is a solution θ2 of P{Π2} such that
θ1|V = θ2|V .

2. if θ2 is a solution of P{Π2}, there is a solution θ1 of P{Π1} such that
θ1|V = θ2|V .

Proof: By induction on the length of the transition sequence, by cases on the
last transition in the sequence. Suppose P{Π1} is transformed to P{Π2}, such
that the results hold for P{Π2}, and P{Π2} undergoes a transition to P{Π3}.
We will proceed by cases on the type of transition.

flattening θ2 is a solution to P{Π3} iff it is a solution to P{Π2}.

binding Suppose the binding is a substitution θ′.

1. Note that the variable being substituted cannot be in V . Thus by
lemma(5.5.3(1)), there’s a solution θ3 of P{Π3} such that θ3|V = θ2|V .
The result follows from the induction hypothesis.

2. Similarly, using lemma(5.5.3(2))

projection Similarly, using lemma(5.5.5). �

5.6 Termination

So we see that transition sequences are sound and complete: it remains to demon-
strate how a sequence of transitions may be applied to solve a QSP. Our strategy
will be based on a step we will call elimination (because after the transitions which
make up each such step, a universal quantifier will have been eliminated from the
problem). To eliminate an innermost universal quantifier from P{∀a(6τ ).Π} we
flatten Π, eliminate all essential occurrences of a using alternating binding and
flattening transitions, then remove the binder with a projection transition.

It suffices to show that no infinite sequence of flattening and binding trans-
itions can occur. We will say Π is shape consistent if the corresponding mixed-
prefix unification problem on shapes has some solution θS. We will demonstrate
that if Π is shape consistent, no such circularities will occur. Obviously if Π is
not shape consistent, then it is not solvable.

5.6.1 Proposition: If C is shape consistent, there can be no infinite sequence
of substitutions and flattenings.
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Proof: If C is a set of inequalities, we define sizeΣ(C) to be the sum of sizes
of the types occurring in the inequalities in C. Let θS be as above, and θ be a
binding substitution.

If θ = [a/α], we must have S(θS(a)) = S(α) for any θS, and we define θ′S = θS.
Otherwise θ = [Tβ1 . . . βn/α], and so we must have S(θS(Tβ1 . . . βn)) = S(α), thus
we have an extension θ′S of θS such that θ′S(Tβ1 . . . βn) = T(θβ1) . . . (θβn), and θ′S
is also a a solution of the shape unification problem.

Now sizeΣ(θSC) = sizeΣ(θ′S(θC)) > sizeΣ(θS(θ(C)[)), since flattening always
either removes a constraint a 6 a or decomposes a constraint with Cons.

Thus each sequence of substitutions θi gives rise to a sequence of substitutions
θiS such that

sizeΣ(θi+1
S ((θi+1C)[)) < sizeΣ(θiS((θiC)[))

The result follows by well-foundedness. �

5.6.2 Proposition: An elimination step terminates, and if Π has a solution, no
elimination step on Π will fail.

Proof: Since there can be no infinite sequence of binding and flattening trans-
itions, the elimination step must terminate. By theorem(5.5.6), each transition in
the elimination process preserves solvability. The only transition which can fail
is a flattening transition, but by lemma(5.5.2) flattening cannot fail on a solvable
QSP. �

To solve a problem, we apply elimination steps until the problem is reduced to
a normal first-order unification problem, then apply standard techniques. Notice
the similarity with mixed-prefix unification. There are three possible ways in
which unification may fail: constructors may mismatch, we may attempt to bind
an existentially quantified variable to a type containing a universally quantified
variable which is not in its scope, or we may discover circularity in an inequality
(or collection thereof) of the form β 6 τ with β occurring non-trivially in τ .
The first of these corresponds to failure of a flattening transition, the second
failure of a binding transition, and the third to an infinite sequence of binding
and flattening transitions.

5.7 Transitions and Proofs

As discussed earlier, a QSP can be seen as a set of sequents, and the solution
process as a decomposition of the sequents in this set using proof rules and substi-
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tutions. It is perhaps worth making explicit the connection between the solution
of a QSPs and the generation of a proof.

5.7.1 Definition: Given sets of sequents S1 and S2, we say S1 builds S2 and
write S1  S2 if, given proofs of the sequents in S1, we can construct proofs of the
sequents in S2 using the inference rules between types and the admissible rules
Weaken and Weaken6.

Σ ` σ1 6 σ2 a does not occur in σ1 or σ2

Σ, a ` σ1 6 σ2
(Weaken)

Σ ` σ1 6 σ2 a does not occur in σ1 or σ2

all base types in τ occur in Σ
Σ, a6τ ` σ1 6 σ2

(Weaken6)

5.7.2 Remark:  is transitive.

5.7.3 Proposition: Suppose S1  S2, and θ is a substitution such that all the
sequents in θS2 are well-formed. Then all the sequents in θS1 are well-formed,
and θS1  θS2.

Proof: By induction on the proof rules. �

5.7.4 Lemma: Suppose P{Π1} is transformed to P{Π2} by a sequence of trans-
itions. Then there is a substitution θ on the existential variables of Π1 such that
S(P{Π1})  S(P (θΠ1)).

Proof: The proof is by induction on the transition sequence. Suppose we have
a substitution θ such that S(Π2)  S(θΠ1), and Π2 is transformed to Π3 by a
transition. We proceed by cases:

flattening S(Π3)  S(Π2), so the result is obvious.

binding Suppose the binding transition is the substitution θ′. Then S(Π3) 
S(θ′Π2), and thus S(Π3)  S((θ′ ◦ θ)Π1).

projection The unbounded case is a straightforward: uses of weakening suffice
to prove that S3  S2. In the bounded case, for any sequent in S2 Σ, a6τ `
τ1 6 τ2 we can construct a proof from Σ ` [τ/a]τ1 6 [τ/a]τ2 in a similar
fashion to lemma (5.5.5)(ii)

In the latter two cases, only variables inside Π1 are affected by the substitution,
so θ is always restricted to the variables in Π1. �
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5.8 An Algorithm for Subtyping

Having developed the theory of quantified subtyping problems, it remains to
show how a subtyping query may be transformed into one. We will define two
transformations, one for the signature and one for the problem, and compose the
results to obtain the QSP.
The prefix C(Σ) corresponding to a signature Σ is

C(•) = • (The empty prefix)
C(Σ, a) = C(Σ)∀a
C(Σ, a6τ ) = C(Σ)∀a6τ

The problem I(σ1 6 σ2) corresponding to the inequality σ1 6 σ2 is

I(σ1 6 ∀α.σ2) = ∀a.I(σ1 6 [a/α]σ2) a fresh
I(σ1 6 ∀α6τ.σ2) = ∀a6τ.I(σ1 6 [a/α]σ2) a fresh
I(∀α.σ1 6 σ2) = ∃α.I(σ1 6 σ2) α 6∈ fv(σ2), σ2 not

outermost quantified
I(∀α6τ.σ1 6 σ2) = ∃α.α 6 τ ∧ I(σ1, σ2) α 6∈ fv(σ2), σ2 not

outermost quantified
I(σ1→σ2 6 σ′1→σ′2) = I(σ′1 6 σ1) ∧ I(σ2 6 σ′2) if one of σ1→σ2, σ′1→σ′2

is not a type
I(α 6 σ1→σ2) = ∃α1, α2.α 6 α1→α2 if σ1→σ2 is not a type

∧ I(σ1 6 α1) ∧ I(α2 6 σ2)
I(σ1→σ2 6 α) = ∃α1, α2.α1→α2 6 α σ1→σ2 is not a type

∧ I(σ1 6 α1) ∧ I(α2 6 σ2)
I(τ1 6 τ2) = τ1 6 τ2

I(σ1 6 σ2) = Fail otherwise

The problem P(Σ, σ1, σ2) is C(Σ)I(σ1 6 σ2).

