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Abstract

Ophthalmic diseases such as glaucoma are associated wgifepsive changes in the structure
of the optic disc (OD) and parapapillary atrophy (PPA). Ehstsuctural changes may therefore
have relevance to other systemic diseases. The size arttood OD and PPA can be used
as registration landmarks for monitoring changes in festaf the fundus of the eye. Retinal
vessel evaluation, for example, can be used as a biomarnkérd@ffects of multiple systemic
diseases, or co-morbidities. This thesis presents thecbraputer-aided measuring tool that
detects and quantifies the progression of PPA automatioallg 2D retinal fundus image in
the presence of image noise. An automated segmentaticensystdescribed that can detect
features of the optic nerve. Three novel approaches arerexpthat extract the PPA and OD
region approximately from a 2D fundus image. The OD regiosegmented using (i) a com-
bination of active contour and morphological operatiofiya(modified Chan-Vese algorithm
and (iii) a combination of edge detection and ellipse fittmgthods. The PPA region is iden-
tified from the presence of bright pixels in the temporal zofithe OD, and segmented using
a sequence of techniques, including a modified Chan-Veseagip thresholding, scanning
filter and multi-seed region growing methods. The work destrates for the first time how the
OD and PPA regions can be identified and quantified from 2Ddanchages using a standard

fundus camera.
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Chapter 1
Introduction

1.1 Background and Motivation

This PhD study brings together optic disc (OD) and parafzapiatrophy (PPA) segmentation
and quantification. The OD is the site where ganglion cellnaxizave the eye to yield the
optic nerve and the PPA is an abnormal retinal tissue, adjaoethe OD. As the focus is
on developing a software system to deal with optic nerveufeatextraction, this section will
provide a brief overview of image processing techniques @ndetection and segmentation
and the need to pre-process. The research interests békimu/éstigation of the PPA region

are also provided in this section.

1.1.1 Importance of undertaking detection and segmentatioof the OD region

The 2D colour retinal fundus images not only provide infotiora about different eye condi-

tions and ophthalmic diseases (e.g. myopia, macular degfgore and glaucoma), but could
also show signs of systemic diseases such as diabetes Be®¢e, automated retinal fundus
image processing has become a primary screening tool fiyréstection of ophthalmological

and systemic diseases. In terms of analysis of the retiredénoptic nerve features (e.g. OD)
are the fundamental features of interest. The segmentatiol region is an essential task for
the processing of retinal fundus images (i.e. automatedsanements for diabetic retinopathy
diagnosis or treatment evaluation). There are therefonaddnt surveys about OD detection

and segmentation reported in the literature.

The OD is located anatomically at the distal end of optic e¢Rigure 1.1), which is the region
where ganglion cell axons exit the eye to form the optic némeugh which visual information

is transmitted to the brain. The OD is the entry point for tremblood vessels that supply the
retina. It is composed of two distinct parts: the cup, a @rdright area of the OD, and the

neuroretinal rim, a peripheral area where the nerve fibred beo the cup region (Figure 1.2).

The OD region appears as a bright yellowish-white ellipseigdly-overshadowed by retinal
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Figure 1.1: The sagittal section of the eye ball. The optic disc is s#danatomically at the
distal end of optic nerve.

blood vessels in the fundus image. Segmenting the OD is novial task owing to light

artefacts, blood vessels and often ill-defined boundapiggicularly in the presence of PPA.

1.1.2 Growing Interest in the PPA region

Certain ophthalmic diseases (e.g. progressive glaucontbgye conditions (e.g. myopia) have

been associated with the development of retinal pigmethepim (RPE) PPA [3].

The reason why PPA develops has remained unclear but theepsign of PPA, which is a
result of degeneration in retinal nerve fibre layer (RNFLihe eye, has been linked to degen-

erative myopia [7] as well as glaucoma [8], both of which casuit in sight loss.

Although degeneration and thinning in retinal tissue argeneral irreversible, early detection

and medical intervention may offer an opportunity to redocdimit their progression [9].
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Figure 1.2: a) Original colour retinal fundus image; Annotations daber the four different
zones of the optic disc; b) the optic disc boundary and thePapillary Atrophy
region.

More recently, there is therefore a growing interest in thieptial role of PPA in detecting eye
diseases at an early stage [10-16].

PPA can clinically be categorised into and the ‘alph& ¢Zone and ‘beta’ §) zone PPA and
large choroidal vessels although the division is slighttyfiaial [17, 18]. a-zone PPA is the
outer peripheral zone of PPA with irregular hyper-and hpmgpnented areas in the retinal pig-
ment epithelium (RPE), either on their own or surroundingez8-PPA. In addition,5-zone
PPA is the central zone of atrophy, next to the OD, is supptsd complete RPE atrophy.
Such kind of classification has now been accepted into comueeninitiating studies to better
understand the progression of the PPA. For example, theiaisa betweers-zone PPA with
the rate of retinal nerve fibre layer (RNFL) thickness change been studied. Glaucomatous
eyes withg-zone PPA are at increased risk for progressive RNFL thinfil®]. The relation-
ship between PPA and primary open-angle glaucoma with &zl visual field loss has also
been investigated. Patients with such symptoms, and thenpatith presence of-zone PPA
and neuroretinal rim thinning are in good corresponden®é [Rlealeyet al. investigated the
association betweefi-PPA and both environment and genes. The presen@geRHA appears
to be under strong genetic control, with only a fraction @ tenetic effect shared with genes
involved in myopia [10]. The relationship between PPA arel@D in patients with glaucoma
or visual field damage by manually quantifying the size of RiRd the OD regions has been

investigated [11]. The presence and the progression of P&& discovered to be associated

3
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with subsequent OD or visual field changes in patients withascdypertension. Honrubia and

Calonge further found that, in patients with such symptdimspresence of PPA could imply a

risk of glaucomatous deterioration as it has a statistissbeiation with the presence of defects
in the retinal nerve fibre layer (RNFL) [12].

The association of PPA with glaucoma in a population-basaidi/fas been studied by a1 al.
It has been found that-PPA appears to be larger and occurs more frequently in ghaatous
eyes than in normal eyes of Chinese adults, but no signifididfierence was found between

primary open angle glaucoma and closed angle glaucoma [13].

A commercial software package Photoshop (Adobe Systems $am Jose, CA, USA) was
utilised to measure the size of PPA and the OD regions in sisgekow closely PPA is related
to structural and functional glaucomatous optic nerve dgja4]. Uhmet al. discovered that
the severity of glaucomatous optic nerve damage and viseldl diefects were related to the
increases in the size of PPA and concluded that PPA could d&felusr the diagnosis and
progression of glaucomatous nerve damage [14]. There epfghalmic techniques such as
the Heidelberg Retina Tomography (HRT) and Optical Colm¥efomography (OCT) which
can provide a colourless or pseudo-colour 3D visualisatioihe PPA and the OD [21]. They
require a trained technician or ophthalmologist to idgntifanually the OD boundary on the
image before the PPA and OD variables can be estimated fremmigige contour based on 3D
depth information [15]. Furthermore, the HRT and the OCTehbgen employed in several
studies about the PPA. One example application is to inya&tithe association between PPA
and the progression of glaucoma [6]. However, 2D colour figrichaging may be preferred by
many clinicians for estimating the size of OD and PPA bec#usémage from HRT or OCT is

generated via computer processing rather than a direatdiegoof the object of interest.

An alternative tool to detect and quantify the PPA and the Qrmatically from colour fundus
images would reduce the workload of the human assessor afdifacilitate a wider investiga-
tion about the potential importance of PPA in ophthalmiedse diagnosis involving facilities
where access to HRT or OCT is limited. Moreover, in largeicihstudies and pathological
monitoring programs, such a computerised tool can alsodugpthe repeatability therefore

avoiding problems associated with fatigue and habituatoa tend to be more cost-effective.
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1.2 Objective of this study

At its core, this thesis sets out to explore the suggestian th

An automated optic nerve feature detection and segmentsyistem based upon a
combination of image processing techniques to emulate ahwxpert can approach the

performance of the human visual system.

1.3 Definition of Problems

Many difficulties had to be overcome during this work. It isuifficient to estimate only OD
positions and segmentation for the model based repregentdtthe OD. It is necessary to fit
the contours of the features so that important informatsutch as the transverse and conju-
gate diameter of OD, can be provided. These problems mustch&et under the assumption
that the OD is an object with elliptical or with round shapen &pproach to eliminating the
influence resulting from the crossing blood vessels and tbsegmce of PPA is also required.
Three attempts based on a combination of image processihgitgies have been proposed in
this thesis to deal with these difficulties. In addition, P&y have research value for oph-
thalmologists and researchers. It is therefore necessalgvielop the software capable of both

detecting and quantifying the region of PPA.

1.4 Fundus Image Database

All the colour fundus images for the assessment of the ingagols we developed in this
PhD project were randomly drawn from the database of thei&wotBirth Cohort (LBC) 1936

study [22]. The LBC study included the living members of t8#1 Scottish Mental Survey
(n=70,805) who were born in 1936 and currently reside in thHenliurgh area (Lothian) of

Scotland. Three hundred and twelve individuals were trdickecessfully and had their retinal
photos taken at the Wellcome Trust Clinical Research Fgdilestern General Hospital, NHS
Lothian, Scotland. Their mean age at the time of the phdtimgawas 72 years old. The
research complied with the Declaration of Helsinki and wasraved by the Lothian (Scotland

A) Research Ethics Committee.
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The type of images in the LBC database is diverse. It compd#terent types of shape of PPA
(See Figure 1.3) so that the differentiation of differemtdd of PPA could be considered in the
trials executed by this PhD project.

1.4.1 Experimental protocols

Figure 1.4 illustrates the experimental protocols of depielg software tools in this PhD project,
which can be divided into four phases: Firstly, without kimagwace and gender demographics,
N fundus images were randomly drawn from the database of B database by Cheng-Kai
Lu. Here, N is a positive number. For the images used in Chaptehapter 6 and Chapter 7, N
is given as 20, 94 and 50 respectively. All fundus images fetecropped manually to the Re-
gion of Interest (ROI), and the ROI size was set from #®@00 to 1200x 1200. The ground
truth were drawn by an ophthalmologist (Dr. Augustinus LeguéL). The poor quality im-
ages were also determined by AL. Secondly, all algorithnserdleed in this PhD project were
invented and then implemented in MATLAB (Mathworks Inc.,tidl, MA, USA). Thirdly,
the software tools was modified according to analytic outeqdone by Cheng-Kai Lu) on
unacceptable sample results which are determined by ahalptdlogist, AL. Lastly, the all
segmentation results validated by different validatiorihnds described in detail in Chapter 2,

Chapter 5, Chapter 6 and Chapter 7, respectively.

1.5 Structure of the Thesis

The previous sections in Chapter 1 presented the aims dahggs which include developing a
software tool for automated detection and quantificatiobath the OD and PPA regions in 2D
colour retinal fundus images. Related works on OD dete@mhsegmentation that have been
done in the past using active contour techniques and a favg itsiigh Transform techniques
have been discussed. There has been some work on the comupaiiesis on PPA detection and

PPA segmentation because not much effort has been done odd®&ion and quantification.

Chapter 2 introduces and reviews (i) image processing tgeaga applied in OD detection and
segmentation, (ii) a current approach to detect the preseiePA and (iii) existing evaluation

measures on the segmentation of optic nerves features.

Chapter 3 gives background information on some necessagedmre-processing techniques



Introduction

Figure 1.3: Different types of PPA: (a) a right-eye image with a cresaape PPA (b) and (c)
shown a right- and left-eye image with a U-shape PPA, reggadygt(d), (e) and (f)
shown a right-,left-,left-eye image with round shape PR&pectively.
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Figure 1.4: Experimental protocols of developing software tool forrbdé¢tection and segmen-
tation of the OD and PPA.
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and theories which are often used in bio-medical images. dpiit into three main parts. The
first part reviews the basic image processing theory suchigitaDimage, Binary Morpho-

logical Operation, Image Filters and Colour Space and Gdloansform. The second part of
Chapter 3 provides a quick look at image enhancement ingudontrast enhancement and

histogram modification. The final part of this chapter introgls the edge detection techniques.

Chapter 4 gives a brief review of several image segmentsidmiques including thresholding,

region growing and active contours.

Chapter 5 describes the two different algorithms for the @@an segmentation in detail. A
novel approach to segment the OD and PPA automatically ésiafsoduced. The introduced
method exploits both the red and blue channels of the imageatomise the information on

features (PPA) whilst keeping interference (blood ve3gela minimum. A technique named
“snake without edges” is used to estimate the boundary obtbend PPA. The proposed ap-
proach is evaluated against the reference boundary draan bghthalmologist. Experimental
results show the method can repeatedly detect the boundémnatically which is a major

improvement from the results reported in the literature.

Chapter 6 describes a computer-aided measuring tool tonatitally detect and quantify both
the PPA and the OD regions in 2D colour fundus images of thieaeThe outcome shows a
possible means to quantify the size of PPA on 2D fundus imaiginé first time. The proposed
tool is capable of detecting and quantifying PPA and OD mgjicepeatedly with sufficient
accuracy and could also provide additional informatiormely the transverse and conjugate

diameter of the OD, which may be useful for eye screeningqaep

Chapter 7 describes a novel retinal imaging tool, Parajpapiatrophy AND Optic disc Re-
gions AssessmentHANDORA), for assessment of the OD and PPA in detail. The tool is
implemented by a combination of edge detection, ellipsidittnethods, modified Chan-Vese
approach, thresholding, scanning filter and multi-seetregrowing methods. The clinical-
knowledge also has been exploited to develop this tool. &helts show the developed system

is more robust against various non-trivial conditions.

Chapter 8 first presents a summary of the achievement, ttemsdsome limitations of the

works and conclusions and eventually proposes severabfmsxtensions of this research.



Chapter 2
Literature Review

This chapter aims to provide the essential background sonbrk and a review of relevant lit-

erature in order to identify a possible solution to the aggtlon. Firstly, Section 2.1 introduces
the existing image processing techniques applied to osec(@D) detection and segmentation.
Section 2.2 presents current solutions available for @guilpry atrophy (PPA) detection. This
chapter is concluded with a survey evaluating the perfoomarf methods of PPA detection

and OD segmentation in Section 2.3.

2.1 Optic Disc (OD) Detection and Segmentation

The OD is an important parameter in glaucoma diagnosis F3very useful in proliferative
diabetic retinopathy [25,26] and a common landmark wheatlog regions of interest such
as the macula [26, 27]. As a result, various methods have ibgestigated for the detection
of the OD but the focus of those works is either to locate thereeof OD [28] or to detect
the boundary of OD on fundus images without consideratiartife conditions of PPA. The
detection and segmentation of the OD region has been pertbunsing 2D fundus images
directly [28,29] and 3D planimetric images generated froaitamodal imaging systems [30].
Figure 2.1 demonstrates the summary of the works of the tifeeaf the OD. Normally, there
are two/ three phases of the OD detection: pre-processiaggpimoise reduction/ OD location),

an estimation phase /and an optimisation phase.

Several methods reported in the literature are briefly thiced as follows:

2.1.1 Shape fitting based techniques

Shape or data fitting techniques (e.g. Hough Transform [Hhid least square regression
(LSR)) are introduced to fit the OD because the OD is elliptitaound structure.

The traditional H.T. was designed to identify lines in theage, but later the H.T. has been
extended to identifying circles or ellipses (Figure 2.2lm)the field of data fitting, the least-
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Objectives  Used Features Techniques
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Review on Equalisation
Optic Dise Circular or
detection works elliptical fitting
T
ougl | - |
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Figure 2.1: Summarise the works of OD region detection and segmentation
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squares minimise the sum of squared residuals to obtainetsfib One data fitting example

is given in Figure 2.2b.

(a) A result of fitting the OD region via Circular Hough (b) A result of data fitting via least square regression.
Transform

Figure 2.2: Samples of shape or data fitting based techniques.

In [31-33], an area-thresholding algorithm is used to firkitalise the OD, before detecting
its boundary by the means of H.T., i.e. best fitting a circlsdobon the gradient information of

the image. However, this approach proved to be time consumin

In another investigation conducted by Abdel-Ghadaal. [34], the green space of the retinal
fundus image was suitable for the OD detection and segnmemtiaecause there is significant
contrast between the OD and the retinal tissue in these sndgehe pre-processing phase, a
morphological closing operation removed the retinal blgedsels across the OD region. By
estimating the OD centre, 24 evenly distributed radial mectvere then defined. The images
were resampled along these 24 vectors to produce a rep#eanfor later processing. The
Sobel operator (described in detail in Section 3.3.1) wadiegfirst on these images and the
threshold value was then obtained by computing the locénee and mean. Subsequently, the
residual points were input to a Circular Hough Transform lifgggest round shape was iden-
tified consistently with the corresponding OD. This methoty@applied on the images with
less anatomical contrasts and only achieved at the sucatssfr65% , with specificity and

sensitivity rates of 84% and 60% respectively.

12



Literature Review

Figure 2.3: An edge map resulting from applying Sobel edge on the ODmegio

On the other hand, the OD region detection is executed indgtlechannel in three phases:
identification of candidate region, Sobel edge detectiah @mestimation phase. The candi-
date region is located and then neighbouring pixels are edeirgto clusters by a clustering
algorithm [35]. The centre of the candidate region is regdrds the centre of gravity of the
largest cluster. The edge detector, Sobel, is then useditoags the contour of the OD (e.g.
Figure 2.3). The outcome is not good enough because of ridgR.is thereafter employed to

determine the best circle that fits the OD region on the Salge enap.

2.1.2 Clustering and PCA based Techniques

The basic concept of a clustering technique is the approaghoaping a set of objects with
similar features into clusters (shown in Figure 2.4). The € be detected either by finding
a large cluster of pixels with high intensity [31, 36] or byasghing a region with the most
intensity variation at gray level [37,38]. However such huels are susceptive to retinal lesions
(e.g. exudates) which can also appear bright in fundus immaged artefacts (e.g. intensity

gradient across the image).

In addition, principal component analysis (PCA) is a matatcal procedure. Figure 2.5 il-

13
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(a) Three different colour (red, yellow and blue) of the (b) A result of the clustering technique.
squares

Figure 2.4: An example of a clustering technique shown as the colour yrtbw and blue) of
the squares into three groups.

lustrates how to take a picture to capture the most infoomatif the object. PCA can first
find the longest axis (shown as a red line in Figure 2.5e).elh theeks the second longest axis
(shown as a green line in Figure 2.5e) by rotating the teagpgt Figure 2.5 a, b, c and d) as the
longest axis is fixed. These two axes obtained are the firstrensiecond principal component,
respectively. The extends in average along the axes asgl@tienvalues. Therefore, PCA can

be applied to reduce the noise and get a significant featuteafata.

PCA for automatic detection of the OD region has been regdf®, 40]. The PCA, in their
study, is employed only on the regions of pixels with the kighgray level to lock the OD.
This method is applied with presence of large area of ligkibles and could be used even in
the presence of bright lesions on the fundus image, alththigtapproach could also be time-

consuming.
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(e)Best view detected by PCA. PCA first find the
longest axis depicted as red line and then the second
longest axis (green line) is detected.

Figure 2.5: Brief introduction of PCA.
15
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2.1.3 Pyramidal, wavelet transform and template matching €chniques

The contour information is essential to identify the maqarecisely for successful grading of
a pathological condition of the macula such as diabetic topeathy. However, the extreme

variation of the intensity within the OD or close to the OD hdary resulting from the pres-

ence of blood vessels and PPA increases the complexity of&éztion. The OD was tracked

by a pyramidal decomposition (multi-scale analysis) tema exploiting a simple Haar-Based
wavelet transform (shown in Figure 2.6) [28,41] and itsoegivas segmented by a Hausdorff-
based template matching approach on an edge map obtaimadaff@anny edge detector. In

their 40 trials of various visual quality [28], the OD cenfresitioning achieved an average
error of 7%, with no false detection. Their proposed modeladserve as a preparation stage
for the task of segmenting of the OD.

Figure 2.6: An example of pyramid representation of the fundus imagé&hwh directly ex-
tracted from a paper. [1].

In addition, the OD boundary detection rate was improved &ipgiwavelet transform and
an intensity-based template [42]. This method producete gqubust segmentation results in
cases where the intensity of the OD region is extremely ramndgenous. The OD boundary

is detected from the outline of the OD by using an ellipsenfittiechnique.

16



Literature Review

2.1.4 Geometric parametric model

The geometric relationship between retinal blood vessatisa OD region and OD can be used
to identify the location of OD [43—-45]. The OD location can Uiidised to initialise the disc
boundary once it has been identified and the geometric featifiretinal vessels can be used to
locate the OD position (shown in Figure 2.7). For example aiigin of the retinal blood vessel
network was determined by a novel algorithm using fuzzy eogwnce [43]. The coordinates

of the OD centre were also estimated by using a geometricathptric model [45].

(a) A fundus image. (b) A result of vessel segmentation. The red cross de-
notes a candidate OD centre

Figure 2.7: Geometric relationship between retinal blood vessels abBdcéntre.

In another attempt to locate the OD position, Trucco and Kaj#d] utilised a set of plausible
candidates for main vessels, OD, and macula to search tle gppossible triplets and then
yield a proper location of the OD satisfying prior anatorhmanstraints. These approaches lo-
cate the OD with reasonable success although the detedtiaanl vessels is a very complex

operation.

In addition, the direction of retinal vessels originatimgrh the OD was depicted by a geomet-
rical parametric model [46] and two parameters of the pregasodel are just the coordinates
of the OD centre. In the literature, Ruggetial. extracted retinal vessels by a vessel tracking
procedure and then identified the model parameters by ussimuated annealing optimisa-

tion technique. The algorithm Ruggeti al. proposed was employed in a set of forty images of

17



Literature Review

both abnormal and normal subjects. In all these images aheimates of the OD centre could

be produced, even in rather severe pathological situations

2.1.5 Watershed and morphological filtering

The morphological filtering (described in detail in Sect®i.2) is a useful tool for noise re-
duction in shape-based image processing. The watershesfdraation is often used as a
regional image segmentation technique in a field of imagegasing and analysis. The fun-
damental concept of watershed is to simulate the flood drawmeigged terrain gradually and
the construction of dams to prevent the lake the process gfinge Figure 2.8 demonstrates
the example of watershed segmentation. Original image @paigtaphic view are shown in
Figure 2.8a and Figure 2.8b, respectively. There are thee ttages of flooding (Figure 2.8c,

d and e). After merging process (Figure 2.8f and g ), segrtienteesult shows in Figure 2.8h.

