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Abstract

The ability of liberalised electricity markets to trigger investment in the generation capacity re-
quired to maintain an acceptable level of security of supply risk has been - and will continue to
be - a topic of much debate. Like many capital intensive industries, generation investment suf-
fers from long lead and construction times, lumpiness of capacity change and high uncertainty.
As a result, the ‘boom-and-bust’ investment cycle phenomenon, characterised by overcapacity
and low prices, followed by power shortages and high prices, is a prominent feature in the de-
bate. Modelling the dynamics of generation investment in market environments can provide
insights into the complexities involved and address the challenges of market design.

Further, many governments who preside over liberalised energy markets are developing policies
aimed at promoting investment in renewable generation. Of particular interestis the mix and
amount of generation investment over time in response to policies promoting highpenetrations
of variable output renewable power such as wind. Consequently, improved methods to calculate
expected output, costs and revenue of thermal generation subject to varying load and random
independent thermal outages in a power system with a high wind penetration are needed.

In this interdisciplinary project engineering tools are applied to an economic problem together
with knowledge from numerous other disciplines. A dynamic simulation model of the ag-
gregated Great Britain (GB) generation investment market has been developed. Investment is
viewed as a negative feedback control mechanism with current and future energy prices acting
as the feedback signal. Other disciplines called upon include the use of stochastic processes
to address uncertainties such as future fuel prices, and economic theory to gain insights into
investor behaviour. An ‘energy-only’ market setting is used where generation companies use
a classical NPV approach together with the Value at Risk criterion for investment decisions.
Market price mark-ups due to market power are also accounted for.

The model’s ability to simulate the market trends witnessed in GB since early 2001 isscru-
tinised with encouraging findings reported. A reasonably good agreement of the model with
reality, gives a degree of confidence in the realism of future projections. An advancement to
the dynamic model to account for expected high wind penetrations is also included. Build-
ing on the initial model iteration, the short-term energy market is simulated using probabilistic
production costing based on the Mix of Normals distribution technique with a residual load cal-
culation (load net of wind output). Wind speed measurement data is combined with the outputs
of atmospheric models to assess the availability of the GB wind resource and its relationship
with aggregate load.

Simulation results for 2010-40 suggest that the GB system may experience increased generation
adequacy risk during the mid to late the 2020s. In addition, many new investmentsare unable to
recover their fixed costs. This triggered an investigation into the design of acapacity mechanism
within the context of the modelling environment. In light of the ongoing GB marketelectricity
market reform debate, two mechanisms are tested; a strategic reserve tender and a market-
wide capacity market. The goal of these mechanisms is to mitigate generation adequacy risk
concerns by achieving a target winter peak de-rated capacity margin.
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3.13 Expected energy unserved results for GB market in the Redpoint study base case. 79

4.1 Information flows in the generating capacity investment market. . . . . . . . .92
4.2 Causal loop diagram for the generating capacity investment market. . . .. . . 93
4.3 Example of expected utility function. . . . . . . . . . . . . . . . . . . . . . . . 105
4.4 Example of utility function with reference point at zero. . . . . . . . . . . . .. 106
4.5 Example of VaR decision criterion acting on a distribution of expected project

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Electricity investment as a control problem. . . . . . . . . . . . . . . . . . . . 118
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Chapter 1
Introduction

1.1 Background

So far, in many countries, energy market liberalisation has been seen as asuccess in terms of ef-

ficiency and lower prices. Yet worries still remain. One of the main concerns is that the onus is

on privately owned generating firms to predict and respond to supply shortages. They must in-

vest in a mix and amount of generation capacity that will maintain an adequate level of security

of supply (or generation adequacy) risk. Many governments are seeking to reduce greenhouse

gas (GHG) emissions from the power sector by developing policies promotinginvestment in

low carbon and renewable generation. This has introduced uncertaintiesthat liberalised energy

markets are struggling to handle efficiently. As the International Energy Agency states:“Im-

proving decision-making processes for investment related to generationcapacity may be one of

the most significant benefits of liberalisation. But it is also one of the most serious challenges

in liberalised electricity markets”[1].

Pure ‘energy-only’ electricity markets are epitomized by payments for supplied energy being

the only source of revenue for generators to cover their fixed and variable costs and provide

adequate returns on investment. As a result, short-run profits (scarcity rents) are the primary

mechanism to mitigate long-term generation adequacy problems. Their ability to trigger in-

vestment in the generation capacity required to maintain an acceptable level of security of

supply risk is one of the most hotly debated topics in power systems economics.The question

is asked: are short-run price signals strong enough to ensure long-term generation adequacy?

Further, critics of ‘energy-only’ markets argue that because the framework is relatively new

and constantly changing, it has not been properly proven and the market must be sufficiently

concentrated in order to ensure high enough prices to cover fixed costs[2].

Modelling the dynamics of merchant generation investment can further our understanding of

the feedback mechanisms that exist between market conditions, capacity investment and subse-

quent levels of security of supply risk. By engineering dynamic projectionmodels, the debate
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about whether governments will meet their environmental, security of supplyand customer cost

goals can be informed. Furthermore, whether the system will experience reliability, price and

capacity oscillations in the meantime can be assessed. This is neatly summarised below:

“Economics focuses on equilibria but has little to say about the dynamics of amarket. Once

economics shows that a system has a negative feedback loop so that thereis a point of balance,

it considers its job done. Engineers move beyond this stage of analysis to consider whether a

system will sustain oscillations and, if not, whether is is over- or under-damped.” - Stoft [3].

Further, in a speech delivered to the Royal Society, the governor of theBank of England said:

“Predicting the precise timing and dynamics of instability ... is very difficult. It is, however,

possible to identify a sand pile or forest as being prone to large-scale instabilityand determine

the factors that contribute to that instability ... Economists have been able to learnfrom other

disciplines about how to cope with these types of instability ... [they] have learned much from

engineers about how to control dynamic systems.”[4].

Recently, particularly in Great Britain (GB), interest has turned to the response of the market

to policies promoting investment in variable generation such as wind. This has highlighted the

limitations of many existing long-term simulation models, and so there is a need to develop

new methods of calculating expected output, costs and revenue of thermal generation subject

to varying load and random independent thermal outages in a power system with a high wind

penetration.

1.2 Project objectives and scope

The project has a number of distinct objectives:

1. To gain an understanding of the complexities of power systems economics,in particular

generation capacity investment in market environments, and the methods available to

represent these complexities within a simulation environment.

2. To explore the nature of the feedback mechanism that exists between market conditions

and generation investment by developing a long-term dynamic generation investment

simulation model. This should capture the negative feedback loop that exists between
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generation capacity investment and wholesale market prices and how year-on-year in-

vestment decisions influence long-term market dynamics.

3. To examine the current status of research concerned with the impact ofpolicies promot-

ing investment in wind generation on thermal plant investments. This includes identify-

ing the limitations of existing approaches, specifically the need to develop new methods

of calculating expected output, costs and revenue of thermal generation subject to vary-

ing load and random independent thermal outages in a power system with a high wind

penetration.

4. To apply the dynamic market model to an existing market, in this case Great Britain

(GB). For simplicity, network effects will be neglected and the market will be modelled

as a ‘single bus’ system.

5. To investigate the need for, and design of, capacity mechanisms appropriate for the GB

market test case, and explore scope for their implementation within a dynamic modelling

environment.

1.3 Thesis and contribution to knowledge

Overall, the research will test the hypothesis that:

‘energy-only’ markets (i.e., without capacity mechanisms) with high penetrations
of wind generation are capable of inducing adequate and timely generation invest-
ments over a long-term time frame.

The project should provide insight into the nature of capacity margin oscillations in the GB

generation market. Further, the likely response of liberalised ‘energy-only’ markets to policies

promoting investment in renewable generation such as wind is not yet fully understood. The

work presented here helps move this field of knowledge forward. By extending and applying

existing probabilistic production methods to the GB market, the impact of a high wind penetra-

tion on investment dynamics can be investigated. As part of the application to a nonequilibrium

oligopoly market, a method for estimating revenues from price mark-ups due tomarket power

within the dynamic simulation is derived.
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It is envisaged that the modelling techniques, analysis and insights herein willbe of interest to

not just the UK Government, but all governments seeking to reduce GHG emissions from the

power sector whilst maintaining an adequate level of security of supply risk. It would also be

of major interest to policy makers, regulators, market designers and others involved in planning

and design of the power sector.

1.4 Thesis outline

Chapter 2 provides an overview of the fundamental economics under-pinning modern power

markets and the costs and associated investment risks for different generating technologies. A

number of existing market frameworks are reviewed with close attention paid tothe impact

that high standards of system reliability have on market design. In addition,a variety of ex-

isting capacity mechanisms are surveyed. Finally, methods to measure generation adequacy

risk, including how they are adapted to account for high penetrations of wind generation, are

discussed.

Chapter 3 takes a close look at the GB power market. This begins with a brief history of the

power industry in GB that illustrates how security of supply concerns havebeen addressed to

date. This is followed by an account of liberalisation in the early 1990s including an overview

of market structures. Some policy-informing modelling works applied to the GB market in

recent years are also reviewed.

Chapter 4 contains a comprehensive literature survey of the tools availableto those modelling

generation capacity investment in electricity markets. This includes a review ofmodelling

methodologies, the handling of uncertainty, market power and investor expectations and risk

preferences. Finally, a discussion of the scope and value of techniques from control theory to

model the investment market is included.

Chapter 5 presents the methodologies used to address the research question posed. To begin,

the fundamental model design concepts together with their application to a dynamic investment

model of the GB power market are presented. Included are details aboutall elements of the first

iteration of a model. Also included are the results and discussion accompanying this stage of

the work. The model’s ability to simulate the market trends witnessed in GB since early 2001

4



Introduction

is tested along with a discussion of model limitations.

Chapter 6 describes the cutting-edge techniques used to model productionfrom high penetra-

tions of wind power. These results are used to update the investment marketsimulation model

to account for high penetrations of wind. Moreover, the work presented helps answer the fol-

lowing questions: 1) given historic wind resource availability in GB, what would have been

the hourly production for a higher level of installed wind capacity; and 2) what is the likely

contribution from wind to meeting peak demand?

Chapter 7 has two foci. Firstly, in light of the preliminary results and need fordeveloping

computationally fast models, an improved technique for calculating expected output, costs and

revenues from the energy market is developed. This includes a method of estimating generator

revenues from price mark ups due to market power in an oligopolistic market.The technique

uses probabilistic production costing that considers the annual load curve and convolves it

with generator outages using the Mix of Normals distribution (MOND) approximation. The

accuracy and speed of the technique is tested with encouraging findings reported. Secondly,

the integration of the MOND technique in the dynamic simulation model of the GB market is

presented.

Chapter 8 explores the scope for including a capacity mechanism within the dynamic model. To

begin, the challenges faced when applying techniques from classical control theory to design a

robust economic controller are discussed. This motivates consideration of existing modelling

methodologies, which given the model application, can provide new insights.In light of the

ongoing electricity market reform debate, two mechanisms, namely a strategic reserve tender

and a market-wide capacity market are tested. These aim to 1) mitigate generation adequacy

risk and 2) make generator revenue streams more predictable.

Finally, Chapter 9 presents headline results, with a discussion of their validityand implications

in a GB market context. Also the modelling methodologies and implications to the generation

adequacy problem are reviewed. Lastly, final thoughts and thesis experiences are shared.
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1.5 How to read this thesis

If the reader is familiar with the fundamentals of power system economics and the generation

adequacy problem then Chapter 2 can be overlooked. Similarly, if the historyand workings

of the GB market are already fully understood, then Chapter 3 can also beskipped, although

the historic generation adequacy risk calculation presented in Section 3.5 maybe of interest.

Further, the literature review of Chapter 4 can be overlooked if the contribution of this thesis,

which is presented in Chapters 5 - 8, is of primary interest.
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Chapter 2
Electricity Supply and Markets

In order to grasp the complexities of generation capacity investment in liberalised energy mar-

kets, it is necessary to understand how the electricity supply industry (ESI) is structured. This

chapter provides an overview of the fundamental economics under-pinning modern power mar-

kets, such as short-run marginal cost and long-run market equilibrium. Also included is a

discussion about the costs and associated investment risks for different generating technolo-

gies. A number of existing market frameworks are discussed, and particular attention is paid

to the impact that high standards of system reliability have on market design. In addition, a

variety of existing capacity mechanisms are reviewed. Finally, methods to measure generation

adequacy risk in power systems, including adaption for high penetrations of wind generation,

are discussed.

2.1 Introduction

Various structures of ESI exist around the world. Broadly speaking, these are distinguished

by the level ofvertical andhorizontal integration(or ownership) andcompetitionwithin their

component parts; namely the generation, transmission and distribution of electricity within a

geographical area (see Chapter 1 of [5]). This work focuses on thegeneration sector of a

liberalised electricity market.

Chile was the first country to liberalise its electricity market in 1986. It was followed by GB

in 1990 and Norway in 1991 [6]. Since then, a number of other countries have established

wholesale energy markets: Australia (firstly in Victoria, 1994), Brazil (1995), New Zealand

(1996), Germany (1998), Spain (1998) and Canada (2002) to name a few. By 1998 many

regions of the US also had liberalised ESIs involving Independent SystemOperators (ISO)

for California,1 Texas (ERCOT), Pennsylvania-New Jersey-Maryland (PJM), New York, New

1California was the first US market to move to market-based pricing in 1998.
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England and the Midwest. Over the years, each liberalised market has evolved differently. The

intimate workings of each are beyond the scope of this study, though a wealthof information

can be found in [6].

Although market design differs between countries, the goal of all liberalised electricity market

designers is to ensure that the industry operates in the best interests of society. This includes

providing affordable, secure and reliable electricity for consumers. They must also be designed

in order to remain liquid, promote competition and reduce barriers to entry wherever possible.

2.2 Overview of wholesale energy markets

In the presence ofwholesale competition, generating firms (or generators) trade directly with

large industrial loads and retailers acting on behalf of consumers. Generators can be vertically

integrated or independent power producers (IPPs). The generationmarket structure varies, with

oligopoly being the most common structure seen in liberalised markets (e.g., GB, Germany,

Spain, Italy). An oligopoly market is a situation where a relatively small number of competing

firms dominate. The market is deemed ‘energy-only’ if payments for energyare the primary

source of revenue for generators.2 Examples of ‘energy-only’ markets currently operating in-

clude GB, Australia’s National Electricity Market, Alberta, Nordpool, Ontario, and Texas.

Transactions take place on thewholesale market(Fig. 2.1). In this market, the commodity is

energy, typically, a mega-watt hour (MWh), which is the flow of power (MW) over a period

of time (h) for an agreed price (£/MWh). The process of committing (or dispatching) generat-

ing units in order to meet demand is calledunit commitment. Sometimes a distinction is made

betweenunit commitmentandenergy dispatch. More precisely, unit commitment pertains to

unit start and stop times, and level of generation, whereas energy dispatch relates to the level

of generation only. Depending on market structure, this is either operatedby the System Op-

erator (SO) or involves private (or self) dispatch independent of the SO. In general terms, unit

commitment simply informs generators when to switch on and how much to produce [3].

To date, it remains uneconomic to store electricity in large quantities, thereforeelectricity gen-

2Some generators can obtain additional revenues by providing ancillary services (AS); this is discussed in Sec-
tion 2.2.3.
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Figure 2.1: The wholesale market structure with retail competition. Also demonstrated are
vertical and horizontal integration. Based on [5].

erated must equal demand at all times. Furthermore, the physical properties of electricity mean

that system instability can arise in a matter of seconds and thus markets must facilitate (and

ultimately make way for) the proper operation of the power system. Consequently, electricity

must be traded in advance of physical delivery. These trades can be divided into categories

based on the lead time from the price agreement to product delivery, market operation and

product type. More precisely, ‘energy-only’ markets consist of prompt delivery markets, power

exchanges, and in some instances bilateral trading between generators and retailers (Fig. 2.2).

These mechanisms are described below.

2.2.1 Bilateral trading

Bilateral trades between participants is a standard feature of most commodity markets, and is

also present in many electricity markets. These trades are characterised by the duration and

quantity stipulated in the agreement. Forwards and futures contracts (or structured contracts)

allow electricity trading over longer periods (a year or more) sometimes withoutformal price

disclosure and can be customised to allow for flexibility. Because of their hightransaction costs,
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Figure 2.2: Overview of financial and physical flows under an ’energy-only’ market. Layout
inspired by [7].

long-term contracts are only attractive to those who wish to trade large volumes of energy [5];

hence they are attractive in highly vertically integrated markets.

Forward trading occursover-the-counter(OTC); these trades are custom-made and can involve

shorter durations and less volume, and prices are not disclosed. Thesetake place on a variety

of different platforms and as a result price discovery is reliant on a range of sources including

price reporters and informal market intelligence [8].

Futures are a more transparent form of trading and take place onexchanges, where formal bids

and offers are submitted by buyers and sellers with volumes bought and sold at a clearing price.

Participants do not know the identity of the bidder or offerer, the price is there for all to see.

This form of trading via auction usually goes up to the day-ahead stage andit is the job of

centrally managed markets to address the prompt delivery phase.
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2.2.2 ‘Spot’ markets

‘Spot’ markets for electricity are run by the SO who combines its knowledge ofthe network,

accepted bids and offers, forecast demand, generation availability andsecurity constraints to

determine any adjustments that must be made. Bids/offers are submitted to decrease/increase

production or increase/decrease consumption. These are accepted orrejected accordingly, and

system balance is achieved. These markets tend to start at the day-aheadstage and work inward

toward ‘real-time’ (meaning half-hour ahead). They allow participants to adjust their volumes

closer to real-time (because of changes in demand forecast or unforeseen generator contingen-

cies) and also ensure that the agreed trades are physically feasible in respect to the electricity

network power flows.

2.2.3 Ancillary markets

All power markets require ancillary services. These additional servicesare necessary to ensure

the efficient production of reliable, high-quality power [3] and that supply and demand match

at all times. In most cases, there are separate markets for these services, although some parts of

the service (e.g., frequency response) are mandated as part of Grid Codes. The main types of

ancillary service are listed below; a more detailed description can be found inChapter 3-4 of

[3]:

• Frequency response: This service is concerned with the real-power balancing of the sys-

tem.

• Response and reserve: This service is made up of fast response (spinning reserve) which

can respond (i.e., increase generation or reduce consumption) within a matter of seconds.

Reserve services are also included here; these provide additional back-up which can

be made available in tens of minutes. Both services come together to maintain system

security and real-power balancing.

• Reactive power: Although currently only a small service within most ancillary markets, it

is vital for voltage stability. This service may become more prominent with the increasing

connection of new types of generator configuration.
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• System security: A broad area of the ancillary market, it includes services to maintain

system security in both pre- and post-fault conditions. Generator curtailment agreements,

generator or load intertrips and black start are key services.

2.2.4 Regulation

Most markets are imperfect, which may or mat not be corrected. Some marketsrequire regula-

tion to guide them toward classical ‘perfection’ and some, regulated or not,will never match the

textbook model [9]. Power markets are an example where there is a strong case for regulation.

The regulatory framework is established collaboratively by government, the regulator and the

SO [1]. The regulator must be independent so that government legislationcan be implemented

in a transparent manner and can be easily followed or challenged. The term ‘deregulated’ is

often used in the context of restructured competitive power markets. This term is misleading as

no power market, or indeed major financial market, exists today that is not regulated in some

form. The main priority of the regulator is to protect consumers, by preventing power shortages

as a result of inadequate investment, or high energy prices because of market inefficiencies or

manipulation. This role is of significant interest for the dynamics of capacity investment in

liberalised energy markets and is discussed in detail in sub-section 2.6.5. Further, it is widely

accepted that transmission and distribution operation and ownership (cf. Fig. 2.2) should re-

main monopolies. Therefore, in the absence of competition, the regulator mustensure that these

elements also operate efficiently.

2.3 Key economic concepts

Moving on from a general discussion of liberalised electricity markets, this section introduces

some fundamental economic concepts that underpin market design and provide a foundation

for the work undertaken here. This review is by no means comprehensive, and the interested

reader should consult Kirschen and Strbac [5] or Stoft [3] for a fuller explanation.
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2.3.1 Supply and demand

In economics, theinverse demand function,D−1(q), andinverse supply function, S−1(q), illus-

trate the interaction between supply and demand by relating quantity,Q, to price,Π (Fig. 2.3).

More precisely, the curves show the price that demand (resp. supply) iswilling to pay (resp.

sell) in exchange for a certain quantity. Or more intuitively, thedemand function, D(π), and

supply function, S(π), provide quantity for a given priceπ. Both representations are included

for completeness, though when representing these interactions within a mathematical model,

the standard is to use inverse functions. Whether it is better to model producers as choosing

prices or quantities as strategic variables has been debated in economics for many years [10].

Figure 2.3: Example of market equilibrium. Based on diagram in Chapter 2 of [5].

2.3.2 Price elasticity

In most commodity markets, demand for a product responds to price. If the price increases,

consumers will buy less and will seek cheaper alternatives or use less. Theprice elasticity of

demandis defined as the ratio of a small change in quantity to a relative change in price[5]:

ǫ =

dq
q

dπ
π

=
π

q

dq

dπ
(2.1)

whereq is quantity andπ is price. If ǫ is negative, then demand is said to beprice responsive

(the more negative, the greater theelasticity). Intuitively, ǫ < 0 because a change in price,dπ,

will always result in a opposite sign change in quantity,dq. Therefore it is common to re-define

demand elasticity to be positive by taking the absolute value ofǫ. ǫ is invariably positive for
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price elasticity of supplybecause a price change,dπ, will lead to a same sign change in quantity,

dq.

A characteristic of electricity markets is that the demand-side of the market is almost completely

unresponsive to price. Thisinelasticityarises as demand (or consumers) neither sees nor pays

the “real-time” price. For example, residential loads pay either a flat rate orone that changes

between peak and off peak hours, e.g., Economy 7 in GB. Some large industrial consumers

offer price responsiveness through interruptible contracts (e.g., [11]), however these remain

insignificant relative to total levels of demand. The long-term elasticity of the demand side

is more noticeable; if prices in the retail market increase, then consumers are likely to reduce

energy consumption or switch to a cheaper provider. This change happens over a long period

of time and so the short-run price elasticity of demand is usually very low (or zero). That

said, with demand response and dynamic pricing likely to become significant in the future, this

characteristic may change (cf. sub-section 2.7.4).

2.3.3 Short-run marginal cost in an ‘energy-only’ market

The marginal (or opportunity) cost is the change in total cost when the amount produced

changes by one unit. It applies to both the demand and supply side of a market. The marginal

cost of supply is derived from the production cost function. This couldbeshort-run, where the

cost of producing an additional unit is incurred by increasing output from existing facilities.

Or it could belong-run where new facilities must be built in order to produce the additional

unit. This section looks at short-run production with long-run production tackled in sub-section

2.4.3.

In power systems economics, theshort-run marginal cost(SRMC) is incurred when producing

an additional unit of energy (e.g.,£/MWh). It is derived from generatorvariable operating costs

using input-output curves. If the variable operating costs can be represented by a differentiable

function, sayC(P ), whereP is power produced, then its SRMC is given bydC
dP

. Typically,

generator variable operating cost functions are convex because as production increases, the

amount of input fuel required per additional unit of output power increases (law of diminishing

returns). As a result, the generator SRMC function is monotonically increasing with production

[5]. An example variable operating cost (a) and equivalent SRMC (b) functions are shown in

14



Electricity Supply and Markets

Fig 2.4. Also plotted is a piecewise linear approximation for both curves, whichis a reasonable

approach when the variable operating cost function is estimated from measurement data of var-

ious levels of output, and where a smooth curve cannot always be produced [5]. Also shown on

the SRMC function (right) is a typical characteristic of power markets, whereby once supply

hits the capacity limit, the supply curve takes an infinite jump upwards. This prevents the gen-

erator from being dispatched above its rated capacity because it is uneconomical or physically

impossible to do so (discussed in detail in sub-section 2.3.6).

Figure 2.4: Example of (a) variable operating cost function, and (b) equivalent short-run
marginal cost function. The linear approximations are also shown.

2.3.3.1 System merit order

A typical generation mix will contain a variety of variable operating costs and ordering in-

dividual generators’ by increasing SRMC provides the systemmerit order. Summing these

horizontally, provides theaggregate supply curve[3].

The system merit order can be broken down into three main categories:

• Base-loadgenerators are expected to operate during most hours due to their low variable

operating costs.

• Mid-merit generators are not expected to run in all hours and provide operational flexi-

bility.

• Peakinggenerators are called upon for a small number of hours per year typicallydur-

ing high demand hours. They have high variable operational costs due to low thermal

efficiency and running on expensive distillate fuels [12].
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The duration of operation for each category is discussed in sub-section2.4.3, but a brief demon-

stration of how these characteristics define the system the merit order is provided. Consider the

simple example is shown in Fig. 2.5(b); each flat segment of the supply curverepresents a

different SRMC (indicated bySRMCbase, SRMCmid−merit andSRMCpeaking on y-axis).

Here linear approximations of variable cost functions have been used for all generators leading

to a stepped aggregate supply function.

Figure 2.5: Example of linear approximation of (a) variable operating cost function, which is
used to derive (b) the aggregate supply curve. Examples of base, mid-merit and
peaking capacity also shown.

2.3.3.2 Value-of-lost-load

But what happens when demand exceeds available supply? In this example(Fig. 2.5) the value

of the supply curve is infinite for quantities (MW) above total capacity. In order for the supply
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curve to remain finite for levels of demand above available capacity, the marginal cost of the

demand side must be considered.

The SRMC of demand determines the change in total cost from consuming oneunit more or

less of a product. This change in total cost is typically positive if consuming more and negative

if consuming less. If negative, the SRMC of demand can be thought of as the amount of

compensation required by consumers to reduce their demand. If the marketcannot be cleared

because the available generating capacity is not adequate to satisfy demand, and to avoid load

shedding (or worse, blackouts), the price must rise to a level necessary to ration demand to

available supply. This price can be defined“as the marginal cost of power at that time, set

not by variable operating costs but by the opportunity cost of a consumer that has decided to

reduce its demand”[12], namely thevalue-of-lost-load(VOLL). The inelasticity of demand

(2.1) means VOLL is typically very high and there is a willingness of retailers (on behalf of

consumers) to pay up to the VOLL when there is a shortage in order to avoid disconnection

without notice. Fig. 2.6 shows how the system supply function is adapted to include VOLL;

there is now a limit to the (previously infinite) final vertical segment at maximum capacity.

Figure 2.6: Example aggregate supply function with VOLL.

The issue with the VOLL discussed at great length by market designers, iswhat is the VOLL

exactly? Depending on its use, electricity is valued very differently. For example, a hospital

will place a much higher value on its energy supply than a domestic user running a washing

machine. Furthermore, the load centers are highly integrated, with currentlyno method of
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disaggregation within a region. Therefore it is largely impossible to provide different levels of

reliability within a geographical region and defining a single VOLL figure remains a contentious

issue.

2.3.4 Perfect competition

The point where demand and supply intersect is known as themarket equilibrium(see Fig. 2.3).

If suppliers are price-takers, i.e., they cannot influence the market price by performing strategic

actions to increase their market share and/or revenue, then the market isperfectly competitive

and the equilibrium price (π∗ in Fig. 2.3) is thecompetitive equilibrium price. In a perfectly

competitive electricity market, the market price,π, is set by the SRMC of the last generator to

be dispatched in theeconomic dispatch, π = SRMC. This is referred to as thesystem marginal

price (SMP), or alternatively, thesystem marginal cost(SMC). The economic dispatch is de-

rived from the system merit order and provides the SO with the optimal unit commitment

regime (cf. Section 2.2). Because it must account for network constraints and generator ramp-

ing restrictions, unit commitment dispatches plant as economically andefficientlyas possible

and may not follow the system merit order precisely.

Not all forms of generation are dispatchable. Dispatchable generation has full operational con-

trol over its input-output. Non-dispatchable (ormust-run) generation has limited operational

flexibility, due to component preservation (e.g., nuclear) or fuel availability(e.g., wind). Con-

sequently, commitment schedules typically start with non-dispatchable generation and work up

though the merit order. This does not cause an inefficiency in the wholesale market because

their SRMC is usually very low or zero and so are typically considered base-load. However

an externalityarises as a result of non-dispatchability when either i) production needs tobe

constrained-offas a result of, for example, insufficient demand or network constraints or; ii)

production exceeds expectations as a result of, e.g., higher than forecast wind production. In

case i) the generator will be paid its offer price, which is typically very high, and this is the

negative externality. In case ii) the generator will be providing cheap (and sometimes ‘free’)

electricity and thus displaces a generator with a higher SRMC. This benefit of a reduction in

total production cost is thepositive externality. Note that in a well-functioning market, when

constraining-off dispatchable generation, the bid price should be greater than the offer price
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(e.g., in the case of fossil-fuel generation, from savings made on fuel not burnt), thus reducing

total production cost. This is not always the case, but a detailed discussion is beyond the scope

of this thesis.

Figure 2.7: Example aggregate supply function with competitive market equilibrium for two
levels of demand.

Two example demand curves and equivalent competitive equilibria are shown in Fig. 2.7. The

leftmost curve, demandD1, intersects a flat portion of the supply curve and the rightmost curve,

demandD2, intersects a vertical portion. The steep gradient of demand indicates low demand

elasticity. A discontinuous supply curve means that the SMP can take on arangeof values for

the same level of supply (x-axis). In this event, competitors will adjust their output so that the

SRMC-range containsπ, i.e.,MCL ≤ π ≤MCU , whereMCL is the savings from producing

one unit less of output (e.g.,SRMCC in Fig. 2.7) andMCU is the cost of producing one

unit more (e.g., VOLL in Fig. 2.7) [3]. This change in outputs makes intuitive sense in a

perfectly competitive market because price-taking generators will reduce their output at a cost

of π, savingMCL, as long asπ < MCL or increase it ifMCU < π. This means that the

competitive market price never exceeds marginal cost and the fundamental rules of economics

hold [3].

With the perfectly competitive market model based on the SRMC of generation,there is no ex-

plicit mechanism to cover startup and no-load costs, though some markets have been designed

with this in mind. For instance, under a classical pool system,side paymentsare made to gen-
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erators with accepted bids when the pool price is insufficient to cover start-up and no-load costs

(known asquasi-fixed costs) [3]. Some exchanges tackle this problem by having a multiple bid

structure where generators bid in a price and a minimum run-time. There is somedebate as to

which design is better, yet the relative infancy of markets makes it difficult todetermine which

is most efficient. Furthermore, as noted in [3], the cost of committing generating units is about

1% of retail bills and although generators may change their commitments closer to real-time if

the price is too low, they are more likely to do it in low demand hours when there are adequate

alternative resources available.

2.3.5 Revenue and profit

For markets to endure, all parties must benefit, for example producers must receive profits and

consumers must experience good value for money. In economic terms, these are known as

supply and demandsurplus. If the demand and supply function are well-defined then, given

market price,π, these values can be quantified. Furthermore, if the market is perfectly compet-

itive, then the market equilibrium maximises the producers’ and consumers’ surplus. Thegross

andnet surplusfor consumers’ is shown if Fig. 2.8(a), with similar concepts for producers’

revenueandnet surplusshown in Fig. 2.8(b).

(a) (b)

Figure 2.8: (a) Consumers’ surplus and (b) producers’ surplus. Plot inspiredby [5].

Scarcity rentsfor producers’ are an important concept in power system economics. Taking

the definition used by Stoft [3], they are revenue minus variable operatingcost. Equating this

with the concepts described above they are the producers’ (short-run) net surplus. Subtracting

startup and no-load costs from scarcity rents providesshort-run profits. Note that an alternative
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definition of scarcity rent exists, termed the“folk definition” by Stoft [3], where scarcity rent

is defined as revenue minus the highest revenue earned before total generation becomes scarce

(Area 3 in Fig. 2.9). For the remainder of this thesis, the first definition is used.

Figure 2.9: Plot demonstrating how generators earn scarcity rents.

Using a simple supply curve, Fig. 2.9 demonstrates how at very high levels ofdemand, all

generators earn scarcity rents. All available generation is producing atfull output and demand is

willing to pay up to the VOLL for additional production. When the market clearsat a price level

above the SRMC of the most expensive generator in the merit order (i.e.,MCL ≤ π ≤ MCU

in Fig. 2.7), this is termed aprice spike. At other times generators gain scarcity rents in periods

when the market price is above their SRMC.

While standards of generation adequacy remain high, there is a need for adequate volumes of

peaking capacity to be connected to the system. If the market is perfectly competitive, peaking

units will only gain scarcity rents from price spike periods. In a well-functioning market,

price spikes occur during a small number of, typically high, demand periods. The uncertainty

surrounding the height and duration of price spikes makes the recoveryof fixed costs (FCs)

uncertain and investment in peaking capacity a risky prospect for investors. Moreover, in order

to recover invested capital and FCs, base-load generators require scarcity rents in the majority

of operating hours. Mid-merit generators can be economic even with a lower utilisation factor,

provided they gain scarcity rents in an adequate number of hours.

There is no fundamental limit to how high these price spikes can go, howeversome markets do
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impose a price cap (e.g., Australia’s National Electricity Market is capped at10,000 $/MWh).

A cap ensures that energy buyers do not continue to pay higher and higher prices for energy

that is not available. This cap is the maximum amount that any generated MWh ofelectricity

can be purchased for. As suggested in Fig. 2.9, a good benchmark forthis cap is the VOLL.

Price caps appear later when regulatory issues are discussed.

2.3.6 Market power

Sub-section 2.3.4 described the characteristics of a perfectly competitive market. Yet competi-

tion is not always perfect and participants may be able“to alter profitability prices away from

competitive levels”[3] and exercisemarket power. It can be described as a three step process

[3]: i) exercise; ii) effect on price and quantity; and iii) impact on market participants. The first

point is an important one in terms of market regulation, because participants may havemarket

power, yet they may not actuallyexerciseit. That said, it is a fundamental assumption of eco-

nomics that if a participant has market power, then the rational form of action is to exercise it

[3].

Figure 2.10: Example of quantity withholding and price mark-up. Breakdown of wealth trans-
fer also shown.

Market power works in the following manner: Firstly, the characteristics ofparticipants with

the ability to exercise market power must be defined. To keep things simple, thisexplanation
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is restricted to the supply-side of the market, which is reasonable given thatgenerator market

power is of primary concern to ESI regulators and market designers. Consequently, the ability

to move pricesabovethe competitive level is of interest. This is termedmonopoly power.

Generators with monopoly power have a large share of the generation market andquantity

withholding is the primary method of increasing profitability. By withholding capacity, the

supply curve is shifted to the left and the market price is higher than in the perfectly competitive

case. This defines the effect on quantity and price (point (ii) above). An example of this is

shown in Fig. 2.10. The revenue received from thequantity withheld, Qw, is zero, and the

higher market price,πmp, results in an increase in profitability across all remaining dispatched

capacity, which as a monopoly firm, the generator will own a large share of.This increase

in priceπ∗ − πmp is referred to as market pricemark-up. Submitting a supply curve above

marginal cost is often equivalent [13]; both move the price away from thecompetitive level and

hence increase profitability. A third method of exercising market power is theexploitation of

network congestion to raise prices in a particular location [13]; this is not ofprimary concern

here.

The potential for generators to submit a supply function well above marginal cost is more evi-

dent in peak demand periods due to the lack of alternatives. Generators submit a normal supply

curve for most of their capacity, apart from the last few MWs which are bid in at an extremely

high price (“hockey-stick” bidding). This pricemark-upduring peak demand hours occurs be-

cause firms can raise their bids knowing that the lack of alternative resources will mean bid

acceptance. This has been observed in US [14] and more recently in European markets [15].

Industry regulators are concerned about market power because it results in a transfer of wealth

from consumers to producers. In economic terms, this means a reduction in consumer surplus

comprising ofwelfare transfer, which is the pricemark-uptimes the total quantity produced,

anddeadweight loss, which is the loss as a result of market inefficiency (Fig. 2.10) [3]. This

describes the final step of the process: the effect on market participants (point (iii) above).

Methods to measure market power are discussed in Section 4.5.
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2.4 Generation investment in market environments

So far the discussions of power markets has focused mainly on short-runissues and this thesis is

concerned with electricity market dynamics over a long-term time frame. Therefore it is useful

to consider the long-run dynamics of supply and demand, in particular the mix and amount of

generation over time required to maintain generation adequacy standards.

2.4.1 Standard of generation adequacy

In countries with a reliable electricity supply industry, electrical energy is viewed as a public

good that should always be available, and standards of system adequacy in the power industry

are high. System adequacy is a broad topic, however this thesis focusesongeneration adequacy

only. This is the existence of enough generation capacity installed or underconstruction to meet

system demand in the long-term whilst considering plant maintenance, unscheduled outages,

utilisation factors, variable generation and unpredicted contingencies [16].

Expanding on this, plant maintenance is a type ofunforced outage, i.e., a schedulable outage

that can be shifted in time if required. Aforced outageis the result of a disturbance (e.g.,

generator fault) which is not planned. The possibility of such an event is known as acontingency

[3]. Given this, a capacity margin over theoretical peak demand is needed. The available

methods for assessing generation adequacy are discussed in Section 2.8.

In order for adequate capacity to be maintained in the face of demand growthand retirement of

existing capacity, investment in new capacity must be forthcoming. Moreover, to maintain an

acceptable level of security of supply risk and keep prices within reason, this investment must

be timely and efficient.

2.4.2 Competitive market-driven investment

In a perfectly competitive power market, the competitive price is established byfinding the

marginal resource that balances supply and demand [1]. Generators receive short-run profits

(or scarcity rents) in periods when the system price is above their SRMC. In order to cover

their total fixed cost of capital, these profits must be positive on average.The market is said to
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be in long-run competitive equilibriumif 1) each generator (or type of capacity) receives, on

average, scarcity rents that are equal to their fixed costs, and thus totalprofit for all generators

is zero in the long-run, and 2) the total cost of supply is minimised [3, 17]. More precisely, if

scarcity rents are insufficient to cover fixed costs (long-run profit below zero), then generators

will not invest. Conversely, when supply tightens or demand expands, price spikes increase

scarcity rents and this is viewed as an investment signal to generators [18].

2.4.3 Demonstrating the minimum cost of supply

Firstly consider demand. The most common method of describing demand in the long-term

is via a load-duration curve(LDC); the LDC is equivalent to the load-over-time curve sorted

in order of decreasing power. This is demonstrated in Fig. 2.11, where theaggregate load

time series in GB for 2010 is shown above the equivalent LDC. Note the maximumduration of

17520, representing a full year of half-hourly loads. A LDC is made up of five main features:

duration, peak-load power, base-load power, total energy (area under the curve) and shape. The

first four are single parameters and the latter can be described using a table of durations and

powers or using a fitted function. When constructing the LDC, unpredictable factors such as

weather or shifts in consumption timings tend to cancel out.

Figure 2.11: Half-hourly load-over-time (year) for GB in 2010 (grey) and equivalentLDC
(black). Source: [19].
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Figure 2.12: Demonstrating the minimum cost of supply; load-duration curve (top); screen-
ing curves (middle) and price-duration curve (bottom). Optimal plant mixhigh-
lighted by solid black line.
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To demonstrate the minimum cost of supply, a simple linear LDC is shown in Fig 2.12,and the

middle plot shows how the technologyscreening curvesare constructed and the optimal (least

cost) plant mix is determined. The solid thick black line traces the optimal mix, with sections of

each screening curve used. Screening curves are a straight-forward way to compare generation

costs. They account for total fixed costs (investment and operational),variable costs (VCs) and

capacity factor (CF), and are a plot of average cost (e.g.,£/MW-h or £/kW-y) as a function of CF

(the proportion of time the plant is expected to be operating). Moreover, variable costs are the

slope, fixed costs the intercept and the area under the optimal mix curve is thetotal supply cost.

It is important to note that this is not an average cost of energy (£/MWh), but the average cost

of capacity measured in£/MWh (i.e., a long-run view) [3]. The method used here to determine

the screening curves is based on Stoft [3] and a fuller explanation of theinformation obtained

in these graphs is given by Green [12].

Both components of the generation costs must be expressed in the same units -in this case

£/MWh. VCs are typically expressed in cost per unit of energy producedso no extra work is

required here, though the FC element requires conversion. The technique used is to amortise the

FCs over the plant lifetime via thecapital recovery factor(CRF) for a given discount rate. The

CRF is the ratio of the stream of fixed payments (annuity) to the present valueof the payments

over a given length of time (in this case the power plant lifetime).

The formula is given by:

CRF =
r · (1 + r)n

(1 + r)n − 1
=

r

1 − un
(2.2)

wherer is the discount rate,n is the lifetime of the project andu = (1 + r)−1 is the discount

factor. The deferred (by one year) CRF is given by:

DCRF = u · CRF. (2.3)

The FC element is made up of two parts. The overnight (or construction) cost (OC) (£/kW) of

capacity discounted to the first year of operation:

OC = pc

τ−1
∑

i=0

Mi · (1 + r)−(i−τ), (2.4)

wherepc is the cost (£/kW),Mi is the capital expenditure vector for the project with
∑τ−1

i=0 Mi =

1, as it is common for capital expenditure to be spread throughout the construction period.τ

27



Electricity Supply and Markets

is the construction time (years). For simplicity, OC may be left aspc, with full construction

cost assumed to be incurred instantaneously. Next are the annual FCs (£/kW) of plant upkeep,

which can be transformed into a stream of fixed payments assumed to be made at the beginning

of each year (annuity-due):

FC = pf ·
1 − un

1 − u
, (2.5)

wherepf is the fixed operating cost (£/kW/yr). The full amortised fixed cost (FAFC) (£/kWy)

discounted to the start of the first year of operation is given by either [3]:

FAFC = DCRF · (pc + FC)

= DCRF · pc + pf , (2.6)

or if considering the expenditure schedule in (2.4) then:

FAFC = DCRF ·OC + pf . (2.7)

The full screening curve (£/MWh) is defined asFAFC/8.76 + CF · V C.

The three screening curves plotted in Fig. 2.12 are constructed to represent the main categories

of operating range. Base-load generators are typically capital-intensive with high fixed costs,

which results in a high screening curve intercept, but shallow screening curve gradient on ac-

count of low SRMC. Mid-merit generators have lower capital and fixed costs and therefore a

lower screening curve intercept. By comparison variable operational costs are higher, which

results in a steeper gradient than base-load. Peaking generators havea low screening curve

intercept due the lowest capital costs, but have steep screening curvegradient on account of

high SRMCs. Screening curves are a good starting point for comparing costs of generation,

although it is important to note that they do not capture every aspect considered by investors.

That said, they do demonstrate the reason for having a generation marketwhich consists of a

wide range of technology types each with varied cost and operational characteristics.

Also shown in Fig. 2.12 is the cost of satisfying load throughout the year viatheprice-duration

curve(PDC). Note that this is thelong-runmarginal cost (LRMC) of generation (indicated on y-

axis for each category of generation). SRMC represents the incremental cost of instantaneous

adjustment in production, whereas LRMC accounts for the building of new capacity and so

includes FCs. The PDC also reaches the VOLL in some hours, although the duration of this
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period is quite short. The PDC in Fig. 2.12 also demonstrates how in the presence of some

demand response the total cost of supply (area under optimal plant mix curve) is reduced.

In the example given in Fig. 2.12, if the level of total installed capacity is givenbyCAP , which

is below the maximum value of loadML, i.e., there are periods where available generation is

not adequate to meet required load. The areaUL gives the expected annual average load that

is required to be shed (GW) (or perhaps, more precisely, the duration that load is required to

be rationed to available supply), and the duration of this load shedding is given byDUL. In a

reliable power system, typical values ofDUL are 0.003 or 1 day in 10 years [3]. Furthermore,

the marginal price for power in these periods will reach the VOLL, and if theamount of installed

capacity is in long-run equilibrium,DUL · V OLL, is just high enough to cover the fixed costs

of peaking generators.

The greater the installed capacity,CAP , the smaller the value ofDUL. This reduces the cost of

unserved energy (DUL·V OLL), although it increases the cost of serving load (cost of additional

capacity). The VOLL and total FC (or FAFC (2.6)) of the most expensivepeaking generator can

be used to determine the optimal level of reliability, or duration of load sheddingDUL, from the

point of view of society. The condition for optimality is given by:DUL ·V OLL = FAFCpeak.

So the optimal duration of load shedding is given by

DUL = FAFCpeak/V OLL. (2.8)

Note that this does not take into account the SRMC of the generator servingthe extra en-

ergy, though given thatDUL is typically very small, then the extra cost incurred (DUL ·
SRMCpeaking) is small in relation to the cost of the additional capacity.

Plainly, this result is based on a very simple model of reliability. There is unlikelyto be a

situation where total installed capacity is below theoretical maximum load. However once gen-

eration outages and load forecast errors (Section 2.8) are considered, one can see the importance

of this result. What is more this enables the long-run equilibrium to be characterised with little

information [3]. That said, the VOLL is notoriously difficult to determine, and, in a market

environment where cost of capital differs between participants, the FAFC can also be difficult

to establish. This makes design of reliability policies challenging. This will be discussed in

sub-section 2.7.3.
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To conclude, Fig. 2.12 is a neat way of comparing load, production costs and price duration.

It also demonstrates that both energy and capacity prices are required inorder to determine the

minimum cost of supply. However this representation does not consider many of the important

factors such as time delays, lumpiness of new build, growth in demand, marketpower and

changing fuel costs. These topics are discussed in the following sections.

2.4.4 Effect of market power

Although the exercise of market power occurs in the short-run, there are long-run effects of

market power to consider. These are of particular interest for generation investment over the

long-term. The result of pricemark-upmeans more profit for generators and one of two out-

comes: Either the result of increased revenues bring on investment in newcapacity, which in

turn feeds back into the market and lowers prices. Alternatively, more sophisticated firms who

account for the effect of their investment upon mark-ups for their existing fleet may deliberately

not invest in order to keep prices (including mark-ups) high. In the faceof demand growth and

capacity retirement, large market players may invest to maintain market share.Moreover, the

system becomes reliant on large market players to undertake the bulk of investment in response

to the additional profits received.

2.4.5 Investment cycles in power markets

Many existing commodity markets are known to exhibit cyclical patterns, e.g., aluminum, real

estate and copper [20]. More recently, attention has turned to liberalised electricity markets.

Even the most mature power markets are less than 25 years old, thus limiting the scope for an

investigation into the presence of cycles. A recent study by Arango [20]looked for empirical

evidence of investment cycles in deregulated electricity markets by exploringa “cycle hypoth-

esis”, with capacity margin as the indicator of cycles. Autocorrelation analysis wasperformed

on 18 years of historic capacity margin data to establish the presence of cycles in the England

& Wales (E&W), Chile and Nordpool systems. For the data analysed, resultsshow that both

the E&W and Chilean systems show a strong indication of cycles, with results from Nordpool

consideredambiguous.
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Generation capacity investment is prone to investment cycles owing to the long lead time, cap-

ital intensiveness and lumpiness of new build. Time delays and lumpiness of capacity play a

key role in the boom and bust cycle phenomenon. Generation investment has time lags of 3-5

years for gas and coal plants and 8-10 for nuclear before becoming operational [21]. Fig. 2.13

shows this cyclical concept in its most basic form. Tightening of supply and demand results

in frequent and high price spikes, which induce a wave of new (lumpy) investments. This is

followed (after time delay) by a supply increase and a period of excess capacity. This leads to

lower prices and capacity withdrawal, which returns the system to a period of high prices. Thus

the cycle repeats.

Figure 2.13: Investment dynamics and boom-and-bust cycles in electricity generation.

The cobweb theorem[22] neatly describes the interaction between supply and demand over

successive periods of trade. The elasticity of total market supply and demand curves determine

how quantity and price evolve as either continuous (elasticity of supply and demand equal),

divergent (elasticity of supply greater than demand) or convergent (elasticity of demand greater

than supply) fluctuations. Fig. 2.14 shows a convergent fluctuation; a demand ofq1 will result

in priceπ1. Supply will react by withdrawing some quantity to leave onlyq2 available to the

market. This will then result in priceπ2, which is higher thanπ1 on account of the supply

“shortage”. Equivalent examples of the patterns witnessed for divergent and continuous fluc-

tuations are shown to the right of the main figure. The oscillations in price and quantity as a

result of these fluctuations are displayed in Fig. 2.15. One can see the oscillations are damped
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and converge to the equilibrium after a number of time periods. The frequency of oscillation in

Fig. 2.15,dt, is dependent on the supply and demand adjustment time lag.

Figure 2.14: Example of convergent fluctuation. Equivalent example pattern for divergent and
continuous fluctuations displayed on right.

Figure 2.15: Example of oscillations in price and quantity converging to equilibrium under
convergent fluctuation. Equivalent example pattern for divergent and continuous
fluctuations displayed on right.

The cobweb theorem is used here to illustrate the characteristics of price and quantity oscilla-

tions. It is noted that in order for these dynamics to persist, producers’ must form expectations

about future production on the assumption that present prices will continue, and that individual

production plans will not affect the market [22], i.e., producers may continue to make system-

atic forecast errors even if their expectations, based on historic trends, turn out to be wrong.

The implications of alternative expectations hypotheses are discussed in section 4.4.1.
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2.5 Costs of generation

It is worthwhile exploring the cost characteristics of electricity generating capacity in more

detail. So far the discussion has been very general, with capacity discussed in terms of base-

load, mid-merit and peaking generation only. In this section, some specific technologies of

relevance to GB are given.

To begin, the concept oflevelised cost(LC) must be introduced. The LC for a generating

plant is the discounted cost of each unit of energy produced over the lifetime of the plant. LCs

provide a straight-forward method of comparing the unit costs of generating technologies over

their lifetime (e.g., [23]). They can be computed statically with a snap-shot cost analysis where

costs and capacity factor are assumed constant over the plant lifetime or asa dynamic analysis

where energy served and costs factors vary from year to year. Theformer is the more popular

approach, with [24] showing levelised cost comparisons for regions across the world.

A recent GB-specific study [21], has estimated the LC for the primary technologies used in

power generation (and estimates future costs and less mature technologies). Fig. 2.16 shows a

breakdown of LC into its components parts for five of the technologies studied. This demon-

strates how for some technologies costs are dominated by fuel costs (e.g., fossil-fuel generation)

and others by capital costs (e.g., nuclear and wind). These are importantconsiderations for any

investor and the implications of these characteristics are explored in the following sections.

Figure 2.16: MottMacDonald composition of levelised costs of generation for 2009 project
start with 10% discount rate [21].
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2.5.1 Fossil-fuels

Coal- and gas-fired generation are the main conventional technologies used in large power

plants. During the early days of large-scale power generation investment,an abundance of

cheap indigenous coal (or more recently natural gas) meant that fossilfuel-based generation

was relatively cheap. Although both coal- and gas-fired generation have been a stalwart of

electricity generation for many years, the drive to decarbonise the electricity sector has changed

their economic attractiveness. For example, the European Union (EU) introduced the Large

Combustion Plant Directive (LCPD) to control emissions of sulphur dioxide (SO2), nitrogen

oxide (NOx) and particles from large combustion plants with a thermal output greater than 50

MW. As a result, existing generators must either close by 31 December 2015or earlier if the

running limit of 20,000 operational hours is reached (which commenced on 1January 2008)

or retro-fit Flue-gas desulphurisation (FGD) equipment. New builds are required to conform

with the directive. Furthermore, the development of the EU Emissions TradingScheme (ETS),

which went live in January 2005, has led to an increase in variable operating costs for these

forms of generation. Expected improvements in thermal efficiencies from around 35% today to

over 50% for coal and from 50% today to over 60% for combined-cycle gas turbines (CCGTs),3

mean that some of the additional costs incurred from rising fuel and emissionsprices can be

partly mitigated [26]. Furthermore if these technological improvements are complimented by

carbon capture and storage (CCS) on a large-scale, decarbonisationof the electricity sector is

still achievable with fossil fuels albeit with continuing resource depletion issues.

According to [21], the most economic new coal-fired generators are based around the advanced

supercritical (ASC) design, with the more expensive integrated gasification combined cycle

(IGCC) also available. The cost premium for IGCC reflects the still largely demonstration

status of this technology. However once CCS is integrated, its costs are expected to move in

line with ASC with CCS [21]. In the case of gas-fired generation, CCGT designs span the

full operating range (peaking to base-load). Furthermore, CCGT designs combining power and

heat production (CHP) are becoming popular, with GB experiencing an increase from 0.8 GW

in 2000 to nearly 2 GW in 2010 [27]. Open cycle gas turbines (OCGTs) arealso available for

3For instance, Mitsubishis J Class gas turbine is on course to achieve 60% efficiency in combined-cycle mode
[25].
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use as peaking units. Other examples include diesel generators; these are the most efficient

option if only a small amount of energy is required [12] and are common source of back-up

generation on small island systems with poor interconnection (e.g., Scottish Western Isles).

2.5.2 Nuclear

Nuclear power plants are considered base-load owing to high capital costs and limited opera-

tional flexibility. They have very low variable operating costs, and are deemed ‘must run’ in

order to recover capital expenditure. From an emissions perspective,nuclear power is carbon-

free at the point of generation. However a recent study [28] estimated emissions to be between

7 and 22g/kWh over the lifecycle of a plant4 compared to 380g/kWh and 830g/kWh for gas and

coal-fired generation, respectively.

Nuclear power requires significant waste management during and after the lifetime of the plant.

Depending on the fuel cycle, fuel replacement must be carried out every 12-18 months [28].

The radioactive spent fuel must be stored and then eventually placed in ageological repository

where it will remain for thousands of years. This process adds a significant amount to de-

commissioning costs, e.g., the World Nuclear Association (WNA) estimates these tobe around

9-15% of capital cost [29]. In contrast the GB Magnox nuclear powerstations currently under-

going decommisionning are estimated to be substantially higher with a combined costof £12

billion across 11 sites5 totalling around 5 GW, i.e., 2,440£/kW [30].

2.5.3 Renewables

Energy generated from renewable sources is an increasing trend in power systems. Many coun-

tries have signed up to binding targets to reduce GHG emissions and the electricity sector is

expected to make a significant contribution to these goals.

There are many forms of renewable generation, some more established thanothers. For exam-

ple, run-of-river (RRH), dam and pumped storage (PS) hydro power have been used since the

4This figure can be much higher if the ore quality is low.
5Berkeley, Bradwell, Calder Hall, Chapelcross, Dungeness A, Hinkley A, Hunterston, Oldbury, Sizewell A,

Trawsfynydd and Wylfa.
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1880s. PS is perhaps the closest power systems come to having storable energy, while RRH

is more reliant on the day-to-day availability of the resource as there are nostorage facilities.

Large hydroelectric dams are popular in many countries and although expensive, they can last

for many years.

Wind power generation has experienced considerable growth in recentyears. In 2009, global

wind energy production was 347TWh, which is about the annual electricityconsumption of

GB [31]. This figure is expected to increase 15-fold by 2030 [31]. In GB, the industry is

developing rapidly onshore, with offshore wind expected to accelerate inthe coming decade as

the deadline for emissions targets approaches. Wind generation, like otherrenewable sources,

is not only attractive because of its zero emissions but also because it is a “free” form of energy

with virtually zero variable operating costs. It is non-dispatchable on account of its reliance

on the availability of the fuel resource. As a result, wind is considered base-load generation.

Wind capacity experiences high upfront costs with a recent report showing that onshore wind

is around twice as expensive per installed kW than a CCGT plant, and offshore over 3 times

[21]. These are expected to reduce significantly as the technology matures. For instance, costs

of £157-186/MWh for offshore wind in 2010 are projected to reduce to£110-125/MWh for

projects commissioned from 2020 (both 2010 real terms) [21].

Other forms of renewable generation used in the electricity sector include biomass, solar pho-

tovoltaics, geothermal and wave and tidal stream energy sources. The intensity of deployment,

degree of maturity and level of cost varies greatly across these technologies and is resource and

policy dependent. A detailed discussion is beyond the scope of this thesis.

2.6 Investment uncertainties

In competitive markets, in order to avoid the risk of losing market share and even financial

ruin, firms are incentivised to improve efficiency and avoid bad decisions.Furthermore, as

documented extensively in the literature (e.g., see Chapter 1 of [32]), when faced with a largely

irreversible investment decision under uncertainty, whenever possible,investors will delay until

more information becomes available and there is less uncertainty. These delays can result

in a potential generation capacity shortfall and exacerbate the boom and bust phenomenon
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discussed earlier. Table 2.1 shows the key uncertainties faced by investors and the impact of

these uncertainties are explored within this section.

Technical Market Financial Regulatory Policy
Construction costs Fuel costs Weighted Average Market design Emissions

Cost of Capital limits
Operational costs Demand growth Credit risk Regulation of Subsidies

transmission
Lead time Emissions costs Contractual risk Regulation of Energy efficiency

competition
Decommissioning Wholesale prices Planning process
Availability Degree of competition
Capacity factor

Table 2.1: Key uncertainties affecting firms investment decision. Source: [33] and[24].

2.6.1 Technical uncertainty

Capital-intensive and long lead time plant are less economically attractive for investors. They

will prefer technologies with short lead times that can be brought online in small incremental

steps [1]. For instance, capital costs have a high impact on nuclear but less so for CCGT,

conversely primary fuel cost has a high impact on CCGT; but less so fornuclear. The timing

and size of other projects in the pipeline and whether more efficient technologies are available

is also important. Competing firms choose different generating technologies and hence face the

financial consequences of unwise investments.

2.6.2 Market uncertainty

Many investment uncertainties are introduced by competition. For example, under a monop-

olistic market, change is technology driven with uncertainties in demand and costs being key

[34]. However monopolies are vulnerable to inefficiencies that can lead tocustomers over-

paying for the service. In a competitive market, the introduction of multiple players means

firms can no longer take prices and customer base for granted [34]. Furthermore the nature and

degree of these risks will differ between project, technology and investor type. Before a build

decision is taken, each of the factors must be exhaustively explored.

To address the uncertainty of fuel prices, companies may agree upstream contracts to guarantee

fuel supply at a fixed cost. As stated in [23], a generator’s exposureto price uncertainty depends
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on the technology. If a producer is aprice maker- for example CCGTs tend to set the wholesale

price in GB owing to their position in the merit order - they are largely able to passfuel cost

variations onto consumers. Conversely,price takersare positioned lower in the merit order and

have little price setting influence.

Electricity demand in most power markets is expected to increase year-on-year (e.g., until re-

cently, Scotland experienced a 1% annual increase [35]). That said,owing to the recent eco-

nomic downturn and improvements in energy efficiency, this trend may no longer persist. Re-

gardless of whether it is an upward or downward movement, it is very difficult to predict future

demand accurately. However“accurate long-term estimates of both power and energy require-

ments are crucial to effective power system planning and operation”[35], thus highlighting the

need for good demand forecasting tools.

2.6.3 Financial uncertainty

Profitability is an important factor in any investment decision. By exchanging alarge sum of

money today for an income stream in the future, investors will require a goodrate of return.

Investment risk is further exacerbated by the fact that the cost of capital is higher for private

firms than for governments. Therefore investors will intuitively require a higher rate of return

[36], which further exacerbates the problems described above.

Under a liberalised market framework, investment in new generation is financed by private

capital. This may be done with project finance where investors create a newcompany for the

purpose; this limits their risk because it isolates the project from existing operations, meaning

lenders cannot claim against existing assets if the firm defaults on a loan. The alternative is cor-

porate finance when new investments are financed from the company balance sheet [37]. Many

forms of generation, such as nuclear and coal, are highly capital intensive in the construction

phase. As a result, only large utility firms have the financial strength to take onsuch projects

[24]. Gas-fired generation is less capital intensive and so has fewer barriers to entry; a good

example being the ‘dash for gas’ in GB during the 1990s (and described insection 3.2.1.2). In

the case of renewables, although there are no fuel or emissions costs during operation, capital

costs, which account for the majority of total costs, are usually high. Perhaps a good example

of this is large-scale PS; once built the system cannot do without it, yet financing it is almost
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never carried out privately.

In addition to technology cost characteristics, the perceived level of risk involved will differ and

must be compared to alternatives (including the option of doing nothing). This concept can be

explored through the weighted average cost of capital (WACC). The formula is given by [36]:

r = (χ) · γ + (1 − χ) · κ (2.9)

whereχ, γ andκ are the gearing ratio (debt/equity), expected bond return, and requiredinvestor

equity return, respectively. The higher the risks, the higher the costs ofdebt and equity, and

the higher the required return on investment [24]. The WACC can be usedin a levelised cost

analysis or net present value (NPV) analysis when revenues as well as costs are considered.

When using the WACC formula to calculate the discounted costs it is important to determine

whether thenominalor real rate should be applied. The formula for calculating the real rate of

return is given by [36]:

1 + rn = (1 + rr)(1 + ri) (2.10)

wherern is the nominal rate (2.9),rr is the real rate andri is the rate of inflation.

The amount of debt involved varies between projects and size of firm. Owing to the capital-

intensiveness, long economic life and uncertain revenue streams, IPPs may seek non-recourse

project finance with 60 to 75 percent debt typically witnessed [38]. The debt is guaranteed by

the project assets, rather than from the general assets or credit ratingof the IPP. Further, [39]

reports figures of 50:50 (debt:equity) for nuclear and 40:60 for both coal and CCGT.6 This is

perhaps reflective of the additional capital required for a nuclear investment over other tech-

nologies. There is a similar pattern for required equity return (κ), with nuclear requiring 15%

and CCGT requiring 12%. The additional risks - and hence higher required returns - together

with the financial strength required for these capital intensive investments means investment in

these types of technologies can be difficult to induce in a market where lessrisky options are

available.

The ability to secure debt will depend on the company’s credit rating. Creditors will typically

assess a firm’s creditworthiness using rating firms such as Moody’s and Standard & Poor’s.

6Note that these ratios may differ during the construction and operational stages of the project. For example an
increase in debt once the plant is operational is not unusual; the firm is more likely to secure more debt once the
plant is operational as many of the risks associated with the construction stage have passed.
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Rating symbols Aaa to C are used to reflect the relative credit risk of a firm. For example

“obligations rated Aaa are judged to be of the highest quality, with minimal credit risk” and

“obligations rated C are the lowest rated class ... with little prospect for recovery of principal

or interest” [40].

Some information about company financial structure can be deduced fromannual reports. Table

2.2 shows the most recent available cost of capital figures for the “big six” generating firms in

the GB market. These statistics are for the whole firm, all of whom are verticallyintegrated in

the GB market and have contrasting generation portfolios with expertise in certain technologies.

Furthermore, many participate in electricity markets elsewhere. Therefore these figures may

not be a fair reflection of their GB generation business or investment decisions, it is informative

nonetheless.

Firm WACC Gearing Long-term Moody’s
Credit rating

E.ON UK 4.2% 43% A3
Edf - 62% Aa3
RWE 9.0% 65% A2
SSE 5.4% 63% A3
Iberdrola (SP) - 50% A3
Centrica 9.3% 10% A3

Table 2.2: GB large electricity utilities financial statistics. Derived from sources [41–46].

2.6.4 Policy uncertainty

Policy plays a key role in generation investment in power markets. Government backing for, or

opposition to, a particular technology, can make or break a technology’s chances of investment.

There may be policy mechanisms in place to encourage investment in cleaner technologies.

These are not necessarily the best option from the investor perspective, yet if the policies are

effective and the market operates efficiently, investors will choose the intended technologies

and the policy goals will be met. For instance, Renewable Obligation Certificates(ROCs)

are a UK Government policy mechanism used to stimulate investment in renewablegeneration

whereby each MWh generated from a renewable source is eligible for subsidy. Other objectives

concerned the environment and, in the case of Europe, were addressed through the LCPD (sub-
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section 2.5.1) and the Integrated Prevention Control Directive (IPCD) of2000 [23].

In the early days of liberalisation, the main policy drive was to promote competitionin the gen-

eration market and lower prices for consumers. Examples of policies that are currently hoping

to influence investment decisions in GB are the Renewables Obligation (RO) and EU ETS. Both

are geared toward GHG emissions reductions, the former by incentivising investment in renew-

ables and the latter by capping on emissions by handing suppliers a finite number of emissions

credits. They must trade these credits through the ETS market if they require more credits or

wish to offload surpluses. The latest incentive scheme, aimed at small-scalerenewable devel-

opments is the feed-in-tariff (FiT) mechanism. Already implemented in Germany for many

years with success, this scheme provides a payment for small-scale low carbon installations for

energy produced.

2.6.5 Regulatory uncertainty

Regulatory policy has a significant bearing on generation adequacy. For instance it determines

the height and duration of price spikes [3], which as discussed earlier isthe primary mechanism

to induce timely investment in a perfectly competitive market. A general assumptionmade

when implementing price caps is that the market is perfectly competitive. Some argue that price

caps dampen the market signals required to bring on investment and are onlyimplemented in

order to avoid politically unacceptable price spikes [47]. It is argued in [48] that almost any

price-cap level can potentially induce both too little and too much investment. If markets start

to produce frequently high prices, this puts regulators under pressureto intervene and change

market design.

Moreover, delays and uncertainty in changes to market regulation can also cause investors to

delay building of new capacity. This is precisely what regulators wish to avoid, and may in fact

be why the market reform was being considered in the first place. Therefore delays and uncer-

tainty surrounding reform must be kept to a minimum. That said, there has been no experience

of a complete 25 year capital cycle in the power sector in Europe or elsewhere, so reliable regu-

latory mechanisms aimed at ensuring efficient investment are difficult to develop. Some of the

mechanisms that have been designed to reduce uncertainty for investors and mitigate periods

of generation shortfall are discussed in Section 2.7.
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The most commonly cited example of a power market failure - and one which canlargely be

attributed to insufficient regulation - is that of California in 2000/01. California was a unique

case, yet it did demonstrate the need for clear regulation on some level andfor transparency

from the moment the framework is implemented. This was quite a unique event as not just

one, but a series of factors came together to cause numerous blackouts which left millions

without power during both the summer and winter seasons. A decade of regulatory uncertainty

had led to significant under investment in capacity [49]. Additional factorswhich confounded

the State’s problems included firstly, a retail rate freeze (capped at 6.7 cents per kWh [50])

which left the retail firms close to bankruptcy once unhedged generation costs started to rise,

and significant demand growth in both California and neighbouring regions(the latter reducing

import capabilities) [49]. These factors led to serious congestion problemsand an inability to

get enough power to the load centres. It was later alleged that the energycompany Enron had

manipulated the market in order to make a significant financial gain from the payments received

for congestion alleviation.

