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Abstract

Embryonic stem cells (ESCs) are a special type of cell marked by two key properties: The

capacity to create an unlimited number of identical copies of themselves (self-renewal) and the

ability to give rise to differentiated progeny that can contribute to all tissues of the adult body

(pluripotency). Decades of past research have identified many of the genetic determinants of

the state of these cells, such as the transcription factors Pou5f1, Sox2 and Nanog. Many other

transcription factors and, more recently, epigenetic determinants like histone modifications,

have been implicated in the establishment, maintenance and loss of pluripotent stem cell

identity.

The study of these regulators has been boosted by technological advances in the field of

high-throughput sequencing (HTS) that have made it possible to investigate the binding and

modification of many proteins on a genome-wide level, resulting in an explosion of the amount

of genomic data available to researchers. The challenge is now to effectively use these data

and to integrate the manifold measurements into coherent and intelligible models that will

actually help to better understand the way in which gene expression in stem cells is regulated

to maintain their precarious identity.

In this thesis, I first explore the potential of HTS by describing two pilot studies using

the technology to investigate global differences in the transcriptional profiles of different cell

populations. In both cases, I was able to identify a number of promising candidates that mark

and, possibly, explain the phenotypic and functional differences between the cells studied.

The pilot studies highlighted a strong requirement for specialised software to deal with

the analysis of HTS data. I have developed GeneProf, a powerful computational framework

for the integrated analysis of functional genomics experiments. This software platform solves

many recurring data analysis challenges and streamlines, simplifies and standardises data anal-

ysis workflows promoting transparent and reproducible methodologies. The software offers a

graphical, user-friendly interface and integrates expert knowledge to guide researchers through

the analysis process. All primary analysis results are supplemented with a range of informative

plots and summaries that ease the interpretation of the results. Behind the scenes, computa-

tionally demanding tasks are handled remotely on a distributed network of high-performance
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computers, removing rate-limiting requirements on local hardware set-up. A flexible and mod-

ular software design lays the foundations for a scalable and extensible framework that will be

expanded to address an even wider range of data analysis tasks in future.

Using GeneProf, billions of data points from over a hundred published studies have been

re-analysed. The results of these analyses are stored in an web-accessible database as part

of the GeneProf system, building up an accessible resource for all life scientists. All results,

together with details about the analysis procedures used, can be browsed and examined in

detail and all final and intermediate results are available and can instantly be reused and

compared with new findings.

In an attempt to elucidate the regulatory mechanisms of ESCs, I use this knowledge base

to identify high-confidence candidate genes relevant to stem cell characteristics by comparing

the transcriptional profiles of ESCs with those of other cell types. Doing so, I describe 229

genes with highly ESC-specific transcription. I then integrate the expression data for these ES-

specific genes with genome-wide transcription factor binding and histone modification data.

After investigating the global characteristics of these ”regulatory inputs”, I employ machine

learning methods to first cluster subgroups of genes with ESC-specific expression patterns and

then to define a ”regulatory code” that marks one of the subgroups based on their regulatory

signatures.

The tightly co-regulated core cluster of genes identified in this analysis contains many

known members of the transcriptional circuitry of ESCs and a number of novel candidates

that I deem worthy of further investigations thanks to their similarity to their better known

counterparts. Integrating these candidates and the regulatory code that drives them into our

models of the workings of ESCs might eventually help to refine the ways in which we derive,

culture and manipulate these cells – with all its prospective benefits to research and medicine.
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Chapter 1

Introduction and Background

This thesis explores the regulatory mechanisms underlying the cellular identity of embryonic

stem cells (ESCs). The work I describe has been of a largely in silico nature, drawing heavily

on the computational meta-analysis of large amounts of genomic data, both in-house and pub-

lic, generated using high-throughput sequencing (HTS) technologies. After reviewing some of

the background information pivotal for the understanding of the subsequent chapters (Chap-

ter 1), I will proceed in chronological order and first discuss some of the early data analysis

work I did in an attempt to gauge the utility of HTS technologies for the study of stem cell bi-

ology (Chapter 2). Specifically, I will talk about two pilot studies conducted in collaboration

with other research groups at the University of Edinburgh: The first one on transcriptional

targets dependent on the expression of a well-known stem cell regulator gene, Nanog, in mouse

ESCs and the second pioneering transcriptional assessment of proliferating cell populations in

the Japanese yew. My experience in these studies highlighted a distinct lack of streamlined

data analysis methods to match the high-throughput data generation. Chapter 3 introduces

the GeneProf software, a novel data analysis framework that has been developed to address

these issues. To lay further groundwork for following investigations, this tool has been applied

for the large-scale reanalysis of a numerous published experiments, building up a valuable

resource for life scientists interested in gene expression, transcriptional regulation and epige-

netics (Chapter 4). In the penultimate chapter (Chapter 5), an extensive meta-analysis

of these data is presented, integrating information about gene expression with the regulatory

inputs of ESCs in order to track down a unique signature of gene regulation that distinguishes

genes central to ES identity from the rest of the transcriptome. Finally, I conclude this thesis

with a review of the primary research achievements and an outlook on future work (Chap-

ter 6).

A summary of abbreviations and terms used throughout this thesis is given in Appendix A.

1



The remainder of this first chapter is structured as follows: First, a brief overview of some

of the core concepts of stem cell biology relevant to the work in this thesis will be given in

Section 1.1. I will start with a summary of early developmental processes and continue

to details about ESCs. In particular, I will focus on the genetic and regulatory factors that

define them. The second part of this chapter focuses on HTS technology (Section 1.2). After

describing the technology itself and explaining the primary methodological approaches to its

utilisation, I will conclude this chapter bringing the focus back to stem cells by highlighting

some groundbreaking research made possible with the use of HTS.

1.1 Embryonic Stem Cell Biology

Stem cell research has undergone remarkable growth over the recent decades. The field has

attracted great scientific, commercial and public interest, not least thanks to its promise for

regenerative medicine and drug development. I shall now briefly review some of the funda-

mentals of stem cell biology. I will first give an overview of early development in the mouse,

followed by details about embryonic stem cells discussing how exactly they are defined, how

they were discovered and how they can be derived from an embryo. Lastly, I shall discuss the

key regulators and mechanisms that are the driving forces behind embryonic stem cell state.

1.1.1 Early Mammalian Development

Stem cell biology essentially comes down to the understanding, modelling and (targeted)

recapitulation of early developmental embryology. Questions such as what defines stem cells,

how do they maintain their state and how to they give rise to their differentiated progeny

might perhaps be best addressed by having a closer look at how equivalent processes happen

naturally in vivo. We will look here at the embryonic development of the mouse (M. musculus)

that for many years has served as a model system closely mimicking human development.

Nevertheless, it must be acknowledged that there are notable differences in the developmental

process and conclusions derived from one organism should be translated to another only with

caution – after all, men and mice end up quite differently indeed.

That being said, let us now look at what is known about early mouse development starting

from the fertilised egg (unfertilised: oocyte; fertilised: zygote; reviewed in30,86,146,154,418).

During the first three to four days after fertilisation, the zygote travels to the uterus. In the

meantime, a series of cell divisions (cleavages) occur (Figure 1.1). These early cells in the

embryo are called ”blastomeres”. Since much of the cytoplasm is derived from the maternal

oocyte, many of the early developmental decisions are believed to be controlled by maternal
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Figure 1.1: Early mouse development. Progression of the zygote through repeated cell
divisions into a blastocyst with increasingly narrowed down fate. Adapted with permission from
reference281.

gene products. Usually after the 8-cell stage, the formerly loosely bound cells compact and

are held together by gap junctions formed by connexins. The gap junctions allow for molecule

exchange between cells, which may contribute to the establishment of polarisation and thus the

spatial patterning of the embryo238; in fact, it has been suggested that the anterior-posterior

axis might already be established at this point in time30,145,146.

At the 16-cell stage (from now on also called ”morula”), the embryo begins showing distinct

pattern formation with the outer cells forming a ring of cells, the trophectoderm (TE), which

will eventually constitute the trophectoderm and extraembryonic ectoderm30,144,418. The

cells on the inside are called the inner cell mass (ICM), destined to develop into the fetus and

extraembryonic mesoderm and endoderm30,144,418. Around day 3 post fertilisation, a cavity

(blastocoel) begins to form, which together with the physically and structurally separated TE

and ICM makes up the ”blastocyst” at day 3.530.

After approximately four days, the blastocyst arrives in the uterus, but does not yet

implant, because it is still enclosed by a protective layer, the ”zona pellucida”. This layer

is then shed off and the blastocyst implants into the uterine wall at day 4.5. The ICM now

becomes separated into the hypoblast and the epiblast. The hypoblast will later develop into

the primitive endoderm (PE) and the epiblast harbours cells that will develop into all parts

of the actual embryonic body86. At day 6, the embryo is made up of what is now called the

trophoblast, the epiblast (or primitive ectoderm) and the PE. The primitive ectoderm contains

cells that will differentiate into the three primary germ layers, endo-, meso- and ectoderm.

This stage of development is called gastrulation,

After gastrulation, increasingly specialised structures begin to form. The ectoderm will

eventually give rise to the skin and nervous system, the mesoderm will differentiate into bone

and cartilage as well as muscle tissues and blood, and the endoderm is the basis for the

development of internal organs.
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1.1.2 Embryonic Stem Cells, Pluripotency and Differentiation

The work in this thesis is concerned with the study of stem cell biology. But what are stem

cells and where do they come from? In fact, what is a stem cell and what is not is a matter

of some discussion, but for the purposes of this work I shall describe a stem cell in terms of

the following two key properties69,509:

Definition 1. Potency: The ability of a cell to differentiate into heterogeneous subtypes.

The derived cell types (”progeny”) may be limited in their potency and exhibit phenotypic and

functional differences. A cell shall be called totipotent if it can give rise to all embryonic and

extraembryonic tissues ever observed at any point of an organism’s natural development and

pluripotent, if it can constitute any tissue in the actual embryonic and adult body, including

the germline.

Definition 2. Self-renewal: The ability of a cell to divide indefinitely giving rise to identical

daughter cells that also have the potential to self-renew.

Putting these properties together, stem cells can be defined most generally as69,509:

Definition 3. Stem cell: An undifferentiated progenitor cell that has an unlimited potential

for self-renewal and is pluripotent, according to the definitions given before.

Now, where in the process of embryonic development do stem cells occur? As we have seen

in the previous section, mouse embryonic cells commit early on their future fate. It has been

shown that cells taken from a later stage in development can no longer reconstitute all tissues

of the body, they are said to be restricted in their potency. Only the zygote itself can with

certainty be said to be totipotent. That is, only this mother-of-all-cells can indeed give rise

to all different embryonic and extraembryonic lineages observed during development. Cells

following the early cleavages may or may not be totipotent still, but certainly the last cells in

the embryo that can positively give rise to any cell of the embryo proper, occur for a short

period of time only in the early, pre-implantation blastocyst around E3.5418. These cells are

called ”pluripotent”. Cells from later stages of development as well as a number of adult cells

can still give rise to differentiated progeny of various types, yet they are greatly reduced in

their potency to only specific lineages (they are ”multipotent”).

This insight has led to the hypothesis of the existence of undifferentiated, pluripotent

cells. Indeed it has later been proven possible to derive such cells from the ICM of the

pre-implantation blastocyst of mice123,344 and, years later, from the outgrowth of in vitro

fertilised human eggs545. Thanks to the origin of these cells and their potential as the stem

population for all the tissues of a mature organism, they were subsequently called embryonic

stem cells (ESCs). Because of their unique key properties – self-renewal and pluripotency

– ESCs can be maintained in cell cultures (given appropriate culture conditions) and they
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can divide both symmetrically into undifferentiated daughter cells as well as asymmetrically

into undifferentiated and differentiated progeny. Additionally, ESCs can contribute to (viable)

chimeras if injected back into a blastocyst (reviews:42,69,70,505).

For the purposes of this thesis, the definition of a stem cell as a cell that is pluripotent

and capable of self-renewal shall be sufficient. To more rigorously characterise ESCs, the cells

have to satisfy a number of additional criteria (adapted from509):

• ESCs must be derived without transformation or immortalisation from the ICM of the

blastocyst,

• they ought to be karyotypically stable and diploid,

• clonogenic and capable of unlimited self-renewal, with a high amplification capacity.

• ESCs can demonstrate pluripotency in vitro and in teratomas,

• have two active X-chromosomes in female cells (no X-inactivation),

• have no G1 cell cycle checkpoint,

• are be able to contribute to all parts of chimera and can colonise and transmit to the

germ line,

• and they remain undifferentiated in the presence of suitable external stimuli (see Sec-

tion 1.1.3).

ESCs have been derived from numerous mouse strains or individual human embryos and

primates, however, this was achieved only much later with the use of improved culture con-

ditions380,619 and some controversy exists as to whether non-mouse pluripotent cell lines are

indeed equivalent to mESCs42,147. While all ”ESCs” share the same basic defining properties

(self-renewal and pluripotency), there are considerable differences in their transcriptional and

epigenetic characteristics, their cell culture viability, proliferation rate and other phenotypic

attributes. Moreover, they depend on different external signals and culture conditions for

their maintenance42,541,560. Importantly, it has been noted that human ESCs differ substan-

tially from mouse ESCs and it has been suggested that they do actually more closely resemble

cells derived from the post-implantation epiblast (EpiSCs) of the mouse. In fact, when mouse

EpiSCs were first derived, researchers used hESC culture conditions, which exhibit different

maintenance requirements than mESCs42,55,541.

Differences between mESCs and mEpiSCs may well be due to the different developmental

stage they were derived from. After implantation, cells in the ICM undergo rapid and vast

changes, for instance, (female) cells randomly inactivate one copy of the X-chromosome and

they are transcriptionally and epigenetically poised to differentiation173,381,387.
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Figure 1.2: ESC signalling pathways. Intracellular signalling pathways relevant to ESC
self-renewal and pluripotency with their downstream effectors in mouse. Abbreviations: JAK =
Janus kinase; P = Phosphorylation; STAT = STAT-family proteins, primarily Stat3 ; R-/Co-/I-
SMAD = Receptor-regulated, cooperating and inhibitory SMAD-proteins; Based on reference402.

1.1.3 Self-Renewal and Differentiation of Stem Cells

The first stem cell lines were derived in serum on a layer of feeder cells (inactivated fibrob-

lasts), initially without knowing much about the benefits that these conditions offered to the

cells42,56,123,147,344. Only later, the cytokines leukaemia inhibiting factor (LIF) and bone

morphogenic protein 4 (Bmp4) were identified as the main contribution of feeder cells510,593

and as a substitute for serum618, respectively, allowing to culture ESCs without recourse to

serum and feeders.

But how do LIF/Bmp4 confer the self-renewal properties of ESCs? LIF binds to a het-

eromeric receptor complex made up of LIF receptor (Lifr) and gp130. Both units have attached

tyrosine kinases Janus Kinase (JAK) which upon binding phosphorylate STAT-family pro-

tein Stat1 and Stat3 (reviewed in402; see Figure 1.2). Phosphorylation induces Stat3-Stat3

dimerisation and migration to the nucleus, where Stat3 binds to DNA and supports the tran-

scription of genes, e.g. Myc (also known as c-Myc) with a demonstrated positive effect on

self-renewal64,348,389,402. Another factor activated by this pathway appears to be Klf4, which

in turn drives expression of Sox2 391. Contrary to expectations, the mitogen-activated pro-

tein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling pathway, another

downstream effector of LIF and of several growth factors (e.g. FGF4 285), was found to encour-

age differentiation58. On the other hand, recent evidence suggests that phosphatidylinositol-

3-OH kinaseAkt (PI3/Akt) and MAPK pathways support expression of Tbx3, which in turn

encourages Nanog391.

BMP family proteins bind to two types of tyrosine kinase receptors inducing the phospho-
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rylation of the receptor-regulated SMAD-proteins, Smad1, Smad5 and Smad8 (Figure 1.2).

After associating with the cooperating SMAD-protein Smad4, the phosphorylated proteins

bind to DNA and drive the expression of, for instance, inhibitor of differentiation (Id) pro-

teins69,402. Via this action, BMP signalling is believed to suppress neural differentiation and

encourage self-renewal618. Interestingly, over-expression of Id abolishes dependence on Bmp4

to suppress differentiation, arguing that Id might indeed be a main effector of this signalling

pathway in the context of self-renewal473.

Other signalling pathways shown to be involved in the maintenance of self-renewal and

suppression of differentiation are downstream of growth factors and Wnt-protein activity69,402.

Wnt-signalling prevents the phosphorylation of β-catenin by various enzymes, e.g. glycogen

synthase kinase 3 β (Gsk3β). In consequence, unphosphorylated β-catenin will no longer

be degraded and can therefore influence transcription via the transcription factors lymphoid

enhancer factor (LEF) and T-cell factor (TCF) . Via this pathway and a number of alternative

routes (”non-canonical pathways”), Wnt has been shown to, on the one hand, promote self-

renewal and proliferation13,479, but also be involved in various differentiation processes511.

Recently, an alternative to the LIF/Bmp4 media, called 2i, has been developed619, which

utilises small molecule inhibitors of Fgf4 -mediated ERK-signalling (otherwise resulting in

differentiation285) and Gsk3β (interfering with aforementioned Wnt-singalling cascades).

ESCs represent an in vitro phenomenon and, if they ever exist in vivo, do so for only a

very short period of time. To maintain this precarious state in culture, as so often, a complex

interplay between the signalling networks outlined above (and others) and important endoge-

nous factors (see next section) is required. Further research is yet required to disseminate the

exact roles of individual proteins and to identify missing links and downstream targets.

1.1.4 Core Embryonic Stem Cell Transcriptional Regulators

Over the past twenty years, in-depth investigations into the molecular biology of stem cells have

revealed great insights into the core transcriptional circuitry responsible for the establishment

and functioning of self-renewal and pluripotency. Although many additional elements have

been determined, it appears that the wider transcriptional network concerned, revolves around

the expression of three core regulators, the transcription factors Pou5f1, Sox2 and Nanog (P-

S-N).

Interestingly, the three factors bind to each other’s and their own promoter and enhancer

elements, suggesting that they might be regulating each other to a certain degree, probably to

strike the right balance of dosage necessary to maintain ESC identity. Furthermore, the three

factors share many binding targets across the genome indicating that they might either control

target genes cooperatively or redundantly187,621. Transcription factors (TFs) can encourage
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transcription via at least three routes, either by recruiting elements of the transcriptional

machinery to the promoter of genes, by inducing the restructuring of chromatin (euchromatin

instead of heterochromatin) or its associated elements (histone modifications, etc.) in such a

way that is permissive to transcription or by releasing transcriptionally paused polymerase to

allow productive elongation91,187,245,437,621. Alternatively, they may counteract transcription

by blocking any of these routes.

Many of the genes involved in groundstate pluripotency encode TFs, but there are also

co-factors and further genes that exert their function in ways other than by binding to DNA.

I will now try to review some of the most important known genes implicated in ESC state.

1.1.4.1 Pou5f1

One of the most well-known key regulators of ESCs is POU domain, class 5, transcription fac-

tor 1 (Pou5f1 ; also known as octamer-binding transcription factor 4 or Oct4 ; reference487,488;

reviewed in66,69). In vivo, Pou5f1 is expressed during the earliest stages of development start-

ing from the unfertilised egg and observed still in the ICM and even after implantation in

the epiblast, but not TE or later outer embryonic layers410,423. Later on its expression is

restricted to primordial germ cells (PGCs).

Loss of Pou5f1 does not disrupt blastocyst formation per se, but disrupts the developmental

potency of the cells contained and no PE or germ cells are generated: As confirmed in vitro,

the loss of Pou5f1 leads to differentiation into trophectoderm only382,390. Interestingly, over-

expression (more than 1.5× the normal level) was found to lead to differentiation towards

endoderm and mesoderm. Thus, fine control of Pou5f1 expression levels is essential to maintain

ESCs in a pluripotent, self-renewing state and variations in expression lead to spontaneous

differentiation in a dose-dependent manner.

LIF withdrawal in ES cell cultures, leading to differentiation, correlates with a rapid drop

in Pou5f1 gene expression. However, experiments in cells in which Pou5f1 expression has

been engineered to be under the control of tetracycline, that is, in which expression can be

maintained even without LIF, have shown that expression of Pou5f1 alone is not sufficient to

prevent ESC differentiation388. Pou5f1 is therefore a requirement of ESC maintenance, but

in itself is not sufficient for their survival.

The protein product of Pou5f1 contains two DNA-binding domains, a low-affinity ”Pit”,

”Oct” and ”Unc” domain (POU) and a higher-affinity homeodomain. Together the two do-

mains ”encircle” the DNA, binding to a ATGCAAAT consensus motif70,272,425, although an

alternative TATGCGCATA motif might also exist16,347,544.
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1.1.4.2 Nanog

In 2003, the homeobox transcription factor Nanog was identified by both, computational

analysis of expression data and functional cDNA expression cloning as a novel regulator of

pluripotency67,363. It is specifically expressed in cells of the ICM in the early blastocyst,

with declining expression still observed post-implantation, especially in the proximal posterior

region of the epiblast189. During days 9-13, Nanog expression is further observed in migratory

PGCs and in genital ridges, the expression however ceases later on and no expression is

detected in adult gametes67,608.

It has been shown that Nanog is capable of conferring LIF-independent self-renewal if

over-expressed beyond levels usually observed in ESCs67, yet it was later discovered that

the deletion of the gene did not abolish self-renewal and that Nanog−/− ESCs could still be

maintained in culture68. However, Nanog does occur naturally at variable expression levels

(”mosaic expression”) and cells expressing low levels of Nanog are more prone to differentiate68.

Interestingly, it was also demonstrated that Nanog expression is not activated by Stat3 and

neither does Nanog drive Stat3 expression (cp. Section 1.1.3), arguing for a different mode

of action than might have been expected69.

In maintaining ESCs, Nanog is dependent on Pou5f1 expression and even its over-expression

does not prevent differentiation into TE, if Pou5f1 is deleted67, however, and although both

proteins show evidence of binding in each other’s promoter or enhancers regions75, the expres-

sion of neither is essential for the other69.

Like Pou5f1, Nanog contains a DNA-binding homeodomain, but no other DNA-binding

elements232. Consequently, the DNA sequence motif bound to by the TF is likely to be

shorter and it is not yet clear which site is actually recognised in vivo or whether there

might be alternative binding sequences70. Proposed motifs include the core homeodomain

sequence TAAT363, an extended version TAATGG232 or completely different motifs CAAT327 /

ccAT(C/T)A16,193,544. Which of these motifs is correct, or whether, in fact, all might be valid

remains an open issue.

1.1.4.3 Sox2

The third protein commonly attributed a core role as a pluripotency TF is SRY (sex deter-

mining region Y)-box 2 (Sox2). Unlike Pou5f1 and Nanog, expression of Sox2 is not limited to

early pluripotent or largely uncommitted cells, but it has, in fact, also a rather crucial role in

the development on the neural lineage and is strongly expressed in neural progenitor cells164.

Sox2 expression does appear to be dispensable for the establishment of ESC identity, but this

might be due to the presence of maternal Sox2 proteins at early developmental stages70.

Sox2 binds to DNA via a high mobility group (HMG) domain and numerous lines of
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evidence suggest that it (often) binds DNA cooperatively with Pou5f1 5,6, 75,386. Structural

studies performed with the highly similar protein Pou2f1 and Sox2 448,591 and the fact that the

binding sites for both factors are frequently found together and with the same orientation75,

suggest that this binding occurs cooperatively at a protein level70.

1.1.4.4 Other Genes Relevant to Stem Cells

Numerous other genes have been implicated with pluripotency and self-renewal, some in a

role as downstream effectors of P-S-N or as their interaction partners and others without

any apparent, direct connection to the three at all. Of these, Stat3, Klf4/2, Myc and Esrrb

might be of particular interest, since they have been able to confer LIF-independent self-

renewal183,630. Rather than going into a lengthy discussion, I shall give here only a concise

summary table of important ESC- and differentiation-linked genes and others relevant to this

study (Table 1.1). In addition to these genes, differentiation and knock-down experiments and

computational meta-analysis of genome-wide expression data have identified many additional

candidates whose roles in stem cells are still poorly understood12,157,227,276,363. Amongst

these candidates rank Manba, Hck, Gbx2, Spp1, Otx2, Cldn7, Rrp12 and many more. It

is an exciting prospect that future research into these factors might help us to extend our

understanding of the core transcriptional circuitry that controls stem cell identity.

1.1.5 Epigenetic Control of Stem Cell State

It is becoming increasingly evident that TFs are not the only control mechanism driving gene

expression. Rather, it is a complex network of the interactions of TFs and the epigenetic

markup of a cell that allow active transcription to happen. One aspect that has received

much attention over the last years is the role of epigenetic influences in regulating the balance

that marks the switch from pluripotency to differentiation. Note that there is a considerable

difference in the way the term ”epigenetics” is used by different researchers462, but we shall not

get hung up about the definition and refer to ”epigenetics” as the stable activity of genes across

many generations (cell divisions) and, importantly, to the mechanisms that are controlling this

stability.

In this section I will briefly review the most important (known) epigenetic factors and

point to their role in stem cells and their progeny. More specific studies will be discussed later

on in the context of the applications of sequencing technologies (Section 1.2.3.4).

1.1.5.1 DNA Methylation

The earliest discovered epigenetic regulatory mechanism is the methylation of cytosine residues

in DNA, a reaction catalysed by DNA methyltransferases (DNMTs; reviews:36,38,230,353,462,621).
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Gene Roles, Functions and Pathways
Atrx SWI/SNF chromatin remod.; X inact.; trophoblast dev.28,149,296,599

Cbx7 PRC1; DNA methylation; gene silencing, inhibits differentiation364,404

Cdx2 Induction of TE; mutually inhibitive with Pou5f1392,522,539

Chd7 Chromatin remod., ES gene activation; TrX; Sox2 cofactor17,121,485

Ctcf Diverse functions; transcriptional activator, repressor and insulator186,424

Ctr9 PAF1-subunit; transcription elongation, mRNA processing437

Dnmt3a/b/l DNA methylation; transcriptional silencing353,363,451

Dppa4/5a Suppresses differentiation; early dev.; euchromatin formation346,363,531,587

E2f1 DNA-repair, cell cycle, tumor suppressor; coop. binds with other DBPs41,82

Ep300 TF cofactor; proliferation, diff.; HAT; chromatin remod.70,75,117,396,637

Esrrb Self-renewal (LIF-independent); targets ES core factors75,227,631

Fbxo15 ES-specific marker, but dispensable for self-renewal and pluripotency549

Fgf2/3/4/5/8 FGF/ERK pathway; early dev., differentiation; progression to EpiSC285,293

Gata4/6 Induction of PrE; mutually exclusive with high Nanog50,139,507,627

Jarid2 HMs; PRC2 subunit; blocks differentiation308,417

Jnk1/3 (Mapk8/10) MAPK pathway; differentiation; H3S10ph548

Klf2/4/5 LIF target; self renewal; iPS factor; act redundantly75,183,236,315

Lefty1/2 TGFβ family; early dev., patterning, antagonistic to Nodal372

Lin28 Proliferation, self-renewal; iPS; early dev.; miRNA control420,421,622

Luzp1 ATAC-mediator complex; neural development279,301

Mcaf1 (Atf7ip) Heterochromatin; gene silencing215,331

Med1/12 Mediator complex; at enhancers and promoters of active genes245

Mtf2 (Pcl2) PRC2; transcriptional silencing; differentiation308,574

Myc Stat3 target; self renewal; proto-oncogene; Pol2 pause release; recruits HATs;
DNA replication64,75,111,137,269,437,479

Mycn Chromatin remodelling; H3K4 methylation and acetylation94

NelfA (Whsc2) NELF-complex; transcriptional pausing437

Nfya Open chromatin; recruits Pol2 and TFs to promoters548

Nipbl Cohesin loading factor; cooccupies with Mediator/Cohesin245

Nodal Key regulator in early dev., suppresses neural lineage300,560,561

Nr0b1 (Dax1) Dev.; gender spec.; pluripotency; neg. regulator of Nr5a2229,258,261,350,363

Nr5a2 Blocks differentiation; self-renewal; iPS / reprogramming47,170,172,198,538

Phc1 PRC1; gene silencing, differentiation51,224

Prdm14 Blocks endoderm differentiation; targets ES core factors79,332,556,609

Rest Self-renewal; blocks neural differentiation18,508

Ring1b (Rnf2) Chromatin compaction; PRC1; silencing; blocks differentiation540,566

Sall4 Blocks TE differentiation; cooperates with Nanog603,621,628

Smad1/2/3 BMP, TGFβ/Activin/Nodal signalling; growth, dev., survival29,560,618,621

Smarca4 (Brg1) SWI/SNF; chromatin accessibility, activation; self-renewal21,200,265,349,581

Smc1/3 Cohesin complex; DNA loop formation245

Spt5 DSIF-complex; transcriptional pausing, but also elongation437

Suz12 Histone variants; PRC2; transcriptional silencing61,75,342

Tbx3 LIF signalling; self-renewal; blocks meso- and ectoderm227,329,391,621

Tcf3 Wnt signalling; pluripotency, differentiation87,342,621

Tcfcp2l1 Little known; interacts with HDAC proteins75,564

Tcl1 Self-renewal, growth; proto-oncogene; blocks neural diff.227,327

Tdh Threonine ctabolism; rapid cell growth; highly active in ESCs578

Tet1 DNA methylation; 5mC → 5hmC528,600

Thap11 (Ronin) Self-renewal (LIF-independent); chromatin remod. and HMs106,469

Utf1 Differentiation, pluripotency; chromatin-associated363,403,565

Yy1 Docks Xist onto chromosomes; recruiter of TFs, PRC and TrX226,233,354,405

Zic3 Pluripotency; positvely regulates Nanog318,319

Zfp42 (Rex1) Common ES marker; inhibits differentiation; X-inact.31,363,376,491,501,607

Zfx Self-renewal; also in adult SCs; targets Tcl1 and Tbx3142

Table 1.1: ES- and differentiation genes. Genes with known implication in stem cells,
differentiation or otherwise relevant to this study.
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Different methyltransferases might serve different purposes, for instance, Dnmt3a and Dnmt3b

are believed to confer de novo methylation399. The propagation of methylation states (”main-

tenance methylation”), that is, methylation of hemi-methylated CpG dinucleotides during

DNA replication, on the other hand, is facilitated by Dnmt1 83,307,379. More recent research,

however, disputes this strict distinction between the functions of the individual enzymes and

suggests that all of them might be involved in all mechanisms190,266,450,462. Demethylation

may occur passively, i.e. without the maintenance of methylation, or might be directed by

DNA glycolase activity or direct removal365,438,462,559,572,642. DNA methylation is thought

to carry out its effects through the transcriptional regulator Kaiso (mouse gene Zbtb33 ) and

proteins with a methyl-CpG-binding domain (MBD; e.g. Mecp2 ) and their interaction with

other co-regulators197,429,463.

DNA methylation is commonly associated with transcriptional silencing. Failure of proper

methylation is linked to developmental defects and involved in cancer129. Recent evidence

suggests that active demethylation by activation-induced cytidine deaminase (AID) might

indeed be a requirement for the generation of induced pluripotent cells (Section 1.1.6),

supporting the concept of an epigenetically ”permissive” groundstate in ESCs. During natural

development, global DNA demethylation occurs at two stages: After fertilization in genome of

the zygote, which remains largely unmethylated until after implantation, and later on during

the formation of primordial germ cells191,353. It may hence be reasoned, that demethylation

is generally associated with the resetting of epigenetic signatures to a ”tabula rasa” state.

Upon differentiation, ESCs are thought to silence pluripotency genes and those impor-

tant for other lineages by methylating their promoters127. Much of the functionally relevant

methylation appears to happen in the context of so-called CpG-islands (CGIs), preferentially

promoter-associated regions of the genome with a high content of CpG pairs that are un-

der permissive circumstances unmethylated217. The methylation of CGIs has been linked to

X-inactivation, genomic imprinting and tissue-specific silencing119,217,443. In two interesting

studies, researchers looked at the promoter methylation status of cells during the in vitro differ-

entiation of ESCs into the three early germ layers222 and in ESC, embryonic germ cells, sperm,

trophoblast stem cells and embryonic fibroblasts127. They noted significant differences in de

novo methylation of target genes consistent with lineage as well as a specific demethylation of

pluripotency-related genes at the onset of development. Further supporting the importance

of methylation for the silencing of pluripotency genes, it has been observed that ESCs can

be derived in the absence of methyltransferases, but that the differentiation of these cells is

impaired, probably due to the failure to silence pluripotency genes131,621.

5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC)353.

This reaction is catalysed by ten-eleven translocation proteins, e.g. Tet1 528,600. Both, the

concentration of Tet1 and the frequency of 5-hmC decrease upon differentiation of ESCs and
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Figure 1.3: Nucleosome composition. In chromatin, DNA is wrapped around nucleosomes
composed of eight histones, two of each type (H2A, H2B, H3, H4). The structure is stabilised
by linker histones (H1). Adapted from Richard Wheeler (WikiMedia Commons, 2005, http:

//en.wikipedia.org/wiki/File:Nucleosome_structure.png).

the knock-down of Tet1 reduces self-renewal efficiency225,528, implicating 5-hmC directly with

the core functional network of ESCs525,600.

1.1.5.2 Nucleosomes, Histones and Chromatin

In eukaryotes, DNA together with various proteins is packaged into a higher-order structure

called chromatin. The primary architectural scaffold of chromatin are nucleosomes, small pro-

tein complexes that DNA wraps around. Nucleosomes are then further compacted together

using linker proteins and other structural elements. The structure of chromatin changes dur-

ing cell cycle (major decompaction is necessary for mitosis), but also in response to regulatory

mechanisms. For instance, chromatin may be loosely packed (”euchromatin”), allowing the

active transcription of the DNA code by polymerases or more tightly packed (”heterochro-

matin”), preventing such activity195,462. Chromatin may be remodelled by many factors,

amongst others changes in DNA methylation (see previous section).

Each nucleosome is composed of eight proteins called ”histones”. There are five different

types of histones (known) in mammals: H1, H2A, H2B, H3 and H4. The latter four make

up the nucleosome octamer (Figure 1.3), while H1 acts as a structural linker protein462.

Histones might occur in different structural variants, potentially with different functions379,

but they can also be enzymatically modified and the mechanisms and effects of these modi-

fications are better understood and have been implicated with important roles in stem cells

(reviews in50,110,230,353,462,621). Interestingly, the structure of nucleosomes and histones is

highly conserved across virtually all eukaryotic species558.

Past research has revealed at least eight different types of modifications to histone pro-
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teins: Methylation (me), acetylation (ac), phosphorylation (ph), ADP ribosylation (ar),

ubiquination (ub), sumolyation (su), deimination/citrullination (ci or cit) and biotinylation

(bio)264,462. The abbreviations given in the brackets follow the Brno nomenclature558, accord-

ing to which type of modification is given in the end following the designation of the histone

(H2A, H2B, H3, H4) and amino acid (K: lysine, R: arginine, S: serine, T: threonine, Y: tyro-

sine) concerned. More than one methylation, ubiquination or ADP ribosylation can be applied

to the same amino acid; to distinguish the variants an additional number is inserted after the

modification code, e.g. me3 for trimethylation or, more general, ubn for polyubiquination.

Lastly, the dimethylation of arginine can be either symmetrical or asymmetrical, indicated by

addition of another letter in the end, i.e. me2s or me2a, respectively. Histone modification

codes are, in general, not italicised and I do so here only to distinguish the individual letter

codes from the rest of the text. Not all modification work for all amino acids, Table 1.2 gives

an overview of known modifications in human (mostly equivalent for mouse).