A combined approach of watershed transformation and mdwplual filtering to detect OD
was developed by Waltest al. [47]. The proposed model achieves a mean sensitivity rate
of 92.8% and a mean predictive rate of 92.4% in detecting tber&yion. By altering the
parameters of the model, the robustness of the model hasdiserevaluated. The results
presented in the paper are encouraging, but obstructiasasuretinal vessels are difficult to

remove completely without introducing significant distomtand loss to the fundus image.

2.1.6 3D multi-modal image techniques

Several feasibility studies exist using Heidelberg Refinenography (HRT), Optical Coher-
ence Tomography (OCT) and Ultra High Resolution (UHR) OCit affier a pseudo-colour 3D
multi-modal imaging systems of the PPA and OD [21, 30, 48, 49]

Although these techniques achieved reasonable succegstilhhave four main limitations [50].
Firstly, these techniques are not widely used in ophthalgotlinics because they operate with
more expensive and specialised lasers [51,52]. Secondlyet! technicians or photographers
with an intimate understanding of retinal anatomy are neglufor operating OCT properly and

acquiring a high enough quality OCT image. Thirdly, the @atihas to be turned to a partic-
ular direction to aim the instrument at the right place arehthas to remain motionless for a
long time waiting for the scanning line procedures execbie®CT, in order to avoid artifacts

resulting from eye movement. Fourthly, they are probablygomd for visualising changes in
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(a) Original image.

(e) Third stages of flooding. () Merging of water from two catchment basins.

il st

(9) Result of further merging. (h) Segmentation result (lines).

Figure 2.8: An example of watershed segmentation. (a) original imayjefmgraphic view of
the image. (c), (d) and (e) are then three stages of floodifftgr Anerging process
shown in (f) and (g), (h) shows the segmentation result.
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190 Iterations

Tntal Contour Box

@ (b) (c)

Figure 2.9: A Sample of working process of the snake: (a) Input image;Gib)ng initial
contour; (c) An example of the OD boundary detection aftér itérations.

disease progression. For example, the existing softwar®@TI would not allow clients to
view the acquired images from the previous examinations thig current image on the screen
immediately. Moreover, it is unlikely that such an expeassolution built around OCT in-
struments would be adopted for a large-scale screening@rofb2]. In addition to this, this
approach requires a trained technician or ophthalmolagigtentify the OD boundary manu-
ally on the image before the PPA and OD variables can be dstihieom the image contour

according to 3D depth information [15, 52].

2.1.7 Active Contour (Snake) based techniques

The active Contour is a deformable image segmentation mellieh evolves like snake (de-
scribed in detail in Section 4.4). In practice, active cansmormally starts after given an initial

contour. Figure 2.9 gives an example of using snakes to atithe OD region.

In this sub-section, several snake based techniques totdatd segment the OD region re-

ported in the literature are stated as follows.

First, histogram equalisation (described in detail in BecB.2.2) was applied to enhance the
retinal images. Pre-processing was then implemented Iog @spyramid edge detector to the

contrast enhanced image. After that the pixels of the pytatata structure were averaged by
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4-pixels subgroups improving the noise resistance. The stigngth and Cholesky algorithm
[1] were used to fit a snake to the OD border. The success afiitl is very contingent upon
pre-processing the images to improve the contrast betwee®D and the retina, but locking

the snake onto the OD border in the upper right quadrant wasagessful in their trials.

Second, PCA is utilised to locate the OD by means of dete¢tingcandidate regions at var-
ious scales. The centre of the OD could be indicated by clogl the minimum distance
between the fundus image and its projection onto disc spadoeHough transform was there-
fore adopted for the round shape detection because the shdpeOD is a round or elliptical
structure [53]. The centre and radius of a circle estimatethb margin of OD after using
the Hough transform detection. In addition, Topologicati¥e Nets (TAN) was proposed by
Novo et al. [54] to segment the OD region. This is a deformable model wbkimuld describe
the inner topology of the targeted object boundaries. Botivenets, optimised by a genetic
algorithm and energy term, have been applied to segmentEhev@hout any pre-processing

of the image.

Third, both the application of morphological operationsl #ime automatic initialisation of the
active contour in Lab colour space were exploited to lochte @D region in a retinal im-
age [55]. Previously reported work in the literature wasu®d on detecting the centre of the
OD region [38]. Osarelet al. [55], removed retinal blood vessels by means of colour mor-
phology and used template matching to initialise the OD iagtomatically. It is almost im-
possible to remove retinal blood vessels completely, aihahe morphology pre-processing
(e.g. opening/closing) helps to diminish the effects oinadtblood vessels. In addition, the
shake can deform to the wrong place if the initial mask foikeria far from the disc margin.

Moreover, such processing blurs the OD boundary, makinpdliedary detection unreliable.

Fourth, in [37], Xuet al. proposed a deformable model based technique to estimatedhe
boundary in retinal fundus images. They improved and exéritie original snake by clus-
tering and smoothing update techniques. The OD boundantare first self-classified into
two groups, edge point group or uncertain point group, Mistelring techniques after every
snake evolution. These boundary points of the OD are themraaiically updated by different
criteria obtained both from the global and local informatiol his approach works well, but

only if there is no or very little PPA. The presence of the PBAplicates the detection of the
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OD as it also appears bright in the fundus images.

Fifth, Chan-Vese (C-V) method [56] and level set methodq fi&ve also been applied to
OD boundary segmentation. The main merit of these methotigis ability to compensate
for discontinuities in the targeted region boundary of im&gatures to be located. These ap-
proaches however suffers from major drawbacks, e.g. theeagtion process is likely to be
time-consuming, C-V requires an accurate initial “guedsthe OD boundary and it is likely

to achieve good results only when the OD region is of homoggitensity.

Sixth, stereo imaging techniques have also been explogied) & “Snake” algorithm, together
with p-tile thresholding on an edge map, to outline the OD bounda®gj. This method was
implemented via 80 retinal image pairs, including 55 nceigbmatous, and 25 glaucomatous
eyes. The OD was estimated via the snake with the informaticdhe edge and brightness.
Their proposed method was then tested on a new set of stesgeswhich consisted of 98
pairs including 60 and 30 pairs with and without signs of gtama, respectively. The testing
result shows the potential value of the automated estimatiaghe OD region. The presence
of PPA however remains a problem. One possible solution [sdedetermine the presence of

PPA and subsequently devise a corresponding strategy rtmeseghe OD region.

2.2 Parapapillary Atrophy (PPA) Detection

PPA is one of the optic nerve features, which has been assddi@meye conditions or diseases
(e.g. myopia and glaucoma). It is important to detect ofdhiltadiseases early in order to
take potential interventional measures. However, prevgiudies were limited to the detection
of PPA. Most existing methods for the detection and quaatific of PPA are subjective and

manual [6, 10].

Only one software tool PAMELA (Pathological Myopia DetectiThrough Peripapillary At-
rophy) has been developed to automatically evaluate 2Dufsiiichage of pathological my-
opia [7,59]. It utilises the texture analysis componentARMELA and clinical image context
to extract PPA features and applies an artificial neural ogtvknown as a Support Vector
Machine (SVM) to perform binary classification (e.g. PPAganet or not). This system in-

volves segmentation of the OD, generation of texture featuintegration of these features
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into clinically-relevant zones, and a SVM classifier trairfer classification on the detection
of PPA. The presence of PPA is detected with 87.5% accurady images from the Singa-
pore Eye Research Institute. The sensitivity and spegifidiP PA detection are 0.85 and 0.90

respectively.

Their results show good promise for PAMELA; however, thgstem has the following draw-
backs: Firstly, both the accuracy of the OD detection andngegation need to be improved.
Secondly, the system can only detect certain types of PPAatdhe differentiation of differ-
ent kinds of PPA has to be considered in this system. Thitlir proposed system can not

gquantify the extent and hence describe the development&f PP

2.3 Evaluation Measures reported in the literature

There are two main issues that fall into the scope of thisggotojto establish and implement
methods to determine the presence of PPA, and further tdtiuéme area of PPA and OD.
Therefore, in this section we briefly introduce the evatwatmeasures (either for evaluating
detection or for evaluating segmentation): Firstly, weddtice the rules for evaluating the
performance of detection. Mean accuracy, Specificity antsiieity have been adopted to
evaluate the performance of PPA detection [7,59]. The Spitgi defined as the number of
true negatives divided by the sum of false positives andnagatives indicates how well a tool
can correctly identify negatives. The Sensitivity, defiasdhe number of true positives divided
by the sum of false negatives and true positives indicateswell a tool can identify actual
positives. In terms of area estimation, several existirguation methods for assessing the
overall performance of the OD region segmentation are tegdan the literature. These evalu-
ation methods are based on the similarity either in the eséichboundary or in the estimated

area when compared to a “groundtruth” drawn by a human expert

Segment of detected contour against the segment of contouf the groundtruth drawn by

human experts

The boundary-based estimation can be evaluated by megsheémlistance between two closed
boundary curves. This helps evaluate the accuracy of &dgeject contour localisation.

Therefore, this method has been used to measure the avéstaygcd from the estimated OD
contour point to the ground estimate [3%]n)=[u(n),v(n)] denotes the final estimated contour,

1 < n < N. The ground estimate, represented by A, is comprise of amichal pixel a;, 1
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<i < M, whereM denotes the amount of the pixel on the ground estimate conkmr each
individual contour poinn of all pointsN of the contour, the distance to the closest point (DCP)

of ground estimate is defined as

DCP(s(n),A) =min | s(n) —a; ||, 1 <i<M (2.1)

The accuracy of the estimated contour is assessed by the Distmce to the Closest Point
(MDCP) shown as follows:

N
~ 1 ~
MDCP(5,4) = + nz_:l DCP(5(n), A) (2.2)
By definition, the smaller the MDCP is, the closer the comgutentour is to the ground esti-
mate.
Segmented region against the region of groundtruth drawn bynuman experts

An effective measure (M) of the match between estimatednegnd groundtruth region has

been adopted by Osarehal. [55]:

(2.3)
hereRandT are equivalent to the ground estimate and the detected G@nregspectively and
N(.) represents the number of pixels in the targeted object megio

In addition, Joshet al. [52] further compute the pixel-wise recall and precisiotuea from

the overlap area between the ground estimate and the coinagfien. These are defined as:

tp
Recall = 2.4
ced tp+ fn 2.4)
.y tp
Precision = (2.5)
tp+ fp

heretp denotes the number of true positive pixdisgenotes the number of false negative pixels
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andfp denotes the number of false positive pixels.

Recall x Precision

= 2.6
Recall + Precision (2.6)

where F( namely traditional F-score or;Fscore) denotes the harmonic mean of recall and

precision. Here, the F-score value lies between 0 and 1., Hexéigher F-score is, the more

accurate mode is to the ground estimate.

2.4 Chapter Summary

In this chapter, some techniques surrounding OD centrdisatian, OD region detection and
segmentation reported in the literature are presentddlinitThese techniques are based upon
features of the OD region (e.g. the region with large clustdrigh intensity, the region with
most intensity variation and texture information) or usgggpmetrical features of retinal vessels
across the OD region. In Section 2.2, the software tool, PAKEISIng SVM and texture
information for PPA detection is reviewed. The PPA detectiate of PAMELA is 87.5%
with a sensitivity and specificity of 0.85 and 0.9, respeddtiv The experimental results were
reasonable; however, the tool Lat al. developed can only detect a few types of PPA and it
can not describe the progression of the PPA region. In Se&ti®, one statistical analysis is
performed to assess the performance of PPA detection amel tommon evaluation measures
(including contour to contour, region to region and F-sgéoe PPA or OD region detection or

OD region segmentation are introduced.

25



_ | Chapter 3
Review of Major Image Pre-processing

Techniques

Image pre-processing is an essential step because setjorewtfabio-medical images is an
arduous task often complicated by sampling artefacts aindt is highly recommended to
understand them before moving onto advanced methods anileas: A number of necessary
image processing techniques and theories which are corymuenitioned and adopted in this

thesis are introduced briefly in this chapter.

3.1 Basic Theory of Image Pre-processing Techniques

3.1.1 Digital Image

The term digital image normally refers to raster image, émbp, which is composed of a set
of numeric data structures or pixels. It is technically degd by the width and height of the
image in pixels and by the number of bits per pixel. Pixelstheesmallest individual element
in an image, indicating quantised values that represenbtigidtness of a given colour (or
intensity for grayscale) at any specific point. For example 8-bit grayscale image denotes
that each pixel of the image can have one of 256 shades, frerotlest (black) to highest
(white) intensity value. Itis essential to provide thretoo channels for each pixel for visually
acceptable results. Each colour channel resembles a gtayistage, offering shades of the
colour. The blend of three channels leads to the colour opikel, which can be constructed
as coordinates in some colour space. The colour space anahisg$ormation will be discussed

later in this section.

3.1.2 Binary Morphological Operation

The morphological operation is an essential tool for sHageed image processing, particularly
for filtering purposes. Therefore, we introduce it hereftyid-or a general scientific perspec-

tive, the term morphology refers to the study of structured rms. Applying this concept
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to image processing, morphological image processing iallyscalled mathematical morphol-
ogy (MM), which is the name of a specific methodology for asaly the geometric structure
inherent within an image. The MM was initially developed fbimary” images, and was then

extended to gray-scale images and functions.

In binary morphology, an image is regarded as a subset ofitbger grid Z%) or a Euclidean
space R%), for some dimension. The fundamental concept in binary morphology is the use
of a simple "structuring element” (also known as a kernelintestigate if a predefined shape
fits or misses the shapes found in an image. Two examples ahooiy used kernels, marked

asB, are shown as follows:

A. Let E=Z2; B is a 3x3 square defined b§=(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1),
(1,0), (1,1) (shown as in Figure 3.l1a).

B. Let E=Z?; B is a cross defined byB =(-1,0), (0,-1), (0,0), (0,1), (1,0) (shown as in Figure
3.1b).

(-1,1) (0,1) (1,1) (0,1)
> 3 k k
(0,0) (0,0)

X %k 3k X
(-1,-1) (0-1)  (1,-1) (0,-1)

(a) A common used square kernel. (b) A common used cross kernel.

Figure 3.1: Samples of common used kernels. Grid psidenotes “1”".

There are four key binary morphology operators [60]: enosalation, closing and opening.
In a binary image, erosion “thins” the black pixels and dilat‘smears” the black pixels (as
shown in Figure 3.2). These two basic operators are mutgallpled as an erosion of the
black pixels is equivalent to a dilation of the white pixels addition, they are translation

invariant and strongly related to Minkowski addition.

a) Erosion (See Figure 3.2b)

27



Review of Major Image Pre-processing Techniques

- _ - - - -
(@) (b) (c) (d) (e)

Figure 3.2: Samples of executing binary image morphology: (a) origingge; (b) erosion;
(c) dilation; (d) closing; (e) opening.

Let E be %) or (R?), andA represents a binary image i Erosion operator is given by:

A® B ={zeE|B, C A} (3.1)

Where B°) is the translation oB by the vectorz, for example:

B, ={b+ z|beB},V,eE (3.2)

When the kerneB has a centre (e.dB is a square or a disk), and this centre is located on the
origin of E, then the erosion o by B can be comprehended as the locus of points achieved by

the centre oB whenB moves insidéA.

b) Dilation (See Figure 3.2c)

Dilation operator, the opposite of the erosion operatof by the kerneB is given by:

AoB=|JA4=BoA=|]JB, (3.3)
beB acA

If B has a centre on the origin, then the dilation operat@k by B can be comprehended as the

locus of the points covered B/when the centre dB moves insideA.

c) Closing (See Figure 3.2d)
The closing ofA by B starts with a dilation operator @by B, followed by an erosion operator

of the resulting structure b:
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AeB=(A®B)&B (3.4)

The closing operator is also the complement of the locusasfstations of the symmetric of
the kernel outside the image Therefore, the closing operator can also be derived from

B=(A® o B®)¢ , whereX® denotes the complement Xfrelative toE.

d) Opening (See Figure 3.2e)
The opening ofA by B is acquired from the erosion operator Aty B, followed by dilation
operator of the resulting image tB; therefore the mathematical equation is represented as

follows:

AoB=(A6B)® B (3.5)

The opening operator is also defined by
AoB= | B, (3.6)
BgzeA
which means that it is the locus of translations of the keBelside the imagé\.

Binary image morphology (shown in Figure 3.2): (a) origimahge; (b) erosion; (c) dilation;
(d) closing; (e) opening. The kernel for all examples is a7 square. Due to the different
sequence of basic morphological operations, the void inldiver part of the charactef’’

remains clear after opening but is filled with dark pixels lysmg.

3.1.3 Image Filters

Image filtering allows one to emphasise certain featuregemiore adverse effects on images

[60]. A few types of image filtering are described here; alhgsa 2D filter.
Average and Median Filters

Both the Average Filter (AF) and the Median Filter (MF) candmaployed in eliminating noise
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from an image. An AF is a filter of linear class that can smoattinaage. The basic concept
behind the filter is that for any element of the image, an @eiaf the current pixel and its
neighbourhood is computed. The MF does something similar,ibstead of computing the

average, it takes the median.

(a) Original image (b) Original image with added salt and pepper noise

Figure 3.3: Samples for image filtering.

The median is acquired by sequencing all the values from dotigh, and then selecting the
value in the centre. If there are two values in the centreatleeage of these two is calculated.
In order to demonstrate the difference between these tweesijlsalt and pepper noise, a random
white and black pixels noise, was added to an original imagewn as in Figure 3.3). A MF
gives a better result as salt and pepper noise is compldilynated (shown as in Figure 3.4).
With an average filter, the colour values of all noisy pixais taken into consideration in the
mean calculation. In contrast, when taking the median, ydu gelect the colour value of one
or two pixels which have the least random fluctuations; h@gesimilar to the AF, the median

filter might blur the object boundary.
Linear filter with convolution
The image filter with convolution is another commonly-usdtgfi The convolution is a neigh-

bourhood operation in which each output pixel is the weidghdam of neighbouring input

pixels. The convolution kernel here is the matrix of weigfis compute the output pixels, the
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" s

(a) The image after average filtering (b) The salt and pepper noise has been removed after per-
forming median filtering.

Figure 3.4: Results both for average filtering and median filtering.

convolution kernel is first rotated 180 about its centre epinthen each weight in the rotated
convolution kernel is multiplied with the pixel of the imaged the products are summed to-
gether, as we scan the rotated convolution kernel over tire @mage. An example application

of a convolution filter to blur the image is shown in Figure.3.5

3.1.4 Colour Space and Colour Transform

The basic colour channel used in medical image processiRgGsB 3D colour space (Red,
Green and Blue Channel). It is composed of primary coloured,Rreen, and Blue which
are illustrated as x-, y- and z- axes of the space respecifset Figure 3.6). All the colours
in this space are found as points on or inside the colour aubieh are yielded by combining
a different proportion of Red, Green and Blue. RGB colourcspaas two main drawbacks

although it is a simple way to produce colour.

First, human eyes are psychologically more sensitive topsimeary colour than another and
therefore the representation of RGB space is not consistiéimthuman perception. Second,
any changes in an individual channel will result in the maadifion both in intensity of the

channel and in the resultant colour.
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(a) Original image (b) The image after processing convolution filtering. The
convolution filter blurs and smooths the image.

Figure 3.5: Samples for convolution filtering.

For the aforementioned reasons, many other colour spaseshiegn developed, (e.g. YIQ,
CIELAB, CMY, CMYK and HSV), to suit specific applications. Asng these, HSV and

CIELAB space are the two most common used colour spaces théises, alongside RGB.

The HSV (Hue, Saturation and Value) colour space considtsreé elements:

Hue is a colour type that describes a pure colour (e.g. putewyeorange, or red), ranging
from O to 360 degrees on a hue circle (also known as the colbaell Saturation, also called
purity, varies from O up to 1 (or 0 to 100%) to which the lowelueameans more “grayness”
presented. Value, also called Brightness, ranges from @ up(br 0 to 100%), which is a

nonlinear transformation of RGB colour space.

The utilisation of hue and saturation channels makes theeseptation of HSV space more

closely associated with the way humans perceive coloutisakhips.

Figure 3.7 shows HSV space as a single cone. A 3D conical tosmaf the colour wheel

represents the hue space. Three primary colours split teeggually, with Red at O degree,
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B
Blue | (0,0,255) Cyan
Magenta ’ (255,255,255)
‘ White
$ 0,255,0
Black™. .. ..o OB
, Green
(255,0,0)|
Red Yellow
R

Figure 3.6: RGB colour space cube.
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Green at 120 degree, Blue at 240 degree and so on. In additeaturation and the value are
depicted by the distance from the centre of a round crogmgeeaf the cone and the distance

from the pointed end of the cone, respectively.

Hue

Figure 3.7: HSV colour space cone.

The conversion between RGB and HSV spaces is not straigiafdrbut is well documented

in [61]. Here the equations for conversion are given.

Assumer, g, k= [0,1] be the coordinates of the red, green, and blue, reispigtof the primary
RGB colour space. To find the angle of Hue [0, 360] for HSV space, calculate:

0, Zf max = min\

o qg— b . .

(60° x . +0°) mod 360°,if max = r

max(r, g, b) - mln(r’ g, b)
h = 60° b—r - (3.7)

X max(r, g,b) — min(r, g, b) + Jifmax =g
o T — g .

24 —b

60° x max(r, g,b) — min(r, g, b) + 240°, i f max
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Forsandv of HSV colour space are given as follows:

0,7f max =0
s max(r, g,b) — min(r, g, b) min(r, g, b) (3.8)
= L =1 — —— 272 otherwise
max(r, g, b) max(r, g, b)
v = max(r, g, b) (3.9

for grays, asnin = max h =0 is used even if the hue has no geometric meaning there.

CIE L*a*b* is another most extensively used colour spacethla colour space, L* represents
luminance, while a* and b* represent colour componentspmting to nonlinearly compressed
CIE 1931 XYZ colour space coordinates. The RGB values must lfiie transformed to a
specific colour space(e.g. sRGB) and then be converted toL&Eb* because these two
colour models are device dependent. The conversion betR€&dh and CIE L*a*b* colour
spaces is well documented in [61,62]. Here the equationsdiorersion from CIE 1931 XYZ

colour space to L*a*b* space are given.