2.7 Markets for capacity

A “laissez-faire” approach to generation capacity investment, means no security of supply stan-

dards or planning reserve margin requirements are enforced, althoughregulators or system op-

erators may identify target reserve margins [51]. Advocates of this formof market design cite

that the ability of generators and retailers to enter into forward contracts for energy acts as

a means of ensuring long-term security of supply. By entering into long-term contracts gen-

erators are incentivised to maintain a generation capacity capable of meeting their contracted

obligations, thus avoiding having to pay penalties for non-fulfillment. Further, both generators

and suppliers are risk averse and wish to avoid the costs associated with volatile wholesale

prices. Forward contracting is seen as a method to hedge these risks and requires no more reg-

ulation that standard commodity markets [3]. Another benefit of forward contracting is that it

reduces the potential for market power when there is low demand elasticity and a concentrated

(e.g., oligopoly) generation market structure [15]. By comparison in order to make generator

revenues more predictable, lower investment costs and provide adequateand timely investment

in generating capacity, some markets have additional mechanisms in place. Some of the mech-
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anisms have been implemented - with varying success - and some are still purelytheoretical. A

selection of these mechanisms are discussed below.

2.7.1 Capacity payments

This is a price-based mechanism. Rather than producers receiving largesums of money only

during a handful of periods owing to power shortages (i.e., price spikes), they receive a smaller

amount on a regular basis. These payments are typically administratively-determined and seek

to achieve reliable and adequate generation capacity. They aim to cover atleast part of the

capital cost of new generation and encourage companies to keep rarelyused units rather than

decommission them [5]. The implementation of this mechanism can be split into two main

categories; either it is delivered as a flat-fee independent of the wholesale price (as initially

implemented in Argentinian and Spanish markets) or it is added to the wholesale price. The

amount added is dependent on the amount of firm (reliable) capacity provided by generators, as

in Chile where probabilistic models were used to calculate each units’ contribution to overall

system reliability [16].

Advocates of these mechanisms argue that the investment risk of having to rely on a small

number of high price hours is removed along with the consumer risk of being exposed to very

high prices for energy. Note that the argument for a wholesale price capis stronger in a market

with capacity payments. Critics argue that it is difficult to fix the capacity price:too high

and consumers can end up over-paying for capacity, too low and the system could fall short.

Furthermore, the definition of reliability must be clear and the metric used to determine the

reliability of both individual units and the aggregated system must be transparent.

Examples of use[51]: Spain, Argentina, Chile, Columbia, Peru, South Korea.

2.7.2 Capacity markets

This is a quantity-based mechanism where a target level of installed capacityis determined by

the regulator, hence the name Installed CAPacity (ICAP) markets. All suppliers which provide

electricity to end-users and wholesale market customers are then requiredto buy a share of this

requirement. Thus by stipulating a target level of installed capacity and makingit an obligation
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of the suppliers to participate in the capacity market, this mechanism balances thesupply of,

and demand for capacity not met by the bilateral market or using self-supply [52]. Another

benefit of such mechanisms is they can be extended to include locational signals whereby the

ICAP price varies in different regions of the network depending on capacity demand within a

region.

The amount of installed capacity required is typically determined by identifying atarget reserve

margin which is calculated based on an acceptable risk level. The capacity price is determined

by the amount of capacity on offer and can sometimes be quite volatile. Further,the target risk

level must be economical. For example, [53] shows how setting the level too high may lead to a

cost for the expected energy served by the plant required to meet the target risk level being very

high (over $6,000/MWh levelised). The problem of the target reserve margin is further exac-

erbated in systems with high penetrations of wind, where the calculation is complicated by the

dependence of output between plants within a geographical area. Therefore robust methods for

determining the optimal level of reserve margin based on standard reliability metrics are more

challenging to define. The length of the period over which capacity obligations are calculated

needs to be decided. Retailers prefer a shorter period as it reduces amount of the obligation they

have to purchase. Having a short time-step also increases the liquidity of thecapacity market.

By comparison producers prefer a longer time-step as they receive morecapital for investment.

Assessing and rewarding generator performance is difficult becauseinstalled capacity must be

higher than peak demand and unreliable generators add to the required reserve and impose

additional cost on the system. This was addressed in the Eastern US ISOs capacity markets

whereby the ICAP market was replaced by the unforced capacity (UCAP) market. In this

market the ISO was able to discount, depending on historical plant availability, the capacity

for which it was given the credit [16]. This incentivised generators to keep a good availability

record to increase the credits it would receive.

As mentioned, the prices in capacity markets can sometimes be quite volatile owing to the

quantity of capacity on offer. The price paid for capacity can jump from zero to the maximum

payment (typically covering peaking unit FCs) if the reserve margin is movingbetween being

above and below the target level. To address this issue, a hybrid price- and quantity-based

mechanism described in [54], which went live in PJM in June 2007 has been developed [55]. It
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uses a sloped ‘demand curve’ for capacity where the payment level varies in the vicinity of the

target reserve level (e.g., +/- 4% of target UCAP). This makes the pricingmechanism smoother

and less volatile compared to a stepped function which is the maximum capacity price if the

system is below the target reserve level and zero above it. This mechanismis discussed, with

example demand curves provided, in further detail in section 8.2.4 when it is applied to the

dynamic investment market model presented in this thesis.

Examples of use[51]: PJM, New York ISO, ISO-New England, Guatamala, France, Australia’s

South West Interconnection.

2.7.3 Reliability requirements

As discussed above, it is possible to address reliability within both the capacitypayment and

capacity market designs, although specific reliability-based mechanisms areavailable to mar-

ket designers. The most commonly cited design (and one which has been implemented in the

Columbian power system) is that of the so-called ‘reliability option’ described in[56] and [57].

This mechanism is a financial product constructed using“a combination of a financial call

option with a high strike price and an explicit penalty for nondelivery”[56]. Similarly to a

capacity market, the regulator sets a forward target amount of capacity and a strike price for

the call options. The generators then submit any number of bids to the reliabilityauction for

the options on this target volume of power. The total of all the successful option bids is equal

to the target capacity. Supporters of this mechanism argue that this coordinated entry reduces

the uncertainty in achieving the target level of capacity and mitigates the boom-and-bust invest-

ment cycles described earlier [58]. The companies must also calculate the premium for their

bids in order to cover potential losses when the options are exercised (i.e.,market spot price ex-

ceeds option strike price). The regulator must also set the penalty fee fornondelivery of power

stipulated in the option contract. A summary of its implementation is given in [18]. From a de-

mand perspective, these instruments are attractive because there is a capon the maximum price

paid for energy (the strike price of the call option). They are also attractive from a generator

perspective because they enable hedging against price volatility. From aregulator perspective,

these instruments are appealing because they do not interfere with normal market dynamics;

the mechanism only becomes active when the system approaches scarcity.Furthermore, they
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incentivise generators to only bid reliable units as the penalties for nondelivery are high. One

short-coming of this mechanism is that the demand-side must decide how much it iswilling

to pay for reliability [5], i.e., a similar problem to determining the VOLL. This is something

that varies between consumers and it is currently impossible to isolate individual loads within

the system. That said, the regulator can achieve the level of reliability it believes consumers

are willing to pay for by setting the amount of contracts to be auctioned at the level required to

achieve “optimal” reliability.

Examples of use[51]: Columbia.

2.7.4 Alternative mechanisms

The sections above detail the most common capacity mechanisms, all of them implemented in

real markets, yet there are numerous other designs available, outlined below.

In [59], a design for acapacity subscriptionsmarket is given. Here customers purchase capac-

ity (through retailers) and install a load limiting device (LLD) which limits usage to capacity

purchased. The price in these contracts is modelled via a demand (for capacity) curve similar to

that described in sub-section 2.7.2, by comparison the curve is defined in terms of willingness

to accept demand reductions. Whenever the demand for electricity exceeds the stipulated load

limit, the LLD limits consumption.

A similar approach is described in [11] where two types of product are described, both of

which are active on the demand-side. The first is apay-in-advanceinterruptible contract where

retailers can agree with industrial customers to interrupt a given percentage of their load a fixed

number of times throughout the contract in exchange for a tariff discount.The next ispay-as-

you-gointerruptible contract where the retailer can interrupt part of a customersload a fixed

number of times in exchange for compensation. This method is not tested in terms of generation

adequacy as it applies to the retail-side, if the contracts are activated during scarcity periods,

this type of contracting provides the system with short-term demand elasticity and therefore

partially addresses one of the main flaws of modern electricity markets.

Another option discussed in [56] is a so-calledmothball reservewhich consists of a number

of mothballed old plant (typically peaking units) which can be returned to service if necessary.
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In principle this method works well and can provide sufficient capacity in a relatively short-

time frame compared with a new build (typically, plant can be returned to servicein 6 months,

compared to around 2 years for a new OCGT build). The down-side is thatthe longer plant

remains idle, the more likely that they will be used for spares and will take longer to return to

service [2]. Note that GB effectively provides this capability without an explicit mechanism in

place.

Finally, by having short-termdemand response(Fig 2.17) when there are periods of supply

shortages, the SO can ration demand to available supply at a lower cost. That is, demand

responding to real-time wholesale energy prices and showing significant elasticity. Furthermore

the market will be more efficient and the risk of blackouts as a result of inadequate available

generation and subsequent system instabilities can be reduced. For instance, the system will no

longer be at the mercy of “hockey-stick” bidders when there is a generation resource shortage.

Figure 2.17: Influence of demand response on market clearing. Based on [60].

It seems increasingly likely that many countries will turn to demand-side participation as part

of so-called “smart grids” in the coming years to increase market efficiency, reduce aggregate

energy requirements and compliment increasing penetrations of wind generation. It should

be noted that the simulation model presented here does not consider the effect of demand-

side participation on generation investment dynamics. Possible extensions to the modelling

methodology in order to represent this additional characteristic are discussed in Section 9.1.5.
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2.8 Measuring generation adequacy risk

Moving on from the basis of generation adequacy and methods to enhanceit, this section

presents the mathematics used to measure generation adequacy risk for a particular genera-

tion background. This is particularly important for this project where the ability of a liberalised

market framework to induce timely and sufficient generating capacity investment is of interest.

A number of risk metrics typically used in power systems are formally defined and methods to

calculate them explained.

2.8.1 Risk metrics

When developing models to determine loss of supply indices, it is important to consider the

exact definitions of those indices. Listed below are some of the most common risk metrics used

in the power sector.

1. Loss-of-load probability(LOLP) in periodt is defined as the probability that the amount

of available generation is unable to support a particular value of load:

LOLPt = p(Xt < Dt) (2.11)

whereXt is the available generation andDt is the system demand, both of which are

random variables.

2. Loss-of-load expectation(LOLE) is the expected number of periods over a given time

horizon,T , that available generation is unable to meet the load:

LOLE =

T
∑

t

E [1Xt<Dt
] =

T
∑

t

LOLPt, (2.12)

whereLOLPt is the LOLP in periodt. A typical example is a time horizon of one year

with periods of one hour. Note that different LOLEs can only be directly compared if

bothT and t are equal. For instance, if the time period is 1 hour then an outage of 2

hours at peak load would be recorded as 2 hours, in contrast if the time period is 1 day

the same outage would effectively be recorded as being 24 hours long [61].

3. Expected energy unserved(EEU) is the expected volume of energy not met over a given

time horizon. This risk index“considers the severity of power shortages as well as
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their existence”[61]. Assuming no demand reductions can be applied, the EEU is given

by EEUt = (Dt − Xt) · LOLPt. Alternative equivalent metrics are Loss Of Energy

Expectation and Expected Energy Not Supplied [61].

Other risk metrics, which are not formally defined here includeexpected duration of load cur-

tailment, average load curtailed, average energy not suppliedandaverage duration of curtail-

ment. The majority of these measures relate to the risk of load curtailment (or load shedding).

“Curtailment” is carried out in order to prevent system instability and, in severe cases, rolling

blackouts. Usually the SO can take actions to reduce voltage and frequency, which may be

enough to avoid a ‘failure’ event and the high economic and political costs associated with it.

Consequently, the risk metric may be calculated based on the reduced load. This was the case

in [62] where failure was defined as the requirement to disconnect load,assuming that load

would first have been reduced by 7.5% via voltage and frequency adjustments [63].

Full mathematical details about how to calculate these measures can be found in[64]. In addi-

tion, [63] provides a comprehensive review of the use of these risk metrics in the GB system.

This paper also looks at the influence risk modelling has had on the GB transmission system,

both on operational and planning timescales.

2.8.2 Proxies for risk

Capacity margin can be viewed as a proxy for the level of security of supply risk. It is typically

defined as the difference between total installed capacity (TIC) and most probable peak demand

(MPPD), expressed as a percentage, i.e.,

CM =
[TIC] − [MPPD]

[TIC]
. (2.13)

The time scale considered is important. For instance,planning reservesrefer to the maintaining

of system adequacy in order to meet demand in the long-term, whereasoperating reservesare

required to handle short-term issues, such as response to a disturbance [3]. The planning time

scale is of interest here in identifying if enough capacity has been built in thefirst place. Fig.

2.18 demonstrates how planning and operational margins converge to real-time to produce “out-

turn” (or realised) margins.
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Figure 2.18: Demonstration of how adequate investment in generation over time converges to
operational time scales.

With the introduction of high penetrations of variable generation with resource interdependence

(i.e., output is correlated across different sites owing to the nature of the energy source), such

as wind power, physical capacity margins will increase, however levels of generation adequacy

risk will not necessarily move in the same direction. Therefore using the capacity margin as a

proxy for system risk is no longer a credible approach.

A more recent concept used to analyse system security is de-rated capacity margin (e.g., [65]

and [66]). The de-rated margin (DRM) is the ratio of de-rated capacity (DRC) to MPPD,

expressed as a percentage:

DRM =
[DRC]

[MPPD]
− 1 (2.14)

The DRC is computed by scaling installed capacity by expected availability at peak demand.

The use of de-rated margin is preferable when calculation of an absolute level of risk is difficult,

and it provides a robust alternative to the full capacity margin. Moreoverit can easily be

compared with the SO’s estimate of what constitutes an acceptable margin (e.g., [66] and [67]).

An example calculation of historic de-rated capacity margins in GB is given in Section 3.6.
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2.8.3 Demand

From a risk modelling perspective, the available generation and demand at each time period are

random variables. Demand patterns can usually be predicted well at the short operational time-

scale (i.e., hour-by-hour), though looking ahead brings more uncertainty and hence prediction

is challenging. Factors such as weather, demand management, seasonal trends all contribute

to the predictions. The main uncertainty on the operational timescale is weather variation. On

a planning timescale, additional uncertainties about underlying long-term demand trends must

also be considered [61]. For example, in GB some analysts forecast thatincreased demand

owing to economic growth will be offset by increased energy efficiency [68].

2.8.4 Conventional generation

When considering conventional generation, the LOLP (2.11) can be calculated via the Capacity

Outage Probability Table (COPT) method developed by Billinton and Allan [64] ([69] contains

a neat explanation on implementation). Available capacity at each period (e.g.,one hour) of

a particular unit is a random variable, characterised by the unit’s ForcedOutage Rate (FOR).

The FOR is the proportion of hours a unit is unavailable due to a forced outage, and to a

good approximation FORs between different conventional generators are independent [61]. A

common approach is to assume that units will be available with full capacity or on outage with

zero available capacity. More precisely, if the capacity of unitu is cu and its FOR isρu then

the expected available capacity is given byE(Gu) = cu(1 − ρu). That is, the distribution of

the unit’s available capacity follows a Bernoulli distribution between zero andcu. So the unit is

either available at full capacity with probability1 − ρu or on full outage with with probability

ρu. Methods to account for de-rated states are covered in [64], however the two-state approach

is most common (e.g., [61, 70]).

Broadly speaking , the COPT involves a iterative calculation, adding each unit u to the model

one at a time based oncu andρu. For instance, the iterative expression used to calculate the

probability of a forced outage ofX (e.g., MW) after unitcu with FORρu is added to the system

is given by [64]:

p(X) = p
′

(X)(1 − ρu) + p
′

(X − cu)ρu, (2.15)
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where the primed values represent the probability of the forced outage ofX beforecu is added.

If mu units of typen share the same capacity and FOR characteristics (e.g., this may be the

case for units of the same fuel type) and are subject to independent forced outages then they

can be treated as a single pseudo-unit with a distribution with the following moments:

E(Gn) = µn = mucu(1 − ρu), (2.16)

V ar(Gn) = σ2
n = muc

2
uρu(1 − ρu), (2.17)

where each (pseudo-) generator,Gn, has capacitycn = mucu. This is a useful property for a

system with a large number of units and can lead to a reduction in computational intensity when

calculating the COPT. A demonstration of how systematic deviations in the FORs for a group

of ‘similar’ units can lead to significant differences in the overall availability distribution of

conventional generation (and the risk metric) is given in [71]. This paperalso includes a novel

technique to modelρu as a random variable when calculating the distribution and determines

the error bars on the system LOLP.

The FOR encapsulates forced (or unplanned) unit outages. Units also undergo planned mainte-

nance outages throughout the year, which must also be considered when calculating year-round

system risk. The nature of a planned outage is that the SO is given adequate warning of when

they will occur and therefore has time (at the operational level) to plan the system accordingly.

There may also be an option to shift outage schedules when margins are tight[61]. Fortunately

during periods of highest demand (when wholesale prices are typically highest), most genera-

tors will try to make available as much capacity as possible. It is argued in [61], that under the

assumption that these peak demand hours dominate the risk calculation (i.e., the LOLP (2.11)

is highest in these hours so contributes significantly to the year-round LOLE (2.12)), it might

be reasonable to ignore planned outages, and assume that the distribution for the availability of

units is the same in all hours of the year.

2.8.5 Wind generation

One of the main concerns when considering wind generation is its variable nature and the

impact on system reliability. Even if countries install many wind turbines, the amount of wind

generation will seldom reach total installed capacity. For instance, wake effects, where output
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is reduced for turbines situated behind the first row, are a feature of large farms. In addition,

wind farms are constructed so the turbines harvest the wind from a certaindirection and they

lose efficiency in varying wind direction. Also due to spacial variation in the resource, when

one farm is active another may be inactive. By installing more wind capacity, the chances of

harvesting more wind is increased.

The capacity credit(CC), or capacity value(used interchangeably), is common when mea-

suring the contribution of renewable energy generation to meeting demand. CC is not a new

concept in power systems and in fact has been used for many years in relation to conventional

sources of generation. A number of different definitions of capacity credit exist in the litera-

ture, most of which are dependent on the method of calculation. Essentially they all concern

the ability of plant to support load and are independent of the risk metric used. A discussion of

the various definitions can be found in [61] and [72]. In [61] the definition used is theeffective

load carrying capability(ELCC), which can be summarised as [61]:

1. Calculate the risk index before the additional generation is introduced.

2. Introduce the extra generation and re-calculate the risk index.

3. The ELCC of the extra generation is the additional demand which returns the risk index

to its original value.

That is, the ELCC for a particular level of additional generating capacity estimates the amount

of additional demand that can be served due to the extra generation whilst maintaining the

original level of system risk [72].

Another available method is theeffective firm capacity(EFC), which is calculated as follows:

1. Calculate the risk index before the additional generation is introduced.

2. Calculate the risk with the additional generation introduced.

3. The EFC is the amount of firm capacity whose addition gives the same reduction in risk

as addition of the new generation.
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There is virtually no difference between EFC and ELCC for small penetrations of variable

output generation. In contrast for larger penetrations the differenceis noticeable. For instance,

consider two wind distributions for a large installed wind capacity; they are similar for low wind

availabilities, but the first has a much higher probability of very high wind availability. This

first distribution will give higher ELCC, but the EFCs will be very similar as there is basically

no risk when wind availability is high, so the precise detail of that part of the distribution does

not influence the result of EFC [73].

The CC is typically expressed as a percentage; CC = [ELCC or EFC]/[totalextra generation].

The CC of wind is an important metric in this type of work because it provides a measure of

wind’s contribution to overall system reliability, and it can be used to de-ratewind capacity

when measuring the de-rated capacity margin.

2.9 Chapter summary

This chapter has covered some of the fundamentals of power systems economics. In Section

2.2 an overview of ‘energy-only’ markets and ancillary services was provided. Next in Sec-

tion 2.3 some key economic concepts were introduced. The key findings of this review were

the calculation of generator short-run marginal cost and how, under a perfectly competitive

market, the last generator dispatched in the economic dispatch provides the system marginal

price. Also the concepts of scarcity rent and wealth transfer via price mark-ups in imperfect

markets formed a vital part of the review. In Section 2.4 attention turned to long-run issues, in

particular generation investment and how as supply tightens or demand expands, price spikes

increase scarcity rents, which is viewed as an investment signal to generators. In section 2.4.3,

the minimum cost of supply was derived using load duration, technology screening and price

duration curves. This demonstrated that both energy and capacity pricesare required in order

to determine the minimum cost of supply. In Section 2.5 the cost of generation was explored,

and particular attention paid to technologies used in later investment modelling. Following this,

Section 2.7 gave an overview of capacity mechanisms available to market designers aimed at

mitigating the generation adequacy problem. Finally, Section 2.8 surveyed methods of measur-

ing generation adequacy risk in power systems via metrics such as LOLP andLOLE. Also a

discussion on the use of de-rated margins as a proxy for risk, particularly in system with high
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penetrations of wind power, was included.
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Chapter 3

Experience in GB

As this thesis is concerned with the GB energy market, it is important give a brief overview of

the ESI to date. This brief history of the ESI illustrates how security of supplyconcerns have

been addressed to date. This is followed by an account of liberalisation including an overview

of market structures. Finally, some of the key modelling works applied to the GBmarket in

recent years are reviewed.

3.1 Pre-liberalisation

The ESI in Britain was initiated through The Electricity Lighting Act 1882 and a 132kV Na-

tional Grid began interconnected regional grid operation in 1933. This review begins with the

creation of the centrally managed system some years after the Electricity Act 1947.

Shortly after the end of the second World War, the Electricity Act 1947 was passed and the

numerous (well over 600) small-scale local electricity suppliers were merged into sixteen larger

firms. During this time, consumers were forced to buy their electricity from the monopoly

utility operating in their area. In 1957 the Central Electricity Generating Board(CEGB) was

created and made responsible for electricity generation in England and Wales (E&W) with

two similar entities in Scotland; the South of Scotland Electricity Board (SSEB) (circa 1955)

and the North of Scotland Hydro-Electric Board (NSHEB) (circa 1943).These companies

owned the generation and transmission assets in their respective areas and were responsible

for the security and quality of supply. The distribution network in E&W was madeup of

12 area electricity boards (AEB) who were responsible for the distributionof electricity to

end consumers (i.e., also monopolies but within a smaller region). In the case of the Scottish

network, these were fully vertically integrated monopolies with both the regional transmission

and distribution grids managed by SSEB and NSHEB. These structures aresummarised in Fig.

3.1. As the name suggests, the CEGB was a central organisation with generation expansion
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planning driven by cost minimisation. It was a classic example of a cost-of-service regulated

public utility and its generation fleet was dominated by coal and (eventually) nuclear plant [74].

Figure 3.1: Industry structure under (a) the SSEB and NSHEB and (b) mildly less monopolised
CEGB. Inspired by [5].

3.1.1 The security of supply standard

To tackle the challenge of generation adequacy, standards were developed and any additional

generating capacity required was constructed at the optimal time. With it taking around 2 years

to build a gas turbine (GT), a planning horizon of 7 years was regarded as adequate to address

any upcoming generation shortfall in good time. It was decided that a targetrisk level of 3%

winter peak LOLP, which translated into a 28% planning margin was adequate [75]. These

target levels were later changed on cost-benefit grounds to 9% and 24%respectively [62]. The

cost-benefit approach calculated the LOLP under the following assumptions:

• Frequency and voltage reductions can reduce demand by up to 7.5%.

• Cost of providing incremental capacity for the planning margin of about£15/kW p.a. at

March 1982 prices [75].
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• A VOLL of £2/kWh.

The recommendation to relax the standards to 9% was made on the basis that the incremental

capacity costs would rise to£30/kW per annum owing to the increased costs surrounding new

high cost coal-fired plant, which was the technology of choice at the time (there was some PS

and hydro capacity in Wales with nuclear plant being deveploped latterly). The other justifi-

cations included the VOLL figure dropping to£1/kWh together with additional assumptions

surrounding disconnection minimisation.

3.2 Liberalisation

In 1990, under the third parliament of a Conservative government the CEGB was restructured

and privatised. Deregulated markets had already been implemented in supplyof gas, airlines

and transportation and it was considered time to do the same with the electricity industry [5].

The CEGB was divided between four companies; the high voltage transmission network be-

came the responsibility of the National Grid Company (NGC), a not fully independent com-

pany. The generation fleet was divided between National Power (50%), PowerGen (30%) and

Nuclear Electric (NE), with the PS capacity at Dinorwig and Ffestiniog going toNGC [76]. NE

consisted exclusively of the UK’s nuclear power capacity and was keptunder state ownership

as it was felt the nuclear reactors were too expensive to be privatised [76]. NGC was not fully

privatised until 1996 (floated on London Stock Exchange on 11 December 1995) because there

were no other privatised transmission companies to use as a comparison to obtain a fair share

price value. Up until its privatisation, NGC was owned by the 12 AEBs. It was around the time

of NGC privatisation that it’s PS generating capacity was sold to the American firm Edison

Mission Energy (acquired by International Power in 2004) as it was deemed anti-competitive

to own both generation and transmission assets.

3.2.1 The England and Wales Power Pool

Much has been written about the history of liberalisation in GB and none more so than the

period immediately after industry privatisation during the days of the Pool system. This section

contains a brief overview of that period, but is by no means comprehensive. A particularly
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informative account of the history of the pool can be found in [77] or for an analysis of its

competitiveness see [78].

The E&W Pool went live on 1 April 1990. It was based on a classic pool system, whereby the

48 half-hourly prices for each day were determined by generators submitting a supply curve for

each period at the day-ahead stage. The SO then computed the least-costeconomic dispatch

required to meet demand in each period and all committed generators were paidthe SMP.

As real-time approached, the differences between actual and forecast demand, and generation,

together with transmission constraints would usually lead to the day-ahead dispatch being ad-

justed. The additional costs incurred by the SO (i.e., ancillary services) were covered via a price

uplift element. The breakdown of thisuplift, together with the availability payment, which was

paid to generators dispatched at the day-ahead stage but were not dispatched at real-time, can

be found in [79]. In addition to trading on the spot market, financial swapsand Contracts for

Differences (CfDs) were facilitated. CfDs allowed participants to exchange volatile pool prices

for a fixed price stipulated in the contract [7].

3.2.1.1 Market for capacity

In addition to the spot market for energy, the Pool included a market for capacity. This com-

prised a capacity payment which was added to the SMP at each half-hour period to give the Pool

purchase price (PPP). This additional payment was centrally administeredand was a function

of the system LOLP and VOLL:

PPP = SMP + (LOLP · (V OLL− SMP )). (3.1)

where VOLL was set at£2000/MWh in 1990.1 This was increased in the GB regulation model

of 1999 to£2770/MWh.2 A plot of the system LOLP and PPP for the financial year 2000/01

is presented in Fig 3.2. The plot clearly shows how the PPP rises sharply in periods where the

LOLP is highest, which interestingly do not always coincide with periods of highest demand.3

Note that the uplift element was then added to the PPP to give the Pool selling price (PSP).

1Likely as a result of existing CEGB standards.
2This VOLL was derived from a Finnish study from the 1970s; it was converted into pounds sterling and cor-

rected for inflation [80].
3For a commentary on some of the more interesting price movements underthe pool (inc. underlying reasons),

see p.22 of [81].
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(a) (b)

Figure 3.2: (a) Plot of system LOLP and (b) PPP with E&W demand. Source: [82].

The capacity payment was designed to ensure that generators received the revenues needed to

invest in new capacity. It was engineered to increase exponentially as demand approached total

available system capacity [79]. As pointed out in [77], producers with a large market share can

exploit a capacity payment that is a function of system LOLP by declaring plant as unavailable

- an action which lowers the available reserve, thus increasing the LOLP and capacity payment

element of the wholesale price.

3.2.1.2 Issues with the Pool

Owing to their substantial market share, and ability to exercise market power, National Power

and PowerGen set the spot price over 90% of the time although they suppliedless than 60% of

total electricity generated [77]. Observations of this type led to an investigation by the regulator,

OFFER; it was concluded that after only a few years of operation, Poolprices had risen from

a lower than expected level in the first year to a level that was unacceptable. Consequently, the

large incumbents began to divest their generation assests, the most notible of these was the sale

of 6 GW of capacity to Eastern Electricity during 1994/5 [76]. In addition a temporary price

cap was in place between 1994-96 while the sales were finalised [74].

Toward the end of the 1990s, electricity generation had been restructured from a market dom-

inated by three firms to one where the generation market share by a single participant was no

higher than 20%. In addition to heavier regulation, the shift can be attributedto the fall in

demand for coal and a ‘dash for gas’. This prompted a huge influx of CCGT entry into the

generation market from a number of new IPPs. This gave rise to another problem surrounding

interactions with the UK gas market. Electricity prices were set at the day-ahead stage while
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the gas market operated much closer to real time. Thus, gas generators could influence elec-

tricity prices set at the day-ahead stage, then if prices were unfavourable, they could sell their

gas closer to real time on the gas market, adding further complexities to the issueof short-term

supply-demand matching [83]. Such was the discontent with the pool systemthat a review of

electricity trading arrangements was ordered. In 1998, the review [84] recommended that the

pool system be replaced by the New Electricity Trading Arrangements (NETA), which went

live in March 2001.

3.2.2 NETA and BETTA

The British Electricity Trading and Transmission Arrangements (BETTA) were established in

April 2005 when the electricity market in E&W merged with its counterpart in Scotland into a

single GB wholesale market.4 Prior to then, the market in E&W operated under NETA.

3.2.2.1 Structure

There are currently over 40 generation firms in GB, yet 70% of generation is owned by the

so-called ‘big six’ generators: Scottish and Southern Energy (SSE), RWE Npower, EdF, E.ON,

Centrica and Iberdrola/Scottish Power (SP). Many of these entities are vertically integrated,

participating in both the generation and retail side of the market. The two Scottishfirms also

own transmission assets in Scotland with most of them also owning one or more ofthe 12 li-

censed distribution operators. To ensure that trading between parties who have interests in more

than one element of the market provides a cost effective service for consumers and facilitates

competition, market regulation is required. Under BETTA this role is carried out by OFGEM.

3.2.2.2 Trading arrangements

BETTA facilitates bilateral trades between generators, suppliers, traders and customers on a

rolling half-hourly basis [27], depicted in Fig. 3.3. These bilateral tradescan divided into two

categories [85]:

4Northern Ireland has been participating in the Single Electricity Market in Ireland since 2007.
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• Forwards and futures contract market (or structured contracts): allows electricity trading

between generators and suppliers over longer periods (a year or more) without formal

price disclosure. In GB over 90% of electricity is traded in this way.5

• Power Exchanges: allow parties to trade a range of electricity products including half-

hourly, peak and base-load and day-ahead contracts [87]. Examplesin GB include the

APX Group and the Intercontinental Exchange. About 3% of electricity is traded in this

way. These exchanges also publish price information which can be used as reference for

over-the-counter platforms and structured contracts.

Figure 3.3: Overview of financial and physical flows under NETA/BETTA with numbers to in-
dicate order of events. Based on diagram in [7].

On top of these bilateral mechanisms there is also a balancing process, known as the Balancing

Mechanism (BM), which is operated from gate closure (set at 1 hour) by the SO in order to

ensure supply matches demand. Through this mechanism, participants can submit bids to de-

crease generation (or increase demand) andoffersto increase generation (or reduce demand).

The mechanism operates on a ‘pay as bid’ basis. Some 2-3% of electricity is traded in this way

5Interestingly, the regulator, OFGEM, is in the process of undertaking a review on GB wholesale market liquidity
and has launched a consultation as part of the process [8]. Broadly theresponses state that forward market liquidity
should be deeper, and that it is difficult to hedge a long-term position. There is also concern that market trading for
small players could be better facilitated [86].
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[85]. Generators who are requested to deviate from their contracted obligations as a result of

system imbalances (e.g., network congestion), will still receive their contracted payments and

save on fuel not burnt.

Any participants who stray from their ‘Final Physical Notifications’ (FPNs) must pay one of two

prices. Those whose generate more (resp., consume less) will pay the System Sell Price (SSP).

If, for whatever reason, a generator falls short of its contracted volume, or a retailer requires

additional energy, then they must pay the System Buy Price (SBP). Both these prices are higher

than the prices stipulated in the bilateral agreements due to the restricted time available to deal

with this imbalance problem. There is no price cap under BETTA, although the BM can only

enter four digits, making the maximum allowed price£9999 [2]. The revenue received from

SBPs and SSPs is used to cover the additional costs imposed on the SO as a result of having to

balance the system.

3.2.2.3 Ancillary markets

Additional revenue may be obtained from provision of ancillary services,although agreeing to

provide these services, means that participation in the energy market is restricted or forbidden.

These products are procured by the SO. Of particular interest is the short-term operating re-

serve (STOR) market, which is a targeted ‘pay-as-bid’ tender for capacity. Generators submit

bids for unit availability and utilisation to the tender and participation in the energymarket is

restricted. It is targeted because the technical characteristics of plant must also be submitted.

The tender includes two types of contract; one for flexible and one for committed capacity.

Flexible contracts are from 1 or 2 seasons up to 2 years ahead. And committed contracts are

from 1 or 2 seasons up to 15 years ahead.Flexible units declare themselves available within

certain time windows (Fig. 3.4); these windows are not fixed and can be altered up until a week

ahead. These units do not participate in the BM.Committedunits must be available within a

window and can be BM or non-BM units. Payments for availability are withheld if the unit is

unavailable during an agreed window, thus encouraging a good reliability record.
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Figure 3.4: Availability windows and payments under STOR. Imported from [88].

3.2.2.4 Summary

Since their introduction, it is generally accepted that NETA/BETTA has successfully enabled

competition to fully emerge in the generation market for the first time [7]. The purpose of

these new trading arrangements was to prohibit generators with substantialmarket power from

abusing their position and adversely affecting consumers or distorting competition between

companies. The debate about whether this was a consequence of the newtrading arrangements,

restructuring, or a combination of both, continues.

3.3 Capacity margin oscillations in GB

The historic capacity margin for GB at realised peak demand is plotted in Fig 3.5 (solid line).

Also plotted is the theoretical capacity margin at the year-ahead stage using the NG forecast

(dashed line); this data was only available back to winter 2001/02 hence the shorter period.

This is included to provide a better illustration of the perceived generation adequacy risk at

the planning stage. To illustrate the influence of analysing alternative (but deemed equally

reliable) data sources, this is compare with the margin used in [20] (dotted line), which looked

for evidence of capacity cycles. This data was taken from a UK Parliamentnote on security of

supply [89] and plainly gives different values of capacity margin. Theydiffer due to alternative

sources of installed capacity and peak demand data used when constructing the margin. That

said, both lines exhibit an oscillating pattern overall (as confirmed by analysis in [20]), with an

observable increasing trend in later years. The signal shows symptoms ofa sustained oscillation
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around 20-25%.

Figure 3.5: Generation capacity margin in the GB since industry privatisation. The solid line
uses data from the Economic and Social Data service (ESDS) [90] and thedotted
line uses data from [89]. The shortened dashed line is ESDS data combinedwith
NG forecast peak demand [73]. Dates of significant market framework changes
also shown (indicated with arrows to x-axis).

3.4 Generation adequacy in GB

The risk metrics described in sub-section 2.8.1 have been employed in GB system operation and

planning in the past. Firstly, a LOLP (2.11) calculation was carried out for the CEGB standards.

Secondly, the method for capacity pricing presented in [70] was subsequently used to inform

the capacity payment system under the E&W Pool. Finally, the GB SO issues a annual outlook

statement containing the perceived levels of system risk for the coming winterand summer.

The published availability of the conventional GB generation fleet for the winter 2010/11 [66]

is summarised in Table 3.1.

It has been widely accepted in recent years that a benchmark capacity margin at or above 20%

for a predomiately thermal system provides an acceptable level of risk. Given that peak demand

is typically around 60 GW in GB (Fig 3.6), Table 3.1 suggests this current system remains

broadly inline with this benchmark (100% ·(74.4−60)/74.4 = 19%). However for the reasons

discussed earlier, a 20% capacity margin is no longer adequate once high volumes of variable
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Power station type No. units Full metered Assumed De-rated
capacity (GW) availability capacity

Nuclear 22 10.1 0.75 7.6
IFA 1 2 1 2
Hydro 9 1.1 0.6 0.7
Wind - 2.5 0.1 0.3
Coal 62 27.9 0.9 25.1
Oil 4 2.7 0.8 2.2
Pumped storage 16 2.7 1 2.7
OCGT 34 1.2 0.9 1.1
CCGT 124 27.5 0.9 24.8

272 74.4 66.3

Table 3.1: Summary of transmission connected conventional unit types for 2010/11[66] .

output non-dispatchable generation is introduced.

3.5 An historic generation adequacy risk calculation

When making a forecast about future generation investment trends and resulting levels of gen-

eration adequacy, it is helpful to consider historic levels of system adequacy risk. Further, any

debate about whether or not a capacity mechanism is required must be informed by a robust

generation adequacy risk measure. This permits assessment of the risk in any given investment

scenario, and also guides the design of energy and capacity markets by setting a baseline for

what the market should deliver (e.g., an adequate capacity mix should be consistent with ap-

propriate returns on investment) [91]. Further, by carrying out a historic generation adequacy

risk calculation, one can gain an insight into how relative levels of risk haveevolved in recent

years and what levels of relative change have been experienced.

These results will also inform the debate about how the emerging trend of reduced capacity

margins in GB since market liberalisation have impacted security of supply. Forinstance,

weather-adjusted historic capacity margin data presented in [12] for E&W, Finland, Norway,

Sweden and the US (national average) shows a general trend of a reduction in GB capacity

margins since market liberalisation at the start of the 1990s. This pattern is evident in Fig.

3.5 for the period immediately following industry privatisation. This has increased the overall

efficiency of the system (holding too much capacity is expensive [12]), but by looking at relative
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levels of system risk we can go some way to determining the impact on security ofsupply.

3.5.1 Historic demand time series

Historic half-hourly demand data from April 2001 (i.e., NETA introduction) isavailable from

the GB SO, National Grid (NG) from [19]. Such is the climate in GB that the highest de-

mands are driven by low temperatures and occur during winter (November-March). It is during

these high demand hours that the adequacy risk is typically highest. With this in mind, the his-

toric risk calculation has been carried out for the demand hours spanning10 winters 2001/2 -

2010/11. The GB ‘IO14DEM’ data is the most applicable for generation adequacy calculations

because this is based on operational generation metering and includes station load and pumped

storage (PS) pumping [61]. However the GB ‘IO14DEM’ data is inconsistent; before April

2005 it is for England and Wales only. ‘INDO’ demand, which excludes station load and PS

pumping, is available for the entire period and the winter ‘IO14DEM’ can be approximated by

‘INDO’ plus 600 MW. This is the approach taken here when ‘IO14DEM’ data is not available.

To account for underlying changes in both demand patterns and the absolute levels of peak

demand, each winter period’s demand is normalised by its realised ‘AverageCold Spell’ (ACS)

winter peak (ACSWP) demand and rescaled to 60 GW:

d∗ =
60 · d

ACSWP
(3.2)

whered is the realised demand andd∗ is the result of the rescaling. These values are displayed

in Table 3.2. ACS peak demand is forecast each year in advance of the forthcoming winter by

the SO, and is described as having“a 50% chance of being exceeded as a result of weather

variation alone” [92]. The realised ACS peak is calculated post winter and is a measure of

what peak demand would be given a winter’s underlying demand patterns and “typical” winter

peak weather conditions [93]. This makes it suitable value for the normalisation. These values

are plotted in Fig 3.6. Demand data is been transformed to an hourly resolution by taking the

hourly demand to be the maximum of the two half-hour periods.
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Figure 3.6: Plot of ACS peak demand in GB for winters 2001/02 - 2010/11.

01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11
ACS peak (GW) 59.1 60.1 60.2 61.0 60.8 60.2 60.4 58.1 57.4 57.7
Norm. peak 58.6 60.6 59.3 58.2 59.2 57.9 60.2 61.1 61.7 62.1
De-rated capacity 66.2 63.44 64.4 66.3 68.1 65.6 65.3 64.9 66.1 66.3
De-rated margin (%) 11.9 5.6 7.0 8.6 12 9.0 8.1 11.7 15.2 14.9
Norm. de-rated (%) 12.8 4.7 8.7 13.8 15.1 13.4 8.5 6.3 7.1 6.8

Table 3.2: Data for de-rated capacity used in Fig. 3.9. Data on de-rated capacity is contained
in NG Winter Outlook reports 2005/06 - 10/11, e.g., [66]. De-rated capacityfor
winters 2001/02 - 04/05 estimated by de-rating total installed capacity (using ESDS
data [90]) by 0.9.

3.5.2 Probability distribution for available conventional generation

The next step is to construct a probability distribution for available conventional generation.

Here, the term conventional generation covers all forms of generation currently connected to

the high voltage transmission system in GB, bar wind. Technical plant availability data is

not available in GB. The approach here is to use generation unit data fromthe NG Seven Year

Statement [27] for unit capacities and expected winter peak availability assumed in NG’s Winter

Outlook [66] as FORs. This data is summarised in Table 3.1 and is assumed reliable (given

that NG use it to assess the generation adequacy risk for the forthcoming winter). The Unit

Effective Capacity (UEC) in [27] has been used for all units, except those which are behind a

transmission constraint (e.g., Peterhead), in this case the individual UEC are scaled so that total
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export capability is equal to the transmission limit. This resulted in the amount of available

CCGT capacity in Table 3.1 reducing from 27.5 GW to 26.7 GW. Hydro units belonging to

the same hydro scheme are combined into single pseudo-units owing to their dependence in

terms of resource availability. These pseudo-units are displayed in Table 3.3. Using the COPT

technique (2.15) with a 1 MW bin size, the probability distribution for available capacity is

determined. This was implemented in the AIMMS programming language; the main procedure

is provided in Appendix A.1. The aggregate probability density function (pdf) and cumulative

distribution function (cdf) for available generation are displayed in Fig. 3.7. The mean of the

distribution is 65.25 GW and standard deviation 1.80 GW.

Hydro scheme Capacity (MW)
Affric Beauly 235
Breadalbane 90
Conon / Shin 136.3
Great Glen 110
Kinlochleven 30
Sloy / Awe 233
Tongland 33
Tummel Valley 229
TOTAL 1096.3

Table 3.3: Combined hydro scheme pseudo-units. Based on [94].

(a) (b)

Figure 3.7: (a) Plot of pdf and (b) cdf for available conventional generation calculated using
COPT technique.

Given that the GB SO’s current view is that a de-rated margin of 5 GW capacity is required

going into winter [66], this distribution seems reasonable, which is encouraging given the un-

certainty associated with generator FORs. Furthermore, if one wanted to carry out a risk cal-

culation for a “more risky” system (e.g., in the absence of closed LCPD plant), then it would

be reasonable to shift the mean of the distribution and rescale the standard deviation (scales
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with the square root of the number of units) rather than rerun the calculationwith some volume

of plant removed.6 This will also resolve all issues of exactly how to deal with transmission-

constrained plant and emission constraints [73]. One such shift where 4GW of capacity (8

units) was removed is shown in Fig. 3.8.

Figure 3.8: Plot showing distribution for available conventional generation when 4 GW of
capacity is removed.

Using the first distribution shown in Fig. 3.7, the hourly winter LOLPs (2.11) can be computed.

That is, LOLP= F (d) = p(D < d) whered is the demand for that hour andF (d) is the

cdf for available generation (Fig. 3.7(b)). Hourly LOLPs can then be summed to produce the

10-winter hindcast LOLE (2.12). For simplicity, the probability distribution forconventional

generation used to calculate the LOLE for each winter period remains unchanged throughout

the 10-year analysis. The mean of 65.25 GW is broadly in line with the mean de-rated capacity

for the whole period (65.65 GW) (Table 3.2), and given that the underlying mix and amount of

capacity has not altered significantly over the period analysed, this approach is reasonable.

3.5.3 Treatment of wind

Given that the installed wind capacity in GB is currently quite low relative to the overall total

installed capacity (3%, Table 3.1), the approach taken here is to de-rate wind and treat it as a

pseudo-thermal unit in the COPT calculation. This is a reasonable approach given that 300 MW

6An algorithm for removing a unit from the original COPT without re-running the entire COPT calculation is
presented in Chapter 2 of [64], yet this shift is an efficient option when considering the removal of multiple units.
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of additional de-rated capacity is unlikely to affect the risk calculation significantly. Techniques

to properly account for high penetrations of wind in the risk calculation arecovered in Chapter

6.

3.6 Historic generation adequacy risk calculation results

Results of the 10 winter LOLE calculation are shown in Fig. 3.9. The averageLOLE over

the 10 winter period was 0.06 hrs/yr (or 6 hours in 100 years) with a standard deviation of 0.01

hrs/yr. The graph shows how the relative risk remains largely unchanged over the first 8 winters

but rises sharply in the last two winters. The red LOLE bars indicate winterswhere realised

peak demand exceeded the ACS peak forecast (which is in fact in nearly50% of the years

analysed). On closer inspection of the data, which is presented in Fig. 3.10, nearly 80% of

the 10-year LOLE is contained in just 40 demand hours, with 15% contained injust 2 demand

hours.

Figure 3.9: Plot of LOLE results for 10 winters (bars). Also shown is forecast theoretical de-
rated margin (black line), normalised hindcast de-rated margin (blue line), and
winters where ACS peak was exceeded (red bars).

Also shown in Fig. 3.9 is the historical theoretical de-rated capacity margin (black line). This

is the de-rated margin that would have been forecast at the year-aheadstage given the de-rated

capacity and forecast ACS peak published by NG. For instance, in 2010/11, it is the sum of the
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Figure 3.10: Plot showing number of hours demand contained in LOLE (dashed line with
hours marked) and proportion of LOLE in each 1% bin (solid line). The bins
(x-axis) are the normalised load as a percentage of the 60 GW peak demand.

fifth column in Table 3.1. Plainly the de-rated margin in the winters 2009/10 and 2010/11 is

higher relative to historic levels whereas the hindcast relative risk calculation was in fact highest

in these winters. This can be explained by the fact that realised demand washigh relative

to underlying demand levels and “typical” winter weather conditions. Or put another way,

although levels of de-rated margin have been higher in recent winters relative to historic levels,

a succession of mild winters up to 2009/10 has kept relative levels of generation adequacy risk

down. The normalised de-rated capacity margin in Fig. 3.9 is calculated using the normalised

realised peak demand figures (3.2). This acts as a proxy for the LOLE, and provides a picture of

realised de-rated margins, compared to the forecast. The winter with the highest risk, 2010/11,

demonstrates that even seemingly healthy margins can be eroded in the face of ‘high’ (but not

extreme) peak demand; in this case reduction of 8% is witnessed.

The importance of considering relative levels of risk in this type of calculationis demonstrated

when the underlying distribution for available conventional capacity changes. Using the proba-

bility distribution for the reduced generating fleet described by Fig. 3.8, theLOLE calculation

was re-run. The results are shown in Fig. 3.11. The relative levels of LOLE remain unchanged,

by comparison absolute values increase by an order of magnitude (the previous values of LOLE

are barely visible at this scale). Note that the absolute levels of risk could also be altered by
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changing the normalising factor of 60 GW in (3.2), though the same relative levels of risk will

be produced.

Figure 3.11: Plot of LOLE results for 10 winters using reduced conventional fleet (grey bars).
Also shown are LOLE results from Fig. 3.9 (black bars).

3.6.1 Summary

The results of this historic risk calculation have demonstrated how relative levels of risk have

changed in recent years, with particularly high levels witnessed in over thelast two winters. It

is no surprise to find that the system is at its most vulnerable at times of highest demand, but

just how much of the risk is contained in a small number of extreme demand hoursis worth

emphasising.

The results also demonstrate why a healthy de-rated capacity margin is required in order to

accommodate periods of higher than expected peak demand. These insightscan be used when

analysing the levels of forecast de-rated margin in the investment dynamics modelling. That is,

given a particular level of forecast peak demand and de-rated capacity, it is worthwhile applying

additional ‘stress tests’ when forecasting levels of de-rated margin to ensure that the system is

robust given the uncertainty surrounding winter peak demand and availability of conventional

generation.
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3.7 Models applied to the GB market

A number of studies have been commissioned in recent years to investigate GBenergy market

performance and, in particular, answer questions about generation adequacy, costs and security

of supply risk [23, 95–97]. This section contains a selection of key projects which have perhaps

made the biggest impact in GB, that is either had a substantial influence on policy or have been

the focus of significant press attention. The difficulty with reviewing work carried out by energy

consultants is that, in most cases, model development is carried out in-house and typically

details about methodology are not published. That said many of the results and associated

sensitivity analyses can be examined and discussed.

3.7.1 OFGEM’s Project Discovery

Much of the most recent work has focused on the capability of the current market framework

to deliver a secure electricity mix whilst meeting firm emissions reduction targets and renew-

able energy obligations. A prominent example of this is the recent work by theGB regulator,

OFGEM; their Project Discovery consultation [96] examines the“prospects for secure and

sustainable energy supplies over the next 10-15 years”. This objective is explored using a sce-

nario analysis with additional“stress tests”being applied. Four core scenarios are considered,

all devised with decarbonisation as the ultimate goal (although this goal is not met in all sce-

narios), each with alternative outlooks for key factors such as economicand renewable growth,

gas imports and commodity and carbon prices. An example of one such stresstest is a situation

when there is little or no wind output in a system with a significant wind penetration(up to 30

GW in the 2020 green scenarios for example). The outlook for security ofsupply risk levels7

are assessed via de-rated capacity margins. The plots do not show pastvalues of the de-rated

margin so there is no way of knowing whether the situation is getting better or worse. The

outlook is good for the near-term (3-4 years out), in contrast there is a significant erosion of

margins after around 2013 followed by a slow recovery out to 2022.

A static approach to modelling is taken whereby an investment forecast is madeassuming fu-

ture gas and coal prices and then key indicators such as electricity pricesare calculated. It could

7The report also considers security of supply risk for up-stream fuelsupplies, namely gas imports from Russia,
but this review examines their results concerning generation adequacy only.
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be argued that a model of this type overlooks the market feedback mechanism that is present,

whereby investors adapt their year-on-year investment decisions based on current market con-

ditions; this includes projects in the pipeline, time delays, fuel prices and so on. Some of the

other headline conclusions include that wholesale prices are expected to rise (although only

average prices are shown and the volatility is not considered) with higher prices for consumers.

These are to some extent offset by benefits of the low carbon electricity sector which may lead

to lower bills in the long-run beyond the 15 year time horizon of the model. Theseadditional

costs come from a variety of sources such as fuel price increases, new capacity builds and net-

work reinforcements, with the last two sources amounting to£200bn of cumulative investment

in some scenarios.

3.7.2 P̈oyry

It is widely accepted that the introduction of more variable output forms of generation such as

wind will lead to higher wholesale price volatility which will impact on investment. Onestudy

which addresses these issues is that of Pöyry [98]. This study was commissioned in 2008 and

with selected results published in 2009. Little information about the modelling methodology is

in the public domain (e.g., [99]), although it is worth exploring the content of what is available

owing to the influence the report had on government-informing bodies suchas the Committee

on Climate Change (CCC) [100].

The study takes 2000-08 wind and demand conditions, known as the‘mini-Monte Carlo’ it-

erations [99], and maps them onto 2020 and 2030 installed wind capacity in order to predict

the contribution of wind to meeting demand and also assess the impact on market prices and

thermal plant utilisation in both the GB and Irish markets. Price volatility is assessed via a

price-duration curve (PDC) in both 2020 and 2030, the results for GB are shown in Fig. 3.12.

The 2030 graphs show both negative and high wholesale prices. In times of high wind the price

may become negative when there is a surplus of wind over demand or export capability in a

given transmission-constrained area. On the other hand, at times of low wind the prices are

expected to reach very high values as thermal peaking units will be seekingto recover their

investment costs while operating at low utilisation, this is something which is also noted in

OFGEM’s Project Discovery. Mapping these changes to investment, the Pöyry report concludes
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Figure 3.12: Price-duration curve results for GB market in the Pöyry study [98] (used di-
rectly).

that“power stations built now will face a future of not only far lower load factors expected as

a greater portion of the electricity but also dramatically increased uncertainty of revenues than

at present”. Interestingly the uncertainty of revenues is reduced in the Irish market. This is

owing to a capacity payment mechanism, which forms part of the existing marketdesign being

included in the simulations.

The P̈oyry model uses a mixed integer mathematical program which takes a number ofin-

puts including historic demand; simulated wind output (36 locations in total across GB and

Ireland), wave (using data from a Carbon Trust study [101] across5 regions); simulated tidal

barrage output (using profiles provided by DECC for the River Severn area); conventional plant

availability (taken from half-hourly Maximum Export Limit data from the GB BM Reporting

System [102]); realised commodity price data; and reserve and transmission zone data (7 GB

zones modelled). The model time-step is hourly and plants are split by characteristics such as

fuel, technology, efficiency, LCPD issues and capacity (although no derivations of plant cost

curves or short-run marginal costs are provided). Using this data historic GB wholesale prices
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are simulated as a method of model validation. The simulated SMP provides a goodfit during

base hours, yet is below realised prices at peak (an example amount of£8/MWh is quoted).

This is described as“the value of capacity”and it is attributed to peaking plants bidding in

above their short-run marginal costs in order to recover fixed costs. Asa result, simulated fu-

ture prices are adapted to include a pricemark-upin tight supply-demand hours. This amount

is a multiple of the historicmark-upcalibrated in order to allow peaking units to recover their

fixed costs, however derivations of this multiplier are not provided explicitly. By including this

price mark-upduring scarcity periods, this allows for the expected wholesale price to climb

above the SMP in periods of reduced capacity margins.

This method of price simulation has a significant impact on investment; investors inmid-merit

and peaking units (i.e., CCGT and OCGT) are able to recover their fixed costs from the energy-

only market because they can bid anything they like during scarcity periods, although a short-

fall in revenue for very low-merit plant in reported. Base-load generation such as CCS coal

and nuclear is treated as“non-market determined”and so growth in this type of capacity is

made in addition to CCGT and OCGT investment in order to maintain an adequate capacity

margin (although if periods of overcapacity occur, these plants will be closed if they are unable

to recover their FCs). Thus in a model such as this, where the aim is to report the impact on

prices of high penetrations of wind, security of supply concerns are less severe assuming the

price and bidding strategies are permitted to operate in this manner.

3.7.3 Redpoint

The work carried out by Redpoint in reports such as [65, 95] and the many before it by the

same group, is very relevant to the generation adequacy debate in GB because it has informed

government departments such as the Department of Energy and Climate Change (DECC) and

the Department for Business Enterprise & Regulatory Reform (BERR), and will thus influence

policy. The most recent publication [65] has looked at options for GB market reform and others

have included decarbonisation of the power sector [65], renewable support schemes [103] and

the dynamics of generation investment [104]. All of these look at investmentin generation

capacity in some way and the results presented are typically very detailed. In[65] an outlook to
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2030 with de-rated capacity margin, expected energy unserved and probability of brown out8 is

used to measure the level of security of supply risk. Additional policy mechanisms are modelled

and their impact on reducing carbon emissions intensity and mitigating security ofsupply risks

are measured. A wealth of sensitivities are also included. The headline result is that under

current market arrangements de-rated margins will deteriorate after 2012 - with the situation

becoming critical around 2018 - and remain below 10% for the remainder of the time horizon.

Expected energy unserved will also increase dramatically after 2020, thisis shown in Fig. 3.13.

The large oscillation in unserved energy with frequency 1 year and amplitude 2-3 GWh after

this date is curious as investment and retirements are reasonably linear throughout this period.

It was argued by Redpoint [105] that the high values of unserved energy are on account of

power shortages during summer when low wind resource periods coincidewith large volumes

of conventional generation being offline for maintenance.

Figure 3.13: Expected energy unserved results for GB market in the Redpoint study base case
[65] (used directly).

Policy schemes which successfully promote renewable generation lead to a reduction in whole-

sale prices and therefore insufficient conventional generation is built. To address this issue, a

capacity payment is introduced from 2018 (the simulation year when significant risks arise)

via a payment fund given byFPD · (1 + TDRM) · (TFCO), whereFPD is the forecast

8A brown out is defined there as“a drop in voltage for some customers but without necessarily a full outage”
[65].
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peak demand,TDRM is the targeted de-rated capacity margin andTFCO are the fixed and

capital costs of a new OCGT plant. The pot is the same size despite the volume and type of

capacity installed (annual payments will vary based on expected peak demand only). However

the pot is spread wider when there is more capacity connected (and available), and therefore

individual payments are less, and vice versa when less capacity is available. It also requires a

target de-rated margin to be calculated. All generators receive the payment based on year-round

availability and not at peak. It could be argued that a year-round calculation does not encour-

age generators to be available at peak (e.g., moving maintenance to summer), yet the payment

does demonstrate that an additional revenue stream, which is less volatile andmore predictable

than the wholesale price, leads to more efficient investment in generation. Interestingly the

additional revenue required to cover OCGT fixed costs via the capacity mechanism is found to

be£7/MWh for an OCGT with amortised total FCs of 60/kW/yr and target de-rated margin of

10%. This figure is not too dissimilar to the requiredmark-upin [98]. Here amark-upis added

to the wholesale price simulations in the base case scenario (i.e., without capacity payments)

and assuming this can be avoided in a market with capacity payments, increases to consumer

bills as a result of the capacity mechanism being introduced are offset by prices being less

volatile in periods of supply shortage.

In addition to the capacity payment, a targeted capacity tender is modelled. The tender period

is annual and it is aimed at a“small subset of generating plant or demand-side response”[65].

This could be viewed as an extension to the existing annual reserve tenderof 2 GW currently

procured by the GB SO (cf. sub-section 3.2.2.3). Simulation results show that the tender

serves its purpose and the target de-rated margin is achieved and the security of supply risk

is “significantly reduced” [65]. The savings to customers are dependent on how the reserve

tender market operates. More precisely, does the reserve capacity get called upon once all

energy-only resources have been exhausted, or can an economic condition be specified over

which the reserve volumes can be tapped in order to prevent prices reaching unacceptably high

levels? In the former case, ‘hockey-stick’ style bidding (cf. sub-section 2.3.6) may still occur

with an additional unnecessary cost to the consumer. Although not discussed in this report, a

tender strike (or utilisation) price would prevent this from occurring, i.e., exercise the option to

use tendered reserve, thus paying the strike price rather than the high wholesale price.
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Details about the modelling methodology are hard to determine from reading the most recent

publications alone, although assuming the same logic has been used throughout this series of

work, some details can be determined by reading previous reports by the same firm. For in-

stance, no detail about how the wholesale price mark-up function is calculated is given in [65],

however in [104], the model“adds an uplift factor which relates to capacity margins and has

been calibrated against historic prices”, which would suggest an approach similar to [98].

Other model features such as how the investment decision process is carried out is mainly pro-

vided through schematics describing information flows and software used with specific details

omitted.

3.7.4 UKERC

Finally, a comprehensive review of the literature by the UK Energy Research Centre in [23]

looks at the risks associated with investing in generation. The levelised costsof various“lead-

ing” forms of generation are discussed with sensitivities on key inputs such as discount rate,

fuel price and capacity factor reported. A discussion about investor revenue and risks is in-

cluded with points covered similar to those displayed in Table 2.1. Investment cycles in genera-

tion investment are seen as a key source of electricity price risk with timing of investment seen

as critical. This last point is extended to look at the value (in terms of avoided revenue losses)

investors can gain from waiting, in particular waiting for a policy change. This is interesting in

light of the recent announcements regarding market reform [67]; if investors decide to perform

these strategic actions, the market may see a investment hiatus until policy has been finalised.

3.8 Chapter summary

In this chapter a review of the GB ESI to date has been provided. This included a history of its

industry structure in Section 3.1, with particular attention paid to the period post-liberalisation

in Section 3.2. In Section 3.3 and 3.4 focused on the generation adequacy problem in GB and

reviewed some past experiences. They key findings of this review werethe evolution of market

design from a pool to a primarily bilateral trade-based market, and the breaking up of large

incumbent generating firms during this time. Another key finding was how the STOR market
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forms a vital part of current market arrangements in GB.

Next in Section 3.5 a historic generation adequacy risk calculation for GB was presented with

results and discussion provided in Section 3.6. The results also demonstrated why a healthy de-

rated capacity margin is required in order to accommodate periods of higher than expected peak

demand, and that the scale of relative risk has changed in recent years, with particularly high

levels witnessed in over the last two winters. Absolute values were also reported: the average

LOLE over the 10 winter period was 0.06 hrs/yr with a standard deviation of 0.01 hrs/yr. A

sensitivity analysis on the probability distribution for available conventional generation, showed

an order of magnitude increase in these figures when the underlying distribution for available

conventional capacity reduces.

Finally, in Section 3.7, an exploration of some of the key works which have looked at the GB

market was provided, this included the work of the GB regulator OFGEM together with energy

consultancies P̈oyry and Redpoint. The key findings of these works were 1) more variable

output forms of generation such as wind will lead to higher wholesale price volatility which

will impact on investment and 2) that under current market arrangements de-rated margins will

deteriorate after 2012 - with the situation becoming critical around 2018 - andremain below

10% out to 2030.
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Chapter 4

Modelling Generation Capacity
Investment in Electricity Markets

In the previous chapters an overview of various electricity market designs and generation tech-

nology characteristics was provided. This chapter presents an investigation into the many mod-

elling techniques used in academia and industry. Particular attention is paid to studies which

have addressed the issues of generation capacity investment and generation adequacy in liber-

alised energy markets. This includes a review of methodologies, the handlingof uncertainty,

market power and investor expectations and risk preferences. Finally,a discussion about the

scope and value of using techniques from dynamic control theory to modelthe investment mar-

ket is included. This will set the scene for the next chapter where the methodologies used in

this work are presented.

4.1 System modelling

The transition to a privatised ESI together with targets to decarbonise electricity generation has

given rise to many new and interesting challenges. By modelling these complex systems us-

ing the latest theoretical methods, understanding can be improved and betterjudgments made

about what the future might hold. As described in [106], the most commonly used modelling

techniques follow three main trends: optimisation models, equilibrium models and dynamic

simulation models. These frameworks can be applied to a number of interesting problems

within the electricity market, including the short-term unit commitment problem, marketde-

sign, capacity expansion planning and congestion management. Plainly some models cannot be

positioned within a single category because they have characteristics whichmake classification

less straight-forward. However the representation forms an excellent basis for expanding the

discussion.
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4.1.1 Optimisation models

Optimisation models are the most common mathematical framework used in the energy sec-

tor today. This structure is applied in many situations owing to its flexibility, computational

tractability and the numerous numerical solution methods available which can be applied to

solve a range of difficult and complex problems. General research in thefield of optimisation

has led to significant improvements in the computational time needed to solve such problems.

These methods can be applied to formulate an objective function as a maximisationof expected

profit for new generating capacity investment subject to constraints on a number of (uncertain)

decision variables. This can be extended to modern portfolio theory to maximiseprofit subject

to returns on the firm’s existing portfolio of generating plant. Methods such as those devised

by Bloom and Gallant [107] can be used; their primary goal was to obtain theoptimal expected

production of the generating units at each interval subject to matching the LDC and general

linear constraints. Once the problem has been formulated, various optimisation techniques

are available, including column generation methods (e.g., Danzig-Wolfe [108]) and active set

methods [109], which solve smaller problems that expand (but never to an uncomputational

size) to optimality. Applications of optimisation models go beyond the scope of generation

adequacy to include optimal power flow, hydro scheduling and construction of bid and offer

curves.

4.1.2 Equilibrium models

Equilibrium models are founded on the concepts discussed throughout Section 2.3. They are

popular in electricity market modelling on account of their flexibility. For instance, both in-

dividual and aggregate supply functions can be modelled. They can be applied to a variety

of market structures, with oligopoly generation markets a popular application(an approach

originally developed in [10] and since applied by others, e.g., [110]).

There are two main kinds of equilibrium models that exist, namelysupply function equilibrium

(SFE) andCournot equilibrium. In the former, market participants make strategic decisions on

price and quantity whereas in the latter participants decide about quantities only and prices are

determined via the inverse demand function. Both methodologies are based oncomputing the

84



Modelling Generation Capacity Investment in Electricity Markets

market equilibrium and can be applied in perfect or imperfect competitive markets.

In equilibrium models, under the perfectly competitive case, the overall level of capacity is

typically determined by assuming that the scarcity rents received by peakinggenerators are just

high enough to recover their investment and fixed operating costs [17]. Recall that scarcity

rents for peaking generators occur during periods when total availablesupply is not sufficient

to meet demand, and thus the price reaches the VOLL. The volume of each type of capacity

(i.e., base-load, mid-merit, peaking) within the overall level of capacity is chosen so that that

total profit for all generators is zero in the long-run. This can be represented mathematically

using an optimisation with capacities as the decision variable and an objective to maximise

gross consumers’ surplus less the total costs of production, including both total fixed and vari-

able operating costs, e.g., [111]. If the market is not perfectly competitive, for instance in an

oligopoly, then the overall level of capacity is determined by profit maximisation. In this case,

a firm may not increase capacity (the decision variable), even if long-runprofit is above zero.

More precisely, if the addition of new capacity triggers a reduction in scarcity rents across the

firms existing fleet sufficient enough to incur fixed costs, then the firm will not invest. This can

be represented mathematically using an optimisation similar to the perfectly competitivecase.

Here the objective is to maximise profit which is the price received for selling power less the

cost incurred producing it (e.g., [111] uses a SFE model of this type).

Cournot equilibrium models are traditionally reasonably tractable, e.g., [76,77, 110, 112]. Sup-

porters of this approach suggest that a Cournot game is a fair reflectionof what is actually

going on in some markets and“can support detailed cost modelling, and do not usually suffer

from the multiple equilibria common with other modelling approaches”[113]. This approach

has been found to model the events of the California crisis of 2000/01 quite well, yet they

tend not to give a good representation of how prices are set in electricity markets in general

and their price predictions have generally been too high [76]. That said,they can still further

understanding of competitive electricity markets. A recent example of a SFE model is [15]

where the level of price mark-up in a market with a number of competing firms is investigated.