There is a great number of known histone modifications with diverse functional roles (Ta-

ble 1.2) – and it appears likely that further modifications might be found in future and alter-

native roles discovered for the modifications already known. Arguably, the best-studied histone

modifications in ESCs are the methylation and acetylation of various lysines and arginines on

histones 3 and 4 (see reviews33,353,462,621). Generally speaking, lysine acetylation and arginine

methylation alike are implicated in functionally active genes and the consensus appears to be

that the relationship is causal or at least permissive, rather than a consequence33,462. Histone

deacetylases (HDACs) repress transcription by removing these activating histone marks and

the inhibition of these enzymes has been demonstrated to block stem cell differentiation due to

failure to silence pluripotency genes299. Recently, HDAC inhibitors have been used to increase

the efficiency of the reprogramming of somatic cells to a pluripotent state212 (Section 1.1.6).

Perhaps one of the most interesting observations regarding histone modifications is the

presence of both activating H3K4me3 and repressive H3K37me3 (”bivalent domains”) in the

promoters of many developmentally related genes in ESCs14,35,50. Bivalently marked genes

are transcriptionally repressed, but the presence of the activating marks indicates that they

are ready to be transcribed once the repressive mark disappears. Thus, bivalent genes are

captured in a special state ”poised” for transcription. Bivalent domains are exceptionally

highly conserved between species35, advocating an important biological role. Some controversy

exists as to whether these HMs actually ever occur simultaneously in the same cells or whether

they are indeed present in different cells, possibly from different subpopulations, although

studies using sequential chromatin immunoprecipitation71,141,355,554 (that is, pulling out DNA

that is enriched for both marks at the same time) have shown that the two marks do indeed

occur together in at least some promoters35,103,412.

There are two groups of histone modifying enzymes that are particularly well understood:
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Histone H1 Histone H3
K25 ac heterochromatin K4 ac at TSS + in gene, activation?

me1 heterochromatin me1/2 activation
S17 ph cell cycle interphase me3 activation, elongation
S26 ph euchromatin K9 ac activation, elongation
S171 ph mitosis bio heterochromatin?
S172 ph mitosis me1/2 silencing
S186 ph rDNA activation me3 silencing?
S188 ph cell cycle interphase K14 ac chromatin remodelling
T10 ph mitosis K18 ac activation
T17 ph mitosis bio heterochromatin?
T30 ph mitosis K20 me1 cor. w. inactive genes, mitosis
T137 ph mitosis me2 mitosis
T145 ph mitosis me3 heterochromatin
T153 ph mitosis K23 ac activation
T154 ph mitosis K27 ac activation
Histone H2A ar DNA repair, histone-DNA
K5 ac DNA repair me1 cor. w. active genes
K9 ac activation me2/3 silencing

bio heterochromatin? K36 ac activation
K13 ar DNA repair, histone-DNA me1 cor. w. active genes

bio heterochromatin? me2 DNA repair, restricts H3K27me
K119 ub silencing me3 restricts H3K27me
K121 ub silencing, X inact. K37 ar DNA repair, histone-DNA
K125 bio heterochromatin? K56 ac DNA repair
K127 bio heterochromatin? K79 me1/2 activation?
K129 bio heterochromatin? me3 ? (different from me1/me2)
R3 ci silencing? R2 ci silencing

me2 activation? me1 activation
S137 ph mitosis me2 H3K4me3 antagonist
S139 ph apoptosis, DNA repair R8 ci silencing
T120 ph metaphasic centromeres me2 rRNA regulation
Y142 ph DNA repair R17 ci silencing
Histone H2B me1/2 activation
K5 ac activation R26 ci silencing

me1 cor. w. active genes me1 activation
K12 ac cor. w. DNA methylation S6 ph cell cycle
K15 ac activation? S10 ph mitosis, genomic stability
K16 ac cor. w. DNA methylation S28 ph mitosis, H3K27me-¿ac
K20 ac at TSS, activation? S31 ph metaphasic centromeres
K30 ar DNA repair, histone-DNA T3 ph mitosis
K46 ac cor. w. DNA methylation T6 ph keeps H3K4me
K120 ac at TSS, activation? T11 ph mitosis, activation

ub elongation, H3K4/79me T45 ph nucleos. structure, apoptosis
S14 ph apoptosis Y41 ph euchromatin

ub DNA damage protection
Histone H4 Histone H4 (cont.)
K5 ac activation K91 ac activation
K8 ac at TSS + in gene, activation? R3 ci silencing?

bio heterochromatin me1/2 activation
K12 ac at TSS + in gene, activation?

bio heterochromatin S1 ph DNA repair
K16 ac DNA repair, H3K79me

ar DNA repair, replication

Table 1.2: Histone modifications. An overview of (human) histone modifications with their
associated, putative biological function. Labelling according to Brno nomenclature558. From the
HIstome database264.
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• Polycomb group (PcG) proteins, which can be further divided into polycomb repressive

complex 1 and 2 (PRC1/2), and are, as the name suggest, believed to have a repres-

sive function. PRC1 members facilitate mono-ubiquitination of H2AK119577 and PRC2

(e.g. Ezh2, Eed, Suz12 ) the trimethylation of H3K2761. PcG-related silencing, espe-

cially via PRC2, has been demonstrated repeatedly to be essential for many stages of

normal development as well as the establishment, maintenance and differentiation of

ESCs50,308,353,395,416,417,498,574. More details about some relevant recent studies will

be mentioned later on (Section 1.2.3.2).

• Trithorax group (trxG) proteins, on the other hand, might be responsible for gene acti-

vation by conferring H3K4me350,343,353,452.

Both protein complexes have been shown to be associated with Nanog and Pou5f1 bind-

ing110,302 and so have the chromatin remodelling complexes SWI-SNF580 (switch-sucrose

non-fermentable) and NuRD247,316 (nucleosome remodelling and deacetylase), that influence

chromatin structure in a way that is conductive or repressive with respect to gene expression,

respectively110,621.

1.1.5.3 Non-coding RNA

Transcripts that are not being translated into proteins had traditionally been considered

non-functional and mere effects of transcriptional noise. This concept has been repeatedly

challenged over the past decade or so and important roles for various species of non-coding

transcripts (ncRNAs) have been discovered. Perhaps one of the best-known examples of an

ncRNA with proven importance in development is Xist/Tsix. Xist, an ncRNA itself, is es-

sential for X inactivation in female cells. Its function is blocked by an anti-sense ncRNA

transcribed from the opposite strand, Tsix 110,374,376. Importantly, reactivation of the inac-

tive X chromosome is a hallmark of ESCs and Xist seems to be repressed also by Pou5f1,

Sox2 and Nanog110. Similar repressive anti-sense transcription has been reported for other

imprinted genes65,444,445.

Micro-RNAs (miRNAs), in particular, have attracted much attention in the stem cell

field110,617. miRNAs are pieces of single-stranded RNA of only 18-25 nucleotides in length.

They have been reported to interact with messenger-RNA (mRNA) resulting in degradation

(via RNA-induced silencing complex, RISC617), deadenylation or the repression of transla-

tion113. Alternatively, they may interact with DNA or histones and might create heterochro-

matin462. miRNA expression is often specific to tissues or cell types273.

Disruption of the orderly processing of miRNAs by enzymes such as Dicer, has been shown

to cause severe defect in proliferation and differentiation250,370. Moreover, several miRNAs

have recently been reported to induce the transformation of somatic cells into stem cell-like,
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RNA Expression / Regulation / Function Reference
Stem Cell-Specific

miR-290 to miR-295 down-regulated upon differentiation; balances ESC mainte-
nance/differentiation by regulating DNA methylation via Rbl2 ;
regulated by PSNT

72,110,206,342

miR-291-3p, miR-
295, miR-294

can generate iPS cells 243

miR302/367 can generate iPS cells 8,23,286

miR-205 supports mammary gland adult SC self-renewal by suppression of
PTEN

617

Differentiation- / Tissue-Specific
miR-134, miR-470 up-regulated upon differentiation; targets CDS of PSN 110,342,537

miR-296 expressed specifically during differentiation; targets CDS of N 110,342,537,621

miR-155 expressed specifically in immune system 342,621

miR-375 expressed specifically in pancreatic islets 342,621

miR-124 and miR-9 expressed specifically in neural cells 342,617,621

miR-145 represses PKS; silencing of self-renewal 617

let-7 represses Lin28 and Myc; silencing of self-renewal 617

miR-1, miR-133 upon differentiation, represses Dll-1 (non-muscle fate) and there-
fore promotes cardiomyocyte differentiation

617

miR-203, miR-124,
miR-1/miR-206

promotes adult (epidermal, neuronal, muscle) SC differentiation
by repressing of p63, Sox9 and Pax7, respectively

617

miR-125b promotes hair follicle adult SC differentiation into various lineages
by targeting Blimp1, VDR and others

617

Table 1.3: miRNAs implicated in stem cell functions. Non-exhaustive list of miRNAs
and miRNA clusters with their associated putative function. Extracted from reviews and pa-
pers110,243,286,617,621. P = Pou5f1, S = Sox2, N = Nanog, T = Tcf3, K = Klf4.

reprogrammed cells8,243,286 (Section 1.1.6). Both lines of evidence stress the key functional

role of miRNAs in many natural processes and also for stem cell identity. A summary of

several known miRNAs is given in Table 1.3.

1.1.6 Restoration of Pluripotency

The dedifferentiaton and ”reprogramming” of somatic cells to pluri- or even totipotency has

been a topic of active research for many years44,95,174,486,527,594 and two major methodologies

(with variations) have been established for this purpose (Figure 1.4; reviews:175,176,187,513,611):

• Nuclear transfer of somatic cell contents into oocytes594 (somatic cell nuclear trans-

fer, SCNT), even of different species. Upon transfer, pluripotency markers are rapidly

induced175,176.

• Cell fusion of somatic cells with ESCs95,527 leads to the ”dominant” ESC imposing its

expression on the somatic cell. Fused cells may be multinucleaic heterokaryons, which

will not survive long, or hybrid cells with fused tetraploid nuclei. These hybrids can

proliferate and form euploid (same species) or aneuploid (different species) offspring611.

More recently, in 2006, groundbreaking research led by Shinya Yamanaka achieved the

reprogramming of a somatic cell (a fibroblast) to a self-renewing state mimicking that of ESCs

using retroviral transduction of only four defined factors, Pou5f1, Sox2, Klf4 and Myc529. The

cells, termed ”induced pluripotent stem cells” (iPS cells), could at this point not contribute
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Figure 1.4: Somatic cell dedifferentiation strategies.Schematic representation of somatic
cell reprogramming strategies. (a) Somatic cell nulear transfer, (b) cell fusion and (c) various
types of induction by defined factors have all been used to reinstantiate pluripotency and self-
renewal in somatic cells. Inspired by reference611.

to chimeras. However, when the cells were subsequently selected for those that successfully

reactivated Nanog, they were overall transcriptionally and epigenetically more similar to ”real”

ESCs and did contribute to viable chimeras400. This demonstrates that, although Nanog was

dispensable for the induction of iPS cells, the reactivation of its expression might serve as

(or at least mark) an important stepping stone to groundstate pluripotency, a concept later

supported by strong additional evidence504. Selection for other markers, such as SSEA-1

and Fbxo15 was not sufficient to demarcate fully reprogrammed cells54,400. It appears that

iPSCs need to be epigenetically ”reset”, that is, histone and DNA methylation and acetylation

(and possibly other modifications) need to be reorganised in a way permissive to pluripotency

and removing marks specific to the differentiated cell of origin37,202,360 (see previous section,

Section 1.1.5).

Initial excitement about iPS cells was slightly hindered by low reprogramming efficiency

and the requirement of retroviral transduction and stable expression, in particular, of the

proto-oncogene Myc, preventing direct application to regenerative medicine (see next section).

A considerable amount of subsequent research has focused on identifying (a) less problematic

”cocktails” of reprogramming factors and (b) reversible and genomically stable ways of ad-

ministering these factors in a manner that is (c) effective for reprogramming purposes.

Shortly after the Yamanaka group, Yu et al. reported induction of pluripotent human

cells using a combination of POU5F1, SOX2, NANOG and LIN28 622. They used a lentivirus

instead of a retrovirus and confirmed normal karyotype as well as telomerase activity and

expression of markers consistent with hESCs.
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In a first step towards clinically applicable iPSCs, Huangfu et al. showed that DNMT-

and HDAC-inhibitor valproic acid (VPA) greatly increased the efficiency of reprogramming

and eliminated the requirement for Myc in the process212, consistent with the role of HDAC

inhibitors in differentiation of ESCs which I have discussed earlier299 (Section 1.1.5.2). Simi-

larly, using a combination of other small molecules it was even possible to reprogram fibroblasts

using only two factors, Pou5f1 and Klf4 502. Interestingly, also a small molecule inhibitor of

GSK3β, the inhibition of which had previously been shown to support mESC self-renewal, was

reported to increase reprogramming efficiency in human cells, while replacing any requirement

for SOX2 314.

The first group to demonstrate integration-free reprogramming made use of a adenovirus

to transiently express the original four defined factors514. While removing the need to stably

integrate reprogramming factors into the target genome is desirable for clinical purposes, the

efficiency of iPS induction suffered, though, making this approach hardly viable for large-

scale application. Adenoviruses were later on also used to induce pluripotency in human

fibroblasts640. In the same year, Yamanaka’s own group suggested the use of plasmids to

facilitate reprogramming without viral integration401. Two expression plasmids were used to

transfect Pou5f1, Sox2 and Klf4 and Myc, respectively, yet efficiency was unfortunately again

suboptimal.

To address the efficiency issue, while avoiding permanent integration of exogenous fac-

tors, Kaji et al. used non-viral transfection with a single Pou5f1/Sox2/Klf4/Myc-vector to

reprogram human and mouse fibroblasts248. The combination of this vector with a PiggyBac-

transposon584,598 enabled robust induction of pluripotency markers. Importantly, exogenous

factors could be completely removed after the reprogramming process.

An alternative to the induction of factor expression in the somatic cells is to simply in-

troduce the relevant proteins directly into the cells. Zhou and colleagues used recombinant

proteins in which a poly-arginine transduction domain had been fused to Pou5f1, Sox2, Klf4

and Myc proteins (enabling penetration of the plasma membrane) to introduce the gene prod-

ucts into the target cells639, presenting a simple, quick and safe method for generating iPSCs.

In 2009, research led by Robert Belloch243 used the miRNAs miR-291-3p, miR-294 and

miR-295 to improve reprogramming efficiency by Pou5f1, Sox2 and Klf4. Interestingly, they

found that this led to more homogeneous iPSC populations and that additon of Myc did not

further increase efficiency. They argued that the miRNAs are likely downstream targets of Myc

(which binds in their promoter), offering a mechanism by which Myc might otherwise have

facilitated reprogramming. Similar findings were obtained by studies with miRNAs in human

and mouse by another group8. In fact, they showed that lentiviral expression of the miRNA

cluster miR302/367 in combination with the suppression of Hdac2 can directly reprogram

cells without the transduction of any TFs.
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The overview given here is merely meant to give an impression of the timeline of research

into iPS cells over the past years. This has been an incredibly active field and the number

of studies is by far too high to present here. For recent, excellent reviews please refer to

references513,610,611.

1.1.7 Uses of Stem Cells in Research and Medicine

Stem cells offer many prospective uses, including:

Developmental biology Embryonic stem cells represent an (artificially maintained) state

reminiscent of cells in an early stage of development (Section 1.1.1). As such, they pro-

vide a useful tool to study developmental mechanisms in vitro and, in particular, to trace

molecular mechanisms that would otherwise be difficult to disseminate in vivo120,377,471.

Cancer research Stem cells share certain characteristics with cancer cells, to a degree that

some researchers even refer to certain cancer cells, that exhibit the potential for indefinite

self-renewal as ”cancer stem cells”481. As such, stem cells may find use as models for

cancer research, e.g. to study oncogenes, shared signalling pathways, abnormal cell

division and differentiation.

Disease research Effective modelling of diseased cells in culture can provide a tool for study-

ing the causes and cellular effects of genetic disorders. Stem cells, that can be differen-

tiated into any cell of the body and that can be genetically engineered comparatively

easily provide the ideal starting point for such research116,120,219,377,547,604.

Tissue-regeneration and cell therapy Demand for organ transplants, sadly, exceeds sup-

ply. Regenerative medicine offers one potential avenue to address this issue in future,

with stem cells potentially being useful to regenerate tissues and organs377,604 (possibly

using patient-derived somatic cells; Section 1.1.6). Even where the transplant of entire

organs is not feasible, cell therapy may be beneficial to counteract the effects of disease

and ageing, e.g. to fight neurodegenerative disorders like Alzheimer’s or Parkinson’s

disease330.

Drug development The pharma-industry has developed a great interest in stem cells for the

purposes of drug development. Stem cell-based disease models can be used for large-scale

screens with small molecule compounds to identify and test the efficiency, side-effects and

potential toxic effects of new drugs219,377,471,604. Not only positive effects of medicinal

drugs are an active area of research: For the development of new pesticides and food

additives, trials using cultures of stem cells can give crucial insights into the implications

on human health.
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Personalised medicine A combination of the former points, the use of iPS cells derived

from the patient’s own body (Section 1.1.6), offers the potential to take medicine to

a whole new level116,377. With each of us being different, often the effects of drugs on

any given individual can vary drastically and are not always predictable. Similarly, the

success rate of organ transplants declines with growing genomic dissimilarity. Using

stem cells, it may be possible in the near future to test drugs patient-specifically, to

customise or even custom-develop effective treatments and to grow tissue that is fully

compatible with the recipient’s body system.

1.2 High-Throughput Sequencing

The study of gene expression patterns has revealed great insights into the workings of cellular

systems. In the past decade, most research has relied on the use of microarray technology to

monitor expression levels indirectly by hybridising transcript libraries to oligonucleotide probes

on an array114,520. Microarrays made the simultaneous measurement of thousands of genes

possible and both, the technological hardware as well as the software and algorithms for their

downstream analysis have undergone drastic development over time. More and more probes

were placed on the slides and sophisticated tools were invented to account for technological

short-comings, but nevertheless some issues remain unsolved, foremost an unavoidable bias

towards those genes for which probes have been incorporated into the platform. Microarrays

furthermore suffer from issues like cross-hybridisation and partly poor reproducibility.

An alternative to the hybridisation-based approach is the direct read-out of transcript se-

quences. Early methods include SAGE567 and MPSS447, but they were hindered by compar-

atively high costs and a difficult and time-consuming methodology limiting their use to large

genome sequencing centres. More recently a new generation of high-throughput sequencing

(HTS) platforms have revolutionised the field and they now offer the opportunity to over-

come earlier barriers by greatly reducing expenses and making large-scale sequencing projects

available to a wider scientific audience499. It is now feasible, even for smaller laboratories,

to sequence large libraries of expressed sequence tags (ESTs) or even entire transcriptomes.

Previous studies have revealed major improvements of the deep sequencing approach to con-

ventional microarray analysis in terms of robustness and resolution340,506,526,585.

In this section, I will first review the major high-throughput sequencing platforms available

at present and subsequently go further into the applications they make possible – in them-

selves, largely independent of the specific platform employed. I will then also highlight some

noteworthy previous applications of sequencing platforms for the study of stem cell biology.
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1.2.1 Technologies

The recent years have seen the development and (commercial) launch of numerous new se-

quencing platforms (reviews:9,104,336,337,499). While the individual technologies differ greatly

in the details of the mechanisms involved, they all share some common characteristics, foremost

an unparalleled increase in throughput accompanied by a massive drop in costs as compared to

conventional, ”Sanger-style” capillary sequencing155,477,478. When in the past, it took years

to sequence a single genome and the costs were in the millions, for instance, for the Human

Genome Project90, the same depth of sequencing can now be achieved within weeks and for a

fracture of the costs. But the prospects of the new technology reach far beyond de-novo and

re-sequencing of genomes. For the first time it is affordable to read out not only whole ge-

nomic sequences, but also short fragments thereof or transcripts. The applications henceforth

include gene expression profiling, the analysis of short transcripts – not before measurable at

a reliable level – and the unbiased analysis of chromatin immunoprecipitation and epigenetic

data506,526,585,597.

1.2.1.1 Roche / 454

As the first next-generation sequencing technology to be launched commercially in 2005, 454

Life Sciences’ (454; Branford, CT, USA; now Roche, Basel, Switzerland) FLX pyro-sequencer

revolutionised the field339,467. In comparison to capillary sequencing, a simplified sample

preparation protocol utilising bead-based emulsion-PCR for the creation of adapter-flanked

sequencing libraries facilitates a cost-effective, rapid experimental workflow. The beads are

placed onto a micro-fabricated solid support of picoliter-scale wells. Even though impressively

miniaturised, the size of the wells still limits the amount of distinct sequences read out in

parallel.

The solid platform supports a constant flow of sequencing reagents (”flow-cell”), therefore

enabling rapid sequencing reactions. The concept of the flow-cell has been adopted by all

other manufacturers. The actual sequencing in the FLX platform is based on the detection

of pyrophosphate release upon the incorporation of extra nucleotides into a sequence. The

pyrophosphate release triggers an enzymatic cascade ending in luciferase and emitted light

can be detected by the machine. The advantage of this approach over the alternative, the

step-wise incorporation of labelled nucleotides, is that the sequencing reactions appear to be

more stable resulting in the successful establishment of longer read sequences (average read

length with a Titanium-generation instrument is about 400bp).

However, the continuity of the process poses a problem for the sequencing of homopoly-

meric sequences (consecutive stretches of identical bases), since there are no clear boundaries

between cycles and multiple occurrences of the same base can hence only be inferred by signal
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intensity499.

Nevertheless, the 454/Roche instruments have been from the outset arguably the platform

of choice for de novo genome sequencing thanks to comparatively long read sequences.

1.2.1.2 Illumina / Solexa

The Illumina Genome Analyser (San Diego, CA, USA; originally Solexa, Essex, UK) was the

next platform to reach the market in 2006 and has since largely dominated the field128,557.

Here, adapter-ligated nucleotide sequences are amplified using the Illumina ClusterStation to

form patches of identical sequences (called ”colonies” or ”polonies”) on a flow-cell that is

covered with a dense lawn of single-stranded oligonucleotides that correspond to the adapters

ligated to the probe sequences during sample preparation.

On Illumina’s flow cells, amplification and cluster-formation is achieved through repeated

cycles of Bridge-PCR (as opposed to 454’s emulsion PCR). The flow-cell is subsequently in-

serted into the Genome Analyser instrument (now called HiSeq in the latest generation), which

performs the actual sequencing fully automatically, by incorporating one labelled, reversibly

terminable nucleotide complementary to the probe sequences at a time. Each sequence exten-

sion step is followed by high-resolution imaging to read out the latest addition to the sequence

of each cluster. The procedure is repeated to obtain a read sequence of the desired length.

Effectively, the sequence is being read out while a second complementary sequence is being

synthesised (”sequencing-by-synthesis”).

While the sequencing may theoretically be continued for arbitrarily many cycles, experi-

mental evaluation has shown that the quality of the base calls drops with read length and good

results can currently only be obtained for about 100− 150 sequencing cycles, thus producing

reads of 100− 150bp length.

1.2.1.3 ABI SOLiD

As the last of the three major competitors to enter the field, Applied Biosystems (Foster

City, CA, USA) introduced their SOLiD system in 2007499,500, now incorporated in Life

Technologies (Grand Island, NY, USA). Like the 454 platform, SOLiD relies on bead-based

emulsion-PCR to create clonal sequencing features which are subsequently immobilised to a

solid substrate.

Sequencing is performed making use of a DNA ligase (not a polymerase) that ligates

fluorescently labelled octamers to the complementary probe strands. After each ligation cycle,

images from four colour channels are read out creating sequences in so-called ’colour-space’.

The octamers are thereafter cleaved and the procedure is repeated.

The colour-space model in combination with two-base encoding (an error correction scheme)
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yields remarkably low error rates (according to the manufacturer). Like Illumina’s Genome

Analyser, SOLiD creates a high number of comparatively short reads making it particularly

suitable for sequencing of transcript libraries (mRNAs, miRNAs, genomic fragments from

ChIP, etc.).

1.2.1.4 Others

A number of further competitors have entered the market more recently, but have not yet, gen-

erally speaking, accrued any significant share of the market and shall hence be only mentioned

for completeness’ sake in this place.

A second subsidiary of Life Technologies (Grand Island, NY, USA), Ion Torrent, is ap-

proaching the sequencing problem from a slightly different angle than its competitors: Avoid-

ing any need to detect light emission of any sort, Ion Torrent instruments exploit the fact

that the incorporation of a nucleotide by polymerase releases a hydrogen ion (source: http:

//www.iontorrent.com). In combination with an array of DNA-templates that is sensitive

to the release of these ions (measuring changes in the pH of the solution), this phenomenon

can be used to read out rather long DNA sequences (about 200bp) very quickly. Ion Torrent

offers various semiconductor chips achieving increasing levels of sequencing depth.

Dover Systems (Salem, NH, USA) have recently started marketing the Polonator G.007

system, developed in collaboration with the George Church laboratory (Harvard Medical

School) as a low-cost, bench-top instrument advocating open standards and freely available,

open-source software. Currently based on emulsion PCR-based amplification and ligation-

based sequencing, the instrument offers a medium throughput at a very low read length

(2 × 13bp). A higher throughput is anticipated to be achieved with a switch to ”rolony”-

based amplification and longer reads are currently being worked on (source: http://www.

polonator.org).

Promisingly, Helicos Biosciences (Cambridge, MA, USA) offer amplification-free sequenc-

ing of DNA and RNA using their HeliScope platform (source: http://www.helicosbio.com).

Imaging billions of single molecules at a time, this sequencer might present an appealing solu-

tion for single-cell studies or other scenarios which are currently limited by the availability of

sample material. Read lengths are currently still short, but are certainly going to be improved

in future generations of the technology. Another real-time, single-molecule and amplification-

free sequencing instrument has been developed by Pacific Biosciences (Menlo Park, CA, USA).

Unlike with the HeliScope, Pacific Biosciences’ focus is on longer reads with a lower through-

put.
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Reads
Name Technology Length Number Time
Illumina HiSeq 2000 bridge amplification, sequencing

by synthesis, fluorescence
medium,
paired

very high /
8 lanes

long

Roche GS FLX Titanium emulsion PCR, sequencing by
synthesis, luminescence

long low short

ABI SOLiD 3 emulsion PCR, sequencing by lig-
ation, fluorescence

short,
paired

very high /
8 lanes

long

Polonator G.007 emulsion PCR, sequencing by lig-
ation, fluorescence

v. short,
paired

medium /
8 lanes

medium

Helicos HeliScope no amplification, sequencing by
synthesis, fluorescence

short,
paired

high / 25
lanes

medium

Pacific Biosciences no amplification, sequencing by
synthesis, fluorescence

very long very low N/A

Ion Torrent emulsion PCR, sequencing by
synthesis, change in pH

long variable short

Table 1.4: Overview of high-throughput sequencing platforms. Loosely based
on184,358,499. Note that all values change so frequently that I decided to report qualitative
rather than quantitative values. Time refers to the average time for a complete sequencing
experiment, including sample preparation.

1.2.1.5 Comparison

The platforms of all mentioned manufacturers are under constant development and most of

the systems are in their second or third release generation now. With every new version, reads

become longer and more abundant and error rates drop further. Likewise, a gradual drop

in maintenance costs thanks to optimised reagent usage has been announced by most (and

delivered by some) manufacturers. Table 1.4 compares the main platforms mentioned above.

The choice of sequencing platform should be guided by what sort of application (see next

sections) a prospective user has in mind: For instance, DNA sequencing applications with

the goal to assemble entire new genomes benefit from long reads which can be more easily

connected into larger units. Roche’s pyro-sequencers have therefore mostly been the platform

of choice in this area of research. Assays of the active transcriptome for measuring gene ex-

pression changes, on the other hand, are a good example of an application in which sequencing

depth is more important than read length: Even comparatively short reads are sufficient to

identify transcript sequences, but a high coverage is required in order to detect even rarely

transcribed genes and to pin down subtle changes in transcript counts between various condi-

tions. The instruments provided by Illumina and Life Technologies offer the depth required for

this goal. The same reasoning applies to surveys of specific small regions of the genome, such

as TF binding sites or HMs. For the purposes of this thesis, I am interested in those latter

types of applications, which is why I focus mostly on Illumina sequencing in the remainder of

this chapter.

25



Sample
Preparation

Cluster
Formation

Sequencing

- experiment-specific: 
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fragments; ..
- ligation of sequencing 
adapters
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- read out of DNA / cDNA 
sequences

TCT...
Figure 1.5: General HTS laboratory workflow. High-throughput sequencing, in the lab-
oratory, is carried out in three steps: Sample preparation, clonal amplification of sequences and
sequencing.

1.2.2 Protocols and Methodological Approaches

All HTS instruments described in the previous section can, in principle, be used to sequence

DNA of any kind and from any source. I will now review the general workflow of HTS sequenc-

ing exemplified with the Illumina platform and then briefly describe common applications and

methodological approaches which will be of major concern in the remainder of this disserta-

tion. When my statements usually refer to Illumina’s platforms, this is by no means intended

to imply that the methods are limited to use with these instruments, but I do so merely

for the sake of brevity. Equivalent processes exist equally for instruments provided by other

manufacturers.

1.2.2.1 High-Throughput Sequencing by Synthesis Workflow

Before delving deeper into specific applications of HTS, let us first quickly review the general

steps undergone in all HTS experiments.

The first step in every HTS workflow is the preparation of whatever biological material is to

be studied in a way that makes it suitable for further processing in the sequencing instruments

by the addition of sequencing adapters. Commonly, this is still the most labour- and often

time-intensive step in the entire process and the only step that is truly application-specific. I

will discuss different techniques in the following sections.

Sample preparation is followed by cluster (or ”colony”) formation, which, for the Illumina

platforms, happens automatically inside an instrument called the ”cluster station”. Sequences

that have been stuck to the solid surface of a flow cell, which is covered with a ”lawn” of

primers complementary to the adapters attached during sample preparation, are subjected to

repeated cycles of bridge-PCR amplification. As a result, many copies of the same sequence

with be physically co-located on the flow cell making it possible to more reliably read out the

nucleotide sequences later on.
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Once colonies have been formed, the samples are finally ready for the actual HTS. The se-

quencing process inside the Genome Analyser, MiSeq or HiSeq instruments works via ”sequencing-

by-synthesis”, that is, the sequence of one (c)DNA-species is read out as a complementary

strand is synthesised. Previously ligated adapters serve as sequencing primers and in repeated

cycles one reversibly-terminated and fluorescently-labelled nucleotide is incorporated at a time.

After each extension cycle, the latest addition to the sequence is read out with the help of a

laser and high-resolution optics. Afterwards, unincorporated nucleotides and terminators are

washed off and sequencing may continue into another cycle.

To summarise, the three principal steps of any HTS workflow are (1) sample preparation,

(2) cluster / colony formation and (3) sequencing.

1.2.2.2 Expression: RNA-seq, DeepSAGE, miRNA-seq and GRO-seq

Large-scale assays of gene expression have for the past decade been the forte of microarrays –

a position that is now increasingly being rivalled by HTS, which is offering more precise and

unbiased quantification of gene expression levels and additional insights into the nature and

structure of the transcriptome340,499,506,526,585.

Transcriptomic assays using HTS may be broadly divided into four categories differing

drastically in the object and aim of measurement and, as a consequence, in the protocols

employed preparing the biological material for sequencing: RNA-seq, DeepSAGE, miRNA-seq

and GRO-seq.

1.2.2.2.1 RNA-seq RNA-sequencing (RNA-seq) refers to the sequencing of mature RNA

transcripts. In fact, it is usually reverse-transcribed cDNA that goes into the sequencing

process (such is the case for the Illumina platform), although cases of direct sequencing of

mRNA have been reported407,408.

Although alternative, optimised protocols have been developed335,433,434,636, the princi-

pal steps of RNA-seq sample preparation most commonly involve∗: (1) Isolation of mRNA.

(2) Fragmentation of mRNA into random pieces using divalent cations. (3) Synthesizing

double-stranded cDNA. (4) End-repair, adenylation and adapter ligation. (5) Purification

and amplification of cDNA with correctly ligated sequencing adapters.

Thanks to the random fragmentation of transcript sequences, RNA-seq reads (given enough

sequencing depth) can span the entirety of the active transcriptome allowing, in addition to

the measurement of expression levels, the option to reconstruct characteristics of the tran-

scriptome, e.g. in order to refine gene models (alternative start / termination sites, novel

exons, non-protein coding transcription), to examine the interplay between expression and

∗Source: http://grcf.jhmi.edu/hts/protocols/mRNA-Seq_SamplePrep_1004898_D.pdf
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DNA-associating factors, to assess isoform expression or even to assemble de novo entire tran-

scriptomes of organisms for which no genomic annotation exists (reviewed in references340,585).

1.2.2.2.2 DeepSAGE The DeepSAGE strategy is an expansion of a pre-HTS expression

assay called serial analysis of gene expression (SAGE), hence the name. SAGE libraries are

short, fixed-length cDNA sequence tags extracted from a reverse-transcribed RNA sample by

digesting the cDNA with a combination of restriction enzymes (MmeI and either NlaIII or

DpnII ). Essentially the same approach has been carried forward with advancing sequencing

platforms and optimised for HTS and, although slight variations might apply, is now known

by many terms which are largely used synonymously, e.g. DeepSAGE (my name of choice

owing to its similarity to SAGE), massively parallel signature sequencing (MPSS), Tag-seq (for

”sequencing of tags”) or digital tag profiling (as per the title of Illumina’s official protocols).

In short, sample preparation for DeepSAGE involves four fundamental steps†: (1) Isolation

of poly-A mRNA and generation of double-stranded cDNA attached to a magnetic bead. (2)

Addition of the restriction enzyme NlaIII or DpnII cleaves the cDNA at every recognition site

(CATG and ATGC, respectively) leaving only the 3’-most fragment. (3) An adapter containing

a MneI recognition site is attached and this enzyme then cuts specifically 17bp downstream

of the adapter-cDNA link (16bp for DpnII ) creating well-defined sequence ”tags” of a fixed

length. As a result of the last restriction step, the tags are now not attached to the bead any

longer. (4) Finally, a second adapter is ligated at the other end of the tag and the sequences

will be amplified and purified before loading them into the cluster station for colony formation

and, eventually, sequencing.

Sequencing of well-defined tags as compared to random fragments of transcripts (RNA-

seq, see above) brings advantages and disadvantages: On the positive side, the ”search space”

to be covered when sequencing tags is only a minor fraction of the entire transcriptome. It

is for this reason that DeepSAGE has attracted most attention in the early days of HTS,

when the instruments had not yet been advanced enough to routinely produce the depth

and coverage required for unrestricted assays. But even today, if RNA is not available in

abundance, e.g. in single cell experiments, the approach may still well be worthwhile to

pursue. However, tags come at the cost of losing additional information about their genomic

context making them largely useless for transcriptome assembly, the refinement of known

gene models, genomic comparison of the interplay between expression and DNA-associating

factors and the assessment of isoform expression. Moreover, transcript without poly-A tails

or without restriction sites for the enzymes used (NlaIII / DpnII ) cannot be detected using

this approach.

†Source: http://grcf.jhmi.edu/hts/protocols/1004240_GEX_NlaIII_Sample_Prep.pdf
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1.2.2.2.3 shortRNA-seq / miRNA-seq Non-protein coding transcription of short RNAs

is attracting more and more attention. The study of these new species of RNAs on the

genome-wide scale has been made possible only by the refinement of protocols specialised for

the detection of short RNAs (including, but not limited to, miRNA). Most mature miRNAs

are cleaved by Dicer and other enzymes that leave the RNA with a phosphate and a hydroxyl

group at the 5’ and 3’ end, respectively. Illumina’s protocols‡ exploit this structure by using

specific adapter sequences that are ligated to these ends.

Illumina (and others) also encourage the use of multiplexing for shortRNA-sequencing.

”Multiplexing” refers to the addition of sample-specific ”bar-code” (a short nucleotide tag)

that mark all sequences from the same sample, making it possible to load multiple biological

samples onto the same lane of a flow cell without losing the ability to tell where they came

from. The sequencing depth of modern instruments by far exceeds what is required for the

measurement of the rather limited repertoire of short RNAs and read lengths are longer than

most RNAs in question (miRNAs are typically no longer than 19-25bp366), thus multiplexing

allows for a more economical use of the technology.

