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Abstract

Ophthalmic diseases such as glaucoma are associated with progressive changes in the structure

of the optic disc (OD) and parapapillary atrophy (PPA). These structural changes may therefore

have relevance to other systemic diseases. The size and location of OD and PPA can be used

as registration landmarks for monitoring changes in features of the fundus of the eye. Retinal

vessel evaluation, for example, can be used as a biomarker for the effects of multiple systemic

diseases, or co-morbidities. This thesis presents the firstcomputer-aided measuring tool that

detects and quantifies the progression of PPA automaticallyon a 2D retinal fundus image in

the presence of image noise. An automated segmentation system is described that can detect

features of the optic nerve. Three novel approaches are explored that extract the PPA and OD

region approximately from a 2D fundus image. The OD region issegmented using (i) a com-

bination of active contour and morphological operations, (ii) a modified Chan-Vese algorithm

and (iii) a combination of edge detection and ellipse fittingmethods. The PPA region is iden-

tified from the presence of bright pixels in the temporal zoneof the OD, and segmented using

a sequence of techniques, including a modified Chan-Vese approach, thresholding, scanning

filter and multi-seed region growing methods. The work demonstrates for the first time how the

OD and PPA regions can be identified and quantified from 2D fundus images using a standard

fundus camera.
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Chapter 1
Introduction

1.1 Background and Motivation

This PhD study brings together optic disc (OD) and parapapillary atrophy (PPA) segmentation

and quantification. The OD is the site where ganglion cell axons leave the eye to yield the

optic nerve and the PPA is an abnormal retinal tissue, adjacent to the OD. As the focus is

on developing a software system to deal with optic nerve features extraction, this section will

provide a brief overview of image processing techniques on OD detection and segmentation

and the need to pre-process. The research interests behind the investigation of the PPA region

are also provided in this section.

1.1.1 Importance of undertaking detection and segmentation of the OD region

The 2D colour retinal fundus images not only provide information about different eye condi-

tions and ophthalmic diseases (e.g. myopia, macular degeneration and glaucoma), but could

also show signs of systemic diseases such as diabetes [3–6].Hence, automated retinal fundus

image processing has become a primary screening tool for early detection of ophthalmological

and systemic diseases. In terms of analysis of the retinal image, optic nerve features (e.g. OD)

are the fundamental features of interest. The segmentationof OD region is an essential task for

the processing of retinal fundus images (i.e. automated measurements for diabetic retinopathy

diagnosis or treatment evaluation). There are therefore abundant surveys about OD detection

and segmentation reported in the literature.

The OD is located anatomically at the distal end of optic nerve (Figure 1.1), which is the region

where ganglion cell axons exit the eye to form the optic nervethrough which visual information

is transmitted to the brain. The OD is the entry point for the main blood vessels that supply the

retina. It is composed of two distinct parts: the cup, a central bright area of the OD, and the

neuroretinal rim, a peripheral area where the nerve fibres bend into the cup region (Figure 1.2).

The OD region appears as a bright yellowish-white ellipse partially-overshadowed by retinal

1



Introduction

Figure 1.1: The sagittal section of the eye ball. The optic disc is situated anatomically at the
distal end of optic nerve.

blood vessels in the fundus image. Segmenting the OD is not a trivial task owing to light

artefacts, blood vessels and often ill-defined boundaries,particularly in the presence of PPA.

1.1.2 Growing Interest in the PPA region

Certain ophthalmic diseases (e.g. progressive glaucoma) and eye conditions (e.g. myopia) have

been associated with the development of retinal pigment epithelium (RPE) PPA [3].

The reason why PPA develops has remained unclear but the progression of PPA, which is a

result of degeneration in retinal nerve fibre layer (RNFL) inthe eye, has been linked to degen-

erative myopia [7] as well as glaucoma [8], both of which can result in sight loss.

Although degeneration and thinning in retinal tissue are ingeneral irreversible, early detection

and medical intervention may offer an opportunity to reduceor limit their progression [9].
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Figure 1.2: a) Original colour retinal fundus image; Annotations describe the four different
zones of the optic disc; b) the optic disc boundary and the ParaPapillary Atrophy
region.

More recently, there is therefore a growing interest in the potential role of PPA in detecting eye

diseases at an early stage [10–16].

PPA can clinically be categorised into and the ‘alpha’ (α) zone and ‘beta’ (β) zone PPA and

large choroidal vessels although the division is slightly artificial [17, 18]. α-zone PPA is the

outer peripheral zone of PPA with irregular hyper-and hypo-pigmented areas in the retinal pig-

ment epithelium (RPE), either on their own or surrounding zone β-PPA. In addition,β-zone

PPA is the central zone of atrophy, next to the OD, is supposedto be complete RPE atrophy.

Such kind of classification has now been accepted into commonuse, initiating studies to better

understand the progression of the PPA. For example, the association betweenβ-zone PPA with

the rate of retinal nerve fibre layer (RNFL) thickness changehas been studied. Glaucomatous

eyes withβ-zone PPA are at increased risk for progressive RNFL thinning [19]. The relation-

ship between PPA and primary open-angle glaucoma with earlyfocal visual field loss has also

been investigated. Patients with such symptoms, and the patient with presence ofβ-zone PPA

and neuroretinal rim thinning are in good correspondence [20]. Healeyet al. investigated the

association betweenβ-PPA and both environment and genes. The presence ofβ-PPA appears

to be under strong genetic control, with only a fraction of this genetic effect shared with genes

involved in myopia [10]. The relationship between PPA and the OD in patients with glaucoma

or visual field damage by manually quantifying the size of PPAand the OD regions has been

investigated [11]. The presence and the progression of PPA were discovered to be associated
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with subsequent OD or visual field changes in patients with ocular hypertension. Honrubia and

Calonge further found that, in patients with such symptoms,the presence of PPA could imply a

risk of glaucomatous deterioration as it has a statistical association with the presence of defects

in the retinal nerve fibre layer (RNFL) [12].

The association of PPA with glaucoma in a population-based study has been studied by Xuet al.

It has been found thatβ-PPA appears to be larger and occurs more frequently in glaucomatous

eyes than in normal eyes of Chinese adults, but no significantdifference was found between

primary open angle glaucoma and closed angle glaucoma [13].

A commercial software package Photoshop (Adobe Systems Inc., San Jose, CA, USA) was

utilised to measure the size of PPA and the OD regions in assessing how closely PPA is related

to structural and functional glaucomatous optic nerve damage [14]. Uhmet al.discovered that

the severity of glaucomatous optic nerve damage and visual field defects were related to the

increases in the size of PPA and concluded that PPA could be useful for the diagnosis and

progression of glaucomatous nerve damage [14]. There existophthalmic techniques such as

the Heidelberg Retina Tomography (HRT) and Optical Coherence Tomography (OCT) which

can provide a colourless or pseudo-colour 3D visualisationof the PPA and the OD [21]. They

require a trained technician or ophthalmologist to identify manually the OD boundary on the

image before the PPA and OD variables can be estimated from the image contour based on 3D

depth information [15]. Furthermore, the HRT and the OCT have been employed in several

studies about the PPA. One example application is to investigate the association between PPA

and the progression of glaucoma [6]. However, 2D colour fundus imaging may be preferred by

many clinicians for estimating the size of OD and PPA becausethe image from HRT or OCT is

generated via computer processing rather than a direct recording of the object of interest.

An alternative tool to detect and quantify the PPA and the OD automatically from colour fundus

images would reduce the workload of the human assessor and could facilitate a wider investiga-

tion about the potential importance of PPA in ophthalmic disease diagnosis involving facilities

where access to HRT or OCT is limited. Moreover, in large clinical studies and pathological

monitoring programs, such a computerised tool can also improve the repeatability therefore

avoiding problems associated with fatigue and habituation, and tend to be more cost-effective.
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1.2 Objective of this study

At its core, this thesis sets out to explore the suggestion that

An automated optic nerve feature detection and segmentation system based upon a

combination of image processing techniques to emulate a human expert can approach the

performance of the human visual system.

1.3 Definition of Problems

Many difficulties had to be overcome during this work. It is insufficient to estimate only OD

positions and segmentation for the model based representation of the OD. It is necessary to fit

the contours of the features so that important information,such as the transverse and conju-

gate diameter of OD, can be provided. These problems must be tackled under the assumption

that the OD is an object with elliptical or with round shape. An approach to eliminating the

influence resulting from the crossing blood vessels and the presence of PPA is also required.

Three attempts based on a combination of image processing techniques have been proposed in

this thesis to deal with these difficulties. In addition, PPAmay have research value for oph-

thalmologists and researchers. It is therefore necessary to develop the software capable of both

detecting and quantifying the region of PPA.

1.4 Fundus Image Database

All the colour fundus images for the assessment of the imaging tools we developed in this

PhD project were randomly drawn from the database of the Lothian Birth Cohort (LBC) 1936

study [22]. The LBC study included the living members of the 1947 Scottish Mental Survey

(n=70,805) who were born in 1936 and currently reside in the Edinburgh area (Lothian) of

Scotland. Three hundred and twelve individuals were tracked successfully and had their retinal

photos taken at the Wellcome Trust Clinical Research Facility, Western General Hospital, NHS

Lothian, Scotland. Their mean age at the time of the photo-taking was 72 years old. The

research complied with the Declaration of Helsinki and was approved by the Lothian (Scotland

A) Research Ethics Committee.
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The type of images in the LBC database is diverse. It comprises different types of shape of PPA

(See Figure 1.3) so that the differentiation of different kinds of PPA could be considered in the

trials executed by this PhD project.

1.4.1 Experimental protocols

Figure 1.4 illustrates the experimental protocols of developing software tools in this PhD project,

which can be divided into four phases: Firstly, without knowing race and gender demographics,

N fundus images were randomly drawn from the database of the LBC database by Cheng-Kai

Lu. Here, N is a positive number. For the images used in Chapter 5, Chapter 6 and Chapter 7, N

is given as 20, 94 and 50 respectively. All fundus images werefirst cropped manually to the Re-

gion of Interest (ROI), and the ROI size was set from 700× 700 to 1200× 1200. The ground

truth were drawn by an ophthalmologist (Dr. Augustinus Laude, AL). The poor quality im-

ages were also determined by AL. Secondly, all algorithms described in this PhD project were

invented and then implemented in MATLAB (Mathworks Inc., Natick, MA, USA). Thirdly,

the software tools was modified according to analytic outcome (done by Cheng-Kai Lu) on

unacceptable sample results which are determined by an ophthalmologist, AL. Lastly, the all

segmentation results validated by different validation methods described in detail in Chapter 2,

Chapter 5, Chapter 6 and Chapter 7, respectively.

1.5 Structure of the Thesis

The previous sections in Chapter 1 presented the aims of thisthesis which include developing a

software tool for automated detection and quantification ofboth the OD and PPA regions in 2D

colour retinal fundus images. Related works on OD detectionand segmentation that have been

done in the past using active contour techniques and a few using Hugh Transform techniques

have been discussed. There has been some work on the computeranalysis on PPA detection and

PPA segmentation because not much effort has been done on PPAdetection and quantification.

Chapter 2 introduces and reviews (i) image processing techniques applied in OD detection and

segmentation, (ii) a current approach to detect the presence of PPA and (iii) existing evaluation

measures on the segmentation of optic nerves features.

Chapter 3 gives background information on some necessary image pre-processing techniques
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Figure 1.3: Different types of PPA: (a) a right-eye image with a crescentshape PPA (b) and (c)
shown a right- and left-eye image with a U-shape PPA, respectively (d), (e) and (f)
shown a right-,left-,left-eye image with round shape PPA, respectively.
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Figure 1.4: Experimental protocols of developing software tool for both detection and segmen-
tation of the OD and PPA.

8



Introduction

and theories which are often used in bio-medical images. It is split into three main parts. The

first part reviews the basic image processing theory such as Digital Image, Binary Morpho-

logical Operation, Image Filters and Colour Space and Colour Transform. The second part of

Chapter 3 provides a quick look at image enhancement including contrast enhancement and

histogram modification. The final part of this chapter introduces the edge detection techniques.

Chapter 4 gives a brief review of several image segmentationtechniques including thresholding,

region growing and active contours.

Chapter 5 describes the two different algorithms for the OD region segmentation in detail. A

novel approach to segment the OD and PPA automatically is also introduced. The introduced

method exploits both the red and blue channels of the image tomaximise the information on

features (PPA) whilst keeping interference (blood vessels) to a minimum. A technique named

“snake without edges” is used to estimate the boundary of theOD and PPA. The proposed ap-

proach is evaluated against the reference boundary drawn byan ophthalmologist. Experimental

results show the method can repeatedly detect the boundary automatically which is a major

improvement from the results reported in the literature.

Chapter 6 describes a computer-aided measuring tool to automatically detect and quantify both

the PPA and the OD regions in 2D colour fundus images of the retina. The outcome shows a

possible means to quantify the size of PPA on 2D fundus image for the first time. The proposed

tool is capable of detecting and quantifying PPA and OD regions repeatedly with sufficient

accuracy and could also provide additional information, namely the transverse and conjugate

diameter of the OD, which may be useful for eye screening purpose.

Chapter 7 describes a novel retinal imaging tool, Parapapillary atrophy AND Optic disc Re-

gions Assessment (PANDORA), for assessment of the OD and PPA in detail. The tool is

implemented by a combination of edge detection, ellipse fitting methods, modified Chan-Vese

approach, thresholding, scanning filter and multi-seed region growing methods. The clinical-

knowledge also has been exploited to develop this tool. The results show the developed system

is more robust against various non-trivial conditions.

Chapter 8 first presents a summary of the achievement, then draws some limitations of the

works and conclusions and eventually proposes several possible extensions of this research.
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Chapter 2
Literature Review

This chapter aims to provide the essential background to this work and a review of relevant lit-

erature in order to identify a possible solution to the application. Firstly, Section 2.1 introduces

the existing image processing techniques applied to optic disc (OD) detection and segmentation.

Section 2.2 presents current solutions available for parapapillary atrophy (PPA) detection. This

chapter is concluded with a survey evaluating the performance of methods of PPA detection

and OD segmentation in Section 2.3.

2.1 Optic Disc (OD) Detection and Segmentation

The OD is an important parameter in glaucoma diagnosis [23, 24], very useful in proliferative

diabetic retinopathy [25, 26] and a common landmark when locating regions of interest such

as the macula [26, 27]. As a result, various methods have beeninvestigated for the detection

of the OD but the focus of those works is either to locate the centre of OD [28] or to detect

the boundary of OD on fundus images without consideration for the conditions of PPA. The

detection and segmentation of the OD region has been performed using 2D fundus images

directly [28,29] and 3D planimetric images generated from multi-modal imaging systems [30].

Figure 2.1 demonstrates the summary of the works of the detection of the OD. Normally, there

are two/ three phases of the OD detection: pre-processing phase (noise reduction/ OD location),

an estimation phase /and an optimisation phase.

Several methods reported in the literature are briefly introduced as follows:

2.1.1 Shape fitting based techniques

Shape or data fitting techniques (e.g. Hough Transform (H.T.) and least square regression

(LSR)) are introduced to fit the OD because the OD is elliptical or round structure.

The traditional H.T. was designed to identify lines in the image, but later the H.T. has been

extended to identifying circles or ellipses (Figure 2.2a).In the field of data fitting, the least-
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Figure 2.1: Summarise the works of OD region detection and segmentation.
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squares minimise the sum of squared residuals to obtain the best fit. One data fitting example

is given in Figure 2.2b.

(a) A result of fitting the OD region via Circular Hough
Transform

(b) A result of data fitting via least square regression.

Figure 2.2: Samples of shape or data fitting based techniques.

In [31–33], an area-thresholding algorithm is used to firstly localise the OD, before detecting

its boundary by the means of H.T., i.e. best fitting a circle based on the gradient information of

the image. However, this approach proved to be time consuming.

In another investigation conducted by Abdel-Ghafaret al. [34], the green space of the retinal

fundus image was suitable for the OD detection and segmentation because there is significant

contrast between the OD and the retinal tissue in these images. In the pre-processing phase, a

morphological closing operation removed the retinal bloodvessels across the OD region. By

estimating the OD centre, 24 evenly distributed radial vectors were then defined. The images

were resampled along these 24 vectors to produce a representation for later processing. The

Sobel operator (described in detail in Section 3.3.1) was applied first on these images and the

threshold value was then obtained by computing the local variance and mean. Subsequently, the

residual points were input to a Circular Hough Transform thebiggest round shape was iden-

tified consistently with the corresponding OD. This method only applied on the images with

less anatomical contrasts and only achieved at the success rate of 65% , with specificity and

sensitivity rates of 84% and 60% respectively.
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Figure 2.3: An edge map resulting from applying Sobel edge on the OD region.

On the other hand, the OD region detection is executed in the red channel in three phases:

identification of candidate region, Sobel edge detection and an estimation phase. The candi-

date region is located and then neighbouring pixels are merged into clusters by a clustering

algorithm [35]. The centre of the candidate region is regarded as the centre of gravity of the

largest cluster. The edge detector, Sobel, is then used to estimate the contour of the OD (e.g.

Figure 2.3). The outcome is not good enough because of noise.LSR is thereafter employed to

determine the best circle that fits the OD region on the Sobel edge map.

2.1.2 Clustering and PCA based Techniques

The basic concept of a clustering technique is the approach of grouping a set of objects with

similar features into clusters (shown in Figure 2.4). The ODcan be detected either by finding

a large cluster of pixels with high intensity [31, 36] or by searching a region with the most

intensity variation at gray level [37,38]. However such methods are susceptive to retinal lesions

(e.g. exudates) which can also appear bright in fundus images and artefacts (e.g. intensity

gradient across the image).

In addition, principal component analysis (PCA) is a mathematical procedure. Figure 2.5 il-
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(a) Three different colour (red, yellow and blue) of the
squares

(b) A result of the clustering technique.

Figure 2.4: An example of a clustering technique shown as the colour (red, yellow and blue) of
the squares into three groups.

lustrates how to take a picture to capture the most information of the object. PCA can first

find the longest axis (shown as a red line in Figure 2.5e). It then seeks the second longest axis

(shown as a green line in Figure 2.5e) by rotating the teapot (e.g. Figure 2.5 a, b, c and d) as the

longest axis is fixed. These two axes obtained are the first andthe second principal component,

respectively. The extends in average along the axes are called eigenvalues. Therefore, PCA can

be applied to reduce the noise and get a significant feature ofthe data.

PCA for automatic detection of the OD region has been reported [39, 40]. The PCA, in their

study, is employed only on the regions of pixels with the highest gray level to lock the OD.

This method is applied with presence of large area of light lesions and could be used even in

the presence of bright lesions on the fundus image, althoughthis approach could also be time-

consuming.
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(a) Teapot. (b) Top view of the teapot.

(c) Bottom view of the teapot. (d) Side view of the teapot after rotation.

(e) Best view detected by PCA. PCA first find the
longest axis depicted as red line and then the second
longest axis (green line) is detected.

Figure 2.5: Brief introduction of PCA.
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2.1.3 Pyramidal, wavelet transform and template matching Techniques

The contour information is essential to identify the maculaprecisely for successful grading of

a pathological condition of the macula such as diabetic maculopathy. However, the extreme

variation of the intensity within the OD or close to the OD boundary resulting from the pres-

ence of blood vessels and PPA increases the complexity of OD detection. The OD was tracked

by a pyramidal decomposition (multi-scale analysis) technique exploiting a simple Haar-Based

wavelet transform (shown in Figure 2.6) [28,41] and its region was segmented by a Hausdorff-

based template matching approach on an edge map obtained from a Canny edge detector. In

their 40 trials of various visual quality [28], the OD centrepositioning achieved an average

error of 7%, with no false detection. Their proposed model could serve as a preparation stage

for the task of segmenting of the OD.

Figure 2.6: An example of pyramid representation of the fundus image, which is directly ex-
tracted from a paper. [1].

In addition, the OD boundary detection rate was improved by using wavelet transform and

an intensity-based template [42]. This method produces quite robust segmentation results in

cases where the intensity of the OD region is extremely non-homogenous. The OD boundary

is detected from the outline of the OD by using an ellipse fitting technique.
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2.1.4 Geometric parametric model

The geometric relationship between retinal blood vessels across OD region and OD can be used

to identify the location of OD [43–45]. The OD location can beutilised to initialise the disc

boundary once it has been identified and the geometric features of retinal vessels can be used to

locate the OD position (shown in Figure 2.7). For example, the origin of the retinal blood vessel

network was determined by a novel algorithm using fuzzy convergence [43]. The coordinates

of the OD centre were also estimated by using a geometrical parametric model [45].

(a) A fundus image. (b) A result of vessel segmentation. The red cross de-
notes a candidate OD centre

Figure 2.7: Geometric relationship between retinal blood vessels and OD centre.

In another attempt to locate the OD position, Trucco and Kamat [44] utilised a set of plausible

candidates for main vessels, OD, and macula to search the space of possible triplets and then

yield a proper location of the OD satisfying prior anatomical constraints. These approaches lo-

cate the OD with reasonable success although the detection of blood vessels is a very complex

operation.

In addition, the direction of retinal vessels originating from the OD was depicted by a geomet-

rical parametric model [46] and two parameters of the proposed model are just the coordinates

of the OD centre. In the literature, Ruggeriet al. extracted retinal vessels by a vessel tracking

procedure and then identified the model parameters by using asimulated annealing optimisa-

tion technique. The algorithm Ruggeriet al.proposed was employed in a set of forty images of
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both abnormal and normal subjects. In all these images, the coordinates of the OD centre could

be produced, even in rather severe pathological situations.

2.1.5 Watershed and morphological filtering

The morphological filtering (described in detail in Section3.1.2) is a useful tool for noise re-

duction in shape-based image processing. The watershed transformation is often used as a

regional image segmentation technique in a field of image processing and analysis. The fun-

damental concept of watershed is to simulate the flood drowned a rugged terrain gradually and

the construction of dams to prevent the lake the process of merging. Figure 2.8 demonstrates

the example of watershed segmentation. Original image and topographic view are shown in

Figure 2.8a and Figure 2.8b, respectively. There are then three stages of flooding (Figure 2.8c,

d and e). After merging process (Figure 2.8f and g ), segmentation result shows in Figure 2.8h.

A combined approach of watershed transformation and morphological filtering to detect OD

was developed by Walteret al. [47]. The proposed model achieves a mean sensitivity rate

of 92.8% and a mean predictive rate of 92.4% in detecting the OD region. By altering the

parameters of the model, the robustness of the model has beenalso evaluated. The results

presented in the paper are encouraging, but obstructions such as retinal vessels are difficult to

remove completely without introducing significant distortion and loss to the fundus image.

