
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429732309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ensuring Performance and Correctness for

Legacy Parallel Programs

Andrew J. McPherson
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Computing Systems Architecture

School of Informatics

University of Edinburgh

2015





Abstract

Modern computers are based on manycore architectures, with multiple processors on

a single silicon chip. In this environment programmers are required to make use of

parallelism to fully exploit the available cores. This can either be within a single chip,

normally using shared-memory programming or at a larger scale on a cluster of chips,

normally using message-passing.

Legacy programs written using either paradigm face issues when run on mod-

ern manycore architectures. In message-passing the problem is performance related,

with clusters based on manycores introducing necessarily tiered topologies that un-

aware programs may not fully exploit. In shared-memory it is a correctness problem,

with modern systems employing more relaxed memory consistency models, on which

legacy programs were not designed to operate. Solutions to this correctness problem

exist, but introduce a performance problem as they are necessarily conservative. This

thesis focuses on addressing these problems, largely through compile-time analysis

and transformation.

The first technique proposed is a method for statically determining the communi-

cation graph of an MPI program. This is then used to optimise process placement in

a cluster of CMPs. Using the 64-process versions of the NAS parallel benchmarks,

we see an average of 28% (7%) improvement in communication localisation over by-

rank scheduling for 8-core (12-core) CMP-based clusters, representing the maximum

possible improvement.

Secondly, we move into the shared-memory paradigm, identifying and proving

necessary conditions for a read to be an acquire. This can be used to improve solutions

in several application areas, two of which we then explore.

We apply our acquire signatures to the problem of fence placement for legacy well-

synchronised programs. We find that applying our signatures, we can reduce the num-

ber of fences placed by an average of 62%, leading to a speedup of up to 2.64x over an

existing practical technique.

Finally, we develop a dynamic synchronisation detection tool known as SyncDe-

tect. This proof of concept tool leverages our acquire signatures to more accurately

detect ad hoc synchronisations in running programs and provides the programmer with

a report of their locations in the source code. The tool aims to assist programmers with

the notoriously difficult problem of parallel debugging and in manually porting legacy

programs to more modern (relaxed) memory consistency models.

iii



Lay Summary of Thesis

To perform computations that would be infeasible on a single processor, programmers

turned to parallelism, where multiple processors cooperate to perform larger computa-

tions. There is a therefore a large body of legacy programs written for parallel comput-

ers. However, on modern systems these programs may not achieve their full potential

performance, or even operate correctly.

Technological advances have lead to the development of Chip Multiprocessors

(CMPs) where multiple processors are placed on a single silicon chip. This change has

lead to parallel computers that are constructed using different configurations to older

machines. Additionally these new CMPs have different (more relaxed) rules about how

each processor interacts with the other processors. This is largely due to performance

reasons. These changes mean that legacy parallel programs will face performance and

correctness issues when run on modern systems.

Our focus is on addressing these issues, largely through (semi-) automatic methods.

Such methods are attractive as they reduce the required effort and knowledge of the

programmer bringing the legacy program to the modern system. We implement most

of our techniques in the compiler, a tool that transforms the high level program written

by the programmer into low level code that the computer can execute.

In this thesis we propose novel techniques that analyse or transform programs to

ensure correctness and performance on modern systems. Our results comprise analyses

with improved coverage and techniques that achieve correctness with less performance

degradation than existing techniques.

iv



Acknowledgements

I am indebted to Dr. Vijay Nagarajan for his constant guidance while serving as my

supervisor throughout this process. I would also like to thank my other supervisor

Prof. Marcelo Cintra and also Dr. Susmit Sarkar, with whom I had the pleasure of

collaborating. During my time in IF-1.05 (aka New Texas), I had the great fortune to

enjoy the company of many fun and industrious people. Their friendship, advice, and

patience proved crucial to my success.

George Stefanakis, Luı́s Fabrı́cio Wanderley Góes, Karthik Thucanakkenpalayam

Sundararajan, Vasileios Porpodas, Nikolas Ioannou, Lito Kriara, and Kiran Chan-

dramohan understood the struggle and kept me on track throughout our time together.

From my research group, Cheng-Chieh Huang, Bharghava Rajaram, Arpit Joshi, and

Marco Elver offered innumerable fruitful discussions and were always willing to chal-

lenge my ideas. Their unique perspectives and insights significantly improved my

understanding and the quality of my work. I also had the pleasure of sharing New

Texas with a plethora of other great people during my studies, including Murali Emani,

Stanislav Manilov, Ursula Challita, Praveen Tammana, and Rui Li amongst many.

While pursuing the PhD I had the opportunity to enjoy industrial internships with

Intel Labs in Braunschweig, Germany and IBM Research in Haifa, Israel. These ex-

periences were formative and greatly influenced my research and future career path.

Therefore I would also like to thank Dr. Matthias Gries and Sergey Novikov with whom

I collaborated at the respective institutions.

I must also thank my parents Cath and Mike. They have always been supportive

of my efforts and I would not have reached this point without their commitment to my

education from my earliest years.

Finally, I would like to thank Dr. Björn Franke (Edinburgh) and Dr. Alastair Don-

aldson (Imperial) for serving as my viva committee and offering such constructive

feedback. I have left for pastures new, but despite all the challenges faced, I will al-

ways look fondly on the years I spent in New Texas. With hindsight I can say that it

was worth it in the end.

v



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material in this thesis has been published in the following papers:

• Fence Placement for Legacy Data-Race-Free Programs via Synchronization Read

Detection. Andrew J. McPherson, Vijay Nagarajan, Susmit Sarkar, Marcelo Cin-

tra. Principles and Practices of Parallel Programming (PPoPP’15), San Fran-

cisco, California, February 2015. (Extended Abstract)

• Static Approximation of MPI Communication Graphs for Optimised Process

Placement. Andrew J. McPherson, Vijay Nagarajan, and Marcelo Cintra. Lan-

guages and Compilers for Parallel Computing (LCPC’14), Hillsboro, Oregon,

September, 2014.

(Andrew J. McPherson)

vi



Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Static Approximation of MPI Communication Graphs . . . . 6

1.4.2 Acquire Detection and Fence Placement for Legacy DRF

Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Signature-based Dynamic Detection of Ad Hoc

Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Practical Need for Parallel Architectures . . . . . . . . . . . . 9

2.1.2 Early Multiprocessors . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Current Manycores . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Programming models . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Message-passing . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Shared-memory . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Memory Consistency Models . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Sequential Consistency . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Total Store Order . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Fully Relaxed . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Architecture Examples . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 HPC Architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Workstation Architecture . . . . . . . . . . . . . . . . . . . . 19

vii



3 Static Approximation of MPI Communication Graphs 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Context, Flow, and Process Sensitivity . . . . . . . . . . . . . 27

3.2.3 On-demand Evaluation . . . . . . . . . . . . . . . . . . . . . 28

3.2.4 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.5 Overall Algorithm . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Coverage Results . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Communication Localisation . . . . . . . . . . . . . . . . . . 40

3.4.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Scalability Results . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Acquire Detection and Fence Placement for Legacy DRF Programs 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 Our Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Fence Placement: Background . . . . . . . . . . . . . . . . . 52

4.2.2 Fence Placement for DRF Programs . . . . . . . . . . . . . . 53

4.2.3 Identifying Acquires for Legacy DRF . . . . . . . . . . . . . 53

4.2.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Correctness of Acquire Signatures . . . . . . . . . . . . . . . . . . . 56

4.3.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Intended Behaviour . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Behaviour under SC . . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 Behaviour under relaxed consistency . . . . . . . . . . . . . 58

4.3.5 Well synchronised programs . . . . . . . . . . . . . . . . . . 58

4.3.6 Ordering edges: Essential and Non-essential . . . . . . . . . 59

viii



4.3.7 Informal explanation . . . . . . . . . . . . . . . . . . . . . . 59

4.3.8 Formal proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Identifying Control Acquires . . . . . . . . . . . . . . . . . . 65

4.4.2 Identifying Both Control and Address Acquires . . . . . . . . 66

4.4.3 Generating Pruned Orderings . . . . . . . . . . . . . . . . . 66

4.4.4 Fence Minimisation . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Synchronisation Read Detection . . . . . . . . . . . . . . . . 70

4.5.2 Ordering Pruning . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.3 Fence Placement . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.4 Performance Improvements . . . . . . . . . . . . . . . . . . 73

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Signature-based Dynamic Detection of Ad Hoc Synchronisation 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Shared Access Detection . . . . . . . . . . . . . . . . . . . . 80

5.2.3 Last Writer Tracking . . . . . . . . . . . . . . . . . . . . . . 80

5.2.4 Acquire Detection . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.5 Detecting Synchronisations . . . . . . . . . . . . . . . . . . 83

5.2.6 Distance Limit . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Uncontested Synchronisation . . . . . . . . . . . . . . . . . . 87

5.3.2 Non-determinism . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Benign Data Races . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.4 Taint Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Blocking Synchronisation . . . . . . . . . . . . . . . . . . . 89

5.4.2 Non-blocking Synchronisation . . . . . . . . . . . . . . . . . 89

5.4.3 Synchronisation Kernels . . . . . . . . . . . . . . . . . . . . 90

5.4.4 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ix



6 Related Work 97
6.1 Analysis of Message-Passing Programs . . . . . . . . . . . . . . . . 97

6.1.1 Static Analysis of MPI Programs . . . . . . . . . . . . . . . . 97

6.1.2 Profiling and Dynamic Analysis of MPI Programs . . . . . . 98

6.1.3 Process Placement . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Shared-Memory Correctness . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Programmer-centric memory models . . . . . . . . . . . . . 100

6.2.2 Delay-set analysis . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.3 Fence minimisation . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.4 Synchronisation detection . . . . . . . . . . . . . . . . . . . 101

6.2.5 Hardware based memory ordering . . . . . . . . . . . . . . . 101

6.2.6 SC-preserving compilers . . . . . . . . . . . . . . . . . . . . 101

6.2.7 Dynamic Scheduling . . . . . . . . . . . . . . . . . . . . . . 102

6.2.8 Dynamic Race Detectors . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions and Future Work 105
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Static Approximation of MPI Communication Graphs . . . . 106

7.2.2 Shared-memory Correctness and Performance . . . . . . . . . 107

Bibliography 109

x



List of Figures

1.1 Examples of an historical multiprocessing computer (left) and a mod-

ern manycore based cluster (right). Note that the use of CMPs in the

manycore system (right) necessarily creates a tiered topology, even

with a flat interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Simple example of the importance of memory consistency models in

shared-memory programming. Initially, flag1 and flag2 are set to 0.

Under SC, this code will ensure that only one or neither thread will

enter the critical section. Crucially, under SC the threads cannot both

enter the critical section. If the w→ r ordering is relaxed, then this

guarantee is lost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview of different memory consistency models, by the orderings

of accesses to different memory locations that are enforced. Ticks in-

dicate that an ordering is enforced by that model. . . . . . . . . . . . 15

2.2 Peterson’s Algorithm [Pet81]. This provides mutual exclusion under

SC. Under more relaxed consistency models, fence(s) are required to

prevent incorrect behaviour and the violation of mutual exclusion. In

particular, under a model like TSO where w → r orderings are not

enforced, a fence is required in each thread at Point A. Fences at Points

B prevent accesses in the critical section from being executed outside

the critical section. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xi



3.1 A simplified communication graph for a 12 process program (A), where

triples of processes communicate heavily (see edge weights). Also

shown are three possible spatial schedules; Round Robin (B), by-rank

(C), and intelligent placement (D). Note that Round Robin scheduling

leads to all significant communication taking place between CMPs,

with intelligent placement localising communication from all but one

of the triples on a 4 core per node system. Additionally the other de-

fault schedule, by-rank similarly splits 2 of the triples across multiple

nodes. Assuming a cost model of intra-CMP communication being

cheaper than inter-CMP communication, Intelligent Placement is the

best solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The representation of indata at line 16 in Listing 3.1. In this figure

lv represents live vector. We can see that after being redefined several

times multiple nodes have been created and organised such that indata

resolves to different values depending on the rank of the process. . . . 30

3.3 Percentage of point-to-point communication localised to an 8-core per

node CMP. We can see that in all cases we match the localisation pro-

vided by profiling. In 4 out of the 6 benchmarks we see an improve-

ment over by-rank, on average an improvement of 28%. . . . . . . . . 41

3.4 Percentage of point-to-point communication localised to a 12-code per

node CMP. We can see that in all cases we match the localisation pro-

vided by profiling. In 5 out of the 6 benchmarks we see an improve-

ment over by-rank, on average an improvement of 7%. . . . . . . . . 42

3.5 Normalised speedup for 8-core per node machines for round robin,

by-rank and analysis. The best result at this scale is SP, achieving

a speedup of 1.03x (1.06x) over by-rank (round-robin). On average

there is no speedup over by-rank, and only 1.01x over round-robin. . . 43

3.6 Normalised speedup for 12-core per node machines for round robin,

by-rank and analysis. The best result at this scale is CG, achieving a

speedup of 1.08x (1.18x) over by-rank (round-robin). On average the

speedup is 1.02x over by-rank and 1.04x over round-robin. . . . . . . 44

xii



3.7 Normalised total number of evaluations at each usable number of pro-

cesses. BT and SP are normalised to 4 processes as they only support

square numbers. Note that we achieve significantly better than the

O(n) worst case. In IS and MG we can also see the impact of reduced

work per process as the number of processes is scaled. . . . . . . . . 45

4.1 Examples of well-synchronised (a), and not well-synchronised (b) pro-

grams. Note that in example (a) SC semantics are required to ensure

correct operation on a relaxed architecture. In example (b) no such

semantics are required as the code is unsynchronised by design. . . . 49

4.2 An Example of (full) fence placement on legacy DRF code for Delay-

set and pruned orderings. By identifying that a2, b2, and b5 are not ac-

quires we are able to avoid placing F1, F3 and F5 as shown in Pruned

Orderings Fence Placement. . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The programming language for proofs. This tiny language is sufficient

to deliver all the needed results. . . . . . . . . . . . . . . . . . . . . . 57

4.4 The MP example. A classic producer-consumer synchronisation where

the data access of x is guarded by a control-dependency. . . . . . . . . 60

4.5 The MP example with pointer arithmetic. . . . . . . . . . . . . . . . 60

4.6 The Dekker Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Static percentage of potentially thread-escaping reads that our analysis

marks as an acquire. The Fast form of our analysis marks on aver-

age only 18% of the shared reads as acquires. The Safe form of our

analysis marks on average only 60% of acquires. . . . . . . . . . . . 71

4.8 A breakdown of orderings by type for Pensieve (left), Safe (centre),

and Fast (right). We see how our signatures have pruned w→ r and

r→ r orderings. With the Fast approach only 34% of orderings remain.

With the Safe approach 68% of the orderings remain. . . . . . . . . . 72

4.9 Static percentage of full fences that remain on x86-TSO after using

pruned orderings. We see that by using the Fast approach only 38%

of Pensieve’s fences are required. With the Safe approach 73% of the

fences placed for Pensieve remain. . . . . . . . . . . . . . . . . . . . 73

xiii



4.10 Execution time with fences placed using Pensieve, Safe, and Fast, nor-

malised against manual fence placement. On average our Fast ap-

proach results in a 30% speedup over Pensieve. The Safe approach

results in a 14% speedup on average. . . . . . . . . . . . . . . . . . . 74

5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 A high level overview of the operations of SyncDetect. . . . . . . . . 85

5.3 Simple blocking synchronisation between two threads. . . . . . . . . 89

5.4 Simple non-blocking synchronisation between two threads. A call to

sleep in thread 1 is used to ensure that we see the synchronisation occur

in our experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 The decrease in false negative acquires seen in the synchronisation ker-

nels as the distance threshold is increased. Note that we see no false

negatives reported for Dekker or Peterson at any positive threshold value. 91

5.6 The increase in false positive acquires seen in the synchronisation ker-

nels as the distance threshold is increased. . . . . . . . . . . . . . . . 92

5.7 Source and assembly level instructions from LFQ. Note that there are

multiple instructions before the branch decision. . . . . . . . . . . . . 93

5.8 A visualisation of the effectiveness of the distance heuristic on FFT.

Shown are the number of false positive acquires reported at each po-

tential threshold. There are no false negatives found in our investiga-

tion of FFT, so no true positives are missed at any point shown. Note

the log scale on the x axis. . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



List of Tables

2.1 The component configuration of a single node on the Eddie cluster. . . 18

2.2 A potential component configuration details of an HP Z840 Workstation. 19

3.1 Descriptions of node types used in our representations of partially eval-

uated variables. Each node in the representation is exactly one of these

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Coverage results and comparison with profiling for NAS Class A bench-

marks using 64 MPI processes. As we can see, with the exception of

MG, each MPI (I)Send call site is being automatically and correctly

evaluated in all contexts for all processes. . . . . . . . . . . . . . . . 39

4.1 Sufficient orderings for correctness in a DRF program. Given a well-

synchronised program without data races, if these orderings are en-

forced then this is sufficient to ensure intended behaviour. . . . . . . . 53

4.2 Breakdown of the types of acquires found in common synchronisation

kernels. Notably, no acquires are found to only meet the address sig-

nature. That is all acquires found to meet the address signature also

meet the control signature. . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Descriptions of the lock-free programs used in our experiments. . . . 70

5.1 A representation of the main data structure, mapping memory addresses

to the thread number and instruction pointer of the last writing instruc-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 A breakdown of the results of acquire detection and release inference

from applying our SyncDetect tool to three programs with ad hoc syn-

chronisation. Note that the numbers reported are based on lines in the

source programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xv



5.3 A breakdown of the acquire detection results on FFT from the SPLASH-

2 suite. Note that numbers reported are lines in the source code. . . . 93

5.4 A breakdown of the inferred release results on FFT from the SPLASH-

2 suite. Note that numbers reported are lines in the source code. The

two false negative releases are writes never read from and therefore

could not be inferred from an acquire. . . . . . . . . . . . . . . . . . 94

xvi



Chapter 1

Introduction

1.1 Context

Modern computers are based on manycore architectures to take advantage of the large

number of transistors now available on each microchip and the limitations of unipro-

cessor performance, due to power and heat. In this environment, programmers are

required to make use of parallelism to fully exploit the available cores. This can either

be inside a single Chip Multiprocessor (CMP), or for larger scale programs requiring

more cores than are available on a single CMP, multiple CMPs can be used in clusters

of various topologies and design.

There are two major paradigms used to write parallel programs, shared-memory

and message-passing. Shared-memory programming is traditionally used at a small

scale, e.g. a single node, where executing elements (in this case threads) all have rela-

tively efficient access to a common local memory (RAM) and share an address space.

This common address space enables efficient communication as only pointers need to

be passed between threads. Shared-memory programming can however be susceptible

to error as threads can potentially interfere with one another if poorly programmed.

The other major paradigm is message-passing. This has been traditionally used at

larger scales, e.g. multiple interconnected nodes. Here the executing elements (gener-

ally processes) can be completely independent and indeed may be running on entirely

independent systems with private memory and storage. In this paradigm communi-

cation occurs through explicit calls to a message-passing library which facilitates the

transfer of the specified data. The de facto standard for this paradigm is Message

Passing Interface (MPI), which provides a wide range of communication and synchro-

nisation primitives.

1



2 Chapter 1. Introduction

With the advent of the ubiquitous manycore CMP, even a handheld computer (e.g. a

mobile phone) can have a single CMP with 8 or more cores. In this environment, both

paradigms (with the support of the underlying hardware and system software) must

now operate efficiently and correctly on manycore based systems. There are a num-

ber of opportunities created by this move to CMPs, that these paradigms can exploit.

For example, message-passing systems can use threads rather than processes when a

shared-memory environment (e.g. the communicating processes are in a single CMP)

is available. This can enable more efficient communication. However manycore CMPs

can also present performance challenges for legacy or topology agnostic programs that

were not written with modern CMPs in mind.

Tiered Topology – To better convey the organisation of a modern parallel com-

puter, we must look at the historical context. Historically, parallel computers were

multiprocessors where discrete Central Processing Units (CPUs) would be connected

together in various configurations. Now that CMPs are ubiquitous, these instead are

used to construct parallel computers. Despite the large (and growing) number of cores

per CMP there is always a desire to handle larger (and growing) computational prob-

lems, larger than a single CMP can support. Therefore, as with CPUs in multiproces-

sors before them, CMPs are used collectively, connected together in various configu-

rations. Figure 1.1 shows example configurations of both an historical multiprocessing

parallel computer and a modern manycore based parallel computer to better illustrate

the differences. It is worth noting that even with a flat interconnect (as in our exam-

ples), the use of CMPs necessarily creates a tiered topology where not all cores are

equidistant, with those on the same CMP taking advantage of internal interconnects.

This inherent complexity means that legacy parallel programs written without knowl-

edge of this topology can face performance degradation if they unnecessarily make use

of higher latency or lower bandwidth channels within the system. This also presents

an opportunity for tools that improve the spatial scheduling of existing programs by

better mapping them to these new topologies.

Memory Consistency Model – One critical factor in the design of a shared-memory

parallel architecture like a CMP is the memory consistency model. A memory consis-

tency model precisely defines how accesses to memory (reads and writes) executed in

different cores by different threads interact. Programmers generally write programs ex-

pecting Sequential Consistency (SC) [CTMT07, Hil98, LP01, SNM+12]. SC is where

the operations of each core (thread) are exposed to other cores (threads) in the order

that they exist in the source program (program order). For preserving the appearance



1.1. Context 3

Figure 1.1: Examples of an historical multiprocessing computer (left) and a modern

manycore based cluster (right). Note that the use of CMPs in the manycore system

(right) necessarily creates a tiered topology, even with a flat interconnect.

of SC we need only be concerned about memory accesses, as other operations are not

exposed.

However, while programmers have written assuming SC as it is convenient and

simple to reason about, the trend in architectures is towards increasingly relaxed mem-

ory consistency models. Some early multiprocessors (e.g. MIPS) did support SC [Yea96]

but more modern architectures do not [Int09, SSA+11]. These architectures have hard-

ware memory models where some (or all) the orderings of reads ands writes are not en-

forced by the hardware. This relaxation is largely for performance reasons as more and

more cores are added to each chip. This relaxation already exists to varying degrees in

commercial architectures, with x86 chips not enforcing write to read orderings [Int09],

and POWER being even more relaxed [SSA+11].

This mismatch between programs written assuming SC and architectures support-

ing more relaxed models requires specific intervention to prevent unintended behaviour.

To better illustrate this unintended behaviour we introduce a simple synchronisation

example as Figure 1.2. In this example both shared variables flag1 and flag2 are ini-

tialised as 0. Under SC this code ensures that either one or neither thread can enter the

critical section. On a more relaxed modern architecture however, the ordering of reads

to be after writes (to different addresses in program order) is not enforced. Therefore

the at most one thread guarantee is lost and both threads may enter the critical section,

potentially simultaneously. If the reads are executed before the writes, both threads

will enter the critical section, thus violating mutual exclusion.



4 Chapter 1. Introduction

T1 T2

flag2 = 1; w flag1 = 1; w

↓ ↓
if (flag1 == 0) r if (flag2 == 0) r

{ {
// Critical Section // Critical Section

} }

Figure 1.2: Simple example of the importance of memory consistency models in

shared-memory programming. Initially, flag1 and flag2 are set to 0. Under SC, this

code will ensure that only one or neither thread will enter the critical section. Crucially,

under SC the threads cannot both enter the critical section. If the w→ r ordering is

relaxed, then this guarantee is lost.

To correctly run a program like that in our example on a more relaxed architec-

ture, fences must be introduced to prevent the compiler and hardware from reordering

the memory accesses. This can either be done manually by an expert programmer or

automatically by the compiler [LP01]. The issue with automatic intervention is that

it is necessarily conservative and precision is difficult without a detailed understand-

ing of the programmers intention. Conversely such automatic solutions are attractive

in that they do not require an expert programmer and avoid the potential for such a

programmer to introduce additional errors.

1.2 Problems

While both the paradigms outlined (message-passing and shared-memory) enable par-

allel computing, the differences inherent in their design are significant. Accordingly,

while both have problems in communication and synchronisation for existing (legacy)

programs on modern systems, the nature of the problems and the remedies available

are paradigm specific.

In MPI, where all communication is performed through library calls, the correct-

ness issue is one for library developers. However, a performance issue exists where

programs written, unaware of the topology of the cluster of CMPs used, may have

heavily communicating processes forced to use higher latency or lower bandwidth



1.3. Approach 5

channels within the cluster. This negative impact on communication can significantly

increase the start-to-end runtime of the program.

In a shared-memory environment, the problem is ensuring correctness without

needlessly sacrificing performance. The relaxed memory models used in modern archi-

tectures (as outlined above) create a correctness issue for (legacy) code that was written

assuming SC. An ad hoc synchronisation, that is one written using a sequence of reads

and writes, that assumes SC, will not have expected behaviour on a more relaxed ar-

chitecture unless the required orderings are explicitly enforced. Explicitly enforcing

every ordering would solve this correctness issue, but have a seriously detrimental per-

formance impact and remove the benefits of hardware implementing a relaxed memory

model. Therefore there is a need to determine the minimal number of orderings that

need enforcement, to solve the correctness issue with minimal loss of performance.

1.3 Approach

To address the problems present for existing code in both paradigms on modern ar-

chitectures, we present static (compile-time) solutions. Static solutions have signifi-

cant advantages, as compared to dynamic or profile-guided approaches. In particular,

profile-guided analysis requires additional work on the part of the programmer and the

use of potentially scarce or unavailable resources. Additionally, where correctness is a

concern, the results of even multiple executions may not reveal all potential behaviours.

Dynamic (runtime) transformation approaches can also introduce additional overhead,

which must be overcome before providing an improvement over the baseline.

Static analyses do have limitations, in regard to reliance on alias analysis and the

unavailability of program input. Program input can be particularly useful in appli-

cations such as debugging. Therefore we also present a proof of concept dynamic

approach to the shared-memory correctness issue outlined above. This dynamic ap-

proach aims to identify and report ad hoc synchronisations to the programmer, to assist

in debugging and porting legacy code to a relaxed architecture.