5.8.1 Remark: P(Σ, σ1 6 σ2) is a well-formed, closed quantified subtype prob-
lem

5.8.2 Lemma:

1. Suppose Σ ` σ1 6 σ2. Then P(Σ, σ1, σ2) exists, and has a solution θ.

2. Suppose θ is a solution of P(Σ, σ1, σ2). Then θ(S(P(Σ, σ1, σ2)))  Σ `
σ1 6 σ2.

Proof:
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1. We use the following induction hypothesis: suppose there is a substitution θ
such that θΣ ` θσ1 6 θσ2. Then P(θΣ, θσ1, θσ2) exists, and has a solution
θ′ which is an extension of θ. We proceed by induction on the cases for
I(σ1, σ2): the first five cases are straightforward, corresponding to the rule
applications of a canonical derivation of θΣ ` θσ1 6 θσ2. For the next,
it suffices to note that if we have an instance of θα 6 θσ1 6 θσ2 then the
last rule in the derivation must be either Arrow or Prom

↑. If it is the
former, then we have θ(α) = τ1→τ2, so we set θ′αi 6 τi. Otherwise there
must be some series of Prom

↑ rules below an arrow rule, in which case we
still have τ1→τ2 such that θα 6 τ1→τ2. Finally, if we have an instance
of θΣ ` θσ1→θσ2 6 θ(α) and σ1→σ2 is not a type, then the last rule
must be Arrow, so θ(α) = τ1→τ2, and so if θ′[τ1/β1] ◦ [τ2/β2] ◦ θ, we have
θ′Σ ` θ′(β1→β2) 6 θ′σ2.

2. Similarly, if we have a solution θ to I(Σ, σ1, σ2), we can construct a proof of
θΣ ` θσ1 6 θσ2 �

5.9 Conclusion

In this chapter we have shown how bounded subtyping can be incorporated into a
unification-style framework in order to decided a subtype relation which marries
subtype and parametric polymorphism. In fact, QSPs are very similar to mixed-
prefix unification problems, and we will exploit this in the next chapter to generate
constraint sets which play an analogous role to principal solutions.

We have been unable to extend this approach to deal with non-structural
subtyping, for example with records. The problems lies in the binding transition:
if we have an inequality of the form α 6 {li:τi}i∈I where some base type in the
record type occurs essentially, it is not possible in general to determine a shape
for α such that the substitution will preserve all possible solutions and introduce
no new ones. Although we could use the techniques of chapter 4 to find a set of
shapes which we could use to solve this problem, such a solution only works in
the context of a closed problem: While this still has applications (for example,
signature matching), it will not be useful for applications such as the next chapter,
where QSPs need to be partially solved before the shape of all the type variables
they contain can be fully determined.

A further problem with the approach here is that the technique used for solu-
tion falls into the class of “string-based” rather than “graph-based” unification
strategies. In theory such approaches can cause exponential increase in the size
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of constraint sets; but typically, bounded signatures are small and constraint sets
contain few essential occurrences of the types to be eliminated, and the problem
has not occurred in any reasonable example. The situation corresponds to the
similar case in typed λ-calculus where the printed form of an inferred type is
huge, and such cases appear not to arise in practice.
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Chapter 6

Subtyping and Annotation

Like ML, ML6 lacks the ability to pass function parameters with polymorphic
types. For example, consider the function

fun pair_app f (a,b) (c,d) = (f a c, f b d)

if we have max : ∀α6Int. α→α→α, then we cannot type the expression

pair_app max (3, -7) (4,-24)

and obtain the value (4,-7) of type Nat× Int since it requires max to be used
with types Nat→Nat→Nat and Int→Int→Int, which have no common subtype.

In an analogous fashion to the lifting of this restriction for ML in [31], here we
lift that restriction for ML6, by requiring annotations on λ-bound variables whose
arguments are intended to be of polymorphic type. All unannotated variables are
assumed to be of monomorphic type, as they would be in ML. For example, the
above term becomes

fun pair_app (f:All(’a<’b) ’a -> ’a -> ’a) (a,b) (c,d) =

(f a c, f b d)

for which a type is inferred which has as an instance the type scheme

∀β (∀α6β.α→α→α)→ ∀γ6β ∀δ6β. (γ × δ)→(γ × δ)→(γ × δ)

(As normal, the scope of universal quantifiers extend as far to the right as possible,
while→ is right-associative). We will use our theory of subtyping to define ML∀6,
a type system incorporating both subtyping and parametric polymorphism, and
the ability to pass polymorphic functions such as max as parameters. Although we
have defined a subtype relation incorporating first-order type schemes and sub-
typing, there are still issues which need to be tackled before it can be incorporated
into a type inference system.
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Free Variables

As in ML6, any type inference system will need to be able to check inclusions
between types which contain variables not bound in the type. We will modify
our subtyping algorithm to deal with these.

Completeness

The system of types as presented cannot be incorporated into an ML-like system
which has complete type inference. For example, suppose we have a term f of
type
∀α.(α→α→Int)→α→α→Int, and K is λxλy.x.

Consider the term
(λz.Kz(fz))(λxλy.3)

The term λxλy.3 can be given any type α→β→Int, and the term λz.Kz(fz)
any type γ→γ such that γ 6 δ→δ→Int for some δ. So combining these, the
whole expression can be given any type α→β→Int which has the property that
α→β→Int 6 δ→δ→Int for some δ, i.e. such that there is some δ for which
δ 6 α and δ 6 β. However, our type system does not let us express a type
scheme which can be instantiated with any two types possessing a common lower
bound. Thus if we do not widen our notion of type scheme, we lose some of the
possible instantiations of inferred types.

Types and Environments

We will prove a weak version of principality for our type inference system, which
we shall term minimality. In order to obtain minimal typing, we extend the
definition of type schemes once more with constrained type schemes, which can
be seen as a generalisation of the constrained type-schemes for ML6.

κ ::= α | σ | σ→κ | ∀α.κ | ∀α6τ.κ | ∀α\C.κ

Notice that the domain type of a function must be a bounded type scheme σ. And
instead of having a separate signature for subtyping information, we will have a
single environment incorporating term and type bindings.

• The empty context
Γ, a
Γ, a 6 τ where Γ contains all base types in τ
Γ, x : κ where Γ contains all base types in κ.

115



A scoping restriction will be enforced on free variables by only allowing sub-
stitutions θ such that θΓ is well-formed. We will call such substitutions Γ-
substitutions.

Although we shall define the notion more formally later, intuitively a type
scheme κ1 is minimal for an expression if for any other derived type κ2 and any
σ such that κ2 6 σ, we obtain κ1 6 σ. This is a very weak form of principal type
in the sense of [23]: although we cannot derive all possible type schemes from a
minimal type, we can derive all bounded type schemes. We restrict contravariant
occurrences of type schemes to be bounded type schemes, and this will ensure that
the modularity requirement is met that if we type a term with its minimal type,
the term will be usable in any context where any different type that we might
assign it would suffice. Thus our type inference algorithm will be complete.