2.1.6 3D multi-modal image techniques

Several feasibility studies exist using Heidelberg RetinaTomography (HRT), Optical Coher-

ence Tomography (OCT) and Ultra High Resolution (UHR) OCT can offer a pseudo-colour 3D

multi-modal imaging systems of the PPA and OD [21,30,48,49].

Although these techniques achieved reasonable success, they still have four main limitations [50].

Firstly, these techniques are not widely used in ophthalmology clinics because they operate with

more expensive and specialised lasers [51,52]. Secondly, trained technicians or photographers

with an intimate understanding of retinal anatomy are required for operating OCT properly and

acquiring a high enough quality OCT image. Thirdly, the patient has to be turned to a partic-

ular direction to aim the instrument at the right place and then has to remain motionless for a

long time waiting for the scanning line procedures executedby OCT, in order to avoid artifacts

resulting from eye movement. Fourthly, they are probably not good for visualising changes in
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(a) Original image. (b) Topographic view of the image.

(c) First stages of flooding. (d) Second stages of flooding.

(e) Third stages of flooding. (f) Merging of water from two catchment basins.

(g) Result of further merging. (h) Segmentation result (lines).

Figure 2.8: An example of watershed segmentation. (a) original image (b) topographic view of
the image. (c), (d) and (e) are then three stages of flooding. After merging process
shown in (f) and (g), (h) shows the segmentation result.
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(a) (b) (c)

Figure 2.9: A Sample of working process of the snake: (a) Input image; (b)Giving initial
contour; (c) An example of the OD boundary detection after 190 iterations.

disease progression. For example, the existing software for OCT would not allow clients to

view the acquired images from the previous examinations with the current image on the screen

immediately. Moreover, it is unlikely that such an expensive solution built around OCT in-

struments would be adopted for a large-scale screening program [52]. In addition to this, this

approach requires a trained technician or ophthalmologistto identify the OD boundary manu-

ally on the image before the PPA and OD variables can be estimated from the image contour

according to 3D depth information [15,52].

2.1.7 Active Contour (Snake) based techniques

The active Contour is a deformable image segmentation modelwhich evolves like snake (de-

scribed in detail in Section 4.4). In practice, active contours normally starts after given an initial

contour. Figure 2.9 gives an example of using snakes to estimate the OD region.

In this sub-section, several snake based techniques to detect and segment the OD region re-

ported in the literature are stated as follows.

First, histogram equalisation (described in detail in Section 3.2.2) was applied to enhance the

retinal images. Pre-processing was then implemented by using a pyramid edge detector to the

contrast enhanced image. After that the pixels of the pyramid data structure were averaged by
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4-pixels subgroups improving the noise resistance. The edge strength and Cholesky algorithm

[1] were used to fit a snake to the OD border. The success of thismodel is very contingent upon

pre-processing the images to improve the contrast between the OD and the retina, but locking

the snake onto the OD border in the upper right quadrant was unsuccessful in their trials.

Second, PCA is utilised to locate the OD by means of detectingthe candidate regions at var-

ious scales. The centre of the OD could be indicated by calculating the minimum distance

between the fundus image and its projection onto disc space.The Hough transform was there-

fore adopted for the round shape detection because the shapeof the OD is a round or elliptical

structure [53]. The centre and radius of a circle estimated by the margin of OD after using

the Hough transform detection. In addition, Topological Active Nets (TAN) was proposed by

Novo et al. [54] to segment the OD region. This is a deformable model which could describe

the inner topology of the targeted object boundaries. Both active nets, optimised by a genetic

algorithm and energy term, have been applied to segment the OD, without any pre-processing

of the image.

Third, both the application of morphological operations and the automatic initialisation of the

active contour in Lab colour space were exploited to locate the OD region in a retinal im-

age [55]. Previously reported work in the literature was focused on detecting the centre of the

OD region [38]. Osarehet al. [55], removed retinal blood vessels by means of colour mor-

phology and used template matching to initialise the OD margin automatically. It is almost im-

possible to remove retinal blood vessels completely, although the morphology pre-processing

(e.g. opening/closing) helps to diminish the effects of retinal blood vessels. In addition, the

snake can deform to the wrong place if the initial mask for snake is far from the disc margin.

Moreover, such processing blurs the OD boundary, making theboundary detection unreliable.

Fourth, in [37], Xuet al. proposed a deformable model based technique to estimate theOD

boundary in retinal fundus images. They improved and extended the original snake by clus-

tering and smoothing update techniques. The OD boundary points are first self-classified into

two groups, edge point group or uncertain point group, via clustering techniques after every

snake evolution. These boundary points of the OD are then automatically updated by different

criteria obtained both from the global and local information. This approach works well, but

only if there is no or very little PPA. The presence of the PPA complicates the detection of the
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OD as it also appears bright in the fundus images.

Fifth, Chan-Vese (C-V) method [56] and level set methods [57] have also been applied to

OD boundary segmentation. The main merit of these methods istheir ability to compensate

for discontinuities in the targeted region boundary of image features to be located. These ap-

proaches however suffers from major drawbacks, e.g. the segmentation process is likely to be

time-consuming, C-V requires an accurate initial “guess” of the OD boundary and it is likely

to achieve good results only when the OD region is of homogenous intensity.

Sixth, stereo imaging techniques have also been exploited using a “Snake” algorithm, together

with p-tile thresholding on an edge map, to outline the OD boundary[58]. This method was

implemented via 80 retinal image pairs, including 55 non-glaucomatous, and 25 glaucomatous

eyes. The OD was estimated via the snake with the informationof the edge and brightness.

Their proposed method was then tested on a new set of stereo images which consisted of 98

pairs including 60 and 30 pairs with and without signs of glaucoma, respectively. The testing

result shows the potential value of the automated estimation of the OD region. The presence

of PPA however remains a problem. One possible solution is topre-determine the presence of

PPA and subsequently devise a corresponding strategy to segment the OD region.

2.2 Parapapillary Atrophy (PPA) Detection

PPA is one of the optic nerve features, which has been associated to eye conditions or diseases

(e.g. myopia and glaucoma). It is important to detect ophthalmic diseases early in order to

take potential interventional measures. However, previous studies were limited to the detection

of PPA. Most existing methods for the detection and quantification of PPA are subjective and

manual [6,10].

Only one software tool PAMELA (Pathological Myopia Detection Through Peripapillary At-

rophy) has been developed to automatically evaluate 2D fundus image of pathological my-

opia [7, 59]. It utilises the texture analysis component of PAMELA and clinical image context

to extract PPA features and applies an artificial neural network known as a Support Vector

Machine (SVM) to perform binary classification (e.g. PPA present or not). This system in-

volves segmentation of the OD, generation of texture features, integration of these features
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into clinically-relevant zones, and a SVM classifier trained for classification on the detection

of PPA. The presence of PPA is detected with 87.5% accuracy in40 images from the Singa-

pore Eye Research Institute. The sensitivity and specificity of PPA detection are 0.85 and 0.90

respectively.

Their results show good promise for PAMELA; however, their system has the following draw-

backs: Firstly, both the accuracy of the OD detection and segmentation need to be improved.

Secondly, the system can only detect certain types of PPA so that the differentiation of differ-

ent kinds of PPA has to be considered in this system. Thirdly,their proposed system can not

quantify the extent and hence describe the development of PPA.

2.3 Evaluation Measures reported in the literature

There are two main issues that fall into the scope of this project: to establish and implement

methods to determine the presence of PPA, and further to quantify the area of PPA and OD.

Therefore, in this section we briefly introduce the evaluation measures (either for evaluating

detection or for evaluating segmentation): Firstly, we introduce the rules for evaluating the

performance of detection. Mean accuracy, Specificity and Sensitivity have been adopted to

evaluate the performance of PPA detection [7, 59]. The Specificity, defined as the number of

true negatives divided by the sum of false positives and truenegatives indicates how well a tool

can correctly identify negatives. The Sensitivity, definedas the number of true positives divided

by the sum of false negatives and true positives indicates how well a tool can identify actual

positives. In terms of area estimation, several existing evaluation methods for assessing the

overall performance of the OD region segmentation are reported in the literature. These evalu-

ation methods are based on the similarity either in the estimated boundary or in the estimated

area when compared to a “groundtruth” drawn by a human expert.

Segment of detected contour against the segment of contour of the groundtruth drawn by

human experts

The boundary-based estimation can be evaluated by measuring the distance between two closed

boundary curves. This helps evaluate the accuracy of targeted object contour localisation.

Therefore, this method has been used to measure the average distance from the estimated OD

contour point to the ground estimate [37].ŝ(n)=[u(n),v(n)] denotes the final estimated contour,

1 ≤ n ≤ N. The ground estimate, represented by A, is comprise of an individual pixel ai, 1
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≤ i ≤ M, whereM denotes the amount of the pixel on the ground estimate contour. For each

individual contour pointn of all pointsN of the contour, the distance to the closest point (DCP)

of ground estimate is defined as

DCP (ŝ(n), A) = min ‖ ŝ(n)− ai ‖, 1 ≤ i ≤ M (2.1)

The accuracy of the estimated contour is assessed by the MeanDistance to the Closest Point

(MDCP) shown as follows:

MDCP (ŝ, A) =
1

N

N∑

n=1

DCP (ŝ(n), A) (2.2)

By definition, the smaller the MDCP is, the closer the computed contour is to the ground esti-

mate.

Segmented region against the region of groundtruth drawn byhuman experts

An effective measure (M) of the match between estimated region and groundtruth region has

been adopted by Osarehet al. [55]:

M =
N(R ∩ T )

N(R ∪ T )
(2.3)

hereRandT are equivalent to the ground estimate and the detected OD region respectively and

N(.) represents the number of pixels in the targeted object region.

In addition, Joshiet al. [52] further compute the pixel-wise recall and precision values from

the overlap area between the ground estimate and the computed region. These are defined as:

Recall =
tp

tp+ fn
(2.4)

Precision =
tp

tp+ fp
(2.5)

heretp denotes the number of true positive pixels,fn denotes the number of false negative pixels
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andfp denotes the number of false positive pixels.

F = 2
Recall × Precision

Recall + Precision
(2.6)

whereF( namely traditional F-score or F1 score) denotes the harmonic mean of recall and

precision. Here, the F-score value lies between 0 and 1. Here, the higher F-score is, the more

accurate mode is to the ground estimate.

2.4 Chapter Summary

In this chapter, some techniques surrounding OD centre localisation, OD region detection and

segmentation reported in the literature are presented initially. These techniques are based upon

features of the OD region (e.g. the region with large clusterof high intensity, the region with

most intensity variation and texture information) or usinggeometrical features of retinal vessels

across the OD region. In Section 2.2, the software tool, PAMELA, using SVM and texture

information for PPA detection is reviewed. The PPA detection rate of PAMELA is 87.5%

with a sensitivity and specificity of 0.85 and 0.9, respectively. The experimental results were

reasonable; however, the tool Liuet al. developed can only detect a few types of PPA and it

can not describe the progression of the PPA region. In Section 2.3, one statistical analysis is

performed to assess the performance of PPA detection and three common evaluation measures

(including contour to contour, region to region and F-score) for PPA or OD region detection or

OD region segmentation are introduced.
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Chapter 3
Review of Major Image Pre-processing

Techniques

Image pre-processing is an essential step because segmentation of bio-medical images is an

arduous task often complicated by sampling artefacts and noise. It is highly recommended to

understand them before moving onto advanced methods and newideas. A number of necessary

image processing techniques and theories which are commonly mentioned and adopted in this

thesis are introduced briefly in this chapter.

3.1 Basic Theory of Image Pre-processing Techniques

3.1.1 Digital Image

The term digital image normally refers to raster image, or bitmap, which is composed of a set

of numeric data structures or pixels. It is technically depicted by the width and height of the

image in pixels and by the number of bits per pixel. Pixels arethe smallest individual element

in an image, indicating quantised values that represent thebrightness of a given colour (or

intensity for grayscale) at any specific point. For example,an 8-bit grayscale image denotes

that each pixel of the image can have one of 256 shades, from the lowest (black) to highest

(white) intensity value. It is essential to provide three colour channels for each pixel for visually

acceptable results. Each colour channel resembles a grayscale image, offering shades of the

colour. The blend of three channels leads to the colour of thepixel, which can be constructed

as coordinates in some colour space. The colour space and itstransformation will be discussed

later in this section.

3.1.2 Binary Morphological Operation

The morphological operation is an essential tool for shape-based image processing, particularly

for filtering purposes. Therefore, we introduce it here briefly. For a general scientific perspec-

tive, the term morphology refers to the study of structures and forms. Applying this concept
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to image processing, morphological image processing is usually called mathematical morphol-

ogy (MM), which is the name of a specific methodology for analysing the geometric structure

inherent within an image. The MM was initially developed for“binary” images, and was then

extended to gray-scale images and functions.

In binary morphology, an image is regarded as a subset of the integer grid (Zd) or a Euclidean

space (Rd), for some dimensiond. The fundamental concept in binary morphology is the use

of a simple ”structuring element” (also known as a kernel) toinvestigate if a predefined shape

fits or misses the shapes found in an image. Two examples of commonly used kernels, marked

asB, are shown as follows:

A. Let E=Z2; B is a 3x3 square defined by:B=(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1),

(1,0), (1,1) (shown as in Figure 3.1a).

B. Let E=Z2; B is a cross defined by:B =(-1,0), (0,-1), (0,0), (0,1), (1,0) (shown as in Figure

3.1b).

(a) A common used square kernel. (b) A common used cross kernel.

Figure 3.1: Samples of common used kernels. Grid point∗ denotes “1”.

There are four key binary morphology operators [60]: erosion, dilation, closing and opening.

In a binary image, erosion “thins” the black pixels and dilation “smears” the black pixels (as

shown in Figure 3.2). These two basic operators are mutuallycoupled as an erosion of the

black pixels is equivalent to a dilation of the white pixels.In addition, they are translation

invariant and strongly related to Minkowski addition.

a) Erosion (See Figure 3.2b)
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(a) (b) (c) (d) (e)

Figure 3.2: Samples of executing binary image morphology: (a) originalimage; (b) erosion;
(c) dilation; (d) closing; (e) opening.

Let E be (Zd) or (Rd), andA represents a binary image inE. Erosion operator is given by:

A⊙B = {zǫE|Bz ⊆ A} (3.1)

Where (Bz) is the translation ofB by the vectorz, for example:

Bz = {b+ z|bǫB},∀zǫE (3.2)

When the kernelB has a centre (e.g.B is a square or a disk), and this centre is located on the

origin of E, then the erosion ofA by B can be comprehended as the locus of points achieved by

the centre ofB whenB moves insideA.

b) Dilation (See Figure 3.2c)

Dilation operator, the opposite of the erosion operator, ofA by the kernelB is given by:

A⊕B =
⋃

bǫB

Ab = B ⊕A =
⋃

aǫA

Ba (3.3)

If B has a centre on the origin, then the dilation operator ofA by B can be comprehended as the

locus of the points covered byB when the centre ofB moves insideA.

c) Closing (See Figure 3.2d)

The closing ofA by B starts with a dilation operator ofA by B, followed by an erosion operator

of the resulting structure byB:

28



Review of Major Image Pre-processing Techniques

A •B = (A⊕B)⊖B (3.4)

The closing operator is also the complement of the locus of translations of the symmetric of

the kernel outside the imageA. Therefore, the closing operator can also be derived fromA •

B=(AC ◦BC)C , whereXc denotes the complement ofX relative toE.

d) Opening (See Figure 3.2e)

The opening ofA by B is acquired from the erosion operator ofA by B, followed by dilation

operator of the resulting image byB, therefore the mathematical equation is represented as

follows:

A ◦B = (A⊖B)⊕B (3.5)

The opening operator is also defined by

A ◦B =
⋃

BxǫA

Bx (3.6)

which means that it is the locus of translations of the kernelB inside the imageA.

Binary image morphology (shown in Figure 3.2): (a) originalimage; (b) erosion; (c) dilation;

(d) closing; (e) opening. The kernel for all examples is a 7×7 square. Due to the different

sequence of basic morphological operations, the void in thelower part of the character ’j’

remains clear after opening but is filled with dark pixels by closing.

3.1.3 Image Filters

Image filtering allows one to emphasise certain features or remove adverse effects on images

[60]. A few types of image filtering are described here; all using a 2D filter.

Average and Median Filters

Both the Average Filter (AF) and the Median Filter (MF) can beemployed in eliminating noise
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from an image. An AF is a filter of linear class that can smooth an image. The basic concept

behind the filter is that for any element of the image, an average of the current pixel and its

neighbourhood is computed. The MF does something similar, but, instead of computing the

average, it takes the median.

(a) Original image (b) Original image with added salt and pepper noise

Figure 3.3: Samples for image filtering.

The median is acquired by sequencing all the values from low to high, and then selecting the

value in the centre. If there are two values in the centre, theaverage of these two is calculated.

In order to demonstrate the difference between these two filters, salt and pepper noise, a random

white and black pixels noise, was added to an original image (shown as in Figure 3.3). A MF

gives a better result as salt and pepper noise is completely eliminated (shown as in Figure 3.4).

With an average filter, the colour values of all noisy pixels are taken into consideration in the

mean calculation. In contrast, when taking the median, you only select the colour value of one

or two pixels which have the least random fluctuations; however, similar to the AF, the median

filter might blur the object boundary.

Linear filter with convolution

The image filter with convolution is another commonly-used filter. The convolution is a neigh-

bourhood operation in which each output pixel is the weighted sum of neighbouring input

pixels. The convolution kernel here is the matrix of weights. To compute the output pixels, the
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(a) The image after average filtering (b) The salt and pepper noise has been removed after per-
forming median filtering.

Figure 3.4: Results both for average filtering and median filtering.

convolution kernel is first rotated 180 about its centre element, then each weight in the rotated

convolution kernel is multiplied with the pixel of the imageand the products are summed to-

gether, as we scan the rotated convolution kernel over the entire image. An example application

of a convolution filter to blur the image is shown in Figure 3.5.

3.1.4 Colour Space and Colour Transform

The basic colour channel used in medical image processing isR-G-B 3D colour space (Red,

Green and Blue Channel). It is composed of primary colours - Red, Green, and Blue which

are illustrated as x-, y- and z- axes of the space respectively (see Figure 3.6). All the colours

in this space are found as points on or inside the colour cube,which are yielded by combining

a different proportion of Red, Green and Blue. RGB colour space has two main drawbacks

although it is a simple way to produce colour.

First, human eyes are psychologically more sensitive to oneprimary colour than another and

therefore the representation of RGB space is not consistentwith human perception. Second,

any changes in an individual channel will result in the modification both in intensity of the

channel and in the resultant colour.
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(a) Original image (b) The image after processing convolution filtering. The
convolution filter blurs and smooths the image.

Figure 3.5: Samples for convolution filtering.

For the aforementioned reasons, many other colour spaces have been developed, (e.g. YIQ,

CIELAB, CMY, CMYK and HSV), to suit specific applications. Among these, HSV and

CIELAB space are the two most common used colour spaces in thethesis, alongside RGB.

The HSV (Hue, Saturation and Value) colour space consists ofthree elements:

Hue is a colour type that describes a pure colour (e.g. pure yellow, orange, or red), ranging

from 0 to 360 degrees on a hue circle (also known as the colour wheel). Saturation, also called

purity, varies from 0 up to 1 (or 0 to 100%) to which the lower value means more “grayness”

presented. Value, also called Brightness, ranges from 0 up to 1 (or 0 to 100%), which is a

nonlinear transformation of RGB colour space.

The utilisation of hue and saturation channels makes the representation of HSV space more

closely associated with the way humans perceive colour relationships.

Figure 3.7 shows HSV space as a single cone. A 3D conical formation of the colour wheel

represents the hue space. Three primary colours split the wheel equally, with Red at 0 degree,
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Figure 3.6: RGB colour space cube.
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Green at 120 degree, Blue at 240 degree and so on. In addition,the saturation and the value are

depicted by the distance from the centre of a round cross-section of the cone and the distance

from the pointed end of the cone, respectively.

Figure 3.7: HSV colour space cone.

The conversion between RGB and HSV spaces is not straightforward but is well documented

in [61]. Here the equations for conversion are given.

Assume r, g, b∈ [0,1] be the coordinates of the red, green, and blue, respectively, of the primary

RGB colour space. To find the angle of hueh∈ [0, 360] for HSV space, calculate:

h =





0, if max = min

(60◦ ×
g − b

max(r, g, b) −min(r, g, b)
+ 0◦) mod 360◦, if max = r

60◦ ×
b− r

max(r, g, b) −min(r, g, b)
+ 120◦, if max = g

60◦ ×
r − g

max(r, g, b) −min(r, g, b)
+ 240◦, if max = b





(3.7)
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Forsandv of HSV colour space are given as follows:

s =





0, if max = 0

max(r, g, b) −min(r, g, b)

max(r, g, b)
= 1−

min(r, g, b)

max(r, g, b)
, otherwise





(3.8)

v = max(r, g, b) (3.9)

for grays, asmin = max h = 0 is used even if the hue has no geometric meaning there.

CIE L*a*b* is another most extensively used colour space. Inthis colour space, L* represents

luminance, while a* and b* represent colour components, according to nonlinearly compressed

CIE 1931 XYZ colour space coordinates. The RGB values must first be transformed to a

specific colour space(e.g. sRGB) and then be converted to CIEL*a*b* because these two

colour models are device dependent. The conversion betweenRGB and CIE L*a*b* colour

spaces is well documented in [61,62]. Here the equations forconversion from CIE 1931 XYZ

colour space to L*a*b* space are given.

L∗ = 116 × [f(
Y

Yn
)]− 16 (3.10)

a∗ = 500 × [f(
X

Xn
)− f(

Y

Yn
)] (3.11)

b∗ = 200 × [f(
Y

Yn
)− f(

Z

Zn
)] (3.12)





f(
Y

Yn
) = (

Y

Yn
)1/3, for(

Y

Yn
) > 0.008856

f(
Y

Yn
) = 7.787 × (

Y

Yn
) +

16

116
, for(

Y

Yn
) ≤ 0.008856





(3.13)

whereXn ,Yn andZn denote the tristimulus values of the reference white respectively. Details

about the CIE L*a*b* space can be easily found in many image processing or colour related

books (e.g. [62]).
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3.2 Image Enhancement: Contrast enhancement and Histogram

Modification

Due to the digital nature of a fundus camera or retinal camera, the output is in a digital format;

in fact, they are raster images or bitmaps. In a fundus image,the intensity depends on the

physical properties of the tissue. The intensities are usually described by eight bits per pixel,

which allows the use of 256 gray scales. There are various different sources of interference in

the production of images (e.g. the performance of the funduscamera). Moreover, some fundus

cameras can not produce images without noise. The biggest problem is usually noise, which

can be reduced by exploiting image enhancement approaches.These approaches could also

be employed if the quality of an image is poor in its contrast.The most common used image

enhancement approaches are stated in the following sub sections.