This modelling framework has been used to highlight the potential for market power in highly

concentrated markets. For example, in [78] the potential for submitting a supply function well

above marginal cost in the highly concentrated E&W power pool was reported.
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More recently these models have been used to assess the impacts of wind generation in compet-

itive markets. In [17] the potential impact that a varying output profile fromlarge volumes of

wind generation (30 GW total; 19 GW onshore 11 GW offshore) has on half-hourly equilibrium

prices is put forward. A market with six competing generating firms together with a duopoly

of two symmetric firms is simulated. Results showed a significant increase in the variability of

prices (and hence generator revenue uncertainty) for the high wind penetration. This was par-

ticularly so in peak demand hours, with the situation worse for a symmetric market.Although

less common, SFE models that consider multiple firms can be adapted to model both aggre-

gate system supply curves and also to assess more long-term market trends, perhaps embedded

within a dynamic simulation model.

4.1.3 Dynamic models

The methodologies above can be embedded into a static or dynamic modelling framework. By

choosing a dynamic model when considering the problem of generation adequacy, the outcomes

of earlier stages of the simulation time horizon will directly influence the system dynamics at

a later stage. For example in the case of power markets, current prices and their predictions

are fed back to investors hence modifying the investment behaviour. The resulting investment

decisions are then fed back to the pricing mechanism hence closing the information loop. This

is precisely the approach taken for this project (Chapter 5). Consequently, a review of existing

dynamic models applied to power markets has formed a vital part of this research. Dynamic

simulation models are usually very computationally intensive and as a result somesimplifica-

tions to reality must be introduced. On first inspection, this might be viewed as adisadvantage,

yet by making reasonable simplifications control over input variables and model structure is

achievable [114].

4.1.3.1 Introducing system dynamics modelling

One such area of modelling which has been widely applied in such situations is that of System

Dynamics (SD). SD was developed during the 1960s by Forrester and colleagues at MIT where

classical control theory was applied to various industrial systems exhibitinginteracting growth

and decline characteristics (or“multi-loop nonlinear feedback systems”) [115]. These included
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a number of public policy problems such as energy, health, environment, social welfare and

security [116].

Although SD had been applied to electric power systems expansion before privatisation (see

review in [117]), it really took off post-liberalisation and has been appliedto the long-term

generation adequacy problem to great effect. The work of Ford [117] in the US, and Bunn

et al. [34, 118] in the UK are the main protagonists. SD continues to be a popular choice

for electricity market modelling [119–123]. For example in [119], SD modellingis employed

to address questions of stability and dynamics and draw attention to the idea thatcapacity

expansion and wholesale prices are governed by the negative feedback connections between

supply and demand.

4.1.3.2 SD to highlight investment cycles

In [124] a simulation of the western US power markets is presented. The model is used to

assess construction cycles in generation capacity and the effect of longlead times and capital

intensity under the prevailing Californian market rules. The study highlights the tendency for

the timing of private investment to be late with resulting dramatic price spikes and reliability

problems. There is then a subsequent boom in capacity construction, followed by a bust cycle.

SD models are described as a good method for illustrating these cycles because there is a need

to understand the feedback mechanisms present in such a system [124].Broadly speaking, the

SD work of Ford draws the same conclusion about market-driven investment in new generating

capacity; fixed capacity payments are needed to provide the extra revenues to generators.

Expanding further on the commodity cycle problem, it is widely accepted in economics that

oscillations occur as a result of long-term dynamics in supply and demand orsome form of

system shock (e.g., a reduction in demand due to economic depression). Inthe case of an SD

model of capacity expansion, these are either endogenous (e.g., demand) or exogenous shocks

(capacity expansion or contraction) [115]. Such random variations mayoccur for a number of

reasons, such as lumpy investments and individual strategic moves [125].

In [126] a SD framework is used to examine the over-investment effect ofa pricing mechanism.

The test cases are ‘energy-only’ with and without a price cap and a capacity payment mecha-
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nism. The model is quite stylised, with a SFE pricing mechanism assumed. Investments take

5 years to build and the model includes an option for investment to be abandoned during the

4th year of construction. An interesting conclusion of the paper is that ‘energy-only’ markets

do provide adequate investment signals under“ideal conditions”, presumably meaning in a

market which is in long-run equilibrium, and capacity payments lead to over-investment and

oscillations in capacity, although supply shortages occur less frequently.

4.1.3.3 Incorporating market structure

SD models can also be formulated to compare how a system comprising of a number of tech-

nology types, orvintages, impact on investment dynamics. Vintage modelling is a method used

in macroeconomics to differentiate between types of capital (here, generating plant) each with

their own rate of productivity (here, thermal efficiency). For example, long-term electricity

market dynamics is the focus of [121] where a simplified capacity mix has beenmodelled us-

ing a number of vintages. The capacity within each vintage is time-dependent and is described

by the rate at which new capacity enters the vintage (i.e., new builds) and the rate at which

capacity leaves it (i.e., retirements).

Assumptions about market equilibrium have also been tested in SD models, with [127] describ-

ing a feedback model of generating capacity investment decisions. Resultsfrom simulations

that assume an equilibrium versus a nonequilibrium liberalised market are compared. They

show that assuming an equilibrium market can lead to strategic errors in the investment deci-

sion process and significant differences in realised wholesale prices and reserve margin. The

main difference between the assumptions underpinning each model relates tothe aggregate in-

vestment rate. The equilibrium investor assumes that the aggregate industryinvestment will

evolve in order to maintain a target reserve margin. Here an investment is deemed profitable

if the expected wholesale price is greater than the total levelised investment cost. As expected

prices are modelled as a function of reserve margin (prices increase as the reserve margin de-

creases), the feedback between investment and prices is captured.

In [128], two neighbouring perfectly competitive electricity markets are modelled. The system

consists of four thermal generating technology types in each region, with an interconnector

linking the two. The relationships are defined in terms of a causal loop diagram, with an
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endogenous generation investment decision component. To reflect the interaction between spot

markets, two feedback mechanisms are present. The first is a negative feedback loop between

installed generation capacity and expected spot prices, with construction lead times included.

The second, also a negative feedback loop, defines the relationship between the two regional

markets, with regional demand impacted by power trading. When imports increase, the residual

demand in the importing region reduces, which in turn reduces electricity spotprices. Three

types of market design are modelled and the impact on investment, system reliability and price

dynamics is assessed. Capacity margins and traditional power system reliability metrics are

used to assess 30 year generation adequacy risk in each region. An ‘energy-only’ market is

used as the base case design in each region. This is compared with markets with price caps,

and a capacity obligation with a forward ICAP market and price cap. A mixtureof symmetrical

and asymmetrical markets designs is also trialled. Results show that an asymmetricmarket

design can lead to some unintended consequences in a neighbouring region, particularly if the

market designs differ between energy-only and price cap, where capacity transfers to the non-

price cap region in times of supply shortage. It is stated that“similarities of approaches lead to

better performance in terms of price level and variability and in terms of reliability” [128]. Of

those trials where an energy-only market is adjacent to an ICAP market, twothings are noted.

Firstly, the ICAP market does not rely on the energy-only market for back-up, and secondly,

the energy-only market does not gain an advantage from being interconnected with a market

that has a formal adequacy policy in place.

4.1.3.4 Incorporating investor profiles

In [122] a stochastic model to analyse long-term characteristics of electricity markets and to

“determine the fundamental factors contributing to (long-term) supply adequacy” is presented.

The focus is on how future prices inform investment, and argues that“futures provide market

participants not only an instrument to hedge price risk, but are also an indicator of future

supply and demand conditions, which are critical in making an investment decision”. The

wholesale market price is modelled as a function of reserve margin. Demand ismodelled by

a seasonal factor, in one case this is constant and in another it has monthlyvariation, with a

stochastic element to represent uncertainty about future load. Various timedelays are tested

with two investor models, namely forward- and backward-looking investorswith and without
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an ICAP market. The market performs more efficiently with a forward-looking investor in all

cases (lower prices and less capacity oscillations).

In [129] an SD model incorporating credit risk theory is used to differentiate between firms

and concepts from game theory are called upon to include strategic behaviour from market

participants. The model is applied to a simplified model of the Spanish system (mixed hydro-

thermal, no wind) comprising two large companies, one medium, three small and several IPPs

(as one pseudo-company). A gaming element is included by assuming strategic actions under

a spot market design. A fully competitive market is also tested along with a market with large

volumes of forward contracting. Interestingly out of the four unit types available to investors,

(nuclear, coal, CCGT, GT) only the latter two are chosen. This may be because the cost charac-

teristics are unfavourable for nuclear and coal (no cost information is shown so it is difficult to

establish whether these are suboptimal choices of investment for all utilisations). As with the

actual Spanish system, the market arrangements in all cases are such thata capacity payment is

included in addition to energy market revenues. In fact it is noted that without this mechanism,

many of the GT investments would not take place.

In [130] a dynamic model incorporating game theory with multiple firms participatingin the

market is presented. This work is applied to real electricity markets, in total eight countries are

considered. Three scenarios for levels of competition are included, namely a fully competitive

market and a market consisting of strategic firms. More precisely, the strategic scenarios are

two-fold; one takes production levels of rival firms into account and the other models aStack-

elberg game(where the leader firm moves first and then the follower firms move sequentially).

As a general point, if the market is perfectly competitive, firms’ decisions about quantities will

follow a Nash equilibrium, where each agents strategy is the best one in light of the other agents

strategies. An assumption of the Nash equilibrium is that agents have perfect information about

the strategies of others. Note that perfect competition is not necessary to obtain a Nash Equilib-

rium, in fact it is actually a more powerful tool in imperfectly competitive markets.The focus

is on the impact that investment trends have on prices and the environment in the long-term

(2000-2050). The investment decision element of the model is dynamic with investment based

on feedback obtained from the most recent market information. Constraints on production

capacity, electricity trade and GHG emissions are also taken into account.
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4.1.3.5 Information flows

The advantage of SD models is that the flows of information between elements ofthe market

can be captured. Fig. 4.1 shows some of the key information flows in power markets. In this

particular depiction there is a high penetration of wind present; the diagram shows how the

availability of the wind resource influences price dynamics which feeds back into the invest-

ment decision and hence impacts on the economics of conventional generation. Information on

capacity in development also flows though to current investment decisions as do current and

future market prices. The volatility of the wind output and prices impacts plant utilisation. This

can lead to a change in available capacity on account of plant mothballing or premature retire-

ment. System demand is inherently linked to wind output as both are heavily dependent on the

weather. Surrounding the main diagram are other factors, such as technology costs and investor

risk preferences. These play a crucial role, and although not explicitlylabelled with feedback

arrows (to avoid over-complicating the diagram), some of these factors will alter as a result of

power market conditions. For instance, economic growth could be harmed ifwholesale prices

rise too high (perhaps in response to increasing fuel and emissions costs) or, alternatively, in-

vestor cost of capital grows as a consequence of increased revenue uncertainty. The key point

here is that a great deal of information flows through the market and changes in one area will

propagate through the system, sometimes instantaneously and sometimes with delay. These

dynamics are of great interest in SD modelling.

4.1.3.6 Model validation

An important stage of any model aimed at simulating a real system is validation. Owing to the

nature of liberalised energy markets, where commercial sensitivities typicallymean a limited

volume of data is available to call upon, this stage can be difficult. However many models have

managed to perform some form of validation, which have enhanced the model results.

[131] produces 8 scenarios for the future development of the electricitysystem. Validation

against the past is included whereby the model is run against 1998-2006German market data

and found to match well against both investment and prices. It is argued that a dynamic ele-

ment of the model enables identification of time delays and market imperfections,which can

temporarily lead to the market being out of equilibrium [131]. A classic causal loop diagram
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Figure 4.1: Information flows in the generating capacity investment market. Inspired by [119].

is included, which encapsulates the feedback and information flows similarly toin Fig. 4.1.

Unlike the representation in Fig. 4.1, causal loop diagrams also highlight (using a double line

crossing an arrow) system time delays. An arrow between two variables, say, froma to b, indi-

cates that a relationship exists and a positive (or negative) sign at the endof each arrow implies

that a small positive change ina subsequently leads to a positive (or negative) change inb [128].

A good example of this is seen in [121] and a version of this is shown in Fig. 4.2. Delayd1 oc-

curs before the investment decision due to the irreversibility of investment requiring sufficient

certainty about expected returns on investment. Delayd2 occurs after the investment decision

due to construction lead time. The circle arrow in the centre of Fig. 4.1 containing a negative

sign indicates negative feedback implying system balancing [128]. To avoid over complicating

the diagram, much of the additional detail in Fig. 4.1 (including the impact of wind generation)

is omitted.

Another noteworthy example where an investment model has been applied to an existing sys-

tem is presented in [110]. A stochastic dynamic model of a liberalised energymarket using a
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Figure 4.2: Causal loop diagram for the generating capacity investment market after [121].

Cournot model is applied to the Finnish system. The goal is to replicate investment and pro-

duction trends over the period following liberalisation in 1995 by focusing onthe years 1996-

2006, and also to test the impact of varying key input parameters and modellogic. To reflect the

oligopolistic market structure over this period, three competing firms are modelled. These firms

must decide on production and investment in each year of the simulation time horizon. The au-

thors describe the market as“segmented”, with load partitioned into base and peak periods

and firms make their decisions based on these. The motivation for this is basedon empirical

evidence of“interdependency between prices (or demands) in the base- and peak-load seg-

ments”. As a result, two inverse demand functions, which are calibrated to the Finnish system

using available data on“prices, quantities, and price elasticities”are considered when comput-

ing Cournot equilibrium. A sensitivity where market segments have“cross-price elasticities”

is included. Here base- and peak-load inverse demand functions containa positive cross-price

elasticity coefficient applied to quantity in the opposite market segment. Interestingly this has

little impact on investment trends. Other sensitivities included varying the depreciation rate of

capacity, price elasticities and investor planning horizon. A planning horizon of 6-7 years pro-

vided the best match with realised investment timings and volumes. The model predicted more

base-load investment than in reality but overall volumes and timings were reasonably well ap-
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proximated. Furthermore, lengthening the planning horizon from the base case of 5 years, led to

“more ambitious and earlier investments”. This could be due to simulated prices and produc-

tion needs further out being higher than in the near-term on account of positive demand growth

raising production requirements and prices (capacity depreciation rates are held at zero for this

test); thus sending an earlier signal for investment. Varying demand elasticityhad only a minor

impact, whereas using a positive rate of capacity depreciation led to a delay ininvestment and

production was shifted toward peaking generators. The latter occurs asan increase in capacity

depreciation“increases the opportunity cost of the investment due to shorter life expectancy of

production capacity”. Results also showed that modelling production cost as a function of total

installed capacity (i.e., marginal cost of production varies in the economic dispatch), increases

the performance of the model in predicting overall investments and production costs. Interest-

ingly, all types of capacity considered were modelled with a one year construction delay. This

may explain why base-load capacity (e.g., hydro and nuclear), which have longer lead times

than peaking capacity, was a more popular choice for firms than in reality.

Other dynamic models which have been applied to real systems include [112, 120, 130]. In

[112] a dynamic simulation model was used to calculate the profitability of new plants. It ad-

dressed plant lead time and included a capacity payment calculated using the same method as

under the E&W Pool. It concluded that a market with this capacity payment leads to capac-

ity oscillations and highly volatile wholesale prices. In [120] a SD model is applied to the

NordPool market where there is a spot, futures and real-time market.

4.1.3.7 Answering policy questions

More recently, SD models have been applied to inform the debate on decarbonisation in the

electricity sector. [132] focuses on investment dynamics in a system with carbon markets and

a view to reduce the emissions in the US Western Interconnection. Another example is given

in [133] where a Tradable Green Certificate (TGC) mechanism is tested andthe primary focus

of the model application is on price dynamics rather than investment. It is noted that “only

after some time does the system respond with enough new capacity to allow the price to decline

to values that one would expect from a fundamental analysis”. Moreover, the time lags of

construction can create highly volatile oscillations in the TGC price during the period when
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installed capacity is increasing.

The work of Pẽna [134] uses a SD model to look at regulatory policies to address generation

adequacy and environmental targets. Here two capacity mechanisms are tested, 1) capacity

payments with a price equal to the average fixed cost not covered by selling energy to the

energy market (25% of costs assumed to get covered in market), and 2) capacity market with

the sloped demand curve design described in [54]. The elastic demand curve is calibrated

such that the capacity market price matches the capacity payment price whenthe target reserve

level is met. In addition to capacity mechanisms, the effect of renewable subsidies are tested.

Over the 25 year time horizon of the model, the capacity market leads to a more stable reserve

margin, better efficiency and more peaking capacity investment.

4.1.4 Where this thesis fits in

A variety of modelling approaches have been discussed throughout this section along with a

number of applications. It it therefore worthwhile briefly pausing to reflect on where the work

presented in this thesis fits into the current literature and contributes to the fieldof knowledge.

Firstly, this thesis looks to build on existing dynamic investment models by applying thetech-

niques covered in sub-section 4.1.3 to create an investment market model for the GB energy

market. Furthermore, taking inspiration from models that have been applied toexisting markets

such as Ford [135], Bunn [112], and others discussed earlier, this thesis can extend the field of

knowledge of applied system modelling. In addition, it addresses the issue of high penetrations

of wind power in such models and how this impacts on investment dynamics, whichremains an

active, but not yet fully understood, area of research. For instance, this work will compliment

studies such as [17] where the impact on market prices and investor revenues of a high wind

system is considered. Finally, like the models discussed in sub-section 4.1.3.7(and in the case

of GB, Section 3.7) this work can inform policy makers interested in the response of energy

markets to policies promoting wind generation.
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4.2 Uncertainty modelling

“There is nothing more certain and unchanging than uncertainty and change.” - JFK.

The future is uncertain, we can be sure about that. System modellers must make judgments

about what the future might hold in order to inform the debate about the best course of action

for today. In the case of electricity market modelling a number of techniques and philosophies

have been developed. In the following sections some of the methods influencing this work will

be discussed.

4.2.1 Monte Carlo method

In situations where there is a high degree of uncertainty about the model inputs, then the Monte

Carlo (MC) method is a common approach. With modern computing power, repeated random

sampling within a model of a large and complex system can be achieved. This sampling pro-

vides a method to reduce model error. Further, the larger the sample, the closer the sample

average will be to the expected value (law of large numbers), therefore ahigh number of MC

simulations is recommended. Examples of studies which have incorporated the MC method in-

clude [54] where 25 simulations of a 100 year time horizon are run becausethe model randomly

samples economic growth and weather. Also Pöyry [98] used this method to simulate future

GB wholesale market prices based on random sampling of wind speeds andother uncertain

variables.

4.2.2 Stochastic processes

A stochastic processis a set of random variables ordered according to some index, typically

time. Using stochastic processes within a model is useful when there is belief about how a

variable will evolve over time but it is in part random and unpredictable. Theevolution of such

a process may also be referred to as arandom walk. The field of stochastic processes is vast,

and a detailed discussion of the mathematics underpinning it is beyond the scope of this thesis.

However the interested reader could consult Chapter 2 of [32] for a comprehensive introduction

to the subject.
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The type of stochastic process of interest here is theWiener process(or Brownian motion),

which provides a basis for modelling a broad range of stochastic processes. These are continuous-

time Markov processes (where only the current value is required to forecast the next value of

the process), and have independent increments. Many of these properties can be visualised by

inspection if the generalised formula for a one-dimensional Brownian motion or Itô process:

dXt = m(Xt)dt+ v(Xt)dWt, X0 = x > 0, (4.1)

whereX is the state process,W is a one-dimensional standard Wiener process,m andv are

given deterministic functions. In plain terms, the functionm is the expectation (or drift) andv

is the volatility (or “noise”). By definitionWs−Wt ∼ N(0, s− t), wheres− t is the length of

the time-step. That is, the expectation of the volatility component is zero. Or putanother way,

the expected change,dXt, is precisely the result ofm(Xt). Furthermore, if the functionsm

andv are unchanging overtime (i.e., the process has constant statistical properties), this is then

termed astationary process.

Examples of the use of stochastic processes in electricity generation investment modelling

abound. This is because it underpins real options analysis and can be employed to forecast

uncertain parameters such as future demand and wholesale market prices(e.g., [136]).

4.2.3 Real options analysis

Although not employed in this thesis, real options analysis is a popular approach to modelling

uncertainty in generation investment. Therefore it is worthwhile discussing anumber of key

examples from the literature. The basic principle of real options is that the value of investment

can be maximised by choosing the optimal time to invest, i.e., there can be value in waiting.

Perhaps the best-known text on this field is that of [32] where the mathematical background

along with a firm’s decision process in the face of uncertainty are discussed.

In [137] a dynamic model incorporating real options theory is presented.The underlying value

of a project is modelled as a stochastic process. It is argued that models of this type are devel-

oped to represent the whole life of an investment: of initiation, running and abandonment, not

just the net present value (NPV) [137]. The objective of the investmentdecision can be to max-

imise social welfare (centralised decision) or maximise profit (generating firm decision). The
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paper discusses the introduction of price feedback in the decentralised case and finds that a price

cap below the VOLL leads to under-investment (or in the context of real options, project delay).

Capacity payments lead to earlier investments but also over-investment in peaking capacity.

In the follow-up work described in [138] a stochastic dynamic model is presented. The model

is stochastic owing to uncertainties such as load growth. Wholesale prices are modelled as

stochastic processes with fuel prices deterministic. These dynamic and stochastic characteris-

tics are the key motivations for choosing real options over a static NPV approach. The benefit

of not having to determine a risk-adjusted discount rate is mentioned, althoughan estimated

risk-adjusted discount rate is required for the simulations.

Investment in CCGT plant with either flexible or constant generation profile isconsidered (the

study example is the Nordic market) and the influence of a market with and without capacity

payments is analysed. The model works backwards from the last year ofthe planning horizon

(10 years out) with the decision in each year being the optimal one, given thestochastic inputs

of demand and available generation. The decision to invest is taken annuallyand is limited to

a single CCGT plant over the planning horizon (the purpose of this analysisis to establish the

effect of market structure on investment thresholds, not on total levels of investments). The

agent is assumed to be a price taker and the influence of a new investment onan existing port-

folio is not considered. As the wholesale price is a function of installed capacity and demand,

they take the logical step to constrain off the influence of the price processbeyond the end of

the time-horizon (i.e., assume that at some point before then, new capacity willenter to lower

prices in the long-run).

Two types of capacity payment were considered: fixed payments or a simplefunction of peak

load and available capacity. In the second case, the payment only occursif the capacity margin

falls below 7%. Capacity payments increase expected profits for both the disapatchable and

non-dispatchable technology options. Furthermore, optimal investment thresholds are reduced

(i.e., investments will be triggered earlier). Interestingly, investors wait forthe variable capacity

payment to grow until they trigger investments and therefore a higher payment is required in

order to enduce more timely investment.

Incorporating uncertainty into systems modelling is a challenge faced by all disciplines. For
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power market modellers, the methods discussed above provide a means of addressing uncer-

tainty in a simulation environment. Stochastic modelling is a well-established methodology

which bestows both confidence when applied in a simulation environment and adegree of re-

alism when interpreting the results. It allows foresight, but like any system with a high degree

of uncertainty, these predictions must be communicated and interpreted accordingly.

4.3 Scenario modelling

An alternative to tackling uncertainty using the simulation methods outlined above isto take a

scenario approach to modelling. This approach was originally established inthe early 1970s

by Royal Dutch/Shell as part of development and testing of its strategic planning [139]. These

types of models can incorporate multiple pathways by using scenarios to analyse alternative

futures. Traditionally, this approach seems to be favoured by policy makers because, owing

to the largely deterministic and hence uncomplicated modelling framework, they are able to

visualise the different futures over a range of input and policy scenarios (e.g., [96]).

When building dynamic models, a typical approach taken is to incorporate a number of scenar-

ios pertaining to “core” inputs with other inputs either modelled deterministically or stochasti-

cally. For example in [65] a number of policy scenarios are analysed in a dynamic GB electric-

ity investment market model and their impacts on carbon intensity reduction, security of supply

and consumer welfare are assessed. In [21] medium and long-term levelised costs projections

for a range of generating technologies available in GB are analysed against a number of sce-

narios for key cost drivers. More precisely, the common style of low, medium and high cost

scenarios for commodity prices, build timings, technical data, capital costs and technological

maturity is employed.

A similar method to scenario analysis is sensitivity analysis, and broadly speaking the objec-

tives of both are analogous. A sensitivity analysis is usually used to test therobustness of a

model under a range of values for its input variables. In contrast scenarios are typically con-

structed prior to implementation and consist of only a small number of discrete values for the

inputs being varied (e.g., with low, medium and high fuel price or demand growth scenarios

commonplace).
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4.4 Agent modelling

Market environments facilitate competition between participants (i.e., generatingfirms). De-

pending on the number of effective sellers in the market (monopoly, duopoly or oligopoly for

example) the actions of individual firms play a key role in market outcomes. Inmodelling terms,

these firms are commonly referred to as ‘agents’. Each agent will have their own attitude toward

risk and expectations about the future state of the system. When modelling a liberalised energy

market environment and the investments therein, the aggregated decisions of the agents directly

influence the evolution of the system. The methodology chosen to model these interactions and

decision processes relies heavily on the model scope; for example whether a single agent or the

interaction between multiple agents is being investigated.

For example in [135] three types of investor are modelled within an SD model ofa generation

investment in California, namelybelievers, pre countersandfollowers. Believers only include

plant under construction once it comes online (i.e., they do not forecast itsarrival earlier in the

simulation when it is under construction).Pre countersassume all plant under construction will

complete and include it in the simulation as soon as construction commences.Followershave a

“herd mentality”; they will not begin building new plant, even if a it is deemed profitable, until

others have begun construction elsewhere. The results of the interactions between these investor

types is quite interesting. Under a scenario with justbelievers, a boom-and-bust investment

cycle is witnessed, this can be attributed to investors continuing to initiate construction when

there is adequate capacity in the pipeline to meet demand growth. This behaviour leads to prices

being significantly damped owing to a large capacity margin when the excess new construction

comes online. A simulation with solelypre countersleads to investment that just keeps pace

with demand growth and the pattern of prices is more oscillatory; high prices in peak periods

when supply and demand margins are tight and lower in low demand periods when there is

excess capacity available. In a mixture of all three cases, a construction boom occurs early

in the simulation involving all three investors. Thepre counterswithdraw early in the boom

(owing to their forecast of new build), withbelieversand followerscontinuing to invest. As

a result, the installed capacity surpasses the level necessary to meet demand growth. In fact,

out of all the simulations only the purelypre countersrun does not display boom and bust

investment characteristics.
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Other SD models which implement a multiple agent investment market include [129] where

credit risk theory is used to differentiate between agents; more precisely an NPV is calculated

for each investor based on“a different endogenously-calculated discount rate”. [127] presents

a SD model with a duopoly investment policy based on a desired market sharetogether with

IPPs who invest based on“managerial optimism”about market share and expected investment

by rivals.

Another notable multi-agent model is presented in [118]. The model pays particular attention

to the trading of plant between agents, i.e., purchase or dispose. The market is deemed in

equilibrium when no plant trading occurs. The model is constructed basedon a Cournot game,

whereby agents decide on quantities to bid based on what they expect other agents to submit.

The second stage is then a Bertrand game which is analogous to a balancing mechanism and

day-ahead market; here agents set prices and the demand-side decidesthe quantities at that

price. A number of “markets” are simulated, namely base, shoulder and peak, to which each

agent (there are 24 in total) must determine (via a profit maximisation optimisation) how much

capacity they will bid into each market.

The studies cited above are designed to model multiple agents. However thereare many models

which model a single agent under the assumption that the behaviour of this agent is a good

representation of the market, and investment decisions are modelled as aggregated. Many SD

models take this approach including [119, 121–123, 128]. The issue of modelling aggregated

investor behaviour where, in reality, there are many agents competing with one another and

each agent has his own expectations about the future must be addressed. The next section

describes two different approaches which do this.

4.4.1 Expectations hypothesis

In addition to the attitude of market participants toward uncertainty and the risk associated

with it, the manner in which participants gather and use information to form their expectations

about future market conditions is an important consideration. In particular, for a model where

price signals drive investment in capacity, expectations about future price and its distribution

must be considered [121]. This phenomenon was investigated in [125] where an interactive

computer simulation model of a simple electricity market, with users acting as generating firms
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undertaking strategic investment decisions, was used to determine the rationality of capacity

investment decisions. As highlighted in [20], results showed there was a tendency for users to

1. initiate investments during high price periods, and 2. ignore capacity under construction and

construction time lags, thus leading to periods of surplus capacity and low prices.

A key element of commodity cycle theory is the expectations of participating agents. A number

of expectation hypotheses have been developed, and perhaps the mosthotly debated is that of

rational expectations. The development of this hypothesis removed the possibility of cycles de-

scribed by the cobweb theorem [20]. Followers of rational expectationsbelieve that it may not

be possible to design stabilising policies to influence individual agent behaviour, which when

aggregated, dampen cycles and achieve market equilibrium. Further, the hypothesis argues that

economic models of commodity markets do not assume enough rationality [140] and therefore

cannot be used as a policy tool. Thenatural rate hypothesis[141] states that there is a fixed

relationship between the aggregated supply and the difference between the expected and the

actual market prices. This implies that in order to change the level of installedcapacity in rela-

tion to natural levels, policy must influence the difference between actual and expected prices

[141]. For rational expectations to apply, a number of critical factors must be present. These

are not discussed here, but details are provided in [141]. Connectedto this is the argument that

central predictions about market outcomes (e.g., [67, 96]) affect agents’ forecasts and therefore

influence the course of events, as summarised in [142]:

“The problem of invalidation of a public prediction arises because the publicprediction may

affect the agents’ expectations and thus become a determinant of their behavior. Under these

conditions the public prediction becomes itself one of the factors which determine the future

course of events: because a public prediction has been made, the event which occurs at the

specified time is different from the one which has been predicted and which would actually

have occurred if the prediction had remained private.”

Therefore results from any economic forecast model entering the publicdomain must bear these

implications in mind.

Plainly boom and bust type dynamics will be less severe if investors have rational expectations.

For instance in [135], under the exclusivelypre counterssituation investment keeps pace with
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demand growth because investors take into account new builds in the pipeline. In general they

require an intimate understanding of the market and consequently take time to form. This is

arguably not possible in most electricity markets owing to their relative infancyand ongoing

modification [54].

In light of this, bounded expectationsis perhaps a more appropriate model to consider; this

theory assumes that agents are rational, but only within the limits of the informationavailable

to them. Because their information may be bounded they can sometimes take decisions that

appear to be irrational according to traditional theories [143]. Boundedrationality is used in

[114], where two SD models are presented, one with an annual generation capacity investment

decision and the other with a capacity utilisation decision (i.e., how much capacity torelease to

the market). The models“rely on simplifications that differ from reality”, although they high-

light the cyclical nature of prices and the SD formulation allows program users (actually a class

of final year undergraduate Engineering and Economics students) to make active investment

decisions during the simulation. They propose that users use a heuristic investment decision

process, which is bounded and based on experience. The“decision function” assumes agents

“use a feedback strategy to adjust their capacity towards a desired capacity.”

Other contrasting theories to rational expectations includesadaptive expectations. This theory

assumes that agents form expectations using past trends and any errors in their earlier pre-

dictions will continue. In [121], it is argued that“adaptive expectation formulations based on

exponential smoothing of past values and trend extrapolation can well replicate aggregate fore-

casting behaviour.”. Here a similar argument to [54] is used to discard the rational expectations

hypothesis“based on the fact that firms do not know the exact specification of the system, and

therefore, the structure of forecasting models and many parameters must often be judgmentally

estimated”.

4.4.2 Risk aversion

Investors attitudes to risk play a large role in behaviour and investment outcomes. A risk averse

agent would rather receive a given amount of wealth with certainty than thesame amount of

wealth, or perhaps higher, on average but with variance around this quantity [54]. In this section

some of the techniques used to model risk preferences within decision processes are discussed.
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4.4.2.1 Utility functions

Risk aversion can be described by autility functionwhich maps wealth to utility (or satisfac-

tion). Investors who have a diminishing marginal utility are termed risk averse;if investors

have a linear marginal utility then this is termed risk neutral (Fig. 4.3). The most common form

used to represent risk averse investment is an exponential curve owingto its downward sloping

(concave) property [54]:

U(x) = a− be−Rx, (4.2)

whereR is the risk tolerance (the largerR, the more risk averse),x is the expected monetary

value, anda andb are calibrated so zero results if expected wealth is zero and utility above

a certain wealth is 1 (i.e., full satisfaction). So for example, consider a situation, s, where

you can win£10 with probability 0.5 and win nothing with probability0.5. The expected

outcome isE(s) = 0.5 ·£10 + 0.5 · 0 = £5, however a risk averse participant may opt to take

£x (< £5) with certainty. Thisx is thecertainty equivalent. In (4.2), ifx = 3, thenR = 0.18

can be obtained by solvingU(3) = 0.5, U(0) = 0 andU(10) = 1, and the utility function’s

concave form is achieved. Under a risk averse utility, the expectation of the utility for a given

expected wealth is less than the utility of the expected wealth. This is the reverseinequality

of Jensen’s inequality applied to a convex function. Jensen’s inequality states [144]: iff is a

convex function over the intervalI andx1, x2, . . . , xn are inI, then

f

(

x1 + x2 + . . .+ xn
n

)

≤ f(x1) + f(x2) + . . .+ f(xn)

n
. (4.3)

An example exponential utility function is shown in Fig. 4.3. In this case, the function has

been calibrated by forcingU(5) = 0.7, U(0) = 0 andU(10) = 1.“indicating somewhat but

not extreme risk aversion”[54]. The two black dots show an example of the function obeying

Jensen’s inequality.
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Figure 4.3: Example of expected utility function. Function is calibrated soU(5) = 0.7 (in
(4.2)). This yieldsa = b = 1.225 andR = 0.17. Inspired by version presented in
[54].

4.4.2.2 Prospect theory and risk seeking behaviour

Prospect theory [145] is an alternative to expected utility criteria. It argues that the positive

utility function does not tell the whole story, and there is actually a negative utilityfunction to

consider. When investors stand to lose money they take bigger risks in the hope of recovering

their losses. In the context of power markets, this could be the differencebetween a firm

mothballing a plant as soon as it starts losing money, or keeping it available in thehope that

prices will improve. This is an important consideration in an investment market model that

considers price feedback as the main driver of boom and bust cycles.If this type of behaviour

is present, it will depend heavily on the financial stability of the firm; wealthy generating firms

can afford to take risks but new entrants and small players cannot. The middle ground contains

participants who are concerned with the reference point, or point of inflection, which is where

the utility function changes from positive to negative.

An example of a utility function with a reference point at zero is shown in Fig. 4.4; investors

are risk-seeking when expected wealth is below the point of inflection and risk averse above it.

By moving the reference point above zero the more likely the participant is to be risk-seeking.

This behaviour is perhaps best summarised in [146]:“the higher the reference point the more

likely the agent is to be a risk-taker (think of the notorious cases of Barings’ Nick Leeson and
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Socíet́e Géńerale’s J́eróme Kerviel), and hence the greedier she is.”.

Figure 4.4: Example of utility function with reference point at zero. For expected utilities
greater than zero the graph is as in Fig. 4.3. For negative wealth the function
is calibrated soU(−5) = −0.7 in (4.2), givinga = b = −1.225 andR = −0.17
(i.e, an exact reflection of the positive utility function in thex andy axis).

4.4.2.3 VaR criteria

Value at Risk (VaR) is a common criterion used in finance when investors areconcerned with the

extremity of realised returns below expected values (i.e., they are risk averse) [147]. Generally

speaking, given a distribution for project valueV (the random variable), and defining the level

of risk aversion byq, the VaR is defined as the valuevq such thatp(V ≤ vq) = 1− q, i.e.,vq is

the value of theqth percentile. An example of this concept is shown in Fig. 4.5.

Figure 4.5: Example of VaR decision criterion acting on a distribution of expected project val-
ues.

Despite their popularity, VaR models do have a limitation relative to other risk criteria (such as

Min Max Regret) as VaR analysis must consider probabilities of outcomes, but typically these
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probabilities are not well known. An alternative approach would be to useMin Max Regret

whereby an investment decision for a particular realisation of the system is analysed. Regret

is defined as the difference between the net benefit incurred when an investment decision is

made for a realised state of nature, and the maximum net benefit across all feasible strategies

that can be obtained under that realised state. For instance, investing in nuclear generation for

a realised carbon price that is lower than expected might have a higher regret than investing

in gas-fired generation under the same price. However, the Min Max Regret criterion only

considers the worst regret for each alternative, which makes its resultsvery sensitive to the

exact set of scenarios that are considered.

The Conditional Value at Risk (CVaR) test is more sensitive to the shape of the distribution

for V . It is said to provide a more coherent measure of risk than VaR as VaR is incoherent as

regards to the addition of risks [147]. Ifq is the CVaR level, then the expected shortfall at the

q level is the expected value in the worstq · 100% of cases. So for highq the most profitable

but unlikely values are ignored, but for lowq only the worst cases are considered. In the latter

case, an investment is made if the expected project value is positive conditional on the revenue

being belowvq, with q the confidence level, and investment is triggered ifE [V |V < vq] > 0.

4.5 Modelling market power

The opportunity for firms to abuse their position in the market and perform strategic or anti-

competitive actions in order to increase profits must be avoided (cf. sub-section 2.3.6). A

number of models have looked at this element of power markets (e.g., [77, 78, 118, 148–150])

with the aim of assessing market power in current markets (e.g., [78, 148,149]) or looking at

methods to mitigate against it (e.g., [3, 13]). Market power can be assessed in a number of

ways. Perhaps the most standardised method used is by inspection of the industry Herfindahl-

Hirschman Index (HHI). HHI is the market concentration calculated as the sum of squares of

individual firms’ share [148]:

HHI =
N

∑

i=1

(si)
2, (4.4)

whereN is the number of firms andsi is the market share of firmi. Depending on whether

the proportionsi is expressed as a decimal or whole number, the HHI can range from1/N
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to 1 or 100 to 10,000. Typical guidelines suggest that a HHI above 0.18 indicates a highly

concentrated market and above 0.1 indicates a concentrated market (e.g.,Office of Fair Trading

merger guidelines [151]). The inverse of the HHI gives the effective number of competing firms.

A rough calculation for the total installed capacity in GB market, which in 2011 consisted

of around 44 firms, shows a HHI of 0.095, with inverse 10.5, indicating a concentrated (or

oligopoly) market. Comparatively, the HHI for Sweden and Singapore arereported as 0.32 (8

firms) and 0.27 respectively [148]. Moreover, a cross-country comparison study for Europe

for 2003-05 [152] concluded that the GB market compared favourablywith other European

countries such as Germany and Spain. The report states that“the market structure in Great

Britain can be seen to be the only one largely conducive to competitive outcomes” [152]. For

instance, the average HHI values based on available installed capacity were 0.107, 0.191 and

0.279, for GB, Germany and Spain, respectively.

The classical definition of market share,si, is “output of supplier divided by total market out-

put” . Therefore the HHI calculated above is not the classical definition because it has been

determined using total installed capacity, which is different from total output,yet it is popular

with regulators as it is easy to calculate. In order to determine the true HHI index, one would

have to calculate the total output (demand met) at each market settlement period(or average

over all periods) and determine each supplier’s contribution. A method to calculate this Dy-

namic HHI (DHHI), is described in [153]. This paper also provides a measure of “gaming

incentives”in a uniform spot market. The incentive depends on the shape of the supply curve,

the market share of participating generators and demand elasticity. The formula calculates the

benefit from withdrawing plant; namely the increase in profit for the firms remaining plants

from pricemark-upplus the fixed cost savings as a result of plant withdrawal.

Some other market power detection methods are listed below. This is by no meansa complete

review of market power indicators and the interested reader should consult [13] for a review of

the subject:

• The Lerner index(LI) measures a firm’s ability to exercise market power by calcu-

lating the level of pricemark-up they can induce. If the price set by generatorx is

P , then the LI is given byLI = (P − SRMCx)/P whereSRMCx is the gener-

ator’s true SRMC. Note that theprice-cost margin index(PCMI) is a similar metric,
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PCMI = (P − SRMC)/SRMC. If the market is perfectly competitive, then both

metrics will be zero for the generator producing the last unit of productionneeded to

meet demand. However the use of LI or PCMI is problematic given the difficulty in

determining generator marginal costs [13].

• Thesupply margin assessment(SMA) is a type ofpivotal supplier indicator(PSI). PSIs,

which are 0/1 binary variables, attempt to incorporate both supply and demand conditions

to assess whether a particular generator is ‘pivotal’ in serving demand [13]. The SMA

for generatorx is made at peak demand and is given bySMAx = (D − ∑N
i=1|i6=xCi,

which is demand (D) net supply from all other generators’ capacity,Ci, in the market.

If this value is positive then generatorx is a pivotal supplier andPSI = 1, otherwise

PSI = 0. The SMA has been criticised for a number of reasons, one of which is thatit

is calculated for a single demand hour only [13].

• The residual supply index(RSI) is like a PSI but operates on a continuous scale and is

more expressive of actual market conditions. It is defined as the ratio oftotal ICAP less

the generator’s relevant capacity,RCx, over demand (D): RSI = (ICAP − RCx)/D

(as a percentage). Note thatD is the sum of full load plus purchased ancillary services

andRCx is the generator’s capacity minus it’s contracted obligations. This value can

be calculated for all load hours and provides a more complete assessment than SMA. A

value below 100% indicates a pivotal supplier, and a value greater than orequal 100%,

indicates a non-pivotal supplier. [13] states“that on average an RSI of about 120% will

result in a market price outcome close to the competitive market bench-mark” . Here the

“bench-mark” is the estimate of the market price in a perfectly competitive market.

• Theconcentration ratio(CR) is a measure of total output produced by a given number of

firms relative to the size of the market. For example, the CR capacity ownershipin the

GB market for the ‘big six’ generators is around 70%, which again indicates an oligopoly

market.

When modelling market power, or perhaps more precisely, detecting marketpower in exist-

ing markets, monitoring can occur at one of three periods. That is, either inadvance, close to

real-time or retrospectively. The choice depends largely on the metric beingused and hence
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data requirements. For instance, those that require data on realised prices (e.g., price trends or

congestion analysis) can only be carried outex-post, whereas those looking purely at market

structure (e.g., HHI) are largely dependent on generating capacity dataand can be carried out

ex-ante. Supplier type indices (e.g., LI) can be carried out during all three time periods although

the degree of realism will vary because sometimes data estimation is required. Furthermore,

the degree of monitoring ease depends on market structure. For instance, markets where the

majority of trades occur bilaterally will be more difficult to monitor than those where the ma-

jority of trading occurs in a pool or exchange (although problems remain if this data is also not

in the public domain). An in depth discussion on this topic is beyond the scope ofthis thesis;

[13] provides an excellent discussion on the need and design for effective market monitoring.

4.6 Timing and lumpiness of investment

A large volume of work has been carried out in the economic literature investigating the rela-

tionship that time lags (e.g., [154]) and lumpy investment (e.g., [155]) have oncommodity and

business cycles. The main cause of time delays are construction time or planning permission

hold-ups. Further, as discussed in Section 2.6, in a market situation they can be a result of strate-

gic actions by investors such as delaying investment until more information becomes available

and revenue uncertainty is reduced. There are many theories explainingwhy investors tend to

delay; on the one hand delays are costly because future revenues arediscounted andceteris

paribus investors would like to receive profits today. On the other, by making an investment,

there is a risk it will fail and thus the opportunity for future profit is lost andso there is an

incentive to delay [156].

In the case of power systems, lumpiness of capacity new build and retirementis unavoidable -

generating units traditionally come in sizes of the tens to hundreds of MWs range. In addition

when the cost of new capacity is weakly concave then economies of scale will encourage large-

scale investments which are few and far between [157]. Some assessmentshave reported that

underlying engineering procurement and construction costs are also cyclical [21], thus exacer-

bating the issue.

Strategic delays tend to be modelled (in the economic literature) in a real options setting, where
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the primary focus is the optionvalueof waiting (sub-section 4.2.3). Early work focused on

instantaneous investment timing alone [32] but more recent literature has addressed the impact

of time delays [156–160]. In [156] a simple dynamic model based on real options theory shows

that build delays can amplify“the natural cyclical nature of the economy”. The work presented

in [158] examines the timing and intensity of investment in order to“shed some light on the

dynamics behaviour of investment”. The model presented builds upon the existing theory of

[32] by addressing two decisions for the firm; when to invest and how muchto invest, with

alternative lumpy or incremental investment models presented. It is argued that by“adding the

choice of investment intensity enriches the model”. An interesting conclusion is that investment

under uncertainty not only delays investment but also lowers intensity wheninvestment is in-

cremental. By comparison this is not necessarily the case for lumpy investment.This type of

work is relevant here because generation adequacy is not only relianton timely investment, but

also adequate investment. An important distinction between lumpy and incrementalinvestment

is made;“that new capacity is not compatible with old capacity”. More precisely, incremental

capacity is installed as an extension to existing capacity whereas lumpy investment is either a

replacement for retired capacity or separate from existing capacity. Under this definition, there

is scope for both incremental (e.g., wind farm extensions) and lumpy (e.g., new CCGT plant)

investment in electricity generating capacity.

This work is extended in [157] to a situation where a firm is seeking to devise an optimal in-

vestment strategy in the face of uncertain demand growth. The formulations presented are more

representative of a dynamical system where equations defining installed capacity, stochastic

demand and time-lagged new builds form a stochastic differential equation (SDE) of excess

capacity. This can be analytically solved in order to find a closed-form optimal investment

strategy for a given set of input parameters. More precisely the investor objective is to min-

imise capacity costs, which include maintaining current capacity and installing new capacity,

with demand being modelled as a stochastic process and the price of capacity constant. Inter-

estingly, retirements to existing capacity are not considered and are therefore not included in

the SDE. The price for capacity is constant regardless of system excess capacity (which can

be negative) and therefore a“trigger” excess capacity level determines project initialisation

rather than the usual trigger price. It is precisely the assumption of constant price that enables a

closed-form optimal control investment strategy to be derived. In electricity generation invest-
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ment, the price for capacity is not constant, although the work does present some interesting

results which help explain why time delays, investment lumps, uncertainty and theinteractions

between them can lead to suboptimal timing of investment. The authors seek to address a num-

ber of issues. Firstly, does uncertainty delay investment? Secondly, doesgreater uncertainty

raise the trigger price for investment and reduce the trigger price for abandonment? And finally,

does uncertainty“depress” investment activity? The two examples presented show some sur-

prising results. In the first test case, where the time delay for new build is set at one year, the

excess capacity trigger level decreases (investors wait longer) with demand uncertainty and also

increase the investment lump size. In the second example, where delays areset at eight years,

the trigger excess capacity level increases (i.e., investors move earlier) and in fact“decreases

the firms sensitivity to uncertainty”. This rather unexpected result that higher demand volatility

leads to accelerated investment is explained by the firm’s“desire to contain the risk of capacity

shortage”. This is less easy to control with longer time delays.

[161] extends [160] to look at mitigating cycles in a endogenous growth model with time delays.

The structure of the model presented (a social planner problem similar to [160]) indicates that

some of the mathematical assumptions about the utility function described in [160]can be

relaxed and a“closed-loop policy” (CLP) developed. A CLP, like an open loop policy, is an

optimal policy to induce an desirable pathway for the control variable. However CLP uses

the feedback mechanisms present to gain a deeper understanding of the“economic implication

of these models”. Assumptions concerning utility function are relaxed compared with [160],

however the structure is still quite stylised - for instance, the production function is linear

and the utility function is homogeneous. The damping effect produced by theCLP is that

those investors who foresee future capacity coming online (rational expectation with perfect

foresight) and adding to supply will smooth oscillations.

Owing to the stylised nature of many of the models discussed above, it is difficult to use the

ideas directly in a generation investment market setting. That said, the concepts presented can

form a basis for formulating a dynamic model of the system, particularly the delay equation

formulations presented in [162] and [157]. These works will be referred to again in Chapter 5,

when the dynamics of the investment model implemented in this thesis are formally defined.
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4.7 Applications of control theory

As the approach presented here is concerned with applying techniques from optimal control

theory to model power market investment dynamics, it is worthwhile exploring ifand how this

methodology has been applied in power systems economics modelling in the past.

Feedback control theory has been applied to power systems in the past, within the more recent,

but largely equivalent discipline of SD. To date, studies have addressed more short-term issues

concerning generation resource availability (e.g., [163–168]). In contrast nothing in the litera-

ture has used classical stability analysis in order to design an investment market controller with

the aim of mitigating investment cycles in the power market. This was the primary motivation

for employing techniques from dynamic control in this thesis. That said, the concept of imple-

menting a control mechanism in an SD model is not new. For instance, in [169]a simple control

mechanism is implemented which uses a target level of installed capacity as the reference sig-

nal. If the market is not expected to achieve this target level, thus leading to”extra required

capacity”, then an“incentive signal” is sent to generators in order to induce investment. The

extra required capacity is estimated by a central body at the planning timescale far enough in

advance to allow for construction delay (here time to build CCGTs). The incentive signal is

an amount of revenue paid to generators separate to market revenues (i.e., capacity payment),

designed to cover the expected proportion of investment costs of the extrarequired capacity not

provided by the wholesale market. This additional revenue can vary yearto year depending

on the amount of capacity required and expected revenues received from selling energy on the

wholesale market.

In [164] a control system model of an energy market with differential equations governing

supply and demand is presented. Suppliers can choose to expand production when the system

price is above production cost; equally demand can increase consumption when the system

price is below the marginal benefit to consumers. Both forms of expansion are not simultaneous,

which is reflected by the inclusion of a time delay constant in the differential equations. The

state variables are the quantities and so the imbalance between supply and demand forms a third

equation. In the base case, supply must equal demand at all times and in the second case the

supply-demand equation can be temporarily unbalanced which will be reflected in the system

price. Owing to the transparent nature of the differential equations (i.e., the production cost and
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marginal consumer benefit functions are known), the system can be analysed for its stability

characteristics using classical eigen analysis, with the system deemed stableif the eigenvalues

lie in the left hand side of the complex plane. In fact, the system modelled is a linear first-

order so the eigenvalues (which are a function of time delays and linear coefficients of the cost

functions) have real parts only and therefore the system is stable if theseare negative.

Both of the control models presented in [165] and [166] are concernedwith generator bidding

strategies in spot markets. Using a Cournot oligopolistic market model, [166]provides a num-

ber of strategic bidding strategies for producers with alternative market expectations. In [165]

a bidding system based on price and demand feedback is constructed anda optimal controller

is designed with the goal of modifying the SMP in order to induce the necessary bidding be-

haviour to meet system demand. This approach of modelling the electricity market as a closed

loop dynamic system leads to a deeper understanding of market dynamics and stability charac-

teristics. Furthermore the use of optimal control theory enables us to develop strategies which

can guide the system toward stability, which is not possible through the use ofstatic models

[170].

In [163] an SD model is presented where demand is modelled as a stochastic process and

the simulated market price is a function of demand and available reserve. An optimal control

problem is formulated with the goal of maximising the welfare (profits) for both the supply- and

demand-side, with system reserve being the control variable. Interestingly, although the optimal

control problem is designed to find the competitive equilibrium between supplyand demand,

the generator ramp constraints, or“supply-side friction”, led to prices fluctuating between the

maximum (or“choke-up”) price and zero with no convergence toward the SMP. This high price

volatility is seen as a fundamental part of competitive power markets. The supply-side friction

is similar to the problem of lumpiness of new build and time lags during capacity construction;

new capacity capable of meeting demand does not become available immediately and so there

is a wait,“which allows the firm to accrue a larger than the static competitive equilibrium profit

for a while” [163].
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4.8 Summary of influence of literature

Drawing on existing knowledge has formed a valuable part of this research. For instance,

the work in the field of system dynamics has heavily influenced project scoping and model

implementation. The processes used in system modelling when defining the information flows

and system time delays has provided a concise method of defining this particular dynamical

system. This is important for communicating the model framework in a manner that can be

understood by researchers across a variety of disciplines.

The concepts discussed in Section 4.2 can be used to address many of the key uncertainties

that arise in power market modelling, particularly those that attempt to predict thefuture and

influence policy. As will become clear later on, this has informed the approach to modelling

uncertainties such as fuel prices, carbon prices, demand growth and construction lead times

using well-established stochastic modelling techniques.

A review of agent-based models has highlighted some of the limitations of what can be learned

from a single “representative” agent models, but at the same time it has demonstrated that there

is value in exploring this case, and if performed in the right way, robust conclusions can be

made. As is a common theme running throughout the literature, the principle of Occam’s ra-

zor should be applied from the outset; elements such a multi-agent logic can perhaps be added

at a later date to increase the model’s scope. Furthermore, Section 4.5 on market power has

increased understanding of how market power is monitored in power markets, and more appro-

priately, replicated in a simulation environment. Many of the market power detection methods

are not used within the model, although indicators such as RSI and SMA giveconfidence that

linking the degree of price mark-up to available capacity margin is a credible approach.

The concepts of risk aversion have influenced the modelling of investor decisions. By reviewing

all available methods of representing attitudes toward risk, the most appropriate methodology

can be applied. Furthermore, taking the perceived value of investment and translating that into

an aggregated market response decision has been heavily informed by the topics covered here.

Timing and lumpiness form a crucial part of the investment cycle phenomenonand gaining

an understanding of this is vital in any model of long-term investment trends.The models

discussed have aided the formulations of the system (cf. sub-section 5.1.5) and have helped
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communicate the mathematics that underpin this model.

Finally, a review of existing applications of control theory has provided inspiration for the

project, and assurance that there is value in taking this approach and thatcontribution to knowl-

edge is achievable.
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Chapter 5

Implementation of a GB Generation
Investment Market Model

In this chapter the methodologies used to address the research question posed in Chapter 1 are

presented. To begin, the fundamental model design concepts together with their application to

a dynamic investment model of the GB power market are presented. Included are details about

all elements of the first iteration of the model. The purpose of this iteration was tobuild on the

preliminary work carried out by Ḧani [123] and apply the model to the GB investment market.

Also included are the results and discussion accompanying this stage of the work. The model’s

ability to simulate the market trends witnessed in Britain since early 2001 are scruntinised. This

acted as a basis for extending the methodology to account for high penetrations of wind power,

which is the topic of Chapter 6.

5.1 Application of dynamic control to GB market

5.1.1 Basic concept

Under certain assumptions, fundamental economics dictates that market forces will match sup-

ply with demand in the most cost-effective way.1 As discussed in Chapter 2, ‘energy-only’

markets rely on price signals, in particular price spikes and increased scarcity rents, to provide

feedback to investors and incentivise the building of new capacity. To understand the effect

these characteristics have on market prices it is useful to consider plantinvestment as a nega-

tive feedback control mechanism with market conditions, which can be used to forecast energy

prices, acting as a feedback signal. This concept is depicted in Fig 5.1. Because the model is

dynamic, current prices and their predictions are fed back to the investment block modifying

1These assumptions relate to the market being perfectly competitive. This includes: 1) the market has many
participants, none of whom have market power; 2) demand is responsive; 3) there is perfect information flow; 4)
participants make rational decisions; and 5) there are no systematic externalities.
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the investment behaviour. The resulting investment decisions are then fed back to the pricing

mechanism, hence closing the loop.

Figure 5.1: Electricity investment as a control problem; investment can be viewed as anegative
feedback control mechanism with current and future energy prices (asa function
of generation capacity margin) acting as a feedback signal.

The elements of a classical control problem can be observed in Fig. 5.1: they are the reference

signal (capacity margin), the system gain (investment or retirements) and thefeedback signal

(market conditions, i.e., current and future prices). Further, the combination of inherent invest-

ment time lags, delays and uncertainty about the level of capacity coming onlinein the future

can lead to generation capacity oscillations. It is well known in control engineering that time

lags and uncertainty worsen system stability and create undamped oscillations.

5.1.2 Following Häni [123]

The Diploma project of Ḧani [123] was carried out at the University Of Edinburgh in 2005 and

acted as a starting point for this research. It analyses how wholesale market prices impact on the

decisions made by investors to install new or disconnect (mothball/retire) existing capacity. The

electricity market is modelled as a dynamical system and the work by Visudhiphan[122] was

the foundation. The main approach is to consider the capacity margin as a proxy for security

of supply risk and use different available market instruments to attempt to implement a model

that achieves long-term capacity margin stability (i.e., dampen oscillations).

118



Implementation of a GB Generation Investment Market Model

The model is summarised by Fig. 5.2. An aggregated approach is taken where individual

generators and consumers are merged into a single supply and demand component. The supply

side is dynamic and is described by the following steady-state discrete system:
∥

∥

∥

∥

∥

∥

x(m+ 1) = x(m) + u(m)

y(m+ 1) = y(m) + u(m)

∥

∥

∥

∥

∥

∥

(5.1)

wherex(m) is the installed capacity at monthm, y(m) is the sum of the installed capacity and

exogenous inputs plus new generation, both of which are represented by u(m). By represent-

ing supply dynamics using a set of parallel difference equations, the implementation follows

classical control theory. This allows the system state (x) and output, (y), to be measured at

each time-step (m). Initial values of installed capacity for nuclear, coal, CCGT and OCGT

are included, meaning a separate dynamic block for each technology. These technology types

are then intrinsically connected in order to simulate the aggregate electricity investment mar-

ket. Nuclear and coal are considered base-load capacity and CCGT and OCGT are considered

peaking. Each technology experiences a time delay on account of the construction stage. The

exogenous input inu(m) is modelled by a random variable reflecting levels of uncertainty in

supply and project abandonment. The new generation element is endogenous and represents

new capacity added to the system (i.e., as a result of the investment decision process) or dis-

connected. The sign on this element is unrestricted: positive for plant addition, or negative for

plant mothballing or retirement.

Figure 5.2: Summary of Ḧani model; an electricity market with capacity and demand as the
only variables influencing energy prices [123].

Häni’s spot market price formulation“does not reflect influences other than pure market rules”

[123] and the energy price is a function of only two parameters: total demand and total avail-

able capacity. The price model also reflects capacity shortages or excesses by producing an

infinitely high price when demand exceeds capacity and very low price whenthe capacity mar-

gin is large. The author states that“a realistic model has been constructed; it will not produce
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“nice” results, but rather credible results for the input data given”. This is an important point

and is discussed further later. Simulations start with reasonable parameters; for example, a 20%

capacity margin along with a random combination of peaking and base-load plants, each with

different life expectancies. No assumptions about total system costs arestated explicitly, al-

though the fact that plant annual capacity factors are computed using screening curves suggests

an initial mix and amount of capacity consistent with the minimum cost of supply.

Only maximum monthly demand is considered in the simulation, which is reasonable asthis

is when the capacity margin will lessen and potentially induce price spikes. These prices may

lead to a systematic over-estimation of revenues by investors if used as the investment signal.

Fluctuations during a given month are well known and the detailed load patternis periodic and

seasonal. The scale of these fluctuations is similar throughout the year, thus enabling estimation

of the actual values of base and peak demand (via a simple, linearly decreasing, LDC). There

is a pre-defined pattern describing seasonal changes modelled using a region-typical demand

curve for one year. The simulated monthly demand also contains two random variables. The

first reflects uncertainties (e.g., weather and demand forecast error)and is sampled from a

Normal distribution with mean 0 and variance specified by a fixed volatility factor. The second

is a random variable which increases over time to reflect higher uncertainties for distant future

periods. Annual demand growth is included, with a constant rate of increase assumed. Demand

elasticity is considered to be virtually zero, although the final demand model includes elasticity

and a demand cap to simulate disconnection or“self-rationing” .

The model uses the Internal Rate of Return (IRR) method when calculating investment deci-

sions, i.e., the value of the discount rate which yields a NPV of expected revenue of zero. In-

formation on total demand, total operational capacity, generator life expectancies and expected

commissioning dates for capacity under construction are considered transparent and observ-

able. More precisely, the IRR for each technology type is calculated priorto model execution

for the full range of possible spot market prices. Then a minimal acceptable IRR is used as a

trigger for investment. In fact, the market spot price is the only dynamic parameter in the model

and hence determines the investment decision. Depending on investor behaviour, expected rev-

enues can be calculated can be either“current, past and maybe future market prices”[123]. In

the case of mothballing (and de-mothballing), a threshold market price, equal to the variable
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operating cost of the technology is used as the trigger price. Results showed that the outputs of

the model (i.e., installed capacity in Fig. 5.2) are very sensitive to the parameters of the pricing

mechanism, which is unsurprising given that revenues are inherently linked to this parameter.

The impact of investor behaviour is also tested in the Häni model. Taking inspiration from Ford

[135], ‘believers’ and ‘pre counters’were implemented, and an‘average investor’was also

constructed, which was a combination of the two. As with the work by Ford [135], the more

rational the investors expectations of new capacity coming online, the less overshoot dynamics

were witnessed.

The purpose of the Ḧani work was not to replicate a specific market, but to act as a proof of

concept for a dynamic control approach to modelling capacity margins in market environments.

The relative success of implementation in the Matlab/Simulink programming environment was

encouraging, although the model is quite stylised and in order to be applied to areal market

environment, further development is required. Furthermore, some problems were encountered

when implementing (5.1). These mainly involved the transfer of state information toother

functions and blocks within the model (a crucial element of any state-spacemodel). As a

result, many of the aims, particularly those relating to the implementation of a controlsignal

(i.e., capacity mechanism) could not be fully investigated.

5.1.3 The GB investment market model

Having gained an understanding of the work of Häni, attention now turns to this model im-

plementation. It was decided that applying the concepts first considered by Häni to a particu-

lar energy market would prove extremely valuable and contribute significantly to this field of

knowledge. The GB investment market was chosen for the application. In theremainder of this

chapter, the first iteration of the model framework is presented together with preliminary results

achieved from a hindcast simulation against historic GB market trends. Thispart of the work

was carried out during the first 18 months of the research and allowed deeper understanding

of the complexities faced when modelling a real system in a simulation environment,and the

degree of realism that can be obtained from the results of such models.

When simulating a real system using a dynamic control model, one must rememberexactly

that; that it is not the real system but only a substitute for it. Using computer-based simulation
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models enables these complex systems to be studied in an academic environment, though the

outputs of such models must be interpreted accordingly. They are usually based on a number

of (typically simplifying) assumptions in order to keep the model tractable. Classical control

theory recommends taking three steps when analysing a system:

1. Model the behaviour of the real system.

2. Identify problems such as instability (e.g., boom and bust investment cycles).

3. Optimise the controller to meet performance specifications (e.g., reliability/riskcrite-

ria/target capacity margin).

To understand and control these systems a mathematical model is required. As the systems

under consideration are dynamic in nature, the input/output relationships are described by dif-

ferential (or difference) equations (e.g., (5.1)).

5.1.4 Data considerations

When using results from a simulation model to make a prediction about the investment and

generation adequacy dynamics under a particular market framework, it ishelpful if the validity

of the model can be tested, particularly if the outcomes of these models will directly influence

policy decisions. In order to simulate past trends, historic market data must be obtained. The

availability and quality of such data will determine firstly, the amount of validation that can be

carried out and secondly the level of confidence that can be taken when comparing with history.

Below is a list of the key data requirements for such a task together with resources:

• Market price data for the period before the introduction of NETA has proved difficult to

obtain, therefore the validation work is constrained to a comparison with market trends

post NETA (i.e., 2001 onwards). Historic Market Index Price (MIP) data is available

via the GB price reporter ELEXON [171]; this a reflection of the short termwholesale

price in GB and matches Reference Price Data obtained from the APX PowerGroup

[172]. More detailed wholesale market price data is available via subscription to the

power exchanges, but the prices charged are beyond the financial limitsof a postgraduate
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studentship. Further, industry regulator, OFGEM, can be called upon to provide pricing

data in its market liquidity reports (e.g., [8]).

• Databases such as the Economic and Social Data Service [90] can be called upon to

provide historic data for a number of countries, of particular interest arefigures on to-

tal installed capacity, generation by fuel type and peak demand. This data can also be

obtained from NG’s Seven Year Statements [27], which includes informationon plant

capacities, commissioning year, retirements and mothballing. Further, information

on plant mothballing in response to market conditions is available from OFGEM [173].

As GB SO, National Grid (NG) publishes a Winter Outlook [66] in which it makesan

assessment of both the security of both gas and electricity supplies.

• Generating unit cost datacan be estimated using these and other published studies such

as the macro-level MARKAL model [174] and, more recently, the extensive investigation

into generation costs published by Mott MacDonald [21]. In fact, the latter has been used

as input data for much of the recent modelling work commissioned by DECC (e.g., [65]).

These resources report technological characteristics such as generic thermal efficiencies

and annual plant availability.

• Details ofutility financial structures , such as cost of capital and gearing ratios can to

some extent be derived from company annual reports (e.g., [41–46])or independent firms

that have carried out generation investment modelling for government andhave better

access to resources than the academic sector (e.g., [104]). It is not just input data that

is helpful in a model such as this, but also data about processes, in particular, how firms

carry out investment decisions. Some details can be obtained by conductinginterviews,

but by and large this information is kept secret and so must be estimated.

• Owing to the commercial nature of energy markets, limitations exist on the amount of

data that can be obtained. For instance, detailed information about thetechnical charac-

teristics of existing power plants, such as thermal efficiencies and forced outagerates is

not published, which makes calibration of the NG Winter Outlook estimates difficult.

• Electricity demand data for GB is readily available as far back as 2001.
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All forms of recorded data can be subject to errors. Missing or corrupt measurements can lead

to systematic errors in estimations. Therefore an important part of any process which involves

a lot of data gathering is quality assessment. Another issue surrounds dataconsistency. The

gathering of data inevitably leads to inconsistencies between resources (e.g., Fig. 3.5). This is

particularly problematic when comparing model output with historic trends; it maymatch one

data set well but not another.

5.1.5 System dynamics

Modern control theory operates in the time domain and differential equationsinvolving state

variablesare used to represent the system. In this instance, the dynamics of the system state

concerns the evolution of installed generation capacity and rate of demand growth. The rate of

change in capacity at a particular time-step is dependent on new plant comingonline or being

de-mothballed together with any plant being retired or mothballed. Both are delayed signals

from some earlier time. In the case of new plant this delay is the lead time for construction,

and in the case of retiring plant, this delay is the design lifetime. Further delays are caused

by the need for investors to accumulate data in order to form their expectations about future

market conditions. Mothballing requires zero delay, whilst de-mothballing requires a delay that

is significantly less than full construction. An aggregate approach is takenwhereby capacity is

combined into five categories of generator technology, namely nuclear, coal, wind, CCGT and

OCGT each with its own financial and technological characteristics. In this implementation, all

generator types are endogenous with evolution depending largely on the investment decision

element of the model. Demand is modelled as exogenous using predefined growth scenarios.