1.4 Contributions

In this thesis we make the following contributions. Firstly, a method for statically ap-

proximating the MPI communication graph, then used to optimise process placement

in a CMP-based cluster. We then move into the shared-memory paradigm, identify-



6 Chapter 1. Introduction

ing and proving necessary conditions for a read to be an acquire. An application of

these conditions is then developed, optimising fence placement through an improved

approximation of delay-set analysis. Finally we present a tool for dynamic detection

and reporting of ad hoc synchronisation leveraging the necessary conditions earlier

identified. Before moving on to a background discussion, we first outline the novelty

of each of the techniques proposed in this thesis.

1.4.1 Static Approximation of MPI Communication Graphs

Inefficient communication can be a significant bottleneck in parallel programs. When

an MPI program is run on a cluster of CMPs not all pairs of processes can commu-

nicate with equal bandwidth and latency. Programs written without knowledge of the

topology of the cluster and the number of cores per CMP may not make efficient use

of the system. Our aim is to colocate heavily communicating processes to the same

CMP, though our work is applicable to other cost models or objective functions. Previ-

ous work has shown that MPI communication is generally statically determined by the

programmer, implicit information that is currently ignored by the compiler. This static

determination by the programmer allows compile-time analysis to effectively attempt

to determine the communication graph and take action to intelligently place processes.

In Chapter 3 we present a purely static approach to determining the point-to-point

communication graph of an MPI program. We propose a fully context and flow sensi-

tive, interprocedural analysis framework for analysing MPI programs. This framework

leverages a new data structure for maintaining partially evaluated variable representa-

tions for on-demand process sensitive evaluation. We use this framework to determine

optimised process placement on a CMP-based cluster. Our analysis is the first to stat-

ically resolve and characterise the full point-to-point communication graph. In all but

one case this only requires specifying of the number of processes.

1.4.2 Acquire Detection and Fence Placement for Legacy DRF

Programs

In shared-memory parallel programming, being able to identify ad hoc synchronisa-

tions has a number of applications. These range from debugging (notoriously hard for

parallel programs) to (as we will show) improving fence placement. In a data race free

(DRF) program, synchronisation is annotated to allow the system to ensure no data

races are introduced during compilation or execution. Recently programming mod-



1.4. Contributions 7

els have been moving towards such DRF variants (e.g. C11 [BOS+11, BA08] and

Java [MPA05]). However, there exists a large body of legacy code which has no an-

notations. These legacy programs would be DRF if only the annotations were added.

As described earlier, ensuring correct operation of a program written assuming SC on

a relaxed architecture requires explicitly enforcing orderings with fences. Where there

are no annotations, the techniques used require program analysis. The seminal work in

this area is delay-set analysis [SS88] which detects critical cycles between threads and

the writes that would conflict. Our realisation is that programmers are not seeking to

achieve SC, but data race freedom. For well-synchronised programs this only requires

providing SC behaviour for synchronisation accesses.

In Chapter 4 we examine the nature of ad hoc synchronisation in a shared-memory

environment. From this we determine the conditions a read must meet to be an acquire

in a data race free (DRF) program. We then, for the first time, prove these are the

necessary conditions. This is a significant contribution as it allows us to improve upon

existing solutions in a number of application areas.

To demonstrate an application of this work we take the conditions determined and

use them to improve delay-set analysis for well-synchronised (legacy DRF) programs.

This improvement, is through using our signatures (conditions) to prune the number

of required orderings determined by delay-set analysis (or its conservative approxima-

tion). This enables fence minimisation algorithms to place fewer fences, leading to

improved performance.

1.4.3 Signature-based Dynamic Detection of Ad Hoc

Synchronisation

Relatively precise identification of otherwise unmarked acquires and releases has two

other important applications. The first is in the assistance of debugging of parallel

programs, a notoriously difficult task. The second relates to the development of new

language memory consistency models, e.g. C11, that require synchronisation to be

explicitly marked. There exists a large body of legacy code that lacks such annotations.

Tools that assist in identifying synchronisation can significantly aid the programmer in

migrating programs to these new models.

In Chapter 5 we introduce SyncDetect, a proof of concept tool for dynamically

detecting and reporting ad hoc synchronisations. Built on Intel’s Pin framework, it is

generally applicable and requires no program modification. It leverages the signatures



8 Chapter 1. Introduction

proven in Chapter 4 to identify reads that may be acquires and offers detection of (the

more common) control acquires. We are also able to leverage the precision provided

by dynamic analysis to additionally report the associated releases.



Chapter 2

Background

2.1 Architectures

2.1.1 Practical Need for Parallel Architectures

A significant class of computational problems (the majority of practical tasks) can to a

greater or lesser extent be parallelised, that is they are not inherently sequential. Ad-

ditionally, there is always a desire to attack larger and larger computational problems

that are always infeasible for all practical purposes (in terms of running time), on a sin-

gle CPU. These two factors create a climate in which using multiple CPUs in concert,

to produce better absolute performance than a single CPU can offer, is a common use

case.

Historically, one can define two major types of parallel computer. First is the cluster

(multicomputer), constructed of multiple computers loosely connected over a network.

Absent any additional abstraction, such a machine would use message-passing to op-

erate in parallel. Second is the multiprocessor, where multiple CPUs are connected on

a single bus using the same address space and therefore sharing memory.

2.1.2 Early Multiprocessors

Early multiprocessors were constructed by interconnecting discrete processors on a

shared bus with a shared address space. Shared-memory programming is the natural

paradigm here, although both major programming paradigms, the other being message-

passing, are possible in this environment [LM92].

While many topologies and interconnect network designs are possible, ranging

from a single shared bus to a full crossbar interconnect [BYA89], the distribution of

9



10 Chapter 2. Background

memory is arguably a more significant discriminant. These machines can be cate-

gorised into Uniform Memory Access (aka Symmetric Multiprocessing (SMP)), and

Non Uniform Memory Access (NUMA) [HP11]. In an SMP machine the shared-

memory is centrally located, with all processors having essentially equal access to it.

In a NUMA machine, the shared-memory is partitioned. In most cases, each partition

is co-located with one of the processors creating a notion of local and remote memory,

which can be exploited for performance reasons.

Significant historical examples include the Stanford Dash [LLG+92], which was

the first to have a scalable cache coherency protocol. This allows shared-memory

programs to make full use of the caches, rather than face the time penalty of commu-

nicating with memory on every access to shared data.

2.1.3 Current Manycores

Current manycore systems are Chip Multiprocessors (CMPs), that is several intercon-

nected CPUs co-located on a single silicon microchip. These manycore systems are

now ubiquitous, present at all scales of general computing from the embedded (mo-

bile phones) to supercomputers. This means that now even the most basic computer,

outside of specialist embedded domains, supports parallelism. Current commercial

architectures, such as Intel’s Haswell processors [Int14] and those based on ARM’s

architectures [ARM14], support shared-memory programming. Whether it will be

possible to maintain efficient cache coherent shared-memory as more and more cores

are added to a CMP, is not yet known but seems unlikely. Therefore, future many-

cores may need to rely on Network on Chip (NoC) communication, where relatively

distant cores on a CMP use message-passing to communicate. In such a future, shared-

memory programming may be possible for regions of the CMP but not as a whole. One

such example of a possible future architecture is Intel’s Single-chip Cloud Computer

(SCC) [HDH+10]. This can be operated as a cluster on chip with each core running its

own operating system, with communication through on chip message-passing.

As discussed above, the demand for computational power has always outstripped

the supply provided by a single CPU. As with previous multiprocessors and clusters,

the way to achieve increased performance is to construct machines connecting multiple

units of the basic component. In the modern world this means connecting CMPs. At

a small scale this could be a shared-memory machine where two or more CMPs share

memory and an address space. At a larger scale this is as a cluster with many CMPs



2.2. Programming models 11

connected by a network and able to use message passing.

Before moving on to discuss programming models, it is worth noting that in recent

years significant work has been done towards using Graphics Processing Units (GPUs)

for general purpose computing. These architectures have proved effective at large scale

computing [CBM+08], but are largely beyond the scope of this thesis and are therefore

not discussed further.

2.2 Programming models

2.2.1 Message-passing

Message-passing is a parallel programming paradigm in which communication takes

place through explicit means. The de facto standard in this paradigm is Message Pass-

ing Interface (MPI) [mF]. Message-passing is prevalent as it allows for the writing of

portable code, where the program is not tied to specific features of the architecture. In-

deed a message-passing program can be supported on both shared-memory and more

distributed machines. To run, the program only requires that some implementation of

the message-passing library is provided for the target system.

To understand the organisation of MPI programs, it is first necessary to introduce

two central concepts, the communicator and the rank. The communicator represents

a set of processes that can communicate with each other. An MPI program normally

starts by using MPI COMM WORLD, a communicator that encapsulates all the pro-

cesses. Programmers can then however create communicators for subsets of those

processes. The communicator is important as it enables simple use of global commu-

nication operations, e.g. reductions and broadcasts. In MPI these operations are run

within a specific communicator, with all processes in that communicator involved.

To identify individual processes for communication, particularly on a non-global

basis, MPI assigns each process a rank for each communicator of which it is a part.

This is analogous to a thread ID that a shared-memory programmer might use to de-

termine behaviour and organise communication. However, in MPI, these assignments

are made by the library providing the MPI implementation. A process requests its

rank through a library call. For example MPI Comm rank(MPI COMM WORLD,

&my rank);, would store the processes rank for the MPI COMM WORLD communi-

cator in the my rank variable.

MPI programs are traditionally written in a Single Program Multiple Data (SPMD)



12 Chapter 2. Background

style, where each process executes the same program, with process specific behaviours

engendered through control statements. This, combined with the fact that communi-

cation takes place through explicit library calls, is significant as it determines how the

programs can be analysed. The explicit nature of the communication means that (in

contrast to shared-memory programming), identification of communication statements

is, absent function pointers, trivial. Understanding the nature of the communication

however, with regard to which processes are involved and the volume of data trans-

ferred, is not necessarily so simple.

One significant advantage MPI (or another message-passing implementation) of-

fers is the separation between the programmer intention and the implementation of

communication and synchronisation. This allows the programmer to use MPI library

calls to communicate and synchronise, without considering the underlying implemen-

tation. This also means library developers can develop the most efficient implemen-

tations of communication primitives for their target systems. The outcome of this is

portable code that (in theory) can make use of the most efficient communication algo-

rithms available on any of the target systems on which it is run.

The portability of MPI programs, while an extremely valuable feature, with a pro-

gram able to (without alteration) be compiled and run correctly on any system for

which an MPI library has been implemented, does also introduce some issues. In par-

ticular, because the organisation of the program is decoupled from the organisation of

the system, a legacy or system agnostic program may not achieve its optimal perfor-

mance. Assuming a relatively homogenous system, in terms of computing resources,

the key aspect in terms of relative performance is how the communication graph of

the program maps onto the system. We define the communication graph as one where

processes are represented as vertices, with undirected weighted edges representing the

total volume of communication (in bytes) between processes.

If the mapping of this graph onto the system is poor, as without deliberate interven-

tion it may be, the start-to-end runtime can be negatively affected. In more detail, if

heavily communicating processes are required to make use of higher latency or lower

bandwidth channels of communication within the system, the start-to-end runtime of

the program may not be the minimum possible on the system. This is caused by pro-

cesses being forced to wait for the communication to occur (blocking communication).

In fact, even in nonblocking communication waits may be introduced if the receiving

process reaches an MPI Wait call, where future statements are dependent on the receipt

of data.



2.2. Programming models 13

In this thesis we seek to address the spatial scheduling issue in message-passing

programs created by the running of legacy or system agnostic message-passing pro-

grams on modern manycore clusters. We exploit the SPMD and explicit communica-

tion nature of MPI programs to statically determine the communication graph. This

work is presented as Chapter 3.

2.2.2 Shared-memory

Shared-memory programming is a parallel programming paradigm that allows threads

to access memory using a common address space. Given the requirement of a sys-

tem providing such an address space, shared-memory programming is normally and

historically used at a smaller scale, a single multiprocessor, in modern terms within a

Single CMP. While shared-memory programming does require a system that supports

the paradigm, on such a system it does provide more flexibility than message-passing.

Specifically, the programmer is not limited to the primitives provided by the message-

passing library (e.g. MPI) and is free to construct their own synchronisations. This

flexibility can however be the source of errors, either through poor programming, or as

we will discuss further, a mismatch between the programmed for memory consistency

model and that provided by the system.

Significantly, communication in shared-memory programming can merely be the

passing of pointers between threads, rather than (as in message-passing) transmitting

the entire data required by the receiving process. There are other costs associated with

cache coherence (or manual flushing if the caches are not coherent), but these are minor

considering that the passing of a potentially unbounded volume of data is possible via

a single pointer.

This ability to work on a single set of data not copied or fragmented is advanta-

geous but requires correct synchronisation to avoid potentially silent errors. In shared-

memory programming, correctness (with regard to program behaviour versus pro-

grammer expectation) depends on a correct understanding of the memory consistency

model. Exclusively using library synchronisations does to some extent absolve the

programmer of this responsibility but also removes much of the flexibility of shared-

memory programming. In more detail, when using library synchronisations, the pro-

grammer can assume that the library developer has correctly met the requirements of

the memory model, by placing appropriate fences. When the programmer implements

their own synchronisations, they cannot rely on that assumption. As we will see in Sec-



14 Chapter 2. Background

tion 2.3, when the programmer makes use of ad hoc synchronisations, if the assumed

memory consistency does not match that of the target system, errors may occur.

Recognising that shared-memory systems no longer support SC, development in

languages that support shared-memory programming is trending towards data-race-

free (DRF) based models. In these models, such as C11 [BOS+11, BA08] and the Java

Memory Model [MPA05], the programmer is required to explicitly annotate synchro-

nisation. This means that the programmer’s expectations are explicitly defined and

therefore the compiler is able to place the fences necessary to effectively strengthen

the target system’s memory consistency model for the annotated accesses. As these

language models are relatively recent there exists a large body of legacy code that is

well-synchronised and would meet these models, but lacks the annotations [XPZ+10].

We refer to such programs as Legacy DRF and target these in much of our shared-

memory work as presented in this thesis.

In this thesis we seek to address the correctness issues introduced by running well-

synchronised shared-memory programs written with the expectation of SC on more

relaxed architectures, while minimising the performance issues introduced by current

solutions.

To identify acquires, we identify and prove two signatures. At least one of these

signatures must be fulfilled for a read to be an acquire. We then use these signatures to

improve existing fence placement techniques by reducing the set of accesses that must

be considered synchronisations. Finally we use these signatures to power a dynamic

synchronisation detection tool, where they serve to minimise false positives.

2.3 Memory Consistency Models

2.3.1 Foundations

The memory consistency model is a crucial element in the design of a shared-memory

multiprocessor. It defines how the operations of one CPU will appear to another CPU.

This is critical, as performance reasons dictate that operations are not actually executed

in the (program) order specified by the programmer. This is also true of a uniprocessor,

where the programmers instructions are reordered by the compiler and the hardware

as well. This is done to make the best use of the resources and minimise stalls, where

elements of the processor are forced to wait. In a uniprocessor, as long as control and

data dependencies are respected, this reordering is safe.



2.3. Memory Consistency Models 15

w→ w w→ r r→ w r→ r

Sequential Consistency 3 3 3 3

Total Store Order 3 8 3 3

Fully Relaxed 8 8 8 8

Figure 2.1: Overview of different memory consistency models, by the orderings of ac-

cesses to different memory locations that are enforced. Ticks indicate that an ordering

is enforced by that model.

Where these reorderings, and (logically) simultaneous accesses by multiple CPUs

to the same location, become problematic is in a shared-memory multiprocessor. Here,

without a well-defined consistency model, adhered to by the programmer and the sys-

tem, a read may return a stale value. In short, memory can be inconsistent.

Strict consistency, as provided by most uniprocessors, where any read to a loca-

tion is guaranteed to return the result of the last write and a global order exists, is all

but impossible to provide on a multiprocessor as memory accesses are not instanta-

neous. Therefore real world multiprocessors implement some weaker form of consis-

tency, either the still relatively strong Sequential Consistency or a relaxed consistency

model. We will now outline the details of common consistency models, beginning

with Sequential Consistency. We will compare consistency models based on the mem-

ory orderings that they enforce. There are other details in specific implementations

such as early access to data but considering the orderings enforced is sufficient for our

purposes. Before going into the various models, we first present an overview of the

orderings that each model enforces as Figure 2.1.

2.3.2 Sequential Consistency

Sequential Consistency (SC) as introduced by Lamport [Lam79] is the strictest form

of memory consistency that is practical on a shared-memory multiprocessor. How-

ever, modern machines do not provide it as enforcing SC carries a severe performance

penalty. Some earlier multiprocessors (e.g. the SGI Origin2000 [LL97] based on the

MIPS R10000 [Yea96]) did provide SC, but these are no longer current.

SC is defined by the fact that the operations of a CPU must appear to other CPUs

to have been executed in program order and that all executions are equivalent to all the

operations having been performed in some linear sequence. It entails that all memory

accesses (reads and writes) must appear to have been executed in program order, but



16 Chapter 2. Background

T1 T2

flag[0] = true; flag[1] = true;

turn = 1; turn = 0;

// Point A // Point A

while (flag[1] && turn == 1){} while (flag[0] && turn == 0){}
// Critical Section // Critical Section

// Point B // Point B

flag[0] = false; flag[1] = false;

Figure 2.2: Peterson’s Algorithm [Pet81]. This provides mutual exclusion under SC.

Under more relaxed consistency models, fence(s) are required to prevent incorrect be-

haviour and the violation of mutual exclusion. In particular, under a model like TSO

where w→ r orderings are not enforced, a fence is required in each thread at Point A.

Fences at Points B prevent accesses in the critical section from being executed outside

the critical section.

operations that are local to a CPU and therefore not exposed to other CPUs may still

be reordered.

While SC is no longer practical to provide, its intuitive model of operations ap-

pearing to happen in program order mean that it is still popular among program-

mers [CTMT07, Hil98, LP01, SNM+12]. There is also significant existing (legacy)

code that expects SC and will behave incorrectly if executed on a system with a

more relaxed memory consistency model. For example the classic Peterson’s algo-

rithm [Pet81] for mutual exclusion, presented as Figure 2.2, will not guarantee mutual

exclusion unless SC is provided, as it relies on the program order of independent oper-

ations in a single thread being maintained.

If we examine Peterson’s algorithm we see that the write to flag[0] in thread T1

has no dependency with the loop condition guarding the critical section. The same is

true of the write to flag[1] in thread T2. Therefore, if the memory model is relaxed

the writes to flags could occur at a later point in the execution. For example if a

thread made the read in the while loop condition before writing to its own flag (in

contravention of program order), both threads could see the while loop condition return

false simultaneously. This could lead to a breach in mutual exclusion (both threads in

the critical section simultaneously).



2.3. Memory Consistency Models 17

2.3.3 Total Store Order

Total Store Order (TSO) is a more relaxed model than SC. It relaxes the ordering of

reads after writes (w→ r). This means that reads to a location A that are ordered

(program order) after a write to location B may be reordered and executed before the

write to location B. Accesses to the same location will not be reordered due to the

dependency that would exist. In this consistency model all other orderings (w→ w,

r→ w, and r→ r) are still respected and enforced. TSO is the same memory model in

terms of orderings as that provided by Intel’s x86 processors [Int09] and is therefore

a significant model to consider, given the widespread adoption of this architecture in

desktop and HPC environments.

With regard to Peterson’s algorithm, as presented in Figure 2.2, the relaxation of

the w→ r memory ordering means that a memory fence is required at Point A. This

prevents violation of mutual exclusion that could occur if the writes and reads to the

flag variables were reordered. Fences will also be used at Point B to ensure that ac-

cesses in the critical section are not reordered outside the critical section.

On Intel machines, the fence (mfence) used to enforce w→ r memory orderings

has a significantly negative impact on performance [AKNP14, DMT13]. This means

that when SC semantics are required on an x86 machine, minimising the number of

fences placed (and executed) is crucial to ensure that as little performance is lost as

possible.

2.3.4 Fully Relaxed

A fully relaxed memory model is an even more relaxed model, where none of the four

orderings are enforced. The additional advantage of relaxing the r → w and r → r

orderings is that it allows read latency to be hidden [GGH92]. Relaxed models are

currently in commercial use, for example a relaxed model is currently implemented by

the POWER processors from IBM [SSA+11] amongst others.

The simplest fully relaxed model is known as Weak Ordering (WO) [AH90a]. Here

memory operations must be regarded as data or synchronisation. If one of the opera-

tions in a potential ordering is a synchronisation operation then it will not be reordered.

In this model efficiency demands minimising the set of memory operations considered

synchronisation, while correctness demands not mislabelling synchronisation accesses

as data accesses.

A more complex classification is introduced by the Release Consistency (RC)



18 Chapter 2. Background

Processor 2x Intel Xeon E5645 (2.40 GHz, 6 cores)

Memory 24GB RAM

Interconnect Gigabit Ethernet

Table 2.1: The component configuration of a single node on the Eddie cluster.

model [GLL+90], which additionally provides nsync for asynchronous operations and

separates synchronisation operations into acquire and release. Here, a programmer

must use special acquire (read) and release (write) operations when a stricter consis-

tency model is required.

2.4 Architecture Examples

To place the programming models and memory consistency models in a better context,

we will now present short outlines of a modern High Performance Computing (HPC)

architecture and a modern workstation architecture. We will focus on real world exam-

ples, to illustrate that the problems described and addressed in this thesis are present in

current systems and not merely intellectual curiosities.

2.4.1 HPC Architecture

Modern HPC architectures vary dramatically, with some rather exotic configurations

used for specific problem domains. For our purposes it is sufficient to consider a

more orthodox design. We consider an Ethernet linked cluster, specifically “Eddie”,

the cluster run by the Edinburgh Compute and Data Facilities at the University of

Edinburgh [ECD]. At the time of writing the cluster contains 156 nodes connected

by Gigabit Ethernet. Each node is a IBM dx360M3 iDataPlex server, with two 6 core

processors on each server. A more detailed component configuration for each node is

presented as Table 2.1.

In this cluster of CMPs environment, each node of 12 cores (2 CMPs) shares access

to 24GB of node local memory. Programs running on a single node can therefore take

advantage of shared-memory programming. However, when using multiple nodes,

for larger scale computation, message-passing is used as the node local memory is

not immediately accessible to processes on other nodes. Without considering over-

scheduling of the system, 1,872 MPI processes could cooperatively participate in a



2.4. Architecture Examples 19

Processor Intel Xeon E5-2620 v3 (2.40GHz, 6 cores)

Memory 16GB RAM

Disk 1TB 7200rpm SATA

Table 2.2: A potential component configuration details of an HP Z840 Workstation.

single computation. In this system, the work presented in this thesis with regard to

spatial scheduling of MPI programs is most relevant.

We should also note however, that with each node being a shared-memory domain

our work in the shared-memory paradigm is also applicable for programs that use

shared-memory programming on a single node. This could either be independently or

as part of a larger mixed mode parallel program. Here shared-memory programming is

used to run one MPI process per node (with message-passing communication between

nodes) with each process launching multiple threads and communicating using shared-

memory within the node.

2.4.2 Workstation Architecture

As we are most interested in performance, we will consider a high performance work-

station. Specifically, we examine the Z840 workstation from Hewlett-Packard [Hew15].

One potential configuration of this workstation is presented as Table 2.2.

We see that the workstation makes use of a single CMP, in this case with 6 cores

(CPUs). In fact other configurations of this workstation allow up to 18 cores in a

single CMP (using an Intel E5-2699 v3) [Hew15]. This workstation provides a single

shared-memory domain, with Intel’s implementation of the TSO memory consistency

model. Parallel programs written for this workstation can therefore make use of the

shared-memory programming paradigm, though message-passing through MPI is also

supported. With regard to this workstation, the work presented in this thesis that is

most relevant is that focused on improving the performance of legacy shared-memory

programs on non-SC architectures, while still maintaining correctness.





Chapter 3

Static Approximation of MPI

Communication Graphs

3.1 Introduction

In this chapter we look at the message-passing paradigm and seek to address the prob-

lems faced by legacy message-passing programs when executed on modern CMP-

based clusters. To do this we focus on the static analysis of point-to-point commu-

nication to better determine process placement within a CMP-based cluster.

Message Passing Interface (MPI) is the de facto standard for programming large

scale parallel programs. Paradigm-aware static analysis can inform optimisations in-

cluding process placement and communication/computation overlap [DPS07, DPSC09],

and debugging [XLW+09]. Fortunately, message-passing lends itself effectively to

static analysis, due to the explicit nature of the communication. This is in contrast to

shared-memory or shared address space programming models, where communication

can be difficult to detect.

Previous work in MPI static analysis produced several techniques for characterising

communication [Bro09, SPS99, SKH06]. Common to these techniques is the matching

of send and receive statements, which while potentially enabling interprocess dataflow

analyses, can limit their ability to discover all communications. More importantly, the

techniques are limited in their context sensitivity, from being limited to a single proce-

dure [Bro09, SPS99], to only offering partial context sensitivity [SKH06]. Therefore,

the existing techniques do not provide viable tools applicable to determining the full

communication graph.

In comparison to static approaches, profiling can be effective [CCH+06], but is

21



22 Chapter 3. Static Approximation of MPI Communication Graphs

more intrusive to workflow. As Zhai et al. [ZSH+09] note, existing tools such as

KOJAK [MW03], VAMPIR [NAW+96], and TAU [SSM06] involve expensive trace

collection, though lightweight alternatives e.g. mpiP [VM01] do exist. While our

static analysis is able to operate on a single workstation, profiling a large program can

require access to the target machine, a potentially scarce and expensive resource. A

profiling approach therefore compares unfavourably to a static approach that achieves

similar results, given the cost and inconvenience of repeated executions on the target

machine. The main question we address in this chapter is whether a static analysis can

provide comparable insight into the MPI communication graph, without requiring the

program to be executed.