3.2.1 Contrast enhancement

A nonlinear and reduced image amplitude range probably results in poor contrast which is one

of the most common imperfections of digital images. By rescaling the amplitude of individual

pixels, the contrast of an image can usually be improved. Thetransfer function of the most

continuous amplitude images can be realised by photographic techniques, but to implement an

arbitrary transfer function accurately is very difficult. It is a trivial task to implement the transfer

function for quantised amplitude images [2]. In terms of theimplementation of the operator of

the transfer function, the effects of amplitude quantisation have to be taken into consideration.

It is usually able to reduce the gray scale contouring effectby achieving a linear placement of

output levels if the output image is quantised to more levelsthan the input image [2].

Amplitude Scaling

The raw image probably takes up a range different from that ofits raster image after digitali-

sation. Its numerical range probably covers pixels with negative values and can not be mapped

straightforwardly into an intensity range [2].

Three different methods, which scale an output image back into the domain of values dominated

by the raw image, are demonstrated in Figure 3.8.

For visualising an image with negatively valued pixels, thefirst technique of absolute am-

plitude value scaling, shown in Figure 3.8a, is used to exploit the transformation of absolute
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(a) Absolute value scaling. The amplitude value of the pixel overshoots +1.0 by
a small amount, it wraps around by the same amount to -1.0.

(b) Linear image scaling. The amplitude values of the processedimage is linearly
mapped over its entire range.

(c) Linear image scaling with trimming. The extreme amplitude values of the
processed image are trimmed to maximum and minimum limits.

Figure 3.8: Three common image scaling methods [2].
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value [2].To represent amplitude by utilising the two’s complement numbering convention is

an essential transformation for system. In this kind of system, if the amplitude of the pixel

exceeds +1.0 by a small amount, it wraps around by the same amount to -1.0 (here +1.0 and

-1.0 both represent maximum of luminance white) [2]. Likewise, if the amplitude of the pixel

undershoots stay almost black.

The processed image is linearly mapped over its whole range by the linear image scaling tech-

nique (See Figure 3.8b). The same mapping for the linear image scaling with trimming tech-

nique (See Figure 3.8c), but the extreme amplitude values (SandT) of the processed image are

trimmed to minimum and maximum limits.

The last technique is particularly useful for images in which a small number of pixels exceed

the limits. A certain proportion of the amplitude values on the end of the amplitude scale

usually can be trimmed by contrast enhancement techniques [2]. For example, Figure 3.8c is a

typical contrast modification operation applied to bio-medical image enhancement applications.

A window-level transformation is shown in the Figure 3.8c. The width of the linear slope,T-S,

is the value of this window. The level of the window is situated at the midpointM of the slope

line [2].

3.2.2 Histogram Modification

Images may have foregrounds and backgrounds that are both dark or both bright. In such im-

ages, segmentation tasks are not easy accomplished. Such types of images can be enhanced

by the histogram equalisation technique, which is a means ofcontrast adjustment using the

image’s histogram. This method rescales the original image, and therefore the histogram of the

enhanced image, to a certain desired form. For example, it can increase the global contrast of

many images, particularly when the usable data of the image has close contrast values. The in-

tensities can be better distributed on the histogram by thisadjustment (e.g. local areas of lower

contrast gain a higher contrast). In the literature, enhanced images have been produced by a

histogram equalisation procedure for which the enhanced image’s histogram must be uniform

[63–65] and an adaptive histogram equalisation process hasbeen used to improve the results

[66, 67] have described improved results by using an adaptive histogram equalisation process.

An example of histogram equalisation for a fundus image is given in Figure 3.9. The original

fundus image in RGB space, in gray level and its histogram areshown in Figure 3.9a, Fig-

ure 3.9b and Figure 3.9c, respectively. In the histogram equalised result of Figure 3.9d, optic
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nerve features from the fundus image, not seen in the original (See Figure 3.9b), are distinctly

visible. In addition, the enhanced image’s histogram (See Figure 3.9e) appears peaked, and

many gray level output values are occupied. Obviously, histogram equalisation often performs

better on images with detail concealed in dark regions. However, it usually degrades good qual-

ity originals [2].

Adaptive Histogram Equalisation

The mapping function of histogram equalisation is changed dependent on the histogram of

the whole image. By employing histogram modification to every pixel according to the pix-

els’ histogram within a moving window vicinity, histogram equalisation can be made spatially

adaptive. The technique, which has to generate a histogram,compute the mapping function,

and map the function at each individual pixel, is computationally intensive. An adaptive his-

togram equalisation technique has been proposed [68] in which a rectangular grid of points

produces the histogram and interpolating mappings of the four neighbouring rectangular grid

points yields the mappings for an individual pixel.

Figure 3.10 demonstrates the interpolative adaptive histogram equalisation enhancement array

geometry. An individual grid point in a window about the gridpoint yields a histogram. In

addition, the dimensions of the window can be larger or smaller than the grid spacing.

AssumeH00, H01, H10, H11 represent the mappings of the histogram equalisation produced

at four nearest grid points. The pixel S(i, k) is determined by a bilinear interpolation of the

mappings of the four neighbouring grid points defined by

H = a[bH00 + (1− b)H10] + (1− a)[bH01 + (1− b)H11] (3.14)

where





a =
k − k0
k1 − k0

b =
i− i0
i1 − i0





(3.15)
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(a) Original fundus in RGB space.

(b) Original fundus in grayscale. (c) Original grayscale image Histogram.

(d) Grayscale fundus image enhanced by non-adaptive
histogram equalisation.

(e)Enhanced grayscale fundus image Histogram.

Figure 3.9: Histogram equalisation.
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Figure 3.10: Interpolative adaptive histogram equalisation enhancement array geometry [2].
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The special cases of equation(3.14), pixels in the margin region of the grid points, is tackled.

In practice, it is more efficient for parallel processes to exploit the histogram produced by his-

togram window and to employ the consequent mapping functionin every pixel in the mapping

window of the Figure 3.10. The procedure is then repeatly executed at every grid point. Bilinear

interpolation is used to integrate the four modified pixels of histogram acquired from the four

overlap mappings at each individual pixel coordinate (i, k). Figure 3.11 illustrates a comparison

between adaptive and non-adaptive histogram equalisationof a gray-level fundus image.

3.3 Edge Detection: First-Order Derivative Edge Detectionand

Second-Order Derivative Edge Detection

The object edge is marked by its angle of slope, height and itsslope midpoint’s horizontal

coordinate. When the height of the edge is much higher than a specific value, an edge occurs.

An edge detector ideally yields an edge mark localised to a single pixel situated at the slope

centre. In the continuous-domain, lines and edges in a 2D image assume that the discontinuity

of the amplitude stays constant in a tiny vicinity which is normal to the line profile or edge.

The transition model of a single pixel has a mid-value transition pixel interpolated between

the low-value of the background and the high value of the lineplateau. Two main types of

differential edge detection are briefly introduced in this section [2]: 1st- order and 2nd-order

derivatives. For the former type, certain forms of spatial 1st-order differentiation are computed,

and the consequent edge gradient is compared to a specified threshold value. If the gradient

value exceeds the given threshold, an edge is determined to exist. For the latter type, if the

greatest spatial change occurs in the polarity of the 2nd derivative, an edge is determined to

exist.

3.3.1 First-Order Derivative Edge Detection

In the continuous domain, an edge segmentS(x,y)can be captured by producing the continuous

1D gradientG(x,y) along a line perpendicular to the slope of an edge, which is atan angle

with regard to the horizontal axis. An edge is regarded to exist if the gradient is adequately

large. The gradient along the line perpendicular to the slope of the edge can be calculated as

follows [2]:
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(a) Original

(b) Non-adaptive histogram equalisation (c) Adaptive histogram equalisation. Provides better Op-
tic Nerve features compared with Non-adaptive his-
togram equalisation method.

Figure 3.11: Non-adaptive and adaptive histogram equalisation.
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G(x, y) =
∂S(x, y)

∂y
cos θ +

∂S(x, y)

∂x
sin θ (3.16)

In the discrete domain, an edge gradientG(x,y) is generated by a column gradientGC(j, k)

and a row gradientGR(j, k) in the discrete domain (shown in Figure 3.12). The amplitudeof

spatial gradient is defined as

G(j, k) = [[GC(j, k)]
2 + [GR(j, k)]

2]1/2 (3.17)

The amplitude of gradient can be estimated by Equation (3.18) for computational efficiency.

G(j, k) =| GC(j, k) | + | GR(j, k) | (3.18)

Figure 3.12: Orthogonal gradient generation [2].

Equation (3.19) describes the orientation of the spatial gradient with respect to the horizontal

axis.

θ(j, k) = arctan(
GC(j, k)

GR(j, k)
) (3.19)

The following issue for orthogonal gradient generation in discrete domain is to select a good

discrete estimation to the continuous differentials of equation (3.16). In this subsection, the

column and row gradients for all aforementioned edge detectors contain a linear combination

of pixels within a tiny vicinity. The column and row gradients can therefore be calculated by
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the convolution operation:





GC(j, k) = S(j, k) ⊕HC(j, k)

GR(j, k) = S(j, k) ⊕HR(j, k)



 (3.20)

whereHC(j, k) andHR(j, k) are a 3x3 impulse response arrays, respectively. Some examples

are shown in Figure 3.13 [2].

Two common operators,Prewitt andSobel, are here briefly illustrated in Figure 3.13.

ThePrewitt is technically a discrete differentiation edge operator, calculating an estimation of

the gradient of the image intensity [2]. It offers the rate ofchange in the direction of the largest

possible rising from light to dark. The result of this discrete differentiation edge operator is

either the norm of the gradient vector or the corresponding vector point in an input grayscale

image. It therefore demonstrates how smooth or abrupt the image edges are and how an edge

is likely to be oriented. The result of thePrewitt operator is a zero vector when applying it to

a point which is at a small region of constant intensity.

Overall, in terms of computations, thePrewitt operator is comparatively inexpensive because it

is mathematically according to convolving the image with a separable and integer valued filter

in both the vertical and horizontal direction. In addition,it is relatively crude to estimate the

gradient, emphasizing regions of high spatial frequency variations that correspond to the edge.

The Prewitt operator can be illustrated by the numbering convention of the pixels of Fig-

ure 3.14. Its operator edge gradient is defined by equation (3.17) with equation (3.21 and

3.22) [2].

GC(j, k) =
1

K + 2
[(P0 +KP1 + P2)− (P6 +KP5 + P4)] (3.21)

GR(j, k) =
1

K + 2
[(P2 +KP3 + P4)− (P0 +KP7 + P6)] (3.22)

where K= 1. The unit-gain negative and positive weighted averages about a separated edge

position are offered by normalising the column and row gradients in these formule. Each in-

dividual pixel contributes to the gradient equally by introducing theSobeledge operator. The
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Figure 3.13: Some examples of impulse response arrays for 3 x 3 orthogonaldifferential gra-
dient edge operators [2].
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Figure 3.14: Pixel numbering convention for 3×3 pixel edge gradient operator [2].

Sobeledge operator is implemented with K= 2, which differs from thePrewitt edge operator

in doubling the values of the east, west, south and north pixels [2]. Figure 3.15 gives some

examples of the Prewitt and Sobel of the the 2D fundus image.

3.3.2 Second-Order Derivative Edge Detection

The 2nd-order derivative edge detection applies a certain form of spatial 2nd-order differenti-

ation to significant edges. If a dramatic change in the intensity gradient takes place in the 2nd

derivative, an edge is captured. Two kinds of 2nd-order derivative approaches are taken into

consideration: directed 2nd derivative and Laplacian operator [2].

Laplacian

In the continuous domain, the Laplacian functionL(x,y)of an imageF(x,y)can be defined as:

L(x, y) = −▽2 F (x, y) (3.23)

here

▽2f =
∂2f

∂x2
+

∂2f

∂y2
(3.24)

If F(x,y) is changing linearly or is constant in amplitude, the Laplacian L(x,y) is zero. In addi-

tion, if the rate of change ofF(x,y) is greater than linear,L(x,y)shows a sign change at the point

of inflection ofF(x,y).
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(a) Original 2D fundus image in RGB space (b) The grayscale of original 2D fundus image

(c) Prewitt (d) Sobel

Figure 3.15: Prewitt and Sobel gradients of the 2D fundus image.
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A zero crossing inL(x,y) implies the occurrence of an edge. The negative sign in the definition

of equation (3.23) means that for the edge with an amplitude increasing from bottom to top or

left to right in an image, the zero crossing ofL(x,y)has a positive slope [2].

Laplacian zero-crossing Detection

The Laplacian zero crossings do not lie at pixel sample points in the discrete domain. As

a matter of fact, it is unlikely for real images subject to fluctuations of luminance including

zero-valued Laplacian response pixels and ramp edges of varying slope.

In discrete domain images, a simple method for Laplacian zero-crossing detection is to pro-

duce the minimum of all negative-value responses and the maximum of all positive Laplacian

responses in a 3×3 window, respectively. An edge is determined present if themagnitude of

the difference between the minima and the maxima is bigger than a threshold.

3.4 Chapter Summary

In the first part of this chapter, the basic theory of image pre-processing techniques was briefly

introduced. The definition of digital image, the working principles of binary morphological

operations (including erosion, dilation, opening, closing) and image filters (e.g. average fil-

ter, median filter and linear filter with convolution kernel)and the conversion between RGB

space and HSV space or Lab colour space were explained. Two common image enhancement

techniques, contrast enhancement and histogram modification, were described followed by an

introduction to edge detection techniques. In this part, first-order (e.g. Prewitt and Sobel oper-

ators ) and second-order derivative detection were described in detail. Overall, binary morpho-

logical operations, image filters and image enhancement techniques are most widely applied

to the digital images in order to reduce the noise. The representation of HSV and Lab space

is more consistent with human perception compared with thatof RGB space. Edge detection

is a primary tool in image processing in image processing, particularly in the area of feature

extraction, which aims at detecting points in a digital image at which the intensity of an image

changes sharply.
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Chapter 4
Review of Major Image Segmentation

Techniques

In this chapter, three different types of image segmentation techniques: thresholding tech-

niques, region growing techniques and active contour (snakes), are introduced. The main focus

is on providing the necessary background of image segmentation techniques that are relevant

to this work.

4.1 Introduction

Many investigations into segmenting objects in an image automatically have been conducted for

decades. Existing techniques for image segmentation theoretically can be categorised as three

main types: feature space-based approaches, image domain-based approaches and physics-

based approaches [69–71]. For the first approach, clustering techniques are frequently em-

ployed in the data distribution to classify image data into different groups. For the second

approach [71–74], neighbouring pixels with small colour orintensity variations are integrated

together based on the discontinuity of local information orthe similarity of adjacent pixels. For

the last approach, the mathematical models are fundamentally the same as the prior two types

of approaches, while the last approach is utilised to specify the reflection features of coloured

matter [69, 71]. In terms of implementation, the existing segmentation techniques, in practice,

can be roughly classified as the following approaches:

a) Boundary-based techniques [70, 71, 75–77]: These techniques generally extract contours

of the targeted region, namely edges. However, further processing is necessary because there

are major limitations, over-/under- segmentation, to these methods.

b) Histogram-based techniques [70, 71, 78, 79]: These methods usually apply to gray-level

images, normally with a 1D histogram. Regrettably, the techniques do not work effectively in
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colour images, because it is a challenging problem to choosean appropriate global threshold in

3D space as the colour images are normally illustrated by 3D histogram.

c) Region-based techniques [70,71,80–83]: Merge-and-split and region growing are two com-

mon approaches of these techniques which group pixels with similar features according to the

predefined criteria. However, these are two main shortcomings which limit the performance

of segmentation. First, they both highly rely on manually adjusted thresholds. Second, for the

latter approach, it also relies on setting initial seeds properly.

d) Hybrid-based techniques [70, 71, 84–90]: These techniques improve the performance of

segmentation by combining the edge and region information.However, it is a non-trivial task

to properly integrate these two features.

e) Graph-based techniques [70, 71, 91, 92]: These techniques traditionally utilise graphs in

which the nodes denote the pixels and arcs connect the adjacent pixels. By minimising the

weight that divides a graph into sub-graphs, the segmentation is implemented. It in general has

a problem of high computational complexity.

Using mean shift algorithms to estimate the feature space was introduced for image segmenta-

tion [93]. Analysing the feature space is done by investigating the centres of the high density

regions. According to the mean shift algorithm, it is an easynon-parametric procedure for

computing density gradients to represent the important features of the image. This approach

can achieve under-or over-segmentation by setting different parameters. However, undesired

results occur frequently and this method is very complex. A non-parametric clustering algo-

rithm maps an image from its primordial feature space (e.g. texture, intensity and colour) to the

space of non-parametric density [94]. Connectivity and Isolation are then used for the sake of

determining how to integrate regions. The segmentation performance is good according to their

results. However, this method is computationally expensive. The JSEG method is proposed for

colour image segmentation [95]. Figure 4.1 shows a flow chartof JSEG method. It consists

of two stages: colour quantisation and spatial segmentation. In the first phase, colours in the

image are categorised into several representative classifications. A class-map of the image is

then produced by replacing the image pixel values with theircorresponding colour class labels.

In the second phase, spatial segmentation is achieved by yielding a J-image, region growing
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Figure 4.1: A flow chart of JSEG method.

and uniting regions. TheJ-image is generated by applying the segmentation criteria to local

windows in the class-map. The initial regions/clusters arethen acquired by using region grow-

ing approach and is followed by an agglomerative approach, ahierarchic procedure, to unite

the initial regions/clusters step by step. According to thereport, their proposed method also

gets good results on segmentation. But, it is also computationally expensive compared to the

“nonparametric clustering.”

Many researchers analyse different properties of images byusing complicated formulas for the

sake of improving the segmentation results. This makes themmore difficult to implement and

sacrifices the operation time. The time-consumption therefore would be a bottleneck to those

complicated algorithms, which limits the applications of those algorithms. Some inherent prob-

lems exist because the segmentation is not well defined. We briefly summarise as follows.

a) The segmentation results will be changed dramatically bydifferent settings, so that many

manually adjusted thresholds or parameters have to be carefully predetermined.

b) It is difficult to choose a representative feature for the evaluation of image similarity because

a general similarity suitable for all types of images does not exist.
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c) An exact number of sub-regions in the image is difficult to decide by giving proper criteria

for unsupervised segmentation.

In next following sections, we will introduce three common image processing techniques: Re-

gion growing techniques (Region-based techniques), thresholding techniques and active con-

tour techniques.

4.2 Thresholding Techniques

Many images can be depicted as comprising regions of interest (ROI) of moderately unvaried

intensity value against a background of different intensity value. Typewritten text, aeroplanes

on runways and microscope biomedical samples are three classical examples. When segment-

ing the targeted region from its background, luminance is a significant feature that can be used

for these kind of images. If a ROI is black against a white background, or vice versa, giving a

threshold (the mean of the minimum and maximum gray values inthe local window) to extract

the targeted region from the background is a simple work. Practical difficulties take place, how-

ever, as the processed image encounters noise and as both thetargeted region and background

region assume a wide range of gray scales. The background region is probably non-uniform

which is another general problem. Thresholding techniquesare briefly introduced in this sub-

section.

Let A represents a given input image, as a binary imageB, where thebn pixel gray-levels inB

are restricted to 0,1. Assumean is the gray level of thenth pixel in A, then the corresponding

value inB is:

bn =





1, if an ≥ tn

0, otherwise



 (4.1)

wheretn is the threshold value for thenth pixel. The thresholdstn,n∈ 1, 2, ...,M , may all be

equal to a global thresholdtG or they may vary locally (e.g. from pixel to pixel). Here, we only

use information contained in the current input image to calculatetm andtG.

The pixels in the image are therefore split into two groups: high intensity or high luminance

pixels whose gray-levels are greater than, or equal to, a threshold t and low intensity or low
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luminance pixels whose gray-levels are less thant. The existing thresholding techniques, in

practice, could be roughly classified into the following fiveapproaches [96] described in Ta-

ble 4.1.

Five existing thresholding techniquesDescriptions
a) Object Attribute-based techniquesThe methods use a measure of similarity between

the binarised images and gray-level images.
b) Histogram-based techniques Both shape and features of the image histogram

are analysed by the techniques.
c) Cluster-based techniques The pixel gray-levels are clustered into two

groups, background and foreground pixels, by
these methods.

d) Spatial-based techniques The higher-order probability distribution is
utilised in these methods to model the correlation
between pixels.

e) Entropy-based techniques An optimal threshold is found by using the entropy
of the histogram or cross-entropy between
the thresholded image and input image.

Table 4.1:A summary of existing thresholding techniques

4.3 Region Growing Technique

The primary concept of region growing approach is that it merges adjacent pixels of similar

amplitude together to produce a detected area. However, forobtaining acceptable results, some

complex constraints have to be imposed on the growth patternresults. A region-growing ap-

proach with a combination of uncomplicated growth rules hasbeen proposed [97, 98]. Figure

4.2 shows two neighbouring regions,Ra andRb, with different perimetersPa andPb, respec-

tively, which will be considered for grouping together. Likewise, assume J represents the length

of the joint border and assume B denotes the length of that part of J for which the value of the

difference of amplitude D across the border is smaller than asetting parameterε1 [2]. The

process of this technique is: Pairs of quantised pixels of the same amplitude are first merged

together inatomic regionsif they are non-orthogonal neighbouring pixels in the image. Weak

boundaries between atomic boundaries are then dissolved bytwo heuristic rules. A processed

region then probably includes preceding integrated sub-regions of diverse amplitude values.

The regionsRa andRb are then integrated according to following a condition
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Figure 4.2: A geometry for region growing [2].

B

MIN(Pa, Pb)
> ε2 (4.2)

where a constant,ε2, is usually given asε2=1

2
. The setting allows several tiny sub-regions to

be merged into bigger sub-regions, which only absorbs the regions with strong joint borders by

using equation (4.2). Another criterion is used to the result of equation (4.2) for the sake of

merging the regions with weak joint boundaries. The neighbouring regions with weak common

boundaries are then integrated if

B

J
> ε3 (4.3)

where a constant,ε3, is typically set atε3=3
4
. The region growing method proposed by Brice

and Fenema [97] gives reasonable results on segmentation offew objects with simple scenes

and little texture, but the method does not perform well on more complicated scenes [2].