6.1 Extensions to the Type System

In order to avoid the complexities which occur when dealing with type assertions
of the form κ1 6 κ2, we will permit constrained types to appear only in assertions
of the form κ 6 σ. We will ensure this by placing a syntactic restriction on
programs: constrained type schemes are not legal in term syntax. Then the
following subtyping rule for constrained types suffices:

Γ ` [τ/α]C Γ ` [τ/α]κ 6 σ

Γ ` ∀α\C.κ 6 σ
(∀C6-left)

This is the only subtyping rule in which constrained types are permitted,
although of course ∀-left

′ and ∀6-left
′ are just specialisations of ∀C-left. In

fact we do not even have reflexivity for constrained type schemes in the subtyping
system.

Since we are now not dealing with closed types, we also extend the Refl rule
to include free variables, which are simply considered to be rigid.

6.1.1 Proposition: When the rule ∀C6-left is added to the system, we retain
transitivity elimination and thus the notion of canonical derivations.

Constrained Judgements

In line with ML6, we return to a constrained form of judgement: the judgements
in the type system will be of the form

Γ;C ` e : κ
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where C is a set of inequalities τ1 6 τ2 between types. Thus we modify our
subtyping judgements rules to be of the form:

Γ;C ` κ 6 σ

modifying ∀6-right and ∀-right so that all occurrences are captured by quan-
tification, e.g.:

Γ, a;C ` σ1 6 [a/α]σ2 a does not occur in σ1 or C
Γ;C ` σ1 6 ∀α.σ2

(∀-right)

and add the rule

τ1 6 τ2 ∈ C
Γ;C ` τ1 6 τ2

(Hyp)

to our subtyping system. In the presence of Hyp, transitivity can no longer be
eliminated. However, we have the following:

6.1.2 Proposition: Suppose Γ;C ` κ 6 σ and for some Γ-substitution θ,
Γ ` θC. Then Γ ` θκ 6 θσ.

Proof: By induction on the derivation of Γ;C ` κ 6 σ, each instance of Hyp

being replaced by the proof of the constraint. �

6.1.3 Definition: A type scheme κ is Γ-feasible if there is a type scheme σ such
that Γ ` κ 6 σ. An environment Γ is feasible if for every x bound in Γ there is
some σ such that Γ ` Γ(x) 6 σ.

A sequent Γ;C ` e : κ is feasible if there is a Γ-substitution θ such that θΓ
is feasible, Γ ` θC and θκ is Γ-feasible.

Like ML6, the type system is quite capable of producing an infeasible derivation,
but unlike ML6, some of the constraints in the derivation may be contained
within the derived type scheme at arbitrary depth. A check to ensure that some
appropriate substitution for constrained variables exists will require constraints
to be extracted from the type scheme and combined with those at top-level, thus
we introduce the following:

6.1.4 Definition [Stripping]: We use the following auxiliary rules to define the
notion of stripping.

strip τ = (∅, τ )
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strip κ = (C, σ)
strip σ′→κ = (C, σ′→σ)

strip [γ/α]κ = (C, σ)
strip ∀α.κ = (C, σ)

strip [γ/α]κ = (C, σ)
strip ∀α6τ.κ = ({γ6τ} ∪ C, σ)}

strip [γ/α]κ = (C, σ)
strip ∀α\C ′.κ = ([γ/α]C ′ ∪ C, σ)

where the γ are fresh.

6.1.5 Proposition: If strip κ = (C, σ), then Γ;C ` κ 6 σ.

Proof: By induction on the derivation of strip κ. �

If C is unsolvable, then κ cannot be feasible, thus we can test the feasibility
of Γ;C ′ ` e : κ by stripping all the types and checking solvability of the
accumulated constraint set over Γ.

6.2 The Type System ML∀6

Now we are ready to define the ML∀6 type system.

Γ(x) = κ

Γ ` x : κ
(Taut)

Γ, x:τ ;C ` e : κ
Γ;C ` λx.e : τ→κ

(Abs)

Γ, A, x:[ai/ai]σ;C ` [ai/ai]e : κ
Γ, A;C ` κ 6 σ′ for some σ′

no ai occurs in C αi fresh
Γ;C ` λx:σ.e : [αi/ai]σ→[αi/ai]κ

(TypedAbs)

where fv(σ) = a1 . . . an and A = a1 . . .an.

Γ;C ` e1 : σ→κ Γ;C ` e2 : σ
Γ;C ` e1e2 : κ

(App)
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Γ;C1 ` e1 : κ1 Γ, x:κ1;C1 ` e2 : κ2 strip κ1 = (C2, σ1)
Γ;C1 ∪ C2 ` let x = e1 in e2 : κ2

(Let)

Γ;C ` e1 : σ σ ∈ σ(Γ)
Γ;C ` (e1:σ) : σ

(Coerce)

Γ;C ` e : κ Γ;C2 ` κ 6 σ
Γ;C ` e : σ

(Sub)

Γ;C1 ∪ C2 ` e1 : κ α ∩ (fv(Γ) ∪ fvΓ(C2)) = ∅
Γ;C1 ` e1 : ∀α\C2.κ

(Gen)

Γ;C1 ` e : ∀α\C2.κ

Γ;C1 ∪ C2 ` e : κ
(Inst)

We take the view that if a variable occurs free in a type annotation, then that
variable is implicitly universally quantified, and the term should be typable for
any instantiation of it – for example the term λx:a. x+ 3 is not typable. Thus we
impose the restriction on TypedAbs that the term is typable with a held rigid.
Once this requirement is met, we substitute free variables for the ai.

In the Let rule, stripping the type of the bound variable is necessary to ensure
that constraints are not lost by being bound with a Gen rule into a type scheme
for an expression used in a let construction in which the bound variable does not
occur in the body. Since with strict semantics the term will be evaluated even
though never used, it would be unsound to let the constraints vanish in this way.
This observation was first made in [46], and is considered more fully in [47]. Our
approach is the one taken in [15].

6.3 Feasibility and Factorisation

In this section we will develop a notion of minimal types for ML∀6. In ML, the
foundation of the principal type property is the notion of a principal unifier, one
which is more general than any other unifier. Unfortunately, QSPs do not in
general have principal solutions: for example the problem mentioned earlier

∀Int∀Nat6Int∃γ∀a6Nat∃α.γ→α6a→Int→a

has solutions [Int→a/α] ◦ [Int/γ] and [Int→a/α] ◦ [Nat/γ]. There is no value
we can assign to γ to define a principal solution θ, but if we leave γ completely
flexible, then [Nat→Nat/γ] ◦ θ would need to be a solution (which it isn’t).
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Working with subtyping hypothesis involving constraints offers us the possib-
ility of deriving principal constraint sets instead of principal substitutions. We
shall call these constraint sets factorisations.

Let us consider the reasons why principal solutions do not exist. In unification
problems a variable is only ever instantiated to a value to which it is known to
be necessarily equal, and thus in the instantiation no solution is lost. However,
in solving QSPs, while this holds for binding transitions, and flattening does not
affect solutions, a projection transition replaces a base type with its bound, which
preserves solvability (in the context in which it is applied) but may lose solutions.