Tools for understanding MPI communication have several applications. For exam-

ple, one can consider the running of an MPI program on a cluster of Chip Multipro-

cessors (CMP). Here, there exists a spatial scheduling problem in the assignment of

processes to processor cores. In MPI, each process is assigned a rank, used to deter-

mine its behaviour and spatial scheduling. For example, OpenMPI [GFB+04] supports

two schedules, by-rank – where processes fill every CMP slot before moving onto the

next CMP, and round-robin – where a process is allocated on each CMP in a round-

robin fashion. Without intervention, there is no guarantee that the communication is

conducive to either schedule. This may lead to pairs of heavily communicating pro-

cesses scheduled on different nodes. Communication between nodes, using Ethernet or

even Infiniband, can be subject to latencies significantly larger than in intra-node com-

munication. This inefficient scheduling can cause significant performance degradation

[ASLK06, MJ11, ZZCZ09]. Prior analysis allows intelligent placement to alleviate

this issue.

If one assumes a deterministic MPI program (at least in terms of communication),

we can define the communication graph function for a program. The communication

graph function is a function that maps the program input to an undirected graph with

weighted edges, where vertices represent MPI processes. Here edge weights are the

total number of bytes communicated between each pair of processes during the execu-

tion of the program. Our analysis does generate directed information, but this is not

required for our purposes. To better illustrate this we present Figure 3.1, which shows

an example output from such a function for an MPI program with 12 processes (A).

From this definition of the communication graph function, it is clear that for differ-

ent inputs, different graphs can be produced. However, we find static analysis can still

be effective due to two observations. Firstly, for a significant class of MPI programs,



3.1. Introduction 23

the communication pattern is found to be broadly input independent and therefore

amenable to static analysis [Bro09, CGS10, FY02, PSK+08]. Secondly, as we dis-

cover through our experiments, the edge weightings are often directly parameterised

by the input size. Therefore the edge weightings are fixed in relative terms. Both

these observations stem from the practical circumstances where the programmer stati-

cally designs the work distribution and communication that the algorithm will perform,

without precise knowledge of the input.

In cases where the first observation proves false, and the communication graph is

highly dependent on the input, static analysis can still prove valuable. From the anal-

ysis we develop, it is trivial to determine whether or not the communication graph has

input dependencies, something not possible from a dynamic analysis without repeated

experiments.

Returning to Figure 3.1, we see that triples of the processes communicate heavily

and that a default schedule such as round-robin (B) would lead to all communication

being inter-CMP in this 4 core per node system. The other default schedule by-rank (C)

has 2 triples communicating between CMPs. In contrast, the intelligent schedule (D)

is able to localise all but 1 of the heavily communicating triples. Therefore in this

example the intelligent schedule is shown to be the best solution and an improvement

to communication localisation over either default.

Figure 3.1: A simplified communication graph for a 12 process program (A), where

triples of processes communicate heavily (see edge weights). Also shown are three

possible spatial schedules; Round Robin (B), by-rank (C), and intelligent placement

(D). Note that Round Robin scheduling leads to all significant communication taking

place between CMPs, with intelligent placement localising communication from all but

one of the triples on a 4 core per node system. Additionally the other default schedule,

by-rank similarly splits 2 of the triples across multiple nodes. Assuming a cost model

of intra-CMP communication being cheaper than inter-CMP communication, Intelligent

Placement is the best solution.



24 Chapter 3. Static Approximation of MPI Communication Graphs

In this chapter, we propose a fully context and flow sensitive, interprocedural anal-

ysis framework for the static analysis of MPI programs. Our framework is essentially

a forward traversal examining variable definitions; but to avoid per-process evaluation,

we propose a data-structure to maintain context and flow sensitive partially evaluated

definitions. This allows process sensitive, on-demand evaluation at required points.

Our analysis is best-effort, prioritising discovering communications over soundness;

for instance we assume global variables are only modified by compile-time visible

functions.

We instantiate our framework to determine an approximation of the point-to-point

communication graph of an MPI program. Applying this to programs from the NAS

Parallel Benchmark Suite [BBB+91], we are able to resolve and understand 100%

of the relevant MPI call sites, i.e. we are able to determine the sending processes,

destinations, and volumes for all contexts in which the calls are found. In all but one

case, this only requires specifying the number of processes.

To demonstrate an application of our analysis, the graph is used to optimise spa-

tial scheduling. An approximation is permissible here, as spatial scheduling does not

impact correctness in MPI programs. We use the extracted graph and a partitioning al-

gorithm to determine process placement on a CMP-based cluster. Using the 64 process

versions of the benchmarks, we see an average of 28% (7%) improvement in commu-

nication localisation over by-rank scheduling for 8-core (12-core) CMP-based clusters,

representing the maximum possible improvement.

The main contributions of this technique are:

• A novel framework for the interprocedural, fully context and flow sensitive, best-

effort analysis of MPI programs.

• A new data structure for maintaining partially evaluated, context and flow sensi-

tive variable representations for on-demand process sensitive evaluation.

• An instantiation of the framework, determining optimised process placement for

MPI programs running on CMP-based clusters.

3.2 Our Approach

In this section we explain the key elements of our approach in terms of design de-

cisions, data structures, and present an overall analysis algorithm. To motivate our

approach we examine a sample MPI program, presented as Listing 3.1.



3.2. Our Approach 25

3.2.1 General Principles

The basic aim of a static approach to approximating the point-to-point communication

graph is to understand MPI Send calls (as in line 22 of our example in Listing 3.1), or

similar, e.g. MPI Isend. There are four elements to this, the source - which processes

make the call, the destination - to which processes do they send data, the send count
and the datatype - from which the volume of bytes transmitted can be calculated.

1 #include <mpi.h>

2 int my_rank , comm_size , indata , outdata;

3 MPI_Status stat;

4

5 int main (int argc , char **argv) {

6 MPI_Init (&argc , &argv);

7 MPI_Comm_rank (MPI_COMM_WORLD , &my_rank);

8 MPI_Comm_size (MPI_COMM_WORLD , &comm_size);

9 indata = comm_size + 4;

10 if (my_rank < 5)

11 communicate ();

12 if (my_rank < 6)

13 indata = indata + my_rank;

14 if (my_rank > 7)

15 communicate ();

16 MPI_Finalize ();

17 return 0;

18 }

19

20 void communicate () {

21 if (my_rank % 2 == 0 && my_rank < comm_size - 1)

22 MPI_Send (&indata , 1, MPI_INT , my_rank + 1, 0,

23 MPI_COMM_WORLD);

24 else

25 MPI_Recv (&outdata , 1, MPI_INT , MPI_ANY_SOURCE ,

26 0, MPI_COMM_WORLD , &stat);

27 indata = 0;

28 }

Listing 3.1: Example of a simple MPI program



26 Chapter 3. Static Approximation of MPI Communication Graphs

As we can see from line 10, the call to communicate, which contains the MPI Send

can be conditional. On this basis we can say that an interprocedural approach is es-

sential, as an intraprocedural approach fails to capture the fact that any process with

a rank greater than 4 would not make the first call to communicate and therefore not

reach the MPI Send in this instance.

Accepting the need for full context sensitivity, there are two basic approaches that

could be employed. One could use some form of interprocedural constant propaga-

tion [GT93], within a full interprocedural dataflow analysis [HMCCR93], to determine

the relevant parameter values (destination, send count and datatype). However, such

an approach is not without issue. Significantly, the SPMD nature of MPI programs

means the path through the program may be process sensitive (as seen in our exam-

ple). Therefore, a constant propagation approach would require complete evaluation

of the program for each intended process to determine the processes communicating

(source) at each call site. Also, even with flow sensitivity [CH95], such a rigorous

approach may not be enough to provide an approximation of the communication graph

due to its strictness.

The alternative basic approach is a static slicing, based on a partial data flow anal-

ysis [GS94], that identifies the MPI Send and then evaluates at the program point

before the call, for each of the contexts in which the call is found. While such a

technique is possible and requires potentially less computation than the previous ap-

proach [DGS95], it suffers from the same weaknesses, with regard to strictness and

full reevaluation to determine the source.

Due to these issues, we choose to follow a composite approach based largely on

a forward traversal to establish interprocedural context without backtracking. This

traversal walks through the Control Flow Graph (CFG) of a function, descending into

a child function when discovered. This is analogous to an ad-hoc forward traversal of

the Super CFG [ALSU06], but with cloned procedures. This is an expensive analysis,

but allows us to achieve context and flow sensitivity and exploit the SPMD nature of

MPI programs. To avoid full reevaluation, we do not treat process sensitive values as

constants and instead leave them partially evaluated in a data structure introduced in

Section 3.2.3. Therefore, we progress in a process insensitive manner, only perform-

ing process sensitive evaluation for function calls and MPI statements, using our data

structure to perform on-demand slicing. To allow characterisation of the maximum

number of communications, we make the approach best-effort, applying the assump-

tion that global variables are only modified by functions visible to the compiler. While



3.2. Our Approach 27

this renders our evaluations strictly unsound, this is required to characterise even the

minimal amount of communications.

3.2.2 Context, Flow, and Process Sensitivity

Focusing on the MPI Send in our example, we see that establishing definitions with

our approach requires understanding two elements; which processes enter the parent

communicate function (context sensitivity) and of those processes, which reach the call

(flow sensitivity). Due to the SPMD semantics, process sensitivity (which processes

reach a certain program point), is derived from the context and flow sensitivities. These

are handled using two related techniques.

To understand which processes call the parent function and therefore potentially

make the MPI Send, we introduce the live vector, a boolean vector to track which pro-

cesses are live in each function as we perform the serial walk. The length of the vector

is the number of processes for which we are compiling, initialised at the main function

as all true. Requiring the number of processes to be defined entails compiling for a

specific scale of problem. However we do not believe this is a significant imposition,

given the typical workflow of scientific and high performance computing. Notably,

this requirement also applies to profiling, where a new run is needed for each change

in the number of processes.

The live vector is a simplification of the context of the call for each process. This

allows for, at a subsequent assignment or call, evaluation using the live vector and

flow information, rather than repeated reevaluations within the context of the entire

program. When a call is found, we generate a live vector for that function before

descending into it. This child live vector is generated from the live vector of the parent

function of the call and is logically a subset of those processes that executed the parent

function. The evaluation of which processes are live in the child live vector uses the

flow sensitivity technique, described next.

Within a function, which processes make a call depends on the relevant conditions.

We examine the CFG in a Static Single Assignment form where the only back edges

are loop backs, all other edges make forward progress. A relevant condition is defined

as one meeting three requirements. Firstly, the basic block containing the condition

is not post-dominated by the block containing the call. Secondly, there are no blocks

between the condition block and the call block that post-dominate the condition block.

Thirdly, there exists a path of forward edges between the condition block and the call



28 Chapter 3. Static Approximation of MPI Communication Graphs

block.

The evaluation of relevant conditions is done with regard to their position in the

CFG and the paths that exist between them. This ensures that calls subject to interde-

pendent conditions, as seen in line 21 of our example, can be evaluated correctly. The

definitions for the condition and its outcome can be process sensitive, so the evaluation

of the relevant conditions must be performed separately for each process. The method

by which this and the evaluation of MPI arguments is achieved is introduced in the

next section.

3.2.3 On-demand Evaluation

To evaluate the conditions and the arguments of the MPI Send as detailed above, we

implement a tree-based representation to hold the partially evaluated variables as our

approach requires. Our representation provides the ability to perform on-demand static

slicing, sensitive to a particular process, without repeated analysis of the program. In

fact, since only a fraction of the variables influence the communication graph, most

will not need evaluation.

To allow efficient access to the representations of each variable we maintain global

and local hash tables of pointers to the most recently defined node in the representation.

This split between global variables and local variables allows us to perform what is

essentially garbage collection to remove representations that are no longer required.

For each assignment or φ-node encountered, a new node of our representation is

created, or if a definition for the variable already exists, its node is modified. These

nodes are stored in either the global or the local hash tables allowing efficient lookup

and discarding of out of scope definitions that are unreferenced by any in scope.

Each node is of one of eight types, representing all the cases that arise. These are

detailed in Table 3.1. The node type used is defined by the node types of the operands

of the defining statement and whether a definition already exists. φ-nodes are treated

as multiple definitions to a variable, resulting in a many node.

To better convey the operation of this data structure we present Figure 3.2, which

shows the state of indata by the end of the program described in Listing 3.1 (line

16). By the end of the program, indata has been defined multiple times, but not all

definitions apply to all processes. For this example, we assume the program has been

compiled for 12 processes.

The first definition (line 10), is to add comm size to the constant 4. While comm size



3.2. Our Approach 29

Type Description

Array Handles array definitions, see Section 3.2.4.

Builtin Required for built in functions (e.g. square root), contains an operator

and pointer to the node upon which it is to be applied.

Constant Represents a constant.

Expression Represents an arithmetic expression and contains an operator and point-

ers to nodes upon which to apply it.

Iterator Identical to Constant, but specially controlled for loop operations.

Many Handles repeated definitions to the same variable, allowing context,

flow, and process sensitive resolution.

SPMD Definitions generated by operations with process sensitive results, e.g.

a call to MPI Comm rank.

Unknown Unresolvable definitions.

Table 3.1: Descriptions of node types used in our representations of partially evaluated

variables. Each node in the representation is exactly one of these types.

is an SPMD value, because it is the same for all processes this expression can be re-

duced to a constant (marked (0) in Figure 3.2). Then after descending into commu-

nicate for the first time, indata is redefined in line 27. Since indata has already been

defined, as well as creating a new constant definition (marked (1)), a many (marked

(2)), copying the live vector of the new definition is also created, as the new definition

does not apply to all processes. Definition (2) is now the current definition stored in

the hashtable. Were indata to be evaluated at this point, processes with a rank of less

than 5 would take the right branch (to the newer definition) and evaluate indata as 0,

whereas all others would use the previous definition.

Upon returning to the parent function, indata is redefined again (line 13). This

time as its previous definition plus the rank of the process. Since the components

are not both of type constant, an expression is created (marked (4)). This expres-
sion will combine the evaluation of the child many (marked (2)) with the rank for

MPI COMM WORLD for the particular process (an SPMD marked (3)). Again be-

cause this variable has been defined before, a many (marked (5)) is created, linking

the old and new definitions. Note that we do not need to copy the old definition,

merely including it in the new definition with appropriate pointers is sufficient. Note

also that this new definition is subject to a condition, the details of which are also



30 Chapter 3. Static Approximation of MPI Communication Graphs

MANY indata

lv:000000001111

CNST indata

lv:000000001111

Value: 0

MANY indata

my_rank < 6 (BB:7)

lv:111111111111

EXPR indata

my_rank < 6 (BB:7)

lv:111111111111

Operator: +

MANY indata

lv:111110000000

SPMD

lv:111111111111

RANK MPI_COMM_WORLD

my_rank

CNST indata

lv:111111111111

Value: 16

CNST

lv:111110000000

Value: 0

indata

(0)

(2)

(1)

(3)

(4)

(6)(5)

(7)

Figure 3.2: The representation of indata at line 16 in Listing 3.1. In this figure lv rep-

resents live vector. We can see that after being redefined several times multiple nodes

have been created and organised such that indata resolves to different values depend-

ing on the rank of the process.

associated with both the expression and the many. The association of conditional in-

formation allows for differentiation between multiple definitions where the live vector

is the same, i.e., the difference is intraprocedural. Finally, the program descends again

into communicate, creating another definition (marked (6)) and many (marked (7)).

3.2.4 Special Cases

There are a few special cases that merit further explanation:

Arrays - Viewing elements as individual variables, there is a complication where

the index of an array lookup or definition is process sensitive. Operating on the as-

sumption that only a small fraction of elements will actually be required, efficiency

demands avoiding process sensitive evaluation unless necessary. Therefore, an array is

given a single entry in the hash table (type array), that maintains a storage order vector

of definitions to that array. A lookup with an index that is process sensitive returns an



3.2. Our Approach 31

array with a pointer to this vector, its length at the time of lookup, and the unevalu-

ated index. Evaluating an element then requires evaluating the index and progressing

back through the vector from the length at time of lookup, comparing (and potentially

evaluating) indices until a match is found. If the matched node doesn’t evaluate for

this process, then the process continues. This ensures that the latest usable definition is

found first and elides the issue of definitions applying to different elements for different

processes.

Loops - Again we take a best-effort approach, assuming that every loop executes

at least once, unless previous forward jumps prove this assumption false. At the end

of analysing a basic block, the successor edges are checked and if one is a back edge

(i.e. the block is a loop latch or unconditional loop), then the relevant conditions are

resolved without respect to a specific process. This determines whether the conditions

have been met or whether we should loop. This means that when an iterator cannot

be resolved as the same for all processes, the contents of the loop will have been seen

to execute once, with further iterations left unknown. These loops are marked so that

calls inside them are known to be subject to some unknown multiplier. To handle more

complex loops with additional exits, the exits are marked during an initial scan and

evaluated as they are reached.

The choice to only resolve loops with a process insensitive number of iterations

does potentially limit the power of the analysis. However, it is in keeping with our

decision to analyse serially. Parallelising for the analysis of basic blocks and functions

inside a loop would complicate the analysis to the point where it would be equivalent

to analysing the program for each process individually. As we see in Section 3.4, this

decision does not have a negative impact on our results with the programs tested.

Parameters - Both pass-by-value and pass-by-reference parameters are handled.

In the case of pass-by-value, a copy of the relevant definition is created to prevent

modifications affecting the existing definition. Lookups and evaluations for parame-

ter definitions are handled in the same manner as those for global or function local

definitions.

3.2.5 Overall Algorithm

Combining the elements described, we produce an algorithm for the analysis of MPI

programs, presented as Listings 3.2, 3.3, 3.4 and 3.5. To examine the application of the

algorithm to an MPI program we also present a simple MPI program as Listing 3.6.



32 Chapter 3. Static Approximation of MPI Communication Graphs

1 global_defs = hash_map <var, node >();

2

3 walker (function , live_vector , param_defs)

4 {

5 local_defs = hash_map <var, node >();

6 for basic_block in function

7 for statement in basic_block

8 if is_assignment (statement)

9 record_assignment (statement , live_vector , local_defs)

10 else if is_call (statement)

11 child_live_vector = eval_conds (statement ,

12 live_vector , local_defs)

13 if is_mpi (statement)

14 eval_mpi_call (statement , child_live_vector ,

15 local_defs)

16 else if has_visible_body (statement)

17 child_param_defs =

18 generate_param_defs (statement , local_defs)

19 walker (statement , child_live_vector ,

20 child_param_defs)

21 if is_loop_back_or_exit (basic_block)

22 // Adjust basic block if loop back or exit

23 basic_block = check_loop_conditions (basic_block ,

24 local_definitions)

25 }

Listing 3.2: Algorithm for process and context sensitive traversal

We now apply our analysis to the example program (Listing 3.6) to demonstrate

the process. For the purposes of the example, we consider the program to be compiled

for 4 processes. Initially, walker is called on the main function of the example, with a

live vector of all true (e.g. 1111).

Analysing the first statement (a call to MPI Init), we see it is a call, with no con-

ditions and therefore all processes live in this function (all of them) would execute

this function. As it is an MPI function, we call eval mpi call. As it is not one of the

functions where we take action, nothing is done. We could use analysis of MPI Init to

perform a debugging action (i.e. checking that no communication occurs before this



3.2. Our Approach 33

1 record_assignment (statement , live_vector , local_defs)

2 {

3 lhs = get_lhs (statement)

4 rhs = get_rhs_terms (statement)

5 new_def = build_node (rhs)

6 old_def = get_def (local_defs , global_defs)

7 if old_def is not null

8 new_def = build_many (new_def , old_def , live_vector)

9 if is_global(lhs)

10 global_defs[lhs] = new_def

11 else

12 local_defs[lhs] = new_def

13 }

Listing 3.3: Algorithm for storing a definition

call for each function, but in our work we only considered correct MPI programs.

Next, we reach the call to MPI Comm rank, where again there are no conditions

and all processes are live in this function, so eval mpi call records a node to the

global defs hash table, mapping the variable my rank to an SPMD node that when eval-

uated returns the processes rank. The same process is then followed for MPI Comm size,

however here a node mapping comm size to a constant node with value 4 is stored in

global defs.

For the assignment to indata, the analysis uses record assignment (Listing 3.3).

The two right hand side terms are retrieved and since both are constant (comm size is

found in the global defs and 4 is immediate), no expression node is needed as a new

constant node (value 8) can be created and stored in global defs.

We enter the loop, by storing a node for i with value 0 in the local defs. As we pass

through the condition statements no action is taken, as we only return to evaluate these

if necessary. We reach the call to communicate and after checking the pre-generated

basic block information, detect that the two conditions are relevant to the call. In

eval conds, we copy the live vector and then for each live process (all of them) we

evaluate the set of conditions, setting false the relevant bit in the child live vector if the

process sensitive evaluation of the conditions shows that this process would not reach

this function call. Therefore in this example, eval conds returns a vector of the form

1100.



34 Chapter 3. Static Approximation of MPI Communication Graphs

1 eval_mpi_call (statement , child_live_vector , local_defs)

2 {

3 if is_comm_rank (statement)

4 lhs = get_lhs (statement)

5 new_stmt = build_stmt (lhs, MPI_RANK)

6 record_assignment (new_stmt , child_live_vector)

7 else if is_comm_size (statement)

8 lhs = get_lhs (statement)

9 new_stmt = build_stmt (lhs, NUM_PROCS)

10 record_assignment (new_stmt , child_live_vector)

11 else if point_to_point_communication (statement)

12 for live_process in child_live_vector

13 src = live_process

14 dest = evaluate (get_dest_param (statement))

15 datatype = evaluate (get_datatype_param (statement))

16 num_elements = evaluate (get_num_elem_param (statement))

17 volume = sizeof(datatype) * num_elements

18 record_graph_edge (src, dest , volume)

19 }

Listing 3.4: Algorithm for evaluating MPI statements and recording additional graph

edge weights when determined

The analysis then descends into communicate, calling walker on communicate,

passing the created child live vector and the value of i (i.e. 0). Similarly to the call

to communicate, we pass by the conditions and reach the MPI Send call where again

similarly to the call to communicate, the conditions are evaluated. As only process

0 is live in the live vector and the conditions evaluate to indicate the call is made,

when eval mpi call iterates through the live processes a graph edge is only recorded

as having been emitted by process 0. No action is taken on MPI Recv as we do not

perform send and receive matching.

Having reached the end of communicate, the analysis then returns from the child

call to walker and continues analysing main. The analysis then reaches the loop latch

condition which is process insensitive and not met, so the basic block is adjusted back-

wards so that we simulate the action of the loop executions. At this point we also reach

the i++ (i.e. i = i +1) statement in the code and therefore i is iterated.



3.2. Our Approach 35

1 eval_conds (statement , live_vector , local_defs)

2 {

3 child_live_vector = live_vector

4 for live_process in child_live_vector

5 bb = get_basic_block (statement)

6 condBBs = get_cond_BBs (bb)

7 curBB = condBB[0]

8 for condBB in condBBs

9 cond_stmt = last_stmt (condBB)

10 outcome = evaluate (cond_stmt)

11 if outcome

12 curBB = follow_pos_edge (condBB)

13 else

14 curBB = follow_neg_edge (condBB)

15 if no_path_exists(curBB , bb)

16 child_live_vector[live_process] = 0

17 break

18 return (child_live_vector)

19 }

Listing 3.5: Algorithm for evaluating conditions at a function call

Therefore we reach the call to communicate again however, evaluating the same

conditions this time results in a child live vector of 0110. We again call walker, this

time passing this new child live vector, and the new value for i (i.e. 1). The execu-

tion path then continues as described above, until we reach the loop latch where i is

increased to 4 before the latch is tested. Here the loop exit edge is followed and the

final statements of the main function are evaluated. After the analysis is complete the

edge weights output by record graph edge in eval mpi call are collated and the final

graph returned.

3.2.6 Scalability

Scaling the number of processes results in a worst case O(n) growth in the number of

evaluations. This is due to the worst case being where all evaluations are process sensi-

tive, with the number of evaluations increasing in line with the number of processes. A

caveat to this is if the length of the execution path of the target program changes with



36 Chapter 3. Static Approximation of MPI Communication Graphs

1 #include <mpi.h>

2 int my_rank , comm_size , indata , outdata;

3 MPI_Status stat;

4

5 int main (int argc , char **argv)

6 {

7 MPI_Init (&argc , &argv);

8 MPI_Comm_rank (MPI_COMM_WORLD , &my_rank);

9 MPI_Comm_size (MPI_COMM_WORLD , &comm_size);

10 indata = comm_size + 4;

11

12 for(int i = 0; i < 4; i++)

13 {

14 if (my_rank == i || my_rank == i + 1)

15 communicate (i)

16 }

17

18 MPI_Finalize ();

19 return 0;

20 }

21

22 void communicate ()

23 {

24 if (my_rank == i)

25 MPI_Send (&indata , 1, MPI_INT , i + 1)

26 else

27 MPI_Recv (&outdata , 1, MPI_INT , MPI_ANY_SOURCE ,

28 0, MPI_COMM_WORLD , &stat)

29 }

Listing 3.6: SImple MPI program

the number of processes. Specifically, if the length of the execution path is broadly

determined by the number of processes then the scalability would be program specific

and unquantifiable in a general sense. However, in such a situation one would often

expect to see better scalability than the stated worst case, as a fixed problem size is

divided between more processes, reducing the length of the execution path.



3.2. Our Approach 37

To improve upon the worst case, process sensitive and insensitive evaluation results

are stored for each node of the data structure. This includes all nodes evaluated in the

process of evaluating the requested node. These results are then attached to the relevant

nodes. This means that reevaluation simply returns the stored result. While storage of

these results requires additional memory, it prevents reevaluation of potentially deep

and complex trees. Since we find only a fraction of nodes need evaluating and that

those that are evaluated are evaluated multiple times, this does not pose a great memory

capacity issue. As we will show in Section 3.4.4, we achieve far better than the worst

case for all the benchmarks.

3.2.7 Limitations

There are a few limitations to the technique, some are fundamental to the static analysis

of MPI, others particular to our design.