The model does not consider the transmission network and is conceptually asingle bus system.

The elegant notation used in [157] is employed to define the state of the systemat “real-time”.

The state of the dynamic system holds crucial information and is defined by thevectors(Ix, ψBx )

whereIx is the installed capacity of plant typex and

ψBx =
{

(ηBj , ξ
B
j ), j = 1 . . . ωx

}

, (5.2)

is the vector of new builds (superscriptB). ξBj is the size of investment block andωx is the

number of capacity blocks of typex under construction.ηBj indicates the time at which the
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decision is taken, with−τx < ηB1 < ηB2 < . . . < ηBωx
, whereτx is the expected build time and

j is the total number of non zero investment years since time zero. The ordering convention

ensures that the oldest investment block of sizeξB1 will be completed first at timeηB1 + τx

[157]. For instance,ψBx =
{

(1B1 , 10B2 ), (4B2 , 10B2 ), (7B3 , 10B3 )
}

implies that investments of size

10 units where undertaken at time-steps 1, 4 and 7. The control system is now defined as the

volume of installed capacityI(t), which is a parallel cascade of the five technology categories

(nuclear, coal, wind, CCGT, OCGT). Each single category is defined bya Delay Differential

Equation (DDE), i.e., the change in installed capacity at timet is given by:

dIx(t) =
∑

(ηB
j ,ξ

B
j )∈ψB

x

ξBj δ(t− ηBj − τx) −
∑

(ηB
j ,ξ

B
j )∈ψB

x

ξBj δ(t− ηBj − τx − αx), (5.3)

whereδ(t) is the Dirac delta function. This function has zero width and infinite amplitude

with
∫ ∞
∞ δ(t)dt = 1, and is zero everywhere except at the origin [175]. The first term in (5.3)

accounts for the addition of capacityξBj installed at timeηBj + τx. The second term accounts

for deletion of capacityξBj built at timeηBj + τx and retired at timeηBj + τx + αx, whereαx

is the expected lifetime. This is described in Fig. 5.3. Reading from left to right,the diagram

demonstrates how new capacity builds are represented by nonzero impulses of magnitudeξBj .

In this example, impulses at timesηB1 andηB4 contribute to the change in installed capacity at

time t due to one of the two Dirac delta functions in (5.3) evaluating to zero. This demonstrates

how time delays due to capacity construction (blockξB4 ) and lifetime (blockξB1 ) are captured.

Note that neither of the Dirac delta functions forξB2 andξB3 evaluate to zero. Therefore they do

not contribute to the change in capacity at timet, however they will contribute to the measured

change in installed capacity at some other time.

(5.3) can be extended to include mothballing or premature retirement of capacity. This is de-

fined by extending to state vector to(Ix, ψBx , ψ
M
x ), whereψMx =

{

(ηMi , ξ
M
i ), i = 1 . . . ωx

}

is

the vector of mothballed and de-mothballed capacity (superscriptM ). The indexi provides

the total number of non zero mothballing or de-mothballing years since time zero.Thus (5.3)

becomes:

dIx(t) =
∑

(ηB
j ,ξ

B
j )∈ψB

x

ξBj δ(t− ηBj − τx) −
∑

(ηB
j ,ξ

B
j )∈ψB

x

ξBj δ(t− ηBj − τx − αx)

+
∑

(ηM
i ,ξM

i )∈ψM
x

ξMi δ(t− ηMi − τMx ). (5.4)
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Figure 5.3: Breakdown of DDE (5.3) at timet (indicated by a circle on the timeline) for plant
typex where non zero impulses (scaled Dirac delta function) at timesηB1 andηB4
contribute to the measured change in installed capacityIx(t).

This includes all mothballed and de-mothballed plant becauseξMx is free to be positive or neg-

ative and the delayτMx = max
{

0, τDx · sgn(ξMi )
}

, i.e., zero if mothballing andτDx otherwise,

whereτDx is the lead time to de-mothball plant typex. Note that any mothballed capacity

must continue to age whilst it is “disconnected” from the system to ensure it ispermanently

retired once it reaches the end of its design lifetime. It is noted that by assuminga fixed design

lifetime, the model overlooks the option for generators to repower their existing plant (e.g.,

refurbishment, systems upgrade and equipment retrofit [176]). The implication in a model such

as this is that the simulated investment dynamics may alter due to perhaps: 1) smoother exit of

existing plant and 2) a lower capital intensive option for generators relative to full replacement.

However representing this additional choice for investors would add significant complexity to

the model and increase computational burdens. Moreover, the factors involved in a repower-

ing decision are very complex (e.g., see [176]) and the costs are site- andtechnology-specific.

Due to the lack of publicly available data, these costs would likely need to be estimated, and

if included in the simulation model would reduce the credibility of the results presented. Each

capacity block in (5.3) and (5.4) consists of a number of smaller components that represent
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individual plants. These are 500 MW for nuclear and coal, 100 MW for CCGT and wind, and

50 MW for OCGT.

The total installed capacity can be obtained by integrating the DDEs in (5.4)

Ix(t) = Ix(0) +
∑

i∈Ax

ξBj −
∑

i∈Rx

ξBj +

ωM
x

∑

i=1

ξMi (5.5)

and summing over the five technology types, i.e.I(t) =
∑4

x=1 Ix(t). Ix(0) is the initial

installed capacity,Ax is the set of all built plantAx =
{

j|t ≥ ηBj + τx

}

, andRx is the set of

all retired plantRx =
{

j|t ≥ ηBj + τx + αx

}

.

5.2 Modelling the “real-time” GB wholesale energy market

Simulating wholesale energy prices is an important aspect of any model that addresses invest-

ment in generating capacity under a liberalised market framework. Furthermore, the wholesale

price trends witnessed can indicate to observers how well the system is functioning and whether

there has been adequate investment in capacity. For example, as discussed in sub-section 2.4.5,

there is a tendency for over-investment to lead to periods of low energy prices and conversely

under-investment leads to periods of high prices. Further, investors must also make market

price expectations and much of the logic presented in this section is used to anticipate future

revenues for generators during the forward-looking investment decision process described in

Section 5.3.

It is assumed that in a competitive energy market, generators will bid to produce electricity

at or around their marginal cost. The rules of the GB market allow for generators to trade

freely, i.e., there is no marginal cost bid rule in place. However there is anecdotal evidence to

suggest that prices are typically close enough to theoretical marginal cost, so it appears valid to

assume generators bid in this way. That said, recent analyses of the GB market [98] showed a

tendency for prices in the balancing mechanism (BM) to rise above the estimated marginal cost

of the last generator dispatched in peak demand hours. Other examples ofempirical analyses

which support this claim include [177, 178]. In [177], an analysis of theTexas BM revealed

evidence of bidders, particularly smaller firms, submitting supply curves in excess of their

theoretical optimal supply function. [178] found that a Cournot oligopolymodel provided a
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better representation of the California, Pennsylvania-New Jersey-Maryland (PJM) and New

England wholesale markets than a perfectly competitive model during peak hours, and it was

during these hours that the presence of price mark-ups was detected. In this case the market

does not necessarily clear at the marginal cost of production. Consequently, it was decided to

include a price mark-up function, which is driven by the system capacity margin. This is also

consistent with the Ḧani model. This also agrees with the methodology used in [98] to simulate

GB system marginal prices. Details of each element together with how the full wholesale price

is simulated is covered below.

5.2.1 The marginal cost element

This is computed using the aggregate system supply curve under the assumption of perfect com-

petition. More precisely, variable operating costs are estimated for each ofthe five technology

types and an aggregate supply curve based on the entire generation setis constructed.

5.2.1.1 Fuel

Firstly, wind variable operating costs are assumed to be zero. In the case of the four thermal

generator types, variable operating costs are based on the common (convex) cubic function of

power output [179]:

C(P ) = a+ bP + cP 2 + dP 3 + V. (5.6)

wherea is the no load cost inMBTu, b is the average heat rate (MBTu/MWh), c andd

are incremental heat rates, andV is the variable operation and maintenance cost (£/MWh). To

keep things simple, the cubic function (5.6) is simplified. More precisely, no start up or no-load

costs are considered and linear variable operating costs are assumed for all generators, i.e., total

variable operating costs for generator typex are given byCx(P ) = bxP + Vx, which leads to

a stepped aggregate supply function in the short-run (if bids are assumedto equal generator

marginal cost,SRMCx = bx) based on the marginal costs of the entire generation set.bx can

be derived from the generator type thermal efficiency,νx (∈ [0..1]) and fuel cost,F (£/MWh).

Note that the fuel costs must be expressed in standardised units, so theb in (5.6) is different

from thebx used to estimate total variable operating costs, though using the fact that there are

3.413 MBTu in a MWh, either form can be derived.
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Note that the following conversion factors are used when converting fuel prices into costs per

unit of energy produced: 1 GJ = 9.48 therms (for gas), 1 MWh = 3.6 GJ = 3.413 MBTu [180].

For coal, the rate of conversion used from£/tonne to£/GJ is 25.12 (i.e.,£100/tonne is equivalent

to £3.98/GJ) [181].

5.2.1.2 Emissions

To account for the Emission Trading Scheme (ETS) in operation across Europe since 2005, the

additional cost incurred by generator types who produce GHG emissionsmust be accounted

for. This is estimated by altering the variable operating cost function:

C(P ) = bxP + Vx +
ϑx · Fcar

νx
(5.7)

whereϑx is the carbon produced by burning the particular fuel type at 100% efficiency (kg/MWh)

andFcar is the ETS (or carbon) price (£/kg). The emissions output from each fuel source is

given by: gas - 185 (kg/MWh) and coal - 330 (kg/MWh) [180]. Therefore based on the thermal

efficiencies in Table 5.6, CCGT generator types emit 349 kg/MWh, OCGT 474kg/MWh and

coal 943 kg/MWh. These figures are broadly in line with DECC estimates of 910 kg/MWh for

coal and 400 kg/MWh for gas [182]. All other technology types are modelled with zero carbon

emissions. Using these conversion factors together with the thermal efficiencies in Table 5.6,

allow standardised formulas for marginal costs (£/MWh) for the five conventional plant types

to be derived. These equations, along with a numerical example, are given in Appendix A.2.

5.2.2 Price mark-up

In this study the market price includes an additionalmark-upterm that alters the shape of the

aggregate supply curve as the system approaches scarcity. Some studies (e.g., [105]) have found

the presence of negative mark-up in very low demand hours. One reason for this phenomenon

in the current GB system could, for example, be on account of CHP plantsneeding to continue

(or start) generating because of heat commitments. However such a function is not considered

here. Two forms ofmark-upfunction were considered; an exponential (variation of [122]):

w1(L,G
∗
N ) = aeb·(L−G

∗

N
) (5.8)
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and a hyperbolic [123]:

w2(L,G
∗
N ) =

g · L
G∗
N − L

(5.9)

wherea, b, andg are scalar factors to be set in order to induce the desired price behaviour and

L andG∗
N =

∑N
i=1Gi are the load and total realised available capacity from all generators,

respectively (GWs). NoteN = 5 in this application. Note that the parametersa andb are

calibrated so that a capacity margin of zero provides a mark-up equal to theVOLL. For instance,

for a VOLL of £10,000/MWh,a = 10, 000 andb = −1.123, and for£2,000/MWh,a = 2, 000

andb = −1.101. Note that both (5.8) and (5.9) are set to zero for negative capacity margins;

the situation when there is inadequate available capacity to meet load is dealt with in(5.11).

To illustrate, a selection of functions are plotted in Fig. 5.4. Both (5.8) and (5.9) were used in

the Ḧani model [123]; results showed dependence of the model output on thefunction scalar

factors. As it is impossible to determine the “real” pricing mechanism for the GB market, it

seems sensible to tune the pricing mechanism to produce credible results for the GB market.

This is the subject of sub-section 5.5.5.

(a) (b)

Figure 5.4: (a) Price mark-up for different values of capacity margin (1 GW intervals) and
calibrations for (5.8) (labelled “Expo.”) fora = 10, 000, 2, 000 and 1, 000 and
(5.9) (labelled “Hyper.”) for g = 5.9, g = 10.9 andg = 16.0. (b) Same plot on a
logarithmic scale.

The hyperbolic function was used under reasonably healthy system conditions when an ade-

quate capacity margin is present (range 50-20%) and the risk is low, yet itdoes not increase

sufficiently quickly as the system approaches scarcity. Under these conditions, the exponential

function is better. Therefore a thirdmark-upfunction was constructed as a max of (5.8) and

(5.9):
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w3(L,G
∗
N ) = max {w1(L,G

∗
N ), w2(L,G

∗
N )} (5.10)

5.2.3 Price setting procedure

The price is set by performing an economic dispatch and the marginal cost (5.7) of the last

generator to be dispatched sets the system marginal production cost. By assuming a linear cost

curve, the speed of the economic dispatch optimisation model is greatly increased; the supply

curve is simply a piecewise step function where each piecewise constant segment is given by

the SRMC of each generator typex. The full pricing function is defined as:

π(L,G1, G2, . . . , GN ) = mc(L,G1, G2, . . . , GN ) + w(L,G∗
N ) (5.11)

wheremc(L,G1, G2, . . . , GN ) is the marginal production cost of meeting the load,L, given

realised total available generationG∗
N , andw(L,G∗

N ) is the price mark-up function. If there

is inadequate available generation to meet load, i.e.,L > G∗
N , then (5.11) is set at the VOLL.

The time-step in the “real-time” energy market can be lengthened to a minimum frequency of

hourly. This is included so that wholesale price movements can be simulated throughout the

year, which is particularly useful for model validation.

5.3 Modelling investment decisions

In this implementation, investment decisions are taken annually. Market conditions in the “real-

time” energy market simulation are taken as initial conditions for predictions of the future

state of the system during the lifetime of a potential investment. Crucial uncertainties such

as future demand, fuel prices and wholesale energy prices are all simulated. There would be

little value in listing each difference between the investment model logic in [123] and this

work. It is important to note that some similarities do remain, but overall the logic has changed

substantially. For instance, IRR is not used for the investment decision andthe specifics of the

NPV calculations have been altered. This was motivated by a need to avoid thepitfalls of IRR

[36] and to allow the capacity factors of investments to be dynamic.
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5.3.1 Investment logic

As Fig. 5.1 suggests, the investment block is key to determining the response of the dynamic

system to changes in price and underlying levels of capacity. The arrowsfeeding out of the

investment block to“forward-looking models”represents any forecasting the investor carries

out in order to determine an investment strategy (i.e., invest in new capacity, withdraw existing

capacity or do nothing). The “real-time” model can have up to a hourly time-step. Owing to

computational burdens, the investment block executes with minimum frequencyone year, with

mothballing decisions carried out up to every six months. In this model the annual investment

decision is considered an irreversible decision. It is based on the Net Present Value (NPV)

of anticipated future profits. These profits are calculated in the standard way, that is profit is

revenue received from selling power minus the costs incurred producing it.

For simplicity, a single investor who is well acquainted with the structure of the market and

capable of securing the necessary debt to finance large-scale capacity investment is modelled.

This representative agent approach has been used by other dynamic capacity market models

(e.g., [54]). Furthermore, this design follows the adaptive expectations hypothesis discussed

earlier and has been applied in other dynamic models (e.g., [34, 119, 121, 135]). When estimat-

ing the profitability of an investment, a Monte Carlo approach is taken to obtain a probability

distribution of profitability whereby estimates for capacity already under construction (includ-

ing delays), demand growth, and fuel prices are considered stochastic.

The representative (or aggregate) agent is aware of capacity already under construction at the

start of each decision process. However there is uncertainty about a)the time remaining to

build each unit; b) whether they will in fact make it to operation; and c) if rivals will jump

in and invest in response to increases in expected profits. In the base case, generators assume

all units will come online with 100% certainty, and remaining build time is stochastic. This is

modelled as the sum of the expected build time (minus one year) plus a random variable that

is sampled from a lognormal distribution,lnN(µ, σ2), whereµ andσ are the mean (one year)

and standard deviation (six months) of the distribution, respectively. This distribution is shown

in Fig 5.5. A lognormal distribution was chosen due to the fat-tailed property not present in

other more “well-behaved” distributions commonly used to sample random variability about a

mean (e.g., a Normal distribution). This captures investor uncertainty aboutadditional (e.g.,
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planning and licensing) delays: on average they last one year, though extremely long and costly

delays may also be experienced. Decision making under uncertainty is modelled by taking

a risk averse attitude to investment; this is discussed in the next sub-section. Investors also

assume that currently operational units will generate for the duration of their design lifetime.

Figure 5.5: Additional delay (months) for projects under construction. This value is added to
each technology’s expected build time (minus one year).

The investor models expected price of each fuel type and the carbon price in the system as a

stochastic process. More precisely a Geometric Brownian motion:

dFt = m(Ft)dt+ v(Ft)dWt, F0 = f > 0, (5.12)

is constructed for each fuel type and the parameters are defined basedon perceived drift (ex-

pected change), (m) and volatility (v) characteristics. The initial values (F0) are taken to be the

average of prices witnessed over the previous year (Fig. 5.10).m is 4% per year for gas and

carbon, and 1% for coal and uranium.v is 0.3% for gas, 0.2% for coal, 0.05% for uranium and

0.2% for carbon. These parameters were chosen based on anecdotalevidence about the relative

volatility and rate of price increases for each commodity. Forward curves are not included in

this initial iteration of the model. It should be noted that the volatility of each fuel type are

not modelled as correlated random variables. The implication of this is that the model may

under-estimate the relative volatility in profits between technologies, howeverthe model is able

to capture the correlation between gas and electricity prices on account ofsimulated electricity

prices being a function of generator production costs (5.11). An exampleof a model that does

include correlated fuel prices is [183], here a calibrated (to UK government data) SFE simula-

tion model where oil prices are“taken to be the underlying random variable, while the prices

of gas and coal are linked to it”is presented. The correlation coefficients used match well with
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empirical data for the period 1996-2005 (e.g., gas correlation with coal is 0.63). The simulation

showed that predicted profits for gas-fired generators were highestand had the lowest variance,

while nuclear generators profits were found to be lower and more volatile.

The yearly utilisation factor of a potential investment is based on simulated daily peak and

base loads. The simulated loads use a base demand profile, which is precalculated using 2006

‘IO14 DEM’ load data from NG [19], plus a random variable to account for uncertainty in

the forecast. This random variable follows a Normal distribution with mean 0 and standard

deviation 100 MW. To model increasing uncertainty into the future, this standard deviation

increases at a rate of 10% per annum throughout the forecast, i.e.,∼ N(0, 102 · (1.1)y−1)

wherey is the forecast year. In addition, the investor assumes an annual growthrate of the base

demand profile of 1.2%, this is applied by scaling each simulated load by 1.012. To illustrate,

the base demand profile for January is plotted in Fig. 5.6.

(a) (b)

Figure 5.6: (a) Example daily load profile (January) and (b) annual LDC (solid line)with fitted
polynomial functione(t) (dashed line).

For each year in the forecast, an annual LDC is constructed from the predicted daily loads (Fig.

5.6(b)). A 5th order polynomial function,e(t), is fitted to each LDC (using Matlabpolyfit) and

the required base-load and peak energy is computed. For simplicity, the required base-load

power is assumed to be the value of the LDC at 100% duration,B, and the required base-load

energy (MWh) is given byeB = 8760·B, i.e., the rectangular block in Fig. 5.6(b). The required

peak-load energy (MWh) is then given byeP =
∫ 8760
0 e(t)dt− eB, i.e., the area above the line

markedB in Fig. 5.6(b). eB andeP are then used to assess expected unit utilisation. Wind,

coal and nuclear units are restricted to serving base-load energy and CCGT and OCGT are

restricted to peak-load energy. It is noted that by forcing units to be in a particular load segment

the investor does not account for 1) the fact that CCGT and OCGT units may provide residual
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base-load energy (i.e., remaining base-load energy once available energy from base-load units

has been used), and 2) that the merit order may change over the courseof the simulation time

horizon. However this approach was made possible by the fact that in no simulated year in

the historic GB case study was either 1) available energy from base-load capacity significantly

below eB or 2) CCGT below coal in the merit order. In an application where these factors

are an issue, an alternative approach would need to be devised. Note that the improved model

presented in Chapter 7 does not suffer from this imperfection.

To keep things simple, the total available energy (TAE) for each unitu (unit sizes given in

sub-section 5.1.5) is calculated using expected available capacity:

TAE[eu] = 8760E(Gu) = 8760cu(1 − ρu), (5.13)

whereρu is the unit FOR. This is subtracted fromeB or eP following the generator type merit

order (i.e., stack the units in increasing marginal cost, and call on the lowest-cost units first).

The expected energy served for each unitu which is considered base-load is given by

E[eu] = max(0,min(eB −
NB
∑

i=1

E[ei], TAE[eu])), (5.14)

whereNB is the total number of base-load units belowu in the merit order. Similarly for a

peak-load generator

E[eu] = max(0,min(eP −
NP
∑

i=1

E[ei], TAE[eu])), (5.15)

whereNP is the total number of peaking units belowu in the merit order. Utilisation factors

can be obtained by dividing (5.14) or (5.15) (depending on generator type) by (5.13). Once

the TAE from existing units has been computed and subtracted from total energy demand, any

remaining energy is considered available for the potential investments (categorised as base or

peak), with utilisation factors,uf iu, calculated similarly.

Expected competitive market prices are calculated by stacking the plants in merit order of in-

creasing marginal cost until each predicted daily load is met. As the generators within a tech-

nology type share the same capacity and FOR characteristics, and are assumed to be subjected

to independent forced outages, the expected total available generation ineach period (day) is

given byE(G∗
N ) =

∑N
i=1E(Gi), where eachE(Gi) (one for each generator type) is estimated

using (2.16). An example of this is depicted in Fig 5.7.
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Anticipated price mark-ups are calculated by substitutingE(G∗
N ) and the simulated loads into

(5.10). The averages of the competitive peak prices (prices in those periods where load is greater

than available base-load capacity) and anticipated peak mark-ups are used to calculate CCGT

and OCGT gross margins (GMs, defined here as revenue minus variable cost). Similarly, the

averages of the competitive base prices (prices in those periods where load is equal to, or less

than, available base-load capacity) and anticipated base mark-ups are used to calculate wind,

nuclear and coal GMs, although price mark-up is virtually zero in these periods due to a surplus

of available resource. Thus expected GM (£) for unit u of generator typex in yeari is given

by:

GM i
x = 8760cx · uf iu(E(πi) − E(SRMCix) + E(w3(L,E(G∗

N )))) (5.16)

wherecx is the unit capacity,uf iu is the expected utilisation in yeari, E(πi) is the expected

system marginal price (e.g., Fig. 5.7),E(SRMCix) is unitu’s average SRMC (calculated using

annual average fuel costs from (5.12)), andE(w3(L,E(G∗
N ))) is the expected price mark-up

for each of the daily loads,L. Note that ifE(πi) < E(SRMCix) thenuf iu will be zero (i.e.,

the unit is not anticipated to be called upon when meeting the annual load).

Figure 5.7: Plot demonstrating how expected perfectly competitive market prices are calcu-
lated based on the intersection of the stepped aggregate supply function for ex-
pected available conventional generation and demand.

This method for calculating expected output, costs and revenue is quite simplistic.It is likely

to under-estimate average scarcity rent,πi − SRMCix, due to Jensen’s inequality, i.e., the

expectation of GMs for a given expected price, SRMC and price mark-up(5.16) is less than
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the GM of the expected scarcity rents,E(πi − SRMCix), plus expected price mark-up. This

methodology of calculating GMs was used for the preliminary implementation only, and a more

robust approach is developed in Section 7.3.

In the case of OCGT peaking units, revenue from the STOR market is also considered. Based

on the data at [184], a 2 GW annual tender with an availability price of 2£/MW/h with a

utilisation (estimated at 3% of hours) price of 100£/MWh was included.

5.3.2 Present value of an investment

The present value of an investment in technologyx at any given time is given by:

Vx =

αx
∑

i=τx

GM i
x − FCx

(1 + r)i−τx
− (ICx +DCx) (5.17)

wherer is the firm’s weighted average cost of capital (WACC) (2.9). The expected bond return,

γ, in (2.9) is set at 8% for all technologies. The remaining WACC parameters are defined in

Table 5.6.GM i
x is the gross margin (5.16) for yeari,FCx is the generator fixed operating costs,

andτx andαx are both expressed in years. Although the investor randomly samples capacity

construction times for plant already in the build stage, for simplicity it is assumed that investors

consider only fixed build times when assessing the present value of an investment (5.17). In the

case of plant lifetimes, the investor assumes that capacity will close at the endof its design life.

A more sophisticated representation would have the investor consider the possibility of random

construction times and lifetimes, which is left for future research.ICx is the present worth of

the investment cost:

ICx =

τx−1
∑

i=0

Mx
i cxpx(1 + r)−(i−τx), (5.18)

wherepx is the construction cost (£/MW), Mx
i is the capital expenditure vector for the project

with
∑τx−1

i=0 Mx
i = 1. The expenditure schedules used are given in Appendix A.3, e.g., nuclear

is spread over 7 years with 10% of construction costs incurred in years 1-2, with 20% in years

3-6. Total interest accumulated during construction is given byTIACx = ICx−cxpx. Finally,

DCx is the present worth of the decommissioning cost:

DCx =
1

(1 + r)αx

αx+δx
∑

i=αx

M q
i dxqx(1 + r)−i, (5.19)
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wheredx is the cost (£/MW) of decommissioning,δx is the number of years required, andM q
i is

the capital expenditure vector. Only nuclear projects have considerabledecommissioning costs

(estimated at 12% ofpx; estimated to be between 9-12% by the World Nuclear Association

[29]); in the case of other plant types the decommissioning liabilities are assumed to be offset

by the salvage value of the assets [21]. Nuclear decommissioning is assumedto take 150 years

and the incidence of capital outlay matrix contains 0.05 for the first 10 entriesand (i.e., 50%

of total decommissioning coming in first 10 years after closure) and the remaining entries are

1/140 (i.e., 50% of cost spread over 140 years). All cashflows are discounted to the start of the

first year of operation.

The total annualised (or amortised) fixed costs per unforced MW (TAFC)(£/unfor.MW/yr)

discounted to the start of the first year of operation are given by:

TAFCx =
DCRFx(ICx +DCx) + FCx

1 − ρx
, (5.20)

whereDCRFx is the deferred CRF (2.3) andρx is the generator FOR.

Only the firstn years of expected revenues are stochastically simulated by the investor (here

n = 15), in contrast expected costs incurred are included for the lifetime of the plant. Investors

are aware of the ROCs scheme and assume all renewable capacity (in this case wind) built after

2002 will be eligible for this subsidy.

Because the MC model randomly samples capacities, fuel prices and load growth, a large sam-

ple is required in order for investors to obtain reliable estimate of expected project value (5.17).

Therefore 100 MC simulation runs are carried out for each plant type in each decision year.

5.3.3 VaR criteria

In this model, the distribution of potential profits are constructed from the MC simulations

of the stochastic variables and a risk averse investor with Value at Risk decision criteria with

q = 5% is assumed. The distribution ofVx in (5.17) is computed by MC simulation for each

plant type and an investment is deemed attractive ifp(Vx > V opt
x ) ≥ (100 − q)%, whereV opt

x

is the minimal acceptableVx; i.e.,V opt
x is a lower bound for the project value used in the VaR

criterion. This is assumed to be zero as investors recover initial investment and receive adequate

return on investment on account of the WACC applied in (5.17). An example of this concept
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is shown in Fig 5.8: the VaR forq = 0.01 is negative (investment is deemed nonprofitable),

by comparison the VaR forq = 0.05 andq = 0.5 are both positive (investment is deemed

profitable).

Figure 5.8: Example of critical values,vq, for different values ofq.

At each decision moment, the investment decision continues iteratively, whereby the decision

is to 1) invest in a block of the most profitable technology (if any), followed by 2) a re-run

of the investment decision with all new investments accounted for. Steps 1 and2 are then

repeated until no plant additions are profitable. There is also a secondary logical check that

the expected utilisation factor for all thermal generation is greater than zeroin the first year of

operation (uf1
x > 0), otherwise the investment is delayed. When a number of technology types

are optimal in terms of the above criteria, those projects are ranked by their Profitability Index

(PI) and the option with the largest PI is chosen. The PI is defined as the ratio of project value

to investment cost:

PIx =
Vx

(ICx +DCx)
(5.21)

i.e., critical (q%) Vx divided by total investment cost.

5.3.4 Mothballing

The mothballing of existing capacity is a direct consequence of the market feedback mecha-

nism; if a generator believes that a particular plant will not be able to cover itsfixed costs from

revenues in the energy-only market (and assuming it has not establisheda contract with the SO

to provide reserve), then mothballing the plant until the price rises sufficiently is an option. It
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Plant name Unit(s) Type Capacity (MW) Year
Drakelow C 9 10 12 Coal 999 2003
Grain 1,4 Oil 1350 2003a

High Marnham 1-5 Coal 945 2003
Killingholme 2A/B/S CCGT 450 2002b

Killingholme 1A/B/S CCGT 450 2003

TOTAL 4194

aMothballed due to low prices and de-mothballed same year (one unit in September and the other in December)
in response to security of supply concerns [185]. See Fig. 5.9.

bBoth 1x and 2x sets closed due to low prices. 600 MW of capacity at Killingholme was returned to meet the
needs of a National Grid STOR [185]. Returned to full service (900 MW)in August 2005.

Table 5.1: Plant retirements or mothballing shortly after introduction of NETA [27] (does not
include nuclear retirements).

is well documented that after the introduction of NETA, a large volume of old and inefficient

plant was retired or mothballed (Table 5.1 and Fig. 5.9). This was attributed to falling wholesale

prices making inefficient plant uneconomical. However some plant was retired purely based on

lifetime. In line with the formulations earlier, plant closures as a result of reaching the end of

design lifetime is exogenous, in contrast retirements due to economic conditionsare left to the

model.

Figure 5.9: Historic mothballing and de-mothballing in GB during 2002-4 (x-axis labels
shown below plot) [173].
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Once capacity is mothballed (of which there is currently 1.25 GW in GB [66]) then it remains

connected to the system but no longer contributes to short-term security ofsupply risk calcu-

lations (as it would take a number of months to get the plant ready to generate again from the

mothballed state). It is assumed here that any mothballed capacity can be brought back at any-

time up until 5 years after if was initially mothballed. If the 5 year threshold is exceeded then

the capacity is permanently retired.

This model considers coal, CCGT and OCGT plant eligible for mothballing. All nuclear and

wind operational fixed costs are considered sunk. The decision is takenevery six months and is

based onAGMx < 0 whereAGMx is the average expected gross margin over fixed operating

costs for the next year of operation:

AGMx =
1

100

100
∑

j=1

GM1,j
x − FCx
(1 + r)

, (5.22)

wherej represents the Monte Carlo simulations (100 in total). Therefore only generator fixed

and variable operating costs are relevant for this decision.

Choosing six months as the decision time-step was chosen based on historic frequency of moth-

balling in GB (Fig. 5.9). The iterative characteristic described above is alsoused, whereby plant

is mothballed (or de-mothballed) until it is no longer economical to do so. Or alternatively, in

an extreme case, there is no more plant left of the technology being assessed to mothball or

de-mothball.

5.4 Historic GB case study assumptions

To verify the approach and model formulation, it was attempted to simulate the market dy-

namics in GB since the introduction of NETA in 2001. The dynamic model is appliedto an

‘energy-only’ market setting with a initial capacity mix comparable to the GB power system

and a VOLL of£10,000/MWh. To mirror UK policy held at the time, nuclear is not considered

for investment before 2006. ROCs became active at the end of 2002 andare paid to all opera-

tional wind generation at the rate of 47£/MWh (based on average ROC auction price in 2002

[186]).

Using available data on capacity, demand, prices and fuel costs, the modelwas set-up to simu-
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late GB investment market conditions from 2001 onwards. The system capacity has been tuned

to reflect the situation just prior to the introduction of NETA. The initial plant mix used the

simulation is based on total transmission connected capacity in GB around that timeshown in

Table 5.2. To keep the model simple, minor sources of peaking capacity suchas oil and pumped

storage are combined with OCGT. Other base-load such as run-of-river hydro is included with

coal. By taking this approach, model complexity is kept to a minimum and computational time

is reduced. The capacities of each technology type is shown in Table 5.7. To get a complete

GB picture, the E&W and Scotland systems are combined into a single energy market.2

Plant type Capacity (GW) # stations # unit sets
Coal 30.5 19 70
CCGT 19.4 30 101
CHP 0.8 6 14
Hydro 1.1 34 8a

Nuclear 12.5 13 42
Oil 3.7 3 6
Onshore wind 0.12
OCGT 1.2 19 34
Pumped storage 2.1 4 13

Total 71.4 128 288

aIndependent sets (i.e., not part of same hydro scheme, cf. Table3.3).

Table 5.2: Approximate GB installed transmission entry capacity in 2000. Source: [27, 90].

To reflect capacity already under construction in GB in 2001, 4.3 GW of CCGT capacity comes

online during the first (1.2 GW), second (1.3 GW) and third (1.8 GW) year of the simulation.

2As mentioned earlier, this actually became the case in April 2005 with the introduction of the British Electricity
Trading and Transmission Arrangements (BETTA) in GB.

Technology Capex FC Var. O&M Equity Gearing WACC WACC
x in (5.17) £/kW £/kW/yr £/MWh return κ χ rn (nom.) rr (real)a

Nuclear 1,485 43 0.18 0.15 0.5 0.115 0.089
Coal 900 21 1.01 0.12 0.6 0.096 0.069
CCGT 410 8 2.00 0.12 0.6 0.096 0.069
OCGT 300 9 2.70 0.12 0.6 0.096 0.069

aAssuming a 2.5% rate of inflation.

Table 5.3: Generator financial assumptions with symbols defined in Section 5.3. Sources: [26,
39, 104].
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Station Capacity Final year Model cap.
(MW) of oper. (MW)

Cockenzie 1104 2011 1000
Didcot A 2108 2012 2000
Kingsnorth 1940 2012 2000
Tilbury 1104 2012 1000
Ferrybridge 1/2 980 2015 1000
Ironbridge 964 2015 1000

TOTAL 8200 8000

Table 5.4: Assumed coal LCPD opt-out stations closure dates “under current running pat-
terns”, National Grid Winter Outlook 2009/10 [187].

Station Capacity Final year Model cap.
(MW) of oper. (MW)

Bradwell 240 2003 500
Chapelcross 150 2003 500
Dungeness A 440 2006 500
Sizewell A 458 2006 500
Oldbury 470 2009 500
Wylfa 980 2011 1000
Hartlepool 1208 2014 1000
Heysham 1 1213 2014 1000
Hinkley Point B 1261 2016 1000
Hunterson 1090 2016 1000
Dungeness B 1082 2018 1000
Heysham 2 1204 2023 1500
Torness 1200 2023 1500
Sizewell B 1200 2035 1500

TOTAL 12470 13000

Table 5.5: Assumed nuclear station closure dates. Sources [30, 188].

Existing coal plant included in the LCPD is modelled with the reduced lifetimes shown in Table

5.4. The oil plants at Grain (1300 MW), Fawley (1000 MW) and Littlebrook D(1370 MW)

are assumed to close at the end of 2015. This model assumes a fixed lifetime for all LCPD

exempt and opt-in plant (Table 5.7) and that “sweating the assets” in times of tight supply

conditions is not an option. Nuclear closures are consistent with those in Table 5.5. All other

existing units are given retirement dates consistent with the lifetime assumptions inTable 5.6

and commissioning dates in Appendix F of [27].

Note that the build times shown in Table 5.6 are base times only; a random variablerepresenting
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Technology Therm. FOR Lifetime Build De-mothball Initial No. of Unit
x in (5.17) eff. ρ α (yrs) τ (yrs) τD (months) (GW) units size
Nuclear 0.36 0.10a 40 7 - 12.5 25 500
Coal 0.35 0.14 40 5 6 31 62 500
CCGT 0.53 0.13 25 3 2 19.1 191 100
OCGT 0.39 0.10 40 2 2 8.35 167 50

aRecent years have shown a decline in the annual availability of the GB nuclear fleet (likely due to age), therefore
this value is reduced to 75% for existing nuclear capacity. This estimate is the average of the aggregated energy
output from installed GB nuclear capacity 02-09 [190]. New nuclear builds are expected 90% availability.

Table 5.6: Generator technical assumptions and initial system capacity with symbols defined
in Section 5.3. Sources: [26, 39, 104].

Technology Annualised Total interest acc.
x in (5.17) FC during construction

£/unfor.MW/yr £/MW
Nuclear 244,170 474,700
Coal 111,210 173,105
CCGT 51,790 54,840
OCGT 35,555 30,655

Table 5.7: Generator (real) total fixed and interest cost assumptions for historic simulation.

unforeseen delays (e.g., in the planning process) is added to the build time,τx, after the build

decision is taken (as in the Häni model [123]). Like the investment model, delays are sampled

from a lognormal distribution with mean 1 year and standard deviation six months(Fig. 5.5).

Furthermore, the number of projects that are abandoned is modelled using asimple discrete

probability distribution such that on averagex% of projects are abandoned. In the base case,

x = 0 for coal, nuclear, CCGT and OCGT. The logic here being that traditionally,new thermal

capacity is usually built on an exisiting site with a grid connection so will not come up against

planning resistance. Owing to its poor record at gaining planning permission, x = 50% for

wind. For instance, a basic analysis of renewableUK data [189] revealed that from 2004 to

2008, 495 applications were submitted and only 258 had been approved bysummer 2009.

Table 5.3 shows the costs and financial assumptions used. The total annualised fixed costs per

unforced MW and total interest accumulated during construction are shown in Table 5.7.

In this implementation, wind was included in the investment decision. Its annual maximum

utilisation was assumed to be 0.28, with nominal WACC,rn = 0.15, capexp = 1, 000 (£/kW),

FC = 27 (£/kW/y), variable O&Mv = 0 (£/MWh), lifetime α = 25 years and build time
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τ = 4 years [26].

The data shown in Fig. 5.10 was used to model generator fuel and emissionsprices at “real-

time”. The gas price is modelled with a greater degree of accuracy than the other fuel prices

for a number of reasons: firstly, only detailed historical data of gas prices was obtainable, sec-

ondly by having a detailed model for gas, the characteristic of electricity prices being strongly

correlated with gas prices can also be checked and verified.

(a) (b)

(c) (d)

Figure 5.10: Plots of model real-time fuel and ETS prices: (a) gas [191], (b) coal [192], (c)
carbon [191] and (d) uranium [193].

The “real-time” model can be used to test the realism of the pricing mechanism against re-

alised prices. Therefore, the model time-step is set to hourly (investment decision frequency

annual) and demand is modelled based on historic half-hourly GB demand datataken from [27].

Generally speaking, the choice of time-step in models such as this is made by considering the

trade-offs between computational tractability and speed, and the granularity of model outputs;

the finer the time-step the more information can be observed.

The model has been implemented using in the Matlab/Simulink 2008 environment. Using an

Intel dual-core 2.40GHz processor (note that Matlab versions before2011 will only execute
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using a single processor) with 3.12GB RAM with 100 Monte Carlo simulations foreach in-

vestment decision and a hourly time-step simulation period of 8 years takes manyhours to

complete.

5.5 Simulation results

5.5.1 Base case results

Fig. 5.11 shows the model simulation of capacity margin against reality. Plainly thenegative

response after 2001 of the solid line is deeper than in reality but the frequency of oscillation in

the two lines is very similar (which is not surprising given that the frequencyof investment and

peak demand is annual) and the margin also seems to be better damped than in reality. However

considering the model is based on a number of assumptions and simplifications,these results

show a good agreement with this data. This comparison of capacity margins is clearly motivated

by the goal of using this ‘signal’ as the control system reference signal.Given that it is made up

of both an exogenous and endogenous model parameter, i.e., demand andcapacity, respectively,

this match must be interpreted accordingly. For instance, the dynamics in underlying peak

demand shown in Fig. 5.12 have a significant influence on the capacity margin.

Figure 5.11: Generation capacity margin oscillations witnessed since market liberalisation
(solid line) and simulation results from 2000 (dashed line).
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Figure 5.12: Evolution of total installed capacity in GB in reality and in the simulation. GB
maximum demand also shown.

Figure 5.13: Approximate evolution of installed capacity for each generator type in GB (solid
lines) and in the simulation (dotted lines).

Fig. 5.12 shows the evolution of total installed capacity (ICAP) in the simulation versus reality

(using the ESDS [90]) in the base case (where the investment decision in annual). Both lines

in Fig. 5.12 follow a similar trajectory however the simulation is smoother. Total capacity is

broken down by technology types in Fig 5.13, again the match is reasonable although these

comparisons depend on the approximations used (in this case according to DUKES [190]).
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5.5.2 Investments

Figure 5.14: Wind and CCGT capacity investment triggered during the simulation that actually
completes the build stage, and actual investments announced in GB. Triggered
wind investments have been scaled by the probability of project abandonment,
i.e., 0.5. Data on wind from renewableUK [189] and CCGT builds estimated
from NGC seven year statements [27] assuming 3 year build time.

Fig. 5.14 shows the volume and type of investment triggered during the simulation.There is

little investment in the early years owing to the capacity already under construction when the

simulation starts (Section 5.4).

Wind power investment is also another key area of interest and was modelledas an endogenous

model parameter in this case. Fig. 5.14 shows that in the simulation no significantinvestment

in wind occurs until after 2005. After this, not only does the ROC subsidy become active,

but also there are significant extra costs incurred for other projects: for CCGT the cost of gas

increases by 60% from 24 p/therm to 39 p/therm and coal generators have the additional cost of

emissions to consider. Fig. 5.14 also shows renewableUK data [189] on applications received

for new wind farms received in GB. The main points to note here are althoughwind power

investment is delayed until 2005, perhaps owing to the high WACC for this technology, there

seems to be an over-investment in later years. Recalling that as the model does not consider

grid connection arguably this trend is quite plausible in this model where wind is anticipated to

be heavily subsidised and grid connection straightforward. Of course much of this investment
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will not make it to the build stage owing to the high probability (0.5) of project abandonment

for reasons outside pure market rules.

Figure 5.15: Cumulative CCGT capacity added to the system in the simulation (dotted-line)
and according to the DUKES/ESDS data [190] (solid line).

Also of interest is the cumulative CCGT capacity added to the system, which canbe see in Fig.

5.15. The new builds initialised in Fig. 5.14 can be seen coming online after the 3 year lead

time (contributing to capacity in the following year). The pattern does not match perfectly, with

the minor increase in 2005 not captured. By comparison the ramping up of investment in the

later years, together with the relative lump sizes in, say 2006 and 2009, is encouraging, given

that project lead times and precise retirement data are being estimated.

5.5.3 Mothballing

Although in reality CCGT capacity growth remains constant throughout the simulation (Fig.

5.15), the same cannot be said of OCGT plant: inspection of Fig. 5.13 showsa downturn in

OCGT capacity in 2005 that does not match with reality. This downturn can be explained by a

sharp increase in mothballed plant in 2005 (Fig. 5.16) in the simulation and thus the installed

capacity also falls behind reality. The likely cause of this behaviour stems from a combination

of an increase in installed CCGT capacity, which reduce OCGT revenues from the energy

market, together with a 60% increase in gas prices. Limited information is availablepertaining
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to when exactly GB’s (current) 1.25 GW [66] of plant was mothballed. The information that

was available concerned the mothballing of plant in early 2003, with much of it returning

to the system in the winter of the same year (Fig. 5.9). Owing to the reduced complexity

of the model compared with reality, it is difficult to capture this response because individual

plant characteristics are not included in this aggregated model. Therefore although some of the

preliminary simulation results were quite encouraging, the model was not able toreplicate all

forms of market response.

Figure 5.16: Volume of capacity in mothballed state during the simulation.

5.5.4 Importance of the reserve market

A sensitivity test was carried out whereby a weighting coefficient,w, in the range 0 to 1 was

applied to the additional revenue received by OCGT plant for participationin the STOR market.

For example,w = 1 represents the base case discussed above where OCGT participates in

STOR, andw = 0 represents a complete removal of the STOR market. Fig. 5.17 shows the

importance of having a separate market for reserve (which is essentially acapacity payment

for OCGT plant); without it the initial capacity margin slump is deeper owing to intensified

withdrawal of OCGT plant from the system. Owing to greater CCGT investmentin the early

years than in the base case, the margin does recover after 2005, although CCGTs are not well

suited to providing reserve and hence the level of security of supply riskis greatly increased.
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Interestingly the introduction ofw leads to a better initial downturn in capacity at the start of

the simulation (w = 0.5) and although the margin remains below reality in subsequent years,

the difference is constant implying that this payment is a key parameter in the model. This can

be interpreted as the inclusion of a steady revenue stream for peaking plant removes much of

the uncertainty surrounding utilisation and price, reducing the volume of mothballed OCGT in

the model.

Figure 5.17: Plot of GB generation capacity margin (solid line) with reserve market sensitivi-
ties (dashed lines) for various coefficient weightings (w).

5.5.5 Wholesale energy prices

Another key area of analysis was the ability of the model to simulate wholesale energy prices.

Using the pricing mechanism described in sub-section 5.2.3 with price mark-up(5.10), with

parameters set ata = 10, 000, b = −1.123, g = 5.4, s = 1 [123] (Fig. 5.4), simulated

average monthly wholesale prices were compared with the monthly average forward Market

Index Price (MIP, reflection of the short term wholesale price) [191].Fig. 5.18 shows a good

overall matching of trend. The loss of precision after April 2008 can be explained by recalling

that detailed gas price data for these years was not available (Fig. 5.10).The ability to push

through high fuel costs is demonstrated when the simulated prices for April 2001 to April

2007 are viewed in isolation. The mean difference between the MIP and simulated prices was

4.0 £/MWh with standard deviation 9.6£/MWh. By comparison over the range using more
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accurate fuel price data (up to time indicated by horizontal line in Fig. 5.18) was 0.70£/MWh

with standard deviation 4.35£/MWh.

It should be emphasised that the main aim of the model is not to predict the electricity prices

but to investigate whether or not an ‘energy-only’ market is susceptible toexcessive capacity

oscillations. Hence the main aim is to investigate the dynamics of aggregate investment what-

ever happens to the primary fuel prices. Obviously as the absolute level of electricity prices

depends strongly on the primary fuel prices, predicting future electricity prices would require

a sophisticated gas and coal price prediction model and that would be beyond the scope of this

research. Any changes in primary fuel prices have the effect of shifting the level of prices up

or down, assuming constant GMs for gas-fired (“spark spread”) and coal-fired (“dark spread”)

generators when selling electricity. Further, it could cause a switch in primary investment from

one technology to another (e.g., from coal to gas as has been the trend in recent years). This is

justified by inspection of Fig. 5.19 and 5.20 which show results from a simulation using pre-

dicted gas and coal prices from OFGEM [96] and not actual data from 2001-2007. Plainly the

price graph is different (influence of demand profile is more noticeable) incontrast the capacity

graph is only mildly affected.

Figure 5.18: Average monthly wholesale energy prices in the simulation (dashed line) and in
GB wholesale market (solid line) [191].
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Figure 5.19: Average monthly wholesale energy prices in the simulation when using fuel price
predictions (dashed line). Actual GB wholesale market data is included fora
comparison with Fig. 5.18 (solid line).

Figure 5.20: Generation capacity margin oscillations witnessed since market liberalisation
(solid line) and simulation results from 2000 with actual prices (dashed line, as
in Fig. 5.11) and predicted prices (dotted line).

5.5.6 Summary

There is no economic model that has been able to simulate past events with 100%accuracy.

Attempting to replicate historic market dynamics in GB, particularly plant response to market

153



Implementation of a GB Generation Investment Market Model

conditions, has proved to be a challenge. The preliminary results are encouraging, although it is

clear that this iteration of the model is unable to replicate the events of the GB market entirely.

This is hardly surprising given the simplified nature of this model, which was necessary in order

to keep the model tractable within the duration of a 3 year project.

There is scope to improve the model. It was discussed earlier that the dynamics in underlying

peak demand have a significant influence on the capacity margin. Further,the results shown in

Fig. 5.11 use realised peak demand. In hindsight, for the results presented here, the historic

simulation should have been compared in a way that minimises the significance of this variable

whilst still reflecting the security of supply risk. The realised ACS peak considers underly-

ing demand patterns and“typical” winter peak weather conditions and is therefore a better

measurement to use. Therefore, using the data in Fig. 3.6, the capacity margin comparison

is re-plotted in Fig 5.21. While much of the oscillation is removed as a result of the use of

ACS peak, the signals compare less well, with the winters 01/02 - 03/04 and 06/07 particularly

poor. Also shown is the realised capacity margin using the DUKES [190] forICAP instead of

the ESDS [90], the simulation compares better with the DUKES data, with an increasing trend

after 03/04 present in both signals. Furthermore, to provide more robustconclusions, a longer

period of history should have been analysed, though data before the introduction of NETA

could not be obtained. Data for E&W pool prices and what was believed to be aggregate E&W

demand, was eventually located 3 years into the work. It could therefore not be realistically

included.

That said, this stage of the work formed a vital part of the process and highlights why these (and

subsequent) results should be interpreted with a degree of care. That is, replicating absolute

levels of, e.g., capacity margin is difficult, yet by considering overall trends in response to

different policies, participant behaviour, capacity mixes and underlyingdata assumptions can

be considered. Furthermore, given the short duration of the validation period, where the impact

of many triggered investments are not realised within the simulation time horizon, a longer

simulation period must be considered to allow robust conclusions about model performance to

be drawn.

As a result of feedback from the publication of the paper version of this chapter [194] and sub-

sequent collaboration with Prof. Benjamin Hobbs of Johns Hopkins University, it was decided
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Figure 5.21: Generation capacity margin in GB using ACS peak demand. Using historic data
on ICAP from the ESDS [90] (black, solid line), and the DUKES [190] (blueline)
and simulation results (dashed line) shown.

to consider investment in wind capacity as a exogenous model parameter andfocus on devel-

oping a more robust modelling technique to estimate thermal generation investmentdynamics.

Justification for this approach to modelling wind is the topic of Chapter 6 and the updated

model, including the new method of calculating expected output, costs and revenue of thermal

generation is presented in Chapter 7.

5.6 Chapter summary

In this chapter the dynamic simulation model has been presented. The basic concept of the mod-

elling approach with a description of the feedback mechanism being investigated was given. A

review of the work of Ḧani [123] showed that although this concept had been implemented in

a simple model it had not yet been applied to an existing system. By describing the dynam-

ics of the model mathematically and its application to the GB investment market the intended

direction of the work was introduced. Next, the methods used to model generator SRMC and

price mark-ups due to market power within the modelling environment were described. Section

5.3 provided details about investor logic, that is a single investor who uses NPV of expected

future profits and VaR as the decision criterion. Section 5.4 described the input assumptions
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for GB case study, in particular the application of the model to an historic simulationof market

dynamics in the period post NETA in order to achieve the goal of model verification. Section

5.5 provided the preliminary results for the model application, which showed some agreement

with reality. A summary of the work demonstrated the limitations of the model and challenges

encountered. This sets the scene for the next two chapters where substantial improvements to

the model are undertaken in a second phase of the work.
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Chapter 6

Modelling High Penetrations of Wind

Investigating how best to model increasing penetrations of wind in a dynamic investment sim-

ulation model has formed a substantial part of this work. In its own right it has provided a

contribution to knowledge beyond that of the dynamic investment model work.In this chapter,

the cutting-edge techniques used to model production from high penetrations of wind power

are described. The results from this chapter are employed in Chapter 7 to update the invest-

ment market simulation model for assumed levels of installed wind. The work presented helps

answer the following questions: 1) given historic wind resource availabilityin GB, what would

have been the hourly production for a higher level of installed wind capacity, and 2) what is the

likely contribution from wind to meeting peak demand?

6.1 Motivation

In GB, the installed capacity of wind generation is expected to increase dramatically in the

coming years. Inspection of the latest renewableUK data [189] on wind projects in operation,

construction, or consented there could be a capacity in excess of 15 GW onshore and up to

40 GW offshore by mid 2020, which is a significant change from today’s level of ∼5 GW

(with ∼2.2 GW and∼2.8 GW at the transmission and distribution level, respectively [27]).

This magnitude of increase in total installed wind capacity in a system with around75 GW

of total transmission connected capacity and a maximum and minimum annual demand of 60

GW and 20 GW, respectively, transforms the GB system from a low to high wind penetration.

High penetrations of wind power introduce a number of challenges in powersystem operation

and planning. There is a statistical relationship between wind availability and demand (via the

dependence of both on the weather) and, unlike conventional thermal generation units whose

individual availabilities are assumed independent, wind power output is related to that at other

geographical locations.
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6.2 Approach taken

Rather than treat wind as an endogenous parameter in the model, investment inwind capacity

is now considered exogenous to the model (Fig. 5.1). This approach is justified by the fact that,

to date, large-scale investment in wind capacity is driven by political, rather than economic

considerations. It is therefore assumed that policies promoting investment inwind generation

(e.g., ROCs) are successful in meeting renewables targets and the purpose of this work is to

provide insights into the response of investment in thermal generation and subsequent levels of

security of supply risk. This also seems reasonable given the results in sub-section 5.5.2 where

a high level of profitability of wind led to large volumes of wind investment, thus suggesting

that factors beyond pure market rules influence the growth in this technology. That said, the

contribution of wind generation to meeting demand must still be considered.

In most circumstances, it is reasonable to consider wind as a “must-run” ornon-dispatchable

form of generation, where if the turbines are available (in the technical sense) and generating,

then they will be dispatched. Network constraints may limit the amount of generation that

can be exported from a particular region, and there is a large volume of work concerned with

the best approach to network operation and planning in GB with large penetrations of variable

wind (e.g., [68, 195]). In contrast because this work conceptually uses a single bus system, these

issues are beyond the scope of this study. As a result, the residual load for thermal generation is

of interest. The residual load is simply the expected load minus the expected output from wind

power at each hour. By taking this approach, the analysis naturally takesinto account spatial

relationships in wind availability and its relationship with demand.

Measured wind output data is hard to obtain in GB and even when available (e.g., aggregate

transmission connected wind output is available from bmreports [102]), these measurements

do not fully represent the long-term contribution of wind, particularly offshore. Therefore, a

simulation of wind output, or more precisely aggregated wind capacity factors(CFs), is the

approach chosen. Two similar methods are employed when simulating onshoreand offshore

wind CFs, the details of which are described in the following sections.
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6.2.1 Onshore wind (after [61])

Simulated hourly onshore wind output is calculated using the technique described by Olmos

[61]. The Olmos study takes hourly UK Meteorological Office wind speed data1 for 2001-

07 and firstly extrapolates to adjust for hub height (10m to 60m), and secondly performs a

transformation to account for the turbine design (Bonus 2 MW wind turbine power curve).

Aggregate hourly GB CFs are simulated by taking a weighted average of regional CFs, based

on the aggregated wind capacity in operation, construction, or consentedin each region [197].

This calculation is summarised by:

GBCF =

∑R
i=1wixi

∑R
i=1wi

(6.1)

wherewi are the weights,xi are the regional CFs andR is the total number of regions. These

regions are shown in Fig. 6.1 and weightings in Table 6.1. This approach is justified by the fact

that although the current penetration of wind generation in GB is small relative to long-term

expectations, the geographical dispersion is broadly in line with “long-term”expectations for

each region.

In this study the same approach is applied to wind speeds extracted for 2005-09. The reason for

choosing these five years to perform the analysis is to compliment the data thatwas available

from a unique offshore simulation model described next. The main justifications for using wind

speed measurement data when simulating aggregate onshore wind production are: 1) there is

the lack of extensive time series data with adequate temporal resolution for currently operational

farms in GB; and 2) the amount and geographical dispersion of onshorewind farms will grow

over time, and will include production from regions where CFs and correlations with loads and

wind from other areas are not currently known.

As with any expansive data set, there were issues with missing or corrupt data points. Although

minimal, those that were missing or erroneous were filled by simply taking the average of the

two adjacent readings in the time series. A Vestas V80-2 MW power curve is used [198] with

a transform from 10m to 80m using the classic power law equation [61]:

vz
vzr

=

(

z

zr

)α

(6.2)

1In fact, the wind speeds are the mean wind speed over 10 minutes measured from minute 40 to minute 50 of
the hour [196].
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Figure 6.1: Diagram showing onshore regions used when simulating aggregate GB CFs. Ovals
positioned offshore indicate location of farms listed in Table 6.2.
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wherevz is the wind speed at heightz, vzr is the reference wind speed at heightzr andα is

the power law (or wind shear) exponent, commonly assumed to beα = 1/7 [199]. Note that

issues concerning diurnal variation of expected onshore wind output derived from wind speed,

versus wind power derived from real wind farm data are not considered here. For instance, it is

necessary to decrease the wind shear exponent in (6.2) when it is sunny, because the boundary

layer becomes more turbulent [200].

Region Weight
ea 331.0
ee 482.3
em 423.3
nes 2319.3
ni 3.7
nw 1599.4
nwe 1389.7
nws 915.3
se 95.9
see 90.9
ss 4394.7
sw 517.8
swe 265.0
wm 30.4
TOTAL 13537.3

Table 6.1: Onshore regional weights (MWs).

6.2.2 Offshore wind

For GB offshore wind, the expected hourly CFs are calculated using the wind speed data from

the fully compressible, non-hydrostatic mesoscale weather forecast model developed at The

University of Edinburgh [201, 202]. This is a atmospheric model similar to theMet Office

Unified Model [203]. The 3 km resolution (other studies have used a muchlower resolution,

e.g., [98] used wind speeds at a 12 km resolution) provides a good levelof detail in the resource

approximation. The simulated wind speeds have been validated against measured offshore

wind speed data for a number of sites [204], and in the absence of extensive measurement data,

provides credible estimates in time and space for the GB offshore wind resource. Simulated

hourly data (average of 10 minute resolution wind speeds during the hour)was extracted for

2005-09 and the offshore locations displayed in Table 6.2. These are displayed in Fig 6.1 as

numbered ovals.
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The simulated wind speeds are transformed to site level CFs using the same techniques as [61]

but instead using a Vestas V90-3 MW power curve and a hub height of 100m (on account of

the relative increase in turbine size witnessed offshore). The weighted offshore GB CFs (6.1)

are then calculated based on the results from the Round 1 to 3 Crown Estate Round auctions

[197]. This data is displayed in Table 6.2; the weightswi are displayed in right-most column,

xi are the site (not regional averages as for onshore) CFs andR = 39.

This approach takes a “long-term” view about the offshore wind resource. More precisely, a

fully diverse offshore wind resource is available for each level of installed capacity (i.e., each

additional MW is spread evenly across all sites). Using the long-term aggregate CFs may

overestimate the contribution from offshore wind in the years leading up to 2020 (when large

round 3 sites expected to come online). Accounting for all the issues in a model such as this

would take a lot of time to implement and may not add sufficient value to the results inlight

of simplifications made elsewhere. It has been examined in a preliminary mannerin a recent

paper [204].

6.3 Calibration

Simply scaling 10m wind speed to hub height and transforming to CF using a manufacturers’

power curve without calibration will probably not give a realistic long-termCFs on account of

inaccuracies in scaling, turbine outages and topographic effects. For instance, wake losses and

gusts (particularly for wind speeds approaching full power output) arenot accounted for and so

some form of calibration against measured power outputs must occur.

The approach taken here is to scale the aggregated annual CFs for onshore and offshore wind

to match published data on annual capacity factors [190]. More precisely, a minimisation of

the sum of squares of the residuals, i.e, the difference between observed CFs and simulated

CFs (averaged across the year), is used to obtain the scaling factors. This was computed using

the MS Excel 2003 Solver add-in. This method is reasonable for onshorewind because the

diversity of the current resource is fairly reflective of the future (Table 6.1 and Fig. 6.1). In

contrast this is not the case for the current offshore wind resource.The 1.3 GW of offshore wind

currently operational [197] in GB does not fully represent the future geographical diversity of
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Map Name Auction Turbine Turbine No. of Total MW
No. round type capacity (MW) turbines wi’s
1 North Hoyle* 1 Vestas V80 2 30 60
2 Gunfleet Sands II 1 Siemens 3.6 18 64.8
3 Rhyl Flats 1 Siemens 3.6 25 90
4 Burbo Bank 1 Siemens 3.6 25 90
5 Barrow* 1 Vestas V90 3 30 90
6 Teesside 1 3 30 90
7 Kentish Flats* 1 Vestas V90 3 30 90
8 Lynn - Inner Dowsing 1 Siemens 3.6 27 97.2
9 Lynn 1 Siemens 3.6 27 97.2
10 Robin Rigg - East 1 Vestas V90 3 30 90
11 Robin Rigg - West 1 Vestas V90 3 30 90
12 Gunfleet Sands I 1 Siemens 3.6 30 108
13 Ormonde 1 5 30 150
14 Scroby Sands* 2 Vestas V80 2 30 60
15 Greater Gabbard - Galloper 2 3.6 40 144
16 Walney I 2 3.6 51 183.6
17 Walney II 2 3.6 51 183.6
18 Westernmost Rough 2 3 80 240
19 Lincs 2 3.6 75 270
20 Humber Gateway 2 3.6 83 300
21 Thanet 2 3 100 300
22 Sheringham Shoal 2 3.6 88 315
23 Greater Gabbard - Inner 2 3.6 100 360
24 West Duddon 2 3.6 160 500
25 Docking Shoal 2 100 540
26 Dudgeon 2 168 560
27 Race Bank 2 5 88 620
28 Gwynt Y Mor 2 3.6 160 576
29 London Array I 2 3.6 175 630
29 London Array II 2 166 370
30 Triton Knoll 2 1200
31 Hastings 3 600
32 West Isle of Wight 3 900
33 Moray Firth 3 1300
34 Bristol Channel 3 1500
35 Firth of Forth 3 3500
36 Hornsea 3 4000
37 Irish Sea 3 4200
38 Norfolk 3 7200
39 Dogger Bank 3 9000
TOTAL 40759.4

Table 6.2: Assumed offshore wind farm developments based on data from Crown Estate auc-
tions [197]. Sites highlighted with * indicate technical availability data has been
located [205].
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the system (Table 6.3). Therefore scaling the simulated CFs by the publishedannual CFs would

ignore increases in resource availability as a result of diversification. Consequently, the scaling

factor is applied to the simulated aggregate CFs that include operational (at the time of writing)

offshore farms only. These locations are highlighted in bold font in Table 6.2. Thus the GB

CFs are computed for the existing 13 sites (R = 13 in (6.1)) and the annual average CFs from

this time series are used to calculate the scaling factor. This gives a scaling of0.928 for onshore

and 0.918 for offshore. The results of the scaling are presented in Table 6.3.

2005 2006 2007 2008 2009 Long-term
average

DUKES (Table 7.4)
Onshore 0.264 0.272 0.275 0.270 0.274
Offshore 0.272 0.287 0.256 0.304 0.260
Simulated GB CFs (unscaled)
Onshore 0.297 0.282 0.288 0.301 0.290
Offshore (existing farms) 0.301 0.299 0.288 0.320 0.268
Offshore (long-term) 0.474 0.447 0.457 0.495 0.442
Scaling factor onshore 0.928
Scaling factor offshore 0.919
Simulated GB CFs (scaled)
Onshore 0.276 0.261 0.267 0.280 0.269 0.271
Offshore (existing farms) 0.277 0.275 0.265 0.294 0.247
Offshore (long-term) 0.436 0.410 0.420 0.455 0.406 0.425

Table 6.3: Simulated and calibrated CFs for on and offshore wind. The ‘long-term’ offshore
CFs are calculated using all weights in Table 6.2 and the ‘existing farms’ only use
those farms currently operational (highlighted in bold in Table 6.2).

6.4 Validation

To check the validity of the wind modelling, a comparison between simulated and actual historic

outputs was undertaken. Sadly data on individual wind farm output, or indeed high resolution

(i.e, half-hourly) aggregated output was not available at the time this analysis was undertaken,

although monthly resolution output data for GB can be extracted from OFGEM’s ROC register

[206]. Monthly CFs were derived from historic data on ROC certificate allocation for January

2005 - March 2009 by dividing the‘Number of certificates’by ’Capacity’. This data contains

the ROC certificate data for over 700 wind farms throughout GB. Each windfarm was allocated

to a region according to the polygonal regions in Fig. 6.1. Simulated monthly CFscould then

164



Modelling High Penetrations of Wind

be compared with both aggregate and regional CFs. Note that not all wind farms on the ROC

register have been generating for the same length of time, therefore each month’s aggregate CF

includes only the sites that were in operation at that time.

A selection of onshore regional comparisons is provided in Appendix A.6 with the aggregate

comparisons shown in Fig 6.2. The profile for aggregate onshore GB CFsshows a over-

estimation in most periods. However applying the 0.919 scaling factor in Table 6.3 provides a

better match.

Figure 6.2: Plot of comparison of simulated monthly aggregate GB onshore CFs (dashed lines)
versus actual GB CFs estimated from ROC register data (sold line).

Figure 6.3: Plot of comparison of simulated monthly aggregate GB offshore CFs (dashed line)
versus actual GB CFs estimated from ROC register data (sold line).

The aggregated and scaled offshore GB CFs are compared for all 13 wind farms in operation in

Fig. 6.3. The graph shows a reasonable match in terms of pattern, although an over-prediction
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in winter and under-prediction in summer is witnessed in some years. This over-prediction

can largely be attributed to technical availability. For instance, of the four operational offshore

wind farms analysed (highlighted with a ‘*’ in Table 6.2), the average technical availability

for the winter of 2007 was 69.8% [205]. There is major uncertainty surrounding the technical

availability of offshore wind, particularly during winter months when much of the North Sea

is closed to shipping and so farm access may be restricted. Due to lack of data, this issue

cannot be addressed further here, yet it is an important caveat for these results and must be

considered when assessing levels of generation adequacy risk for particular investment scenario

(cf. Section 7.5).

6.5 GB hourly wind production

Once the time series for for GB onshore and offshore CFs for the period2005-09 have been ob-

tained (43,824 load hours), the expected installed capacity must be allocatedbetween onshore

and offshore and the aggregated hourly GB wind production computed. For instance, given an

assumed onshore wind capacity,won, and offshore capacity,woff , the simulated hourly wind

production (WP) in houri is given by:

WPi = GBCF oni · won +GBCF offi · woff , (6.3)

whereGBCF oni andGBCF offi have been calculated using (6.1) for the onshore and offshore

resource, respectively.