For example, in applying the transitions to solve the QSP, we lose a possible
solution: on page 104 when we projected Nat, the solution [Nat/γ]◦ [Int→a/α] of
the original problem was no longer a solution of the new one. However, a solution
was preserved which is identical to this one on the variables quantified outside
Nat (a set which is in this case empty).

Quantified subtype problems generated during type inference will contain two
types of variables, which we may call internal and external, with much the same
connotations as in chapter 3. We will derive factorisations by eliminating exactly
those universally bound variables generated during the reduction of κ 6 σ to a
QSP. Thus only internal variables will ever be instantiated by transitions, and if
two solutions coincide on their external variables, we will retain at least one. We
need a couple of technical results:

6.3.1 Proposition: If Γ;C ` κ 6 σ, a does not appear in this sequent, and
τ ∈ τ (Γ), then Γ, a(6τ );C ` κ 6 σ.

Proof: By the standard method for weakening. An auxiliary renaming lemma
is required, similar to that of lemma(5.1.6), whose proof is straightforward. �

6.3.2 Proposition: Suppose we have S and Γ such that any sequent in S is of
the form Γ ` τ1 6 τ2, and S  {Γ ` κ 6 σ}. Then Γ;C ` κ 6 σ, where C is
the set of constraints given by the types τ1 6 τ2 in S.

Proof: By induction on the construction of the proof of Γ ` κ 6 σ from the
sequents in S. �

Feasibility

Before considering the question of factorisations, we will deal with the simpler
issue of feasibility; that is, the question of when a type or judgement “makes
sense”. This is equivalent to the question of whether a constraint set C obtained
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by stripping is solvable. Evidently this is very similar to the application at the
end of the last chapter; however it may be the case that the environment Γ has
term bindings which contains variables occurring in C, and we need to respect
the scoping restrictions this places on possible solutions.
The prefix C(Γ) corresponding to Γ is

C(•) = • (The empty prefix)
C(Γ, a) = C(Γ)∀a
C(Γ, a6τ ) = C(Γ)∀a6τ
C(Γ, x:τ ) = C(Γ)∃β where β is the set of variables in τ

not quantified in C(Γ)

6.3.3 Proposition: Let β be the set of variables occurring in C but not in Γ.
Then there is a Γ-substitution θ such that Γ ` θC iff there is a solution to the
QSP

C(Γ)∃β.
∧
C

Proof: By the definition of solution for QSPs. �

Factorisation

The problem I(κ 6 σ) corresponding to the inequality κ 6 σ is

I(κ 6 ∀α.σ) = ∀a.I(κ 6 [a/α]σ) a fresh
I(κ 6 ∀α6τ.σ) = ∀a6τ.I(κ 6 [a/α]σ) a fresh
I(∀α.κ 6 ρ) = ∃α.I(κ 6 σ) ρ not quantified, α 6∈ fv(ρ)
I(∀α6τ.κ 6 ρ) = ∃α.α 6 τ ∧ I(κ, ρ) ρ not quantified, α 6∈ fv(ρ)
I(∀α\C.κ 6 ρ) = ∃α.C ∧ I(κ, ρ) ρ not quantified, α 6∈ fv(ρ)
I(σ→κ 6 σ1→σ2) = I(σ1 6 σ) ∧ I(κ 6 σ2) if one of σ, κ, σ1, σ2 is

not a type
I(α 6 σ1→σ2) = ∃α1, α2.α 6 α1→α2 if one of σ1, σ2 is

∧ I(σ1 6 α1) ∧ I(α2 6 σ2) not a type
I(σ→κ 6 α) = ∃α1, α2.α1→α2 6 α if one of σ, κ is not a type

∧ I(α1 6 σ)∧ I(κ 6 α2)
I(τ1 6 τ2) = τ1 6 τ2

I(κ 6 σ) = Fail otherwise

Let α be the set of free variables in I(κ 6 σ) not existentially quantified in C(Γ).
Then the problem P(Γ, κ, σ) is C(Γ)∃α.I(κ 6 σ),

6.3.4 Remark: P(Γ, κ, σ) is a well-formed, closed QSP.

6.3.5 Definition [Factorisation]: A factorisation for Γ, κ, σ is a constraint set
C such that
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• if Γ;C ` κ 6 σ.

• if Γ ` θκ 6 θσ then there is an extension θ′ of θ such that Γ ` θ′C.

Thus a factorisation for Γ, κ, and σ characterises all possible Γ-substitutions θ
such that Γ ` θκ 6 θσ. Note that by proposition(6.1.2) for any solution θ of C
we have Γ ` θκ 6 θσ.

The procedure factor(Γ, κ, σ) is as follows: we apply elimination steps to
P(Γ, κ, σ) until we reach a QSP of the form

C(Γ)∃α′.C

where C is of the form τ16τ ′1 ∧ . . . ∧ τn 6 τ ′n. Then we returns C.

Properties of Factorisation

6.3.6 Lemma:

1. Suppose there is a Γ-substitution θ such that Γ ` θκ 6 θσ. Then P(Γ, κ, σ)
exists, and there is θ′, an extension of θ on the variables existentially quan-
tified in I(κ, σ) such that θ′ is a solution of I(Γ, κ, σ).

2. Suppose θ is a solution of P(Γ, κ, σ). Then S(θP(Γ, κ, σ))  {Γ ` κ 6 σ}.

Proof: Essentially the same as lemma(5.8.2) �

6.3.7 Proposition: Suppose Γ ` θsκ 6 θsσ for some θ well-scoped on Γ.Then

1. factor(Γ, κ, σ) succeeds, with C, say.

2. Γ;C ` κ 6 σ (so for any solution θ of C we have Γ ` θκ 6 θσ)

3. There is an extension θ′s of θs by the new free variables contained in C such
that Γ ` θ′sC

Proof:

1. From lemma 6.3.6(i), we know that P(Γ, κ, σ) exists, and has a solution. So
by proposition(5.6.2), a sequence of elimination steps on I(Γ, κ, σ) succeeds.

2. Suppose Π = P(Γ, κ, σ), and a sequence of eliminations in factor yields
Π′. We know by lemma(5.7.4) that there is a substitution on the variables
existentially quantified in I(κ, σ) such that S(Π′)  S(θΠ). And S(θΠ) 
{Γ ` κ 6 σ} by proposition(5.6.2). Thus we have S(Π′)  {Γ ` κ 6 σ},
and the result follows by lemma(6.3.2).
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3. By lemma(6.3.6) we have a solution θ of P(Γ, κ, σ) which agrees with θs on
the variables quantified outside I(κ, σ) (which includes all the variables in
C); so by theorem(5.5.6) there is a solution of C(Γ)∃α′.C which agrees with
θs on these variables. �

Thus factor(Γ, κ, σ) yields a factorisation for Γ, κ, and σ if one exists.

6.4 Type Inference

Our approach to type inference will concentrate on obtaining minimal types rather
than principal typings. Thus we concentrate on the solutions of constraint sets
and instances of constrained types rather than on syntactic entailment between
them. The advantage of this approach is that we obtain a relatively straightfor-
ward proof of minimality which suffices to demonstrate that inference is compos-
itional and thus complete. The disadvantage is that we do not thereby obtain
a notion of principal typing, nor a notion of equivalence on judgements which
would be required in order to formalise a notion of simplification within the type
system.