Pointers - The use of pointers in a statically unprovable way, with particular ref-

erence to function pointers, can lead the analysis to miss or misinterpret certain defi-

nitions. Specifically, assignments to an unresolvable pointer cannot be associated with

the correct variable, and assignments that use unresolvable pointers will be incomplete.

For function pointers the issue is more severe. If the pointer cannot be resolved, then

all definitions contained in that function (and any functions called by that function)

may be missed. This can mean either old definitions appearing current or for variables

with no prior definitions, unknowns being returned if they are evaluated. Again we

prioritise detective communications over soundness, neglecting the potential impact of

statically unresolved pointer usage.

Recursive Functions - We take no account of recursive functions, which could

lead to non-termination of the algorithm. Subject to the previous caveat, recursiveness

can be determined by an analysis of the call graph or as the algorithm runs. The simple

solution would be to not pursue placement if recursion is detected, but it is perhaps

possible to allow some limited forms.

Incomplete Communication Graphs - If the complete communication graph can-

not be resolved, it could produce performance degradation if placement or other opti-

misations are pursued. However, as we see in Section 3.4.2, certain forms of incom-

pleteness can be successfully overcome. Automatically dealing with incompleteness

in the general case remains an open problem.



38 Chapter 3. Static Approximation of MPI Communication Graphs

3.3 Graph Partitioning

Generating an optimised spatial schedule for a communication graph is considered as a

graph partitioning problem. To this end we apply the k-way variant of the Kernighan-

Lin algorithm [KL70]. It aims to assign vertices (processes) to buckets (CMPs) in such

a manner as to minimise the total weight of non-local edges. As the algorithm is hill

climbing, it is applied to 1,000 random starting positions, and the naive schedules, to

avoid only reaching a local maxima.

For this proof of concept we enforce placement by compiling in a lookup table,

mapping the default by-rank schedule to the optimised schedule. This allows processes

to behave as their assigned rank in the optimised schedule, with the destinations of

their communications unmasked as required. A more general solution, free of masking

correctness issues, would be to include the optimised schedule in a program header, to

be acted upon by a modified MPI library.

3.4 Results

The primary goal of our experiments is to evaluate the efficacy of our framework in

understanding communication in MPI programs. To this end, we evaluate our coverage

– in terms of the percentage of sends we are able to fully understand. Next we inves-

tigate the improvements in communication localisation that are available from better

process placement, guided by our analysis. This is followed by an evaluation of the

performance improvements available from improved process placement. Finally, we

explore the scalability of the technique.

We implemented our framework in GCC 4.7.0 [gcc], to leverage the new interpro-

cedural analysis framework, particularly Link Time Optimisation. Experiments were

performed using the 64 process versions of the NAS Parallel Benchmarks 3.3 [BBB+91],

compiling for the Class A problem size. The NAS programs are a collection of par-

allel applications designed for the evaluation of supercomputers. They were chosen

for our evaluation as they cover a broad range of scientific computing tasks and are

full applications rather than simply kernels. We tested all the NAS programs that use

point-to-point communication (BT, CG, IS, LU, MG and SP).



3.4. Results 39

Profiling Analysis

Benchmark No. Call Sites No. Bytes No. Call Sites Correct No. Bytes

BT 12 8906903040 12 58007040+n(44244480)

CG 10 1492271104 10 1492271104

IS 1 252 1 252

LU 12 3411115904 12 41035904+n(13480320)

MG1 12 315818496 12 104700416+n(52779520)

SP 12 13819352064 12 48190464+n(34427904)

Table 3.2: Coverage results and comparison with profiling for NAS Class A benchmarks

using 64 MPI processes. As we can see, with the exception of MG, each MPI (I)Send

call site is being automatically and correctly evaluated in all contexts for all processes.

3.4.1 Coverage Results

We quantify coverage by two metrics: the number of MPI (I)Send call sites that

we can correctly understand, and the the total number of bytes communicated. An

MPI (I)Send is said to be understood correctly if we can identify the calling process,

the destination process, and the volume of data communicated in all the circumstances

under which the call is encountered – as seen in Listing 3.1, the same call site can be

encountered in multiple contexts. In addition to this, each of the sends can repeat an ar-

bitrary number of times, necessitating that the analysis resolves relevant loop iterators.

To quantify this, we measure the total number of bytes communicated.

The coverage our analysis provides is shown in Table 3.2, with profiling results

for comparison. With the exception of MG, each MPI (I)Send call site is being auto-

matically and correctly evaluated in all contexts for all processes. This means that our

analysis is correctly identifying the calling processes, the destination and the volume

of data for every MPI (I)Send call site.

In CG and IS the number of bytes communicated also matches the profile run.

For these programs, the relevant loops could be statically resolved by our framework.

However, in BT, LU, MG and SP an unknown multiplier n exists. This occurs when

the iteration count of a loop containing send calls cannot be statically determined; in

the case of the four benchmarks affected, the iteration count is input dependent. So

while we understand each call site in all cases, we do not know how many times the

call sites inside the loop are reached. As will be seen in the following section, this has

no impact on the schedule, and hence the communication localisation.

In contrast, simple analysis of MG fails to determine the point-to-point commu-

1Requires partial input specification, see Section 3.4.1



40 Chapter 3. Static Approximation of MPI Communication Graphs

nication graph. Our analysis correctly determines the sending processes (source) and

the datatype, for each call site. However, the destination, send count, and number

of iterations are input dependent. In the case of MG, the destination and send count
depend on four input variables (nx,ny,nz,and lt). If these variables, which determine

the problem scale, are specified, then our analysis is able to correctly evaluate each

call site. With programs such as MG where the input is partially specified, one could

specify the whole input (including the number of iterations), but this is not necessary.

The case of MG highlights the issue of input dependency and how it can blunt

the blind application of static analysis. For programs where the communication pat-

tern is input dependent, analyses of the form proposed in this work will never be able

to successfully operate in an automatic manner. However, by supplying input char-

acteristics (as would be required for profiling), it is possible to determine the same

communication graph that profiling tools such as mpiP [VM01] observe. Crucially,

unlike profiling, this is without requiring execution of the program. Additionally, the

structure of our representation makes it trivial to identify input variables upon which

the communication graph is dependent. Therefore an interactive version of this analy-

sis may be the ideal solution for the general case. For the following sections, we will

assume that the four required input variables have been specified for MG, with results

as shown in Table 3.2.

3.4.2 Communication Localisation

In this section, we evaluate the communication localised by applying the partitioning

algorithm to the communication graph generated by our analysis. We compare our lo-

calisation with four other policies. Round-robin and by-rank, the two default schedul-

ing policies; random which shows the arithmetic mean of 10,000 random partitionings;

and profiling in which the same partitioning algorithm is applied to the communication

graph generated by profiling.

As described in the previous section, four of the programs (BT, LU, MG and SP)

have an unknown multiplier in the approximation extracted by analysis. To see the

impact of this, communication graphs for each of these benchmarks were generated

using values of n from 0 to 1,000. Partitioning these graphs yielded the same (bench-

mark specific) spatial schedules for all non-negative values of n. Therefore we can

say that the optimal spatial schedules for these programs are insensitive to n (the only

difference in coverage between profiling and analysis).



3.4. Results 41

Figure 3.3 shows partitioning results for the NAS benchmarks on 8-core per node

machines. Figure 3.4 shows the same for 12-core per node machines. One can see

from these results that of the naive partitioning options by-rank is the most consis-

tently effective at localising communication, better than round-robin as has previously

been used as a baseline [CCH+06]. In fact we see that random is more effective than

round-robin for these programs. Confirming our coverage results from the previous

section, and our assertion of the null impact of the unknown multipliers, we see that

our analysis localisation results match the profiling localisation results for each of the

programs tested, as the same schedules are generated.

0 %

20 %

40 %

60 %

80 %

100 %

BT CG IS LU MG SP

P
2
P

 C
o
m

m
u
n
ic

a
ti
o
n
 l
o
c
a
l 
to

 a
 C

M
P

Benchmark

Random
Round Robin

by Rank
Analysis
Profiling

Figure 3.3: Percentage of point-to-point communication localised to an 8-core per node

CMP. We can see that in all cases we match the localisation provided by profiling.

In 4 out of the 6 benchmarks we see an improvement over by-rank, on average an

improvement of 28%.

At 8-core per node we see improvement in 4 out of the 6 benchmarks. On aver-

age 2 we see 28% improvement over by-rank. We also see that round-robin performs

equivalently to by-rank in 3 cases (BT, LU and SP), in the others it performs worse.

For 12-core per node systems we see improvement in 5 out of the 6 benchmarks. On

average we see 7% improvement over by-rank. Again round-robin significantly under

performs other strategies. In fact in 4 cases it fails to localise any communication.

As Figure 3.3 and Figure 3.4 show, it is not always possible to improve upon the

best naive scheduling (by-rank). This occurs when the program is written with this

2Geometric mean is used for all normalised results.



42 Chapter 3. Static Approximation of MPI Communication Graphs

0 %

20 %

40 %

60 %

80 %

100 %

BT CG IS LU MG SP

P
2
P

 C
o
m

m
u
n
ic

a
ti
o
n
 l
o
c
a
l 
to

 a
 C

M
P

Benchmark

Random
Round Robin

by Rank
Analysis
Profiling

Figure 3.4: Percentage of point-to-point communication localised to a 12-code per node

CMP. We can see that in all cases we match the localisation provided by profiling.

In 5 out of the 6 benchmarks we see an improvement over by-rank, on average an

improvement of 7%.

schedule in mind and the underlying parallel algorithm being implemented is con-

ducive to it. However as the results show, analysis of the communication graph and

intelligent scheduling can increase the localisation of communication.

3.4.3 Performance Results

To evaluate the performance benefits available through intelligent spatial scheduling,

we perform a number of performance experiments on a gigabit Ethernet linked shared

use cluster which has both 8-core and 12-core nodes available. We use the by-rank,

round-robin and analysis schedules to compare the schedule determined by our tech-

nique with the naive alternatives. As the schedules determined by profiling match those

determined by analysis, profiling is not shown separately. To mitigate the impact of

noise, particularly due to other workloads on the shared interconnect, for each bench-

mark the 3 potential schedules are executed repeatedly in a consecutive manner for a

period of 20 hours. Though on this system [ECD], one can specify the scale of node

required, specifying individual nodes is not possible. To control for the impact of the

selection of nodes provided by the system, each experiment was repeated on 10 se-

lections of nodes, with arithmetic means from all 200 hours of experimentation, with

extreme outliers removed, taken for comparison. The reasoning behind the repetitions



3.4. Results 43

is that not all pairs of nodes possess the same internode latency, as a graph partitioning

based placement assumes. This step is to eliminate any bias produced by a particularly

unbalanced selection of nodes.

The results for experiments on 8-core per node machines are shown in Figure

3.5. Figure 3.6 shows the same for 12-core per node machines. For 8-core per node

machines there is an average speedup of 1.01x over round-robin but no average im-

provement over by-rank. Our best result at this scale is SP, achieving a speedup of

1.03x (1.06x) over by-rank (round-robin). For 12-core per node machines the average

speedup is 1.04x over round-robin and 1.02x over by-rank. Our best result at this scale

is CG, achieving a speedup of 1.08x (1.18x) over by-rank (round-robin). Achieving

significant average speedup over by-rank on 8-core per node machines is challenging,

as in 2 of the benchmarks the schedules are the same and at this scale there are no

spare slots in the system. Additionally, for MG the improvement in communication

localisation at 8-core per node is only 1%. As Figure 3.5 shows, taking advantage of

this localisation actually resulted in reduced performance.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

BT CG IS LU MG SP

S
p
e
e
d
u
p

Benchmark

Round Robin
by Rank
Analysis

Figure 3.5: Normalised speedup for 8-core per node machines for round robin, by-rank

and analysis. The best result at this scale is SP, achieving a speedup of 1.03x (1.06x)

over by-rank (round-robin). On average there is no speedup over by-rank, and only

1.01x over round-robin.

Our speedups at 12-core per node broadly correlate with those found by previous

work [CCH+06], that used profiling to inform process placement. By comparison we

can now state that we can achieve optimised placement using our static analysis. In



44 Chapter 3. Static Approximation of MPI Communication Graphs

 0.95

 1

 1.05

 1.1

 1.15

 1.2

BT CG IS LU MG SP

S
p
e
e
d
u
p

Benchmark

Round Robin
by Rank
Analysis

Figure 3.6: Normalised speedup for 12-core per node machines for round robin, by-rank

and analysis. The best result at this scale is CG, achieving a speedup of 1.08x (1.18x)

over by-rank (round-robin). On average the speedup is 1.02x over by-rank and 1.04x

over round-robin.

addition, the results presented in their work [CCH+06] used only 16 or 32 processes,

with greater speedups available at 16 processes.

The lack of a tight correlation between the improvement in communication locali-

sation and the speedup observed can be attributed to factors not explored in an analysis

of point-to-point communication. Analysis of the NAS Benchmarks has also shown

that of those tested, only IS would be communication-bound, with the others spending

only a small fraction of time communicating [WMADC99].

The slowdown seen in IS in both 8-core and 12-core results is explicable through

the use of a MPI Alltoallv call for a majority of directed communication. The analysis

could extend to this primitive, but in this case it would not improve the results, as the

communication through this primitive is input dependent. The by-rank and analysis

schedules are identical in IS, but due to the aforementioned input dependence, exploit-

ing speedup due to scheduling depends on the input data for a particular run. Therefore

a profiling approach could only produce better results if tuned for a specific input.

3.4.4 Scalability Results

To confirm our assertions in Section 3.2.6, we compiled the benchmarks for different

numbers of processes. Figure 3.7 presents the results by comparing the total number of



3.5. Conclusions 45

nodes of the data structure evaluated during each compilation. Note that a reevaluation

returning a stored result, as described in Section 3.2.6 still adds 1 to total count.

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60

N
o

rm
a

li
z
e

d
 N

u
m

b
e

r 
o

f 
E

v
a

lu
a

ti
o

n
s

Number of Processes

BT

CG

IS

LU

MG

SP

Figure 3.7: Normalised total number of evaluations at each usable number of pro-

cesses. BT and SP are normalised to 4 processes as they only support square num-

bers. Note that we achieve significantly better than the O(n) worst case. In IS and MG

we can also see the impact of reduced work per process as the number of processes

is scaled.

As Figure 3.7 shows, we achieve notably better than the O(n) worst case. This

demonstrates the effectiveness of the optimisations described in Section 3.2.6. With

particular reference to IS and MG, we can also see the impact of the reduction in work

per process, manifesting as a reduction in the number of evaluations, as the process

specific program simplifies. Overall the scalability results are positive for all programs,

with significant improvement over the worst case.

3.5 Conclusions

In this chapter we proposed a novel framework for the interprocedural, fully context

and flow sensitive, best-effort analysis of MPI programs. This framework leverages a

new data structure for maintaining partially evaluated, context sensitive variable repre-

sentations for on-demand process sensitive evaluation. We instantiated this framework

to provide a static method for determining optimal process placement for MPI pro-

grams running on CMP-based clusters.

Our analysis is able to resolve and understand 100% of the relevant MPI call sites

across the benchmarks considered. In all but one case, this only requires specifying

the number of processes. Using the 64 process versions of the benchmarks we see



46 Chapter 3. Static Approximation of MPI Communication Graphs

an average of 28% (7%) improvement in communication localisation over by-rank

scheduling for 8-core (12-core) CMP-based clusters, which represents the maximum

possible improvement.

With this pragmatic technique we are able to determine the communication be-

haviour of an MPI program at compile-time. This allows for the intelligent placement

of MPI processes to cores within a CMP-based clusters. Within the context of this

thesis, we have addressed the issue of mapping legacy message-passing programs to

CMP-based clusters and the performance issues this can introduce.



Chapter 4

Acquire Detection and Fence

Placement for Legacy DRF Programs

4.1 Introduction

We now turn to the shared-memory paradigm and examine the problem of ensuring that

legacy shared-memory programs, specifically legacy data race free programs, written

assuming Sequential Consistency (SC) operate correctly on modern architectures. In

this chapter we focus on the identification of acquires and the application of this identi-

fication to fence placement. In the following chapter we will show another application

of this identification with our SyncDetect tool.

4.1.1 The Problem

A memory consistency model is at the heart of shared memory concurrency, and

specifies the value that each read in the program can return. Sequential consistency

(SC) [Lam79] in which each read returns the last value written to that location in a

global order found by interleaving the actions of each thread, is arguably the most

intuitive of memory models [CTMT07, Hil98, LP01, SNM+12].

Unfortunately, as is now well-known, modern hardware does not provide SC to

the programmer. Instead, different hardware architectures produce different varieties

of relaxed consistency behaviour [AG95]. An agnostic compiler could also perform

optimisations that could violate SC.

The primary means by which the compiler can provide support is to insert appro-

priate fences to enforce sufficient orderings to restore SC. Each processor architecture

47



48 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

provides different fences to enforce various types of orderings. The challenge is to

insert sufficient fences to restore SC, while at the same time not inserting too many.

Fences are expensive, since they limit many of the optimisation opportunities avail-

able to hardware because of the relaxed memory consistency. Indeed, placing fences

between every pair of accesses would guarantee SC, but would be far too expensive.

The starting point of understanding the required placement of fences is the seminal

Delay-set analysis of Shasha and Snir [SS88]. They observed that to ensure SC, it

is not necessary to order all pairs of accesses. Only conflicting pairs of accesses (the

delay sets) that can potentially lead to SC violations need to be ordered – where con-

flicting accesses are two accesses to the same address, at least one of which is a write.

The memory orderings produced by Delay-set analysis are then subject to fence min-

imisation [LP01], which seeks to minimise the number of fences required to enforce

the above memory orderings.

One major issue that limits the practicality of Delay-set analysis is its reliance on

alias analysis which is notoriously imprecise for programs that make heavy use of

pointers. In addition to this, scalability is also an issue for large programs. To over-

come the scalability issue, approximations of Delay-set analysis using escape anal-

ysis have been developed, notably by the the Pensieve project [FLM03, SFW+05].

More recently, attempts have also been made to address the scalability issue with-

out resorting to escape analysis [AKNP14] – although recursion and dynamic thread

creation continues to limit applicability. For either approach however, the impreci-

sion issue remains unresolved, even with state-of-the-art alias analysis. This causes

Delay-set analysis to produce a large number of superfluous orderings for real-world

programs [AG95, LNG10, SNM+12].

4.1.2 Our Approach

We take a fresh look at fence placement. Our point of departure is that we do not seek

to enforce SC for the general case. Instead, we insert sufficient fences to ensure that

those memory accesses that are race free1 in the SC world continue to be race free in

the relaxed world. To put it succinctly, we guarantee SC behaviour only for race free

accesses.

Our approach is based on the realisation that SC (which strongly orders all ac-

1A memory access is said to be race free if in all legal SC executions, it is ordered with its
conflicting accesses in each execution, via the ordering chain introduced in section 3 (following
Gharachroloo [Gha95])



4.1. Introduction 49

cesses) is not an end in itself to programmers; rather it is enough for programmers to

have SC semantics only for synchronisation accesses (where synchronisation accesses

are those accesses that are used to guard other data accesses from racing). Therefore,

it suffices if we identify such synchronisation accesses and provide SC semantics for

only those accesses.

In other words, we consider all behaviours exhibited by the original program, as

executed under SC semantics, to be the only behaviours intended by the programmer.

In order to run the program correctly on modern (more relaxed) architectures, we need

to ensure that only those behaviours seen under SC are seen under the more relaxed

consistency model. Limiting the behaviours to those seen under SC is done by placing

fences to limit the reordering of memory operations.

In order to understand this better, let us consider the two examples shown in Fig-

ures 4.1(a) and 4.1(b). In the producer-consumer example shown in Figure 4.1(a), the

programmer synchronises using the flag variable, to ensure that the read b2 returns

the value produced by a1 (and not the old value). In this example, accesses a2 and

b1 are synchronisation accesses. Therefore, providing SC semantics to these accesses

ensures that b2 reads the correct value. The second example, shown in Figure 4.1(b), is

a piece of code similar to that found in a relaxation solver [CM69, FS00], in which the

four accesses involved are unsynchronised accesses (by design). Here, it is permissible

for the accesses in either thread to be reordered, e.g. for the read of x in P2 to return

a stale value (occurring before a1 in P1) while b1 reads the value written by a2. In

other words, they are data races, albeit benign in this case. Therefore, providing SC

semantics to such unsynchronised accesses is not required.

(a) (b)

P1 P2 P1 P2

a1 : data = 1; a1 : x =C1;

a2 : f lag = 1; b1 :while( f lag == 0); a2 : y =C2; b1 : local2 = y;

b2 : x = data; b2 : local1 = x;

Figure 4.1: Examples of well-synchronised (a), and not well-synchronised (b) programs.

Note that in example (a) SC semantics are required to ensure correct operation on a

relaxed architecture. In example (b) no such semantics are required as the code is

unsynchronised by design.



50 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

Although we do not promise SC in general, it is important to note that our approach

guarantees SC for well-synchronised programs i.e. legacy data-race-free programs2.

Figure 4.1(a) is an example of a well-synchronised program, whereas Figure 4.1(b) is

not.

Our approach is similar in spirit to DRF (data-race-free) programming models,

which form the basis of recent concurrent programming language models, such as

the C11 concurrency model [BOS+11, BA08] and the Java Memory Model specifi-

cation [MPA05]. This is a programming model which gives semantics to only DRF

programs: programs in which synchronisation operations are correctly labelled and

the program is well-synchronised using those operations. In return for this discipline

the system (hardware + compiler) guarantees SC. However, legacy programs lack the

distinction between data and synchronisation. Our approach automatically discovers

synchronisation operations for such legacy programs.

4.1.3 Our Solution

We look for ways to conservatively identify synchronisation operations. If we can

be relatively precise, we can prune unnecessary orderings found by more traditional

approaches. The existing fence minimisation techniques can then be applied on the

pruned orderings to achieve improved performance. An alternative application would

be to use this identification to provide minimal annotations to make the program DRF,

such that a compliant compiler and the hardware will prevent incorrect reordering.

We have identified two signatures, at least one of which must be fulfilled for a read

to be a synchronisation, i.e. an acquire operation:

• Control acquire: a read feeds its value to a predicate tested for in a branch in its

forward slice.

• Address acquire: a read provides the address value for a subsequent data access

that the read (acquire) protects.

We formally prove that at least one of these must hold for a read to be an acquire.

The second signature (address acquire) is less prevalent, and in particular is observed to

appear along with the first signature (control acquire) in all cases in our experiments.

We do not improve the identification of releases and, as in Pensieve, conservatively

consider every shared write (escaping write) to be a release.
2More formally, these refer to a class of programs whose behaviour is characterised by values re-

turned by only those reads that are race free under SC.



4.1. Introduction 51

To evaluate the significance of our contribution, we next design and implement

practical algorithms for identifying the acquires. Our simpler first algorithm (Fast)
detects only control acquires, and does not do interprocedural flow analysis (which

is expensive). This does mean that the algorithm theoretically does not detect all ac-

quiring reads. In particular, it does not detect cases where the acquiring read and the

branch (both of which intuitively form the acquire) are split across two functions3. We

believe this will only rarely if ever be violated. In all our experiments we never see

such a split, though contrived programs can be constructed.

Fast will also not detect address acquires. Again, in all our experiments, we have

never seen an address acquire which is not also a control acquire. However, for com-

pleteness, we also develop a conservative variant of our algorithm (Safe). This variant

detects address acquires in addition to control acquires.

We implemented our analysis in LLVM and applied it to the SPLASH-2 benchmark

suite and a set of lock-free programs. Our experimental results show that on average,

Fast reduces the number of orderings considered by 66% on average. Applying a fence

minimisation technique, this translates to an average of 62% fewer fences on x86-TSO

and up to 2.64x speedup over an existing practical technique. Safe on average reduces

orderings considered by 32%, fences placed by 27% and produces a speedup of up to

1.54x.

The contributions of this chapter are:

1. We improve fence insertion for legacy programs by discovering synchronisation

read operations.

2. We prove that for all the necessary orderings (essential orderings) involving a

synchronisation read, the read has to satisfy at least one of two specific signa-

tures: (a) that there is a conditional branch whose condition depends on the value

returned by the read in the forward slice of the read. (b) that a read provides the

address for a subsequent access that would otherwise be unknown.

3. We propose two practical algorithms: Fast that detects only control acquires and

Safe that detects both address and control acquires. Both algorithms work in the

presence of pointers.

4. We implement our algorithm within LLVM, and observe an average of 62%

fewer fences and up to 2.64x speedup over an existing practical technique with
3Note that the data accesses which the acquire protects are subject to no such assumption, and can

be located in a separate function.



52 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

the simpler algorithm, and an average of 27% fewer fences and up to 1.54x

speedup with the conservative algorithm.

4.2 Our Approach

4.2.1 Fence Placement: Background

The starting point of understanding the required placement of fences is Shasha and

Snir’s Delay-set analysis. Its key insight is that not all pairs of memory accesses

need to be ordered to ensure SC. Only pairs of memory accesses that conflict with

accesses from other threads, potentially leading to (minimal) SC violations known as

critical cycles need to be ordered. Identifying such critical cycles however, presents a

scalability issue on real-world programs (with pointers, recursion etc.), as it relies on

heavyweight interprocedural static analysis. To overcome this, practical tools such as

Pensieve [FLM03, SFW+05], conservatively approximate Delay-set analysis.

This conservative approximation is attained by such tools in a two step process.

Firstly, a conservative thread-escape analysis is performed on each access in a function,

to determine a set of potentially escaping accesses, E. Secondly, for u,v∈E, if analysis

of the control flow graph shows that v can occur after u, then an ordering, u→ v, is

recorded.

While this does generate a correct set of orderings, it produces a large number of

false positives due to the thread-escape analysis being necessarily conservative. In

practice this means that all references to memory that cannot be proven to be restricted

to the local function, must be marked as potentially escaping.