To begin, a base case wind capacity growth profile is constructed. Here total installed wind

capacity is expected to increase linearly from 2010 levels up to 30 GW by 2020 with a max-

imum of 35 GW in 2025, after which it levels off, as shown in Fig. 6.5. The plotalso shows

the onshore and offshore penetrations. Onshore wind is increasing ata rate of 1 GW per year

with a maximum of 13 GW while offshore is increasing at 1 GW per year until 2015 and then

increasing to 2 GW after that. The allocation between onshore and offshore areas is consistent

with the data in [61] and [197].

Fig. 6.4 shows how the relative levels of installed capacity within the fully aggregated GB

capacity factors (6.1) increase throughout the simulation. This provides avisual representation

of the ‘contribution’ from each region to the weighted CFs and overall GB wind production.
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(a) (b)

(c) (d)

Figure 6.4: Diagrams showing effective regional contributions to total wind capacity for (a)
2010 (no offshore wind); (b) 2015; (c) 2020; and (d) 2025.
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For instance, taking 2015 as an example, the total installed capacity of wind is 12 GW. This

is split between 7 GW onshore and 5 GW offshore. Using (6.3), the simulatedhourly onshore

wind CFs (6.1) are multiplied by 7 GW to provide hourly onshore wind production, and the

simulated hourly offshore wind CFs are multiplied by 5 GW to provide hourly offshore wind

production. Thus, the absolute levels of installed capacity vary, but the simulated hourly CFs

remain unchanged.

Figure 6.5: Plot of total installed wind capacity growth assumptions. Distribution between
onshore and offshore also shown.

With this build schedule defined, an hourly residual load calculation using empirical load and

simulated wind data can now be performed. The residual load in each hour isthe hourly em-

pirical load net of estimated hourly wind production (6.3). Fig. 6.6 providesa visualisation of

the impact on the 2005-09 residual load histograms (considering 43,824 residual load hours for

2005-09) as penetration of wind increases. These histograms provide agraphical representation

of the distribution of residual loads for a particular level of installed wind capacity. Note that

the GB hourly loads for the period 2005-09 have been normalised by the year’s average demand

when constructing the histograms. A normalisation of the data is necessary when comparing

multiple years to account for demand growth. These plots (penetration increasing in increments

of 10 GW) do not match exactly the four diagrams in Fig. 6.4 (increasing in 5 year increments

in line with Fig. 6.5), yet they demonstrate the change in residual load better than the equivalent

5 year incremental histograms.
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(a) (b)

(c) (d)

(e)

Figure 6.6: Result of increasing installed wind capacity from (a) 2 GW to (b) 10 GW to (c) 20
GW to (d) 30 GW on residual load histograms. Also shown in (e) are some exam-
ple residual LDCs. Numbers in brackets indicate volume of onshore andoffshore
capacity respectively.
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Interestingly, the residual load histograms become more ‘Normal looking’ asthe penetration of

wind increases. This phenomenon can perhaps be explained by considering the changes in the

underlying data when moving from full to residual load at high wind penetrations. To illustrate

this point, Fig 6.7 shows the normalised full load over time for January-March2009 (blue).

There is a distinct pattern to the full hourly load with daily peaks and troughs (a typical daily

example is shown at the top of Fig. 6.7), although maximum and minimum daily loads change

in relation to the season and day of week. These characteristics are reflected in the histogram

in Fig. 6.6(a) by a high frequency of similar load levels (distinct peaks). Bycomparison hourly

wind production is an independent random variable. So when deducting production from 30

GW from the full load at each hour, the profile is transformed into a seeminglyrandom process

with almost all of the distinct daily pattern removed. The Central Limit Theorem states that

the distribution of the sum of a large number of independent random variables, each with finite

mean and variance, will approach normality. This explains the migration from the distribution

in Fig. 6.6(a) to the more “Normal” looking Fig. 6.6(d).

Figure 6.7: Plot of normalised hourly full load, simulated wind production and residualload
for 2009 with an installed wind capacity of 30 GW (13 GW onshore, 17 GW off-
shore).

In addition, the standard deviation of the distributions increase substantially,with negative

residual demands experienced at high penetrations. These observations are further highlighted

in the residual LDC plots shown in Fig. 6.6(e); the negative loads occur for penetrations of
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30 GW and above, though the peak load remains largely unchanged. In plain terms, these

residual load histograms provide an approximation of what thermal generation production re-

quirements (ignoring network issues) would have been for 2010-25 levels of installed wind

under the assumption that simulated wind production and load for 2005-09 are representative

of future patterns.

6.6 Capacity credit of wind

In this section the results of a capacity credit (CC) calculation for the simulatedwind data is

presented. CCs are an important addition to this wind analysis chapter and willbe used in

Section 7.5 to de-rate wind capacity at system peak in order to make projections about future

levels of generation adequacy risk via the de-rated capacity margin.

In this study, the “long-term” weighted GB CFs calculated above are used to calculate the

ELCC, i.e., the amount of additional demand that can be supported after the wind is added

whilst keeping the level of risk the same. In mathematical terms, this involves solving the

following optimisation [93]:

p(X < d) = p(X < d− g+ + [ELCC]), (6.4)

whereX is available conventional generation (not including additional wind generation), d

is demand andg+ is the wind generation. Following [61], the hourly simulated CFs for those

hours within 10% of peak demand are used to represent the availability of theGB wind resource

at peak demand (as in [61]). Over the period analysed (2005-09), thisincludes 1,045 demand

hours. To illustrate, the probability mass function (pmf) for the weighted onshore and offshore

wind CFs during these hours are plotted in Fig. 6.8. To compare, the pmf for entire 5 year

period is given in Fig. 6.9. Plainly the shape, mean and standard deviation ofthe distributions

are different in both cases, thus highlighting the difference in resourceavailability at peak

compared with year-round. The plots also demonstrate the well known characteristic that the

offshore wind resource is higher than onshore.

Using these probability distribution for wind availability, (6.4) becomes

p(X < d) =
∑

j

p(CF = j)p(X < d− j ·W + [ELCC]), (6.5)
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(a) (b)

Figure 6.8: Plot of probability mass function for available CF from GB (a) onshore (mean
0.307, SD 0.236) and (b) offshore (mean 0.493, SD 0.309) wind generation, based
on simulated hours withing 10% of winter peak. If the CF falls in a particular
range, it is deemed to be at the middle of that range (i.e. load capacity in the range
0-4% are deemed to be 2%.).

(a) (b)

Figure 6.9: Plot of probability mass function for available CF from GB (a) onshore (mean
0.291, SD 0.219) and (b) offshore (mean 0.416, SD 0.295) wind generation, based
on all hours 2005-09.

wherej = {0.02, 0.06, . . . 0.94} is the midpoint of each CF “bin” (e.g., Fig. 6.8),W is the

installed wind capacity (1-13 GW onshore, 1-22 GW offshore, cf. Section 6.5). For eachj,

the LOLP is calculated using the probability distribution for conventional generation,X, and

demand leveld (left hand side) ord − j ·W + [ELCC] (right hand side). A fixed level of 60

GW for demand is assumed.

The results of the ELCC calculation, expressed as a percentage of installed wind capacity, are

plotted in Fig. 6.10. The values range from 9-35% depending on level of installed capacity.

The graph shows the typical pattern witnessed with wind CCs; as the penetration increases

the CC value reduces. This demonstrates the dependence between sites due to “fuel” resource

availability.
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Figure 6.10: Capacity credit results based on long-term weighted load factors; used in simu-
lation model.

6.6.1 Caveats

In this section, a specific methodology has been applied to calculate CC, however it should be

noted this is not in itself cutting edge probability theory (e.g., see Dent [93]).For a superior

approximation of CC in GB, including credible estimates for offshore wind, see Hawkins [204].

For instance, using the 5 year LOLE (i.e., sum of hourly LOLPs (2.12)), as in [204], would

provide is more statistically robust estimate of the ELCC because it takes into account many

more demand hours (e.g., around 18,000 winter demand hours between 2005-09) and thus

provides a better representation of the relationship between demand and thewind resource

availability at periods of peak demand. Further, in order to be confident about the contribution

of wind generation to meeting peak demand, this would require an analysis based on more

than 5 years of empirical demand and simulated wind data. For the purposes of the long-term

dynamic simulation model presented here, these values provide a reasonable approximation.

6.7 Chapter summary

In this chapter the techniques used to estimate hourly wind production and resource reliability in

GB have been presented. This began with the motives for developing a model that uses a hind-

cast simulation in order to estimate the contribution of wind generation to serving load. This

was followed by a description of the approach taken to model the GB onshore and offshore

173



Modelling High Penetrations of Wind

wind resource. Section 6.3 presented the wind model calibration against available published

annual statistics, followed by validation against available wind generation output records. The

results showed that simulated wind production provided a reasonable match with historic data,

however mild scaling was required. Section 6.5 showed how for an assumedpenetration of

wind generation, hourly wind production and subsequent residual loadis simulated. The shape

of the residual load histograms changed significantly as the penetration of wind increased: they

became more ‘Normal looking’, which was explained by the change from a distinct daily load

over time profile to a more random profile due to wind variability. In addition, the standard de-

viation of the distributions increased substantially, with negative residual demands experienced

at high penetrations. Finally, Section 6.6 explained how capacity credits forwind generation

were estimated. The capacity credits results were 9-35% depending on level of installed capac-

ity. The outputs from this stage of the work are taken forward into the next chapter where the

dynamic investment model is updated in order to predict likely investment trendsin GB with a

high wind penetration.
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Chapter 7
Improving the Investment Model

This chapter provides details of the changes made to the model logic on account of high pen-

etrations of wind generation and increased uncertainty surrounding utilisation and prices. In

summary, these changes were to 1) consider growth in wind capacity to be exogenous and 2)

improve the method of calculating expected output, costs and revenue of thermal generation

subject to varying load and random independent thermal outages, i.e., use a probabilistic calcu-

lation method for gross margins instead of a deterministic approach (5.16). Inaddition, a new

probabilistic method for including price mark-ups due to market power in the gross margin cal-

culation is included. Maintaining a GB focus, an application of the model to the GBinvestment

market is provided, with particular attention paid to the evolution of generation adequacy risk

over the next 30 years.

A sensitivity analyses on a number of key model assumptions provides insight into factors af-

fecting the simulated timing and level of generation investment. This is achieved byconsidering

the relative change in simulated levels of security of supply risk metric such asde-rated capac-

ity margins and expected energy unserved. These results provide insights into the increased

‘energy-only’ market revenue risk facing thermal generating units, particularly peaking units

that rely on a small number of high price periods in order to recover fixed costs and make an

adequate return on investment.

7.1 Introduction

When making an economic assessment of the potential for generating capacity investments,

there is a need to model varying loads (e.g., in the form of the LDC), the expected contribu-

tion of generating units to serving these loads, and the revenues they receive by doing so. It

is helpful if the technique used is computationally fast, accurate and robust,especially when

multi-year simulations of a market are to be repeatedly run. One approach is touse probabilis-

tic production costing, a long established method for calculating the expected output and costs
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of a thermal generation system subject to varying load and random and independent forced

outages [207, 208]. The first focus of this chapter is the integration of aprobabilistic produc-

tion costing method into the dynamic simulation model. The method considers the annual load

curve and convolves it with generator outages using the Mix of Normals distribution (MOND)

approximation. This production costing method was first described in [209]and then extended

and used for the calculation of equilibrium capacity investment in a power market in [210] and

[211], respectively. In this study, the method is applied for the first time to a nonequilibrium

setting as part of the dynamic market simulation. Furthermore, the production costing methods

used in previous dynamic models are deterministic, and therefore underestimate average costs

(due to Jensen’s inequality [212]). This can also be said for the calculation of gross margins

used in the preliminary model implementation.

This chapter also calls on the wind modelling work of Chapter 6 to assess the impact of high

penetrations of wind power on the investment risks associated with conventional thermal gener-

ation. Therefore the method above is extended to include results of the residual load calculation

(load net of wind output) from Chapter 6. This residual load data is then used in the MOND

production costing model in a new way. Finally, the MOND model is incorporated in the dy-

namic investment model and again applied to a simplified GB power system, this time foran

assumed (exogenously increasing) installed wind capacity. Fig. 7.1 summarises this version of

investment market model via a bull’s eye diagram (see [115]) depicting endogenous, exogenous

and excluded model parameters.

7.2 Updates to general investor logic assumptions

There are several adaptions to the model in terms of the investment logic. Investors are assumed

to have the modelling capabilities available to formulate a reasonable approximationof the

effect of wind generation on residual demand, thus the simulated hourly wind production data

presented in Section 6.5 is employed. This maintains the adaptive expectations hypothesis

design introduced in sub-section 5.3.1. Note that variations in weather patterns are likely to

average out to zero over the economic lifetime of an investment and thus do not affect decisions

about capacity expansion. Again, this makes the same assumption as in sub-section 6.5 that

climate change does not impact on future weather.
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Figure 7.1: Bull’s-eye diagram of investment market model. Inspired by [115].

In light of the recent government estimates, which were released after theinitial model im-

plementation, fuel and carbon prices are estimated using the DECC central case estimates

[181, 213]. Assuming investor price forecasts are similar to these estimates,1 the investor model

uses the DECC estimate plus a random variable to estimate future fuel prices. This random

variable is modelled as a mean reverting stochastic process with seasonality [136]:

dFt = α(MR(t) − Ft)dt+ v(Ft)dWt, (7.1)

MR(t) =
1

α

dq

dt
+ q(t), (7.2)

whereFt is the fuel cost at timet, q(t) is the DECC estimate (i.e., the ‘seasonal’ element),

MR(t) is the time dependent mean reverting level which depends on the DECC estimate,v is

the volatility, λ is the speed of mean reversion andW is a standard one-dimensional Wiener

process [32]. Initially,λ = 0.7 in all cases (indicating a reasonably short excursion length) and

v is 5%, 7%, 10% and 20% for uranium, coal, gas and carbon prices, respectively to reflect

1Which in the case of natural gas match quite well with available future prices from ICE Futures Europe (out
to 2017) but are arguably a little low for coal. At the time of writing, Newcastle futures were rising at about 1.5%
annually not falling by 6% as suggested by DECC [214].
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the relative price volatilities. An example of each random walk for 100 MC simulations for

gas price is shown in Fig. 7.2. Note that although DECC provide estimates for future fuel and

carbon prices, these should not be treated as a definitive answer; this would imply that DECC

is able to fix markets, which is possible only for carbon, e.g., the UK Government recently

announced a minimum floor price on carbon of 16£/T in 2013, rising to 30£/T by 2020 [215].

Note that, simlarly to the preliminary implmentation, no correlation between fuel prices was

considered here.

Figure 7.2: Example of simulated random walks for gas (right y-axis) and ETS prices(left
y-axis). DECC estimates are the solid thicker lines.

Investors consider annual demand growth to be stochastic and this is sampled from a Normal

distribution. Here a mean of 0% and standard deviation of 1% is assumed. Thisis based

on variations in demand growth [54] as well as the perception that economic growth could be

offset by increased energy efficiency, e.g., [68], thus allowing for small or even negative demand

growth. This is consistent with recent government and GB System Operator (SO) projections

about future electrical demand in GB [27, 216].

Only the firstn years of expected revenues are stochastically simulated by the investor (here

n = 7, previouslyn = 15); for the remaining years the (discounted) average of the simulated

revenues are used (e.g., similar to [54, 65]). This assumes that simulated prices for the first

7 years of plant operation are representative of the total expected plant lifetime. Furthermore,

investors cap the total expected annual revenues received from scarcity rents (sub-section 7.3.3)
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at the annualised cost of an OCGT. These actions ensure that expectations about future revenues

are not unduly influenced by high forward simulated wholesale prices owing to generation

retirements far out into the future. Note that no regulatory price caps are implemented in the

real-time simulation. The decision to reduce the 15 year forward simulation time horizon (n =

15; sub-section 5.3.1) was also informed by the need to achieve a reasonableexecution time,

an issue that arises when moving from a 9 to a 30-year simulation time horizon.

To keep the model simple, revenue from STOR is simplified; here investors in peaking capacity

(i.e., OCGT) assume an additional revenue of£10,000/unforced MW/yr can be obtained from

the ancillary services (AS) market. As the results in sub-section 5.5.4 showed, AS revenues

form a critical component of peaking capacity profitability, yet they are not sufficient by them-

selves to trigger investment and a combination of energy market and AS revenue is required in

order to obtain adequate gross margins. Similar models applied in the US (e.g., [54]) also do not

treat the AS market explicitly, and instead assume a fixed (and relatively modest) contribution

of AS to peaking unit gross margins. Furthermore these are likely to be a second order effect

when considering generation investments on a decadal time scale and are likely to be relatively

unimportant for cycling and base load capacity, given their relatively large capital costs. Here

investors will not include AS revenues in the profitability calculation if OCGT capacity exceeds

8 GW (i.e., volume of installed OCGT capacity at the start of the simulation, Table 7.5), which

essentially limits the total obtainable revenue from AS if the volume of peaking capacity be-

comes large. On account of the point made above, this limit should not undulydampen peaking

capacity investment.

As already demonstrated in Section 6.5, residual load (load net of wind output) is likely to

become more volatile as the penetration of wind increases (e.g., Fig. 6.7). A consequence of

this is that more ancillary services will be needed. For instance, the GB System Operator (SO)

recently forecast that operating reserve requirements will increase by53% from 4,777 MW to

7,335 MW, between 2010/11 and 2020/21 [217] to compliment an increase in installed wind

capacity from 5,795 MW to 24,599 MW over the same period (a growth pattern not too dis-

similar from the one considered here). Securing adequate flexible capacity is addressed during

operational timescales through the GB System Operator’s reserve services (e.g., fast reserve,

fast start, demand management and short-term operating reserve). Theprinciple concern here is
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to determine whether sufficient capacity is built in order to meet periods of high demand and/or

low available wind generation, so increases in these services and their impact on peaking ca-

pacity profitability are beyond the scope of this thesis.

Once again, because the model randomly samples capacity construction times,fuel prices and

load growth, a large sample is required in order for investors to obtain reliable estimate of

expected project value (5.17). Here, 100 MC simulation runs are carriedout for each plant

type in each decision year. If used for an actual policy analysis, the impact that the number

of Monte Carlo runs has on the model outcomes should be evaluated and, if possible, larger

sample sizes used. Here extensive testing of the effect of the number of simulations was not

undertaken. An indication of the importance of sample size is given by the standard error

of the expected revenues. The samples are independent and identically distributed (i.i.d), so

this error is proportional to 1/
√
N (hereN = 100) [218]. For instance, for the base case

results presented in Section 7.5.1 for nuclear in 2020 in one run, the standard error was about

5% of the average revenue, which is reasonably precise. If the sample size was increased

ten-fold to 1000 samples, one would expect an error of 5%/
√

10, or about 1.5%. Moreover,

application of variance reduction methods (e.g., [219]) can result in smallerstandard errors

than i.i.d. sampling; however this is left for future research.

7.2.1 Mothballing

The decision to mothball (or de-mothball) is now taken annually and is based onthe predicted

gross margins over fixed operational costs (AGM) (£/MW) for the next three years of operation

averaged over the MC simulation runs, i.e.,

AGMx =
1

100

100
∑

j=1

3
∑

∀j,i=1

GM i
x − FCx

(1 + r)i
. (7.3)

If this is negative (or positive) then some currently operational (or mothballed) plant will be

mothballed (or de-mothballed). Note that no additional costs incurred as a result of mothballing

or de-mothballing are considered here.
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7.2.2 Modelling aggregate investment response

In some circumstances the expected profitability of new investments is extremely high, thus

triggering a wave of new builds. Under these circumstances the investment rate will be limited

by: 1) the firm’s beliefs about how many other market participants will move to invest; 2)

the impact of new investment on the profitability of their existing plant; and 3) on the ability

of the firm to secure the debt required to fund multiple projects [121]. Usingan aggregate

investor response curve is useful in models of this type. For instance, in [54], the aggregate

investment rate is increasing with the“risk-adjusted forecast profit”, which is derived from

the investor’s (risk averse, concave) utility function. Also in [121], an S-shaped nonlinear

function of Profitability Index is used and various profitability functions areused in [127] to

model investment rates based on managerial optimism concerning economic (i.e., expected

profitability) and strategic (i.e., retaining market share) considerations.

In this model, a function is applied to the outcome of the VaR decision rule in orderto estimate

the aggregate investment response of the market. This function is increasing with the expected

profitability and is given by:

ξi = max
{

0, ξmax ·
(

1 − e(−β·PIx)
)}

, (7.4)

wherePIx is as in (5.21),ξmax is the maximum yearly investment lump per technologyx.

ξmax and shape parameterβ are calibrated using the fixed assumptions that 1) zero investment

is made ifPIqx < 0 and 2)ξi = ix volume of investment is made ifPIx = 1, whereix is a

chosen fixed constant. Note thatξi provides the link to the state equation (5.3).

The function used in the base case is shown in Fig. 7.3 with fixedix = 2 GW andξmax = 4

GW, andβ = 0.7 resulting from the calibration. Changingβ alters the aggregate response, as

shown by the dotted lines. There is the potential to include different response curves within each

fuel or peak/base generator type (e.g., as in [121]). There is also an additional step whereby

after each 2 GW of capacity of investment is triggered, the investor decisionis re-run to ensure

that no other plant types become more attractive in relation to other options as aresult of this

addition. This maintains the iterative adding characteristic described in sub-section 5.3.3. For

multiple investments withPIx > 0, the option with the highestPIx is chosen. Finally, total

annual investments are limited to 10% of total installed capacity.
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Figure 7.3: Plot of model aggregate investment response curve defined by (7.4)(solid line)
whereix = 2 GW andξmax = 4 GW . Also shown are the minimum investment
lump sizes along with curves for different values ofβ.

The degree of heterogeneous investment response is not modelled directly, however the invest-

ment response of the model is a smooth function of prices and costs, reflecting how a hetero-

geneous group of market participants would likely respond to changes in market conditions.

In particular, the amount of investment is a smooth monotonic function of expected returns, as

reflected in the AIRC (7.4), i.e., it is not a type of response where if profitsexceed a threshold,

a large amount of investment occurs.

Furthermore, forward and bilateral contracting between generators and suppliers is also not

modelled explicitly, however both forward prices and investors’ expectations are driven by

the same market factors. Moreover those contracting are implicit in the way investor price

expectations are modelled. In a commodity market, forward price expectationswill be driven

by the same economics as short-term prices. For instance, in the face of capacity retirement

and demand growth, forward prices will rise. The investor simulates prices7 years out, which

is further ahead than most forward electricity markets go. Moreover explicitly representing

contracts and forward price expectations would make the model significantlymore complicated.

For instance, [220] presents a single stage investment problem in the presence of endogenous

contract and physical markets. Even in that very simple circumstance, the model and its analysis

is very complex. The effect of more long-term forward and bilateral contracts would be to

reduce revenue risk for investors, i.e., lowering risk aversion, thus making them more willing
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to invest for a given distribution of energy prices. Therefore the effect of more or less forward

contracting can be implicitly considered by adjusting the risk aversion parameter of the VaR

model (i.e., the level of risk aversion,q, or the WACC,r, in (5.17)).

The volume (GW) of plant mothballed or de-mothballed is determined simplistically using the

linear functionξi = min(M,AGMx/104), i.e., decreasing or increasing withAGMx (7.3) up

to a maximum ofM GW (Fig. 7.4). In this caseM is chosen to be 2 GW. This was inspired by

the literature review of Prospect Theory.

Figure 7.4: Plot of model aggregate mothballing response curve. Note that the x-axis has been
rescaled to (£/kW).

7.3 Production costing by Mix of Normals

When estimating expected long-run production costs, there is a need for a reasonably accurate

approximation of the LDC. In section 5.3.1, a 5th order polynomial function was fitted to the

simulated annual LDC. This approach, along with the method of calculating plant output was

quite simplistic, and therefore it was decided to develop a more accurate methodof approxima-

tion. A Mix of Normals distribution (MOND) approximation meets this requirement and is also

very easy to convolve with plant outages for the expected output calculations. This motivated

the decision to integrate this technique into the dynamic investment market model.

A MOND is described as follows: consider a set,Y = {y1, . . . , yn}, of Normally distributed
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random variables with theith element having meanµi and varianceσi. Let Φ(x|µi, σi) be the

cumulative distribution function (cdf) ofyi. A MOND is a convex combination of the Normal

distributions and is defined by

F (x) =

n
∑

i=1

piΦ(x|µi, σi), (7.5)

with
∑n

i=1 pi = 1 andpi ≥ 0, wherepi is the weight of the componentyi [209]. Letµ andσ be

the mean and standard deviation respectively of the cdf described by (7.5). These parameters

have the following properties:

µ =
n

∑

i=1

piµi, (7.6)

σ2 =

n
∑

i=1

pi(σ
2
i + µ2

i ) − µ2. (7.7)

Note that ifX andY are two independent random variables each with MONDFX(x) and

FY (y) given by (7.5), thenX+Y is a MOND. The proof of this property is given in appendix A

of [209]. In this application the distribution of load (a MOND) is convolved withthe distribution

for available conventional thermal generation (cf. Section 7.3.1). It is a standard assumption in

probabilistic costing and loss-of-load probability models that the outages of different generating

units are independent of each other, and independent of load [64, 221]. The process starts by

splitting the time horizon over which costs are calculated into periods. In this case, the duration

of each period is one year; although shorter periods can also be used toaccount, e.g., for

seasonal capacity. The expected load at each hour is a random variable.

A MOND fit for approximating the annual LDC (MW) is required. For example, if fL(x) is

the probability density function of load andFL(x) is the cumulative distribution function of

fL(x), then the LDC is simply the rotated and rescaled loadexceedencedistribution.2 This is

the inverse of8760(1 − FL(x)) where

FL(x) =
K

∑

k=1

pkΦk(x|µk, σk), (7.8)

which is a mixture ofK Normals (Φk) with the same properties as (7.5). For a particularK,

the best fitting value of eachµk, σk andpk can be found by solving an optimisation problem

2The exceedence distribution givesp(X > x), that is the probability that the random variableX (in this case
load) is greater thanx.
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µ1 µ2 µ3 µ4

43802 41649 33971 26089

σ1 σ2 σ3 σ4

5743 1410 3372 1771

p1 p2 p3 p4

0.427 0.120 0.329 0.126

Table 7.1: MOND fitted values for normalised 2005-2009 demand data, i.e., Fig. 6.6(a).

that minimises the sum of squares of the difference between observed andfitted values of the

LDC:

minimize
µj ,σj

SSerr =
I

∑

i=1

[

Le(qi) − Lf (qi)
]2

(7.9)

s.t. Lf (x) = 1 −
K

∑

k=1

pi · Φk(x|µk, σk)

Le(qi) =
2i

2I − 1
K

∑

k=1

pk = 1

µj ≥ 0, σj ≥ 0, pk ≥ 0.

where theqi are the rank ordered loads for the year,Le(qi) is known as theplotting positionof

qi (formula chosen to ensureLe(qi) 6= 0 or 1) [222]. In this application,K = 4 and in most

casesI = 8760.

These results were computed using the MS Excel 2003 Solver add-in and for a mix of 4 Normal

distributionsSSerr = 0.040, compared withSSerr = 11.499 for a single Normal distribution.

Plainly the objective function value forK = 4 is very good (at least a102 improvement on the

single normal case). As a result, a mix of 4 Normals is used.

To illustrate the accuracy of this technique at approximating a LDC, Fig. 7.5 shows the distribu-

tion of the GB hourly loads for the period 2005-09 (normalised by the year’s average demand)

and the fitted distribution. The distribution parameters displayed in Table 7.1 areused to fit the

MOND. The improvement in fit when moving from one Normal distribution (Fig. 7.5(a)) to a

mix of 4 Normal distributions (Fig. 7.5(e)) is clearly visible. In fact the difference between the

two LDC plots (Fig. 7.5(f)) is not visible at this scale owing to the excellent fit provided by the

MOND.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: (a) Histogram plot of normalised (by annual average demand) hourlyload data
and single Normal distribution fit, (b) Fitted cdf (dashed line) against normalised
load data cdf (solid line), (c) Plot of each pdf for the 4 normals, 7.5(d) Pdfs scaled
and labelled bypi weights, (e) MOND pdf (4 Normal components clearly visible
by their distinct peaks) and (f) LDC fit with negligible visible difference between
mix of 4 Normals and empirical data.
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At this point it is worthwhile highlighting the key benefits of using a Mix of Normalsdistri-

bution rather than the actual load duration curve. These are: 1) a MOND provides an accu-

rate method of approximating load (see above); and 2) the concept of equivalent (or effective)

load, that is the sum of the load (which is a MOND) and the outage capacity of conventional

generators, can be approximated by performing a convolution of (Normal)distributions (see

next sub-section). This concept of equivalent load plays a key role inprobabilistic production

costing [209]. Moreover this convolution technique offers computationallyfast calculation of

generator outputs, costs and revenues (see Section 7.5.1).

7.3.1 MOND with conventional thermal generation (after [209])

The next step is to estimate the available capacity for a set of generating units.Recall that the

available capacity at each hour from a particular unit is a random variablewhich is characterised

by the unit’s forced outage rate (FOR). Ifmu units of typen share the same capacity and

FOR characteristics and are subject to independent forced outages, they can be treated as a

single pseudo-unit (or generator) with a distribution with the moments (2.16) and (2.17) (sub-

section 2.8.4), where each (pseudo-) generator,Gn, has capacitycn = mucu. To simplify the

presentation for the remainder of the chapter, the convention will be to use ‘generator’ when

referring to a ‘pseudo-generator’ (collection of units of a given type), andcn when referring to

the capacity of that generator, because this is the last time individual units willbe discussed.

Now the convolution property of the MOND is used to determine the distribution for the ex-

pected load still to be served after each generator is dispatched (in merit order). This distribution

is called theeffective load duration curve(ELDC) facing the next generator to be dispatched

[221].3 If the units can be grouped intoN generators4 each with characteristics (2.16) and

(2.17),

Ln(x) = P

{

L−
n

∑

i=1

Gi > x

}

is defined as the load minus the available capacity of generator types1 . . . n (1 ≤ n ≤ N )

[209]. If Fn(x) = 1 − Ln(x) is the cumulative probability of effective loadx = L− ∑n
i=1Gi

3Note that Gross [209] uses the equivalent terminology:equivalent load duration curve.
4The more units in a group, the closer the Binomial distribution is to Normal.
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facing the(n+ 1)th generator, then

Fn(x) =

∫ cn

0
Fn−1(x+ y)fn(y)dy

and

Ln(x) = 1 − Fn(x), (7.10)

wherefn(y) is the pdf of the Normal that approximates the Binomial distribution describing

the available capacity of thenth type of generation with installed capacitycn. Technically for

a Normal distribution, the bounds in (7.10) should be−∞ to ∞, but it is assumed here that

the probability of falling outside the physically possible range[0, cn] is negligible owing to the

Binomial distribution being rescaled to 0/cu. Fn(x) is computed by performing the convolution

of the Normal distributions for load (which is a MOND) and available capacity.

The convolution property of a MOND [209] is applied, with generator loadingcarried out by

merit order. The expected energy serveden (in MWh/yr) by generator typen can then be given

by

E[en] = 8760

∫ ∞

0

[

Ln−1(x) − Ln(x)
]

dx, (7.11)

whereLn−1(x) is the load still to be met after adding generator typen−1 andLn(x) is the load

still to be met after adding generatorn, which at the start of the convolution process (n = 0)

is obtained from (7.8). The distribution for the ELDC after convolving inn generators is given

by:

Ln(x) = 1 −
K

∑

k=1

pkΦk(x|µLk
−

n
∑

i=1

µGi
,

[

σ2

Lk
+

n
∑

i=1

σ2

Gi

]
1

2

). (7.12)

Thus, the ELDC is described by a MOND with the same number of component Normals as

the original LDC. An example of the iterative convolution process is shown inFig. 7.6. The

diagram depicts how the remaining expected load to be served is reduced each time a group of

generators is convolved with the ELDC.

Given eachLn(x) (n = 1 . . . N ), the probability that generatorn or higher (in the merit order)

is the marginal source of energy (and so sets the price) is given byLn(0), i.e., the point where

the function crosses the vertical axis in Fig. 7.6. Further,

hn = Ln−1(0) − Ln(0) (7.13)
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Figure 7.6: Example of the convolution process. Shaded region is the expected energy served
by the first unit dispatched (i.e., the result of (7.11) withn = 1).

is the probability that generatorn is on the margin. This result is used in sub-section 7.3.3

to calculate expected revenues per MW for a generator belonging to this generator type in an

‘energy-only’ market setting.

The unserved energy (MW) is then simply any positive remaining load once all N generators

have been added. The annual expected energy unserved (EEU) per year can be calculated by

EEU = 8760

∫ ∞

0
LN+1(x)dx, (7.14)

and the Loss-of-Load Expectation (LOLE) (hrs/yr) for the period is determined by [64]

8760 · LN+1(0). (7.15)

7.3.2 MOND with a thermal-wind system

The interdependency between wind plants means that the convolution technique used to model

thermal generation in [209] cannot be directly used to account for wind power generation. To

address this issue, it is possible to construct an LDC that is net of wind production. An ex-

ogenous wind capacity is assumed and the resulting residual LDC facing thermal generation is

computed and the MOND approximation is applied to this wind-adjusted data set. The residual

load is simply the load minus the output from all wind plants at each hour, as described in sub-
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section 6.5. By taking this approach, the analysis can take into account bothspatial correlations

and seasonal (e.g., monthly and diurnal) trends in wind availability and their relationship with

demand. This is believed to be the first time the MOND production costing technique has been

applied using credible estimates in time and space for production from the combined on and

offshore GB wind resource.

Furthermore the residual load approach allows us to calculate the number ofhours that avail-

able wind generation is greater than aggregated demand, i.e., those hours when wind sets the

system marginal price. This is computed using the residual load exceedence distribution before

convolving any of the available thermal generation, i.e., the inverse of8760(1 − FL(0)) where

FL(x)) is given by (7.8). This is of particular interest in systems with high penetrations of wind

when direct wind dispatch may be required to curtail production at times whenavailable wind

exceeds demand.

Wind production may need to be curtailed under other circumstances. In particular, this imple-

mentation of the MOND technique does not consider the possibility of available wind gener-

ation exceeding either 1) available export capacity in a generation pocketdue to transmission

congestion or 2) raw demand net of inflexible base load (e.g., nuclear). Nor can the load dura-

tion curve method (of which the MOND is a particular case) consider the possibility that ramp

rate limitations could also result in wind spill. Considering each in turn, given that the model is

single bus, number 1) cannot be addressed here and is left for futureresearch.5 In this applica-

tion, it is assumed that UK Government policy will ensure that the amount of congestion in the

future will not be so large as to affect the basic economics of thermal generation investment.

This is consistent with the GB regulator’s ‘connect and manage’ transmission access policy

[223]. In the case of number 2), if inflexible base load generation needsto be kept running then

this will affect the economics of the wind generator being constrained (i.e., the wind generator

is given a congestion payment by the System Operator). This is not considered in this analysis

as installed wind capacity is an exogenous model parameter. The presenceof inflexible gener-

ation can also affect the economics of baseload generation by increasingthe number of hours

of zero or negative prices. However the amount of hours when this occurs is small relative to

5If a representation of the load and available wind production in each regionof the network is available, then
curtailment of wind production due to transmission congestion could in theory be assessed by multi-area production
costing methods.
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the total number of running hours across the lifetime of the plant. For instance, for the GB case

study presented in Sections 7.4-7.5, under the assumption that all plants canbe turned down

except nuclear, in no year and in no scenario is the probability of the net demand being below

the expected available nuclear capacity greater than 7%. Future applications of this method

could approximate the effect of inflexible generation by dispatching its must run capacity first

and assuming a zero or negative price for the portion of the time that this capacity is on the

margin.

It is important to note that the residual LDC approach removes the chronological issues that

arise in the wind and load time series. This is particularly important in the presence of large

amounts of hydro and pumped hydro generation where chronological production costing meth-

ods may be preferred to load duration curve methods. However this implementation of the

MOND technique is applied to the GB power system where the amount of hydroand pumped

hydro is relatively small (about 4% of capacity), so the use of a load duration curve approach is

reasonable.6

7.3.3 Expected revenues from the energy market

In the absence of market power and unless there is a capacity shortage,the market price for

energy will equal the marginal cost of the last generator to be dispatched. If there is a capacity

shortage, and assuming there is no price cap, the price will clear at the level necessary to ration

demand to the available capacity. More precisely, because consumers arenot generally exposed

to the real-time price, there is a willingness of suppliers to pay up to the VOLL when there is a

shortage. In a more general case, some or all customers are exposed tothe real-time price. This

methodology is applied in [210] in a long-run equilibrium model; that approachis extended

here to a dynamic long run nonequilibrium setting.

During a particular year, the probability that generatorn will be at the margin is given by (7.13)

and the price in that event will be the SRMC of the generator,SRMCn, assuming price-taking

(competitive) behaviour. Furthermore, once the convolution process has been completed for all

N generators, the probability that there will be insufficient generation to meetdemand is given

6Note that there is little scope for new build of hydro technologies in GB due to thelack of suitable sites.
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by LN+1(0) and under this condition the price is assumed to reach VOLL. Using the result

in (7.13), the expected gross margin for a particular MW of capacity belonging to generatorn

when generatori is at the margin is given by (£/MWh):

Rin = max {hi(πi − SRMCn), 0} (7.16)

whereπi is the wholesale price when generatori is at the margin, which in the absence of market

power is given bySRMCi. Using (7.13) to calculate (7.16), the expected annual perfectly

competitive gross margin used in (5.17) can be calculated by (£/MW/yr):

CGMn = 8760(1 − ρn)
[

N
∑

i=1

Rin + (hN+1(V OLL− SRMCn))
]

. (7.17)

These are precisely the scarcity rents described in Chapter 2, which in a simple long-run com-

petitive ‘energy-only’ market model, are just high enough to cover fixedcosts and trigger in-

vestment [3]. The main numerical work here is in computing theLn(x) in (7.11); once these

are known, the revenues are calculated easily by multiplying by the price - marginal cost dif-

ferentials. Recall thatρn in (7.17) is generatorn’s FOR, hence the impact of generator outages

on their expected gross margins is properly accounted for. Once again,no start-up or no-load

costs are considered here.

Here the new probabilistic method for calculating revenues from price mark-up us presented.

Recall that the use of the price mark-up function (5.10) was justified basedon comparisons of

the GB forward market index price (sub-section 5.1.4) and simulated prices. By comparison

in this example, to keep the derivations simple, only the exponential functionw1(L,G
∗
N ) =

aeb·(L−G
∗

N
) (5.8) is used. Fig. 7.7 shows an example of the price function given by (5.11) when

w(L,G∗
N ) is modelled using the exponential (5.8); the curve behaves like a classical linear

step-wise marginal cost supply function for small loads, but as the systemapproaches scarcity,

the mark-up function becomes evident and soon dominates the pricing mechanism.

Now the market price (5.11) no longer just depends on which generator ison the margin, which

is the case under the classic perfectly competitive market case (7.17); it now depends on the

overall margin,G∗
N − L as well. Furthermore, since the price can exceedSRMCn if n is on

the margin, the question of whether a particular incremental MW of capacity within n is called

upon or not must be considered. This is because marginal generatorn can still earn a positive

gross margin. Thus, when generatorn is on the margin, (5.11) must be calculated considering
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Figure 7.7: Supply function for a given realised available capacity for generatorsN−2,N−1
andN with mark-up function defined byw(L,GN ) = aeb(L−G

∗

N
) (shown as black

line). Marginal cost dashed, price is solid line.

the probability that a particular MW belonging to generatorn is dispatched or not. This is

important for calculating expected returns on investments.

If R
L,G∗

N
n is the gross margin received by a MW of capacity from generatorn for loadL and

total available generationG∗
N , thenR

L,G∗

N
n will be calculated by one of the following means:

1. If the marginal generator, sayi, is belown in the merit order (i.e., has a lower marginal

cost) then the generatorn will not be dispatched andR
L,G∗

N
n = 0.7

2. Else if the marginal generator has a higher marginal cost thann, then the probability of

dispatch is 1 andR
L,G∗

N
n = mc(L,G1, G2, . . . , GN ) + w(L,G∗

N ) − SRMCn.

3. Else ifu is the marginal generator, then the probability of dispatch is between 0 and 1

and

R
L,G∗

N
n = mc(L,G1, G2, . . . , GN ) + w(L,G∗

N )pdispn − SRMCn

= w(L,G∗
N )pdispn ,

(7.18)

7Thus it is assumed for simplicity that dispatch is still in merit order, despite thepresence of market power.
However in oligopolies with asymmetric generating companies, a small high cost generator might produce power
before a large low cost generator, as the latter is more likely to withhold capacity. This possibility is not considered
here.
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wherepdispn is the probability that a MW belonging to generatorn is dispatched.

This probability of dispatch is approximated by

pdispn = max

(

min

{

1,
−Mn−1

cn(1 − ρn)

}

, 0

)

, (7.19)

whereMn−1 =
∑n−1

i=1 Gi − L is the surplus margin afterL has been met using all available

generation lower in the merit order thann (e.g., Fig. 7.8). In plain terms, (7.19) is the ratio

of the MWs of generatorn that are dispatched to the average total MW ofn that are available

(which differs from the actual available MWs ofn). In the event that this margin is negative,

the fractional term in (7.19) will be greater than 1, therefore the min{ } function is required in

order to eliminate this possibility. This method of calculating dispatch probabilities is required

to account for market price mark-up in (5.11).

(a) (b)

Figure 7.8: (a) Aggregate supply curve showing price (solid upper line) for loadL and revenue
for generator of typeN − 1. Mark-up function also shown (dashed line). (b)
Shows price mark-up for different values of capacity margin and calibrations for
a = 10, 000, 2, 000 and1, 000.

The expected gross margin (7.17) must now be extended to consider the price function (5.11)

and merit order operation. This is less straight-forward than under marginal cost-based pricing

(7.16) because the price mark-up requires consideration of the total (generation-load) mar-

gin, MN , as well as the marginal unit. By assuming that price mark-up is non-zero (i.e.,

w(L,G∗
N ) > 0) only when generatorN orN−1 is on the margin, calculation of the probability

distribution ofw(L,G∗
N ) can be achieved by considering the joint probability distribution of

just the capacity marginsMN−1 andMN . This assumption is reasonable in an aggregated ca-

pacity model where the generator size is large. As already discussed, empirical evidence from

the GB market (e.g., [98]) is that mark-up tends to occur predominately during peak periods
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when surplus margins are relatively small, and where the surplus of available resource in other

periods means the presence of market power is unlikely. Therefore, it isreasonable to assume

that price mark-up is significant only when peaking plantsN orN − 1 are on the margin.

7.3.4 Expected price mark-up calculation

Firstly, for each component of the MOND (7.5), the joint distribution of capacity margins

MN−1 andMN , given byf(MN−1,MN ) is considered. The correlation is calculated as:

corr(MN ,MN−1) =
cov(MN ,MN−1)
σMN−1

σMN

=
σ2

MN−1

σMN−1
·σMN

=
σMN−1

σMN

.

(7.20)

The proof of this property is standard and provided in Appendix A.7.

Fig. 7.9 shows a plot of theisoquantsof the bivariate Normal density for{MN−1,MN}, which

are highly positively correlated owing to increases inMN−1 increasingMN ; these show the

combinations ofMN−1 andMN that yield the same price mark-up. For a particular point

(MN−1,MN ), the diagram shows the value of the joint pdf (ellipses) and price mark-up iso-

quants (dotted lines in each quadrant centred(0, 0)). By splitting the space into four quadrants

and sketching the isoquant maps, the effect of available capacity margins on plant revenues

can be assessed. For instance, when plant typeN is not dispatched (north-east quadrant), in-

creases inMN result in a decrease in mark-up (indicated by parallel horizontal lines, three

example mark-ups shown). Likewise, whenN is dispatched (north-west quadrant,MN−1 is

in shortage). IfMN is in shortage (south-west quadrant), the mark-up is zero for all combina-

tions ofMN andMN−1 (i.e., system is short of resource and the price will reach the VOLL).

Note that the south-east quadrant is assumed to have zero probability; it would be calculated as

having a nonzero probability only because the Normal approximation will give an unrealistic

nonzero probability for negative availability capacity for generatorN − 1. In the application,

this probability is negligible.

The ellipses in Fig. 7.9 are centred at(E(MN−1), E(MN ) = E(MN−1) + (1− ρN ) · cN ). On

the x-axis is the surplus margin after the load has been met using all available generation lower

in the merit order thanN , namelyMN−1 (the expectation of which is 10 GW). On the y-axis
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is (for a correspondingMN − 1 on the x-axis) the expected surplus margin after the load has

been met using all available generation, namelyMN (the expectation of which is 15 GW). So in

this example, given thatE(MN−1) is positive, the expectation here is that the load can be met

without generatorN being dispatched. Furthermore, the differenceE(MN ) − E(MN−1) =

(1 − ρN ) · cN ) (5 GW) gives the expected available capacity of generatorN .

Figure 7.9: 3-D plot of bivariate Normal of{MN−1,MN} (right) and its image on a 2-D plane
(left) with isoquant maps for the price mark-up element of (5.11).

Next, for each component of the MOND (7.5), the revenue that a MW belonging to generator

n ≤ N earns from price mark-up,RPMn (£/MWh), is considered for the following cases:

1. If n < N − 1 (i.e.,n is lower in merit order thanN − 1), then the expected revenue from

price mark-up for a particular MW of that capacity is given by

RPMn =

∫ v

0
(1 − ρn)f(MN )w(MN )dMN , (7.21)

wheref(MN ) is the pdf of the surplus marginMN = G∗
N − L. This assumes that

w(MN ) is a function ofMN only, i.e., the overall system margin, and that generators

N − 2 andN − 3, etc are all fully dispatched when mark-up is nonzero. The integral
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lower bound is zero due to price mark-up being zero ifMN < 0. More precisely, if the

overall margin is negative then there is no mark-up and the price is set by themarginal

cost of demand (i.e., VOLL). The integral upper bound in (7.21) is some value,v, above

which the price mark-up is negligible owing to the large surplus margin (e.g., 7 GWin

Fig. 7.8(b)).

2. Else ifn = N − 1, thenRPMn is broken down into two sub-cases:

(a) If MN−1 ≤ 0 (i.e., north- or south-west quadrant of Fig. 7.9) then

RPMu =

∫ 0

−∞

∫ v

0
(1 − ρn)f(MN ,MN−1)w(MN )dMNdMN−1, (7.22)

which is the case where all of generatorN−1’s available capacity will be dispatched

because load exceeds the available capacity of generators 1 throughN − 1. Again,

the inner integral lower bound is0 becauseMN ≤ 0 results in zero price mark-up

(south-west quadrant of Fig. 7.9).

(b) Else ifMN−1 > 0 (which impliesMN > 0, so north-east quadrant of Fig. 7.9)

then

RPMu =

∫ v

0

∫ v

MN−1

pdispN−1f(MN ,MN−1)w(MN )dMNdMN−1, (7.23)

wherepdispN−1 is the probability of dispatch of generatorN − 1, given by:

pdispN−1 =
(1 − ρN−1)MN−2

−1 · (MN−1 −MN−2)
(7.24)

whereMN−2 is the surplus margin after all available generation lower in the merit

order thanN − 1 has been dispatched.8 MN−2 is a random variable and compu-

tation of its pdf is awkward; however it can be approximated as follows:MN−2 ≈
(E(GN−1) − MN−1). This is achieved by approximating the realised value of

GN−1 by its expectation:E(GN−1) = cN−1(1 − ρN−1).9 Leading to:

pdispN−1 ≈ (1 − ρN−1)(cN−1(1 − ρN−1) −MN−1)

−1 · (MN−1 − (cN−1(1 − ρN−1) −MN−1))
, (7.25)

8The−1 scalar is applied to the denominator of (7.24) on account ofMN−2 being negative. If it was positive,
thenGN−1 would not be dispatched (i.e.,p

disp

N−1
= 0), which is not considered in (7.23).

9Note here thatcN−1 is the capacity of the generator typeN − 1, which is the sum of a number of individual
units who share the same capacity and FOR characteristics.
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i.e., the expected surplus margin over generatorn’s expected available capacity.

Note thatMN−1 > 0, soMN−2 < 0,10 and thus0 ≤ pdispN−1 ≤ 1.

3. Elsen = N andMN−1 < 0 andMN > 0 (i.e., north-west quadrant of Fig. 7.9):11

RPMn =

∫ 0

−∞

∫ v

0
pdispN f(MN ,MN−1)w(MN )dMNdMN−1, (7.26)

where

pdispN =
(1 − ρN )MN−1

−1 · (MN −MN−1)
, (7.27)

i.e., the case whereMN−1 is in shortage and some volume of capacity from generatorn

(= N ) will be required to meetL.12

Finally, by integrating over the subregions of the{MN−1,MN} space in Fig. 7.9 (i.e., using

one of the cases 1-3 above), the expected annual gross margin, whichis used in (5.17), for

generatorn can be calculated as

GMn = CGMn + E[en] ·RPMn. (7.28)

This is repeated for each component of the MOND for each decision year(suffix i in (5.17)).

This is an important extension to calculating the competitive gross margin (7.17);by exploiting

the properties of the probability distribution of capacity margins, this allows forthe anticipated

additional revenue received from market price mark-up to be calculatedduring the production

costing process. Procedures for calculating price mark-ups in probabilistic production cost-

ing models have been proposed (e.g., see [224]) but this is believed to be the first time the

derivations (7.21) - (7.27) have been presented.

The MOND approximation technique is embedded within the dynamic investment model de-

picted in Fig. 5.1. More precisely, it is used to calculate the expected gross margin,GM i
x, in

10In general,MN−2 could be positive, however the assumption here is that it is negative whenprice mark-up is
greater than zero.

11There is no second case here; only the case whereMN−1 < 0 is of interest (ifMN−1 > 0 thenGN is not
dispatched and mark-up revenue is zero).

12The pdf of capacity margin is Normal on account of both available generation and load (in fact, a MOND)
being Normal. ThereforeMN−1 andMN could conceivably be−∞, though practically speaking the outer integral
lower bound in (7.22) and (7.26) is set to−1 · [maximum value of load] (i.e., the highly unlikely situation when all
generation is unavailable).
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(5.17) and realised gross margins in the wholesale electricity market. In both cases these are

given by (7.17) or (7.28), depending on market bidding assumptions.

To speed up the computation of (7.22)-(7.26) during the simulation, the outer integral is car-

ried out using Gaussian quadrature (GQ), which requires fewer function evaluations than other

methods, such as the recursive adaptive Simpson quadrature and is given by

∫ 1

−1
f(x)dx ≈

n
∑

i=1

wif(xi)

which after some manipulations, can be applied to the interval[a, b]. Heren = 100 is used.

7.3.5 Test of accuracy

To test the accuracy of this method, the results of a Monte Carlo (MC) simulationwere com-

pared with the MOND technique. That is, for the load (a MOND) and generator cost inputs

given in Table 7.2, capacity mix given in Table 7.5 and mark-up function (5.8)calibrated to

VOLL 10,000£/MWh, random samples for load and generator availability were taken. Using

these samples, the margin,MN , price (5.11), and energy market gross margins were calcu-

lated for each unit. Close attention was paid to the tail of the distribution by using importance

sampling. More precisely, high loads were oversampled using the component Normal of the

MOND with the largest mean (i.e., row 1 in Table 7.2) with corresponding meanµ1, stan-

dard deviationσ1, and pdff∗(x). Samples were then weighted using the weighting function

W (x) = f(x)/f∗(x), wheref(x) is the 4 component MOND pdf andx is the random sample

fromN(µ1, σ
2
1).

The MC simulation was repeated106 times. The results of this test are displayed in Table 7.3.

“MOND” shows the results for the MOND technique including the methods and approxima-

tions of Section 7.3, above. “Monte Carlo” is for a Monte Carlo (MC) test where available

capacity is sampled from a Normal distribution with parameters defined by (2.16)-(2.17). Fi-

nally, “Bernoulli” samples available capacity from a Bernoulli distribution (i.e.,0 or full capac-

ity based on uniform random number generation for given FORs). The Bernoulli test makes

no approximations concerning the distribution of available capacity or its effects on prices and

mark-up, and so is the standard against which the new MOND model should be compared.

Comparing the MOND and Bernoulli tests shows the effect of using a Normalapproximation
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for available capacity rather than the Bernoulli distribution. Encouraginglythe MOND tech-

nique matched quite well to the MC simulation (with only a mild over-estimation of gross

margins by the MOND technique). Further, the Normal approximation for available capacity

also performs well. This test gives confidence that the MOND approximationis a good one.

Note that the “energy expected per generator” in Table 7.3 for the Monte Carlo and Bernoulli

tests is the result of multiplying the mean utilisation across the MC runs of each generator by

the total theoretical available energy of each generator. For instance, ifthe capacity of gener-

atorN − 3 is 11 GW and the mean utilisation is, say 0.75, then energy expected is given by

8760*11*0.75=72,270 GWh. For the MOND test, this is calculated using (7.11).

Loads (MOND) µi (MW) σi (MW) pi

43802 5743 0.43
41650 1410 0.12
33971 3372 0.33
26089 1771 0.12
N − 3 N − 2 N − 1 N

Generator SRMCs (£/MWh) 7 40 45 60

Table 7.2: Inputs for MOND test case.

Scarcity rent (£/MWh) Price mark-up (£/MWh) Energy expected per generator (TWh)
N−3 N−2 N−1 N N−3 N−2 N−1 N N−3 N−2 N−1 N

MOND 1.48 1.70 1.70 1.36 39.03 6.03 2.15 2.05 72.27 198.89 63.12 0.12
Monte Carlo 1.43 1.64 1.66 1.33 38.96 5.96 2.09 1.99 72.24 198.88 63.09 0.12
Bernoulli 1.41 1.61 1.63 1.30 38.91 5.92 2.04 1.94 72.24 199.40 63.11 0.12

Table 7.3: Summary of results for Monte Carlo test.

7.4 GB case study assumptions

The MOND technique is now applied within a simple dynamic investment model of the GB

power system with the aim of providing insight into the investment risks associated with higher

penetrations of wind power. Therefore the new dynamic model with 4 endogenous generator

types (nuclear, coal, CCGT and OCGT) is applied to an ‘energy-only’ market setting with an

initial capacity mix comparable to the GB power system and a VOLL of£10,000/MWh with a

simulation time horizon of 30 years (2010-40).

The residual load facing thermal units for a particular hour is calculated in Section 6.5, i.e.,
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by calculating hourly wind production using the base case wind capacity growth profile (Fig.

6.5) and subtracting it from the full empirical 2005-09 load data to create 30residual load

probability distributions (e.g., Fig. 6.6), one for each year. Each of the 30year MOND residual

load curves are precalculated assuming fixed underlying demand patternsand are then scaled

over time in order to match the load growth assumptions. For instance, if average annual growth

is expected to be 1.5%, then the MOND (7.8) after yeart will be:

FL(x) =
K

∑

k=1

pkΦk(x|(1.015)tµk, σk). (7.29)

Changes to the MOND standard deviation,σk, are not considered here.

Data on initial 2010 system capacity in Table 7.5 is derived by aggregating GBcapacity data

in Table 7.4 into the now four generator types and unit sizes described earlier. Once again,

minor sources of peaking capacity such as oil and pumped storage are combined with OCGT

and CHP and hydro are aggregated with CCGT plant to obtain the unit totals shown in Table

7.5. To reflect capacity already under construction in GB, 10.7 GW of CCGT capacity is as-

sumed to come online during the first (1.5 GW), second (5 GW) and third (4.2 GW) years of the

simulation. Note that the random variable used to represent unforeseen delays in the construc-

tion period during the real-time simulation (sub-section 5.4) is removed for this application.

Existing plant included in the Large Combustion Plant Directive (LCPD) is modelled with a

reduced lifetime based on the estimates of remaining generating hours given in[66]. All other

existing units are given retirement dates consistent with the lifetime assumptions inTable 7.5.

Table 7.6 shows the cost and financial input assumptions. The total annualised fixed costs per

unforced MW and total interest accumulated during construction are shown in Table 7.7. To

reflect restrictions on suitable sites for nuclear builds in GB, total installed nuclear capacity is

constrained to 30 GW.

Is is assumed that there will be no net load growth during 2010-20. This is broadly in line with

central Updated Energy Projections published by DECC [216] and baseforecast winter peak

demand figures from the GB SO [27]. Electricity demand after this point is assumed to grow at

1% per year.

Exchange rates are assumed to remain constant ate1.20/£ and $1.50/£. All calculations are

carried out in real pounds sterling. Real discount rates are used owing to the forward estimates
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Plant type Capacity (GW) # stations # unit sets
Biomass 0.1 2 2
Coal 28.6 17 62
CCGT 27.5 39 118
CHP 1.8 9 19
Hydro 1.1 34 8a

Nuclear 10.9 9 22
Offshore wind 0.8 - -
Oil 3.7 3 6
Onshore wind 2.2 - -
OCGT 1.2 19 34
Pumped storage 2.7 4 16

Total 80.6 136 287

aIndependent sets (i.e., not part of same hydro scheme).

Table 7.4: Approximate GB installed transmission entry capacity in 2009. Appendix F of[27].

Technology Therm. FOR Lifetime Build De-mothball Initial No. of Unit
x in (5.17) eff. ρ α (yrs) τ (yrs) τD (months) (GW) units size
Nuclear 0.36 0.10a 40 7 - 11 22 500
Coal 0.35 0.14 40 5 6 27.5 55 500
CCGT 0.53 0.13 25 3 2 28.6 143 100
OCGT 0.39 0.10 40 2 2 7.7 154 50

aRecent years have shown a decline in the annual availability of the GB nuclear fleet (likely due to age), therefore
this value is reduced to 75% for existing nuclear capacity. This estimate is the average of the aggregated energy
output from installed GB nuclear capacity 02-09 [190]. New nuclear builds are expected 90% availability.

Table 7.5: Generator technical assumptions and initial system capacity for GB case study with
symbols defined in Section 5.3. Sources: [21, 26, 39].

Technology Capex FC Var. O&M Equity Gearing WACC WACC
x in (5.17) £/kW £/kW/yr £/MWh return κ χ rn (nom.) rr (real)a

Nuclear 2,913 37.5 1.8 0.15 0.5 0.115 0.089
Coal 1,789 38.0 2.0 0.12 0.6 0.096 0.069
CCGT 718 15.0 2.2 0.12 0.6 0.096 0.069
OCGT 359 15.0 4.4 0.12 0.6 0.096 0.069

aAssuming a 2.5% rate of inflation.

Table 7.6: Generator financial assumptions for GB case study with symbols defined inSection
5.3. Sources: [21, 26, 39].
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Technology Annualised Total interest acc.
x in (5.17) FC during construction

£/unfor.MW/yr £/MW
Nuclear 400,750 931,170
Coal 216,710 344,100
CCGT 91,840 96,030
OCGT 47,250 36,690

Table 7.7: Generator (real) total fixed and interest cost assumptions for GB case study.

for fuel and carbon prices being in real terms. All capital and operatingcosts are constant in

real terms (2010 prices).

7.4.1 Intermediate analysis

The projected SRMC of the four generator types for a number of example years are shown

in Table 7.8. Some example aggregate supply functions are shown in Fig 7.10 (without price

mark-up). Note that coal and CCGT switch places in the system merit order in2030 owing

to the sharp increase in the ETS price after 2020. The fuel cost data behind these graphs is

provided in Appendix A.4.

Figure 7.10: Plot of stepped aggregate market supply function for example available conven-
tional generation based on variable operating costs in Table 7.8.

A plot of the technology screening curves is shown in Fig. 7.11. SRMC assumptions were for
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£/MWh Nuclear Coal CCGT OCGT
2010 7 44 45 63
2015 7 37 49 68
2020 7 38 52 72
2025 7 64 64 88

Table 7.8: SRMC assumptions for selected years. Note that uranium is modelled as constant
at 70$/lb with a conversion of £1 =$1.5. Estimates in 2010 prices.

2010 (Table 7.8) and annualised FC shown in Table 7.7. The plots show howcoal is not optimal

in the least cost solution in relation to other technologies, this situation did not improve for all

levels of SRMC shown in Table 7.8. This is an important finding and will be highlighted again

during the results interpretation.

Figure 7.11: Screening curves for technologies for 2010 cost data. Solid line indicates optimal
(least cost) capacity mix.

The effect of demand and wind capacity growth on load distribution percentiles over the period

2011-2025 is shown in Fig. 7.12. The 99.9%, 99.99% and 99.999% percentiles are shown,

i.e., the loads which are exceeded approximately 9, 0.9 and 0.09 hours per year, respectively.

One interesting thing to note about these plots is that although the wind penetration increases to

over 30 GW, the reduction in residual peak demand percentiles is much less,which corresponds

with the lower values of wind CC for high penetrations (cf. Fig. 6.10). Further, the MOND

representation is less accurate for the tails of the distribution and so these demand levels should
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be interpreted with caution.

Figure 7.12: Plot in change in demand percentiles for full and residual 2005-09 load data with
demand growth described in section 7.2.

7.5 GB Case study results

7.5.1 Base case results

For a Gaussian quadrature (7.29) with 100 points, the computational efficiency of the MOND

technique allowed for each production costing run to execute in under 1.5 seconds. Thus the 7

stochastically simulated years and 100 MC simulations required 7x100x2=1400 seconds. Con-

sequently, for the 30 year simulation, execution took between 525 and 1575minutes, depend-

ing on the number of technologies chosen for investment. Plainly, reducing the number of GQ

points shortens the production costing execution time (e.g., 25 points provideda 0.7 second

saving per production costing run), though the accuracy of the MOND technique decreases.

For instance, for the example shown in Table 7.3, the estimated price mark-up for generator

N − 1, calculated using (7.22) or (7.23), increases by 1.29£/MWh. Likewise for generatorN ,

calculated using (7.26), the estimate increases by 1.28£/MWh.

Fig. 7.13 shows the evolution of total installed capacity in the simulation. New buildsand

plant retirements are shown in Fig. 7.14 along with the evolution of the mix and amount of
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generation over time in Fig. 7.15. Also shown in Fig. 7.13 is the simulated full and de-rated

capacity margin (2.14). The FORs in Table 7.5 are used to de-rate conventional capacity, and

for wind the long-term CC values plotted in Fig. 6.10. The forecast for peak demand is obtained

from the 99.9% percentile of the year’s MOND cdf for full load (Fig. 7.12).

Figure 7.13: Plot of simulated capacity growth, de-rated and full capacity margins. Theoret-
ical historic GB capacity margin (2001-10) derived using data from [66] and
[90].

To compare the performance of the simulation against historic trends in GB, thehistoric simula-

tion (2001-08) was re-run and a comparison between the modelled and actual capacity margins

was performed (Tables 5.6 and 5.2 for cost and initial capacity data, respectively). The compar-

ison (Fig. 7.13) shows that simulated margins do not perfectly match historic trends in all years

(e.g., 2002/3 performs less well than in the initial implementation), yet there is a reasonably

good agreement of the model with reality, which gives a degree of confidence in the realism of

future projections. The average absolute difference between the historical theoretical de-rated

margin and the simulation was 1.6% with a standard deviation of 1.3%.

The “historical theoretical de-rated margin” is as in Fig. 3.9. Furthermore,the comparison

of available historical data on capacity additions plotted in Fig. 7.14 shows thatthe CCGT

investments triggered by the simulation (columns after 2003) do not correspond in all years

(e.g., 2008) but the volumes and timing are not unreasonably different. Further, 1.5 GW of coal-

fired generation was chosen for investment in 2005, which is not true to reality (no new coal-
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Figure 7.14: Plot of simulated new builds and retirements over time. Negative bars indicate
plant retirements and positive bars indicate new builds. Also shown are esti-
mates for historic new builds (all CCGT) for 2001-09 (columns labelled ‘CCGT
DUKES’ [190]).

fired stations have been commissioned since 2000). However given that at least one generating

firm in GB announced an intention to build a new coal-fired station (i.e., EOn at Kingsnorth),

which was cancelled before construction began due to reasons beyondpure market rules (i.e.,

intense public and political lobbying), this result seems reasonable in a modelsuch as this.

The future trend shows an erosion of de-rated capacity margins after around 2015. This coin-

cides with the LCPD plant retirements and rapid offshore wind growth. Of the30 simulated

future years, the average de-rated margin is 5.6% with a standard deviationof 7.1%. De-rated

margins are negative in 4 years, below 5% in 15 years, and below 10% in 25years. For those

years where margins are below 10%, an average shortfall of 1 GW of capacity was projected.

The UK Government’s recent consultation and subsequent white paper (July 2011) on GB elec-

tricity market reform has stipulated that a peak de-rated margin of 10% provides an acceptable

level of generation adequacy risk [67]. Further, the GB SO has recently stipulated that a de-

rated capacity margin of 5 GW over expected peak demand is desirable (seeAppendix to [66]).

By comparison these simulation results suggest that a lower than desirable level of adequacy
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Figure 7.15: Plot of total installed capacity over time, i.e., the result of the mix and amount of
generation investment and retirements over time.

risk could potentially occur.

The annual LOLE (7.15) and EEU (7.14) was also calculated. The average annual LOLE across

the 30-year simulation was 0.03 hrs/yr (or 3 hours in 100 years) with a standard deviation of

0.05, and average annual EEU of 5.7 GWh (less than 0.002% of typical year’s total annual

energy demand). The yearly LOLE together with the volume of capacity required to meet a

5 GW de-rated capacity margin at peak is plotted in Fig. 7.16.13 The graph shows how the

LOLE is higher in some years, particularly in 2023-26, which is reflected in the de-rated peak

margin shortfall. To put these figures in context, results from the historic generation adequacy

risk calculation of Section 3.6 are recollected. The average 10 winter LOLEfor 2001-10 was

0.06 hrs/yr with a standard deviation of 0.01 hrs/yr. This suggests that overall levels of risk do

not appear to be significantly high relative to estimates of historic trends. However because the

MOND is less accurate in the tails of the distribution the values for LOLE and EEUare used

primarily to assess the changes in relative levels of risk over the simulation time horizon and

to benchmark the sensitivity analyses described below rather than to predict absolute levels of

system risk.

13A value of zero implies that de-rated margin is in excess of 5 GW.

208



Improving the Investment Model

Figure 7.16: Plot of simulated LOLE (bars) and capacity shortfall over 5 GW de-rated capacity
margin (solid line).