Seeded region growing technique [99] involves the selection of initial seed points, which are

not limited to pixel-based but also permits pure and simple region-based selection. This method

of image segmentation inspects adjacent pixels of “seed points” and then decides whether the

neighbouring pixels should be merged to the region, beginning with the points of lowest prior-
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ity. The process is iterated on using an approach similar to those used in generic data clustering

algorithms. The seeded region growing algorithm is described briefly.

Primary concept of seeded region growing

The foremost phase in seeded region growing technique is to determine initial seed points.

The selection criteria are defined by attributes of the target regions in the image such as the

brightest pixel or pixels in a certain range of gray levels. The process starts with these initial

seeds’ position then adds adjacent points as new seeds, beginning with the points of lowest

priority of region membership criterion. The priority is defined by a distance function; it could

be, for instance, variance, colour, gray level texture, motion, geometric properties and pixel

average intensity. The distance of each pixel to a contiguous region is defined by:

R(x, δi) = [I(x)−meanj ∈ δi(I(j))] (4.4)

hereI(x) denotes the gray image value of the pointx ∈ δ andδi is the region labelledi.

All the information embedded within the image should be exploited to achieve the optimal

result. For instance, one could study the histogram of the image and hence might identify a

suitable threshold value of intensity. This threshold value could be then used to restrain the

inclusion of undesired pixels into the region of membership. The pros and cons of seeded

region growing are summarised in Table 4.2.

Pros Cons
• Simple approach and easy to implement • Time consuming
• Multiple criteria are allowed • Probably not able to discriminate
• Correctly discriminates the regions that have shadings in the image
similar features • Variation of intensity may cause
• Performs well in certain types of noise over-sized segmentation
• Produces good segmentation results when edges
on original images are visibly clear

Table 4.2:The pros and cons of seeded region growing method

Essential issues about seeded region growing:

There are two main concepts about seeded region growing:
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a) Selecting the correct initial seed points is extremely important; however the selection is

bound to vary from person to person or be diverse for different applications.

b) The more information (e.g. average intensity or varianceof gray level image, colour and

texture) about the image there is, the better the results that can be achieved.

4.4 Active Contour Models(Snakes) for Contour Detection

4.4.1 Overview of Active Contour Models

Explicit or implicit object features should be detected andcomputed at every possible image

position for detecting objects. Up to now, diverse object features have been investigated (e.g.,

intensity, texture, shape, colour and motion). Shape playsa key role both in 2D space object

contour pattern recognition and 3D object surface recognition. For example, contour infor-

mation of the human body and organs is an essential measurement for biometrics, medical

diagnosis and clinical analysis. For example, the ventricle of a beating heart is tracked for

cardiac action analysis. Naturally, colour and size cooperating with shape could offer a pow-

erful realisation for object search. Based on this concept,the 2D shape (e.g. object contour)

was selected as the main feature used in the object segmentation algorithms using this work.

When using the object feature of shape, a primary trend to tackle the computational problems

is the model-based vision. To formulate visual models that unite the representation of shape by

combining physics and geometry, a family of deformable models was proposed in the 1980s.

The deformable models that depict object shapes (namely active shape models) include diverse

forms (e.g., deformable contours, deformable surfaces anddeformable templates). They are

a free-form geometry that has the dynamics of elastic contours, surfaces and templates. In

this section, we focus on deformable contours that are knownas active contours (snakes) re-

stricted to the plane. Snakes are now extensively applied invarious computer vision and image

processing applications comprising segmentation, edge detection, motion tracking and shape

modelling.

The snake for the estimation of object contour was first introduced by Kasset al. [100]. An

energy minimising function, a weighted combination of external and internal energy, are used to

a deformable contour in order to estimate the real object border. Each individual contour point

of the snake seeks its new position iteratively to move towards targeted region boundaries via

the energy function minimisation. The external energy governs the attraction force (e.g. image
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gradients that govern the contour deformation), while the internal energy directs the intrinsic

continuity force of the contour itself. As a snake evolves byminimising energy, often the terms

such as “wriggle” and “slither” are used to describe the process. The model proposed in [100]

executes a global investigation to optimise the energy function. In addition, the snake is an

“active” model and is most ideally initialised near the object boundary.

A lot of greedy strategies have been proposed to decrease snakes’ computational complex-

ity [101–103]. These greedy approaches seek local 4- or 8- neighbours, instead of seeking the

optimisation of the global information, to accelerate the convergence of the snakes. Moreover,

a gradient vector flow (GVF) field is proposed to be the term of the external force in the snake

model, widely known as GVF snake, it is relatively robust forobject contour detection [104].

4.4.2 Original snake models

The original snake model [100] in the image is thus defined by aset of n points

Vj = (xj, yj) (4.5)

wherej=0,1,2,....,(n-1). Its energy-minimising function in general is defined as

Esnake =

∫
1

0

Esnake(v(s))ds =

∫
1

0

Einternal(v(s)) + Eexternal(v(s))ds (4.6)

herev(s) represents the snake deformable contour and arc length denotess∈ [0.0, 1.0]. In ad-

dition, Einternal andEexternal denotes the internal energy of the snake because of the curvature

and external energy deforming on the snake, respectively.

(a) An internal energy term (Einternal)

Einternal = Econt + Ecurv =
1

2
(α(s) | vs(s) |

2 +β(s) | vss(s) |
2) (4.7)

whereEcont is the energy of the snake contour andEcurv denotes the energy of the snake cur-

vature. In addition,α(s) andβ(s) are two weighting parameters. The 1st-order derivatives

vs(s) and 2nd-order derivativesvss(s) of v(s) denote the continuity and stretch contour forces,
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(a) The sketch map of the motion of segmenting anchor
by snakes

(b) The lips segmentation by the snake

Figure 4.3: Samples of the original snake segmentation.

respectively. They make the snake deform like a membrane andlike a thin plate, respectively.

The bigger the value ofα(s), the more sensitive the energy function is to the amount of stretch.

Likewise, a bigger value ofβ(s) will raise the internal energy of the snake as it evolves more

rapidly into curvature, whereas small values ofβ(s) will make the energy function less respon-

sive in forming a curvature in the snake. The combination of smallerα(s) andβ(s) allows a

more detailed modelling of the snake shape, at the cost of a longer computation time.

(b) An external edge based energy term (Eexternal)

Eexternal = Eimage + Econ = WlineEline +WedgeEedge +WtermEterm (4.8)

whereEimage denotes the image acting on snakes andEcon serves as an external constraint force

introduced by programmer. In addition,Eline, Eedge andEterm represent line functional, edge

functional and terminations, respectively. By adjusting the weights,Wline, Wedge andWterm to

suitable values, the main features in the image may be extracted.

Two samples of the original snake segmentation are given in Figure 4.3. Figure 4.3a depicts

an example application segmenting an orange colour anchor.The red arrows represent the

attractive forces towards anchor points,a(i), as well as the repulsive forces. Figure 4.3b shows

another example where the snake is employed to track a person’s lip.
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Alternatively,Eexternal could be defined as negative magnitudes of image gradient:

Eexternal = − | ∇(Gσ ∗ I(x, y)) |2 (4.9)

hereI (x, y) denotes the processed image,∇ represents the gradient operator, andGσ denotes

the Gaussian filter with standard deviationσ. From the calculus of variations, the minimisation

of the function of the snakeEsnake can be obtained by solving the following equations:

αvss − βvssss −∇Eexternal = 0 (4.10)

wherevssss is the4th derivatives ofv(s). v(s) can be regarded as a function of timet and an

iterative optimisation procedure can be employed in order to solve equation (4.10). An initial

estimate of the solution can be obtained as follows [100,104],

vt(s, t)− αvss(s, t)− βvsss(s, t)−∇Eexternal = 0 (4.11)

herevt(s, t) denotes the1st partial derivative ofv(s, t)in regard tot. The original snake model

combines external and internal energy together, by which a snake is deformed towards targeted

region contours.

On one hand, a smaller external energy is resulting from the object contours that usually have

bigger gradient magnitudes. Therefore, the minimised external energy modifies the contour

according to the status of the image gradient where it is processed. On the other hand, the

minimised internal energy retains compactness and smoothness of the shape of the contour, but

it probably degenerates to a single point in the difficult case. In conclusion, the deformation

of the snake is governed by two different forces, the external and internal energy items, and

the equation (4.6) demonstrates a compromise between the external and internal energy by

the weighting parametersβ(s) andα(s). Regrettably, for original snake models, the external

force is limited to regions adjacent to the object contours.The snakes perform badly and are

most likely fail to estimate them as the contours of the snakeare initialised far from object

contours. The snakes implemented by original image gradient fields also failed in converging

to the concave parts of the targeted boundary for the same reason. It is therefore widely known

that the snake models are a good approach to estimate object borders based on edge-based
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segmentation techniques by giving an accurate initial maskof the contour. In addition to this,

global energy minimisation takes a quite high computational cost. Aforementioned problems

are three main drawbacks of the original snake segmentation.

4.4.3 Greedy snake models

The greedy snake models [101–103,105] adopt a local seekingscheme instead of global opti-

misation during the energy-minimising process. Each individual snake pointi moves toward its

next location within m-neighbours (normally, 4- or 8-neighbors) with lowest Energy Function

energy by comparing the snake energyEi
snake,j:

Ei
snake,j = α(i)Ei

curv,j + β(i)Ei
cont,j + γ(i)Ei

image,j (4.12)

here j= 1, 2, ...,mdenotes the index of a neighbourhood. In addition,α(i) , β(i) , andγ(i) are

position dependent weighting parameters. Moreover,Ei
curv,j andEi

cont,j represent the curvature

(stretch) and continuity forces in the internal energy respectively,Ei
image,j here is the external

energy. The curvature energy termEcurv and the continuity energy termEcont are defined as:

Ecurv =| vi−1 − 2vi + vi+1 |
2 (4.13)

Econt =| vi − vi−1 |
2 (4.14)

wherevi denotes coordinates of thei-th snake point. The external energy termEimage normally

corresponds to the gradient of an image, as given in equation(4.9). The greedy snake algorithm

is to seek a point whereEsnake,j is minimal amongm-neighbours. It iterates until a “termination

condition” is met. This can be defined by a max number of iterations or the stability of the

position of the points. The computational cost is thereforelimited; however, the greedy snake

contours become very sensitive to the Gaussian and Salt and Pepper noise.
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4.4.4 Gradient Vector Flow (GVF) Snake

The active contour model based on the GVF field was proposed byXu and Prince [104] to

have less sensitivity to initial contour conditions and to solve a related problem that snakes are

unable to converge into concave shapes. The GVF field utilises a field of vectors, which is the

replacement for the original external force of Kass’ snake [100]. For any image pixel(x, y),

every vectorV (x, y)= (s(x, y),t(x, y)) is computed by minimising the energy function:

ε =

∫∫
µ(s2x + s2y + t2x + t2y)+ | ∇f |2| V −∇f |2 dxdy (4.15)

hereµ is a regularisation parameter,∇f denotes the gradient value of the edge mapf derived

from the input imageI (x, y) and the subscripts denote partial derivatives in regard to the x

andy axes. The∇f (e.g. the gradients are propagated from targeted object contours to ho-

mogeneous areas) will be estimated byV (x, y)after the minimisation process. Although the

presently processed pixel is far from them, every GVF vectorpoints still towards targeted region

contours [106]. For stronger resistance to local noise thanthe traditional image gradients, the

external energy term equation (equation 4.9) is then replaced by the GVF field. The GVF snake

therefore could estimate object borders even if some concave parts of targeted object borders

exist or the initial mask of the contour is given far from them. The regularisation parameterµ

should be restricted to 0∼0.25 because the traditional GVF field reaches stable statusonly with

the condition of Courant-Friedrichs-Lewy step-size [104]. In addition, this GVF snake model

still needs human interaction (e.g. offering initial masksfor snakes).

4.4.5 Active contours without edges (Chan-Vese)

Tony Chan and Luminita Vese (Chan-Vese) introduced a snake model to segment objects in

an image by using a combination technique of level sets, curve evolution and Mumford-Shah

functional for object estimation [107]. The C-V model can estimate the boundaries of objects

with or without gradient, dissimilar to the original activecontour model. Furthermore, their

model uses a formulation of level set, permitting an initialmask to be set at anywhere in the

image and the interior contours to be segmented automatically. (Figure 4.4).

AssumeΩ be a bounded open subset ofR2 andC be an evolving curve representing the border

of the open subsetω of Ω, with ∂ω. The direction N stands for propagating in normal direction.
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Figure 4.4: Curve C=(x, y) : ϕ(x, y)=0 propagating in all normal directions till it reaches
resting points (ϕ =0).

In addition, letu0: Ω → R be a given image which is composed of two regions with roughly

piecewise-constant intensities. The curveC is defined implicitly by the zero level set of a

Lipschitz functionϕ:Ω → R , therefore:





C = ∂ω = (x, y) ∈ Ω : ϕ(x, y) = 0

inside(C) = ω = (x, y) ∈ Ω : ϕ(x, y) > 0

outside(C) =
Ω

ω
= (x, y) ∈ Ω : ϕ(x, y) < 0





(4.16)

where x andy represent co-ordinates on a given imageµ0. Its energy function of the imageµ0

can be defined as:

F (c1, c2, C) = µ · L(C) + ν · a((C))

= λ1

∫

in(C)

| µ0(x, y)− c1 |2 dxdy + λ2

∫

out(C)

| µ0(x, y)− c2 |2 dxdy
(4.17)
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wherec1 , c2 are the constants, depending onC, L(C) denotes the length of the curveC , anda

represents the area of the inside region, respectively. Other parametersµ, v, λ1, λ2 are positive

fixed constants. Between the two regions on the imageµ0, the boundary of the object could be

detected by the zero-level curve whereϕ(x, y)=0.

4.4.6 Other snake models

In original snake model (see Section 4.4.2), minimisation of snake energy is achieved by util-

ising the calculus of variations. In [108] and [109], a dynamic programming snake model

was proposed to tackle the variation problems in computer vision. The balloon model using

a Galerkin solution of the finite-element method was proposed [110, 111] for snake energy

minimisation. This model considers the contour as an inflated balloon and utilises an inter-

nal pressure force to permit the snake to deal with a problem of isolated energy valleys which

arise from spurious edge points. The snake models which portray the deformation of contour

explicitly as an energy minimising process are classified asenergy-minimisation based snakes

[100–105]. For more details of the behaviour of energy minimisation please refer to Section

4.4.2. A geometric snake model which depicts contours implicitly as level sets of 2D scalar

functions was also proposed [112]. The geometric snakes, implemented by using the level set

technique [113–116] and based on the curve evolution theory[117], are deformed via only

geometric measures. In this model, a contour is evolved according to a speed function con-

strained by the inverse of gradient magnitude and governed by the level set curvature, leading

into the evolution of snake contour. However, the geometricsnake probably ran over the object

boundaries and will not return back when the boundaries are broken or have low contrast.

4.4.7 Summary of snake models

As described in the preceding sections, snake models provide a quite useful technique to detect

object boundaries. Two primary drawbacks of original snakemodels, for example, sensitivity

to initial conditions and high computational complexity, are almost tackled by GVF and greedy

snake models, respectively. However, the initialisation of the snakes, generally executed by

human interaction, is not solved yet. The users have to manually offer a contour as the initial

mask for snakes. It is not only a time-consuming but also a very tedious task. In addition,

different initial snakes may produce different results, making them not reliable enough. As a

result, automation of snake initialisation has recently become one of the critical issues in snake
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processing. In energy-minimisation based snake models, a momentous task is to adjust the

weighting parameters between the external and the internalenergy items in order to compro-

mise the behaviour of snake contours with different image contents.

These weighting parameters have to be adaptively adjusted,not only for varing image contents

but also during snake iterations because the snake contoursare faced with multifarious image

data. The parameters setting of original snakes normally requires human experimentation and

is invariable all over the whole image. It is crucial to offerspace-varying parameters automati-

cally. Hence, in this thesis, one of the primary goals is to provide fully automated snake-based

schemes for object contour detection in the fundus image.

4.5 Chapter Summary

In this chapter, a thresholding technique was first introduced. Each pixel in an image is regarded

as an “object” pixel if the intensity value of the pixel is higher than a certain threshold value and

as a “background” pixel otherwise during the thresholding process. This kind of convention is

widely known as a threshold technique. Existing thresholding approaches implemented by five

different techniques (e.g. object attribute-based, histogram-based, cluster-based, spatial-based

and entropy-based) were listed.

The concept of region growing was then described. Region growing could be regarded as a

pixel-based segmentation approach because the selection procedure of initial seed points is in-

volved. This image segmentation method determines whetherthe neighbouring pixels of initial

“seed points” should be merged to the region iteratively. Finally, different types of active con-

tour (snake), including traditional snake, greedy snake, GVF snake and Chan-Vese method,

were discussed briefly. As stated in the aforementioned sections, snake models are a useful

technique for image segmentation. However, precise initialisation, often set by human exper-

imentation, is usually required for getting reasonable results in different applications. Based

on the techniques introduced in this chapter, the necessarybackground of image processing

techniques to this PhD work has been established.
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Chapter 5
Optic Disc (OD) and Parapillary
Atrophy (PPA) Analysis: Colour

Morphology and Chan-Vese Snake

Three different methods to segment PPA and OD region are described in Chapter 5, Chapter 6

and Chapter 7, respectively.

The aim of this chapter is twofold: to implement an aforementioned technique (See Chapter

2) to the OD segmentation and provide a novel method to both segment OD and PPA. The

novel technique exploits both red and blue channels of the colour fundus image to strengthen

information extraction from features (OD and PPA) whilst keeping interference to a minimum.

The PPA and OD region were segmented using the morphologicaloperation and Chan-Vese

(MOCV) model.

5.1 Previous work: The GVF Snake on the OD segmentation

By applying a snake to the OD region extraction and comparingthe outcome against the ground-

truth information labelled by an ophthalmologist, the efficiency of different boundary detection

methods can be evaluated. A gradient vector flow (GVF) snake method was proposed [118],

described in detail in Section 4.4.4, for segmenting the OD on nine retinal images followed by

a minimisation of the effect on the value of the force or of theenergy because of high gradient

at vessel locations. The results indicate that a GVF-based snake can be used in association with

a pre-processed 2D fundus image to extract an accurate boundary of the OD region. The colour

images were converted from RGB space to YIQ basis prior to processing.

The pre-processing technique integrates a minima detection scheme and a morphological cor-

rection technique together, which yields an intact OD region. For the GVF snake, Mendelset al.

[118] conducted initial studies of the range of initialisation conditions that offer convergence,
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and found that reasonable results can be obtained from quitedistant initial conditions (e.g.,

circles ranging from an estimate half to double the radius ofthe OD). Three ophthalmologists

have reviewed the OD region extracted by Mendelset al.’s proposed technique, and consider it

as a promising tool for clinical use.

5.2 Proposed Approach: Using Colour Morphology and Chan-Vese

Snake on the OD segmentation

5.2.1 Method

The experimental protocol are described in detail in Figure1.4, Chapter 1. In addition, the steps

used in our proposed method, MOCV, are shown (See Figure 5.1)

The variation of the intensity between the brightest parts (e.g. the OD and PPA) and the retinal

blood vessels is comparatively high. In particular, the blood vessels are generally at a lower

intensity level in regard to the background (See Figure 5.2).

Pre-processing of the image is essential because snake methods only work well on an image

with homogeneous regions enclosed by intense gradient information. Applying them directly

to the fundus images is extremely difficult, as the area of theOD and PPA is always divided into

several regions by the retinal blood vessels. Gray-level morphology operations has been used

previously [28, 31, 33, 37, 40, 55] to eliminate the retinal blood vessels to produce a relatively

homogeneous region before applying snake methods to the image. Similar morphological op-

erations are equally applicable to the red and blue channels. These two channels were adopted

specifically because the blood vessels were found least influential in the red channel and the

region of OD-plus-PPA was found most well-defined and less influenced by blood vessels in

the blue channel. Pre-processing techniques are thereforeapplied separately on the red and blue

channels in order to segment the OD and the OD-plus-PPA respectively.

5.2.1.1 Average filtering

Average filtering operator was chosen here for two reasons: (a) it could eliminate random

noise with less computational cost compared with median filter; and (b) with a large kernel, it

could also act as a vessel removal function. On the red channel (Figure 5.3a), the size of the
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Figure 5.1: Processing steps of proposed methodology.
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Figure 5.2: Original fundus image with the OD plus PPA.

averaging filter is defined as 14×14 pixels, including equal weights of value “1”, because the

retinal blood vessels are usually smaller than 12 pixels [55]. The retinal blood vessels with

low intensity variation are removed by using this operation, whilst keeping the boundary of the

OD comparatively unaltered. In addition, the average filteris implemented via the following

equation [55]:

FI =
1

m× n

m×n∑

i=1

Ri (5.1)

here m=14 and n=14. The filtered imageFI is shown in Figure 5.3b.
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(a) (b) (c)

Figure 5.3: Pre-processing on the Red Channel: (a) original fundus image (b) fundus image
after average filtering the vessels have almost removed (c) fundus image after con-
trast adjustment.

5.2.1.2 Contrast adjustment

It is more reliable to work on the red channel because there isa good contrast between the

OD region and the background. To make the OD more distinguishable from the background,

a typical contrast modification operation was applied to theimages. The intensity values in

grayscale image, Figure 5.3b, to new intensity values in theadjusted image, Figure 5.3c, such

that 1% of data is saturated at low and high intensities of thegrayscale image, Figure 5.3b. This

increases the contrast of the adjusted image, Figure 5.3c.

5.2.1.3 Morphological operations

Standard morphological operations (erosion and dilation)were used to first remove the reti-

nal blood vessels in the OD region and then to restore the boundaries back to their original

positions. The original fundus image is shown in Figure 5.4a. A symmetrical circular shape

structuring element of erosion or dilation operator with 14pixels was set here. Intuitively, dila-

tion operation expands the retinal blood vessels and erosion operation shrinks it. Therefore, the

combination of erosion and dilation can alleviate the effects of blood vessels that have fewer

than 14 pixels, as illustrated in Figure 5.4b.
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(a) (b)

Figure 5.4: Pre-processing on blue channel: (a) original fungus image,and (b) after operation
most vessels have been removed.

