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Recent years have seen a growing tendency that a large number of generators are 

connected to the electricity distribution networks, including renewables such as solar 

photovoltaics, wind turbines and biomass-fired power plants. Meanwhile, on the 

demand side, there are also some new types of electric loads being connected at 

increasing rates, with the most important of them being the electric vehicles (EVs). 

Uncertainties both from generation and consumption of electricity mentioned above are 

thereby being introduced, making the management of the system more challenging. 

With the proportion of electric vehicle ownership rapidly increasing, uncontrolled 

charging of large populations may bring about power system issues such as increased 

peak demand and voltage variations, while at the same time the cost of electricity 

generation, as well as the resulting Greenhouse Gases (GHG) emissions, will also rise.  

The work reported in this PhD Thesis aims to provide solutions to the three significant 

challenges related to EV integration, namely voltage regulation, generation cost 

minimisation and GHG emissions reduction. A novel, high-resolution, bottom-up 

probabilistic EV charging demand model was developed, that uses data from the UK 

Time Use Survey and the National Travel Survey to synthesise realistic EV charging 

time series based on user activity patterns. Coupled with manufacturers’ data for 

representative EV models, the developed probabilistic model converts single user 

activity profiles into electrical demand, which can then be aggregated to simulate 

larger numbers at a neighbourhood, city or regional level. The EV charging demand 

model has been integrated into a domestic electrical demand model previously 

developed by researchers in our group at the University of Edinburgh. The integrated 

model is used to show how demand management can be used to assist voltage 

regulation in the distribution system. The node voltage sensitivity method is used to 

optimise the planning of EV charging based on the influence that every EV charger 

Abstract 



 
 

ii 
 

has on the network depending on their point of connection. The model and the 

charging strategy were tested on a realistic “highly urban” low voltage network and 

the results obtained show that voltage fluctuation due to the high percentage of EV 

ownership (and charging) can be significantly and maintained within the statutory 

range during a full 24-hour cycle of operation.  

The developed model is also used to assess the generation cost as well as the 

environmental impact, in terms of GHG emissions, as a result of EV charging, and an 

optimisation algorithm has been developed that in combination with domestic 

demand management, minimises the incurred costs and GHG emissions. The 

obtained results indicate that although the increased population of EVs in distribution 

networks will stress the system and have adverse economic and environmental 

effects, these may be minimised with careful off-line planning. 
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With the anticipated increased penetration of varying renewable energy resources 

(such as wind, solar and marine) and the introduction of new types of electrical loads, 

such as electric vehicles (EVs), balancing of generation and demand is becoming an 

increasingly important issue, especially since there is no matching upgrade or 

extension of the supply network itself. Electric vehicles not only can be regarded as a 

transport method, but also as a storage system which provides the opportunity and 

added flexibility of controllable, bi-directional electrical power flow between the 

consumer and the power grid.  

The thesis presents a bottom-up, stochastic model that captures both the EV usage 

patterns and the charging profiles within a household, and integrates it with an 

existing similar domestic electricity demand model. The model simulates the detailed 

household activities based on the data acquired from the UK Time Use Survey (TUS) 

and National Travel Survey (NTS) databases. It is then used to generate uncontrolled 

EV charging demand based on the actual charging specifications of various electric 

vehicles. Ambient temperature, as an influential factor in battery performance, is also 

taken into account.  

The developed model is then used to investigate the potential impact of a fleet of 

electric vehicles charging, specifically looking into the cost of electricity generation, 

greenhouse gas emissions (GHG) and power system demand through low voltage 

residential demand-side management (DSM). An optimisation algorithm is used to 

shift electric vehicles charging loads so as to minimize the combined impact of three 

key parameters: financial, environmental, and demand variability. The results show 

that it is possible to reshape the power demand and reduce electricity cost and GHG 

emissions without adversely affecting people’s driving patterns.  
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Finally, a combined household demand side management strategy is developed with 

the objective of assisting regulation of the supply voltage. Electric vehicle charging 

demand and domestic “wet load” demand are manipulated in the optimisation 

algorithm. Network voltage sensitivity is used in the optimisation algorithm to 

minimise the number of loads that need to be adjusted in order to achieve the 

desired level of voltage regulation. 
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Chapter 1. Introduction 
 

1.1 Challenges for Future Power System 

Power systems are defined as a network of electrical components implemented to 

generate, transfer and distribute electric power. In the past years, most of the studies 

are focused on the generation and transmission level such as increasing the power 

generation capacity, reducing power generation and transmission cost, stability and 

security of power network, maintenance of network equipment, etc.  However, with 

the development of technology, the traditional power system issues are not 

dominated in the future power system. Some new challenges such as better 

customer services, environmental protection and more social responsibility. [1]- [5] 

There is a growing tendency that a large number of generators are connected to the 

power system network includes renewable (such as solar PV, wind turbines and 

biomass) and grid-scale battery storage. These are the power input to the grid which 

are unpredictable and unstable compared with the conventional and nuclear power 

plant. From the aspect of consumption, increasing number of new electric appliances 

are connected to the network, especially a higher penetration level of electric 

vehicles. [6]- [9]  

The user’s activities patterns are changing all the time, and are challenging to predict. 

Therefore two-way power flows are presented rather than the previous one-way 

power network. The vast uncertainties and instabilities in both generation and 

consumption sides are dramatically increasing the difficulties in balancing generation 

and demand.  

Furthermore, the delivery of electricity is not the only target for future distribution 

network operators. Distribution network operators are not merely the energy 

supplier but also should act as the company and thus take more social responsibility. 

Therefore, customer services and environmental protection should be considered 

two priorities for the future. How to provide better customer service and how to, 
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meet our customers’ future needs and thus increase the satisfaction of each 

customer are essential questions. So too is how to lead all of society towards more 

low-carbon energy consumption behaviours. These problems cannot be ignored and 

will become the main challenges for the future. 

1.2 Research objectives and scope 

The research presented next in this PhD thesis can be divided into three primary 

objectives. The first objective is to create a bottom-up household electric vehicle 

charging activity profiles and demand model. This model introduces a Monte Carlo – 

Markov chain (MCMC) to simulate the detailed household activities based on the 

data acquired from the UK Time Use Survey (TUS) and National Travel Survey (NTS). 

These driving activity profiles are converted into electric vehicle charging power 

demand by developing the electric vehicle charging model. The second objective is to 

minimise the combined cost of low voltage distribution power network from aspect 

of finance, greenhouse gases emissions and power demand variations by using the 

multi-objective functions. The third objective is to develop a combined household 

demand side management to control household voltage level. Electric vehicle 

charging demand and wetload demand will be manipulated in the optimisation 

algorithm. Voltage sensitivity are used in the optimisation algorithm to maximise the 

influence of active power demand on the voltage level and minimise the disturbance 

of demand side management. 

The specific research objectives can be summarised as follow: 

1. The developed household user driving activity profiles can provide the 

detailed travel information for each household which shares the strong 

correlation with other daily activity profiles. 

2. The electric vehicle charging load can model the accurate daily power 

consumption of each electric vehicle which takes into account external factors 

such as local temperature. 
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3. The impact of uncontrolled electric vehicle charging on the low voltage 

distribution network will be investigated. Various electric vehicle penetration 

levels and different generic distribution network will be implemented in the 

simulation. 

4. An assessment of the influence of electric vehicle charging demand side 

management on low voltage distribution network will be carried out by multi-

objective function optimisation algorithm calculating financial, environmental 

and energy system cost. 

5. The household demand optimisation algorithms are developed based on 

voltage sensitivity to maintain the voltage level in the low voltage distribution 

network. 

6. The comparison and analyst are conducted between electric vehicle charging 

demand management and combined household demand management; they 

operate, also between two proposed optimisation algorithms based on bus 

voltage and voltage sensitivity. 

The scope and boundaries of this research are defined as follow: 

1. The household electric vehicle charging model is based on the previously 

developed load mode in our research group. This is a supplement and 

perfection of previous work. 

2. The network used in the simulation is a typical generic UK low voltage 

residential and highly urban network; all of the customers are domestic. 

3. The OpenDSS is used to model the power flow analysis in all cases. 

Furthermore, Matlab is implemented as COM Interface of OpenDSS to 

achieve demand side management.  

 

1.3 Thesis statement 

A bottom-up, user-inclusive electric vehicle charging model can provide accurate 

aggregated demand profiles, which can then be used to develop charging 
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management strategies that can improve voltage regulation, generation costs and 

environmental impacts within the future electricity. 

 

1.4 Acknowledgement of the thesis contributions 

The main contribution of this research can be summarised as  

1. Development of household users’ driving activity profiles and electric vehicle 

charging model. 

2. The investigation into the influence of uncontrolled electric vehicle charging 

demand on financial and environmental cost and low voltage distributed 

power networks. 

3. Development of multi-objective optimisation algorithm to minimise the 

combined cost including finance, environment and energy system. 

4. Development of an optimisation algorithm to implement the demand side 

management of combined household demand based on voltage sensitivity. 

1.5 Thesis structure 

This thesis is divided into seven chapters. Chapter 1 includes an overview of the whole 

research area, highlighting the contributions of this project and forming the 

introduction of this doctoral thesis.   

Chapter 2 reviews available literature published on the two main subjects, electric 

vehicle charging model and control voltage regulation. In the section detailing the 

electric charging mode, various electric vehicle charging demand methods and 

models will be analysed and compared. Of first importance is how to model people’s 

travelling activities; secondly, we consider how to simulate the electric vehicle 

charging model. The accuracy of the results of these two parts serves as the input 

data of the whole model and is critical to both the further assessment of the influence 

of uncontrolled charging and implementing the optimisation algorithm. As the 

foundation of this research, electric vehicle policy will play an essential role in the 
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future development of vehicle-to-grid technology. Global electric vehicle policy will 

be summarised and analysed, particularly policy in place within the UK. The 

knowledge of low-voltage distribution networks is also introduced to show the 

reason why demand side management is necessary and essential for the current 

distribution network operator. 

Chapter 3 demonstrates the methodology for developing the household users’ 

travelling activity profiles and the electric vehicle charging demand model. For 

household users’ travel activity profiles, the detailed processing steps will be 

presented and explained from a large body of raw data taken from the UK Time User 

Survey (TUS) and National Travel Survey (NTS) in the final mathematical model which 

could generate the complete highly-correlated, household activity profiles. [10] 

For the electric vehicle charging demand model, it will generate the uncontrolled 

charging demand based on various specifications of electric vehicles. Ambient 

temperature, as an influential factor in battery performance, will also be taken into 

account. 

Chapter 4 presents a demand side management optimisation algorithm based on the 

voltage sensitivity in order to solve voltage variation issues in the low-voltage 

distribution networks. Firstly, the effect of uncontrolled charging demand with 

various penetration levels will be analysed. The methodology of calculating voltage 

sensitivity is also demonstrated step-by-step. Subsequently, another optimisation 

algorithm based on bus voltage will be compared to the algorithm proposed herein. 

Four defined parameters are employed to measure the performance of optimisation 

algorithms.  

Chapter 5 shows demand side management of wetload demand in the household. 

The detailed household wetload demand profiles are demonstrated and analysed. 

Combined household demand side management is then implemented, based on 

voltage sensitivity including electric vehicle charging and wetload demand. Finally, 
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comparisons are conducted between combined household demand side 

management and electric vehicle charging demand management. 

Chapter 6 investigates the potential impact of a fleet of electric vehicles uncontrolled 

charging on the cost of electricity generation, greenhouse gas emissions (GHG) and 

power system demand. In order to decrease the negative impact of uncontrolled 

charging, the multi-objective optimisation algorithms are proposed through low 

voltage residential demand-side management (DSM). However, optimisation 

algorithms proposed in this chapter are based on the energy aspect which doesn’t 

include power system issues such as voltage variation. Therefore, the next chapter 

will discuss and solve this problem regarding power system. 

Chapter 7 is a summary and overview of all contributions to the research made in the 

previous chapters from generating users’ activity profiles to combined demand side 

management.  Furthermore, some limitations and reflections on the research are 

discussed. Finally, a future trajectory for the improvement of this research will be 

offered as a conclusion. 
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter presents the background and literature review of the relevant research 

topics of this thesis. The summary of global electric vehicle policy and power system 

network status are presented, and discussion of current electric vehicle driving 

behaviours and charging models will be conducted. Furthermore, demand side 

management, vehicle-to-grid technology and voltage control regulations are the core 

optimisation method for this research and will thus be demonstrated in detail.  

2.2 New Electric Vehicle Policy  

According to electric car market statistics from April 2018, there are almost 145,000 

plug-in vehicles on the road in the UK, which includes pure-electric vehicles (EVs), 

plug-in hybrid electric vehicles (PHEVs) and hydrogen fuel cell electric vehicles (FCEVs) 

[11], [12]. 

Compared with 3,500 cars in 2013, the demand for electric vehicles is experiencing 

dramatic growth. The following infographic provides detailed information on the UK 

electric vehicle market and ancillary equipment. 

 

Figure 2. 1 UK electric vehicle market [13] 

Despite this growth, the electric market is still at a very early and immature stage. 

There are some obstacles on the path to stimulate the development of the electric 

vehicle market which cannot be ignored. Limited battery ranges, insufficient electric 
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vehicle charging points and stations, and charging periods which are too lengthy will 

lead to the range anxiety of users [14], [15], [16]. 

Meanwhile, compared with conventional vehicles, the sales prices of electric vehicles 

are still too high. Although most of the automobile manufacturers are releasing their 

new electric vehicle or plug-in hybrid vehicle (PHEVs) models, the available options 

of electric vehicles in the market are still limited. Currently, most people choose to 

buy an electric vehicle as the second or third car in their household, as supplementary 

to conventional vehicles. Furthermore, some potential concerns also have an impact 

on the popularisation of electric vehicles such as the lifespan of the battery package, 

electricity charging prices and, rapid generation switches of the electric vehicle.  

 

Figure 2. 2 UK electric vehicle number from 2010 to 2017. [17] 

Therefore, it may be seen that government will play a significant role in overcoming 

these problems so as to promote the rapid and healthy development of electric 

vehicles. So far, the overall actions of the UK government can be summarised as 

below: 
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Firstly, the UK has aimed to cut greenhouse gas emissions by 80% by 2050 and is 

bound to this by the 2008 Climate Change Act. The King Review of low-carbon cars 

was commissioned by the UK government in 2007. This review concluded that electric 

vehicles would be necessary to achieve an 80% reduction in transport emissions [18]. 

The Department for Transport (DfT) and the Department for Business, Innovation and 

Skill (BIS) have led on EV policy in recent years, with a raft of initiatives put in place 

since 2007. In 2009, the Office for Low Emission Vehicles (OLEV) was created jointly 

within DfT, BIS and the Department of Energy and Climate Change (DECC) to oversee 

aspects of EV funding. They are providing over £900 million to position the UK at the 

global forefront of ultra-low emission vehicles development, manufacture and use. 

For instance, they launched a £30 million investment in revolutionary vehicle-to-grid 

technologies in February 2018. 

The government issues a plan for an electric vehicle consumer subsidy from January 

2011 which provide a subsidy of 25% of the purchase price up to a maximum of £5000 

for vehicles meeting the performance, reliability and safety criteria. Moreover, £43 

million worth of funding was confirmed in July 2010 to support this plan. Furthermore, 

there are additional financial benefits for electric vehicle owners, such as no vehicle 

excise duty. Some local councils also issued their incentives. All electric vehicles in 

London will be exempt from the central zone congestion charge. In Scotland, the 

government provides electric vehicle interest-free loans and funding to cover part of 

the cost of installing a home charging point.  

In the view of the global electric vehicle market, 95% of electric vehicles are sold in 

10 countries based on market shares: China, United States, Japan, Canada, Norway, 

United Kingdom, France, Germany, Netherlands and Sweden. These countries 

reached an agreement and proposed the most significant and profound electric 

vehicle policy in 2017 which lay a solid foundation for electric vehicles in the future. 
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France: Paris plans to end combustion engine vehicles, or fossil energy vehicles, by 

2030. France will cease sales of petrol and diesel car by 2040, a policy announced in 

2017 [19]. 

Britain: the UK plans to ban the sale of new petrol and diesel cars in Britain by 2040 

to meet a target of having no petrol or diesel cars on the roads by 2050; this was also 

announced in 2017. The Scottish Government has set forth a plan for new petrol and 

diesel cars and vans to be phased out in Scotland by 2032, eight years ahead of the 

UK Government’s target [20]. 

China: China is the world’s biggest vehicle market. The government has not given a 

specific timetable for a ban on the productions and sale of fossil fuel cars but has 

announced that at some point in the future it will occur [21]. 

Germany: Germany’s Bundesrat voted to ban all internal-combustion engines in new 

vehicles by 2030 completely [22]. 

Netherlands: The Dutch government presented its detailed plan which includes 

making all new cars emission-free by 2030 – virtually banning petrol and diesel-

powered cars in favour of electric vehicles [23]. 

Norway: Norway will ban petrol-powered cars by 2025 and aim for 100% of 

Norwegian cars to be running on green energy by 2025 [24]. 

2.3 Low Voltage Network Status 

The low voltage network is the final part of the electric power networks which deliver 

electricity from the distribution transformer to end customers. The low voltage 

network is designed to feed the customers with reliable and high-quality power. The 

low voltage networks include transformers, overhead or underground cables, various 

topologies and complicated load profiles. Therefore there are lots of specific 

requirements and regulations for network and power quality. One of the most critical 

indexes is the voltage level. The following table shows most of the household voltages 

and frequencies of alternating current (AC) electricity adopted in the world. The 
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residential voltage level varies from 100V to 240V; most countries use the 50Hz as 

their AC frequency, and a few countries use 60Hz.  

 

Country Residential voltage 

level / V 

Frequency 

/ Hz 

Fiji 240 50 

Qatar 240 50 

United Kingdom 230 50 

Europe 230 50 

India 230 50 

Australia 230 50 

Brazil 220 60 

China 220 50 

Mexico 127 60 

United States 120 60 

Canada 120 60 

Cuba 110 60 

Japan 100 50/60 

Table 2. 1 Global voltage and frequency requirement 

However, in the low-voltage distribution network, voltage level changes all the time 

as a result of the varying power flows between the point of connection and the bulk 

supply point. Sometimes, voltage fluctuations are beyond the statutory range, 

because most household electric appliances are designed, to operate within the 

proper range. Too low or high a voltage will lead to the damage of the connected 

equipment and will influence its performance. There are two reasons for this 

phenomenon.  

1. The unbalance between generation and power demand is the main reason, 

especially when increasing renewable energy and electric appliances are 
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connected to the power grid. When the system is overloading, and there is a 

significant power surge in demand, the voltage level will become lower than 

the rated value. When the system is underloaded and more power is injected 

into the power grid such as high penetrations of renewable energy or 

dramatic reductions in power demand, the voltage level will become higher 

than the rated value. 

2. Voltage loss on the transmission line: If a consumer is far away from a bulk 

supply point such as a substation, the voltage received in the household will 

be lower than normal which is because the inherent resistance and 

impedance of the transmission line will lead to the voltage loss. Meanwhile, 

the state of the wire also contributes to voltage losses such as loose 

connections, age and corrosion. 

Therefore, national regulations determine the acceptable voltage ranges at the 

various voltage levels within the electricity network. A harmonised European voltage 

range of 230V of -6% to 10% has been proposed, i.e. it should be between 216.2V to 

253V.  From 1st January 2003, the European household voltage tolerance level was 

widened to ±10%, i.e. be between 207V to 253V. However, there is no practical 

change in the UK. The household voltage tolerance level is still 230V of -6% to 10%, 

i.e. between 216.2V to 253V, which has been stated by UK distribution code. 

2.4 UK Electric Vehicle Charging Status Analysis 

According to the Guide for Taxi and Private Hire Vehicle (PHV) Drivers issued by the 

UK Power Network (UKPN), approximately 66% electric vehicle owners will charge 

their cars at home, while around 20% of electric vehicles will be charged at work; only 

10% of users will charge on their car route. [25] 

Therefore, low-voltage distributed network operators will take the primary 

responsibility for supporting electric vehicle charging point (EVCP) and promoting the 

rapid development of electric vehicles. 
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Currently, DNOs define three type of charging points: slow, fast and rapid-charging; 

these are based on all the available electric vehicles in the market. 

Slow charging: The charging rate is up to 3kW. For this charging rate, the charge point 

installer can assess the wiring and the equipment which connects to the network 

without the upgrade of the electricity supply. The DNOs should be notified. 

Fast charging: The charging rate is between 7 and 22kW.  

Rapid charging: The charging rate is higher than 43kW. 

For fast and rapid charging, it is necessary to upgrade the electricity supply of your 

residential property. The application should be made from your charge point installer. 

Moreover, DNOs will assess your application and provide the offer if it is appropriate. 

The electricity supply includes changes to the household internal wiring which will be 

prior to installing the charging point based on the report from UK Power Networks. 

The Government’s Office for Low Emission Vehicles (OLEV) offers grants of up to 75% 

(maximum £500) for the single residential charge point. For those who do not have 

the private parking space, charge point can be accessible in many public places such 

as supermarket, street parking zone and the public car park.  

With the increasing penetration level of the electric vehicle, smart charging will be a 

top priority for the further development. The primary method of smart charging can 

be divided into two aspects: 

1. Control or shift electricity consumptions of electric vehicle charging; 

2. The utilisation of the electric vehicle battery for putting power back home or power 

system. 

However joint effects from government and industry will be made to promote the 

more engagement in the smart charging in the following aspects. 

1.  Visibility of information 
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There is plenty of information need to be collected before the implementation of 

smart charging. The first is the information of electric vehicles such as the location of 

charge point, charging rates, state of charge of the vehicle, etc. These data will 

provide the minimum information for DNO to value and assess the further 

management for the network. Moreover, these data can be collected by the smart 

meter or from the charging point directly. However, the data privacy concerns cannot 

be ignored during this process. Not every customer is willing to share their household 

activity information such as electric vehicle charging status, electricity consumption, 

with the service providers and distributed network operators. DNOs believe that this 

problem can be solved that smart charging can make them deliver the better services 

to meet customers’ expectations.  

Apart from the information collected from electric vehicle charging process, it is also 

vital to make the smart charging plan simple, accessible, and beneficial to the users. 

At the early stage, better-informed users will be more likely joining the smart 

charging plan. It should ensure the smart charging plan simple and easy to choose. 

Above all, tariffs and benefits are the most important for users which will stimulate 

users’ engagement in smart charging plan. 

2. Standards 

Standards [25] can make the sure the realisation of smart charging safe, securely. At 

the same time, standards are able to make the smart functionality to be scaled and 

applied consistently which could be beneficial to consumers. These standards are 

regarded equivalent to the 3G/4G/5G technology in the telecoms industry which 

thrive and grow the market for smartphones. Currently, the similar work is underway 

in the Netherlands by ElaadNL which is the knowledge and innovation centre in the 

field of smart charging infrastructure in the Netherlands. The outcomes developed 

from their lab will provide the excellent value for the UK.  

The standards are designed to accommodate the different degree of electricity 

supply which includes: 
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 A simple switch on/off instruction: it is the minimum requirements for the 

electric vehicle charge point and should be controlled remotely via computer 

or cell phone. 

 Instructions to change the charging rate: change rate can vary based on the 

requirements of consumers and DNOs; 

  Change the rate and duration of charge disruption based on the electric 

vehicle battery state of charge; 

 Bi-directional power transfer by Vehicle-to-Grid technology. 

Visibility and standards make significant contributions to realising the value of smart 

charging. Meanwhile, electric vehicle manufacturers, aggregators, energy suppliers, 

network operators are supposed to work together to develop these standards.  