Once a set of orderings has been identified, these orderings are fed as input to

a fence minimisation algorithm. Such an algorithm will attempt to determine where

to minimally place fences to ensure that all the orderings are enforced. It may also

distinguish between types of orderings, to minimise the cost of enforcement. This can

be achieved by using different types of fences or compiler directives, depending on

the memory consistency model of the target architecture. For example, x86-TSO only

requires orderings of the type w→ r to be enforced with full memory fences, as other

orderings are enforced by the hardware. These other orderings however, still have to

be preserved during the compilation (optimisation) process.



4.2. Our Approach 53

4.2.2 Fence Placement for DRF Programs

Now let us consider fence placement for a DRF program. Recall that in a DRF pro-

gram, synchronisation is achieved using special memory operations – a write known

as a release and a read known as an acquire – such that there are no races amongst

data operations. This implies that given such a well-synchronised program without

data races, enforcing the orderings defined in Table 4.1 is sufficient to ensure correct-

ness [Adv93].

r/w→ wrel All reads and writes before the release (in program order) should be ordered before the release

racq→ r/w All reads and writes after the acquire (in program order) should be ordered after the acquire

wrel/racq→ wrel/racq All synchronisation operations should be ordered among themselves4

Table 4.1: Sufficient orderings for correctness in a DRF program. Given a well-

synchronised program without data races, if these orderings are enforced then this

is sufficient to ensure intended behaviour.

In more detail, the first rule requires that all accesses to shared data must be per-

formed before a release. Similarly, the second rule requires that all accesses to shared

data must be performed only after an acquire. These two, combined with the third rule,

ordering all acquires and releases, ensures correctness.

With precise information as to which of the reads (writes) are acquires (releases),

determining the minimal set of required orderings is trivial. Specifically, orderings that

do not conform to one of the definitions in Table 4.1, could be safely ignored. The set

of required orderings could then be fed as input to a fence minimisation algorithm.

4.2.3 Identifying Acquires for Legacy DRF

There exists however, a large body of (legacy) code which is correctly synchronised,

but the distinction between a read (r) and an acquiring read (racq), and a write (w)

and a release (wrel) is not made explicit by the programmer [XPZ+10]. We call such

programs Legacy DRF.

One way to perform fence placement for such programs is to treat it like a general

multithreaded program, i.e. use Delay-set analysis (or its conservative approximation)

followed by fence minimisation techniques. Our key insight is that we can do better

if we can conservatively identify synchronisation operations. In this chapter, we focus

on detecting acquires.
4Weaker models which relax some of these requirements, such as RCPC [AG95] in hardware and

C11 [BOS+11, BA08] at the language level also exist.



54 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

We prove that for a read to be an acquire it must match at least one of two signa-

tures. The first is that there exists a branch whose predicate is data dependent on the

read, in the forward slice of that read. The second is that the read provides the address

value for a subsequent data access that the read protects. Any read that fails to satisfy

at least one of these signatures cannot be an acquire.

Intuitively, an acquire is a read which determines if shared data can be accessed.

This necessarily involves either checking the value read and acting upon it (the first

signature), or providing the address of data, which would otherwise be inaccessible

(the second signature). A formal proof of these assertions can be found in Section 4.3.

By applying the two signatures to every read which may be thread-escaping, we de-

termine a subset that includes every potential acquire. False positives can however still

remain, either through the imprecision of the escape analysis or through conditional

accesses on shared data that are already protected by synchronisation. Despite these

limitations, as our results show, we still significantly reduce the number of acquires

marked.

Having identified a conservative subset of the shared reads as potential acquires,

we are able prune the orderings. Starting from the set of orderings given by Delay-set

analysis (or its approximation that uses escape analysis), we prune all those orderings

that do not adhere to one of the definitions in Table 4.1. Despite not identifying a subset

of the shared writes and therefore having to consider all shared writes as releases, we

are still able to prune a number of potentially expensive orderings.

Specifically, any ordering of the form r1→ r2 requires at least r1 to be an acquire

to avoid being pruned, i.e. it must be of the form racq→ r. Similarly, any ordering of

the form w1→ r2 requires r2 to be an acquire to avoid being pruned, i.e. it must be of

the form w→ racq.

To demonstrate an application of these signatures this reduced number of orderings

is provided as (an improved) input to a fence minimisation algorithm, resulting in a

much reduced number of fences.

4.2.4 An Example

To illustrate the impact of pruning orderings, we now demonstrate the application of

Delay-set analysis to a section of legacy DRF code and the fences that this would re-

quire. Then, using the acquire signatures and applying the pruning rules defined above,

we determine the reduced set of fences required to enforce the remaining orderings.



4.2. Our Approach 55

Legacy DRF Code Delay-set Fence Placement Pruned Orderings Fence Placement

P1 P2 P1 P2 P1 P2

a1 : x = b1 : ∗p1 = a1 : x = b1 : ∗p1 = a1 : x = b1 : ∗p1 =

—(F1)— —(F3)—
a2 := y b2 := ∗p2 a2 := y b2 := ∗p2 a2 := y b2 := ∗p2

—(F2)— —(F2)—
a3 : f lag = 1 b3 : while( f lag! = 1); a3 : f lag = 1 b3 : while( f lag! = 1); a3 : f lag = 1 b3 : while( f lag! = 1);

—(F4)— —(F4)—
b4 : y = b4 : y = b4 : y =

—(F5)—
b5 := x b5 := x b5 := x

Figure 4.2: An Example of (full) fence placement on legacy DRF code for Delay-set and

pruned orderings. By identifying that a2, b2, and b5 are not acquires we are able to

avoid placing F1, F3 and F5 as shown in Pruned Orderings Fence Placement.

In Figure 4.2, we present a section of legacy DRF code which contains a busy-

waiting synchronisation. For the purposes of this example we assume that alias anal-

ysis has determined that ∗p1 and ∗p2 may potentially alias with both x and y, but

not f lag. If one were to apply Delay-set analysis, the following orderings would be

determined to avoid the following critical cycles:

• a1→ a3,b3→ b5: to avoid (a1,a3,b3,b5,a1).

• a2→ a3,b3→ b4: to avoid (a2,a3,b3,b4,a2).

• a1→ a2,b4→ b5: to avoid (a1,a2,b4,b5,a1).

• a1→ a2,b1→ b2: to avoid (a1,a2,b1,b2,a1).

In the final cycle our assumption regarding ∗p1 and ∗p2 potentially aliasing with x

and y but not f lag comes into play.

Using these orderings as input to a fence minimisation algorithm, 5 (full) fences

are required to be placed to enforce the orderings. Placement of these fences is shown

as Delay-set Fence Placement in Figure 4.2.

Pruning the orderings by applying the signatures defined in Section 4.2.3, we find

that only the following remain:

• a1→ a3,b3→ b5: to avoid (a1,a3,b3,b5,a1).

• a2→ a3,b3→ b4: to avoid (a2,a3,b3,b4,a2).



56 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

Of the orderings which have been pruned: a1→ a2, b1→ b2 and b4→ b5 are not

required as none of a2, b2 or b5 are acquires. Using this reduced set of orderings as

input to the same fence minimisation algorithm, only 2 (full) fences are required to be

placed. These fences are shown as Pruned Orderings Fence Placement in Figure 4.2.

F1,F3 and F5 are no longer required and have been removed. However, F2 and

F4 are still required. Together they prevent (a1,a3,b3,b5,a1) and (a2,a3,b3,b4,a2),

with F2 enforcing a1→ a3 and a2→ a3, and F4 enforcing b3→ b4 and b3→ b5.

In summary, we expect our signatures to considerably reduce the number of order-

ings that need to be enforced. With reference to our example, there are three major

benefits.

• Acquire detection allows us to avoid enforcing many orderings that are not nec-

essary (e.g., data → data orderings such as a1 → a2 and b4 → b5), since the

program is well-synchronised.

• The inherent imprecision of Delay-set analysis (or its approximation) in the pres-

ence of pointers results in the enforcement of orderings which are not necessary.

Acquire detection allows us to prune some of these orderings (e.g., b1→ b2).

• This reduction in the number of orderings, allows a fence minimisation algo-

rithm to place fewer fences, (in this case, not placing F1,F3 and F5).

4.3 Correctness of Acquire Signatures

In this section we formally prove5 the basis of our assertions above, that is, a syn-

chronisation read (acquire) matches (at least) one of two signatures. One is that in its

forward slice, there must be a conditional dependent on the value returned by the read.

The other is that the acquire reads a value determining the address of a subsequent

access.

4.3.1 Language

For concreteness, we define our programming language to be a simple multi-threaded

“while” language with pointers. Expressions e are pure, defined as making no shared-

memory loads or stores, though local variables (marked with an r are allowed. State-

5The proof presented was developed by Susmit Sarkar, Vijay Nagarajan, and the author. It was then
formalised by Susmit Sarkar.



4.3. Correctness of Acquire Signatures 57

ments then can dereference pointers, load from and store to shared-memory locations,

either explicitly or via pointers. The language is presented in Figure 4.3.

Shared locations x; Local variables r

Expressions e ::= &x | r | e+ e | . . .
Statements s ::= x := e | r := x

| r := ∗e | ∗e := e

| skip | if (e) thenselses

| while(e)dos

| s;s | s||s | . . .

Figure 4.3: The programming language for proofs. This tiny language is sufficient to

deliver all the needed results.

This tiny language captures all the essential features needed for our results. Note

that in comparison to a full-scale language such as C, key simplifications are that all

shared-memory loads and stores from a single thread are explicitly sequenced, and that

function calls and returns are ignored. We also ignore read-modify-writes, but these

can easily be added to the proof below, by considering them to be a read followed by a

write to the same location.

4.3.2 Intended Behaviour

Given a program in the above language, we assume that there is some intended marking

of accesses (shared-memory loads and stores) into data and synchronisation accesses.

Data accesses are programmer-intended accesses; more formally, the behaviour in-

tended by the programmer is defined by the values read by these operations. The rest

of the accesses are assumed to be synchronisation accesses; these are assumed to be

written only to make sure there are no races on the data accesses. Following stan-

dard practice, we call synchronisation reads acquire reads and synchronisation writes

release writes.

4.3.3 Behaviour under SC

A sequentially consistent execution is an execution trace (a linear order of read and

write actions) which is a free interleaving of thread-wise actions, such that actions

belonging to any thread appear in the execution trace in the order they occur in that



58 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

thread, and each memory read reads the value of the last write to that location in the

trace. Note that in general, a single access in the program might lead to one or more

actions in the trace (due to loops), or none (in case of a conditional). There is a straight-

forward way of associating each action in the trace to at most one program access, and

we associate the corresponding kind (data or synchronisation) of program access to the

actions. Of course, because there might be several possible interleavings, a program

has a set of allowed sequentially consistent executions. For each such execution, we

intuitively consider the results of the execution to be the values returned by the data

reads. We formally consider the intended behaviour of the program to be the set of

data read actions of any possible sequentially consistent execution.

4.3.4 Behaviour under relaxed consistency

A program actually executes not on a sequentially consistent machine but on a machine

with relaxed consistency. We follow the approach of Adve and Hill [AH90b] (the ap-

proach of Gharachorloo [GLL+90] is very similar), and define that a program is correct

iff it has no more behaviour in a relaxed consistency setting than in the sequentially

consistent world.

We define happens-before following Gharachorloo [Gha95] by first defining con-

flict order and program order. Define conflict order con−−→ to be an order relation between

conflicting actions in an execution (the order says one happens before the other), where

two actions conflict if they are to the same address and at least one is a write. In par-

ticular, a write is conflict-ordered before a read if the read reads from that write. Also,

there is an obvious program order relation
po−→ between actions from the same thread.

Given two actions u and v, u happens-before v (written u hb−→ v) in that execution if

either u
po−→ v or u

po−→ w1
con−−→ r1

po−→ w2
con−−→ r2 . . .wn

con−−→ rn
po−→ v. We consider only

executions in which each synchronisation read reads from the last write to that location

in happens-before. The behaviour of a program is determined by the data reads (value

and location) of all such executions.

4.3.5 Well synchronised programs

We call a program (legacy) data-race-free if in all executions (where synchronisation

reads read from the last write in happens-before as above), all conflicting data actions

are ordered by hb−→. It has been proved [AH90b, GLL+90] that data-race-free programs

have no more behaviour in this sense than sequentially consistent behaviour of the



4.3. Correctness of Acquire Signatures 59

same program. However, since legacy programs do not have explicit markings of data

and synchronisation, and to avoid confusion with the standard data-race-free notion,

we equivalently call legacy data-race-free programs well-synchronised.

4.3.6 Ordering edges: Essential and Non-essential

We call a program order edge essential if ignoring that edge allows a data read to read

a value not possible under SC, and all other program order edges non-essential. Thus

enforcing all essential program order edges is sufficient to preserve SC behaviour for

the data reads.

We now prove a happens-before characterisation of essential edges. Specifically,

we prove that an edge in a well-synchronised program, i.e. (legacy) data-race-free

program, is essential iff ignoring that edge in happens-before defined as above allows

an execution with a data race.

Lemma 1 For a program which is data-race-free for a certain mapping, and U → V

a program order edge, the edge is essential iff deleting U → V from happens-before

allows an execution with a data race involving a read and write.

Proof Both directions follow easily from unfolding the definitions.

For one direction, ignoring an essential edge allows a data read to read a value not

possible under SC. That data read and the write it reads from must be in a data race,

since if they are ordered via happens-before, then the read is still possible under SC.

In the other direction, suppose deleting U → V from happens-before allows an

execution with a data race between a read and a write. Consider that read. Since the

program is well-synchronised (that is, no data races before removing that edge), the

read could not have read from that write. �

Intuitively, if we disregard an essential ordering edge, the program is no longer

data-race-free, and thus the DRF guarantees of [AH90b] and [GLL+90] do not apply.

In that case (disregarding essential orderings), there will be data reads observable that

are not possible in sequentially consistent executions. This happens-before characteri-

sation is easier to prove with, as we can now analyse the shapes of happens-before.

4.3.7 Informal explanation

We are now in a position to give the formal proof of our main result, Theorem 1. Before

that, to orient the reader, we give the main idea of the proof informally.



60 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

The key insight is that if there is an essential ordering involving an acquire, then

the acquire must have been guarding a data access; only then will relaxing the above

ordering result in a data race (and thus, by Lemma 1, non-SC behaviour for the data

reads). We illustrate 3 different ways in which an acquire can guard data. The formal

proof will essentially say that these are the only cases to consider, which allows us to

safely deduce the acquire signatures.

The first way in which an acquire can guard data is illustrated via the classic

Producer-Consumer or MP (Figure 4.4). Here the data access (of x) is guarded by

control-dependency, that is, control only flows to it if the (acquire) read of f lag reads

1.

MP

P1 P2

a1 : x :=

a3 : f lag := 1 b3 : while (r1! = 1){r1 := f lag}
b5 : r = x

Figure 4.4: The MP example. A classic producer-consumer synchronisation where the

data access of x is guarded by a control-dependency.

The second way is when the value read by the acquire is used to calculate the

address touched by the data access (that is, it only reads from the location if the acquire

read a certain value). This could happen in the example in Figure 4.5, an example

adapted from Gharachorloo. Here y (analogous to f lag above) stores the address of z

initially, and the second read on the second thread reads from x only if the prior read

reads x (otherwise it reads from z).

MP with Pointers

Initially z = 0, y = &z, x = 0

P1 P2

a1 : x =

a3 : y = &x b3 : r = y;

b5 : r1 = ∗r

Figure 4.5: The MP example with pointer arithmetic.

The third possible way is to have some form of mutual exclusion, in which the data

access is in a critical region. In this case (seen in the Dekker’s example in Figure 4.6),



4.3. Correctness of Acquire Signatures 61

the data access is prevented from performing in an execution where the synchronisation

read reads the wrong value.

Dekker

P1 P2

a1 : x := 1 b1 : y := 1

a2 : if(y == 0){ b2 : if(x == 0){
a3 : touch z} b3 : touch z}

Figure 4.6: The Dekker Example.

4.3.8 Formal proofs

Given a program, and if we knew the marking into data and synchronisation, we call

two accesses potentially racing if they are on different threads, at least one of them is

a data write, and they are either statically to the same location, or at least one of them

is is to a statically unknown location (this can happen if it is to a location derived from

a value read before on the same thread).

Lemma 2 For two potentially racing accesses U and V in the program, and any legal

execution X according to the relaxed consistency model, at least one of the following

must happen:

1. U and V correspond to two actions which form a data race in X;

2. U and V correspond to actions u and v respectively in X that are ordered u
po−→

w1
con−−→ r1

po−→ w2
con−−→ r2 . . .wn

con−−→ rn
po−→ v in X;

3. U and V correspond to actions u and v respectively in X that are to different

locations (this can only happen for statically unknown locations);

4. at least one of U and V do not correspond to any actions in X;

Proof Immediate from the definitions of data races and happens-before. �

Lemma 2 intuitively says that for static program accesses that potentially race, in

any execution either there is an actual race, or there is a proper happens-before ordering

such as in Figure 4.4 between the actions corresponding to the race, or one or the other

access is to a different locations (such as in Figure 4.5) or absent altogether (such as in

Figure 4.6).



62 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

Lemma 3 For all essential orderings which are of the following form:

1. R→ A, where R is an acquire and A is a subsequent access; or

2. W→ R, where W is a write and R is a subsequent acquire,

the value read from the acquire must feed into:

• Either a conditional which guards a subsequent access;

• Or an address computation which determines the location of a subsequent ac-

cess.

Proof Given the essential ordering edge in the premise of the theorem. It can be of two

types: R→ A, or W→ R. Consider disregarding this ordering edge in happens-before.

Since the ordering edge is essential, by Lemma 1 there is a data race in some execution.

Call that execution X , and consider the two data accesses U and V involved in the race.

Since they correspond to racing actions in an execution, they must be potentially racing

accesses. Consider the execution Y with the ordering edge present, and otherwise is

the same as X , except that because reads may read different values, some actions may

not occur or occur with different values in Y than in X . Apply Lemma 2 to the legal

execution Y . Then one of the four cases must apply.

Case 1: In Y , U and V correspond to two actions u and v which form a data

race. Since the program is assumed data-race-free, and Y is a legal execution, this case

cannot occur.

Case 2: In Y , U and V correspond to actions u and v respectively in X that are

ordered u
po−→ w1

con−−→ r1
po−→ w2

con−−→ r2 . . .wn
con−−→ rn

po−→ v in X . The ordering edge

in question must occur in this chain. Since there is no W → R ordering edge in this

chain, the essential ordering edge we are dealing with must be of the form R → A.

We now see where the action corresponding to R occurs in this chain. It cannot be the

first step (u
po−→ w1), since u is a data access. It can be rn in the last step (rn

po−→ v),

or ri in an intermediate thread (ri
po−→ wi+1). In each case, R reads the value of a

synchronisation write in this execution Y . Furthermore, v or wi+1 respectively is the

access A in question. Consider now a different execution where R does not read the

value of the same synchronisation write. Then it must be the case that either A does

not occur, or A exists but accesses a different location, since otherwise the ordering

chain does not exist and the program has a race. Thus either R feeds into a conditional

guarding A or is used to calculate the address touched by A, as required.



4.4. Implementation 63

Case 3: U and V correspond to actions u and v respectively in Y that are to different

locations.

Since U and V correspond to racing actions u′ and v′ in X , at least one of the pairs

(u,u′) and (v,v′) must be to different locations. Without loss of generality, let u and

u′ be to different locations. Then U must be to a statically unknown location, that is

in fact different in X and Y . Since X differs from Y in that the essential ordering edge

(either R→ A or W→ R) is not required, in either case the calculation of the location

for U must be derived from the value returned by R.

Case 4: At least one of U and V do not correspond to any actions in Y .

Without loss of generality, let there be no actions corresponding to U in Y . Since

U corresponds to an action u in X , U must be guarded by a conditional that is true in

X but not in Y . Since X differs from Y in that the essential ordering edge (either R→
A or W→ R) is not required, in either case this conditional must be derived from the

value returned by R.

�

Theorem 1 For all essential orderings involving an acquire R, the value read from the

acquire must feed into:

• Either a conditional which guards a subsequent access;

• Or an address computation which determines the location of a subsequent access

Proof The possible orderings involving an acquire R are:

Case 1: R1→R, where R1 should also be an acquire (since data→ acquire ordering

is not essential). Proof is from Lemma 3 (treating R1 as the acquire, first form applies).

Case 2: W → R, where W is a write. Proof is from Lemma 3, second form applies.

Case 3: R→ A, where A is any access. Proof is from Lemma 3, first form applies.

�

4.4 Implementation

In this section we present two algorithms for identifying synchronisation reads, as used

in our implementation. The first algorithm (Fast) only identifies acquires that meet our

control signature, while the second (Safe) is conservative, as it additionally identifies

acquires that only match our address signature.



64 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

While conservatism demands application of the address signature, in practice we

find that only the control signature is required. In all the experiments we perform (see

Section 4.5) we find no acquires that only meet the address signature. To reinforce this

point we performed an empirical study of 9 common synchronisation primitives, the

results of which are presented as Table 4.2. It is worth noting that these primitives rep-

resent common patterns used in synchronisation, indeed some underpin programs we

examine later in Section 4.5. As we can see, acquires that match the control signature

are far more prevalent. While there are acquires that meet the address signature, all of

those also meet the control signature.

Acquires

Addr Ctrl Pure Addr Source

Chase Lev WSQ 3 3 8 [CL05]

Cilk-5 WSQ 8 3 8 [FLR98]

CLH Lock 3 3 8 [Cra94]

Dekker 8 3 8 [Dij65]

Lamport 8 3 8 [Lam87]

MCS Lock 3 3 8 [MCS91]

Michael Scott LFQ 3 3 8 [MS96]

Peterson 8 3 8 [Pet81]

Szymanski 8 3 8 [Szy88]

Table 4.2: Breakdown of the types of acquires found in common synchronisation ker-

nels. Notably, no acquires are found to only meet the address signature. That is all

acquires found to meet the address signature also meet the control signature.

We make one simplifying assumption in our implementations, this is that the syn-

chronising reads occur in the same function as the condition to which they lead. While

an interprocedural algorithm would be a necessary step to achieving soundness, such

a guarantee would also require access to all libraries/functions used, at compile time.

We believe that this assumption is reasonable, since it is extremely rare for these two

operations, which intuitively form the synchronisation, to be split across two functions

(although it is possible to construct a contrived example). Indeed in none of the im-

plementations of the primitives examined (implementations for CLH Lock and MCS

Lock from [DGT13], all others from [AKNP14]), nor the real programs examined in

Section 4.5 is this separation found.



4.4. Implementation 65

Both of the algorithms depend on an intraprocedural static slicer that performs the

actual identification of the synchronising reads, this is presented in Section 4.4.1. All

the algorithms operate on infinite register load-store intermediate representations. We

will now examine each algorithm in detail, before finally outlining the generation of

orderings and the fence minimisation algorithm to which we input them. We assume

that the set of escaping loads and stores has previously been identified, using a thread-

escape analysis as in Pensieve.

4.4.1 Identifying Control Acquires

The algorithm for identifying escaping reads that match our control signature (Fast) is

presented as Listing 4.1. To determine reads that meet our control signature we must

determine which reads have branches (conditions) in their forward slice. To determine

this efficiently, the algorithm in fact focuses on each conditional branch and examines

the reads in its backwards slice. For each conditional branch in a function we retrieve

the instructions that define the branch operands (lines 8 and 9). Then we initiate the

backwards slicer to populate sync reads with escaping loads from the backwards slice

of the conditional branch, line 11.

1 sync_reads = /0

2 seen = /0

3

4 for cond_branch in function

5 {

6 work_list = /0

7

8 for operand in cond_branch

9 work_list.insert(get_def(operand));

10

11 slicer(&work_list , &seen , &sync_reads);

12 }

Listing 4.1: Algorithm Fast, for matching the control signature.

Backwards Slicing - The algorithm for backwards slicing and populating sync reads

is presented as Listing 4.2. This algorithm performs a conservative intraprocedural

backwards slice from the initial contents of work list. Every load found while process-



66 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

ing the work list is compared against the results of the prior escape analysis (line 14),

and if escaping, added to sync reads (line 15).

To ensure conservatism, whenever a load is found, alias analysis is used to find all

stores in the function that potentially wrote the value being read (line 17). These stores

are added to the work list to be processed later. For instructions that are not a load,

each operand is processed and the defining instructions of those operands are added to

the work list (lines 22 and 23).

To avoid becoming trapped in cycles and to improve efficiency, both of the signa-

ture matching algorithms maintain sets of previously examined instructions, seen. The

slicing algorithm is responsible for populating (line 10) and checking against (line 7)

these sets. Once the work list has been exhausted, the algorithm terminates.

4.4.2 Identifying Both Control and Address Acquires

As we previously stated, the algorithm presented in the previous sections provides

sufficient coverage for all the real programs we have seen. It is however possible

that an acquire only meets the address signature. To contend with this eventuality we

develop a conservative variant of our algorithm (Safe), presented as Listing 4.3. This

variant identifies escaping reads that meet either or both of the signatures identified.

As with the algorithm for the control signature, we use a backwards slice. In ad-

dition to conditional branches, the slicing is performed from every instruction that is

either a dereference or an address calculation. This ensures that any escaping reads

that contribute to a value used as an address are added to sync reads. In the case of

a dereference, the slicer is applied to the operand of the instruction, i.e., the address

(line 16). In the case of an address calculation (for example a GetElementPtr instruc-

tion in LLVM IR), the offset is sliced (line 13). As is to be expected, these two cases

often overlap with an address calculation in the backwards slice and therefore subordi-

nate to a dereference. Here again, the use of the seen set prevents reiteration.