1.2.2.2.4 GRO-seq Another methodology is focusing on a different aspect of gene expres-

sion: Global run-on sequencing (GRO-seq; sometimes also ”genome-wide run on sequencing”)

aims to measure nascent transcriptional events as they happen, that is, active transcription

before splicing and further processing91. The technique is based on the sequencing of nuclear

run-on assays (NRO) which have been optimised by Core and colleagues for use in genome-

wide studies91. NRO extends RNA that is associated with active polymerase and prohibits its

elongation by removing endogenous nucleotides from isolated nuclei and adding back radionu-

cleotides that enable actively engaged polymerase to resume elongation, while no new tran-

scription is initiated during short run-on times148,439,468. Additionally, new initiation events

are suppressed by addition of the anionic detergent sarkosyl91,468. For GRO-seq, NRO-RNA

is marked with a BrU-tag, which is then used to immunopurify the sample91. Subsequently,

ends are repaired in essentially the same fashion as for shortRNA sequencing, adapters are

ligated to both ends and sequencing is carried out as usual.

In summary, GRO-seq presents a promising and exciting approach to examine active tran-

scription, pausing of elongation and promoter architecture.

1.2.2.3 Regulation and Epigenetics: ChIP-seq

Chromatin immunoprecipitation coupled with HTS (ChIP-seq) has over the recent years estab-

lished itself as the primary method of choice for the genome-wide study of gene regulation and

‡Source: http://genome.med.harvard.edu/documents/illumina/TruSeq_SmallRNA_SamplePrep_Guide_

15004197_A.pdf
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Figure 1.6: ChIP-seq laboratory workflow. Proteins are cross-linked to chromatin, which
is then sheared into fragments. Fragments associated with a protein of interest are precipi-
tated, proteins removed and the DNA is sequenced. Bioinformatics analysis identifies binding
region in the genome. Adapted with permission from http://en.wikipedia.org/wiki/File:

ChIP-sequencing.svg.

many epigenetic factors88,237,263,415,633. Chromatin immunoprecipitation (ChIP) is a tech-

nique whereby the binding sites of DNA-associated proteins, such as TFs, epigenetic regulators

and histones, can be identified. To do so, proteins and associated chromatin are temporar-

ily bonded, the DNA is then sheared to create small to medium-sized fragments (typically

a few hundred base-pairs in length) and those fragments bound by a protein of interest are

selectively immunoprecipitated with an antibody targeted at this protein and then purified

and pulled out (Figure 1.6). One way of preparing chromatin is to reversibly cross-link

sonication-sheared chromatin with formaldehyde or ultraviolet light. After immunoprecipita-

tion, the DNA-protein cross-link can be reversed and proteins removed to leave only the DNA

for subsequent processing. This technique is mainly applied for DNA-binding protein such as

TFs. Alternatively, proteins that naturally link to chromatin, such as histones that wrap DNA

in nucleosomes, can be investigated using native chromatin sheared by micrococcal nuclease

(MNase) digestion.

Selected sequences have previously been hybridised to microarrays containing probes cor-

responding to regions of interest (ChIP-on-chip), but nowadays most researchers choose to

utilise HTS instead in order to read out the sequences of all enriched DNA fragments. This

approach offers major advantages in terms of resolution and does not require prior knowl-

edge of putative target regions for DNA-protein association affording an unbiased screen of all

genome-wide binding events. After ChIP, the HTS workflow is fundamentally very similar to

RNA-sequencing approaches described before§: DNA ends are repaired using a combination of

polymerases and the 3’ end is adenylated to prepare the DNA for ligation. Adapter sequences

are then added to both ends of the template. After selecting suitably sized fragments and

removing excess adapters, adapter-coupled sequences are enriched by PCR and finally put

§Source: http://grcf.jhmi.edu/hts/protocols/11257047_ChIP_Sample_Prep.pdf
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forward for cluster formation and sequencing as described before.

After sequencing, subsequent bioinformatics analysis can detect regions of DNA-protein as-

sociation by mapping the sequence reads back to the genome and identifying enriched binding

events. Unfortunately, ChIP-seq data is obscured by variations in fragment size, the inconsis-

tent location of binding sites within these fragments (making it more difficult to pinpoint the

exact location of binding) and imperfect precipitation leading to contamination of the signal

with DNA or proteins incorrectly pulled out by antibodies. Downstream analysis therefore

depends heavily on statistical methods to distinguish real binding from background, but nev-

ertheless one must generally expect a high level of false positives (incorrectly identified binding

events). One recent development promises to significantly reduce impurities and increase reso-

lution: Research led by Rhee and Pugh at the Pennsylvania State University applied a lambda

exonuclease to immunoprecipitated chromatin449. The lambda exonuclease digests unbound

DNA starting from the 5’-to-3’ direction, which gets rid of contaminating DNA and ensures

that each sequenced read ends at the position of actual DNA-protein binding. I would expect

that future research will increasingly make use of this technique to improve the quality of TF

binding assays and the like.

1.2.2.4 Others

RNA-seq and ChIP-seq are the two methodologies of most relevance to the work described

in this thesis, but many other application areas for HTS exist and have attracted an equal

amount of attention from the community. Traditionally, sequencing has been applied to deter-

mine the sequence of genomic DNA (Human Genome Project: http://www.ornl.gov/sci/

techresources/Human_Genome/home.shtml). HTS has taken this endeavour to the next level,

making it possible for smaller institutions or even individual research groups to compile entire

new genome assemblies of up to mammalian scale158,482. Similarly, genomic re-sequencing ef-

forts are now routinely employed to improve the quality of existing assemblies and to discover

genomic variations, often linking them to phenotypic effects and disease383,482.

Other interesting applications include the immunoprecipitation of protein-bound RNA

(RIP-seq / CLIP-seq / HITS-CLIP)317,616,634, the identification of miRNA targets (Argonaute

HITS-CLIP)78, sequencing of ribosome-protected mRNA (ribosome profiling)218,643 and the

profiling of DNA methylation (Methyl-seq / Bisulfite-seq)324,360.

1.2.3 Applications to Stem Cell Biology

The majority of early work in next-generation sequencing has focused on the evaluation of the

technology as a tool for gene expression analysis, the discovery of TF binding sites and the

analysis of chromatin signatures340,367,506,526,585, but since then the number of publications
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Figure 1.7: Single-cell expression of pluripotency markers. Expression levels of the stem
cell-related TFs Pou5f1, Nanog and Sox2 (from left to right) in single embryonic fibroblasts
(red) and embryonic stem cells (blue) from a reanalysis of reference223. The variability is partly
explained by technical differences, although for this plot only fairly high coverage libraries have
been chosen (number of aligned reads > 250, 000). Expression values are given as reads per
kilobase-million (RPKM367).

making use of HTS technology has grown exponentially up to a point where it would make

little sense to enumerate all of them. Instead, I will focus on the most influential literature

making use of the technology to its best potential.

1.2.3.1 Gene Expression

Early adopters of HTS in the area of gene expression profiling focused mostly on establishing

the technology as an alternative to microarrays. One study465 measured gene expression levels

in ESCs using DeepSAGE and Illumina microarrays and found a satisfactory degree of con-

cordance between the measurements, but reported a higher dynamic range for the HTS-based

assay. This observation was also confirmed by another study that compared expression levels

in ESCs and embryoid bodies (EBs)84, where the RNA-seq was able to detect the expression of

almost 4, 000 genes that had previously been considered not expressed. Moreover, the authors

stressed that they found evidence for a considerable degree of transcription (31 − 37% of all

reads) outside annotated exons, that is, either from intronic regions or from intergenic regions

of the genome. Most of this unexplained signal might not have been picked up before, because

it was at a very low level. With this work, the researchers demonstrated that HTS is able to

deliver a profile of mammalian transcription with an until then unseen level of coverage and

accuracy.

More recently, several groups have begun to exploit the sensitivity of HTS for studying

gene expression in single cells. In a number of pioneering studies, Tang and colleagues

have first developed optimised methodologies and demonstrated their feasibility for the study

of mRNA expression in single mouse blastomeres and oocytes294,534–536 and then used this

technique to follow up on transcriptional changes observed during the transition from blas-

tocysts from the inner cell mass (ICM) to pluripotent ESCs in vitro532. They discovered an

increasing expression of repressive epigenetic regulators coupled with a drop in the expression

of activating regulators in the course of the transition. They also identified several differen-

tially expressed miRNAs that were predicted to target differentiation- and pluripotency-related
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genes, consistent with the change in cell state. Taking single-cell expression analysis to the

next level, researchers are now trying to exploit the power of multiplex sequencing (Sec-

tion 1.2.2.2). Initially, RNA from 48 single ESCs and 44 single embryonic fibroblasts (EFs)

was subjected to this approach223. My own reassessment of this data showed that signal in-

tensities were not consistently reliable across all sequenced cells: Even markers of pluripotent

stem cells failed to be detected at all in some ESC samples (Figure 1.7). I believe this is

mostly due to massively variable depths of sequencing of individual libraries and is likely to

be resolved with use of the latest equipment and better balancing of the independent, bar-

coded samples (that is, by achieving a uniform split of cluster formation and sequencing depth

across all libraries). As a result it is difficult to say which differences are due to actual bio-

logical variation within cell populations. Nevertheless, the study demonstrated impressively

the feasibility in principle and laid the path for exciting future studies that will help to better

understand transcriptional differences between individual cells.

Yet another use of the technology is the assembly of transcriptomes. One group demon-

strated that it was not only possible to accurately reconstruct established transcriptomes from

RNA-seq data179, but that the transcriptomes of ESCs, lung fibroblasts and neural precursors

were remarkably variant in the use of transcription start and termination sites and of alter-

natively spliced exons. Moreover, the authors identified a large number of cell type-specific

large intergenic noncoding RNAs (lincRNA). Several lincRNAs were later on shown to have a

major effect on the expression of pluripotency and differentiation genes178, which – together

with other studies59,262,427,428,582 – has brought a new class of key regulatory elements to the

attention of the research community. Similar observations were reported in a study follow-

ing gene expression changes during neural differentiation of ESCs602. The researchers noted

an astounding complexity in gene expression going beyond simple differential expression of

genes: While ESCs were reported to express a wide variety of different isoforms of the same

gene, it had been observed that many genes expressed a more restricted range of isoforms in

increasingly committed stages of the differentiation process (”isoform specialisation”).

1.2.3.2 Transcription Factors

In the past years, ChIP-seq experiments targeting transcription factors have expanded

our knowledge about the transcriptional circuitry of ESCs49,75,268,327,342,497. In two of the

most well-known studies to date, Chen and colleagues75 and Marson and colleagues342, in-

vestigated the binding profiles of the TFs Pou5f1, Sox2 and Nanog, as well as several other

important genes in ESCs. The ChIP analyses not only revealed potential downstream targets

of important stem cell-related TFs, but additionally showed that some of them co-occupy
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binding sites forming genomic clusters that might act as enhancers¶. Many clusters were also

found to be associated with H3K4me3, generally believed to be a mark of active elements

of the genome (Section 1.1.5). Interestingly, clusters formed by Pou5f1, Sox2 and Nanog

were also noted to associate with the transcriptional co-activator Ep300, further supporting

their relevance75. Apart from the ”core pluripotency cluster”, formed by Pou5f1, Sox2 and

Nanog as well as Smad1 and Stat3, a second set of TFs were found to frequently cluster to-

gether: Myc, Mycn, Zfx and E2f1 75. It was also demonstrated that many miRNAs in ESCs

seem to be controlled by ES-specific TFs342. miRNA promoters that were co-occupied by

TFs and by polycomb group proteins were not active and could thus be believed to be in a

poised state ”ready” for expression35,50. Indeed, they were shown to be selectively activated

in different cell types (tested with embryonic fibroblasts and neural precursors). On these

grounds, miRNAs are believed to support stem cell pluripotency by fine-tuning the expression

of differentiation-related regulators with the effect of suppressing differentiation signals while

maintaining genes in a poised state. Many subsequent studies integrated further elements

into the TF network of ESCs. For instance, two independent studies addressed the binding of

the factors Nr5a2 198 and Prdm14 332, both of which have recently emerged as genes blocking

differentiation (Section 1.1.4). The findings from all these studies have helped to augment

our insight into the complex interactions of the heterogeneous factors controlling many aspects

of the biological state of cells.

Of course, there are also numerous surveys of DNA-protein interaction profiles in hu-

man cells. For instance, one group of researchers284 studied the TFs POU5F1 and NANOG

in human ESCs and compared their findings to the binding of corresponding proteins in

mouse75. Surprisingly, they discovered that only a small fraction of POU5F1 and NANOG

binding sites were conserved across both species (about 4% and 5% of high-confidence binding

sites for POU5F1 and NANOG, respectively). In contrast, 50% of CTCF binding sites were

conserved between both species. Other noteworthy experiments in human include the tracing

the differentiation of human ESCs into definitive endoderm in an in vitro model539 and the

investigations into the TF network behind murine haematopoietic development595,596. Teo

and colleagues identified EOMES as a candidate TF driving differentiation-specific expression

events539. Overexpression of EOMES activates target genes that initiate spontaneous differ-

entiation in self-renewal conditions. Many functional binding sites were further found to be

shared with SMAD2/3 (effectors of Activin/Nodal). Interestingly, ChIP-seq analysis by an-

other group in mouse ESCs revealed dose-dependent binding (and effects) of Smad2 directing

cells to different fates300, suggesting that Eomes-guided differentiation might also be present

¶All ChIP-seq experiments have been performed on populations of cells and from the data presented in the
paper it is not possible to conclude whether the apparent co-occupancy of TFs does ever occur at the enhancer
elements of the very same cell. This caveat applies to all ChIP-seq datasets presented throughout this thesis.
One way of resolving the question whether two proteins do indeed physically co-occupy binding sites is the use
of sequenctial ChIP71,141,355,554.
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in mouse. The studies by Wilson and colleagues595,596, on the other hand, looked at TFs

involved in haematopoietic specification, finding groups of cooperatively acting TFs similar to

what had been found in mESCs75. It appears that the combinatorial control of expression by

groups of TFs is a recurrent and conserved pattern of transcriptional regulation across species

and cell types.

1.2.3.3 Polymerase Activity

RNA polymerase II (Pol II) is required for the expression of mRNA precursors of all protein-

coding genes and many short RNAs. It is generally believed that Pol II is recruited to the

promoters of genes by an integral network of TFs203,431.

Utilising a protocol developed earlier91, Min and co-workers quantified RNA polymerase

that was actively engaged in transcription in ESCs and embyronic fibroblasts (EFs)362.

The technique is now referred to as global run-on sequencing (GRO-seq) and may be used

to investigate nascent transcription. Observed differences in GRO-seq density across gene

bodies, in general, agree with microarray and RNA-seq measurements, but the authors also

noticed a large number of genes with significant accumulations of polymerase in their promoter

regions (with a peak approximately 30bp downstream of the TSS), both in ESCs and in EFs.

They reasoned that this was indicative of paused polymerase and that entry into productive

elongation was a rate-limiting step for the transcription of many genes. They further report

that genes with an activating H3K4me3 mark exhibit higher and those with a repressing

H3K27me3 mark lower levels of nascent transcription than the average. Strikingly, genes

that have both marks (”bivalent genes”) tend to have a high 5’-proximal density of aligned

GRO-seq reads representing paused polymerase supporting the notion of transcriptionally

poised genes35,282,361. Going even further, it had been noted that this holds in particular for

genes targeted by polycomb recruiting complex 2 (PRC2), but not PRC1. Conversely, genes

bound by both showed neither active nor paused polymerase. These findings were thought

to support the argument that PRC2 blocks transcription post-initiation, while PRC1 blocks

it pre-initiation. Tackling polymerase pausing from a different angle, Rahl et al. generated

ChIP-seq data for Pol II and related proteins437. Pol II occupancy at the TSS correlates

highly with NelfA and Supt5h (”pause factors”). Ctr9, a subunit of PAF1, which is involved

in elongation, on the other hand, was found inside gene bodies. It was shown that the TF

Myc might be actively releasing Pol II from its pause. Loss of Myc arrests many genes in

the paused state, whereas loss of Pou5f1, for example, disrupts transcription of target genes

at an earlier stage such that in many cases even the promoter-proximal accumulation of Pol

II disappears. In summary, both studies have greatly helped to advance our understanding

of the transcriptional machinery and, in particular, of the role of the TF Myc in allowing

transcription elongation to occur.
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Figure 1.8: DNA loop formation by mediator / cohesin. Distal enhancer elements can
be located tens or even hundreds of kilobases from a gene’s promoter. Binding of mediator to
the enhancers initiates loop formation further supported and stabilised by cohesin and Nipbl,
bringing the enhancer close to the promoter in order to activate gene expression245. Figure
inspired by reference397.

While much research has gone into the workings of RNA polymerases I and II, our under-

standing of RNA polymerase III (Pol III) is less well developed. Pol III is responsible

for the transcription of non-protein coding DNA into ncRNA, e.g. tRNA, 5S rRNA24,108 and

miRNAs46,409. In doing so, Pol III is necessary for cell viability and forms an essential part

of the larger transcriptional machinery providing ”ingredients” required, in the end, also for

protein-coding gene expression. Encouraged by previous findings for Pol I and II25,361,576, a

team of researchers led by R.J. White and K. Zhao investigated the interplay of chromatin

structure and Pol III using a combination of RNA-seq and ChIP-seq26 in matched cell types

(CD4+ T and HeLa cells). In brief, H3K4 methylation and H3K4, K9, K27 and K36 acetyla-

tion were all linked to active Poll III, while H3K27 and K9 methylation were associated with

inactive Pol III (these mechanisms are the same for Pol II). Unlike Pol II, Pol III sites, however,

lack H3K79me2 and H3K36me3. Even more surprisingly, Pol II was present at many Pol III

sites, with one possible explanation being that some TFs might recruit both polymerases (e.g.

MYC ). The study provides much additional detail on Pol III and Pol III activity and their

epigenetic landscape and will certainly serve as an important resource for future research.

In other research into the workings of the transcriptional machinery, one group was inter-

ested in the role of mediator and cohesin245. It has been suggested that enhancers driving

active expression of genes are physically brought closer to the target genes promoter by the

formation of DNA loops235,359. Cohesin is a candidate that can form such loops and me-

diator, which is a transcriptional co-activator interacting with the transcriptional machinery

and can be found at enhancer sites, interacts with cohesin giving one potential explanation

for this observation and may therefore link distal TF binding functionally to the activation of

transcription89,277,334,461 (Figure 1.8). In-depth ChIP-seq analysis revealed that mediator

(Med1 and Med12 ) is located at promoters and enhancers regions of > 60% of all actively

transcribed genes in ESCs. Cohesin complex proteins (Smc1a and Smc3 ) co-occupy most of

these regions and cohesin-mediator co-bound region (CMCRs) do also associate with Pol II,

while cohesin-CTCF co-bound regions (CCCRs) did not show an enrichment for Pol II (CTCF

is another factor involved in DNA-loop formation). In further experiments, the researchers

then went on to demonstrate that the three proteins physically interact and that DNA-looping
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does indeed occur between enhancers and active genes in ESCs (e.g. Pou5f1 and Lefty1 ), but

not for inactive genes (tested for the same genes in EFs). The model of transcriptional reg-

ulation put forward by this study is likely to inspire and profoundly influence much future

research.

1.2.3.4 Epigenetics

One of the areas that probably received most attention and has greatly benefited from HTS

technology is the genomic survey of epigenetic regulatory mechanisms.

In one early study, HTS was utilised to analyse histone modifications (HMs; here,

H3K4me3 and H3K27me3) and DNA methylation in fully reprogrammed iPS cells360. The

authors were able to show an impressive degree of similarity between the chromatin states of

iPS and ES cells with a number of differentiation-related genes being bivalently enriched for

both, H3K4me3 and H3K27me3, whereas they were monovalent in somatic cells or lose their

enrichment for both chromatin marks completely. The same genes also show DNA hyperme-

thylation in differentiated cells and the loss of this methylation was found to be a crucial step

in the reprogramming process. The authors hypothesised that de-methylation might be inef-

ficient and managed to show that addition of DNMT encourages reprogramming by helping

cells to escape from a state in which they were still trapped on a partially differentiated level

due to methylation of pluripotency-related genes. Further research into HMs, investigated

how HMs contribute to ESCs, trophoblast stem cells (TSCs) and extraembryonic endoderm

stem cells (XENs)472. They found that trimethylation of H3K4 (H3K4me3) exhibits a largely

similar distribution across all cell types with a similar number of enriched regions generally

located near the TSS of known genes. The repressive trimethylation of H3K27, on the other

hand, displayed distinct patterns depending on the lineage: TSCs and XENs had about 7-

to 5-fold lower number of sites enriched for H3K27me3 than ESCs and of those substantially

fewer were located near the TSS of genes. Concordantly, bivalent domains in TSCs and XENs

were also rare; evidently, as the authors point out, alternative epigenetic mechanisms must

regulate expression in extraembryonic lineages. The authors identify H3K9me3 as one candi-

date. In summary, the study presents evidence for the importance of epigenetic modifications

for early development and suggests that some of these modifications might indeed be crucial

for the establishment of different lineages.

Setting out to build up a map of DNA methylation states in human ESCs (H1 cell

line) and fetal lung fibroblasts (IMR90), one group of researchers also performed MethylC-

seq experiments324. Briefly, the technique uses sodium bisulfite to convert unmethylated

cytosines to uracil; uracil does not usually occur in DNA, so this information can be used

to distinguish methylated and unmethylated cytosines. Comparison to TF binding data,

revealed a marked decrease in methylation at the sites bound by one or more TF. Overall,
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the fibroblast genome was more strongly methylated at P300 and SOX2 sites (in comparison

to H1 ESCs), but showed no global difference at binding sites of the other factors. Markedly,

non-CG methylation was limited almost entirely to ESCs. The authors further discovered

that most non-CG methylation was more prevalent in gene bodies rather than their promoter

regions and that higher methylation favoured stronger transcriptional activity. Finally, non-

CG methylation, which appeared to have been lost in fibroblasts, was efficiently restored

in iPSCs. This study is one of the first examples of a genome-wide, base-pair resolution

examination of a mammalian methylome – with a sequence coverage, provided by the HTS

technology, allowing to measure in an unbiased manner 94% of all cytosines in the human

genome.

Numerous studies made use of ChIP-seq technology to investigate the proteins that be-

stow these epigenetic profiles on ESCs: Ho et al. investigated the chromatin remodelling

complex esBAF by targeting its core component Smarca4 (also known as Brg) and found func-

tional interactions with Pou5f1 and Sox2 200. Another chromatin remodelling factor, Chd7,

was found to co-localise with the same factor at enhancer elements485. Walker et al. identi-

fied and studied the polycomb repressive complex 2 (PRC2 )-member polycomb-like 2 (PCL2 ;

official name: Mtf2 ) and link its loss to differences in histone methylation and impaired dif-

ferentiation (coupled with stronger self-renewal) in mouse ESCs574. Two groups found that

Jarid2 associates with PRC2 and mediates the repression of its target genes, e.g. impairing

the down-regulation of Pou5f1 and therefore ESC differentiation308,417. Lastly, research into

the epigenetics of DNA methylation by Wu and colleagues600, looked closely at ten-eleven

translocation protein 1 (Tet1 ), which converts 5-methylcytosine to 5-hydroxymethylcytosine

and shed light on its role in DNA methylation, promoting pluripotency TFs and its involve-

ment in the repression of polycomb targets.

1.2.4 High-Throughput Sequencing Paves the Way for Functional

Genomics Research

In the previous section, a short overview of just a small selection of recent research has been

presented. None of this work would have been possible without the use of HTS technology.

The sheer pace with which the biological research community has embraced this new method

is truly amazing and I have always been excited to be a part of this movement. In the next

chapter, I will take the reader back in time to when I started working with HTS data with the

aim to explore its potential for stem cell biology. The discussion about the advantages (and

challenges) connected with this technology shall therefore be postponed until after this next

chapter.
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Chapter 2

Exploring the Potential of

High-Throughput Sequencing

In late 2008, at the outset of the work described in this dissertation, high-throughput sequenc-

ing technologies (Section 1.2) were still in their infancy. Several suppliers had now started

to actively market their individual platforms to the mass-market and initial reports from the

literature reported impressive and promising results in terms of accuracy, coverage, flexibility

and cost-efficiency526,585,597. I sought to assess the potential of this emerging technology for

the study of gene expression and regulation in stem cell research and therefore carried out a

series of exploratory studies in collaboration with various other research labs, which shall be

portrayed in this chapter.

2.1 Global Expression Analysis of Nanog-Deficient Em-

bryonic Stem Cells

In an initial effort, we conducted a pilot study in collaboration with Prof. Ian Chambers

(Institute for Stem Cell Research / Centre for Regenerative Medicine, University of Edin-

burgh). Prof. Chambers’ group studies ESCs, the molecular mechanisms of pluripotency and,

in particular, the role of the transcription factor Nanog, a well-established member of the

core transcriptional network of ESCs67,68,70,411 (Section 1.1.4). In their pursuit of a bet-

ter understanding of the functional implications of Nanog activity, Chambers and colleagues

have established numerous cell lines with experimentally modified levels of Nanog expression

(stable and inducible), constituting a powerful system for the study of downstream targets of

this transcription factor.

Gene expression in a selection of these cell lines was profiled using HTS. In this section,
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I will first outline our motivation for doing so (Section 2.1.1), then explain in detail the

experimental design and methodology (Section 2.1.2) and lastly discuss some of my findings

and highlight conclusions drawn from this work (Section 2.1.3).

2.1.1 Motivation and Goals

As previously mentioned in the introduction to this chapter (Chapter 2), when I began

working with HTS data, the technology was still poorly understood and initial reports, al-

beit promising, fell short of providing a convincing account of its value for actual biological

research. Taking advantage of the fact that the University of Edinburgh’s sequencing facility,

the GenePool, had recently acquired a new Illumina Genome Analyser instrument, I sought

to collaborate with a local research group to set up a pilot study.

I was fortunate enough to be situated in the same department with Prof. Ian Chambers,

who shared my sceptical enthusiasm with respect to the emergent technology. Having pre-

viously attempted to quantify Nanog-dependent gene expression globally using a microarray

assay from two of their cell lines, the Chambers lab had now undertaken to repeat this screen

using the new technology. Several other research groups had also earlier sought to identify

transcriptional effects on Nanog target genes using knock-down assays. Taken together, the

existing data provided a good starting point for validation. Additionally, I was interested to

see whether one could identify any further candidates.

2.1.2 Methodology

I shall now describe the experimental and analytical methodology employed in the execution

of this pilot study.

2.1.2.1 Experimental Design

For the work in this pilot study, two cell lines were chosen, RCN(t) (short: NT) and RCNβH(t)

(short: BT12)68, representative of Nanog+/− and Nanog−/− mutant ESCs, respectively.

These were the same cell lines for which also Affymetrix microarray was available (I. Chambers,

unpublished data) thus making an ideal case for a validation study.

For both cell lines, two cultures were grown and total RNA was harvested independently,

i.e. experiments were performed with two biological replicates each. Replication would make

it possible to assess the variation in observed gene expression intensities, providing a first

estimate of the reliability and repeatability of measurements and enabling the use of statistical

tests to calculate metrics of significance for the differential expression of genes between the

two cell lines.
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Dataset Cell Line Genotype Total Reads

NT-S RCN(t) Nanog+/− 3, 265, 654× 50bp = 163.3mb

NT-L RCN(t) Nanog+/− 7, 801, 625× 50bp = 390.1mb

BT12-S RCNβH(t) Nanog−/− 3, 724, 383× 50bp = 186.2mb

BT12-L RCNβH(t) Nanog−/− 6, 806, 832× 50bp = 340.3mb

Table 2.1: Cell-lines / datasets used in the pilot study. Overview of all cell lines datasets
used in the pilot study.

The total RNA samples were submitted to the GenePool core facilities at the University of

Edinburgh, who performed sample preparation and sequencing on an Illumina/Solexa Genome

Analyser platform (first generation) according to the manufacturer’s digital tag profiling pro-

tocol (”DeepSAGE”, Section 1.2.2.2).

2.1.2.2 Development of an Analysis Pipeline

Much of my initial work focused on setting up an appropriate analysis environment by finding

available tools, comparing and evaluating them and on filling in gaps by writing custom pieces

of computer code. Inspired by some early publications367,465,526, I identified as the key steps

in the analysis process the assessment of the raw data quality, the alignment of short reads to

a reference genome assembly and the quantification of gene expression and the comparison of

expression patterns between different sample groups (Figure 2.1).

The data at hand was produced by following Illumina’s digital gene expression protocol

(Section 1.2.2.2), often also referred to as massively parallel signature profiling (MPSS), Tag-

seq or DeepSAGE. As described earlier, this protocol targets well-defined short subsequences of

transcripts. Although the sequenced libraries reported read sequences of a total length of 50bp,

actually only the first 17bp contained biologically meaningful information. On the other hand,

it was known a priori that all tags neighboured a CATG sequence, that is, a NlaIII recognition

site, so it was sensible to use this information to complete the tag sequences. Thus, the first

processing step was the truncation of read sequences to a fixed length of 17bp followed by an

extension using the nucleotide letters CATG, resulting in the final 21bp tag sequences subjected

to further processing.

Next, the quality scores (discussed later in Section 3.3.3.1) of the tags were examined

(Figure 2.3). I summed up all quality values for each 17bp-tag sequence individually and

discarded those reads that had a cumulative score of less than a certain threshold T . I decided

to use the cumulative quality score rather than the minimum quality score across the read

as a quality control criterion specifically so to accept even reads in which a single base call

might be incorrect. In the alignment strategy employed in the following step such errors are

accounted for by accepting a limited number of mismatches between the bases in the read

sequences and those in the reference. The quality score values corresponding to mismatched

41



Raw short read data:
50bp, millions

High-quality, trimmed & distinct tags:
21bp, hundred thousands

Genomic loci with associated
transcript counts

Mouse genes and unkown loci
with associated alignments

Mouse genes and x-clusters

Absolute transcript abundance
for all detected features

Comprehensive set of 31,488 features:
Genes, miRNAs, etc.

Ensembl RefSeq
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Alignment to mouse 
genome and CDS
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Cluster neighbouring
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Count transcripts
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Figure 2.1: Alignment and mapping of DeepSAGE data. A schematic overview of the
analysis of the Chambers lab DeepSAGE data.
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Figure 2.2: Quality of Mismatched Bases. Average quality scores across all bases of all
aligned reads (black bars) and across only those bases that aligned with mismatches (yellow
bars). This plot was created at a later point in time and uses, unlike the other data presented
in this chapter, not a quality score scale ranging from 0-80, but instead one ranging from 0-40.

bases are markedly lower than the average across all aligned bases (Figure 2.2), suggesting

that the primary reason for mismatches are indeed errors in the base calls during the sequencing

process. Using the cumulative quality score threshold, either multiple bases need to be of a

very low quality or the overall quality of all bases in a read would have to be rather bad.

In both cases, alignments coming from sub-threshold reads could not be trusted and might

obscure the signal measured.

The threshold was set to T = 925 (using the Illumina scale of quality scores, which ranges

from about 0 to 80 per base) in order to discard an average of some 3% of all reads, which

amounts to approximately the percentage of reads which would be expected to have an unreli-

able sequence499. All remaining reads were clustered into bins according to their sequence. A

record of the total number of reads per cluster was kept and I then passed on only the distinct
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sequence tags to the next processing step. Notably, the overall amount of data to be handled

could be reduced to about a tenth on average by clustering identical tags.

The sequences of the distinct tag clusters were then aligned in several steps to the mouse

reference genome using the Bowtie alignment software292:

1. Find all perfect matches (that is, alignments without mismatches) in the mouse genome

(NCBI build 37).

2. Find perfect matches of all unaligned tags to known coding sequences from Ensembl136.

3. Find perfect matches of all unaligned tags to known RefSeq mRNAs430.

4. Repeat steps 1-3 allowing for one mismatch in the tag sequence.

5. Repeat step 1 with two mismatches in the tag sequence.

At each step I discarded all tags that were mapped to more than ten different genomic

loci as highly repetitive and unlikely to yield any usable biological signal. Only a small per-

centage of tags remained completely unaligned. Those reads are generally considered to be

due to erroneous sequencing, incomplete filtering or contaminations of the samples, uncon-

ventional splicing or other post-transcriptional modifications that result in transcripts not

directly matchable to the genome. Steps 2 and 3, in which sequences were aligned to known

transcripts rather than the genome, can be considered a measure to account for those reads

that span exon-exon junctions which could not usually be aligned to the genome due to the

presence of intronic sequence not present in the tag itself. I will discuss the alignment problem

in a later chapter in more detail (Section 3.3.3.2).

Next, it was necessary to associate the genomic loci discovered by the sequence alignment

program to known genes and other transcriptional units in the genome (”features”). I have

built a comprehensive set of all known features by merging annotations from Ensembl (Release

54, 5 May 2009136) and RefSeq430 (as obtained from the University of California, Santa Cruz,

Genome Browser on 24 March 2009). All entries with overlapping exons were merged into

one single entry yielding a total of 31, 488 features, most of which correspond to canonical,

protein-coding genes (others include pseudogenes, mitochondrial, ribosomal and various kinds

of short transcripts like miRNAs or snRNAs). I then tried to associate each genomic locus to

the closest neighbouring feature by assigning them to one of seven classes:

1. Upstream: Up to 20kb upstream of the transcription start site (TSS) of the closest

feature.

2. Exonic: Within an exon of a feature.

3. Intronic: Within a feature, but not in an exon.
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4. Spliced: Spanning the junction between two (or more) exons.

5. Downstream: Up to 20kb downstream of the transcription termination site (TTS) of the

closest feature.

6. Undecided: Equidistant to two features.

7. Unknown: No known feature within a 20kb window around the locus.

I also took the strand of each locus into consideration and, if the locus was on the opposite

strand of the associated feature, assigned it to the aforementioned class anyway, but marked

it as ”putative anti-sense”.

Many short read sequences seem to stem from regions of the genome nowhere near any

known feature (the ”Unknown” class from above). It has been reported that up to 99% of

mammalian genomes show evidence for transcription at some level39,63,601. In the past, most

low-level transcriptional event have been considered transcriptional noise, but with the discov-

ery of more and more biologically functional short transcripts, it is now becoming increasingly

clear that mammalian transcriptomes are vastly more complex than anticipated177,192,356,601.

I have therefore attempted to identify regions of the genome which exhibit coherent tran-

scription likely to correspond to biologically meaningful transcripts. To find transcriptionally

active units amongst the thousands of ”Unknown” loci, all loci within a maximum distance

of 1kb to each other were merged together. I will refer to the resulting pseudo-features as ”x-

clusters”. In the next step, the x-clusters will be considered as one feature when calculating

total transcript counts.

Finally, all tags aligning to the same feature were summed up (counting only tags in

classes 2-4) to obtain a total transcript count and therefore an absolute intensity value for the

expression level of each feature. At this point in time, most published studies relied solely

on those transcripts that could be aligned uniquely to one location in the genome for this

purpose. It is, however, desirable to also take non-uniquely mapped reads into account and

since then many better approaches have emerged (see Section 3.3.3.3). I have therefore

devised a formula that assigns reads to the most likely region of origin by assigning a part of

the total read count proportionally to other reads mapping in the proximity of each possible

mapping location. For this purpose, I first counted all mapped reads, spreading non-uniquely

mapped reads equally about all possible locations. The read counts were then adjusted by

assigning the counts of mapped reads proportional to each individual feature’s contribution

to the total sum of all possible feature mappings. This amounts to the following formulas:

Cdistr(f) =
∑

t∈tags(f)

w(t)

|feats(t)|
, (2.1)
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is the auxiliary feature count of uniformly distributed reads, where tags(f) is the set of all

tags t mapping to feature f , w(t) is the weight of tag t (the number of reads representing the

same tag sequence) and feats(t) is the set of all features that the tag t might map to∗. The

final maximum likelihood feature count is:

Cml distr(f) = Cdistr(f)
∑

t∈tags(f)

w(t)∑
f̂∈feats(t) Cdistr(f̂)

. (2.2)

A similar approach to the utilisation of non-uniquely mapped reads has previously been

employed in the ERANGE software package367, however, the toolkit is not directly applicable

to the digital transcriptomics data at hand, since – in addition to the proportional read-

assignment of ’multi-mappers’ – it furthermore normalises transcript counts proportional to

the total length of the features. This normalisation step is sensible for randomly primed RNA-

seq experiments, but is less appropriate for tag-based ones, where the length of the features

does not necessarily correspond to the likelihood of discovering a suitable cleavage site in

the feature’s sequence (remember that ,in theory, sequenced tags should stem from the 3’-

most NlaIII cleavage site of the transcript and hence be independent of the transcript length;

Section 1.2.2.2). For comparison across different experiments, total transcripts counts were

additionally transformed to reads per million (RPM; see Section 3.3.3.3).