 

2.5 Electric Vehicle Charging Load Modelling 

Electric vehicle charging load modelling includes driving behaviour model and electric 

vehicle charging model. Most of the existing research conducted into electric vehicle 

charging management and modelling focuses on optimisation algorithms. The 

electric vehicle charging profiles are developed from rough probability statistics 

which can only describe the general trend of users’ driving behaviour and charging 

profiles.[26]-[33] 

2.5.1 Driving Behaviour Model 

To model electric vehicle charging demand, the initial stage demands the generation 

of household users’ driving behaviour profiles which are supposed to include the 

arriving home time, second-day departure time and, driving mileage. By reviewing 

related paper published recently, two principal methods are employed. 

The first method is gathering data directly from electric vehicles. As the popularity of 

electric vehicles increases, many projects and companies are launching tracking 

systems on electric vehicles to collect their travelling data. [34]- [40] 
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 For example, the CABLED project started from 2009 to June 2012. 110 ultra-low-

carbon vehicles provided by some manufacturers were trialled across Birmingham 

and Coventry. Data collected include vehicle performance, infrastructure usage 

patterns, impacts and requirement within the minimum 12 months driving 

experience. 

On the other hand, travelling data is collected from GPS fitted on gasoline or electric 

vehicles included trip length, duration, speed and location. The advantage of this 

method is to make sure all the data is derived from reality and can accurately track 

people’s driving behaviour. However, there are some limitations. Usually, the sample 

size of this method is limited and the period of data collection needs to be longer.  

The second method is to randomly generate a series of daily trip times based on self-

defined probability distribution function which what most researchers to date have 

chosen. [41]- [45] 

Usually, the probability can be obtained from various travel survey or report issued 

by transport departments. This data includes the possibility of starting travel and 

arriving home for 24 hours, the average daily mileage, etc. Compared with the first 

method, the mathematical method can easily produce a mass of electric vehicle 

charging profiles, but the accuracy and authenticity of the driving behaviours are not 

as reliable as the data directly derived from real use.   

Furthermore, the final objective of driving behaviour is to obtain the household 

electric vehicle charging demand. [46], [47] 

Then the optimisation algorithms can be implemented to achieve various targets. In 

most cases, electric vehicle charging demand management is conducted in the low-

voltage distribution network which contains plenty of varying kinds of power demand. 

[48]- [52] 

For the two methods mentioned above, the driving behaviour is regarded as the 

isolated daily activities. The relationships between electric vehicle charging demand 

and other household electricity consumption activities are not taken into account. 
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The total power demand of a household is simply the aggregation of electric vehicle 

charging demand and baseload demand. In actuality, electric vehicle charging 

demands have a strong correlation with household baseload demands. The 

mismatching of electric vehicle charging demand and household baseload demand 

will result in a negative impact on the development of optimisation algorithms for 

electric vehicle charging demand.  

2.5.2 Electric Vehicle Charging Model 

Currently, most electric vehicles are equipped with batteries which are lithium based 

such as Li-ion. [53], [54] 

The following table shows complete charging and battery information for the most 

popular electric vehicles available in the market. As we can see from the table, 

electric vehicle charging schemes can be divided into three level. The first level is 

standard home charging which is usually 1-phase grid connection and below 10 kW. 

The second level is upgraded home charging which is usually 3-phase grid connection 

and around 20 kW. The third level is supercharging which is employed in the charging 

station. The charging rate is usually above 60 kW. The battery capacity of electric 

vehicles also varies from 16 to 100 kWh to meet the differing demand of customers 

which can provide at least 90 miles and up to 335 miles driving range in the condition 

of the fully charged battery. Moreover, the following information is given by the 

official manufacturer. However, in reality, there are plenty of external factors 

influencing the available range, such as ambient temperature, users’ driving 

behaviour, the usage of the electronic devices, etc. 
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EV Type Battery 

Capacity / 

kWh 

 

Range / mile 

 

Charging Rate / kW 

Tesla S 60 - 100 335 1-phase grid connection: 7.4 

3-phase grid connection: 11 

Wall connector:16.5 

Supercharging: above 60 up to 120 

Tesla 3 50 - 70 220 - 310 

BMW i3 22 - 33 124 - 205 1-phase grid connection: 7.4 

3-phase grid connection: 22 

Public AC charging: 7.4 

Nissan Leaf 24 - 40 120 - 168 Standard home charging: 3.3 

Upgraded home charging: 6.6 

Renault Zoe 22 – 41 160 - 250 Home solo charger: 3.6 / 7 / 22 

Citroen C-zero 14.5 90 Home charging: 3.7 

Rapid charging up to 62.5 Peugeot iOn 16 93 

Table 2. 2: Electric vehicle battery and charging information 

For electric vehicle battery charging, there are three methods during the battery 

charging process. [55]- [61] 

1. Constant Voltage (CV). The constant voltage charging method usually charges the 

battery at a constant voltage level which allows full current flow into the battery until 

it has been fully charged. This charging method is the simplest and widely 

implemented with various kinds of batteries. The charging current changes during 

the whole process. In the beginning, the charging current is quite large and then is 

gradually reduced to zero when the battery reaches fully charged state. This method 

is suitable for lead-acid types while it is not suitable for Lithium-Ion types. 

2. Constant Current (CC). The constant current charging scheme is used to maintain 

a constant current for battery during the whole charging process. The state of charge 
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(SOC) will increase linearly. However, this method could lead to overheating of the 

battery when it is over-charged.  This charging scheme is suitable for Nickel Metal 

Hydride (Ni-MH).  

3. The combination of constant voltage and constant current. In practice, the 

complete charging process includes both constant voltage and constant current 

charging methods which will be adjusted based on the battery specifications. Here is 

an example for typical Li-ion battery charging profiles. 

At the first pre-charge stage, the battery will be charged at a low, constant current if 

it is not pre-charged. Then the current will be increased to a higher value; the battery 

will still be charged in the constant current method. The next stage is the constant 

voltage when the state of charge or battery voltage reaches a certain threshold point. 

The current will drop slowly, and the constant voltage charging method can 

effectively maintain the battery voltage at the desired level. However, the main focus 

of this project is not modelling the electric vehicle battery charging process. 

Therefore, the charging voltage and current will not be taken into account in the 

modelling. The constant charging power will be applied in the charging process which 

is used for most electric vehicle charging demand simulation. 

2.6 Demand Side Management (DSM) 

Today, approximately 30-40% of the total energy consumption all over the world are 

from the residential sector. Unlike other kinds of power demand consumption, 

residential power demands have a strong seasonal and daily pattern. [62]- [65] 

Moreover, the difference between the power demand peak and valley could be huge 

within a typical day. However, in order to meet these occasional power demands, the 

electric utilities and power network companies have to increase generation capacity 

to meet the demand. The philosophy of traditional power systems is to supply all 

power demands whenever needed and usually more power will be prepared for an 

emergency. However, the new philosophy of power system operation is to become 

more efficient and keep power demand fluctuations as low as possible. 
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The definition of demand side management is that end-use customers change their 

energy consumption patterns in response to various methods adopted such as 

financial incentives. Usually, there are three demand response methods customers 

can adopt. [66]- [70] 

 

Figure 2. 3 DSM’s six categories of load shaping objectives [71] 

1. First is to reduce the power demand during the peak demand period without 

influencing users’ activities or with permission from users. This method can decrease 

the additional power demands in the household from items such as refrigerators, air 

conditioners and heating systems. For instance, the refrigerator can be shut down for 

a few minutes during peak hours, and it will not affect the food quality. 

2. Second is to shift power demand from peak periods to off-peak periods. This 

method is employed for some uncritical power demand such as dishwashing, tumble 

dryer and washing machine. For example, users could start the washing machine 

before they go to work in the morning. At this time, the washing machine can be 

postponed to a later time when electricity price is lower. It not only cuts electricity 

bills for customers but also reduce the peak demand pressure for power networks in 

the morning. Users will suffer no loss during this process. 
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3. The third is installing distributed generation close to or embedded within the 

consumer location. With the popularisation of the distributed generation system, 

more and more households or factories install photovoltaic panels and energy 

storage. Customers can use the power generated from their own distributed 

generation systems, which significantly reduces demands for power systems and also 

saves money. Compared with previous methods, this will not influence users’ activity 

patterns, but will modify the profile of the power exchange with the grid. 

Therefore, detailed demand side management method should be chosen based on 

various users’ behaviour and different electric appliances. [72], [73] 

However, electric vehicle charging demand is unlike other load demands. All three 

methods mentioned above can be implemented with electric vehicle charging 

demand. For instance, electric vehicle charging can be interrupted and also delayed 

during the charging process without influencing users’ next travelling activities. At 

the same time, the electric vehicle is regarded as the flexible energy storage in the 

distribution network. It not only consumes electricity but also can store electricity 

when electricity prices are low or renewable energy is surplus in the system. It even 

can supply electricity back to the grid when it is necessary which will be discussed in 

the part of Vehicle-To-Grid (V2G) technology.  

In the future, the electric vehicle will play an essential role in the demand side 

management in the distributed power network. Meanwhile, the development of 

smart grid technology will stimulate the development of demand side management. 

In summary, the advantages of demand side management are obvious and can be 

detailed as follows: 

1. Reducing the generation margin: usually the total capacity of installed generation 

in the power system should be larger than maximum power demand to guarantee 

enough power supply in case of complex power demand. It means plenty of 

generation capacity is built as the reserve which will not be used frequently. Demand 
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side management can provide an alternative form of reserve, and significantly reduce 

the generation margin. [75], [76] 

2. Improving cost and efficiency of the distribution and transmission network: The 

use of demand side management can provide power system support services such as 

frequency response, voltage regulation, short-term operating reserve, triad 

management and greenhouse gas reduction. [77], [78] 

3. Accommodating more intermittent renewable energy: In order to reduce the 

greenhouse gas emissions, the electricity generation system has to absorb more and 

more renewable energy such as wind and solar power. The higher uncertainty of 

renewable energy requires the system with the increased amount of reserve. The 

application of demand side management could improve the penetration level of 

renewable energy without increasing the extra investment to power system. [79]- 

[83] 

The advantage of demand side management is evident. However, there still are some 

challenges in the application of demand side management. First is the lack of 

Information and Communication Technology (ICT) infrastructure such as advanced 

metering, control units and, communication technology beyond that contained in 

traditional systems. [84] 

Second is the lack of appropriate incentives and solution to encourage more and 

more participants. It is vital to ensure that all participants and stakeholders can 

benefit from demand side management schemes. [85]- [88] 

 

2.6.1 Smart Grid  

The first official definition of Smart Grid was proposed by the Energy Independence 

and Security Act of 2007 (EISA-2007). Ten characteristics were given to describe 

Smart Grid, and this can be regarded as the most comprehensive and fundamental 

definition of the term. The smart grid should be considered the modernisation of 
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current electricity transmission and distribution system to maintain a reliable and 

secure electricity infrastructure which can meet the future demand growth and also 

include the following characteristics. [89]- [91] 

 “(1) Increased use of digital information and control technology to improve reliability, 

security, and efficiency of the electric grid. (2) Dynamic optimization of grid 

operations and resources, with full cyber-security. (3) Deployment and integration of 

distributed resources and generation, including renewable resources. (4) 

Development and incorporation of demand response, demand-side resources, and 

energy-efficiency resources. (5) Deployment of 'smart' technologies (real-time, 

automated, interactive technologies that optimize the physical operation of 

appliances and consumer devices) for metering, communications concerning grid 

operations and status, and distribution automation. (6) Integration of 'smart' 

appliances and consumer devices. (7) Deployment and integration of advanced 

electricity storage and peak-shaving technologies, including plug-in electric and 

hybrid electric vehicles, and thermal storage air conditioning. (8) Provision to 

consumers of timely information and control options. (9) Development of standards 

for communication and interoperability of appliances and equipment connected to 

the electric grid, including the infrastructure serving the grid. (10) Identification and 

lowering of unreasonable or unnecessary barriers to the adoption of smart grid 

technologies, practices, and services” [92] 

However, different countries propose varying Smart Grid projects which are based 

on differing power system situation and requirement. For example, as the world’s 

largest consumer of electricity and demand, the State Grid Corporation of China has 

proposed a 5-year plan for constructing Ultra High Voltage (UHV) grids for completing 

a strong, smart grid by the end of 2020. According to the Strategic Development 

Document for Europe’s Electricity Network of the Future, “Smart Grid is an electricity 

network that can intelligently integrate the actions of all users  connected to it – 

generators , consumers and those that do both – to efficiently deliver sustainable, 

economic and secure electricity supplies.” 
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According to the Smart Grid Vision and Routemap published in February 2014 from 

Department of Energy & Climate Change and Ofgem, there are three key stages in 

the development of a smart grid. 

 

Figure 2. 4: Key stages in the development of a smart grid [93] 

1. The first phase of smart grid development is focused on capturing the short-term 

benefits of deploying smart technologies and solutions, while also preparing for the 

accelerated deployment of distributed generation and increasing electrification of 

heating and transport projected to take place in the 2020s; 

2. The second phase of smart grid deployment sees a much more significant role for 

the consumer, following the successful roll-out of a smart meter across Great Britain; 

3. The third phase will see Great Britain achieve its vision objective where a smart 

grid enables Great Britain to develop a fully integrated smart energy system and a 

platform for the further development of technologies to support the increasing 

electrification of the heating and transport sector and smart homes and business.[94], 

[95], [96] 

A general summary of the characteristics of the traditional power grid and smart grid 

are present in the following table: 
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Traditional Power Grid Smart Grid 

Electromechanical Digital 

One-way communication Two-way real-time communication 

Centralized power generation Distributed power generation 

Radial Network Dispersed Network 

Less date involved A large amount of data involved 

Small number of sensors Many sensors and monitors 

Manual monitoring Automatic monitoring 

Manual control and recovery Automatic control and recovery 

Less security and privacy concerns Prone to security and privacy issues 

Limited control Extensive control system 

Slow response to emergencies Fast response to emergencies 

Fewer customer choices Many customer choices 

Human attention to system disruptions Adaptive protection 

Table 2. 3: Summary of the traditional power grid and smart grid 

The benefit of the smart grid can be concluded in four aspects: 

1. Consumer benefits: It will effectively minimise consumer bills and encourage more 

consumer and community participation. The implementation of a Smart Grid will 

reduce plenty of infrastructure cost for the traditional power grid and finally this cost 

will pass through to electricity end-users. The smart meter systems will provide users 

with more detailed information about their electricity consumption. At the same time, 

some energy management can be deployed by the energy supplier. [97] 

2. Economic benefits:  The development of a Smart Grid will create more jobs and 

provide solid support for economic growth. It is estimated that approximately £13bn 

of Gross Value will be added from now to 2050, which could create 8000 jobs during 

the 2020s and rise to 9000 during the 2030s. Furthermore, the Smart Grid will 

increase the existing power network capacity and faster, and cheaper two-way 

connections will be built for suppliers and customers. Demand side management will 

play an increasingly vital role in the Smart Grid. [98], [99], [100] 
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3. Energy security benefits: It will improve power system security and reliability. The 

Smart Grid will offer a more intelligent network which could assist energy supplier 

and power grid operator to find power outages and interruptions in time. Once the 

power system failure occurs, it can be restored more quickly. Meanwhile, the Smart 

Grid will effectively widen energy system integration such as combined heat and 

power (CHP), heating and power (CCHP), gas fired heat pumps, energy storage 

system and renewable energy. The whole energy system and infrastructure will be 

integrated and optimised by Smart Grid. [101]- [104] 

4. Low carbon transition benefits: It will enable more low-carbon technology to be 

deployed. The environmental-friendly energy consumption patterns will be proposed 

with the rapid development of new technology such as electric vehicle, renewable 

energy. The combination of electric vehicle and the Smart Grid will replace not only 

conventional petrol or diesel cars but also provide strong support to the power 

system reinforcement. [105]- [108] 

2.6.2 Vehicle-To-Grid Technology (V2G) 

Vehicle-to-Grid (V2G) technology can be defined as a system in which has the 

capability for controllable, bi-directional electrical energy flow between a vehicle and 

the power grid. The electric vehicles are regarded as the battery for storing energy 

from power and sending the power back when the system requires it. Currently, 

there are three significant benefits of V2G technology. [109]- [114] 

1.  Load Levelling and Peak Power Management:  The V2G technology enables electric 

vehicles to discharge the battery when the power demand is high and charge the 

battery when power demand is low. It could effectively reach the target of valley 

filling and peak shaving and reduce the pressure of balancing the consumption and 

generation. [115], [116], [117] 

2. Accommodate more renewable energy: In the future, the electric vehicle can 

achieve the goal of buffing renewable energy sources such as intermittent PV solar 

and wind energy. In the traditional power system, if too much energy from the 
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renewable source is injected into the power grid, some power plants have to be shut 

down. Otherwise, renewable energy will be wasted. Electric vehicles can provide the 

help for matching supply and demand by charging and discharging the battery. On 

the other hand, V2G will increase the penetration level of renewable energy in the 

power system and reduce the greenhouse gas emissions. [118], [119], [120] 

3. Voltage and Frequency Regulation: Voltage and frequency stability is a key issue in 

the power system.  Voltage and Frequency regulation can be achieved by changing 

electric vehicle charging and discharging demand. [121], [122], [123] 

Furthermore, all these benefits mentioned above will accrue money the owner of an 

electric vehicle. The distributed network operators and utility companies will pay for 

V2G services such as short-term operating reserve, voltage and frequency regulation. 

The customers can sell the energy back to the grid from their battery and take 

advantage of flexible electricity prices to achieve profits. However, one issue which 

cannot be ignored is that batteries have a limited number of charging cycles. 

Moreover, the implementation of V2G technology will lead to higher frequencies of 

charging and discharging which is beyond normal conditions. It will severely decrease 

the capacity and shorten the life-span of the battery. Therefore, battery technology 

is one of the significant barriers to the development of V2G. [124]- [128] 

 

2.7 Voltage Regulation 

As mentioned in the previous section, voltage violation in the distributed network is 

a vital issue that distributed network operators (DNOs), and customers are concerned 

about. Severe voltage violation will lead to damage of electrical equipment and also 

threaten the security of distributed networks operation. In the traditional power 

system, concerns are mainly focused on the voltage drop issue caused by the heavy 

power demand. Nowadays, increased uncertainties in power demand and bi-

directional power flow result in complex situations.  Especially when more distributed 
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renewable energy and storage are installed in the system, too much power injected 

into the power grid can cause the voltage to rise. 

To maintain the voltage level in the distributed network, many different devices have 

been installed in the system, such as static voltage-ampere reactive (VAR) units, static 

synchronous compensator (STATCOM) [129], [130], [131] and, on the load tap 

changing transformers (OLTC). [132], [133] 

There are four major categories of voltage control strategies. [134], [135], [136] 

1. Centralized control: It aims at global optimisations; however, it usually requires 

high investment in communication equipment and electronic devices in the network. 

It also leads to a heavy communication burden. 

2. Local control: Compared with centralized control, it can have the faster response 

speed while the infrastructure investment cost is lower. However, the voltage 

regulation capability of this system is limited. 

3. Distributed control: By the coordinating between buses and nodes in the 

distributed networks, this voltage control strategies can reduce investment cost and 

improve the voltage regulation capacity to some degree. The optimisation effect will 

be limited and not obvious compared with the previous two strategies. 

4. Decentralized control: These strategies combine the advantage of centralised and 

distributed control by zonal control and intercluster coordination based on the 

partition of the network. 

Apart from control strategies, many optimised algorithms are implemented such as 

a genetic algorithm, [137], [138] clustering algorithm, particle swarm optimization 

algorithm, etc. Nowadays, with the increasing penetration of distributed renewable 

energy and storage system including electric vehicles, demand side management play 

an important role in distributed voltage regulation through active power curtailment 

(APC) and reactive power compensation (RPC). 
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2.8 Conclusion 

This chapter presents a general overview of the areas related to the major research 

topic of this PhD thesis. It summarises the current electric vehicle policies proposed 

by different countries and analyses the advantage of electric vehicle development. 

An irrevocable trend in policy and design will lead to electric vehicles replacing the 

current internal combustion engine vehicles in the near future. Therefore, people’s 

driving behaviour models and electric vehicle charging models are herein discussed 

to make significant contributions to further large-scale electric vehicle charging 

demand management. Furthermore, the existence of Smart Grid and demand side 

management will accelerate the development of electric vehicle and take full 

advantage of the electric vehicle as an energy storage system. The description of 

vehicle-to-grid (V2G) technology and control voltage regulation methods have been 

provided to support ancillary services from electric vehicle charging management. 

 The review and analysis of these existing policies and literature prove that the 

accurate driving behaviour and electric vehicle charging demand models require 

further optimisation and management, and advanced optimisation algorithms are 

required to take full advantage of electric vehicle charging demand to provide voltage 

regulation services. Furthermore, the implementation of electric vehicle smart 

charging can effectively reduce greenhouse gas emissions. 
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Chapter 3: Development of electric vehicles power demand 

model 
 

3.1 Introduction 

This chapter presents a novel electric vehicle charging power demand based on 

household people’s driving behaviour profiles and electric charging model. A large 

corpus of raw statistical data, detailing both individual’s driving activities and the 

characteristics of electric vehicles, has been collected and analysed to create power 

demand profiles using the Markov chain Monte Carlo (MCMC) method. These electric 

vehicles charging power demand profiles share strong correlations with individual 

household power demand.  

The key contributions to this electric vehicle charging model are the detailed time-

varying EV charging profiles of individual household in the low-voltage distribution 

networks. This project uses large numbers of databases on travel methods, the 

ownership and characteristics of electric vehicles,  external influential factors, and so 

forth to generate one-minute resolution electric vehicle charging power demand 

profiles for each household. These electric vehicle charging profiles do not only make 

an excellent complement to the previous residential load model but also present a 

new idea for low-voltage distribution network demand side management. Then all 

these works are combined with the residential load model, which was developed by 

our research group, Institute of Energy Systems (IES). This model focuses on basic 

household electric appliances such as lighting, heating, wetload, etc. Given that 

electric vehicles are not taken into account in the travelling activities, travelling is 

regarded as a non-electricity consumption activity in the household. 

In many cases, electric vehicles are regarded as energy storage to reduce the 

intermittency of electricity supply from renewable energy such as solar and wind 

[141], [142], [143]. On the other hand, research presented in [144], [145], [146] has 

been conducted into the demand side management strategies and related 

optimisation algorithms in the low-voltage network. However, the operation and 
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performance of low-voltage networks depend on a mix of various kinds of electric 

loads, the users' behaviour and external factors (such as weather condition and social 

events).  Most existing studies do not take the relationship between EVs and other 

household appliances into account and only focus on electric vehicles. 

Currently, research presented in [147], [148], [149] has obtained the data from long-

term experiments which use mobile devices installed on vehicles to record people’s 

driving behaviours. Most of the studies use probability from a large-scale statistical 

survey to model people’s driving behaviours [150],[151],[152]. 

These modelling approaches cannot provide large-scale and accurate EV charging 

demand profiles. Therefore the detailed time-varying model of residential load 

demand has been developed based on previous works executed within our research 

group. 

This chapter demonstrates the detailed explanations step by step from collecting 

people’s diary sampled national-scale survey data to generating final household 

active and reactive electric vehicle power demand profiles. It includes two developed 

models, driving behaviour model and electric vehicle charging model. Driving 

behaviour model is used to convert raw surveyed data into activity profiles. The 

electric vehicle charging model is built to produce power demand which takes into 

consideration electric vehicle characteristics and the influence of external factors. 

The conclusions are discussed in the final part of the chapter. 

3.2 Load model development methodology 

Most of the power demand in the residential load is driven by user activities. Power 

demand profiles can, therefore, be easily estimated as long as detailed user activity 

data has been provided. Markov chain Monte Carlo (MCMC) is implemented to 

process the real activity diaries from time user surveys.  

MCMC is the stochastic algorithms which is used to sample probability distributions 

by Markov chains. It allows one to characterize a distribution without knowing all of 
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the distribution’s mathematical properties by randomly sampling values out of 

distribution. And the name MCMC contains two properties: Monte-Carlo and Markov 

chain. Monte-Carlo is the practice of estimating the properties of a distribution by 

examining random samples from the distribution. For example, a Monte-Carlo 

method can draw a large number of random samples from a normal distribution and 

calculate the sample mean rather than finding the mean of a normal distribution by 

calculating it from the distribution equations. And the Markov chain property of 

MCMC is that random samples are produced by a special sequential process. Each 

random sample is used as a stepping stone to generate the next random sample. 