These projected risk and de-rated capacity margin figures suggest thatthe system may experi-

ence tight supply conditions at peak demand in some years. Some of these results can perhaps

be explained by inspection of the residual load histograms from Fig. 6.6(d); the shape of the

right-most tail suggests that even with very high penetrations, wind power does not contribute

in all high demands periods. Furthermore the frequency of these high-demand/low-wind peri-

ods is too low to justify investment by private investors. And it is these very high-demand hours

when the potential for a capacity shortfall is highest (excluding here SO actions such as voltage

reductions). From a policy perspective, it is arguably uneconomical to design policies aimed

at ensuring there is adequate generating resource available for these low-frequency events; an

alternative approach could be to encourage demand-side participation through smart grids and

smart metering. However these mechanisms will introduce price dynamics not currently wit-

nessed in most liberalised energy markets and therefore careful consideration of the impact of

demand response on generator’s anticipated energy market revenuesis required (cf. Section

9.1.5).

Further, an analysis of generator revenues shows symptoms of a boom and bust investment cy-

cle. Simulated OCGT total gross margins, which include annualised capital costs (Table 7.7),

are plotted in Fig. 7.17. Also shown are the triggered investments in this technology. Recall
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Figure 7.17: Plot of simulated total gross margins for OCGT capacity (solid line, left axis).
Also shown are the OCGT investment and mothballing amounts over time (black
bars, right axis).

here that investors stochastically simulate 7 years of prices, so the largestinvestment years

(2017/18) include the forecast prices for (2023-25), the period when gross margins are high-

est. In contrast investment reduces in 2019-22 in response to expectations about prices being

dampened (although not sufficiently to prevent an overshoot) as new investment in OCGT and

other technologies enter the system. It is easy to see the pattern of high gross margins corre-

sponding to those years where adequacy risk is highest (Fig. 7.16). The graph shows how the

boom in OCGT investment in expectation of the high gross margins after 2023 isfollowed by a

bust phase around 2026 when large volumes of new nuclear capacity begin entering the system

(Fig. 7.15). This increases the capacity margin but reduces profitability for peaking units. In

fact, a significant volume of plant is mothballed toward the end of the simulation time horizon

suggesting that generators expect energy market revenues to remain low. It could be argued

that this pattern of boom and bust investment would be less severe in a modelthat included an

explicit representation of diverse agent behaviour. However as discussed in Section 7.2.2, the

investment response of the model is smooth, as would be expected from a heterogeneous group

of investors. Moreover, a model that considers firms with a portfolio of generation who might

compute a joint revenue calculation across all their generation when considering a new invest-

ment may experience alternative investment dynamics than simulated here. Therefore, as with
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any simulation model that looks to the future, which is hugely uncertain, these results must be

viewed with a degree of realism and caution. If the model were to be used in an actual policy

analysis then extending the model to address these issues is a worthy topic for future research.

This is discussed in Section 9.3 when recommendations for further work arepresented.

The mothballing of OCGT early in the simulation (2011) is likely to be a direct resultof ex-

pected high capacity margins out to 2014 (Fig. 7.13); the existing CCGT buildscome online

during these years in anticipation of LCPD-induced plant closures (Section 7.4). The profitabil-

ity of other technologies is shown in Fig. 7.18. The plot shows similar profitabilitytrends for

CCGT compared with OCGT. Further, investment in OCGT capacity begins around 2014 with

similar developments witnessed in CCGT and nuclear, in contrast no coal investments are made

after 2005 as the plot of technology screening curves in Fig. 7.11 explains.

Figure 7.18: Plot of simulated realised total gross margins for CCGT, coal and nuclearcapac-
ity.

After 2025, very little CCGT or OCGT investment is triggered and endogenous capacity growth

is minimal. Nuclear plants experience a sustained period of positive gross margins after 2023

(Fig 7.18), which is attributed to the rising SRMCs projects for fossil-fuel technologies (Fig

7.10) and hence increasing scarcity rents. This results in a period of intense and prolonged in-

vestment in nuclear after 2019 in response to high forecast gross margins. Combining this with

the data presented in Fig. 7.14, implies a period of intense CCGT and OCGT investment for
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the 10 years after 2015 to offset retirements to existing capacity and respond to demand growth

during 2020-25. Average annual endogenous capacity growth is -2.2% between 2015-25 as a

result of 29.7 GW of new thermal build being offset by 42.2 GW of thermal plant retirements

(options for lifetime extension were not considered here). This suggeststhat thermal capacity

is not replaced on a like-for-like basis, which is hardly surprising giventhat average growth in

installed wind generation is 12% over the same period. The ten years after 2025 provide bet-

ter growth (average endogenous capacity growth 1.2% between 2026-35) on account of wind

capacity levelling off, demand remaining flat and retirements continuing. In fact, nuclear is

the only endogenous plant type to increase in terms of total installed capacity for the period

2025-40. This analysis suggests that new investments struggle to recoverfixed costs during the

period after 2026 owing to growth in nuclear capacity within a high wind systemdampening

energy market revenues for fossil-fuel generation.

An interesting analysis is to compare simulated real-time (annual) prices with investor expecta-

tions. This can be used to determine how well investors predictions of grossmargins track those

realised. Fig. 7.19 shows the average simulated competitive prices across the MC runs versus

realised competitive prices for 1 and 3 years ahead for each of the years 2010, 2015, 2020 and

2025. Choosing 2020 as an example, in Fig. 7.19(a) (x-axis), the average of expected simulated

competitive price for 2021 (1 year ahead) is higher than the realised pricefor 2021 (dashed line

with diamonds) by 12£/MWh. The degree of difference is also directly related to the volume of

plant under construction; the more plant being built, the greater the over-estimation of market

prices (and hence gross margins). Furthermore, the proportion of longlead time plant under

construction exacerbates this trait. For instance, in 2020 the volumes of OCGT, CCGT and nu-

clear capacity under construction are 3.9, 5.8 and 3 GW, respectively, where as in 2025 it is 0,

10 and 6.5 GW, respectively, which is the year with the biggest difference. Note that, although

mark-ups from market power are not shown here, precisely the same pattern occurs for simu-

lated revenues from mark-ups. This can be traced back to the degree ofuncertainty with which

plant under construction is treated by the investor; the exact timings of whennew plants will

arrive are modelled as stochastic (sub-section 5.3.1). To test this hypothesis, a sensitivity case

was modelled where investors have perfect foresight about investmentsin the pipeline, this is

described in the next section (Test case 2c).
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(a)

(b)

Figure 7.19: (a) Plot of expected competitive market prices 1 year ahead from decision year
(x-axis) and (b) expected competitive market prices 3 years ahead from decision
year. Volume of capacity under construction at time decision is taken also shown
in each case (columns).

7.6 Sensitivity analyses

In order to test the robustness of the model, extensive sensitivity analyses have been performed

on a number of model assumptions. Those found to be the most critical, some ofwhich are
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plotted in Fig. 7.20 with key associated metrics shown in Tables 7.9 and 7.10, aredescribed in

the following sections.

Figure 7.20: Plot of simulated LOLE for selected sensitivities (test cases 1-6). Note the loga-
rithmic scale. Also note once again that the MOND is less accurate in the tails
of the distribution so the estimate for LOLE (7.15) and the forecast for peak de-
mand (obtained from the 99.9% percentile of the year’s MOND cdf for full load)
will combine to likely under-estimate the true values of LOLE. Therefore these
values are used primarily to assess the changes in relative levels of risk forthe
sensitivities listed.

Overall, the model’s qualitative behaviour was reasonable for the sensitivities listed and pro-

vided some useful insights, particularly when comparing the oligopolistic basecase to the per-

fectly competitive market results (i.e., zero price mark-up, see below). Each of the experiments

above is described in the following sub-sections.

7.6.1 Test case 1

Thelevel of expected scarcity price(i.e., VOLL). Here, the maximum value of 10,000£/MWh

is reduced and the price mark-up functionw(L,G∗
N ) is altered (Fig. 7.8(b)). Experiments using

case a) ‘VOLL 30000’: 30,000£/MWh and b) ‘VOLL 2000’: 2,000£/MWh are carried out.
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Security of supply risk metrics Total investment and mothballing
Average Average No. years Deepest LOLE EEU 2010-40
de-rated diff. in negative shortfall (hrs/yr) (GWh) (GW)
margin margins (%,yr)
2010-40 relative

Test (%) to base
case (%) Nuclear Coal CCGT OCGT

Base case 5.6 - 4 (-6.8, 2024) 0.03 5.7 30.5 0 34 12.1
(7.1) (0.05) (9.2) - (3.0) (1.2) (4.6)

VOLL 30000 6.5 1.2 1 (-1.3, 2025) 0.02 3.3 31.5 0 37 15
(5.0) (0.02) (3.1) - (2.5) (7.8) (10.9)

VOLL 2000 3.8 -3.0 10 (-9.0, 2022) 0.22 46.8 30.5 0 32.6 13.3
(7.8) (0.49) (116.7) - (3.0) (3.0) (5.0)

Believer 12.9 7.0 1 (-2.6, 2018) 0.01 1.9 30.5 0 34 32.4
(6.7) (0.02) (4.8) 0 (3.5) 0 (15.0)

Pre counter -5.1 -10.1 21 (-16.9, 2026) 0.71 158.7 30.5 0 27.6 12.0
(8.5) (0.70) (167.3) - (3.0) (3.6) (5.3)

Accurate 1.7 -3.9 15 (-5.9, 2030) 0.06 10.2 31.0 0 24.2 22.9
(4.5) (0.05) (8.3) - (1.5) (3.6) (6.2)

Resp. higher 6.3 0.8 6 (-4.7, 2024) 0.02 4.0 31.0 0 36.8 13.7
(5.2) (0.03) (5.3) - (3.0) (5.8) (6.6)

Resp. lower 5.0 -0.5 8 (-5.8, 2023) 0.05 8.9 29.0 0.5 35.2 19.8
(5.7) (0.08) (14.3) - (2.5) (1.0) (4.9)

No markup -8.3 -13.0 20 (-33.2, 2024) 3.9 1474 31.0 0 32.6 8.5
(14.4) (6.25) (2621.2) - (1.0) (0.6) (1.4)
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Security of supply risk metrics Total investment and mothballing
Average Average No. years Deepest LOLE EEU 2010-40
de-rated diff. in negative shortfall (hrs/yr) (GWh) (GW)
margin margins (%,yr)
2010-40 relative

Test (%) to base
case (%) Nuclear Coal CCGT OCGT

Base case 5.6 4 (-6.8, 2024) 0.03 5.7 30.5 0 34 12.1
(7.1) (0.05) (9.2) - (3.0) (1.2) (4.6)

VaR higher 7.3 1.7 4 (-5.3, 2023) 0.02 3.4 29.5 0 30.6 18.2
(5.2) (0.03) (5.1) - (3.5) (2.8) (6.4)

VaR lower 6.2 0.9 5 (-5.7, 2023) 0.02 4.2 30 0 31 16.6
(5.0) (0.03) (6.1) - (3.0) (3.6) (7.1)

WACC lower 7.0 1.4 4 (-4.9, 2023) 0.02 3.3 30.5 0 28.4 7.8
(4.8) (0.03) (4.8) - (3.0) (1.0) (1.6)

WACC higher 4.8 -0.8 7 (-5.5, 2023) 0.03 5.8 31.5 0 39.2 19.1
(4.6) (0.04) (7.5) - (3.0) (1.4) (4.7)

Load SD 8.5 2.9 3 (-1.9, 2026) 0.01 2.0 30.5 0 32.4 22.6
(5.3) (0.01) (2.4) 0 (2.0) (0.8) (6.7)

AS reduce 3.9 -1.6 12 (-6.9, 2023) 0.05 9.3 31 0 39.2 9.9
(5.0) (0.07) (12.5) - (3.0) (5.0) (5.1)

FC increase 5.9 0.0 5 (-4.1, 2023) 0.04 7.4 30.5 0 38.8 12.8
(4.3) (0.04) (7.1) - (3.0) (3.0) (14.3)
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For test case ‘VOLL 30000’:, by increasing the VOLL, the expectation would be to see more

investment as price spikes signals are stronger, which could potentially leadto a lower level

of risk and also more investment relative to the base case. For test case ‘VOLL 2000’:, by

reducing the VOLL, the expectation would be to see delays in investment as price spikes are

dampened, which could potentially lead to a higher level of risk and also less investment relative

to the base case. For instance, in a perfectly competitive market, in order for an OCGT plant

to recover its fixed costs (47.25£/unforced kW/yr), the price must reach the VOLL (10,000

£/MWh) in at least 4.7 hrs/yr (actually more to account for SRMC of production), and reducing

the VOLL to 2,000£/MWh increases this duration to 23.6 hrs/yr (Fig 7.21). The simulation

results showed that increasing the VOLL to 30,000£/MWh leads to a small improvement in

average de-rated margins to 4.9% with a standard deviation of 5.0%. Furthermore, de-rated

margins are negative during only 2026/27. The average annual LOLE reduces to 0.02 hrs/yr

with average annaul EEU of 3.3 GWh. Interestingly, CCGT investment begins 1 year earlier

and has a smoother cumulative profile relative to the base case (standard deviation of year-on-

year volumes 0.8 GW versus 1.2 GW in base case). This displaces some OCGTinvestment

early on, but overall volume during 2015-25 increase by 2 GW. Reducingthe VOLL to 2,000

£/MWh alters investment timings, but overall volumes are only slightly reduced (3% lower

than base case). The average annual LOLE increases to 0.22 hrs/yr with average annaul EEU

of 46.8 GWh. CCGT investment starts 2 years later relative to the base case,which interestingly

increases nuclear investment by 2 GW during 2015-20. OCGT investment isless intense during

2015-18 but volumes are significantly higher during 2020-23 (4.7 GW compared with 1.1 GW).

This is in response to higher expected gross margins in 2022-26 as a result of less short lead

time plant investment early on.

7.6.2 Test case 2

Investor expectations about new builds. Taking inspiration from [135] for, test case a) the

‘believers’case; here the investor ignores plants under construction when making expectations

about revenues. The impact of new builds on prices are only considered once plants are fully

operational (i.e., will systematically over-predict market prices). Secondly, case b), the‘pre

counter’ is used where the investor views all plant under construction as operational (i.e., will

systematically under-predict market prices). Finally, case c), a‘accurate’ investor is modelled
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Figure 7.21: Plot of required number of load shedding (or ‘VOLL-priced’) hoursfor OCGT
generator to recover its fixed costs (assuming perfectly competitive market).

where estimates about construction lead times match the delays experienced in reality (i.e.,

lead times shown in Table 7.5). This last case can be used to test the hypothesis that differences

between realised and investor expectations about prices is due to the uncertainty surrounding

capacity under construction.

For test case‘believers’, the anticipation would be more investment relative to the base case due

to the investor now systematically over-estimating revenues because they do not account for the

impact of new builds when formulating price expectations. Results producedmore investment

than under the base case, with more severe over-shoot dynamics witnessed. As a result, average

annual LOLE falls to 0.01 hrs/yr with generators unable to recover fixed costs with significant

increases in the volume of mothballed OCGT capacity.

For test case‘pre counters’, the anticipation would be less investment relative to the base case

due to the investor now systematically under-estimating revenues because they include new

builds before they are operational when formulating their price expectations. Results showed

under-investment and average annual LOLE increases to 0.71 hrs/yr.As a result of less in-

vestment, overall profitability of existing plant improves, with some mothballing in theearly

part of the simulation in response to high forecast margins on account of plant already under

construction at the start of the simulation (Section 7.4).
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For test case‘accurate’, the expectation would be reduced over-shoot dynamics and better

prediction of realised prices relative to the base case. This is on accountof the investor making

a better prediction of the timing of capacity under construction, which is particularly important

when there is a lot of long lead time plant (e.g., nuclear) under construction.Simulation results

show that nuclear, CCGT and OCGT receive positive gross margins in almost all years after

2015, yet average LOLE doubles to 0.06 hrs/yr and with a noticeable oscillation of frequency

5 years and amplitude 0.12 hrs/yr (Fig. 7.20). Average EEU also increases to 10.2 GWh.

Fig. 7.19 shows a significant improvement in investor price expectations at the 1 year ahead

stage, with expectation 3 years ahead also more akin to reality. Expectations about years 4-7

ahead performed better than the base case, though due to the possibility of new investments (or

mothballing) impacting on those years, significant differences remain.

7.6.3 Test case 3

Theaggregate investment response from the market. This is achieved by altering the con-

stant exponent,β, in the aggregate investment response function (7.4) to a) 0.9, ‘Resp. higher’

and b) 0.5,‘Resp. lower’ (Fig. 7.3).

For test case ‘Resp. lower’, the expectation would be that reductions to the exponentβ in

(7.4) to reduce investment, and increases under ‘Resp. higher’ to increase investment. This

could also impact on the timing of investments later in the simulation on account of changes

to investment levels early on. The results followed expectations; changes produced similar

investment timings to the base case for OCGT and CCGT early in the time horizon but the

reduced (resp. increased) levels of aggregate response lead to increases (resp. decreases) in

generation adequacy risk in the medium-term (out to 2020) but higher (resp. lower) levels of

investment later on in response to higher (resp. lower) forecast revenues. In the case of nuclear,

a reduced response curve time-slipped the investment pattern by two yearsfrom 2020, whereas

for the increased response curve the patterns were broadly similar.
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7.6.4 Test case 4

Theability of plant owners to exercise market powerand volumes of revenues received by

doing so, reference ‘No markup’. This is achieved by calculating expected gross margins using

(7.17) instead of (7.28) (i.e., a perfectly competitive market versus the oligopolistic market in

the base case).

For test case ‘No markup’, the perfectly competitive market case, the expectation would be

lower overall levels of investment on account of price mark-ups being removed from the rev-

enue calculation. Here more sustained periods of high prices (and hencescarcity rents) are

required in order to recover invested capital and provide adequate return on investment. In-

deed, when limiting the ability to exercise market power by removal of price mark-up, CCGT

investments are most affected. Investment in this technology starts four years later than the

base case and cumulative investment is on average 4.4 GW lower. Nuclear investments are

also dampened, with investment during the first 15 years of the simulation 3 GW lower than

the base case. These dynamics led to an order of magnitude increase in average annual LOLE

and EEU to 3.9 hrs/yr and 1474 GWh, respectively. Of course these dynamics may differ in

a model representing more sophisticated firms who account for the effectof their investment

upon mark-ups for their existing fleet. In this case firms may deliberately not invest in order

to keep prices (including mark-ups) high, however this type of investor logic is not considered

here.

7.6.5 Test case 5

Investor risk preferences: achieved by case a) ‘VaR higher’: increasing criticalq to 0.5 in VaR

test (cf. sub-section 5.3.3), case b) ‘VaR lower’: lowering criticalq to 0.01, case c) ‘WACC

lower’: reducing investor WACC and case d) ‘WACC higher’: increasing investor WACC.

For test case ‘VaR higher’ and ‘VaR lower’, the expectation would be to see changes to the level

of investments, particularly early on when the threshold for investment, whichis considered

only if the VaR criterionp(Vx > 0) ≥ (100− q)% is met. This means that an investment could

be deemed attractive earlier (in the case whereq = 0.5) or later (in the case whereq = 0.01)

relative to the base case. Moreover, the VaR criterion relates to the degree of risk aversion
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(Section 5.3.3), thereforeq = 0.5 models a less risk averse investor, andq = 0.01 models a

more risk averse investor. Results of this experiment showed that modelling aless risk averse

investor leads to marginally earlier nuclear investment (typically viewed as highrisk due to high

investment costs and operational inflexibility), with peaking plant investment timings remaining

unchanged but volumes increasing in some years. Modelling a more risk averse investor leads

to OCGT investment timings remaining unchanged but volumes increasing and displacing some

CCGT (5.4 GW overall reduction in CCGT and 3.3 GW increase in OCGT); this isattributed to

a higher degree of certainty about prices in the near term, resulting in less variance in projected

revenues for short lead time plant. Hence the VaR criterion will tend to favour this type of plant

for low values ofq.

For test case ‘WACC lower’ and ‘WACC higher’, a similar expectation to thatof ‘VaR higher’

and ‘VaR lower’ were held. Results show that the degree of impact that changes to the WACC

had on investment timings was related to construction lead time. This is hardly surprising given

that investment costs for long lead time plant are highly sensitive to the discount rate used. For

instance, increasing the required rate of return on equity by 3% across alltechnologies delays

nuclear investment by 3 years and overall volume by 5.5 GW during 2010-25. This leads to

higher generation adequacy risk during 2018-22. Similarly, CCGT investments are delayed by

2 years although volumes are similar on account of the lower nuclear builds increasing expected

gross margins and triggering investment. Reducing the required rate of return on equity by 3%

leads to higher and earlier volumes of nuclear investment with annual average LOLE reduced,

though gross margins are reduced.

7.6.6 Test case 6

Increasing investor uncertainty about load growth. Investors still consider load growth to

be stochastic, however the standard deviation of the Normal distribution used to sample load

growth is increased from 1% to 3%, reference ‘Load SD’.

For test case ‘Load SD’, the expectation would be that an increase to the standard deviation

of load growth to lead to a higher standard deviation of the distribution of project value. This

increased uncertainty surrounding profitability would reduced and/or delay investment. In fact,

increasing investor load growth uncertainty leads to less CCGT and nuclearinvestment out to
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2020, by comparison OCGT investment increases by 10 GW over the base case for the period

2019-21 in anticipation of high market prices in 2022-26. This high volume ofinvestment

lowers the generation adequacy risk and serves to dampen market prices, and OCGT gross

margins are positive in 2026 only (the only year when de-rated margins arenegative).

7.6.7 Test case 7

Economics of peaking plants: achieved by case a) ‘AS reduce’: reducing the amount of ancil-

lary service (AS) revenue for OCGT plants and case b) ‘FC increase’: increasing total OCGT

fixed costs (i.e.,TAFCx).

For test case ‘AS reduce’, a reduction in AS revenues (and hence profitability) was expected

to reduce OCGT investments, although not massively on account of AS revenues alone not

being sufficient to trigger investment (Section 7.2). In fact, reducing OCGT AS revenues from

10,000/MW/yr to 5,000/MW/yr alters investment timings and capacity choice early on in the

simulation, yet long-term overall volumes are only marginally affected. Moreprecisely, a re-

duction in OCGT investment during 2014-2018 (1.6 GW compared with 11 GW in base case)

is somewhat offset by increases in CCGT (8.8 GW compared with 4.6 in base case) and nuclear

(up 2.5 GW on base case) investment during this period. All three technologies were deemed

profitable during this period; the model chooses the technology with the highest PI (5.21) and

iterates until no additional plants are profitable (Section 7.2.2). A reduction inAS revenues for

OCGT means that other technologies have more favourable profitability in the first iteration of

the investment decision. OCGT is not chosen in subsequent iterations as a result of other capac-

ity additions reducing its profitability to suboptimal levels. By choosing to invest inlonger lead

time plant, total LOLE over 2019-2023 increases from 0.29 to 0.97 hrs. Interestingly, higher

volumes of OCGT investment occur in these later years (5.6 GW during 2019-2020 compared

with 1.1 GW in base case). This is likely to be a consequence of the increasedvolumes of

longer lead time plant under construction during this period increasing the differences between

investor price predictions and reality (i.e., as discussed in sensitivity 2c).

Finally, for case ‘FC increase’, increasing OCGTTAFCx from 42.5 to 60£/MW/yr (achieved

by increasing capex from 359 to 510£/kW) was expected to produce similar dynamics to case

‘AS reduce’. This turned out to be the case, though the increase in LOLEis less severe (although
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still higher than the base case).

7.6.8 Test case 8

In addition to the VaR criterion,Conditional Value at Risk (CVaR) (cf. sub-section 4.4.2.3 )

with q = 0.05 is included as a sensitivity, reference ‘CVaR’.

For test case ‘CVaR’, the expectation would be similar to test case ‘VaR lower’ on account of

a more risk averse investor being modelled. Here investment is made if the expected project

value is positive conditional on the revenue being belowvq, with q the confidence level, and

investment is triggered ifE [Vx|Vx < vq] > 0, i.e., the worseq% of the 100 Monte Carlo

simulated project NPVs determine the decision. The model produced some interesting results;

nuclear investment is delayed by two years (first triggered in 2012), with lower volumes in the

short-term (2.5 GW 2011-14, compared with 3.5 GW 2010-14 in base case)to medium-term

(5 GW 2020-23 compared with 6.5 GW 2019-23), i.e., 30% overall reduction. After 2026 both

timings and volumes were broadly in line with the base case. Further, OCGT investment was

reduced by 18% and delayed (9.9 GW 2015-24 compared with 12.1 GW 2014-22 in base case),

but CCGT investment experienced an increase of 14% (30.2 GW 2015-25compared with 26.4

GW in base case). The average de-rated margin for the 30 simulated futureyears fell to 2.5%.

The average annual LOLE across increased to 0.09 hrs/yr with a average annual EEU of 16.4

GWh. Again, 2023-28 was the period of highest risk.

7.6.9 Test case 9

To test theimportance of the primary fuel price projections, a sensitivity where the DECC

low coal (case a, reference ‘low coal’) and high (case b, reference ‘high gas’) and low (case

c, reference ‘low gas’) gas price assumptions was tested. These are shown relative to the base

case (central estimates) in Appendix A.4. Finally, a test (case d, reference ‘carbon floor’) with

a 40£/tCO2 minimum (or “floor”) ETS price was also tested.

For test case ‘low coal’, a reduction in the projected coal price (Fig. A.1(b)) would be expected

to impact coal investment in the short-term only on account of the carbon price remaining

high after 2020. Results showed this was indeed the case, yet the impact is less than expected
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with only 500 MW of coal triggered (in 2013), compared with zero in the basecase. An

unexpected result is that CCGT investment reduces to zero in 2015 and 2016 (1.4 GW and 0.2

GW, respectively, in base case), with OCGT increasing by 0.2 GW over thesame period. This

is largely unexplained, but is perhaps best attributed to the projected increase in the SRMC of

coal occurring later in the simulation (Fig. A.4). This increase causes coalgeneration to move

above CCGT in the merit order, thus increasing the projected scarcity rents(7.17) of CCGT

generation. In contrast with this occurring later here than for the base case, the result is a

reduction in CCGT investment early on in the simulation.

For test case ‘high gas’, a high gas price (Fig. A.1(a)) would be expected to delay CCGT

and OCGT investments and perhaps trigger some coal and more nuclear investment due to

increased forecast scarcity rents (7.17). Results show exactly this, although somewhat more

so than expected. A sustained period of nuclear investment is experienced during 2010-19,

with 15.5 GW of new investment triggered, compared with only 4.5 GW in the base case.

Further, 8.5 GW of coal generation is triggered during 2012-18 with OCGTinvestment reduced

significantly (5 GW 2013-23, compared with 12.1 GW in base case). Unsurprisingly, CCGT

investment is also reduced, although some does still occur after 2017 (average 2.3 GW 2017-

23, compared with 2.7 GW in base case), with overall volumes during the first15 years of the

simulation 42 % less. These findings correspond to the change witnessed for the least-cost of

supply solution. More precisely, taking 2015 as an example, the technologyscreening curves

are plotted in Fig 7.22. Notice how coal is now part of the least cost solution,which is not

the case under any of the base case simulation years (e.g., Fig. 7.11). Interestingly, there is

earlier and more intense mothballing of plants for both OCGT and CCGT; startingin 2027, 9

GW of CCGT and 6 GW of OCGT is mothballed. Some OCGT capacity is returned to service

after 2034, although CCGT is not owing to most of this capacity reaching the end of its design

lifetime before it is deemed profitable. The average de-rated margin for the 30 simulated future

years rises to 6.7% with negative margins experienced in only 2 years. Theaverage annual

LOLE reduces to 0.02 hrs/yr with a average annual EEU of 2.9 GWh. The period of highest

risk becomes 2018-20 (when negative margins occur), which is earlier than the base case. This

is due to more longer lead time plant (i.e., coal and nuclear) being chosen forinvestment and

hence the generation adequacy benefits of this capacity are experienced later in the simulation

(e.g., no occurences of negative margins during 2024-27).
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Figure 7.22: Screening curves for technologies for 2015 SRMC cost data with high gas price
sensitivity. Solid line indicates optimal (least cost) capacity mix.

For test case ‘low gas’, the expectation would be that lower gas prices (Fig. A.1(a)) would lead

to more gas-fired investment at the expense of nuclear generation. For abase-load generator,

such as nuclear, in order to recover high capital and fixed costs, this technology requires large

gross margins in the majority of hours. Therefore, reducing the SRMC of gas-fired generation

(in the absence of coal investment), will reduce nuclear projected profitability. The results of

the simulation show that no nuclear investment is triggered until 2027. Furthermore, 7.5 GW

of coal-fired generation is mothballed during the first 5 years of the simulation, by comparison

no OCGT mothballing occurs (Fig. 7.17). This leads to de-rated margins beingon average

3% lower during this period. The average de-rated margin for the 30 simulated future years

is 0.2% with negative margins experienced in a rather alarming 16/30 winters. The average

annual LOLE increases to 0.07 hrs/yr with a average annual EEU of 12.9GWh. The period of

highest risk becomes 2015-26, which is earlier but lasts longer than the base case. Interestingly,

CCGT investment remains largely unchanged, with only OCGT investments increasing (21 GW

during 2014-23 compared with 12.1 GW in the base case). Fig. 7.23 shows how the capacity

mix becomes dominated by gas-fired generation. By 2020, there is 36 GW and14 GW of

installed CCGT and OCGT capacity, respectively. This accounts for 53% of total installed

capacity (75% of total thermal generation). Further, absolute levels of capacity are lower than
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in the base case in some years (average -2.8 GW less total installed capacity per year than base

case during 2010-30), thus leading to more frequent and increased generation adequacy risk.

Figure 7.23: Plot of total installed capacity for 2010-30 for test case 9c, i.e., the result ofthe
mix and amount of generation investment and retirements over time.

For test case ‘carbon floor’, the expectation about a 40£/tCO2 minimum ETS price would be

that more nuclear investment occurs due to increasing gross margins (i.e., the opposite effect

of case ‘low gas’). This is indeed the case with levels of nuclear investmentsimilar to that

of test case ‘high gas’; a sustained period of nuclear investment is experienced during 2010-

21, with 13.5 GW of new investment triggered compared with only 4.5 GW in the base case.

CCGT investment remains largely unchanged, in contrast OCGT investment reduces by 50%.

Further, as with test case ‘low gas’, 4 GW of coal capacity is mothballed in theearly part of

the simulation. This capacity is not returned to service and is permanently retired in 2012 on

account of the LCPD (cf. Table 5.4 for LCPD plant closure assumptions). A benefit of earlier

and sustained nuclear investment is that the generation adequacy risk is reduced, although de-

rated margins still remain low in 2023-26. The average annual LOLE reduces to 0.01 hrs/yr

with a average annual EEU of 2.3 GWh.
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7.6.10 Summary of test results

In summary, a pattern of increased levels of risk relative to the historic calculation and erosion

of de-rated capacity margins was experienced during the 2020s to some degree in all cases.

Furthermore, the period of highest security of supply risk is 2023-28, though the magnitude of

the risk (measured by LOLE) differs between experiments, with the high gasprice sensitivity

bringing the riskiest period forward to 2018-20. A prolonged period ofincreased security

of supply risk is experienced throughout the 2020s for the perfectly competitive market case.

Also, providing investors with perfect foresight about capacity underconstruction produces

less investment; this leads to more frequent periods of relatively high LOLE and low de-rated

margins after 2020. However generators experience positive gross margins in more years on

account of reduced surplus margins, and hence higher prices.

The 2020s is the period of most intense change; during this decade over 40 GW of new capacity

is built with over 34 GW retiring; 14.5 GW of capacity leaves the system during the period

2023-26 alone. This further exacerbates the higher relative levels of risk during this period.

Furthermore, no new coal investments are made, with the majority of new investment coming

from gas-fired generation. A sensitivity on the primary fuel prices showed that lower coal prices

(or indeed higher gas prices) may lead to different technology choice, with relative levels of

high generation adequacy risk shifting to earlier in the time horizon.

7.7 Chapter summary

This chapter provided details of the updated dynamic investment model. New features of the

investment decision element of the model are provided in Section 7.2, includinghow investors

account for an increasing wind penetration and the introduction of an aggregate investor re-

sponse curve. In Section 7.3 the MOND was formally defined and its application to a market

situation is given. This included a novel derivation to account for revenues from price mark-ups

and a test of MOND technique accuracy. In Section 7.4 described input assumptions for the

GB market simulation and the wind models used from Chapter 6. Results from thedynamic

simulation of capacity investment in a system with an existing installed capacity similar tothat

of GB is given in Section 7.5, and an extensive sensitivity analysis followedin Section 7.6. Re-
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sults showed a pattern of increased levels of risk relative to the historic calculation and erosion

of de-rated capacity margins was experienced during the 2020s to some degree in all cases.

The topic of the next chapter will be to determine whether explicit capacity mechanisms can

be designed to alleviate resource shortfall and prevent investment overshoot. The results here

indicate that such a mechanism may be desirable to improve reserve margins in the mid 2020s.
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Chapter 8
Implementation of a Capacity

Mechanism

In this chapter, the scope for including a generation capacity investment control signal to

dampen investment cycles is explored. This begins with a discussion on the challenges faced

when applying techniques from classical control theory in order to design a robust investment

market controller for the dynamic model, and how reverting to existing modelling methodolo-

gies can still provide new insights. These insights are underpinned by a discussion on the need

and design for a capacity mechanism for the GB market test case based onthe results of Chapter

7. Two capacity mechanisms are tested, these are a strategic reserve tender and a market-wide

capacity market, and their impact on relative levels of risk is analysed.

8.1 Introduction

In dynamic control, arobust controlleris defined as a control mechanism that minimises the

effect of uncertainties whilst achieving the desired level of control over the system. For the

control system depicted in Fig. 5.1, the aim of the controller is to dampen investment cycles

and maintain the suitable level of security of supply risk. Initially, it was envisaged that the

measurement signal would be full or de-rated capacity margin, and the controller would behave

like a capacity mechanism by increasing (or reducing) additional generator revenue streams if

capacity margins (a proxy for security of supply risk) fall below (or riseabove) the reference

point, e.g., Fig. 8.1. In a system with a high wind penetration, this reference point would be a

target level of de-rated capacity margin, say 10%.

In order to design a robust controller, all elements of the system must be represented using

differential equations. This is termed thestate-spacerepresentation. An example of a state-

space representation for installed capacity is shown in (5.1). Here the statevariable,x, is the

installed capacity at monthm, andy is the system output, which is the sum of exogenous

(uncertainty in supply and project abandonment) and endogenous (newbuild or mothballed
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Figure 8.1: Electricity investment as a control problem with the proposed controller; theaim
of the controller is maintain a reference level capacity margin by making generator
revenues more predictable.

capacity) variables. In this case, a challenge arises for the system depicted Fig. 8.1 due to the

investment block being a “black box”, i.e., it cannot be represented usingdifferential equations.

In plain terms, the aggregate response of investment to market conditions can be measured, yet

unlike the dynamics of capacity change (e.g., (5.3)), the exact method by which the decision is

carried out cannot be represented using differential equations.

In the absence of a state-space representation,system identificationcan be used to created

a mathematical model of a dynamic system with “black box” characteristics usingobserved

input-output data. For instance, the Matlab System Identification Toolbox [225] can be used

to fit linear and nonlinear models to observed data (e.g., in this application the simulated in-

vestment response or de-rated capacity margin). These model structures include state-space

models which could then be used to design a robust controller. However thisfunctionality was

only surveyed during the final stages of research and, given the limited timeavailable in which

to absorb and then apply these tools, it was decided to incorporate a capacity mechanism into

the dynamic model using more established methods of implementation. That said, theexact

specifications of the capacity mechanisms implemented here are unique. The approach taken to

including these elements in the dynamic model are outlined and tested in the followingsections.
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8.2 A GB market capacity mechanism

Broadly speaking, any debate about whether or not a capacity mechanism is required must be

informed by a robust generation adequacy risk measure. This permits assessment of the risk in

any given investment scenario, and also guides the design of energy and capacity markets by

setting a baseline for what the market should deliver (such as an adequate capacity mix con-

sistent with appropriate returns on investment). In the following sections, drawing on previous

model results and underlying input assumptions for generation reliability, theneed and design

for a capacity market in GB is explored.

8.2.1 Need

The results presented in Sections 7.5 and 7.6 suggest that the GB system mayexperience in-

creased generation adequacy risk during the mid to late 2020s. This motivates the consideration

of capacity mechanisms, which can be employed to make generator revenue streams more pre-

dictable and thus bring on more timely investment. Fig. 8.2 shows the social optimal level of

unserved load in terms of cost and reliability using the simple model of reliability (sub-section

2.4.3). The optimal level (circles) for each VOLL can be determined using (2.8). In the main

simulation, the average 30-year EEU in the base case was 5.7 GWh per year, suggesting the

system may fall below the optimal level of reliability for a VOLL of 10,000 and 30,000£/MWh.

Furthermore, during the period of highest risk (2023-28), the maximum EEU was 33.4 GWh

per year, suggesting that this period is less reliable than even the optimal duration for a VOLL

of 2,000£/MWh. That said, these figures of EEU are calculated using the MOND technique

so cannot be considered altogether reliable in terms of absolute values. Therefore, when de-

signing a capacity mechanism, the EEU should be used to compare relative change between

experiments (Section 7.6), but owing to the possible inaccuracies of the estimate, cannot be

relied upon to produce a robust generation adequacy risk measure. Withthis in mind, attention

turns to a proxy for system risk, namely the de-rated capacity margin.
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Figure 8.2: Plot of optimal level of unserved energy for different levels of VOLL. Based on
incremental cost of an OCGT plant with FC of 47.25 £/unforced kW/yr (cf.Table
7.5). Note the £million scale applied to the y-axis.

8.2.1.1 De-rated capacity margin

The control problem formulation allows for the de-rated capacity margin (DRM) (2.14) to be

observed, yet this signal is dependent on the scaling factors (i.e., FORsfor conventional gen-

eration, and CC for wind) applied to each generator type. Owing to the lack of available data

on plant technical availability in GB, the FORs applied to de-rate capacity use best available

estimates (e.g., [26, 65]) and must be viewed with a degree of caution. Furthermore, following

the discussion on wind CC results in Chapter 6, the same can be said of the availability of the

wind resource at periods of highest demand. Therefore, before proceeding to the design of a

capacity mechanism, it is worthwhile considering the sensitivity of investment scenarios to the

underlying input assumptions for expected generator reliability.

Fig. 8.3 shows the level of realised DRM for the base case investment scenario when the FORs

in Table 7.5 are reduced (values shown on legend). Also shown is a low-wind scenario where

the capacity credits for wind shown in Fig. 6.10 are calibrated in order to provide a capacity

credit of 5% for the high penetrations (Fig. 8.4). Plainly the DRM is on average 1.3% below

the base case measurement when nuclear FOR is increased from 0.1 to 0.2,5.9% below when

CCGT FOR is increased from 0.13 to 0.2, and 2.7% below when the CC of wind are reduced.
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For conventional generation, the reduction is dependent on the level ofinstalled capacity for

each tecnology. For instance, the reduction in de-rated margin is higher when increasing the

FOR of nuclear later on in the simulation because installed capacity is near to 30 GW, however

it has little impact during the period of lowest DRMs when installed nuclear capacity is low

(average of 6.6 GW over 2023-28).

Figure 8.3: Sensitivity of measured de-rated margin to assumptions about de-rating factors.

This simple analysis demonstrates the impact that the assumed availability of supplywill have

on measured de-rated margins, and although not explicitly included here, a similar pattern

occurs when uncertainty surrounding peak demand is tested (e.g., samplingquantiles in excess

of 99.9%; Fig 7.12). The importance of this analysis is further evident whenone considers

predicting the de-rated capacity margin in advance of realised levels of supply and demand,

which is particularly important for many of the capacity mechanisms that exist presently (e.g,

PJM’s capacity market).

8.2.2 Design and testing

Drawing on the observation in Section 7.5, that according to the UK Government, a peak de-

rated margin of 10% provides an acceptable level of generation adequacy risk [67], and further-

more, that views on the use of either a strategic reserve tender or market-wide mechanism in
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Figure 8.4: Altered wind capacity credit graph. Calibrated so CC is 5% for the highest capac-
ity penetration; calibration point highlighted with circles (onshore 13 GW, offshore
20 GW).

the form of a capacity market [226] are sought, two capacity mechanisms are tested within the

model. Each has the aim of achieving a 10% de-rated capacity margin. They are astrategic re-

serve tenderand amarket-wide capacity market. Note that both the mechanisms tested here are

quite simplistic compared with existing capacity markets, yet these implementations canpro-

vide insights into the effectiveness of capactiy mechanisms in mitigating generation adequacy

risk concerns in a system with a high wind penetration, an area of research which is much less

understood.

Before describing the details of each mechanism, the time horizon over which the capacity

mechanisms operate must be defined. Some capacity mechanisms involve real-timeoperation

(e.g., E&W Pool capacity payment) and others annual (e.g., PJM’s capacitymarket operates

from June 1 to May 31 [227]). Each of the mechanisms tested here are forward-looking, that

is a forecast of the de-rated margin a number of years into the future is madeand capacity is

procured, or a capacity price is determined, based on this projection.

Using the same notation as (5.3), the forecast for total installed capacity of plant typex for year
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t+ T , made at yeart, can be obtained by

Ix(t+ T ) = Ix(0) +
∑

i∈Ax

ξBj −
∑

i∈Rx

ξBj +

nM
x

∑

i=1

ξMi (8.1)

whereAx is the set of all plant expected to be built by yeary+T : Ax =
{

j|t+ T ≥ ηBj + τx

}

,

and similarlyRx is the set of all expected retired plant:Rx =
{

j|t+ T ≥ ηBj + τx + αx

}

.

Thus the forecast expected de-rated margin (FDRM) for yeart+ T made at yeart is given by

FCDM(t, T ) =

∑4
x=1 Ix(t+ T ) +DRW (t+ T )

MPPD(t+ T )
− 1 (8.2)

whereMPPD(t + T ) is the forecast for most probable peak demand andDRW (t + T ) is

the forecast de-rated wind capacity (ELCC); both are exogenous parameters to the dynamic

investment model.DRW (t+ T ) is obtained from a combination of Fig. 6.5 (installed on and

offshore capacities) and Fig. 6.10 (capacity credits used to de-rate wind). The forecast for peak

demand,MPPD(t + T ), is obtained from the 99.9% percentile of yeart + T ’s MOND cdf

for full load (Fig. 7.12). Thus, the previous caveat on intepretation of absolute values applies

to the FCDM as well.

When planning a system, lead times due to engineering, procurement and construction must

be accounted for. For instance, in the GB case study presented in Section7.4, if a central

estimate for de-rated capacity margins taken at yeart, for delivery in yeart + 3 was required,

only new investments in OCGT plant currently under construction would impacton the level

of generation adequacy actually experienced in yeart + 3. By comparison if looking ahead to

yeart+ 8, all new investments in yeart will need to be considered.

8.2.3 Strategic reserve tender

The analysis begins with a strategic reserve tender (SRT). Taking the definition in [226], this

mechanism consists of a centrally-procured volume of capacity“which is removed from the

electricity market and only utilised in certain circumstances”. These circumstances are likely

to occur when either all other available resources have been exhaustedor the wholesale price

reaches a politically unacceptable level (i.e., above the perceived long-run marginal cost of the

most expensive plant type, but below the VOLL).
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To allow for construction lead time, capacity is procured three years aheadof required delivery

and is restricted to OCGT plant only. Three years is chosen on the basis that this will leave

sufficient time for any required OCGT capacity to be built and, if investments inother tech-

nologies are made in the meantime, they will not influence the level of generationadequacy

experienced three years out, but will contribute in later years.

Capacity is procured on the basis of meeting the 10% de-rated target reserve margin. If no

shortfall is expected, then no capacity is procured. To account for thefact that strategic reserve,

like all other OCGT capacity, is subject to forced outages,ρ, the required tender volume (RTV)

is determined by scaling the forecast required de-rated capacity in yeart+ T

RDC(t+ T ) = max [0,MPPD(t+ T ) · (0.1 − FCDM(t, T ))] , (8.3)

by the expected FOR of an OCGT plant, i.e.,RTV = RDC/(1 − ρOCGT ).

The modelled investor is aware of the reserve tender, but is unsure exactly what price will acti-

vate the reserve capacity. Further, the investor assumes that strategic reserve capacity will have

the same impact on wholesale prices as any other volume of capacity entering the system (i.e.,

it will dampen prices) with the additional SRT resource combined with other OCGT peaking

resources when calculating projected energy market revenues (7.28). This logic is extended to

the decision to mothball plant (7.3), though it is restricted to capacity which is built as a result

of energy market and AS gross margins alone, i.e., not part of the SRT. All SRT is assumed to

be paid an availability and utilisation price adequate to provide a reasonable rate of return on

investment. Finally, in each decision year, the investment decision is run firstand the required

SRT capacity calculated afterwards, thus giving the market every opportunity to provide the

required capacity in order to meet the 10% target de-rated margin.

8.2.3.1 Simulation results

Fig. 8.5 shows the evolution of de-rated capacity margin over the period 2016-40 and that the

period of highest adequacy risk in the base case was 2023-28. The graph shows how de-rated

margins improve significantly relative to the base case. Of the 30 simulated future years, the

average de-rated margin is 12.9% with a standard deviation of 4.5%, relativeto the base case

where equivalent figures of 5.6% and 7.1%, respectively, were observed. The 10% target DRM
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is achieved in 21 of 30 simulated years (compared with 5 of 30 years in the base case). The

average annual LOLE across the 30-year simulation was 0.002 hrs/yr witha standard deviation

of 0.003, and average annual EEU of 0.353 GWh per year. These figures are an order of

magnitude lower relative to the base case projections.

Figure 8.5: Plot of de-rated capacity margins for strategic reserve against the basecase during
2016-40.

Fig. 8.6 compares the SRT tender OCGT capacity to the base case (i.e., in response to expected

energy market and ancillary services revenues only) OCGT investment and mothballing. Also

shown are the base case OCGT investments and mothballing (striped blocks).Introduction of

the SRT was expected to prevent investment in OCGT capacity on account of tendered OCGT

capacity damping expected market prices, and hence gross margins. Unexpectedly, the model

results show that some OCGT capacity is still triggered as a result of expected energy market

revenues, yet this is delayed by 2 years relative to the base case, and only occurs in 2017 and

2019 (Fig 7.17). This occurrence of investment in OCGT being driven byenergy market rev-

enues can perhaps be explained by the fact that, during 2017-19 high anticipated gross margins

are still forecast due to the capacity retirements and demand growth after 2020. However as

in the base case, energy market induced investment is not enough to meet the target de-rated

margin. Consequently, large volumes of OCGT capacity are tendered in the run-up to 2025. In

total, 28.1 GW of new build OCGT plant is tendered during 2013-25, with an average volume

of 2.2 GW per year, although the variation in tendered volumes is remarkable.For instance, as
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little as 100 MW is tendered in 2014 with a massive 5.3 GW tendered in 2021, whichindicates

that procured volumes are quite volatile. Interestingly, after 2024 OCGT plant not included

in the SRT begins to be mothballed. A small volume of capacity is de-mothballed in 2026,

only to be mothballed again in 2027. In fact, by 2030, 6 GW of OCGT capacity has been

mothballed. This can be attributed to de-rated margins climbing after 2030 (Fig. 8.5) and thus

damping energy market prices, which has a negative impact on gross margins causing genera-

tors to mothball OCGT capacity. When generators take the decision to mothball, this results in

the instantaneous removal of capacity. This explains why the SRT performsbadly in 2025 (i.e.,

the target de-rated margin of 10% is not met). In the run-up to 2025, 850 MWand 2 GW of

OCGT capacity is mothballed in 2024 and 2025, respectively (Fig. 8.6). Thisshortfall cannot

be avoided by the SRT due to its 3 year lead time. In a more sophisticated model where OCGT

generators participating in the energy market are able to forecast revenues from the SRT and, if

more profitable effectively ‘switch markets’ from energy to SRT, then this OCGT mothballing

may be prevented. Furthermore if such a mechanism was to be implemented, it would plainly

be beneficial for it to include some form of incremental SRT less than 3 years out from the

delivery year. The intention of these incremental tenders would be to incentivise generators

who have mothballed capacity to bring it back on line if it is required. Note that no tendering

occurred for the ten years after 2028 on account of high de-rated margins (as a result of new nu-

clear coming on line). This suggests that much of the tendered capacity will beutilised during

the first years of its operation, but left idle for some years after that.

Inspection of the evolution of total installed capacity over time in Fig. 8.8 shows how installed

capacity consists of a large volume of OCGT capacity relative to the base case (cf. Fig. 7.15).

This shows that the response of the market to a SRT is to reduce CCGT investment (Fig 8.7)

with all OCGT investment after 2019 carried out in response to the tender only (note that the

positive purple bars after 2019 in Fig. 8.6 represent de-mothballing). More precisely, there

is 33% less CCGT investment here compared with base case, in contrast nuclear investment

remains largely unaffected. Consequently, by 2030 the generation market is dominated by non-

dispatchable generation (e.g., wind and nuclear account for 43% of installed capacity, compared

with 16% in 2010), with a small volume of mid-merit generation (e.g., CCGT accounts for

24% of installed capacity, compared with 38% at the start of the simulation), andover 32%

(average of 28% over 2020-40) of the generation market as strategic reserve. Furthermore, these
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Figure 8.6: Plot of OCGT investments and mothballing/de-mothballing under SRT versusbase
case during 2010-40. Note that ‘market-driven’ investment is in response to energy
market revenues (i.e., the endogenous investment decision).

Figure 8.7: Plot of CCGT investments and mothballing/de-mothballing under SRT versusbase
case during 2010-40.

simulation results show that the SRT is required to meet shortfalls throughout the 2020s, though

once large volumes of nuclear investments begin entering the system, de-rated margins climb

above the 10% target (average de-rated margin 17.5% during 2030-40). Consequently, the

system is holding a large volume of unused reserve in some years. From a policy perspective, it
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is arguably uneconomical to tender for such a large volume of peaking capacity in the lead up

to, and thoughout the early part of, the 2020s, when it may only be required for the first years

of its operation. That said, as shown in Fig. 8.6, positive tender volumes begin again in 2038

suggesting that they will be utilised again after a period of inactivity.

Figure 8.8: Plot of total installed capacity over 2010-40 under the SRT, i.e., the result of the
mix and amount of generation investment and retirements over time.

8.2.4 Market-wide capacity market (after [54])

In this section a simplified version of the PJM’s Reliability Pricing Model (RPM) istested. The

target of the RPM“is to achieve the target level of reliability most of the time”[51]. This target

is based on loss-of-load probability 1 day in 10 years (or 0.0003) with procurement of capacity

occurring 3 years before it is required. In this application, the target level of reliability is the

10% de-rated capacity margin.

There was a desire to keep the capacity market mechanism simple so that integration into the

existing model framework could be achieved in a reasonable time frame. Consequently, many

of the complexities of RPM (see [51]) are not included in this implementation. Firstly, no

locational pricing is considered on account of the model being single bus.Secondly, deferral

of capacity retirement, which is something that the RPM has been known to induce [51], is

excluded on account of the fixed lifetime assumption, however altered mothballing patterns
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can be assessed. Thirdly, no demand-side resources or transmission projects are considered in

addition to competing generating resources in the capacity market. Finally, onlyone auction (3

years out) is included here, while the full RPM includes “base-residual” (3 years out) and three

“incremental” (20, 10 and 3 months out) auctions.

Figure 8.9: Alternative capacity market demand curves used in this study. Inspired by [54].

Like the RPM, a capacity demand curve is used to determine required capacitymargins as a

function of capacity prices. In addition to the classical vertical demand curve, a number of

downward sloping demand curves are tested, these were inspired by [54]. These curves are

known as Variable Resource Requirement (VRR) curves in the RPM [51]and are displayed in

Fig. 8.9. It is important to note that these curves are a function of target de-rated capacity, not

de-rated margin (one can be derived from the other because the forecast system peak load in

(2.14) is known, e.g., Fig. 7.12). This method avoids negative ratios when the actual (projected)

margin is negative and furthermore, these functions are consistent for different values of the

target margin. The highest price for capacity (e.g., ratio of actual to target de-rated capacity

below 1 in vertical demand curve) is based on twice the annualised FCs for anew entrant

OCGT unit minus expected annual energy market and ancillary services (AS) revenues, known

as the “net cost”. The VRR curves used here are inspired by those tested in [54]; “Curve 1”

is similar to the “no demand curve”, “Curve 2” the “net cost at installed reserve margin (IRM)

curve”, where IRM is the ratio of installed capacity over peak demand [54], “Curve 3” the

“net cost at IRM + 1% curve” and “Curve 4” the “net cost at IRM + 4%curve”. The curves
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are calibrated so that the capacity price is precisely the net cost of the OCGT unit when the

ratio of actual to target de-rated reserve capacity is 1 (curves 1 and 2), 1.01 (curve 3) or 1.04

(curve 4). Note that the curves tested in [54] included predicted energymarket revenues when

calculating annualised net costs; this was determined using the relationship ofenergy market

and AS revenues to unforced (or de-rated) reserve for a hypothetical new turbine in a dynamic

simulation model of the PJM market [54], and empirically using“the actual values that would

have been experienced for such a turbine in years 1999-2004”[54]. Taking a similar approach,

the relationship beween energy market gross margins from the 30 year base case simulation

versus the target de-rated capacity required to meet a de-rated margin of10% are analysed.

These are displayed in Fig. 8.10. The points show the realised OCGT grossmargins (GMs)

during each year of the 30 year base case simulation. Only ratios below around 0.96 yield

positive gross margins and furthermore, the average GM for the values inthe range [0.94,

0.96] is -7.32£/unforced MW-yr. As a result of this rather bleak picture for OCGT GMs,the

maximum capacity market price is set at twice the full net cost of a new entrant OCGT plant

(i.e., 2 · 47, 250 = 94, 500 £/unforced MW/yr, Table 7.5) and the VRR curves 1-4 in Fig. 8.9

have been calibrated according to the descriptions above and gradients described in Section

V-A of [54].

Figure 8.10: Relationship of OCGT energy market and AS revenue gross margins to de-rated
margin, expressed as a ratio to the target.
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8.2.4.1 The capacity market auction process

Capacity is offered into the auction by competing generators (or generators, demand and trans-

mission in full RPM model) and an aggregate supply curve is calculated. The market clearing

price is obtained from the intersection of the supply and the demand curves.An example of this

is shown in Fig. 8.11; the graph shows the PJM capacity market auction results for the 2012/13

planning year at the 3 year ahead stage (i.e., the “base-residual” RPM capacity market auction).

Note that, for the RPM auction, capacity is offered based on unforced capacity (UCAP), e.g., if

a 50 MW unit has a FOR of 0.05, then50 ·(1−0.05) = 47.5 MW is offered into the auction. To

maintain consistency, this is referred to herein as de-rated capacity. Although included purely

for demonstration purposes, the clearing price in Fig. 8.11 is expressed in$/MW-day, which

can be translated into£/MW-yr (as in Fig. 8.9) by multiplying by 365 and using the appropriate

currency conversion.

Figure 8.11: Example PJM RPM clearing for 2012/13 for offered UCAP (supply) and VRR
curve (demand). Intersection of Regional Transmission Organization(RTO) sup-
ply and demand curves determines the auction clearing price. Source [228] (used
directly).

In this implementation, the generator supply curve at each yearly auction is constructed using

the total installed capacity (i.e., all capacity participates in the auction), which is de-rated and

offered into the auction. For simplicity, this is modelled as a single vertical supplysegment, and

the capacity market clearing price, which is paid to all generation resources per de-rated MW,

is the intersection between the total de-rated supply and demand curves. The investor includes

the capacity price at each decision year and assumes the current price will be sustained for all
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7 of the stochastically simulated years when calculating the value of an investment. Therefore

(5.17) becomes:

Vx =

αx
∑

i=τx

GM i
x − FCx + CMPx

(1 + r)i−τx
− (ICx +DCx), (8.4)

whereCMPx is the capacity market price.

8.2.4.2 Simulation results

Fig. 8.12 shows the evolution of de-rated capacity margin over the period 2016-40 for each of

the demand curves tested. The evolution of the mix and amount of generation over time for

each demand curve is shown in Fig. 8.13. The graph shows how de-ratedmargins improve

significantly relative to the base case. It should be noted that given the uncertainty in many

of the input parameters used to calculate expected de-rated margins, it cannot be said with

a high degree of confidence, that the simulated values of de-rated capacity margin will be

realised. Therefore, once again, rather than focus on absolute values, this analysis focuses on

the performance of the demand curves relative to one another and to the base case. Table 8.1

provides summary statistics on average de-rated margin and capacity prices(Fig. 8.9) for the

30 simulated future years.

Figure 8.12: Plot of de-rated capacity margins for the 4 capacity market demand curves tested
relative to ‘energy-only’ market base case during 2016-40.
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De-rated Capacity Ratio to target Years target
margin price de-rated capacity met

[%] [£/unforced MW-yr]
Average SD Average SD Average SD

Base case 5.6 7.1 - - - - 5/30
Curve 1 11.9 3.8 39,679 43,144 1.02 0.03 21/30
Curve 2 13.9 4.2 36,307 27,784 1.04 0.03 27/30
Curve 3 14.7 4.3 38,191 29,419 1.04 0.04 29/30
Curve 4 17.1 4.9 41,933 31,019 1.06 0.04 30/30

Table 8.1: Summary statistics for market-wide capacity markets and the ‘energy-only’ base
case.

(a) (b)

(c) (d)

Figure 8.13: Plot of total installed capacity over 2010-40 for the 4 capacity market demand
curves tested (a) “Curve 1”; (b) “Curve 2”; (c) “Curve 3”; and (d) “Curve 4”.

The expectation would be that “Curve 1” would exhibit a very volatile capacity market price

due to the curve paying either zero when above the target level of de-rated capacity, or twice the

full net cost of a new entrant OCGT plant when below it. Further, as a result of this volatility, the

simulation would display less investment and hence higher security of supply risk relative to the

other demand curves, yet there ought to be an improvement relative to the base case. Results

showed this to be the case, with the capacity price oscillating between zero andmaximum

throughout the simulation as Fig. 8.14 shows. Moreover, as shown in Table8.1, the target
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de-rated margin is achieved in 21 of 30 years, compared with 5 of 30 in the base case. These

findings are broadly similar to [54], where for a dynamic simulation model of thePJM market,

the target de-rated margin was met in 54% of years compared with 34% with no capacity

market.

The expectation would be that “Curve 2”, would be less volatile than “Curve1”, again providing

a better level of security of supply relative to the base case. This was indeed the case (Table

8.1), and the target margin is met in 27 of 30 simulated years with a much smoother capacity

market price (Fig. 8.14). “Curve 3”, would be expected to be less volatile than “Curve 1”,

again providing a better level of security of supply relative to the base case. However given that

demand is willing to pay just 1% higher than “Curve 2”, the expectation would bethat these

curves would produce broadly similar results. This was indeed the case, with the reduction in

price voliatility relative to “Curve 1” visible in Fig. 8.14. Here the target margin ismet in 29/30

simulated years.

“Curve 4” would be anticipated to perform best in terms of security of supply risk because

demand is willing to pay for capacity in years when available generation is expected (recall that

the auction occurs 3 years ahead of delivery) to exceed the target level of de-rated capacity by

up to 14% (Fig. 8.9). This is indeed the case, though the results suggest that this curve may

be over-paying for capacity because de-rated margins are well abovethe target in most years.

However given that all other curves experience at least one year when the target is not met,

there is a higher degree of confidence that this demand curve mitigates the security of supply

concerns present in the base case simulation.

Fig 8.14 shows the capacity market price for each demand curve, in£/unforced MW/yr, paid

to each generator in addition to energy market revenues. There is clearlya boom and bust

pattern to the capacity market in the early years, particularly under “Curve1”. Recall that

“Curve 1” is designed to pay either zero when de-rated capacity is equalto or above the target

or twice the full net cost of a new entrant OCGT plant when below the target. This leads to

a highly volatile price relative to the other curves which provide a smoother payment profile

(Fig. 8.9). For curves 2 to 4, the capacity price is positive in all years outto 2030, although

it reduces after 2030 in response to new nuclear plant entering the system (Fig. 8.15), which

results in high de-rated margins (Fig. 8.12). Fig. 8.16 shows the impacts on OCGT gross
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Figure 8.14: Yearly capacity market prices for the 4 capacity market demand curvestested.

(a) (b)

(c)

Figure 8.15: Cumulative (a) OCGT; (b) CCGT; and (c) nuclear investment for the 4 capacity
market demand curves tested relative to the ‘energy-only’ market base case.

margins (GMs). Results for curves 2-4 show that OCGT generators receive positive and less

variable GMs in most years out to 2030 (in fact, using “Curve 4”, OCGT generators receive

positive GMs in all years 2010-30). In contrast GMs reduce after 2030 and in some years and
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are in fact lower than for the base case (e.g., 2032). This occurs because more capacity is built

under the 4 capacity market designs (Fig. 8.15) than in the base case. Consequently, generators

receive less revenue from the energy market on account of higher levels of available resource

(recall that price mark-up is reduces as capacity margins increase). Thus when the capacity

price reduces, generator GMs perform similarly to under the ‘energy-only’ market simulation.

A similar pattern emerges for CCGT generation; Fig 8.17, demonstrates how thevariability

of GMs is reduced relative to the base case, particularly for demand curves 2-4, though the

outlook for overall levels of profitability across the 30 year simulation remainsbleak. The

average CCGT GMs were -37.8£/kW, -33.6£/kW, -25.26£/kW -26.4£/kW and -20.8£/kW,

for the base case, “Curve 1”, “Curve 2”, “Curve 3” and “Curve 4”, respectively. This indicates

that although profitability remains low, a relative increase across the 30 years was experienced

for all demand curves tested. As it is relative difference that is of interest here, the conclusion

must be that introducing a capacity market has a positive effect on CCGT and OCGT GMs, in

addition to the level of generation adequacy risk.

Figure 8.16: Plot of simulated total gross margins for OCGT capacity for the 4 capacity market
demand curves tested relative to the ‘energy-only’ market base case.

Fig. 8.15 shows the cumulative trend in levels of investment relative to the basecase. Note

that this is the volume of investment triggered, not changes in installed capacityas in Fig. 8.13.

An interesting observation when comparing “Curve 1” to “Curve 4” is the mix an amount of

capacity over time in both cases. “Curve 4” provides a higher level of installed capacity and de-
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Figure 8.17: Plot of simulated total gross margins for CCGT capacity for the 4 capacity market
demand curves tested relative to the ‘energy-only’ market base case.

rated margins, although the degree of diversity within the capacity mix reduces. For instance,

nuclear capacity in 2040 is 21 GW and 15 GW for “Curve 1” and Curve 4”,respectively.

Moreover all four capacity market curves produce significant reductions in short and medium

term nuclear investment relative to the base case (Fig. 7.15), and the capacity mix contains a

much larger volume of CCGT and OCGT plant. Perhaps most striking, is the transformations

in nuclear and OCGT investment; nuclear is significantly reduced early in the simulation (Fig.

8.15(c)), with OCGT investment much higher relative to the base case (Fig. 8.15(a)). This is

attributed to the fact that the capacity market price is based on the total fixed costs of a new

entrant OCGT, so it is hardly surprising that this type of generation becomes more attractive for

investment.

A useful piece of analysis is to compare the total capacity market costs (i.e., total realised

de-rated capacity multiplied by the capacity market price in each year of the simulation) with

the reduction in unserved energy costs relative to the ‘energy-only’ market base case (i.e., no

capacity market). This result would likely be of interest to policy makers seeking to answer the

question: is a market-wide capacity market good value for money for consumers? Fig. 8.18

shows a plot of the cost of each demand curve tested per MWh of unserved energy reduced

over 2016-40. The data suggest that “Curve 1” provides the least value for money (note the two
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Figure 8.18: Plot of cost of reduction (£million) per unserved MWh reduced 2016-40 for the 4
capacity market demand curves tested (Fig. 8.9).

Cost of Cost of
unserved reduction in

energy unserved energy
(MWh) 2016-40

[£m/yr] [£m/yr]
Average SD Average SD

Base case 57.8 92.5 - -
Curve 1 1.7 1.6 1.7 4.1
Curve 2 1.0 1.1 1.0 1.3
Curve 3 0.8 1.0 1.1 1.4
Curve 4 0.5 0.9 1.3 1.6

Table 8.2: Summary statistics for the cost of energy unserved in the ‘energy only’ market
base case (cf. Section 7.5.1) and capacity markets, and the cost of the reduction
in unserved energy (MWh) for the market-wide capacity markets over 2016-40.

price spikes in 2028 and 2038), with all four curves experiencing high costs per unserved MWh

reduced later in the simulation. The first 5 years of the simulation period are omitted from

the plot as costs per unserved MWh reduced are an order of magnitude higher in some years

(e.g., cost in 2013 are in excess of£25 million for all demand curves tested). This is due to the

low levels of unserved energy across all cases (including the ‘energy-only’ market case) during

2010-15. The capacity market has positive prices in some of the first years of the simulation

on account of the 3 year planning horizon (e.g., planning year 2013 forecasts de-rated margins
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for 2016, Fig. 8.14) . The lowest costs per unserved MWh reduced are experienced during

the period 2023-27 for all the demand curves tested, this is hardly surprising given that this is

the period of highest security of supply risk in the ‘energy-only’ marketbase case. Table 8.2

provides some summary statistics on the total costs of unserved energy for the ‘energy-only’

market base case and the capacity markets tested. Predictably the cost of unserved energy is

significantly reduced with the introduction of a capacity market. For instance,average costs of

unserved energy are 98% lower for “Curve 1” relative to the base case, with the other demand

curves performing better still. Furthermore, “Curve 2” seems to offer the best value for money

as the average cost per unserved MWh reduced is lowest at£1m, although this curve did not

reach the target level of de-rated capacity margin in all simulated years (Table 8.1). Therefore

a risk-averse policy maker may view “Curve 4” as the most attractive option even though its

value for money appears lower relative to other designs. Generally speaking, this comparison

suggests that the capacity market is worthwhile, although its value for money islower in those

years where generation adequacy risk is also low. The optimal policy may beto introduce the

capacity market some years in advance of the period of highest security of supply risk (2023-

28), though waiting too long may increase investor uncertainty and lead to an investment hiatus.