2.1.2.3 Meta-Analytic Integration of External Data

In order to further leverage the information content of the experiment and to enable more

advanced conclusions, I augmented our own data with material from other published studies.

Where possible, I tried to map the results of these studies to the features identified in my

analysis using the identifiers available. It is important to realise that such attempts are

inherently flawed, because there is usually not a one-to-one mapping between different gene

reference sets (the mapping function is not ”bijective”). Therefore it is impossible to rule out

the loss of certain information on the way.

External expression data: Loh et al.327 and Ivanova et al.227 had previously aimed to

shed light on the downstream targets of Nanog by knocking down the expression of the gene by

RNA interference (RNAi) using short hairpin RNA (shRNA). Sharov et al.497 re-analysed and

combined both datasets to identify a more reliable set of genes affected by the TF. I decided to

use this improved dataset together with our own data to obtain an even more comprehensive

set of Nanog targets. It should, however, be noted that a certain degree of discrepancy is to be

expected. RNAi represents merely a knock-down of the target gene rather than a knock-out as

given by the genetic deletion of the locus in BT12, which will aggravate differences in the cells

∗Hence, given ρ(t, f) = 1 if and only if a mapping from tag t to feature f exists, then: tags(f) = {t ∈
T |ρ(t, f) = 1} and feats(t) = {f ∈ F |ρ(t, f) = 1}.
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Category Distance #TFBS #Features

Distal 30kb US – 5kb US 1,326 1,052
Proximal 5kb US – 1kb US 399 363
Promoter 1kb US – 1kb DS 260 246
Intragenic 1.0kb DS – end of transcribed region 2,828 1,949
Unassigned > 30kb US and outside transcribed regions 2,959 0
Total any 7,772 3,229

Table 2.2: High-confidence binding sites of Nanog . Binding sites independently discovered
in at least two of four ChIP experiments75,327,342,497. US = upstream, DS = downstream.

due to different biological background. Consequently, the effects might be less pronounced or

even contradictory. Furthermore, off-target effects (i.e. effects on the transcription of genes

other than the targeted Nanog) cannot be completely excluded although the authors made

every effort to ensure and demonstrate the specificity of their constructs. Another interesting

experiment was carried out by Singh et al.507. In this study, ESCs were sorted according

to their Nanog expression level into two classes (Nanoghigh and Nanoglow) and the two sub-

populations were examined for differences in their expression profiles using Illumina bead

arrays. It has been reported that Nanoghigh cells express markers of pluripotent ESCs, while

Nanoglow cells express primitive endoderm markers, in particular Gata6 which is said to be

expressed mutually exclusively of Nanog. Similar trends should be observed between the cell

lines in this experiment, however, one would not expect all measurements to agree: As for the

previous knock-down studies, variable Nanog dosage does not necessarily have the same effect

as the complete loss of Nanog. Moreover, Singh et al. cannot rule out that the cells in their cell

populations have started to differentiate after sorting. Thus, their comparison might partially

reflect differences between ESCs (Nanoghigh) and differentiated progeny (parts of Nanoglow).

Chromatin immunoprecipitation (ChIP): In addition to external expression data, a

large body of Nanog protein-DNA binding data obtained from four ChIP experiments was

incorporated into the analysis75,327,342,497. All four studies sought to identify Nanog binding

sites using a combination of ChIP and subsequent sequencing of bound genomic regions. ChIP

has been used extensively and successfully in the past to identify transcription factor binding

sites (TFBS; Section 1.2.2.3 and Section 1.2.3.2). I compiled a catalogue of all Nanog

binding sites by overlaying the sites identified in the invividual experiments. After converting

all TFBS coordinates to the latest assembly of the NCBI mouse reference genome (build 37)

using the UCSC’s LiftOver tool283, merging the datasets yielded a total of 25, 086 putative

binding sites. I proceeded by considering only those TFBS with supporting evidence from at

least two of the four studies to obtain a set of the most reliable binding sites. A TFBS was

considered to be supported in multiple studies if they overlapped in at least 1bp. The resulting

set, which I call NanogTFBS, contains 7, 762 TFBS.

Finally, all the sites in NanogTFBS were mapped to the closest feature in the combined set
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of all features identified in any of the datasets of our study, including all clusters of unknown

transcripts and recorded the distance of the centre of each TFBS to the transcription start

site (TSS). In doing so, I allowed for a maximum distance of 30kb upstream the TSS or any

distance within the feature itself downstream of the TSS and discarded all binding sites not

falling within these bounds (Table 2.2). The distribution of TFBS with respect to gene

targets agrees well with the one reported before327.

2.1.3 Results

I will now discuss the results of the pilot study. After presenting the primary results of the

analysis pipeline outlined in the previous section, I will address the comparison to microarray

data and finally highlight some biological findings.

2.1.3.1 Quality and Genomic Coverage

The majority of the short reads from all four datasets could successfully be aligned to the

mouse genome using the pipeline described in the previous chapter. Of the 96 − 99% of

reads that passed quality control in each sample (Figure 2.3), on average just above 60%

could be mapped unambiguously and a further 30% with minimal repetitiveness (Figure 2.4).

It is, however, necessary to remark that the large, wild-type sample (NT-L) constituted an

exception in this case, with significantly less tags aligning to the genome – only 30% were

aligned uniquely and about a quarter could not be aligned at all. I will point out a few more

odd features of NT-L in this section and focus entirely on this sample in the Section 2.1.3.2.

Interestingly, filtering the reads according to their cumulative quality values, reduced the

overall amount of tags more drastically than the entire read pool, e.g. while only 3.31% of all

reads in BT12-L were discarded, a striking 12.36% (83, 301) of all distinct tags did not pass

the quality control. In other words, many of the reads that are filtered out are those that are

singletons or have only been reported a few times. I believe that it is more likely that these

singletons arise from errors in the technology than sequences that have been read out many

times, hence the removal of sub-threshold reads is thought to improve the overall quality of

the data by removing erroneous signals.

Most regions were only covered by one or a few reads (Figure 2.5), but it should also be

noted that a number of regions were detected that had several tens of thousands transcripts

associated to them. This demonstrates the vast dynamic range of the sequencing technology

for the detection of gene expression: Expression levels could be detected over almost five orders

of magnitude.

As expected, the majority of tags appear to be transcripts from known protein coding genes

(Figure 2.6). The overall distribution is remarkably similar for all samples (data not shown).
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Figure 2.3: Quality scores of DeepSAGE libraries. The average quality score drops
slightly with advancing read cycles (a), but remains at a very high level of confidence. Accord-
ingly, the vast majority of all reads passes a cumulative quality threshold of T = 925 (b).
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Figure 2.4: Alignment of DeepSAGE libraries. About 60 − 70% of all reads could be
aligned unambiguously to the reference genome and only about 4 − 8% could not be aligned
at all. Exceptionally, NT-L had an extraordinarily high number of unalignable and ambiguous
reads.
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Figure 2.6: Categories of features measured. A representative example, BT12-S, for the
categories of features detected in the pilot study. (a) Most transcripts were found to originate
from regions corresponding to the sense strand of known transcripts. A considerable part ap-
peared to belong to anti-sense transcripts. (b) The vast majority of transcripts comes from
known protein coding genes, accompanied by some transcribed pseudo-genes and short RNAs
(e.g. miRNAs).
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Figure 2.7: Distribution of transcripts across known gene models. All mapped tags
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counts were summed up and normalised to a comparable measure by dividing by the length of
each bin.

Besides protein-coding genes a further large group of transcripts were mapped to pseudo-genes,

many of which have been known to be transcribed, but do not encode for proteins, others

might indeed code functional proteins that have not yet been discovered. The remainder of

the tags was mapped to either short RNAs, such as micro-RNAs and short nucleolar RNAs,

mitochondrial genes or did map to regions of the genome with no known gene anywhere nearby.

It is not clear whether these unknown transcripts arise purely from technical artifacts or if

they actually correspond to unknown genes or other functional ncRNAs. Interestingly, many

unknown transcripts were found near known genes, but on the opposite strand (”putative

anti-sense transcription”). Anti-sense transcription might occur randomly as a bi-product

of regular transcription, but might in other cases also serve a regulatory function like the

suppression of sense transcription by binding of complementary transcripts100,194,255,295.

I had a closer look at the distribution of transcripts across known gene models (within a

window of 20kb up- and downstream of the nearest known feature of each mapped tag) and

divided the mapped tags into bins with respect to their location. The counts of each bin were

normalised to account for any difference in size (Figure 2.7). Least surprisingly, the largest

portion of sense transcripts was found within the exons or across the splice junctions of known

genes. Some tags mapped into intronic regions (which might, in fact, be incorrectly annotated

exons). The remaining sense transcripts spread across the neighbourhood of the feature, with

a higher percentage falling in the downstream regions (gradually decreasing with distance from

the gene). This might be partially due to incorrectly annotated 3’ UTRs. The distribution of

anti-sense transcripts by trend follows the distribution of sense transcripts, but is, in general,

more evenly spread across the whole range, which indeed argues for a random and functionally

inactive role of anti-sense transcription. It is, however, noteworthy that still the majority of

putative anti-sense transcripts clustered in the exonic regions and just downstream of known
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Figure 2.8: Number of distinct tags. The number of distinct tags found in each short read
dataset increases slightly with library size. NT-L has extraordinarily many distinct tags, many
of which are filtered out during quality control.

features (consistent with ref.84) where, at least some of it, might function in silencing sense

transcription or suppressing incorrectly terminated transcription.

2.1.3.2 Detection of a Problematic Read Library

In the previous section, I have pointed out several times that one of the datasets, NT-L,

exhibited somewhat different properties from the other datasets: An unexpectedly high num-

ber of reads could not be aligned to the genome and an extraordinarily high proportion of

the remainder mapped ambiguously to multiple locations (Figure 2.4). One very striking

difference between NT-L and the other samples can be seen in the ratio of distinct tags to

overall reads: More than twice as many distinct tags were observed than expected (tag-to-

reads ratio γ = 0.278; average ratio in the other samples γ = 0.107). The difference cannot

be explained by the difference in library size alone. While one would naturally expect the

number of distinct tags to grow with the overall number of short reads, the total number of

distinct tags should approximate a plateau at a certain level. This trend is exemplified by the

difference in the ratio between the smaller and the larger knock-out sample, with γ = 0.119

(BT12-S ) and γ = 0.099 (BT12-L), respectively. The high tag-to-reads ratio can also explain

the high number of low-coverage regions (Figure 2.5). Quite a large portion of the tags has

been filtered out during quality control (Figure 2.8), but despite this measure the number of

distinct tags is several orders higher than in the other samples.

In order to gain a better understanding of how NT-L differs from the rest, I have visualised

the transcriptional activity across the entire genome using the UCSC Genome Browser283 by

converting the tag counts per genomic region to a custom user track. While the sequenced

short reads usually clearly peak near the 3’ ends of transcribed features, the NT-L sample

appears to spread across the entire genome (Figure 2.9). The wide-spread distribution of

transcripts is not only limited to genic regions, but spans the entire genome with the effect

that almost 15% of the total transcript counts were assigned to uncharacterised regions as

compared to an average of about 5% (data not shown).

What is the reason for the drastic differences between the datasets? The reported quality
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Figure 2.9: Unusual tag distribution. While the sequenced short reads usually clearly
peak near the 3’ ends of transcribed features, reads in the NT-L library appear to spread across
the entire genome. Here, an example from the neighbourhood of the c-Myc locus (from UCSC
Genome Browser283).

values for all sequenced reads are no worse than for the other samples (in fact, they are

slightly better than the average; Figure 2.3). Of course, there is no way to tell for sure that

the quality values are actually reliable in this particular case, however, they all come from the

same lab and were processed in the same batch (in fact, they were most likely sequenced in

the same machine run, on the same flow cell), so technical differences seem unlikely.

There are several steps in the sample preparation which might be prone to error. Since the

RNA was not checked for its integrity prior to submission, I hypothesised that there might

have been a contamination with genomic DNA. In the preparation of the sequencing library,

transcripts are selected for poly-A using oligo-d(T) beads. Stretches of DNA might erroneously

be selected by these beads if they contain a long stretch of A/T-rich sequence. I therefore

investigated the nucleotide composition of the short read tag sequences (Figure 2.10) and,

indeed, found a high number of A and T in the NT-L tag sequences. Oddly, the difference

in nucleotide composition is just the opposite when looking at the absolute nucleotide counts

across all sequenced reads (rather than only the distinct tags). Evidently, many of the poorly

represented tags must be A/T-rich, which might concur with my hypothesis and hence explain

the high tag-to-read ratio. Nevertheless, the question remains why the rest of the tags (which

must be represented by a comparatively high number of reads each) is particularly C/G-rich

and further investigation would be necessary to shed light on this question.

Other factors in the sample preparation might play a role in the special case of NT-

L. Inconsistencies in the NlaIII -mediated cleavage of cDNAs might result in unexpected tag

sequences, errors in the adapter-ligation, amplification and colony-formation steps can severely

bias the read-out of sequence information and it cannot be ruled out that adverse conditions

lead to a degradation or alteration of RNA – the consequences of which on the sequencing

read-out would be unpredictable. Lastly, it remains possible (but, in my opinion, improbable)
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Figure 2.10: Nucleotide frequencies. (a) Nt-L exhibits an unusually high A- and T-content in
its distinct tag sequences, this difference seems to be reversed when (b) looking at the sequences
of all reads, where there is, in fact, an over-representation of C and G.

that the differences have an underlying biological reason.

Evidently, the discussion regarding the causes of the abnormal tag composition of NT-L

remains speculative. At this point, I saw no other possibility, but to discard NT −L from the

further analysis. This special case emphasises the importance of quality control procedures

prior to advanced processing of HTS data and highlights the need to look at measures beyond

just the base-call quality scores, for instance, the nucleotide composition and tag frequency,

to spot flaws in the data – a lesson I have taken into account during the later development of

the GeneProf data analysis suite (see Chapter 3 and, in particular, Section 3.3.3.1).

2.1.3.3 Differential Analysis and Comparison with Microarrays

In order to identify genes directly or indirectly linked to Nanog expression, I sought to assess

differential gene expression between the two cell populations at hand, that is, I attempted to

calculate a measure of statistical significance for differences observed between the two states

to be due to actual biological mechanisms and Nanog dependence rather than attributable

solely to chance. For this purpose, the edgeR package of the Bioconductor suite was used458.

After applying a quantile normalisation to account for global, technical differences to the

raw expression read counts, the version of edgeR used calculated moderated statistical tests

assigning p-values to the observed differences in expression levels for each gene. These p-values

were finally adjusted using the Benjamini-Hochberg method to correct for the expected false

discovery rate due to multiple testing32. It should be noted that any measure of statistical

significance is limited in its reliability by the availability of replicates. In this experiment,

testing for statistical difference between two conditions with only 1 and 2 replicates each (due
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Figure 2.11: Consistency of DeepSAGE measurements between replicates and with
microarrays. (a) The scatter plot demonstrates a very low degree of variability in expression
values (reads per million) between two replicates (BT12-S and BT12-L) of the same cell type. (b)
Logarithmic fold-change values between NT and BT12 cell line samples obtained using Illumina
DeepSAGE (x-axis) and Affymetrix microarrays (y-axis). Consistently and strongly changing
genes are highlighted in colour.

to the removal of NT-L) constitutes the bare minimum of replication necessary to make any

reasonable judgement at all.

In some cases, very small changes in the expression level of a single gene can make a

striking difference to the biology of a cell (cp. for example, the complex interactions of factors

specifying the neural tube along morphogen gradients341), but in order to judge whether a

small difference is meaningful, rather than a matter of random fluctuations, a large number

of experimental observations is required. Hence, I decided to limit the analysis to those

candidates that exhibit a quite drastic change in expression, which seem unlikely to be due to

random fluctuations. Reassuringly, expression values in the two replicate datasets varied very

little (BT12-S and BT12-L; Figure 2.11.a).

The list of detected features was filtered to only those which were deemed to change signif-

icantly according to edgeR (adjusted p-value ≤ 0.05) and which additionally changed at least

1.5-fold in either direction alongside Nanog (log2(1.5) ≈ 0.585). Additionally, I compared

the fold-change values in our datasets to those obtained from experiments using the exact

same cell lines assessed with Affymetrix microarrays and removed all those features from the

further analysis in which the direction of change in the study at hand contradicted the ones

observed previously. I considered the inconsistent changes in those features to be most prob-

ably independent of Nanog and thus negligible for the characterisation of Nanog-dependent

transcription (Figure 2.11.b).

Further investigations into this matter revealed that expression signal intensities reported

by the different platforms were most consistent for genes with a medium expression level

(Figure 2.12). Microarrays work best for well-expressed known genes. For weakly expressed

genes, probe fluorescence intensities can hardly be distinguished from the background level
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Figure 2.12: Gene expression intensities measured by Illumina sequencing and
Affymetrix microarrays. Expression intensities are plotted on a logarithmic scale and are
average over several replicates per technology (2x HTS, 3x Affymetrix). The plot is tiered into
three panels by the overall mean expression level of the individual genes as shown in the plot
label. The Spearman correlation coefficient ρ summarises the overall similarity of the signals
reported by both platforms.

and are hence difficult to detect. Very high expression may saturate all probe sets present for a

single gene on the array making accurate measurements above a certain level impossible. The

lack of consistency between both technologies in the lower and upper expression range may

therefore be explained by the inaccurate microarray measurements, rather than by a weakness

of HTS. This observation is consistent with reports in the literature340,526.

2.1.3.4 Putative Downstream Targets of Nanog

Let us now focus on the biology of the system studied, specifically, I will look at a number

of features identified as interesting downstream target candidates for Nanog and worthy of

further investigation.

A total of 14, 447 known genes was transcribed at a reliable level, that is, at least 5 tags

were mapped into each gene’s body. This corresponds to roughly half of all the features in the

extended set of all mouse genes and short RNAs (Section 2.1.2.2). Additionally, evidence

for the transcription of up to 11, 132 anti-sense or novel features was detected. In this analysis,

I initially focused on the first, well-defined portion.

Differential expression analysis yielded 1, 176 genes (adj.p ≤ 0.01, | log2(Bt12/Nt)| ≥

log2(1.5)), which I filtered further according to the following criteria:

• Consistent Expression Change. The integration of external expression datasets

(Section 2.1.2.3) afforded the opportunity to compare the trends in the Nanog knock-

out at hand with other similar data. In particular, the in-house Affymetrix data would

be expected to discover largely the same genes. Other studies, comparing cells with low

Nanog expression (either due to manipulation or to cell sorting) to normal stem cells,

should reveal similar trends in the expression patterns.
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Bearing this in mind, I limited the list of candidates to only those genes that had

been reported as differentially expressed in at least one of the other data sources (see

Section 2.1.2.3). I furthermore excluded all genes whose direction of change (DOC) was

inconsistent (i.e. those that had been found up-regulated in some, but down-regulated in

other studies, or vice versa). It should be noted that this approach neglects the potential

benefits of the sequencing technology employed (detection of previously not measurable

genes) in favour of identifying the most reliable candidates (consistent between old and

new technology).

• Genes with TFBS. Moreover, I sought to pinpoint direct targets of Nanog by eliminat-

ing all genes from the list that had no high-confidence binding site for the transcription

factor (Section 2.1.2.3). Again, in doing so, I deliberately neglect second-order effects

of Nanog and those whose binding sites have not been discovered yet.

Of the initial candidates, a total of 264 genes were supported by at least one other study

with regards to differential expression and never contradicted in terms of DOC. The overlap

of those genes with the 234 genes that had been found to have at least one reliable Nanog

binding site amongst all differentially expressed genes, yielded 70 genes. Table 2.3 shows the

genes that appear to be directly activated (nup = 40) or repressed (ndown = 30) by Nanog.

In order to assess the effects of the knock-out of Nanog on the biology of the cell, I

attempted to analyse affected functional categories, transcriptional networks and signalling

pathways. A number of free software tools for this purpose exist101,140,476,495, but in this

instance I used a trial version of the commercial Ingenuity Pathway Analysis (http://www.

ingenuity.com) software.

I first composed a transcriptional network of the candidate genes identified in the earlier

analysis. Initially, I constructed a network of all genes with a known involvement in stem

cell maintenance, pluripotency or, conversely, lineage commitment, differentiation and tis-

sue/organ formation. This network was based on Ingenuity’s literature-curated knowledge

base. Subsequently, I extended this network by adding all high-confidence, direct Nanog tar-

gets (Table 2.3) and drawing an activating/inhibitory connection between each of them and

Nanog. Lastly, I extended the network by adding all known, direct downstream-regulated tar-

gets (from the Ingenuity database) of the components of the network and plotted the network

with respect to its localisation in the cell (Figure 2.13).

2.1.3.5 Discussion and Conclusions

Let us now try to summarise and discuss the outcomes of this analysis and speculate as to

the implications of the observed results. It has previously been reported that the knock-out

of the Nanog gene does not disrupt pluripotency per se, but rather pre-disposes ESCs to a
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Name Nt-S Bt12-S Bt12-L Adj. P Nanog TFBS
D630039A03Rik 11.7 0.0 0.0 -31.59 0.0003 -0.20 -0.59 1x proximal
Mras 81.5 8.8 7.1 -3.30 0.0000 -1.64 -1.60 -2.49 1x intragenic
Serpinb6c 39.4 3.1 4.7 -2.93 0.0000 -1.73 1x intragenic
Itga9 139.8 32.2 26.6 -2.25 0.0000 -1.17 4x distal, 1x promoter
Fut9 102.6 26.3 17.7 -2.20 0.0000 0.20 -1.47 1x intragenic
Ly75 159.6 38.1 31.7 -2.19 0.0000 -0.46 -0.70 1x intragenic, 1x distal
Nanog 659.8 158.4 154.5 -2.08 0.0000 -7.01 -1.81 -2.39 1x proximal, 1x promoter
Vegfc 133.3 36.9 28.4 -2.02 0.0000 -0.76 down -1.23 1x promoter
Sorl1 137.2 32.7 37.8 -1.93 0.0000 -0.34 -1.18 -0.96 2x intragenic
Gpc3 576.8 151.7 156.4 -1.90 0.0000 -0.34 -1.15 2x intragenic
Kit 133.5 38.3 35.9 -1.84 0.0000 -0.93 -1.14 1x intragenic
Slc15a1 64.6 16.1 17.5 -1.84 0.0000 -0.70 1x promoter
Fhod3 90.9 29.8 24.1 -1.77 0.0000 -0.65 -1.36 3x distal
Manba 446.8 140.1 123.3 -1.77 0.0000 -1.14 -1.05 1x intragenic
Pdcl2 43.7 12.4 12.8 -1.76 0.0000 -1.39 -1.40 1x intragenic
Igfbp2 1,279.0 396.3 425.3 -1.63 0.0000 -1.04 -0.88 1x distal
Cisd3 74.2 26.4 22.3 -1.59 0.0000 -0.18 down -0.86 2x distal
Chac1 109.7 41.6 33.4 -1.54 0.0000 -0.60 -0.89 1x distal
Tnfrsf21 68.8 23.2 26.8 -1.43 0.0000 -0.68 1x intragenic
Tex14 68.8 26.5 24.3 -1.42 0.0000 -0.39 -1.05 -1.06 1x intragenic
Zmat4 139.7 61.6 45.2 -1.38 0.0008 -0.51 -0.60 6x distal, 2x intragenic
Adam23 342.4 145.4 139.5 -1.26 0.0000 -0.72 1x proximal
Gpt2 237.7 96.5 105.4 -1.23 0.0000 -0.74 -0.87 1x distal, 1x intragenic
Igf2bp2 213.8 88.3 99.1 -1.17 0.0000 -0.58 -1.26 1x intragenic
Tet2 221.7 113.3 89.3 -1.13 0.0004 -0.42 -0.88 3x intragenic
Add3 138.9 71.0 62.9 -1.05 0.0000 -0.52 -0.72 1x distal, 1x intragenic
Lrrc2 135.8 66.7 66.8 -1.02 0.0000 0.17 down -1.23 1x proximal, 1x promoter
5730419I09Rik 344.7 193.4 152.8 -1.00 0.0044 -0.24 down 1x intragenic
2310005N03Rik 101.9 54.0 48.5 -0.99 0.0001 -0.59 1x distal
Eras 1,194.5 611.7 699.8 -0.86 0.0000 -0.50 -1.30 1x intragenic
Dclk2 117.6 63.3 68.6 -0.82 0.0004 -0.14 down 3x intragenic
Dennd2c 174.2 109.8 92.9 -0.78 0.0022 -0.14 -1.13 1x distal
Slc38a4 486.8 283.0 304.4 -0.72 0.0000 -0.61 1x intragenic
Emb 1,586.0 940.8 989.6 -0.71 0.0000 -0.63 -0.97 1x proximal
Sntb2 108.0 72.2 65.0 -0.65 0.0093 -0.21 -0.96 1x distal, 1x intragenic
Lypla1 810.5 544.4 492.4 -0.65 0.0005 -0.23 down -1.43 1x proximal
Rara 286.6 193.3 178.7 -0.63 0.0000 0.00 -1.36 1x proximal
Slc12a4 249.6 161.0 162.6 -0.63 0.0001 -0.64 1x promoter
Ptch1 303.9 184.2 209.2 -0.62 0.0000 -0.88 -0.63 -1.56 1x intragenic
Nampt 850.4 597.2 523.5 -0.61 0.0013 -0.15 -1.06 1x intragenic
Ppm1f 219.1 352.0 344.1 0.66 0.0000 0.11 0.62 1x distal
Pml 859.5 1,364.2 1,389.9 0.68 0.0000 0.74 2x distal
Lrp2 84.2 147.8 133.8 0.72 0.0012 0.37 1.49 1x intragenic
Ralgds 75.0 141.6 130.1 0.83 0.0002 -0.19 0.96 1x distal
Rnf12/Rlim 355.3 691.6 588.7 0.84 0.0015 0.63 1x proximal
Stx3 157.1 270.4 299.8 0.86 0.0000 0.82 1x intragenic
Adk 141.0 287.6 271.7 0.98 0.0000 0.61 1x distal
Ror2 43.2 97.9 83.7 1.03 0.0002 0.90 0.84 3x intragenic
Otx2 129.1 239.1 295.0 1.05 0.0029 1.23 1x intragenic
Top1 92.1 179.5 203.6 1.06 0.0000 0.64 1x intragenic
Axud1 80.3 172.8 176.3 1.10 0.0000 0.75 1.51 2x distal
Lats2 15.4 39.7 35.0 1.16 0.0083 1.87 0.79 1x intragenic
Urm1 224.4 540.7 479.4 1.17 0.0000 0.27 0.66 1x distal, 1x intragenic
Crlf2 26.5 53.5 66.5 1.21 0.0044 -0.22 1.06 1x intragenic
Pphln1 24.6 58.4 58.5 1.22 0.0012 0.44 up 3x intragenic
2210408I21Rik 12.8 35.8 31.9 1.30 0.0093 0.71 1x distal
Zfp771 65.7 172.3 158.9 1.31 0.0000 0.59 2x distal
Unc13b 31.2 96.9 74.1 1.40 0.0058 0.71 2x distal
Stk31 39.2 114.1 122.0 1.58 0.0000 0.96 1.18 1x intragenic
Afap1 94.7 258.9 361.6 1.70 0.0065 0.70 1.67 2.56 1x distal
1190005I06Rik 90.7 327.5 384.5 1.96 0.0000 0.46 0.74 0.76 1x intragenic
Ust 12.8 53.7 54.7 1.97 0.0000 -0.07 up 1x intragenic
Tdrd3 10.1 47.8 37.3 1.97 0.0001 0.71 1.09 1x distal, 1x intragenic
Plce1 6.1 36.9 25.4 2.06 0.0064 0.65 2x distal, 1x proximal
2610528J11Rik 14.0 65.1 55.8 2.06 0.0000 0.76 2.03 1x distal
Ets1 6.1 35.7 28.4 2.29 0.0001 0.82 1x intragenic
Snai1 5.3 23.3 29.9 2.40 0.0004 -0.02 1.16 1x distal
Rgs20 6.1 42.7 33.5 2.52 0.0000 0.81 1x intragenic
Ninj2 0.8 13.6 11.4 2.83 0.0083 0.19 1.36 1x distal
Hmga2 41.9 410.9 419.6 3.26 0.0000 1.88 0.98 2x intragenic

Illumina 
Nanog-/-

Affy 
Nanog-/-

Singh Nanog 
high/low

Loh 
shNanog

Ivanova 
shNanog

Table 2.3: Nanog target genes. The table shows the quantile-normalised tag count (Nt-S,
Bt12-S, Bt12-L), log2 fold-change (Illumina Nanog -/-), FDR-adjusted P-value (Adj. P), log2

fold-change in the Affymetrix comparison libraries (Affy Nanog -/-), tendency of change in
ref.507 (Singh Nanog high/low), log2 fold-changes in ref.227,327 (Loh and Ivanova shRNA). Dif-
ferentially down- and up-regulated genes are high-lighted in red and green, respectively. The
last column shows the type of binding site(s) found (see text). The list is limited to those genes
that are (a) differentially expressed in our study (p ≤ 0.01, | log2(Bt12/Nt)| ≥ log2(1.5))), (b)
found differentially expressed in at least one other study (and never contradicted), and (c) have
a binding site supported by at least two independent studies.
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Figure 2.13: Nanog gene regulatory network. A regulatory network of direct and indirect
Nanog activators, repressors and targets created using Ingenuity Pathway Analysis in combina-
tion with the data obtained in this study. Green = up-regulated (repressed by Nanog), red =
down-regulated (activated by Nanog). Grey, dashed connections have been inserted manually,
the others are curated by the manufacturer.
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more ”differentiable” state68. Consistent with this notion, cells were reported to maintain

expression of major stem cell markers, for instance, Pou5f1, Sox2 and Zfp42. These findings

have largely been confirmed in this deep sequencing study, with most stem cell markers not

showing any differential effect between both conditions, however, there are some exceptions

(Table 2.3). Most strikingly, Dnmt3l and Dppa4 appear to be considerably up-regulated,

while Eras and Tcl1 show a distinct drop in expression levels. Having a closer look at the

RT-PCR results in reference68 might consolidate this result for Eras and possibly Dnmt3l

(although not to such an extent), but the other differences remain controversial. However,

differential down-regulation of Tcl1 upon Nanog depletion has been confirmed by both, our

in-house microarrays and Loh et al327. Strangely, the drastic increase in Dnmt3l expression

has not been detected in any other study, but at least the DOC seems to be confirmed by the

microarrays.

I was expecting to observe a notable increase in Gata6 expression in BT12. Gata6 and

Gata4 are considered early markers of extraembryonic endoderm specification and their ex-

pression seems to be mutually exclusive from Nanog in the late blastocyst stage466,507. Both

genes showed increased expression levels in the knock-out cell line (log2(Bt12NT ): Gata4 =1.78,

Gata6 =4.45). Taken together with an increased expression of Cdx2 (log2(Bt12NT ): Cdx2 =1.01),

which has a role in trophectoderm differentiation and may repress Nanog and Pou5f1 214,466,

these findings support the notion that Nanog-deficient cells are prone to differentiation into

extraembryonic lineages and that, in fact, a part of the cell population might have already

undergone differentiation. The absolute expression level of all these genes appears to be very

low (with a peak of 45 in 3.8 million, which amounts to approximately 3 transcripts per cell),

but the changes have all been confirmed in at least one other study227,327,507 and it seems

likely that the low average expression levels stem not only from low abundance per cell, but

from a selective expression from only those few cells that have undergone (or at least started)

the differentiation process, which is levelled out by the majority of cells having remained in

a pluripotent state. Interestingly, there is a high-confidence binding site for Nanog within

the first intron of Cdx2, which might indicate that Cdx2 is directly inhibited by Nanog in

wild-type ESCs.

Another interesting group of genes affected by Nanog is the Zscan4 -family. Although,

they do not appear to be direct targets of Nanog†, three members of the family, Zscan4f,

Zscan4d and Zscan4c/d, were deemed differentially up-regulated in our study (that is, more

highly expressed in absence of Nanog than in its presence), which is somewhat surprising,

since Zscan4 has been found to be exclusively expressed in early developmental stages in vivo

and its depletion hindered implantation of the blastocyst125. However, more recent research

†No TFBS has been found in any of the studies considered. Some new insights which I will present later in
this thesis, however, hint towards a direct transcriptional control of Zscan-family genes by Nanog and other
TFs: Section 5.2.5 and Figure C.2.
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points to an important role of Zscan4 in the maintenance of genomic stability of ESCs625 and

the regulation of early embryonic genes199. Interestingly, Zscan4 has been found expressed

transiently only in a subset of ESCs, coinciding with telomerase repair625. Transient expression

of the gene can promote reprogramming of fibroblasts to iPS cells199.

Numerous other genes involved in pathways that are known to have an influence on stem

cell differentiation into various lineages have been pinpointed, but it has proven difficult to

summarise those into a coherent picture. Several growth factors (FGF, EGF, PDGF, TGF,

VEGF) show changes in their transcript levels, which might lead to proliferation and differen-

tiation, but conversely other members of the very same pathway give contradictory evidence.

For example, Fgf2 is up-regulated, while Fgf4 is down-regulated at the same time. Fgf2 has

been reported to support the maintenance of human ESCs in culture109,165, whereas Fgf4 has

been found necessary for cells to commit to a lineage and undergo differentiation285. The

changes in FGF levels therefore seem to counteract the loss in potential to maintain stem

cell identity, by inhibiting differentiation. The effect of Nanog on Fgf4 has been confirmed

independently227,327 and there are two potential Nanog TFBS (one about 10kb upstream of

the TSS and one in the 3’ UTR), so it appears that Nanog promotes ”differentiability” and

hence pluripotency, partially via up-regulation of Fgf4.

Moreover, the expression of other major suppressors of cell differentiation and sustain-

ers of pluripotency is lost (Table 2.3 and Figure 2.13): Klf4, Sfrp1, Mras, Trps1, Esrrb,

Igfbp2, Tcf3, Gli2, Notch1, Ptch1 and Smad7 are all involved in preventing differentiation

and promoting stem cell proliferation. All of these genes have previously been pointed out as

Pou5f1 targets497. Surprisingly, markers of X-chromosome inactivation seem to indicate X re-

activation, as Xist expression drops and Eed levels increase with the knock-out of Nanog373,374.

But since we were dealing with male cell lines, the effects might be misleading.

I also had a quick look at what I had termed ”putative anti-sense transcription” ear-

lier. Based on the suspicion that most of it would not be of any discernible biological rele-

vance, I decided to look only for the most significantly changing anti-sense features (adjusted

p ≤ 0.01, | log2(BT12/NT )| ≥ 2, maximum, normalised expression level > 20), comprising 26

down-regulated and 11 up-regulated features. The first list contained transcripts on the op-

posite strands of Nanog, Zic2, Ifitm1, Pecam1, Klf4 and Sall1, the latter Hmga2 and Hs3st4.