Therefore, each new sample generated only depends on the previous one while it 

does not depend on the sample before the previous one.[153] 

Monte Carlo evaluates 𝐸[𝑓(𝑋)]  by drawing samples {𝑋𝑡, 𝑡 = 1, … , 𝑛}  from 

distribution 𝑝(𝑥) and then approximating 

𝐸[𝑓(𝑋)] ≈
1

𝑛
∑ 𝑓(𝑋𝑡)𝑛

𝑡=1                                               (3.1) 

So the population mean of 𝑓(𝑋) is estimated by a sample mean. When the samples 

{𝑋𝑡} are independent, laws of large number guarantees that as the increasing sample 

size, the calculated approximation results can be made as accurate as possible. And 

sample size n is various as required. The 𝑝(𝑋) can be generated by any process which 

can be non-standard.  

Consider the sequence of random variables{𝑋0, 𝑋1, 𝑋2, 𝑋3, … }, generated from the 

distribution (𝑋)  , the next state 𝑋𝑡+1  only depends on the current state 𝑋𝑡 . As 

discussed, the next state 𝑋𝑡+1  does not depend further on the history 

chain{𝑋0, 𝑋1, 𝑋2, 𝑋3, … }. This sequence is called as Markov chain. [154] 

The Monte Carlo method is implemented to add randomness in various household 

activities within each time step. The Markov Chain simulation is then adapted to 

create household daily activity profiles for a whole day. Plenty of detailed information 

can be gleaned from two aspects individual household and electric appliance 

characteristics. Household information includes the number of people in one 
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household, the working status for each occupant and the number of children. 

Differing family structures lead to various user activity behaviour patterns. 

Household power demand is the complex mixture of various electric appliances. Each 

electric appliance owns its unique characteristic which means they have to be 

regrouped and use particular load model to generate power demand load profiles.  

Unlike other household appliances such as lighting and refrigerator, electric vehicle 

charging load has two characteristics; flexibility and high controllability. When people 

drive their electric vehicles, the electric energy stored in the battery will be consumed. 

However, the battery will not be charged immediately until they arrive at the 

appropriate charging point or the battery is going to run out. Moreover, it also 

increases difficulties in predicting the driving behaviour of a user. On the other hand, 

most people charge their vehicles at night, at home, every day. Moreover, usually the 

allowed charging period is longer than the required charging time to make the battery 

fully charged, which in reality provides a good opportunity for demand side 

management. 

 

Figure 3. 1:  Electric vehicle charging load model development work flow 

The above figure shows flow chart of electric vehicle power demand modelling. The 

modelling methods can be divided into two stages: 

1. User activity profile modelling 
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2. Conversion of user activities into power demand profiles 

 

3.3 Driving behaviour model 

Accurately forecasting and modelling people’s behaviour and activities is notoriously 

complex. The UK Time Use Survey (TUS) was launched in 2001 and aimed to measure 

how household people engage in various kinds of activities during a specific period. 

It provides hundreds of different kinds of daily activity data from more than ten 

thousands of self-completion diaries, which record activity for every ten minuses, 

such as going out for work or entertainment, over the course of a day. In this work 

TUS is used as the MCMC model input for user activities, allowing the generation of 

realistic activity profiles based on the characteristics of the household. A similar 

approach was taken in [10]. For compatibility and easy integration, the same input 

data structure has been used and is described in the following section. 

3.3.1 Time User Survey Database 

The broad TUS database of activities is filtered into 13 user activity states which can 

be used to describe the majority of household activities. The following table contains 

the detailed information of 13 user activity states based on their different load model 

characteristics. As we can see, some activities consume electricity in the household 

such as ironing, watching TV and so on. On the other hand, some activities do not 

necessarily require electricity. Based on the previous research from our group, all 

mentioned activities in the table have been modelled and create the complete daily 

power demand profiles through a combined MCMC algorithm. However, electric 

vehicles are not taken into account in this model. So all travel activities are regarded 

as non-electricity consumption.  
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User activity state Electrical use Appliance sharing 

ID Definition 

1 Non-electrical activity in 

home 

N n/a 

2 Sleeping N n/a 

3 Wash/dress Y/N N 

4 Food preparation Y/N N 

5 Dishwashing Y/N N 

6 Cleaning house Y/N N 

7 Laundry Y/N N 

8 Ironing Y N 

9 Computing Y Y/N 

10 Watching TV Y Y/N 

11 Watch video/DVD Y Y/N 

12 Listening to music/radio Y Y/N 

13 Travel/Out of the house Y/N n/a 

Where: Y – yes, N – no, n/a – not applicable 

Table 3. 1: User activity state definitions 

In the flowchart of stage 1, initial conditions and transition matrices will be used as 

an input for the model and calculated from a large number of TUS data. Initial 

conditions are the probabilities that people start to do one activity in each 10-min 

slot. Thus initial conditions are 13×1 matrices for 13 activity states at the starting 

point of a day. Transition matrices are the probabilities that people change their 

current state to next state. So transition matrices contain 144 submatrices for a 10-

min slot in 24 hours and each submatrix include 13×13 elements for the 13 individual 

activity states. For example, at 2:00 am of a working day, there is very high possibility 

that people are in the sleeping state. It also makes senses that people likely to 

continue sleeping at 2:10. However, there is still the slight chance that a person goes 

to the bathroom or kitchen. The appliance sharing state is defined in Table 3.1. It is 
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because that some electric appliances are able to be shared by more than one people 

in the household. 

𝑃𝐼𝐶_𝑖 =
𝑁𝑖

𝑁
                                                           (3.1) 

The following equations show the detailed explanation of Stage 1 in Figure 3.1 

including the initial conditions and transition matrices. Where PIC_i is initial conditions 

for activity i, Ni is the total number of activity i at the starting point. Moreover, N is 

the total number of all activities during that 10-min time slot. 

𝑃𝑇𝑀_𝑖𝑗(𝑡) =
∑ 𝑛𝑖𝑗

𝐽
𝑗=1

𝑛𝑖(𝑡)
                                                (3.2) 

Where: PTM_i j (t) is the transition probability from activity state i to state j, including 

i= j, between time t and t +1, ni j (t) is the number of transitions from activity state i 

to state j between t and t +1, ni (t) is the total number of transitions from activity state 

i between t and t +1 and J is the total number of activity states. 

Therefore, for each household, the first temporally activity is chosen based on the 

probabilities in the initial conditions. Once the first activity state is confirmed, the 

next activity state will be selected according to the probability of the transition 

matrices and the previous activity states at each time step. Finally, the individual 

detailed household people activity profiles for a whole day are produced. 

3.3.2 National Travel Survey 

Due to the limited data about household travelling contained in the TUS, the National 

Travel Survey (NTS) is also used, conducted by the Department for Transport. It is a 

household survey and is very similar to the TUS, providing complementary 

information, in that it focuses on the information of people’s travelling, including why, 

how, when, where and other factors influencing travel. This survey aims to monitor 

people’s long-term travel patterns and behaviour and provide useful information for 

making relevant policies. It covers approximately 16,000 individuals from 7000 

households in the UK. According to the various travel types purposed, all travel 
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activities are classified into seven categories including other leisure, commuting, 

visiting friends, personal business and other escorting, shopping, business and 

education. The detailed summary of each travel purpose and full definitions are 

presented below.  

 

Figure 3. 2: Purpose share of average number of trips travelled from NTS 

1. Commuting: trips from home to workplace or from workplace back home 

2. Business: personal trips which are related to work 

3. Education: trips to school or college 

4. Shopping: trips to the shops or from shops back to home 

5. Personal business: visit to services, medical consultations, etc. 

6. Visit friends: trips to visit friends or travel to the home of someone others or 

elsewhere 

7. Other leisure: mostly entertainment, sport, holiday and day trips. 

 

Other leisure
17%

Commuting
15%

Visiting
15%

Personal business 
and other escort

18%

Shopping
20%

Business
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Education
12%
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Travel method Walk Bicycle Car Bus Rail Other 

Probability 22% 2% 64% 7% 3% 2% 

 Table 3. 2: Probability of travel methods 

According to the National Travel Survey (NTS), daily travel methods can be divided 

into six categories. Individual household travel activities will be decided based on 

these probabilities. For example, when the travel activity is found in the daily 

household diary of TUS, the possibility of travel by car is 64%. Moreover, the various 

electric vehicle penetrations will be used to estimate the number of EVs. The average 

distance per car trip is 7.1 miles according to 2013 NTS report. Therefore the random 

numbers generated by normal distribution will be used as the car travel distance of 

each trip.  

3.3.4 Validation through National Travel Survey (NTS) 

The following figure shows the simulated results (blue line) of car travelling activities 

from driving behaviour model compared with the referenced data (green line) from 

National Travel Survey (NTS). Although there is some difference existing between two 

data sheet, the general trend is the same. Two peaks are generated and at around 8 

am and 18 pm. Moreover, most car travelling activities are focused in the daytime. 

So this can explain the match of the two datasheets and a prove the accuracy of the 

developed driving behaviour model. 
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Figure 3. 3: Generate activities profiles of car travelling compared to the data from 
NTS 

 

3.4 Electric vehicles charging model 

This section will present a model to calculate electric vehicle consumption which is 

based on the day trip from the driving behaviour model. The ambient temperature 

will be included in this model as an essential input variable. Usually, the ambient 

temperature will influence the range of electric vehicles, especially in extreme 

seasons such as winter and summer.  

On the one hand, the battery functions best at around room temperature. The cold 

temperature will increase the internal resistance and lower the battery capacity 

which could lead to starting failure. Moreover, the conductivity of electrodes and 

electrolyte are reduced. The following figure shows that how the DC resistance 

changes as the ambient temperature varies in the fixed SoC. As it shows, DC 

resistance increases when the temperature decrease for the same SoC. Therefore at 
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the low temperature, the battery could reach the cut-off voltage earlier at the higher 

discharge rates. 

 

Figure 3. 4: DC resistance as a function of SoC at 0˚C, 5˚C, 20˚C, 30˚C [155] 

On the other hand, cold weather presents two major challenges for electric vehicle 

energy consumption: lower temperature limits battery performance and running 

heating systems also consume energy from the battery. Therefore local temperatures 

are taken into account when calculating the available driving range.  

3.4.1 Electric vehicle characteristics and influence of external factors 

Currently, there are many kinds of electric vehicle models available in the market; 

these include Nissan Leaf, Toyota Prius, BMW i3 and Tesla. By the end of June 2017, 

more than 17,250 Nissan Leaf have been sold in the UK market making it the most 

popular electric vehicle today. Given the current market share of electric vehicles, the 

Nissan Leaf has been chosen here as the modelling sample. According to official 

profiles, they offer two kinds of Chargemaster home charging units. One is a standard 

3.3kW, 16A onboard charger (allowing a 0% to 100% charge in 8 hours). Another is 

the upgraded 6.6kW, 30A home charger unit which will charge from 0% to 100% in 

under 4 hours. The 3.3 kW charger will be used in the simulation.  
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Figure 3. 5: Temperature vs available range [156] 

The database of how these frigid temperatures are affecting the range of electric 

vehicles is based on more than 2,000 trips in the Nissan Leaf, which are provided by 

Fleetcarma. As can be seen in the plots in Figure 1, there is a sweet spot where drivers 

see the best electric ranges between 15°C and 24°C. There is a great deal of operator 

control, and many strategies and tactics can be taken to increase an electric vehicle’s 

range in warm or cold conditions.  
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Figure 3. 6: Average high temperatures of London, Edinburgh and Moscow 

The above picture is the average high temperature for a year from London, Edinburgh 

and Moscow. As we can see, the lowest temperatures in the year occur in January. 

The temperature in Moscow is -5 °C while the temperatures in London and Edinburgh 

are 9 °C and 7 °C which are similar. According to the database of how these frigid 

temperatures are affecting the range of electric vehicles, the best range of Nissan 

Leaf in Moscow is 90 miles while it can approximately reach 115 miles in London and 

110 miles in Edinburgh. When the temperature rises in Jul, the best range of Nissan 

Leaf in these three cities will be similar, at around 120 miles. However, it is the 

average highs temperature. Usually, the temperature will be lower in January which 

means that the difference of available range in the various ambient temperature is 

more apparent. For the same location, the performance of electric vehicle will also 

be different. Therefore, ambient temperature is an important external factor 

affecting the driving range of electric vehicle and should be taken into account for 

electric vehicle energy consumption modelling.  

Compared with previous EV models, more accurate battery capacity can be obtained 

according to ambient temperature. The hourly temperature of 1st January in 

Edinburgh was chosen here as input data to demonstrate the available range of the 

Nissan Leaf. For this reason, the state of charge (SOC) after each trip i can be 

calculated based on battery capacity (BC), travel distance (D) and average energy 

consumption per/km at temperature T°C  (AECt).  

𝑆𝑂𝐶𝑖+1 = 𝑆𝑂𝐶𝑖 −
𝐴𝐸𝐶𝑡×𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐵𝐶
                                       (3.3) 

Usually, most of the people’s charging behaviour follows an uncontrolled charging 

plan. It is assumed that all electric vehicles are in a fully-charged state in the morning 

before they are going to start their first trip of the day and the vehicles will be charged 

again as soon as they finish their last trip and arrive home in the evening without 

taking other electricity demands on the distribution network into consideration. The 
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charging process will stop until the state of charging (SOC) reaches 100%, or the next 

trip starts. Moreover, electric vehicles are connected to the grid during this period.  

3.4.2 Electric vehicle charging power demand  

The following three graphs detail respectively the base load, electric vehicle charging 

load and total load of one household randomly chosen from 10000 household load 

profiles. People’s activities can be easily observed from the based load demand. From 

0:00 to 6:00, baseload demands keep repeated cycles caused by the constant use of 

items like fridge, while the household remains asleep. There is then an increase in 

power demand around 6:00 which people start to get up in the morning. From 9:00 

to 18:00, baseload demand returns to repeated cycles again which mean people are 

most likely going out. It is also evident that people come back home around 18:00 

because the baseload starts to increase. Therefore, the electric vehicle starts charging 

at the same time point and end charging around 21:00. Each EV profile has a high 

correlation with individual household daily activities. 
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Figure 3. 7: Single household power demand

 

Figure 3. 8 Total number of household in car travelling for 10000 household 
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Figure 3. 9: EV load demand for 1000 household with various penetration levels 

The above graph shows electric vehicle charging demand for 1000 household 

generated by the developed electric vehicle charging power demand model. While 

electric vehicle charging demand is a different pattern, it can be observed that EV 

demand begins to increase from 12:00 step-by-step and reaches its peak at around 

20:00. Although four various penetration levels, 25%, 50%, 75% and 100%, are 

implemented, they share the similar power demand patterns.  

3.5 Validation through UK Electric Vehicle Data 

The developed electric vehicle charging model is to generate the large-scale 

uncontrolled electric vehicle charging profiles which will make significant 

contributions to distributed network systems.   

The results of this model are verified against the available data from the report, 

Impact & Opportunities for wide-scale EV deployment, published by Low Carbon 

London Learning Lab in the Imperial College London. The electric vehicle data 

presented in this report are collected from three areas: 

1. Metered electric vehicle charging data for 72 residential and 54 commercial 

charging point; 

2. Data on the charging events collected at 491 public charging points;  
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3. Vehicle logger data capturing driving and charging behaviour for 30 EVs; 

The critical information of EV data includes active power for charging, the start 

charging time and duration of charging events and the energy consumption in the EV 

charging process. For residential EV charging demand, data of 54 EVs are collected in 

the report. Moreover, most vehicles charged at 3.7 kW, although both higher (up to 

7.4 kW) and lower (1.7 kW) maximum charging powers are also observed. 3.3kW 

charging rate is employed in developed EV charging model which is similar with them. 

According to the definition in the report, the maximum profile is obtained by finding 

the highest value of average charging power per EV across all instances of the 10-

minute interval. The average profiles are acquired by finding the average value of 

charging power per EV across all instances of the 10-minute interval. 

 

Figure 3. 10 Maximum and average charging profiles per EV for residential users 
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Figure 3. 11 Average charging profiles per EV 

As we can see from the above two figures, figure 3.10 is the maximum and average 

charging profile per EV for residential users which are collected from 54 EVs. While 

figure 3.11 is the average charging profiles per EV which is obtained from the 

developed model. The peak demand from the model output (0.9kW) is similar with 

reference data (0.88kW). For the tendency of two figures, the charging power begins 

to increase from morning around 8am and reach the peak in the evening around 

20pm. Then the charging demand starts to decrease from the midnight and reach the 

lower point in the morning around 6am. However, the curve from the model output 

is smoother than reference data. It is because that model output is the average data 

from 10000 EV charging profiles with 1-min time interval while reference data is 

derived from 54 EV profiles. 

 Model output Reference dataset 

Average daily energy / kWh 5.09 3.57 

Average charging time 2h27min 1h57min 

Table 3. 3 Average energy consumption and charging time 

For the energy consumption, the model output is 5.09 kWh which is higher than 

reference dataset 3.57kWh. Therefore for the average charging time, the model 

output results require more charging time than reference dataset. The reason caused 

0.9kW 
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that is electric vehicles in the model are charged on the weekday and the winter of 

Edinburgh. According to the electric trial data in table 3.4, energy consumption of 

electric vehicle in the workday is higher than weekend. 

Meanwhile, the low temperature will lead to more energy consumption than a 

normal temperature which has been explained in the previous section. Compared 

with model output, electric vehicles in the reference dataset are located in London 

which is warmer than Edinburgh, and the average energy consumption includes 

weekday and weekend. Furthermore, the total number of samples is 54 which is 

limited. 

Day type The energy requirement for charging 

(kWh) 

All days 3.52 

Workdays 3.68 

Weekend 3.09 

Table 3. 4 Average daily energy requirements per EV for residential EV sample 

In a word, electric vehicle charging profiles generated from model share the very 

similar tendency with reference dataset. For the key index of electric vehicle charging 

such as energy consumption, charging time, peak charging demand, there is some 

difference between them. It is because the various parameters setting and external 

factor assumption of the model are unlike the reference dataset. 
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3.6 Residential Load Model  

 

Figure 3. 12: Load model development work flow [10] 

A similar load model for residential power demand has been previously proposed [10]. 

The developed EV charging demand model was specifically designed in a way that can 

be seamlessly integrated with the domestic demand model. For completeness, this 

domestic demand model is briefly presented here. This model adopts a Markov chain 

Monte Carlo to create household activities and power demand profiles. Three stages 

are presented below: 

1. Modelling users’ activities: Input is the probability matrices for various activities 

and the relationship with others. For households with more than one person, sharing 

probabilities will be used. All these probability matrices are derived from the Time 

User Survey (TUS). MCMC algorithms are used in this stage to obtain household 

activity profiles. 

2. Converting users’ activities into household electrical appliance use: In this stage, 

the load model of each household electrical appliances will be created based on the 

characteristics of electrical appliances. Furthermore a massive of information is 

necessarily required detailing ownership statistics, power consumption, time of the 
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user and ambient conditions. The specific categories of household electrical 

appliances are presented below: 

Categories  Electrical appliances 

Cold loads Refrigerator 

Wetload Washing machine, tumble dryer, 

washing dryer,  dishwasher 

Electric shower Electric shower 

Consumer electronics (CE)  TVs, game consoles, audio Hi-Fi 

Information and communications 

technology (ICT) loads 

Desktops, monitors, laptops, office 

equipment, mobile phone, fax  

Cooking loads Electric hob, electric oven, microwave 

oven, toaster, food processor, 

extraction hood 

Housework loads Vacuum cleaner, iron 

Light Lighting bulbs 

Heating Electric heaters 

Table 3. 5: The categories of household electric appliances 

3. Aggregation of household electrical appliances to obtain time-series power 

demand profiles and household load models: According to the varying natures of 

electrical appliances, each electrical appliance is modelled in a different way and thus, 

the ZIP load model is introduced.   

The following picture is the aggregation of 1000 household baseload demand. There 

are two peak period for daily baseload in the graph. One period is from 7:00 to 9:00 

in the morning when people get up and prepare for work. Another peak load period 
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starts from 16:00 until 22:00 in the evening when the household returns home. 

 

Figure 3. 13: Baseload demand 

 

Figure 3. 14: Total demand 

The above graph is the aggregation of the baseload and EV charging demand. When 

the electric vehicle charging demand is added to the household, the demand peak in 

the evening becomes more apparent and this period then also extends to midnight. 

However, the previous demand peak in the morning becomes more moderate 

because it is the electric vehicle charging demand valley.  
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3.6 Conclusion 

This chapter describes the detailed processes behind developing driving behaviour 

and electric vehicle charging models. The driving behaviour model based on Markov 

Chain Monte Carlo can generate a one-minute resolution of people’s daily activity 

profiles, which provide the solid foundation for further power demand simulations. 

In this model, people’s driving activities are not isolated from other household tasks. 

Driving activities are derived from and correlate with other household activities. 

Therefore simulated household activities profiles can avoid inaccuracy caused by the 

disadvantage of face-to-face surveyed results such as randomness and 

incompleteness.  

Electric vehicle charging model takes lots of external factors into account in order to 

estimate the state of charge of each electric vehicles.  In the meantime, the energy 

consumption of each vehicle is calculated based on every single trip during a day. 

Furthermore, this model can also provide an accurate departure and arrival time for 

each vehicle, which is a significant contribution to electric vehicle charging demand 

management. Moreover, it also plays an important role in assessing the influence of 

various electric vehicle penetrations on the power system.   

Ultimately, these two developed models successfully simulate activity profiles based 

on the interconnection among different daily household activities; they also convert 

these activity profiles into electric energy consumptions, especially in regarding of 

electric vehicles. Further demand side management would require accurate 

prediction of the EV charging demand and household electric appliances, in which 

‘flexible’ domestic loads such as washing machines and dishwashers are used by the 

optimisation algorithm for demand side management.  
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Chapter 4 Voltage control with demand side management 

4.1 Introduction 

In order to decrease the fluctuation of distributed network bus voltage, and keep it 

within the accepted range, electric vehicle charging demand is regarded as the 

shiftable load in the household for controlling the bus voltage in the low voltage 

distributed network, especial for the radial network. In the first part of this chapter, 

the generic UK low voltage highly urban distributed network is introduced and 

simulated in OpenDSS. An uncontrolled electric vehicle charging plan is adopted to 

assess the influence on the bus voltage of the distributed network.  

In the low-voltage distributed network, the household load can be divided into two 

categories according to their various characters, shiftable load and non-shiftable load. 

For the shiftable load, those load demand can be rescheduled without affecting 

people’s activities, which can provoke in users discomfort and a disinclination to 

participate in a demand side management plan, such as wetload and electric vehicle 

charging load. However, there are still some differences between them. Wetload 

cannot be interrupted during the working cycle, and this includes dishwashers, 

washing machine, tumble dryers and washing dryers. The only method adopted is 

delaying their starting time without disturbing the user’s activities. Compared with 

the wetload, electric vehicle charging load shares more flexible charging plan which 

can be interrupted during the charging process, postpone charging to a later time and 

even changing the desired charging target without affecting user’s driving activities 

the next day.  

On the other hand, the wetload usually consume around 5% of the total daily 

household power demand in the UK. With increasing penetrations from electric 

vehicles, electric vehicle charging load will escalate to take a more significant 

percentage of total daily household power demand. Based on the previous research 

results, the electric vehicle charging demand can account for more than 30% of the 
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total daily household power demand in the 50% EV penetration scenario which 

potentially has a significant impact on reshaping the total power demand. 