4.4.3 Generating Pruned Orderings

Whichever algorithm has been used to populate sync reads, the next step is the gen-

eration of orderings. Ordering generation is done in line with Pensieve, generating an

ordering for every pair of variables in the set of potentially escaping loads and stores, if

there exists a path between them. Within a basic block the order of statements gives a

directed linear sequence of accesses. Whether there exists a path between basic blocks



4.4. Implementation 67

1 slicer (*work_list , *seen , *sync_reads)

2 {

3 while (!work_list ->empty())

4 {

5 inst = work_list ->first();

6 work_list ->remove(inst);

7 if (seen ->count(inst))

8 continue;

9

10 seen ->insert(inst);

11

12 if (inst.is_load())

13 {

14 if (escaping_reads.count(inst))

15 sync_reads ->insert(inst);

16

17 for store in potential_writers(inst)

18 work_list ->insert(store);

19 }

20 else

21 {

22 for operand in inst

23 work_list ->insert(get_def(operand));

24 }

25 }

26 }

Listing 4.2: Algorithm for backwards slicing and the registration of escaping reads con-

tained in the slice.

is determined prior to this process with an examination of the CFG, to create a lookup

table of reachability. This can then be queried during ordering generation.

The addition that we make to ordering generation is to prune w→ r and r → r

orderings which do conform to w→ racq and racq → r respectively. The pruning is

achieved by querying orderings of the form w→ r and r→ r for previously identified

synchronising reads.



68 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

1 sync_reads = /0

2 seen = /0

3

4 for inst in function

5 {

6 if (inst.is_address_calculation() or

7 inst.is_dereference() or

8 inst.is_cond_branch())

9 {

10 work_list = /0

11

12 if (inst.is_address_calculation ())

13 work_list.insert(get_def(

14 inst.offset()));

15 else

16 work_list.insert(get_def(

17 inst.operand ()));

18

19 slicer(&work_list , &seen , &sync_reads);

20 }

21 }

Listing 4.3: Algorithm Safe, that identifies escaping reads that match either signature.

4.4.4 Fence Minimisation

Given the set of orderings to enforce, a fence minimisation algorithm is used to place as

few fences as possible, while still enforcing all required orderings. To place fences, we

use the locally-optimised fence placement algorithm described in Fang et al. [FLM03].

The only alteration we make to this algorithm is to not automatically place a fence at

the beginning of each function, such a fence is only placed if the function contains

synchronising reads. The rationale for placing this fence is to enforce interprocedural

orderings, under x86-TSO if the function contains no synchronising reads then no

interprocedural w→ r orderings can terminate within the function and the absence of

a full fence does not affect correctness.

When determining full fence placement we need only consider orderings that the

hardware will not enforce. Our technique is generally applicable, but in our experi-



4.5. Results 69

ments we target x86-TSO and therefore we only consider orderings of the form w→ r,

as the other orderings are enforced automatically by hardware. However, to prevent

incorrect reordering by the compiler, we place compiler directives to enforce order-

ings of any other form. Specifically, these directives take the form of empty memory-

clobbering assembly instructions which have no presence in the final binary but prevent

reordering of memory related statements around them. The same minimisation algo-

rithm is used here, with the decision as to whether to place a full fence or a compiler

directive determined by whether the set of orderings that would be enforced contains

one of the form w→ r.

4.5 Results

We implemented our algorithms and a locally-optimised fence minimisation algorithm

based on Fang et al. [FLM03], in LLVM 3.4.1. The programs were all compiled using

the O2 optimisations.

Using a set of lock-free programs and the SPLASH-2 [WOT+95] benchmarks, we

compare both the Fast (control acquires only) and Safe (control and address acquires)

variants of our approach with an implementation of Pensieve6 using locally-optimised

fence minimisation (as described in Fang et al. [FLM03]). To establish a performance

baseline we also compare against a (minimal) manual fence placement. The lock-free

programs are introduced in Table 4.3.

It is worth noting that the programs considered are well-synchronised because they

employ user-defined synchronisations which require fences to operate correctly on re-

laxed architectures. While the lock-free programs use user-defined synchronisation

exclusively, the SPLASH-2 programs make use of both user-defined synchronisation

(in programs such as FMM [TNGT08a] and Volrend [NMT10]), and also employ li-

brary calls to locks and barriers.

Our results are organised as follows. Firstly, we examine how many reads marked

as potentially thread-escaping that our algorithms mark as an acquire, giving us a mea-

sure of the effectiveness of our technique. Secondly, we compare and breakdown by

type the number of orderings generated by the naive and both variants of our approach.

Thirdly, we present the reductions in the number of full memory fences placed for an

x86-TSO machine, where only orderings of the form w→ r require such enforcement.

6We use the term Pensieve throughout this section to refer to the version presented in Fang et
al. [FLM03] with locally-optimised fence minimisation, rather than the later Sura et al. [SFW+05].



70 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

Canneal A kernel that seeks to minimise routing cost for chip design

using cache-aware simulated annealing. This program was

drawn from the PARSEC suite [BKSL08], and was run with

the Simlarge input set.

Matrix A parallel implementation of matrix multiplication, that

takes in two matrices and outputs both potential matrix

products. To allow 64 threads to compete for work, it is

built on top of a lock-free queue as described by Michael &

Scott [MS96]. It was applied to two square matrices both of

dimension 1,024.

SpanningTree An implementation of a parallel spanning tree algorithm,

built on top of a work-stealing queue as described by Bader

et al. [BC05]. It was applied to a graph of 10,000 nodes,

each of degree 1,000.

Table 4.3: Descriptions of the lock-free programs used in our experiments.

Finally, we present the performance improvements achieved over Pensieve. For the

performance experiments, we used an Intel i3-2100 running Linux 3.2.0-67 (Ubuntu

12.04.4). All the programs were run using 64 threads.

4.5.1 Synchronisation Read Detection

Applying the algorithms as defined in Section 4.4, we are able to mark a subset of the

potentially escaping reads as acquires. The percentage of these reads that are marked

acquires by each variant of our approach is presented as Figure 4.7.

As we can see, the Fast form of our analysis is able to greatly reduce the number

of reads which must be treated as acquires. In the best case (Water-NSquared), only

7% are potentially acquires. On average7 we see 18% of the reads marked as acquires.

Even in the worst case our analysis is able to significantly reduce the number of reads

that must be treated as acquires. We see this in Raytrace, with 33% marked as acquires.

Using the Safe variant, we are still able to reduce the number of reads marked as

acquires in all cases. On average we see 60% marked as acquires. In the best case

(Water-Spatial), only 39% need be marked.

7Geometric mean is used for all normalised results.



4.5. Results 71

  0%

  20%

  40%

  60%

  80%

  100%

B
ar

n
es

C
h

o
le

sk
y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n

co
n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u
ar

ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n

in
g

T
re

e

g
eo

m
ea

n

P
er

ce
n
ta

g
e 

o
f 

sh
ar

ed
 r

ea
d

s 
m

ar
k

ed
 a

cq
u

ir
e

Safe
Fast

Figure 4.7: Static percentage of potentially thread-escaping reads that our analysis

marks as an acquire. The Fast form of our analysis marks on average only 18% of the

shared reads as acquires. The Safe form of our analysis marks on average only 60%

of acquires.

4.5.2 Ordering Pruning

Using the acquire detection results, we are able to prune the orderings considered by

the fence placement algorithm. As detailed in Section 4.2.3, identifying acquires al-

lows pruning of those w→ r and r→ r orderings that do not conform to the rules in

Table 4.1. Figure 4.8 presents the results of this pruning.

As Figure 4.8 shows, our Fast approach significantly reduces the number of w→ r

and r→ r orderings required to be considered for fence placement. This result holds

across all the programs tested, with an average of 34% orderings remaining after ap-

plication of our approach. As r→ r orderings form the majority of orderings in all

but two of the programs, reducing them has the largest overall impact on the number

of orderings considered. w→ r orderings are also pruned significantly, though as they

often form only a small percentage of overall orderings, the impact of this on the total

number of orderings is smaller. As we do not identify a specific subset of writes as re-

leases, r→ w and w→ w orderings are unaffected by the pruning process. With w→ r

and r→ r orderings forming the majority of the orderings, the correlation between the



72 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

  0%

  20%

  40%

  60%

  80%

  100%

B
ar

n
es

C
h

o
le

sk
y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n

co
n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u
ar

ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n

in
g

T
re

e

P
er

ce
n
ta

g
e 

o
f 

P
en

si
ev

e 
o
rd

er
in

g
s

  

r−>r 
r−>w 
w−>r 
w−>w  

Figure 4.8: A breakdown of orderings by type for Pensieve (left), Safe (centre), and

Fast (right). We see how our signatures have pruned w→ r and r→ r orderings. With

the Fast approach only 34% of orderings remain. With the Safe approach 68% of the

orderings remain.

percentage of reads marked as acquires (Figure 4.7) and the percentage of orderings

that survive pruning is not unexpected.

Examining the results for the Safe variant, we see that reductions in w→ r and

r→ r are still achieved. Specifically, only 68% orderings remain on average.

4.5.3 Fence Placement

In placing fences, we consider the requirements of an x86-TSO hardware model. Here,

only w→ r orderings require enforcement by a full memory fence. Other orderings

are automatically enforced by the hardware and are enforced during the compilation

process with empty memory-clobbering assembly instructions, that have no presence

in the final program. As Figure 4.8 showed, our pruning was very effective at reducing

the number of w→ r orderings.

Applying the fence minimisation algorithm to the pruned sets of orderings for both

variants of our approach and Pensieve for comparison, we determine the percentage

of full fences that are still placed when using pruned orderings. This is shown as

Figure 4.9.



4.5. Results 73

  0%

  20%

  40%

  60%

  80%

  100%

B
ar

n
es

C
h

o
le

sk
y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n

co
n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u
ar

ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n

in
g

T
re

e

g
eo

m
ea

nP
er

ce
n

ta
g

e 
o
f 

fe
n

ce
s 

re
m

ai
n

in
g

Safe
Fast

Figure 4.9: Static percentage of full fences that remain on x86-TSO after using pruned

orderings. We see that by using the Fast approach only 38% of Pensieve’s fences are

required. With the Safe approach 73% of the fences placed for Pensieve remain.

As Figure 4.9 shows, the impact of pruning orderings is significant in reducing the

static number of fences that the algorithm places to enforce w→ r orderings. As we can

see, the percentage of fences placed is quite strongly correlated with the percentage of

reads marked as acquires (Figure 4.7). For the Fast algorithm we see on average 38% of

Pensieve’s fences required, with Canneal receiving a 89% reduction in the number of

fences placed. For the Safe variant, on average 73% of Pensieve’s fences are required.

4.5.4 Performance Improvements

To examine the impact of reducing the number of fences, we executed the programs

having applied Pensieve, both variants of our approach and normalise these against

manual fence placement. Each of the experiments was repeated 100 times and averages

taken. The results of these experiments are presented as Figure 4.10.

As we can see, in all cases the fences placed using either variant of our approach

results in a performance improvement over using a naive set of orderings. On average

we see that Pensieve is 1.94x slower than the baseline, with our Fast approach being

only 1.44x slower than the baseline. The Safe approach is 1.69x slower than the base-

line. In other words, on average, our Fast approach results in a 30% speedup over



74 Chapter 4. Acquire Detection and Fence Placement for Legacy DRF Programs

  0x

  0.5x

  1x

  1.5x

  2x

  2.5x

  3x

  3.5x

  4x

  4.5x

B
ar

n
es

C
h

o
le

sk
y

F
F

T

F
M

M

L
U

−
co

n

L
U

−
n

o
n

co
n

O
ce

an
−

co
n

O
ce

an
−

n
o

n
co

n

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
o

lr
en

d

W
at

er
−

N
S

q
u
ar

ed

W
at

er
−

S
p

at
ia

l

C
an

n
ea

l

M
at

ri
x

S
p

an
n

in
g

T
re

e

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n

 T
im

e

5
.8

4
x

Manual
Pensieve
Safe
Fast

Figure 4.10: Execution time with fences placed using Pensieve, Safe, and Fast, nor-

malised against manual fence placement. On average our Fast approach results in a

30% speedup over Pensieve. The Safe approach results in a 14% speedup on average.

Pensieve, while the Safe approach results in executions 14% faster than Pensieve. In

the best case (Matrix) we achieve a 90% improvement over Pensieve using Fast. For

the Safe approach, the best case (Water-Spatial) is 42% faster than Pensieve.

Examining the performance results for individual programs, we see that the speedups

achieved over the naive are not strongly correlated with the changes in static fence

placement. This is due to specific fences being reached more than others during the

execution of the program. This is best highlighted by the case of Raytrace, where

significant reductions in the number of static fences is not reflected in performance im-

provement. When looking at the results for Safe, we see that in some cases it is closer

to Pensieve (e.g., Ocean-noncon) and in others (e.g., Water-Spatial) closer to Fast. To

which result Safe is most similar depends on the propensity of the use of escaping

reads as addresses in heavily executed code regions. In one program (Radix), we see

Safe outperforming the simple algorithm. This is likely due to the short running time

and small number of fences placed, making the result susceptible to noise. This also

accounts for why Fast achieves a 1% improvement over the baseline for SpanningTree.

In terms of performance comparison with the manual baseline, we see that there is

still some improvement possible. There are two reasons for this discrepancy. First is

the difficult orthogonal problem of optimal fence minimisation given a set of orderings



4.6. Conclusions 75

to enforce. In extremis this may even require profiling to determine the fence insertion

points that have the minimal impact on performance. Secondly, while our signatures

significantly prune the number of shared reads considered as acquires, some false pos-

itives still remain.

4.6 Conclusions

Relaxed hardware memory consistency models are used to ensure performance in mul-

ticore computers. A large body of legacy code assumes SC. Placing sufficient but min-

imal fences is challenging. The starting point of understanding the required placement

is Delay-set analysis. However, in practice approximations are applied, resulting in

many superfluous orderings.

With Delay-set analysis too hard in the general case and with languages converging

to DRF based memory models, we for the first time attack the problem of Delay-set

analysis for legacy DRF programs. We prove that a read of shared data must match

at least one of two signatures to be an acquire. We determine that this enables the

pruning of a large number of orderings, reducing the set that need be considered for

fence placement.

Developing both simple (control acquires) and conservative (control and address

acquires) algorithms, we implement them in LLVM and demonstrate the significance

of our contribution. Applying our control acquire detection on a set of lock-free pro-

grams and to SPLASH-2, we reduce the average number of orderings considered by

66%. Using a fence minimisation technique, this translates to an average of 62% fewer

fences on x86-TSO and up to 2.64x speedup over an existing practical technique.

In this chapter we addressed the correctness problem present when legacy shared-

memory programs are run on modern CMPs with relaxed memory models. Crucially,

our identification of acquires allows us to do this with a lesser negative impact on per-

formance than current general solutions. In the next chapter we will examine another

application of our acquire signatures, namely to the dynamic detection of synchronisa-

tion, as a basis for debugging and race detection.





Chapter 5

Signature-based Dynamic Detection of

Ad Hoc Synchronisation

5.1 Introduction

We now look at another application of our signatures, using them to dynamically detect

synchronisation. As we will show, dynamic analysis in combination with our signa-

tures and simple heuristics allows for the precise detection of synchronisation with

limited false positives. This is important as it shows that our signatures can be used to

significantly improve the results produced by data race detection and debugging tools.

Alternatively, these techniques could be applied to modernise legacy code, marking

acquires and releases, such that the program has proper semantics under DRF models.

In shared memory programming, synchronisation is key to ensuring that accesses

to shared data do not conflict. There are a wide variety of synchronisation constructs,

with different behaviours and for different purposes. While locks and synchronisation

libraries have widespread adoption, ad hoc synchronisations are also found, even in

large commercial applications [XPZ+10]. These ad hoc synchronisations, while if well

written will be correct on multiprocessors that support Sequential Consistency (SC),

will fail to properly synchronise on modern architectures where only more relaxed

memory consistency models are found.

While, as we showed in the previous chapter, detecting synchronisation can be used

to improve fence placement, here we instead focus on its application to the problems

of debugging and data race detection [TNGT08b, TNGT09a]. From a debugging per-

spective, accurately identifying synchronisation can significantly aid programmers in

understanding the operation of the program and expedite the debugging process. With

77



78 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

T1 T2

1 1 data = 1024;

2 2 flag = 1;

3 while (flag != 1); 3

4 local = data; 4

Figure 5.1

regard to race detectors, being precise with synchronisation detection is essential. If

a synchronisation is missed (a false negative) during synchronisation detection, then a

race detector may report additional races (false positives) during race detection. Cor-

respondingly, and far more importantly, false positives in synchronisation detection

may result in false negatives in race detection, i.e. races present in the program may

go unreported. Looking at a basic synchronisation, presented as Figure 5.1, we can

see that if the read and write to f lag are not identified as synchronisation then a race

detector will see two races, one for accesses to data and another for accesses to f lag.

If however, the usage of f lag is correctly identified as a synchronisation then a race

detector can report that the program is free of races (assuming SC).

In contrast to the previous chapter, the dynamic approach presented here is attrac-

tive due to its precision. Due to the imprecision of alias analysis and the conservative

nature of the thread-escape analysis, a scalable static approach like that presented in

the previous chapter produces many false positives. While the two approaches cannot

be directly compared due to differences in infrastructure and synchronisation imple-

mentation, it is worth noting that our Fast static approach from the previous chapter

identifies 86 false positive acquires when applied to FFT from SPLASH-2, even when

using only our control acquire signature.

To improve upon existing solutions, we exploit the work presented in the previous

chapter. There we identified two signatures which are necessary conditions for a read

to be an acquire. We briefly restate them here:

• Control acquire: a read feeds its value to a predicate tested for in a branch in its

forward slice.

• Address acquire: a read provides the address value for a subsequent data access

that the read (acquire).

For our purposes in this chapter, the signatures are useful as they permit us to



5.2. Our Approach 79

exclude from consideration as synchronisation, reads of shared data that do not meet

one of these signatures from the set of potential acquires. Therefore we should achieve

a lower false positive rate than otherwise possible. We also note that as we showed

in the previous chapter, in real programs testing for the control signature is sufficient

to detect all acquires. Therefore in this chapter we will focus only on detecting these

control acquires and not seek to find acquires that only meet the address signature. As

was shown in the previous chapter, in practice reads that meet the address signature are

also found to meet the control signature.

In this chapter we present SyncDetect a proof of concept tool to dynamically detect

ad hoc synchronisation. It leverages the control acquire signature described above and

is built on top of Intel’s Pin framework [LCM+05] for dynamic binary instrumentation.

It is generally applicable to shared-memory parallel programs and requires no program

modification. The only imposition on the programmer is the inclusion of debugging

symbols, without which it is impossible to provide informative output. We examine

the effectiveness of our tool by applying it to a set of synchronisation kernels and to a

program from the SPLASH-2 [WOT+95] suite.

The main contributions of this chapter are:

• A method for detecting shared reads and matching with the control acquire sig-

nature through taint tracking.

• A tool for dynamically detecting and reporting acquires and releases.

5.2 Our Approach

In this section we outline the details of our SyncDetect tool in terms of data structures,

design decisions and the overall instrumentation algorithm. We begin by giving an

overall description of the general components of our approach.

5.2.1 General Principles

We implement our tool using Intel’s Pin framework [LCM+05]. This allows us to

dynamically instrument running programs and avoid the need for simulation or addi-

tional hardware support as is commonly used in replay based race detectors [MCT08,

NWT+07]. To be able to make useful reports to the user, we also require that the

program being examined was compiled with debugging symbols. Without these sym-



80 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

bols we would be unable to match the reads detected at runtime with their source code

counterparts.

There are three major structures in our implementation, providing the ability to

track accesses and test reads for being an acquire. The first is a table shared amongst

all threads mapping memory addresses to whether or not they have been accessed by

more than one thread. The second is a table maintaining information about which

instruction from which thread last wrote to an address. The third is a table, of which

each thread has its own instantiation, maintaining a mapping of registers to reads which

taint the register contents. This final structure is essential for testing if a read matches

the control acquire signature. We will now discuss these three structures and their

operation in detail, before going on to detail the logic that makes use of them to report

acquires and releases to the user.

5.2.2 Shared Access Detection

To allow for precise determination of which memory addresses are accessed by more

than one thread and are therefore considered shared, we maintain a global table map-

ping memory addresses to thread IDs. For every instruction that reads or writes mem-

ory this table is checked. If the memory address has never before been accessed then

the thread ID is stored. if the address has previously been accessed by a different

thread then a negative value is stored to indicate that this address is shared memory.

This entry is then no longer modified.

At the end of the execution of the target program reads that meet the control ac-

quire signature are tested for having been accesses to shared memory. The decision

to delay testing for being a shared access is to allow for the detection of acquires for

which there is no preceding write, i.e. cold reads. Additionally, certain synchronisa-

tions may be uncontested in the execution seen, with one thread acquiring, releasing

and then reacquiring. By delaying the testing we cover cases where another thread

later does acquire using the same synchronisation variable. We discuss the issue of a

completely uncontested synchronisation, where no other threads ever make use of the

synchronisation variable, in our discussion of limitations in Section 5.3.

5.2.3 Last Writer Tracking

To be able to infer releases, we track writes to memory by the address, thread and

instruction that wrote. To perform this tracking we maintain a hashtable using the



5.2. Our Approach 81

memory address written as the key. This address maps to information about the last

writer, specifically the instruction pointer and the thread ID. A representation of this

last writer table is presented as Table 5.1. This reference to the instruction, with support

provided by Pin, allows us to identify the source location of the access. For each

instruction that reads memory this table is checked and if there was a previous write to

the address read, then this information is associated with the read. This means that if

the read subsequently meets the control acquire signature the potential release can also

be identified.

Last Writer

Memory Addr Inst Ptr Thread ID

0x7f83f2d00130 0x400dd7 0

0x7f83f2d00220 0x400e22 2

0x7f83f2c04ea0 0x400e83 1

... ... ...

... ... ...

... ... ...

Table 5.1: A representation of the main data structure, mapping memory addresses to

the thread number and instruction pointer of the last writing instruction.

5.2.4 Acquire Detection

As shown in Chapter 4, in practice the control acquire signature is sufficient to detect

acquires in real programs. To implement the control acquire signature in a dynamic

binary instrumentation environment, we need to examine whether the value loaded by

a read operation (on shared data) is used in the determination of a conditional branch

decision. To do this, we implement register taint tracking to maintain information on

which registers contain contents tainted by information loaded from memory.

As register information is thread specific in x86, we implement register taint track-

ing on a thread by thread basis, maintaining a mapping of registers to reads that taint

them. These tables are kept up to date through instrumentation of each instruction.

When an instruction is executed the current taint of any registers it reads is copied to

an taint buffer, along with new taint information created for any shared memory lo-

cations read by the instruction. Then for every register written by the instruction, the

taint information in the taint buffer is copied to taint mapping for that register. After



82 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

this, the taint buffer is cleared for the next instruction. The pseudocode for the actions

taken on a register read is shown in Listing 5.1, with the actions taken on a register

write shown in Listing 5.2.

As we can see in Listing 5.1, when an instruction is a branch decision (as deter-

mined using Pin’s API), then the reads that taint that decision are copied into the set

of potential acquires to be examined in our final analysis. Additionally, we can see in

Listing 5.2 where on the final register write of an instruction, the taint buffer is cleared.

Finally, we have an untaint option in Listing 5.2 that also clears the taint buffer, mean-

ing that taint is not propagated further. Currently this is only set when the instruction

being examined is an xor instruction which uses the same register as both sources. This

prevents taint information being propagated when in reality it would not be. Discus-

sions about how the taint tracking mechanism could be improved for future releases

are found in Section 5.3.4.

1 onRegRead(Reg r, bool branchDec , unsigned tid)

2 {

3 taintBuffer[tid].insert (regFile[tid][r]);

4

5 if (branchDec)

6 potentialAcquires.insert(taintBuffer[tid].begin(),

7 taintBuffer[tid].end());

8 }

Listing 5.1: Pseudocode for actions taken for each register read during a run of SyncDe-

tect.

1 onRegWrite()

2 {

3 if (untaint)

4 taintBuffer[tid].clear();

5

6 regFile[tid][w] = taintBuffer[tid];

7

8 if (final)

9 taintBuffer[tid].clear();

10

11 }



5.2. Our Approach 83

Listing 5.2: Pseudocode for actions taken for each register written during a run of

SyncDetect

5.2.5 Detecting Synchronisations

Combining the global shared memory tracking with the last writer table, as detailed in

Section 5.2.2 and Section 5.2.3, and the thread specific register files for taint tracking,

as detailed in Section 5.2.4 we are now able to construct the full analysis. To summarise

the actions taken on a read from memory or write to memory, we present pseudocode

for those operations as Listing 5.3 and Listing 5.4 respectively. As we can see from

Listing 5.3, when memory is read, the address read and the source location are recorded

and if the read has read a memory location previously written then the details of the

write are associated with the read. The read is also loaded into the taint buffer of the

thread, for use in testing against the control signature. The shared memory table is also

updated as necessary. As we can see from Listing 5.4, when memory is written to the

details of the write are recorded and (as with reads) the shared memory table updated

as necessary.

1 onRead(int *addr , int *instPtr , int tid)

2 {

3 reader *read = new reader ();

4 read ->r = addr;

5 read ->loc = getSourceLocation (instPtr);

6

7 if (isShared.count (addr) && isShared[addr] != tid)

8 isShared[addr] = -1; //Shared Memory

9 else

10 isShared[addr] = tid;

11

12 if (!lastWriter.count (addr))

13 read ->wLoc = lastWriter[addr].loc;

14 else

15 read ->wLine = 0; //No writer

16

17 lastWriter[addr].readers.insert (read);

18 taintBuffer[tid].insert (read);



84 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

19 }

Listing 5.3: Actions taken on a read.

1 onWrite(int *addr , int *instPtr , int threadID)

2 {

3 writer *write = new writer ();

4 write ->w = addr;

5 write ->loc = getSourceLocation (instPtr);

6

7 if (isShared.count (addr) && isShared[addr] != tid)

8 isShared[addr] = -1; //Shared Memory

9 else

10 isShared[addr] = tid;

11

12 lastWriter[addr] = write;

13 }

Listing 5.4: Actions taken on a write

For each instruction, we handle memory accessing instructions by modifying the

last writer table and storing reads in the taint buffer using the operations defined in

listing 5.3 and listing 5.4 in Section 5.2.3 respectively. Then for each register read or

written by the instruction we update the taint tracking and potential acquire set using

the operations defined in listing 5.1 and listing 5.2 in Section 5.2.4. The pseudocode

for the actions taken on each instruction is presented as Listing 5.5.