L = 116 x [f(YX)] 16 (3.10)

=500 % [ - f%)} (3.11)
b= 200 x [F(5-) ~ F(5) (3.12)
f(%) _ (%)1/371507(%) > 0.008856 519

Y Y 16 Y
f(—=)="1. )4+ — —)<0.
(Y ) = 7.787 x (Yn) 116’ for(yn) 0.008856

n

whereX,, ,Y,, andZ,, denote the tristimulus values of the reference white rasmiz Details
about the CIE L*a*b* space can be easily found in many image@ssing or colour related
books (e.g. [62]).
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3.2 Image Enhancement: Contrast enhancement and Histogram

Modification

Due to the digital nature of a fundus camera or retinal captkesoutput is in a digital format;
in fact, they are raster images or bitmaps. In a fundus imtgejntensity depends on the
physical properties of the tissue. The intensities arellysdascribed by eight bits per pixel,
which allows the use of 256 gray scales. There are varioterelift sources of interference in
the production of images (e.g. the performance of the fucdusera). Moreover, some fundus
cameras can not produce images without noise. The biggestepn is usually noise, which
can be reduced by exploiting image enhancement approadtiesse approaches could also
be employed if the quality of an image is poor in its contradte most common used image

enhancement approaches are stated in the following subrsect

3.2.1 Contrast enhancement

A nonlinear and reduced image amplitude range probabhltsasuypoor contrast which is one
of the most common imperfections of digital images. By résgahe amplitude of individual
pixels, the contrast of an image can usually be improved. tfdresfer function of the most
continuous amplitude images can be realised by photograebinniques, but to implement an
arbitrary transfer function accurately is very difficultid a trivial task to implement the transfer
function for quantised amplitude images [2]. In terms ofithplementation of the operator of
the transfer function, the effects of amplitude quantisatiave to be taken into consideration.
It is usually able to reduce the gray scale contouring etigcachieving a linear placement of

output levels if the output image is quantised to more letres the input image [2].

Amplitude Scaling
The raw image probably takes up a range different from thétsofaster image after digitali-
sation. Its numerical range probably covers pixels withatigg values and can not be mapped

straightforwardly into an intensity range [2].

Three different methods, which scale an output image baoklie domain of values dominated

by the raw image, are demonstrated in Figure 3.8.

For visualising an image with negatively valued pixels, fhst technique of absolute am-

plitude value scaling, shown in Figure 3.8a, is used to ekfphe transformation of absolute
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(a) Absolute value scaling. The amplitude value of the pixelrskieots +1.0 by
a small amount, it wraps around by the same amount to -1.0.

OUTPUT

o

I
OUTPUT |

RANGE |

\ INPUT
INPUT RANGE 4/

(b) Linear image scaling. The amplitude values of the proceissage is linearly
mapped over its entire range.

oUTPUT |
RANGE |

INPUT

\ M /
INPUT RANGE

(c) Linear image scaling with trimming. The extreme amplitudéues of the
processed image are trimmed to maximum and minimum limits.

Figure 3.8: Three common image scaling methods [2].
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value [2].To represent amplitude by utilising the two’s gdement numbering convention is
an essential transformation for system. In this kind of eystif the amplitude of the pixel
exceeds +1.0 by a small amount, it wraps around by the samardarntw-1.0 (here +1.0 and
-1.0 both represent maximum of luminance white) [2]. Likesyiif the amplitude of the pixel

undershoots stay almost black.

The processed image is linearly mapped over its whole rapgleeilinear image scaling tech-
nique (See Figure 3.8b). The same mapping for the linearensagling with trimming tech-
nique (See Figure 3.8c), but the extreme amplitude valtasdT) of the processed image are

trimmed to minimum and maximum limits.

The last technique is particularly useful for images in vahécsmall number of pixels exceed
the limits. A certain proportion of the amplitude values twe £nd of the amplitude scale
usually can be trimmed by contrast enhancement techni@jeBdr example, Figure 3.8c is a
typical contrast modification operation applied to bio-matimage enhancement applications.
A window-level transformation is shown in the Figure 3.8tieTwidth of the linear slopd-S

is the value of this window. The level of the window is situhtg the midpointM of the slope
line [2].

3.2.2 Histogram Modification

Images may have foregrounds and backgrounds that are bitlodboth bright. In such im-
ages, segmentation tasks are not easy accomplished. Sehdfimages can be enhanced
by the histogram equalisation technique, which is a mearofrast adjustment using the
image’s histogram. This method rescales the original image therefore the histogram of the
enhanced image, to a certain desired form. For exampleniincaease the global contrast of
many images, particularly when the usable data of the imagelose contrast values. The in-
tensities can be better distributed on the histogram byatffjisstment (e.g. local areas of lower
contrast gain a higher contrast). In the literature, enbdnmages have been produced by a
histogram equalisation procedure for which the enhancedy@s histogram must be uniform
[63—65] and an adaptive histogram equalisation procesbd@s used to improve the results
[66, 67] have described improved results by using an adapistogram equalisation process.
An example of histogram equalisation for a fundus imagevsigin Figure 3.9. The original
fundus image in RGB space, in gray level and its histogramshosvn in Figure 3.9a, Fig-

ure 3.9b and Figure 3.9c, respectively. In the histogranmakspd result of Figure 3.9d, optic
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nerve features from the fundus image, not seen in the ofi¢fee Figure 3.9b), are distinctly

visible. In addition, the enhanced image’s histogram (SgerE 3.9e) appears peaked, and
many gray level output values are occupied. Obviouslyphistm equalisation often performs
better on images with detail concealed in dark regions. Newé usually degrades good qual-

ity originals [2].

Adaptive Histogram Equalisation

The mapping function of histogram equalisation is changepeddent on the histogram of
the whole image. By employing histogram modification to gvaixel according to the pix-

els’ histogram within a moving window vicinity, histogramalisation can be made spatially
adaptive. The technigue, which has to generate a histogrampute the mapping function,
and map the function at each individual pixel, is computelty intensive. An adaptive his-
togram equalisation technique has been proposed [68] inhadnirectangular grid of points
produces the histogram and interpolating mappings of therieighbouring rectangular grid

points yields the mappings for an individual pixel.

Figure 3.10 demonstrates the interpolative adaptive diato equalisation enhancement array
geometry. An individual grid point in a window about the gpdint yields a histogram. In

addition, the dimensions of the window can be larger or ssn#lian the grid spacing.

AssumeHy, Ho1, H1g, H11 represent the mappings of the histogram equalisation peatiu
at four nearest grid points. The pixel S(i, k) is determingdalbilinear interpolation of the

mappings of the four neighbouring grid points defined by

H = albHy + (1 — b)Hig] + (1 — a)[bHo1 + (1 — b)Hy1] (3.14)
where
L k—ky
’“}L - Z’?O (3.15)
b= —2
11 — 1%
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(a) Original fundus in RGB space.
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(b) Original fundus in grayscale. (c) Original grayscale image Histogram.

12000 H 4
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3000 H i

(d) Grayscale fundus image enhanced by non-adaptive (e) Enhanced grayscale fundus image Histogram.
histogram equalisation.

Figure 3.9: Histogram equalisation.
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Mapping Window
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Figure 3.10: Interpolative adaptive histogram equalisation enhancenagray geometry [2].
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The special cases of equation(3.14), pixels in the margjioneof the grid points, is tackled.

In practice, it is more efficient for parallel processes tpleit the histogram produced by his-
togram window and to employ the consequent mapping fundti@very pixel in the mapping
window of the Figure 3.10. The procedure is then repeatlg@tesl at every grid point. Bilinear
interpolation is used to integrate the four modified pixdlfistogram acquired from the four
overlap mappings at each individual pixel coordinate (iA@ure 3.11 illustrates a comparison

between adaptive and non-adaptive histogram equalisatiamgray-level fundus image.

3.3 Edge Detection: First-Order Derivative Edge Detectionand

Second-Order Derivative Edge Detection

The object edge is marked by its angle of slope, height andldgize midpoint’s horizontal

coordinate. When the height of the edge is much higher thareeific value, an edge occurs.
An edge detector ideally yields an edge mark localised tmglesipixel situated at the slope
centre. In the continuous-domain, lines and edges in a 2Qeémasume that the discontinuity
of the amplitude stays constant in a tiny vicinity which igmal to the line profile or edge.

The transition model of a single pixel has a mid-value tri@osipixel interpolated between
the low-value of the background and the high value of the filegeau. Two main types of
differential edge detection are briefly introduced in thést®n [2]: 1st- order and 2nd-order
derivatives. For the former type, certain forms of spatstdrder differentiation are computed,
and the consequent edge gradient is compared to a specifesthofd value. If the gradient
value exceeds the given threshold, an edge is determinexisio &or the latter type, if the

greatest spatial change occurs in the polarity of the 2nivatere, an edge is determined to

exist.

3.3.1 First-Order Derivative Edge Detection

In the continuous domain, an edge segni&xty)can be captured by producing the continuous
1D gradientG(x,y) along a line perpendicular to the slope of an edge, which enaangle
with regard to the horizontal axis. An edge is regarded tstekithe gradient is adequately
large. The gradient along the line perpendicular to theeskipthe edge can be calculated as

follows [2]:
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(a) Original

L.
(b) Non-adaptive histogram equalisation (c) Adaptive histogram equalisation. Provides better Op-
tic Nerve features compared with Non-adaptive his-

togram equalisation method.

Figure 3.11: Non-adaptive and adaptive histogram equalisation.
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95(z,y) cos 0 + 95(,y) sin 0 (3.16)
dy ox

G(z,y) =
In the discrete domain, an edge gradi&k,y) is generated by a column gradie@t: (7, k)

and a row gradient/z (7, k) in the discrete domain (shown in Figure 3.12). The amplitofle

spatial gradient is defined as

G(j. k) = [[Ge (5. k))* + [Gr(j, k))*]/? (3.17)

The amplitude of gradient can be estimated by Equation Y3at&omputational efficiency.

Column
»| Gradient
Generation

Ge(j,k)

. p{ Gradient
Sk =1 Combination
Row
—3! Gradient
Generation

—G(j,k)

GR(j,k)

Figure 3.12: Orthogonal gradient generation [2].

Equation (3.19) describes the orientation of the spatiadlignt with respect to the horizontal

axis.

, Ge (), k)
0(j,k) = arctan - 3.19
(. k) (Grii ) (3.19)
The following issue for orthogonal gradient generation isccete domain is to select a good
discrete estimation to the continuous differentials ofagmun (3.16). In this subsection, the
column and row gradients for all aforementioned edge detedontain a linear combination

of pixels within a tiny vicinity. The column and row gradiesntan therefore be calculated by
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the convolution operation:

(3.20)

whereHq (5, k) and Hg(j, k) are a 3x3 impulse response arrays, respectively. Some éaamp

are shown in Figure 3.13 [2].
Two common operator&rewitt andSobel| are here briefly illustrated in Figure 3.13.

ThePrewitt is technically a discrete differentiation edge operatalgulating an estimation of
the gradient of the image intensity [2]. It offers the ratelsfinge in the direction of the largest
possible rising from light to dark. The result of this diderélifferentiation edge operator is
either the norm of the gradient vector or the correspondexgor point in an input grayscale
image. It therefore demonstrates how smooth or abrupt thgenedges are and how an edge
is likely to be oriented. The result of tHerewitt operator is a zero vector when applying it to

a point which is at a small region of constant intensity.

Overall, in terms of computations, tiReewitt operator is comparatively inexpensive because it
is mathematically according to convolving the image wittepagable and integer valued filter
in both the vertical and horizontal direction. In additidghnis relatively crude to estimate the

gradient, emphasizing regions of high spatial frequenciatians that correspond to the edge.

The Prewitt operator can be illustrated by the numbering conventionhefixels of Fig-
ure 3.14. Its operator edge gradient is defined by equatidk¥)3vith equation (3.21 and
3.22) [2].

. 1

Ge(j, k) = m[(Po + KPy+ P) — (Ps + KPs + Py)] (3.21)
. 1

Gr(j, k) = m[(Pz + KP3+ Py) — (Po + KP; + Fg)] (3.22)

where K= 1. The unit-gain negative and positive weighted averagestad separated edge
position are offered by normalising the column and row grat$i in these formule. Each in-

dividual pixel contributes to the gradient equally by imtoging theSobeledge operator. The

45



Review of Major Image Pre-processing Techniques

Operator Column gradient Row gradient
. 1 -1-1-1 1 | 0'1
PreW1tt J— O O O _ 1 O _1
IEEE 3104
| '1'2'1 1 | 0'1
Sobel Z 00 0 I 0) 0_2
121 10-1
Seperated 0-10 000
Pixel 000 1 0-1
difference 010 000
0-10 000
Pixel difference 010 01-1
000 000
100 00-1
Roberts 010 010
000 000

Figure 3.13: Some examples of impulse response arrays for 3 x 3 orthogtiffedential gra-
dient edge operators [2].
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Po P P

P S(J,k) Ps

Ps Ps P

Figure 3.14: Pixel numbering convention for<3 pixel edge gradient operator [2].

Sobeledge operator is implemented with=X2, which differs from thd’rewitt edge operator
in doubling the values of the east, west, south and north9[2¢. Figure 3.15 gives some

examples of the Prewitt and Sobel of the the 2D fundus image.

3.3.2 Second-Order Derivative Edge Detection

The 2nd-order derivative edge detection applies a certain bf spatial 2nd-order differenti-
ation to significant edges. If a dramatic change in the inteiggadient takes place in the 2nd
derivative, an edge is captured. Two kinds of 2nd-ordervdévie approaches are taken into

consideration: directed 2nd derivative and Laplacian aipef2].
Laplacian

In the continuous domain, the Laplacian functlgi,y) of an imageF(x,y) can be defined as:

here
o*f  0°f
2p _
Vof= 922 + By (3.24)

If F(x,y)is changing linearly or is constant in amplitude, the Lajalat.(x,y)is zero. In addi-
tion, if the rate of change d¥(x,y)is greater than lineak,(x,y) shows a sign change at the point

of inflection of F(X,y).
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% =
3 \
(a) Original 2D fundus image in RGB space (b) The grayscale of original 2D fundus image

(c) Prewitt (d) Sobel

Figure 3.15: Prewitt and Sobel gradients of the 2D fundus image.
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A zero crossing irL(x,y) implies the occurrence of an edge. The negative sign in theitien
of equation (3.23) means that for the edge with an amplitadeeasing from bottom to top or

left to right in an image, the zero crossingldk,y) has a positive slope [2].
Laplacian zero-crossing Detection

The Laplacian zero crossings do not lie at pixel sample pdimtthe discrete domain. As
a matter of fact, it is unlikely for real images subject to fuations of luminance including

zero-valued Laplacian response pixels and ramp edgesyhgaslope.

In discrete domain images, a simple method for Laplacian-zesssing detection is to pro-
duce the minimum of all negative-value responses and thenmugx of all positive Laplacian
responses in ax383 window, respectively. An edge is determined present ifnttagnitude of

the difference between the minima and the maxima is bigger #&threshold.

3.4 Chapter Summary

In the first part of this chapter, the basic theory of imagegraeessing techniques was briefly
introduced. The definition of digital image, the workingrmiples of binary morphological

operations (including erosion, dilation, opening, clgdiand image filters (e.g. average fil-
ter, median filter and linear filter with convolution kernafd the conversion between RGB
space and HSV space or Lab colour space were explained. Twmon image enhancement
techniques, contrast enhancement and histogram modificatiere described followed by an
introduction to edge detection techniques. In this padi-firder (e.g. Prewitt and Sobel oper-
ators ) and second-order derivative detection were destiibdetail. Overall, binary morpho-

logical operations, image filters and image enhancemehnigges are most widely applied
to the digital images in order to reduce the noise. The reptation of HSV and Lab space
is more consistent with human perception compared withadh&GB space. Edge detection
is a primary tool in image processing in image processingijqudarly in the area of feature

extraction, which aims at detecting points in a digital imag which the intensity of an image

changes sharply.
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Chapter 4

Review of Major Image Segmentation
Techniques

In this chapter, three different types of image segmentatichniques: thresholding tech-
niques, region growing techniques and active contour esjakre introduced. The main focus
is on providing the necessary background of image segnemtiEtchniques that are relevant

to this work.

4.1 Introduction

Many investigations into segmenting objects in an imageraatically have been conducted for
decades. Existing techniques for image segmentationetiealty can be categorised as three
main types: feature space-based approaches, image dbassd- approaches and physics-
based approaches [69-71]. For the first approach, clugtéechniques are frequently em-
ployed in the data distribution to classify image data iniffecent groups. For the second
approach [71-74], neighbouring pixels with small colouiraensity variations are integrated
together based on the discontinuity of local informatiotther similarity of adjacent pixels. For
the last approach, the mathematical models are fundaretitalsame as the prior two types
of approaches, while the last approach is utilised to spebé reflection features of coloured
matter [69, 71]. In terms of implementation, the existingreentation techniques, in practice,

can be roughly classified as the following approaches:

a) Boundary-based techniques [70, 71, 75-77]: These maobsigenerally extract contours
of the targeted region, namely edges. However, furthergasing is necessary because there

are major limitations, over-/under- segmentation, toe¢hegthods.

b) Histogram-based techniques [70, 71, 78, 79]: These rdsthsually apply to gray-level
images, normally with a 1D histogram. Regrettably, the tnémplres do not work effectively in
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colour images, because it is a challenging problem to chaosgpropriate global threshold in

3D space as the colour images are normally illustrated byi8dram.

¢) Region-based techniques [70, 71, 80-83]: Merge-aritlesd region growing are two com-
mon approaches of these techniques which group pixels witias features according to the
predefined criteria. However, these are two main shortcgsnimhich limit the performance
of segmentation. First, they both highly rely on manualljuatéd thresholds. Second, for the

latter approach, it also relies on setting initial seedperly.

d) Hybrid-based techniques [70, 71, 84-90]: These teclesigmprove the performance of
segmentation by combining the edge and region informatitmwever, it is a hon-trivial task

to properly integrate these two features.

e) Graph-based techniques [70, 71, 91, 92]. These techimaditionally utilise graphs in
which the nodes denote the pixels and arcs connect the atljpbels. By minimising the
weight that divides a graph into sub-graphs, the segmentaiimplemented. It in general has

a problem of high computational complexity.

Using mean shift algorithms to estimate the feature spasam@duced for image segmenta-
tion [93]. Analysing the feature space is done by invesitigathe centres of the high density
regions. According to the mean shift algorithm, it is an eaep-parametric procedure for

computing density gradients to represent the importaritifea of the image. This approach
can achieve under-or over-segmentation by setting diffgqparameters. However, undesired
results occur frequently and this method is very complex. oA-parametric clustering algo-

rithm maps an image from its primordial feature space (exgute, intensity and colour) to the

space of non-parametric density [94]. Connectivity andblsan are then used for the sake of
determining how to integrate regions. The segmentatiofopeance is good according to their
results. However, this method is computationally expensihe JSEG method is proposed for
colour image segmentation [95]. Figure 4.1 shows a flow cblISEG method. It consists

of two stages: colour quantisation and spatial segmentatio the first phase, colours in the
image are categorised into several representative ctagiifis. A class-map of the image is
then produced by replacing the image pixel values with tb&iresponding colour class labels.

In the second phase, spatial segmentation is achieved liingea J-image, region growing
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Colour Image

Colour quantisation

Class-map

Spatial segmentation

J-image generated

Y
Region growing

Y

Regions United

Figure 4.1: A flow chart of JSEG method.

and uniting regions. Thé-image is generated by applying the segmentation criteriadal

windows in the class-map. The initial regions/clustersthem acquired by using region grow-
ing approach and is followed by an agglomerative approadfierarchic procedure, to unite
the initial regions/clusters step by step. According to riyeort, their proposed method also
gets good results on segmentation. But, it is also compuiaity expensive compared to the

“nonparametric clustering.”

Many researchers analyse different properties of imagesing complicated formulas for the
sake of improving the segmentation results. This makes thene difficult to implement and

sacrifices the operation time. The time-consumption tleeeefvould be a bottleneck to those
complicated algorithms, which limits the applicationsiud$e algorithms. Some inherent prob-

lems exist because the segmentation is not well defined. Wiylsummarise as follows.

a) The segmentation results will be changed dramaticallgiffgrent settings, so that many
manually adjusted thresholds or parameters have to beutignefedetermined.
b) It is difficult to choose a representative feature for the@ation of image similarity because

a general similarity suitable for all types of images doesaxist.
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¢) An exact number of sub-regions in the image is difficult éaide by giving proper criteria

for unsupervised segmentation.

In next following sections, we will introduce three commomaige processing techniques: Re-
gion growing techniques (Region-based techniques), libtdsg techniques and active con-

tour techniques.

4.2 Thresholding Techniques

Many images can be depicted as comprising regions of intéRe) of moderately unvaried
intensity value against a background of different intgngétlue. Typewritten text, aeroplanes
on runways and microscope biomedical samples are thresicdasxamples. When segment-
ing the targeted region from its background, luminance igmificant feature that can be used
for these kind of images. If a ROl is black against a white lgagknd, or vice versa, giving a
threshold (the mean of the minimum and maximum gray valuésamocal window) to extract
the targeted region from the background is a simple workctie difficulties take place, how-
ever, as the processed image encounters noise and as btdigited region and background
region assume a wide range of gray scales. The backgrourahrisgprobably non-uniform
which is another general problem. Thresholding techniguedriefly introduced in this sub-

section.

Let A represents a given input image, as a binary imgehere theb,, pixel gray-levels irB
are restricted to 0,1. Assunag is the gray level of theth pixel in A, then the corresponding

value inB is:

1, if ap = tn
b, = (4.2)
0, otherwise

wheret,, is the threshold value for theth pixel. The thresholds,,n € 1,2, ..., M, may all be
equal to a global threshotd: or they may vary locally (e.g. from pixel to pixel). Here, welyp

use information contained in the current input image touwatet,,, andtg.

The pixels in the image are therefore split into two groupgh hintensity or high luminance

pixels whose gray-levels are greater than, or equal to,eshiotd t and low intensity or low
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luminance pixels whose gray-levels are less tharmhe existing thresholding techniques, in
practice, could be roughly classified into the following feyeproaches [96] described in Ta-
ble 4.1.

Five existing thresholding techniquesDescriptions
a) Object Attribute-based techniquesThe methods use a measure of similarity between
the binarised images and gray-level images.

b) Histogram-based techniques Both shape and features of the image histograr
are analysed by the techniques.
c) Cluster-based techniques The pixel gray-levels are clustered into two

groups, background and foreground pixels, by
these methods.

d) Spatial-based techniques The higher-order probability distribution is
utilised in these methods to model the correlation
between pixels.
e) Entropy-based techniques An optimal threshold is found by using the entropy
of the histogram or cross-entropy between
the thresholded image and input image.