The key contribution of this chapter is to propose two smart large-scale electric 

vehicle charging demand optimisation algorithms to achieve peak load shaving, 

spinning reserves and energy regulation services. One is based on the various bus 

voltages in the distributed network to make the most efficient optimisation plan. The 

second is using voltage sensitivity to establish the interactive effect among all 

connected buses in the low voltage network.  

The previous developed household load demand model is implemented to generate 

power demand profiles for each household. The detailed method and effects are 

presented herein.  

There are some very similar works have been done in this paper [157]. 

This paper also uses Nissan Leaf as electric vehicle model whose battery capacity is 

24 kWh and charging rate is 3.3 kW. The low voltage networks contain five feeders 

and 428 customers. Moreover, various electric vehicle penetrations are implemented. 

The results show that two feeders will face the significant voltage drop for 20% 

penetration level. The number of affected customers will increase significantly for 

penetration level more than 80%. The Gain K of the P controllers will be implemented. 

The state of charging is the dominated factors for selection of electric vehicles. 

Moreover, three control cycles are used, 1 min, 5min and 10 min separately. The 

results show that the longer the control cycle, the higher the number of unaffected 

customers. 

 

4.2 Voltage sensitivity 

Generally speaking, voltage sensitivity are defined to describe how the load power 

changes, with active and reactive power, and influences the variation of voltage in 
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the power system. In terms of the radial distribution network with N buses, the power 

flow equations are displayed below: 

𝑃𝑘 = ∑ |𝑉𝑘||𝑉𝑗|(𝐺𝑘𝑗 cos(𝜃𝑘 − 𝜃𝑗) + 𝐵𝑘𝑗 sin(𝜃𝑘 − 𝜃𝑗))𝑁
𝑗=1            (4.1) 

𝑄𝑘 = ∑ |𝑉𝑘||𝑉𝑗|(𝐺𝑘𝑗 cos(𝜃𝑘 − 𝜃𝑗) + 𝐵𝑘𝑗 sin(𝜃𝑘 − 𝜃𝑗))𝑁
𝑗=1            (4.2) 

Where Pk is the net active power injected into bus k, Gkj and Bkj are the real part and 

imaginary part of the bus admittance matrix Ybus , with respect to the kth row and jth 

column, and θk, θj are the voltage angle for the kth and jth bus. Usually, the slack bus 

voltage is kept constant. Therefore any variation of load in the distribution network 

will lead to changes in bus voltage. The power flow equations play an important role 

in gaining the complete voltage magnitude and angle of each bus in the power system 

for the given information of generator, loads and transmission line. However, due to 

the non-linear character of this problem, there are several numerical methods which 

are widely adopted to solve the power flow equations. Moreover, the Newton- 

Raphson load flow algorithm is the most popular and convenient method. The 

voltage sensitivity of the distribution network can be derived from computing the 

Jacobian matrix which is shown below.  

[∆𝑃
∆𝑄

] = 𝐽 ∙ [∆𝜃
∆𝑉

]                                                             (4.3) 

 

Moreover, J is the Jacobian matrix 

 

𝐽 = [

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕𝑉
𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝑉

]                                                         (4.4) 

Voltage sensitivity can be obtained from the Jacobian matrix  

𝜕𝑉

𝜕𝑃
= 𝐽12

−1,
𝜕𝑉

𝜕𝑄
= 𝐽22

−1                                             (4.5) 
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It seems that voltage sensitivity can be easily calculated from the aspect of the theory. 

However, power flow equations are usually solved by specific power system software 

such as Matpower in Matlab, OpenDSS, Sincal .etc. Moreover, these software 

packages do not allow users to gain access to the Jacobian matrix. On the other hand, 

voltage sensitivity are changing all the time, with as any tiny variations in the power 

system. In the proposed voltage regulation algorithm [158], voltage sensitivity are 

the critical factor in determining the sequences of electric vehicle charging 

optimisations and are supposed to be updated after each iteration. Therefore, this 

chapter proposes a new approach to calculating voltage sensitivity, replacing the 

traditional Jacobian matrix method.    

 

Figure 4. 1: 3 buses distribution system 

𝜕𝑉𝑚

𝜕𝑃𝑚
=

𝜕𝑉𝑚

𝜕𝐼𝑛
×

𝜕𝐼𝑛

𝜕𝑃𝑛
                                                                        (4.6) 

When the load at bus n is Pn, the current goes through bus m is Im, the current goes 

through bus n is I, the voltage at bus m is given by    

𝑉𝑚 = 𝑉𝑖 − (𝐼 + 𝐼𝑚) ∙ 𝑍                              (4.7) 

                      Where  𝐼𝑚 =
𝑃𝑚

𝑉𝑚
       (4.8) 

When the load at bus n is increased from Pn to P+∆Pn, which also lead to the change 

of current from I to I+∆I and from Im to Im +∆Im. So the voltage at bus m is shown 

below 

(𝑉𝑚 + ∆𝑉𝑚) = 𝑉𝑖 − (𝐼 + ∆𝐼 + 𝐼𝑚 + ∆𝐼𝑚) ∙ 𝑍                  (4.9) 

If the power at bus m is constant, then 
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𝐼𝑚 + ∆𝐼𝑚 =
𝑃𝑚

𝑉𝑚+∆𝑉𝑚
          (4.10) 

From (4.8) and (4.10), we can get 

∆𝐼𝑚 =
𝑃𝑚

𝑉𝑚
∙ (

−∆𝑉𝑚

𝑉𝑚+∆𝑉𝑚
)        (4.11) 

From (4.9) and (4.11), we can derive 

(𝑉𝑚 + ∆𝑉𝑚) [1 −
𝑃𝑚∆𝑉𝑚

𝑉𝑚×(𝑉𝑚+∆𝑉𝑚)2] = 𝑉𝑖 − (𝐼 + ∆𝐼 + 𝐼𝑚) ∙ 𝑍          (4.12) 

In the network, ∆Vm is too small compared with Vm and impedance Z is also very 

small, hence 

[1 −
𝑃𝑚∆𝑉𝑚

𝑉𝑚×(𝑉𝑚+∆𝑉𝑚)2] ≈ 1       (4.13) 

Therefore,  

(𝑉𝑚 + ∆𝑉𝑚) = 𝑉𝑖 − (𝐼 + ∆𝐼 + 𝐼𝑚) ∙ 𝑍      (4.14) 

From (4.7) and (4.14) 

∆𝑉𝑚 = −(∆𝐼) ∙ 𝑍                                                  (4.15) 

  |
∆𝑉𝑚

∆𝐼
| = −|𝑍|                  (4.16) 

∆|𝑉𝑚|

∆|𝐼|
= −|𝑍|                                                                     (4.17) 

Given the variation is very small, (4.16) can be written as  

  
𝜕|𝑉𝑚|

𝜕|𝐼𝑛|
= −|𝑍𝑚𝑛|                         (4.18) 

Due to load variation at bus n, equation (4.18) can be written as   

𝜕|𝑉𝑚|

𝜕|𝑃𝑛|
= −|𝑍𝑚𝑛| ×

𝜕|𝐼𝑛|

𝜕|𝑃𝑛|
                   (4.19) 

Where 

𝜕|𝐼𝑛|

𝜕|𝑃𝑛|
=

𝜕(|𝑃𝑛|/|𝑉𝑛|)

𝜕|𝑃𝑛|
                                                             (4.20) 
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or 

𝜕|𝐼𝑛|

𝜕|𝑃𝑛|
=

1

|𝑉𝑛|
−

|𝑃𝑛|

|𝑉𝑛|2

𝜕|𝑉𝑛|

𝜕|𝑃𝑛|
      (4.21) 

From (4.19) and (4.21), we can obtain 

𝜕|𝑉𝑚|

𝜕|𝑃𝑛|
= −|𝑍𝑚𝑛| [

1

|𝑉𝑛|
−

|𝑃𝑛|

|𝑉𝑛|2

𝜕|𝑉𝑛|

𝜕|𝑃𝑛|
]     (4.22) 

Therefore the voltage sensitivity of a bus with respect to its own load variation when 

m=n, from (4.22) 

𝜕|𝑉𝑛|

𝜕|𝑃𝑛|
=

−|𝑍𝑚𝑛||𝑉𝑛|

|𝑉𝑛|2−|𝑍𝑚𝑛||𝑃𝑛|
       (4.23) 

For a general system,  

𝜕|𝑉𝑚|

𝜕|𝑃𝑛|
= −|𝑍𝑚𝑛| [

1

|𝑉𝑛|
+

|𝑃𝑛|

|𝑉𝑛|

|𝑍𝑚𝑛|

(|𝑉𝑛|2−|𝑍𝑚𝑛||𝑃𝑛|)
]       (4.24) 

 

 

Figure 4. 2: 6 buses radial distribution system 

This is a distribution network which includes six buses, namely i , j, k, l, m, n.  Zmn=Zj+Zk 

(impedance of branch bij+ impedance of branch bjk). In general, Zxy is the sum of all 

the shared impedance from root bus to load bus x and y. 



 
 

59 
 

4.3 Network analysis 

Low-voltage distribution networks usually operate at 415 V or similar and the 

distribution transformers are used to step down the voltage from 11kV to 0.4kV. The 

typical layout of the low-voltage network is radial which can provide higher reliability 

and stability for customers. The underground cables or overhead lines are then used 

to deliver the electricity. According to the various locations and load densities being 

supplied, the low-voltage distribution networks can be divided into following four 

categories: 

Highly-urban generic low-voltage distribution network: Usually located in big cities, 

the low-voltage network is an underground system in the radial layout and connected 

with plenty of 1-phase customers from several branches. The detailed information of 

this network will be presented in the next section. 

4.3.1 UK low-voltage highly urban network 

Given the current situation, most electric vehicles are distributed within the centre 

of the big city. At the same time, highly urban networks suffer the most severe load 

pressure which includes a large number of customers and complex electricity 

consumption patterns. Therefore, the low-voltage highly urban network has been 

chosen for modelling 

The following graph demonstrates the Highly-Urban Generic LV Distribution Network 

which corresponds to an existing network operated by E.ON UK Central Networks. 

This network has four three-phase trunk feeders. The LV busbars infeed 1 MVA 

11/0.4kV substation and supplies a total of 380 single-phase customers who are 

randomly distributed from HU1 to HU19. The line characteristics of the network can 

be found in the following table. Compared with the urban and rural networks, the 

highly urban network usually has a high load density, strict power system constraints 

and more complicate load profiles which lead to increased instability and disturbance 

problems. Based on the information provided above, the highly urban network will 
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be built in the OpenDSS to check the power system stability problems caused by load 

variations such as voltage violations and demand fluctuations.  

 

Figure 4. 3: Highly--urban generic LV distribution network [159] 

 

Table 4. 1: The line characteristics of the network 

4.3.2 Extended network 

However, with the rapid development of urbanisation, more and more commercial 

and residential loads will be connected to a pre-existing network. These loads usually 
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have a higher load density and more complex load profiles, compared with the 

previously existing load.   

The extended highly-urban network is one typical example. Ten more buses will be 

newly-built, including 646 single-phase customers, which are almost double the 

previous 19 buses. The extended highly-urban network will share the same line 

characteristics of the existing network and transformer. The following figure is the 

extended highly-urban generic LV distribution network. The network in the red dash 

line box is the original highly--urban generic LV distribution network, from bus 1 to 

bus 19. The other parts, from bus 20 to bus 29, is the extended network.  

 

Figure 4. 4: Extended highly-urban generic LV distribution network 
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4.3.3 Influence of uncontrolled charging on the voltage profiles 

In this section, the voltage profiles of uncontrolled charging with four electric vehicle 

penetration levels, 0%, 25%, 50% and 75% are presented and analysed in the context 

of the extended highly-urban generic low voltage distribution network. The statutory 

limits of the voltage in the UK are from +10% to -6% of the nominal voltage 230V for 

the distributed power system network. Moreover, in this case, electric vehicles only 

are regarded as the consumer of electricity and cannot output the electricity back to 

the grid. Therefore a lower limit of voltage is considered and set as 0.94 p.u. In 

general, these four voltage profiles all have two periods where the voltage is reduced 

dramatically. The first is in the morning around 8:00 while the voltage reduction is 

acceptable. The second is in the evening from 18:00 to 22:00. However, the voltage 

reduction of the second period is much more severe than the first.  Moreover, the 

voltage profiles share the inversed pattern with the power demand profiles. 

The first following figure is the voltage profile detailing only the baseload power 

demand. As we can see, the safe margin for the bus voltage is still large even in the 

extended distributed network. The lowest voltage reaches 0.96 p.u. However, when 

electric vehicles are connected to the network, only the voltage of two buses with 25% 

EV penetration level falls to 0.94 p.u. In the case of 50% EV penetration, the voltage 

of 4 buses drop below the lower limit 0.94 p.u, and the lowest voltage is 0.924 p.u. 

Furthermore, for 75% EV penetration, there is 9 buses’ voltage reduction beyond the 

accepted range. 

Moreover, the lowest voltage magnitude is 0.906 p.u. Therefore, uncontrolled 

electric vehicles charging in the distributed network results in severe voltage 

variation problems, especially as the popularity of electric vehicles increases. For 

electric power system, maintaining the bus voltage level within the required range is 

an essential issue for a power supplier. Once the voltage fluctuations exceed the 

accepted range, it would increase the operation cost of the system and even damage 

household electric appliances. It should be noted here that the distribution network 
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used is deliberately weak to clearly highlight the effect of increased EV penetration 

in the grid. 

 

 

 

 

 

Figure 4. 5: The voltage profile for 29 buses without EV load 

 

Figure 4. 6: The voltage profile for 29 buses with 25% EV penetrations 

Voltage at the most remote nodes falls just inside the statutory limit of 

94% 
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Figure 4. 7: The voltage profile for 29 buses with 50% EV penetrations 

Voltage at the most remote nodes violates the statutory limit of 94% for 

about 4 hours. 

 

Figure 4. 8: The voltage profile for 29 buses with 75% EV penetrations. 
Voltage at the most remote nodes violates the statutory limit of 94% for 

more than 6 hours. 
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4.4 Methodology 

In this chapter, two proposed voltage control optimisation algorithms are illuminated. 

The target of these two algorithms is to maintain the voltage within the accepted 

range with minimum influence on electric vehicle charging. Usually, the lowest 

voltage bus is located at the end of the simple single line network, and its voltage has 

the highest sensitivity on the load itself. For example, assuming that voltage at bus 

12 is the lowest in the network, the operator usually shuts down the power demand 

at bus 12 itself to raise the voltage back to normal. However, there may be the 

situation where all the available power demand has been shut down, and yet, the 

voltage at bus 12 is still below the accepted range. At this point, decisions should be 

made to choose the next load demand which has the most influence on the voltage 

of bus 12. It would be easier for single line network. However, for a radial distributed 

network with complex load profiles, voltage sensitivity are a necessary and useful 

method for solving this problem. Especially when demand side management is 

implemented in the optimisation, voltage sensitivity keep changing all the time with 

tiny variations in each load profile. Another optimisation algorithm is based on bus 

voltage. The influence of loads on the specific bus voltage is determined by the 

magnitude of all bus voltages. The lower the magnitude of bus voltage has, the more 

influence the demand side management has upon this bus.  Therefore these two 

optimisation algorithms are facilitated in the same power system and simulated. 

Optimisation results are compared and analysed.  

4.4.1 Voltage control based on bus voltage optimisation algorithm 

Step 1: The aggregator gets the baseload demand and uncontrolled EV charging 

demand with a 1-min resolution from all households at each time step. In the 

uncontrolled EV charging plan, it assumed that all electric vehicles begin their 

charging at home when they finish their last trip and arrive home. Moreover, charging 

is stopped when the state of charge reaches the expected level or users start their 

next journey. Furthermore, the charging rate is fixed (3.3kW).  
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Step 2: The power demand profiles are input into Opendss to run the power flow at 

each time step T. The bus voltage list will be generated. All buses in the network are 

sorted in the ascending order based on their bus voltage magnitude in p.u.  

Step 3: Find the lowest voltage bus N on the bus voltage list at the time T and 

compared VN with pre-set bus voltage lower limit VLL. If VN ≤ VLL, it means that the 

voltage at bus N drops too far beyond the acceptable range and voltage regulation 

methods will be implemented. This leads to Step 5. If VN ≥ VLL, it means that the 

voltages of all buses are in the accepted range. This results in a return to Step 2 and 

running the power flow for the next time step T+1. 

Step 4: Collect input data of each electric vehicle arriving time tarriving, the state of 

charge (SOC), tbegin the time when people are going to use EV. Based on the above 

information, the priority list will be created to decide optimisation order for each 

vehicle. 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑥 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔
+ 𝑦 ∙ 𝑜𝑟𝑑𝑒𝑟𝑠𝑜𝑐 +  𝑧 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡_𝑏𝑒𝑔𝑖𝑛                 (4.25) 

Where x, y, z are the weighting factors for three parameters, respectively. 

Ordert_arriving is the value of each vehicle in the ascending sequence of arriving time. 

OrderSOC is the value of each vehicle in the descending sequence of the state of 

charging. Ordert_begin is the value of each vehicle in the descending sequence of 

beginning the next trip. The smaller value the car get from that equation, the higher 

priority given to that car. The higher priority means this electric vehicle needs to be 

charged urgently.  

Step 5: Based on the calculated the bus voltage list and charging priority, the lowest 

charging priority electric vehicle at the lowest voltage magnitude bus will be delayed 

charging for 5 minutes. 

Step 6: Run the power flow again and check the voltage of bus N. If VN ≤ VLL, delay the 

next lower charging priority car until VN ≤ VLL. If all electric vehicles at the lowest 

voltage magnitude bus have been discharging at this time point and the voltage of 

bus N is still below the voltage limit, electric vehicles at the next lowest voltage 
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magnitude bus will be controlled following step 4 and 5. If VN ≥ VLL, go to step 2 and 

check the voltage of other buses. 

Step 7. All bus voltage is in the accepted range, T=T+1. Go to step 2. 
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   Run power flow at time T  
Find the lowest voltage bus N 

M=1 

Delay charging for 5 minutes 

Calculate EV charging priority of 
Mth the lowest voltage bus 

Run power flow at time T 
Check voltage at bus N 

If VN ≤ limit 

M=M+1 

T=T+1 

YES 

NO 

Calculate the bus 
voltage list 

If all EVs of Mth bus 

are discharging at 

time T 

If VN ≤ limit 

YES 

NO 

Select the first car in the 

charging state based on 

charging priority 

YES 

NO 

 
Figure 4. 9: Voltage control based on bus voltage optimisation algorithm flow chart 
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4.4.2 Voltage control based on voltage sensitivity Optimization algorithm 

Step 1: The aggregator gets the base load demand and uncontrolled EV charging 

demand with a 1-min resolution from all households at each time step. In the 

uncontrolled EV charging plan, it assumed that all electric vehicles begin their 

charging at home when they finish their last trip and the charging rate is fixed (3.3kW).  

Step 2: The power demand profiles are input into Opendss to run the power flow at 

time T. The bus voltage list will be generated. All buses in the network are sorted in 

the ascending order based on their bus voltage magnitude in p.u.  

Step 3: Find the lowest voltage bus N and compared VN with pre-set bus voltage lower 

limit VLL. If VN ≤ VLL, it means that the voltage at bus N drops too much and voltage 

regulation methods will be implemented. Then go to Step 4.  If VN ≥ VLL, it means that 

the voltages of all buses are in the accepted range. Then move back to Step 2 and run 

the power flow for next time step. 

Step 4: Calculate the voltage sensitivity of the lowest voltage bus N. The voltage 

sensitivity of bus N describe how the active power changing of all buses in the 

network influences the voltage of bus N. 

Step 5: Collect input data for each electric vehicle arriving time tarriving, the state of 

charge (SOC) and, tbegin the time when people are going to use EV. Based on the above 

information, the priority list will be created to decide the optimisation order for each 

vehicle. 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑥 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔
+ 𝑦 ∙ 𝑜𝑟𝑑𝑒𝑟𝑠𝑜𝑐 +  𝑧 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡_𝑏𝑒𝑔𝑖𝑛              (4.26) 

Where x, y, z are the weighting factors for three parameters, respectively. 

Ordert_arriving is the value of each vehicle in the ascending sequence of arriving time. 

OrderSOC is the value of each vehicle in the descending sequence of the state of 

charging. Ordert_begin is the value of each vehicle in the descending sequence of 

beginning the next trip. The smaller value the car get from that equation, the higher 

the priority given to that car. The higher priority means that this electric vehicle need 
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to be charged urgently. Moreover, people are less likely to participate in demand side 

management. 

Step 6: Based on the calculated voltage sensitivity and charging priority, the lowest 

charging priority electric vehicle at the highest voltage sensitivity will experience 

delayed charging for 5 minutes. 

Step 7: Run the power flow again and check the voltage of bus N. If VN ≤ VLL, delay the 

next lower charging priority car until VN ≤ VLL. If all electric vehicles at the highest 

voltage sensitivity bus have been discharging at this time point and the voltage of bus 

N is still below the voltage limit, electric vehicles at next higher voltage sensitivity will 

be controlled following steps 5 and 6. If VN ≥ VLL, go to step 3 and check the voltage 

of other buses. 

Step 8: All bus voltage is in the accepted range, T=T+1. Go to step 2. 
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   Run power flow at time T  
Find the lowest voltage bus N 
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Calculate EV charging 
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 Figure 4. 10: Voltage control based on voltage sensitivity optimisation 

algorithm flow chart 
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4.5 Results  

The 100 power load scenarios have been generated from 10,000 household power 

demand profiles. Moreover, each power load scenario contains 1,026 household load 

profiles. Three electric vehicle penetration levels (25%, 50% and 75%) are applied in 

the simulations. The results are presented based on two optimisation methods. The 

first part is the voltage profiles for uncontrolled charging plan and optimised charging 

plan with voltage sensitivity. The second part is the comparison between two 

optimisation algorithms from the 100 power load scenarios. 

4.5.1 Results based on voltage sensitivity 

Figure 4.14 is the voltage profiles for 29 buses in scenario 28 with 50% electric vehicle 

penetrations. There are four buses' voltages below the lower voltage limit 0.94 p.u. 

In general, all of the buses’ voltage profiles have two periods where the voltage is 

reduced hugely. The first one is in the morning at around 8:00, but the voltage 

reduction is acceptable. The second is in the evening from 18:00 to 22:00. The voltage 

reduction of the second one is much more severe than the first one, four buses’ 

lowest voltage magnitude is below 0.94 p.u.  Moreover, the voltage profiles share the 

inversed patterns with the power demand profiles. Figure 11 is the optimised voltage 

profiles for 29 buses in scenario 28. 

 It is evident that the previous four buses whose voltage is below 0.94 p.u have risen 

their voltage above the lower limit. These four buses are bus 20, 21, 22 and 23. Figure 

4.16 and Figure 4.17 are the original power demand and voltage profiles of the four 

individual buses. Figure 4.18 and Figure 4.19 are power demand and voltage profiles 

of the four individual bus implemented with voltage sensitivity method. In the power 

demand profiles, based load demand, electric vehicle charging demand and the 

aggregation of these demands, are presented with different colours.  The results with 

the bus voltage optimisation method are not shown because it cannot achieve the 

expected target of rising all of the buses’ voltages above 0.94 p.u.  
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Figure 4. 11: The voltage profile for 29 buses in scenario 28 

 

            Figure 4. 12: The optimised voltage profiles for 29 buses in scenario 28 based 
on voltage sensitivity 
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Figure 4. 13: The voltage and power demand profile for bus 20 and 21 in scenario 28 

 

Figure 4. 14: The voltage and power demand profile for bus 22 and 23 in scenario 28 
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These four buses, 20, 21, 22 and 23 are the most distant buses in the extended LV 

highly-urban network. Furthermore, the feeder 3 these four buses belong to is the 

most complex and heavily loaded of the four feeders, which owns 14 out of the 29 

buses and 508 of 1032 household in total. Therefore the feeder 3 are responsible for 

almost half of the power demand in the network. The voltage issues all occur during 

the evening throughout power demand peak hours. Although only 50% of households 

own electric vehicles, the uncontrolled charging power demand is almost the same 

as the baseload demand. Household power demand is determined by users’ activities. 