The quality and quantity of change of all of these features were extremely similar to their sense-

strand features. I think that this demonstrates that the anti-sense transcription is largely an

artifact of the sequencing process. After the bridge-PCR amplification, cDNA fragments can

essentially be present as replicas of both possible strands, but subsequent sequencing ought

to only pick up those constructs identical to the original template of each cluster thanks to

the specificity of the used sequencing primers. I suspect that in some cases constructs bind

to the wrong flowcell-attached adapter and corrupted sequences might take over the cluster.
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Alternatively, adapter sequences might have been inserted in the wrong direction in the ear-

lier sample preparation equally leading to a transcript apparently emerging from the opposite

strand. Whatever the source for potential errors, it stands to reason that these would be

rather rare. Evidently, only about 7−8% of all transcripts were assigned to anti-sense regions

– if all anti-sense reads were erroneous and due to stochastic errors one would expect a roughly

equal number of sense and anti-sense transcripts. One further source of erroneously annotated

anti-sense transcription has yet to be mentioned: In a few cases, distinctly higher anti-sense

transcription could be observed than for the opposing strand’s actual feature. This was usu-

ally the case for novel and poorly characterised genes (e.g. AL772393.11-2 or Laptm4b) and

I believe that those features might actually be annotated to the wrong strand. In summary,

while a lot of evidence of putative anti-sense transcription has been found in our study, I

conclude that a large proportion of it might be due to flaws in the technique and to identify

the real proportion of it is impossible using the current methods. A targeted approach to

studying anti-sense transcription has been proposed by He et al194. They suggest to replace

cytidine by uridine residues prior to sequencing, thereby making both strands more readily

distinguishable. It would certainly be interesting to use this approach to study ES anti-sense

transcription in more detail, in particular in the light of more recent findings which implicate

RNA co-factors, including many anti-sense and extra-genic transcripts, in the regulation of

PRC2-mediated gene silencing634.

Lastly, I checked for potential novel features with a biological function. Some of the

extra-genic transcription observed could be an artifact of ambiguous reads: If a read maps

ambiguously to both a gene as well as an extra-genic region (because the respective bit of

DNA is repetitive), a proportion of this read will be attributed to both possible locations.

Therefore it will appear that there is an extra-genic signal, although it might actually have

never originated from this extra-genic region. Given the data at hand, it is impossible to tell

the difference with certainty. Other low-level extra-genic transcription could be explained by

sequencing errors: A single misread nucleotide in a read could mean that this read mapped

to a different region in the genome. In order to eliminate background transcription as well

as the artifacts of repetitive sequences, I considered only x-clusters with at least 20 uniquely

mapped tags in at least one of the samples and with a length greater than 21bp, i.e. clusters

constituted by more than one mapped region (remember that aligned reads were merged into

clusters when they were within a maximum distance of 1kb to each other, Section 2.1.2.2).

Amongst those x-clusters, I concentrated on the ones that were changing differentially with

high significance (adjusted p ≤ 0.01, | log2(BT12/NT )| ≥ 1). Only 16 clusters satisfied these

criteria: 7 down-regulated, 9 up-regulated. The maximum, normalised expression levels in

those clusters ranged from 25 to 94, which I believe makes them unlikely to result from

random expression as it is well in the range of expression levels from known sense transcripts
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(median = 49).

The most highly expressed, down-regulated cluster is located on chromosome 1, on the

forward strand from base positions 138, 587, 227 to 138, 587, 485 (band 1qE4). The region is

highly conserved in rat, but lacks any conservation in other mammals. Transcripts from the

same region have also been found in experiments within the Cancer Genome Anatomy Project

(CGAP; http://cgap.nci.nih.gov). On the other site, the most highly expressed, up-

regulated cluster can be found on chromosome five (forward strand) from position 63, 808, 344

to 63, 808, 619 (band 5qC3.1). This region is partially conserved in higher mammals (human,

rat and orang-utan).

These are just two examples and a larger-scale analysis in combination with external

datasets and conservation scores might yield interesting new subjects for further research.

2.1.3.6 Supplementary Note

In 2011/2012, after the development of the GeneProf software (Chapter 3), I have repeated

the analysis outlined in this chapter and augmented it further with additional high-throughput

data. This work does now, together with many additional results generated primarily by

Nicola Festuccia and Rodrigo Osorno (I. Chambers group), contribute to a manuscript which

is currently being revised.
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2.2 Identification of Pluripotency Genes in Plant Cells

To further investigate the potential of HTS, a second exploratory study in a non-model organ-

ism was undertaken. In collaboration with the research group of Prof. Gary Loake (Institute

of Molecular Plant Sciences, University of Edinburgh), I participated in a study of global

gene expression signatures in pluripotent plant cells, profiling two distinct cell types of the

Japanese yew (Taxus cuspidata) using a DeepSAGE approach similar to the one employed

before (Section 2.1).

2.2.1 Motivation and Goals

Plants are the source of a wide variety of chemicals of industrial and medicinal use484.

Production-scale utilisation of full-grown plants is often not a cost-effective and feasible solu-

tion and consequently much effort has gone into deriving cells that may be grown in culture.

Previous efforts focused on dedifferentiating cells into proliferating progenitor-like popula-

tions546. However, cultures of dedifferentiated plant cells (DDCs) are heterogeneous, grow

slowly and inconsistently and, crucially, have been reported to return only low amounts of

chemical products15,97,163,523.

To avoid the flawed dedifferentiation process, my collaborators sought to establish a natu-

rally undifferentiated, stem cell-like cell line from the cambium (Figure 2.14.a) of T. cuspidata

(cambial meristemic cells, CMCs), which was expected to yield more stable growth properties

and improve the efficiency of the biosynthetic production of taxol97. Taxol (also known by

its commercial name, paclitaxel; Bristol-Myers Squibb, New York, USA) is a natural product

of yew and is used as a mitotic inhibitor in cancer chemotherapy. Evidently, its large-scale

production is therefore of great relevance.

From a data analysis point of view, what made this study different was the fact that, at

the time of this work, no complete genome or transcriptome assembly was available for this

organism and neither were there any commercial microarray platforms established that would

have allowed us to carry out our investigations. I was therefore presented with an opportunity

to gauge the potential of HTS to broach known frontiers and create novel insight.

2.2.2 Methodology

The derivation and study of T. cuspidata CMCs was a difficult and complex project and

involved a great number of people. For the purposes of this dissertation, I shall focus mostly

on the data processing and statistical analysis aspects of the study since these are most

relevant for the remainder of this work. In order to enable a better understanding of the

study as a whole, I will first briefly review the process that led to the establishment of the

CMC populations and the assembly of a reference transcriptome for further analysis. Further
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Figure 2.14: Derivation of plant cell lines. (a) Schematic representation of Taxus com-
partments relevant to this study. (b) Peeling off different layers of tissues. Yellow: pith, white:
xylem, green: cambium, red: phloem, blue: cortex, turquoise: epidermis. Scale bar: 0.5mm.
(c) Culture induces a visible split between DDCs (bottom) and CMCs (top). Scale bar: 1mm.
(d) CMCs from cambium and (e) DDCs from phloem, cortex and epidermis. Scale bar: 1mm.
(f) Micrograph of DDCs (left) and a CMC (right) demonstrating the presence of vacuole-like
components in CMCs (black arrow). Figures (b-f) were reproduced with permission from refer-
ence297.

details can be found in Lee et al.297. Afterwards, I will discuss the statistical analysis of the

expression data at hand.

2.2.2.1 Derivation of Cambial Meristemic Cells

My collaborators decided to derive cells from the cambium of T. cuspidata (Figure 2.14.a),

because they were believed to functionally resemble vascular stem cells and the cambial region

targeted had been previously reported to produce high levels of taxol521,615. Briefly, to extract

CMCs and DDCs, they peeled cambium together with cortex, phloem and epidermis from the

xylem (Figure 2.14.b) and laid them on a suitable growth medium297. Initially (after 4-7d),

cell division could only be observed in cambium (CMCs!), with DDCs emerging from phloem,

cortex and epidermis after about 15d by dedifferentiation. A clear visual distinction between

flat, uniformly spread CMCs and irregular DDCs was possible after 30d (Figure 2.14.c-e),

thought to be due to inconsistent proliferation in DDCs. After separating the populations,

both were cultured independently in slightly altered media resulting, finally, in CMC and

DDC populations with distinct morphology and functional characteristics (Figure 2.14.f).

DDCs were also derived from needles and embryos following optimised, previously established

protocols624,626.
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Figure 2.15: Transcriptome assembly. (a) Histogram of the read lengths in the
pyrosequencing-based library used for transcriptome assembly. (b) Histogram of contig length
in final assembly . All panels have been reproduced with permission from reference297.

2.2.2.2 De-Novo Assembly of T. cuspidata Transcriptome and Digital Expression

Analysis

Due to a lack of reference annotation, first a ”transcriptome” needed to be assembled which

could be used as a scaffold for alignment and a basis for the calculation and comparison of

expression profiles. A (complete) transcriptome is a comprehensive set of the sequences of

all mature transcripts of an organism. Methodologically, the assembly of a transcriptome

nowadays typically involves the collection of total RNA from one or more cell types of the

organism in question followed by HTS40. Sophisticated algorithms are then employed to put

together partially overlapping sequences in order to construct full-length transcripts40,107,455.

Naturally, the quality of a transcriptome assembly depends not only on the performance of

this algorithm, but also on the depth of sequencing and the coverage of transcripts in the

RNA sample provided. Consider, for example, a biased RNA sample from only one specific

cell type will probably not contain all transcripts an organism is capable of producing – any

transcriptome assembly based on such a sample would be inherently incomplete. More difficult

to avoid, natural RNA samples are usually highly skewed towards strongly expressed genes and

more rare transcripts might never be observed or sequenced if the coverage is not sufficient.

T. cuspidata RNA isolated from DDCs and CMCs by my collaborators was enriched for full-

length sequences and rare transcripts and then submitted to the GenePool sequencing facility

at the University of Edinburgh (http://genepool.bio.ed.ac.uk) for sequencing using a

Roche/454 GS FLX instrument. A total depth of 860, 800 reads with an average length

of 351bp per read was achieved (Figure 2.15.a). The GenePool assembled the reads into

36, 906 contigs‡ using the Roche/454’s own Newbler software (version 2.3; Figure 2.15.b).

The contigs were annotated using BLAST4 alignments against known protein and nucleotide

‡”Contigs” are continuous pieces of sequence build by assembling multiple reads into one. They may be
thought of, with caution, as corresponding to transcript sequences.
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sequences from similar plant species and Annot8r483. This procedure managed to successfully

assign a putative function (by similarity) to about 62% of all contigs.

To quantify gene expression in CMCs and DDCs, purified RNA was prepared in triplicate

(three samples each for CMCs and DDCs) for digital tag profiling / DeepSAGE with the NlaIII

restriction enzyme according to Illumina’s protocol (Section 1.2.2.2) at the GenePool and

sequenced using a Illumina Genome Analyser IIx platform. The reads were truncated and

extended to create meaningful tag sequences (as described in Section 2.1.2) and aligned to

the previously assembled contigs using MAQ310 (version 6.0.8). Only uniquely aligned tags

were carried forward and taken into account for the calculation of tag counts per contig.

In summary, up to this point the primary computational work had been carried out by the

GenePool core facility. The six datasets (3 CMC + 3 DDC) had been processed up to a stage

where we had raw tag counts for 36, 906 contigs, a large percentage of which had a putative

function or homologous gene assigned to them.

2.2.2.3 Statistical Analysis of Differentially Expressed Genes

The final step in the data analysis was the identification of contigs that were differentially

expressed between the two cell types, CMC and DDC. I decided to use, as previously (Sec-

tion 2.1.3.3), the edgeR package458 for this purpose, however, discovered after an initial

trial using default parameters that many contigs had been called differentially expressed al-

though their expression levels varied either (i) very little between samples groups or (ii) were

inconsistent between replicates.

The first (i) was usually the case when the expression values in one class were very low

or even zero. For these contigs, even a low expression in the other cell type was considered a

strong change. This might very well be biologically relevant, but if the change was as low as

from 0 to 1, I doubted it was distinguishable from the noise level in this assay.

The latter case (ii) was mostly due to only a single replicate exhibiting a drastic difference.

Statistical methods, in general, are designed to account for such variation within groups,

yet can sometimes fall victim to outliers. Notwithstanding a biological explanation, this

phenomenon might well be due to a freak amplification of single tag sequences in some samples

and one would not usually want to include the affected contigs in the candidate lists.

I sought to refine the analysis for the detection of highly-reliable candidate genes and

to get rid of the suspected false positives (wrongly called differentially expressed genes) by

optimising the parameter settings of edgeR and augmenting the analysis strategy with a pre-

and a post-processing step.

Pre-processing: I first rescaled the raw tag counts in all libraries by dividing each count

by the sum of the upper quartile of tag counts of the same library and subsequently multiplied

the values with 1, 000, 000, effectively transforming the values into reads per upper-quartile
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Figure 2.16: Normalisation of raw read counts. The boxplots show the distribution of
expression values in their raw form (left), rescaled as reads per million (RPM, centre) and using
the reads per upper-quartile million (RPQ75M) normalisation followed by stabilisation described
in this chapter (right).

million (RPQ75M). This is meant to account for differences in library size by adjusting the

counts in such a way that the most highly expressed contigs, which are also those usually most

reliably detected, are on the same scale57, reducing technical variability in library construction

and sequencing. Next, a small stabilisation constant (S = 10) was added to each value, altering

the signal to decrease the impact of difference between groups for very lowly expressed contigs,

but leaving larger changes between more strongly expressed contigs largely untouched. Given

t(ci) the raw tag count for an arbitrary contig ci, Q75 the upper quartile of all tags counts,

the full formula for the calculation of RPQ75M read counts amounts to:

RPQ75M(ci) =
t(ci)× 1, 000, 000∑

c∈C ρ(c) ∗ t(c)
+ S, where ρ(c) =

1, if t(c) ≥ Q75

0 otherwise.

(2.3)

Importantly, RPQ75M transformation alters the signal (raw reads counts) more strikingly

than RPM (Equation 3.3), which essentially maintains the original distribution, deliberately

neglecting contigs (or genes) with low detected expression estimates (Figure 2.16). For the

analysis at hand, this was appropriate, since I was dealing with a poorly studied organism

for which our transcriptomic assembly and annotations were likely to contain major flaws.

The reduction of further sources of errors was therefore essential. For well-annotated model

organisms, the same strategy might be less adequate and obscure weak, yet biologically relevant

processes.

Statistical evaluation: To briefly recapitulate, edgeR uses an over-dispersed Poisson-

distribution to model read counts after quantile normalisation in which the degree of overdis-

persion is moderated using an empirical Bayes procedure458,459. A modified version of Fisher’s

exact test is employed to assess the probability that a gene or contig is differentially expressed.
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Figure 2.17: Optimisation of edgeR parameters. Scatterplots demonstrating the effect
of the edgeR parameters prior.n and grid.length on the statistical assessment of differentially
expressed genes. All values are log2-scaled, quantile-normalised RPQ75M expression intensities
averaged over three replicates. Differentially expressed contigs are highlighted in red (FDR ≤
0.05). N.B. The plots were created at a later time and with an updated version of edgeR
(old version unavailable), which called, in general, fewer contigs as differential; the effect of all
parameters remained equivalent.

I proceeded according to the steps outlined in the software’s tutorials and experimented with

the effects of the different parameters (Figure 2.17), finally setting on default values for

all parameters but prior.n and grid.length, which I set to 10 and 500, respectively. Cal-

culated p-values were corrected for multiple testing using the Benjamini-Hochberg method

and I deemed a false discovery rate (FDR) threshold of FDR ≤ 0.05 appropriate to detect

differentially contigs, returning 1, 229 contigs as candidate factors for CMC/DDC identity.

Post-processing: Although all contigs detected by the statistical approach certainly

merit attention, I decided to initially concentrate my investigations on contigs with particularly

large and consistent changes, which were plausibly reasoned to have a notable effect on the

morphological and functional differences observed between CMCs and DDCs. Thus, I filtered

the candidates from the previous step (n = 1, 229) by imposing a threshold on the minimum

difference between any two replicates of both groups (Θmin.d = 10RPM) and retained only

those candidates for which the direction of change (DOC) was consistent in all replicates, i.e.

the replicates of one group (CMCs or DDCs) either had all higher or all lower values than

those in the respective other group. A total of 563 high-confidence candidates were carried

forward for further investigation.
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Figure 2.18: Candidate contigs for CMC/DDC identity. Hierarchically clustered
heatmap of the expression levels of all assorted candidate contigs (n = 563). Colours are scaled
per contig from lowest (blue) to highest (red) expression.

2.2.3 Results

I shall now discuss the results of the data analysis, briefly reviewing further insights gained

by my collaborators during downstream investigations of the candidates discovered.

2.2.3.1 Candidate Factors for Cambial Meristemic Cell Identity

In the analysis, I identified several hundreds of high-confidence candidate contigs (n = 563;

Figure 2.18), that, on the basis of the transcriptional data at hand, were considered likely

to be implicated in the morphological and functional differences between CMCs and DDCs.

Roughly an equal proportion of contigs were up- and down-regulated in CMCs with respect

to DDCs (nup = 296, ndown = 267). A selection of these contigs were validated using RT-PCR

and qRT-PCR by my collaborators (Figure 2.19.a).

Interestingly, validated candidates included contig01805, which is highly similar (sequence

similarity, see Section 2.2.2.2) to Phloem intercalated with xylem (PXY), a member of a

family of kinases that had previously been shown to be essential for the development of vascular

tissue134,297. Equally, contig10710 had been found to be highly similar to Wooden leg (WOL),

known to be expressed in cambium of other plants and also believed to be affecting vascular

development333,385.

These two contigs are merely examples of candidates that appeared reasonable targets for

immediate follow-up study and many others exhibited similarity with proteins from other,

better-studied organisms that were in line with stem cell-like properties of CMCs (Fig-

ure 2.19.b). Albeit my current results do not present any conclusive proof for the relevance

of the candidates to proliferative and cell culture properties of CMCs nor for their role in the

production of taxol (see next section, Section 2.2.3.2), this is a major first step towards this

goal and demonstrates impressively how a combination of HTS approaches can be used to

pinpoint biological factors with a putative functional role – even in poorly-studied organisms.
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(a) (b)

Figure 2.19: Validation and functional annotation of candidates. (a) Validation data
for seven candidate contigs identified in the DeepSAGE differential expression screen. Ct07286
is a putative actin gene and was used as a control. (b) Relative frequency of gene ontology terms
in groups of up- and down-regulated genes in CMCs with respect to DDCs. Validation data was
generated by my collaborators and both figures have been reproduced from reference297.

2.2.3.2 Clinical and Industrial Relevance of Findings

The transcriptional assays described before constituted only a minor part of the research

project as a whole and in the further development of the investigations, my collaborators were

able to produce convincing evidence of the different functional roles297. Firstly, CMCs clearly

outperformed DDCs (either derived from embryos or needles) in terms of stable growth and

proliferation potential on solid media (data not shown) and even more strikingly in suspension

cultures in bioreactors of different sizes (ranging from 3 litres (Figure 2.20.a) to a 3 ton

bioreactor suitable for industrial-scale production).

Measurements of the amount of taxol produced by CMCs in comparison to DDCs revealed

an increased taxol biosynthesis potential of CMCs. Cells of both types that were cultured,

again, on solid media (data not shown) or in bioreactor suspension cultures of various sizes

and elicited to induce taxol biosynthesis by the addition of methyl-jasmonat, chitosan and a

precursor phenylalanine. In all cases, CMCs produced consistently more taxol than DDCs

(Figure 2.20.b). Assays of the production of abietanes, which also have been reported to

suppress tumors126, reported similar trends (Figure 2.20.c), suggesting that the phenomenon

is not restricted to taxol biosynthesis only.

Preliminary experiments have also shown that CMCs in other plant species exhibit similar

properties appealing for the production of natural plant products. CMCs extracted from

ginseng (P. ginseng) and cultured in a bioreactor produced more than 20-fold higher amounts

of ginsenosides – attributed, for instance, with neuroprotective and antioxidative effects – than

ever reported297 (Figure 2.20.d).

In conclusion, cultured CMCs might in future provide the means for the large-scale, cost-

effective production of medicines, cosmetics and other chemicals from plant products. Cultures

are largely independent of climate and at the same time require less space than full-scale plant

cultivation making them a very sustainable and affordable platform for this purpose297.
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Figure 2.20: Growth potential and biosynthesis of CMCs. (a) Measured growth of
DDCs derived from needles and embryos and CMCs in a 20 litre airlift bioreactor. (b) Taxol
(paclitaxel) production in elicited 6-month old cell cultures after batch culture in a 3 litre air-lift
bioreactor. (c) Production of the abietanes taxamairin A and C in DDCs and CMCs grown
in a 3 liter air-lift bioreactor. (d) Production of the ginsenosides F2 and XVII in ginseng (P.
ginseng) DDCs (pith-derived) and CMCs. Cultured in a 3 litre air-lift bioreactor. The data for
these plots has been generated by my collaborators and all figures have been reproduced from
reference297.

2.3 Conclusions

High-throughput sequencing techniques have been much discussed in the recent years and

many have predicted that they are soon to become the method of choice for transcriptional

profiling on the large scale and may in the near future replace the still pre-dominant mi-

croarrays in this respect246. In other areas, for example, the study of DNA-protein binding

or histone modifications (ChIP-seq), genome-wide methylation (Methyl-seq) or the discovery

of genomic variations (resequencing), HTS has already surpassed its predecessors. In this

last section of the current chapter I shall briefly discuss the major advantages and drawbacks

of HTS with a particular focus on the conclusions I reached from my own exploratory pilot

studies.

2.3.1 Unbiased Genome-Scale Assays of Gene Expression and Reg-

ulation

Many reports in the early HTS-related literature praised reproducibility, robustness and pre-

cision combined with the prospect of gaining a (largely) unbiased view of the whole transcrip-

tome – even of unknown transcripts or in uncharacterised species – as the major advantage

of the new technology over microarrays for assays of gene expression340,526. The pilot studies

could confirm the applicability of deep sequencing platforms to the study of stem cells. The

detected expression levels largely agreed with comparable intensities from Affymetrix microar-

rays and showed evidence for a wider dynamic range (Figure 2.11 and Figure 2.12). Using

HTS, I managed to detect features that could not previously have been found due to their limi-

tation of microarrays to a fixed set of oligonucleotide probes, for instance, non-coding RNAs. I

also found evidence for wide-spread anti-sense transcription and expression of genomic regions
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outside the boundaries of known transcriptional features.

Since the sequencing technology can equally well be applied to non-transcriptional samples

(Section 1.2.2) the prospect of using the same platform to investigate different aspects of

the same biological samples offers an additional attractive bonus. One may expect highly

consistent results from different perspectives on the same problem with a bare minimum of

additional effort and costs. An example of such an holistic investigation of the genome is the

ENCODE project542, which has greatly helped our understanding of the general workings and

regulation of transcription.

However, it has also become clear that at the current state of the art the costs associated

with a sequencing project are still too high to be considered for routine use (being up to 10-fold

higher than they would be using microarrays). In the beginning of 2012, after several years of

research and development and despite early optimistic predictions, commercial HTS platforms

have yet to rival the cost and processing times that make microarrays such an appealing

technology. The application of HTS to transcriptome profiling therefore still remains a niche

application for those that require the sensitivity (e.g. single cell studies223,534,535), seek to

refine genomic annotations59,179,552 or study alternative splicing events45,256,413,576.

A further increase in throughput combined with the possibility of multiplexing samples,

also referred to as ”bar-coding”, which is now being made possible on most sequencing plat-

forms, promises to soon lead to a massive drop in costs as several libraries can be read out in

parallel (Section 1.2.2). This approach now becomes increasingly popular and wide-spread

and offers exciting opportunities for future research223 (Section 1.2.3.1).

2.3.2 High-Throughput Data Requires High-Throughput Analysis

The manifold applications of HTS make it necessary to incorporate, combine and juxtapose

many heterogeneous kinds of data at once. Additionally, it was demonstrated that the in-

tegration of alternative functional genomics data, such as from microarray platforms (Sec-

tion 2.1.2.3), can help to leverage an experiment’s primary data even further creating addi-

tional insight and better understanding of the mechanisms under study221,555,575,632.

It may be expected that modern functional genomics technologies will in the coming years

accumulate an amount of biological data unparalleled even by microarray technology (which,

on January 23rd, 2012, has amassed data from 27, 858 experiments or 686, 135 individual

samples in the database of the Gene Expression Omnibus22,118). An efficient use of these data

is key to gaining a better understanding of biological functions, development and disease632.

Currently, the advance of HTS is still hindered by data analysis challenges338. In order to

harness the information that is now at our disposal, high-throughput data generation needs to

be accompanied with high-throughput, integrative data analysis. The diverse tools that have
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already been developed for several aspects of the HTS analysis pipelines (e.g. Bowtie292 or

edgeR458,459, which I have used in this chapter), need to be made more widely accessible by

all scientists and the burden of getting started with the data analysis must be reduced to allow

more researchers to more rapidly exploit the data to its full extent. Additionally, I believe

the community would greatly benefit from knowledge extracted from HTS experiments being

more readily and quickly accessible.

With these conclusions in mind, I felt compelled to set out on the task of developing

a new software system that would in future allow research to progress more smoothly and

empower science by making experimental data, no matter how large and complex, accessible,

interpretable and reusable at any time and from anywhere in the world. My efforts shall be

described in detail in the following chapters (Chapter 3 and Chapter 4).
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Chapter 3

An Analysis Environment for

RNA-seq and ChIP-seq

Experiments

In this chapter, I shall describe the GeneProf software system, a graphical environment for

the analysis of HTS experiments created in the course of my research project. Rather than

just giving a description of the software itself, I will start by reiterating my motivation (Sec-

tion 3.1) for developing this program, followed by a short account of the initial release version

(Section 3.2) and then go into detail about the key challenges addressed in the software de-

sign process (Section 3.3). I will conclude the chapter with a brief evaluation, compare

GeneProf with related software and highlight room for future improvements (Section 3.4).

3.1 Motivation and Goals

Why did I set out to write this new piece of software? In the recent years, novel HTS

technologies have revolutionised the way in which biological researchers study the molecular

mechanisms and effects of gene expression (Section 1.2). This impact is witnessed by an

ever-increasing number of publications and by the unprecedented wealth of data that is now

available. In late 2010, the Sequence Read Archive (SRA), the world’s largest database of

HTS data, boasted over 500 billion reads306, a number which has almost tripled a year later

(http://www.ebi.ac.uk/ena/about/statistics).

The huge volume and complexity of data produced by high-throughput sequencing (HTS)

platforms make it difficult for many research labs, which may lack expertise and computing

infrastructure, to fully harness the potential of HTS for the study of biological processes and
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Figure 3.1: Citations of the Galaxy workflow engine. Galaxy is the most widely used
environment for workflow-based analysis in biological research to date. Proportional distribution
of citations of the three main Galaxy publications43,153,160 obtained from Google Scholar (http:
//scholar.google.com, on August 29th, 2011) .

human disease. Although a large array of software has been developed to address individual

aspects of the analysis process (such as the alignment of sequence reads to the genome or tran-

scriptome or the detection of significant binding events or the quantification of gene expression;

cp. http://seqanswers.com/wiki/Software or http://www.stemdb.org/bioresources),

this software is at times difficult to set up, use and, especially, combine. As a consequence,

we have now reached a point where the data processing rather than the data generation step

may often become the bottleneck of biological experiments in terms of cost as well as time338.

Workflow-based software suites, such as Galaxy43,153,160 and Taverna213,398, offer an at-

tractive approach for dealing with complex data, because they allow visual combination of

simple software components into large ”workflows”, enabling complex analyses without any

need to write custom computer scripts. However, current workflow engines mostly focus on

the computational processes involved, rather than on achieving particular biological goals.

They usually attempt to provide an extremely flexible solution, often with the aim of being

domain-independent, and therefore split up logical processes into many granular units. Setting

up a workflow can be a daunting and time-consuming task for many life scientists, especially

those without experience of the visual programming paradigm used. Thus, usage of workflow

engines in biology has so far been mostly limited to small aspects of the analysis process or

to only expert users with a computer-programming background (Figure 3.1). Existing tools

are hence often not sufficient to make HTS fully accessible to the entire research community

(Section 3.4.1).

Moreover, the effective reuse and integration of published research data from various

sources is still a challenging task for most researchers. I believe that scientists would benefit

greatly from a quick and easy way to look through published research data and to compare

these with their own findings. To warrant a sensible comparison of data from different sources,

it is essential that the entire process leading to the analysis results can be recapitulated and

reproduced.
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It was with these issues in mind, that I started working on a new software suite, which

would

• integrate proven methods and tools into one coherent environment,

• make it easier for computational and experimental biologists alike to set up and run

elaborate analyses workflows,

• boost the use of consistent and established methodologies by guaranteeing reproducibility

and transparency,

• keep the biology at all stages at the heart of the system and facilitate interpretation of

complex data with intuitive visualisations and helpful summaries

• and ease access to and reuse of public HTS data to avoid replication of efforts and costs.

3.2 The GeneProf System

To address the issues outlined in the previous section, I have created a software suite called

GeneProf, which has recently been released to the general public. I will now first attempt to

give a short overview of the software and system architecture (adapted from the supplementary

material of reference182) before going into detail about design challenges and decisions in the

next section (Section 3.3).

3.2.1 Overview

Foremost, GeneProf is a graphical software suite for the analysis of high-throughput sequencing

data from RNA-seq and ChIP-seq experiments. Combining an array of well-established, pop-

ular algorithms and tools with an assortment of custom-developed functionality, researchers

can channel arbitrarily complex analyses processes through the system taking them all the

way from unprocessed, ”raw” input data files to biologically meaningful results. At the same

time, GeneProf acts as a comprehensive resource of integrated, readily interpretable findings

by making the results of analysis performed within the system available via a user-friendly

web interface (Chapter 4). Apart from searching, browsing and visualising these findings,

all users may also reuse any data in their own analyses, broadening the impact and prof-

itability of the original data and enriching new experiments to a scope otherwise not feasible

(Section 3.3.2.4).

GeneProf simplifies the analysis workflow construction by providing assistive web forms

(”wizards”) that build elaborate workflows without exposing users to the underlying com-

plexities of workflow programming (Section 3.3.2.2). These wizards abstract common, best
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practice analysis steps into a series of logical stages, which researchers can customise quickly

by answering only a few basic questions. The wizards provide a great entry point for new

users and reduce the hands-on time required to perform analyses. Importantly, users may

change all wizard-generated workflows later on to suit specialised requirements, so GeneProf

does not sacrifice the full methodological flexibility offered by the workflow-based approach.

Data and analyses within GeneProf are tightly coupled by organizing both into ”virtual

experiments”159. The experiments are supplemented by all intermediate results and a history

of the entire analysis procedure, not unlike a lab book. Researchers can link to these experi-

ments in publications or share their analyses securely with collaborators prior to publication.

All data and results remain the intellectual property of the user and are confidential until

made public, at which point every visitor of the website can view the entire experiment and

search, browse, visualise and export data. Importantly, registered users can easily import and

reuse public data in other experiments.

The primary user interface for the application is completely web-based (Figure 3.2 and

Section 3.3.2.1), eliminating all setup costs for users: No additional software needs to be

installed. GeneProf makes use of a dedicated, remote compute cluster (Section 3.2.2 and

Section 3.3.4.2), which carries out large-scale genomic analyses and dynamically balances

the load between concurrently running processes over a network of computers. Given the

vast amount of data produced by modern HTS platforms, this is of paramount importance to

maintain the performance and scalability of the software as it gains a wider user base.

In a typical use-case, a researcher would upload her primary experimental data, e.g. short

read sequences output by a HTS platform, to the GeneProf server or import published data

from the Short Read Archive or the European Nucleotide Archive305,306 using the built-in

importer tool. One would then proceed to use one of GeneProf’s wizards to set up a data

analysis workflow. The constructed workflow will then be submitted for execution, which

means it will be entered into a queue. A cluster of computers is constantly monitoring this

queue and one node (that is, one computer in the network) will soon pick up the process

and execute the analysis (Section 3.3.4.2). Once completed, the user will be notified by

email and can then assess the outputs of the analysis following a link in the email. Primary

analysis results (e.g. lists of binding sites for a transcription factor or differentially expressed

genes) are automatically supplemented by a range of informative summary statistics and plots

and researchers can use these to quickly gauge the outcomes of the analysis. At this point,

more experienced users may decide to change parts of the workflow, e.g. by adjusting pa-

rameter settings or by adding additional components to the workflow, to deal with specialised

requirements (Section 3.3.2.3).
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Figure 3.2: GeneProf web interface. GeneProf’s primary user interface is completely web-
based. (a) The GeneProf homepage is the primary access point to the application. (b) ”Genome
trivia” pages provide information about the genomes and genes in all supported reference data-
sets. (c) The experiment main pages provide an overview of all input data, the analysis workflow
and main results for each experiment. (d) A large amount of public data is available for browsing
via the website. (e) An extensive online manual is provided for all components of GeneProf. (f)
The ”workflow designer” shows a visual representation of a data analysis workflow and allows
simple manipulation of the analysis via drag&drop of modular components.

78



3.2.2 System Architecture

GeneProf as a whole consists of three major components: A central web server, an assortment

of databases and an arbitrary number of ”job agencies and workers” (Figure 3.3).

3.2.2.1 Web Server

The GeneProf web server hosts all of the application’s web pages and dynamic components and

constitutes the only part of the system exposed to direct user interaction. The GeneProf web

server handles all essential aspects of user management and the confidentiality of user data,

acts as a primary interface between web front-end components and the GeneProf databases,

converts data between different formats on demand and creates plots, data representations

and summaries for the interface. Crucially, the web server acts as an intermediary between

the experiment (processing job) queue and the user, allowing her to submit new jobs and track

(or cancel) existing ones. Recently I have also added an alternative access layer, called the

GeneProf Web API, which enables programmatic retrieval of data by computer programmers

and data analysis experts for use in external web sites or programs.

3.2.2.2 Databases

GeneProf stores all its data in a combination of a relational database system and a file server

(Section 3.3.4.1). Other than user-submitted scientific data, such as short read sequences and

genomic data, which make up the core of what GeneProf is all about, these data comprise user

records and other internal information such as, for example, the experiment (job) execution

queue.

Smaller units of data and those information that require quick, random-access retrieval

as well as dynamic filtering, sorting and the like can conveniently be stored in a relational

database. In GeneProf, this means that all internal data as well as gene-centric data and

reference annotations (called ”Feature Data” and ”Reference Data”, respectively, throughout

the GeneProf interface) are stored in this part of the database. Large chunks of data and data

that does usually only require sequential access, on the other hand, ought to be stored on a file

server. Here, I make use of a variety of compressed binary data formats to efficiently store and

retrieve bulky data, such as short read sequences and genomic data (e.g. from alignments),

effectively saving (disk) space and time (data access), which are both of major concern when

dealing with the volume of data that we are presented with by modern functional genomics

technologies.
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Figure 3.3: System architecture. GeneProf is split into three major components: A web
server manages all client-side interactions, provides interface components and acts as the primary
access point for job management. A combination of a relational database and a file server stores
all experimental and internal data in a space- and time-efficient manner. Lastly, a flexible network
of compute nodes (”job agencies” and ”workers”) deal with computationally demanding tasks.
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3.2.2.3 Job Agencies and Workers

A powerful computer is of paramount importance to much of the data analysis performed in

state-of-the-art bioinformatics workflows. It is not uncommon for individual processes to take

several hours until completion and to require an amount of memory not currently available

on most standard desktop workstations. GeneProf has therefore been designed to exploit a

network of compute nodes to perform all processing steps required (Section 3.3.4.2).

I call these compute nodes ”job agencies”. Each job agency independently and constantly

monitors the current experiment queue and waits for new jobs pending execution. When a new

experiment is entered into the processing queue, one job agency will pick up this experiment

and spawns a new ”worker” process for this experiment’s workflow. Each job agency may run

several such worker processes in parallel and additional job agencies can be dynamically added

to (or removed from) the computer pool to deal with changing data processing demand.

3.2.3 Availability

A public instance of the GeneProf web application, the primary interface to the GeneProf

system detailed in the previous section, is hosted on infrastructure located at the Institute

for Stem Cell Research / Centre for Regenerative Medicine of the University of Edinburgh.