Table 4.1:A summary of existing thresholding techniques

4.3 Region Growing Technique

The primary concept of region growing approach is that itgesradjacent pixels of similar
amplitude together to produce a detected area. Howeveasbtaining acceptable results, some
complex constraints have to be imposed on the growth pattsurits. A region-growing ap-
proach with a combination of uncomplicated growth rules lteen proposed [97,98]. Figure
4.2 shows two neighbouring regiong, and Ry, with different perimeters®, and P, respec-
tively, which will be considered for grouping together. kikise, assume J represents the length
of the joint border and assume B denotes the length of thabpdrfor which the value of the
difference of amplitude D across the border is smaller thaeting parameter; [2]. The
process of this technique is: Pairs of quantised pixels @fsime amplitude are first merged
together inatomic regiongf they are non-orthogonal neighbouring pixels in the imagéeak
boundaries between atomic boundaries are then dissolvesldlyeuristic rules. A processed
region then probably includes preceding integrated sgloins of diverse amplitude values.

The regionsR, and R;, are then integrated according to following a condition
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Region Ra

Region Rb

Joint Border J

Figure 4.2: A geometry for region growing [2].

B

_ 4.2
MIN(B,, By) 2 (4.2)

where a constant,,, is usually given 6152:%. The setting allows several tiny sub-regions to
be merged into bigger sub-regions, which only absorbs dfiems with strong joint borders by
using equation (4.2). Another criterion is used to the testiequation (4.2) for the sake of
merging the regions with weak joint boundaries. The neighing regions with weak common

boundaries are then integrated if

B

7 > &3 (43)
where a constants, is typically set atgzg. The region growing method proposed by Brice
and Fenema [97] gives reasonable results on segmentatfemw afbjects with simple scenes

and little texture, but the method does not perform well omeremmplicated scenes [2].

Seeded region growing technique [99] involves the seleatioinitial seed points, which are
not limited to pixel-based but also permits pure and simgdgan-based selection. This method
of image segmentation inspects adjacent pixels of “seeuntgfcand then decides whether the

neighbouring pixels should be merged to the region, beggmiith the points of lowest prior-
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ity. The process is iterated on using an approach simildrdse used in generic data clustering

algorithms. The seeded region growing algorithm is deedritiriefly.

Primary concept of seeded region growing

The foremost phase in seeded region growing technique igtErrdine initial seed points.
The selection criteria are defined by attributes of the tamggions in the image such as the
brightest pixel or pixels in a certain range of gray levelfie process starts with these initial
seeds’ position then adds adjacent points as new seedsintrggiwith the points of lowest
priority of region membership criterion. The priority isfaed by a distance function; it could
be, for instance, variance, colour, gray level texture,iomptgeometric properties and pixel

average intensity. The distance of each pixel to a contigwegion is defined by:

R(x,6;) = [I(z) — mean; € 6;(1(j))] (4.4)

herel(x) denotes the gray image value of the poirt § andJ; is the region labelled

All the information embedded within the image should be eitptl to achieve the optimal

result. For instance, one could study the histogram of thegemand hence might identify a
suitable threshold value of intensity. This threshold gatwuld be then used to restrain the
inclusion of undesired pixels into the region of membershihe pros and cons of seeded

region growing are summarised in Table 4.2.

Pros Cons
e Simple approach and easy to implement e Time consuming
e Multiple criteria are allowed e Probably not able to discriminate
e Correctly discriminates the regions that have | shadings in the image
similar features ¢ Variation of intensity may cause
e Performs well in certain types of noise over-sized segmentation
e Produces good segmentation results when edges
on original images are visibly clear

Table 4.2: The pros and cons of seeded region growing method

Essential issues about seeded region growing

There are two main concepts about seeded region growing:
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a) Selecting the correct initial seed points is extremelpdrant; however the selection is
bound to vary from person to person or be diverse for diffeagplications.
b) The more information (e.g. average intensity or variaoicgray level image, colour and

texture) about the image there is, the better the results#imbe achieved.

4.4 Active Contour Models(Snakes) for Contour Detection

4.4.1 Overview of Active Contour Models

Explicit or implicit object features should be detected aondhputed at every possible image
position for detecting objects. Up to now, diverse objeatdiees have been investigated (e.g.,
intensity, texture, shape, colour and motion). Shape phaisy role both in 2D space object
contour pattern recognition and 3D object surface recagnit For example, contour infor-
mation of the human body and organs is an essential measutréarebiometrics, medical
diagnosis and clinical analysis. For example, the vemtrafl a beating heart is tracked for
cardiac action analysis. Naturally, colour and size coafeg with shape could offer a pow-
erful realisation for object search. Based on this condbpet,2D shape (e.g. object contour)
was selected as the main feature used in the object segroardgégorithms using this work.
When using the object feature of shape, a primary trend tdgdbe computational problems
is the model-based vision. To formulate visual models thieuhe representation of shape by
combining physics and geometry, a family of deformable n®ud&s proposed in the 1980s.
The deformable models that depict object shapes (nameyeattape models) include diverse
forms (e.g., deformable contours, deformable surfacesdafmrmable templates). They are
a free-form geometry that has the dynamics of elastic cost@urfaces and templates. In
this section, we focus on deformable contours that are kresvactive contours (snakes) re-
stricted to the plane. Snakes are now extensively appligdrious computer vision and image
processing applications comprising segmentation, edteeten, motion tracking and shape

modelling.

The snake for the estimation of object contour was first thiced by Kaset al. [L00]. An
energy minimising function, a weighted combination of exéé and internal energy, are used to
a deformable contour in order to estimate the real objeaddyoiEach individual contour point
of the snake seeks its new position iteratively to move tdwaargeted region boundaries via

the energy function minimisation. The external energy gasé¢he attraction force (e.g. image
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gradients that govern the contour deformation), while titernal energy directs the intrinsic
continuity force of the contour itself. As a snake evolvesiigimising energy, often the terms
such as “wriggle” and “slither” are used to describe the pssc The model proposed in [100]
executes a global investigation to optimise the energytfonc In addition, the snake is an

“active” model and is most ideally initialised near the aljpoundary.

A lot of greedy strategies have been proposed to decreagesSreomputational complex-

ity [101-103]. These greedy approaches seek local 4- orighbeurs, instead of seeking the
optimisation of the global information, to accelerate thewvergence of the snakes. Moreover,
a gradient vector flow (GVF) field is proposed to be the termhefdxternal force in the snake

model, widely known as GVF snake, it is relatively robustdbject contour detection [104].

4.4.2 Original snake models

The original snake model [100] in the image is thus defined bgtaf n points

Vi = (25,9;) (4.5)

wherej=0,1,2,....,(n-1). Its energy-minimising function in geal is defined as

1 1
Esnakze = / Esnak:e(v(s))ds = / Einternal(v(s)) + Eexternal(v(s))ds (46)
0 0

herev(s) represents the snake deformable contour and arc lengthedes® [0.0, 1.0]. In ad-
dition, E;terna; @NAE.1ernar denotes the internal energy of the snake because of thetargva

and external energy deforming on the snake, respectively.

(a) An internal energy term,, e, nai)

1
Einternal = Eeont + Eeyry = 5(05(5) ‘ US(S) ‘2 +ﬁ(5) | 7}55(8) ‘2) (47)
whereE.,; is the energy of the snake contour dag,, denotes the energy of the snake cur-

vature. In additiona(s) and 5(s) are two weighting parameters. The 1st-order derivatives

Vs(s) and 2nd-order derivatives,(s) of v(s) denote the continuity and stretch contour forces,
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(a) The sketch map of the motion of segmenting anchor (b) The lips segmentation by the snake
by snakes

Figure 4.3: Samples of the original snake segmentation.

respectively. They make the snake deform like a membrandilend thin plate, respectively.
The bigger the value af(s), the more sensitive the energy function is to the amountrefcdt.
Likewise, a bigger value of(s) will raise the internal energy of the snake as it evolves more
rapidly into curvature, whereas small values30%) will make the energy function less respon-
sive in forming a curvature in the snake. The combinationnadlter «(s) and () allows a

more detailed modelling of the snake shape, at the cost afgelocomputation time.

(b) An external edge based energy teEg. (e, nqi)

Eexternal = Eimage + Econ = VvlineEline + WedgeEedge + WtermEterm (48)

whereE;,,..4. denotes the image acting on snakesBng serves as an external constraint force
introduced by programmer. In additioB;,,c, Ecqge andE;.,,, represent line functional, edge
functional and terminations, respectively. By adjusting weightsW;;,,c, W.qge andWie,,, to

suitable values, the main features in the image may be ¢attac

Two samples of the original snake segmentation are givenguar& 4.3. Figure 4.3a depicts
an example application segmenting an orange colour anchioe red arrows represent the
attractive forces towards anchor poirag), as well as the repulsive forces. Figure 4.3b shows

another example where the snake is employed to track a pefgon
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Alternatively, E....rna: COUld be defined as negative magnitudes of image gradient:

Eea:ternal = - ‘ V(GU * I(x,y)) |2 (49)

herel (x, y) denotes the processed ima§eérepresents the gradient operator, @hddenotes
the Gaussian filter with standard deviationFrom the calculus of variations, the minimisation

of the function of the snakg;,,... can be obtained by solving the following equations:

W5 — BUssss — V Eegternal = 0 (410)

whereu,,, is the 4" derivatives ofv(s). v(s)can be regarded as a function of tirhand an
iterative optimisation procedure can be employed in ordeolve equation (4.10). An initial

estimate of the solution can be obtained as follows [100],104

Ut(57 t) - Owss(sa t) - ,31)555(8, t) — VEeiternal = 0 (411)

herew; (s, t) denotes tha*! partial derivative of/(s, t)in regard tat. The original snake model
combines external and internal energy together, by whictakesis deformed towards targeted

region contours.

On one hand, a smaller external energy is resulting from ltijgco contours that usually have
bigger gradient magnitudes. Therefore, the minimisedreateenergy modifies the contour
according to the status of the image gradient where it isqesed. On the other hand, the
minimised internal energy retains compactness and smessiof the shape of the contour, but
it probably degenerates to a single point in the difficultecal conclusion, the deformation
of the snake is governed by two different forces, the exteand internal energy items, and
the equation (4.6) demonstrates a compromise between temalkand internal energy by
the weighting parameter$(s) and a(s). Regrettably, for original snake models, the external
force is limited to regions adjacent to the object contodrse shakes perform badly and are
most likely fail to estimate them as the contours of the sreleeinitialised far from object
contours. The snakes implemented by original image grafiglds also failed in converging
to the concave parts of the targeted boundary for the sarsenelt is therefore widely known

that the snake models are a good approach to estimate olojetdrd based on edge-based
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segmentation techniques by giving an accurate initial neiske contour. In addition to this,
global energy minimisation takes a quite high computatiooat. Aforementioned problems

are three main drawbacks of the original snake segmentation

4.4.3 Greedy snake models

The greedy snake models [101-103, 105] adopt a local seskimgme instead of global opti-
misation during the energy-minimising process. Each iddizl snake poinit moves toward its
next location within m-neighbours (normally, 4- or 8-ndagins) with lowest Energy Function

energy by comparing the snake enel:‘g;)gakevj:

énake,j = a(i)EiurU,j + /B(Z)E;Lzont,j + ’Y(i)E::mage,j (412)

here j=1, 2, ... mdenotes the index of a neighbourhood. In additiefi,) , 3(i) , and~(i) are

position dependent weighting parameters. Moretﬁgr;,y,- andE

J cont,

; represent the curvature
(stretch) and continuity forces in the internal energy eesipely, E: . here is the external

mage,j

energy. The curvature energy tekn,,, and the continuity energy teri.,,,; are defined as:

Eouro =| vic1 — 2v; +viy1 2 (4.13)

Eront =| vi — vi_1 |? (4.14)

wherev; denotes coordinates of tieh snake point. The external energy teE, 4. normally
corresponds to the gradient of an image, as given in equ@ti®h The greedy snake algorithm
is to seek a point whetg,,, .. ; is minimal amongn-neighbours. Ititerates until a “termination
condition” is met. This can be defined by a max number of ii@nat or the stability of the
position of the points. The computational cost is therefonited; however, the greedy snake

contours become very sensitive to the Gaussian and SalteppePnoise.
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4.4.4 Gradient Vector Flow (GVF) Snake

The active contour model based on the GVF field was proposedubgnd Prince [104] to
have less sensitivity to initial contour conditions andatve a related problem that snakes are
unable to converge into concave shapes. The GVF field ifisfgeld of vectors, which is the
replacement for the original external force of Kass’ snad@0]. For any image pixelX, y),

every vectol (x, y)= (s(x, y)t(x, y)) is computed by minimising the energy function:

EZ//u(sg+s§+t§+t§)+\Vf\2|V—Vf|2dxdy (4.15)

herey is a regularisation parametéy,f denotes the gradient value of the edge rhdprived
from the input imagd (X, y) and the subscripts denote partial derivatives in regardheox t
andy axes. TheVf (e.g. the gradients are propagated from targeted objetbwanto ho-
mogeneous areas) will be estimated\byx, y) after the minimisation process. Although the
presently processed pixel is far from them, every GVF vgotants still towards targeted region
contours [106]. For stronger resistance to local noise thartraditional image gradients, the
external energy term equation (equation 4.9) is then reglay the GVF field. The GVF snake
therefore could estimate object borders even if some cenpats of targeted object borders
exist or the initial mask of the contour is given far from thefihe regularisation parameter
should be restricted t0~80.25 because the traditional GVF field reaches stable statysvith
the condition of Courant-Friedrichs-Lewy step-size [104 addition, this GVF snake model

still needs human interaction (e.g. offering initial magissnakes).

4.4.5 Active contours without edges (Chan-Vese)

Tony Chan and Luminita Vese (Chan-Vese) introduced a snaldehto segment objects in
an image by using a combination technique of level sets,ecavelution and Mumford-Shah
functional for object estimation [107]. The C-V model catireste the boundaries of objects
with or without gradient, dissimilar to the original actigentour model. Furthermore, their
model uses a formulation of level set, permitting an initidsk to be set at anywhere in the

image and the interior contours to be segmented autongti@@igure 4.4).

Assumef) be a bounded open subsetRf andC be an evolving curve representing the border

of the open subsei of 2, with dw. The direction N stands for propagating in normal direction
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Outside(C)
¢ <0

Outside(C)
¢ <0

Inside (C)
¢ >0

Outside(C)
@ <0

Figure 4.4: Curve C=(x, y) : ¢(z,y)=0 propagating in all normal directions till it reaches
resting points ¢ =0).

In addition, letuy: 2 — R be a given image which is composed of two regions with roughly
piecewise-constant intensities. The cu@ds defined implicitly by the zero level set of a

Lipschitz functiony:Q2 — R , therefore:

C=0w=(z,y) € Q:p(x,y) =0
inside(C) =w = (z,y) € Q: p(x,y) >0 (4.16)

w
Q
== (z,y) € Q:p(x,y) <0

outside(C) =
where x andy represent co-ordinates on a given image Its energy function of the image,

can be defined as:

F(ey,60,C) =p- L(C) +v-a((C))

, , (4.17)
= Al/ | po(z,y) —c1 |? dedy + )\2/ | po(z,y) — c2 | dady
in(C)

out(C)
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wherec; , ¢, are the constants, depending GnL(C) denotes the length of the cur@, anda
represents the area of the inside region, respectivelyer@rameterg, v, A1, A2 are positive
fixed constants. Between the two regions on the imagé¢he boundary of the object could be

detected by the zero-level curve whergr, y)=0.

4.4.6 Other snake models

In original snake model (see Section 4.4.2), minimisatibanake energy is achieved by util-
ising the calculus of variations. In [108] and [109], a dym@amgrogramming snake model
was proposed to tackle the variation problems in computgoni The balloon model using
a Galerkin solution of the finite-element method was progddd0, 111] for snake energy
minimisation. This model considers the contour as an irdld&i@lloon and utilises an inter-
nal pressure force to permit the snake to deal with a probleisotated energy valleys which
arise from spurious edge points. The snake models whichgyottte deformation of contour
explicitly as an energy minimising process are classifiedresgy-minimisation based snakes
[100-105]. For more details of the behaviour of energy misation please refer to Section
4.4.2. A geometric snake model which depicts contours witfglias level sets of 2D scalar
functions was also proposed [112]. The geometric snakgdemented by using the level set
technique [113-116] and based on the curve evolution thgdry], are deformed via only
geometric measures. In this model, a contour is evolvedrdizgpto a speed function con-
strained by the inverse of gradient magnitude and govergateblevel set curvature, leading
into the evolution of snake contour. However, the geomstietke probably ran over the object

boundaries and will not return back when the boundaries radeh or have low contrast.

4.4.7 Summary of snake models

As described in the preceding sections, snake models greviplite useful technique to detect
object boundaries. Two primary drawbacks of original snakelels, for example, sensitivity
to initial conditions and high computational complexitye almost tackled by GVF and greedy
shake models, respectively. However, the initialisatibthe snakes, generally executed by
human interaction, is not solved yet. The users have to ntigraféer a contour as the initial
mask for snakes. It is not only a time-consuming but also & texlious task. In addition,
different initial snakes may produce different results king them not reliable enough. As a

result, automation of snake initialisation has recentlgdmee one of the critical issues in snake
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processing. In energy-minimisation based snake modelspraemtous task is to adjust the
weighting parameters between the external and the interrexgy items in order to compro-

mise the behaviour of snake contours with different imageers.

These weighting parameters have to be adaptively adjusteanly for varing image contents
but also during snake iterations because the snake cordoeifaced with multifarious image
data. The parameters setting of original snakes normatjyires human experimentation and
is invariable all over the whole image. It is crucial to offgrace-varying parameters automati-
cally. Hence, in this thesis, one of the primary goals is tuvjate fully automated snake-based

schemes for object contour detection in the fundus image.

4.5 Chapter Summary

In this chapter, a thresholding technique was first intredud&ach pixel in an image is regarded
as an “object” pixel if the intensity value of the pixel is higy than a certain threshold value and
as a “background” pixel otherwise during the thresholdingcpss. This kind of convention is
widely known as a threshold technique. Existing thresimgjdipproaches implemented by five
different techniques (e.g. object attribute-based, bistm-based, cluster-based, spatial-based

and entropy-based) were listed.

The concept of region growing was then described. Regiowiggpcould be regarded as a
pixel-based segmentation approach because the seleoticedoire of initial seed points is in-
volved. This image segmentation method determines wh#tbereighbouring pixels of initial

“seed points” should be merged to the region iterativelnaHly, different types of active con-

tour (snake), including traditional snake, greedy snakéF Gnake and Chan-Vese method,
were discussed briefly. As stated in the aforementionedosisgtsnake models are a useful
technique for image segmentation. However, precise lisgiton, often set by human exper-
imentation, is usually required for getting reasonablailltesn different applications. Based
on the techniques introduced in this chapter, the necessakground of image processing

techniques to this PhD work has been established.
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Chapter 5
Optic Disc (OD) and Parapillary
Atrophy (PPA) Analysis: Colour
Morphology and Chan-Vese Snake

Three different methods to segment PPA and OD region areibeddn Chapter 5, Chapter 6
and Chapter 7, respectively.

The aim of this chapter is twofold: to implement an aforenmr@d technique (See Chapter
2) to the OD segmentation and provide a novel method to baymest OD and PPA. The

novel technique exploits both red and blue channels of thmicdundus image to strengthen
information extraction from features (OD and PPA) whilstimg interference to a minimum.

The PPA and OD region were segmented using the morphologjation and Chan-Vese
(MOCV) model.

5.1 Previous work: The GVF Snake on the OD segmentation

By applying a snake to the OD region extraction and compdhagutcome against the ground-
truth information labelled by an ophthalmologist, the eéfficy of different boundary detection
methods can be evaluated. A gradient vector flow (GVF) snadé#hod was proposed [118],
described in detail in Section 4.4.4, for segmenting the @Dioe retinal images followed by
a minimisation of the effect on the value of the force or of ¢éinergy because of high gradient
at vessel locations. The results indicate that a GVF-basakkscan be used in association with
a pre-processed 2D fundus image to extract an accurate &iguoitthe OD region. The colour

images were converted from RGB space to YIQ basis prior togasing.

The pre-processing technique integrates a minima detestbeme and a morphological cor-
rection technique together, which yields an intact OD negkeor the GVF snhake, Mendeds al.

[118] conducted initial studies of the range of initialisat conditions that offer convergence,
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and found that reasonable results can be obtained from distent initial conditions (e.g.,
circles ranging from an estimate half to double the radiuthefOD). Three ophthalmologists
have reviewed the OD region extracted by Mendxlal’s proposed technique, and consider it

as a promising tool for clinical use.

5.2 Proposed Approach: Using Colour Morphology and Chan-Vee

Snake on the OD segmentation

5.2.1 Method

The experimental protocol are described in detail in Fidude Chapter 1. In addition, the steps

used in our proposed method, MOCYV, are shown (See Figure 5.1)

The variation of the intensity between the brightest partg.(the OD and PPA) and the retinal
blood vessels is comparatively high. In particular, theobleessels are generally at a lower

intensity level in regard to the background (See Figure.5.2)

Pre-processing of the image is essential because snakedsathly work well on an image
with homogeneous regions enclosed by intense gradientafiion. Applying them directly
to the fundus images is extremely difficult, as the area o€&tbeand PPA is always divided into
several regions by the retinal blood vessels. Gray-levebhmlogy operations has been used
previously [28, 31,33, 37,40, 55] to eliminate the retinaldal vessels to produce a relatively
homogeneous region before applying snake methods to thgein&imilar morphological op-
erations are equally applicable to the red and blue chanmiksse two channels were adopted
specifically because the blood vessels were found leaseifal in the red channel and the
region of OD-plus-PPA was found most well-defined and leflsénced by blood vessels in
the blue channel. Pre-processing techniques are theigglplied separately on the red and blue
channels in order to segment the OD and the OD-plus-PPActsply.