Therefore, charging demand and baseload demand are generated during a similar 

period which leads to more volatility and a higher power demand peak in the evening. 

Looking into the optimised power demand of the four buses, most of the electric 

vehicle charging demand is postponed to a later time in the evening or an earlier time 

the next day. To a large extent, an optimised charging plan shaves the power demand 

peak in the evening and fill the power demand valley with electric vehicle charging 

demand. It effectively maintains the bus voltage above the lower statutory limits of 

0.94 p.u. Furthermore, not all electric vehicles charging are delayed when the voltage 

issues occur. This is the advantage of the proposed optimisation algorithm. Based on 

voltage sensitivity and charging priorities, it is aimed to minimise the number of 

electric vehicles which are delayed to achieve the expected voltage level. On the 

other hand, it also indicates that there is still the potential for voltage rising. 

Although the power demand of bus 20 remains the same before and after the 

optimisations, the voltage magnitudes rise above 0.94 after the optimisations. This is 

because the buses’ voltage is correlative and interactional. For each cycle of 

optimisation, only the lowest voltage magnitude bus is regarded as the target, and 

one single electric vehicle is supposed to be shifted. However, all the buses’ voltage 

in the network is affected to various degrees. Therefore, the voltage of bus 20 is 

improved as the optimisation of the other buses is conducted.  
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Figure 4. 15: The optimised voltage and power demand profile for bus 22 

and 23 in scenario 28 

 

 

Figure 4. 16: The optimised voltage and power demand profile for bus 
20 and 21 in scenario 28 
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4.5.2 Comparison between two optimisation algorithms 

In this section, two proposed optimisation algorithms are implemented with 100 

scenarios in the Opendss. Three electric vehicle penetration level, 25%, 50% and 75%, 

and two lower voltage limits, 0.94 p.u and 0.945 p.u are adopted in the simulations. 

The simulation results are concluded and analysed from the following three defined 

indices.  

The possibility of occurrence of voltage issues:  This is the possibility that divides the 

total number of power load scenarios in the test by the total number of power load 

scenarios where the voltage drops below the limit over the course of 1440 minutes 

(24 hours). This index is defined to describe how the optimisation algorithms solve 

the voltage drop problems. The lower the possibility of the occurrence of voltage 

issues, the higher the success rate of the optimisation algorithms. 

The average time before the occurrence of voltage issues: This is average time before 

each power load scenario meets the voltage drop problem. This index is used to 

describe how long the power system works smoothly without meeting any voltage 

could drop problems. Under the same circumstances, the longer average time before 

occurrence of voltage issues means the better performance of optimisation 

algorithms.  

The average shifted cycles for 1440 minutes: Due to the application of demand side 

management shifting electric vehicle charging, some power load scenarios can keep 

the voltage of all buses above the limit during the 24 hours period. The average 

shifted cycles are the average number of shifted cycles for these scenarios. This index 

is used to check a total number of the shifted electric vehicle during the whole 

optimisation process. The original intention of the optimisation algorithms is to 

minimise the influenced electric vehicles numbers as little as possible and raise the 

voltage level at the same time. More average shifted cycles of electric vehicles could 

lead to users’ to become less involved in demand side management, and also some 
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potential problems include the ageing of the battery, the unnecessary waste of 

energy and so forth. 

 Without 

DSM 

DSM base on 

bus voltage 

DSM base 

on VS 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

46% 2% 2% 

The average time before occurrence 

of voltage issues 

1234 1436 1436 

The average shifted cycles for 1440 

minutes 

 3.9 3.7 

Table 4. 2: Voltage limit=0.94 p.u 25% EV penetrations 

 Without 

DSM 

DSM base on 

bus voltage 

DSM base 

on VS 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 32% 25% 

The average time before occurrence 

of voltage issues 

1078 1229 1275 

The average shifted cycles for 1440 

minutes 

 261 216 

Table 4. 3: Voltage limit=0.94 p.u 50% EV penetrations 

 Without 

DSM 

DSM base on 

bus voltage 

DSM base 

on VS 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 90% 88% 

The average time before occurrence 

of voltage issues 

796 1125 1154 

The average shifted cycles for 1440 

minutes 

 608 580 

Table 4. 4: Voltage limit=0.94 p.u 75% EV penetrations 
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 Without 

DSM 

DSM base on 

bus voltage 

DSM base 

on VS 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

92% 6% 4% 

The average time before occurrence 

of voltage issues 

1201 1269 1331 

The average shifted cycles for 1440 

minutes 

 31.2 30.4 

Table 4. 5: Voltage limit=0.945 p.u 25% EV penetrations 

 Without 

DSM 

DSM base on 

bus voltage 

DSM base 

on VS 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 78% 74% 

The average time before occurrence 

of voltage issues 

1053 1270 1296 

The average shifted cycles for 1440 

minutes 

 304 198 

Table 4. 6: Voltage limit=0.945 p.u 50% EV penetrations 

 Without 

DSM 

DSM base on 

bus voltage 

DSM base 

on VS 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 100% 100% 

The average time before occurrence 

of voltage issues 

992 1163 1176 

The average shifted cycles for 1440 

minutes 

 389 394 

Table 4. 7: Voltage limit=0.945 p.u 75% EV penetrations 

Based on the results presented in the above table, some conclusions can be drawn. 

For 25% of the electric vehicle penetration in the extended highly-urban distributed 

network, 54% of power demand scenarios meet with serious voltage drop issues 
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when lower voltage limit is 0.94p.u. With the increase of electric vehicle penetration 

level and lower voltage limit, almost 100% of power demand scenarios suffer from 

the voltage problems. Therefore, uncontrolled electric vehicle charging has seriously 

affected the bus voltage stability of the distributed power system network. 

Furthermore, the average time before the occurrence of voltage issues become 

longer when more and more electric vehicles are connected to the power system. For 

the 25% penetration level, voltage issues occur after around 1200 minutes at 20:00, 

which is evening peak hour. At the 50% penetration level, it moves 2 hours earlier, at 

around 18:00, which is the beginning of the evening peak hour. For the 75% 

penetration level, it has been shifted to 475 minutes at 8:00, which is the morning 

peak hour. For the most severe case where the lower voltage level raises to 0.045 p.u, 

the average time before the occurrence of voltage issues is 129 minutes at 2:00 in 

the morning.  

Comparing the two optimisation algorithms, for lower electric vehicle penetration 

levels, the advantage of demand side management with voltage sensitivity is not 

markedly obvious. It only can have 2% leading than demand side management with 

bus voltage. When the penetration level increases, demand side management with 

voltage sensitivity can achieve a 5% to 7% more successful rate. However, for the 75% 

penetration level and lower voltage limits 0.945 p.u, there is no chance for the 

voltage to rise above the expected level, even using demand side management with 

voltage sensitivity. It is because the household power demand has exceeded the 

affordable levels of the current power system. 

Although the proposed optimisation algorithms can solve the voltage drop problems 

in all scenarios, demand side management with voltage sensitivity significantly 

improve the average time before the occurrence of voltage issues. It can extend the 

normal working period to 200 minutes longer compared with uncontrolled power 

demand, and around 30 minutes longer compared with demand side management 

for bus voltage. In the case of a voltage limit of 0.94 p.u and the 75% penetration 
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level, the average time before the occurrence of voltage issues has been delayed by 

679 minutes. 

Concerning the average shifted cycles of 1440 minutes, demand side management 

with voltage sensitivity can achieve a better performance than demand side 

management based on bus voltage in the optimisation process. For the case of a 

voltage limit of 0.94 p.u and 50% penetration, it can decrease around 50 shifted 

cycles and achieve a higher success rate in solving the voltage problems. In general, 

the results of the average shifted cycles for 1440 minutes demonstrate another 

advantage of demand side management with voltage sensitivity, in that it can 

effectively reduce the influence of demand side management on original electric 

vehicle charging behaviour. 

 

4.7 Conclusion 

In this chapter, the implementation of two voltage control optimisation algorithms 

was studied to maintain the bus voltage levels within the reasonable range through 

electric vehicle charging demand management. Although the concept of voltage 

sensitivity has been discussed for a long time, it is the first time that voltage sensitivity 

have been used to evaluate the influence of active power demand on the bus voltage 

in the distributed power system network. Therefore some conclusions can be drawn 

as follow. 

Uncontrolled electric vehicle charging has a negative impact on the stability and 

reliability of the distributed power system network. This is particularly true when 

electric vehicle penetration levels increase, as the voltage drop issues become much 

more apparent. The detailed influence on each bus has been analysed and presented. 

The proposed voltage control optimisation algorithm is employed in the simulation. 

The results suggest that this algorithm makes excellent contributions to bus voltage 

control in the radial distributed power system network in the following aspects. 
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1. The proposed algorithms can significantly solve the voltage drop issues during 24 

hours in the low and medium electric vehicle penetration level. Moreover, it has the 

better success rate in solving voltage drop problems than demand side management 

algorithms based on bus voltage. 

2. From the aspect of users, the proposed algorithms can decrease the number of 

affected electric vehicles in the network to achieve the same or even better 

optimisation results than other algorithms. To a certain degree, it could reduce 

people’s reluctance to participate in demand side management.  In other words, it 

means that proposed algorithms are capable of meeting the higher requirement of 

lower voltage limits   

3. For high electric vehicle penetration level, the proposed algorithms cannot 

maintain the bus voltage above the lower limit across the 24 hours. However, it can 

efficiently extend the period before the occurrence of voltage issues, which provides 

room for the implementation of other optimisation methods. 

Ultimately, the proposed algorithms can achieve the expected target to a great 

extent and offer the better performance than other algorithms. However, for some 

particular circumstance, further demand side management methods are required for 

issues such as wetload demand management. 
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Chapter 5 Combined Household loads and EV DSM 
 

5.1 Introduction 

In Chapter 3, all household activities were divided into 13 categories based on their 

various load characteristics. However, from the aspect of demand side management, 

household power demand can be reclassified into baseload, wetload and electric 

vehicle charging load demand. Baseload demand is defined as the power demand 

which cannot be shifted and controlled such as lighting, electrical entertainment 

appliances, cooking, cold loads and so forth. Electric vehicle charging demand is 

regarded as the storage system in which there is the capability for controllable, bi-

directional electrical energy flow between a vehicle and the power grid. Wetload 

demand also can be used as a moveable load in the household; this includes 

dishwashers, washing machine, tumble dryers and washing dryers. The ultimate 

objective of this work is to develop a combined domestic load/EV charging 

management strategy. In the previous chapter, an EV charging algorithm was 

proposed. Here, a DSM algorithm is presented that deals with the wet load 

management in the household, and combined with the EV charging algorithm to 

create a single management structure. 
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Figure 5. 1: 10000 Household detailed power demand 

This graph demonstrates the baseload, electric vehicle charging demand, 

dishwashing, washing machine, tumble dryer and total power demand consumption 

of 10000 households within the 50% electric vehicle penetration level, as a result of 

the demand model presented in the previous chapter. It is clear that the baseload 

and electric vehicle charging are still the major power consumers in the household, 

during the peak demand period from 18:00 to 22:00, when the peak demand is 

almost the four times that of the valley demand. There is no doubts that electric 

vehicle charging demand makes excellent contribution to this. Wetload demand only 

accounts for a small proportion, compared with the other two significant demands in 

the household. Wetload demand shares similar shapes with the baseload. A detailed 

description of this will be presented in the next section. The following table shows 

the proportion of the total household power demand consumptions based on 10000 

household load profiles. 

EV penetration 

level 

Baseload EV charging 

demand 

Wetload 

0 91% 0 9% 

25% 73% 20% 7% 

50% 61% 33% 6% 

75% 52% 43% 5% 

100% 46% 50% 4% 

Table 5. 1: The proportion of various household load demand 

With the increase of the EV penetration level from 0 to 100%, EV charging demand 

occupies more and more proportion even up to 50%, which is more than the baseload. 

The proportion of wetload drops from 9% to 4%. In this chapter, wetload is regarded 

as a flexible load demand in the household. A combined household demand side 

management is proposed which includes EV charging and wetload demand, which 

will provide the large power demand space for management. The wetload demand 
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plays the same role as EV charging demand in maintaining a stable voltage level in 

the distribution network. 

 

5.2 Household wetload analysis 

The mainly household wetload electric appliances are dishwashers, washing machine 

and tumble dryers. Differing from electric vehicle charging demand, wetload power 

demand shares the following three characteristics.  

1. Continuity: it cannot be interrupted during the working cycles based on the 

household users’ behaviours and their load. It will be not finished until the 

end of the programme.  

2.  Necessity: Not all household are fitted with wetload electric appliances, and 

the frequency of operation for wetload is also low. It is not a daily running 

electrical appliance, such as lighting. 

3. Variability: Because of special working characteristics, the power 

consumption of the wetload are not constant, and they change during the 

working cycles. 

The electric vehicle charging process can be interrupted and divided into several 

separate periods based on requirements. However, for the wetload power demand, 

in light of the above three characteristics, the only method feasible without 

disturbing the user’s activities is delaying their starting time. 
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Figure 5. 2: 10000 household wetload demand 

The above figure is the aggregate of three major wetload electric appliances power 

demand from 10000 households. The blue line is the dishwashing power demand. 

The demand peaks occur at a similar time as the baseload, in the morning and 

evening when people finish their breakfast and dinner.  The green line is the washing 

machine, and the red line is tumble dryer. These two electric appliances are 

complementary goods from the view of microeconomics. The washing machine 

power demand is focused in the morning after the baseload rush hour. The tumble 

dryer work usually two hours after the washing machine which is decided by their 

complementary relationship and washing machine working cycle. Because not all 

household is equipped with tumble dryer, the total power demand of tumble dryers 

is less than for washing machines. Therefore in this chapter, the combined household 

load and electric vehicle demand side management are proposed. Based on the 

previous developed household power demand profiles, baseload, electric vehicle 

charging and wetload account for 60 %, 35% and 5% respectively of the daily total 

power demand for 50% electric vehicle penetration level. Therefore almost 40% of 

household power demand can be optimised and the wetload demand is implemented 

as the supplement of demand side management based on electric vehicle charging. 
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5.3 Voltage control based on wetload optimisation algorithm 

Voltage control based on wetload optimisation algorithm is derived from the voltage 

control based on voltage sensitivity optimisation algorithm discussed in the previous 

chapter. They share the same processing step with electric vehicle charging demand 

side management until step 7. The detailed processing procedures are explained 

below. 

Step 1: The aggregator gets the base load demand and uncontrolled EV charging 

demand with a 1-min resolution from all households at each time step. In the 

uncontrolled EV charging plan, it is assumed that all electric vehicles begin their 

charging at home when they finish their last trip, and the charging rate is fixed 

(3.3kW).  

Step 2: The power demand profiles are input into OpenDSS to run the power flow at 

time T. The bus voltage list will be generated. All of the buses in the network are 

sorted in ascending order based on their bus voltage magnitude in p.u.  

Step 3: Find the lowest voltage bus N and compared VN with the pre-set bus voltage 

lower limit VLL. If VN ≤ VLL, it means that the voltage at bus N has dropped too much 

and voltage regulation methods will be implemented. Then go to Step 4.  If VN ≥ VLL, 

it means that the voltages of all the buses are in the accepted range. Move back to 

Step 2 and run the power flow for the next time step. 

Step 4: Calculate the voltage sensitivity of the lowest voltage bus N. The voltage 

sensitivity of bus N describe how the active power changing of all buses in the 

network influence the voltage of bus N. 

Step 5: Collect input data of each electric vehicle arriving time tarriving, the state of 

charge (SOC) and tbegin the time when people are going to use EV. Based on the above 

information, the priority list will be created to decide the optimisation order for each 

vehicle. 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑥 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔
+ 𝑦 ∙ 𝑜𝑟𝑑𝑒𝑟𝑠𝑜𝑐 +  𝑧 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡_𝑏𝑒𝑔𝑖𝑛                       (5.1) 
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Where x, y, z are the weighting factors for three parameters, respectively. 

Ordert_arriving is the value of each vehicle in the ascending sequence of arriving time. 

OrderSOC is the value of each vehicle in the descending sequence of the state of 

charging. Ordert_begin is the value of each vehicle in the descending sequence of 

beginning next trip. The smaller value the car gets from that equation, the higher the 

priority given to that car. The higher priority means these electric vehicles need to be 

charged urgently. Moreover, people are less likely to participate in demand side 

management. 

Step 6: Based on the calculated voltage sensitivity and charging priority, the lowest 

charging priority electric vehicle at the highest voltage sensitivity will have its 

charging delayed for 5 minutes. 

Step 7: Run the power flow again and check the voltage of bus N. If VN ≤ VLL, delay the 

next lowest charging priority car until VN ≤ VLL. If all electric vehicles at the highest 

voltage sensitivity have been discharging at this time point and the voltage of bus N 

is still below the voltage limit, wetload working states are checked for bus N. 

Step 8: For bus N, if wetload electric appliances are about to start work at this time 

constant, the start time will be postponed for 5 minutes. If the wetload electric 

appliances are in the working state, no further action will be implemented. 

Step 9: After all the wetload electric appliances have been checked, If VN ≤ VLL, electric 

vehicles at next higher voltage sensitivity will be controlled following step 5 and step 

6. If VN ≥ VLL, go to step 3 and check the voltage of other buses. 

Step 8: All bus voltage are in the accepted range, T=T+1. Go to step 2. 

The detailed flowchart of the combined EV charging demand and household load 

demand side management is presented below. Furthermore, some rules are set in 

the wetload demand side management to make the optimisation to be more realistic. 

For example, the start time of the washing machine cannot be later than the tumble 

dryer for one household.  
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   Run power flow at time T  
find the lowest voltage bus N 

M=1 

Delay charging for 5 minutes 

Calculate EV charging 
    priority of Mth highest VS bus   

Run power flow at time T 
Check voltage at bus N 

If VN ≤ limit 

M=M+1 

T=T+1 

YES 

NO 

Calculate voltage 
sensitivity of bus N 

If all EVs of Mth bus 

are discharging at 

time T 

If VN ≤ limit 

YES 

NO 

Select the first car in the 

charging state based on the 

ascending order 

YES 

Wetload demand side 

management 

If VN ≤ limit 

YES 

T=T+1 

NO 

Figure 5. 3: Voltage control based on voltage sensitivity optimisation algorithms 

flow chart 
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5.4 Results 

The same processing procedures are adopted in this chapter as the electric vehicle 

charging demand side management. The 100 power load scenarios will be generated 

from 10,000 household power demand profiles with a separate wetload power 

demand. Each power load scenario contains 1026 household load profiles. Also, three 

different electric vehicle penetration (25%, 50% and 75%) levels were implemented 

in the simulations. In the previous chapter, two optimisation algorithms were 

compared. Demand side management with the voltage sensitivity showed the better 

performance in maintaining the bus voltage level than the demand side management 

with the bus voltage. So demand side management with voltage sensitivity will be 

applied in this chapter. The optimisation results in the wetload will be compared with 

demand side management for electric vehicles. The identical extended highly urban 

generic low voltage distribution network will also be chosen in the simulation. Three 

same defined parameters the possibility of the occurrence of voltage issues, the 

average time before occurrence of voltage issues and the average shifted cycles for 

1440 minutes are introduced to measure the performance of optimisation results. 

5.4.1 Results based on wetload demand side management 

Figure 7.3 and Figure 7.5 show the voltage and power demand profiles for buses 20, 

21, 22 and 23 in Scenario 10 with 50% electric vehicle penetrations. Different power 

demand is demonstrated in various colours. The blue line is the baseload demand. 

The green line is the electric vehicle charging demand. Light green, purple and red 

lines are the washing machine, tumble dryer and dishwasher demand respectively. 

The yellow line is the aggregation of all these household power demands. The voltage 

of these four buses is below the lower voltage limit of 0.94 p.u among all 29 buses in 

the distribution network. For bus 23, the lowest voltage magnitude is even below 

0.93 p.u at around 0.926 p.u which happens at 18:50.  As we can see, all the voltage 

issues occur between 18:00 and 20:00. This is due to baseload and electric vehicle 

charging demand both reaching the demand peak during this period. The wetload 

demand is distributed evenly from 8:00 to 22:00 in the view of each bus.  
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The optimisation results with the electric vehicle charging demand are not presented 

because they do not achieve the expected target of rising all of the buses’ voltages 

above the lower limit of 0.94 p.u during the 24-hour simulations. It means that even 

though all available electric vehicles experience delayed charging at the certain time 

point, some buses’ voltage is still below 0.945 p.u. The optimised bus voltages and 

demand profiles shown are based on the combined household demand side 

management algorithm. Unlike the simulation in the previous chapter, the pre-set 

voltage optimised target is lifted to 0.945 p.u.  

For bus 20, the voltage drop is not as severe as for the other three buses. When 

comparing the wetload demand before and after optimisation, the wetload demand 

is kept the same. It is partly because the electric vehicle charging demand is enough 

to raise the voltage above the lower voltage limit of 0.945 p.u. Even with the electric 

vehicle charging demand, only a few cars are delayed. Another reason leading to this 

phenomenon is that the voltage level of one bus is not only influenced by its power 

demand but also affected by the load condition of other buses. For example, bus 23 

is the most distant from the slack bus and burdened with the most massive load. The 

demand side management of bus 23 results in raising its voltage level; meanwhile, it 

also has a positive impact on the other buses’ voltage level. 

For the other three buses, bus 21, 22 and 23, they all experience the severe voltage 

drop issues. The optimised voltage profiles share a similar shape, and they are all 

closed to the lower voltage limit of 0.945 p.u from 18:00 to 23:00. Furthermore, most 

of the electric vehicle charging demand during the peak time is shifted to the morning 

of the next day which is the power demand valley period.  It also can be observed 

that some washing machine demand (light green) and the tumble dryer (purple) are 

postponed to the next daytime to avoid the evening peak demand hour. Because 

plenty of power demand in the evening moves to the early morning of next day, it 

causes a slight voltage drop from 0:00 to 5:00, but it is still within the accepted range. 

From the aspect of the energy side, the primary target of demand side management 

of the combined household load is to improve the bus voltage profiles. At the same 
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time, it also effectively reduce the power demand fluctuation to a certain extent. 

Given the small proportion of wetload demand in the household compared with the 

baseload and electric vehicle charging demand, the demand change after the 

optimisation is not so evident as electric vehicle charging demand. In the case of the 

electric vehicle charging demand side management, the bus voltage will drop below 

0.945 p.u at 18:52.  

 

  

  

Figure 5. 4: The voltage and power demand profile for bus 20 and 21 in 
scenario 10 
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Figure 5. 6: The voltage and power demand profile for bus 22 and 23 in 
scenario 10 

Figure 5. 5: The optimised voltage and power demand profile for bus 20 

and 21 in scenario 10 
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5.4.2 Comparison between two optimisation algorithms 

This section will demonstrate the performance of two proposed optimisation 

algorithms based on 100 scenarios simulated in the OpenDSS. Three electric vehicle 

penetration levels 25%, 50% and 75% and two lower voltage limits, 0.94 p.u and 0.945 

p.u are introduced in the simulation. Three parameters are used to measure the 

performance including the possibility of the occurrence of voltage issues, the average 

time before the occurrence of voltage issues and the average shifted cycles for 1440 

minutes. The detailed definitions of these three parameters have been explained in 

the Chapter 6.5.2.  

When comparing two optimisation algorithms, for lower electric vehicle penetration 

level and voltage limits, such as 25% and 0.94 p.u, the advantage of combined 

household demand side management is not necessarily apparent. When the lower 

voltage limit is set as 0.945 p.u, the slight advantage of combined household demand 

side management is shown which could have 4% less possibility of occurrence of 

voltage issues and provide around 40 minutes extra time for the power system. For 

Figure 5. 7: The optimised voltage and power demand profile for bus 22 and 

23 in scenario 10 
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the 50% electric vehicle penetration, the advantage of a combined household 

demand side management is proved, in that it is able to reduce the possibility of the 

occurrence of voltage issues from 78% to 60% and extend the average time before 

the occurrence of voltage issues from 1275 to 1322 under the circumstance of a lower 

voltage limit of 0.945 p.u. It also decreases the average shifted cycles from 204 to 165 

which means that fewer households are influenced in the demand side management. 