Funding for the purchase and maintenance of the hardware, which comes at no insignificant

cost, was kindly provided from a combination of sources, foremost the European Commission

Seventh Framework Programme ’EuroSystem’ and the Centre for Regenerative Medicine.

The interface is now available to the general public at http://www.geneprof.org and

academic researchers may use GeneProf free of charge for their own analysis projects.

3.3 Software and Algorithm Design and the Key Chal-

lenges Addressed

Let us now look in detail at some of the major concerns for the development of a software suite

such as GeneProf and explain how these were addressed in the design and implementation of

the software.

3.3.1 A Generic Framework for Executing Analysis Processes

A software suite for data analysis needs to be both comprehensive and flexible, while being

easy to use. Striking the right balance can be a tricky task. Most bioinformatics tools and

algorithms are being developed as command-line-based software only. Traditionally, computer

programmers appreciate the flexibility of command-line programs, because, given the necessary

81

http://www.geneprof.org


Quality
Control

Quality
Control

Alignment Alignment

Alignment
Summary

HTS 
Library 1

HTS 
Library 2

Example Workflow

Quality Control Module
module
instances

 
"Unfiltered Sequences"
(type = Sequence Data)

 
"Filtered Sequences"
(type = Sequence Data)
"Removed Sequences"
(type = Sequence Data)

Inputs:

Outputs:

Algorithm:
for(Sequence SEQ in $INPUTDATA) {
   boolean pass = checkFilters(SEQ);
   if(pass) addTo(SEQ,FILTERED);
   else addTo(SEQ,REMOVED);
}
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Figure 3.4: Workflows and workflow modules. A workflow (left) is made up of components,
which are instances of one or more workflow modules (right). The outputs of one component may
be used as inputs for another component. A workflow module is defined by its inputs, outputs
and the algorithm that transform the former into the latter.

experience, it is possible to wire them together in arbitrary ways by writing custom computer

scripts and inter-converting data formats between steps. This empowers experts to combine

simple individual programs into pipelines (or ”workflows”) achieving complex outcomes.

Workflow-based software suites, such as Galaxy43,153,160 and Taverna213,398, offer an alter-

native approach for dealing with complex data, because they allow users to visually combine

simple software components into ordered ”workflows”, enabling complex analyses without any

need to write computer scripts. In effect, researchers need to spend less time working out how

to use tools and can focus more on the actual analysis. However, existing workflow engines fo-

cus solely on the interconnection of individual programs. Their goal is to achieve computation,

but not a particular biological goal.

I decided to use a workflow-based system at the heart of GeneProf, but to let users focus

on achieving high-level analysis goals rather than low-level computational tasks. To do so, I

added assistive tools that simplify workflow construction (see Section 3.3.2.2). GeneProf’s

workflows are made up of components that are instances of so-called ”workflow modules”.

Modules are small pieces of computer code, that aim to achieve a certain goal by effectively

transforming a set of input datasets into one or more output datasets. In earlier workflow soft-

ware, these modules usually map directly to different command-line programs and the outputs

of one process might have to go through additional modules in order to be converted to the

right format for the next module’s input. GeneProf’s modules, on the other hand, correspond

to logical stages in the analysis process, e.g. there will be one module for short read quality

control (Section 3.3.3.1) or one for gene expression quantification (Section 3.3.3.3). Quite

often the modules do indeed also map to an underlying (external) program, but this is by

no means necessary: A module might well combine several programs into one unit, if that is
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necessary to achieve a biological result. GeneProf makes use of internal data types and han-

dles the conversions between formats automatically – effectively, shifting the responsibility of

worrying about data formats from the user to the module programmer. These two key fea-

tures, biology-focused modules and automated format conversion, make workflow construction

substantially more straightforward and intuitive.

Importantly, from a programmer’s point of view, GeneProf is still a workflow-based sys-

tem, which offers some convenient advantages for developers: Benefiting from a comprehensive

framework, bioinformaticians and algorithm developers can easily implement additional func-

tionality without needing to worry about peripheral data processing requirements. For exam-

ple, in order to develop a new alignment tool (Section 3.3.3.2) it should not be necessary to

deal with issues of quality control or what could be done with the aligned reads afterwards.

Developers can rely on GeneProf’s framework to take care of these issues and only need to

specify the particular types of inputs they require for their program and define which types of

outputs are produced. Following a well-defined specification, additional functionality can be

rapidly and efficiently implemented.

GeneProf currently (software version v1.1203282) features 80 workflow modules and many

more are under development. For a complete list of all modules refer to Section D.4.

3.3.2 Making High-Throughput Sequencing Widely Accessible

There are now masses of HTS data published in the literature every week. Equally, every week

sees the release of new software and tools refining methods for part of the analysis process and

experts constantly improve the protocols and workflows dealt with. For many experimental

biologists and bioinformaticians alike, it is practically impossible to keep track of all the latest

algorithms and the expertise required for in-depth data analysis. This challenge holds back the

optimal exploitation of HTS data to its full potential and hinders the progression of science.

In the following sections, I will discuss how GeneProf attempts to ease access to HTS for

researchers from all backgrounds without extensive training and without special equipment.

3.3.2.1 A User-Friendly Web Interface

The first step towards an accessible data analysis suite accessible is a user-friendly interface.

As previously discussed, most bioinformatics software is delivered as command-line tools (Sec-

tion 3.3.1). This is partly as a consequence of the publication-driven funding and partly due

to the fact that good algorithm developers do not always make good interface designers. A

graphical interface, though, helps to decrease the burden of getting used to a new piece of

software. A good interface stands out by more than just the visual appeal – although the

visual impression makes the overall user experience more pleasant: The interface helps novice
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users to quickly discover the main functionality and guide the learning experience towards

more advanced features. Experienced users benefit from interfaces that allow to speed up or

even automate the handling of common tasks.

Vitally, interface design starts before the program is even started up the first time, at the

installation process. Many potential users are (rightfully) scared off by complicated or poorly

documented installation procedures, especially, if these include many external dependencies

or even the operating system- or hardware-specific compilation of components that are not

bundled with the main software.

An attractive approach to overcome the installation burden and present users immedi-

ately with a usable, graphical interface is the delivery of software via a web interface: Most

researchers nowadays will be familiar with the use of a web browser and many will have expe-

rience with at least some of the successful web applications developed by others135,153,259,290.

The responsibility for the set up of software and dependencies lies with the provider of the ser-

vice. Similarly, software updates can be managed centrally and users can always benefit from

the latest release version without having to install updates themselves. Another advantage is,

that users can access the software from anywhere, which might be of particular importance in

a collaborative research environment with scientists accessing the same data analysis projects

from their office or home computer or even from different sites across the world. Likewise data

and results stored on the web server will be immediately available across sites.

With these considerations in mind, I chose to implement the primary user interface of

GeneProf as a Java Enterprise web application (Section 3.2.2.1 ). Java technology has a

proven track-record of delivering high-quality, stable and large-scale web applications and is

one of today’s most used and popular programming languages with a extensive set of publicly

available extensions and software components allowing for rapid expansion of the system. A

dedicated, high-performance compute cluster manages computationally demanding analysis

processes in the back-end (Section 3.2.2.3 and Section 3.3.4.2), so no special equipment

will be required to use GeneProf: Any reasonably modern computer with a web browser will

do (tested on Windows, Mac and Linux using Mozilla Firefox 3.5+, MS Internet Explorer 8+,

Chrome, Safari and Opera).

The GeneProf homepage is a good example of how I attempted to make the application

accessible to users with different levels of background knowledge. The page (Figure 3.5)

summarises much of GeneProf’s functionality at a glance: Apart from the navigation bar

(shared between all pages, right at the top of the page, as will be familiar to most users from

other web pages), the home page streamlines simple and rapid entry to some of the most

common activities. Without further ado, users may search for data about genes of interest,

start a new analysis project, browse public datasets or open the manual, tutorials and help

pages. Furthermore, the page highlights some examples of analysis results and the latest
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Figure 3.5: GeneProf homepage. The homepage of the GeneProf web interface is the
primary entry point to the data analysis and search functionality of the software suite. Users
may easily and quickly start new analysis projects, continue existing ones, browse data and
results made public by other users or access advanced visualisations.

experimental data made public by users of the application. This allows new users to get

a grasp of what the software is about and might help them to discover interesting findings

relevant to their own research.

The whole application follows a tiered access model, starting with simple tasks and intro-

ducing users progressively to more advanced functions of the system: Novice users can start by

looking through public data and analyses performed by others and then proceed to start a new

experiment, upload their own data and use the built-in analysis wizards to set up a standard

analysis workflow (Section 3.3.1 and Section 3.3.2.2). As users become more experienced,

they can start modifying the analysis workflows in detail or even set up completely new ones

on their own using the dynamic workflow designer tool.

I have designed a number of step-by-step tutorials to help people get started. The tutorials

cover topics such as how to make the best use of public data and the analysis of RNA-seq

and ChIP-seq data. Additionally, all pages of the user interface, all analysis modules and

important concepts are explained in detail in the online manual (http://www.geneprof.org/

help_and_tutorials.jsp).

Lastly, GeneProf has a built-in bug and feature request tracking component. It can be

very frustrating to get stuck at some point using a new software application due to technical

fault or missing functionality. Such problems cannot always be foreseen and avoided, but

a successful software system will be open for input and respond to feedback by the user

community. For this purpose, I have wired a simple issue tracker tool into the GeneProf web

interface. The advantage of a built-in solution over more feature-rich existing frameworks,

e.g. Bugzilla (http://www.bugzilla.org) or Mantis (http://www.mantisbt.org), is the

seamless integration into the GeneProf framework. There is no need to set up further user

accounts or redirect to external pages, instead, users can issue reports directly from within

85

http://www.geneprof.org/help_and_tutorials.jsp
http://www.geneprof.org/help_and_tutorials.jsp
http://www.bugzilla.org
http://www.mantisbt.org


the application using their normal accounts.

3.3.2.2 Integration of Expert Knowledge

A user-friendly interface with good help and tutorials goes a long way when accessibility of

a data analysis software is concerned, but even the best interface design cannot necessarily

replace the expertise and experience that is often required to perform complicated data analysis

tasks. As we will see later on (Section 3.3.3), HTS data analysis is a diverse process and

involves numerous steps where informed choices need to be made about how best to proceed.

Even if a software tool opens up all the possibilities and makes them easy enough to apply,

new users will be baffled by the choice and find it difficult to proceed sensibly.

I sought to alleviate the problem by assisting users in their decision process. I established

best practice protocols for common data analysis scenarios based on the literature and then

built this knowledge into the GeneProf application by supplying assistive web forms, called

”wizards”, for these scenarios (Figure 3.6.a). Most users will be familiar with wizards from

other applications such as installation wizards for programs of all sorts, office text processing

products or the like. GeneProf’s wizards abstract low-level analysis steps into a series of logical

stages, replacing the manual construction of workflows as combinations of workflow modules

(Section 3.3.1) with a few simple questions that need to be answered by the user. On

the basis of the answers, the software will then automatically construct an analysis workflow

by connecting together an appropriate series of workflow modules. Essentially, the wizards

conceal one layer of additional complexity, which will be of particular benefit to novice users,

but even expert data analysts benefit from the use of wizards for rapid, streamlined data

analysis.

Importantly though, the wizard-created workflows are not static and can subsequently

be adjusted manually to customise the workflow and suit specialised requirements. In the

next section (Section 3.3.2.3), I will demonstrate why this is of great importance for actual,

powerful data analysis.

At the moment, GeneProf features two wizards for constructing full-scale, start-to-finish

analysis workflows:

• RNA-seq Analysis. This wizard combines GeneProf’s custom-built quality control

procedures (Section 3.3.3.1), with short read alignment (Section 3.3.3.2) using either

the Bowtie292 or Tophat550 software, gene expression quantification (Section 3.3.3.3)

and differential expression analysis (Section 3.3.3.4) using the DESeq algorithm7 (Fig-

ure 3.6.b). In addition, informative summary statistics and plots will be created at all

stages of the analysis process.

• ChIP-seq Analysis. Like the RNA-seq wizard, this wizard uses quality control and
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Figure 3.6: Analysis wizards. (a) Screenshot from the third step of the configuration of
the RNA-seq wizard. The green ticks at the top-left indicate that steps 1 and 2 have already
been completed. (b) Schematic representation the workflow created by the RNA-seq wizard by
putting together workflow modules. (c) Workflow created by the ChIP-seq wizard.
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alignment modules for the initial stages of the analysis. Alignment is followed by binding

peak detection (Section 3.3.3.5) with the MACS software631 and the association of

those peaks with genes (Section 3.3.3.5) using custom-built and published methods406

(Figure 3.6.c). The wizard has initially been designed for the analysis of transcription

factor binding sites (TFBS), but I found it also useful for the analysis of other ChIP-seq

data, e.g. for histone modifications.

In additition to the above-mentioned, there are three additional wizards simplifying aspects

of the analysis process:

• Quality Control. This simple wizard streamlines the task of running many short read

libraries through GeneProf’s quality control modules.

• Alignment. If many datasets are to be aligned to the same genome, this wizard can

speed up the workflow construction significantly by extending an existing workflow with

the appropriately connected alignment modules (using Bowtie292).

• Gene Expression. Finally, this small wizard manages the quantification of gene ex-

pression intensities from a number of aligned short read datasets using custom-built

modules.

I believe that GeneProf’s wizards will in future help to improve the consistency of analysis

protocols by providing tested and proven methodologies building a skeleton for further analysis.

Existing wizards may be easily updated to take novel tools and methods into account and

additional wizards (e.g. for specialised histone modification analysis, miRNA and short RNA

data and the like; see Section 3.4.4) can be added as required.

3.3.2.3 Enabling Exploratory Data Analysis

The wide spectrum of applications made possible by HTS make it impossible to devise one

solution that fits all analysis requirements. GeneProf’s analysis wizards (Section 3.3.2.2)

constitute a solid basis for advanced analysis by providing an established basic workflow for

almost any type of analysis, but it will frequently be necessary to customise the workflows

subsequently to achieve optimal results. Usually, the adjustments required are not very far-

ranging and quite often the correction of just a few parameters might suffice. Also, it is not

always possible to know at the outset of a data analysis project the best way to deal with the

data at hand. For instance, how could one definitely decide on a way to deal with the quality

control aspect of the analysis without knowing what the quality of the data is like?

GeneProf has been designed to support exploratory data analysis and make progressive

adjustments straightforward and quick to deal with. Workflows constructed using the data

analysis wizards will include special modules calculating informative summary statistics and
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Figure 3.7: Sequence summary plots. Automatically created plots summarizing short
read data of RNA-seq reads340. All plots in this example are from the GeneProf experiment
gpXP 000058. (a) Nucleotide composition of short reads in all individual libraries across the
length of the 36bp sequences. As is often observed, the distribution is slightly skewed in the first
bases, but becomes more uniform towards the end of the reads. (b) Average Phred-like quality
score per sequencing cycle and library. The quality drops notably with progressive sequencing
cycle. Interestingly, the qualities are recovered in cycle 7 after an initial drop, probably thanks
to an automated recalibration. (c) Frequency of reads with a certain average quality score. This
plot can help to decide on appropriate thresholds for discarding low-quality reads.

plots at various stages of the process. The summaries make it easier to get a feel for the data

and to spot flaws in the analysis procedure or data.

For example, I have often observed that the quality of short reads, especially in earlier

HTS libraries where the technology was still quite new, declines rapidly with the length of the

reads. That is, base calls at the end of a read are less reliable than those at the beginning,

because errors accumulate in later sequencing cycles (Section 1.2). Such shortcomings are

readily spotted in the pre- and post-quality control sequence summary statistics calculated by

GeneProf alongside the primary analysis (Figure 3.7) and, if it turns out that the alignment

of the sequences to the genome is hindered by the presence of too many erroneous bases,

it might be advisable to trim off a portion of the read. GeneProf’s quality control module

can be customised to perform the trimming either statically, by cutting off a fixed number

of nucleotides from the end of each read, or dynamically by trimming off the ends after the

quality drops below a certain threshold (Section 3.3.3.1). After adjusting the parameters,

GeneProf will automatically re-run all parts of the analysis that were dependent on the altered
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Figure 3.8: Alignments summary plots. Semi-automatically created plots detailing in-
formation about the alignment of RNA-seq reads340. All plots in this example are from the
GeneProf experiment gpXP 000058. (a) Ambiguity of alignments is given as the number of pos-
sible matches in the genome identified for any one particular read. Unaligned reads or reads
with more than 10 possible alignments are listed as ”none”. In two of the liver libraries over 45%
of all reads could not be aligned, which might be problematic, but is not unusual in early HTS
libraries. (b) The distribution of reads across all mouse chromosomes (including the mitochon-
drial pseudo-chromosome). The distribution is similar in all libraries and reflects the density
with which genes are spread across the chromosomes.

(a) (b) (c)

Figure 3.9: Gene expression summary plots. Semi-automatically created plots to support
the interpretation of gene expression data. All plots in this example are from the GeneProf
experiment gpXP 000058 with data from a published RNA-seq study340. (a) Histograms of
the log2-scaled expression values (reads per million) in the independent HTS libraries. (b) A
heatmap of 1, 000 randomly selected genes clearly demonstrating the similarity between libraries
from the same tissue. Some genes which appear to be differentially expressed appear at the top
of this heatmap. (c) Visualisation of the contribution of the individual libraries to the first three
principal components (PCs). The first PC explains some 58% of the variance of the data and
separates kidney nicely from liver.
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Figure 3.10: ChIP-seq peak summary plots. Semi-automatically created plots to support
the interpretation of DNA-protein binding data. All plots in this example are from the GeneProf
experiment gpXP 000012 with data from a published ChIP-seq study75. (a) Number of putative
binding sites (ChIP-seq peaks) detected for the 15 DNA-associated proteins studied. (b) Distri-
bution of these binding sites with respect to known genes. Each binding site is assigned to one of
the following categories: ”Narrow / wide promoter” = within 0.5kb (narrow) or 2kb (wide) up-
or downstream of the transcription start site (TSS) of a gene, ”exonic” = anywhere within an
exon of a gene, ”intronic” = anywhere within an intron of a gene, ”5 / 10 / 20 / 50kb upstream”
= up to 5 / 10 / 20 or 50kb upstream of the TSS and ”none” = none of the other categories. (c)
Pair-wise overlaps of binding sites. The numbers (and colour intensity) report the percentage of
binding peaks that appear in both libraries. Overlaps are calculated after extending the peaks
by 500bp in both directions.

modules to make sure that results are consistent.

Thus, the combination of wizards with automated summary statistics and simple cus-

tomisation of workflows empowers researchers with a novel path for rapid exploratory data

analysis:

1. Create a basic workflow using an appropriate wizard.

2. Assess all relevant summary statistics.

3. If the statistics indicate any problems, adjust the analysis workflow and re-run, then

return to step 2.

4. Proceed with downstream analysis, wet-lab work, etc.

There are four common types of data summaries used by the wizards (although they can,

of course, also be employed in manually constructed workflows):

• Sequence Data Summary. Analysis of the composition of short read libraries in terms

of the number, length and frequency of reads, their nucleotide composition and the base-
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call quality scores, if available (Section 3.3.3.1). This information can be used to spot

problematic sequencing runs or erroneous cycles. For an example, see Figure 3.7.

• Alignment Summary. Overview of the outcome of the alignment of one or more

HTS libraries containing information about the number of aligned reads, the genomic

distribution of alignments over chromosomes and alignment ambiguity (Section 3.3.3.2

and Figure 3.8), useful as a gauge of alignment success rate and to spot genomic

imbalance or bias.

• Gene Expression Summary. Statistics and plots describing the distribution of gene

expression values in one or more libraries, supplemented by heatmaps, histograms and

principal component analyses (Section 3.3.3.3 and Figure 3.9). This information

helps to get a feel for the genes expressed in datasets and visualises the similarity (or

difference) between multiple libraries.

• ChIP-seq Peak Summary. An overview of the number and lengths of peaks in a

dataset. The analysis will also look at the distribution of binding sites with respect to

known gene models, e.g. by checking how many peaks fall within promoter, upstream

or genic regions, and at the overlaps of peaks from different proteins (Section 3.3.3.5

and Figure 3.10). Not only does this summary help to more quickly get an impression

of the binding behaviour of one protein, but it is also highlights potential interactions

of several factors.

3.3.2.4 Data Providence and Transparency

With the rapid rise of HTS, there was initially a distinct lack of established tools and method-

ologies for appropriate data analysis. As a consequence, many research labs had to come

up with novel, ad hoc solutions to the problems they were facing. The methods sections

of HTS-based publications (in particular the early ones) are most diverse and often riddled

with ”custom scripts” patching together analysis workflows. It has previously been observed

that such cryptic methodologies lead to irreproducible results220. Publications with well-

documented methods and readily available data, on the other hand, tend to be cited more

often426.

In order to critically assess published findings, it is essential that other researchers can

evaluate and assess the primary research data, understand the way in which it was analysed

and repeat the procedure. Successful approaches can serve as protocols for similar stud-

ies and is desirable that the methods are clear enough for others to exploit them for their

own investigations. For this to work, two requirements need to be fulfilled: Firstly, unpro-

cessed, ”raw” experimental data needs to made publicly available. Most biological journals
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do now require high-throughput datasets to be made available via public repositories such as

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) or the Sequence Read

Archive (http://www.ncbi.nlm.nih.gov/sra). Secondly, the analysis procedure needs to be

described in detail. While research journals, of course, expect the methods to be described

for any accepted publication, the scope and format of the articles often make it impossible

for scientists to include every minute detail such as, for example, which parameter settings

have been used for algorithms run or which software versions were used – these will not be

of interest for most readers, but may have a drastic effect on the outcome of the analysis. If

custom software were used, this does additionally need to be made available, but external de-

pendencies, that is, other programs installed on the developer’s computer, can make it difficult

to emulate the environment in which the analysis was originally performed, again potentially

changing the results of the analysis.

In order to tackle these problems, it has been proposed to run data analysis in tracked

environments keeping a record of the complete history of analysis steps and program execu-

tions160,357,398. GeneProf’s workflow framework provides the ideal platform for the implemen-

tation of such a strategy: The analysis modules applied in GeneProf provide a good repertoire

of advanced analysis functions. Every change to the analysis workflows as well as each execu-

tion of the individual modules is tracked via the system and presented to the user in the form

of a complete, transparent analysis history, not unlike a lab book. Software versions are care-

fully controlled and legacy versions of outdated modules are kept to ensure the repeatability of

previous analyses. Unlike in other systems, GeneProf’s workflows incorporate all the scientific

data. Existing software usually considers the analysis workflow a distinct entity of the data

at hand: The workflow itself is a tool (or a protocol) that can be applied to different datasets.

In GeneProf, however, each workflow is one instance of the combination of several tools to

one set of data. In other words, a GeneProf workflow is one complete analysis experiment. I

found that this helped experimental scientists to conceptualise complex analyses.

Analyses carried out within GeneProf can be made public in conjunction with the publica-

tion of research findings. They may be linked in articles to supplement the methods section and

an automatically generated summary report covering the entire experiment from input data

via analysis workflow to the results, may optionally be included as a supplementary document.

This makes it more straightforward to include details about the data analysis methodology

and helps scientists in future to easily recapitulate work carried out by others. We are making

every effort to maintain public data in the system indefinitely and any GeneProf user may

import public data into their own experimental workflows to enrich their analysis, effectively

not only facilitating the reuse of established methodologies, but also of existing experimental

data, helping to save costs and effort in data generation.
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3.3.2.5 Visualization of Large-Scale Data

The interpretation of the outputs of large-scale functional genomics experiments is a challeng-

ing task. While it might be possible to look at, say, individual genes, the sheer mass and

extent of data make it difficult to grasp the findings as a whole. Visualisations help to identify

consistent patterns and derive advanced conclusions.

As far as genomic data is concerned, one of the most successful and useful methods for

visualising large amounts of data has come in the form of genome browser software such as

the UCSC Genome Browser259, Ensembl135 or IGV457. Genome browsers display a linearised

version of the genome overlaid with a selection of annotation tracks, e.g. for known gene

models or other regions of interest and alignment data (Section 3.3.3.2). Users can ”browse

through the genome” and examine particular regions, for instance, the surroundings of a

gene implied in the regulation of a particular biological mechanism, to investigate expression

patterns (RNA-seq data) or the binding of regulatory proteins (ChIP-seq data). This is a very

quick and straightforward, yet incredibly efficient way to spot interesting patterns in genomic

data (for an example, see Figure 4.4).

I decided to integrate a simple genome browser, making use of the GenomeGraphs package

for R115, directly into the GeneProf web interface to allow users to quickly get a feel for

their own research data and to compare these with other genomic information available in the

system. This browser is capable of juxtaposing up to 50 tracks based on GeneProf alignments of

ChIP-seq and RNA-seq reads, binding peaks or other, arbitrary pieces of genomic information

at once and without further processing by the user. The visualisations can be customised in a

number of ways, e.g. by changing the colour, labels and plotting methods for individual tracks,

and can be exported in various publication-quality image formats or as a set of R scripts to

allow further customisation by experts. Examples of plots generated via GeneProf’s genome

browser will be shown later (Figure 5.8 and Figure 5.10). For more advanced features

and high-volume usage (GeneProf’s genome browser cannot rival the speed of established,

specialised software), users may export the genome annotation tracks in a variety of popular

formats and use those files with another genome browser software of their choice.

Another powerful visualisation feature in GeneProf is the ”Visual Data Explorer” (VDE), a

hub for rapid creation of plots from large collections of datasets. The VDE accesses GeneProf’s

repository of public experimental data (Chapter 4) and offers selected techniques to plot data

from many different experiments together. The data can be grouped by various annotations

allowing users to look at the same data from many different angles. This opens innumer-

able ways to visualise the data. The VDE is currently still in an early development stage

(Section 3.4.4), but already has three different visualisation techniques, namely correlation

matrices, principal component analysis and histograms. These plot types have been chosen,
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Figure 3.11: GeneProf WebAPI. The GeneProf WebAPI works as an interface between
GeneProf’s extensive databases of experimental data and results and external programs on the
web or stand-alone software.

because they allow to concentrate large amounts of data into comparatively simple, easily

interpretable plots and many scientists will be familiar with them75,92,171. Further advanced

visualisation methods will be added in future releases. Please refer to Figure 4.5 for examples

of plots created using the current version of the VDE.

3.3.2.6 Integration with Other Software

The diverse range of applications and linked requirements for data processing of HTS (Sec-

tion 3.3.3) make it impossible for any software developer (or software development team) to

cover the entire field of algorithmic tools necessary. I have therefore never been under any illu-

sion that GeneProf might be a universal solution for all researchers. That being said, I believe

that the suggested software suite provides a solid foundation for most HTS-related research

and should be sufficient to carry out the majority of tasks desired. Advanced downstream

analysis, however, might at times benefit from the use of additional software not (or not yet)

integrated into GeneProf. Rather than trying to outdo specialised tools, I have attempted to

make GeneProf work together with them by providing functionality that makes it possible to

transfer data from the GeneProf databases into external software.

The functionality in question has been summarised into a software component called the

”GeneProf Web Application Programming Interface (API)” (Figure 3.11). The web API is a

specification of web services by which advanced data analysts and computer programmers can

retrieve data from the GeneProf web application via a well-defined set of hypertext transfer

protocol (HTTP) requests, or, in other words, a set of universal resource locators (URLs) with

parameters. Apart from the actual data, the web API can also be used to retrieve metadata

about experiments and datasets.

I have specifically investigated the use of the web API for the integration with three software

packages or environments and shall now briefly illustrate how the interaction will work:

• R: The R435 framework for statistical computing is a powerful and popular platform

for bioinformatics work, especially thanks to the availability of many add-on libraries via

the Bioconductor repository151. GeneProf can export gene-centric and genomic data in

a file format that can be loaded directly into R and by using the Rcurl package a direct

95



connection to the GeneProf Web API can be established, effectively allowing users to

load data into an active R workspace as if the data was loaded from a local hard disk.

This mode of interaction facilitates highly-customised, in-depth downstream analysis

with R, while benefiting from the rapid, visual and traceable data processing offered by

GeneProf.

• Unix command-line: Specialists who are familiar with the use of Linux, Macintosh

or other Unix-based operating systems, may concatenate Unix’s command-line tools into

rather complex chains. Using tools such as wget, it is straightforward enough to stream

GeneProf data via the web API to any command-line tool in a Unix environment. Of

course, IT-savvy users are not limited to basic Unix-tools, but can use the web API in

conjunction with any command-line-based bioinformatics software that is set up on their

computer.

• DI.S.C.O: As a prototypical application of the web API for the integration of GeneProf

data with other advanced graphical tools, I have furthermore provided import and export

functionality to support the use of short read alignment and RNA-seq gene expression

data in DI.S.C.O. (Skylaki, L. & Tomlinson, S.R., manuscript in preparation), a graph-

ical software tool for genomic clustering analysis developed in our group.

Similar import/export functionality could be provided for many other tools with minimal

effort.

The web API is fully documented on the GeneProf website and can be accessed from:

http://www.geneprof.org/help_advancedtopics.jsp.

3.3.3 Data Processing Requirements

The prospective uses of HTS technology for the study of diverse biological mechanisms are vir-

tually unlimited and the ways in which data analysts deal with the data produced are certainly

no less diverse. Nevertheless, certain set of tasks is pervasive to all analyses independent of

the specific nature of the experimental setup and it is crucial for any software system targeted

at HTS data analysis to support and streamline these processes.

3.3.3.1 Assessment and Control of Raw Data Quality

The success of any biological experiment stands or falls with the quality of the experimental

data: Where data is flawed, unreliable or plainly wrong, researchers might easily be misled into

drawing incorrect conclusions. It is therefore of paramount importance to assess and confirm

the quality of input data prior to further processing and to take appropriate actions wherever

doubts arise. Like any other large-scale assay, HTS data is subject to a multitude of steps
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Error Probability pn(x ≥ 1)
Quality Score Q n = 1bp n = 36bp n = 100bp
10 0.1000 0.9775 1.0000
20 0.0100 0.3036 0.6340
30 0.0010 0.0354 0.0952
40 0.0001 0.0036 0.0100

Table 3.1: Phred quality scores. The probability of reading out at least one incorrect base
pair (pn(x ≥ 1)) in a read of length n, if all nucleotides were of quality score Q. Based on
http://en.wikipedia.org/wiki/Phred_quality_score.
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Figure 3.12: Read error probabilities. The probability (y-axis) of finding at least one (solid
lines) or three (dashed) miscalled bases in a short read sequence of a given length, rises strongly
with dropping read-quality (x-axis).

that might introduce artefacts, biases and errors into the process and, while it is not always

possible to avoid those flaws completely, it is important to be aware of potential problems so

one can account for them when interpreting the data.

Issues affecting HTS data can be broadly divided into two categories: (i) Problems intro-

duced during materials handling and sample preparation, either due to procedural, human

error or caused by technical faults, and (ii) errors in the sequencing process itself, that is,

problems impairing the quality of the read-out of the correct nucleotide sequences.

Although the sequencing instruments and protocols have been considerably optimised over

the last years to tackle both types of issues, it is still advisable to assure the quality of any

new dataset produced. The de-facto standard format for delivering HTS data nowadays is

FASTQ, a simple text-based file format, which, in addition to the nucleotide sequence of each

read, stores a measure of data quality for each nucleotide in the read, the ”quality score”. The

quality score reports, for each nucleotide, the probability that the respective read-out is correct

and corresponds in scale to a Phred-like score between 0 and 50 (Table 3.1 and Figure 3.12).

The scores are provided by all major HTS platforms, although the technical details of how

they might be estimated vary. In the FASTQ format, these numbers are encoded as characters
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so that it is possible to represent each number as a single symbol. Unfortunately, due to a

lack of standardisation in the early days of HTS, a number of variations of the format have

emerged that differ slightly in the way these characters are encoded85, that is, the characters in

different versions of the file format will actually represent different numbers. The convention

does now seem to converge increasingly to the use of the version of the format as championed

by the Welcome Trust Sanger Centre (Hinxton, UK), but especially for older datasets it

might sometimes be necessary to convert between different encodings – unfortunately, it is

not always possible to determine automatically which encoding is being used. In GeneProf,

I decided to always use the Sanger-style format and to make an attempt at automatically

suggesting the correct format of uploaded datasets by looking at the range of values encoded

by the characters and subsequently converting any non-standard data to the default format.

This procedure usually works reasonably well, yet will at times require user input to correct

mistakes. Thanks to the use of a system-wide default format, users do not usually have to

worry about different formats any more and can focus on the interpretation and use of the

data.

By using the quality scores as well as information about the nucleotide composition and

distribution and the frequency of reads, one may draw conclusions about the overall qual-

ity of an HTS library and it might be possible to single out and remove or trim erroneous

reads96,489 or to correct them based on distribution assumptions and similarity to other reads

in the library216,257,352,475. As described earlier (Section 3.3.2.3 and Figure 3.7), GeneProf

summarises raw short read data in a collection of informative plots detailing information about

the quality scores and nucleotide composition of the reads. The information gathered from

these reports can be used in conjunction with a special workflow module (Section 3.3.1) to

efficiently handle problematic data by either filtering out reads that fail to pass user-defined

criteria on the basis of average, minimum or cumulative quality score, sequence complexity,

nucleotide content and length or by dynamically trimming leading or trailing erroneous frac-

tions off otherwise good-quality reads. In order to make it easier for inexperienced users to

choose sensible thresholds for this step, I have devised three levels of strictness that should

generally achieve good results:

• Level 1 - ”lenient”: Only the very worst reads (average quality score mean(Q) < 8)

will be removed from a dataset. This setting is currently the default, being the most

conservative option, and might be the most advisable to use, in particular, for older

datasets.

• Level 2 - ”stringent”: Reads will first be trimmed after the first occurrence of a uncertain

nucleotide call (N). Any read which after trimming is shorter than 12nt or has an average

quality score mean(Q) < 15 will be removed. The option will actively try to trim only
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...ACCTGAGGATTTATCTCCCGGCCGATGAACTGTTGAATAAAGGATTTA...
    CCTGAGGA
      TGAGAATT
        AGGATTTA                           AGGATTTA

Reference Genome
Perfect Match
One Mismatch
Ambiguous
Unalignable

?

AAAGAAGC

Figure 3.13: Short read alignment. Illustration of different, conceivable scenarios for short
read alignment. Short reads, here 8bp in length, are aligned to a reference genome. Often, a
unique match in the genome can be identified, especially, if permitting for mismatches. Some
reads will align to multiple possible positions and others again will fail to align at all.

low-quality parts of reads, but ought to still maintain most reads in modern datasets.

• Level 3 - ”draconian”: Any read with a average quality score mean(Q) < 20 or which

contains any base call with a quality min(Q) < 10 or which contains an uncertain base

call (N) anywhere, will be discarded. This is the strictest version of the filter and might

remove a sizeable fraction of some datasets, but will ensure that the remaining reads are

of exceptional quality and reliability.

In summary, GeneProf encourages users to look into the quality of their raw data and

provides the tools to filter out problematic reads. The quality control process is straightforward

and quick and I hope that this will help to improve the awareness of potential issues in future

applications.

3.3.3.2 Short Read Sequence Alignment

The area that has probably attracted most attention in the early days of HTS is the alignment

of short read sequences. ”Sequence alignment” is the process of arranging two nucleotide

sequences (DNA or RNA) next to each other (the same principle applies to protein, i.e.

amino acid sequences, but shall not be further discussed here). For HTS specifically, I am

talking about the procedure by which sequenced reads are arranged on a reference genome or

transcriptome assembly, effectively identifying the region of the genome where the fragment

represented by the read originated from (Figure 3.13).

Although sequence alignment is not a new issue per se, with successful solutions having been

in place for years, the sheer volume of data produced by HTS suddenly posed new challenges:

Efficiency was now key. The established solutions (e.g. BLAST4) were quite simply not fast

enough to make it feasible to routinely align millions of read sequences to a mammalian-sized

genome. Consider this simple thought experiment: The most straightforward approach to

sequence alignment is a simple lookup of the shorter sequence in the longer reference. Since

one does not know a priori where the sequence might align, one would have to iterate the entire

reference stepping through one base-pair at a time and check whether the two sub-sequences

match. The haploid human genome, for example, is approximately 3 billion base-pairs in size.