To obtain a type inference algorithm we adopt the usual practice of absorbing
the Gen, Inst, and Sub rules into the others to get a syntax-directed algorithm.

6.4.1 Definition [Opening and Closing]: Given an environment Γ, a set of
constraints C, and a type scheme ξ, we define close(Γ, C, ξ) to be ∀α\C.ξ, where
α is the set of variables occurring in C or ξ but not in Γ.

In a similar vein to stripping, we recursively define the operation open on a
type scheme as follows.

open [β/α]κ = (γ, C1, κ1)
open ∀α.κ = ({β} ∪ γ, C1, κ1)

open [β/α]κ = (γ, C1, κ1)
∀α6τ.κ = ({β} ∪ γ, {β 6 τ} ∪ C1, κ1)

open [β/α]κ = (γ, C1, κ1)
∀α\C.κ = (β ∪ γ, [β/α]C ∪ C1, κ1)

κ is not quantified at outermost level
open κ = (∅,∅, κ)
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Informally, opening a type scheme κ extracts the minimal type scheme which
is an instance of κ and which is not quantified at outermost level, analogous to
instantiating a type scheme to a type in ML. The following proposition expresses
this intuition.

6.4.2 Proposition: If Γ ` θκ 6 σ, σ is not quantified at outermost level, and
open κ = (α,C, κ′), then there is an extension θ′ of θ on the variables α such that
Γ ` θ′κ′ 6 σ.

Proof: By induction on the calculation of open κ. Note that each rule in the
derivation corresponds to some ∀-left

′, ∀6-left
′, or ∀C-left rule in the canon-

ical derivation of Γ ` θκ 6 σ, from which we can build the necessary extension
of θ. �

An Algorithmic Type Inference System for ML∀6

As with ML6, we incorporate the Sub, Gen, and Inst rules into the others to
leave a single rule for each syntactic term construct.

Γ(x) = ξ

Γ `A x : ξ
(A:Taut)

Γ, x:α `A e : ξ
Γ `A λx.e : ∀α.α→ξ

(A:Abs)

Γ, A, x:[ai/ai]σ `A e : ξ ξ is Γ, A-feasible
Γ `A λx:σ.e : ∀αi.[αi/ai]σ→[αi/ai]ξ

(A:TypedAbs)

where fv(σ) = a1 . . . an and A = a1 . . .an.

Γ `A e1 : ξ1 Γ `A e2 : ξ2

open ξ1 = (α,C1, σ→ξ′1)
factor(Γ, ξ2, σ) = C2

Γ `A e1e2 : close(Γ, C1 ∪ C2, ξ
′
1)

(A:AppArrow)

Γ `A e1 : ξ1 Γ `A e2 : ξ2 open ξ1 = (β, C1, α)
factor(Γ, ξ2, α1) = C2 α1, α2 fresh

Γ `A e1e2 : close(Γ, C1 ∪ C2 ∪ {α 6 α1→α2}, α2)
(A:AppVar)

Γ `A e1 : ξ1 Γ, x : ξ1 `A e2 : ξ2 strip ξ1 = (C, σ1)
Γ `A let x = e1 in e2 : close(Γ, C, ξ2)

(A:Let)
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Γ `A e1:ξ factor(Γ, ξ, σ) = C σ ∈ σ(Γ)
Γ `A (e1:σ) : close(Γ, C, σ)

(A:Coerce)

6.4.3 Remark: If Γ `A e : ξ, then all variables occurring free in ξ occur in Γ.

Both the algorithmic and the original typing rules are capable of producing
derivations resulting in unsolvable types. Whilst it would be possible to restrict
the constraints introduced in a rule to be solvable, such local conditions will
not suffice to ensure that a final derived type is solvable, since the union of two
solvable constraint sets is not necessarily solvable. Thus the intent is to derive
the type, then perform a global solvability check.

There are also implications for completeness: there is more freedom to work
with unsolvable constraint sets in the definitive system than in the algorithmic one
– but such derivations aren’t interesting in practice: it suffices that the algorithmic
rules are complete with respect to the definitive rules in the case where the type
derived using the latter is solvable.

Soundness of Type Inference

6.4.4 Proposition: If Γ `A e : ξ, then Γ ` e : ξ.

Proof: Notice that weakening on constraint sets is admissible in the definitional
type system, so long as the TypedAbs constraint on appearances of base types
is not violated. So we can proceed by induction on the derivation of Γ `A e : ξ:
each rule in the algorithmic derivation can be translated into one or more rules
from the definitional system, typically the equivalent rule for the syntactic form
together with an instance of Gen.

A:Taut An instance of Taut

A:Coerce An instance of Coerce followed by an instance of Gen, the former
being justified by the result from proposition(6.3.7) that if factor(Γ, κ, σ) =
C, then Γ, C ` κ 6 σ.

A:Abs An instance of Abs together with an instance of Gen.

A:TypedAbs An instance of TypedAbs, together with an instance of Gen.

A:AppArrow If Γ `A e : ξ1 and open ξ1 = (α,C1, σ→ξ′1), then by a sequence
of Inst rules we obtain Γ;C1 ` e : σ→ξ′1; And if Γ `A e2 : ξ, and
factor(Γ, ξ2, σ) = C2, Γ;C2 ` ξ2 6 σ. An application of App and one of
Gen suffices.
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A:AppVar Similarly, by a use of Inst, App, and Gen

A:Let By an instance of Let and one of Gen �

Minimality of Type Inference

In order to obtain a minimal typing property, we need an ordering on complex
type schemes, and we shall choose the obvious one:

6.4.5 Definition: We define the relation Γ ` ξ 4 κ to be true iff for any σ

such that Γ ` κ 6 σ, Γ ` ξ 6 σ. It is easy to see that 4 is transitive, and that
Γ ` κ 4 σ iff Γ ` κ 6 σ.
We extend 4 to environments:

• 4 • The empty environment
Γ1, a(6 τ ) 4 Γ2, a(6 τ ) if Γ1 4 Γ2

Γ1, x:ξ 4 Γ2, x : κ if Γ1 4 Γ2 and Γ1 ` ξ 4 κ

6.4.6 Remark: Note that the second clause in the final case is equivalent to
Γ2 ` ξ 4 κ, since in a subtyping context only the subtype bindings are relevant,
and those are the same in each environment,

6.4.7 Lemma [Weakening for typing derivations]: Suppose Γ = Γ1,Γ2 is
such that Γ′ = Γ1, a(6τ ),Γ2 is well-formed.

• If Γ;C ` e : κ and a does not occur in Γ, κ, or C, Then Γ′;C ` e : κ in a
derivation of the same shape.

• If Γ `A e : ξ and a does not occur in Γ or ξ, then Γ′ ` e : ξ in a derivation
of the same shape.

Proof: Straightforward by induction on the derivation, using proposition(6.3.1)
and an auxiliary renaming lemma in the style of lemma(5.1.6). �

6.4.8 Proposition: Suppose Γ;C ` e : κ and there is a Γ-substitution θs such
that Γ ` θsC. Suppose further that we have some Γa and Γa-substitution θa

such that (θs ◦ θa)Γa 4 θsΓ and Γa `A e : ξ. Then (θs ◦ θa)ξ 4 θsκ.