Even in the case of the lower voltage limit 0.94 p.u, the combined household demand 

side management can also offer a significant advantage over the demand side 

management based on an electric vehicle. When the electric vehicle penetration level 

increases to 75%, the combined household demand side management shares a 

similar performance to the electric vehicle charging demand side management. 

Especially when the lower voltage limit is lifted to 0.945 p.u, the combined household 

demand side management can only reduce the average shifted cycles.  

 Without 

DSM 

DSM base on 

EV  

DSM based 

on EV&WL 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

48% 0% 0% 

The average time before occurrence 

of voltage issues 

1200 1440 1440 

The average shifted cycles for 1440 

minutes 

 7 7 

Table 5. 2: Voltage limit=0.94 p.u 25% EV penetrations 
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 Without 

DSM 

DSM base on 

EV 

DSM based 

on EV&WL 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 28% 20% 

The average time before occurrence 

of voltage issues 

1076 1245 1309 

The average shifted cycles for 1440 

minutes 

 202 150 

Table 5. 3: Voltage limit=0.94 p.u 50% EV penetrations 

 

 Without 

DSM 

DSM base on 

EV 

DSM based 

on EV&WL 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 84% 80% 

The average time before occurrence 

of voltage issues 

848 1094 1133 

The average shifted cycles for 1440 

minutes 

 555 512 

Table 5. 4: Voltage limit=0.94 p.u 75% EV penetrations 

 

 Without 

DSM 

DSM base on 

EV 

DSM base 

on EV&WL 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

88% 6% 2% 

The average time before occurrence 

of voltage issues 

1161 1322 1364 

The average shifted cycles for 1440 

minutes 

 30 24 

Table 5. 5: Voltage limit=0.945 p.u 25% EV penetrations 
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 Without 

DSM 

DSM base on 

EV 

DSM base 

on EV&WL 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 78% 60% 

The average time before occurrence 

of voltage issues 

1029 1275 1322 

The average shifted cycles for 1440 

minutes 

 204 165 

Table 5. 6: Voltage limit=0.945 p.u 50% EV penetrations 

 

 Without 

DSM 

DSM base on 

EV 

DSM base 

on EV&WL 

Possibility of occurrence of voltage 

issues(below 0.94 p.u) 

100% 98% 98% 

The average time before occurrence 

of voltage issues 

950 1034 1038 

The average shifted cycles for 1440 

minutes 

 354 273 

Table 5. 7: Voltage limit=0.945 p.u 75% EV penetrations 

 

5.5 Conclusion 

In this chapter, the characteristics of three household wetload including washing 

machine, tumble dryer and dishwashing are analysed, and detailed wetload demand 

profiles are generated. Based on their three characteristics, continuity, necessity, and 

variability, a combined household demand side management is proposed. This 

optimisation algorithm effectively reduces the variation of the bus voltage level in 

the distribution network. As a supplement to electric vehicle charging demand side 

management, it has been proven that better performance can be obtained, especially 

in the medium electric vehicle penetration level. However, with the increase of 
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electric vehicle penetration level, the proportion of wetload is decreasing, and the 

effect of combined household demand side management is not significant compared 

with electric vehicle charging demand side management.  
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Chapter 6. Multi-Objectives Demand Side Management 

(MoDSM) 

6.1 Introduction 

This chapter investigates the potential impact incurred by a fleet of electric vehicles 

charging on the cost of electricity generation, greenhouse gas emissions (GHG) and 

power system demand through low voltage residential demand-side management 

(DSM). The optimisation algorithm is used to shift electric vehicles charging loads to 

minimise the combined impact of three critical parameters: financial, environmental, 

and demand variability. The results show that it is possible to reshape the power 

demand and reduce electricity cost and GHG emissions without affecting people’s 

driving patterns. 

Demand side management strategies are focusing on shifting flexible loads outside 

the peak demand periods, typically in the morning and evening hours for the UK. 

Current research focuses on responsive measures that shift loads to a later time 

(typically during the night). However, in a system with large numbers of EVs, this may 

cause new problems, as EVs are, usually charged overnight. This, therefore, may not 

be the optimal solution, as it may be cheaper and more environmentally friendly to 

shift loads earlier, e.g. during the mid-day valley when local penetration from 

domestic PV is also high. However, this requires an accurate prediction of the EV 

charging demand. Therefore, a stochastic model of people’s driving behaviours using 

the Markov Chain Monte Carlo (MCMC) method has been developed to calculate the 

EV charging load for household customers and has been added to previous work, in 

which ‘flexible’ domestic loads such as washing machines and dishwashers are used 

by the optimisation algorithm for demand side management. Each EV profile has a 

strong correlation with individual household daily activities. 
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6.2 Methodology 

  6.2.1 Optimisation problem definition 

This study focuses on the three areas of power system operation, the total daily cost 

of electricity generation, the greenhouse gas emissions that derive from consumption 

of energy and the fluctuation of power demand caused by various domestic lifestyle 

habits. The combined impact is introduced to measure the contributions of these 

three costs to the whole power system. In order to minimise the combined impact 

on the entire power system, EV charging is shifted to reshape the power demand 

profiles. However, electric vehicle charging cannot be shifted without any limitation. 

In reality, the owners of EVs will prefer finishing charging as soon as possible so as to 

have the car available for their next journey. A penalty factor is therefore used in the 

optimisation to constrain the delay time. 

The objective function can be described mathematically by the following equation:  

      𝑚𝑖𝑛 ∑ 𝑐𝑐𝑜𝑚𝑏 = 𝑚𝑖𝑛 ∑ (𝑥 ∙ 𝑐𝑤𝑖 + 𝑦 ∙ 𝑒𝑚𝑤𝑖 + 𝑧 ∙ 𝑠𝑦𝑤𝑖)𝑡
𝑖=1

𝑡
𝑖=1 ∙ (1 + 𝑝𝑒𝑛𝑖)        (6.1) 

Where ccomb is the combined impact which is calculated by cwi, emwi and sywi. These 

are the normalised values of electricity price, greenhouse gas (GHG) emissions, and 

system cost respectively, where system cost sywi is defined as the normalised 

difference between the instantaneous active power and the mean daily power. The 

weighting factors x, y and z are used to set the ratio of the influence of three criteria 

in the calculation; peni is the penalty factor which is used to reduce the delay time; t 

defines the 1440 time steps (24 hours at 1-min resolution). 

The profiles of three criteria: electricity price, greenhouse gas (GHG) emissions and 

system active power demand are weighted according to the following equations: 

𝑓 =
(ℎ∙𝑝)−min (ℎ∙𝑝)

max(ℎ∙𝑝)−min (ℎ∙𝑝)
                                                       (6.2) 

          𝑠𝑦𝑤𝑖 =
∆𝑃𝑖−min (∆𝑃)

max(∆𝑃)−min (∆𝑃)
                                                         (6.3) 
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Where f represents the normalised values for cwi and emwi, by replacing h with c and 

em respectively. Electricity price is in £/MWh, GHG emissions in tons of CO2 

eq./MWh and sy in MW. P is the active power demand and ∆𝑃𝑖  is the absolute 

difference between the instantaneous active power and the daily mean power at 

each time step i.  

The penalty factor used to limit the delay time is given by: 

𝑝𝑒𝑛 = {
𝑥 ∙

1

2880
, 1 ≤ 𝑥 ≤ 1440

0.5, 𝑥 ≥ 1440
                                        (6.4) 

When the delay time x is less than 1440 minutes, it increases linearly. When the delay 

time is more than 1440 minutes, the penalty factors will be 1. The constraints are 

defined in following equations (6.5)-(6.7) 

𝐸𝑛𝑒𝑤 = 𝐸𝑜𝑙𝑑                                                                        (6.5) 

𝑡𝑒𝑛𝑑_𝑛𝑒𝑤 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑤 = 𝑡𝑒𝑛𝑑_𝑜𝑙𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑜𝑙𝑑                                            (6.6)                                                                                                         

            𝑡𝑒𝑛𝑑𝑛𝑒𝑤
≤ 𝑡𝑏𝑒𝑔𝑖𝑛                                                                    (6.7) 

Where Enew_old is the daily energy demand before and after EV load shifting, tend_new, 

tstart_new ,tend_old ,tstart_old are the start and end charging times before and after shifting. 

tbegin is the time when people are going to use EV.  The algorithm ensures that before 

and after shifting, the charging time and energy consumption will be the same and 

that electric vehicles will be fully charged or stop charging before the next trip. 

 6.2.2 Optimisation algorithm 

Step 1: The aggregator gets the base load demand and uncontrolled EV charging 

demand with a 1-min resolution from 100 households. In the uncontrolled EV 

charging plan, it assumed that all electric vehicles begin their charging at home when 

they finish their last trip. 

Step 2: Collect input data of each electric vehicle arriving time tarriving, the state of 

charge (SOC), tbegin  the time when people are going to use EV. Based on the above 
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information, the priority list will be created to decide upon an optimisation order for 

each vehicle. 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑥 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔
+ 𝑦 ∙ 𝑜𝑟𝑑𝑒𝑟𝑠𝑜𝑐 +  𝑧 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡_𝑏𝑒𝑔𝑖𝑛            (6.8) 

Where x, y, z are the weighting factors for three parameters, respectively. 

Ordert_arriving is the value of each vehicle in the ascending sequence of arriving time. 

OrderSOC is the value of each vehicle in the ascending sequence of the state of 

charging. Ordert_begin is the value of each vehicle in the ascending sequence of 

beginning next trip. The smaller value the car gets from that equation, the higher 

priority given to that car.  

Step 3: Assume charging process cannot be interrupted, and all electric vehicles will 

be fully charged or stop charging when people are going to use the vehicle.  

𝑡𝑠ℎ𝑖𝑓𝑡 = 𝑡𝑏𝑒𝑔𝑖𝑛 − (𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 +
1−𝑆𝑂𝐶

𝑐𝑟
∙ 𝐵𝐶)                            (6.9) 

Where tshift is available shifting cycles for each vehicle. CR is charging rate 3.3kW. BC 

is battery capacity 24kWh. The initial SOC is determined by ambient temperature 

and people's driving behaviour.  

Step 4: for k=1: tshift, shifting start charging time tstart to (tarriving+k), then generate new 

charging profiles of EVi and calculate the combined impact of the whole system using 

equation (1) and (2) at each available shifting cycle of EVi. Electricity price is derived 

from market information published online by the balancing mechanism reporting 

agent. GHG emissions’ data are the short term marginal emissions derived from 

operational and market data for generation plants on the British grid. System cost is 

defined as follows: 

∆𝑃𝑖 = 𝑃𝑡𝑜𝑡_𝑖 − 𝑃𝑎𝑣𝑒                                                          (6.10) 

𝑃𝑡𝑜𝑡_𝑖 = 𝑃𝑏𝑎𝑠𝑒_𝑖 + 𝑃𝑒𝑣_𝑖                                                    (6.11) 

𝑃𝑎𝑣𝑒 =
∑ 𝑃𝑡𝑜𝑡_𝑖

𝑡
𝑖=1

∑ 𝑖𝑡
𝑖=1

                                                        (6.12) 
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Where Ptot is total real power demand including base load and EV of the system. Pbase 

is total baseload demand of the system. Pave is the total daily power divided by the 

total time step 1440. ∆𝑃𝑖 is the difference between average power demand and real 

power demand. 

Step 5: find the shifting cycle of EVi when the whole system reaches the minimum 

combined impact. Then use this shifting cycle to reschedule the electric vehicle 

charging and generate the new charging profiles. 

Step 6: Update charging profiles of EVi and power demand of the whole system. 

Given the update of electric vehicle charging profiles,  ∆𝑃 will also be recalculated. 

Increase value of i by 1 and start from step 3. The closed-loop optimisation is selected 

to avoid creating another new peak demand. Otherwise, each electric vehicle will 

choose minimum combined impact timing as their starting charging point without 

the consideration of other electric vehicles. As I increases, ∆𝑃 is approaching zero 

which means that optimized power demand of the whole system gets close to the 

average power demand. Go to Step 7 when i is equal to electric vehicle number. 

Step 7: Optimisation end. Generate the new power demand of the whole system. 

 

6.3 Case study 

6.3.1 UK residential load 

The methodology mentioned in chapter 3 is applied to a test system to generate 100 

household baseload demand and electric vehicle charging demand. The following 

picture is the aggregation of 100 household baseload demand. It can be clearly 

observed that there is two power demand peak during a typical working day. The first 

one occurs in the morning around 8:00 when people get up and prepare for work. 

The second one starts from 18:00 until 22:00 when people come back home from 
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work.

 

Figure 6. 1: Power demand of the total household demand 

 

Test case Financial 

criterion 

Environmental 

criterion 

Demand 

variation 

criterion 

Case 1 0 0 1 

Case 2 0 1 0 

Case 3 1 0 0 

Case 4 0.4 0.3 0.3 

Table 6. 1: The weighting factors of four cases 

Four cases are used to study the sensitivity of the effect of the three drivers on the 

impact on the aggregate power demand. In case 1, case 2 and case 3, only one 

criterion is taken into account, while the other two criteria are ignored in each case. 

In case 4, all three criteria contribute to the optimisation. Meanwhile, three 

penetrations of electric vehicles (30%, 60% and 100% of the total number of cars, 

assuming there is one car per household) are also applied to each case. 
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  6.3.2 Uncontrolled charging plan 

The 100 individual household daily power demand profiles are selected. According to 

various electric vehicles penetrations, 30, 60 and 100 electric vehicles, uncontrolled 

charging profiles are implemented. 

 

Figure 6. 2: Power demand for EV loads 

There are two peaks for base household power demand in one day. One is in the 

morning between 6:00 and 10:00 when people get up and prepare for work. Another 

is in the evening between 20:00 and 24:00 when people have returned home. In 

figure 2, most of the electric vehicle charging starts from 12:00; peak period occurs 

between 18:00 and 22:00. The charging profiles after 24:00 are shifted to the morning 

of the same day in figure 2 to keep the continuity of charging.  

  6.3.3 Case 1: Demand variation criterion 

For case 1 which only considers demand variability as an objective for three electric 

vehicles penetrations, the power demand shape becomes much flatter and is closed 

to the desired power demand. Moreover, the difference between unshifted power 

demand and shifted power demand is reduced. Comparing the uncontrolled charging 

power demand with shifted charging power demand, it can be easily seen that most 
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electric vehicle charging in the night is shifted to the morning of the next day. The 

optimisation algorithm almost achieves the target that fills the power demand valley 

and reduces the power demand peak. There are some conditions presumed in the 

optimisation, namely that electric vehicle charging processes can be interrupted and 

the state of charge has to reach the desired level before the next journal. Electric 

vehicle charging is unlike other non-critical electric appliances; they share more 

limitations during the optimisation process such as allowable shifting period and 

unstoppable charging which are the reasons behind the difference between 

optimised power demand and desired power demand. 

 

 

Figure 6. 3: Case 1: Power demand with 30% EV penetrations based on unrealistic 
optimisations 
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Figure 6. 4: Case 1: Power demand with 60% EV penetrations based on unrealistic 
optimisations 

 

 

 

Figure 6. 5: Case 1: Power demand with 100% EV penetrations based on unrealistic 
optimisations 
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Case 1 :Demand variation criterion 

 Cost for uncontrolled 

charging 

Cost for shifted charging 

30% EV 126.6669 2.8846 

60% EV 130.3834 3.5342 

100% EV 186.7622 4.6833 

Table 6. 2: Results for case 1 

The table above presents the results from the aspect of numerical value. The cost of 

the demand variation criterion is the concept proposed in order to measure the 

difference between shifted power demand and unshifted power demand which are 

normalised results. At the same electric vehicle penetration level, the effect of shifted 

charging is visible which can be concluded from the decrease in charging cost. For the 

first column, the costs for uncontrolled charging increase as more electric vehicles 

are connected to the network. This is because most of the users charge their vehicles 

during peak hours for uncontrolled charging plan which leads to a surge in power 

demand in the evening. However, the costs for shifted charging are reduced 

considerably with the increase in electric vehicle penetration level. The reason for 

this is that higher penetration electric vehicles bring a more flexible power demand 

capacity. That capacity can be quickly shifted to fill in the power demand valley and 

meet the requirement for desired power demand.   

However, there are still some spikes in the morning between 6:00 and 8:00; this is 

because most households use unshiftable electrical appliances during that period, 

which exceed the desired power demand. As with the increase of electric vehicle 

penetration, the desired power demand also raises a significant amount. As a result, 

the power demand spikes in the morning are reduced. Therefore more electric 

vehicles are involved in the optimisation algorithm, and better optimisation results 

can be achieved. 
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6.3.4 Case 2: Environmental criterion& Case 3: Financial criterion  

When considering electricity price and GHG emissions in Case 2 and Case 3, the 

significant peak is created in figures 4, 5 and 6. As mentioned above, generation cost 

and GHG emissions cost are fixed data in our study, which are derived from the power 

supplier and determined by various factors. It will not be updated as a single 

distributed network power demand change; for each electric vehicle, they all choose 

the lowest cost point in their allowable period to start charging without regard to 

other vehicles’ charging plan and the change of total power demand. Thus the large 

peaks are created in the following power demand graphs. 

In Case 2 (environmental criterion=1), the green line is the power demand results of 

optimisations. Compared with unshifted power demand (blue line), two power 

demand peaks are created in the graph for three varying electric vehicle penetration 

level. The greenhouse gas price reaches its peak at around 21:00 and falls to its 

minimum value around 22:00, then fluctuates at the lower level. The power demand, 

therefore, has been shifted to 15:00-16:00 and 21:00-22:00 separately. The daytime 

charging demand focuses on the first peak area. Moreover, the evening charging 

demand moves to the second peak demand area. 

In Case 3 (financial criterion=1), the red line is the power demand results of 

optimisations. Differing from power demand in Case 2, one colossal power demand 

peak is generated during the early morning. It can be easily observed that the 

electricity price varies throughout the course of a 24 hours day and is lower from 0:00 

to 6:00 when most people sleep and thus the base load demand is obviously reduced. 



 
 

110 
 

 

Figure 6. 6: Daily profiles of price and GHG emissions per MWh   

 

Figure 6. 7: Case 2 & 3: Power demand with 30% EV penetrations based on 
unrealistic optimisations 
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Figure 6. 8:  Case 2 & 3: Power demand with 60% EV penetrations based on 
unrealistic optimisations 

 

 

Figure 6. 9: Case 2 & 3: Power demand with 100% EV penetrations based on 
unrealistic optimisations 
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Case 2: Environmental criterion 

 Cost for uncontrolled 

charging 

Cost for shifted charging 

30% EV 304.3570 103.4131 

60% EV 368.3850 182.5585 

100% EV 437.0358 319.3889 

Table 6. 3: Results for case 2 

 

Case 3: Financial criterion 

 Cost for uncontrolled 

charging 

Cost for shifted charging 

30% EV 359.6725 122.4364 

60% EV 391.3639 171.1022 

100% EV 459.6727 253.0161 

Table 6. 4: Results for case 3 

 

There is a growing tendency for the cost in Case 2 and Case 3 to increase as more 

electric vehicles are connected to the network in the uncontrolled and shifted 

charging plan. However, as expected, the cost for shifted charging is lower than 

uncontrolled charging at the same electric vehicle penetration level. It proves that 

the proposed shifted charging plan effectively reduces the financial and greenhouse 

gas cost of the distributed network.  

However, the huge power demand peaks are produced in Case 2 and Case 3, which 

causes the more severe power system problems mentioned in Case 1. It is not 

accepted by the power supplier and even leads to power system crashes. Therefore, 

single objective optimisation is only considered theoretically and used to validate the 

relationships between these three criteria and power system demands in the 

distributed network. 
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6.3.5 Case 4: Combined impact 

In Case 4, three criteria, financial, environmental, and system, make various 

contributions to the optimisation. To give an example of the functionality of the 

MoDSM algorithm, based on the multi-objective functions defined previous, the 

weighing factors x, y, and z are set as 0.4, 0.3 and 0.3 separately as the ratio of the 

influence of three criteria. 

Similar conclusions can be obtained from observing of the table below. The higher 

electric vehicle penetrations level results in a higher combined cost for the 

optimisation. Moreover, the cost of shifted charging is always lower than the cost of 

uncontrolled charging. Furthermore, from the view of the power demand shape, Case 

4 presents more comprehensive and practical results which are tied to reality and 

more likely to be accepted by the power supplier. It effectively eliminates the huge 

peaks generated in Cases 2 and 3. In the meantime, the power demand shape is closer 

to the average power demand which means less power demand variability. However, 

there are still some gaps between Case 1 and 4 from 2:00 to 6:00, and the power 

demand shape in Case 4 is above the power demand shape in Case 1. It is because 

that economic factor makes contributions to the final results in Case 4. The electricity 

price is low during this period. Shifting more power demand into this period is helpful 

for reducing the total financial cost for power suppliers. A similar process occurs 

when greenhouse gas prices are low in the evening. Generally speaking, power 

demand shape in Case 4 is dominated by three criteria, and the ratio of influence can 

be adjusted easily according to different requirements. 

Case 4: Combined impact 

 Cost for uncontrolled 

charging 

Cost for shifted charging 

30% EV 129.0333 88.9318 

60% EV 186.7338 141.8740 

100% EV 301.0085 235.1781 

Table 6. 5: Results for case 4 
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Figure 6. 10: Case 4: Power demand with 30% EV penetrations based on unrealistic 
optimisations 

 

 

Figure 6. 11: Case 4: Power demand with 60% EV penetrations based on unrealistic 
optimisations 
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Figure 6. 12: Case 4: Power demand with 100% EV penetrations based on unrealistic 
optimisations 

 

6.3.6 Influence of penalty factors 

In reality, all owners of electric vehicles prefer finishing charging as soon as possible, 

and the delay of charging will give rise to people's driving-range anxiety and 

unwillingness to participate in demand side management. Given the reason 

mentioned above, penalty factors are defined to minimise the delay time in this 

paper. Comparing the combined impact displayed in the table for uncontrolled 

charging, shifted charging and charging with penalty factor, it is evident that shifted 

charging plan can provide the lowest combined impact.  

As mentioned above, the penalty factors are defined by the following equations. X is 

the delayed cycles. 

𝑝𝑒𝑛 = {
𝑥 ∙

1

2880
, 1 ≤ 𝑥 ≤ 1440

0.5, 𝑥 ≥ 1440
                                (6.13) 
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Figure 6. 13: Penalty factors 

In this chapter, four cases are implemented with penalty factors. The final cost for 

each case is displayed below. 

Moreover, the power demand curve of four cases with 60% electric vehicles 

penetration also is presented. The cost of shifted charging with penalty factors is 

higher than the shifted charging plan while it is still lower than the uncontrolled 

charging plan. In the shifted charging plan, each electric vehicle can find the lowest 

cost point from its allowable period without any limitation. In the shifted charging 

with penalty factors plan, the penalty factor will become more prominent as the 

shifted cycles increase, which also leads to a rise in final cost for each case. As a result, 

the peaks in Cases 2 and 3 are dramatically reduced. In Case 1, the power demand 

curve with penalty factors is much flatter than the unshifted power demand. For Case 

4, the impact of three drivers is evident in the different time zones compared with 

unshifted power demand. From 2:00 to 6:00, some demand shifted to this period 

because electricity is cheap. The lower greenhouse gas price leads to the two peaks 

produced between 16:00 and 24:00. 
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Moreover, the overall trend of power demand curve flattens. When penalty factors 

are implemented, the previous minimum cost point could result in more considerable 

cost because its delayed cycles result in a more significant penalty factor. It can be 

clearly observed from the power demand curve that less power demand is shifted.  