5.2.1.4 Chan-Vese Snake

Previously, although GVF snake has been applied to detect ODboundary, it performed poorly

when the condition of PPA was present. Topological changes,corners and cusps due to the PPA

complicated the task. The Chan-Vese [107] was thus adopted,described in detail in Section

4.4.5, to estimate objects whose contours are not necessarily defined by gradient. In addition,

the energy function of the imageµ0 can be defined as:

F (c1, c2, C) = µ · L(C) + ν · a((C))

= λ1

∫

in(C)

| µ0(x, y)− c1 |2 dxdy + λ2

∫

out(C)

| µ0(x, y)− c2 |2 dxdy
(5.2)

hereC is any other changing curve, andc1 , c2 are the constants, depending onC, L(C) denotes

length of the curveC , anda represents the area of the inside region, respectively. Letthat the

imageµ0 is formed by two regions of approximatively piecewise-constant intensities. Other

parametersµ, v, λ1, λ2 are positive fixed constants. In our application, we experimentally set

the step size of the energy function Equation (5.2) at 0.5 to ensure our snakes stopped at the

desired boundary.
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5.2.2 Experimental Results and Discussions

The colour fundus photograph images from a database of a wellcharacterised cohort [22] was

used for the experiments. In order to assess the performanceof the proposed model for de-

tecting the OD boundary, the results of the proposed approach were compared with the results

obtained from the GVF snake method [55]. For the GVF snake method, Osarehet al.applied

morphological operations on the images for pre-processing, and experimentally set the parame-

ters of energy functions to balance the accuracy and the smoothness of the final contour. Fundus

images were specifically classified into two categories, i.e. normal retinal images with the OD,

and abnormal retinal images with the OD plus PPA.

The results are shown in Figure 5.5. The first column shows theresults obtained from the

normal retinal images. Results of abnormal retinal images (i.e. with PPA) are given in the sec-

ond column. Viewing row by row, the first row (a& b) shows the original fundus images. The

second row (c& d) presents the results of GVF snake method. The last row (e& f) presents the

results based on the proposed MOCV model.

Compared to the GVF snake method, the MOCV has the following merits: (1) It is less sus-

ceptible to the interference effect of blood vessels (2) it makes no prior assumption about the

shapes of the OD and PPA, (3) it provides a more accurate description of the boundaries.

The accuracy of the contour localisation against the manually marked ground-truth informa-

tion drawn by an ophthalmologist for all variations of the ODand PPA morphology has been

quantified and compared. An effective overlap measure (M) has been used here [55], described

in detail in Section 2.3, of the match between estimated region and ground-truth as:

M =
N(R ∩ T )

N(R ∪ T )
(5.3)

hereR andT are equivalent to the ground estimate and the final iterationof snake-localised

boundary respectively andN(.) denotes the number of pixels within the targeted regions.

In addition, the results of the randomly selected fundus images in 20 images are shown in Table
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Figure 5.5: First row (a), (b): Example images with a close view of OD with/without the con-
ditions of PPA; Second row (c), (d): Results from GVF snake method; Last row (e),
(f): Results from MOCV method.
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5.1. The results from the MOCV method were better (almost double in mean accuracy) than

the ones from the GVF-snake method. The MOCV additionally provided a means to extract

the PPA region.

Results GVF-snake MOCV
Mean accuracy (%) 44.62 86.65
Standard Deviation 9.85 8.97

Table 5.1:The Statistical Results of OD Segmentation in 20 Images

5.3 Chapter Summary

In this chapter, a novel approach, MOCV, has been described for segmenting the OD and PPA

automatically in fundus images. The performance of the MOCVhas been evaluated using a set

of standard retinal fundal photograph images. Compared to the published works, experimental

results showed that the MOCV performed better in detecting the OD and, for the first time,

demonstrated successfully the detection of the boundary between the OD and PPA in a retinal

image. The MOCV can estimate the OD contours of those bright objects with accurate contours

with a mean accuracy level of 86.65% (S.D.=8.97). For early diagnosis of ophthalmological

diseases, the model described in this chapter is potentially very promising in computer-aided

screening system. Moreover, by providing a way to detect theregion of PPA, a new dimension

is added to the standard eye-diagnosis.
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Chapter 6
Optic Disc (OD) and Parapillary

Atrophy (PPA) Analysis: Multiple
image processing techniques

In Chapter 5, an attempt to segment the Parapillary Atrophy (PPA) and Optic Disc (OD) us-

ing morphological operations and the Chan-Vese model was described. The MOCV method

is promising in segmenting the OD region; however there is still room for an improvement.

This chapter introduces another novel technique to define the size of the OD and PPA, which

provides more accurate results.

The novel technique, named MULIPT, exploits both red and blue spaces of the colour fundus

image to maximise information extraction from features (ODand PPA) whilst keeping inter-

ference (e.g. blood vessels and artifacts) to a minimum. TheOD region was segmented using

the Chan-Vese model with an elliptical shape constraint. This region was then removed from

the image (OD-plus-PPA), which was cropped using a modified Chan-Vese method, yielding a

first-order estimation of the PPA region. Its boundary was subsequently refined by using scan-

ning filter, thresholding and multi-seeded region growing methods. Much of the work described

and discussed in this chapter has been previously publishedin [119,120].

6.1 Background Study: Chan-Vese Snake with elliptical constraint

on the OD segmentation

Because the OD appears more or less an ellipse or a circle, Tang [121] proposed a modified

C-V model which included an elliptic shape constraint imposed on zero-level set function in

C-V model (Described in detail in Section 4.4.5). The new “fitting energy” functionE is then:

inf{E[c1, c2, ϕ|µ0]} = α

∫

Ω

(µ0 − c1)
2H(ϕ) + (1− α)

∫

Ω

(µ0 − c2)
2(1−H(ϕ)) (6.1)
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Subject to

ϕ = 1− [
((x− x0) cos θ + (y − y0) sin θ)

2

a2
+

(−(x− x0) sin θ + (y − y0) cos θ)
2

b2
]
1

2 (6.2)

where

Lipschitz functionϕ : Ω → ℜ of R2,

α > 0 is a fixed parameter,

H (ϕ) denotes the Heaviside function.

x0, y0, θ, major axis(a) and minor axis(b) denote the ellipse parameters at the parameters of

the ellipse atϕ=0.

In addition, the evolutions related to the Euler-Lagrange equations are:





da(t)

dt
= −

∫

Ω

[α(µ0 − c1)
2 − (1− α)(µ0 − c2)

2]δ(ϕ)A(
1

a3
)dxdy

db(t)

dt
= −

∫

Ω

[α(µ0 − c1)
2 − (1− α)(µ0 − c2)

2]δ(ϕ)B2(
1

b3
)dxdy

dx0(t)

dt
= −

∫

Ω

[α(µ0 − c1)
2 − (1− α)(µ0 − c2)

2]δ(ϕ)Ldxdy

dy0(t)

dt
= −

∫

Ω

[α(µ0 − c1)
2 − (1− α)(µ0 − c2)

2]δ(ϕ)Mdxdy

dθ0(t)

dt
= −

∫

Ω

[α(µ0 − c1)
2 − (1− α)(µ0 − c2)

2]δ(ϕ)Ndxdy





(6.3)

where,δ(ϕ) denotes the Dirac function and

c1=(
∫
Ω
µ0H(ϕ)dxdy)/(

∫
Ω

H(ϕ)dxdy)

c2=(
∫
Ω
µ0(1-H(ϕ))dxdy)/(

∫
Ω

(1-H(ϕ))dxdy)

A=(x− x0) cos θ+(y− y0) sin θ

B=-(x− x0) sin θ+(y− y0) cos θ

L=Acos θ/a2-Bsin θ/b2

M=Asin θ/a2+Bcos θ/b2

N=AB[1/b2-1/a2]

with a condition of
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ϕ0(x, y) = 1−

√
(x− xc)2 + (y − yc)2

R
(6.4)

Also, the initial conditions of the equation (6.3) could be set as follows:





a(t) |t=0= R,

b(t) |t=0= R,

x0(t) |t=0= xc,

y0(t) |t=0= yc,

θ(t) |t=0= 0.0,





(6.5)

hereR is a positive constant. Therefore, the steady solution of equation (6.2 and 6.3) at timeT:

1 = [
((x − x0(T )) cos(θ(T )) + (y − y0(T )) sin(θ(T )))

2

(a(T ))2

+
(−(x− x0(T )) sin(θ(T )) + (y − y0(T )) cos(θ(T )))

2

(b(T ))2
]
1

2

(6.6)

Tanget al.’s model was examined with the 50 trials, including 20 poor quality (low contrast)

fundus images. The performance of their model in detecting the OD region and in computing

its shape is robust to noise and the OD deformity. However, the model failed to estimate the

OD shape as the OD feature acquired in red channel is insufficient.

6.2 Segmentation and Quantification Tool for the Size of OD and

PPA region

6.2.1 Proposed Method

The experimental protocol are described in detail in Figure1.4, Chapter 1. The original soft-

ware code of implementation of Chan-Vese algorithm was downloaded from MATLAB CEN-

TRE and the rest of scripts were written by Cheng-Kai Lu. The variation of the intensity

between the bright objects (e.g. the PPA and the OD) and the retinal blood vessels of the fun-

dus image was relatively high (see Figure 6.1a). Conversely, the blood vessels were in general

at a lower intensity level with respect to the background.

77



Optic Disc (OD) and Parapillary Atrophy (PPA) Analysis: Multiple image processing
techniques

Figure 6.1: Flow chart shows the extraction of the PPA and the OD regions.
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The proposed algorithm, MULIPT, combined a collection of image processing techniques (Fig-

ure 6.1).

1. Channel Selection:

The OD region could be reliably detected in the red channel asit appeared brighter than the rest

of the fundus image while the blood vessels appeared least influential [37]. The region consist-

ing of both the OD and the PPA (hereafter referred to as the region of OD-plus-PPA) was also

well-defined in the blue channel. Therefore, fundus images were initially pre-processed in two

channels (Red and Blue) of the RGB space to reduce the interference of blood vessels and to

better distinguish the regions of OD and PPA.

2. OD-plus-PPA region segmentation:

The OD-plus-PPA was segmented by a modified C-V model in the blue channel (Figure 6.1b

and c).

3. OD region segmentation:

A variant of the C-V model with a shape restraint was applied to segment the OD region in the

red channel (Figure 6.1d and e). In this case, the restraint was based on an ellipse reflecting the

actual shape of an OD. Here, the fixed parameter,α , of the C-V model is the experimentally

set at 0.6.

4. PPA region segmentation:

The first order estimation of PPA region was produced by removing the OD region from the re-

gion of OD-plus-PPA. Moving back to the blue channel, the segmented image was then equally

divided into four zones automatically. Based on the auto-set thresholds acquired from each

zone, the image was then filtered to reduce the influence of crossing vessels and artefacts (Fig-

ure 6.1f). Finally, the PPA region was extracted by using a multi-seed region growing method

[99] (Figure 6.1g).

A. OD-plus-PPA region and OD segmentation using modified C-VModel

As the OD region appears to be more or less an ellipse, Tang’s model [121] which integrated

the C-V model with an elliptical shape constraint was adopted. It was also used to segment the

OD-plus-PPA region. However, the PPA region may sometimes appear in an irregular shape, so
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the rules for the evolution of the C-V model had to be modified slightly. The set of starting C-V

model points, also known as the initial mask, was arranged tobe in an ellipse as per normal.

However, the model was then allowed to deform freely as it edged closer to the boundary of the

OD-plus-PPA in each subsequent iteration. This allowed themodel to produce an enclosed but

not necessarily elliptical shape, which was always bigger than the exact region of the OD-plus-

PPA.

Next, Tang’s C-V model was exploited to detect the OD region.In order to accurately seg-

ment the OD, two modifications to the model were introduced. Firstly, Tang’s equation (6.3)

was restored to its original form (of an ellipse):

da(t)

dt
= −

∫

Ω

[α(µ0 − c1)
2 − (1− α)(µ0 − c2)

2]δ(ϕ)A2(
1

a3
)dxdy (6.7)

Secondly, a new way to automatically detect the centre of OD for more accurate segmentation

was introduced. The raw image was divided into four sub-regions. Then, the approach used in

Tang’s model to estimate the initial mask centre(x0, y0) was adopted. The initial function was

chosen as equation (6.4)

In equation (6.4),R is the estimated radius of the OD and could be simply taken as:

R = min(min[x0/2, (w − x0)/2],min[y0/2, (h − y0)/2]) (6.8)

herew andh are the width and height of an image respectively.

Then, the algorithm automatically calculates the offset,fx andfy, of the initial mask centre

(xc, yc), based on the histogram of intensity value of each of the fourregions. The updated

initial mask centre is thus:

(x′0, y
′

0) = (x0 + fx, y0 + fy) (6.9)

B. Auto-set of Thresholds and Scanning Filter

In order to eliminate the unwanted pixels in the over-sized OD-plus-PPA region, threshold

values from the histogram of intensity values in the four sub-regions were acquired. In this
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context, the threshold was set by the brightest 30% of all pixels in each region. This produced

a better-defined OD-plus-PPA region. The OD region was then subtracted resulting in the first

order estimation of the PPA region as illustrated in Figure 6.1f.

The PPA region is a non-homogeneous region divided into multiple sections by a few crossing

blood vessels. We therefore proposed the use of a scanning [1x3] filter to create a path through

the vessels for the following region growing model to reach different sections of the PPA.

C. Multi-Initial Seed Region Growing

The seeded region growing technique was first introduced by Adams and Bischof [99]. It starts

with several initial seeds and then adds adjacent points as new seeds, beginning with the points

of lowest priority. The priority is defined by a distance function. The distance of each pixel to

a contiguous region [31] is defined by:

R(x, δi) = [I(x)−meanj ∈ δi(I(j))] (6.10)

whereI(x) is the gray image value of the point x(element)δ andδi the region labelledi. Setting

both the right initial seed and distance function are some ofthe most important steps in PPA

extraction.

The algorithm automatically placed one initial seed in eachof the four sub-regions and exper-

imentally set an optimal distance function at the value of 0.45 for each sub-region. Each seed

was then allowed to grow until the regional threshold distance set by equation (6.10) has been

met. Finally, the results at all four sub-regions were combined to produce an integrated PPA

region. By combining the techniques listed above, our methodology permitted the full use of

both global and local information for PPA and OD segmentation.

6.2.2 Experimental Results

For the experiments, colour retinal images drawn from the Lothian Birth Cohort (LBC), a 1936

study described in Section 1.4 were used. A total of 94 colourfundus images (including 18

poor quality images as determined by an independent and experienced human assessor) from

66 subjects were randomly selected. Without knowing the segmentation results from the pro-

posed tool, the human assessor provided the ground estimateof the OD and the PPA region in
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(a) (b)

Figure 6.2: Two segmentation results from the proposed algorithm. Shown are (a) good-quality
and (b) poor-quality images.Black solid line: the ground estimate;black dotsand
thered triangle:the estimated PPA and OD regions, respectively.

the images. Subsequently, the area enclosed by the ground estimate was counted pixel by pixel

with a commercial software package Photoshop (Adobe Systems Inc., San Jose, CA, USA) to

quantify the size of each region. This was repeated with the segmentation results from the tool.

Figure 6.2 and Figure 6.3 show two and six samples from the segmentation results of the

MULIPT, respectively. In both Figure 6.2 and Figure 6.3, thefirst column depicts the results

obtained from good quality images while the second column depicts the results from poor qual-

ity images. The ground estimate is drawn on the black solid line. The results of estimated PPA

and OD region are enclosed by the spots and red markings, respectively.

Figure 6.4a shows the comparison of the OD area size (in arbitrary pixel units), based on the

ground estimate, and the estimated OD area size, determinedby the proposed tool in the 94 tri-

als, with a line of best fit. Figure 6.4b shows a similar graph but for the PPA area size estimation.

The results suggest that the MULIPT was able to detect the general boundary of OD and PPA.

However, it tended to terminate the snake evolution prematurely on all good quality images;

hence the results appeared to under-estimate the actual size. This is less consistent in the case
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Figure 6.3: Six segmentation results from the proposed algorithm. Shown are (a, c, e) good-
quality and (b, d, f) poor-quality images.Black solid line: the ground estimate;
black dotsand thered markings: the estimated PPA and OD regions, respectively.
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(a)

(b)

Figure 6.4: The correlation between the ground estimate (x-axis) and the results obtained by
the proposed MULIPT tool (y-axis) in quantifying the size ofeach region, in arbi-
trary pixel unit. (a), (b): direct estimation results of OD and PPA from the tool,
respectively. The correlation coefficient is found to be 0.98 in both cases.
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(a)

(b)

Figure 6.5: The correlation between the ground estimate (x-axis) and the results obtained by
the proposed MULIPT tool (y-axis) in quantifying the size ofeach region, in arbi-
trary pixel unit. (a),(b): estimation results of the OD and PPA region after calibra-
tion such that y=x. The correlation coefficient is found to be0.98 in both cases.
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of poor quality images where the intensity variation/resolution in defining the boundary of OD

is limited. Figure 6.3d shows a good example when the model missed the mark by pushing

the boundary into the scleral rim. Overall, it appears that most of the estimation results in the

94-trials are under-estimated. This is confirmed by the gradients (both<1) of the best-fit lines

in Figure 6.4a and Figure 6.4b. Therefore the estimation model was calibrated using these val-

ues as scaling factors. The final estimation results are plotted in Figure 6.5a and Figure 6.5b.

As shown, a correlation coefficient of 0.98 (max=1) is achieved in the size estimation of both

the OD and PPA region. This suggests that the estimation is not stochastic but fairly consistent

with the ground estimate defined by an ophthalmologist (i.e.the best-fit line is defined by the

equation y=x).

Before After
Calibration Calibration

Results PPA OD PPA OD
Mean accuracy (%) 88.2 90.0 93.8 94.0
Standard Deviation 5.85 6.20 5.26 5.88
Correlation coefficient,R2 0.98 0.98 0.98 0.98

Table 6.1:The Statistical Results of PPA and OD Segmentation in 94 Trials

6.2.3 Validity of the Proposed Method

Three methods were used to validate the proposed MULIPT model. Firstly, the mean accuracy

(M.A.) of the model was calculated, which is given by:

M.A. = [1−

∑n
i=1

[Sa−Se

Sa

]

n
]× 100% (6.11)

whereSa represents the actual size (ground estimate) of PPA or OD, while Serepresents the

estimated size (by our model) of PPA or OD. The numerical value n is the total number of

images analysed in the experiment. Prior to calibration, the estimation model achieved a mean

accuracy level of 90.0% (S.D.=6.20) and 88.2% (S.D.=5.85),in defining the size of OD and

PPA respectively. With the same set of colour fundus images,the estimation model after cal-

ibration achieved a mean accuracy level of 94.0% (S.D.=5.88) and 93.8% (S.D.=5.26).Table

6.1 summarises the segmentation results on 94 images.
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Secondly, the sensitivity of the estimation model at different tolerance levels was calculated. In

this context, tolerance level refers to the percentage of estimation error being acceptable. When

the estimation result by this model falls within the range oftolerance, it was counted as one

correct prediction, and vice versa. The sensitivity is defined as the percentage of correct pre-

dictions over the total number of images analysed in the experiment. Clinically, the acceptable

tolerance level varies from application to application. For example, the OD appearance has

a strong relationship with visual field deficits, the lower tolerance level is therefore probably

essential for monitoring ocular diseases. On the other hand, the higher tolerance level is prob-

ably reliable enough for medics to oversee diabete. Therefore, two tolerance level, 10% and

15%, were presumably set in the validation. The model after calibration achieved a sensitivity

of 75.5% (tolerance= 10%) and 90.4% (tolerance= 15%) in estimating the size of OD region.

As expected, the sensitivity level is lower when the tolerance is smaller, and when the model

is not calibrated (see Figure 6.6a). The scattering plots inFigure 6.6b show a similar trend.

After calibration, the sensitivity of the model for the PPA region is 84.0% (tolerance= 10%)

and 92.6% (tolerance= 15%) respectively.

Third and finally, the robustness of the calibration method was evaluated for the estimation

model. 70 of the 94 images were randomly selected and a suitable scaling factor to calibrate

the segmentation results was derived, according to the aforementioned methodology. Then the

remaining 24 images were used to obtain the accuracy of the calibrated model. In this case

(labelled as ’RA’), the mean accuracy is 94.0% (S.D.=5.77) and 94.3% (S.D.=4.53) in defining

the size of OD and PPA respectively in the 24 test images. Thisexperiment was repeated by

(a) calibrating the proposed model with images that have thelargest (70/94=74.5%) PPA and

having remaining images from the dataset, i.e. those with the smallest (24/94=21.3%) PPA

as test images, and (b) calibrating with the smallest (74.5%) PPA and testing with the largest

(21.3%) PPA. The earlier (labelled as ‘HI’) achieved a mean accuracy of 92.7% (S.D.=7.53)

and 92.8% (S.D.=4.93) for size estimation of the OD and PPA region, respectively.

On the other hand, the latter (labelled as ‘LO’) achieved a mean accuracy of 93.7% (S.D.=6.98)

and 93.4% (S.D.=6.57) for the OD and PPA. Table 6.2 summarises the results, including the

previous results from calibrating with all 94 images (labelled as ‘AL’). As expected, the model

performs the worst when it is calibrated with the largest PPAimages and tested with the smallest

PPA images. However, the mean accuracy of the proposed modelis still greater than 92.7%.
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(a)

(b)

Figure 6.6: The sensitivity of the proposed tool in defining the size of (a) the OD and (b) the
PPA regions at different tolerance levels in the 94 trials. The slopes represent in
best fit for the scatterplots.
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OD PPA
HI RA LO AL HI RA LO AL

Scaling factor 0.92 0.91 0.90 0.92 0.88 0.87 0.89 0.88
Correlation coefficient,R2 0.97 0.98 0.99 0.98 0.97 0.97 0.99 0.98

Mean accuracy (%) 92.7 94.0 93.7 94.0 92.8 94.3 93.4 93.8
Standard Deviation 7.53 5.77 6.98 5.88 4.93 4.53 6.57 5.26

Table 6.2:The Statistical Results of PPA and OD Segmentation in Results in Different Combi-
nations of Calibration and Test Images

6.2.4 Discussions

Automated software has been developed to measure the size ofthe PPA and OD in a 2D fundus

image. The experimental results with a very wide variety of fundus images showed that the

proposed algorithm was not only robust for automatic PPA shape detection and area quantifi-

cation, but it could also provide the transverse and conjugate diameter of the OD as well as

PPA-to-OD ratio, which may be useful in early detection and grading of eye conditions such as

glaucoma.

The automatic detection and the quantification of OD in fundus image are particularly important

tasks in this retinal image analysis for two reasons: Firstly, the OD has similar attributes to

the PPA, both in terms of contrast and brightness, making their boundary detection a difficult

task. Secondly, the OD is often considered as a landmark which can be utilised for a coarse

localisation of area of interest in retinal fundus images, reducing the search space during the

pre-processing stage.