Proof: Suppose we have σs such that Γ ` θsκ 6 σs. We will demonstrate
that Γ ` (θs ◦ θa)ξ 6 σs. Note that it suffices to demonstrate the proposition
only for those ρ not quantified at outermost level, for we can then deduce the
result for any σs. For suppose the result holds for all such ρ, and we have σs =
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∀β1(6τ1) . . . βn(6τn).σ′s, where σ′s is not quantified at outermost level, and we
write ρs for [bi/βi]σ′s and

Γ, B = Γ, b1(6τ1), b2(6[b1/β1]τ2), . . .bn(6[b1/β1, . . .bn−1/βn−1]τn)

By lemma(6.4.7) we have a derivation of Γ, B;C ` e : κ which is of the same
shape as that of Γ;C ` e : κ, and one of Γa, B ` e : ξ. And since we have
Γ ` θsκ 6 σs, a canonical derivation must include Γ, B ` θsκ 6 ρs. Thus we
can deduce Γ, B ` e : (θs ◦ θa)ξ 6 ρs.

But ξ contains no occurrences of atoms in B, and since θs and θa are Γ-well
formed, none are introduced by the substitution. So none of the B occur in
(θs ◦ θa)ξ, and thus we have Γ ` (θs ◦ θa)ξ 6 σs as required.

So suppose we have Γ ` θsκ 6 ρs. We proceed by induction on the height of
the derivation of Γ;C ` e : κ by consideration of the last rule.

Taut

Γ(x) = κ

Γ;C ` x : κ

The last rule in the algorithmic derivation must be A:Taut. Since (θs ◦
θa)Γa 4 θsΓ, if Γa(α) = ξ, we have Γ ` (θs ◦ θa)(ξ) 4 θsκ.

Abs The last rule in the algorithmic derivation must be A:Abs

Γ, x:τ ;C ` e : κ
Γ;C ` λx.e : τ→κ

Γa, x:α `A e : ξ
Γa `A λx.e : ∀α.α→ξ

If we have a derivation of Γ ` θs(τ→κ) 6 ρs, then ρs must be of the form
ρ1→ρ2 (the only rule applicable in a canonical derivation being Arrow)
and we must have Γ ` θsκ 6 ρ2. Thus writing θ′a = [τ/α] ◦ θa, we
have (θs ◦ θ′a)(Γa, x:α) 4 θs(Γ, x:τ ), and by the induction hypothesis Γ `
(θs ◦ θ′a)ξ 6 ρ2. We also have Γ ` ρ1 6 θsτ , and as τ = θ′aα, we have
Γ ` ρ1 6 (θs ◦ θ′a)α. Thus we can deduce

Γ ` (θs ◦ θ′a)(α→ξ) 6 ρ1→ρ2

and hence
Γ ` (θs ◦ θa)(∀α.α→ξ) 6 ρ1→ρ2

TypedAbs

Γ, A, x:[ai/ai]σ;C ` [ai/ai]e : κ
Γ, A;C ` κ 6 σ′ for some σ′

no ai occurs in C αi fresh
Γ;C ` λx:σ.e : [αi/ai]σ→[αi/ai]κ
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The last rule in the algorithmic derivation must be A:TypedAbs

Γa, A, x:[ai/ai]σ `A [ai/ai]e : ξ
Γa, A `A ξ feasible

Γa `A λx:σ.e : ∀αi.[αi/ai]σ→[αi/ai]ξ

where fv(σ) = a1 . . . an. and A is a1 . . . an.

Suppose we have Γ;C ` [αi/ai]σ→[αi/ai]κ 6 ρ, then ρ must be of the
form ρ1→ρ2, and by induction on the proof it is easy to show that

Γ, A;C ` [ai/ai]σ→κ 6 [ai/αi](ρ1→ρ2)

since no αi occurs in C. Then by the induction hypothesis, we have

Γ, A; ` [ai/ai]σ→ξ 6 [ai/αi](ρ1→ρ2)

and thus
Γ, A; ` ∀αi.[αi/ai]σ→[α1/ai]ξ 6 [ai/αi](ρ1→ρ2)

(using ∀-left
′), and then by ∀-right, instantiation, and transitivity, we

have:
Γ ` ∀αi.[αi/ai]σ→[α1/ai]ξ 6 ρ1→ρ2

App

Γ;C ` e1 : σ→κ Γ;C ` e2 : σ
Γ;C ` e1e2 : κ

In any derivation of Γa `A e1 : ξ1, the final rule must be either A:AppVar

or A:AppArrow depending on the syntactic form of ξ1. Suppose the
former:

Γa `A e1 : ξ1 Γa `A e2 : ξ2 open ξ1 = (δ1, D1, α)
factor(Γa, ξ2, α1) = D2 α1, α2 fresh

Γa `A e1e2 : close(Γa, D1 ∪D2 ∪ {α6α1→α2}, α2)

Let δ1 be fv(D1)− fv(Γa) and δ2 = fv(D2)− fv(Γa). These are disjoint since
the only free variables ξ1 and ξ2 share are those occurring in Γa.

Since Γ ` θsκ 6 ρs, we have Γ ` θs(σ→κ) 6 θsσ→ρs, so from the
induction hypothesis

Γ ` (θs ◦ θa)ξ1 6 θsσ→ρs

Now by proposition)6.4.2 there is a substitution θ, extending (θs ◦ θa) by
the variables in δ1 such that Γ ` θD1, and Γ ` θα 6 θsσ→ρs.

128



So θα must either be an arrow type τ1→τ2 or a base type which promotes
to an arrow type τ1→τ2. In either case, setting θ′ = [τi/αi]◦ θ, we have Γ `
θsσ 6 θ′α1, and from the induction hypothesis we have Γ ` θ′ξ2 6 θsσ, so
by transitivity, Γ ` θ′ξ2 6 θ′α1.

So by proposition (6.3.7) there is an extension θ′′ of θ′ by the variables in
δ2 such that Γ ` θ′′D2. Thus we have θ′′ an extension of (θs ◦ θa) by the
variables {α1, α2} ∪ δ1 ∪ δ2 such that Γ ` θ′′(D1 ∪ D2 ∪ {α 6 α1→α2}),
and Γ ` θ′′α2 6 ρs. The result follows immediately.

The A:AppArrow case is similar.

Let

Γ;C1 ` e1 : κ1 Γ, x:κ1;C1 ` e2 : κ2 strip κ1 = (C2, σ)
Γ;C1 ∪ C2 ` let x = e1 in e2 : κ2

The last rule in the algorithmic derivation must be A:Let.

Γa `A e1 : ξ1 Γa, x:ξ1 `A e2 : ξ2 strip ξ1 = (D, σ′)
Γa `A let x = e1 in e2 : close(Γa, D, ξ2)

Since Γ ` θsC1, from the induction hypothesis we have Γ ` (θs ◦
θa)ξ1 4 θsκ1, and thus Γ ` (θs ◦ θa)(Γa, x:ξ1) 4 θs(Γ, x:κ1). Now since
Γ ` θsC2, θsκ1 must be feasible, and thus there is some σ′ not outermost
quantified such that Γ ` θκ 6 σ′. Using the induction hypothesis we
obtain Γ ` (θs ◦ θa)ξ1 6 σ′, so D = strip ξ1 is solvable. Thus we obtain
Γ ` close(Γa, D, ξ2) 6 ρs by ∀C-left

′.