Furthermore, it is necessary to be very cautious when choosing the suitable penalty 

factors in the simulations. The selection of penalty factors depends on a number of 

variables. If the penalty factors grow too fast, it will restrict the effect of the three 

drivers on the final results. Most of the consumers are not willing to shift their load 

to a later time which could lead to a higher extra cost. An optimisation algorithm can 

only find the optimum local value rather than achieve the global minimum. On the 

contrary, if the penalty factors grow too slowly, it means the consumers pay less 

attention to the charging delay and electric vehicle charging loads are more flexible 

to be managed.  

Case 1: Demand variation criterion 

 Cost for 

uncontrolled 

charging 

Cost for shifted 

charging 

Cost for shifted 

charging with a 

penalty factor 

30% EV 126.6669 2.8846 6.4880 

60% EV 150.3834 3.5342 10.8284 

100% EV 186.7622 4.6833 16.7622 

Table 6. 6: Results for case 1 
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Case 2: Environmental criterion 

 Cost for 

uncontrolled 

charging 

Cost for shifted 

charging 

Cost for shifted 

charging with a 

penalty factor 

30% EV 304.3570 103.4131 262.2053 

60% EV 368.3850 182.5585 293.3332 

100% EV 437.0358 319.3889 357.2005 

Table 6. 7: Results for case 2 

Case 3: Financial criterion 

 Cost for 

uncontrolled 

charging 

Cost for shifted 

charging 

Cost for shifted 

charging with 

penalty factor 

30% EV 359.6725 122.4364 256.8846 

60% EV 391.3639 171.1022 298.4239 

100% EV 459.6727 253.0161 362.4066 

Table 6. 8: Results for case 3 

 

Case 4: Combined impact 

 Cost for 

uncontrolled 

charging 

Cost for shifted 

charging 

Cost for shifted 

charging with 

penalty factor 

30% EV 129.0333 88.9318 95.7557 

60% EV 186.7338 141.8740 163.5607 

100% EV 301.0085 235.1781 274.7444 

Table 6. 9: Results for case 4 
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Figure 6. 14: Case 1: Power demand with 60% EV penetrations and penalty factor 
based on unrealistic optimisations 

 

Figure 6. 15: Case 2: Power demand with 60% EV penetrations and penalty factor 
based on unrealistic optimisations 
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Figure 6. 16: Case 3: Power demand with 60% EV penetrations and penalty factor 
based on unrealistic optimisations 

 

 

Figure 6. 17: Case 4: Power demand with 60% EV penetrations and penalty factor 
based on unrealistic optimisations 
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6.4 Case study 5：Minimise cost and greenhouse gases emissions in 

the future distribution network 

The future of electricity distribution network will incorporate large capacities of 

photovoltaics and electric vehicles, while residential electricity demand will also 

increase. The soon-to-be ubiquitous smart metering will also enable more flexible 

ways to manage both demand and generation within the distribution system.  The 

research presented in this case study employs both decentralised PV management as 

well as centralised demand scheduling, with the primary objectives being minimising 

generation cost and losses through demand side management while considering 

residential users’ habits and voltage statuary limits of the distribution power network. 

The extent to which network load elements can be changed by demand side 

management is quantified by considering realistic parameters and constraints for a 

generation, distribution network and demand. The final results show that the 

proposed electric vehicle charging demand side management can effectively 

maximise the PV penetration level and minimise the combined cost within the 

acceptable voltage range.  

Accurate PV power forecasting and detailed household power demand profiles are 

essential for simulations. Additionally, large volumes of work have been done from 

the economic and energy perspectives; it is also important to study the combined 

influence of PV and electric vehicle charging on the distribution network. The higher 

penetration level of PV will lead to voltage rise within the power system. Conversely, 

large-scale electric vehicle charging demand will cause voltage drops, in ways 

currently difficult for distribution network operators to predict. 

 The highly-urban network was chosen and the original 19-node system was extended 

by 10 more nodes to serve a total of 776 single-phase customers. The extended 

highly-urban network will share the same line characteristics of existing network and 

transformers. The following figure is the extended highly-urban generic LV 

distribution network. The network in the red dash line box is the original highly-urban 
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generic LV distribution network, from node 1 to node 19. The remaining nodes (20 to 

29) form the extended network. 

 

6.4.1 Methodology 

The first step is to use a generic algorithm to find the optimal deployment of 

photovoltaic arrays in the distribution power network. This algorithm will show the 

maximum PV array capacity that the power system can accommodate and the 

location of each PV array to prevent the node voltage from exceeding the limited 

upper range. Based on UK regulations, the acceptable household voltage levels are -

6% to 10% of nominal, i.e. be between 216.2V to 253V.  

 Figure 6. 18: Extended 29 bus network 
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The second step is to implement the multi-objective functions to minimise the 

combined cost through electric vehicle charging demand management. This 

optimisation is based on one-day ahead demand side management. The fundamental 

principle is to shift electric vehicle charging demand into the period that contains the 

maximum PV power output, or the lowest electricity and greenhouse gas emission 

costs. A penalty factor is also applied to reduce the delay of the charging time.  

The third step is to distribute the optimised household demand into the power 

network and maintain the node voltage level through the proposed demand side 

management based on node voltage sensitivity. 

This process is described in detail in the following section. 

6.4.2 Optimization problem definition 

The multi-objective function used can be described mathematically by the following 

equation:  

min ∑ ccomb = min ∑ (x ∙ cwi + y ∙ emwi)
t
i=1

t
i=1 ∙ (1 + peni)              (6.14) 

Where ccomb is the combined impact which is calculated by cwi, and emwi. These are 

the normalised values of electricity price and greenhouse gas (GHG) emissions. The 

weighting factors x and y are used to set the ratio of the influence of two criteria in 

the calculation; peni is the penalty factor which is used to optimise the delay time; t 

defines the 1440 time steps for a whole day (24 hours at 1-min resolution). 

The profiles of two criteria: electricity price and greenhouse gas (GHG) emissions are 

weighted according to the following equations: 

           𝑓 =
(ℎ∙𝑝)−min (ℎ∙𝑝)

max(ℎ∙𝑝)−min (ℎ∙𝑝)
                                                  (6.15)  

Where f represents the normalised values for cwi and emwi, by replacing h with c 

and em respectively. Because the electricity and greenhouse gas emissions share 

different units, they have to be normalised between 0 and 1 in the equation. 
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Electricity price is in the unit of £/MWh and GHG emissions in tons of CO2 

eq./MWh.  

The penalty factor used to limit the delay time is given by: 

           𝑝𝑒𝑛 = {
𝑥 ∙

1

2880
, 1 ≤ 𝑥 ≤ 1440

0.5, 𝑥 ≥ 1440
                                       (6.16)  

When the delay time x is less than 240 minutes, it increases linearly. When the 

delay time is more than 240 minutes, the penalty factors will keep constant as 0.5. 

This is used to emulate electric vehicle owners’ willingness of anticipating demand 

side management. The constraints are defined in the following equations (5.29)-

(5.31) 

                 𝐸𝑛𝑒𝑤 = 𝐸𝑜𝑙𝑑                                                                      (6.17)                                               

  𝑡𝑒𝑛𝑑_𝑛𝑒𝑤 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑤 = 𝑡𝑒𝑛𝑑_𝑜𝑙𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑜𝑙𝑑                                          (6.18)   

            𝑡𝑒𝑛𝑑𝑛𝑒𝑤
≤ 𝑡𝑏𝑒𝑔𝑖𝑛                                                                   (6.19) 

Where Enew,old are the daily energy demand before and after EV demand shifting, 

tend_new , tstart_new , tend_old , tstart_old are the start and end charging times before and 

after charging demand shifting. tbegin is the time when people are going to start their 

next travel by EV.  The algorithm ensures that before and after shifting, the charging 

time and energy consumption will not be changed and that electric vehicles will be 

fully charged or stop charging until the next trip starts.   

6.4.3 Optimization algorithms 

In this paper, two optimisation algorithms are employed; one is the multi-objective 

optimisation algorithms which was introduced in Chapter 6. The second is the voltage 

control regulation based on voltage sensitivity which was discussed in Chapter 4. 

Because the PV energy is deployed in the network, the energy consumed during the 

solar power output will lead to free electricity and greenhouse gas emissions costs. 

Once the household load demand is supplied from solar power, the combined 

numerical cost will be zero. 
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6.4.4 Results and Discussions 

50% of electric vehicle penetration levels are implemented in this case, including 388 

electric vehicles. According to the genetic algorithm for PV deployment, eight nodes 

have been are chosen to be populated with PV arrays, and the detailed capacity of 

each PV array is displayed below. 

Bus 
Number 

1 3 4 7 14 17 19 26 

Max. 
Capacity / 

kW 

 
68.6 

 
69.3 

 
60.4 

 
53.4 

 
86.2 

 
67.8 

 
74.9 

 
61.1 

Table 6. 10: PV location and capacity 

 

 Figure 6. 19: Household power demand and PV profiles 

As Figure 6.19 shows, the blue line is the baseload demand. The green line is the 

electric vehicle charging demand. The red line is the sum of the baseload and electric 

vehicle charging demand and the light green is total power demand of eight PV arrays’ 

output. It is clear that there are two peak periods for household power demand, while 

PV output occurs during daytime and most of the electric vehicles start their charging 

in the evening. 
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Figure 6. 20: Daily profiles of generation cost (top) and GHG emissions (bottom) per 
MWh 

In figure 6.20, the average electricity and greenhouse gas emissions price between 

winter 2008-2009 are shown. The average values of electricity price will largely 

remain stable due to long-term contracts. It is obvious that electricity price increases 

in the daytime and becomes cheaper at night. The GHG emissions are the marginal 

emissions derived from power plants operational data on the British grid. It can be 

seen that marginal GHG emissions fluctuate significantly through the day.  

This paper examines the three test cases as Table 6.11 shows below. In Case 1 and 2, 

only one criterion is taken into account (weighting factor = 1), while the other 

criterion is ignored (weighting factor = 0). In Case 3, both of the two criteria 

contribute equally to the optimisation (x=y=0.5).  

Test case Financial 

criterion (x) 

Environmental 

criterion (y) 

Case 1 1 0 

Case 2 0 1 

Case 3 0.5 0.5 

Table 6. 11: Case information with corresponding weighting factors x and y 
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 Cost for 
uncontrolled 
charging 

Cost for shifted 
charging  

Cost for shifted 
charging with 
penalty factor 

Case 1 372.06 133.12 240.52 

Case 2 381.53 149.25 280.51 

Case 3 379.63 149.22 274.69 

Table 6. 12: the Combined cost of various cases 

Table 6.12 above summarises the results of the three studied cases. At the same 

electric vehicle penetration level, the effect of shifted charging is apparent which can 

be concluded from the decrease in charging cost. The cost of uncontrolled charging 

is the largest. When penalty factors are implemented, the combined cost increases a 

great deal but is still lower than the cost of uncontrolled charging. 

 

 Figure 6. 21: Power demand for Case 1 based on unrealistic optimisations 
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Figure 6. 22: Power demand for Case 2 based on unrealistic optimisations 

 

 

Figure 6. 23: Power demand for Case 3 based on unrealistic optimisations 

 

For Case 1 and 2, as regards the consideration of electricity price and GHG emissions, 

a large peak is created as can be seen in Figures 6.21 and 6.22. As mentioned above, 

the generation cost and GHG emissions cost are fixed data in this study (derived from 

the energy supplier) and are not dynamically updated as a result of the demand 
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management. Therefore, for each electric vehicle, the lowest cost point in their 

allowable period to start charging is chosen without regard to other vehicles’ 

charging plan and the change of total power demand. Before considering the 

charging delay penalty factor, for both cases, this generates a power spike in the 

daytime from 8:00 to 16:00 (green traces). This is because solar power energy is 

supplied in the network and available electric vehicle charging demand is shifted 

during this period as cost and GHG emissions are minimal. When the penalty factor 

is taken into account, it can be seen that these peaks are reduced. This is because the 

penalty factor will become more prominent as the number of shifted cycles increases, 

which also leads to a rise in total cost for each case. As a result, the peaks in Case 1 

and 2 are dramatically reduced in Figures 6.21 and 6.22 (red traces). For Case 3, the 

same weighting are given for financial and environmental criteria. However, the 

shape of the shifted power demand (green traces) is similar to the power demand in 

Case 2. Some differences occur around 14 pm, which is because the electricity price 

increases. For power demand with penalty factor (red traces), it becomes smoother, 

and some demands are shifted to the daytime to minimise the cost. It can conclude 

that the environmental criteria play a dominant role in Case 3, even though the 

financial and environmental criteria shares the same weight value. This may be due 

to the fact that GHG emissions fluctuate considerably throughout the day while the 

electricity price is much more stable. 

When the optimised one-day ahead power demand profiles are distributed to each 

node, the real-time power flow is run by OpenDSS to check the node voltage level. 

Three cases include six different profile scenarios. The voltage issues only occur in 

Case 2 when electric vehicles are shifted with penalty factors. As shown in figure 8, 

the voltage of nodes 21 and 23 drops below the lower limit 0.94 p.u. Once the system 

detects voltage issues, demand side management based on voltage sensitivity will be 

implemented. It is clear that some electric vehicles are forced to stop charging for 5 

minutes until the node voltage is back above the lower limit of 0.94 p.u. Furthermore, 

not all electric vehicles charging is delayed when such voltage issues occur. That is 
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the advantage of the proposed optimisation algorithm. Based on voltage sensitivity 

and charging priorities, it is aimed to minimise the number of electric vehicles which 

are delayed to achieve the expected voltage level. On the other hand, it also indicates 

that there is still more potential room for voltage rising. Although the electric vehicle 

charging demand of bus 23 does not have too much fluctuation after the 

optimisations, the voltage magnitudes still rise above 0.94 after the optimisations. It 

is because the buses’ voltage is correlative and interactional. For each cycle of 

optimisation, only the lowest voltage magnitude bus is regarded as the target, and 

one single electric vehicle is supposed to be shifted. However, all the buses’ voltage 

in the network is affected to various degrees. Therefore, the voltage of bus 23 is 

improved as the optimisation of other buses is conducted. 

 

Figure 6. 24: DSM based on node voltage sensitivity. 

 

6.5 Conclusion 

This chapter presents the impact of uncontrolled electric vehicle charging on the 

power demand shape of a distributed power system network according to various 

electric vehicle penetration level. The results show that uncontrolled electric 

charging behaviour aggravates the previous power demand peak during the evening 
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and even extend the peak hour to the end of the day. Such consequences incurred 

by electric vehicle will intensively destroy the balance between power demand 

generation and consumption and will also produce increased financial and 

environmental costs. Therefore, it is necessary to implement demand side 

management of electric vehicle charging. 

The optimisation results show that the proposed algorithm can effectively reduce the 

combined impact and meet various system requirements, such as financial cost and 

greenhouse gas emissions, especially in the optimisation of the power demand curve. 

Four case studies explain the influence of three drivers on the distributed power 

system network in detail. Although the new expected power demand peaks are 

produced in Case 2 according to an environmental criterion, and in Case 3 according 

to a financial criterion, optimisation algorithms still achieve the presumed single 

objective to minimise the cost. It is the first time that the influence of electric vehicle 

charging on the environment from the aspect of greenhouse gas emissions has been 

addressed. Furthermore, the applications of penalty factors take into account 

customers’ willingness to participate in demand side management. Electric vehicles 

charging demand are derived from the improved residential load model, which also 

plays a significant role in getting more accurate and realistic optimisation results. 

However, it must be noted that the optimisation algorithms developed in this chapter 

only focus on the energy side and have not considered the effect on the power 

system, such as voltage variations. Therefore, a further experiment into power 

system simulation Case 5 is conducted. By combining centralised and decentralised 

control and management methods, it is possible to maximise the benefits from the 

new technologies added to the system while meeting the often conflicting 

operational, economic and environmental targets. The optimisation results show that 

the proposed algorithm can effectively reduce the combined impact and meet 

various system requirements, such as financial cost and greenhouse gas emissions. 

For the control voltage regulation, it is the first time to use voltage sensitivity to 

evaluate the influence of active power demand on the bus voltage in the distributed 
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power system network. Moreover, it can significantly solve the voltage drop issues 

for 24 hours in the low and medium electric vehicle penetration level. 
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Chapter 7 Conclusions and further work 

7.1 Thesis summary 

This thesis first presents detailed household driving behaviour and electric vehicle 

charging load models which have strong correlations with other household load 

profiles. From this, the comprehensive household load model is generated. Based on 

this model, the impact of uncontrolled large-scale electric vehicle charging on the 

distributed networks is investigated from three aspects: power systems, financial 

cost and greenhouse gas emissions. The multi-objectives functions are employed to 

optimise the combined cost of these three areas. Following this, the further research 

is focused on the voltage regulation service that electric vehicle charging demand 

management can provide. At last, the comprehensive household demand 

optimisation algorithms are proposed and tested in the generic highly-urban low-

voltage distributed networks including wetload and electric vehicle charging demand. 

The general conclusions and discussions of each chapter are presented below. 

Chapter 2 reviews the available literature published on the three main subjects 

pertinent to this thesis electric vehicle charging model, demand side management 

and voltage control regulation. In the section on electric charging modes, various 

electric vehicle charging demand methods and models were analysed and compared. 

The first question was how to model people’s travelling activities and the second is 

how to simulate the electric vehicle charging model. The accuracy of the results of 

these two parts serve as the input data of the whole model and are critical to the 

further assessment of the influence of uncontrolled charging and implementation the 

optimisation algorithm. As the foundation of this research, electric vehicle policy will 

play an essential role in the future development of vehicle-to-grid technology. 

Therefore, the global electric vehicle policy was summarised and analysed, with 

particular attention paid to the UK. The demand side management part included the 

introduction of smart grid and vehicle-to-grid technologies, which provided the solid 

technical support for the implementation of ancillary services of electric vehicle 
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charging demand management. Knowledge of the low-voltage distribution networks 

is also introduced to show the reasons why demand side management is necessary 

and essential to the current distribution network operator.  The review and analysis 

of these existing policies and literature prove that accurate driving behaviour and 

electric vehicle charging demand models are necessary for further optimisation and 

management. Advanced optimisation algorithms are required to take full advantage 

of electric vehicle charging demand to provide voltage regulation services. 

Furthermore, the implementation of electric vehicle smart charging can effectively 

reduce greenhouse gas emissions. 

Chapter 3 demonstrates the methodology used to develop the household users’ 

travelling activity profiles and the electric vehicle charging demand model. For 

household users’ travel activity profiles, the detailed processing steps were 

presented and explained using a large body of raw data from the UK Time User Survey 

to the final mathematical model which could generate the complete highly-

correlated household activity profiles. For the electric vehicle charging demand 

model, it generated the uncontrolled charging demand based on various 

specifications of the electric vehicle. Ambient temperatures, as an important, 

influential factor of battery performance, will also be taken into account. The results 

show that these two developed models successfully simulate activity profiles based 

on the interconnection among different daily household activities and also convert 

these activities profiles into electric energy consumptions, especially regarding the 

aspect of electric vehicles. 

Further demand side management would require accurate predictions of the EV 

charging demand and household electric appliances, in which ‘flexible’ domestic 

loads such as washing machines and dishwashers are used by the optimisation 

algorithm for demand side management 

Chapter 4 presents a demand side management optimisation algorithm based on 

voltage sensitivity to solve voltage variation issues in the low-voltage distribution 

network. At first, the effect of uncontrolled charging demand with various 
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penetration levels was analysed. The methodology of calculating voltage sensitivity 

was also demonstrated step-by-step. Another optimisation algorithm based on bus 

voltage was then compared with the proposed algorithm. Four defined parameters 

were employed to measure the performance of optimisation algorithms. The results 

suggest that this algorithm makes great contributions to bus voltage control in the 

radial distributed power system network. It can also, significantly, solve the voltage 

drop issues experience over the 24 hour day in the low and medium electric vehicle 

penetration level. From the users’ perspective, the proposed algorithms can decrease 

the number of affected electric vehicles in the network to achieve the same, or even 

better, optimisation results than other algorithms. It is capable of meeting the higher 

requirement of lower voltage limits. To a certain degree, it could reduce people’s 

disinclination to participate in demand side management. For high electric vehicle 

penetration level, the proposed algorithms cannot maintain the bus voltage above 

the lower limit over 24 hours. However, it effectively extends the period before the 

occurrence of voltage issues, which provides the room for the implementation of 

other optimisation methods. 

Chapter 5 shows demand side management of wetload demand in the household. 

The detailed household wetload demand profiles are demonstrated and analysed. 

The combined household demand side management is then implemented based on 

voltage sensitivity including electric vehicle charging and wetload demand. At last, 

comparisons are conducted between the combined household demand side 

management and electric vehicle charging demand management. This optimisation 

algorithm effectively reduces the variation of bus voltage level in the distribution 

network. As a supplement to electric vehicle charging demand side management, it 

has been proven that better performance can be obtained, especially within the 

medium electric vehicle penetration level. 

Chapter 6 investigates the potential impact of a fleet of electric vehicles uncontrolled 

charging on the cost of electricity generation, greenhouse gas emissions (GHG) and 

power system demand. In order to decrease the negative impact of uncontrolled 
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charging, multi-objective optimisation algorithms are proposed through low voltage 

residential demand-side management (DSM). These two developed models 

successfully simulate activities profiles based on the interconnection among different 

daily household activities and also convert these activities profiles into electric energy 

consumption, especially from the perspective of electric vehicles. Further demand 

side management would require accurate prediction of the EV charging demand and 

household electric appliances, in which ‘flexible’ domestic loads such as washing 

machines and dishwashers are used by the optimisation algorithm for demand side 

management. It is the first time that the influence of electric vehicle charging on the 

environment from the aspect of greenhouse gas emissions has been considered. 

Furthermore, the applications of penalty factors take customers’ willingness into 

account when considering demand side management. However, the optimisation 

algorithms proposed in this chapter are based on the energy aspect, which doesn’t 

include power system issues such as voltage variation. The next chapter thus 

discussed and solved these problems from the power system aspect. 

 

7.2 Thesis statement 

The first part of the original Thesis Statement claimed that a bottom-up, user-inclusive 

electric vehicle charging model could provide accurate aggregated demand profiles. 

As summarised in the previous section, work presented in chapter 3 proved that a 

stochastic (MCMC-based) model of EV usage and charging can generate accurate 

demand profile time series, compared to measured data found in current literature. 

For the second part of the Thesis statement, it was hypothesised that stochastic EV 

charging models can be used to develop charging management strategies that can 

improve voltage regulation, generation costs and environmental impacts within the 

future electricity system. It was shown that the multi-objective optimisation 

strategies presented in chapters 4-6 can yield individual and overall reduction of the 

negative impacts of EV charging from all of these aspects. 
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7.3 Implications of the research 

This thesis presents a complete, step-by-step modelling and management framework 

for EV charging, to help investigate the influence of electric vehicle charging and the 

advantages of charging demand management, from raw data processing to the final 

optimisation algorithms. Each chapter presents a different part of the model and/or 

algorithm developed, although they are all linked together into a single model that 

can be easily modified and used for further research. 

First is the residential load model. The residential load model is developed to 

generate detailed individual household load profiles including electric vehicle 

charging, which is to be implemented for the first time in the UK. The load profiles 

generated from this model will provide accurate input data for demand side 

management in the distribution network. In this project, the primary focus is placed 

upon the electric vehicle charging demand and wetload power demand. The data 

contained in the model about other household activities can also be used for related 

research. However, the implications of this model extend much further than that. 

More simulations and research into demand side management in the distributed 

network can be conducted. 

Furthermore, distributed network companies can use this model to forecast the 

future power demand and make flexible electricity tariffs. Also, all the raw data is 

available to the public. This model presents a novel method to model the time series 

data, which are mutually influenced. It can be used for various other kinds of research 

aspects, such as an economic approach. 