In this work, a dual-channel approach with a modified C-V model to segment the PPA and the

OD individually was exploited. The seeded region growing proposed algorithm particularly

aims to address the aforementioned challenges on how to maximise information extraction of

features (OD/PPA) while keeping interference (blood vessels) to a minimum.

In the previous studies, investigators were required to manually measure the PPA region in

either 2D images [10–16] or 3D images which were constructedby specially-written computer

planimetry program [6]. Compared with the work that has beendone by different groups,

there are three main merits of the proposed MULIPT method: Firstly, the software tool could

not only detect but also can quantify the size and transverseand conjugate diameter of OD

region automatically, which is a technique not fully established by the other research groups.

Secondly, the proposed software can automatically detect and quantify both the PPA region in
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2D fundus images, which is a breakthrough in the field of computer-aided tool on retinal image

applications. Based on the above two strong points, the ratio between the OD and PPA size

could also be offered by the proposed tool. Such a tool could not only reduce the workload

of the human assessor and therefore avoid problems resulting from fatigue, but also would be

more cost-effective for population-based screening.

There remain some limitations within this MULIPT method: Firstly, the software occasionally

stopped at undesired points upon encountering irregular dark pixels prior to the OD boundary.

This results in underestimation of the actual size. Secondly, the proposed algorithm estimates

the sizes of OD and PPA regions, providing a means to measure the extent of PPA. It will

be ideal if the software could also define the absolute shapesallowing the patterns in PPA

progression be studied in different eye conditions. One possible way to address the above

limitations would be to take into consideration additionallocal information (e.g. texture) and

exploit further the image fusion from multiple channels.

6.3 Chapter Summary

This chapter has demonstrated that PPA on a 2D retinal image can be quantified by means of

computer-aided software. The proposed estimation model, MULIPT, after calibration achieved

an accuracy of 94.0% (S.D.=5.88) and 93.8% (S.D.=5.26) in defining the size of OD and PPA

respectively compared with the “gold standard” of an experienced human assessor. The model

also showed high reliability in estimating the size, with correlation coefficient reaching 0.98

for both cases (OD and PPA). In terms of sensitivity, the model achieved 75.5% and 84.0%

(tolerance,±10%) in size estimation of the OD and PPA region, and higher when the tolerance

level was increased. The robustness of our calibration method was also investigated and it was

found that our model consistently achieved a mean accuracy of more than 92.7%. Moreover, it

could also provide ophthalmologists additional information, namely transverse and conjugate

diameter of the OD as well as the ratio between the OD and PPA size, with potential application

in eye screening programs. The methods developed so far are therefore promising as the basis

for a fully-automated pre-screening technique that will prioritise images for subsequent expert

human assessment.
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Chapter 7
Optic Disc (OD) and Parapillary

Atrophy (PPA) Analysis: Multiple
image processing and Edge Detection

Techniques

In Chapter 5 and Chapter 6, two different approaches were introduced to the segmentation

of the Optic Disc (OD) and Parapillary Atrophy (PPA). In Chapter 6, the experimental trials

were reasonable in defining the sizes of both the OD and PPA region, but did not perform

well enough in terms of defining the actual shape of these two regions. Therefore, a novel

imaging tool, Parapapillary atrophy AND Optic disc RegionsAssessment (PANDORA), for

assessment of both the OD and PPA is introduced in detail in this chapter. The tool is imple-

mented by a combination of image processing techniques suchas edge detection, ellipse fitting

methods, modified Chan-Vese approach, thresholding, scanning filter and multi-seed region

growing methods. In addition, clinical-knowledge has beenutilised to develop this tool. The

results show PANDORA can describe the actual shape of the regions and is more robust against

difficult conditions.

7.1 Background Study: Direct Least Square Fitting algorithm

Ellipse fitting is traditionally categorised into two typesof techniques: least squares fitting and

clustering (such as Hough-based approaches [122, 123]). The former techniques focus on the

parameters setting that minimise a certain distance measure between the ellipse and the spatial

data points. Fitzgibbonet al. [124] proposed an efficient least squares approach for directly

fitting ellipses to scattered data. A general conic fitting could be represented by an implicit

2nd-order polynomial:

F (a, x) = a · x = ax2 + bxy + cy2 + dx+ ey + f = 0 (7.1)
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where a=[a b c d e f]T andx=[x2 xy y2 x y 1]T . F(a; xi) denotes the algebraic distance of a

point (x,y) to the conicF(a; x) =0. By minimising the sum of squared algebraic distances of the

curve to theN data pointsxi, the fitting of a general conic is probably to be achieved [125].

DA(a) =

N∑

i=1

F (xi)
2 (7.2)

It is widely known that to compel the conic’s representationto be an ellipse the discriminant of

the parameter vectora of equation (7.2),b2-4ac, must be negative. However, this assumption

does not guarantee to provide an optimal solution. Here, a, band c are coefficients of equa-

tion (7.1). In the study, Fitzgibbonet al. tried to arbitrarily scale the parameters and eventually

imposed the equality constraint 4ac - b2 = 1, which minimised the sum of squared algebraic

distances from all points to the ellipse. Their results describe the advantages of the ellipse-

specificity in terms of occlusion and the sensitivity of the noise. The approach is easy to im-

plement, extremely robust and efficient, and ellipse-specific therefore even when the algorithm

encounters bad data it will always yield an ellipse. As a result, PANDORA has adopted this

method to produce an estimate of the elliptical shape of OD region.

7.2 Segmentation and Quantification Tool for the OD and PPA re-

gion

7.2.1 Proposed Method

The imaging tool called PANDORA is implemented in MATLAB (Mathworks Inc., Natick,

MA, USA). All fundus images were first cropped manually to theRegion of Interest (ROI) and

had a “ground truth” estimate of the OD and PPA regions definedby an ophthalmologist who

had not seen the results from PANDORA. The experimental protocol are described in detail in

Figure 1.4, Chapter 1. 7.1 illustrates the flow chart of the PANDORA algorithm, which can be

divided into three phases:

Phase 1: OD segmentation

This module uses an ellipse fitting technique on a (Sobel) edge map in the red channel to outline

the OD boundary.
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Figure 7.1: A flow chart for segmentation of the OD and PPA. The scheme consists of three
main phases: OD segmentation (gray), PPA detection (pale yellow) and PPA seg-
mentation (cyan).
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A. Sobel edge detection

A Sobel edge detection operator is applied to the red channelof the cropped image, generating

an edge map.

B. Create noise-free environment for elliptic fitting

The OD is planned to be extracted using a Direct Least Square Fitting algorithm of an Ellipse

(DLSFE) [124]. This algorithm yields an elliptical solution that minimises the sum of squared

algebraic distances from the image edge points to the fitted ellipse. However, this ellipse fit-

ting technique is susceptible to noise and requires pre-processing to remove unwanted pixels

from the fundus image before fitting. Therefore, a two-stagepre-processing technique is used

to eliminate noise: the first stage locates and extracts retinal vessels in the Hue channel of the

image; the second stage utilises a clustering technique with the nearest neighbour rule [126] to

isolate the OD (and the PPA) from the background.

C. Direct Least Square Fitting of Ellipses for Optic Disc segmentation

Upon completion (A& B), a DLSFE is fitted to estimate the OD boundary. To reduce fitting er-

rors, the proposed method fit the OD region iteratively untilthe centre of fitting result is within

a pre-determined “tolerance” distance from the centre of cropped image (ROI).

Phase 2: PPA detection

With the OD removed, the PPA detection module then determines the presence of PPA in the

temporal zone using prior knowledge about the nature of PPA.Note that the temporal zone is

one of the four zones in the fundus image (see Figure 7.2), in which PPA normally first devel-

ops.

A. Thresholding technique for Parapillary Atrophy determination

The thresholding technique is applied to detect the brighter pixels in temporal zone of the im-

age (See Figure 7.2) in the blue channel where the PPA appearsmost clearly. That is because

the OD is clinically divided into four zones: Temporal, Superior, Nasal and Inferior. Figure

7.2, 7.3a and 7.3f give examples of a right-eye image and a left-eye image, respectively. Figure

7.3b and 7.3g give examples of original fundus images in bluechannel.
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Figure 7.2: (a) Original colour retinal fundus image of a right eye. Annotations describe the
four different zones of a retina; (b) the OD boundary and the PPA region.

The temporal and nasal zones must be exchanged if the image isof a left-eye. As aforemen-

tioned, the OD and PPA account for the brighter region of the image (around top 12%). If the

OD region (estimated from Phase 1) is removed, PPA can be detected by the presence of bright

pixels in the temporal zone (Figure 7.3c and 7.3h). Therefore, PANDORA has been designed

with the capability to produce a mask to black out the nasal,inferior and superior area (Figure

7.3d and 7.3i). Finally, Figure 7.3e and 7.3j give the detection result as image with/without

PPA, respectively.

Phase 3: PPA Segmentation

Once detected, the PPA region is then segmented using a combination of image processing

techniques: thresholding, a scanning filter and multi-seedregion growing methods [120].

In this phase, an automated scheme [120] mentioned in detailin Chapter 6 for the extraction

and quantification of the PPA region was adopted.

A. OD plus PPA region segmentation

The scheme used an initial segmentation and estimation of the OD-plus-PPA boundary based

upon a Modified Chan-Vase analysis [121] of the blue channel.The OD region is then removed

from the OD- plus-PPA using the result obtained from Phase 1,leaving the first order estimation

of the PPA region.

B. PPA segmentation

A multi-seed region growing method is subsequently used to refine the actual PPA bound-

ary [120].
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Figure 7.3: Process of PPA detection: (a) and (f) Examples of an originalfundus right-eye
image and an original fundus left-eye image, respectively.(b) and (g) Examples of
original fundus images in blue channel (c) and (h) OD segmentation results from
Phase 1 (d) Left mask (i) Right mask (e) and (j) shown the detection result as image
with/without PPA, respectively.
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PANDORA combines these techniques and exploits both globaland local information for PPA

and OD segmentation. The results permit the OD and PPA to be assessed to derive three phys-

iological parameters (all in pixels):

(a) The size of the Optic Disc

(b) The length of minor/major Optic Disc axis

(c) The size of the PPA

The segmentation results also reveal the shape of PPA which may be of importance in under-

standing the development process of PPA.

7.2.2 Experimental Results

A total of 133 colour fundus images (including 31 poor quality images as determined by an

ophthalmologist, Augustinus Laude) from 101 subjects wererandomly selected from the LBC

database. The human assessor observed the scleral ring on the images to identify the limits and

size of the OD. Thereafter, the human assessor identified theregion of PPA by the observation

of brightness and texture. Without knowing the results fromPANDORA, the human assessor

identified images with PPA (82 images with PPA; 51 images without PPA) and provided a

“ground truth” estimate of the OD and PPA region in each image. The assessor first observed in

full colour space (RGB) the scleral ring and the retinal vessel bending to identify the boundary

of the OD. Subsequently, the region of PPA was identified according to the brightness and

texture of image pixels. PANDORA does not divide the PPA region into different zones but

views them as one. A random subsample of 30 images with PPA and20 images without PPA

was drawn to evaluate PANDORA The area enclosed by the groundestimate/the segmentation

result from PANDORA is counted pixel by pixel with the Matlabsoftware development tool to

quantify the size of each region. PANDORA achieved a PPA detection rate of 89.47%. Figure

7.4 and 7.5 show six samples from the OD segmentation resultsof fundus images without and

with PPA respectively.

The first column gives examples of the best results achieved while the second column shows

the worst. The ground estimate is enclosed by black spots andthe OD segmentation result by a

blue solid line.

Figure 7.6 shows six samples of the PPA segmentation resultsfrom PANDORA. The segmen-

tation result is enclosed by red triangles and the ground truth estimate by a solid black line. The
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Figure 7.4: Segmentation results on the images without PPA from PANDORA. Images on the
left column (a), (c), (e) represents the best results; Images on the right column (b),
(d), (f) represents the worst results. The ground truth estimate is drawn on the black
spots while the estimated OD region is outlined by the blue solid line, respectively.
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Figure 7.5: Segmentation results on the images with PPA from PANDORA. Images on the left
column (a), (c), (e) represents the best results; Images on the right column (b), (d),
(f) represents the worst results. The ground truth estimateis drawn on the black
spots while the estimated OD region is outlined by the blue solid line, respectively.
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Figure 7.6: PPA segmentation results on the images from PANDORA. Imageson the left column
(a), (c), (e) represents the best results; Images on the right column (b), (d), (f)
represent the worst results. The ground truth estimate is enclosed by the black solid
line while the estimated PPA region is enclosed by the red triangle, respectively.
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results indicate that PANDORA is able to detect and capture the boundary separating the OD

and PPA regions reasonably well despite its poorly-defined nature. Apart from the variation in

the colour, size and shape of the OD and PPA, there are additional factors to take into account

(shown in figure 7.4 and 7.5). The OD boundary and the blood vessels do not always have a

sharp contrast, making it difficult to remove all the background noise completely before fitting

an ellipse. The presence of PPA further complicates this process (see figure 7.5b, d, f).

The examples given in the second column (b, f) of Figure 7.5 show over-estimates of the OD

region. This, in effect, reduces the possible PPA area (shown in Figure 7.6b, f). Conversely,

under-estimation of the OD region could also lead to inaccurate segmentation of the PPA re-

gion, as shown in Figure 7.6c-e. Therefore, the use of multi-seed region growing method in

Phase 3 to refine PPA boundary is necessary to eliminate any contribution from the OD (refer

to Figure 7.6c).

7.2.3 Validity of the Proposed Method

There are two main functions of PANDORA: to determine the presence of PPA, and to quantify

the area of PPA and OD. Two different validation methods weretherefore adopted. Firstly,

we calculated the mean accuracy of PANDORA’s PPA detection as well its Specificityand

Sensitivity. The Specificity, defined as the number of true negatives divided by the sum of false

positives and true negatives indicates how well a tool can correctly identify negatives. The

Sensitivity, defined as the number of true positives dividedby the sum of false negatives and

true positives indicates how well a tool can identify actualpositives. Based on the PPA detection

results, PANDORA is able to achieve a sensitivity and specificity of 0.83 and 1, respectively.

Secondly, in terms of area estimation, the accuracy is measured by comparing the segmentation

results against the ophthalmologist’s ground truth estimate of OD/PPA region. PANDORA is

assessed by a simple yet effective measure (M) of the matching between two estimates, which

is defined as:

M =
N(R

⋂
T )

N(R
⋃

T )
(7.3)

here R and T represent the segmentation result and the groundestimate respectively and N(.)

denotes the number of pixels within the targeted region. Table 8.1 summarises the segmentation
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results on 50 images.

Images with PPA Images with no PPA
Results PPA OD PPA OD

Mean accuracy (%) 73.57 81.31 - 95.32
Standard Deviation 11.62 10.45 - 4.36

Table 7.1:The Statistical Results of PPA and OD Segmentation in 50 Trials

7.2.4 Discussions

This chapter has introduced PANDORA, a novel automated retinal imaging tool for both de-

tecting the presence of PPA and quantifying OD and PPA using 2D colour fundus images.

Experimental results showed that PANDORA achieves a high PPA detection rate (89.47%) de-

spite the wide variation in fundus image quality. These results are in comparable with those

reported in [59] in which the detection rate is 87.5%, sensitivity 0.85 and specificity 0.9 of the

database (40 images with PPA; 40 images without PPA) from Singapore Eye Research Institute

(SERI).

Figure 7.7: Box plots for the quantification result of the OD and the PPA onthe images with
the PPA or without the PPA. The Lower Outliers are denoted as red star. The bars
specify the ranges of quantification results, and the boxes specify the first and third
quartiles with the median represented by the centre lines.

Figure 7.7 shows the segmentation results of the OD and PPA regions for images with and

without PPA. As expected, the results indicate that PANDORAsegments the OD better in im-
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ages without PPA than in those with PPA, as the OD is the sole bright object. The OD region

may be over-/under-estimated when there is no clear boundary, as is often the case in images

with PPA. That is,β-zone PPA sometimes appears brighter than the OD region or ofsimilar

brightness to the OD. On the other hand,α-zone PPA appears a little bit “dark” or “gray” com-

pared with the OD region. As a result, the OD region may be over-/under-estimated when there

is no clear boundary, as is often the case in images with PPA.

PANDORA has four primary advantages over alternative approaches. Firstly, it both detects the

presence of PPA and allows quantification of PPA region automatically from 2D colour fundus

images alone. Previous studies [7, 59] were limited to the detection of PPA. The size of the

PPA region was quantified manually [6,10]. PANDORA is therefore the first automated tool to

detect the presence of PPA and quantify the size of PPA region(including both zones of PPA). It

is also envisaged that PANDORA could help clinicians to track the development of PPA if fun-

dus images of a patient were recorded over a period of time. Secondly, PANDORA improves

the tool [119,120] proposed in previous chapters by using anOD segmentation approach based

on an edge map, which estimates the OD/PPA boundary more accurately. Therefore it can de-

scribe the actual shape of the regions, allowing more detailed study of the relationship between

PPA and different ocular diseases. The previous approach, which was based on the ‘snake’

algorithm, suffered from a random offset in defining the boundary and could only give an es-

timate of the size. Thirdly, PANDORA has been fully automated, reducing the dependency

on a human assessor and minimising problems related to humanerrors such as habituation.

PANDORA’s physiological measurements offer additional information for clinicians studying

ophthalmic or systemic diseases. Fourthly, PANDORA is intrinsically more appropriate for

large-scale screening programs owing to utilization of theOD and PPA borders on the 2D fun-

dus image as an alternative to expensive OCT equipment. Digital fundus cameras [16] acquire

fundus images quickly, without the time-consuming procedures of the OCT machine. These

cameras are relatively cheap and have become a standard examination tool in ophthalmology

clinics. Therefore, working on 2D fundus images is both a cost- and time- effective way and

more convenient to the users, compared with OCT instruments.

There remain three limitations within this method: Firstly, PANDORA is susceptive to noise

due to an ill-defined boundary, from overlapping blood vessels and from lighting artefacts. Cre-

ating a noise-free edge map for ellipse fitting is essential,to avoid under-/over-estimation of the
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actual region. In this chapter, a naive thresholding technique to extract retinal blood vessels

from the fundus images was used. Techniques such as artificial neural networks [127–129]

will be explored in future development to improve the robustness in retinal vessel segmenta-

tion. Secondly, the proposed tool utilises only the brightness of the pixels to detect the presence

of PPA. Adding texture information, for instance, should improve the detection rate. Thirdly,

the OD is not always perfectly elliptical, despite its general appearance. The assumption made

in this work (i.e. OD is always elliptical or circular [121])helps to estimate the boundary of

the OD, especially when it is poorly defined (i.e. appears as broken lines in the edge map).

Admittedly, this assumption could also limit the fit to the real OD size and shape (e.g. Figure

7.4d). While more complex segmentation algorithms might beable to describe a non-elliptical

shape better, it will remain difficult to estimate a poorly defined boundary. As such, we argue

that the principle of Occam’s razor may be best applied.

7.3 Chapter Summary

PPA has been linked to degenerative myopia and glaucoma, both of which can lead to loss

of sight. Early detection and quantification offer an opportunity for medical intervention to

halt/slow the development of ophthalmic diseases. However, existing methods are manual and

subjective. They also require multi-modal imaging systems(i.e. 2D standard laser ophthalmo-

scope plus optical coherence tomography) which are not widely available. In this chapter, a tool

that can detect PPA and quantify its size automatically using 2D colour fundus images alone

was demonstrated. The presence of PPA is detected with an accuracy of 89.47% in 133 images.

The sensitivity and specificity of PPA detection are 0.83 and1 respectively. The proposed tool

also achieved an accuracy of 81.31% (S.D.=10.45) and 95.32%(S.D.=4.36) in estimating the

OD region in images with and without PPA. The accuracy of PPA segmentation is 73.57%

(S.D.=11.62), compared with the “gold standard” defined by an experienced ophthalmologist.

Conventionally, the size of the PPA region is quantified manually [6,10]. PANDORA therefore

provides the first automated tool to detect the presence of PPA and further to quantify the size of

PPA region, includingα-andβ-zone of PPA, which allows clinicians to track PPA progression

if PANDORA is performed on the images of a specific patient taken at different times. Further

development of PANDORA (e.g. segregating the PPA region into alpha- and beta-zone) will

allow a wider study of the development of PPA and its significance in disease diagnosis.
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Chapter 8
Summary and Conclusions

In this chapter, a summary of the achievement of this thesis is first presented. Subsequently,

some limitations of the work and conclusions are drawn by revisiting the original objective of

this thesis. The chapter ends with a list of possibilities for future work.

8.1 Summary

Figure 8.1 shows the research progress in this thesis, starting with literature reviews both in

medical and in image processing (Chapter 1,2) and next some preparatory works (Chapter 3, 4)

and then three different novel techniques applied on the segmentation and quantification of the

OD and PPA (Chapter 5,6,7) and finally a summary of the work (Chapter 8).

Firstly, the literature review showed there was a growing technological trend where more

computer-aided tools for retinal image analysis were beingdeveloped as important screening

tools for early detection of ophthalmic diseases. These were developed by many image pro-

cessing techniques. These systems must be developed on clinical knowledge for the sake of

getting reasonable results. The method for PPA detection and evaluation methods for the seg-

mentation of biomedical objects have been reviewed and the approaches for the OD detection

and segmentation were listed.

Before the development of the proposed approaches as an effective imaging tool for early diag-

nosis, the background knowledge, both of image pre-processing and segmentation techniques,

needed to be fostered.

This thesis has three main hybrid approaches, namely “Colour Morphology technique with

Chan-Vese Snake,” and “A Combination of techniques and Modified Chan-Vese Snake,” and

“Modified Chan-Vese and Edge detection techniques,” for thesegmentation of the OD and PPA.
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Figure 8.1: Flowchart illustrating the research progress in this PhD thesis.
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On the approach of colour morphology technique with Chan-Vese Snake

In chapter 5, a novel technique, MOCV, to estimate the OD and PPA automatically is intro-

duced. The introduced methodology exploits both the red andblue channels of the image

to maximise the information on features (PPA) whilst keeping interference (blood vessels) to a

minimum. A technique named “snake without edges”(Chan-Vese Snake) is used to estimate the

contour of the OD and PPA. The proposed approach is evaluatedagainst the reference bound-

ary drawn by an ophthalmologist. Experimental results on 20images show that the method

can repeatedly detect the boundary automatically and the mean accuracy is as high as 86.65%

(S.D.=8.97) which represents a major improvement from the results reported in the literature.