1 onInstruction()

2 {

3 if (readsMemory (ins))

4 onRead (addr , ins, tid);

5 if (writesMemory (ins))

6 onWrite (addr , ins, tid);

7

8 for (regR in registersRead(ins))

9 {

10 branchDec = isBranchDecision(ins);

11 onRegRead(reg, branchDec , tid);

12 }

13



5.2. Our Approach 85

14 for (regW in registersWritten(ins))

15 {

16 untaint = isXorSameSrcDest(ins);

17 final = regW == registersWritten(ins).last();

18 onRegWrite(reg, final , untaint , ins, tid);

19 }

20 }

Listing 5.5: Pseudocode for actions taken for each instruction during a run of SyncDe-

tect.

To better explain the operation of SyncDetect and the interactions of the compo-

nents, we finally present an overview diagram as Figure 5.2. In this figure we can see

the shared last writer infrastructure and the thread specific register taint tracking and

taint buffers and how these components interact. Also note the shared memory track-

ing and the set of potential acquires, which at the end of the execution is processed to

produce the final report provided to the user.

Taint Tracking

Register

Taint Tracking

Register

Taint Tracking

Register

T1 TnT0

memWrite

Reporting

Potential Acquires

Last Writer Table

memRead memRead memRead

regRead regWrite regWrite regWrite

regRead + Branch Decision

Taint Buffer Taint BufferTaint Buffer

regRead

. . .

. . .

regRead

End

End

Is Shared

memRead memWrite

Figure 5.2: A high level overview of the operations of SyncDetect.

At the end of the execution, the potential acquire information and the table of

shared memory addresses can be used to determine and report acquire and release

pairs. Each read that the taint tracking has determined to match the control signature

and is therefore in the set of potential acquires is sought out (by the address read) in the



86 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

shared memory table. Those that are found and therefore are shared reads are reported

with their inferred releases, after duplicates have been pruned. Before discussing lim-

itations of our current implementation, we first outline a heuristic that we apply to

reduce the number of false positives.

5.2.6 Distance Limit

One method that can be employed to reduce the number of false positives recorded

is to limit the number the instructions that can be executed between the load (read)

and the branch computation for the read to be considered an acquire. This heuristic is

based on the observation that in real world examples, acquires are normally found to be

tested immediately, with the acquiring read often found within a conditional statement

at source level.

An additional benefit this heuristic brings is to limit the negative impact of the

over-propagation of taint information. As discussed in Section 5.3.4, the register taint

tracking is currently somewhat rudimentary, not making much use of instruction spe-

cific information to prevent the propagation of taint. In early experiments we found

that this could lead to situations where a taint persists for many instructions after the

initial read before erroneously appearing to be used in a branching decision.

To implement this heuristic thread specific instruction counters are maintained and

on a read the current value recorded. If the taint left by the read in the register file

is later present in the registers used during a branching decision then the instruction

count at this point is also recorded, unless this second number has already been set.

That is, only the first time the taint information from a read is used in a branching

decision is considered so we are recording the minimum distance seen. Finally, in the

post-processing phase the difference between these numbers for each potential acquire

is tested against a threshold and the read discarded if the threshold is exceeded.

A default value of 10 instructions is currently in use but this can be modified by the

user by passing the following parameter at runtime −−distance=<UINT>.

5.3 Limitations

Before presenting our results we examine the limitations of our current implementation

and discuss relevant works that could inspire improvements for future releases. We

focus on the issues introduced by non-deterministic program behaviour and mitigation



5.3. Limitations 87

strategies, though also consider the issue of benign data races and the improvements

that state-of-the-art taint tracking would also bring.

5.3.1 Uncontested Synchronisation

As detailed in Section 5.2.2 we determine a memory location to be shared if over the

course of the execution it is accessed by more than one thread. To be considered an

acquire by our tool a read that meets the control acquire signature must be a read to one

of these shared memory locations. The rationale behind this is to reduce false positives

as if the variable is local to a thread it, by definition, cannot be a shared memory

synchronisation variable. There is however the potential for an acquire to be missed

if in the execution observed, no other thread makes an access to the synchronisation

variable, but in other executions the variable is used for synchronisation. We do not

believe this to be a common case, however for completeness we also offer the−−local
knob to also report potential acquires that are not found to be shared data.

5.3.2 Non-determinism

Non-determinism poses significant issues to the dynamic analysis of shared-memory

parallel programs. Specifically, possible behaviours of the program (i.e. the synchro-

nisations) may not be seen under dynamic analysis. The two major causes of this are

timing issues and conditional synchronisation.

It is worth noting that the instrumentation performed by an analysis tool can also

introduce non-uniform timing dilation, where some threads are slowed more than oth-

ers. This can lead to the analysis tool seeing an interleaving of accesses that, while

still legal, is not that seen under normal conditions. Therefore a potentially buggy syn-

chronisation that occurs in most real executions may be missed under analysis. Sev-

eral approaches attempt to mitigate this, either through the introduction of randomised

delays [BKMN10] or using hardware-based replay [MCT08, RDB99]. More complex

non-deterministic programs can pose additional issues for dynamic analysis techniques

if they make use of conditional synchronisation. By this we mean synchronisation that

only occurs with specific inputs.



88 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

5.3.3 Benign Data Races

If we wish to support programmers attempting to migrate (by annotation) legacy code

that does have so called benign data races to modern DRF language models, e.g.

C11 [BOS+11, BA08] or the Java Memory Model [MPA05], we must also provide

information about them. Currently, we can go partway and offer the ability to addi-

tionally report on shared accesses that are not seen as acquires or releases through use

of the −−data flag at runtime.

5.3.4 Taint Tracking

Our current taint tracking mechanism does not take architectural details into account,

other than the fact that an xor instruction that uses the same register or address for

both inputs results in the taint being lost. This does mean that our system is relatively

general and could be ported to architectures other than x86 with relative ease, providing

suitable alternative to Intel’s Pin framework is available. The downside of this is that

we do not currently make use of any insights into the instruction set architecture to

limit taint propagation in our model of the register file, when the real registers would

no longer be tainted. More complex and architecturally specific implementations of

taint tracking exist [ZJS+11], and adopting such a method would be an improvement

for future releases.

Additionally, coverage may also be improved by implementing taint tracking for

memory addresses. Specifically, tracking which memory accesses taint which ad-

dresses. In conjunction with the register taint tracking, this would handle cases where

a read of shared data is stored to a local memory location before being tested in a

branching decision. However, as we have seen during the development of heuristics

(see Section 5.2.6) real world examples are found to be read and used in branch con-

ditions with minimal intervening instructions. Therefore developing this enhancement

is not a priority at this time.

5.4 Results

Our results are organised as follows. We first present results from some basic synchro-

nisations before applying our tool to some synchronisation kernels. Finally we present

a case study, applying our tool to FFT from the SPLASH-2 [WOT+95] benchmark

suite. For our experiments the synchronisation macros found in FFT are implemented



5.4. Results 89

T1 T2

1 1 data = 1024;

2 2 flag = 1;

3 while (flag != 1); 3

4 local = data; 4

Figure 5.3: Simple blocking synchronisation between two threads.

using user space spin locks.

The programs were all compiled using GCC 4.8.1 [gcc] with debugging symbols

enabled and no optimisations. Currently, the DWARF debugging information provided

by GCC allows us to access the file and line location in source from which an instruc-

tion originates. Column information is currently not provided and therefore SyncDe-

tect does not attempt to report it as output. As output we present file and line numbers

where acquires and inferred releases can be found. Given this setup, all of our results

are based on the number of lines in the source program where acquires and releases

are found.

5.4.1 Blocking Synchronisation

To initially test our system, we consider a basic ad hoc blocking synchronisation in

which a flag is used to prevent one thread from accessing shared data until another has

completed its accesses. The source code for this application is presented as Figure 5.3.

Using SyncDetect with all the default options, we find that acquire and release pair

formed by the accesses to flag (line 3 in T1 and line 2 in T2 in Figure 5.3) are correctly

identified and reported. Additionally, the accesses to the data variable are not reported

as they are not synchronisation.

5.4.2 Non-blocking Synchronisation

Similarly to the previous test, we now consider a basic ad hoc non-blocking synchro-

nisation. It is presented as Figure 5.4. Here the synchronisation read (in T1 line 4)

is non-blocking and if the flag variable has not been set by T2 (line 2) by the time

the read executes then thread 1 will not read the shared data. For the purposes of our

experiment we send thread 1 to sleep (T1 line 3) to ensure that the synchronisation

occurs during the examined execution.



90 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

T1 T2

1 1 data = 1024;

2 2 flag = 1;

3 // Sleep 3

4 if (flag != 1) 4

5 { 5

6 local = data; 6

7 } 7

Figure 5.4: Simple non-blocking synchronisation between two threads. A call to sleep

in thread 1 is used to ensure that we see the synchronisation occur in our experiment.

Again using SyncDetect with all the default options, we find that acquire and re-

lease pair formed by the accesses to flag (line 3 in T1 and line 2 in T2 in Figure 5.4)

are correctly identified and reported. Again, the accesses to the data variable are not

reported as SyncDetect correctly disregards them.

5.4.3 Synchronisation Kernels

We now consider implementations of some synchronisation kernels, which represent a

mixture of blocking and non-blocking synchronisations. The first is an implementation

of the well known Dekker’s algorithm [Dij65]. The second is an implementation of a

lock-free queue (LFQ) as described by Michael and Scott [MS96]. The third is a imple-

mentation of Peterson’s algorithm [Pet81]. The implementations of all these programs

are drawn from or adapted from [Lin13]. Each program implements the synchronisa-

tion algorithm and some simple array computations in the critical sections. The results

from applying our tool to each of these programs using the default configuration are

presented as Table 5.2.

As we can see SyncDetect correctly categorises the vast majority of lines for both

acquires and releases with an average of only 5.46% lines with reads and 6.86% of lines

with writes being miscategorised. Looking in more detail we see that one acquire in

LFQ was not reported (a false negative). It was in fact detected by SyncDetect but the

distance between the reading instruction and the branch decision was larger than the

default threshold. To examine this in more detail we present Figure 5.5 and Figure 5.6

showing the reporting of false negative and false positive acquires respectively as the

threshold is varied.



5.4. Results 91

Dekker LFQ Peterson

A
cq

ui
re

s True
Positive 6 7 2

Negative 26 48 26

False
Positive 2 1 2

Negative 0 1 0

R
el

ea
se

s True
Positive 10 4 6

Negative 37 50 33

False
Positive 4 2 4

Negative 0 0 0

Table 5.2: A breakdown of the results of acquire detection and release inference from

applying our SyncDetect tool to three programs with ad hoc synchronisation. Note that

the numbers reported are based on lines in the source programs.

 0

 2

 4

 6

 8

 10

 2  4  6  8  10  12  14

N
u
m

b
e
r 

o
f 
F

a
ls

e
 N

e
g
a
ti
v
e
 A

c
q
u

ir
e

s

Maximum Number of Instructions from Read to Branch

Dekker
LFQ

Peterson

Figure 5.5: The decrease in false negative acquires seen in the synchronisation kernels

as the distance threshold is increased. Note that we see no false negatives reported

for Dekker or Peterson at any positive threshold value.

Looking first at Figure 5.5, we see that both Dekker and Peterson do not return

false negatives at any value greater than 1 as the read is used immediately in a branch

decision. Conversely, LFQ requires a larger threshold to avoid missing acquires. This

is due to the structure of the synchronisation where multiple acquires are made before

being tested together in a branch decision, i.e. there are multiple instructions between

the acquiring read and the branch decision. To illustrate this more clearly, we present

Figure 5.7. It shows an extract of source code from LFQ and the corresponding as-

sembly level instructions. As we can see, due to the structure of the synchronisation



92 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

 0

 2

 4

 6

 8

 10

 10  20  30  40  50  60  70  80  90  100

N
u
m

b
e
r 

o
f 

F
a

ls
e

 P
o

s
it
iv

e
 A

c
q
u

ir
e
s

Maximum Number of Instructions from Read to Branch

Dekker
LFQ

Peterson

Figure 5.6: The increase in false positive acquires seen in the synchronisation kernels

as the distance threshold is increased.

and the referencing of memory, multiple instructions can be present between acquiring

reads and their corresponding condition.

Turning to look at the false positives, presented in Figure 5.6, we see the expected

result, where the number of false positives increases as the maximum allowable dis-

tance is increased. From these figures we can see that how to exactly tune the distance

heuristic depends on the target of the tool. If we are targeting synchronisation detection

then using a larger maximum distance would minimise false positives. Conversely, if

we target race detection then keeping false positives to a minimum by using a smaller

maximum distance is preferable, if we prefer additional races being reported over races

being missed.

5.4.4 FFT

FFT is a program drawn from the SPLASH-2 [WOT+95] shared-memory benchmark

suite. As stated in [WOT+95], this program implements the 1 dimensional version of

the radix−n six-step Fast Fourier Transform (FFT) algorithm described in [Bai90].

Like the other programs from the SPLASH-2 suite, FFT is written using synchro-

nisation macros for which the users are left to provide the implementation. For our

experiments we implement each of the required macros on top of user space spin locks,

which are inlined into the source code of FFT. With this program we show the appli-

cation of SyncDetect to a larger program with blocking user defined synchronisations.

The acquire detection results for FFT are presented as Table 5.3. The corresponding



5.4. Results 93

tail = queue–>tail movq queue(%rip), %rax

movq 8(%rax), %rax

movq %rax, -16(%rbp)

next = tail–>next movq -16(%rbp), %rax

movq (%rax), %rax

movq %rax, -8(%rbp)

if (tail == queue–>tail) movq queue(%rip), %rax

movq 8(%rax), %rax

cmpq -16(%rbp), %rax

jne .L2

Figure 5.7: Source and assembly level instructions from LFQ. Note that there are mul-

tiple instructions before the branch decision.

results for inferred releases are presented as Table 5.4.

Acquires

Positive Negative

True False True False

58 30 271 0

Table 5.3: A breakdown of the acquire detection results on FFT from the SPLASH-2

suite. Note that numbers reported are lines in the source code.

As we can see SyncDetect is able to discount the majority of static source code

level accesses as not being synchronisation related. Using the default settings of the

tool, we find that only 9.12% of reads are misclassified and 19.56% of writes. Looking

at the results in more detail we see 2 false negative releases. These occur as for each

of these the release is only executed once and is the final release performed on the

synchronisation variable. As our tool infers releases based on acquire detection, we do

not detect those releases.

As with the synchronisation kernels, it is worth noting here that the distance heuris-

tic is found to be significantly beneficial. We find that setting the distance limit to 1

instruction, all actual acquires are still detected with the number of false positives

falling to 20. This would mean only 6.08% of reads being misclassified, and this in



94 Chapter 5. Signature-based Dynamic Detection of Ad Hoc Synchronisation

Releases

Positive Negative

True False True False

48 51 223 2

Table 5.4: A breakdown of the inferred release results on FFT from the SPLASH-2

suite. Note that numbers reported are lines in the source code. The two false negative

releases are writes never read from and therefore could not be inferred from an acquire.

conjunction with our results from the previous section indicates that this heuristic can

be used rather aggressively in programs with blocking synchronisation (e.g. locks and

barriers). We now examine the effectiveness of the distance limit heuristic in more

detail. The results of these experiments is presented as Figure 5.8.

 0

 10

 20

 30

 40

 50

 1  10  100

N
u
m

b
e
r 

o
f 
F

a
ls

e
 P

o
s
it
iv

e
s

Maximum Number of Instructions from Read to Branch

FFT

Figure 5.8: A visualisation of the effectiveness of the distance heuristic on FFT. Shown

are the number of false positive acquires reported at each potential threshold. There

are no false negatives found in our investigation of FFT, so no true positives are missed

at any point shown. Note the log scale on the x axis.

As we can see, the greater the distance allowed, the greater the number of false

positives are reported. False positives occur when reads of shared data are involved

in control flow. In FFT these are all well-synchronised accesses protected by locks

and barriers, but our analysis alone is unable to separate them as they meet the control

acquire signature. Crucially, as our results in Sections 5.4.3 and 5.4.4 show only a

small number of false positives are seen, due to the imposition of this heuristic. As

discussed in Section 5.2.6 improvements to taint tracking may render this heuristic



5.5. Conclusions 95

redundant in future releases, but it may always be useful as a sanity check, using a

larger default value.

5.5 Conclusions

Ad hoc synchronisations are considered dangerous as they can introduce bugs, cause

correctness issues with more relaxed hardware memory consistency models and ad-

ditionally need marking for modern language memory models. Static approaches to

these problems exist but due to a lack of precision they introduce a number of false

positives. We pursue a dynamic approach, which while losing conservatism, gains the

precision not possible in static solutions and also is able to infer the related release.

This precision is critical in applications such as data race detection where minimising

the number of false positives in synchronisation detection is the key, as those false pos-

itives may lead to false negatives in race detection We presented SyncDetect, a proof

of concept tool for detecting dynamic synchronisation based on recently proven ac-

quire signatures. Built on top of Intel’s Pin infrastructure, it dynamically instruments

shared-memory parallel programs and reports ad hoc synchronisations.

In this chapter we demonstrated another application of our acquire signatures.

Specifically, we developed a prototype dynamic analysis tool that exploits the control

acquire signature to precisely identify ad hoc synchronisations, with few false posi-

tives. This is significant as reducing the false positives in synchronisation detection

means a race detection tool would report fewer false negatives.





Chapter 6

Related Work

6.1 Analysis of Message-Passing Programs

6.1.1 Static Analysis of MPI Programs

A number of techniques have been proposed to statically analyse MPI programs, but

they have limitations that prevent them being directly applied to the problem of map-

ping legacy message-passing programs on to modern systems as described in this

thesis. Noted by multiple sources are the SPMD semantics of MPI [Bro09, KSH10,

SKH06]. The effect of these semantics can be formally described as certain segments

of the program only being executed by certain subsets of the processes running the

program. The SPMD semantics are important as they largely define the methods that

can be, and are, used to perform communication analysis.

Extending the standard Control Flow Graph (CFG) to take account of these seman-

tics, MPI-CFG [SPS99] and later MPI-ICFG [KSH10, SKH06] annotate CFGs with

process sensitive traversals and communication edges between matched send and re-

ceive statements. Collective operations are also expressed as communication edges,

with their additional complexity noted. Backward slicing is performed on the pure

CFG to simplify expressions that are dependent on the process rank, but do not di-

rectly reference it in the call parameter. The lack of full context sensitivity prevents

these works being applied in practice to the problem described in this thesis. How-

ever, they do influence the work presented in this thesis in highlighting the need to

enable a form of backward slicing to determine process sensitive values. Additionally,

they illustrate the need to pursue an interprocedural approach to achieve coverage in

real programs.

97



98 Chapter 6. Related Work

Again extending the CFG, Bronevetsky [Bro09] introduces the parallel CFG (pCFG).

It represents the different paths taken by each process through a CFG by creating mul-

tiple states for each CFG node as determined by conditional statements. Progress is

made by each component until they reach a communication statement, where they

block until they can be matched to a corresponding statement. This representation al-

lows communication to be modelled between sets, providing a scalable view of the

communication characteristics. The matching process used is complex, and limited to

modelling communication between sets across Cartesian topologies, e.g. across the

transpose of a matrix. The mechanics of comparison are intricate, with many rewrite

and composition rules being needed to prove set equality. Due to the proof require-

ments they define, wildcards cannot be handled [Bro09]. The tuples of the pCFG are

most directly comparable with the data structure proposed in this thesis, but as de-

tailed in Chapter 3 we dispense with the abstract nature of sets, and with matching,

achieving the data representation by different means. Most importantly, pCFG is only

intraprocedural and therefore ineffective with real programs.

There are further analyses less directly antecedent to the work presented in this

thesis that are still significant. The high-level grammar based approach of Shao et

al. [SJM06] introduces a technique for describing the communication as a short se-

quence. The resulting sequences are elegant, but lack specifics as to which processes

would be involved in which branches of conditional communications. While their

analysis framework may be impractical as a guide to transformation, this is largely due

to its motivation as a guide to introducing network instructions [SJM06]. This Com-

piled Communication [KYL03, YMG03], is also pursued by Yuan et al. [YMG03],

analysing logical communication, to define which data structures must be transferred.

Then physical communication, the actual data transfer, is considered to determine what

network instructions to insert. Their analysis is however quite restrictive, requiring the

programmer to specify data distribution.

6.1.2 Profiling and Dynamic Analysis of MPI Programs

Profiling and dynamic analysis techniques have also been applied to MPI programs [MW03,

NAW+96, SSM06, VM01]. Targeting the same optimisation as the work presented in

this thesis, MPIPP [CCH+06] uses the communication graph, extracted from a profil-

ing run, to optimise process placement. This profiling approach, while effective, would

compare unfavourably to a static approach that achieves similar coverage, given the



6.1. Analysis of Message-Passing Programs 99

cost and inconvenience of repeated executions on potentially scarce resources.

Recognising the burden of profiling, FACT [ZSH+09] seeks to understand commu-

nication patterns by only profiling the execution of a program slice. This slice having

been determined by static analysis. While reducing the cost of a profile run, the authors

of FACT note that the slicing may alter the communication pattern in non-deterministic

applications.

Dynamic approaches include Adaptive MPI [HLK03, HZKK06], which provides a

runtime system, capable of automatic communication/computation overlap, load bal-

ancing, and process migration. These techniques allow it to take advantage of com-

munication phases in the program. Given the cost of migration and need for a runtime

system, the methods described are required to overcome further overhead to achieve

better speedup. For programs that lack distinct temporal phases of communication,

this may not be possible.

6.1.3 Process Placement

The use of static information to determine better process placement for parallel pro-

grams is well known [SH86]. Several works recognise the ability of better process

placement to improve performance and resource usage on modern parallel architec-

tures [DRR08, JM10, MJ11, ZSH+09, ZZCZ09]. There are several applicable ap-

proaches, the choice of which is largely determined by how much knowledge about

the target machine is available and the acceptable algorithmic complexity of the map-

ping algorithm.

Two notable approaches (as used in [CCH+06]) are graph partitioning and graph

mapping. In graph partitioning, the vertices (processes) of the communication graph

are assigned to buckets (CMPs), in such a manner as to minimise the total weight of

non-local edges. In graph mapping, a resource graph of the target machine is also

taken. The communication graph is then superimposed onto this in such a manner

as to minimise the total latencies to which communication is subjected. Graph map-

ping is shown by [CCH+06] to outperform graph partitioning, however it requires a

fuller description of the target machine and the ability to schedule at will on the nodes,

something not found in all shared access machines.



100 Chapter 6. Related Work

6.2 Shared-Memory Correctness

6.2.1 Programmer-centric memory models

Adve and Hill [AH90b] and Gharachorloo [GLL+90] were the first to propose pro-

grammer centric memory consistency models, where the system enforces SC as long as

the programmer writes data-race-free (DRF) programs and provides information about

synchronisation operations. Indeed Adve’s DRF based models [Adv93] and Ghara-

chorloo’s PL based models [Gha95] are the precursors to the memory consistency mod-

els adopted by languages such as C [BA08] and Java [MPA05]. The main difference

between the above works and that we present in Chapter 4 is that, while they assume

programmer-annotated synchronisation labels, we assume unlabelled DRF programs.

6.2.2 Delay-set analysis

Shasha and Snir [SS88] were the first to consider the problem of computing the mini-

mum number of memory orderings (delays) to ensure that a concurrent shared memory

program satisfies SC. In the shared-memory work presented in this thesis, we focus on

how the above orderings can be pruned if the shared memory program is a DRF (but

unlabelled) program. To put it succinctly, we do Delay-set analysis for unlabelled DRF

programs.

A more recent work [AKNP14] attempts to address the scalability issues inherent

in Delay-set analysis by examining an over-approximation of the critical cycles. It is

however limited in failing to handle recursion and dynamic thread creation, the latter

of which is common in the programs examined in our evaluation. Specifically, this tool

does not handle pthread create calls in loops that could not be statically unrolled. We

note however, that our signatures would be equally applicable to [AKNP14] and our

choice to build on top of Pensieve is due to its lack of the limitations described above.

6.2.3 Fence minimisation

There have been a number of works [FLM03, KSY05, WSP+02] which focus on com-

puting the minimal number of fences for satisfying the orderings given by Delay-set

analysis. These works are orthogonal to our work, as these can very well be applied

for satisfying the pruned orderings given by our analysis in Chapter 4.



6.2. Shared-Memory Correctness 101

6.2.4 Synchronisation detection

Our work on shared-memory is related to prior work [TNGT08a, TNGT09b, XPZ+10]

on busy-wait synchronisation detection. Tian et al. [TNGT08a, TNGT09b] proposed

a dynamic analysis technique for identifying user-defined busy-wait synchronisations.

Since the above work uses dynamic analysis, they suffer from false negatives – in other

words, some synchronisations can be missed. Subsequently, Xiong et al. [XPZ+10]

showed how synchronisations can be identified using static analysis, so that there can

be no false negatives. Our work differs from the above in one important aspect. The

above analysis is only applicable for busy-wait synchronisation; thus it will miss iden-

tifying acquires used in non-blocking algorithms such as those used in our evaluation.

It is worth noting that missing such acquires leads to correctness issues in our context

which explains why the above detectors cannot be used in the context of our work.

Indeed, one of the nice side-effects of our work is that to the best of our knowledge,

ours is the first general acquire detector.

6.2.5 Hardware based memory ordering

There have been a number of recent works [BMW09, GGH91, GFV99, LNG10, SNM+12]

that have proposed techniques for efficiently enforcing memory ordering. In contrast

with the above works each of which involve hardware support, we do not use any hard-

ware support in this thesis. Furthermore, each of the above works are orthogonal to us,

in that, they can very well be used to efficiently enforce the pruned orderings given by

our work in Chapter 4.