The second implication is the proposal of the concept of using electric vehicles to 

optimise the overall cost of electricity supply. It provides new insights into electric 

vehicle charging management from the power demand, electricity price and 

greenhouse gas emission perspectives. Due mainly to decreased greenhouse gas 

emissions, electric vehicles are regarded as an environmental-friendly transport 

method, as compared with others, but this is only true when the utilised primary 



 
 

138 
 

sources of energy are low- or zero-carbon at the time of charging. The 

implementation of demand side management can thus take full advantage of electric 

vehicles to achieve further reductions in greenhouse gas emissions. Although three 

factors have been investigated in this optimisation, they play various roles in 

reshaping the power demand. 

The third implication is voltage control regulation based on voltage sensitivity. 

Although the concepts of voltage sensitivity and voltage regulation have been 

discussed for a long time, this is the first project to use voltage sensitivity to evaluate 

the influence of active power demands on bus voltage in the distributed power 

system network. From a financial perspective, it will adequately maintain the voltage 

stability of distributed networks without installing additional, expensive equipment. 

Additionally, electric vehicle owners can also make money from the ancillary service 

and reduce their financial burden. On the other hand, the proposed algorithm is 

capable of achieving the expected target with a minimum impact upon users’ driving 

behaviour. Furthermore, the implementation of a priority list and penalty factors take 

into consideration more realistic conditions in the optimisations, which will 

encourage more consumers to participate in the electric vehicle charging demand 

side management scheme. 

 

7.4 Limitations of the research 

Although the proposed residential load model can provide various accurate 

household load data, there are still a few electronic appliances which are not included 

in this model. Especially given the rapid development of portable electronic devices 

and high-speed upgrades of these electronic appliances, it is difficult to model the 

detailed power consumption characteristics and total power demand of the 

household unless accurate input data is available. Residential load demand is most 

complex and contains plenty of uncertainties and variables. It also varies with many 

external factors such as geography, economic status, and the composition of 
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individual household, weather conditions and some unexpected factors. The 

mathematical model cannot take all of these variables into considerations. However, 

it can present the overall trend of the household load power demand and meet the 

requirements of research and industry.  

Regarding the multi-objectives of demand side management (DSM), it is assumed 

that all the electric vehicle owners will make immediate responses with combined 

costs. However, in reality, it will be very difficult to predict the subjective decisions 

made by people. It can also take some time for people to make a decision. Therefore, 

there is always a gap between the real-time power demand and simulation results. 

As we can see from the results, even when the same weighting factors are given for 

three criteria power system, finance and environment, their impact on the final 

power demand shape is different. The power demand is the most dominant factor 

among them because it is most directly with the final power demand shape. While 

the environmental criterion makes the least impact on the power demand, it means 

that people are less likely to make a change based on the current greenhouse gas 

emission cost system.  

As regard voltage control regulation, the primary limitation is the capacity of the 

voltage regulation provided by electric vehicle charging demand side management. 

As mentioned in the literature review, this is the disadvantage of decentralised 

control. In the meantime, compared with reactive power, the influence of active 

power in regulating voltage is limited based on the transmission characteristics of 

power systems. Furthermore, all the load is assumed and simulated in the constant 

power model which is the simplification of the real load model. In reality, most 

household electronic appliances are represented by the exponential and polynomial 

/ ZIP load model. On the other hand, all the simulations are real-time based which 

means the necessary communication and data transmission infrastructure can 

support the demand side management without delay. 
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7.5 Further Works 

The developed model was used to generate results illustrating the impact of the 

connection of large proportions of electric vehicles in a distribution grid and propose 

control strategies to minimise those impacts. Additionally, it provides an extensive 

and solid base for further research, which can be broken down to the following 

indicative areas. 

Residential load model: This model can be enhanced in many aspects. Some new 

loads could be simulated and added into this model. More social and demographic 

factors could be taken into account and presented in the model. Moreover, with the 

popularisation of the smart meter, more accurate and real-time data could be 

collected to make contributions to the residential load model. 

Electric vehicle charging model: In the current electric vehicle charging model, one 

electric vehicle type (Nissan Leaf) and a fixed charging rate (3.3kW) are used. Only 

household home charging is considered. Therefore, in the future, a comprehensive 

electric vehicle charging model will be employed which contains various kinds of 

electric vehicles and different charging rates. The charging environmental will also be 

diversified such as charging station, office and shop parking charging and so forth. 

The introduction of renewable energy: More distributed renewable energy will be 

introduced into the distributed power network in the future, such as roof-top solar 

panels and wind generators. Electric vehicles regarded as the storage buffer of 

renewable energy can increase their capacity for renewable energy and reduce 

greenhouse gas emissions to achieve the zero emissions target. Given the limited 

difference in the electricity prices in a day and the cost of a battery, it is challenging 

to implement vehicle-to-grid (V2G) technology. The combination of electric vehicles 

and renewable energy can solve this issue. 

Auxiliary services: In this project, voltage regulations are regarded as the top priority 

of the auxiliary services. Electric vehicle can provide other services for the power 

system such as frequency responses, triad management, short-term operating 
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reserve (STOR), etc. The implementation of these services will simulate the potential 

market for electric vehicles and will help distributed network operators to save 

money for their customers by avoiding massive infrastructure investment. Customers 

even can make money from these service provided by their electric vehicles. 

Comprehensive household demand side management: Unlike traditional power 

systems, the distributed network in the future will include energy storage, local 

renewable energy generators, electric vehicles and plenty of the latest home 

electronic appliances. The development of Smart Grid and communication 

technologies can make demand side management more effective and efficient and 

also extend the current services. A comprehensive household demand side 

management and algorithms should, therefore, be proposed to include all these new 

capacities.  
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Abstract—This paper investigates the 

potential impact of a fleet of electric vehicles 

charging on the cost of electricity 

generation, greenhouse gas emissions 

(GHG) and power system demand through 

low voltage residential demand-side 

management (DSM). The optimisation 

algorithm is used to shift electric vehicles 

charging loads to minimize the combined 

impact of three key parameters: financial, 

environmental, and demand variability. The 

results show that it is effective to reshape the 

power demand and reduce electricity cost 

and GHG emissions without affecting 

people’s driving patterns.  

Keywords—demand side management, 

optimisation algorithm, electric vehicles, 

residential load, low voltage. 

I. INTRODUCTION 

With the increasing penetration of varying 

renewable energy and the introduction of 

new types of electrical loads, current 

power systems are facing more challenges 

in the balancing of generation and demand. 

Electric vehicles (EVs), as a booming 

entity, become much more important in the 

system.  

In many cases, electric vehicles are 

regarded as energy storage to reduce the 

intermittency of electricity supply from 

renewable energy such as solar, wind [1], 

[2], [3]. On the other hand, there are some 

researches on the demand side 

management strategies and related 

optimisation algorithms in the low-voltage 

network [4], [5], [6]. However, the 

operation and performance of low-voltage 

networks depend on a mix of various kinds 

of electric loads, the users' behaviour and 

external factors (such as weather condition 

and social events).  Most existing studies 

do not take the relationship between EVs 

and other household appliances into 

account and only focus on electric vehicles. 

Meanwhile, few studies describe how the 

impact of electric vehicles charging on the 

GHG emissions. Although electric 

vehicles are regarded as green and 

environment-friendly compared to 

standard petroleum-based cars, nowadays 

most of the electricity is still generated by 

coal and gas fired power plant. It is, 

therefore, inevitable that electric vehicles 

are still responsible for GHG emissions.  

The relationship between traffic and 

weather condition has been investigated 

for many years. Usually, unseasonable or 

extreme weather such as hail and storm 

will lead to the reduction of traffic activity 

and lower traffic speed and flow [7], [8]. 

Currently, some researches obtain the data 

from long-term experiments which use 

mobile devices installed on the vehicles to 

record people’s driving behaviours [9], 

[10]. Most of the studies use random 

probability from large-scale statistical 

survey to model people’s driving 

behaviours. These modelling approaches 

cannot provide large-scale and accurate 

EV charging demand profiles.   
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Demand side management strategies 

are focusing on shifting flexible loads 

outside the peak demand periods, typically 

in the morning and evening hours for the 

UK. Current research focuses on 

responsive measures that shift loads to a 

later time (typically during the night). 

However, in a system with large numbers 

of EVs, this may cause new problems, as 

EVs, usually are charged overnight. 

Therefore this may not be the optimal 

solution as it may be cheaper and 

environmentally friendlier to shift loads 

earlier, e.g. during the mid-day valley 

when local penetration from domestic PV  

is also high. However, this would 

require accurate prediction of the EV 

charging demand. Therefore, a stochastic 

model of people’s driving behaviours 

using the Markov Chain Monte Carlo 

(MCMC) method has been developed to 

calculate the EV charging load for 

household customers and has been added 

to previous work [11], in which ‘flexible’ 

domestic loads such as washing machines 

and dishwashers are used by the 

optimisation algorithm for demand side 

management. Each EV profile has strong 

correlation with individual household daily 

activities. 

II. METHODOLOGY 

This study focuses on the three areas of 

power system operation, the total daily cost 

of electricity generation, the greenhouse 

gas emissions that derive from 

consumption of energy and the fluctuation 

of power demand caused by various 

domestic lifestyle habits. The combined 

impact is introduced to measure 

contributions to this three cost to the whole 

power system. In order to minimize the 

combined impact on the entire power 

system, EV charging is shifted to reshape 

the power demand profiles. However, 

electric vehicle charging cannot be shifted 

without any limitation. In reality, the 

owners of EVs will prefer finishing 

charging as soon as possible so as to have 

the car available for their next travel. A 

penalty factor, is therefore used in the 

optimisation to constrain the delay time.  

1. Optimization problem definition 

The objective function can be described 

mathematically by the following equation:  

𝑚𝑖𝑛 ∑ 𝑐𝑐𝑜𝑚𝑏 = 𝑚𝑖𝑛 ∑ (𝑥 ∙ 𝑐𝑤𝑖 + 𝑦 ∙𝑡
𝑖=1

𝑡
𝑖=1

𝑒𝑚𝑤𝑖 +   𝑧 ∙ 𝑠𝑦𝑤𝑖) ∙ (1 + 𝑝𝑒𝑛𝑖)       (1) 

Where ccomb  is the combined impact which 

is calculated by cwi, emwi and sywi. These 

are the normalised values of electricity 

price, greenhouse gas (GHG) emissions, 

and system cost respectively, where system 

cost sywi is defined as the normalised 

difference between the instantaneous 

active power and the daily mean power. 

The weighting factors x, y and z are used 

to set the ratio of the influence of three 

criteria in the calculation; peni is the 

penalty factor which is used to reduce the 

delay time; t defines the 1440 time steps 

(24 hours at 1-min resolution). 

The profiles of three criteria: electricity 

price, greenhouse gas (GHG) emissions 

and system active power demand are 

weighted according to the following 

equations: 

        𝑓 =
(ℎ∙𝑝)−min (ℎ∙𝑝)

max(ℎ∙𝑝)−min (ℎ∙𝑝)
                 (2a)   

         
 𝑠𝑦 𝑤𝑖

=
∆𝑃𝑖−min (∆𝑃)

max(∆𝑃)−min (∆𝑃)
                 (2b)                           

Where f represents the normalised values 

for cwi and emwi, by replacing h with c and 

em respectively. Electricity price is in 

£/MWh, GHG emissions in tons of CO2 

eq./MWh and sy in MW. P is the active 

power demand and ∆𝑃𝑖  is the absolute 

difference between the instantaneous 

active power and the daily mean power at 

each time step i.  

The penalty factor used to limit the delay 

time is given by: 
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       𝑝𝑒𝑛 = {
𝑥 ∙

1

240
, 1 ≤ 𝑥 ≤ 240

1, 𝑥 ≥ 240
                (3)                          

When the delay time x is less than 240 

minutes, it increases linearly. When the 

delay time is more than 240 minutes, the 

penalty factors will be 1. The constraints 

are defined in following equations (4)-(6) 

              𝐸𝑛𝑒𝑤 = 𝐸𝑜𝑙𝑑                                (4)                                               

  𝑡𝑒𝑛𝑑_𝑛𝑒𝑤 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑤 = 𝑡𝑒𝑛𝑑_𝑜𝑙𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑜𝑙𝑑      

(5)                                                                                                         

            𝑡𝑒𝑛𝑑𝑛𝑒𝑤
≤ 𝑡𝑏𝑒𝑔𝑖𝑛                              (6) 

Where Enew,old are the daily energy demand 

before and after EV load shifting, tend_new , 

tstart_new ,tend_old ,tstart_old are the start and end 

charging times before and after shifting. 

tbegin is the time when people are going to 

use EV.  The algorithm ensures that before 

and after shifting, the charging time and 

energy consumption will be same, and that 

electric vehicles will be full charged or 

stop charging before the next trip.   

2. Optimization algorithm 

Step 1: The aggregator gets the base load 

demand and uncontrolled EV charging 

demand with 1-min resolution from 100 

households. In the uncontrolled EV 

charging plan, it assumed that all electric 

vehicles begin their charging at home 

when they finish their last trip. 

Step 2: Collect input data of each electric 

vehicle arriving time tarriving , the state of 

charge (SOC), tbegin  the time when people 

are going to use EV. Based on the above 

information, the priority list will be 

created to decide optimization order for 

each vehicle. 

    𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑥 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔
+ 𝑦 ∙

𝑜𝑟𝑑𝑒𝑟𝑠𝑜𝑐 +   𝑧 ∙ 𝑜𝑟𝑑𝑒𝑟𝑡_𝑏𝑒𝑔𝑖𝑛                       (7) 

Where x, y, z are the weighting factors for 

three parameters, respectively. 

Ordert_arriving is the value of each vehicle in 

the ascending sequence of arriving time. 

OrderSOC is the value of each vehicle in the 

ascending sequence of the state of 

charging. Ordert_begin is the value of each 

vehicle in the ascending sequence of begin 

next trip. The smaller value the car get 

from that equation, the higher priority 

given for that car.  

Step 3: Assume charging process cannot 

be interrupted and all electric vehicles will 

be fully charged or stop charging when 

people are going to use the vehicle.  

𝑡𝑠ℎ𝑖𝑓𝑡 = 𝑡𝑏𝑒𝑔𝑖𝑛 − (𝑡𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 +
1−𝑆𝑂𝐶

𝑐𝑟
𝐵𝐶) 

(8)                                 

Where tshift is available shifting cycles for 

each vehicle. CR is charging rate 3.3kW. 

BC is battery capacity 24kWh. The initial 

SOC is determined by ambient 

temperature and people's driving behavior.  

Step 4: for k=1: tshift, shifting start 

charging time tstart to (tarriving+k), then 

generate new charging profiles of EVi and 

calculate combined impact of the whole 

system using equation (1) and (2) at each 

available shifting cycle of EVi. Electricity 

price is derived from market information 

published online by the balancing 

mechanism reporting agent. GHG 

emissions’ data are the short term 

marginal emissions derived from 

operational and market data for generation 

plants on the British grid. System cost is 

defined as follows: 

   ∆𝑃𝑖 = 𝑃𝑡𝑜𝑡_𝑖 − 𝑃𝑎𝑣𝑒                    (9)                                           

       𝑃𝑡𝑜𝑡_𝑖 = 𝑃𝑏𝑎𝑠𝑒_𝑖 + 𝑃𝑒𝑣_𝑖               (10)                                  

𝑃𝑎𝑣𝑒 =
∑ 𝑃𝑡𝑜𝑡_𝑖

𝑡
𝑖=1

∑ 𝑖𝑡
𝑖=1

                        (11) 

Where Ptot is total real power demand 

including base load and EV of the system. 

Pbase is total base load demand of the 

system. Pave is the total daily power 

divided by the total time step 1440. ∆𝑃𝑖 is 



Rentao Wu,  G. Tsagarakis, A. J. Collin,  and A.E. Kiprakis, “EV charging scheduling for cost and greenhouse gases emissions 

minimization”, published in: 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER) 

 

3 
 

the difference between average power 

demand and real power demand. 

Step 5: find the shifting cycle of EVi when 

the whole system reaches the minimum 

combined impact. Then use this shifting 

cycle to reschedule the electric vehicle 

charging and generate the new charging 

profiles. 

Step 6: Update charging profiles of EVi 

and power demand of the whole system. 

Given the update of electric vehicle 

charging profiles,  ∆𝑃  will also be 

recalculated. Increase value of i by 1 and 

start from step 3. The closed-loop 

optimization is selected to avoid creating 

another new peak demand. Otherwise, 

each electric vehicle will choose 

minimum combined impact timing as their 

starting charging point without the 

consideration of other electric vehicles. As 

I increases, ∆𝑃 is approaching zero which 

means that optimized power demand of 

the whole system gets close to the average 

power demand. Go to Step 7 when i is 

equal to electric vehicle number. 

Step 7: Optimization end. Generate the 

new power demand of the whole system. 

III. CASE STUDY 

The methodology above is applied on a test 

system including 100 households. Four 

cases are considered to study the sensitivity 

of the effect of the three drivers on the 

impact on the aggregate power demand.  

Test 

case 

Financial 

criterion 

Environmental 

criterion 

System 

criterion 

Case 

1 

0 0 1 

Case 

2 

0 1 0 

Case 

3 

1 0 0 

Case 

4 

0.4 0.3 0.3 

In case 1, case 2 and case 3, only one 

criterion is taken into account, while other 

two criterions are ignored in each case. In 

case 4, all three criteria contribute to the 

optimisation. Meanwhile, three 

penetrations of electric vehicles (20%, 60% 

and 100% of the total number of cars, 

assuming there is one car per household) 

are also applied to each case. 

1. Residential load and electric vehicle 

profiles 

The 100 individual household daily power 

demand profiles are selected. According to 

various electric vehicles penetrations, 20, 

60 and 100 electric vehicles uncontrolled 

charging profiles are implemented. In 

figure 1, 

Fig 1. Power demand of the total household 

demand 

There are two peaks for base household 

power demand in one day. One is in the 

morning between 6:00 and 10:00 when 

people get up and prepare for work. 

Another is in the evening between 20:00 

and 24:00 when people are back home. In 

figure 2, most of the electric vehicle 

charging starts from 12:00 and peak period 

occurs between 18:00 and 22:00. The 

charging profiles after 24:00 are shifted to 

the morning of the same day in figure 2 to 

keep the continuity of charging.  
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Fig 2. Power demand of EV loads 

2. Generation price and GHG 

emissions 

In figure 3, the first picture is the daily 

profiles of generation price. The average 

electricity price of 2008-2009 winter is 

used in this paper. Although the shifting of 

electric vehicle charging will create 

changes of generation, the average values 

of price will largely remain stable due to 

long term contracts. It is obvious that 

electricity price is increasing in the 

daytime and become cheaper during the 

night. The GHG emissions are the 

marginal emissions derived from power 

plants operational data on the British grid 

[13]. The data of 2008-2009 winter is 

chosen in this paper. In figure 3, it can be 

seen that marginal GHG emissions 

fluctuate through the day. 

 

Fig 3. Daily profiles of price and GHG emissions per 

MWh 

Emissions become lower at the time of 

high demand. This is because coal-fired 

power plants are the marginal generators at 

this times of low demand while gas-fired 

power plants work at the periods of high 

demand and they have lower GHG 

emissions. 

IV. Results 

The results of optimisation algorithm on 

the four cases and three electric vehicle 

penetrations are presented in fig 4, 5 and 6 

respectively, and the results of combined 

impact for each case are also presented in 

the table below. For case 1 which only 

considers demand variability as an 

objective for three electric vehicles 

penetrations, the power demand shape 

becomes much flatter and is closed to 

desired power demand. Comparing the 

uncontrolled charging power demand with 

shifted charging power demand, it can be 

easily seen that most of electric vehicle 

charging in the night are shifted to the 

morning in the next day. The optimisation 

algorithm almost achieves the target that 

fills the power demand valley and reduces 

the power demand peak. But electric 

vehicle charging is different from other 

non-critical electric appliances; they share 

more limitations during the optimisation 

process such as allowable shifting period 

and unstoppable charging which are the 

reasons behind the difference between 

optimized power demand and desired 

power demand. 

HH number=100 EV number=20 

 Cost for 

uncontrolled 

charging 

Cost for 

shifted 

charging  

Cost for 

shifted 

charging 

with 

penalty 

factor 

Case1 127.4145 46.4971 77.2385 

Case2 315.5678 205.3412 287.4353 

Case3 381.0614 201.6715 326.9328 

Case4 285.3192 267.2134 277.4657 
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HH number=100 EV number=60 

 Cost for 

uncontrolled 

charging 

Cost for 

shifted 

charging  

Cost for 

shifted 

charging 

with 

penalty 

factor 

Case1 220.3044 10.8190 57.5922 

Case2 368.3850 162.0970 306.4991 

Case3 391.3639 140.2716 275.4362 

Case4 333.1524 223.6511 318.9856 

 

HH number=100 EV number=100 

 Cost for 

uncontrolled 

charging 

Cost for 

shifted 

charging  

Cost for 

shifted 

charging 

with 

penalty 

factor 

Case1 186.7622 4.8616 147.9929 

Case2 337.0358 153.2148 325.0251 

Case3 359.6727 177.5751 308.2374 

Case4 301.0085 200.2029 256.4286 

 

 

Fig 4. The normalised combined impact profile for 

20% EV without and with penalty factor 

 

Fig 5. The normalised combined impact profiles     

for 60% EV without and with penalty factor 

 

Fig 6. The normalised combined impact profiles for 

100 EV without and with penalty factor 

However there are still some spikes in the 

morning between 6:00 and 8:00; this is 

because most households use unshiftable 
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electrical appliances during that period, 

which exceed the desired power demand. 

As the increase of electric vehicle 

penetration, the desired power demand also 

increase a lot. As a result, the power 

demand spikes in the morning are reduced. 

Therefore more electric vehicles are 

involved in the optimization algorithm, 

and better optimization results can be 

achieved.  

For case 2 and case 3 only with the 

consideration of electricity price and GHG 

emissions, the huge peak is created in 

figure 4, 5 and 6. As mentioned above, 

generation cost and GHG emissions cost 

are fixed data in our study. It will not be 

updated as the power demand change. So 

for each electric vehicle, they all choose 

the lowest cost point in their allowable 

period to start charging without regard to 

other vehicles’ charging plan and the 

change of total power demand.  

In reality, all owners of electric vehicles 

prefer finishing charging as soon as 

possible, and the delay of charging will 

give rise to people's driving-range anxiety 

and unwillingness participating in demand 

side management. Given the reason 

mentioned above, penalty factors are 

defined to minimize the delay time in this 

paper. Comparing the combined impact 

displayed in the table for uncontrolled 

charging, shifted charging and charging 

with penalty factor, it is obvious that 

shifted charging plan can provide the 

lowest combined impact.  

The combined impact of shifted charging 

with penalty factors is higher than shifted 

charging plan while it is still lower than 

uncontrolled charging plan. In shifted 

charging plan, each electric vehicle can 

find the lowest combined impact point 

from its allowable period without any 

limitation. In shifted charging with penalty 

factors plan, the penalty factor will become 

bigger as the shifted cycles increase which 

also leads to rising of combined impact. In 

figure 4, 5 and 6, the peaks in case 2 and 3 

are dramatically reduced. When penalty 

factors are implemented, the previous 

minimum combined impact point could 

result in larger combined impact because 

its delayed cycles result in bigger penalty 

factor. Furthermore, the selection of 

penalty factor depends on the type of loads. 

If the penalty factors grow too fast, it will 

restrict the effect of three drivers on final 

results.    

V. CONCLUSION 

This paper shows that the proposed 

optimisation algorithm can effectively 

reduce the combined impact and meet 

various system requirements, especially in 

the optimisation of the power demand 

curve. Electric vehicles charging demand 

derived from the improved residential load 

model play a major role in getting more 

accurate and realistic optimisation results.   

Future work will focus on the assessment 

of electric vehicle charging impact on a 

multitude of network variables such as 

reactive power, voltage variance and 

thermal limits. 
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