On the approach of a combination of techniques and modified Chan-Vese Snake

A computer-aided measuring tool, named ’MULIPT’, to automatically detect and quantify both

the PPA and the OD regions in 2D images of the retina is described in chapter 6. The OD region

is segmented using a Chan-Vese model with a shape restraint.This region is then removed from

the image (OD+PPA) which has been cropped by a modified Chan-Vese approach, producing a

first order estimation of the PPA region. Its boundary is subsequently refined by using thresh-

olding, scanning filter and multi-seed region growing methods. Dual channels (blue and red) in

the Red-Green-Blue space are utilised to minimise the interference effects of blood vessels and

artifacts. The proposed software was tested on 94 randomly selected images with PPA from

66 subjects of a well-characterised cohort database. The proposed algorithm achieved a mean

accuracy level of 94.0% (S.D.=5.88) and 93.8% (S.D.=5.26) in estimating the “SIZE” of the

PPA and OD respectively, compared with the ground estimate defined by an ophthalmologist.

In terms of correlation between the data of ground estimate and our estimation, a correlation

coefficient of 0.98 for both the PPA and the OD was obtained. The tool proposed in this chapter

could also provide additional information, namely transverse and conjugate diameter of OD,

which may be useful for eye screening purpose.

On the approach of modified Chan-Vese Snake and edge detection techniques

Chapter 7 describes a computer-aided measuring tool, named’PANDORA’, for automated de-

tection and quantification of both the PPA and the OD regions in 2D retinal fundus images.
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The OD region is segmented using a combination of edge detection and ellipse fitting meth-

ods. The PPA region is identified by the presence of bright pixels in the temporal zone of the

OD, and segmented using a sequence of techniques, includinga modified Chan-Vese approach,

thresholding, scanning filter and multi-seed region growing methods. This tool has been tested

with 133 colour retinal images (82 with PPA; 51 without PPA) drawn randomly from the LBC

database, together with a “ground truth” estimate from an ophthalmologist. The PPA detection

rate is 89.47% with a sensitivity and specificity of 0.83 and 1, respectively. The accuracy in

defining the OD region is 81.31% (S.D.=10.45) when PPA is present, and 95.32% (S.D.=4.36)

when PPA is absent, and the accuracy in defining PPA region is 73.57% (S.D.=11.62). PAN-

DORA differs from the tool described in Chapter 6 as it could estimate the OD/PPA boundary

better and hence describe the actual shape of the regions, allowing more detailed study about

the relationship of PPA with different ocular diseases. Thetool proposed in Chapter 6 suffered

from random offset in defining boundary and could only give anestimate of the size. PAN-

DORA demonstrated for the first time how to quantify the actual shape of OD and PPA regions

using 2D fundus images, enabling ophthalmologists to studyocular diseases related to PPA

using a standard fundus camera.

In addition, the PANDORA, the mean accuracy of OD segmentation in images with/without

PPA of the proposed method in 50 trials are 81.31(S.D.=10.45) and 95.32% (S.D.=4.36) re-

spectively, which are comparable to the best state-of-the-art performacne as listed in Table??.

It should be mentioned that Gradient Vector Flow (GVF) Snakeand the method proposed in

Chapter 6 have a much lower OD segmentation accuracy in the images with PPA (e.g., 48.65%

and 68.35% respectively) because they face a convergence problem whenever the boundary of

a region is not celar (in this case, PPA region).

Images with PPA Images without PPA
Methods M.A.(%) S.D. M.A. (%) S.D.

GVF Sanke 48.65 11.23 91.31 5.23
MULIPT 68.35 10.42 93.27 5.47

PANDORA 81.31 10.45 95.32 4.36

Table 8.1:Comparison of the OD segmentation methods in 50 Trials

Based on the aforementioned detection and segmentation results, some conclusions can be

drawn and are described in the following section.
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8.2 Conclusions

The thesis examined the suggestion that

An automated optic nerve features detection and segmentation system based upon a

combination of image processing techniques to emulate a human expert could approach the

performance of the human visual system.

After an investigation, it was found that the software tool,which is implemented by a com-

bination of image processing techniques, can detect the presence of PPA and can make that

measurement of the OD and PPA region without human intervention in a 2D fundus image.

In addition, the tool not only detected the OD region, estimated its size and actual shape of

its regions, it also provided readings of the transverse andconjugate diameter- two commonly

used parameters in retinal image analysis. Moreover, usingthe software, the normalised PPA

size (i.e., the ratio between the PPA and the OD size) could bederived and could explore its

association with different eye diseases or conditions and establish a better understanding about

the significance of the PPA development. Finally, the tool could not only reduce the dependence

on the human assessor and thus potentially avoid problems associated with human errors such

as habituation, it could also be more cost effective for larger scale population-based screening.

There remain some limitations within the proposed tools, however:

Firstly, the problem of underestimation of the actual size.That is because one of the software

methods, which is developed by snakes relative techniques,stopped at undesired points on

encountering irregular dark pixels before the OD boundary in good-quality images and less

consistently in poor-quality images.

Secondly, the proposed model is susceptive to noise due to anill-defined boundary, from over-

lapping blood vessels and from lighting artefacts.

Thirdly, the proposed method utilises only the brightness of the pixels to detect the presence of

PPA. Adding texture information for instance should improve the detection rate.

Fourthly, due to the limitation of getting ground estimatesfrom the medical partner, the databases

used to test the proposed software tools are smaller than desired. The potential of any future

application would depend on testing with enough data to ensure statistical significance.
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Finally, the OD is not always perfectly elliptical, despiteits general appearance. The assump-

tion made in this work (i.e. the OD is always circular or elliptical) helps to estimate the bound-

ary of the OD, especially when it is poorly defined (i.e. appears as broken lines in the edge

map). Admittedly, this assumption could also limit the fit tothe real OD size and shape.

8.3 Practical Usage of PANDORA

In common with many classification systems, PANDORA carriesa risk of false negatives

in identification of the OD and PPA. In its current form, PANDORA is best used as a pre-

processing (”set up”) tool for human classification. If (1) to (3) below can cause the false

negative rate to drop, it would be possible to use PANDORA as an autonomous classifier.

1) Apply image fusion technologies to this application to get more accurate results.

2) Validate the tool by introducing some false positive images within a bigger database.

3) Use previous records. False positives can be reduced if new examinations are compared with

older ones from a previous examination. Even in the best test, false positive results are a risk.

Ultimately, a decision must be made as to what is an acceptable rate of false positives.

8.4 Future Work

Future developments of the system include improving the accuracy of PPA detection, both the

OD and PPA segmentation and differentiation between different types of PPA. It would also be

ideal if the software could describe a non-elliptical shapebetter and could address the above

limitations. More complex segmentation algorithms would need to take into consideration ad-

ditional local information (e.g., texture) and explore further the image fusion from multiple

channels. Creating more noise-free edge maps for ellipse fitting would be another task, in order

to avoid under-/over-estimation of the actual region detected by an edge detection based soft-

ware tool. Moreover, development of the system segregatingthe PPA region intoα- andβ-zone

would be essential. There is a plan to evaluate different types of PPA on a bigger database in

the near future and also to study its significance in disease diagnosis. The systems are also still

promising as the higher quality images are available to present day medics because the higher

quality images the systems could get, the better results thesystems could have. Compared with

expensive retinal imaging equipment (e.g. OCT), the funduscameras are affordable to optome-
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try centre. The developed systems could therefore be promoted as an important part of periodic

optometric examinations which is a routine preventive health care.
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Quantification of Parapapillary Atrophy and Optic Disc

Cheng-Kai Lu,1 Tong Boon Tang,1 Augustinus Laude,2,3 Ian J. Deary,4 Baljean Dhillon,2

and Alan F. Murray1

PURPOSE. A computer-aided measuring tool was devised to
automatically detect and quantify both the parapapillary atro-
phy (PPA) and the optic disc (OD) regions in two-dimensional
color fundus images of the retina.

METHODS. The OD region was segmented using the Chan-Vese
model with a shape restraint. This region was then removed
from the image (OD1PPA), which was cropped in a modified
Chan-Vese approach, producing a first-order estimation of the
PPA region. Its boundary is subsequently refined by using
thresholding, a scanning filter, and multiseed region-growing
methods. Dual channels (blue and red) in the red-green-blue
space are used to minimize the interference effects of blood
vessels and artifacts.

RESULTS. The software was tested on 94 randomly selected
images of eyes with PPA from 66 subjects of a well-character-
ized cohort database. Our proposed algorithm achieved a mean
accuracy level of 93.8% (SD 5.26) and 94.0% (SD 5.88) in
estimating the size of the PPA and OD respectively, compared
with the ground estimate defined by an ophthalmologist. In
terms of correlation between the data of the ground estimate
and our estimation, we obtained a correlation coefficient of
0.98 for both the PPA and the OD.

CONCLUSIONS. This software offers a means of quantifying the
size of PPA on two-dimensional fundus images for the first
time. The proposed algorithm is capable of detecting and
quantifying PPA and OD regions repeatedly, with a mean ac-
curacy of .93%, and could also provide additional information,
such as the transverse and conjugate diameter of OD, which
may be useful in eye-screening. (Invest Ophthalmol Vis Sci.
2011;52:4671–4677) DOI:10.1167/iovs.10-6572

Certain ophthalmic diseases (e.g., progressive glaucoma)
and eye conditions (e.g., myopia) have been associated

with the development of retinal pigment epithelium parapap-
illary atrophy (PPA).1 Although thinning and degeneration in
retinal tissue are generally irreversible, early detection and
medical intervention may offer an opportunity to reduce or
limit their progression.2 More recently, there has been a grow-
ing interest in the potential role of PPA in detecting eye
diseases at an early stage.3–9

Ophthalmoscopically, the PPA is divided into the b zone,
located adjacent to the optic disc (OD) border and showing
visible sclera as well as large choroidal vessels, and the a zone,
located more peripherally and characterized by irregular hyper-
and hypopigmentation. This classification of b- and a-PPA was
first developed by Jonas et al.10 and has now been accepted
into common use, providing the motivation for studies to
better understand the development of the PPA. For instance,
Healey et al.3 investigated the association between b-PPA and
both environment and genes. They found that the presence of
b-PPA appeared to be under strong genetic control, with only
a fraction of this genetic effect shared with genes involved in
myopia. Tezel et al.4 studied the relationship between PPA and
the OD in patients with glaucoma or visual field damage, by
manually quantifying the size of the PPA and OD regions. The
presence and the progression of PPA were found to be associ-
ated with subsequent OD or visual field changes in patients
with ocular hypertension. Honrubia and Calonge5 further
found that, in patients with ocular hypertension, the presence
of PPA could imply a risk of glaucomatous deterioration, as it
has a significant association with the presence of defects in the
retinal nerve fiber layer (RNFL). Xu et al. 6 investigated the
association of PPA with glaucoma in a population-based study.
They found that b-PPA appeared to be larger and occurred
more frequently in glaucomatous eyes than in normal eyes of
Chinese adults, but no significant difference was found be-
tween chronic open-angle and primary angle-closure glau-
coma.6

Uhm et al.7 used a commercial software package (Photo-
shop; Adobe Systems Inc., San Jose, CA) to measure the size of
PPA and the OD regions in assessing how closely PPA is related
to functional and structural glaucomatous optic nerve damage.
They discovered that the severity of glaucomatous optic nerve
damage and visual field defects were related to the increases in
the size of PPA and concluded that PPA could be useful for the
diagnosis and progression of glaucomatous nerve damage.7

There are ophthalmic techniques, such as retinal tomogra-
phy (HRT; Heidelberg Engineering, Heidelberg, Germany) and
optical coherence tomography (OCT), that can provide a col-
orless or pseudocolor 3-D visualization of the PPA and the
OD.11 They require a trained technician or ophthalmologist to
manually identify the OD boundary on the image before the
PPA and OD variables can be estimated from the image contour
based on three-dimensional depth information.8 Furthermore,
several automatic segmentation schemes12–23 have been devel-
oped for the assessment of the OD and parapapillary features,
such as RNFL thickness.

The HRT and the OCT have been used in several studies
about the PPA. One such application was by Uchida et al.,13

who investigated the association between PPA and the pro-
gression of glaucoma. However, two-dimensional color fundus
imaging may be preferred by many clinicians for estimating the
size of the OD and PPA, because the image from HRT or OCT
is generated via computer processing rather than a direct
recording of the object of interest.
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An alternative tool to detect and quantify the PPA and the
OD automatically from color fundus images would reduce the
workload of the human assessor and could facilitate a wider
investigation about the potential importance of PPA in oph-
thalmic disease diagnosis involving facilities where access to
HRT or OCT is limited. Moreover, in large clinical studies and
pathologic monitoring programs, such a computerized tool can
also improve repeatability, therefore avoiding problems asso-
ciated with fatigue and habituation, and tends to be more cost
effective.

A novel approach to automatically segment and quantify the
OD and PPA region from color fundus images is proposed in
this article. The methodology exploits both the red and blue
channels of the color fundus image to maximize extraction of
information on the features (PPA), while keeping interference
(blood vessels) to a minimum. A combination of several tech-
niques, including scanning filter, autothresholding, and region-
growing, as well as the Chan-Vese (C-V) model with a shape
restraint is used to segment and quantify the regions of the OD
and PPA.

METHODS

We used color retinal images drawn from a subsample of the Lothian

Birth Cohort (LBC), a 1936 study.24 The participants comprise surviv-

ing members of the Scottish Mental Survey of 1947 (n 5 70,805) who

were born in 1936 and currently reside in the Edinburgh area (Lothian)

of Scotland. Eight hundred sixty-six of them were successfully traced

and participated in a series of investigations that included having

retinal photographs taken at the Wellcome Trust Clinical Research

Facility, Western General Hospital, NHS Lothian, Scotland. Their mean

age at the time of the photography was 72 years. The research com-

plied with the Declaration of Helsinki and was approved by the Lothian

(Scotland A) Research Ethics Committee.

The computer program in this work was implemented in commer-

cial software (MatLab; MathWorks Inc., Natick, MA). The images were

evaluated by an ophthalmologist (AL) who was masked to the image

processing findings. The intensity variation between the bright objects

(i.e., the OD and the PPA) and the blood vessels of the retinal image

was relatively high (Fig 1). Conversely, the blood vessels were in

general at a lower intensity level with respect to the background.

Our proposed algorithm combined a collection of image-processing

techniques (Figure 2). Fundus images were initially preprocessed in

two channels of the RGB space to reduce the interference of blood

vessels and to better distinguish the regions of OD and PPA. The OD

region could be reliably detected in the red channel, as it appeared

brighter than the rest of the image, while the blood vessels appeared

least influential.20 We also found that the region consisting of both the

OD and the PPA (hereafter referred to as the region of OD-plus-PPA)

was most well-defined in the blue channel. Consequently, the region of

OD-plus-PPA was first segmented by a modified C-V model in the blue

channel. Then, a variant of the C-V model with a shape restraint was

applied to segment the OD region in the red channel. In this case, the

restraint was based on an ellipse reflecting the actual shape of an OD.

Removing the OD region from the region of OD-plus-PPA produced the

first-order estimation of the PPA region. Moving back to the blue

channel, the segmented image was then equally divided into four

zones automatically.

Based on the autoset thresholds acquired from each zone, the

image was then filtered to reduce the influence of crossing vessels and

artifacts. Finally, the PPA was extracted by using a multiseed region-

growing method.25

Chan-Vese Model

The C-V model is a type of active contour model or “snake” that can

trace the outline of an object from an image by minimizing an energy

FIGURE 1. Original fundus image with the OD and PPA.

FIGURE 2. Flow chart shows the extraction of the PPA and the OD regions.
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function associated with the current object contour.26 It combines

methods including curve evolution, Mumford-Shah function,27 and

level sets for applications such as shape recognition, edge detection,

and image segmentation. In this work, we used it to identify topolog-

ical changes, corners, and cusps associated with the presence of PPA.

The C-V model has been enhanced to detect objects whose boundaries

are not all necessarily well-defined. The step size of the energy function

was selected carefully, to ensure that the snake would stop at the

desired boundary. More details on the C-V model are given in Supple-

mentary Material S1 (http://www.iovs.org/lookup/suppl/doi:10.1167/

iovs.10-6572/-/DCSupplemental).

Segmentation with the Modified C-V Model

As the OD region appears to be more or less an ellipse, we adopted the

model of Tang et al.28 which integrated the C-V model with an elliptical

shape restraint. More details on the model are given in Supplementary

Material S2 (http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.10-

6572/-/DCSupplemental) We also used it to segment the OD-plus-PPA

region. However, the PPA region may sometimes appear in an irregular

shape, and so we had to modify the rules slightly for the evolution of the

C-V model. The set of starting C-V model points, also known as the initial

mask, was arranged to be in an ellipse as per normal. However, the model

was then allowed to deform freely as it edged closer to the boundary of

OD-plus-PPA with each subsequent iteration. This method allowed the

model to produce an enclosed but not necessarily elliptical shape, which

was always bigger than the exact region of the OD-plus-PPA.

Next, Tang’s C-V model was employed to detect the OD region. To

accurately segment the OD, we introduced two modifications to the

model. First, Tang’s equation B-328 was restored to its original form (of

an ellipse) :

da~t!

dt
5 2 E

v

@a~u0 2 c1!
2 2 ~1 2 a!

3 ~u0 2 c2!
2#d~w!A2~1/a3!dxdy. (1)

Second, we introduced a new way to automatically detect the center of

the OD for more accurate segmentation. We divided the image into

four subregions. Then, we adopted the approach used in Tang’s model

to estimate the initial mask center (x0, y0). The initial function in the

equation B-228 was chosen as:

f0~x,y! 5 1 2 ~Î~x 2 x0!
2 1 ~y 2 y0!

2!/R (2)

where R is the estimated radius of the OD and can be defined as

R 5 min$min@x0 / 2,~w 2 x0! / 2#,min@y0 / 2,~h 2 y0!/2#%

(3)

where w and h are the width and height of the image, respectively.

Then, our algorithm calculated automatically the offset, fx and fy, of

the initial mask center, based on the histogram of intensity value of

each four regions. The updated initial mask center is thus

~x09,y09! 5 ~x0 1 fx,y0 1 fy!. (4)

Autosetting of Thresholds and Scanning Filter

To eliminate the unwanted pixels in the oversized OD-plus-PPA region,

we acquired threshold values from the histogram of intensity values in

the four subregions. In this context, the threshold was set by the

brightest 30% of all pixels in each region, thus producing a better-

defined OD-plus-PPA region. We then subtracted the OD region and

obtained the first-order estimation of the PPA region as illustrated in

Figure 2f.

The PPA region is a nonhomogeneous area divided into multiple

sections by a few crossing blood vessels. We therefore proposed the use

of a scanning 1 3 3 filter to create a path through the vessels for the

following region-growing model to reach different sections of the PPA.

Multi-initial Seed Region-Growing

The seeded region-growing technique was first introduced by Adams

and Bischof.25 It starts with several initial seeds and then adds adjacent

points as new seeds, beginning with the points of lowest priority. The

priority is defined by a distance function. The distance of each pixel to

a contiguous region22 is defined by:

R~x,di! 5 @I~x! 2 meanj [ di~I~j!!# (5)

where I(x) is the gray image value of the point x(element) d and di, the

region labeled i. Above all, setting both the right initial seed and

distance function is the most important step in PPA extraction.

Our algorithm automatically placed one initial seed in each of the

four subregions and set an optimal distance function for each subre-

gion. Each seed was then allowed to grow until the regional threshold

distance set by equation 5 was met. Finally, we combined the results at

all four subregions to produce an integrated PPA region. By combining

the techniques listed above, our methodology permitted the full use of

both global and local information for PPA and OD segmentation.

FIGURE 3. Segmentation results from the proposed algorithm.
Shown are (a, c, e) good-quality and (b, d, f) poor-quality images.
Black solid line: the ground estimate; black dots and the red mark-
ings: the estimated PPA and OD regions, respectively.
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RESULTS

A total of 94 color fundus images (including 18 poor-quality
images, as determined by an independent and experienced hu-
man assessor, AL) from 66 subjects were randomly selected from
the Lothian Birth Cohort (LBC) database. Without knowing the
segmentation results from the proposed tool, the human assessor
provided the ground estimate of the OD and the PPA region in the
images. Subsequently, the area enclosed by the ground estimate
was counted pixel by pixel (Photoshop; Adobe Systems Inc.) to
quantify the size of each region. The count was repeated with the
segmentation results from the tool.

Figure 3 shows six samples from the segmentation results of
the proposed tool. The first column depicts the results ob-
tained from good-quality images, and the second column de-
picts the results from poor-quality images. The ground estimate
is enclosed by the black solid line. The results of estimated PPA
and OD region are enclosed by the spots and red markings,
respectively. Figure 4a shows the comparison of the OD area
(in arbitrary pixel unit), based on the ground estimate, and the
estimated OD area, determined by the proposed tool in the 94
trials, along with the line of best fit. Figure 4b shows a similar
graph but for the PPA area size estimation.

The results suggest that the proposed algorithm or estima-
tion model was able to detect the general boundary of OD and
PPA. However, it tended to terminate the snake evolution
prematurely on all good-quality images; hence, the results ap-
peared to underestimate the actual size. This underestimation
was consistent in the case of poor-quality images, in which the
intensity variation/resolution in defining the boundary of OD
was limited. Figure 3d shows a good example of when the
model missed the mark by pushing the boundary into the
scleral rim. Overall, it appears that most of the results in the 94
trials are underestimations. This is confirmed by the gradients
(both ,1) of the best-fit lines in Figures 4a and 4b. We there-

fore calibrated our estimation model by using these values as
scaling factors. The final estimation results are plotted in Fig-
ures 4c and 4d. As shown, a correlation coefficient of 0.98
(max 5 1) was achieved in the size estimation of both the OD
and PPA regions. This result suggests that our estimation is not
stochastic but is fairly consistent with the ground estimate
defined by an ophthalmologist (i.e., the best-fit line is defined
by the equation y 5 x).

Validity of the Tool

In this section, we use three methods to validate our estimation
model. First, we calculated the mean accuracy (MA) of our
estimation model, which is given by:

MA 5 11 2

O
i51

n SSa 2 Se

Sa
D

n
2 3 100% (6)

where Sa represents the actual size (ground estimate) of PPA or
OD, while Se represents the estimated size (by our model) of
PPA or OD. The numerical value n is the total number of
images analyzed in our experiment. Before calibration, our
estimation model achieved a mean (SD) accuracy level of
90.0% (6.20%) and 88.2% (5.85%), in defining the size of OD
and PPA, respectively. With the same set of color fundus
images, our estimation model after calibration achieved a mean
(SD) accuracy level of 94.0% (5.88%) and 93.8% (5.26%). Table 1
summarizes the estimation results.