Conversely, introducing a capacity market too early may lead to consumers over-paying for

capacity. If used in an actual policy analysis, further tests would be required. For instance the

mix and amount of capacity over time is different for each simulation (Fig. 7.15 and Fig. 8.13)

so total year-on-year total system costs would also need to be compared.These costs include:

1) total production costs; 2) annualised fixed costs of the generation mix; 3) capacity market

costs; 4) unserved energy costs; 5) system balancing costs; and 6) transmission reinforcement

costs. This analysis is left for future research.

In summary, the introduction of a capacity market leads to a lower simulated levelof generation

adequacy risk, yet once the period of highest adequacy risk has passed, the capacity price

reduces significantly. This has a negative impact on generator GMs, with CCGT and OCGT

units once again unable to recover their fixed costs in most years after 2030. Further, the

diversity of supply reduces: the capacity mix becomes dominated by CCGT, OCGT and wind

generation during the 2020s with penetrations of nuclear generation not significant until after

2030. This can be viewed as a positive outcome: a high volume of flexible generation would

complement the variability of wind.
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These results demonstrate that introducing a capacity market mitigates simulated security of

supply risk concerns during the 2020s and provides reasonably goodvalue for money, yet the

dynamic nature of the capacity market price means that generator revenuerisk returns after

2030 when the capacity price reduces. The use of a mechanism that induces investment in the

capacity required to meet a target level of security of supply risk (or a proxy for it) is sensible,

although an analysis of costs per unserved MWh reduced shows that to achieve optimal value

for money it may be desirable to allow the system to drop below the target level of de-rated

margin in some years. The fact that these investments struggle in later years as de-rated margins

recover is a less desirable outcome. It is interesting to note that the period ofovershoot, 2032-

37, is of a similar duration to the period of highest generation adequacy riskin the base case,

2023-28. This suggests that, depending on the generation adequacy policy in place, around 6-7

years of tight (or excessive) supply conditions will be experienced during (or after), a period of

intense thermal generation investment in response to rapid wind capacity growth, thermal plant

retirements, and demand growth.

8.3 Chapter summary

In this chapter the integration of two capacity mechanisms in the dynamic model has been pre-

sented. To begin, Section 8.1 provided an overview of the modelling approach, including why

techniques from control theory could not be called upon to directly implementthese mecha-

nisms. Next, in Section 8.2, by drawing on the base case model results for theGB market case

study, together with recent debate about generation adequacy in GB, theneed for and design of

a GB market capacity mechanisms was presented. This included a discussionon the socially

optimal level of investment in sub-section 8.2.1. Results showed that the system may fall below

the optimal level of reliability for a VOLL of 10,000 and 30,000£/MWh. This was followed

by a deeper analysis of the de-rated capacity margin results from the basecase, in particular

how this measure is dependent on the scaling factors applied to each generator. Following this,

the implementation of the strategic reserve tender was described. Simulation results showed

that the SRT is required to meet shortfalls throughout the 2020s, though once large volumes

of nuclear investments begin entering the system, de-rated margins climb abovethe 10% de-

rated margin target after which large volumes of reserve are unused in some years. This was
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then followed in sub-section 8.2.4 by implementation and results for the market-wide capacity

mechanism. Results showed that the introduction of a capacity market leads to alower sim-

ulated level of generation adequacy risk and, although less diverse relative to the base case, a

supply mix that compliments the variability of wind generation. The results and interpretation

provided here will be drawn upon in the next chapter where discussion and conclusions for the

project are given.
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Chapter 9

Discussion and Conclusions

This final chapter discusses the results of this research and provides conclusions. The thesis

statement from Chapter 1 is answered and contribution to knowledge reviewed. Implications

of thesis findings are discussed, including impacts on electricity market reform. Recommenda-

tions for further work and overall thesis thoughts and experiences arealso shared.

9.1 General discussion of results

Like any project spanning a significant amount of time, the model implementation evolved as

knowledge was acquired and understanding improved. There have been two main iterations of

the model. In the first instance, the goal was to validate performance against the past. In light

of the findings in the validation phase and feedback from a subsequent publication [194], the

second goal was to develop the model to account for the high penetrationsof wind power that

are expected to emerge in GB.

9.1.1 The dynamic generation investment market model

Dynamic models can provide insights that are not always available when analysing a single

moment or point of system balance. Further, the effect that the mix and amount of capacity

over time has on the level of security of supply risk and generator profitability can be assessed.

In this thesis, a dynamic generation investment model, which captures the negative feedback

mechanism that exists between market conditions, investor price expectations and the timing

and intensity of year-on-year thermal capacity addition and withdrawal has been presented. In

combination with exogenous model parameters which include forecasts for demand and wind

capacity growth and production, the model has been applied to a GB market case study to

forecast the capacity, price and reliability oscillations that could potentially occur.
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9.1.1.1 Preliminary implementation

The initial task was to extend the work of Häni [123] and apply the model to the GB generation

investment market. This was motivated by a key philosophy of control theorythat the first task

should be to model the behaviour of the real system. In this case, the real system was chosen

to be the GB ‘energy-only’ electricity market since the introduction of the NETA framework

in early 2001. The simulations against the historic market dynamics were scrutinised, partic-

ularly the replication of historic levels of capacity margin, and a number of limitations were

discovered. For instance, the dynamic model took a simplistic approach to calculating investor

gross margins. Furthermore, a robust methodology to investigate the impact of high levels of

wind power investment on market dynamics was required. This was coupledwith the need to

estimate the expected contribution of generating units to serving load and the revenues they

receive by doing so in a power system with a high wind penetration that is notnecessarily in

long-run equilibrium. As the simulation was to be run over many years (2010-40), this required

a computationally fast, accurate and robust technique. An opportunity to undertake a 6 week

placement with the Electricity Policy Research Group at the University of Cambridge was seen

as an ideal opportunity to research such a method. During this placement, theMOND tech-

nique for approximating the LDC was investigated and was perceived as theideal candidate to

be developed and embedded into the dynamic capacity investment market model.

9.1.1.2 Final implementation

The dynamic investment model into which the MOND technique is embedded was updated

and described. The model includes a Monte Carlo investment model which randomly sampled

capacities, fuel prices and load growth. The distribution of potential profits are constructed

from the MC simulations of the stochastic variables and a risk averse investorwith Value at

Risk decision criteria withq = 5% is assumed. New features of the investment decision were

also developed, these included an aggregate investment response curve as well as a mothballing

response curve based on the philosophies of Prospect Theory. TheMOND technique was

applied to calculate expected output, costs and revenues of thermal generation subject to varying

load and random independent thermal outages in a market situation. It wasadapted for use in

the dynamic capacity market model with high penetrations of wind by performing aresidual
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load calculation with simulated wind outputs. The MOND has proved very easy toconvolve

with plant outages for the expected output calculations. Further, expressions for calculating the

expected revenues from price mark-up have been derived. The validity of these expressions

was confirmed by Monte Carlo simulation, although as discussed in Section 7.2,if used for

an actual policy analysis, the impact that the number of Monte Carlo runs hason the model

outcomes should be evaluated and, if possible, larger sample sizes used.

9.1.2 Wind modelling

In light of preliminary model results, and observations about the relative success of policies

outside of pure market rules in promoting investment in wind generation, it wasdecided to con-

sider growth in wind capacity as exogenous to the model. This motivated an investigation into

how best to incorporate production from increasing penetrations of windwithin the dynamic

investment simulation model. The techniques used to transform simulated and measured wind

speed data for 2005-09 to power outputs have provided a contribution to knowledge in addition

to the dynamic investment model work. Outputs from the production model werematched with

empirical load data to estimate residual load duration curves for various penetrations of on and

offshore wind. The results from this stage of the work were employed to update the investment

market simulation model for an assumed level of installed wind, and estimate future thermal

generation investment trends in GB.

Results showed dramatic changes to the shape of residual load distributionsas the penetration

of wind increases, with a trend towards normality at high penetrations. Further, the standard

deviation of the distribution increases substantially with negative residual demand experienced

at high penetrations. These negative loads occur for penetrations of 30 GW and above, yet the

peak load remains largely unchanged. The residual load distributions provided an approxima-

tion of what thermal generation (in reality, also hydro power and other renewables) production

requirements (ignoring network issues) would be for assumed future levels of installed wind

capacity.
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9.1.3 ‘Energy-only’ market results

An ‘energy-only’ market setting with an existing installed capacity similar to that of GB has

been used to estimate the economic profitability of capacity investments. Using relative levels

of de-rated capacity margin and LOLE as the risk metric, simulation results for GB show that

levels of generation investment lead to a increase in generation adequacy risk in some years,

with erosion of de-rated capacity margins in the mid 2020s, and very tight supply conditions are

experienced during a small number of peak hours. Many new investments,particularly peaking

units, were unable to recover their fixed costs.

The relative increase in levels of security of supply risk was explained byinspection of the

residual load histograms. The shape of the right-most tail suggests that even with very high

penetrations, wind power does not contribute in all high demands periods.On the basis of the

period analysed, the frequency of these high-demand/low-wind periodsis too low to justify

investment by private investors and it is these very high-demand hours when the potential for a

capacity shortfall is highest.

9.1.4 Sensitivity analysis

A sensitivity analysis demonstrated that assumptions about investor risk profiles and expec-

tations about new builds, load growth and the ability to exercise market powerhave a strong

impact on simulated investment dynamics and subsequent levels of generationadequacy risk.

Overall, the model’s qualitative behaviour was reasonable for the sensitivities tested and pro-

vided some useful insights, particularly when comparing the base case to theperfectly com-

petitive market results. In all cases a pattern of increased relative levelsof risk and erosion of

de-rated capacity margins was experienced during the 2020s to some degree. Furthermore, the

period of highest security of supply risk is 2023-28, though the magnitudeof this risk differs

between experiments. A prolonged period of increased security of supply risk is experienced

throughout the 2020s for the perfectly competitive market case. Also providing investors with

perfect foresight about capacity under construction produces lessinvestment. This leads to

more frequent periods of relatively high LOLE and low de-rated margins after 2020. In con-

trast generators experience positive gross margins in more years due tolower surplus margins,
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and hence higher prices. A sensitivity analysis on the primary fuel pricesshowed that lower

coal prices (or indeed higher gas prices) may lead to different technology choice, with relative

levels of high generation adequacy risk shifting to earlier in the time horizon.

9.1.5 Capacity mechanisms

The topic of the last stage of the research was to determine whether explicit capacity mecha-

nisms such as tendering for strategic reserve (e.g., [67]) and capacity markets (e.g., [54]) can

be designed to alleviate resource shortfall, prevent investment overshoot and achieve a 10%

de-rated capacity margin. The results of the GB ‘energy-only’ market simulation indicated that

such a mechanism may be desirable to improve reserve margins in the mid 2020s.

Results of the strategic reserve tender showed that the target is met in most years. The genera-

tion investment response to this mechanism is to reduce CCGT investment relative to the base

case, with all OCGT investment after 2019 carried out in response to the tender only. Conse-

quently, the generation market becomes dominated by generation outside the energy market,

with over 32% of the generation market as strategic reserve. Such a high level of strategic re-

serve is arguably inappropriate in a liberalised electricity market. Moreover, a situation where

the majority of generation investment is carried out in response to a centrally managed mar-

ket undermines the credibility of the mechanism. Furthermore, the SRT is required to meet

shortfalls throughout the 2020s, however once large volumes of new nuclear begin entering the

system during 2032-37, de-rated margins rise well above the target. Consequently, the system

is holding a large volume of unused reserve in these years.

Results of the market-wide capacity market demonstrated that introducing a capacity market

mitigates simulated security of supply risk concerns during the 2020s, although the level of

capacity market price volatility, and hence revenue risk, differs betweenthe capacity market

demand curves tested. The sloped demand curves perform best in terms of 1) meeting the tar-

get and 2) making generator revenue streams more predictable, yet some investment overshoot

is experienced during 2030-35 on account of longer lead time plant entering the system. Con-

sequently, generator revenue risk returns during this period. Furthermore, a comparison of the

total capacity market costs to the reduction in unserved energy costs relative to the ‘energy-

only’ market case suggest that on order to achieve optimal value for money it may be desirable
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to allow the system to drop below the target level of 10% de-rated margin in someyears. How-

ever, it may be better to err on the side of caution and implement a more expensive capacity

mechanism that delivers the target level of de-rated capacity margin in all years. These result

would likely be of interest to policy makers seeking to answer the question: is the improvement

in the level of security of supply risk delivered by a capacity market relative to 1) an ‘energy-

only’ market; and 2) alternative capacity market designs good value for money for consumers?

However, if used in an actual policy analysis, further tests would be required. For instance,

the mix and amount of capacity over time is different for each realised investment scenario the

‘energy-only’ market and capacity market cases, so total year-on-year total system costs would

also need to be compared. These costs include: 1) total production costs;2) annualised fixed

costs of the generation mix; 3) capacity market costs; 4) unserved energy costs; 5) system bal-

ancing costs; and 6) transmission reinforcement costs. This analysis is left for future research,

perhaps integrated into the extensions suggested in Section 9.3.3.

In light of these findings, a more appropriate approach might be to encourage demand-side

participation through smart grids and smart metering. Given that a significant numbers of smart

meters are expected to be installed in GB by 2020 (e.g., DECC’s goal of 53 millionsmart meters

in 30 million homes and businesses across GB by 2020 [229]), this approach could be the most

economical. That said, there is huge uncertainty surrounding the achievability of this target,

and given that policy uncertainty delays investment, relying on smart meter delivery is risky.

If the model presented here were to be extended to include demand-side participation, then

methods of implementation would have to be devised. Options include:

• Modelling demand-side participation as an endogenous model parameter. Including an

additional generator(s) that could represent a volume of capacity (or energy) available for

“dispatch”, hence providing demand-side price response (DSR). Theexpectation would

be that this DSR would be called upon at periods of peak demand when prices are typ-

ically highest (presumably the opportunity cost of a DSR consumer that hasdecided to

reduce its demand would be lower than the VOLL, yet above the variable operating cost

of the most expensive peaking unit). This DSR generator could be included in the prob-

abilistic production costing and the effect of this additional capacity on expected output,

costs and revenue of thermal generation estimated. The expectation would be that in-
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creasing the amount of available resource with a dispatch price below the VOLL would

have a damping effect on prices and, if investors accounted for this DSRwhen forming

their expectations, lead to less investment relative to the base case presented in Section

7.5. However less investment does not necessarily mean a less reliable system as the

DSR capacity would lower the total level of de-rated capacity required at system peak.

• Modelling demand-side participation as an exogenous model parameter. If demand-side

participation was driven by exogenous model parameters such as the availability of re-

newable resources, then profiles for demand net of wind production (and any other re-

newable resource for that matter) and demand-side response could be derived outside

the model. These would then be provided as inputs for the MOND technique. This

approach would also encapsulate the so-called ‘smart grids’ phenomenon, whereby at

times of high demand and/or low available wind resource non-essential loads, such as

certain household appliances or industrial processes, could be switched off or have their

usage delayed until a more convenient time. Conversely, at times of high (and possibly

surplus) production such processes could be enabled [230]. This method could also be

applied if an energy storage device were being considered. These profiles would take into

account the timing (e.g., base or peak demand hours) and level of demand reduction ex-

pected. Note that this method of implementation will not explicitly capture the feedback

between prices and demand-side participation (as described in the previous bullet), so the

“decision” to reduce demand is based on factors outside of pure market rules. However,

this could be captured implicitly. For example, a group of consumers connected to a

smart meter who increase demand during high wind hours (wholesale priceslikely to be

lower), and reduce it during low wind hours (wholesale prices likely to be higher).

9.1.6 Reliability of results

When making projections about the future levels and timings of generation investment, it is

important to remember that estimates about profitability are inherently linked, andtherefore

sensitive, to the price of raw materials, exchange rates and the state of financial markets. Fur-

thermore, economic projections are very difficult to make given the huge uncertainty surround-

ing estimates of market structure, technological progress, investment decision processes and
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policy. Unforeseen time delays and technical issues, such as lower than expected availability

makes estimation problematic. Other confounding factors include the time scales required for

investment appraisal, not to mention licensing and planning. That said, economic projection

modelling can provide some insights providing uncertainly is addressed and results interpreted

accordingly.

As noted in [20], a simulation model such as this shows“the occurrence of cycles based on

decision rules assumed by the model, where the behavior of the investorsis still an empirical

question”. For instance, the degree of heterogeneous investment response is not modelled di-

rectly, however the investment response of the model is a smooth function ofprices and costs,

reflecting how a heterogeneous group of market participants would likely respond to changes

in market conditions. Moreover, unlike other simulation models of a similar category, this im-

plementation has been applied to an existing market, which included a simulation of historic

investment trends. The focus has been on the likely behaviour of merchant generation in-

vestment in market environments. Given that the simulated investments and levelsof capacity

margin were not unreasonably different from reality in both the preliminaryand updated model,

the reliability of the results can be interpreted with a reasonable, but not high,degree of relia-

bility. For instance, the level and timing of CCGT investments in both the historic simulations,

showed 1) that the technology of choice was as in reality at that time and 2) that modelling

a single investor to represent the aggregate response of the market wasreasonable approach.

If the model presented here were to be used for an actual policy analysis, a number of key

areas of future research are recommended. These include: 1) a survey of investors regarding

their use of analytical approaches when evaluating investment decisions under uncertainty and,

if appropriate, modification of investor risk-averse decision making, 2) to develop an explicit

representation of the heterogeneity of investor response, and 3) modelling endogenous bilateral

contracting.

That said, no economic projection model should ever be viewed as able to mimic the behaviour

of market participants precisely, and estimates of key inputs, such as the price mark-up function,

have a large impact on simulation results. Results from simulation models that look tothe

future, which is hugely uncertain, must be viewed with a degree of realism and caution. More

precisely, the absolute values of, for example, capacity investment and realised levels of de-
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rated margins and LOLE projected in this thesis are very much dependent onthe model input

parameters (e.g., assumed investor risk profiles and their use of analyticalapproaches when

evaluating investment decision under uncertainty, FORs and residual loaddistributions). A

more robust method of analysis is to look at relative levels of change to the sensitivities and

capacity mechanisms tested. For instance, the introduction of a both SRT and amarket-wide

capacity mechanism certainly increased projected de-rated margins in the model, however to

say that if implemented, both mechanisms would achieve the 10% target in all years would be

unwise and further research is required.

One of the key factors limiting the reliability of the absolute values output by the model, is

the limited availability of data on the generation side of the GB market. This is a commonly

held view across research groups undertaking research in the powersector. For instance, [231]

has recently called for improved transparency in the GB market and a key reason for change

was that“academic and technical research into emerging problems is all but impossible”.

Further, [1] states that“investors in new generation capacity, particularly small market players,

need access to market information, a well-established marketplace and regulated access to

this marketplace.”, suggesting that the issue is not restricted to the academic community. The

conclusion here must be that the degree of competition would benefit from ahigher degree of

transparency.

Other limitations of the modelling approach include:

• This implementation of the MOND technique does not consider the possibility of avail-

able wind generation exceeding either 1) available export capacity in a generation pocket

due to transmission congestion or 2) raw demand net of inflexible base load (e.g., nu-

clear). Considering each in turn, firstly, if a representation of the load and available wind

production in each region of the network is available, then curtailment of windproduc-

tion due to transmission congestion could in theory be assessed by multi-area production

costing methods. Secondly, future applications of this method could approximatethe

effect of inflexible generation by dispatching its must run capacity first and assuming a

zero or negative price for the portion of the time that this capacity is on the margin.

• The load duration curve method (of which the MOND is a particular case) does not
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consider the possibility that ramp rate limitations could also result in wind spill.

• The residual LDC approach removes the chronological issues that arise in the wind and

load time series. This is particularly important in the presence of large amounts of hydro

and pumped hydro generation where chronological production costing methods may be

preferred to load duration curve methods. However this implementation of the MOND

technique is applied to the GB power system where the amount of hydro and pumped

hydro is relatively small (about 4% of capacity), so the use of a load duration curve

approach is reasonable.

• The impact of demand-side participation and smart grids on investment dynamics and

realised levels of security of supply risk. This is left for a topic of future research, with

possible methods of implementation discussed above in Section 9.1.5.

• Although the dynamic model has a stochastic element when looking forward and un-

dertaking investment decisions, the ‘real-time” model is deterministic. As a result, pa-

rameters such as realised peak demand (99.9% load distribution percentile),generator

FORs (expected values), demand growth and fuel prices (following DECC projections)

are all based on one reality. To bestow more confidence on the model projections, a

model where realised values are also stochastically simulated is required. However given

that the 30 year simulation execution takes between 525 and 1575 minutes, adding this

level of complexity is likely to make execution time unworkable, although increasing

parallelisation of computing may make it possible.

• By taking an aggregate approach to modelling, the granularity of the aggregate supply

curve is reduced. This aggregation was necessary in a model such as this where in-

vestment over a long-term time frame was under investigation. A more sophisticated

model where the ability of new entrants or existing participants to gain “better than aver-

age” scarcity rents compared with other generators in their technology category by, e.g.,

having superior thermal efficiency, may provide more robust estimations ofrealised and

expected future wholesale prices. Equally, as generating units age, theytend to expe-

rience a reduction in thermal efficiency and operating ranges on account of component

preservation. One approach would be to partition technology types into sub-categories

based on age, and assign thermal efficiencies accordingly (the older theunit, the lower
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the thermal efficiency). This also requires estimates of these efficiencies,and would in-

crease the complexity and running time of the model, perhaps without gaining significant

additional insights.

• Analysing only five years (2005-09) of empirical load and simulated wind data is ar-

guably not sufficient to gain a robust statistical representation of the windresource and

its relationship with demand. Furthermore, this approach assumes that historictrends

provide a fair reflection of the future. This is a heroic assumption given thechanges in

climate, and hence weather patterns, that are expected over the coming decades. This

remains the best available method of prediction.

• The assumptions for plant availability used here are also up for debate. For instance,

new nuclear builds were assumed to have 90% availability, yet the availabiltiy ofthe GB

nuclear fleet has been well below this level and has varied considerablyover time; from

80% in 1990 to 49% in 2008 [232]. Of course, these units are aging so longer and more

frequent periods of scheduled outage are to be expected, but these figures demonstrate

the variability of annual of plant availability (see [71] for impact on underlying risk cal-

culations), and why assuming high availabilty for the entire plant lifetime is perhaps an

unrealistic assumption to make.

• In the GB case study application, neither of the capacity mechanisms tested considered

the interaction between capacity markets and the GB STOR market. This would need

careful consideration if a mechanism of this type were to be implemented in GB. Details

such as the fact that the PJM market ISO, on which the market-wide capacitymarket

tested here is based, is a not for profit organisation and the GB market SOis a for profit

organisation with incentives to reduce total costs of system operation, would also need to

be considered.

9.2 Implications

9.2.1 Modelling developments

Under a liberalised market framework, electricity generating capacity investment decisions are

taken and (in the most part) financed by privately owned generating firms.More precisely, firms
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participating in the ‘energy-only’ market undertake new builds or mothball existing plants in

response to wholesale market price signals. It is precisely this price feedback mechanism that

has been the focus of this thesis.

In light of this feedback concept, the modelling approach presented demonstrates that tech-

niques from modern control theory can be employed to model the dynamics ofgeneration

investment in liberalised electricity markets over a long-term time frame. Although system

stability analysis is not feasible, integration in the dynamic model of capacity mechanisms has

also been achieved using more traditional methods of implementation, i.e., setting a target de-

rated margin and introducing additional generator revenue streams basedon observations of the

expected realised de-rated margin 3 years ahead.

Further, the mixture of Normals approximation technique for load duration curves has been

extended and embedded within the dynamic model, thus providing a robust methodology for

future models of this type. Moreover, methods to calculate expected revenue from price mark-

ups due to market power, a justifiable representation of oligopolistic power markets, have been

derived here for the first time.

9.2.2 Generation investment

Recalling the thesis statement given in Section 1.3, the results of the GB case study suggest

that the mix and amount of thermal investment in an ‘energy-only’ market with ahigh wind

penetration will lead to increased relative levels of security of supply risk during the 2020s, with

the tightest supply conditions coming during 2023-28. Further, simulations show a noticeable

increase in security of supply risk under both the perfectly competitive (i.e.,no price mark-up)

and imperfect market experiments. This was despite intense investment in thermal capacity, in

particular CCGT, and rapid exogenous growth in wind capacity. Analysis of generator gross

margins showed that many of the investment undertaken out to 2023, althoughreceiving good

returns during the first years of operation when adequacy risk is highest, a bust phase develops

after 2026 when large volumes of new nuclear capacity begin entering the system and security

of supply risk, and hence revenue, is dampened.

Given that the model assumes the representative investor is capable of securing the neces-
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sary debt to finance large-scale capacity investment and in reality“utilities are under pressure

to moderate or lower their capital expenditure programmes and to find higher-yielding and

higher-growth opportunities as a result of high debt levels, pressure togrow dividends, falling

share prices and increased pressure on credit ratings”[67], the intensity of investment may in

fact have been over-estimated here. On the other hand, the model assumes a fixed lifetime for

all capacity and an alternative outcome might be that generators, particularly in mid-merit units

such as CCGT, delay investment in new capacity by switching their units to opencycle, thus

increasing their SRMC, and running at lower utilisation factors, rather thanrisk building a new

mid-merit unit that may not provide adequate returns on the investment.

9.2.3 GB electricity market reform

In the coming years, the GB power sector is set to undergo arguably one itsmost significant

transformations to date. Underpinning this change is the need to mitigate the impactsof human

induced climate change by reducing GHG emissions from the power sector. There is a pressing

need to make the transition from a installed generating capacity which is dominatedby fossil-

fuel generation to one with high volumes of zero and low carbon generation. Already a number

of bold environmental targets are in place, for example, the goal of supplying 15% of energy

from renewable supplies (equal to 30-35% renewable electricity) by 2020, and an 80% reduc-

tion in overall GHG emissions from 1990 levels by 2050. Further, legislation has been put in

place to limit, and ultimately withdraw, large volumes of GHG-intensive fossil-fuelgeneration.

For instance, a significant volume of capacity is due to retire under the Large Combustion Plant

Directive in the run-up to 2016. Under this legislation, over 11 GW of fossilfuel plant (∼8

GW coal and∼3 GW oil) is due to shut down. According to the UK Government, it is likely

that around 30-35 GW of new electricity generation capacity will be required over the next two

decades and around two thirds of this capacity will be needed by 2020 [233]. In addition, the

GB nuclear fleet is reaching the end of its design lifetime with all but 3.5 of the existing 10.5

GW due to retire before 2020. This is a significant loss to the system and newcapacity must be

built in order to replace these retirements.

As already discussed, the UK Government is developing policies whose combined goals are

1) to promote the level of investment in renewable generation required to meetthese targets;
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2) maintain the level of security of supply risk that society has come to expect;and 3) reduce

customer costs. These goals have introduced uncertainties that the current BETTA market

framework is struggling to handle efficiently. The view of Government is thatthese goals will

not all be met by the current market, and consequently a reform of market trading arrangements

has been called for.

The results presented in this thesis can inform the debate about market reform, in particular the

response and profitability of thermal investments to policies promoting investmentin renewable

technologies. As this model assumes that installed wind capacity will grow to a level likely to

be adequate to meet the 30-35% renewable electricity target by 2020, the results here focus on

the second goal outlined above, i.e., the level of security of supply risk. Simulation results have

shown that if the market remains as an ‘energy-only’ oligopoly market, the level of investment

required to offset retirements to existing capacity and to meet assumed demandgrowth, will

not be adequate to allow the system to maintain the target level of security of supply, i.e.,

achieving a winter peak target de-rated margin of 10%. That said, the low frequency of the tight

supply conditions that result from inadequate generation being built, suggest that the system

may be able to cope without additional capacity mechanisms. Instead, targetingthe demand-

side through demand-side response and smart metering may be a more efficient method of

avoiding power shortages. More interconnection with Europe will also alleviate some security

of supply concerns, which seems a natural solution given that a number of EU directives on

gas and electricity are aiming to open markets in other EU countries up to competition[234].

However if a capacity mechanism is the prefered course of action, then theresults from the final

stage of this work suggest that both a strategic reserve tender and capacity market will reduce

security of supply concerns, though a degree of investment overshoot and generator revenue

risk after the period of highest adequacy risk is anticipated.

9.3 Recommendations for further work

9.3.1 Multiple agent model

A topic of subsequent research could be the integration into the dynamic investment model

investors with different attitudes to risk and methods of evaluating investment decisions under
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uncertainty. In this implementation alternate perceptions of reality and attitudes toward risk

were tested during the sensitivity analysis, by comparison multiple agents competing together

in a single simulation was not included. Further with 6 firms dominating the supply market

in GB, an interesting and potentially valuable piece of analysis would be to represent these

competing firms in the model. It could then be assessed whether a desire to maintain market

share in the face of plant retirement and demand growth leads to similar investment dynamics

presented here, or whether firms account for the effect of their investment upon prices and

mark-ups for their existing fleet and deliberately do not invest in order to keep prices high.

9.3.2 Complimenting the stochasticity of wind production

The estimates of wind production presented in Chapter 6 could form a basis for an investiga-

tion into the need for, and design of, generation technologies best suited tocompliment the

variability and stochasticity of high penetrations of wind. This includes the technical and op-

erational characteristics of these complimentary sources of generation. In this thesis, gas-fired

plant such as OCGTs are the primary source of flexible output power, although in a focused

analysis, options for energy storage will need to be considered.

9.3.3 Transmission network

The model presented here does not consider the impact of the transmissionnetwork on invest-

ment dynamics. Therefore, the next stage of investigation could be to assess the impacts of

transmission on generation investment. An area of possible future research would be to extend

the MOND technique to a two-area (e.g., Scotland-England) system with a transmission con-

straint. This could then be used to assess the impact of congestion on wind power availability

and thermal generation investment in each area. This could be implemented using a Mix of

Bivariate Normals reflecting the correlations in loads and wind in each area (e.g., as in [210]),

based on two area production costing methods (e.g., see [235]). To maintaincomputational ef-

ficiency, the model could draw upon scenario reduction schemes (e.g., see Chapter 7 of [236])

when applying multi-area production costing and making an assessment of curtailment of wind

production due to transmission congestion.
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Furthermore, in GB, thetransmission network use of system chargesreflect the GB SO’s pre-

ferred locations for new build generation. These vary across the system and can be negative,

typically in areas close to high load centers, or positive, typically for remote locations. With

a review of these charges currently underway via OFGEM’sProject TransmiT, the impact on

the location and volume of investment over time of alternative charging arrangements can be

assessed. For instance, “real-time” locational system marginal pricing is being considered. Un-

der this framework, each node on the network, would have a different marginal price for power.

Advocates of this approach state that it reduces the ability of generators toexercise market

power in a constrained network (be that offers to increase, or bids to reduce production). An

interesting piece of analysis would be to investigate the impact of these reductions in generator

surplus (or short-run profit) on investment and security of supply risk dynamics. This could

be represented in the model by reduction (or even removal) of price mark-up in some or all

areas of the network (which would have to be represented in the model). This would inform

the debate about whether reductions in generator surplus under locational pricing leads to less

investment or just the right amount in the right locations.

Once the transmission network is accounted for, the impacts of congestion ona market-wide

capacity mechanism can be assessed. For instance, a mechanism that does not consider conges-

tion when procuring for capacity may lead to undesirable outcomes such as asituation where

the SO is not able to utilise capacity when it is needed due to the plant being located behind an

active transmission constraint.

9.3.4 Electrification of heat and transport

In this application of the model, the use of electrical energy in GB is assumed to continue

into the future. If the UK is to achieve its ambitious GHG emission reduction targets,then

electrification of both the heat and surface transport sectors is required. For instance, the CCC

have stated that a“44% emission reduction in surface transport can be achieved by 2030”

(relative to 2008 levels) [237]. If policies are developed to promote the required uptake of

60% electric vehicle penetration by 2030 in order to meet this reduction, then electrical energy

demand, through vechile battery charging, will increase. The CCC have also stated that“there

is scope for reducing industry emissions by almost half between now and 2030” (relative to
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2007 levels) [237]. In addition to energy efficiency improvements in buildings, this requires

widespread adoption of alternative methods of heating such as heat pumps, thus also having the

potential to increase electrical energy demand.

These observations motivate the following extension to this project: the case where future

electricity demand increases substantially from current levels. In modelling terms, this would

involve developing new daily and annual load profiles (e.g., Fig. 2.11), which are then used

to calculate the full and residual annual load probability distributions. The methodologies out-

lined in Chapters 6 and 7 would then be applied in order to estimate the mix and amount of

generation investment over time in response to policies promoting windand high heat and

transport electrification. Further, alternative load profile scenarios could be developed based

on alternate usage patterns. For instance, if heat pumping and vehicle charging were to occur

during peak periods (i.e, 07:00-19:00), then higher levels of installed capacity will be required

relative to the base case. If demand growth is participated by the investor, thenceteris paribus,

the simulated response of thermal generation investment may provide a similar level of security

of supply risk to the base case. However the model could be used to establish the additional

capacity requirements and increases in overall system costs, which are then fed back into the

policy development process.

9.3.5 Other considerations

In this Section, some other possible areas of further work are summarised:

• Calculating appropriate levels of de-rated capacity margins for a given investment sce-

nario: this model has used de-rated margin as a proxy for the level of generation adequacy

risk. It should be noted however that the same levels of de-rated margin donot necessar-

ily provide the same level of risk. It very much depends on the capacity mix and demand

scenario being analysed. Further work looking at the uncertainty of the input parameters

used to calculate expected de-rated margins and the level of underlying risk could be

explored.

• Application to other power markets: this model has been applied to a GB market case

study where high penetrations of wind power are expected to emerge. Themodel could
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be adapted and applied to other power systems where policies to promote different re-

newable sources of energy are being developed. Output from other technologies such as

marine renewables could also be included when calculating residual load duration curves.

• Interactions between power markets: the dynamic investment model has beenapplied to

a single electricity market. Assessment of the impact of renewable and generation ade-

quacy policy in neighbouring regions is an active area of research (e.g., [128]). This is of

particular interest across Europe where a combined European-wide network of transmis-

sion system operators (the ENTSO) has replaced the 6 existing Europeantransmission

system operators, thus signalling the imminent arrival of a single Europeanpower mar-

ket.

9.4 Thesis conclusion

This thesis has taken an interdisciplinary approach to modelling generation investment in lib-

eralised electricity markets. Many disciplines have called upon during this research. These

include 1) dynamical systems and control theory to model the interactions between supply and

demand; 2) rational expectations, Value at Risk and Prospect Theory when modelling invest-

ment decision processes; 3) statistical analyses when calculating generation adequacy risk; and

4) wind resource assessment when estimating GB onshore and offshorewind production.

This project has enhanced the body of knowledge surrounding investment cycles in the power

sector, in particular where high penetration of wind power are likely to emerge. This thesis

describes an implementation of a dynamic capacity market investment model, whichincludes

an adapted method to calculate expected outputs, costs and revenues fromthermal generation

investments in a nonequilibrium market setting. Price mark-ups in oligopoly markets are ac-

counted for. Also described is a method of using de-rated capacity marginsas a proxy for

security of supply risk in a power system with high penetrations of wind.

Like any simulation model, the results produced must be interpreted with a degree of caution.

A number of assumptions and simplifications are required in order to create a tractable model,

although many insights, such as those presented here, can still be gained.Going forward, this

thesis can be used for knowledge transfer, and as a basis for exploring the topics of further
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research revealed as part of this research process.
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Appendix A

Additional material

A.1 AIMMS source code for calculating COPT [73]

Prob(b) := 0;
Prob(0) := 1;

for (s in Stations) do
ProbDown(b) := 0;
ProbUp(b) := 0;

for (b|Prob(b)) do
ProbUp(b+CapSteps(s)) += Prob(b)* AvailProb(StatType(s));
ProbDown(b ) += Prob(b)*(1-AvailProb(StatType(s)));

endfor;
Prob(b) := ProbUp(b)+ProbDown(b);

endfor;

CumProb(0) := Prob(0);
for (b in {1..Nsteps}) do

CumProb(b) := Prob(b) + CumProb(b-1);
endfor;

A.2 Marginal cost equations

Using the conversion factors listed given in 5.2.1.1 and technology emission assumptions given

in 5.2.1.2, the SRMC equations are given by:
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SRMCgas = 1
η
(3.6 · 9.48Fg + 185Fcar) + v,

SRMCccgt = 64.38Fg + 349Fcar + 2.0,

SRMCocgt = 87.49Fg + 474Fcar + 2.7,

SRMCcoal = 1
η
( 3.6Fc

0.02512 + 330Fcar) + v,

= 409Fc + 942Fcar + 1.0,

SRMCnuc = 8.9Fu

24·45η + v + e,

= 0.023Fu + 2.68

(A.1)

whereFg is the gas price (£/therm),Fc is the coal price (£/kg),Fu is the uranium price (£/kg),

V is in (£/MWh), Fcar is the carbon price (£/kg), e is the cost to convert, enrich and fuel

fabricate (CEFF) uranium which is assumed to be 2.5£/MWh, 8.9kg of Uranium (U3O8) is

needed to produce 1kg of CEFF uranium (U ) and 45 MWd/kg is the assumed burn-up [29]. In

this example, the thermal efficiencies,η, and variable O&M costs,V , are taken from Table 5.6.

To illustrate, given the fuel prices: gas: 60 p/therm (= 0.6£/therm), coal: 70£/T (= 0.07£/kg),

uranium 70£/lb (= 155£/kg) and carbon price 20£/T (= 0.02£/kg). The estimated SRMC are:

SRMCccgt = 1
0.53(3.6 · 9.48 · (0.6) + 185 · (0.02)) + 2.0 = 47.6£/MWh,

SRMCocgt = 1
0.39(3.6 · 9.48 · (0.6) + 185 · (0.02)) + 2.7 = 64.7£/MWh,

SRMCcoal = 1
0.35(3.6·(0.07)

0.02512 + 330 · (0.02)) + 1.0 = 48.5£/MWh,

SRMCnuc = 8.9·(155)
24·45·0.36 + 0.18 + 2.5 = 6.2£/MWh,

(A.2)

A.3 Capital expenditure schedule

For simplicity, the expenditure schedule applied in (5.18) for the model resultspresented in

Section 7.5 uses a lagged formulation with

Mx
i = zMx

i+1 (A.3)
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-7 -6 -5 -4 -3 -2 -1
Nuclear 0.1 0.1 0.2 0.2 0.2 0.2 0.2
Coal 0.2 0.2 0.2 0.2 0.2
Wind 0.3 0.3 0.4
CCGT 0.2 0.4 0.4
OCGT 0.5 0.5

Table A.1: Capital expenditure schedule applied in (5.18) for the preliminary model results
presented in Section 5.5.

wherez = 0.8 (i.e. the capital outlay increases by 25% each year).

A.4 DECC fuel assumptions

(a) (b)

(c)

Figure A.1: DECC low, central and high estimates for (a) gas, (b) coal and (c) ETS prices
out to 2030 (ETS out to 2050). Sources: [181, 213]. All assumptionsare in 2008
prices.
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Figure A.2: Plot of evolution of technology variable operating costs 2010-30 for central fuel
cost assumptions shown in Fig. A.1. All values are in 2010 prices.

A.5 Regional simulated monthly offshore wind generation

(a) (b)

Figure A.3: Plot of simulated monthly capacity factors versus ROC register data for (a) North
Hoyle and (b) Scroby Sands offshore sites.
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A.6 Regional simulated monthly onshore wind generation

(a) (b)

(c) (d)

(e) (f)

Figure A.4: Plot of simulated capacity factors versus ROC register data for (a) North West
Scotland, (b) North East Scotland, (c) North Islands, (d) North Wales,(e) East of
England and (f) South of England.
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A.7 Proof of correlation property (7.20)

This can be proved by considering the correlation betweenX + Y andX, whereX andY are

independent variables, then

corr(X + Y,X) = cov(X+Y,Y )√
V ar(X+Y )·V ar(X)

= E(([X+Y ]−[E(X)+E(Y )])·(X−E(X)))
sqrtV ar(X+Y )·V ar(X)

= E(([X−E(X)]+[Y−E(Y )])·(X−E(X)))√
V ar(X+Y )·V ar(X)

= E([X−E(X)]·(X−E(X))+[Y−E(Y )]·(X−E(X))√
V ar(X+Y )·V ar(X)

= V ar(X)+0√
V ar(X+Y )·V ar(X)

=
√

V ar(X)
V ar(X+Y ) .
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Dynamic Modelling of Thermal Generation
Capacity Investment: Application to Markets with

High Wind Penetration
Dan Eager,Student Member, IEEE,Benjamin F. Hobbs,Fellow, IEEE,and Janusz W. Bialek,Fellow, IEEE

Abstract—Modelling the dynamics of merchant generation
investment in market environments can inform the making of
policies whose goals are to promote investment in renewable
generation whilst maintaining security of supply. Such models
need to calculate expected output, costs and revenue of thermal
generation subject to varying load and random generator outages
in a power system with high penetrations of wind.

This paper presents a dynamic investment simulation model
where the short-term energy market is simulated using proba-
bilistic production costing using the Mix of Normals distribution
technique to represent residual load (load net of wind output).
Price mark-ups due to market power are accounted for. An
‘energy-only’ market setting is used to estimate the economic
profitability of investments and forecast the evolution of security
of supply. Simulated results for a Great Britain (GB) market case
study show a pattern of increased relative security of supply risk
during the 2020s. In addition, many new investments can recover
their fixed costs only during years in which more frequent supply
shortages push energy prices higher.

Index Terms—Power generation economics, Mix of Normals
distribution, Thermal power generation, Wind power generation.

I. I NTRODUCTION

GOVERNMENTS who preside over liberalised energy
markets are interested in how the mix and amount

of generation investment will respond over time to policies
promoting high penetration of variable output renewable power
such as wind. Significant challenges arise when making an
economic assessment of the potential for generating invest-
ments in a mixed thermal-wind system. Methods are needed
that provide a reasonably accurate approximation of the ex-
pected contribution of generating units to serving varyingload
and the revenues received by doing so, whilst accounting for
plant outages and variable renewable sources.

This paper demonstrates a probabilistic production costing
method that considers the annual load curve and convolves it
with generator outages using the Mix of Normals distribution
(MOND) approximation. This is integrated into a dynamic ca-
pacity investment simulation. This production costing method
was first described in [1] and then extended and used for
the calculation of equilibrium capacity investment in a power
market in [2] and [3], respectively. In this study, the method

D. Eager is with the Institute for Energy Systems, The University of
Edinburgh, EH9 3JL, UK, d.eager@ed.ac.uk

B. F. Hobbs is with the Department of Geography and Environmental
Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA,
bhobbs@jhu.edu.

J. W. Bialek is with the Energy Group, School of Engineering,The
University of Durham, DH1 3LE, UK. Janusz.Bialek@durham.ac.uk

is applied for the first time to a nonequilibrium setting as part
of a dynamic market simulation.

The second focus of the work is to assess the impact of
high penetrations of wind power on risks associated with
investment in conventional thermal generation. Thereforethe
method above is extended to include a residual load calculation
(load net of wind output) using empirical load and simulated
wind data. This residual load data is then used in the MOND
production costing model. Finally, the MOND model is in-
corporated in a dynamic investment model and applied to a
simplified Great Britain (GB) power system test case for an
assumed (exogenously increasing) installed wind capacity.

The goal of this research is to address concerns about
whether ‘energy-only’ markets (i.e., without capacity mech-
anisms) with high penetrations of wind are capable of in-
ducing timely generation investments over a long-term time
frame. Examples of ‘energy-only’ markets currently operating
include GB, Australia’s National Electricity Market, Alberta,
Nordpool, Ontario and ERCOT.1 This is of particular interest
to policy makers whose goals are to promote investment in
renewable generation, maintain an adequate level of resources,
and reduce customer costs.

Building on the preliminary work of [4], the dynamic model
employs classical control theory to capture the interactions
between electricity supply and demand. It shares similarities
with existing dynamic models of merchant generation invest-
ments (e.g., [5], [6]), however this particular application to a
market with a high wind penetration is unique. Furthermore,
the production costing methods used by previous dynamic
models are deterministic, and therefore underestimate average
costs (due to Jensen’s inequality [7]).

This paper is organised as follows: in Section II, the
dynamic investment model in which the MOND technique is
embedded is described. Features of the investment decisionare
provided in Section III. In Section IV properties of a MOND
is described and its application to a market situation is given.
Section V describes input assumptions and the wind models
used. For the purposes of illustration, a number of simplifying
assumptions are made that in an actual application should
be subjected to careful validation. Results from the dynamic
simulation of capacity investment in a case study system with
an existing installed capacity similar to that of GB are given

1Note that some regulated vertically integrated utilities inUS power markets
(e.g., Midwest ISO) may be compelled by regulators to satisfy capacity
margin criteria. In these circumstances investment decisionsare not primarily
governed by energy market prices.
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in Section VI, Section VII presents conclusions.

II. T HE INVESTMENT MARKET MODEL: OVERVIEW

Techniques from control theory are used to model market
investment dynamics (Fig. 1). Because the model is dynamic,
current market conditions (e.g., capacity under construction
or retirements), and market price predictions are fed back to
the investment block, modifying the investment behaviour.The
resulting investment decisions are then fed back to the market,
hence closing the loop.

Fig. 1. Modelling generation capacity investment as a control problem;
investment can be viewed as a negative feedback control mechanism with
current and future energy prices (as a function of generation capacity margin)
acting as a feedback signal.

The dynamics of the system concern the evolution of
installed generation capacity and rate of demand growth. The
rate of change in capacity at a particular time-step dependson
new plant coming online or being de-mothballed, net of any
plant being retired or mothballed [8]. Both are delayed signals
from some earlier time. In the case of new plant, this delay
is the lead time for construction, and for retiring plant, this
delay is the design lifetime.2 Mothballing requires zero delay,
whilst de-mothballing requires a delay that is significantly less
than full construction. An aggregate approach is taken whereby
capacity is combined into five technology categories, namely
nuclear, coal, wind, CCGT and OCGT, each with its own
financial and technological characteristics. The model does not
consider the transmission network and is conceptually a single
bus system.

III. G ENERATION CAPACITY INVESTMENT

A. General assumptions

In this model the investment decision is taken annually and
is considered an irreversible decision. It is based on the Net
Present Value (NPV) of anticipated future profits.

For simplicity, a single investor who is well acquainted
with the structure of the market and capable of securing
the necessary debt to finance large-scale plant investment is
modelled. This representative agent approach has been used

2Further delays are caused by the need for investors to accumulate data in
order to form their expectations about future market conditions.

by other dynamic capacity market models (e.g., [9]). When
estimating the profitability of an investment, a Monte Carlo
(MC) approach is taken to obtain a probability distributionof
profitability whereby estimates for conventional plant already
under construction (including delays), demand growth, and
fuel prices are considered stochastic.

In the base case, generators assume all plant will come
online with 100% certainty, and remaining build time is
stochastic. This is modelled as the sum of the expected build
time plus a random variable (r.v) that is sampled from a
lognormal distribution,lnN(µ, σ2). Decision making under
uncertainty is modelled by taking a risk averse attitude to
investment (cf. Section III-B). Currently operational plant is
expected to generate for the duration of its design lifetime.

Investors consider annual load growth to be stochastic and
is sampled from a Normal distribution.

The present value of an investment in technologyx (i.e.,
nuclear, coal, CCGT, OCGT) at any given decision year is
given by:

Vx =

αx
∑

i=τx

GM i
x − FCx

(1 + r)i−τx
− (ICx +DCx) (1)

wherer is the firm’s weighted average cost of capital (WACC),
GM i

x is the gross margin (cf. (11) or (16) depending on market
bidding assumptions) for yeari, FCx is the generator fixed
operating costs, andτx andαx are the expected build time and
plant lifetime, respectively. Although the investor randomly
samples capacity construction times for plant already in the
build stage, for simplicity we assume that investors consider
only fixed build times when assessing the present value of
an investment (1). In the case of plant lifetimes, the investor
assumes that capacity will close at the end of its design life.
A more sophisticated representation would have the investor
consider the possibility of random construction times and
lifetimes, which we leave for future research. Both these
elements are modelled as fixed in the real-time simulation.
We note that by assuming a fixed design lifetime, the model
overlooks the option for generators to repower their exist-
ing plant. However, representing this additional choice for
investors would add significant complexity to the model and
increase computational burdens, and so is not considered here.
ICx and DCx are the present worth of the investment cost
and decommissioning cost, respectively. Only nuclear projects
have considerable decommissioning costs; in the case of other
plant types the decommissioning liabilities are assumed tobe
offset by the salvage value of the assets [10]. All cashflows
are discounted to the start of the first year of operation.

Only the firstn years of expected revenues are stochastically
simulated by the investor (heren = 7); for the remaining
years the (discounted) average of the simulated revenues are
used (e.g., similar to [9]). Furthermore, investors cap thetotal
expected annual revenues received from scarcity rents (see
Section IV-B) at the annualised cost of an OCGT. These
actions ensure that expectations about future revenues are
not unduly influenced by high forward simulated wholesale
prices due to generation retirements far in the future. No
regulatory price caps are implemented in the real-time (annual)
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simulation.
Because the model randomly samples capacity construction

times, fuel prices and load growth, a large sample is required
in order for investors to obtain reliable estimate of expected
project value (1).

B. VaR criterion

Value at Risk (VaR) is a common criterion used in finance
when investors place a high priority on avoiding poor out-
comes [11]. Generally speaking, given a project valueV , and
defining the level of risk aversion byq, the VaR is defined
as the valuevq such thatp(V ≤ vq) = 1 − q. In this model,
the distribution ofVx in (1) is computed by MC simulation
of the stochastic variables. We model a risk averse investor
with q = 5%, and an investment is deemed attractive if
p(Vx > 0) ≥ 95%.

The exact methods that generation companies actually use
to evaluate investments under risk are uncertain, and whether
they use probabilistic approaches is disputable. However,for
the purposes of this simulation model, a probability model
provides a convenient means for representing risks and how
greater risk discourages investment.

Despite their popularity, VaR models do have a limitation
relative to other risk criteria (such as Min Max Regret) as VaR
analysis must consider probabilities of outcomes, but typically
these probabilities are not well known. An alternative approach
would be to use Min Max Regret whereby an investment
decision for a particular realisation of the system is analysed.
Regret is defined as the difference between the net benefit
incurred when an investment decision is made for a realised
state of nature, and the maximum net benefit across all feasible
strategies that can be obtained under that realised state. For
instance, investing in nuclear generation for a realised carbon
price that is lower than expected might have a higher regret
than investing in gas-fired generation under the same price.
However, the Min Max Regret criterion only considers the
worst regret for each alternative, which makes its results very
sensitive to the exact set of scenarios that are considered.

C. Modelling aggregate investment response

In some circumstances the expected profitability of new
investments is extremely high, thus triggering a wave of new
builds. In such cases, the investment rate will be limited by:
1) the firm’s beliefs about how many other market participants
will move to invest, 2) on the impact of new investment on
the profitability of their existing plant, and 3) on the ability of
the firm to secure the debt required to fund multiple projects
[6]. Using an aggregate investor response curve (AIRC) is
useful in models of this type. For instance, in [9], the aggregate
investment rate with increasing in the“risk-adjusted forecast
profit” , which is derived from the investor’s (risk averse,
concave) utility function.

In this paper, a function is applied to the outcome of the
VaR decision rule in order to estimate the aggregate investment
response of the market. This function is increasing with the
expected profitability and is given by:

ξi = max
{

0, ξmax ·
(

1− e(−β·PI
q
x)
)}

, (2)

where
PIqx =

vqx
(ICx +DCx)

(3)

is the Profitability Index (PI) andξmax is the maximum yearly
investment lump per technologyx. ξmax andβ are calibrated
so zero investment is made ifPIqx < 0, andξi = ix volume of
investment is made ifPIqx = 1, whereix is a fixed constant.
Note thatξi determines the output of the investment response
block in the feedback system depicted in Fig. 1.

The function used in the base case is shown in Fig. 2 with
fixed ix = 2 GW andξmax = 4 GW, andβ = 0.7 resulting
from the calibration. Changingβ alters the aggregate response,
as shown by the dotted lines. For multiple investments with
PIx > 0, the option with the highestPIx is chosen.

Fig. 2. Plot of model aggregate investment response curve defined by (2)
(solid line) whereix = 2 GW and ξmax = 4 GW . Also shown are the
minimum investment lump sizes along with curves for different values ofβ.

The degree of heterogeneous investment response is not
modelled directly, however the investment response of the
model is a smooth function of prices and costs, reflecting how
a heterogeneous group of market participants would likely
respond to changes in market conditions. In particular, the
amount of investment is a smooth monotonic function of
expected returns, as reflected in the AIRC (2), i.e., it is nota
type of response where if profits exceed a threshold, a large
amount of investment occurs.

Furthermore, forward and bilateral contracting between
generators and load serving entities is also not modelled
explicitly, however both forward prices and our investors’
expectations are driven by the same market factors. Moreover
those contracting are implicit in the way investor price expec-
tations are modelled. In a commodity market, forward price
expectations will be driven by the same economics as short-
term prices. For instance, in the face of capacity retirement
and demand growth, forward prices will rise. Our modelled
investor simulates prices 7 years out, which is further ahead
than most forward electricity markets go. Moreover explicitly
representing contracts and forward price expectations would
make the model significantly more complicated. For instance,
[12] presents a single stage investment problem in the presence
of endogenous contract and physical markets. Even in that
very simple circumstance, the model and its analysis is very
complex. The effect of more long-term forward and bilateral
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contracts would be to reduce revenue risk for investors, i.e.,
lowering risk aversion, thus making them more willing to
invest for a given distribution of energy prices. Thereforethe
effect of more or less forward contracting can be implicitly
considered by adjusting the risk aversion parameter of the VaR
model (i.e., the level of risk aversion,q, or the WACC,r, in
(1)).

IV. PRODUCTION COSTING BYM IX OF NORMALS

When estimating expected profits, varying loads (e.g., in
the form of the load duration curve (LDC)), the expected
contribution of generating units to serving these loads, and
the revenues they receive by doing so must all be approxi-
mated. It is helpful if the technique used is computationally
fast, accurate and robust. A mixture of Normals distribution
(MOND) approximation of the LDC meets this requirement
and is also straightforward to convolve with plant outages for
the expected output calculations.

A MOND is described as follows: consider a set,Y =
{y1, . . . , yn}, of Normally distributed r.vs. with theith el-
ement having meanµi and varianceσi. Let Φ(x|µi, σi) be
the cumulative distribution function (cdf) ofyi. A MOND is a
convex combination of the Normal distributions and is defined
by

F (x) =

n
∑

i=1

piΦ(x|µi, σi), (4)

with
∑n

i=1 pi = 1 andpi ≥ 0, wherepi is the weight of the
componentyi [1]. Note that ifX andY are two independent
random variables each with MONDFX(x) andFY (y) given
by (4), thenX+Y is a MOND.3 In this application the distri-
bution of load (a MOND) is convolved with the distribution for
available conventional thermal generation (cf. Section IV-A).
It is a standard assumption in probabilistic costing and loss-of-
load probability models that the outages of different generating
units are independent of each other, and independent of load
[13], [14].

A MOND fit for approximating the annual LDC (MW)
is required. For example, iffL(x) is the probability density
function of load andFL(x) is the cumulative distribution
function of fL(x), then the LDC is simply the rotated and
rescaled loadexceedencedistribution.4 This is the inverse of
8760(1− FL(x)) where

FL(x) =

K
∑

k=1

pkΦk(x|µk, σk), (5)

which is a mixture ofK Normals (Φk) with the same
properties as (4). For a particularK, the best fitting value of
eachµk, σk andpk can be found by solving an optimization
problem that minimizes the sum of squares of the difference
between observed and fitted values of the LDC.

To illustrate the accuracy of this technique at approximating
a LDC, Fig. 3 shows the distribution of the GB hourly loads for
the period 2005-09 (normalised by the year’s average demand)

3The proof of this property is given in appendix A of [1].
4The exceedence distribution givesP (X > x), that is the probability that

the r.v.X (in this case load) is greater thanx.

and the fitted distribution. A normalisation is necessary when
comparing multiple years to account for demand growth. The
difference between the LDC plots in Fig. 3(b) is not visible at
this scale owing to the excellent fit provided by the MOND.

(a) (b)

Fig. 3. (a) MOND pdf (4 Normal components clearly visible by their distinct
peaks) and histogram of normalised load data and (b) LDC fit with negligible
visible difference between mix of 4 Normals and empirical data.

A. MOND with conventional thermal generation (after [1])
and extension for wind

The available capacity at each hour from a particular unit is
a r.v. which is characterised by the unit’s Forced Outage Rate
(FOR). Let the capacity of unitu be defined bycu, its FOR
by ρu and expected available capacityGu = cu(1− ρu). That
is, the distribution of the unit’s available capacity follows a
Bernoulli distribution between zero andcu.5

If mu units of typen share the same capacity and FOR
characteristics and are subject to independent forced outages,
they can be treated as a single pseudo-unit (or generator) with
a distribution with the following moments:

E(Gn) = µn = mucu(1− ρu), (6)

V ar(Gn) = σ2
n = muc

2
uρu(1− ρu), (7)

where (pseudo-) generator,Gn, has capacitycn = mucu.
To simplify the presentation for the remainder of the paper,
the convention will be to use ‘generator’ when referring to
a ‘pseudo-unit’ (collection of units of a given type), andcn
when referring to the capacity of that generator, because this
is the last time individual units will be discussed.

Now the convolution property of the MOND is used to
determine theeffective load duration curve(ELDC) facing
the next generator to be dispatched (in merit order) [14]. If
the units can be grouped intoN (pseudo-) generators6 each
with characteristics (6) and (7), then we can define

Ln(x) = P

{

L−
n
∑

i=1

Gi > x

}

(8)

as the load minus the available capacity of generator types
1 . . . n (1 ≤ n ≤ N ) [1]. If Fn(x) = 1− Ln(x) is the cumu-
lative probability of effective loadx = L − ∑n

i=1 Gi facing
the (n+1)th generator.Fn(x) is computed by convolving the
MONDs for load and available capacity.

5More general models exist to account for partial unit outages(e.g., see
[13]), however they are not considered here.

6The more units in a group, the closer the Binomial distributionis to
Normal.
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The expected energy serveden (in MWh/yr) by generator
type n can then be given by

E[en] = 8760

∫

∞

0

[

Ln−1(x)− Ln(x)
]

dx, (9)

where Ln−1(x) is the load still to be met after adding
generator typen − 1 and Ln(x) is the load still to be met
after adding generatorn, which at the start of the convolution
process (n = 0) is obtained from (5).

The distribution for the ELDC after convolving inn gener-
ators is given by:

Ln(x) = 1−

K
∑

k=1

pkΦk(x|µLk
−

n
∑

i=1

µGi
,

[

σ
2
Lk

+

n
∑

i=1

σ
2
Gi

] 1

2

).

(10)
Thus, the ELDC is described by a MOND with the same
number of component Normals as the original LDC.

Given eachLn(x) (n = 1 . . . N ), the probability that
generatorn or higher (in the merit order) is the marginal
source of energy (and so sets the price) is given byLn(0),
andhn = Ln−1(0) − Ln(0) is the probability that generator
n is on the margin.

The annual expected energy unserved (EEU) can be cal-
culated by integratingLN+1(x) (i.e., after convolving in the
complete set ofN generators) from 0 to∞ and multiplying
by 8760 hrs/yr. Furthermore the Loss-of-Load Expectation
(LOLE) for the period is determined by computing8760 ·
LN+1(0) [13].

Unlike conventional thermal generation units whose in-
dividual availabilities are assumed to be independent, wind
generators rely on the availability of the “fuel” resource and
therefore a dependency between available wind generation at
different wind plants is introduced. To address this issue,an
exogenous wind capacity is assumed and the resulting residual
LDC facing thermal generation is computed and the MOND
approximation is applied to this wind-adjusted data set. The
residual load in each hour is simply the hourly load minus
the sum of hourly output from all wind plants. By taking
this approach, the resulting distribution of net load takesinto
account both spatial correlations and temporal (e.g., monthly
and diurnal) trends in the availability of the wind resourceand
its relationship with demand.

Further the residual load approach allows us to calculate the
number of hours that available wind generation is greater than
aggregated demand, i.e., those hours when wind sets the sys-
tem marginal price. This is computed using the residual load
exceedence distribution before convolving any of the available
thermal generation, i.e., the inverse of8760(1−FL(0)) where
FL(x)) is given by (5). This is of particular interest in systems
with high penetrations of wind when direct wind dispatch may
be required to curtail production at times when available wind
exceeds demand.

Wind production may need to be curtailed under other
circumstances. In particular, our implementation of the MOND
technique does not consider the possibility of available wind
generation exceeding either 1) available export capacity in
a generation pocket due to transmission congestion or 2)
raw demand net of inflexible base load (e.g., nuclear). Nor

can the load duration curve method (of which the MOND
is a particular case) consider the possibility that ramp rate
limitations could also result in wind spill. Considering each in
turn, given that the model is single bus, number 1) cannot
be addressed here and is left for future research.7 In this
application, it is assumed that UK Government policy will
ensure that the amount of congestion in the future will not be
so large as to affect the basic economics of thermal generation
investment. This is consistent with the GB regulator’s ‘connect
and manage’ transmission access policy [15]. In the case of
number 2), if inflexible base load generation needs to be
kept running then this will affect the economics of the wind
generator being constrained (i.e., the wind generator is given
a congestion payment by the System Operator). However,
installed wind capacity is an exogenous model parameter in
this analysis. The presence of inflexible generation can also
affect the economics of baseload generation by increasing
the number of hours of zero or negative prices. However,
the amount of hours when this occurs is relatively small in
most of our simulations. For instance, for the GB case study
presented in Sections V-VI, under the assumption that all
plants can be turned down except nuclear, in no year and in no
scenario is the probability of the net demand being below the
expected available nuclear capacity greater than 7%. Future
applications of this method could approximate the effect of
inflexible generation by dispatching its must run capacity first
and assuming a zero or negative price for the portion of the
time that this capacity is on the margin.

It is important to note that the residual LDC approach
removes the chronology of the wind and load time series.
This can be an important omission in the presence of large
amounts of hydro and pumped hydro generation; in such cases,
chronological production costing methods may be preferred
to load duration curve methods. However our implementation
of the MOND technique is applied to the GB power system
where the amount of hydro and pumped hydro is relatively
small (about 4% of capacity), so the use of a load duration
curve approach is reasonable.8

B. Expected revenues from the energy market

During a particular year, the probability that generatorn
will be at the margin is given byhn and the price in that
event will be the marginal cost of the generator,MCn. This
assumes price-taking (competitive) behaviour by generators.
Furthermore, once the convolution process has been completed
for all N generators, the probability that there will be insuf-
ficient generation to meet demand is given byLN+1(0) and
under this condition the price is assumed to reach Value of
Loss Load (VOLL). The expected gross margin for a particular
MW of capacity belonging to generatorn when generatori
is at the margin is given by:Ri

n = max {hi(πi −MCn), 0}
(£/MWh), where πi is the wholesale price when generator

7If a representation of the load and available wind production in each
region of the network is available, then curtailment of wind production due to
transmission congestion could in theory be assessed by multi-area production
costing methods.

8Note that there is little scope for new build of hydro technologies in GB
due to the lack of suitable sites.
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i is at the margin, which in the absence of market power
is given byMCi. The expected annual perfectly competitive
gross margin (revenue minus variable cost) used in (1) can be
calculated by (£/MW/yr):

CGMn = 8760(1−ρn)
[

N
∑

i=1

R
i
n+(hN+1(V OLL−MCn))

]

. (11)

It is assumed that in a competitive energy market, generators
bid to produce electricity at or around their marginal cost.But
recent analyses of the GB market [16] showed a tendency
for balancing market (BM) prices to rise above the estimated
marginal cost of the last generator dispatched in peak demand
hours. Empirical analyses from other markets support this
claim [17], [18]. This price mark-up during peak demand
hours occurs because firms can raise their bids knowing that
the lack of alternative resources will mean their bids will
be accepted. Accordingly, in this study price,π, includes an
additional mark-up term that alters the shape of the aggregate
supply curve as the system approaches scarcity. This new price
function is described in [4] and is defined here as:

π(L,G1, G2, . . . , GN ) = mc(L,G1, G2, . . . , GN ) + w(L,G∗

N )
(12)

wheremc(L,G1, G2, . . . , GN ) is the marginal production cost
of meeting the load,L, given realised total available generation
G∗

N =
∑N

i=1 Gi. The second term,w(L,G∗

N ) = aeb(L−G∗

N ),
is a function of the capacity margin, defined as total available
capacity minus load in a particular hour. The parametersa
andb are calibrated so that a capacity margin of zero provides
a mark-up equal to the VOLL. For instance, whereL and
G∗

N are expressed in GW, for a VOLL of£10,000/MWh,a =
10, 000 and b = −1.123, and for £2,000/MWh,a = 2, 000
andb = −1.101.

For simplicity, linear variable costs are assumed for all
generators. Fig. 4 shows an example of the price function
given by (12); the curve behaves like a classical linear step-
wise marginal cost supply function for small loads, but as
the system approaches scarcity, the mark-up function becomes
evident and soon becomes the dominate component of price.

The price mark-up function used is informed by a cal-
ibration exercise against GB market index price data (i.e.,
balancing mechanism prices) presented in [4]. Here the func-
tion is simplified to an exponential (Fig. 4). This is to keep
the derivations presented in Section IV-C simple. However
in practice any function of available capacity margin can be
used (e.g., in [4] a hyperbolic and exponential are employed
to provide a better match with the empirical price data).
A sensitivity analyses on the impact on model results of
alternative function parameters is briefly discussed in Section
VI-B, with a deeper examination provided in [8].

Now the market price (12) no longer just depends on which
generator is on the margin, it now depends on the overall
margin, G∗

N − L as well. Furthermore, since the price can
exceedMCn if n is on the margin, the question of whether
a particular incremental MW of capacity withinn is called
upon or not must be considered because marginal generatorn
can still earn a positive gross margin.

Further, the expected gross margin (11) must be extended to

Fig. 4. Supply function for a given realised available capacity for generators
N − 2, N − 1 and N with mark-up function defined byw(L,G∗

N
) =

aeb(L−G∗

N
) (shown as black line). Marginal cost dashed, price is solid line.

consider the price function (12) and merit order operation.This
is less straight-forward than under marginal cost-based pricing
because the market price mark-up requires consideration ofthe
total margin,MN , as well as the marginal unit.