Assuming a 50bp read length, the exhaustive – that is, looking for all possible matches, rather
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than just any one match – alignment of one sequence would then require some 150 billion

comparisons of a pair of nucleotide letters. This amount of calculations can be performed

on a modern high-end computer in just under a second and thus the alignment of just 10

million sequences (comparatively little with state-of-the-art HT sequencers) would take several

months∗. The situation is further complicated by the presence of sequencing and assembly

errors and structural variations in genomes (SNPs, insertions, deletions and inversions), which

necessitate allowing for mismatches between the two sequence strings. Finally, transcriptomic

assays, that is, the sequencing of reverse-transcribed mRNA, can lead to short read sequences

spanning the junctions of multiple exons. In order to be able to find a match for such a

sequence it would thus be necessary to take known exon junctions into account (a strategy

that stands and falls with the quality of the gene annotations) or to automatically discover

likely junctions.

A number of more sophisticated algorithms have been proposed to deal with these issues

(reviewed in136,551). Although the details of different implementations vary, nearly all algo-

rithms work by the principle of first narrowing down the search space by applying heuristic

methods and subsequently traversing the possible matches using sensitive, traditional sequence

alignment methods. One way to quickly narrow down the search space is the use of a partic-

ularly efficient search ”index”. An index is essentially a structured lookup-table of some sort

that makes it possible to quickly find matches to a search query. For short read alignment

algorithms, it is possible to distinguish between two main approaches:

• Hash-based algorithms310,312,320, define a so-called ”hash function” which transforms a

DNA-sequence into a numeric representation which may then be used to index a lookup-

table. Hashes are well-established and popular tools in computer programming and very

straightforward to implement. If the hash function is sufficiently simple to calculate,

yet avoids conflicts (i.e. multiple DNA-sequences resolving to the same hash code), the

method can be very efficient, but memory requirements can get out of hand: For long

reads it will not be possible to store all possible matches in the genome in memory, so it

is usually necessary to use a seed-based approach, which splits input reads into shorter

fragments, which may be aligned independently and combined later on. Nevertheless,

the memory requirements of hash-based alignment programs are often not trivial (several

tens of gigabytes of memory may be necessary for mammalian-sized genomes). While

it, of course, would be conceivable to further reduce the memory requirements by using

smaller seeds, this would drastically impair the speed of the programs.

• Aligners based on a Burrows-Wheeler transformation (BWT)292,308,313, typically use

an Ferragina-Manzini-Index (FM index), an index based on a suffix array created from

∗N.B. these estimates are deliberately left very vague since the precise measures depend on the implemen-
tation, exact hardware specification and load of the computer.
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Figure 3.14: Short read aligners. Comparison of speed (a) and memory usage (b) of four
selected short read alignment programs292,310,320 applied to two test datasets (A = 3, 724, 383
reads, 21bp length; B = 3, 265, 654 reads, 21bp length) against the mouse reference genome
(NCBIM37 assembly). The comparison was performed using default parameters and the latest
version of each software available in December 2008.

BW-transformed input sequences. This particular index structure has proven to be very

memory-efficient (typically less than 3GB even for the human genome), while allowing

for rapid substring-queries as they are necessary for alignment. Thanks to the reduced

memory footprint of the index, implementations of BWT-based alignment algorithms

can focus on speed and as a consequence the corresponding programs are now typically

orders of magnitude faster than hash-based algorithms.

For our purposes, I felt it was not necessary or even sensible to attempt to rewrite an

entirely new solution to the alignment problem, but I rather decided to make use of a proven

method from the literature. Based on my own evaluations (for instance, Figure 3.14), I

chose to use Bowtie291 for shorter sequences (< 50bp) and Tophat550 (in itself based on

Bowtie) for longer sequences and paired-end reads, since these appeared to offer the best

trade-off between accuracy (correct alignments), flexibility (useful parametrisation options)

and, in particular, speed (number of alignments per second). I have therefore installed both

programs on the GeneProf servers and pre-built genome indices for all GeneProf-recommended

reference datasets. I then implemented a workflow module that wraps these programs, thus

making it possible to execute alignments within any GeneProf workflow.

3.3.3.3 Quantification of Gene Expression

One of the major prospective uses of HTS technology for stem cell biology and biology as

a whole, is the accurate profiling and comparison of gene transcription in various cell types

or treatment conditions via the sequencing of transcript fragments (RNA-seq or Tag-seq;

Section 1.2.2.2). Going from raw nucleotide sequences to a measure of gene expression

interpretable by domain experts, requires the quantification of the amounts of transcripts

stemming from each individual gene. The fundamental idea is rather simple: The more reads

one observes from any given gene, the more transcripts there were in the first place and thus
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Figure 3.15: RNA-seq gene expression. A measure of gene expression intensity can be
calculated by adding up all reads aligning to the exons of a specific gene model. Ambiguously
aligned reads may be assigned proportionally.

the stronger a gene is expressed.

After aligning short reads to the genome, one knows from which region of the genome each

read originated. In these days, we are fortunate enough to have a good annotation for the

human genome and most model organisms, so it is then possible to compare the aligned read

positions with the locations of annotated gene models and to sum up the number of reads

aligning to the exons of each gene (Figure 3.15).

Naturally, the situation is slightly more complicated than that: Firstly, not all short reads

from a typical RNA-seq library can be aligned uniquely to one position of the genome – this

is due to the repetitive nature of genomes in general, and, in particular, the paralogous du-

plication of sub-sequences of genetic information for coding genes. In the simplest approach,

one could just discard ambiguously aligned reads (often referred to as ”multi-reads”), keeping

only the most reliable fraction of the data. However, this approach may sacrifice important

information, especially when one seeks to study differences between closely related genes or

even transcript variants of the same gene. Other approaches try to make use of ambiguous

information by either assigning ambiguously aligned reads to one random location, by spread-

ing a fraction of the aligned read to all possible locations or by somehow spreading the read to

possible locations proportional to the likelihood of a read originating from each spot84,367,635.

In GeneProf, I decided to adapt a previously proposed approach from the latter category367

(this is essentially the same strategy I employed earlier: Section 2.1.2): In a first round, the

unique (that is, unambiguous) read counts for each gene are calculated. I make the assumption

that an ambiguously aligned read is more likely to originate from a region belonging to a gene

with strong evidence of other transcription and therefore use the unique read count to weigh

the proportion of a multi-read that is assigned to each possible location. More precisely, the

expression intensity for each gene will be calculated as:

count(g) =
∑

r∈reads(g)

w(r)

|align(r)|
∑

r∈reads(g)

w(r)∑
ĝ∈align(r)

∑
r̂∈reads(ĝ)

w(r̂)
|align(r̂)|

, (3.1)
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where count(g) is the expression count for an arbitrary gene g, reads(g) are all reads

aligning to gene g, w(r) is the weight of read r (usually 1.0) and align(r) are all possible

alignments of read r.

But alignment ambiguity is not the only factor complicating expression quantification:

Previous research367,552,635 has highlighted structural attributes of genes confounding absolute

gene intensity measures. In particular, it has been observed that longer transcripts tend to be

overrepresented in sequencing libraries. It stands to reason that the length of a transcript has

a direct and linear impact on the number of fragments sequenced from it and that therefore

RNA-seq intensity measures are proportionally higher the longer a transcript. However, this

bias can be easily accounted for by scaling intensities by the total length of a transcript367 and

I have adopted this strategy in GeneProf. Wherever absolute measures of expression intensity

matter, GeneProf uses intensities expressed as ”reads per kilo-base million” (RPKM), that is

rpkm(g) =
count(g) ∗ 1, 000, 000

R
∗ 1, 000

length(g)
, (3.2)

with R the total number of aligned reads in a library and length(g) the length of a gene in

number of base-pairs. If the absolute intensity does not matter, GeneProf uses simpler ”reads

per million” (RPM) values instead:

rpm(g) =
count(g) ∗ 1, 000, 000

R
. (3.3)

Noteworthily, for matters of comparing gene expression counts the RPM values are usually

sufficient, because the length bias (and other biases) will have an equivalent effect on the

measured expression intensity in all investigated conditions. Other structural features of

genes and their transcripts, such as GC content and other factors affecting the accessibility of

the transcripts for random priming, are likely to play a role in the efficiency and uniformity

with which transcripts can be detected and will therefore also contribute to the intensities

calculated. However, these factors are inherently more difficult to account for and might

even differ between specific sequencing platforms. Thus, I believe that effective normalisation

methods to resolve these issues deserve further investigation in the future.

Of course, the quality of any intensity values calculated depends on the quality of the gene

annotations available. For most model organisms, we now have a reasonably comprehensive

and reliable database of protein-coding genes. In GeneProf, I decided to base internal gene

models on the annotations from the Ensembl135 database, which constitutes one of the most

up-to-date, high-quality resources available. Despite state-of-the-art manual and automated

curation, though, some gene models are still not perfectly well understood, often inaccurate

and sometimes incorrect (Figure 3.16). Non-canonical units of transcription, such as short

transcripts, miRNAs and pseudo-genes, in particular, do still undergo frequent updates. To
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Figure 3.16: Incomplete gene models. HTS data can highlight inaccuracies in current gene
annotations. Shown here is the Fhl3 locus with a track showing the coverage of aligned RNA-
seq reads552 along the gene model. A putative novel, unannotated exon appears to be present
falling into the intronic space between annotated exons 1 and 2. The presence of an exon is
furthermore supported by weak, yet detectable, Polymerase 2 (PolII ) binding at the same site
(Richard Young lab, unpublished data). The data has been re-analysed and this plot created
with the GeneProf software discussed in this thesis.

overcome this barrier, numerous approaches have been proposed that either augment existing

annotations taking the data at hand into account, e.g. by altering or adding exon annota-

tions367,453,552, or even construct entire transcriptomes de-novo40,107,455 before proceeding

to the calculation of transcript counts. These approaches are particularly attractive to those

dealing with non-model and poorly-studied organisms. Thanks to the high quality of the

annotations for mouse and human, though, I found it not necessary to include them in the

initial release of GeneProf and have focused solely on reference-based quantification of gene

expression.

3.3.3.4 Assessment of Differential Gene Expression

Having calculated expression intensities for all genes profiled in an experiment (see previous

section, Section 3.3.3.3), one might now want to compare several samples looking for genes

that exhibit statistically significant differences in expression between different experimental

conditions. Differentially expressed genes (DEGs) might play a role in the biological mecha-

nism or function studied and make good candidates for further investigation.

It is tempting to believe that methods developed for microarray data analysis should be

appropriate for this task, since the biological question in mind is similar, yet it has been noted

that technical differences necessitate specialised statistical methods459,460. This is mostly due

to the fact that microarrays, which measure the intensity of a fluorescent signal, produce

continuous measures of gene expression, while sequencing-based assays produce inherently

digital ”counts” †, and the distribution of expression values recorded behaves notably different

in both approaches: Microarray intensities suffer from a background noise level leading to no

absolute-zero measurements and most values being somewhat centred around a mid-range

value; RNA-seq and DeepSAGE measurements, on the other hand, have a wider dynamic

†The numbers might not always be integers due to the way they have been normalised or ambiguity has
been dealt with, however, this does not alter the fundamental difference in the nature of the signals
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range and frequently record zero-values or very low measurements (in agreement with the

common believe that most genes will not be active in normal conditions).

Proposed solutions try to tackle the problem by attempting to model the observed distri-

bution in a more accurate way: Initially, a Poisson distribution was deemed appropriate (e.g.

DEGSeq583), however, it has been noticed that variances are often underestimated and that

the assumptions of the Poisson distribution are hence too restrictive460. The edgeR package458

and DESeq7 Bioconductor packages therefore use a negative binomial model with moderated

gene-wise variances in order to further control the variance estimation (and test outcome).

A problem impairing the accurate modelling of the actual distribution is a general lack of

sufficient replication, which makes it necessary to estimate parameters for the models from in-

complete data. The authors of the edgeR package have therefore decided to assume that there

is a correlation between the variance and the mean (σ2 = µ+αµ2) so that only one parameter

needs to be estimated from the data. In other words, the assumption is that the variance

for more highly-expressed genes is stronger than for genes with a lower expression level. The

relationship is moderated by a single constant α which can either be assumed to be uniform

across the dataset or may be estimated from genes with similar expression levels. DESeq takes

a similar approach, but extends the model in such a way to allow for more general relationships

between variance and mean, which can be calculated from the data. Similarly, baySeq188 also

assumes a negative binomial distribution, but additionally derives a prior distribution from

the data using an empirical Bayes approach.

The methods highlighted above are by no means the only solutions, but probably represent

the most popular tools for the purpose. Comparisons on the basis of simulated data188 show

one method superior in some cases, another in others and in real-world applications it will not

usually be possible to choose the optimal approach, because one does not know the desired

result beforehand. As a general rule of thumb, almost all methods agree on the most strongly

changing genes (high fold-change) if a good amount of replication is given, but results vary

more widely if one tries to assess smaller changes or fewer replicates per condition are available.

I have found that a combination of either edgeR or DESeq with a simple fold-change threshold

gave good results in terms of selecting genes with a convincingly changing signature. I have

integrated both methods into the GeneProf framework by implementing workflow modules

wrapping the original program code for the individual tools.

The chosen programs are both limited to pair-wise comparison between conditions and it

appears desirable to extend GeneProf’s repertoire of algorithms to methods capable of dealing

with more complex experimental designs in future. Unfortunately, only the baySeq package has

so far addressed this question at all and I am still awaiting further developments in the field. All

of GeneProf’s analysis are strongly gene-focused, yet modern RNA-seq data makes it possible

to look more closely at transcription on a global scale and also to distinguish alternative
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splicing events and thus the activity of different variants of the same gene. A number of

methods for assessing alternative splicing have already been put forward20,167,256,413,576 and

it seems desirable to integrate those and others into future releases of the GeneProf software.

3.3.3.5 Binding Peak Detection and Peak-to-Gene Association

In the previous sections, I focused on data processing requirements for assays of gene tran-

scription. Another popular and successful application of HTS to date has been chromatin

immunoprecipitation followed by sequencing (ChIP-seq) for the study of DNA-protein inter-

actions (Section 1.2.2.3). In stem cell biology, much has been learned about the fundamental

core transcriptional network and the activity of the key transcriptional regulators by profiling

the binding sites of important transcription factors genome-wide75,198,342 and investigating

the influence of other epigenetic factors such as histone modifications342,361.

In ChIP-seq experiments, the targets of the sequencing process are fragments of DNA which

have been selectively enriched for those regions of the genome bound by or associated to a

protein of interest (Figure 3.17), such as a transcription factor (TF). The DNA sequences

strongly associated with the protein of interest will hence be preferentially sequenced. After

alignment one can then trace back these sequences to the regions they have originated from.

The end result is an enrichment of genomic regions that report putative binding events. When

visualised appropriately, the regions in which many reads pile up resemble elevations in a

broader binding landscape and are hence often called ”peaks”.

The identification of these peaks, marking their boundaries and distinguishing them from

the background noise and technical artefacts has perhaps been one of the most researched areas

in bioinformatics over the recent years130,234,237,242,263,393,454,562,631. Far from being a trivial

problem, peak calling is obscured by weaknesses of the enrichment and sequencing procedures

that plague the purity of the ChIP-seq signal. As discussed previously (Section 1.2.2.3),

the quality of ChIP-seq data is vitally impacted by the quality of the antibody used for ChIP

and it is important to acknowledge that even the most reliable antibody will never be able

to pull down pure DNA (that is, only those actually bound by the protein of interest). In

fact, it has been found that up to a third of commercially available antibodies are not of

sufficient quality for large-scale ChIP experiments415. As a consequence, the signal is riddled

with an omnipresent degree of background noise. Further complicating the situation, the

noise level is not constant across the entire genome, but it has been observed that some

chromosomal regions are systematically under- or overrepresented in ChIP-seq dataset. These

regions might look like real binding peaks, although no specific binding event has happened470.

There are several reasons for this, for instance, fragmentation of DNA is impaired by the

accessibility of the chromatin and sequence composition and ChIP-antibodies might prefer

certain fragments over others – either entirely non-specifically or because another, potentially
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1. Real TF Binding Event

2. Sampling of DNA Fragments

TF

3. HTS Read-Out of Ends

4. Alignment

Reference Genome

5. Pile-Up / Binding Profile

"Double Peak"

- strand+ strand

Real TFBS (unknown)

Predicted BS

Figure 3.17: ChIP-seq for TFBS discovery. Illustrative summary of the ChIP-seq pro-
cedure for the discovery of transcription factor binding sites (TFBS). Random DNA fragments
around a true TF-bound region are extracted and parts of the ends of those fragments are read
out using HTS, then aligned to a reference genome, piled up into binding profiles and an al-
gorithm is used to detect peaks in the profiles and determine likely boundaries of predicted
TFBS.

similar protein is present27,415,422. For this reason, it is now common practice to perform

an additional control experiment using either input DNA (DNA sheared prior to IP), mock

IPs (without any antibody) or non-specific IPs (IP to a protein that does not bind to DNA,

e.g. immunoglobulin or GFP). No consensus has yet been reached on which (or whether any)

kind of control experiment is superior, but it appears that the use of input DNA is the most

popular choice, probably owing to the ease of obtaining enough input material, which can be

tricky to achieve when using a mock or non-specific IP that pulls down only very little DNA.

Perhaps even more difficult than the choice of the appropriate control mechanism, is the

choice of a good peak calling algorithm. A great many tools have been put forward employing

a wide variety of methodologies, ranging from simply imposing a threshold on the minimum

height of a peak in the intensity profile, over those looking at fold change enrichments to

the background sample, to more sophisticated solution using statistical models, the stranded-

ness of ”double peaks” (Figure 3.17) and peak shape. A number of attempts have been

made to objectively compare different algorithms288,422,590, but deciding on a universally

applicable method of choice appears to be a futile task: Too different are the proteins to be

studied and too diverse the experimental conditions and protocols. For example, while TFs

would usually be expected to have very narrow peaks corresponding almost directly to the

TFBS, histones tend to spread over larger portions of the chromosomes and hence have much

broader peaks. But even distinguishing between such broadly different types of application (or

protein) is not sufficient to automatically choose the best analysis approach and it might often
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distance d(p1,g)
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d(p1,g) > d(p2,g)
i(p1) < i(p2)

Figure 3.18: Peak-gene association. Illustration of terms and concepts used throughout the
text, in particular, when talking about peak-to-gene association. Peaks p have a distance d(p, g)
to any given gene g and an intensity i(p), for example, defined by the height.

be necessary to try several algorithms and manually examine a sample of the results to make

a qualified expert call on the way forward. I have therefore chosen to integrate a selection

of diverse algorithms75,242,310,606,631 into GeneProf and aimed to support researchers in their

exploratory analysis (Section 3.3.2.3). By default, GeneProf suggests using the MACS

algorithm631, which has emerged as one of the top choices in most comparisons and offers a

flexible range of parametrisations.

The analysis of ChIP-seq data does not usually end with the calling of significant binding

peaks: Typical downstream processing involves some form of peak-to-gene association, that

is, in order to draw any actual biologically interesting conclusion from the datasets dealt with,

it might often be necessary to find a way of telling which genes might be targeted by a TF or

which are epigenetically active or repressed (assuming the biological purpose of DNA-binding is

the regulation of target genes). It had traditionally been imagined that transcription factors

were controlling their target genes directly by binding in their promoter region, but with

the advent of genome-wide assays, it has become quickly evident that this is not always or,

perhaps, mostly not the case. Much transcription factor binding happens up- or downstream

of the promoter region, and it has been shown that, at least in some cases, even binding to

distant enhancer elements as far apart as several tens of kilobases can have strong effects on

the transcription of their targets280.

The most straightforward way of associating a putative target gene with a binding factor is

to use a windowed approach with a defined, static threshold. Although this would clearly miss

many true targets and also include many false ones, in the absence of additional functional

data this might often be the only real choice available to many researchers. GeneProf also

takes this approach by default and associates binding peaks in a binary fashion (bound or not;

true or false) with any gene for which the peak falls into a window of at most 20kb upstream

or 1kb downstream of the transcription start site (TSS) – of course, the thresholds may be

configured by the user (Figure 3.18). Since the definitions of the boundaries are rather

arbitrary, it is important that it is easy for users to re-define and adjust all thresholds for
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their own meta-analysis and GeneProf provides the means to do so easily enough, by allowing

users to redefine the peak-to-gene association step of all peak datasets in a new meta-analysis

experiment.

Current research investigates alternative approaches for linking observed binding activity

(from ChIP-seq) to functional targets. In an attempt to avoid the setting of arbitrary thresh-

olds some researchers seek to develop continuous scores of confidence for a functional linkage

between a regulator and a target. Following this train of thought, Sharov and colleagues first

introduced an ad hoc equation (score of potential function, SPF) for ranking putative targets

of a peak p of the TF Pou5f1 as a function of their distance d(p, g) to the TSS of a gene

and the height of the binding peak497. Interestingly, the researchers decided to factor in the

binding intensity of another TF, Nanog (as i2(p)), into the same score besides the intensity

for Pou5f1 (as i1(p)), making it plausible to expect high-scoring genes to be tentative targets

of both factors. Additionally, it was decided to score CpG-rich regions higher (X(p) = 1 if

p is CpG-rich and X(p) = 0 otherwise), resulting into the following formula (with α, β, γ, δ

optimisable constants):

SPF (p, g) = (i1(p)α + (β ∗ i2(p))α)(
max(d(p, g), 1000)

10000
)γ + δ ∗X(p). (3.4)

This scoring method worked well for the purposes of the study at hand and enabled the

researchers to identify interesting candidate genes for further investigation. However, it is not

suitable to serve as a generic function due to its dependency on fixed factors. Later, a simpler

and more generic quantitative measure of TF-to-target association, the so-called transcription

factor association strength (TFAS), was defined by others406 as a function of binding intensity

decreasing exponentially with distance from the TSS. Interestingly, all putative binding sites

(peaks) within a large window (1mb) were factored into the formula, delivering one continuous

number for each TF-target combination, that is:

TFAS(g) =
∑
pinP

i(p) ∗ e−d(g,p)/d0 , (3.5)

where P is the set of all peaks for the given TF, i(p) is the intensity (height) of peak

p and d0 is a constant (usually set to 5, 000). In their paper406, the investigators showed

impressive correlations between the TFAS scores calculated and changes in expression levels.

This supports the argument that the TFAS scores are meaningful and therefore also that (a)

the distance of a peak to the TSS, (b) the height of a peak and (c) the number of peaks matter

in determining functional targets of TFs. The approach has recently been extended in such

a way to consider combinations of TFs to account for combinatorial control of expression by

multiple factors73.
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Others have furthermore integrated the conservation of binding sites across species and

shown association scores taking this information into account196. I do not consider this ap-

proach any further here, because this information is not currently available on a large scale

that would allow it to be used in a generic framework project such as GeneProf. Thanks to

its ease of calculation and general applicability, I decided to implement the TFAS406 method

into GeneProf and to offer it as part of the standard analysis pipeline for ChIP-seq data to all

users.

3.3.3.6 Data Heterogeneity

In an earlier chapter (Section 2.1.2.3) I have demonstrated how data from multiple existing

studies can be used to enrich the results of a new experiment. The integration of heteroge-

neous data from different sources requires the individual data points from all experiments to be

mapped to a common reference framework. Arguably, the essential unit of understanding for

most experimental, molecular biology and functional genomics is the ”gene”. Actually, the def-

initions of what a gene is are rather inexact and I generally prefer to refer to ”features” instead,

a broader term encompassing protein-coding genes, processed and unprocessed pseudo-genes,

all sorts of ncRNAs and other genomic units actively transcribed. GeneProf’s reference set of

features is based on the Ensembl135 genome database, one of the most well-maintained, high-

quality resources for genomic information available at present and we have seen in the previous

sections (Section 3.3.3.3 and Section 3.3.3.5) how GeneProf summarises expression and

DNA-binding data on a per-feature level, automatically bringing together information from

diverse sources. Once summarised per-feature, the combination of arbitrarily many different

datasets is straightforward and, in GeneProf, can be achieved within seconds. For users of the

software system this means that they instantly have a wealth of information available at their

disposal.

Ready-analysed data (Chapter 4) can be rapidly retrieved and compared by searching for

individual genes of interest. The system automatically collects all information from published

studies stored in its databases relevant to the queried gene and displays them together in one

place (Figure 4.3). Apart from some generic information about the gene, e.g. gene symbols,

accession numbers, genomic coordinates, protein structure and interactions and functional

annotation, the feature-centric summary reports include expression data grouped by cell type,

tissue of origin or other annotation data, information about the DNA-binding activity of the

factor at hand, if it is a transcription factor or other DNA-associating protein. Similarly,

information about DNA-binding activity of other factors in the proximity of this feature’s

TSS is also reported. Users can immediately dive deeper into any piece of information via the

dynamic web interface, e.g. by browsing expression data in selected studies in detail or by

examining genomic data, such as binding profiles of interesting factors near the studied gene,
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using the built-in genome browser (Section 3.3.2.5).

3.3.4 Dealing with the Data Overload

Data from experiments using HTS technology is inherently difficult to process due to the sheer

volume and size of the data itself. It is now not uncommon for a modern HTS platform to

produce some 100 million short read sequences in a single run of the machine (see Section 1.2)

and often one will be dealing with not just one sequencing library but dozens at once. This

amounts to gigabytes of data files which need to be stored and processed necessitating vast

disk storage arrays and powerful computing infrastructure. I will elaborate on these issues in

the following pages.

3.3.4.1 Data Storage

To illustrate the immense volume of data involved, let us look at a real example: The dataset

with the SRA accession number SRR037952 comprises 18, 567, 994 paired-end RNA-seq reads

of length 153bp552. That amounts to 2, 840, 903, 082 nucleotide characters that need to be

stored in a file on some storage device. In a standard text file, a single character will occupy

at least 1 byte, so this translates directly into some 2.8 gigabytes (GB) for the nucleotide

sequences alone. As discussed earlier, HTS data is usually supplemented by an additional

quality score character per nucleotide (FASTQ format, see Section 3.3.3.1), effectively dou-

bling the required disk space. The files additionally require further formatting characters and

identifiers for each read sequence, increasing the total file size to over 6.2GB. Storing these

amounts of data on the large scale requires (i) a large array of secure, but ideally low-cost disk

storage and (ii) efficient data compression strategies to make long-term storage feasible and

cope with the ever-increasing amounts of data.

Of course, standard file compression algorithms such as ZIP, GZIP or BZIP2 may be used

to decrease the size of the data files and they do, indeed, help to drastically decrease the space

requirements. For example, applying the GZIP algorithm to the dataset discussed above,

reduced the size of the file to 2.0GB or about a third of the original size (see appendix, Sec-

tion D.3.1). However, standard compression methods are agnostic of the inherent structure

of the sequences at hand and therefore address the compression problem sub-optimally. For

example, a standard text-file may use any one of 65, 536 symbols and usually a compression

algorithm would have to be able to cope with all of them. DNA, however, is sampled from

a much smaller ”alphabet”, only five characters – each corresponding to a nucleotide – need

to be considered (A, T, C, G and N) and it should be possible to exploit this prior knowledge

about the data to achieve an even better compression.

Before we look at how such compression may be achieved, I need to discuss another issue
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Figure 3.19: Short read compression methods. Illustration of different compression meth-
ods considered in GeneProf. (a) Space requirements and examples of nucleotide sequences in
unencoded (left), 2-bit encoded (middle) and long-encoded (right) form. (b) An unencoded
(left) and encoded base-call quality score string.

which is of paramount importance: Speed. Typically, compression algorithms aim to achieve

some trade-off between the compression ratio (reduction in size) and processing speed (both

for encoding and decoding compressed data). For example, while BZIP2 usually achieves a

stronger compaction of files than GZIP (about 25% vs 33%), the latter may be up to five

times faster decompressing files (see appendix, Section D.3.1). If the data will be in active

use in GeneProf, i.e. it is being repeatedly read from, it is essential that one does not sacrifice

too much of the processing performance for the sake of compression. It should, however, be

noted that a greater reduction in size might have a secondary, beneficial effect on processing

times: Not only does a smaller file size mean less disk read/write access (in exchange for

more in-memory data access, which is orders of magnitude faster than disk access), but it

will also reduce the amount of data which needs to be transferred between media in a multi-

system (many computers), highly-parallel computing environment. All these factors need to

be considered when choosing the optimal strategy for a specific application.

Published short read-specific compression schemes102,207,278,588,613 attempt to make use

of reference-based indices or exploit the redundancy within read libraries to compress en-

tire libraries of short reads. These approaches achieve a great compression, but are rather

time-intensive and inflexible. For example, reference-based methods could not compress HTS

libraries from organisms for which no genome assembly is available a priori and others cannot

compress data on the fly since they exploit the characteristics of the entire dataset to achieve

the compression. I sought to find a straightforward encoding scheme that could be applied

to data on the fly and placed more importance on optimal runtime performance rather than

strong compression. I thus explored a number of different strategies for encoding nucleotide

sequences (Figure 3.19.(a)), all based on the observation that there are only 5 nucleotide

characters (including the ”uncertain nucleotide” N), so standard encodings for characters on

computers, which use either 1 byte (plain text files on the hard-disk) or 2 bytes (for in-memory

representations in the Java programming language) per character, waste precious space since
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they aim to be able to store a much wider range of symbols. I considered encoding each

nucleotide character using two boolean values, each of which measures only 1 bit. Since two

bits can hold four values, an entire nucleotide sequence could then be represented using a two-

dimensional array of binary values, where the fifth nucleotide would be stored as an unassigned

value. In theory this would give the best conceivable compression ratio (Figure 3.20.(a)),

however, due to constraints imposed by the way variables are actually addressed on real com-

puter systems569 and due to the fact that arrays in Java, in addition to the data, store the

length of the array, the practical memory consumption of this approach exceeds even the

simple character representation (Figure 3.20.(b-e)). Instead, I devised a way to store the

nucleotide sequences as 32- or 64-bit numbers (Java types int or long, respectively), which

proved to be much more effective. To do so, a number from 1 to 5 was assigned to each

nucleotide symbol and the algorithm adds up the nucleotides as a positioned sum (algorithm

in appendix, Section D.3.2). It is thus possible to store 24 nucleotide symbols in a single

64-bit number (17% of the original size). My calculations and experiments proved that this

representation is superior to the other schemes I tried. Unfortunately, the same strategy can-

not be used for encoding the quality score characters for the base-calls, because there are too

many different values to be encoded. I therefore decided to use a very simple approach here, in

which repetitions of the same symbol are compacted into one symbol and a count (”run-length

encoding”; Figure 3.19.(b)).

The long-encoding scheme allows for efficient in-memory representation of sequences. For

long-term persistence, the sequences can be serialised in binary form and additionally com-

pressed with a standard algorithm (I chose GZIP, since it offers a reasonable trade-off between

file size and fast, decompression time). Sequence data does usually only have to be accessed

serially, so no sophisticated indexing or querying methods are required.

Short read sequences, however, are not the only type of high-volume data of concern.

Alignment of sequences to a reference genome (Section 3.3.3.2) produces a large quantity of

genomic data, which may also benefit from special treatment. Unlike sequence data, genomic

data does not only require good compression and fast serial access, but might also need to

be queried and otherwise randomly accessed. This is because I intended to use this data

for genomic data visualizations and also because it might be necessary to retrieve additional

information about specific alignments at a later point in time without necessarily accessing

all alignments. For example, for the calculation of gene expression counts (Section 3.3.3.3),

GeneProf needs to find out how many and which reads aligned to the genomic region of a gene.

Recently, the genomic data formats BIGWIG and BIGBED were introduced260 to enable this

kind of query on large genomic datasets, however, they are unsuitable for the purposes of

the software system at hand, because they are unable to store additional annotation data

alongside genomic coordinates. Another widely-used format for alignment data is the sequence
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Figure 3.20: Memory consumption of short read data. (a) Theoretical memory con-
sumption of the data-holding variables alone for one sequence with the given length (x-axis), see
also Figure 3.19. (b) Actual, empirically measure memory consumption on a Windows Vista
32-bit operating system (averaged over 10,000 trials). (c-e) Theoretically expected memory con-
sumption on a 32-bit operating system in the Java stack (c), and on a 64-bit operating system
on the heap (d) and the stack (e) using number from Venstermans et al569.
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Figure 3.21: Large genomic region data. Illustration of the process for converting alignment
data to high-performance, compressed binary data. The data is restructured into a well-defined
set of files by the genomic coordinates represented and subsequently binarised and compressed.

alignment/map format (SAM/BAM)309, which is now supported by most modern alignment

programs. The format is more flexible, as it allows arbitrary annotational data to be added

to alignments, but is sequence-focused rather than genomic per se, making it cumbersome to

use for non-serial access. For ease of use and performance, I have therefore decided to use a

simple, yet efficient storage format that I called Large Genomic Region Dataset (LGRDS). All

coordinate data and additional annotations are serialised into a number of binary files that can

be efficiently read in the Java programming language (Figure 3.21). The files are split by their

genomic location, i.e. there would be one file per chromosome and segment, the chromosomes

being split into 10mb segments. I found that the file structure itself suffices as a simple indexing

pattern, enabling quick retrieval of alignment data from parts of the genome by iterating only

those entries in a matching subset of the files. The combination of this file structure with

a high-speed compression algorithm, Snappy (http://code.google.com/p/snappy), allows

GeneProf to save the data from genomic alignments at a third of the original size with, indeed,

a six-fold higher (serial) access speed than the equivalent uncompressed, text files (data not

shown).

The remainder of the data concerned in HTS and genomic data analyses, e.g. gene-

centric information such as expression data, is mostly rather reasonable in size and does

primarily require rapid random access for filtering, sorting and searching. Thanks to the

rather manageable file size, I did not consider it necessary to use any special data format

for these kinds of information and decided to store them in a relational database system.

Relational databases are established tools optimised for quick retrieval or arbitrary pieces of

well-structured information and are the de-facto standard for storing all sorts of information

in enterprise-scale environments.
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3.3.4.2 Scalability and Efficiency

The last points that should be addressed when discussing general data processing requirements

for a powerful and flexible data analysis suite are scalability and efficiency. ”Scalability” is

the ability of a software system to cope with increasing amounts of work or data. I use the

term ”efficiency” to refer to the ability of a system to use resources for maximum effect and,

more specifically in computing terms, to handle tasks quickly and within the bounds of the

hardware available. Efficiency, thus, is one of the cornerstones of a scalable software system.

It would be a pointless and uninteresting exercise to list all the specific algorithmic imple-

mentation details I have taken to ensure the best possible efficiency of the software. Let it

suffice, instead, to discuss general concerns and approaches in an abstract manner. Compu-

tational efficiency comes in two flavours: Time and memory. Let us address one at a time.

As demonstrated in the context of short read alignment (Section 3.3.3.2), the sheer

volume of HTS data can often transform tasks, which have rather trivial solutions on a smaller

scale into problems difficult to cope with within feasible time limits. This is a well-known issue

in computer science and generally referred to as computational complexity: The question is,

how does an algorithm scale with growing size of the inputs? Take, for example, the comparison

of n nucleotide sequences. If one was to compare each of these sequences with one particular

other sequence, a total of n comparisons would be required. The problem is said to scale

”linearly” with the size of the input. If, on the other hand, each sequence was compared

with each other sequence, the total number of comparisons would grow to n2 (”quadratic”

complexity). This might not be a problem if n was rather small, but what if one wanted to do

this with an entire HTS library? Even if a single comparison could be performed in a fraction

of a second, say 1ns (that is 1 billionth of a second), comparing 1, 000, 000 reads would take

almost 17 minutes and the comparison of 100, 000, 000 reads would take almost four months.

While algorithms with non-linear runtime are therefore best avoided, if this is not possible, it

might be necessary to come up with heuristic (that is, approximative) ways to solve real-world

problems and much bioinformatics work focuses on finding innovative means to tackle these

issues.