Coerce The last rule in the algorithmic derivation must be A:Coerce

Γ;C ` e1 : σ
σ ∈ σ(Γ)

Γ;C ` (e1 : σ) : σ

Γa `A e1:ξ
factor(Γa, ξ, σ) = C

σ ∈ σ(Γa)
Γa `A (e1:σ) : close(Γ, C, σ)

If α is fv(C)− fv(Γ), by proposition(6.3.7) there is an extension θ of (θs ◦θa)
by the variables in α such that Γa `A θC. Thus Γ ` (θs ◦ θa)(∀α\C.σ) 6
θsσ. The result follows by transitivity.

Sub

Γ;C ` e : κ Γ;C ` κ 6 σ

Γ;C ` e : σ

Suppose Γa `A e : ξ. Since Γ ` θsC, we have Γ ` θsκ 6 θsσ, and by
assumption we have θsσ 6 ρs, so by transitivity we have Γ ` θsκ 6 ρs.
The result follows from the induction hypothesis.
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Gen

Γ;C1 ∪ C2 ` e : κ α ∩ (fv(Γ) ∪ fv(C1)) = ∅
Γ;C1 ` e : ∀α\C2.κ

Suppose Γa `A e : ξ. Since we have Γ ` θs(∀α\C2.κ) 6 ρs, the last rule in
the canonical derivation must be ∀C6-left

′, so there must be an extension
θ′s of θs by the variables in α such that Γ ` θ′sC2 and Γ ` θ′sκ 6 ρs. Since
Γ ` θsC1 also, the result follows from the induction hypothesis.

Inst

Γ;C1 ` e : ∀α\C2.κ

Γ;C1 ∪ C2 ` e : κ
(Inst)

Suppose we have Γ `A e : ξ and Γ ` θsκ 6 ρs. Then by ∀C-left
′ we have

Γ ` θs(∀α\C2.κ) 6 ρs). The result follows from the induction hypothesis.
�

6.4.9 Corollary [Minimality of Type Inference]: If Γ ` e : κ, and Γ `A
e : ξ, then Γ ` ξ 4 κ.

Proof: Take Γa = Γ, θa and θs to be identity substitutions in proposition(6.4.8).
�

Completeness of Type Inference

6.4.10 Proposition: Suppose Γ;C ` e : κ is feasible, so we have Γ ` θsC

and Γ ` θsκ 6 ρ where ρ is not outermost quantified. Then for any feasible
Γa and Γa-substitution θa such that (θs ◦ θa)Γa 4 θsΓ, there is some ξ such that
Γa `A e : ξ.

Proof: We will proceed by induction on the height of the derivation of Γ ` e : κ
by cases on the last rule.

Taut

Γ(x) = κ

Γ;C ` x : κ

The algorithmic derivation is simply an instance of A:Taut.

Abs

Γ, x:τ ;C ` e : κ
Γ;C ` λx.e : τ→κ

Let α be fresh. We define θ′a = [τ/α] ◦ θa, so that (θs ◦ θ′a)(Γa, x:α) 4
θs(Γ, x:τ ). By the induction hypothesis, we have a derivation of Γa, x:α `
e : ξ. So we may apply A:Abs to obtain Γa `A λx.e : ∀α.α→ξ.
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TypedAbs

Γ, A, x:[ai/ai]σ;C ` [ai/ai]e : κ
Γ, A;C ` κ 6 σ′ for some σ′

no ai occurs in C αi fresh
Γ;C ` λx:σ.e : [αi/ai]σ→[αi/ai]κ

where fv(σ) = a1 . . . an. and A is a1 . . . an.

Let θ be a (Γ, A)-substitution such that Γ, A ` θC. Then Γ, A ` θC and
Γ, A ` θκ 6 θσ′.

Thus by using proposition(6.4.8), we must have Γ, A, x:[ai/ai]σ ` [a1/ai]e :
ξ such that Γ, A ` (θs ◦ θ)ξ 6 θσ1. Now since Γ and Γa are the same
with respect to the subtyping assertions they prove, we must have Γa, A `
ξ feasible. So we may apply A:TypedAbs.

App

Γ;C ` e1 : σ→κ Γ;C ` e2 : σ
Γ;C ` e1e2 : κ

Depending on the syntactic form of open ξ1, the algorithmic rule will either
be A:AppVar or A:AppArrow, so suppose open ξ1 = (D1, α) and it
is the latter case. By the induction hypothesis, we have a derivation of
Γa `A e1 : ξ1 and from proposition(6.4.8) we have Γ ` θaξ1 4 σ→κ. Since
the canonical derivation of Γ ` θaξ1 4 σ→κ must finish with an Arrow

rule followed by some sequence of ∀-left
′ rules, there must be an extension

θ′a of θa such that Γ ` σ 6 θ′aα1. Now since Γ ` θaξ2 6 σ1, we have
Γ ` θ′aξ2 6 θ′aα1 by transitivity, and thus factor(Γa, ξ2, α1) succeeds and
we may apply A:AppVar.

The AppArrow case is similar.

Let

Γ;C1 ` e1 : κ1 Γ, x:κ1;C1 ` e2 : κ2 strip κ2 = (C2, σ)
Γ;C1 ∪ C2 ` let x = e1 in e2 : κ2

From the induction hypothesis, we have Γa `A e1 : ξ1 such that Γ `
(θs ◦ θa)ξ1 4 θsκ1. Thus we have (θs ◦ θa)(Γa, x:ξ1) 4 θs(Γ, x:κ1). And using
the induction hypothesis again we have Γa, x:ξ1 `A e : ξ2, and we may
apply A:Let.

Coerce

Γ;C ` e1 : σ σ ∈ σ(Γ)
Γ;C ` (e1 : :σ) : σ
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By the induction hypothesis we have Γa `A ξ with Γ ` θaξ 6 σ. Thus
since σ ∈ σ(Γa), factor(Γa, ξ, σ) succeeds and we may apply A:Coerce.

Sub

Γ;C ` e : κ Γ;C ` κ 6 σ

Γ;C ` e : σ

Since Γ ` θsC, we have Γ ` θsκ 6 θsσ and Γ ` θsσ 6 ρs. Thus
by transitivity we have Γ ` θsκ 6 ρs, and the result follows from the
induction hypothesis.

Gen

Γ;C1 ∪ C2 ` e : κ α ∩ (fv(Γ) ∪ fv(C1)) = ∅
Γ;C1 ` e : ∀α\C2.κ

By consideration of the canonical derivation of Γ ` ∀α\C2.κ, we have an
extension θ′s of θs by α such that Γ ` θ′s(C1 ∪C2). The result follows from
the induction hypothesis.

Inst

Γ;C1 ` e : ∀α\C2.κ

Γ;C1 ∪ C2 ` e : κ

We have Γ ` θsκ 6 ρ, so by ∀C-left
′, we have Γ ` θs(∀α\C2.κ) 6 ρ.