5.2.1.1 Average filtering

Average filtering operator was chosen here for two reasoak:t Could eliminate random
noise with less computational cost compared with mediagrfiind (b) with a large kernel, it

could also act as a vessel removal function. On the red chéRigeire 5.3a), the size of the
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Input fundus image in RGB space

v v

Red Channel Blue Channel

v v

Morphology Operations
(erosion and dilation)

v v

Snake without
edges(Chan-Vese)

! v

Snake without
edges(Chan-Vese)

v

OD segmented

Average filtering

Contrast adjustment

OD+PPA segmented

Figure 5.1: Processing steps of proposed methodology.
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Figure 5.2: Original fundus image with the OD plus PPA.

averaging filter is defined as ¥44 pixels, including equal weights of value “1”, because the
retinal blood vessels are usually smaller than 12 pixel§. [3%e retinal blood vessels with
low intensity variation are removed by using this operatighilst keeping the boundary of the
OD comparatively unaltered. In addition, the average fikamplemented via the following

equation [55]:

mXxn
1

— > R (5.1)

=1

FI =

here m=14 and n=14. The filtered imdglkis shown in Figure 5.3b.
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(@) (b)

Figure 5.3: Pre-processing on the Red Channel: (a) original fundus ienég fundus image
after average filtering the vessels have almost removedigduis image after con-
trast adjustment.

5.2.1.2 Contrast adjustment

It is more reliable to work on the red channel because theeegeod contrast between the
OD region and the background. To make the OD more distingbishfrom the background,

a typical contrast modification operation was applied toithages. The intensity values in
grayscale image, Figure 5.3b, to new intensity values irathested image, Figure 5.3c, such
that 1% of data is saturated at low and high intensities ofjthgscale image, Figure 5.3b. This

increases the contrast of the adjusted image, Figure 5.3c.

5.2.1.3 Morphological operations

Standard morphological operations (erosion and dilatiwele used to first remove the reti-
nal blood vessels in the OD region and then to restore thedaoigs back to their original
positions. The original fundus image is shown in Figure 5.Aasymmetrical circular shape
structuring element of erosion or dilation operator withplx¥els was set here. Intuitively, dila-
tion operation expands the retinal blood vessels and eragieration shrinks it. Therefore, the
combination of erosion and dilation can alleviate the eéffexf blood vessels that have fewer

than 14 pixels, as illustrated in Figure 5.4b.
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(a) (b)

Figure 5.4: Pre-processing on blue channel: (a) original fungus imaaye] (b) after operation
most vessels have been removed.

5.2.1.4 Chan-Vese Snake

Previously, although GVF snake has been applied to detedb@indary, it performed poorly
when the condition of PPA was present. Topological charg@sers and cusps due to the PPA
complicated the task. The Chan-Vese [107] was thus adogtstribed in detail in Section
4.4.5, to estimate objects whose contours are not nedgssefined by gradient. In addition,

the energy function of the image) can be defined as:

F(er,6,C) = p- L(C) + v - a((C))

(5.2)
=\ / | po(,y) — c1 |* dzdy + Az/ | po(,y) — co |* dzdy
in(C) out(C)

hereC is any other changing curve, and, ¢, are the constants, depending@©r_(C) denotes
length of the curveC , anda represents the area of the inside region, respectivelythlagthe
image o is formed by two regions of approximatively piecewise-dans intensities. Other
parameterg:, v, A1, Ao are positive fixed constants. In our application, we expenially set
the step size of the energy function Equation (5.2) at 0.58&uee our snakes stopped at the

desired boundary.
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5.2.2 Experimental Results and Discussions

The colour fundus photograph images from a database of achadacterised cohort [22] was
used for the experiments. In order to assess the perforn@nibe proposed model for de-
tecting the OD boundary, the results of the proposed appra@ce compared with the results
obtained from the GVF snake method [55]. For the GVF snakdotetOsaretet al. applied
morphological operations on the images for pre-processing experimentally set the parame-
ters of energy functions to balance the accuracy and thettmess of the final contour. Fundus
images were specifically classified into two categories nocemal retinal images with the OD,

and abnormal retinal images with the OD plus PPA.

The results are shown in Figure 5.5. The first column showgdhalts obtained from the
normal retinal images. Results of abnormal retinal imagesWith PPA) are given in the sec-
ond column. Viewing row by row, the first row @ b) shows the original fundus images. The
second row (& d) presents the results of GVF snake method. The last réwfigresents the

results based on the proposed MOCV model.

Compared to the GVF snake method, the MOCV has the followiegtm (1) It is less sus-
ceptible to the interference effect of blood vessels (2)akes no prior assumption about the

shapes of the OD and PPA, (3) it provides a more accurateiptsocrof the boundaries.

The accuracy of the contour localisation against the manuadrked ground-truth informa-
tion drawn by an ophthalmologist for all variations of the @bd PPA morphology has been
quantified and compared. An effective overlap measure (MYlegn used here [55], described

in detail in Section 2.3, of the match between estimatedregnd ground-truth as:

(5.3)

hereR and T are equivalent to the ground estimate and the final iteraifosnake-localised

boundary respectively arid(.) denotes the number of pixels within the targeted regions.

In addition, the results of the randomly selected fundusgiesan 20 images are shown in Table
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Figure 5.5: First row (a), (b): Example images with a close view of OD witithout the con-
ditions of PPA; Second row (c), (d): Results from GVF snakéhatk Last row (e),
(f): Results from MOCV method.
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5.1. The results from the MOCV method were better (almosbtoin mean accuracy) than
the ones from the GVF-snake method. The MOCV additionallyvipled a means to extract
the PPA region.

Results GVF-snake MOCV
Mean accuracy (%) 44.62 86.65
Standard Deviation 9.85 8.97

Table 5.1: The Statistical Results of OD Segmentation in 20 Images

5.3 Chapter Summary

In this chapter, a novel approach, MOCYV, has been descritresefymenting the OD and PPA
automatically in fundus images. The performance of the MO@¥ been evaluated using a set
of standard retinal fundal photograph images. Comparede@ublished works, experimental
results showed that the MOCV performed better in detectimgQ@D and, for the first time,
demonstrated successfully the detection of the bounddvyelem the OD and PPA in a retinal
image. The MOCYV can estimate the OD contours of those brigjieicts with accurate contours
with a mean accuracy level of 86.65% (S.D.=8.97). For eadgmbsis of ophthalmological
diseases, the model described in this chapter is potgntially promising in computer-aided
screening system. Moreover, by providing a way to detectebgmn of PPA, a new dimension

is added to the standard eye-diagnosis.
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Chapter 6
Optic Disc (OD) and Parapillary
Atrophy (PPA) Analysis: Multiple
Image processing technigues

In Chapter 5, an attempt to segment the Parapillary AtroptBA) and Optic Disc (OD) us-
ing morphological operations and the Chan-Vese model wasritbed. The MOCV method
is promising in segmenting the OD region; however thereiilsrebm for an improvement.

This chapter introduces another novel technique to defiaeitte of the OD and PPA, which

provides more accurate results.

The novel technique, named MULIPT, exploits both red ane lsipaces of the colour fundus
image to maximise information extraction from features (&kl PPA) whilst keeping inter-
ference (e.g. blood vessels and artifacts) to a minimum. Qbeegion was segmented using
the Chan-Vese model with an elliptical shape constrainis Tégion was then removed from
the image (OD-plus-PPA), which was cropped using a modifieancvese method, yielding a
first-order estimation of the PPA region. Its boundary wdsssquently refined by using scan-
ning filter, thresholding and multi-seeded region growirgtimeds. Much of the work described
and discussed in this chapter has been previously publisH&éd9, 120].

6.1 Background Study: Chan-Vese Snake with elliptical cortgaint
on the OD segmentation
Because the OD appears more or less an ellipse or a circlg, TE21L] proposed a modified

C-V model which included an elliptic shape constraint imrggben zero-level set function in
C-V model (Described in detail in Section 4.4.5). The newtitfg energy” functiork is then:

inf{Elc1,ca, ¢|uol} = OZ/Q(MO —c1)’H(p) + (1 - a) / (ko —c2)* (1= H(p)) (6.1)

Q
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Subject to

((z — o) cos @ + (y — yo) sin 6)? N (—(z — o) sin@ + (y — yo) cos 6)?

~ = > (62)

p=1-]

where

Lipschitz functiony :  — R of R?,

a > 0 is a fixed parameter,

H (¢) denotes the Heaviside function.

xo, Yo, #, major axis(a) and minor axigb) denote the ellipse parameters at the parameters of
the ellipse atp=0.

In addition, the evolutions related to the Euler-Lagrangeations are:

=jéwm—qf—u—wmwwﬁwwwmw 6.3)

where,i(y) denotes the Dirac function and
C1=(JroH (i0)dxady/( [, H( o) dxdly)
C2=(Jro(1-H () dxay)/( [, (1-H(e0))dxdy)

A=(X — Xp) cos 0+(y — Yp) sin @
B=-(X — Xp) sin 6+(y — y,) cos #
L=A cos A/a?-Bsin 6/b?

M=Asin §/a>+B cos 6/
N=AB[1/b*-1/a%]

with a condition of
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(x,y) =1— \/(.1‘ — :CC)Q + (Z/ B yc)2 (64)

20 R

Also, the initial conditions of the equation (6.3) could ket as follows:

a(t) l=o0= R,
b(t) [i=0= R,
zo(t) |t=0= Tc, (6.5)
Yo(t) [t=0= Ve,
0(t) |t=o= 0.0,

hereRis a positive constant. Therefore, the steady solution o&ggn (6.2 and 6.3) at time

1 _ (L = 2o(T) cos(O(T)) + (v — () sin(O(T)))?
(a(T))? 66)
4 (e = 20lT) sn(O(T)) + (y — () cos(OT)2
(D)2

Tanget al’s model was examined with the 50 trials, including 20 pooaliqu (low contrast)
fundus images. The performance of their model in detectiegdD region and in computing
its shape is robust to noise and the OD deformity. Howeverntlodel failed to estimate the

OD shape as the OD feature acquired in red channel is inguftici

6.2 Segmentation and Quantification Tool for the Size of OD ath
PPA region

6.2.1 Proposed Method

The experimental protocol are described in detail in Figude Chapter 1. The original soft-
ware code of implementation of Chan-Vese algorithm was doaded from MATLAB CEN-
TRE and the rest of scripts were written by Cheng-Kai Lu. Theation of the intensity
between the bright objects (e.g. the PPA and the OD) and tmalrélood vessels of the fun-
dus image was relatively high (see Figure 6.1a). Converseyblood vessels were in general

at a lower intensity level with respect to the background.
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Figure 6.1: Flow chart shows the extraction of the PPA and the OD regions.

78



Optic Disc (OD) and Parapillary Atrophy (PPA) Analysis: Mple image processing
techniques

The proposed algorithm, MULIPT, combined a collection oge processing techniques (Fig-
ure 6.1).

1. Channel Selection:

The OD region could be reliably detected in the red channitleggpeared brighter than the rest
of the fundus image while the blood vessels appeared |ehstmial [37]. The region consist-
ing of both the OD and the PPA (hereafter referred to as thiemayf OD-plus-PPA) was also
well-defined in the blue channel. Therefore, fundus imageswnitially pre-processed in two
channels (Red and Blue) of the RGB space to reduce the irgade of blood vessels and to

better distinguish the regions of OD and PPA.

2. OD-plus-PPA region segmentation:
The OD-plus-PPA was segmented by a modified C-V model in the thannel (Figure 6.1b

and c).

3. OD region segmentation:

A variant of the C-V model with a shape restraint was applesegment the OD region in the
red channel (Figure 6.1d and e). In this case, the restraistased on an ellipse reflecting the
actual shape of an OD. Here, the fixed parameterpf the C-V model is the experimentally
set at 0.6.

4. PPA region segmentation:

The first order estimation of PPA region was produced by rengothe OD region from the re-
gion of OD-plus-PPA. Moving back to the blue channel, thesegted image was then equally
divided into four zones automatically. Based on the autdtzesholds acquired from each
zone, the image was then filtered to reduce the influence sfitrg vessels and artefacts (Fig-
ure 6.1f). Finally, the PPA region was extracted by using #irsaed region growing method
[99] (Figure 6.1Q).

A. OD-plus-PPA region and OD segmentation using modified Qvodel

As the OD region appears to be more or less an ellipse, Tamgehil21] which integrated
the C-V model with an elliptical shape constraint was addptewas also used to segment the

OD-plus-PPA region. However, the PPA region may sometirppear in an irregular shape, so
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the rules for the evolution of the C-V model had to be modifigghtly. The set of starting C-V
model points, also known as the initial mask, was arrangduetm an ellipse as per normal.
However, the model was then allowed to deform freely as ieddtdoser to the boundary of the
OD-plus-PPA in each subsequent iteration. This allowedribdel to produce an enclosed but
not necessarily elliptical shape, which was always bighan the exact region of the OD-plus-
PPA.

Next, Tang’s C-V model was exploited to detect the OD regibmorder to accurately seg-
ment the OD, two modifications to the model were introduceidstlly, Tang’s equation (6.3)

was restored to its original form (of an ellipse):

da(t)
dt

= [ fati - e = (1= @) — P )dady (6.7

Secondly, a new way to automatically detect the centre of @Driore accurate segmentation
was introduced. The raw image was divided into four suberegi Then, the approach used in
Tang’s model to estimate the initial mask cerfirg, yo) was adopted. The initial function was

chosen as equation (6.4)

In equation (6.4)R s the estimated radius of the OD and could be simply taken as:

R =min(min[zo/2, (w — x0)/2], min[yo/2, (h — y0)/2]) (6.8)

herew andh are the width and height of an image respectively.

Then, the algorithm automatically calculates the offggtand f,, of the initial mask centre
(z¢,y.), based on the histogram of intensity value of each of the fegions. The updated

initial mask centre is thus:

(20, ¥0) = (o + fo,y0 + fy) (6.9)

B. Auto-set of Thresholds and Scanning Filter

In order to eliminate the unwanted pixels in the over-sizdd-f@us-PPA region, threshold

values from the histogram of intensity values in the four-segions were acquired. In this
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context, the threshold was set by the brightest 30% of a#éllpiin each region. This produced
a better-defined OD-plus-PPA region. The OD region was thbtracted resulting in the first

order estimation of the PPA region as illustrated in Figufed.6

The PPA region is a non-homogeneous region divided intoipheillsections by a few crossing
blood vessels. We therefore proposed the use of a scanniBjfilter to create a path through

the vessels for the following region growing model to reaiffecent sections of the PPA.
C. Multi-Initial Seed Region Growing

The seeded region growing technique was first introduceddams and Bischof [99]. It starts
with several initial seeds and then adds adjacent pointsvasaeds, beginning with the points
of lowest priority. The priority is defined by a distance ftino. The distance of each pixel to

a contiguous region [31] is defined by:

R(x,6;) = [I(z) — mean; € 6;(1(j))] (6.10)

wherel(x) is the gray image value of the point x(elemehgndd; the region labelled. Setting
both the right initial seed and distance function are somi@fmost important steps in PPA

extraction.

The algorithm automatically placed one initial seed in eafctihe four sub-regions and exper-
imentally set an optimal distance function at the value 46Gor each sub-region. Each seed
was then allowed to grow until the regional threshold distaset by equation (6.10) has been
met. Finally, the results at all four sub-regions were camadito produce an integrated PPA
region. By combining the techniques listed above, our natogy permitted the full use of

both global and local information for PPA and OD segmentatio

6.2.2 Experimental Results

For the experiments, colour retinal images drawn from thiaiao Birth Cohort (LBC), a 1936
study described in Section 1.4 were used. A total of 94 colondus images (including 18
poor quality images as determined by an independent andierped human assessor) from
66 subjects were randomly selected. Without knowing thensegation results from the pro-

posed tool, the human assessor provided the ground estirindite OD and the PPA region in
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(a) (b)

Figure 6.2: Two segmentation results from the proposed algorithm. 8laoe(a) good-quality
and (b) poor-quality imageslack solid line the ground estimatehlack dotsand
thered trianglethe estimated PPA and OD regions, respectively.

the images. Subsequently, the area enclosed by the grotiméieswas counted pixel by pixel
with a commercial software package Photoshop (Adobe System, San Jose, CA, USA) to

quantify the size of each region. This was repeated withegenentation results from the tool.

Figure 6.2 and Figure 6.3 show two and six samples from theneetation results of the
MULIPT, respectively. In both Figure 6.2 and Figure 6.3, finst column depicts the results
obtained from good quality images while the second colunpictethe results from poor qual-
ity images. The ground estimate is drawn on the black salil IThe results of estimated PPA

and OD region are enclosed by the spots and red markinggatasy.

Figure 6.4a shows the comparison of the OD area size (irranpipixel units), based on the
ground estimate, and the estimated OD area size, deteroynigg proposed tool in the 94 tri-

als, with a line of best fit. Figure 6.4b shows a similar graptfor the PPA area size estimation.

The results suggest that the MULIPT was able to detect thergehoundary of OD and PPA.
However, it tended to terminate the snake evolution prerabtwn all good quality images;

hence the results appeared to under-estimate the actaall$is is less consistent in the case
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Figure 6.3: Six segmentation results from the proposed algorithm. 8haw (a, ¢, €) good-
quality and (b, d, f) poor-quality image®lack solid line the ground estimate;
black dotsand thered markingsthe estimated PPA and OD regions, respectively.
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of poor quality images where the intensity variation/rasoh in defining the boundary of OD
is limited. Figure 6.3d shows a good example when the modsseni the mark by pushing
the boundary into the scleral rim. Overall, it appears thashof the estimation results in the
94-trials are under-estimated. This is confirmed by theigrdsl (both<1) of the best-fit lines

in Figure 6.4a and Figure 6.4b. Therefore the estimationaheds calibrated using these val-
ues as scaling factors. The final estimation results ar¢éeplab Figure 6.5a and Figure 6.5b.
As shown, a correlation coefficient of 0.98 (max=1) is ackéein the size estimation of both
the OD and PPA region. This suggests that the estimationtistochastic but fairly consistent
with the ground estimate defined by an ophthalmologist {he.best-fit line is defined by the

equation y=x).

Before After
Calibration Calibration
Results PPA OD PPA OD
Mean accuracy (%) 88.2 90.0 93.8 94.0
Standard Deviation 585 6.20 5.26 5.88

Correlation coefficientR? 0.98 0.98 0.98 0.98

Table 6.1: The Statistical Results of PPA and OD Segmentation in 94sTria

6.2.3 Validity of the Proposed Method

Three methods were used to validate the proposed MULIPT mBdstly, the mean accuracy

(M.A) of the model was calculated, which is given by:

n  1Sqa—Se
A= - ==ls

] x 100% (6.11)
whereSarepresents the actual size (ground estimate) of PPA or Olidle \Berepresents the
estimated size (by our model) of PPA or OD. The numerical valis the total number of
images analysed in the experiment. Prior to calibratioa estimation model achieved a mean
accuracy level of 90.0% (S.D.=6.20) and 88.2% (S.D.=5.Bbjlefining the size of OD and
PPA respectively. With the same set of colour fundus imatiesestimation model after cal-
ibration achieved a mean accuracy level of 94.0% (S.D.5%88 93.8% (S.D.=5.26).Table

6.1 summarises the segmentation results on 94 images.
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Secondly, the sensitivity of the estimation model at dédfdrtolerance levels was calculated. In
this context, tolerance level refers to the percentagetmhaton error being acceptable. When
the estimation result by this model falls within the rangdaérance, it was counted as one
correct prediction, and vice versa. The sensitivity is defias the percentage of correct pre-
dictions over the total number of images analysed in theraxgat. Clinically, the acceptable
tolerance level varies from application to application.r Emample, the OD appearance has
a strong relationship with visual field deficits, the loweletance level is therefore probably
essential for monitoring ocular diseases. On the other,itaechigher tolerance level is prob-
ably reliable enough for medics to oversee diabete. Therefwo tolerance level, 10% and
15%, were presumably set in the validation. The model afibmation achieved a sensitivity
of 75.5% (tolerance= 10%) and 90.4% (tolerance= 15%) imeding the size of OD region.
As expected, the sensitivity level is lower when the toleeais smaller, and when the model
is not calibrated (see Figure 6.6a). The scattering ploignre 6.6b show a similar trend.
After calibration, the sensitivity of the model for the PR&gion is 84.0% (tolerance= 10%)

and 92.6% (tolerance= 15%) respectively.

Third and finally, the robustness of the calibration methat wvaluated for the estimation
model. 70 of the 94 images were randomly selected and a kuiahling factor to calibrate
the segmentation results was derived, according to themtmtioned methodology. Then the
remaining 24 images were used to obtain the accuracy of tilwated model. In this case
(labelled as 'RA), the mean accuracy is 94.0% (S.D.=5.7it) @4.3% (S.D.=4.53) in defining
the size of OD and PPA respectively in the 24 test images. @tperiment was repeated by
(a) calibrating the proposed model with images that havdatgest (70/94=74.5%) PPA and
having remaining images from the dataset, i.e. those wihsthallest (24/94=21.3%) PPA
as test images, and (b) calibrating with the smallest (74BPA and testing with the largest
(21.3%) PPA. The earlier (labelled as ‘HI') achieved a meegueacy of 92.7% (S.D.=7.53)
and 92.8% (S.D.=4.93) for size estimation of the OD and PB#ore respectively.

On the other hand, the latter (labelled as ‘LO’) achieved amaecuracy of 93.7% (S.D.=6.98)
and 93.4% (S.D.=6.57) for the OD and PPA. Table 6.2 sumnsatiseresults, including the
previous results from calibrating with all 94 images (l&belas ‘AL’). As expected, the model
performs the worst when it is calibrated with the largest Rfdges and tested with the smallest

PPA images. However, the mean accuracy of the proposed nsostél greater than 92.7%.
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Figure 6.6: The sensitivity of the proposed tool in defining the size ptHa OD and (b) the
PPA regions at different tolerance levels in the 94 trialheTslopes represent in
best fit for the scatterplots.
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oD PPA
H RA LO AL H RA LO AL
Scaling factor 0.92 091 0.90 0.92 0.88 0.87 0.89 0.88

Correlation coefficientR? 0.97 0.98 0.99 0.98 0.97 0.97 0.99 0.98
Mean accuracy (%) 92.7 94.0 93.7 94.0 92.8 943 934 09338
Standard Deviation 753 577 6.98 5.88 493 453 6.57 5.26

Table 6.2: The Statistical Results of PPA and OD Segmentation in Resulifferent Combi-
nations of Calibration and Test Images

6.2.4 Discussions

Automated software has been developed to measure the glzePPA and OD in a 2D fundus
image. The experimental results with a very wide varietywfdus images showed that the
proposed algorithm was not only robust for automatic PPAsldetection and area quantifi-
cation, but it could also provide the transverse and comgugameter of the OD as well as
PPA-to-OD ratio, which may be useful in early detection aratiing of eye conditions such as

glaucoma.