By assuming that price mark-up is non-zero (i.e.,
w(L,G∗

N ) > 0) only when generatorN or N − 1 is on the
margin, calculation of the probability distribution ofw(L,G∗

N )
can be achieved by considering the joint probability distribu-
tion of the capacity marginsMN−1 andMN .9

C. Expected price mark-up calculation

For each component of the MOND (4), we consider the
joint distribution of capacity marginsMN−1 andMN , which
is given byf(MN−1,MN ) with correlationσMN−1

/σMN
[8].

The revenue that a MW belonging to generatorn ≤ N earns
from price mark-up,RPMn (£/MWh), is considered forn ≤
N −2, n = N −1 andn = N . The derivations forn = N −1
are included below, full derivations for the other cases canbe
found in [8]. If n = N − 1, thenRPMn is broken down into
two sub-cases. Firstly, ifMN−1 ≤ 0 then

RPMn =

∫ 0

−∞

∫ v

0

(1− ρn)f(MN ,MN−1)w(MN )dMNdMN−1,

(13)
which is the case where all of generatorN − 1’s available
capacity will be dispatched because load exceeds the available
capacity of generators 1 throughN − 1. The inner integral
upper bound is some value,v, above which the price mark-up
is negligible owing to the large surplus margin. The integral
lower bound is0 because becauseMN ≤ 0 results in zero
price mark-up. Secondly, ifMN−1 > 0 (which impliesMN >
0), then

RPMn =

∫ v

0

∫ v

MN−1

p
disp

N−1f(MN ,MN−1)w(MN )dMNdMN−1,

(14)
wherepdispN−1 is the probability of dispatch of generatorN −1,
given by:

pdispN−1 =
(1− ρN−1)MN−2

−1 · (MN−1 −MN−2)
(15)

9This assumption is reasonable in an aggregated capacity modelwith large
generator type sizes.
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whereMN−2 is the surplus margin after all available genera-
tion lower in the merit order thanN−1 has been dispatched.10

MN−2 is a r.v. and computation of its pdf is awkward;
however by approximating the realised value ofGN−1 by
its expectation:E(GN−1) = cN−1(1 − ρN−1),11 (15) can be
expressed as a function ofN − 1 (see [8]).

Finally, by integrating over the subregions of the
{MN−1,MN} space (see [8]), the expected annual gross
margin for generatorn can be calculated as

GMn = CGMn + E[en] ·RPMn. (16)

This is an important extension to (11); by exploiting the
properties of the probability distribution of capacity margins,
this allows for the additional revenue received from market
price mark-up to be calculated during the production costing
process. To our knowledge this is the first time these deriva-
tions have been presented. The validity of these expressions
have been confirmed in [8] by Monte Carlo simulation.

The MOND approximation technique is embedded within
the dynamic investment model depicted in Fig. 1. More
precisely, it is used to calculate the expected gross margin,
GM i

x, in (1) and realised gross margins in the wholesale
electricity market. In both cases these are given by (11) or
(16), depending on market bidding assumptions.

V. CASE STUDY ASSUMPTIONS

The new dynamic model is applied to an ‘energy-only’
market setting without a separate capacity market, with a initial
capacity mix comparable to GB, a VOLL of£10,000/MWh,
and a simulation time horizon of 30 years (2010-40). 100
Monte Carlo simulation runs are carried out for each plant
type in each decision year. If used for an actual policy analysis,
the impact that the number of Monte Carlo runs has on the
model outcomes should be evaluated and, if possible, larger
sample sizes used. The purpose of this paper is to present and
illustrate a methodology, so extensive testing of the effect of
the number of simulations was not undertaken. An indication
of the importance of sample size is given by the standard
error of the expected revenues. The samples are independent
and identically distributed (i.i.d), so this error is proportional
to 1/

√
N (hereN = 100) [19]. For instance, for nuclear in

2020 in one run, the standard error was about 5% of the
average revenue, which is reasonably precise. If the sample
size was increased ten-fold to 1000 samples, one would expect
an error of 5%/

√
10, or about 1.5%. Moreover, application of

variance reduction methods (e.g., [20]) can result in smaller
standard errors than i.i.d. sampling; however this is left for
future research.

Fuel and carbon forward prices are based upon the UK
Department of Energy and Climate Change (DECC) central
case estimates [21]. Assuming investor price forecasts are
similar to these estimates, the investor model uses the DECC

10The−1 scalar is applied to the denominator of (15) in account ofMN−2

being negative. If it was positive, thenGN−1 would not be dispatched (i.e.,
p
disp

N−1 = 0), which is not considered in (14).
11Note here thatcN−1 is the capacity of the generator typeN − 1, which

is the sum of a number of individual units who share the same capacity and
FOR characteristics (see section IV-A).

estimate plus a r.v. to estimate future fuel prices. This r.v. is
modelled as a mean reverting stochastic process.12

Investors assume a mean of 0% and standard deviation
of 1% for annual load growth (cf. Section III-A). This is
based on variations in demand growth [9] as well as the
perception that economic growth could be offset by increased
energy efficiency, thus allowing for small or even negative load
growth. They also assume the parameter values for remaining
build times (cf. Section III-A) areµ (mean) = one year andσ
(standard deviation) = six months.

Investors in peaking capacity (i.e., OCGT) assume addi-
tional revenue can be obtained from the ancillary services (AS)
market (here exogenously assumed to be£10,000/unforced
MW/yr). Knowledge about revenues obtained from this market
is somewhat uncertain in GB, therefore we have made an
estimation consistent with the idea that AS revenues form a
critical component of peaking capacity profitability, however
they are insufficient by themselves to trigger investment.
Similar models applied in the US (e.g., [9]) also do not treat
the AS market explicitly, and instead assume a fixed (and
relatively modest) contribution of AS to peaking unit gross
margins. Furthermore these are likely to be a second order
effect when considering generation investments on a decadal
time scale and are likely to be relatively unimportant for
cycling and base load capacity, given their relatively large
capital costs.

The main ancillary services payment in GB is via the
SO’s short-term operating reserve (STOR) market. Units who
participate in this market can chose to participate in both the
STOR market and the energy-only market. Under a “flexible”
contract, units specify availability windows, outside of which
they can participate in the energy market. Alternatively, under
a “committed” contract they participate in only the STOR
market. The revenues from this market are relatively small
(e.g., typical availability payments are around£5/MW/hr [22])
and because of their small size, are in reality only considered
for low capital cost plant investment (i.e., peaking units).

Hourly wind production is derived by scaling total installed
wind capacity by simulated hourly aggregated GB wind ca-
pacity factors (CFs). Onshore, the methodology described in
[23] is applied, whereby hourly wind speed data for 2005-09
is obtained (to match the empirical load data), and aggregate
GB CFs are obtained by applying regional weightings derived
from the current wind capacity in operation, construction,
or consented. For offshore wind, we instead use outputs
from a validated (see [24]) fully compressible, nonhydrostatic
mesoscale atmospheric 3km grid point model. The main
justifications for using wind speed measurement data when
simulating aggregate onshore wind production are: 1) thereis
the lack of extensive time series data with adequate temporal
resolution for currently operational farms in GB; and 2) the
amount and geographical dispersion of onshore wind farms
will grow over time, and will include production from regions
where CFs and correlations with loads and wind from other
areas are not currently known.

The total installed wind capacity is exogenous to the model,

12See [8] for parameters used.
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and is expected to increase linearly from 2010 levels (approx-
imately 2 GW or 3% of total installed capacity), up to 30 GW
by 2020 with a maximum of 35 GW in 2025, after which it
levels off. We justify this approach by the fact that, to date,
large-scale investment in wind capacity is driven by policy,
rather than economic considerations. It is therefore assumed
that policies promoting wind investment are successful in
meeting renewables targets,13 and the purpose of this work is
to provide insights into the response of investment in thermal
generation and subsequent levels of security of supply risk.
This magnitude of increase in total installed wind capacityin
a system with around 75 GW of total transmission connected
capacity and a maximum and minimum annual demand of 60
GW and 20 GW, respectively, transforms the GB system from
a low to high wind penetration. Note that a positive probability
of wind exceeding load (negative net demand) arises only
for scenarios in which the wind penetration exceedes 32
GW. Furthermore the fraction of hours in which this occurs
diminishes as load growth continues after 2025. For example,
for a wind penetration of 35 GW (the maximum simulated
level) in 2025, of the 43,825 simulated wind and empirical
2005-09 demand hours, 113 experienced negative net demand
(0.3% of hours).

The residual load facing thermal units for a particular houris
calculated by subtracting the hourly wind production from the
full load. Fig. 5 shows an example of the impact on the 2005-
09 residual load histograms as penetration of wind increases.

(a) (b)

Fig. 5. Result of increasing installed wind capacity from (a) 2 GW to (b)
20 GW on residual load histograms. Data shown is for 2005-09. Numbers in
brackets indicate volume of onshore and offshore capacity respectively.

Data on initial 2010 system capacity in Table I is derived
by aggregating GB capacity data [26] into the five capacity
types. Unit sizes are 500 MW for nuclear and coal, 200
MW for CCGT and 50 MW for OCGT. To keep the model
simple, minor sources of peaking capacity such as oil and
pumped storage is combined with OCGT. CHP and hydro are
aggregated with CCGT plant to obtain the unit totals shown
in Table I. This table also shows the financial and technology
input assumptions, including capacity cost assumptions, total
annualised fixed costs (TAFCx) and total interest accumu-
lated during construction (TIACx).

We assume there will be no load growth until 2020 (al-
though, as explained, realised growth varies around the mean
rate). This is broadly in line with central Updated Energy

13For instance, the UK Government has a target of around 30% renewable
electricity generation by 2020 in order to meet the binding European Union
target for renewable energy [25].

Projections published by DECC [27] and base forecast winter
peak demand figures from the GB System Operator (SO) [26].
Expected electricity demand after this point is assumed to
grow at 1% per year.

VI. CASE STUDY RESULTS

A. Base case results

The model has been implemented using in the Mat-
lab/Simulink environment. The computational efficiency ofthe
MOND technique allowed for each production costing run to
execute in under 1.5 seconds.

Fig. 6 shows the evolution of total installed capacity in
the simulation. Also shown is the full and de-rated capacity
margin. The de-rated margin is the ratio of de-rated capacity
(DC) (installed capacity scaled by expected availability at peak
demand) to most probable peak load (PL); i.e.,[DC]/[PL]−1.
The FORs in Table I are used to de-rate conventional capacity,
and for wind the long-term capacity credit (%) values are
calculated using only those hours within 10% of peak demand
[23]. These range from 9-35% depending on level of installed
capacity (the higher the total installed capacity, the lower the
capacity credit). The forecast for peak demand is obtained
from the 99.9% percentile of the year’s MOND cdf for full
load (i.e., the load which is exceeded approximately 9 hours
per year). The use of de-rated margin is preferable when
calculation of an absolute level of risk is difficult. Moreover
it can easily be compared with the GB SO’s current estimate
of what constitutes an acceptable margin.14

Fig. 6. Plot of simulated capacity growth, de-rated and full capacity margins.
The “historical theoretical de-rated margin” (2001-10) is what the forecast
de-rated margin would have been for a given winter using the GBSO’s
assumptions about plant availability and winter peak [28].

To compare the performance of the simulation against
historic trends in GB, the model was run from 2001-10 and
a comparison between the modelled and actual capacity mar-
gins was performed.15 The comparison shows that simulated
margins do not perfectly match historic trends in all years
(e.g., 2002/3), however there is a reasonably good agreement
of our model with reality, which gives a degree of confidence

14For example, see Appendix to [28] and the UK Government’s recent
consultation on GB electricity market reform [25].

15See [4] for cost and initial capacity data.
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TABLE I
GENERATOR INPUT ASSUMPTIONS WITH SYMBOLS DEFINED INSECTION III.

Technology Therm. ρ Capex FC Var. O&M Lifetime Build WACC TAFC TIAC Initial No.
x eff. (FOR) £/kW £/kW/yr £/MWh α (yrs) τ (yrs) r (real)a £/unfor.MW/yr £/MW (GW) units
Nuclear 0.36 0.10b 2,913 37.5 1.8 40 7 0.09 400,750 931,170 11 22
Coal 0.35 0.14 1,789 38.0 2.0 40 5 0.07 216,710 344,100 27.5 55
CCGT 0.53 0.13 718 15.0 2.2 25 3 0.07 91,840 96,030 28.6 143
OCGT 0.39 0.10 359 15.0 4.4 40 2 0.07 47,250 36,690 7.7 154

aAssuming a 2.5% rate of inflation.bRecent years have shown a decline in the annual availability of the GB nuclear fleet (likely due to age), therefore this value is reduced to
75% for existing nuclear capacity. New nuclear builds are expected to have 90% availability.

in the realism of our future projections. The average absolute
difference between the historical theoretical de-rated margin
and the simulation was 1.6% with a standard deviation of
1.3%. A comparison of available historical data on CCGT
expansion during 2004-09 [29] showed that CCGT investments
triggered by the simulation (3.9 GW during 2004-09) did not
correspond in all years, however the volumes and timing were
not unreasonably different.16 A further analysis of differences
in levels of actual and simulated total installed capacity can
be found in [8].

The future trend shows an erosion of de-rated capacity
margins after around 2015. This coincides with the Large
Combustion Plant Directive17 plant retirements and rapid
offshore wind growth. Of the 30 simulated future years, the
average de-rated margin is 5.6% with a standard deviation of
7.1%. De-rated margins are negative in 4 years, below 5% in
15 years, and below 10% in 25 years. For those years where
margins are below 10%, an average shortfall of 1 GW of
capacity was projected. The GB SO has recently stipulated
that a de-rated capacity margin of 5 GW over expected peak
demand is desirable (see Appendix to [28]). These simulation
results suggest that a lower than desirable level of adequacy
risk could potentially occur.

The annual LOLE and EEU was also calculated (cf. Section
IV-A). The average annual LOLE across the 30-year simula-
tion was 0.03 hrs/yr with a standard deviation of 0.05, and
average annual EEU of 5.7 GWh (less than 0.002% of typical
year’s total annual energy demand). The yearly LOLE together
with the volume of hypothetical additional capacity required
to meet a 5 GW de-rated capacity margin at peak is plotted
in Fig. 7. A value of zero implies that de-rated margin is in
excess of 5 GW.

These projected risk and de-rated capacity margin figures
suggest that the system may experience tight supply conditions
during peak demand in some years. Some of these results
can perhaps be explained by inspection of the residual load
histograms from Fig. 5(b); the shape of the right-most tail
suggests that even with very high penetrations, wind power
does not contribute in all high demands periods. However
the frequency of these high-demand/low-wind periods is too
low to justify investment by private investors. And it is these
very high-demand hours when the potential for a capacity

16CCGT investment was the primary source of capacity expansion in GB
dring this period.

17A control on emissions from heavily polluting large combustion plant
introduced by the European Union in 2001. Approximately 11 GWof
emission-intensive capacity is expected to be decommissionedby 2016 under
this legislation

Fig. 7. Plot of simulated LOLE (bars) and capacity shortfall over 5 GW
de-rated capacity margin (solid line).

shortfall is highest (excluding here SO actions such as voltage
reductions). From a policy perspective, it is arguably uneco-
nomical to design policies aimed at ensuring there is adequate
generating resource available for these low-frequency events;
an alternative approach would be to encourage demand-side
participation through smart grids and smart metering.

Further, an analysis of generator revenues showed symptoms
of a boom and bust investment cycle. Simulated OCGT total
gross margins were positive in only 7 of the 30 simulated
years. The largest investment years were 2017/18, which
included the forecast prices for 2023-25, the period when gross
margins are highest. However investment reduces in 2019-
22 in response to expectations about prices being dampened
(although not sufficiently to prevent an overshoot) as new
investment in OCGT and other technologies enter the system.
The pattern of high gross margins directly corresponds to those
years where adequacy risk is highest (cf. Fig. 7). The boom
in OCGT investment in expectation of the high gross margins
after 2023 is followed by a bust phase around 2026 when large
volumes of new nuclear capacity begin entering the system.
This increases the capacity margin but reduces profitability for
peaking units.

B. Sensitivity analyses

In order to test the robustness of the model, sensitivity anal-
yses have been performed on a number of model assumptions.
These included:

1) The ability of plant owners to exercise market power
and volumes of revenues received by doing so; this is
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achieved by calculating expected gross margins using
(11) instead of (16).

2) The impact on investment of the expected scarcity price;
this is achieved by reducing the VOLL and recalibrating
price mark-up (see section IV-B) when calculating (16).

3) Altering investor estimates about construction lead times
to match reality (i.e., as shown in Table I) in order
to test the hypothesis that differences between realised
and investor expectations about prices is due to the
uncertainty surrounding capacity under construction.

Also the aggregate investment response (2), investor risk pref-
erences, uncertainty about load growth and varying economics
of peaking plants (revenue from AS and fixed costs) were all
found to affect investment dynamics.

Overall, the model’s qualitative behaviour was reasonable
for these sensitivities and provided some useful insights,
particularly when comparing the oligopolistic base case tothe
perfectly competitive market results. A pattern of increased
relative levels of risk and erosion of de-rated capacity margins
was experienced during the 2020s to some degree in all
cases. Furthermore, the period of highest security of supply
risk is 2023-28, however the magnitude of this risk differs
between experiments. A prolonged period of increased security
of supply risk is experienced throughout the 2020s for the
perfectly competitive market case. Plainly these dynamicsmay
differ in a model representing more sophisticated firms who
account for the effect of their investments upon mark-ups for
their existing fleet. In this case, firms may deliberately not
invest in order to keep prices (including mark-ups) high. Also,
providing investors with perfect foresight about capacityunder
construction produces less investment. This leads to more
frequent periods of relatively high LOLE and low de-rated
margins after 2020. However, generators experience positive
gross margins in more years due to lower surplus margins, and
hence higher prices.

VII. C ONCLUSION

We have presented the MOND technique for calculating
expected output, costs and revenues of thermal generation
subject to varying load and random independent thermal
outages. This method has been adapted for use in a dynamic
capacity market model with high penetrations of wind by
performing a residual load calculation with simulated wind
outputs. An ‘energy-only’ market setting has been used to
estimate the economic profitability of capacity investments.
Using relative levels of de-rated capacity margin and LOLE
as risk metrics, simulation results for GB show that levels
of generation investment lead to a mild increase in generation
adequacy risk in some years, with erosion of de-rated capacity
margins in the mid 2020s, and very tight supply conditions are
experienced during a small number of peak hours. Many new
investments, particularly peaking units, were unable to recover
their fixed costs.

If the model presented here were to be used for an actual
policy analysis, a number of key areas of future research
are recommended. These include: 1) a survey of investors
regarding their use of analytical approaches when evaluating

investment decisions under uncertainty and, if appropriate,
modification of investor risk-averse decision making, 2) tode-
velop an explicit representation of the heterogeneity of investor
response, and 3) modelling endogenous bilateral contracting.

An area of possible future research would be to extend
the MOND technique to a two-area (e.g., Scotland-England)
system with a transmission constraint. This could then be used
to assess the impact of congestion on wind power availability
and thermal generation investment in each area. This could
be implemented using a Mix of Bivariate Normals reflecting
the correlations in loads and wind in each area (e.g., as in
[2]), based on two area production costing methods (e.g., see
[30]). To maintain computational efficiency, the model could
draw upon scenario reduction schemes (e.g., see Chapter 7
of [31]) when applying multi-area production costing and
making an assessment of curtailment of wind production due
to transmission congestion.

The next stage of this research will address whether explicit
capacity mechanisms such as tendering for strategic reserve
(e.g., [25]) and capacity markets (e.g., [9]) can be designed to
alleviate resource shortfall and prevent investment overshoot.
The results here indicate that such a mechanism may be
desirable to improve reserve margins in the mid 2020s in Great
Britain.
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Abstract 

The extent to which large volumes of offshore wind can 
contribute to a secure and reliable electricity supply is a 
subject of much debate. Key to providing credible answers 
requires a detailed understanding of the wind resource and its 
variability in time and space. Here, a mesoscale atmospheric 
model was employed to create a ten year hindcast of British 
onshore and offshore wind speeds. This was used to simulate 
the output of a British offshore wind fleet and combined with 
demand data to assess reliability during periods of high 
demand.  Further, capacity value calculations using Effective 
Load Carrying Capability for the combined onshore and 
offshore GB wind fleet provides an estimate of the long-term 
reliability of production.  

1 Introduction 

Integrating large amounts of variable renewable generation 
into the electricity network presents a significant challenge 
and is the subject of much debate.  This is particularly true in 
the UK where wind generation is expected to become a 
significant supplier of energy, with a large increases in 
capacity expected offshore, perhaps in excess of 30GW by 
2030, up from around 1GW today.  

Debate centres on the question: ‘to what extent can a variable 
and stochastic resource contribute to a secure and reliable 
electricity supply?’ Key to answering this is a detailed 
understanding of the wind resource and its variability in time 
and space. However, there are relatively few sources of 
offshore observations with sufficient temporal resolution or 
accuracy to address this. In a future system with high 
penetrations of wind, the temporal variability of wind will 
determine numerous characteristics such as the capacity value 
of wind and the amount of reserve required to maintain an 
adequate level of system security.  

This paper presents the results of a high resolution re-analysis 
using a mesoscale atmospheric model to recreate ten years of 
hourly wind speeds across Great Britain (GB) and 
surrounding waters. Wind speeds are extensively validated 
against observations from a number of available buoys, 
lightships and offshore platforms. The dataset is used to 
simulate ten years of wind production. Taking inspiration 
from capacity value calculations for onshore wind [1] this 
new data is used to produce the first credible estimate of the 

contribution of British offshore wind generation in supporting 
demand. 

2 Mesoscale modelling 

2.1 Simulation 

Mesoscale atmospheric modelling is becoming widely used in 
the wind energy field, both for short-term forecasting and 
longer-term resource assessment. Mesoscale models are 
computationally demanding, so many studies either simulate 
relatively short time periods or employ statistical downscaling 
to reduce the computational requirement needed to capture a 
representative period. However, short term analyses do not 
fully capture wind speed variability, while statistical 
approaches do not produce continuous historic time-series 
which can be matched with historic patterns of energy 
demand. 

This study uses the Weather Research and Forecast (WRF) 
model [7], a fully-compressible non-hydrostatic mesoscale 
model with multiple boundary-layer, land surface, 
microphysics and cloud physics options. The model was 
configured with three nested domains down to 3km resolution 
(Figure 1). Boundary conditions were taken every six hours 
from the NCEP Global Forecast System Final Analysis 
dataset at 1o resolution. Two- way nesting and analysis 
nudging was used on all domains. The main physics options 
are summarised in Table 1. 

Ten years were simulated, from 2001-2010 inclusive, on the 
UK Research Council’s high performance computing 
platform, HECToR. 

 
Figure 1: Nested domains at 27, 9 and 3km resolution 



Domain 1 2 3 
Resolution (km) 27 9 3 
Integration timestep (s) 135 45 15 
Analysis nudging y y y 
Cumulus scheme Kain-Fritsch  None 
PBL scheme MYJ [4] 
Surface layer Monin-Obhukhov [5] 
Land surface scheme NOAH  
Land use dataset MODIS 

Table 1. Summary of mesoscale model configuration.  
 
WRF uses a terrain-following, pressure based vertical 
coordinate system. The vertical resolution was increased close 
to the ground to reduce any errors associated with 
interpolation to fixed heights.  Wind speeds were interpolated 
to hub height from the closest model level:  
 

)/ln(/)/ln( 00 zzzzUU mmz ⋅=          (1) 

where Uz is the wind speed at hub height z. Um is wind speed 
at the closest model level zm and z0 is the local roughness 
length taken from WRF. Over water, WRF uses a Charnock 
formulation for roughness length. 

2.2 Wind farm load factor 

For existing (as well as planned and under construction) 
onshore and offshore wind farms, hourly wind speeds were 
converted to power output using the manufacturer’s power 
curve for the appropriate turbine. The make, model and size 
of turbine are specified in the RenewableUK wind farm 
database.  
 
The location of future offshore wind farms were taken from 
the Crown Estate leasing rounds. A generic 3MW turbine was 
assumed for Round 2 sites, and a generic 5MW turbine for 
Round 3, based on commercially available models. The final 
installed capacity in each offshore site was assumed to be 
distributed in proportion to the maximum lease capacities.  
 
Overall GB-level aggregate load factors (LFs) were computed 
as averages weighted by final installed capacity. That is, if 
LFn

i represents the LF of wind farm n at time t, then the 
aggregate LF at time t is calculated as:  
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where Cn is the final installed capacity of wind farm n. 
Aggregate offshore and onshore LF are calculated separately, 
i.e. n is restricted to either offshore or onshore farms. For 
offshore farms, this means longer term calculations are 
weighted towards the larger Round 3 sites. 

2.3 Validation 

Wind speeds were validated against onshore met stations and 
offshore buoys, lightships and platforms. Standard error 
statistics of Bias (B), Mean Percentage Error (MPE), Root-
Mean-Square Difference (RMSD) and coefficient of 
determination (R2) were calculated.  

Table 2. Summary of error statistics by observation type 
 

Table 2 summarises the error statistics by class of 
observation. The performance is generally good, with high 
correlation values. Onshore the agreement between simulated 
and observed wind speeds was very good, with overall high 
correlation and low bias.  Offshore a seasonal bias of -1 to -
2ms was found in summer months. This merits further 
investigation, however it does not affect the capacity value 
analysis presented here which is based only on winter wind 
speeds.  

Monthly measured LFs for the largest onshore wind farms in 
each region of the UK (covering 196 wind farms with a 
totalled installed capacity of 2.7GW) were compiled from 
Ofgem’s Renewable Obligation Certificate (ROC) Register 
for the period from April 2006 to December 2010. LFs for 
existing offshore wind farms were also compiled from the 
time they became operational until December 2010. By the 
end of that period, that amounted to 8 wind farms with a total 
installed capacity of around 1 GW.  

Simulated LFs at the same sites were derived from the 
modelled hourly wind speeds and then averaged to monthly 
values. No accounting for wake losses or other array losses 
was carried out at this stage. Figures 2 and 3 show the 
agreement between average monthly LF averaged across 
onshore and offshore sites. Onshore, the predicted LFs were 
found to be consistently higher than observed. This would be 
expected before losses have been considered. A linear scaling 
factor of 0.69 gave the best adjustment between simulated and 
observed LFs (R2=0.94). 
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Figure 2: Average monthly LF for existing onshore wind 

farms. The thick grey line shows the actual weighted 
average LF from 196 large wind farms. The solid black 
line shows simulated LFs at 100% availability/no losses 
and the dashed line shows these values scaled by 0.69.  

 n B MPE RMSD R2 
  m/s % m/s  
Met stations 220 0.02 -0.5 0.44 0.96 
Buoys 9 0.24 6.25 1.16 0.82 
Lightships 4 -0.38 -1.99 1.30 0.91 
Platforms 3 0.30 3.48 1.54 0.93 
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Figure 3: Average monthly LFs for existing offshore wind 

farms. The thick grey line shows weighted average LF for 
all operational offshore The solid black line shows 
simulated LFs with no adjustment for losses. The large 
deviation in the first winter period is due to low technical 
availability in the early stages of some offshore farms. 

 
Offshore, the predicted LFs were already in quite close 
agreement to the observed values, except for two winter 
periods were technical availability at a number of offshore 
wind farms was very low. LFs were slightly too low in 
summer, confirming the seasonal wind speed bias seen at 
observation sites. For this reason, no further accounting for 
wake losses or technical availability was performed for 
offshore sites. 

3 Reliability analysis 

3.1 Historic wind and demand time series 

The relationship between wind generation and electrical 
demand is of primary interest when analysing the reliability 
of the wind resource. Of particular interest is the availability 
of the wind resource during periods of high demand. In 
Britain the highest demands are driven by low temperatures 
occurring during winter (November-March). It is during these 
periods that the adequacy risk is typically highest. 
 
Historic aggregated half-hourly demand data going back to 
April 2001 is available from the GB System Operator (SO), 
National Grid [9]. The GB ‘IO14_DEM’ data is the most 
applicable for generation adequacy calculations because this 
is based on operational generation metering and includes 
station load and pumped storage (PS) pumping [1]. However 
this data is inconsistent as prior to April 2005 it relates to 
England and Wales only. The ‘INDO’ demand measure, 
which excludes station load and PS pumping, is available for 
the entire period. The winter ‘IO14_DEM’ values can be 
approximated by raising the ‘INDO’ measure by 600 MW 
and is used where the ‘IO14_DEM’ data is not available.  
 
To account for underlying changes in absolute levels of peak 
demand, each winter's demand is normalised by out-turn 
“Average Cold Spell” (ACS) peak demand and rescaled to 60 
GW. ACS peak demand is forecast each year in advance of 

the forthcoming winter by the SO, and is described as having 
“a 50% chance of being exceeded as a result of weather 
variation alone” [8]. The out-turn ACS peak is calculated post 
winter and is a measure of what peak demand would be given 
a winter's underlying demand patterns and “typical” winter 
peak weather conditions [8]. This makes it suitable value for 
the normalisation. These values can be found in [1] and [10].  

The half-hourly data is transformed to hourly resolution by 
taking the hourly demand to be the maximum of the two half-
hour periods. Finally, the normalised hourly demand data is 
then matched with the hourly simulated wind LFs. The time 
series spans 9.5 consecutive winters from winter 2001/02 to 
December 2010, totalling 34,128 demand hours.  

Figure 4 shows the simulated average aggregate long-term 
LFs for wind generation during the highest demand hours. 
The 90%+ normalised demand hours are categorised into 1% 
bins and the cumulative number of hours at each demand 
level are indicated on the graph (i.e., each label indicates the 
number of hours demand is at or above x). Note that demand 
levels above 100% of peak are possible on account of ACS 
peak being exceeded in some years. Interestingly, the pattern 
of average LFs shows a good agreement with the analyses of 
transmission metered wind farms presented in [14]. However 
absolute levels of average LF are higher with around a 45% 
LF at 90% to 95% levels of demand compared to 20% in [14]. 
This is hardly surprising given the increased geographic 
diversity of the wind capacity. As mentioned earlier, no 
scaling factors were applied to the simulated offshore LFs, 
which may lead to systematic over-estimation in the results. 
Therefore a second case where weighted offshore LFs are 
scaled by 0.69 is also included in Figure 4. This reduces the 
average LF at 90% to 95% demand levels to around 35%. The 
level of deterioration in average LFs at high demands is less 
severe than in [14], although this is based on just 2 hours of 
simulated data. It highlights the challenge for determining the 
availability of wind at high demand levels [14]. 
 
 

 
Figure 4. Average long-term LFs for highest demand levels 

(right y-axis): base-case and wind scaled by 0.69 (upper 
and lower dashed lines). The demand hours per 1% 
normalised demand bin are shown on the left y-axis. 



3.2 Risk metrics 

The loss-of-load probability (LOLP) in a particular period is 
defined as the probability that available generation is unable 
to meet demand: 

),( DXpLOLP <=            (3) 

where X is the available generation and D is the system 
demand, both of which are random variables. The loss-of-load 
expectation (LOLE) is the expected number of periods over a 
given period in which available generation is unable to meet 
demand. So for a given time horizon: 

,∑=
T

t
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where LOLPt is the LOLP in period t. Here, the period t is 
assumed to be one hour and T spans a number of years.  

3.3 Capacity value calculations 

The use of capacity value is common when measuring the 
contribution of renewable energy generation to meeting 
demand. Here the Effective Load Carrying Capability 
(ELCC) defines the capacity value (or capacity credit). The 
ELCC for a particular level of additional generating capacity 
estimates the amount of additional demand that can be served 
due to the extra generation whilst maintaining the original 
level of system risk [6]. The purpose of this study is to 
demonstrate an application of the mesoscale model, not to 
determine an absolute measure of wind generation capacity 
value for GB. Moreover, a specific methodology has been 
applied to calculate capacity value, and while the authors 
concede that this is not necessarily cutting edge probability 
theory (e.g., see [14]) it is a fully valid contribution to 
defining current approximations of capacity value in GB (e.g., 
[11,12]). What is more, this is understood to be the first time 
that capacity value for a combined on- and offshore wind 
resource has been calculated using the ELCC approach.  
 
The capacity value is estimated as follows. Consider some 
additional wind generation w which increases overall system 
capacity. If the system LOLP in hour t before the additional 
generation is added is the “initial” LOLP, then adding the 
additional generation will reduce the LOLP. The total 
reduction depends on the reliability of the additional 
generation. This reduced LOLP can be expressed by: 

),(* WDXpLOLP −<=            (5) 

where W is the contribution to demand from the additional 
generation. Similarly, using the same principle as (4), the 
reduced 9.5 winter LOLE can also be determined. 
 
The ELCC for the additional generation is found by 
increasing demand until the reduced LOLP* risk returns to its 
original value. Here the interest is in the ELCC across the 
entire time horizon; however calculation of the ELCC for a 
single period is the starting point. This is given by [14]: 

),()( WdDXpDXp ELCC −+<=<          (6) 

where dELCC is the ELCC. This can be extended over multiple 
periods to: 

      ),()( tELCCtt

T

t

T

t
ttt WdsDXpDXp −+<=<∑ ∑        (7) 

where st is a scalar applied to the ELCC in order to account 
for the level of demand being experienced. Or put another 
way, the scalar places a higher weight on the highest demand 
periods when solving (7). 
 
 
3.3.1 Treatment of conventional generation 
The next step is to construct a probability distribution for 
available conventional generation. Here, the term 
conventional generation covers all forms of generation 
currently connected to the high voltage transmission system 
in GB, with the exception of wind. Furthermore, the 
availability of conventional generation is assumed to be 
independent of demand and available wind capacity. 
Technical plant availability data is not available in GB. 
However most generating companies try to make available as 
much capacity as possible at time of highest demand (to not 
forgo high wholesale market prices), thus availability is a 
function of the unit’s forced outage rate (FOR), which it is 
reasonable to assume are independent [1]. 
 
Generation unit data is taken from the National Grid Seven 
Year Statement [10] and the expected winter peak 
availabilities in their Winter Outlook [11] are used as FORs. 
This data is summarised in Table 3. The Unit Effective 
Capacity (UEC) in [10] has been used for all units, apart from 
those which are transmission constrained; in this case the 
individual UEC is scaled in order to match the transmission 
limit. Hydro units belonging to the same hydro scheme are 
combined into single pseudo-units owing to their resource 
interdependence. 
 

Power station 
type 

No. 
units 

Capacity 
(GW) 

Assumed 
availability 

Nuclear 22 10.1 0.75 
Interconnector 1 2 1.00 
Hydro 9 1.1 0.60 
Coal 62 27.9 0.90 
Oil 4 2.7 0.80 
Pumped storage 16 2.7 1.00 
OCGT 34 1.2 0.90 
CCGT 124 26.7 0.90 
TOTAL 272 74.4  

 
Table 3: Transmission connected conventional unit types 

[11]. 
 
The capacity outage probability table technique [2] assumes 
available capacity follows a Bernoulli distribution between 
zero and full capacity. With a 1 MW bin size, the resulting 
aggregate probability density functions have mean and 
standard deviation of 65.3 GW and 1.8 GW, respectively. 
Using this distribution the hourly winter LOLPs can be 
computed (3).  
 



For simplicity each normalised hourly d is assumed to be 
fixed and does not itself follow an assumed probability 
distribution. Hourly LOLPs can be summed to produce the 
total 9.5-winter LOLE (4). Similarly the reduced LOLE is 
calculated using the expected wind output at each hour 
estimated by the numerator of (2).  
 
3.3.2 Build-based capacity value: focus on offshore wind 
Initially the offshore wind resource is considered in isolation 
with particular interest in the relationship between the spatial 
distribution of generation capacity and capacity value. The 
hourly aggregated GB offshore wind LFs are estimated using 
a projected offshore wind build schedule. This timetable is 
constructed from the three Crown Estate auctions (rounds 1-
3) that define the locations and expected capacities of the 
offshore farms (see [13]). The aggregate LFs are then derived 
using the geographically weighted average of locational LFs 
(2). The results of this analysis are illustrated in Figure 5. 
 

 
Figure 5. Capacity value (left y-axis) and ELCC (right y-axis) 

results for GB offshore wind using long-term and build-
based LFs. 

 
The dashed line shows capacity values calculated using long-
term aggregate weighted LFs. This assumes all sites are 
included and the contribution from individual locations scaled 
by weighting their capacities. The solid line shows the 
capacity values calculated using the build-based aggregate 
weighted LFs over just the wind farm sites expected to be 
online at the start of each year considered. The total installed 
capacity expected to be online by the stated year is the same 
in both cases, however the build-based LFs are weighted 
across a less diverse resource. The graph demonstrates that 
considering sites by build schedule leads to lower estimated 
capacity values with the monotonically decreasing 
characteristic common in capacity value plots not present 
(e.g., Figure 7). This can be explained by the added value of 
capacity diversity improving (but not eliminating) the impact 
of dependence between sites on resource reliability in some 
years (particularly for the larger Round 3 sites). 
 
Further, the box in Figure 6 shows the expected availability 
and standard deviation of offshore wind capacity during high 
demand hours (note that the total installed capacities are as in 
Figure 5). In this case, those demand hours within 5% of peak 
provide a sample size of 655 hours over the 9.5 winters. The 
selected probability mass functions demonstrate how the 

distribution of aggregate LFs for the sampled hours changes 
over time. There is a visible reduction in expected low LF 
hours as geographical diversity increases, and the probability 
of high loads factors remains high relative to those typically 
simulated for onshore (e.g., [1]). 

 
Figure 6. Probability mass function for GB off-shore wind 

LFs for selected years based on demand hours within 5% 
of annual peak.   If the LF falls in a particular range (x-
axis), it is deemed to be at the middle of that range (i.e., 
LFs in the range 0-4% are deemed to be 2%). Mean and 
standard deviation of total available capacity depicted in 
box. 

 
3.3.3 Aggregate GB wind capacity value 
 
Attention now turns to the combined GB wind resource, 
Figure 7 shows the ELCC and corresponding capacity value 
results for combined on- and offshore analysis using the long-
term aggregate weighted LFs. These results suggest that for 
high levels of highly geographically diverse installed 
capacity, a capacity value of 10% appears credible. 
 
 

 
Figure 7. Capacity value (left y-axis, line) and ELCC (right y-

axis, bars) for the combined on and offshore GB wind 
resource calculated with long-term aggregate LFs. 

 
Figure 8 shows the results of a sensitivity analysis for ELCC 
that included the following (the numbers match Figure 8): 
1) Scaling factor 0.69 applied to long-term offshore weighted 

loads factors; 



2) Normalised peak demand reduced from 60 to 57 GW 
(initial LOLE reduced by 99%); 

3) Reducing the total available conventional generation by 4 
GW to a distribution with mean 62.2 GW, and standard 
deviation 1.7 GW (initial LOLE increases by 3000%).  

 
As might be expected with sensitivity factor 1 the effect of 
scaling offshore wind LFs downwards tends to reduce the 
capacity value of wind. In 2 the risk is reduced, so is the 
ELCC and capacity value is also reduced. In 3 the risk 
increases and the ELCC does likewise. This is a well-known 
result of ELCC analysis and demonstrates the impact of 
underlying system risk on the results obtained.  
 

 
Figure 8. Sensitivity of ELCC value to assumptions.  

4 Discussion 

A major assumption here is that the last ten years winds are 
reasonably representative of future wind in the UK. Ten years 
is not enough to represent a full climatology and there is 
evidence of climate change affecting wind speeds [3]. 
However, ten years is long enough to sample a wide range of 
synoptic conditions and weather types and the analysis is a 
substantial improvement on comparable studies.  

The output of wind at times of peak demand varies 
considerably between years. For example, in 2010, blocking 
high pressure over northern Europe led to very cold 
temperatures and high electrical demand, yet low wind speeds 
persisted over the UK. This highlights the difficulty, perhaps 
even the validity, of attempting to represent the contribution 
wind makes towards reliability as a single figure.  

5 Conclusion 

A detailed understanding of the wind resource and its 
variability in time and space is vital for understanding the 
contribution of offshore wind to reliable electricity supply. 
Here, a mesoscale atmospheric model was employed to create 
an ten year hindcast of British offshore wind speeds and 
simulated production.  

Results of a reliability analysis have provided insight into the 
reliability of production from offshore wind at periods of high 
demand. What’s more, credible estimates of combined long-

term onshore and offshore capacity value have been derived 
and the sensitivities of these estimates to the underlying level 
of system risk discussed. 
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Validation of a dynamic control model to simulate
investment cycles in electricity generating capacity

D. Eager,Student Member, IEEE, J. Bialek,Senior Member, IEEE, and T. Johnson

Abstract—The ability of the liberalised energy markets to trig-
ger investment in the generation capacity required to maintain
an acceptable level of security of supply risk has been - and will
continue to be - a topic of much debate.

Modelling the dynamics of investment in generation capacity
can inform this debate. More precisely, if investment is viewed
as a negative feedback control mechanism with energy prices
acting as the feedback signal then the system can be formulated
in terms of differential equations and addressed as a problem in
optimal control.

The approach presented uses techniques from control theory to
model investment market dynamics and a classical NPV approach
is used for the investor decision process. The results of the model
verification stage are presented whereby the model’s ability to
simulate the market trends witnessed in Britain since early 2001
is tested with encouraging findings reported.

Index Terms—Power generation economics, Optimal control,
Simulation.

I. I NTRODUCTION

SO far, in Europe and the US, market liberalisation has been
seen as a success in terms of efficiency and lower prices.

However, various imperfections and catastrophes (e.g. Califor-
nian crisis in 2000 and 2001) indicate to market designers that
improvements are still achievable. One of the main concerns
is that the onus is now on privately owned generating firms to
respond to supply shortages by investing in generation capacity
in order to maintain an adequate level of security of supply
risk.

An installed capacity capable of meeting demand whilst
considering plant maintenance, unscheduled outages, utilisa-
tion factors, variable generation and unpredicted contingen-
cies, is vital in order to avoid power shortages and blackouts.
Nowadays it is widely accepted - certainly in Great Britain
(GB) - that a benchmark capacity margin at or above 20% for
a predomiately thermal system provides and acceptable level
of risk. To illustrate this point, Fig. 1 shows the GB capacity
margin in recent years; there has been a clear oscillation in
the margin and what’s more as the penetration of wind power
increases, it will need to increase significantly if the risklevel
is to be maintained. Many observers attribute this capacity
margin instability to the market framework under which the
industry operates. Capacity payments (and such like) are used
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Fig. 1. Generation capacity margin in the GB since industry privatisation
[7]. Dates of significant market framework changes also shown.

in most countries in order to ensure an adequate capacity
margin, however GB is a rather rare (but not unique) example
of an energy-only market, i.e. without capacity payments.

The purpose of this research is to establish whether a
liberalised market framework is capable of inducing optimal
investment in generation capacity over a long-term time frame
(∼20-30 years). In the first instance, a simulation model of
the current GB energy-only market has been constructed with
the aim of estimating long-term characteristics and whether
without capacity instruments it is likely to induce large price,
reliability and capacity oscillations.

It is well known in control engineering that time lags and
uncertainty are responsible for worsening system stability and
creating undamped oscillations. Any generation investment has
an inherent time lag of 3-5 years for gas and coal plants
and 8-10 for nuclear before becoming operational. Moreover,
analysis of consecutive GB System Operator (SO) Seven
Year Statements [11] showed that many projects are subject
to delay and/or abandonment. This combination of inherent
investment time lags, delays and uncertainty about the level
of capacity coming on line in the future creates generation
capacity oscillations like those shown in Fig. 1.

By taking a dynamical systems approach, the simulation
can be analysed for its stability characteristics and further-
more, controllers with the goal of minimizing the effect
of uncertainties can be designed. Other models that share
similarities with this methodology include [9, 15, 16, 20] and
more significantly [14], which the work presented here is an
extension of. Furthermore [9] and [20] explicitly state the
dynamic equations used to model the evolution of the system,
however crucially none go as far as to analyse the system for
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its stability characteristics.
Like many countries, this topic is currently very relevant in

GB and a large volume of work has been published in this field
by both academia and industry [1, 2, 19, 21]. These studies
focus on the capability of the current market framework to
deliver a secure electricity mix whilst meeting firm emissions
reduction targets and renewable energy obligations. In thecase
of [19], a static approach to modelling is taken whereby an
investment forecast is made assuming future gas and coal
prices and then key indicators such as electricity prices are
calculated. However in the model presented below a feedback
mechanism is present, whereby a year-on-year investment
decision is taken enabling investors to adapt their behaviour
based on current market conditions; this includes projectsin
the pipeline, time delays, fuel prices and so on.

The results presented here are from the model verification
stage of the work; a comparison between the market dynamics
witnessed since the introduction of the New Electricity Trading
Arrangements (NETA) in England and Wales (E&W) and the
simulation results over the same time period are presented.
NETA is the name given to the system under which electricity
was traded in E&W up until April 2005. It came into being in
March 2001 and was altered in April 2005 when the electricity
market in E&W merged with its counterpart in Scotland into
a single GB wholesale market1.

The paper is organised as follows: Section II describes
the model formulation and the important elements of the
simulation; this includes how capacity, demand, fuel price
and wholesale electricity price are simulated. Section III
contains a description of the investment decision process and
how uncertainties faced such as fuel price and demand are
modelled. Section IV includes the results of the comparison
study and finally section V concludes the paper.

II. T HE MODEL

The approach of applying techniques from optimal control
theory is taken to model market investment dynamics (Fig.
2). Because the model is dynamic, current prices and their
predictions are fed back to the investment block modifying
the investment behaviour. The resulting investment decisions
are then fed back to the pricing mechanism hence closing the
loop.

Two control problem models have been developed in par-
allel for this work. One is the discrete-time model formulated
with difference equations and the other is the continuous-time
model formulated with differential equations.

A daily time-step model has been implemented for both the
discrete and continuous case. The model using the daily time-
step is run to establish likely investment trends for the years
ahead. The results from this simulation are added to the hourly
time-step model and a detailed analysis of key factors such as
wholesale price trends and security of supply risk are assessed.
In fact a direct comparison between historical wholesale prices
and simulated prices is included in order to verify the model

1Namely the British Electricity Trading and Transmission Arrangements
(BETTA).

Fig. 2. Electricity investment as a control problem; investment can be viewed
as a negative feedback control mechanism with energy prices (as a function
of generation capacity margin) acting as a feedback signal.

pricing function formulation, details on this function aregiven
in section II-C.

Because there is an investment element to the model, a
forward-looking simulation has also been developed. This
model uses market conditions in the real-time simulation as
initial conditions and then makes predictions on the futurestate
of the system during the lifetime of a potential investment.
Crucial uncertainties such as future demand, fuel prices and
wholesale energy prices are all simulated.

Therefore, for the purposes of model verification, the real-
time model is based on historic data with minimal uncertainty
(except for new investments and price), however the invest-
ment decisions are still based on a uncertain perception of the
future.

A. Capacity

The central dynamics of the system surround the evolution
of installed generation capacity. The rate of change in capacity
at a particular time-step is dependent on new plant coming
online or being demothballed together with any plant retiring
or being mothballed. Both are delayed signals from some
earlier time. In the case of new plant this delay is build
time, and in the case of retiring plant this delay is lifetime.
The control system linear time-invariant (LTI) differential
equations are given by

dGx

dt
=

dIx

dt
− dRx

dt
, (1)

whereGx is the installed capacity of plant typex,

dIx

dt
= Ix(t − τx + ǫ) =

{

Cx if invested in x
0 otherwise

(2)

is the investment rate and

dRx

dt
= Ix(t − αx) =

{

Cx if x retired
0 otherwise

(3)

is the rate of plant retirement.Cx is the capacity,τx is the
expected build time,αx is the expected lifetime andǫ is a
random variable representing unforeseen delays (e.g. in the
planning process). An aggregate approach is taken whereby
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capacity is combined into five technology tranches, namely
nuclear, coal, wind CCGT and OCGT each with its own cost
characteristics.

In the base case, project delays are modelled as lognor-
mally distributed with mean 1 year and variance six months.
Furthermore, the number of projects that are abandoned is
modelled using a simple discrete probability distributionsuch
that on averagex% of projects are abandoned. In the base
case,x = 0 for coal nuclear, CCGT and OCGT2 and owing
to its poor record at gaining planning permission and so on,
x = 50 for wind3.

Finally, plant included in the Large Combustion Plant Di-
rective (LCPD)4 is also modelled whereby the lifetime of the
11GW+ which has opted out of the directive (i.e. opted to
close rather than retrofit the equipment necessary to reduce
emissions) is given a reduced lifetime based on the estimations
of remaining generating hours given in [13].

B. Fuel Prices

The data shown in Fig. 3 was used to model generator
fuel and emissions prices at real-time. Plainly the gas price
is modelled with a greater degree of accuracy than the other
fuel prices, this was for a number of reasons: firstly only
detailed historical data of gas prices was obtainable, secondly
by having a detailed model for gas, the characteristic of
electricity prices being strongly correlated with gas prices can
also be checked and verified.

Fig. 3. Fuel prices, from top left (clockwise) gas [22], coal[3], uranium [8]
and carbon [22].

C. Wholesale electricity price simulation

Simulating wholesale energy prices is an important aspect
of any model that addresses investment in generating capac-
ity under a liberalised market framework. Furthermore, the
wholesale price trends witnessed can indicate to observers
how well the system is functioning and whether there is has

2The logic here being that traditionally, new thermal capacity is usually
built on an exisiting site with a grid connection so will not come up against
stiff planning resistence.

3At the time of writing this paper, a basic analysis of British Wind
Energy Association (BWEA) data [5] revealed that from 2004 to2008, 495
applications were submitted and 258 have been approved to date.

4A control on emissions from heavily polluting large combustion plant
introduced by the EU in 2001.

TABLE I
GENERATOR DATA [17].

O&M O&M life- build
Gen. Effic- Availa- Capital fixed variable time time
type iency bility £/kW £/kW £/GJ yrs yrs
Nuclear 0.36 0.78 1485 43 0.05 40 7
Coal 0.48 0.86 400 14 0.28 40 5
Wind - 0.28 1000 27 0.0 25 4
CCGT 0.58 0.87 300 7 0.56 25 3
OCGT 0.39 0.95 330 10 0.75 40 2

been adequate investment in capacity. For example, there isa
tendency for over-investment to lead to periods of low energy
prices and conversely under-investment leads to periods of
high prices.

It is assumed that in a competitive energy market, generators
will bid to produce electricity at or around their marginal cost
and therefore our pricing function has a marginal cost element
included. Also during periods of tight supply, an upturn in
prices is commonplace, therefore an uplift function which is
driven by the generation capacity margin is also included.
Details of each element are described below.

1) The marginal cost element: This is computed using the
generator supply curve. Individual supply functions are derived
from the generator marginal costs; in general these are based
on the common cubic function of power output [24]. By
assuming a uniform heat rate across the operating range, the
cubic model is simplified and only the linear term remains:

C(P ) = bP · F + V · P, (4)

whereP is the power produced (MW),F is the fuel cost,V
is the variable operation and maintenance cost andb can be
derived from the generator thermal efficiency.

The cost of carbon is included by appending an additional
term to the cost function (4) of the formCO = bP · ϑ · Fcar,
whereϑx is the carbon produced by burning the particular fuel
type andFcar is the price of carbon. The full generator cost
function is then given by

C(P ) = bP · (F + ϑ · Fcar) + V · P. (5)

The assumptions for each of the plant types outlined are
given in table I. TheCO2 equivalent output of each generator
type is given by: gas - 185 (Kg/MWh) and coal - 330
(Kg/MWh) [6]. All other technology types are modelled with
zero carbon emissions.

2) The uplift function: Two forms of uplift function were
considered; an exponential [23]:

U1(t) = ea·L(t)−C(t) (6)

and a hyperbolic [14]:

U2(t) =
s · g · L(t)

C(t) − g · L(t)
(7)

wheres, b and l are scalar factors and can be set in order to
induce the desired price behaviour andL(t) andC(t) are the
load and available capacity respectively (in GWs).

The hyperbolic function was used under reasonably healthy
system conditions when an adequate capacity margin is present
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Fig. 4. Example electricity uplift function simulations for both (6) (labelled
with a parameter) and (7) (labelled withg parameter).

(range 50-20%) and the risk is low. However it does not
increase sufficiently quickly as the system approaches scarcity.
Under these conditions, the exponential function is better.
When there is inadequate generation, the system is at the
mercy of suppliers who can bid any price they can think of.
This is referred to as thehockey stick bid; a normal supply
curve is bid for most of the generation but the last few MW
are bid at a very high price. An exponential function models
this situation quite well. Therefore the uplift function was
constructed as a max of (6) and (7):

U(t) = max {U1(t), U2(t)} (8)

3) Price setting procedure: The price is set by performing
an economic dispatch and the marginal cost bid (5) of the last
generator type to be dispatched sets the marginal cost element
of the price. By assuming a linear cost curve, the speed of the
economic dispatch optimization model is greatly increased; the
supply curve is simply a piecewise step function where each
piecewise constant segment,Sx, is defined by

Sx =
dC

dP
= b · (F + ϑ · Fcar) + V. (9)

for each generator typex.
The current demand and available capacity is then fed into

(8) and the wholesale market price is given by:

S(t) = Cmarg

x (P ) + U(t) (10)

whereCmarg
x (P ) is the marginal cost of the final generator

type to be dispatched.

III. I NVESTMENT DECISION

In order for adequate capacity to be maintained, investment
in new capacity must be forthcoming. In this model the
investment decision is taken annually and is based on the Net
Present Value (NPV) of expected future profits. These profits
are calculated in the standard way:Ω = π · P − C(P ), that
is profit (Ω) is revenue received from selling power (π · P )
minus the costs incurred producing it (C(P )).

To give significant weight to the early years of an invest-
ment, only the revenues for the first 15 years of a project are
considered, however expected costs incurred are included for

the lifetime of the plant. Renewable obligation certificates5

(ROCs) becomes active at the end of 2002 and nuclear is not
considered for investment before 20066.

A forward-looking simulation model is used to assess the
future state of the system. This model is formulated in the
same manner as the real-time simulation (1). To address
the problem of future uncertainties and imperfect investor
foresight, a Monte Carlo approach is taken when calculating
an expectation of the future.

When calculating the yearly utilisation factor of a potential
investment based on future load duration curves (LDCs) and
plant availability, a5th order polynomial fit is applied to
the LDC and the required baseload (assumed to be value
of the LDC at max duration) and peak energy is computed.
The forward-looking model assumes an annual growth rate
of the base demand profile (based on 2001 data) of 1.2%
with forecast volatilty of 100MW increasing at a rate of
10% p.a. This volatility is modelled as a random variable
∼ N(0, 102 · (1.1)y−1) wherey is the simulation year.

The expected price of each of the fuel types in the system
is an exogenous parameter and is modelled as a stochastic
process. More precisely a Geometric Brownian motion

dFt = µ(Ft)dt + σ(Ft)dWt, F0 = f > 0. (11)

is constructed for each fuel type and the parameters are defined
based on perceived drift (average behaviour) and volatility
characteristics. The initial values (Fx,0) are taken to be the
average of prices witnessed over the previous year. Forward
curves are not included in this iteration of the model.

Fig. 5. Example of NPV confidence test showing optimal V (i.e.V
opt
x )

For each Monte Carlo simulation, a different NPV is com-
puted, sayVx, and aVx > V opt

x check is carried out based
on a statistical confidence test (Fig. 5), where isV opt

x is the
minimal acceptableVx for the particular technology. There is
also a secondary logical check that the expected utilisation
factor for all thermal generation is greater than zero in the
first year of operation (uf(1) > 0), otherwise the investment
is delayed. When a number of technology types are optimal in
terms of the above criteria, those projects are ranked by their
Profitability Index (PI) and the option with the largest PI is
chosen. PI is defined as the ratio of present value (PV) of cash
flow and PV of initial investment.

We do not consider different types of investor being present
in the market at this stage. Instead we model a single investor
who is risk averse; this investor assumes all plant currently in
planning or under construction will come online with 100%
certainty and furthermore the minimum NPV requirement

5UK mechanism to stimulate investment in renewable generation whereby
each MWh generated from a renewable source is eligible for subsidy.

6This reflects the UK’s political stance on nuclear held at thetime.
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is set at twice the project fixed costs and accepted if the
confidence test onVx is significant at the 95% level.

In the case of peakers, revenue from the SO annual tender
for short-term operating reserve (STOR) is also considered.
Based on the data at [12], a 2GW annual tender with an
availability price of 2£/MW/h with a utilisation (estimated
at 3% of hours) price of 100£/MWh was included.

The model also enables peaker plant to be mothballed. The
decision to mothball plant is taken every six months and is
based onVx < V opt

x whereV opt
x is the generator fixed costs

for next six months. The mothballing of existing capacity is
a direct consequence of the market feedback mechanism; if
a genco believes that a particular plant will not be able to
cover it’s fixed costs from revenues in the energy-only market
(and assuming it has not established a contract with the SO
to provide reserve), then mothballing the plant until the price
rises sufficiently is an option.

Once capacity is mothballed (of which there is currently
1.25GW in GB [13]) then it remains connected to the system
but no longer contributes to short-term security of supply risk
calculations (as it would take a number of months to get the
plant ready to generate again from the mothballed state).

IV. SIMULATION RESULTS

The model has been implemented using in the Mat-
lab/Simulink environment.

To verify our approach and model formulation, we have
attempted to simulate market dynamics in GB since the
introduction of NETA. The model has been tuned to reflect
the situation just prior to the introduction of this market
framework. Real-time demand is modelled based on historic
half-hourly GB demand data taken from [10]. The initial plant
mix used the simulation is shown in table II, also shown
are projects already under construction at the start of the
simulation7. To get a complete GB picture, we have combined
the E&W and Scotland systems into a single energy market8.
As mentioned previously, an LTI equation is required for each
generator type in the model (1), therefore the model simplifies
the actual GB system by only considering five generation tech-
nologies. In order to achieve the same installed GB capacity
as in reality, capacity from peaker plant such as pump storage
and oil are combined with OCGT and other baseload such
as natural flow hydro is included with coal. The dual fuel
plants are divided based on their estimated thermal efficiency
characteristics and load following capabilities [4]. By taking
this approach, model complexity is kept to a minimum and
computational time is reduced. For example, using an Intel
dual-core 2.40GHz processor with 3.12GB RAM with 100
Monte Carlo simulations for each investment decision and a
daily time-step simulation period of 8 years takes many hours
to complete.

7That is projects whose time to completion was below the base build times
given in table I.

8As mentioned earlier, this actually became the case in April 2005 with the
introduction of the British Electricity Trading and Transmission Arrangements
(BETTA) in GB.

TABLE II
APPROXIMATE GB INSTALLED CAPACITY IN 2000 [7].

Plant type Capacity (GW) Under In the
construction model

Nuclear 12.49 12.5
Coal 24.84 30.5
Hydro 1.33
Mixed or Dual Fuel 6.87
CCGT 19.35 1.27 20.6
Wind 0.12a 0.8 0.1
OCGT 1.32 8.35
Oil 2.94
PS 2.79
TOTAL 72.04 2.07 72.05

atransmission connected capacity only

A. Base case results

Fig. 6 shows the model simulation of capacity margin
against reality. Plainly the negative response after 2001 of
the solid line is deeper but the frequency of oscillation in
the two lines is very similar and the margin also seems to be
better damped than in reality; however considering the model
is based on a number of assumptions and simplifications, these
results show a good agreement with reality.

Fig. 6. Generation capacity margin oscillations witnessed since market
liberalisation (solid line) and simulation results from 2000 (dashed line).

Fig. 7. Evolution of total installed capacity in GB (reality) and the simulation.
GB maximum demand also shown.

Fig. 7 shows the evolution of installed capacity (ICAP)
in the simulation versus reality in the base case (where the
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Fig. 8. Evolution of installed capacity for each generator type in GB (solid
lines) and in the simulation (dotted lines).

investment decision in annual). Both lines follow a similar
trajectory however the simulation is much smoother, this effect
is created by plotting the installed capacity at beginning of
each year. As mentioned already, prices witnessed in the
market are fed back into the investment decision, however by
having an annual investment decision time-step only averages
are considered.

B. Investments

Fig. 9. Capacity investment triggered during the simulation and actual
investments announced in GB. Data on wind from BWEA [5] and CCGT
builds estimated from SO seven year statements [11] assuming 3 year build
time.

Fig. 9 shows the volume and type of investment triggered
during the simulation. There is little investment in the early
years owing to the 2GW already being under construction
when the simulation starts and furthermore investors would
not be looking to undertake a new investment when prices are
falling and uncertainty increasing.

Wind power investment is also another key area of interest.
Fig. 9 shows that no significant investment in wind occurs
until after 2005. This is owing to not only the ROC subsidy
becoming active, but also there are significant extra costs
incurred for other projects; for CCGT the cost of gas increases
by 60% from 24 p/therm to 39 p/therm and coal projects
have the additional cost of emmissions to consider. Fig. 9

also shows BWEA data on applications received for new
wind farms received in GB [5], the main points to note here
are although wind power investment is delayed until 2005 -
perhaps owing to the high hurdle rate for this technology, there
seems to be an over investment in later years. Recalling that
the model does not consider grid connection and so on - so
conceptually this system is single bus - arguably this trendis
quite plausible. Of course much of this investment will not
make it through the build stage owing to the high probability
(0.5) of project abandonment.

Fig. 10. Cumulative capacity added to the system in the simulation (dotted-
line) and in GB (solid line).

The cumulative capacity added to the system can be see
in Fig. 10. New builds were initialised for both wind and
CCGT and both represent reality well (of course some of these
builds were already underway at the simulation start time, but
those projects that were initialised by the investment decision
process do contribute in the later years).

C. Mothballing

Although in reality CCGT capacity growth remains constant
throughout the simulation (Fig. 10), the same cannot be saidof
OCGT plant; inspection of Fig. 8 shows a downturn in OCGT
capacity in 2005 not akin with reality. This downturn can be
explained by a sharp increase in mothballed plant in 2005 and
thus the installed capacity also falls behind reality (Fig.7). The
likely cause of this behaviour stems from a combination of
an increase in installed CCGT capacity - which reduce OCGT
revenues from the energy market, together with a 60% increase
in gas prices (cf. Fig. 3). Limited information is available
pertaining to when exactly GB’s (currently) 1.25GW [13]
of plant was mothballed. The information that was available
concerned the mothballing of plant in early 2003, with much
of it returning to the system in the winter of the same year [18].
Owing to the reduced complexity of the model compared with
reality, it is difficult to capture this behaviour as individual
plant characteristics cannot be included. Therefore although
the model is replicating the dynamics of the system quite well,
some further work is required in the area of mothballing.

D. Importance of the reserve market

A sensitivity test was carried out whereby a weighting
coefficient,w, in the range 0 to 1 was applied to the additional
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revenue received by OCGT plant for providing STOR. For
example,w = 1 is the base case andw = 0 represents a
complete removal of the STOR market. Fig. 11 shows the
importance of having a separate market for reserve (which is
essentially a capacity payment for peaking plant); withoutit
the initial capacity margin slump is deeper owing to intensified
withdrawal of peaking plant from the system. Owing to greater
CCGT investment in the early years than in the base case, the
margin does recover after 2005, however CCGTs are not well
suited to providing reserve and hence the level of security of
supply risk is greatly increased. Interestingly the introduction
of w leads to a better initial downturn in capacity at the start
of the simulation (w=0.5) and although the margin remains
below reality in subsequent years, the difference is constant
implying that this payment is a key parameter in the model.
On the whole, including a steady revenue stream for peakers
removes much of the uncertainty surrounding utilisation and
price, thus keeping more peaker plant connected to the system.

Fig. 11. Plot of GB generation capacity margin (solid line) with reserve
market sensitivities (dashed lines) for various coefficientweightings (w).

E. Wholesale energy prices

Another key area of analysis was the ability of the model to
simulate wholesale energy prices. Fig. 12 shows a good overall
matching of trend. The loss of precision after April 2008 can
be explained by recalling that detailed gas price data for these
years was not available (cf. Fig. 3). The ability to push through
high fuel costs is demonstrated when the simulated prices
for April 2001 to April 2007 are viewed in isolation. The
mean difference between the actual and simulated prices was
4.0 £/MWh with standard deviation 9.6£/MWh, however the
reduced dataset with more accurate fuel price models was 0.70
£/MWh with standard deviation 4.35£/MWh.

It should be emphasised that the main aim of the model
is not to predict the electricity prices but to investigate
whether or not an energy-only market results in excessive
capacity oscillations and if so, design an appropriate damping
mechanism. Hence our main aim is to investigate the need for
a capacity mechanism whatever happens to the primary fuel
prices. Obviously as the absolute level of electricity prices
depends strongly on the primary fuel prices, predicting future
electricity prices would require a sophisticated gas and coal

price prediction model and that would be beyond the scope
of this research. Any changes in primary fuel prices have the
effect of shifting the level of prices up or down (assuming
constant spark and dark spread) and could cause a switch from
gas to coal or vice versa. This is justified by inspection of
Fig. 13 and 14 which show results from a simulation using
predicted gas and coal prices and not actual data from 2001-
2007. Plainly the price graph is different (influence of demand
profile is more noticeable) however the capacity graph is only
marginally affected.

Fig. 12. Average monthly wholesale energy prices in the simulation (dashed
line) and in GB wholesale market (solid line) [22].

Fig. 13. Average monthly wholesale energy prices in the simulation when
using fuel price predictions (dashed line). GB wholesale market data in
included for a comparison with Fig. 12 (solid line) .

V. CONCLUSION

A power generation investment model which is formulated
as a problem in optimal control has been presented. As when
analysing any control system, the first task is to model the
behaviour of the real system and simulations against the
market dynamics witnessed in GB since the introduction
of NETA in 2001 are very encouraging. Furthermore, the
investment decision aspect of the work is seemingly rational
in it’s decision making process, which bodes well for the next
stage of the work - that is to analyse the system for it’s
stability characteristics and move on to looking at expected
future investment dynamics in GB. The next iteration of the
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Fig. 14. Generation capacity margin oscillations witnessedsince market
liberalisation (solid line) and simulation results from 2000 with actual prices
(dashed line, as in Fig. 6) and predicted prices (dotted line).

model will also aim to include different types of investors
and assess how alternate perception of reality influence the
model feedback. From here one can identify problems such
as instability and look to design and implement an economic
controller with the goal of meeting system performance spec-
ifications; in this instance these specifications surround the
system level of security of supply risk.
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