6.2.6 SC-preserving compilers

Ahn et al. [AQN+09] proposed the Bulk compiler which together with Bulk hardware

(which enforces hardware SC at chunk level) guarantees SC at the language level. In

other words, the Bulk compiler preserves SC by ensuring that it does not reorder mem-

ory operations across chunks. More recently, Marino et al. [MSM+11] proposed the

SC-preserving compiler which together with SC hardware (which enforces SC at the

hardware level) guarantees SC at the language level. Their main result is that it is

possible for the compiler to preserve SC without significant slowdown (<5% on av-

erage across a suite of parallel programs). On the other hand, they assume that the

hardware cannot reorder operations, i.e. they assume that the hardware enforces SC.



102 Chapter 6. Related Work

In contrast, our work considers the problem of how to enforce SC on hardware that

could reorder memory operations. Of course, to preserve SC at the language level we

would need a compiler that preserves SC (i.e. the above works). Recall that in our im-

plementation we ensure that the compiler cannot reorder shared memory operations by

inserting an empty memory-clobbering assembly instruction between such operations,

which LLVM interprets as a compiler fence. It is worth noting that this corresponds

to the naive-SC variant [MSM+11]. We could have very well used the SC-preserving

compiler proposed (with all optimisations), which could potentially translate into bet-

ter performance. In this respect, our work in shared-memory orthogonal to the above

works.

6.2.7 Dynamic Scheduling

There have several works focused on manipulating thread schedules to discover con-

currency bugs. These involve randomly delaying the execution of threads in combina-

tion with various heuristics [FNU03] to ensure schedules where concurrency bugs in

the program are forced to manifest [EFG+03, Sen07]. More recent work in this area

has produced similar methods that are able to quantify the probability that their anal-

ysis has failed to discover a concurrency bug [BKMN10]. These techniques appear to

be immediately compatible with our SyncDetect tool and will inform future releases.

6.2.8 Dynamic Race Detectors

Significant work has also been done in the field of race detection, using both online

and offline methods. Online methods include Eraser [SBN+97], FastTrack [FF09] and

RaceTrack [YRC05]. It should be noted that RaceTrack like some previous methods

targeting managed lanuages [CDB01, Nis04] exploits the existence of a JIT compiler

to perform its analysis. Online methods, particularly instrumentation techniques like

Eraser are similar in operation to our SyncDetect and may very well inform future

releases. The other methods listed above that perform their analysis during JIT compi-

lation are more closely related to the static work we presented in Chapter 4.

So-called offline methods have also been developed. These generally build on

record and replay technology to store an execution and then perform analysis dur-

ing some form of replay. These replay systems, including DeLorean [MCT08] and

iDNA [BCdJ+06] use hardware support to record the interleaving of memory inter-

actions, which can later be replayed deterministically. Race detectors that use such



6.2. Shared-Memory Correctness 103

record and replay techniques include those by Narayanasamy et al. [NWT+07]. Other

methods that do offline analysis such as the earlier RaceFrontier [CM91] and Rec-

Play [RDB99] are limited, because as noted by Narayanasamy et al. they do not record

non-deterministic interactions

Our work is relevant to these tools as it can be used to improve the classification of

apparent data races. As Narayanasamy et al. [NWT+07] note, user defined synchro-

nisation, while determined as benign by their tool, is difficult to definitively identify.

As iDNA, the replay technology they build on doesn’t provide support, their tool in-

correctly identifies a race between two correctly formed user defined synchronisation

operations.





Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

Achieving high performance and correctness with parallel programming is notoriously

challenging. Unfortunately, even existing (legacy) programs can fail to achieve both

of these due to changes in the architectures of modern computers. In message-passing

the problem is a performance one, with the message-passing library providing com-

munication guarantees. In shared-memory it is a correctness issue, which existing

automated solutions solve but only by introducing performance issues.

Changes in machine topology, with the ubiquity of CMPs, requires legacy message-

passing programs to be actively spatially scheduled to ensure efficient operation as they

were written without the expectation of such an inherently tiered topology.

Memory consistency models also pose issues to shared-memory programs. As

modern CMPs only support relaxed memory models, programs written assuming SC

need support (e.g. memory fences) to ensure correct operation on the more relaxed

machine.

• Firstly, in Chapter 3, we presented a method for statically determining the point-

to-point communication graph of an MPI program. The immediate application

of this analysis framework, as demonstrated in this thesis, is to improve spatial

scheduling. This allows existing (legacy) MPI programs not written with knowl-

edge of modern cluster topologies to make efficient use of them. We use the

framework to colocate heavily communicating processes, but other cost models

are immediately applicable.

• Secondly, in Chapter 4, we determined and proved necessary conditions for a

105



106 Chapter 7. Conclusions and Future Work

read to be an acquire in a well-synchronised (legacy DRF) program. The two

signatures developed have the potential to improve solutions in a number of ap-

plication areas, as demonstrated in the this thesis.

• Thirdly, also in Chapter 4, we showed an application of our previous contribu-

tion in improving automatic fence placement. The use of our acquire signatures

to prune the orderings determined by Delay-set analysis (or its conservative ap-

proximation) for legacy DRF programs allows us to significantly reduce the or-

derings considered by fence minimisation. This allows fewer fences to be placed

allowing for increased performance while still maintaining correctness.

• Finally, in Chapter 5, we present SyncDetect, a proof-of-concept tool for dynam-

ically detecting ad hoc synchronisation. This demonstrates another application

of our acquire signatures, in assisting programmers in debugging and manually

porting code to modern language memory consistency models.

7.2 Future Work

While the contributions presented in this thesis are free-standing, there are exten-

sions and further applications for both the message-passing and shared-memory works.

Firstly, there are a number of improvements that can be made to the MPI analysis, both

to increase the scope and to enable other applications. Secondly, our acquire signa-

tures can be used to inform other tools and the tools presented in this thesis themselves

improved.

7.2.1 Static Approximation of MPI Communication Graphs

Extensions to this work include further instantiations of the framework including op-

timisations targeting communication/computation overlap. Development of a general

solution to automatically dealing with incompleteness would also be a significant re-

sult. Additionally, refinement of the current analysis is possible, e.g. adding the han-

dling of non-uniform collective operations.These operations can heavily contribute to

a communication graph and their inclusion would extend the scope to further classes

of programs.



7.2. Future Work 107

7.2.2 Shared-memory Correctness and Performance

Having identified, proven and shown the significance of our acquire signatures as they

apply to Delay-set analysis, future work in this area would see them applied to see

them used in automatic annotation or other analysis tools. We did also conduct some

investigations into whether provable signatures for conservative identification of re-

leases were possible. After this work we are reasonably convinced that no such prov-

able signatures are possible, however heuristic-based approaches may be reasonable

for semi-automatic (user-guided) applications.

Extensions to our SyncDetect tool for the dynamic detection of synchronisation

also include the further application of heuristics. As the current approach cannot be

conservative, it may be possible to further improve the results with heuristics or some

of the techniques discussed both in Chapter 5 and Chapter 6.

From an engineering standpoint it would be beneficial to implement more archi-

tecturally specific register taint tracking. Additionally, it would interesting to examine

any additional benefit that could be brought with a hybrid tool, combining the conser-

vatism of static analysis with the precision of a dynamic approach. Given the lack of

pure address acquires seen in practice, implementing address acquire detection is not

a development priority for future releases of this tool.





Bibliography

[Adv93] Sarita Vikram Adve. Designing memory consistency models for shared-

memory multiprocessors. PhD thesis, University of Wisconsin at Madi-

son, Madison, WI, USA, 1993.

[AG95] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency

models: A tutorial. IEEE Computer, 29:66–76, 1995.

[AH90a] Sarita Adve and Mark D. Hill. Weak ordering - a new definition. In In

Proceedings of the 17th Annual International Symposium on Computer

Architecture, pages 2–14, 1990.

[AH90b] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In

ISCA, pages 2–14, 1990.

[AKNP14] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl.

Don’t sit on the fence - A static analysis approach to automatic fence

insertion. In CAV, pages 508–524, 2014.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools (2nd Edition), pages

906–908. Pearson, 2006.

[AQN+09] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang,

S.Midkiff, and David Wong. BulkCompiler: High-performance se-

quential consistency through cooperative compiler and hardware sup-

port. IEEE Micro, pages 133–144, 2009.

[ARM14] ARM Limited. ARM R©v7-M Architecture Reference Manual (Issue

E.b). 2014.

109



110 Bibliography

[ASLK06] T. Agarwal, Amit Sharma, A. Laxmikant, and Laxmikant V. Kalé.

Topology-aware task mapping for reducing communication contention

on large parallel machines. In IPDPS, page 145, 2006.

[BA08] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++ con-

currency memory model. In PLDI, pages 68–78, 2008.

[Bai90] David H. Bailey. FFTs in external or hierarchical memory. J. Super-

comput., 4(1):23–35, March 1990.

[BBB+91] David H. Bailey, Eric Barszcz, John T. Barton, D. S. Browning,

Robert L. Carter, Leonardo Dagum, Rod A. Fatoohi, Paul O. Frederick-

son, T. A. Lasinski, Robert Schreiber, Horst D. Simon, V. Venkatakrish-

nan, and Sisira Weeratunga. The NAS parallel benchmarks. IJHPCA,

5(3):63–73, 1991.

[BC05] David A. Bader and Guojing Cong. A fast, parallel spanning tree al-

gorithm for symmetric multiprocessors (SMPs). J. Parallel Distrib.

Comput., 65(9):994–1006, 2005.

[BCdJ+06] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron

Murray, Milenko Drinić, Darek Mihočka, and Joe Chau. Framework

for instruction-level tracing and analysis of program executions. In

VEE, pages 154–163, New York, NY, USA, 2006. ACM.

[BKMN10] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-

tosh Nagarakatte. A randomized scheduler with probabilistic guaran-

tees of finding bugs. In ASPLOS, pages 167–178, 2010.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The

PARSEC benchmark suite: characterization and architectural implica-

tions. In PACT, pages 72–81, 2008.

[BMW09] Colin Blundell, Milo M. K. Martin, and Thomas F. Wenisch. In-

visifence: performance-transparent memory ordering in conventional

multiprocessors. In ISCA, pages 233–244, 2009.

[BOS+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark We-

ber. Mathematizing C++ concurrency. In POPL, pages 55–66, 2011.



Bibliography 111

[Bro09] Greg Bronevetsky. Communication-sensitive static dataflow for paral-

lel message passing applications. In CGO, pages 1–12, 2009.

[BYA89] Laxmi N. Bhuyan, Qing Yang, and Dharma P. Agrawal. Performance

of multiprocessor interconnection networks. Computer, 22(2):25–37,

February 1989.

[CBM+08] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, and Kevin Skadron. A performance study of general-purpose

applications on graphics processors using cuda. J. Parallel Distrib.

Comput., 68(10):1370–1380, October 2008.

[CCH+06] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn.

MPIPP: an automatic profile-guided parallel process placement toolset

for SMP clusters and multiclusters. In ICS, pages 353–360, 2006.

[CDB01] Mark Christiaens and Koen De Bosschere. TRaDe, a topological ap-

proach to on-the-fly race detection in java programs. In JVM, page 15,

Berkeley, CA, USA, 2001. USENIX Association.

[CGS10] Franck Cappello, Amina Guermouche, and Marc Snir. On communica-

tion determinism in parallel HPC applications. In ICCCN, pages 1–8,

2010.

[CH95] Paul R. Carini and Michael Hind. Flow-sensitive interprocedural con-

stant propagation. In PLDI, pages 23–31, 1995.

[CL05] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In

SPAA, pages 21–28, New York, NY, USA, 2005. ACM.

[CM69] Daniel Chazan and Willard Miranker. Chaotic relaxation. Linear alge-

bra and its applications, 2(2):199–222, 1969.

[CM91] Jong-Deok Choi and Sang Lyul Min. Race frontier: Reproducing data

races in parallel-program debugging. In PPoPP, pages 145–154, New

York, NY, USA, 1991. ACM.

[Cra94] Travis Craig. Building fifo and priorityqueuing spin locks from atomic

swap. Technical report, Technical Report 93-02-02, University of

Washington, Seattle, Washington, 1994.



112 Bibliography

[CTMT07] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas.

BulkSC: bulk enforcement of sequential consistency. SIGARCH Com-

put. Archit. News, 35(2):278–289, 2007.

[DGS95] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-

driven computation of interprocedural data flow. In POPL, pages 37–

48, 1995.

[DGT13] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything

you always wanted to know about synchronization but were afraid to

ask. In SOSP, pages 33–48, 2013.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming con-

trol. Commun. ACM, 8(9):569–, September 1965.

[DMT13] Yuelu Duan, Abdullah Muzahid, and Josep Torrellas. Weefence: to-

ward making fences free in tso. In ISCA, pages 213–224, 2013.

[DPS07] Anthony Danalis, Lori L. Pollock, and D. Martin Swany. Automatic

MPI application transformation with ASPhALT. In IPDPS, pages 1–8,

2007.

[DPSC09] Anthony Danalis, Lori L. Pollock, D. Martin Swany, and John Cava-

zos. MPI-aware compiler optimizations for improving communication-

computation overlap. In ICS, pages 316–325, 2009.

[DRR08] Jörg Dümmler, Thomas Rauber, and Gudula Rünger. Mapping algo-

rithms for multiprocessor tasks on multi-core clusters. In ICPP, pages

141–148, 2008.

[ECD] ECDF: The Edinburgh Compute and Data Facility. Eddie Linux Com-

pute Cluster. http://www.ecdf.ed.ac.uk.

[EFG+03] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby,

and Shmuel Ur. Framework for testing multi-threaded java programs.

CCPE, 15(3-5):485–499, 2003.

[FF09] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and pre-

cise dynamic race detection. In PLDI, pages 121–133, New York, NY,

USA, 2009. ACM.



Bibliography 113

[FLM03] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. Automatic fence in-

sertion for shared memory multiprocessing. In ICS, pages 285–294,

2003.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The im-

plementation of the cilk-5 multithreaded language. SIGPLAN Not.,

33(5):212–223, May 1998.

[FNU03] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and

how to test them. In IPDPS, page 286.2. IEEE, 2003.

[FS00] Andreas Frommer and Daniel B Szyld. On asynchronous iterations.

Journal of computational and applied mathematics, 123(1):201–216,

2000.

[FY02] Ahmad Faraj and Xin Yuan. Communication characteristics in the NAS

parallel benchmarks. In IASTED PDCS, pages 724–729, 2002.

[gcc] GCC: GNU compiler collection. http://gcc.gnu.org.

[GFB+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack

Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur,

Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel,

Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,

concept, and design of a next generation MPI implementation. In

PVM/MPI, pages 97–104, 2004.

[GFV99] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is sc + ilp=rc? In

ISCA, pages 162–171, 1999.

[GGH91] Kourosh Gharachorloo, Anoop Gupta, and John L. Hennessy. Two

techniques to enhance the performance of memory consistency models.

In ICPP (1), pages 355–364, 1991.

[GGH92] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding

memory latency using dynamic scheduling in shared-memory multi-

processors. In ISCA, pages 22–33, New York, NY, USA, 1992. ACM.

[Gha95] Kourosh Gharachorloo. Memory Consistency Models for Shared-

Memory Multiprocessors. PhD thesis, Stanford University, 1995.



114 Bibliography

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-

bons, Anoop Gupta, and John Hennessy. Memory consistency and

event ordering in scalable shared-memory multiprocessors. In ISCA,

pages 15–26, 1990.

[GS94] Rajiv Gupta and Mary Lou Soffa. A framework for partial data flow

analysis. In ICSM, pages 4–13, 1994.

[GT93] Dan Grove and Linda Torczon. Interprocedural constant propagation:

A study of jump function implementations. In PLDI, pages 90–99,

1993.

[HDH+10] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David

Finan, Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar,

Gerhard Schrom, et al. A 48-core ia-32 message-passing processor

with dvfs in 45nm cmos. In ISSCC, pages 108–109, Feb 2010.

[Hew15] Hewlett-Packard Corporation. HP Z840 Workstation QuickSpecs Ver-

sion 6. February 2015.

[Hil98] Mark D. Hill. Multiprocessors should support simple memory-

consistency models. Computer, 31(8):28–34, 1998.

[HLK03] Chao Huang, Orion Sky Lawlor, and Laxmikant V. Kalé. Adaptive

MPI. In LCPC, pages 306–322, 2003.

[HMCCR93] Mary W. Hall, John M. Mellor-Crummey, Alan Carle, and René G.

Rodrı́guez. FIAT: A framework for interprocedural analysis and trans-

fomation. In LCPC, pages 522–545, 1993.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth

Edition: A Quantitative Approach, chapter 5, pages 346–348. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

[HZKK06] Chao Huang, Gengbin Zheng, Laxmikant V. Kalé, and Sameer Kumar.

Performance evaluation of adaptive MPI. In PPOPP, pages 12–21,

2006.

[Int09] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Devel-

oper’s Manual. December 2009.



Bibliography 115

[Int14] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Ref-

erence Manual. September 2014.

[JM10] Emmanuel Jeannot and Guillaume Mercier. Near-optimal placement of

MPI processes on hierarchical NUMA architectures. In Euro-Par (2),

pages 199–210, 2010.

[KL70] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Par-

titioning Graphs. The Bell system technical journal, 49(1):291–307,

1970.

[KSH10] Barbara Kreaseck, Michelle Mills Strout, and Paul Hovland. Depth

analysis of MPI programs. In AMP, 2010.

[KSY05] Amir Kamil, Jimmy Su, and Katherine Yelick. Making sequential con-

sistency practical in titanium. In SC, page 15, Washington, DC, USA,

2005. IEEE.

[KYL03] Amit Karwande, Xin Yuan, and David K. Lowenthal. CC-MPI: a

compiled communication capable MPI prototype for ethernet switched

clusters. In PPOPP, pages 95–106, 2003.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly ex-

ecutes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,

1979.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Com-

put. Syst., 5(1):1–11, January 1987.

[LCM+05] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur

Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and

Kim M. Hazelwood. Pin: building customized program analysis tools

with dynamic instrumentation. In PLDI, pages 190–200, 2005.

[Lin13] Changhui Lin. Imposing Minimal Memory Ordering on Multiproces-

sors. PhD thesis, University of California, Riverside, 2013.

[LL97] James Laudon and Daniel Lenoski. The sgi origin: A ccnuma highly

scalable server. In Proceedings of the 24th Annual International Sym-

posium on Computer Architecture, ISCA ’97, pages 241–251, New

York, NY, USA, 1997. ACM.



116 Bibliography

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich

Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S.

Lam. The stanford dash multiprocessor. Computer, 25(3):63–79,

March 1992.

[LM92] T.J. LeBlanc and E.P. Markatos. Shared memory vs. message passing

in shared-memory multiprocessors. In Parallel and Distributed Pro-

cessing, 1992. Proceedings of the Fourth IEEE Symposium on, pages

254–263, Dec 1992.

[LNG10] Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient sequential

consistency using conditional fences. In PACT, pages 295–306. ACM,

2010.

[LP01] Jaejin Lee and David A. Padua. Hiding relaxed memory consistency

with a compiler. IEEE Trans. Comput., 50(8):824–833, 2001.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scal-

able synchronization on shared-memory multiprocessors. ACM Trans.

Comput. Syst., 9(1):21–65, February 1991.

[MCT08] P. Montesinos, L. Ceze, and J. Torrellas. Delorean: Recording and

deterministically replaying shared-memory multiprocessor execution

ef?ciently. In ISCA, pages 289–300, June 2008.

[mF] MPI Forum. MPI standard 2.0. http://www.mcs.anl.gov/mpi/.

[MJ11] Guillaume Mercier and Emmanuel Jeannot. Improving MPI applica-

tions performance on multicore clusters with rank reordering. In Eu-

roMPI, pages 39–49, 2011.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory

model. In POPL, pages 378–391, New York, NY, USA, 2005. ACM.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms. In PODC,

pages 267–275, 1996.

[MSM+11] Daniel Marino, Abhayendra Singh, Todd D. Millstein, Madanlal Musu-

vathi, and Satish Narayanasamy. A case for an SC-preserving compiler.

In PLDI, pages 199–210, 2011.



Bibliography 117

[MW03] Bernd Mohr and Felix Wolf. KOJAK - a tool set for automatic perfor-

mance analysis of parallel programs. In Euro-Par, pages 1301–1304,

2003.

[NAW+96] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchen-

bach. VAMPIR: Visualization and analysis of MPI resources. Super-

computer, 12:69–80, 1996.

[Nis04] Hiroyasu Nishiyama. Detecting data races using dynamic escape anal-

ysis based on read barrier. In VM, volume 3, page 10, Berkeley, CA,

USA, 2004. USENIX Association.

[NMT10] Adrian Nistor, Darko Marinov, and Josep Torrellas. Instantcheck:

Checking the determinism of parallel programs using on-the-fly incre-

mental hashing. In MICRO, pages 251–262, 2010.

[NWT+07] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-

wards, and Brad Calder. Automatically classifying benign and harmful

data races using replay analysis. In PLDI, pages 22–31, New York, NY,

USA, 2007. ACM.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Inf.

Process. Lett., 12(3):115–116, 1981.

[PSK+08] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R.

de Supinski, and Daniel J. Quinlan. Using MPI communication pat-

terns to guide source code transformations. In ICCS, pages 253–260,

2008.

[RDB99] Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated

practical record/replay system. ACM Trans. Comput. Syst., 17(2):133–

152, May 1999.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas E. Anderson. Eraser: A dynamic data race detector for multi-

threaded programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[Sen07] Koushik Sen. Effective random testing of concurrent programs. In ASE,

pages 323–332. ACM, 2007.



118 Bibliography

[SFW+05] Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin

Lee, and David Padua. Compiler techniques for high performance se-

quentially consistent java programs. In PPoPP, pages 2–13, New York,

NY, USA, 2005. ACM.

[SH86] Vivek Sarkar and John L. Hennessy. Compile-time partitioning and

scheduling of parallel programs. In CC, pages 17–26, 1986.

[SJM06] Shuyi Shao, Alex K. Jones, and Rami G. Melhem. A compiler-

based communication analysis approach for multiprocessor systems.

In IPDPS, 2006.

[SKH06] Michelle Mills Strout, Barbara Kreaseck, and Paul D. Hovland. Data-

flow analysis for MPI programs. In ICPP, pages 175–184, 2006.

[SNM+12] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd D.

Millstein, and Madanlal Musuvathi. End-to-end sequential consistency.

In ISCA, pages 524–535, 2012.

[SPS99] Dale R. Shires, Lori L. Pollock, and Sara Sprenkle. Program flow graph

construction for static analysis of MPI programs. In PDPTA, pages

1847–1853, 1999.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of par-

allel programs that share memory. ACM Trans. Program. Lang. Syst.,

10(2):282–312, 1988.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek

Williams. Understanding power multiprocessors. In PLDI, pages 175–

186, New York, NY, USA, 2011. ACM.

[SSM06] Shende Sameer S and Allen D. Malony. The TAU parallel perfor-

mance system. Int. J. High Perform. Comput. Appl., 20(2):287–311,

May 2006.

[Szy88] B. K. Szymanski. A simple solution to lamport’s concurrent program-

ming problem with linear wait. In ICS, pages 621–626, New York, NY,

USA, 1988. ACM.



Bibliography 119

[TNGT08a] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dy-

namic recognition of synchronization operations for improved data race

detection. In ISSTA, pages 143–154, 2008.

[TNGT08b] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dy-

namic recognition of synchronization operations for improved data race

detection. In ISSTA, pages 143–154, 2008.

[TNGT09a] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Auto-

mated dynamic detection of busy-wait synchronizations. Softw., Pract.

Exper., 39(11):947–972, 2009.

[TNGT09b] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Auto-

mated dynamic detection of busy-wait synchronizations. Softw., Pract.

Exper., 39(11):947–972, 2009.

[VM01] Jeffrey S. Vetter and Michael O. McCracken. Statistical scalability

analysis of communication operations in distributed applications. In

PPOPP, pages 123–132, 2001.

[WMADC99] Frederick C. Wong, Richard P. Martin, Remzi H. Arpaci-Dusseau, and

David E. Culler. Architectural requirements and scalability of the NAS

parallel benchmarks. In SC, 1999.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal

Singh, and Anoop Gupta. The SPLASH-2 programs: Characterization

and methodological considerations. In ISCA, pages 24–36, 1995.

[WSP+02] Chi-Leung Wong, Zehra Sura, David A. Padua, Xing Fang, Jaejin Lee,

and Samuel P. Midkiff. The pensieve project: A compiler infrastructure

for memory models. In ISPAN, pages 239–244, 2002.

[XLW+09] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen,

Weimin Zheng, Zheng Zhang, and Geoffrey M. Voelker. MPIWiz:

subgroup reproducible replay of MPI applications. In PPOPP, pages

251–260, 2009.

[XPZ+10] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and

Zhiqiang Ma. Ad hoc synchronization considered harmful. In OSDI,

pages 163–176, 2010.



120 Bibliography

[Yea96] K.C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE

Micro, 16(2):28–41, Apr 1996.

[YMG03] Xin Yuan, Rami G. Melhem, and Rajiv Gupta. Algorithms for sup-

porting compiled communication. IEEE Trans. Parallel Distrib. Syst.,

14(2):107–118, 2003.

[YRC05] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: Efficient detec-

tion of data race conditions via adaptive tracking. SIGOPS Oper. Syst.

Rev., 39(5):221–234, October 2005.

[ZJS+11] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and

David Wetherall. Tainteraser: Protecting sensitive data leaks using

application-level taint tracking. SIGOPS Oper. Syst. Rev., 45(1):142–

154, February 2011.

[ZSH+09] Jidong Zhai, Tianwei Sheng, Jiangzhou He, Wenguang Chen, and

Weimin Zheng. FACT: fast communication trace collection for parallel

applications through program slicing. In SC, 2009.

[ZZCZ09] Jin Zhang, Jidong Zhai, Wenguang Chen, and Weimin Zheng. Process

mapping for MPI collective communications. In Euro-Par, pages 81–

92, 2009.


	cover sheet
	McPhersonAndrewJThesis-2