The automatic detection and the quantification of OD in fuzichage are particularly important
tasks in this retinal image analysis for two reasons: Kirstle OD has similar attributes to
the PPA, both in terms of contrast and brightness, makinig bioeindary detection a difficult
task. Secondly, the OD is often considered as a landmarkhnd@o be utilised for a coarse
localisation of area of interest in retinal fundus imageslucing the search space during the

pre-processing stage.

In this work, a dual-channel approach with a modified C-V niddsegment the PPA and the
OD individually was exploited. The seeded region growingpmsed algorithm particularly
aims to address the aforementioned challenges on how tamsaxinformation extraction of

features (OD/PPA) while keeping interference (blood vis3$e a minimum.

In the previous studies, investigators were required toualiyn measure the PPA region in
either 2D images [10-16] or 3D images which were construbtespecially-written computer
planimetry program [6]. Compared with the work that has bdene by different groups,
there are three main merits of the proposed MULIPT methorktlii the software tool could
not only detect but also can quantify the size and transvamsieconjugate diameter of OD
region automatically, which is a technique not fully esistiéd by the other research groups.

Secondly, the proposed software can automatically detettjgantify both the PPA region in
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2D fundus images, which is a breakthrough in the field of caepaided tool on retinal image
applications. Based on the above two strong points, the etiween the OD and PPA size
could also be offered by the proposed tool. Such a tool coatdonly reduce the workload
of the human assessor and therefore avoid problems regéitim fatigue, but also would be

more cost-effective for population-based screening.

There remain some limitations within this MULIPT methodrdly, the software occasionally
stopped at undesired points upon encountering irregul&rmzels prior to the OD boundary.
This results in underestimation of the actual size. Segptik proposed algorithm estimates
the sizes of OD and PPA regions, providing a means to meabarextent of PPA. It will
be ideal if the software could also define the absolute shaff@sing the patterns in PPA
progression be studied in different eye conditions. Onesiptes way to address the above
limitations would be to take into consideration additiofadal information (e.g. texture) and

exploit further the image fusion from multiple channels.

6.3 Chapter Summary

This chapter has demonstrated that PPA on a 2D retinal imagée quantified by means of
computer-aided software. The proposed estimation modéel.IMT, after calibration achieved
an accuracy of 94.0% (S.D.=5.88) and 93.8% (S.D.=5.26) imidg the size of OD and PPA
respectively compared with the “gold standard” of an exgreéd human assessor. The model
also showed high reliability in estimating the size, withretation coefficient reaching 0.98
for both cases (OD and PPA). In terms of sensitivity, the rhaghieved 75.5% and 84.0%
(tolerance£10%) in size estimation of the OD and PPA region, and highesnithe tolerance
level was increased. The robustness of our calibration adetfas also investigated and it was
found that our model consistently achieved a mean accuriatyre than 92.7%. Moreover, it
could also provide ophthalmologists additional inforraatinamely transverse and conjugate
diameter of the OD as well as the ratio between the OD and PRAwith potential application
in eye screening programs. The methods developed so fanexefdre promising as the basis
for a fully-automated pre-screening technique that wilbgitise images for subsequent expert

human assessment.
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Chapter 7
Optic Disc (OD) and Parapillary
Atrophy (PPA) Analysis: Multiple
Image processing and Edge Detection
Techniques

In Chapter 5 and Chapter 6, two different approaches weredated to the segmentation
of the Optic Disc (OD) and Parapillary Atrophy (PPA). In Charp6, the experimental trials
were reasonable in defining the sizes of both the OD and PRamebut did not perform
well enough in terms of defining the actual shape of these egons. Therefore, a novel
imaging tool, Parapapillary atrophy AND Optic disc Regigkssessment PANDORA), for
assessment of both the OD and PPA is introduced in detaiisrctiapter. The tool is imple-
mented by a combination of image processing techniquesasiedge detection, ellipse fitting
methods, modified Chan-Vese approach, thresholding, safifter and multi-seed region
growing methods. In addition, clinical-knowledge has baglised to develop this tool. The
results show PANDORA can describe the actual shape of thenggnd is more robust against

difficult conditions.

7.1 Background Study: Direct Least Square Fitting algorithm

Ellipse fitting is traditionally categorised into two typektechniques: least squares fitting and
clustering (such as Hough-based approaches [122, 123§ foFmer techniques focus on the
parameters setting that minimise a certain distance meastween the ellipse and the spatial
data points. Fitzgibbomet al. [124] proposed an efficient least squares approach forttjirec
fitting ellipses to scattered data. A general conic fittingldde represented by an implicit

2nd-order polynomial:

Fla,z)=a-z=ar’ +bay+cy* +dr+ey+ f =0 (7.1)
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where a=[a b c d e f] andz=[x? zy v? = v 1]7. F(a; x;) denotes the algebraic distance of a
point(x,y)to the conid~(a; x) =0. By minimising the sum of squared algebraic distancebef t

curve to theN data pointse;, the fitting of a general conic is probably to be achieved [125

Dafa) =) F(z)? (7.2)

It is widely known that to compel the conic’s representatioe an ellipse the discriminant of
the parameter vecta of equation (7.2)b?-4ac, must be negative. However, this assumption
does not guarantee to provide an optimal solution. Here,amdbc are coefficients of equa-
tion (7.1). In the study, Fitzgibboet al.tried to arbitrarily scale the parameters and eventually
imposed the equality constraint 4ac%* $ 1, which minimised the sum of squared algebraic
distances from all points to the ellipse. Their results dbscthe advantages of the ellipse-
specificity in terms of occlusion and the sensitivity of treése. The approach is easy to im-
plement, extremely robust and efficient, and ellipse-djgettierefore even when the algorithm
encounters bad data it will always yield an ellipse. As alteBANDORA has adopted this

method to produce an estimate of the elliptical shape of @ibre

7.2 Segmentation and Quantification Tool for the OD and PPA re
gion
7.2.1 Proposed Method

The imaging tool called PANDORA is implemented in MATLAB (Mavorks Inc., Natick,

MA, USA). All fundus images were first cropped manually to Bxegion of Interest (ROI) and
had a “ground truth” estimate of the OD and PPA regions definedn ophthalmologist who
had not seen the results from PANDORA. The experimentabpabtare described in detail in
Figure 1.4, Chapter 1. 7.1 illustrates the flow chart of thélB®RA algorithm, which can be

divided into three phases:

Phase 1: OD segmentation
This module uses an ellipse fitting technique on a (Sobek edlap in the red channel to outline
the OD boundary.
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elliptic fitting
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for Optic Disc segmentation
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Figure 7.1: A flow chart for segmentation of the OD and PPA. The schemestsrtd three

main phases: OD segmentation (gray), PPA detection (pdlewpeand PPA seg-
mentation (cyan).
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A. Sobel edge detection
A Sobel edge detection operator is applied to the red chaviriké cropped image, generating

an edge map.

B. Create noise-free environment for elliptic fitting

The OD is planned to be extracted using a Direct Least Squtnegralgorithm of an Ellipse
(DLSFE) [124]. This algorithm yields an elliptical solutidghat minimises the sum of squared
algebraic distances from the image edge points to the fittgde However, this ellipse fit-
ting technique is susceptible to noise and requires preggging to remove unwanted pixels
from the fundus image before fitting. Therefore, a two-stageprocessing technique is used
to eliminate noise: the first stage locates and extractsaletessels in the Hue channel of the
image; the second stage utilises a clustering techniquetidtnearest neighbour rule [126] to
isolate the OD (and the PPA) from the background.

C. Direct Least Square Fitting of Ellipses for Optic Disc megtation
Upon completion (A& B), a DLSFE is fitted to estimate the OD boundary. To redudedittr-
rors, the proposed method fit the OD region iteratively uhgl centre of fitting result is within

a pre-determined “tolerance” distance from the centre gpped image (ROI).

Phase 2: PPA detection

With the OD removed, the PPA detection module then detersrtime presence of PPA in the
temporal zone using prior knowledge about the nature of e that the temporal zone is
one of the four zones in the fundus image (see Figure 7.2)hiolwPPA normally first devel-

ops.

A. Thresholding technique for Parapillary Atrophy deteamation

The thresholding technique is applied to detect the brighiteels in temporal zone of the im-
age (See Figure 7.2) in the blue channel where the PPA appestsclearly. That is because
the OD is clinically divided into four zones: Temporal, Stipe Nasal and Inferior. Figure
7.2, 7.3a and 7.3f give examples of a right-eye image and-ayefimage, respectively. Figure

7.3b and 7.3g give examples of original fundus images in bhannel.
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Superior

‘PPA

Inferior

Figure 7.2: (a) Original colour retinal fundus image of a right eye. Anaitions describe the
four different zones of a retina; (b) the OD boundary and tiR&ARegion.

The temporal and nasal zones must be exchanged if the imafea ieft-eye. As aforemen-

tioned, the OD and PPA account for the brighter region of thage (around top 12%). If the
OD region (estimated from Phase 1) is removed, PPA can betddtby the presence of bright
pixels in the temporal zone (Figure 7.3c and 7.3h). TheegflBANDORA has been designed
with the capability to produce a mask to black out the natfakjior and superior area (Figure
7.3d and 7.3i). Finally, Figure 7.3e and 7.3j give the dédectesult as image with/without

PPA, respectively.

Phase 3: PPA Segmentation
Once detected, the PPA region is then segmented using a maiobi of image processing

techniques: thresholding, a scanning filter and multi-segtbn growing methods [120].

In this phase, an automated scheme [120] mentioned in diet@hapter 6 for the extraction

and quantification of the PPA region was adopted.

A. OD plus PPA region segmentation

The scheme used an initial segmentation and estimatioredDi-plus-PPA boundary based
upon a Modified Chan-Vase analysis [121] of the blue charitet. OD region is then removed
from the OD- plus-PPA using the result obtained from Phagsating the first order estimation
of the PPA region.

B. PPA segmentation

A multi-seed region growing method is subsequently usecetime the actual PPA bound-
ary [120].

95



Optic Disc (OD) and Parapillary Atrophy (PPA) Analysis: Mple image processing and
Edge Detection Techniques

Figure 7.3: Process of PPA detection: (a) and (f) Examples of an originaldus right-eye
image and an original fundus left-eye image, respectiV&lyand (g) Examples of
original fundus images in blue channel (c) and (h) OD segatén results from
Phase 1 (d) Left mask (i) Right mask (e) and (j) shown the tleteesult as image
with/without PPA, respectively.
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PANDORA combines these technigues and exploits both glahalocal information for PPA
and OD segmentation. The results permit the OD and PPA todsssed to derive three phys-
iological parameters (all in pixels):

(a) The size of the Optic Disc

(b) The length of minor/major Optic Disc axis

(c) The size of the PPA

The segmentation results also reveal the shape of PPA whaghbe of importance in under-

standing the development process of PPA.

7.2.2 Experimental Results

A total of 133 colour fundus images (including 31 poor gyalihages as determined by an
ophthalmologist, Augustinus Laude) from 101 subjects wanelomly selected from the LBC
database. The human assessor observed the scleral ring iomettpes to identify the limits and
size of the OD. Thereafter, the human assessor identifieckbthien of PPA by the observation
of brightness and texture. Without knowing the results fleANDORA, the human assessor
identified images with PPA (82 images with PPA; 51 images authPPA) and provided a
“ground truth” estimate of the OD and PPA region in each imadee assessor first observed in
full colour space (RGB) the scleral ring and the retinal eébgnding to identify the boundary
of the OD. Subsequently, the region of PPA was identified g to the brightness and
texture of image pixels. PANDORA does not divide the PPAgrginto different zones but
views them as one. A random subsample of 30 images with PPR@imtages without PPA
was drawn to evaluate PANDORA The area enclosed by the grestimate/the segmentation
result from PANDORA is counted pixel by pixel with the Matlabftware development tool to
quantify the size of each region. PANDORA achieved a PPAdtiete rate of 89.47%. Figure
7.4 and 7.5 show six samples from the OD segmentation refuiisidus images without and

with PPA respectively.

The first column gives examples of the best results achieval whe second column shows
the worst. The ground estimate is enclosed by black spotthen@D segmentation result by a

blue solid line.

Figure 7.6 shows six samples of the PPA segmentation rdsaisPANDORA. The segmen-

tation result is enclosed by red triangles and the grounttl stimate by a solid black line. The
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Figure 7.4: Segmentation results on the images without PPA from PANDQORages on the
left column (a), (c), (e) represents the best results; Insagethe right column (b),
(d), (f) represents the worst results. The ground truthneste is drawn on the black
spots while the estimated OD region is outlined by the bllid §oe, respectively.
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Figure 7.5: Segmentation results on the images with PPA from PANDOR#gdmon the left
column (a), (c), (e) represents the best results; Imagedemight column (b), (d),
(f) represents the worst results. The ground truth estingtirawn on the black
spots while the estimated OD region is outlined by the bllid §oe, respectively.
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Figure 7.6: PPA segmentation results on the images from PANDORA. Inwemie left column
(@), (c), (e) represents the best results; Images on thet iglumn (b), (d), (f)
represent the worst results. The ground truth estimatecétosed by the black solid
line while the estimated PPA region is enclosed by the reahgfie, respectively.
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results indicate that PANDORA is able to detect and captueebbundary separating the OD
and PPA regions reasonably well despite its poorly-defiraddre. Apart from the variation in

the colour, size and shape of the OD and PPA, there are atlifiactors to take into account
(shown in figure 7.4 and 7.5). The OD boundary and the bloodelesio not always have a
sharp contrast, making it difficult to remove all the backgrd noise completely before fitting
an ellipse. The presence of PPA further complicates thisga®(see figure 7.5b, d, f).

The examples given in the second column (b, f) of Figure 7dwsbver-estimates of the OD
region. This, in effect, reduces the possible PPA area (showrigure 7.6b, f). Conversely,

under-estimation of the OD region could also lead to inateusegmentation of the PPA re-
gion, as shown in Figure 7.6c-e. Therefore, the use of msakltd region growing method in
Phase 3 to refine PPA boundary is necessary to eliminate anibedgion from the OD (refer

to Figure 7.6c).

7.2.3 Validity of the Proposed Method

There are two main functions of PANDORA: to determine thespree of PPA, and to quantify
the area of PPA and OD. Two different validation methods wkezefore adopted. Firstly,
we calculated the mean accuracy of PANDORASs PPA detectomall its Specificityand
Sensitivity The Specificity, defined as the number of true negativeslei/by the sum of false
positives and true negatives indicates how well a tool carecty identify negatives. The
Sensitivity, defined as the number of true positives dividgdhe sum of false negatives and
true positives indicates how well a tool can identify acfuasitives. Based on the PPA detection
results, PANDORA is able to achieve a sensitivity and spatifiof 0.83 and 1, respectively.
Secondly, in terms of area estimation, the accuracy is nneddiy comparing the segmentation
results against the ophthalmologist’s ground truth edtnod OD/PPA region. PANDORA is
assessed by a simple yet effective measure (M) of the matdigitween two estimates, which

is defined as:

_ N(RNT)

M=NEUT)

(7.3)

here R and T represent the segmentation result and the gestingate respectively and N(.)

denotes the number of pixels within the targeted regionler&bl summarises the segmentation
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results on 50 images.

Images with PPA Images with no PPA

Results PPA oD PPA oD
Mean accuracy (%) 73.57 81.31 - 95.32
Standard Deviation 11.62 10.45 - 4.36

Table 7.1: The Statistical Results of PPA and OD Segmentation in 50sTria

7.2.4 Discussions

This chapter has introduced PANDORA, a novel automatedakiinaging tool for both de-
tecting the presence of PPA and quantifying OD and PPA usibhgdour fundus images.
Experimental results showed that PANDORA achieves a highd&ection rate (89.47%) de-
spite the wide variation in fundus image quality. These ltesare in comparable with those
reported in [59] in which the detection rate is 87.5%, sérnsit0.85 and specificity 0.9 of the
database (40 images with PPA; 40 images without PPA) frorgepiore Eye Research Institute
(SERI).
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The quantification result of the OD and the PPA (%)
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without PPA with PPA

Figure 7.7: Box plots for the quantification result of the OD and the PPAlomimages with
the PPA or without the PPA. The Lower Oultliers are denoteckdsstar. The bars
specify the ranges of quantification results, and the bopesify the first and third
quartiles with the median represented by the centre lines.

Figure 7.7 shows the segmentation results of the OD and Pglén® for images with and
without PPA. As expected, the results indicate that PANDGIR@ments the OD better in im-
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ages without PPA than in those with PPA, as the OD is the sajitoobject. The OD region
may be over-/under-estimated when there is no clear boyndsiis often the case in images
with PPA. That is,3-zone PPA sometimes appears brighter than the OD region sinafr
brightness to the OD. On the other hanegzone PPA appears a little bit “dark” or “gray” com-
pared with the OD region. As a result, the OD region may be-ausder-estimated when there

is no clear boundary, as is often the case in images with PPA.

PANDORA has four primary advantages over alternative agugves. Firstly, it both detects the
presence of PPA and allows quantification of PPA region aatmally from 2D colour fundus
images alone. Previous studies [7, 59] were limited to thedlien of PPA. The size of the
PPA region was quantified manually [6,10]. PANDORA is therefthe first automated tool to
detect the presence of PPA and quantify the size of PPA rémicluding both zones of PPA). It
is also envisaged that PANDORA could help clinicians tokréie development of PPA if fun-
dus images of a patient were recorded over a period of timeorisity, PANDORA improves
the tool [119, 120] proposed in previous chapters by usin@Rrsegmentation approach based
on an edge map, which estimates the OD/PPA boundary moreadelyu Therefore it can de-
scribe the actual shape of the regions, allowing more @etailudy of the relationship between
PPA and different ocular diseases. The previous approablthwvas based on the ‘snake’
algorithm, suffered from a random offset in defining the letamy and could only give an es-
timate of the size. Thirdly, PANDORA has been fully autonsiateeducing the dependency
on a human assessor and minimising problems related to hemars such as habituation.
PANDORA's physiological measurements offer additiondbimation for clinicians studying
ophthalmic or systemic diseases. Fourthly, PANDORA isirisically more appropriate for
large-scale screening programs owing to utilization of@izand PPA borders on the 2D fun-
dus image as an alternative to expensive OCT equipmenttaDfghdus cameras [16] acquire
fundus images quickly, without the time-consuming procedwf the OCT machine. These
cameras are relatively cheap and have become a standaréhaiiamtool in ophthalmology
clinics. Therefore, working on 2D fundus images is both &-casd time- effective way and

more convenient to the users, compared with OCT instruments
There remain three limitations within this method: FirsBANDORA is susceptive to noise

due to an ill-defined boundary, from overlapping blood vissaed from lighting artefacts. Cre-

ating a noise-free edge map for ellipse fitting is esserttayoid under-/over-estimation of the
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actual region. In this chapter, a naive thresholding tegmmito extract retinal blood vessels
from the fundus images was used. Techniques such as altifexi@al networks [127-129]
will be explored in future development to improve the robess in retinal vessel segmenta-
tion. Secondly, the proposed tool utilises only the brigk®of the pixels to detect the presence
of PPA. Adding texture information, for instance, shouldgonove the detection rate. Thirdly,
the OD is not always perfectly elliptical, despite its gehe@ppearance. The assumption made
in this work (i.e. OD is always elliptical or circular [121felps to estimate the boundary of
the OD, especially when it is poorly defined (i.e. appearsrakdn lines in the edge map).
Admittedly, this assumption could also limit the fit to thek©D size and shape (e.g. Figure
7.4d). While more complex segmentation algorithms mighalile to describe a non-elliptical
shape better, it will remain difficult to estimate a poorhyfided boundary. As such, we argue

that the principle of Occam’s razor may be best applied.

7.3 Chapter Summary

PPA has been linked to degenerative myopia and glaucomh, dfothich can lead to loss
of sight. Early detection and quantification offer an oppoitty for medical intervention to
halt/slow the development of ophthalmic diseases. Howexasting methods are manual and
subjective. They also require multi-modal imaging systéines 2D standard laser ophthalmo-
scope plus optical coherence tomography) which are nottwéeilable. In this chapter, a tool
that can detect PPA and quantify its size automaticallygi2iD colour fundus images alone
was demonstrated. The presence of PPA is detected with areagwf 89.47% in 133 images.
The sensitivity and specificity of PPA detection are 0.83 amespectively. The proposed tool
also achieved an accuracy of 81.31% (S.D.=10.45) and 95(%2B%=4.36) in estimating the
OD region in images with and without PPA. The accuracy of PBgngentation is 73.57%
(S.D.=11.62), compared with the “gold standard” defined myxperienced ophthalmologist.
Conventionally, the size of the PPA region is quantified nadigy6, 10]. PANDORA therefore
provides the first automated tool to detect the presencesdtRe further to quantify the size of
PPA region, includingv-and 5-zone of PPA, which allows clinicians to track PPA progressi
if PANDORA is performed on the images of a specific patienetakit different times. Further
development of PANDORA (e.g. segregating the PPA regiom &pha- and beta-zone) will

allow a wider study of the development of PPA and its signifggain disease diagnosis.
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Chapter 8
Summary and Conclusions

In this chapter, a summary of the achievement of this thaesigst presented. Subsequently,
some limitations of the work and conclusions are drawn bisiting the original objective of

this thesis. The chapter ends with a list of possibilitiesfiure work.

8.1 Summary

Figure 8.1 shows the research progress in this thesisingtavith literature reviews both in

medical and in image processing (Chapter 1,2) and next soepamtory works (Chapter 3, 4)
and then three different novel technigues applied on thmeatation and quantification of the
OD and PPA (Chapter 5,6,7) and finally a summary of the worlafi@dr 8).

Firstly, the literature review showed there was a growinchielogical trend where more
computer-aided tools for retinal image analysis were béienggloped as important screening
tools for early detection of ophthalmic diseases. Thesewereloped by many image pro-
cessing techniques. These systems must be developed malcknowledge for the sake of
getting reasonable results. The method for PPA detectidresaluation methods for the seg-
mentation of biomedical objects have been reviewed andgheoaches for the OD detection

and segmentation were listed.