The result follows from the induction hypothesis. �

6.4.11 Corollary [Completeness of Type Inference]: If Γ;C ` e : κ is
feasible. Then Γ `A e : ξ for some Γa-feasible ξ.

Proof: Taking Γa = Γ and θa the identity, the result is immediate, apart from
the Γa-feasibility of ξ. But if Γ ` e : κ is feasible, then there is some θ and σ

such that Γ ` θC and Γ ` θκ 6 σ. By proposition(6.4.8) Γ ` ξ 4 κ, and thus
Γ ` θξ 6 σ, so ξ is Γ-feasible. �

6.5 Examples

The type inference algorithm as given, like the inference algorithm for ML6 given
in the introduction, is “raw”, in the sense that it produces unsimplified typings.
And similarly to ML6, this is the principal barrier to presenting comprehensible
examples. Consider:

let x = fun (f: All(A) All(B<A) B -> B -> B)

fun(a) fun (b) fun (c) fun (d)

(f a c, f b d);
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produces (reformatted for legibility) the expected typing:

x : All(A)(All(B<A) B->B->B)->

All(’j) ’j->

All(’k) ’k->

All(’l) ’l->

All(’m) ’m->

All(’w,’v,’u,’x;

’u < ’w, ’u < A, ’j < ’u, ’l < ’u,

’x < ’v, ’x < A, ’k < ’x, ’m < ’x) Pair ’w ’v

and the application

let x = pairApp max 10 -7 20 -3;

typechecks successfully. Obviously, like ML6, the system is unusable without
constraint simplification. In cases such as the above, where a sequence of ab-
stractions is followed by an abstraction-free function body, it can be observed
that constraints accumulate at the outermost type inside the abstractions; in
such cases we may reasonably expect scoping to have little impact on simpli-
fication; however, when the value returned by the function is another function
computed at some depth inside the function body, for example

let x = fun (h)

let z = fun(g) g h

in z

end

;

assigned the principal type is

x : All(’b) ’b->

All(’g,’i,’h; ’g < ’i->’h, ’b < ’i)

All(’d) ’d->

All(’e,’f; ’d < ’e->’f, ’b < ’e) ’f

It is possible to combine the two adjacent universal quantifiers, but this does not
rid us of the constrained quantifier nesting.
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6.6 Conclusion

It is clear from even the small examples that simplification is required to make
ML∀6 a practical type system. While we have not investigated the issue in detail,
it appears that scoping significantly complicates the more powerful simplifications
available. There is little difficulty with identifying two types if simplification
indicates equality, but the opportunity arises less often than in ML6, since for
example it is only complete to identify a variable α with its least upper bound τ if
every possible value for τ is a possible value for α, in other words, if for every free
variable β of τ , every base type which can occur in a well-scoped substitution
for β can also occur in a well-scoped substitution for α. Developing a theory
of simplification would require a instance relation to formalise equivalence on
judgements, but a simple definition remains elusive. Another way to make the
approach here scalable is to annotate top-level function definitions with their
intended type, against which their inferred type can be checked.

Laufer and Odersky prove their type system equivalent to system F, in the
sense that any type derivation in system F can be encoded in their system exten-
ded by type operator definitions of the form

newtype Tv1 . . . vn = σ

with corresponding injection and projection terms. The encoding (we omit the de-
tails, which are not particularly enlightening) uses a type operator to encapsulate
each instance of universal quantification, and the operators must be defined with
respect to the F6 derivation rather than just the term. Since we are restricted
to structural subtyping and distinguish between bounded and unbounded quan-
tification, it is difficult to see how we might embed F6; however an embedding is
possible for an F6 variant which uses the subtyping rules

∆, X `F S1 6 S2

∆ `F ∀(X)S1 6 ∀(X)S2
(∀)

∆ `F S2 6 S1 ∆, X ` S ′1 6 S ′2
∆ `F ∀(X6S1)S ′1 6 ∀(X6S2)S ′2

(∀6)

with a corresponding separation at the term level between bounded and unboun-
ded type abstraction.

This version of F6 is similar to the system F>6 ([8, 9]) whose flaw, from which
ML∀6 does not suffer, is that it lacks a minimal type property. Thus while it
is not possible to uniformly encode F6 programs as ML∀6 programs, we might
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perhaps justifiably claim that much of what can be done in raw F>6 can be done
in ML∀6.
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Conclusion

Summary of Results

Subtyping provides a convenient framework in which to express relations of sub-
sumption and implicit coercion. Here we summarise our results and consider their
relevance to subtyping systems in general.

>-less Models

Much of this thesis has been devoted to the study of the properties of subtyping
over Helly posets. Up to now, approaches using complex type systems (such as
those of Smith [16] or Pottier [40]) have been based on the “one big lattice”
approach, extending the ordering given by the subtyping constructors with >
and ⊥. The merit of these types in themselves is an open issue. > constitutes
a convenient implementation mechanism for typing features such heterogeneous
lists, and so allows restricted sacrifice of type safety, but in a strong typing context
it is hard to see the intrinsic value of knowing that a term inhabits, requires an
argument, or produces a result which is in the type containing all elements, much
less the type containing no elements. Perhaps something of the utility of > and
⊥ in the systems of Smith and Pottier can be inferred from that fact that their
approaches incorporate these elements in the models of their subtype systems,
but not the syntax.

Our results allow us to construct a good case for Helly posets as a feasible
point in the design space for subtype orderings. We have shown that as well as
encompassing many classes of natural orderings on atomic types, Helly posets
are closed under type formation using many constructors of interest, so they are
versatile enough to capture many interesting orderings and some of the ways in
which we might wish to extend them. We have demonstrated how solvability
may be determined for both finite and regular types with both structural and
non-structural constructors. And we have shown in a simple context that Helly
posets enable the use of semantic information to provide a powerful simplification

136



system.
The choice of ordering in a subtyping system is made on grounds of tractab-

ility, expressive power, and strength. Operations on Helly posets are typically
analogous to operations on lattices: distance closure over the former corresponds
with constraint closure over the latter. So it seems reasonable to expect low-
diameter Helly posets to be approximately as efficient as lattices in most cases.
In terms of expressive power, there seems very little to choose between the two.
And in terms of preventing type errors, they lack the weakness that comes from
including > and ⊥, and so better capture the intuitions behind complex type
systems.

Bounded Quantification

We have also studied the issue of bounded quantification, a natural outgrowth
of the extensibility properties of Helly posets. As well as the natural application
in signature-checking and top-level coercion to keep constraint sets manageable,
bounded type schemes have a principality property that can be seen as analogous
to that of mixed-prefix unification, which we exploited to implement a type sys-
tem with annotations containing subtypes. Whilst the question of how principal
constraint sets can be generated for subtyping constrained type schemes is a dif-
ficult one, our results in this area constitute an answer to the question of how
subtyping and annotation can be made to interact. However, the practical utility
of such a complex type system is an open issue, particularly until the question of
simplification is resolved.

Directions for Future Work

There are several issues which we have chosen not to cover in this thesis, which
would constitute natural and interesting extensions of the work.

Simplification

After solvability, simplification is the most fundamental operation necessary to
successful use of subtyping. Although we have given a method for simplification
in the atomic case, the approach needs to be extended to deal with non-structural
constructors in the style of [40].
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Complexity

We have paid little attention to complexity issues, but the analogy between dis-
tance closure over a Helly poset and constraint closure over a lattice would seem
to indicate that similar complexity arguments (such as [21]) should apply, in the
same way as Benke’s result [5] generalises that of Tiuryn [50] for solvability in
the finite structural case.
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