Second, we calculated the sensitivity of our estimation
model at different tolerance levels. In this context, tolerance
level refers to the percentage of estimation error being accept-
able. When the estimation result by our model falls within the

FIGURE 4. The correlation between
the ground estimate (x-axis) and the
results obtained by the proposed tool
(y-axis) in quantifying the size of
each region, in arbitrary pixel units.
(a, b) Direct estimation results from
the tool; (c, d) estimation results of
the OD and PPA region after calibra-
tion, such that y 5 x. The correlation
coefficient was 0.98 in all cases.
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range of tolerance, we count it as one correct prediction, and
vice versa. The sensitivity is defined as the percentage of
correction prediction over the total number of images analyzed
in our experiment. Our model after calibration achieved a
sensitivity of 75.5% (tolerance, 610%) and 90.4% (tolerance,
615%) in estimating the size of OD region. As expected, the
sensitivity level is lower when the tolerance is smaller and
when our model is not calibrated (Fig. 5a). The scatterplots in
Figure 5b show a similar trend. After calibration, the sensitivity
of our model for the PPA region was 84.0% (tolerance, 610%)
and 92.6% (tolerance, 615%), respectively.

Third and finally, we evaluated the robustness of the cali-
bration method for our estimation model. We randomly se-
lected 70 of the 94 images and derived the suitable scaling
factor to calibrate the segmentation results, according to the
aforementioned methodology. Then, we used the remaining 24
images to obtain the accuracy of the calibrated model. In this
case (labeled RA), the mean (SD) accuracy was 94.0% (5.77%)
and 94.3% (4.53%) in defining the size of OD and PPA, respec-
tively, in the 24 test images. We repeated this experiment by
(1) calibrating our model with images that had the largest
(70/94; 74.5%) PPA and had remaining images from the data-
set—that is, those with the smallest (24/94; 21.3%) PPA as test
images, and (2) calibrating with the smallest (74.5%) PPA and
testing with the largest (21.3%) PPA. The earlier (labeled HI)
achieved a mean (SD) accuracy of 92.7% (7.53%) and 92.8%
(4.93%) for size estimation of the OD and PPA regions, respec-
tively. On the other hand, the latter (labeled LO) achieved a
mean (SD) accuracy of 93.7% (6.98%) and 93.4% (6.57%) for
the OD and PPA. Table 2 summarizes the results, including the
previous results from calibrating with all 94 images (labeled
AL). As expected, the model performed the worst when it was
calibrated with the largest PPA images and tested with the
smallest PPA images. However, the mean accuracy of our
model is still greater than 92.7%.

DISCUSSION

We have developed automated software to measure the size of
PPA and the OD in two-dimensional fundus images. Our ex-
perimental results with a very wide variety of fundus images
showed that the proposed algorithm was not only robust for
automatic PPA shape detection and area quantification, but it
could also provide the transverse and conjugate diameter of
the OD as well as PPA-to-OD ratio, which may be useful in early
detection and grading of eye conditions such as glaucoma.

The automatic detection and the quantification of OD in
fundus images are particularly important tasks in retinal image
analysis for two reasons: First, the OD has attributes similar to
the PPA, both in terms of contrast and brightness, making their
boundary detection a difficult task. Second, the OD is often
seen as a landmark that can be used for a coarse localization of
the area of interest in retinal images, reducing the search area
during the preprocessing stage.

Several schemes for automatic segmentation of the OD have
been reported.11,14–19,21–23 The OD can be detected either by
finding a large cluster of pixels with high intensity22,23 or by
the highest intensity variation at the gray level11,21; however,
difficulties are often encountered when exudates coexist
within the retinal image, because exudates also have a higher
intensity level than the surrounding regions of the OD. Walter
et al.19 developed a combined approach of watershed transfor-
mation and morphologic filtering to detect OD, but found that
morphologic filtering could not completely remove the distor-
tion caused by overlying retinal vessels. Another approach
used an area-thresholding algorithm to localize the OD,18 be-
fore detecting its boundary by means of a Hough transform
(HT) (i.e., best fitting circle based on the gradient information
of the image). However, this approach proved to be time
consuming and relied on certain forms of the OD that were not
always encountered. Principal component analysis (PCA) for
automatic detection of the OD has been reported17 and could
be used, even in the presence of bright lesions on the fundus
image, although this approach could also be time-consuming.
Alternatively, Osareh et al.16 used a template-matching algo-
rithm to detect the disc boundary automatically. Although
morphologic preprocessing helped to reduce the interference
effects of blood vessels, it could not remove them completely.
Moreover, such processing blurred the OD boundary, making
the detection unreliable. The C-V method15 and level setting
methods14 have also been applied to OD boundary segmenta-
tion. The major advantage of these algorithms is their ability to
compensate discontinuities in the boundary of the image fea-

TABLE 1. The Results of PPA and OD Segmentation in 94 Trials

Before
Calibration

After
Calibration

Results PPA OD PPA OD

Mean accuracy, % 88.2 90.0 93.8 94.0
Standard deviation 5.85 6.20 5.26 5.88
Correlation coefficient, R2 0.98 0.98 0.98 0.98

FIGURE 5. The sensitivity of the pro-
posed tool in defining the size of (a)
the OD and (b) the PPA regions at
different tolerance levels in the 94
trials. The slopes represent the best
fit for the scatterplots.
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ture to be located. However, those approaches have to be
carefully initialized and can achieve only good segmentation
results when the region has homogenous intensity values and
a well-defined boundary.

In this work, we explored a dual-channel approach with a
modified C-V model to segment the PPA and the OD individu-
ally. The proposed algorithm particularly is designed to address
the aforementioned challenges on how to maximize informa-
tion extraction of features (OD/PPA) while keeping interfer-
ence (blood vessels) to a minimum.

In comparison to the works by other groups, there are three
main merits of the proposed tool. First, our software tool could
measure the PPA region automatically in two-dimensional color
fundus images. This tool is the first tool that can make that
measurement without human intervention. In previous studies,
investigators had to manually measure the PPA region in either
2-D 3–9 or 3-D13 images, which were constructed by specially
written planimetry computer programs. Second, the proposed
tool not only detected the OD region and estimated its size, it
also provided readings of the transverse and conjugate diame-
ter—two commonly used parameters in retinal image analysis.
Using this tool, we could further derive the normalized PPA
size (i.e., the ratio between the PPA and the OD size) to
explore its association with different eye diseases or conditions
and establish a better understanding about the significance of
the PPA development. Third, this tool has been automated,
which means that not only could it reduce the dependence on
the human assessor and thus potentially avoid problems asso-
ciated with human errors such as fatigue, it could also be more
cost effective for larger scale population-based screening.

There remain some limitations within our method, how-
ever: First, our software stopped at undesired points on en-
countering irregular dark pixels before the OD boundary in
good-quality images and less consistently in poor-quality im-
ages. This problem results in underestimation of the actual size.
Second, the proposed algorithm estimates the sizes of OD and
PPA regions, providing a means to measure the extent of PPA.
It would be ideal if the software could also define the absolute
shapes, allowing the patterns in PPA progression to be studied
in different eye conditions. A possible way to address these
above limitations would be to take into consideration addi-
tional local information (e.g., texture) and explore further the
image fusion from multiple channels.

CONCLUSIONS

We have demonstrated that PPA on a retinal image can be
quantified by means of computer-aided software. Our pro-
posed algorithm or estimation model, after calibration,
achieved an accuracy of 94.0% (SD 5.88%) and 93.8% (5.26%)
in defining the size of the OD and PPA, respectively, compared
with the gold standard experienced human assessor. Our
model also showed high reliability in estimating the size, with
the correlation coefficient reaching 0.98 for both cases (OD

and PPA). In terms of sensitivity, our model achieved 75.5%
and 84.0% (tolerance, 610%) in size estimation of the OD and
PPA region, and higher when we increased the tolerance level.
We have also investigated the robustness of our calibration
method and found that our model consistently achieved a
mean accuracy of more than 92.7%. In addition, the proposed
software could also provide ophthalmologists additional infor-
mation, namely transverse and conjugate diameter of the OD as
well as the ratio between the OD and PPA size, with potential
application in eye-screening programs. The methods devel-
oped so far are therefore promising as the basis for a fully
automated prescreening technique that will prioritize images
for subsequent expert human assessment.
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Abstract— Parapapillary atrophy (PPA) in the retina has 

been associated with eye diseases (e.g. glaucoma) and certain eye 
conditions (e.g. myopia). However, no computer-aided 
measuring tool thus far is available to quantify the extent of the 
PPA. In this paper, a novel approach to automatically segment 
and quantify the optic disc (OD) and PPA is proposed. The 
methodology exploits both the red and blue channels of the 
colour image to maximise information extraction of features 
(PPA) whilst keeping interference (blood vessels) to a minimum. 
A combination of several techniques, including scanning filter, 
thresholding, region growing as well as modified Chan-Vese (C-
V) model with a shape constraint is used to segment and 
quantify the OD and PPA. Our proposed approach is evaluated 
against the reference boundary drawn by an ophthalmologist. 
Experimental results show that our method can repeatedly 
detect both the sizes of the OD and PPA region automatically, 
and achieved a mean accuracy level of 91.3% and 92.5% in 
defining the size of the OD and PPA, respectively. Moreover, the 
correlation coefficient of the ground truth and the results from 
proposed method is 0.98 for both the PPA and OD. 

    Index Terms— Optic disc, parapapillary atrophy, fundus 

image, glaucoma, Chan-Vese models. 

 

I. INTRODUCTION  

In the assessment of eyes, ophthalmologists pay much 

attention to changes or abnormalities detected on colour and 

shape of the parapapillary atrophy (PPA) and the optic disc 

(OD), which are two major features of the retina. 

Consequently, the identification, shape analysis and 

quantification of the PPA and the OD region in the fundus 

images are of primary importance for the detection of certain 

conditions such as glaucoma. 

      To date, various methods have been investigated for the 

detection of the OD and the focus of those works is either to 

locate the centre of the OD [2] or to detect the boundary of 

the OD in fundus images. In [3], the OD was detected by a 

combination of watershed transformation and morphological 

filtering techniques. In [4], an area-thresholding was first 

applied to localise the OD. Its boundary was then detected by 

means of the Hough Transform (H.T.), i.e. best fitting a circle 

based on the gradient information of the image. However, this 

approach proved time consuming and relied on certain forms 

of the OD that were not always encountered. Besides the 

aforementioned methods, there exist other techniques such as 

the point distribution model [5] and principal component 

analysis (PCA) for automatic detection of the OD [6]. 

Alternatively, Osareh et al. [7] used template matching to 

detect the disc boundary automatically. Although the 

morphological pre-processing (e.g. opening/closing) helped 

to reduce the effects of blood vessels, it could not remove 

them completely. Moreover, such processing blurred the OD 

boundary, making the boundary detection unreliable. In [8], 

OD was localised by capitalizing on its high variation on gray 

level image. This approach worked well, but only if there was 

none or very little PPA. The presence of the PPA could 

complicate the detection of the OD as it also appeared bright 

in the fundus images. 

  A novel method for automated quantification of both the 

sizes of the OD and PPA region is proposed in this paper 

based on a hybrid image processing technique. In particular, 

we aimed to address the aforementioned challenge on how to 

minimise the influence of blood vessels without sacrificing 

accuracy. In the presence of PPA, the common practice of 

working on single colour channel or gray-level was only 

adequate for locating the OD but not for defining its 

boundary. Therefore, the original fundus images were 

initially pre-processed in two different channels in RGB 

space to reduce the interference of blood vessels and to 

distinguish the regions of OD and PPA separately. Thereafter, 

the region of PPA-plus-OD was segmented by Chan-Vese (C-

V) model on the blue channel. In order to segment OD 

appropriately, the C-V model with elliptic constraints needs 

to be employed. The segmented image was then divided into 

multi-zone automatically. Based on the auto-set thresholds 
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acquired from each zone, the segmented image was then 

filtered to reduce the influence of crossing vessels and 

artefact. Finally, PPA was derived from using a multi-seed 

region growing method. 

 Simulation results with a very wide variety of fundus 

images showed that the method presented in this paper is not 

only very effective for automatic PPA shape detection and 

region quantification, but can also provide the transverse and 

conjugate diameter of OD as well as the PPA-to-OD ratio, 

which can be useful information for early detection and 

grading of certain eye conditions such as glaucoma. 

 The rest of this paper is organised as follows. In Section 

II, the methodology for segmenting OD region and PPA 

region is presented. Section III presents the simulation results 

before a conclusion of this study is provided. 

 

II. PROPOSED METHODOLOGY 

 

 
 

Fig.1 Flow chart of the extraction of PPA and the OD region. 

The green lines in (b) and (e) represent the final mask and the 

initial mask of two different region extractions.  

 

    The steps used in our proposed method are shown in Fig. 1 

and will be explained in details in the following subsections. 

Fig.2 shows an example of original fundus image. The 

intensity variation between the bright objects (i.e. the OD and 

PPA) and the blood vessels is relatively high. Conversely, the 

blood vessels are generally at a lower intensity level with 

respect to the background. 

 

 
 

Fig.2 Original fundus image with the OD plus PPA 

 

To isolate the OD, PPA and other bright parts separately 

is a non-trivial task. Pre-processing of the image is essential. 

The C-V model only worked well on an image with 

homogeneous regions enclosed by intense gradient 

information. Applying them directly to our fundus images is 

extremely difficult, as the area of the OD and PPA is 

invariably fragmented into multiple regions by the blood 

vessels. Previous work [3-8] used gray-level morphology to 

remove the blood vessels to create a relatively homogeneous 

region before applying the C-V model on the image. Similar 

morphological operations are equally applicable to the red 

and blue channels. We worked specifically on these two 

channels because we found that the blood vessels are least 

influential in the Red channel and the region of PPA-plus-OD 

is most well-defined in the Blue channel.  

 

A. OD+PPA region and OD extraction using Modified C-V 

model 

 

The original C-V model [9] combined the methods such 

as curve evolution, Mumford-Shah function and level sets for 

image segmentation.  Because the OD appears more or less 

an ellipse or a circle, Tang [10] proposed a modified C-V 

model which included an elliptic shape constraint.  The new 

“fitting energy” function E  is then: 

1 2

2 2
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where Lipschitz function ℜ→Ω:φ  of 2R , 0>α  is fixed 

parameters, ( )H ϕ  is the Heaviside function. In addition, x0, 

y0,θ , major axis ‘a’,minor axis ‘b’ are the parameters of the 

ellipse atφ =0.  The evolutions related to the Euler-Lagrange 

equations are: 
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PPA region extraction

Scanning filter and Multi-

initial seeds region growing 

(b) 

(c) 

(e) 

(f) (g) 

(i) 

(a) 

(d) 

(h) 
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(c) OD+PPA region 

extraction 
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(i) PPA region 

extraction 
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2 2 3

0 1 0 2

( )
[ ( ) (1 )( ) ] ( ) (1/ )

da t
u c u c A a dxdy

dt
α α δ ϕ

Ω

= − − − − − 
                   (3) 

2 2 2 3

0 1 0 2

( )
[ ( ) (1 )( ) ] ( ) (1 / )

db t
u c u c B b dxdy

dt
α α δ ϕ

Ω

= − − − − − 
               (4) 

2 20
0 1 0 2

( )
[ ( ) (1 )( ) ] ( )

dx t
u c u c Ldxdy

dt
α α δ ϕ

Ω

= − − − − − 
                       (5) 

2 20
0 1 0 2

( )
[ ( ) (1 )( ) ] ( )

dy t
u c u c Mdxdy

dt
α α δ ϕ

Ω

= − − − − − 
                       (6) 

2 2

0 1 0 2

( )
[ ( ) (1 )( ) ] ( )

d t
u c u c Ndxdy

dt

θ
α α δ ϕ

Ω

= − − − − − 
                   (7) 

 

Here, ( )δ ϕ is the Dirac function and  

 

1 0
( ( ) ) / ( ( ) )c u H dxdy H dxdyϕ ϕ

Ω Ω

=   
 

2 0
( (1 ( )) ) / ( (1 ( )) )c u H dxdy H dxdyϕ ϕ

Ω Ω

= − −  
 

 

0 0( )cos ( )sinA x x y yθ θ= − + −  

0 0( )sin ( )cosB x x y yθ θ= − − + −  

2 2cos / sin /L A a B bθ θ= −  
2 2sin / cos /M A a B bθ θ= +  

2 2
[1/ 1/ ]N AB b a= −  

 

Therefore, the steady solution of Eq(2-7) at time T : 
2 2

0 0

2 2 1/2

0 0

1 [(( ( ))cos( ( )) ( ( ))sin( ( ))) / ( ( ))

( ( ( ))sin( ( )) ( ( ))cos( ( ))) / ( ( )) ]

x x T T y y T T a T

x x T T y y T T b T

θ θ

θ θ

= − + −

+ − − + −

               (8) 

 

      In our application, we imported this methodology to 

extract the OD and an over-sized PPA-plus-OD region. But 

we slightly modify the rules for the evolution of the C-V 

models because of the fact that PPA region may sometimes 

also appear in an irregular shape when segmenting the PPA-

plus-OD region in the blue channel.  

 

      In Tang’s C-V model, the mask always evolved with an 

elliptic shape. But, for PPA-plus-OD segmentation, we only 

set up an ellipse as the initial mask. The model was then 

allowed to produce an enclosed but not necessary elliptical in 

shape region (mask), which is always bigger than actual 

region of PPA-plus-OD in the red channel. 

       

Next, Tang’s C-V model was used to detect the OD region. In 

order to segment OD properly, we introduced two 

modifications to the model. Firstly, Eq(3) was restored to the 

original form (of an ellipse):   

2 2 2 3

0 1 0 2

( )
[ ( ) (1 )( ) ] ( ) (1/ )

da t
u c u c A a dxdy

dt
α α δ ϕ

Ω

= − − − − − 
                 (9) 

 

       Secondly we introduced a new way to detect the centre of 

the OD for better segmentation. First, we divided the raw 

image into four sub-regions. Then, we estimated the initial 

mask centre ),( 00 yx . Our software automatically set up 

offset, xf and yf , of  the detected OD centre ),( cc yx , based 

on the histogram of intensity value of each four regions. 

0 0( , ) ( , )c x c yx y x f y f= + +                                                       (10) 

 

The initial function in Eq (2) was chosen as  
2 2

0 0 0( , ) 1 ( ( ) ( ) ) /x y x x y y Rϕ = − − + −                                     (11) 

 

Here, R  is the estimating radius of the OD and could be 

simply taken as: 

0 0 0 0min{min{ / 2,( ) / 2},min{ / 2,( ) / 2}}R x w x y h y= − −              (12) 

 

where, w and h are the width and height of an image 

respectively. 

  

B. Auto-Set of Thresholds 

 

      In order to remove the unwanted pixels of the over-sized 

PPA+OD region, we acquired threshold values from the 

histogram of intensity values in the four sub-regions. In this 

context, the threshold was set by the brightest 30% of all 

pixels in each region. This gave a better-defined PPA+OD 

region. We then subtracted the OD and obtained the first 

order estimation of the PPA region as illustrated in Fig.1(g). 

 

C. Scanning filter and Multi-Initial Seed Region Growing 

 
 The seeded region growing technique was first 

introduced by Adams and Bischof [11]. It starts with several 

initial seeds and then adds adjacent points as new seeds, 

beginning by the points of lowest priority. The priority is 

defined by a distance function. In [11] the distance of the 

pixel to a contiguous region is defined by:               

( , ) [ ( ) ( ( ))]i j iR x I x mean I jδ δ= − ∈                   (13)    

where )(xI  is the image I  value in δ∈x and iδ the region 

labelled i . Setting both the right initial seed and distance 

function is vital to the PPA extraction in the subsequent stage. 

 

Since the PPA region is a non-homogeneous region with a 

few crossing vessels, we adopted the ‘multi-seed’ idea from 

[11], and proposed using a scanning [1x3] filter to create a 

passage through the vessels for region growing. The 

algorithm automatically places an initial seed at each sub-

region and set an optimal distance function for each region. 

Finally, we integrated the segmented result of the PPA region 

as a whole image. By combining the techniques listed above, 

our methodology permits the full use of both global and local 

information for PPA and OD segmentation. 

III. RESULTS 

 

  For our experiments, we used colour fundus images from 

the Lothian Birth Cohort (LBC) database [12]. Fig.3(a) shows 

the experimental results obtained from the good quality 

fundus images whilst Fig.3(b) shows results of poor quality 

or faint images.  
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Fig 3. Segmented results on (a) good quality image, and 

(b) poor quality image  

  

      In Fig.3, the ground truth is drawn on the black solid line. 

The result of estimated PPA and OD region are enclosed by 

the blue dotted line and red triangle line, respectively. The 

results of randomly selected fundus images in forty trials are 

shown in Fig.4 and Fig.5. The estimated size and ground truth 

of the OD and PPA (in arbitrary unit) are represented in the 

Y-axis and X-axis, respectively.  

      

Fig 4. The performance of quantifying the PPA region. 
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Fig 5. The performance of quantifying the OD region. 

 

IV.  CONCLUSION 

 

       A total of 40 images of 25 subjects with PPA, including 

eight faint images, were randomly selected for test. Our 

proposed method achieved 91.3% and 92.5% accuracy in 

defining the size of PPA and OD respectively, compared to 

the gold standard of a human expert (AL). In terms of 

correlation between the data of ground truth and our 

estimation, we obtained 0.98 for both the PPA and the OD. 

Moreover, our method can provide additional information, 

namely transverse and conjugate diameter of the OD as well 

as the ratio between the OD and PPA. Further work to test out 

this method in a larger sample set is indicated, in an effort to 

develop an automated screening system for diagnosis of eye 

conditions associated with PPA in the community.  
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techniques of curve evolution, level sets and 'Mumford-Shah 
functional'. We carefully selected the step size of the energy 
function to ensure that our snakes stopped at the desired 
boundaries. PPA was then derived from the subtraction of the 
OD from the OD-plus-PPA. We applied this technique on 
fundus images taken from a database of a well-characterized 
cohort and compared the accuracy of boundary detection 
against the manually-labeled ground truth information drawn 
by an ophthalmologist. 
Results: Of the 33 randomly selected images of 25 subjects 
with PPA, 27 were of sufficient quality for analysis. Our 
proposed algorithm achieved a mean accuracy level of 86.6% 
(S.D.=5.9) in detecting OD, 87.1% (S.D.=6.5) in detecting OD-
plus-PPA and 73.5% (S.D.=12.8) in detecting PPA. 
Conclusions: Our proposed algorithm achieved good accuracy 
compared to the gold standard of a human expert. Further work 
to test out this algorithm in a larger sample is indicated. 
Possible application includes semi-automated screening 
systems for diagnosis of eye conditions associated with PPA in 
the community. 
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