Before the development of the proposed approaches as atiaffinaging tool for early diag-
nosis, the background knowledge, both of image pre-prowpssd segmentation techniques,

needed to be fostered.
This thesis has three main hybrid approaches, namely “€dmrphology technique with

Chan-Vese Snake,” and “A Combination of techniques and fitmliChan-Vese Snake,” and
“Modified Chan-Vese and Edge detection techniques,” fosdgmentation of the OD and PPA.
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A retinal imaging tool for
parapapillary atrophy and optic disc
assessment
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Conclusions
and future

work

Chap. 7
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Figure 8.1: Flowchart illustrating the research progress in this Phl2#is.
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On the approach of colour morphology technique with Chan-Vae Snake

In chapter 5, a novel technique, MOCYV, to estimate the OD a8l &utomatically is intro-
duced. The introduced methodology exploits both the redldund channels of the image
to maximise the information on features (PPA) whilst kegpmterference (blood vessels) to a
minimum. A technique named “snake without edges”(Chare\f&sake) is used to estimate the
contour of the OD and PPA. The proposed approach is evalagidst the reference bound-
ary drawn by an ophthalmologist. Experimental results onn28ges show that the method
can repeatedly detect the boundary automatically and tlaa mecuracy is as high as 86.65%

(S.D.=8.97) which represents a major improvement from ¢iselts reported in the literature.

On the approach of a combination of techniques and modified Can-Vese Snake

A computer-aided measuring tool, named 'MULIPT’, to autticely detect and quantify both
the PPA and the OD regions in 2D images of the retina is de=stiibchapter 6. The OD region
is segmented using a Chan-Vese model with a shape resffaistregion is then removed from
the image (OD+PPA) which has been cropped by a modified Cleae-&pproach, producing a
first order estimation of the PPA region. Its boundary is sgbently refined by using thresh-
olding, scanning filter and multi-seed region growing me#idual channels (blue and red) in
the Red-Green-Blue space are utilised to minimise theferemnce effects of blood vessels and
artifacts. The proposed software was tested on 94 randoaygted images with PPA from
66 subjects of a well-characterised cohort database. Tdgoped algorithm achieved a mean
accuracy level of 94.0% (S.D.=5.88) and 93.8% (S.D.=5.8@stimating the “SIZE” of the
PPA and OD respectively, compared with the ground estimefieet by an ophthalmologist.
In terms of correlation between the data of ground estimateaar estimation, a correlation
coefficient of 0.98 for both the PPA and the OD was obtainec t®bl proposed in this chapter
could also provide additional information, namely tramseeand conjugate diameter of OD,

which may be useful for eye screening purpose.

On the approach of modified Chan-Vese Snake and edge deteatitechniques

Chapter 7 describes a computer-aided measuring tool, n&ADORA, for automated de-

tection and quantification of both the PPA and the OD region8D retinal fundus images.
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The OD region is segmented using a combination of edge dmteahd ellipse fitting meth-
ods. The PPA region is identified by the presence of brighglpiin the temporal zone of the
OD, and segmented using a sequence of techniques, incladirgglified Chan-Vese approach,
thresholding, scanning filter and multi-seed region grgwimethods. This tool has been tested
with 133 colour retinal images (82 with PPA; 51 without PPA3win randomly from the LBC
database, together with a “ground truth” estimate from drtlgdmologist. The PPA detection
rate is 89.47% with a sensitivity and specificity of 0.83 andekpectively. The accuracy in
defining the OD region is 81.31% (S.D.=10.45) when PPA isgatesand 95.32% (S.D.=4.36)
when PPA is absent, and the accuracy in defining PPA regioB.5/% (S.D.=11.62). PAN-
DORA differs from the tool described in Chapter 6 as it codtreate the OD/PPA boundary
better and hence describe the actual shape of the regitmsirg) more detailed study about
the relationship of PPA with different ocular diseases. ot proposed in Chapter 6 suffered
from random offset in defining boundary and could only giveeatimate of the size. PAN-
DORA demonstrated for the first time how to quantify the alkcttiape of OD and PPA regions
using 2D fundus images, enabling ophthalmologists to stumyar diseases related to PPA

using a standard fundus camera.

In addition, the PANDORA, the mean accuracy of OD segmeantaith images with/without
PPA of the proposed method in 50 trials are 81.31(S.D.=)Gad8 95.32% (S.D.=4.36) re-
spectively, which are comparable to the best state-oktheerformacne as listed in Tabl&?.

It should be mentioned that Gradient Vector Flow (GVF) Snakd the method proposed in
Chapter 6 have a much lower OD segmentation accuracy in thgaswith PPA (e.g., 48.65%
and 68.35% respectively) because they face a convergeabepr whenever the boundary of

aregion is not celar (in this case, PPA region).

Images with PPA Images without PPA

Methods ~ M.A.(%) S.D. M.A. (%)  S.D.
GVF Sanke  48.65 11.23 91.31 5.23
MULIPT  68.35 10.42 93.27 5.47
PANDORA 8131 10.45 95.32 4.36

Table 8.1:Comparison of the OD segmentation methods in 50 Trials

Based on the aforementioned detection and segmentatiaiis;esome conclusions can be

drawn and are described in the following section.
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8.2 Conclusions

The thesis examined the suggestion that

An automated optic nerve features detection and segmentsyistem based upon a
combination of image processing techniques to emulate ahuwxpert could approach the

performance of the human visual system.

After an investigation, it was found that the software tashich is implemented by a com-
bination of image processing techniques, can detect theepce of PPA and can make that
measurement of the OD and PPA region without human inteverm a 2D fundus image.
In addition, the tool not only detected the OD region, estéddts size and actual shape of
its regions, it also provided readings of the transversecangugate diameter- two commonly
used parameters in retinal image analysis. Moreover, ubmgoftware, the normalised PPA
size (i.e., the ratio between the PPA and the OD size) couldebged and could explore its
association with different eye diseases or conditions atabésh a better understanding about
the significance of the PPA development. Finally, the toaldmot only reduce the dependence
on the human assessor and thus potentially avoid problesosiated with human errors such

as habituation, it could also be more cost effective fordaggale population-based screening.
There remain some limitations within the proposed toolsyéwer:

Firstly, the problem of underestimation of the actual sizkat is because one of the software
methods, which is developed by snakes relative techniggtepped at undesired points on
encountering irregular dark pixels before the OD boundargaod-quality images and less

consistently in poor-quality images.

Secondly, the proposed model is susceptive to noise dueitiedmfined boundary, from over-

lapping blood vessels and from lighting artefacts.

Thirdly, the proposed method utilises only the brightndsh® pixels to detect the presence of

PPA. Adding texture information for instance should imprdlie detection rate.

Fourthly, due to the limitation of getting ground estimédtesn the medical partner, the databases
used to test the proposed software tools are smaller tharede§ he potential of any future

application would depend on testing with enough data torenstatistical significance.
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Finally, the OD is not always perfectly elliptical, despite general appearance. The assump-
tion made in this work (i.e. the OD is always circular or diligl) helps to estimate the bound-
ary of the OD, especially when it is poorly defined (i.e. appess broken lines in the edge

map). Admittedly, this assumption could also limit the fithhe real OD size and shape.

8.3 Practical Usage of PANDORA

In common with many classification systems, PANDORA caraessk of false negatives

in identification of the OD and PPA. In its current form, PANBA® is best used as a pre-
processing ("set up”) tool for human classification. If (b)(B) below can cause the false
negative rate to drop, it would be possible to use PANDOR AregLilonomous classifier.

1) Apply image fusion technologies to this application to g@re accurate results.

2) Validate the tool by introducing some false positive iesgithin a bigger database.

3) Use previous records. False positives can be reducediéraminations are compared with

older ones from a previous examination. Even in the bestfedse positive results are a risk.

Ultimately, a decision must be made as to what is an acceptat# of false positives.

8.4 Future Work

Future developments of the system include improving theracy of PPA detection, both the
OD and PPA segmentation and differentiation between eiffetypes of PPA. It would also be
ideal if the software could describe a non-elliptical shap#er and could address the above
limitations. More complex segmentation algorithms wouded to take into consideration ad-
ditional local information (e.g., texture) and explorethar the image fusion from multiple
channels. Creating more noise-free edge maps for elligs®fivould be another task, in order
to avoid under-/over-estimation of the actual region detkbdy an edge detection based soft-
ware tool. Moreover, development of the system segregéim@PA region inta-- and3-zone
would be essential. There is a plan to evaluate differeregygf PPA on a bigger database in
the near future and also to study its significance in disegggdsis. The systems are also still
promising as the higher quality images are available togmteday medics because the higher
quality images the systems could get, the better resultsyftems could have. Compared with

expensive retinal imaging equipment (e.g. OCT), the furgduseras are affordable to optome-
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try centre. The developed systems could therefore be pexhast an important part of periodic

optometric examinations which is a routine preventive thecdre.
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Multidisciplinary Ophthalmic Imaging

Quantification of Parapapillary Atrophy and Optic Disc

Cheng-Kai Lu," Tong Boon Tang," Augustinus Laude,*> Ian J. Deary,* Baljean Dhillon,*

and Alan F. Murray'

Purrose. A computer-aided measuring tool was devised to
automatically detect and quantify both the parapapillary atro-
phy (PPA) and the optic disc (OD) regions in two-dimensional
color fundus images of the retina.

MerHODS. The OD region was segmented using the Chan-Vese
model with a shape restraint. This region was then removed
from the image (OD+PPA), which was cropped in a modified
Chan-Vese approach, producing a first-order estimation of the
PPA region. Its boundary is subsequently refined by using
thresholding, a scanning filter, and multiseed region-growing
methods. Dual channels (blue and red) in the red-green-blue
space are used to minimize the interference effects of blood
vessels and artifacts.

Resuits. The software was tested on 94 randomly selected
images of eyes with PPA from 66 subjects of a well-character-
ized cohort database. Our proposed algorithm achieved a mean
accuracy level of 93.8% (SD 5.26) and 94.0% (SD 5.88) in
estimating the size of the PPA and OD respectively, compared
with the ground estimate defined by an ophthalmologist. In
terms of correlation between the data of the ground estimate
and our estimation, we obtained a correlation coefficient of
0.98 for both the PPA and the OD.

Concrusions. This software offers a means of quantifying the
size of PPA on two-dimensional fundus images for the first
time. The proposed algorithm is capable of detecting and
quantifying PPA and OD regions repeatedly, with a mean ac-
curacy of >93%, and could also provide additional information,
such as the transverse and conjugate diameter of OD, which
may be useful in eye-screening. (Invest Ophthalmol Vis Sci.
2011;52:4671-4677) DOI:10.1167/i0vs.10-6572

Certain ophthalmic diseases (e.g., progressive glaucoma)
and eye conditions (e.g., myopia) have been associated
with the development of retinal pigment epithelium parapap-
illary atrophy (PPA)." Although thinning and degeneration in
retinal tissue are generally irreversible, early detection and
medical intervention may offer an opportunity to reduce or
limit their progression. More recently, there has been a grow-
ing interest in the potential role of PPA in detecting eye
diseases at an early stage.>™
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Ophthalmoscopically, the PPA is divided into the 8 zone,
located adjacent to the optic disc (OD) border and showing
visible sclera as well as large choroidal vessels, and the « zone,
located more peripherally and characterized by irregular hyper-
and hypopigmentation. This classification of 8- and a-PPA was
first developed by Jonas et al.'® and has now been accepted
into common use, providing the motivation for studies to
better understand the development of the PPA. For instance,
Healey et al.® investigated the association between -PPA and
both environment and genes. They found that the presence of
B-PPA appeared to be under strong genetic control, with only
a fraction of this genetic effect shared with genes involved in
myopia. Tezel et al.* studied the relationship between PPA and
the OD in patients with glaucoma or visual field damage, by
manually quantifying the size of the PPA and OD regions. The
presence and the progression of PPA were found to be associ-
ated with subsequent OD or visual field changes in patients
with ocular hypertension. Honrubia and Calonge® further
found that, in patients with ocular hypertension, the presence
of PPA could imply a risk of glaucomatous deterioration, as it
has a significant association with the presence of defects in the
retinal nerve fiber layer (RNFL). Xu et al. N investigated the
association of PPA with glaucoma in a population-based study.
They found that 3-PPA appeared to be larger and occurred
more frequently in glaucomatous eyes than in normal eyes of
Chinese adults, but no significant difference was found be-
tween chronic open-angle and primary angle-closure glau-
coma.®

Uhm et al.” used a commercial software package (Photo-
shop; Adobe Systems Inc., San Jose, CA) to measure the size of
PPA and the OD regions in assessing how closely PPA is related
to functional and structural glaucomatous optic nerve damage.
They discovered that the severity of glaucomatous optic nerve
damage and visual field defects were related to the increases in
the size of PPA and concluded that PPA could be useful for the
diagnosis and progression of glaucomatous nerve damage.”

There are ophthalmic techniques, such as retinal tomogra-
phy (HRT; Heidelberg Engineering, Heidelberg, Germany) and
optical coherence tomography (OCT), that can provide a col-
orless or pseudocolor 3-D visualization of the PPA and the
OD."" They require a trained technician or ophthalmologist to
manually identify the OD boundary on the image before the
PPA and OD variables can be estimated from the image contour
based on three-dimensional depth information.® Furthermore,
several automatic segmentation schemes'*~>* have been devel-
oped for the assessment of the OD and parapapillary features,
such as RNFL thickness.

The HRT and the OCT have been used in several studies
about the PPA. One such application was by Uchida et al.,'®
who investigated the association between PPA and the pro-
gression of glaucoma. However, two-dimensional color fundus
imaging may be preferred by many clinicians for estimating the
size of the OD and PPA, because the image from HRT or OCT
is generated via computer processing rather than a direct
recording of the object of interest.
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FiGure 1.  Original fundus image with the OD and PPA.

An alternative tool to detect and quantify the PPA and the
OD automatically from color fundus images would reduce the
workload of the human assessor and could facilitate a wider
investigation about the potential importance of PPA in oph-
thalmic disease diagnosis involving facilities where access to
HRT or OCT is limited. Moreover, in large clinical studies and
pathologic monitoring programs, such a computerized tool can
also improve repeatability, therefore avoiding problems asso-
ciated with fatigue and habituation, and tends to be more cost
effective.

A novel approach to automatically segment and quantify the
OD and PPA region from color fundus images is proposed in
this article. The methodology exploits both the red and blue
channels of the color fundus image to maximize extraction of
information on the features (PPA), while keeping interference
(blood vessels) to a minimum. A combination of several tech-
niques, including scanning filter, autothresholding, and region-
growing, as well as the Chan-Vese (C-V) model with a shape
restraint is used to segment and quantify the regions of the OD

and PPA.
(b) ©

Raw fundus
image in
RGB space

(@ (€)

(3) Raw fundus
image

FIGURE 2.
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METHODS

We used color retinal images drawn from a subsample of the Lothian
Birth Cohort (LBC), a 1936 study.* The participants comprise surviv-
ing members of the Scottish Mental Survey of 1947 (n = 70,805) who
were born in 1936 and currently reside in the Edinburgh area (Lothian)
of Scotland. Eight hundred sixty-six of them were successfully traced
and participated in a series of investigations that included having
retinal photographs taken at the Wellcome Trust Clinical Research
Facility, Western General Hospital, NHS Lothian, Scotland. Their mean
age at the time of the photography was 72 years. The research com-
plied with the Declaration of Helsinki and was approved by the Lothian
(Scotland A) Research Ethics Committee.

The computer program in this work was implemented in commer-
cial software (MatLab; MathWorks Inc., Natick, MA). The images were
evaluated by an ophthalmologist (AL) who was masked to the image
processing findings. The intensity variation between the bright objects
(i.e., the OD and the PPA) and the blood vessels of the retinal image
was relatively high (Fig 1). Conversely, the blood vessels were in
general at a lower intensity level with respect to the background.

Our proposed algorithm combined a collection of image-processing
techniques (Figure 2). Fundus images were initially preprocessed in
two channels of the RGB space to reduce the interference of blood
vessels and to better distinguish the regions of OD and PPA. The OD
region could be reliably detected in the red channel, as it appeared
brighter than the rest of the image, while the blood vessels appeared
least influential* We also found that the region consisting of both the
OD and the PPA (hereafter referred to as the region of OD-plus-PPA)
was most well-defined in the blue channel. Consequently, the region of
OD-plus-PPA was first segmented by a modified C-V model in the blue
channel. Then, a variant of the C-V model with a shape restraint was
applied to segment the OD region in the red channel. In this case, the
restraint was based on an ellipse reflecting the actual shape of an OD.
Removing the OD region from the region of OD-plus-PPA produced the
first-order estimation of the PPA region. Moving back to the blue
channel, the segmented image was then equally divided into four
zones automatically.

Based on the autoset thresholds acquired from each zone, the
image was then filtered to reduce the influence of crossing vessels and
artifacts. Finally, the PPA was extracted by using a multiseed region-
growing method.?®

Chan-Vese Model

The C-V model is a type of active contour model or “snake” that can
trace the outline of an object from an image by minimizing an energy

(f) (0 ()
[l Red channel extraction
[l Blue channel extraction

Flow chart shows the extraction of the PPA and the OD regions.
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function associated with the current object contour.® It combines
methods including curve evolution, Mumford-Shah function,” and
level sets for applications such as shape recognition, edge detection,
and image segmentation. In this work, we used it to identify topolog-
ical changes, corners, and cusps associated with the presence of PPA.
The C-V model has been enhanced to detect objects whose boundaries
are not all necessarily well-defined. The step size of the energy function
was selected carefully, to ensure that the snake would stop at the
desired boundary. More details on the C-V model are given in Supple-
mentary Material S1 (http://www.iovs.org/lookup/suppl/doi:10.1167/
i0vs.10-6572/-/DCSupplemental).

Segmentation with the Modified C-V Model

As the OD region appears to be more or less an ellipse, we adopted the
model of Tang et al.*® which integrated the C-V model with an elliptical
shape restraint. More details on the model are given in Supplementary
Material S2 (http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.10-
6572/-/DCSupplemental) We also used it to segment the OD-plus-PPA
region. However, the PPA region may sometimes appear in an irregular
shape, and so we had to modify the rules slightly for the evolution of the
C-V model. The set of starting C-V model points, also known as the initial
mask, was arranged to be in an ellipse as per normal. However, the model
was then allowed to deform freely as it edged closer to the boundary of
OD-plusPPA with each subsequent iteration. This method allowed the
model to produce an enclosed but not necessarily elliptical shape, which
was always bigger than the exact region of the OD-plus-PPA.

Next, Tang’s C-V model was employed to detect the OD region. To
accurately segment the OD, we introduced two modifications to the
model. First, Tang’s equation B-3?® was restored to its original form (of
an ellipse) :

dal(t)
dt

= - J[a(uo - - (1 -0

X (uy = ¢)*13()A*(1/a’)dxdy. (1)
Second, we introduced a new way to automatically detect the center of
the OD for more accurate segmentation. We divided the image into
four subregions. Then, we adopted the approach used in Tang’s model
to estimate the initial mask center (x,, y,). The initial function in the
equation B-2%® was chosen as:

dolay) = 1- (\‘(-x —x) + (- 2R )
where R is the estimated radius of the OD and can be defined as

R = min{min[x,/ 2,(w = x,) / 2],minly, / 2,(b = y,)/2]}
(€)]

where w and b are the width and height of the image, respectively.

Then, our algorithm calculated automatically the offset, f, and f,, of
the initial mask center, based on the histogram of intensity value of
each four regions. The updated initial mask center is thus

(%' ") = (%0 + fuyo + f)- (€2

Autosetting of Thresholds and Scanning Filter

To eliminate the unwanted pixels in the oversized OD-plus-PPA region,
we acquired threshold values from the histogram of intensity values in
the four subregions. In this context, the threshold was set by the
brightest 30% of all pixels in each region, thus producing a better-
defined OD-plus-PPA region. We then subtracted the OD region and
obtained the first-order estimation of the PPA region as illustrated in
Figure 2f.

Quantification of Parapapillary Atrophy in the Optic Disc
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The PPA region is a nonhomogeneous area divided into multiple
sections by a few crossing blood vessels. We therefore proposed the use
of a scanning 1 X 3 filter to create a path through the vessels for the
following region-growing model to reach different sections of the PPA.

Multi-initial Seed Region-Growing

The seeded region-growing technique was first introduced by Adams
and Bischof.” It starts with several initial seeds and then adds adjacent
points as new seeds, beginning with the points of lowest priority. The
priority is defined by a distance function. The distance of each pixel to
a contiguous region” is defined by:

R(x,8) = [I(x) — mean, € §(1(j))] )

where I(x) is the gray image value of the point x(element) 5 and §,, the
region labeled 7. Above all, setting both the right initial seed and
distance function is the most important step in PPA extraction.

Our algorithm automatically placed one initial seed in each of the
four subregions and set an optimal distance function for each subre-
gion. Each seed was then allowed to grow until the regional threshold
distance set by equation 5 was met. Finally, we combined the results at
all four subregions to produce an integrated PPA region. By combining
the techniques listed above, our methodology permitted the full use of
both global and local information for PPA and OD segmentation.

.

FIGURE 3.
Shown are (a, ¢, €) good-quality and (b, d, f) poor-quality images.
Black solid line: the ground estimate; black dots and the red mark-
ings: the estimated PPA and OD regions, respectively.

Segmentation results from the proposed algorithm.
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REsuLts

A total of 94 color fundus images (including 18 poor-quality
images, as determined by an independent and experienced hu-
man assessor, AL) from 66 subjects were randomly selected from
the Lothian Birth Cohort (LBC) database. Without knowing the
segmentation results from the proposed tool, the human assessor
provided the ground estimate of the OD and the PPA region in the
images. Subsequently, the area enclosed by the ground estimate
was counted pixel by pixel (Photoshop; Adobe Systems Inc.) to
quantify the size of each region. The count was repeated with the
segmentation results from the tool.

Figure 3 shows six samples from the segmentation results of
the proposed tool. The first column depicts the results ob-
tained from good-quality images, and the second column de-
picts the results from poor-quality images. The ground estimate
is enclosed by the black solid line. The results of estimated PPA
and OD region are enclosed by the spots and red markings,
respectively. Figure 4a shows the comparison of the OD area
(in arbitrary pixel unit), based on the ground estimate, and the
estimated OD area, determined by the proposed tool in the 94
trials, along with the line of best fit. Figure 4b shows a similar
graph but for the PPA area size estimation.

The results suggest that the proposed algorithm or estima-
tion model was able to detect the general boundary of OD and
PPA. However, it tended to terminate the snake evolution
prematurely on all good-quality images; hence, the results ap-
peared to underestimate the actual size. This underestimation
was consistent in the case of poor-quality images, in which the
intensity variation/resolution in defining the boundary of OD
was limited. Figure 3d shows a good example of when the
model missed the mark by pushing the boundary into the
scleral rim. Overall, it appears that most of the results in the 94
trials are underestimations. This is confirmed by the gradients
(both <1) of the bestit lines in Figures 4a and 4b. We there-
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fore calibrated our estimation model by using these values as
scaling factors. The final estimation results are plotted in Fig-
ures 4¢ and 4d. As shown, a correlation coefficient of 0.98
(max = 1) was achieved in the size estimation of both the OD
and PPA regions. This result suggests that our estimation is not
stochastic but is fairly consistent with the ground estimate
defined by an ophthalmologist (i.e., the best-it line is defined
by the equation y = x).

Validity of the Tool

In this section, we use three methods to validate our estimation
model. First, we calculated the mean accuracy (MA) of our
estimation model, which is given by:

n

5

i=1

MA = |1 — X 100% )

where §, represents the actual size (ground estimate) of PPA or
OD, while S, represents the estimated size (by our model) of
PPA or OD. The numerical value n is the total number of
images analyzed in our experiment. Before calibration, our
estimation model achieved a mean (SD) accuracy level of
90.0% (6.20%) and 88.2% (5.85%), in defining the size of OD
and PPA, respectively. With the same set of color fundus
images, our estimation model after calibration achieved a mean
(SD) accuracy level of 94.0% (5.88%) and 93.8% (5.26%). Table 1
summarizes the estimation results.

Second, we calculated the sensitivity of our estimation
model at different tolerance levels. In this context, tolerance
level refers to the percentage of estimation error being accept-
able. When the estimation result by our model falls within the

300000 600000 900000 1200000

Ground estimate of PPAregon (3u.)

b

FIGURE 4. The correlation between
the ground estimate (x-axis) and the
results obtained by the proposed tool
(y-axis) in quantifying the size of
each region, in arbitrary pixel units.
(a, b) Direct estimation results from
the tool; (c, d) estimation results of
the OD and PPA region after calibra-
tion, such that y = x. The correlation
d coefficient was 0.98 in all cases.
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TABLE 1. The Results of PPA and OD Segmentation in 94 Trials

Before After
Calibration Calibration
Results PPA oD PPA oD
Mean accuracy, % 88.2 90.0 93.8 94.0
Standard deviation 5.85 6.20 5.26 5.88
Correlation coefficient, R* 0.98 0.98 0.98 0.98

range of tolerance, we count it as one correct prediction, and
vice versa. The sensitivity is defined as the percentage of
correction prediction over the total number of images analyzed
in our experiment. Our model after calibration achieved a
sensitivity of 75.5% (tolerance, =10%) and 90.4% (tolerance,
+15%) in estimating the size of OD region. As expected, the
sensitivity level is lower when the tolerance is smaller and
when our model is not calibrated (Fig. 5a). The scatterplots in
Figure 5b show a similar trend. After calibration, the sensitivity
of our model for the PPA region was 84.0% (tolerance, *10%)
and 92.6% (tolerance, *15%), respectively.

Third and finally, we evaluated the robustness of the cali-
bration method for our estimation model. We randomly se-
lected 70 of the 94 images and derived the suitable scaling
factor to calibrate the segmentation results, according to the
aforementioned methodology. Then, we used the remaining 24
images to obtain the accuracy of the calibrated model. In this
case (labeled RA), the mean (SD) accuracy was 94.0% (5.77%)
and 94.3% (4.53%) in defining the size of OD and PPA, respec-
tively, in the 24 test images. We repeated this experiment by
(1) calibrating our model with images that had the largest
(70/94; 74.5%) PPA and had remaining images from the data-
set—that is, those with the smallest (24/94; 21.3%) PPA as test
images, and (2) calibrating with the smallest (74.5%) PPA and
testing with the largest (21.3%) PPA. The earlier (labeled HI)
achieved a mean (SD) accuracy of 92.7% (7.53%) and 92.8%
(4.93%) for size estimation of the OD and PPA regions, respec-
tively. On the other hand, the latter (labeled LO) achieved a
mean (SD) accuracy of 93.7% (6.98%) and 93.4% (6.57%) for
the OD and PPA. Table 2 summarizes the results, including the
previous results from calibrating with all 94 images (labeled
AL). As expected, the model performed the worst when it was
calibrated with the largest PPA images and tested with the
smallest PPA images. However, the mean accuracy of our
model is still greater than 92.7%.

Sens itivity (%)
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AAdfer calibration
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DiscussioN

We have developed automated software to measure the size of
PPA and the OD in two-dimensional fundus images. Our ex-
perimental results with a very wide variety of fundus images
showed that the proposed algorithm was not only robust for
automatic PPA shape detection and area quantification, but it
could also provide the transverse and conjugate diameter of
the OD as well as PPA-to-OD ratio, which may be useful in early
detection and grading of eye conditions such as glaucoma.

The automatic detection and the quantification of OD in
fundus images are particularly important tasks in retinal image
analysis for two reasons: First, the OD has attributes similar to
the PPA, both in terms of contrast and brightness, making their
boundary detection a difficult task. Second, the OD is often
seen as a landmark that can be used for a coarse localization of
the area of interest in retinal images, reducing the search area
during the preprocessing stage.

Several schemes for automatic segmentation of the OD have
been reported.'"'¥~1*21-23 The OD can be detected either by
finding a large cluster of pixels with high intensity**** or by
the highest intensity variation at the gray level'"*'; however,
difficulties are often encountered when exudates coexist
within the retinal image, because exudates also have a higher
intensity level than the surrounding regions of the OD. Walter
etal." developed a combined approach of watershed transfor-
mation and morphologic filtering to detect OD, but found that
morphologic filtering could not completely remove the distor-
tion caused by overlying retinal vessels. Another approach
used an area-thresholding algorithm to localize the OD,'® be-
fore detecting its boundary by means of a Hough transform
(HT) (i.e., best fitting circle based on the gradient information
of the image). However, this approach proved to be time
consuming and relied on certain forms of the OD that were not
always encountered. Principal component analysis (PCA) for
automatic detection of the OD has been reported'” and could
be used, even in the presence of bright lesions on the fundus
image, although this approach could also be time-consuming.
Alternatively, Osareh et al.' used a template-matching algo-
rithm to detect the disc boundary automatically. Although
morphologic preprocessing helped to reduce the interference
effects of blood vessels, it could not remove them completely.
Moreover, such processing blurred the OD boundary, making
the detection unreliable. The C-V method"® and level setting
methods'# have also been applied to OD boundary segmenta-
tion. The major advantage of these algorithms is their ability to
compensate discontinuities in the boundary of the image fea-

4 Before calibration

Sersitivity (%)

AAfter ¢ alibration

FiGure 5. The sensitivity of the pro-
posed tool in defining the size of (a)
the OD and (b) the PPA regions at
different tolerance levels in the 94
trials. The slopes represent the best
fit for the scatterplots.
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TaBLE 2. The Statistical Data of PPA and OD Segmentation Results in Different Combinations of

Calibration and Test Images

oD PPA
HI RA Lo AL Hi RA Lo AL
Scaling factor 0.92 0.91 0.90 0.92 0.88 0.87 0.89 0.88
Correlation coefficient 0.97 0.98 0.99 0.98 0.97 0.97 0.99 0.98
Mean accuracy, % 92.7 94.0 93.7 94.0 928 943 93.4 93.8
Standard deviation 7.53 5.77 6.98 5.88 4.93 453 6.57 5.26

All images were taken from the same set of LBC images.

ture to be located. However, those approaches have to be
carefully initialized and can achieve only good segmentation
results when the region has homogenous intensity values and
a well-defined boundary.

In this work, we explored a dual-channel approach with a
modified C-V model to segment the PPA and the OD individu-
ally. The proposed algorithm particularly is designed to address
the aforementioned challenges on how to maximize informa-
tion extraction of features (OD/PPA) while keeping interfer-
ence (blood vessels) to a minimum.

In comparison to the works by other groups, there are three
main merits of the proposed tool. First, our software tool could
measure the PPA region automatically in two-dimensional color
fundus images. This tool is the first tool that can make that
measurement without human intervention. In previous studies,
investigators had to manually measure the PPA region in either
2-D 3 or 3-D'? images, which were constructed by specially
written planimetry computer programs. Second, the proposed
tool not only detected the OD region and estimated its size, it
also provided readings of the transverse and conjugate diame-
ter—two commonly used parameters in retinal image analysis.
Using this tool, we could further derive the normalized PPA
size (i.e., the ratio between the PPA and the OD size) to
explore its association with different eye diseases or conditions
and establish a better understanding about the significance of
the PPA development. Third, this tool has been automated,
which means that not only could it reduce the dependence on
the human assessor and thus potentially avoid problems asso-
ciated with human errors such as fatigue, it could also be more
cost effective for larger scale population-based screening.

There remain some limitations within our method, how-
ever: First, our software stopped at undesired points on en-
countering irregular dark pixels before the OD boundary in
good-quality images and less consistently in poor-quality im-
ages. This problem results in underestimation of the actual size.
Second, the proposed algorithm estimates the sizes of OD and
PPA regions, providing a means to measure the extent of PPA.
It would be ideal if the software could also define the absolute
shapes, allowing the patterns in PPA progression to be studied
in different eye conditions. A possible way to address these
above limitations would be to take into consideration addi-
tional local information (e.g., texture) and explore further the
image fusion from multiple channels.

CONCLUSIONS

We have demonstrated that PPA on a retinal image can be
quantified by means of computer-aided software. Our pro-
posed algorithm or estimation model, after calibration,
achieved an accuracy of 94.0% (SD 5.88%) and 93.8% (5.26%)
in defining the size of the OD and PPA, respectively, compared
with the gold standard experienced human assessor. Our
model also showed high reliability in estimating the size, with
the correlation coefficient reaching 0.98 for both cases (OD

and PPA). In terms of sensitivity, our model achieved 75.5%
and 84.0% (tolerance, =10%) in size estimation of the OD and
PPA region, and higher when we increased the tolerance level.
We have also investigated the robustness of our calibration
method and found that our model consistently achieved a
mean accuracy of more than 92.7%. In addition, the proposed
software could also provide ophthalmologists additional infor-
mation, namely transverse and conjugate diameter of the OD as
well as the ratio between the OD and PPA size, with potential
application in eye-screening programs. The methods devel-
oped so far are therefore promising as the basis for a fully
automated prescreening technique that will prioritize images
for subsequent expert human assessment.
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Abstract— Parapapillary atrophy (PPA) in the retina has
been iated with eye di (e.g. gl ) and certain eye
conditions (e.g. myopia). However, no computer-aided
measuring tool thus far is available to quantify the extent of the
PPA. In this paper, a novel approach to automatically segment
and quantify the optic disc (OD) and PPA is proposed. The
methodology exploits both the red and blue channels of the
colour image to maximise information extraction of features
(PPA) whilst keeping interference (blood vessels) to a minimum.
A combination of several techniques, including scanning filter,
thresholding, region growing as well as modified Chan-Vese (C-
V) model with a shape constraint is used to segment and
quantify the OD and PPA. Our proposed approach is evaluated
against the reference boundary drawn by an ophthalmologist.
Experimental results show that our method can repeatedly
detect both the sizes of the OD and PPA region automatically,
and achieved a mean accuracy level of 91.3% and 92.5% in
defining the size of the OD and PPA, respectively. Moreover, the
correlation coefficient of the ground truth and the results from
proposed method is 0.98 for both the PPA and OD.

Index Terms— Optic disc, parapapillary atrophy, fundus
image, glaucoma, Chan-Vese models.

L INTRODUCTION

In the assessment of eyes, ophthalmologists pay much
attention to changes or abnormalities detected on colour and
shape of the parapapillary atrophy (PPA) and the optic disc
(OD), which are two major features of the retina.
Consequently, the identification, shape analysis and
quantification of the PPA and the OD region in the fundus
images are of primary importance for the detection of certain
conditions such as glaucoma.

To date, various methods have been investigated for the
detection of the OD and the focus of those works is either to
locate the centre of the OD [2] or to detect the boundary of
the OD in fundus images. In [3], the OD was detected by a
combination of watershed transformation and morphological
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filtering techniques. In [4], an area-thresholding was first
applied to localise the OD. Its boundary was then detected by
means of the Hough Transform (H.T.), i.e. best fitting a circle
based on the gradient information of the image. However, this
approach proved time consuming and relied on certain forms
of the OD that were not always encountered. Besides the
aforementioned methods, there exist other techniques such as
the point distribution model [5] and principal component
analysis (PCA) for automatic detection of the OD [6].
Alternatively, Osareh et al. [7] used template matching to
detect the disc boundary automatically. Although the
morphological pre-processing (e.g. opening/closing) helped
to reduce the effects of blood vessels, it could not remove
them completely. Moreover, such processing blurred the OD
boundary, making the boundary detection unreliable. In [8],
OD was localised by capitalizing on its high variation on gray
level image. This approach worked well, but only if there was
none or very little PPA. The presence of the PPA could
complicate the detection of the OD as it also appeared bright
in the fundus images.

A novel method for automated quantification of both the
sizes of the OD and PPA region is proposed in this paper
based on a hybrid image processing technique. In particular,
we aimed to address the aforementioned challenge on how to
minimise the influence of blood vessels without sacrificing
accuracy. In the presence of PPA, the common practice of
working on single colour channel or gray-level was only
adequate for locating the OD but not for defining its
boundary. Therefore, the original fundus images were
initially pre-processed in two different channels in RGB
space to reduce the interference of blood vessels and to
distinguish the regions of OD and PPA separately. Thereafter,
the region of PPA-plus-OD was segmented by Chan-Vese (C-
V) model on the blue channel. In order to segment OD
appropriately, the C-V model with elliptic constraints needs
to be employed. The segmented image was then divided into
multi-zone automatically. Based on the auto-set thresholds
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acquired from each zone, the segmented image was then
filtered to reduce the influence of crossing vessels and
artefact. Finally, PPA was derived from using a multi-seed
region growing method.

Simulation results with a very wide variety of fundus
images showed that the method presented in this paper is not
only very effective for automatic PPA shape detection and
region quantification, but can also provide the transverse and
conjugate diameter of OD as well as the PPA-to-OD ratio,
which can be useful information for early detection and
grading of certain eye conditions such as glaucoma.

The rest of this paper is organised as follows. In Section
1I, the methodology for segmenting OD region and PPA
region is presented. Section IIT presents the simulation results
before a conclusion of this study is provided.

II.  PROPOSED METHODOLOGY

Raw colour Image Input fundus image in RGB spact

Blue channel extraction

A
%

Modified CV

(e) Modified CV

Scanning filter and Multi-
initial seeds region growing

PPA region extraction

(c) OD+PPA region
extraction

(g) Auto-set of
Threshold

(i) PPA region
extraction

A 4

Fig.1 Flow chart of the extraction of PPA and the OD region.
The green lines in (b) and (e) represent the final mask and the
initial mask of two different region extractions.

The steps used in our proposed method are shown in Fig. 1
and will be explained in details in the following subsections.
Fig.2 shows an example of original fundus image. The
intensity variation between the bright objects (i.e. the OD and
PPA) and the blood vessels is relatively high. Conversely, the
blood vessels are generally at a lower intensity level with
respect to the background.

87

Fig.2 Original fundus image with the OD plus PPA

To isolate the OD, PPA and other bright parts separately
is a non-trivial task. Pre-processing of the image is essential.
The C-V model only worked well on an image with
homogeneous regions enclosed by intense gradient
information. Applying them directly to our fundus images is
extremely difficult, as the area of the OD and PPA is
invariably fragmented into multiple regions by the blood
vessels. Previous work [3-8] used gray-level morphology to
remove the blood vessels to create a relatively homogeneous
region before applying the C-V model on the image. Similar
morphological operations are equally applicable to the red
and blue channels. We worked specifically on these two
channels because we found that the blood vessels are least
influential in the Red channel and the region of PPA-plus-OD
is most well-defined in the Blue channel.

A.  OD+PPA region and OD extraction using Modified C-V
model

The original C-V model [9] combined the methods such
as curve evolution, Mumford-Shah function and level sets for
image segmentation. Because the OD appears more or less
an ellipse or a circle, Tang [10] proposed a modified C-V
model which included an elliptic shape constraint. The new
“fitting energy” function £ is then:

i (o li]=0f (=) Hg+ (=0 (e 1oy ()
o Q Q

Subject to
=) G —)sind} 1+ )sinH(—)es) /5] (2)

where Lipschitz function ¢:Q—% of R*, >0 is fixed
parameters, H (@) is the Heaviside function. In addition, x,,

Yo, 6, major axis ‘a’,minor axis ‘b’ are the parameters of the
ellipse at=0. The evolutions related to the Euler-Lagrange
equations are:
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Here, &(¢) is the Dirac function and
¢ =([uH(g)dsd) /([ H(p)sdy)
¢ = (Ju,(1- H(p)drdy) /([ (1~ H(p)kidy)
Q Q
A=(x=x,)cos0+(y—y,)siné
B=—(x—x,)sin@+(y-y,)cosé
L=Acos@/a*—Bsinf/b*
M = Asin@/ a* + Beos 6/ b
N=AB[l/b ~1/d*]
Therefore, the steady solution of Eq(2-7) at time 7 :
L=[((x = x,(T)) cos(B(T) + (v =, (T))sin(6(T)))* / (a(T))* ®)

H=(x =, (T)sin(@() + (v = yy(T)cos(@(T)) / (B(T))']"?

In our application, we imported this methodology to
extract the OD and an over-sized PPA-plus-OD region. But
we slightly modify the rules for the evolution of the C-V
models because of the fact that PPA region may sometimes
also appear in an irregular shape when segmenting the PPA-
plus-OD region in the blue channel.

In Tang’s C-V model, the mask always evolved with an
elliptic shape. But, for PPA-plus-OD segmentation, we only
set up an ellipse as the initial mask. The model was then
allowed to produce an enclosed but not necessary elliptical in
shape region (mask), which is always bigger than actual
region of PPA-plus-OD in the red channel.

Next, Tang’s C-V model was used to detect the OD region. In

order to segment OD properly, we introduced two

modifications to the model. Firstly, Eq(3) was restored to the

original form (of an ellipse):

da(t)
dt

=~Jlat, ~¢,) ~(1-)u, ~c, (@)A1 @y ©)

Secondly we introduced a new way to detect the centre of
the OD for better segmentation. First, we divided the raw
image into four sub-regions. Then, we estimated the initial
mask centre (x,y,) . Our software automatically set up
offset, f, and fyo of the detected OD centre (x,,y,) , based

on the histogram of intensity value of each four regions.
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(o 30) = (e for 4 1) (10)
The initial function in Eq (2) was chosen as
200 =1-(J—x ) + =3 )/ R an

Here, R is the estimating radius of the OD and could be
simply taken as:

R=min{min{x, /2,(w=2x,)/2},min{y, /2,(h-y,)/ 2}} (12)
where, w and % are the width and height of an image
respectively.

B.  Auto-Set of Thresholds

In order to remove the unwanted pixels of the over-sized
PPA+OD region, we acquired threshold values from the
histogram of intensity values in the four sub-regions. In this
context, the threshold was set by the brightest 30% of all
pixels in each region. This gave a better-defined PPA+OD
region. We then subtracted the OD and obtained the first
order estimation of the PPA region as illustrated in Fig.1(g).

C. Scanning filter and Multi-Initial Seed Region Growing

The seeded region growing technique was first
introduced by Adams and Bischof [11]. It starts with several
initial seeds and then adds adjacent points as new seeds,
beginning by the points of lowest priority. The priority is
defined by a distance function. In [11] the distance of the
pixel to a contiguous region is defined by:

R(x,8)=[1(x) = mean; € §(I()] (13)

where I(x) is the image I value in X€ O and 5, the region

labelled 7. Setting both the right initial seed and distance
function is vital to the PPA extraction in the subsequent stage.

Since the PPA region is a non-homogeneous region with a
few crossing vessels, we adopted the ‘multi-seed’ idea from
[11], and proposed using a scanning [1x3] filter to create a
passage through the vessels for region growing. The
algorithm automatically places an initial seed at each sub-
region and set an optimal distance function for each region.
Finally, we integrated the segmented result of the PPA region
as a whole image. By combining the techniques listed above,
our methodology permits the full use of both global and local
information for PPA and OD segmentation.

III. RESULTS

For our experiments, we used colour fundus images from
the Lothian Birth Cohort (LBC) database [12]. Fig.3(a) shows
the experimental results obtained from the good quality
fundus images whilst Fig.3(b) shows results of poor quality
or faint images.
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Fig 3. Segmented results on (a) good quality image, and
(b) poor quality image

In Fig.3, the ground truth is drawn on the black solid line.
The result of estimated PPA and OD region are enclosed by
the blue dotted line and red triangle line, respectively. The
results of randomly selected fundus images in forty trials are
shown in Fig.4 and Fig.5. The estimated size and ground truth
of the OD and PPA (in arbitrary unit) are represented in the
Y-axis and X-axis, respectively.
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IV.  CONCLUSION

A total of 40 images of 25 subjects with PPA, including
eight faint images, were randomly selected for test. Our
proposed method achieved 91.3% and 92.5% accuracy in
defining the size of PPA and OD respectively, compared to
the gold standard of a human expert (AL). In terms of
correlation between the data of ground truth and our
estimation, we obtained 0.98 for both the PPA and the OD.
Moreover, our method can provide additional information,
namely transverse and conjugate diameter of the OD as well
as the ratio between the OD and PPA. Further work to test out
this method in a larger sample set is indicated, in an effort to
develop an automated screening system for diagnosis of eye
conditions associated with PPA in the community.
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techniques of curve evolution, level sets and 'Mumford-Shah
functional'. We carefully selected the step size of the energy
function to ensure that our snakes stopped at the desired
boundaries. PPA was then derived from the subtraction of the
OD from the OD-plus-PPA. We applied this technique on
fundus images taken from a database of a well-characterized
cohort and compared the accuracy of boundary detection
against the manually-labeled ground truth information drawn
by an ophthalmologist.

Results: Of the 33 randomly selected images of 25 subjects
with PPA, 27 were of sufficient quality for analysis. Our
proposed algorithm achieved a mean accuracy level of 86.6%
(S.D.=5.9) in detecting OD, 87.1% (S.D.=6.5) in detecting OD-
plus-PPA and 73.5% (S.D.=12.8) in detecting PPA.
Conclusions: Our proposed algorithm achieved good accuracy
compared to the gold standard of a human expert. Further work
to test out this algorithm in a larger sample is indicated.
Possible application includes semi-automated screening
systems for diagnosis of eye conditions associated with PPA in
the community.
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