Algorithmic improvements, however, go only so far and in a real-world application it might

be necessary to cut down the runtime of programs further in whatever way possible. In the

end, even linear complexity, can be problematic when the input is large enough. Fortunately,

many tasks that are difficult to deal with purely due to the size of the data, can be split

into units that can be easily parallelised. Modern computers are now usually equipped with

multiple processing cores and can hence deal with multiple sets of calculations simultaneously

without impairing the performance of work executed in parallel. In the Java programming

language, it is reasonably straightforward to implement parts of a program in such a way
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that multiple calculations are executed in parallel. This is generally referred to as ”multi-

threading” – a ”thread” being one process executed in parallel with other threads. GeneProf

has been designed to make use of this technique wherever possible.

Apart from time-constraints, limited availability of system memory is one of the factors

making HTS data analysis difficult to deal with. I have previously shown that the amounts of

data to be worked with pose non-trivial challenges both for the long-term storage on disk and,

random access memory being substantially more expensive than persistent storage, even more

so for in-memory data handling (Section 3.3.4.1). GeneProf makes use of memory-efficient

data structures, like, for instance, the collection framework provided by the GNU Trove code

library (http://trove.starlight-systems.com) and, more importantly, attempts to avoid

having too much data in memory at any given point in time by accessing data in a serial

manner whenever this is possible. This means that, instead of retrieving an entire dataset

at once, GeneProf will read only a few records at a time, perform its calculations and then

continue iterating over the dataset until no more data is available. I have implemented the

data accessors to make this ”streamed” mode of handling datasets very straightforward. In

consequence, large parts of the GeneProf system are entirely independent of and robust to the

size of the input datasets, e.g. all functionality dealing with raw short read sequences will be

able to deal with the ever-growing output size of improved HTS platforms.

Despite all measures taken to ensure efficient handling of tasks, in a multi-user environment

a system might at times exceed the capacity of its resources. Therefore, a truly scalable

system needs to be able to balance its workload carefully. In computing, one often refers to

one unit of processing, e.g. one data analysis process, as a ”job”. Conversely, the process

of distributing jobs over available resources is called ”job scheduling”. Jobs that can not

immediately be allocated to a specific compute resource will typically remain in a queue while

waiting for other processes to finish. A number of business-scale job scheduling frameworks

exist, many of which have been developed for large, high-performance compute grids that semi-

automatically split up extremely large processes into more manageable units. Perhaps the most

successful framework is the Sun Grid Engine (http://wikis.sun.com/display/GridEngine/

Home, now Oracle Grid Engine) and its numerous open-source derivatives. The functionality of

these systems by far exceeds the requirements posed by GeneProf and the comprehensiveness

comes at the cost of a difficult setup and high maintenance effort. I therefore decided to

implement a simple job scheduling framework specifically tailored to the needs of GeneProf.

The requirements to be addressed were:

• Analysis workflows are to be submitted via the web interface as jobs to the scheduler.

• Each job is to be allocated to one processing node – that is, one computer in a cluster.

• New nodes must be easy to add or remove from the cluster, so that computers may be
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used for other purposes, if required.

• If a computer can not process a workflow component due to missing software, another

node should take over the job.

• Updates of the GeneProf software should be easily, ideally automatically, distributed to

all computers.

• Each node should process more than one workflow at a time, if it has sufficient resources.

The requirements were rather basic and could be easily addressed by queue-based ”pull”-

strategy: A database table is used to store the current status of all open, executing or com-

pleted jobs. When a user decides to submit a new workflow for processing, the web application

server updates the database information to mark the job as pending. Each processing node

runs a script (which I call the ”job agency”) that constantly monitors the database table.

When a new job is submitted, one job agency will claim it by marking the corresponding

database entry as executing (the job is ”pulled” from the queue, hence the name of strat-

egy), no other node will then pick up the same job (Figure 3.22). The executing job agency

spawns a new separate program (a ”worker”) that then executes all the computer code nec-

essary for the processing of the analysis workflow. Should, at any point, a worker not be able

to deal with a sub-process of the workflow, e.g. because an external software is not installed

on that specific computer, the worker ”surrenders” on the job and marks it as pending again,

so another job agency can allocate a worker for it. Each job agency has a limited number

of workers available (as per computer-specific configuration) and may hence deal with several

jobs at once. If no more workers are available, the job agency will seize claiming additional

jobs. After an analysis workflow has been processed completely, the job agency marks the job

as finished and frees the worker for other jobs. In addition to the job scheduling, each job

agency monitors another database table that contains information about the setup of the web

application server it is connected to. These information include the GeneProf software version

currently in use. If a new version is to be deployed and the web application is restarted, the

job agency will detect the version difference and stop looking for new jobs. After all currently

executing analysis processes have been completed, the agency will shut-down, retrieve the

latest software version from the server and restart automatically.

This simple architecture is absolutely sufficient for the successful operation of a job schedul-

ing system for GeneProf. All processing nodes are completely agnostic and independent of

each other and there is no central hub controlling them. New nodes can be dynamically wired

into the system with no more effort than starting the job agency script. If a node needs to be

taken out of the cluster for maintenance or other purposes, it can be shut-down via the web

interface.
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User Web Application Database Job Agency Worker

submit workflow update job status

look for job

no jobs

look for job

new job spawn worker

completed
update status

send email

Figure 3.22: Job scheduling example. Illustrative example of the job scheduling process.
After a user submits a workflow for processing, the web application updates the corresponding
record in the database queue. A job agency will then discover and claim this job and spawn a
worker to handle it. After the worker finishes, the agency updates the queue again and notifies
the user, who may then continue working on this project.

3.4 Evaluation

Having presented my reasoning behind the development of the GeneProf software, I shall now

evaluate the results of my efforts. I will first compare GeneProf with relevant other software

packages, then give a short report about the usage of the public instance of the system during

the first weeks of its public release and then conclude with some directions for future work

and improvements.

3.4.1 Comparison with Existing Data Analysis Software

GeneProf is by no means the first software application for biological, large-scale data analysis;

with the rise of microarray technology, the bioinformatics community has developed numerous

tools to tackle the high-throughput data at hand. Many of these tools have been integrated

as add-on packages into the R framework for statistical computing151 , but a good number of

graphical solutions have also been put forward, e.g. the Multi-Experiment Viewer (MeV474)

or GenePattern442. Of course, numerous commercial products also seek to claim their share

of the market. With HTS technology now becoming ubiquitous, the developers of many

existing software solutions have attempted adapting their tools for the new data types, but

they struggle with the demanding data processing requirements (Section 3.3.3) and often

focus solely on assays of transcriptomic data (traditionally, the stronghold of microarrays) and

can therefore not be considered comprehensive enough.

For these reasons, we could recently witness the development of a great number of novel

tools specifically addressing the users of HTS platforms. The first software releases typi-

cally targeted specific application areas of the technology, e.g. Myrna291, DSAP210, miR-
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NAkey464, SeqBuster414, RSEQTools180, GENE-counter99 and ArrayExpressHTS161 for tran-

scriptomic data (RNA-seq or shortRNA-seq) or W-ChIPeaks290, CisGenome234, ChIPseeqer152

and CASSys3 for downstream analysis of ChIP-seq data or others for metagenomic62 analysis.

Over time an increasing number of generic framework solutions addressed the HTS field either

by providing command-line scripting environments, e.g. GATK351, HTSeq (Simon Anders, un-

published) or components of Bioconductor151, or via graphical interfaces, e.g. Taverna213,398,

Galaxy43,153,160 or KNIME231,323. I present an overview comparison of the latter category of

tools and GeneProf in Table 3.2 with the criteria chosen and designated as follows:

Software has been compared in terms of their analysis capabilities for transcriptomic and

regulatory next-generation sequencing data and their general usability. I have only included

workflow-enabled software that is free for academic use and that I thought was addressing

these issues. Some software might have additional features, which have not been considered

for the sake of this comparison. I have made every effort to be objective, but unfortunately

comparisons of this type are inherently biased and I acknowledge that this table might be

subject to differences in opinion. Some software is constantly being updated and extended, so

the list of supported features might have changed since I composed this comparison in June

2011 (extended to include KNIME in December 2011).

General properties: As a first point for comparison we shall concern ourselves with

the overall interface of the software, dependencies on other software and the ease of setup.

All these factors contribute strongly to the ease of use and therefore on how likely a system

is to be adopted by the research community (see also Section 3.3.2.1). I distinguish two

primary types of user interfaces: The first, command-line based scripting environments, are

traditionally only appreciated by expert computer personnel, while the majority of scientific

users would usually prefer a graphical interface design, which may be either in the form of a

stand-alone desktop application or web-based, that is, accessible via the world-wide web as a

web page. Web-based software has the advantage of not depending on any unusual software

to be installed and does not require any installation themselves. Stand-alone software, on

the other hand, frequently depends on other external programs, which can be very difficult

and time-consuming for people to set up and manage, especially if no graphical, assistive

installer is provided. I consider Galaxy and GeneProf to stand out by these criteria thanks

to their independence of installation and use-immediately kind of nature, closely followed by

the two graphical tools, KNIME and Taverna, which can be easily and quickly set up using

install wizards and both provide user-friendly interfaces. I would anticipate that many users

might struggle installing the other software, that require the compilation of operating system-

dependent code and dependencies requiring a level of IT-expertise that cannot usually be

expected of lay users.

Core functionality: Evidently, the usefulness of any data analysis software in the end
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boils down to the core functionality supported. The best interface design and periphery does

not do much good if no useful data analysis can be carried out with the system. For the types

of applications I addressed and that I know are important at least for researchers in stem cell

biology (Section 3.3.3), the software needs to support quality control, short read alignment,

gene expression quantification and differential expression analysis (RNA-seq), peak finding

and feature association (ChIP-seq) and, ideally, further functional downstream analysis. It is

certainly preferable if all analysis steps can be performed from the same environment and do

not require the manual execution of external programs. Importantly, all the software systems

presented are to some degree or another flexible environments that could, in theory, be ex-

tended pretty much to any field of application desired. In practice, though, it is mostly not

feasible to write additional code or wait for the implementation of new features, so I carry

out this comparison on the basis of whatever version was publicly available at the time of

assessment. While all systems examined support a reasonable degree of quality control mea-

sures, only Galaxy and GeneProf supported direct alignment of raw read data within the main

system. Others either require execution of externally installed alignment software or have no

documented support for alignment at all. This is probably due to the fact that alignment is

a computationally demanding task (Section 3.3.3.2) and not feasible to support on a stan-

dard desktop computer. For the web-based systems, i.e. Galaxy and GeneProf, this is not

a fundamental problem since all analyses are being executed remotely on high-performance

compute nodes. HTseq and GATK currently focus on transcriptomic applications and Tav-

erna’s HTS-specific functionality was, at the time of comparison, not yet available. Galaxy

did support expression quantification, but lacked support for normalisation and differential

expression analysis. Overall, KNIME, Galaxy and GeneProf all offered a good and comparable

range of functionality that should be sufficient for the majority of users. R/Bioconductor prob-

ably provides the most flexible and versatile framework, but requires expert skills to install,

manage and use its full functionality.

Workflow design: In terms of workflow design, the main distinction, again, is between

the graphical solutions and command-line frameworks: In both cases, workflows are made up

of small programs, each of which is responsible for a particular sub-task. Command-line frame-

works chain together these tools using custom computer scripts, which requires a advanced

understanding of programming techniques in order to use them efficiently. All graphical suites

evaluated, on the other hand, make use of a visual programming paradigm allowing users to

combine different programs, represented by boxes, in a graphical manner using drag and drop

of arrow connectors. In GeneProf, the individual tools are called ”modules” (Section 3.3.1)

and might combine several independent programs into one logical unit, making workflow cre-

ation even easier to understand.

I have learned from experience that novice users find it a bit difficult to draw up complex

122



workflows from scratch, especially in the beginning. GeneProf is the only software that actively

assists users in the creation of common workflows by supplying a range of wizards for popular

types of analysis (Section 3.3.2.2). This simplifies the entry to the program for novices

users and allows them to learn over time from the automatically created workflows and apply

the knowledge gained to more specialised workflows in future. The only other tool providing

similar functionality is Taverna. In fact, Taverna does have a number of wizards that are

provided via ”portals” (websites that use Taverna at the back-end). However, there are

currently no usable wizards for HTS analysis. A major drawback of Taverna’s portal-based

wizards is that the workflows created cannot be modified subsequently, which severely limits

the flexibility of the system. GeneProf’s wizards set up complex workflows within seconds,

but impose no limits on later adjustments of the processing steps.

Another point discussed earlier is concerned with the support for exploratory data analysis

(Section 3.3.2.3): Often, it is not possible to know beforehand exactly which programs (and

parameters) will be best suited for a particular dataset at hand. It is therefore beneficial to

have an easy means to adapt certain steps of the analysis without losing track of what one has

done before and (ideally) without having to run all (time-consuming) processes again. The

concept is well-supported in GeneProf, but less so in other tools. Script-based workflows can

be adjusted easily given enough experience with programming and can be designed in such a

way that not the entire analysis needs to be re-run, however, it quickly becomes difficult to

keep track of different versions of the scripts (and the associated data and results). Workflows

in Galaxy and Taverna can be adjusted easily enough, but they are distinct from the data

dealt with (they themselves are tools that are applied to data), which means that in order to

change only one parameter and examine the impact on the outcome of the analysis, the entire

analysis needs to be repeated, which is a time-consuming process. Additionally, outdated

analysis results accumulate and need to be manually removed otherwise one runs the risk of

losing the overview over all results.

Presentation of results: Next, the way in which results are presented to the users will

have a major influence on how useful the analysis actually is for biological research. All

command-line programs as well as Taverna and, in most parts, KNIME and Galaxy produce

static text files or custom file-format outputs. These files are not always immediately useful

and might first need to be converted to other formats or opened in other programs so that

researchers can examine the outputs. A few recent additions to the tool sets of KNIME and

Galaxy introduce hyper-linked pages to the output results that start to address this issue

making it easier to browse and examine datasets. GeneProf’s output data is presented in the

form of dynamic tables that can be browsed, searched, filtered and sorted instantly.

Most tools can produce a limited set of plots, which can, however, hardly be customised.

The user is limited to whatever plots the software designers implemented and has no way
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of changing them. The exceptions to this limitation are R/Bioconductor and GeneProf. R

offers an impressive range of plotting capabilities and can create virtually any graphics con-

ceivable, many types of plots were even specially designed for biological research use and are

well-established and -understood in the community. GeneProf benefits from R’s plotting func-

tionality and provides it to users via an easily configurable, graphical interface. In addition

to the standard customisation features provided via the interface, all of GeneProf’s plots can

alternatively be saved as a set of R-scripts (with supplementary data) so they can be adjusted

further, for example, to use specific colour combinations, change labels and so on.

One of the most powerful ways of visualising genomic data is via the use of genome browsers

(Section 3.3.2.5) and a number of great, user-friendly and quick solutions exist135,259,457.

All tools other than Taverna provide means to export genomic data in formats compatible

with the standard genome browsers and to modify existing tracks. Galaxy even has a simple

built-in browser, however, this browser does not support plots summarising the coverage of

alignments as densities (known as ”wiggle-plots” or ”wig-plots”), which is one of the most

useful types of visualisation and thus cannot be considered sufficient. GeneProf also features

a simple built-in genome browser, providing all essential functionality necessary to allow users

to very quickly get a feel for their data. To support advanced genome browsing in external,

fully-featured applications, GeneProf can also export all genomic data generated in a variety

of popular data formats.

Data providence and integration: Lastly, I want to look at the topic of data trans-

parency and providence (Section 3.3.2.4). For scientific data and the results of analyses to

be really useful to the maximum possible extent, there needs to be a way to reuse the results

and data from previous analyses. For stand-alone programs it is difficult to import public data

since they would inherently depend on an external database or warehouse to store this data.

There is some functionality in R/Bioconductor that facilitates import from public reposito-

ries, but this only concerns raw data. Conversely, Taverna and KNIME allow the reuse of

analysis workflows made public via myExperiment159, but do not store the data alongside.

Galaxy offers the facilities to make both data and analysis public, and even provides means

to describe both together in customisable summary pages (Galaxy Pages160), however, this

process is time-consuming and has been used only very rarely. Making data publicly available

is a matter of a few clicks in GeneProf. Public data then becomes immediately available for

import into new projects. Meta-analysis of potentially large collections of diverse datasets is

rapid and straightforward.

In addition to this, and unlike any other tool, GeneProf is backed by a large database

of ready-analysed results and makes these available via gene-centric summary reports (Fig-

ure 4.3), which allows experimental biologists to quickly benefit from the use of the software

and the insights gained from high-throughput functional genomic experiments without even
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any need for their own HTS data.

Importantly, even when analysis workflows can be shared (as in KNIME, Taverna or

Galaxy), this does not necessarily warrant transparency and reproducibility. Reproducibil-

ity is jeopardised as soon as data from external resources is used, but not integrated in the

workflow, because it cannot be guaranteed that the data will still be available at a later point

and that it will not change. Since only GeneProf directly integrates the data with the workflow

all other programs run risk of inconsistencies. This is even more so true for the stand-alone

programs that do not have an associated database for storing results: Scripts might be made

available with publications or, at least, upon request, but experimental data needs to be up-

loaded to an external database – and this will only include the primary experimental data,

e.g. short read data, but not include supplementary data, e.g. from genome assemblies or

gene annotations, which are inherently prone to change frequently or become unavailable. In

GeneProf all data used in the analysis is stored inside the internal databases and is frozen at

the point of analysis, avoiding loss of primary and auxiliary data in future.

3.4.2 Higher-Order Analysis Systems and Long-Term Maintenance

The software packages discussed in the previous section are solutions for data analysis chal-

lenges. GeneProf also addresses these issues and I have compared the functionality of all

systems on the grounds of how well they perform. However, GeneProf goes beyond this level:

It has always been my aim to provide a platform for scientists that would enable them to

expand their knowledge and gain new insights into biology, by making it possible for them to

exploit state-of-the-art large-scale data resources that would otherwise be beyond the reach of

most researchers. The analysis component of GeneProf is an essential necessity to establish

the data at the heart of this platform, however, in a way, this component is peripheral to

the higher-order functions of the system: In fact, it is not inconceivable that parts of or even

the entire analysis framework could be replaced, if that was to help the development and

maintenance of the system.

An example of a system that takes such an approach is the Stem Cell Discovery Engine

(SCDE)201: The SCDE is a database of reanalysed experiments from the field of stem cell

research that have been brought together under one roof. Much care has been taken to

annotate the data in the system appropriately, so to make it possible to resuse the data and

to compare datasets within the system. The SCDE utilises Galaxy43,153,160 as an underlying

analysis engine to provide users with the facilities to carry out advanced analyses in the system.

However, unlike in GeneProf, the processing steps leading from the raw data to interpretable

results are not directly part of SCDE and not carried out using the Galaxy-powered analysis

system. The analysis component focuses instead only on the downstream comparison of pre-
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analysed results, for instance, the intersection of target gene lists.

The SCDE is a good example of how an underlying analysis system can be leveraged

in conjunction with a comprehensive and useful database to create additional functionality.

Amongst the tools presented in the previous section (Section 3.4.1), Galaxy stands out as

the most powerful and flexible framework available (apart from GeneProf). The software

enjoys immense popularity, in particular, with software and algorithm developers who appre-

ciate the ease with which they can integrate their own tools into the Galaxy framework (cp.

Figure 3.1). As a result, Galaxy now has a large and active community building up com-

prehensive set of flexible data analysis tools. It is for this reason, that I see it as a desirable

future development to integrate Galaxy into the GeneProf analysis framework. This could be

achieved in two ways: Either the Galaxy workflow engine could replace the existing GeneProf

framework and GeneProf modules could be rewritten to be compatible with Galaxy. Alterna-

tively, individual Galaxy tools could be wrapped in GeneProf modules to make it possible to

run them from within the existing framework. The GeneProf development team is currently

investigating both options. In either case, this integration would happen in the background

in such a way that the users of GeneProf would hardly notice any difference.

A potential integration with Galaxy opens an interesting avenue for a simplified long-term

maintenance of GeneProf, because it would effectively allow GeneProf development to focus

entirely on maintaining and expanding the higher-order components of the system: In this

model, state-of-the-art analysis tools are contributed by the community to Galaxy and thus in-

directly to GeneProf. The GeneProf team, on the other hand, wires these tools into GeneProf

workflows and analysis wizards. This would remove a substantial part of the maintenance

burden, leaving only issues related to the continuation of GeneProf data itself: I have previ-

ously discussed the importance of providing transparent and reproducible research data and

results (Section 3.3.2.4) and therefore committed GeneProf experiments to maintaining the

analysis and results in exactly the state they were when they were first generated. So long as

it is feasible, GeneProf will therefore keep public experiments unaltered. However, this creates

problems in terms of the comparability of older experiments with the results of new ones, in

particular, if the reference genome annotations might have been updated since. In order to

resolve this issue, I intend to implement a revision system into GeneProf whereby the system

can maintain two parallel versions of each GeneProf experiment: The version as it was at

the time of publication and an automatically updated version using the latest reference data.

In addition to this, the creators of an experiment will be able to create derivative, manual

revisions of experiments, so they can utilise the latest methodologies to extract additional

findings from previously published data.

Lastly, it should be mentioned that the ”maintenance” of GeneProf as a useful resource

depends not only on keeping whatever data is already in the system, but also to constantly
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Figure 3.23: GeneProf usage. Anonymous usage records for the month of January, 2012,
obtained from Google Analytics and internal measures. The number of user-created experiments
excludes those set up by the GeneProf team (F. Halbritter, H.J. Vaidya and S.R. Tomlinson).
Labels on the x-axis correspond to Sundays.

expand the repertoire with the latest research data. I myself and other members of the

Tomlinson group will keep on analysing the data from the latest publications and add those

to the GeneProf databases and as more users start using the software we hope they, too, will

contribute to the database by making their published data and analyses public.

3.4.3 Usage Report

GeneProf has officially been launched with the publication of the paper presenting the soft-

ware182 in the beginning of January, 2012, but had previously been used extensively by a

selected circle of testers. Looking back at the first month of usage (Figure 3.23), I can

report a constantly increasing amount of interest in the software. With an initial usage peak

coinciding with the online publication (December 28, 2011) and the release of the hard-copy

of the January issue of Nature Methods (January 3, 2012), the daily number of visitors has

further increased and is now beginning to stabilise at about 70 on peak days (Monday to

Wednesday).

The majority of visitors come from the United Kingdom as well the United States (n = 576

and n = 491, respectively; Figure 3.24). Most users choose to browse the GeneProf website

as a database looking at gene-specific information or public experiments from their field of

interest (source: Google Analytics anonymous usage statistics). A sizeable fraction (7.5%) of

visitors has further registered for an user account and started creating their own experiments

(Figure 3.23). It may be expected that the active use of the software will increase in future,

when previous visitors, now familiar with the software, generate new HTS data that can be

analysed within the system.

GeneProf is currently actively being used for a number of ongoing cross-site collaborations.

Our collaborators appreciate, in particular, that GeneProf allows them to browse through anal-

ysis results themselves in a way that enables them to closely examine the findings. Moreover,

the software will be used as the basis of a future grant application and contributes a substantial

part to another that is currently in its final stages of review.
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Figure 3.24: Visitor map. Geographic region of origin for all visits to the GeneProf website
recorded in January, 2012. Colour intensity is proportional to the number of visitors. Source:
Google Analytics.

3.4.4 Future Improvements

The GeneProf software, as it stands today, is a flexible tool and resource for biological research.

Yet, I realise that there is a lot of potential for growth and expansion and many areas of

the system merit improvement. I shall list here only a few assorted directions for future

improvements (which come in addition to those mentioned in Section 3.4.2):

• The Visual Data Explorer (VDE; Section 3.3.2.5) is already a powerful tool for near-

instant meta-analysis of large collections of datasets. Not only will the VDE benefit from

increasing amounts of public data, but I also plan to add additional plotting methods

and to simplify the way in which relevant data is going to be selected. Similar to the

data analysis wizards, the VDE will in future suggest popular plots types and guide the

user through the customisation steps including data selection. In this way, the user will

be able to create plots of correlation matrices or principle component analyses (PCA)

between expression values or binding profiles and histograms of those values, but there

will also be additional types of visualisations depicting the scatter (and relationships)

between properties like expression and binding of different factors, heatmaps augmented

with additional annotations (presence of binding sites, function annotation, ..) and many

more.

• The addition of personalisation features like gene lists and favourite regions will

simplify repetitive tasks and make the use of the web interface more convenient and

pleasant. Users will be able to save lists of genes of relevance to their research or

that have been identified in their earlier analyses as potential candidates for a process

or condition and use these lists to quickly filter datasets throughout the interface or

to highlight corresponding data points in plots. Similarly, users can store ”favourite
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genomic regions” which can then be used for rapid navigation in the genome browser or

to identify particularly relevant genomic events, e.g. the binding of transcription factors

in an enhancer region under study.

• I will try to expand GeneProf into a collaborative platform: Already, users can share

unpublished analysis and results with collaborators world-wide, but it is not yet possible

to collaboratively work on and modify an ongoing analysis. In future, I will investigate

ways to ensure data consistency live between multiple user sessions in parallel, which

is a necessity for collaborative editing of workflows. Improvements to the interface

representation will make it possible to communicate between sites and to see changes

made by others in quasi-real time.

• In the near future, GeneProf will be expanded towards the field of proteomics. Large-

scale, quantitative proteomics assays are becoming increasingly affordable and popular,

yet to date there is no user-friendly, integrated software solution available to unify data

processing steps and streamline data analysis. From a computational biologist’s point of

view, however, the analysis requirements are similar to the ones dealt with already for

the purpose of HTS analysis in GeneProf and it is a straightforward exercise to extend

the functionality of GeneProf to utilise proteomics-specific algorithms and software for

advanced workflow-based data analysis. The benefits of integrating this kind of data

to the system are immense and are promising to further expand our understanding of

biological functions in stem, progenitor and mature cell populations. This part of the

project will in future be addressed primarily by Duncan Godwin under supervision of

Simon R. Tomlinson and in collaboration with myself.

• Finally, additional modules and wizards will be developed to extend GeneProf’s

data analysis functionality. Specifically, I want to address the issues of sequence motif

discovery, transcriptome assembly and the analysis of histone states and methylation by

either identifying suitable existing software and wiring it into the GeneProf workflow

environment or by developing custom algorithms for the purpose. Moreover, I intend

to add support for the processing of microarray data and for the integration of these

data with the other data already in the system. GeneProf will then be able to benefit

from the wealth of data that has previously been generated, substantially expanding the

value of the GeneProf databases.

It should also be noted that I recognise the importance of a vibrant and active research

community and do hope that the GeneProf user base will actively contribute ideas and sug-

gestions to the future development of the application and to support community input I have

implemented a feature request component (Section 3.3.2.1) directly into the web interface, so
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that users can share and discuss their thoughts. Furthermore, I plan to improve the advanced

programming interface (API) for module development and web access (WebAPI) and expect

that bioinformaticians and computer programmers will start to develop additional function-

ality independently, which will eventually contribute to the repertoire of tools available in

GeneProf workflows.
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Chapter 4

Creation of a Comprehensive,

Integrated Resource of

High-Throughput Experiments

In this chapter I shall describe the creation and population of a comprehensive, integrated

database resource of readily attainable and interpretable findings derived from a large-scale

re-analysis of published HTS data. I will start by outlining the motivation behind this part

of the project (Section 4.1) and explain the methodology for acquiring and analysing the

data (Section 4.2). To conclude, I will then give a summary report of the data in the system

(Section 4.3).

4.1 Motivation and Goals

The amounts of data produced by modern HTS technologies are unparalleled in the history of

biology. Over the past years, the member projects of the International Nucleotide Sequenc-

ing Database Collaboration, namely the Sequence Read Archive (SRA; National Center for

Biotechnology Information, USA), the European Nucleotide Archive (ENA; European Bioin-

formatics Institute, UK) and the DNA Data Bank of Japan (DDBJ; National Institute of

Genetics, Japan).275,304–306,503, have established electronic archives around the globe that

have now accumulated hundreds of terabytes of data and attract more at an ever-increasing

rate. News of an impeding shut-down of the SRA due to a lack of funding for the high mainte-

nance costs shocked the genomics community in early 2011. Only later in the year the decision

had been revoked – to a certain degree: It had been decided that the storage of certain types of

data was no longer cost-effective. The data affected was the output of large-scale re-sequencing
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projects; functional genomics data remained untouched.

But why is it that this data was deemed not worthy of being kept? The huge volume

of data creates not only storage issues, but also concerns the processing of the data and,

ultimately, the interpretation of the data. Although a desirable goal, an effective re-use of

public data is an extremely challenging task. Most scientists do not have the expertise and

time to download masses of data, identify software solutions and learn to apply them, just to

re-examine the data from one dataset. The raw data in itself, however, is of little use and thus

it vanishes only too easily into oblivion.

The consequence of this gap between the storage of high-throughput data and its use

by the scientific community goes beyond funding bodies deciding against the feasibility of

maintaining the archives of the data. Previous scientific findings become inaccessible to future

scrutiny, it is impossible to derive further knowledge from incompletely analysed data and this,

in turn, leads eventually to a duplication of efforts and the repetition of the same experiments

– wasting time and money. If, on the other hand, the data and results were fully accessible

in the first place, only the analysis might have to be repeated, altered or extended, which is

typically a process running at a fraction of the cost and time. Additionally, the combination of

data from multiple different sources can lead the way to new insights and this kind of analysis

depends heavily on the availability of heterogeneous data.

With these considerations in mind, I set out to use the GeneProf software described in

the previous chapter (Chapter 3) for a large-scale re-analysis of published transcriptomic

and epigenomic HTS data, to bring the results of these analyses together in one integrated

database and to make the results available in an interpretable and reusable manner to the

scientific community.

Others have previously re-analysed and integrated collections of public data and made them

available together74,133,138,589, but the usefulness of these efforts unfortunately was limited by

the scope of the project: The resource needs to keep on growing and to be constantly updated

with newly published findings, users need to be able to recapitulate and modify the analysis

and combine data with their own. GeneProf provides an unprecedented opportunity to make

this work.

4.2 Methodology

I will now describe the methodology employed to create a consistent and integrated repository

of heterogeneous functional genomics data using the streamlined, large-scale analysis facilities

of the GeneProf software suite (Chapter 3). I will first detail the strategy for the selection

and acquisition of relevant datasets and afterwards outline the way in which the data was

analysed.
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4.2.1 Acquiring Raw Data from Published Studies

In order to select data relevant to stem cell research for inclusion in the GeneProf databases, I

searched the literature for high-profile studies with associated RNA-seq and ChIP-seq data. I

focused primarily on data from stem cell and progenitor populations in mouse and human, but

also wanted to include some from other cell types and systems for comparison purposes. Other

than in gene expression, I was also interested in the interplay of transcription factors and the

epigenetic landscape of cells defined by histone states, so I directed the search further towards

any ChIP-seq data that might be relevant for this purpose, particularly, if the factors had

a known or putative involvement in stem cell maintenance or the differentiation into certain

lineages.

In the initial phase, I selected 72 published and unpublished studies (42 mouse: Table 4.1,

25 human: Table 4.2, one each of chicken, fruitfly, thale cress, zebrafish and C. elegans:

Table 4.3), all of which were to be re-analysed in a consistent manner (see analysis strategy

described in Section 4.2.2), integrated and provided via GeneProf. Some of the data analysis

work was carried out with the help of Simon R. Tomlinson and Harsh J. Vaidya – details of

the specific contributions are given associated with each analysis record itself. Of course, more

data will be added to the database in future and I expect that GeneProf users will contribute

further data and analyses, too.

As mentioned earlier, most publicly available, raw HTS data is now available in the SRA

and other sources275,304–306,503 and can be freely downloaded from their websites. The archives

store the datasets either in compressed FASTQ format (Section 3.3.3.1) or have developed

custom file formats in order to store the data in a more disk space-efficient manner. Such is

the case for the SRA’s sra-lite format, which will – after download and decompression – have

to be converted to FASTQ to make it possible to use the data with available software. The

SRA provides a special software toolkit for the format conversion.

In order to facilitate the speedy and easy acquisition of many public datasets, I have

added special data import tools for SRA and ENA data to GeneProf. These tools can be

used to search the respective databases by terms of interest or accession numbers (usually

provided alongside publications) and will then handle the entire download, decompression

and conversion process for the user. Downloads, which are potentially very time-consuming

since great amounts of data need to be transferred, will be executed on the processing compute

cluster (Section 3.2.2), so users do not need to keep their computer running while downloads

are in progress. In addition to the raw experimental data, GeneProf will attempt to discover

relevant sample annotations from the source database to ease recognition and interpretation

of the individual datasets later on. For instance, it is in most cases possible to find information

about the names (labels), cell types or tissues, organism and the technology platform used to
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Identifier Type
Accession Experiment Name R T H P
gpXP000012 Integration of external signalling pathways in ESCs X 75

gpXP000023 Mapping and quantifying mammalian transcriptomes by RNA-Seq X 367

gpXP000027 Control of ESC State by Mediator and Cohesin X 245

gpXP000028 Connecting microRNA genes to the ESC transcriptional circuitry X X 342

gpXP000030 ChIP-Seq in secondary fibroblast with inducible cassettes for OSK X X X RY
gpXP000031 esBAF is an essential component of the core pluripotency network X 200

gpXP000032 ChIP-seq accurately predicts tissue-specificactivity of enhancers X 571

gpXP000042 Combinatorial transcriptional control in blood stem/progenitorcells X X 595

gpXP000043 Hippocampal transcriptome of DCLK-short over-expressing mice X 526

gpXP000048 Genome-wide mapping of Nr5a2 in mESCs X 198

gpXP000052 Jarid2 and PRC2, partner in regulating gene expression X 308

gpXP000056 Genome-wide mapping of SCL/DNA interactions in erythroid cells X 254

gpXP000059 High resolution analysis of genomic imprinting in the mouse brain X 166

gpXP000067 Transcriptional programme controlled by Scl/Tal1 during early embry-
onic haematopoiesis

X 596

gpXP000068 CHD7 targets enhancers to modulate ESC-specific gene expression X 485

gpXP000071 ATAC and Mediator coactivators form a stable complex and regulates
a set of non-coding RNA genes

X 279

gpXP000072 Genome-wide mapping of EBF1 binding sites in murine pre B-cells X 553

gpXP000073 Discrete roles of STAT4 and STAT6 TFs in tuning epigenetic modifica-
tions and transcription during helper T cell differentiation

X X 586

gpXP000074 A global network of transcription factors, involving E2A, EBF1 and
FOXO1, that orchestrates the B cell fate

X X 322

gpXP000084 KLF1/EKLF regulatory networks in primary erythroid cells X 530

gpXP000085 SC transcriptome profiling via massive-scale mRNA sequencing X 84

gpXP000086 Promoter proximal pausing and its regulation by c-Myc in ESCs X X 437

gpXP000087 GC-rich sequence elements recruit PRC2 in mammalian ES cells. X 354

gpXP000101 Role of Prdm14 in mouse ESCs: ChIP-seq and RNA-seq analyses X X X 332

gpXP000102 Transcript assembly and abundance estimation from RNA-Seq X 552

gpXP000103 Histone marks in MEFs before and after ectopic expression of repro-
gramming factors

X RY

gpXP000114 LIM domain binding protein 1 regulates a transcriptional program es-
sential for hematopoietic SC maintenance

X 311

gpXP000117 Hoxc9 ChIP-seq in differentiating motor neurons X 244

gpXP000121 Expression and ChIP-seq analyses of ESCs, XSCs and TSCs X 472

gpXP000125 ChIP-Seq for REST, MCAF1, Ring1b and H4K20me3 in mESCs X X RY
gpXP000127 Graded Nodal/Activin signaling governs ESC fate decisions via differ-

ential recruitment of Phospho-Smad2 to Oct4
X 300

gpXP000147 Genome-wide profiling of PPARgamma: RXR and RNApol2 X X 384

gpXP000151 Genome wide mapping of Jarid2 and Suz12 binding sites in mESCs
before and after Jarid2 depletion

X 417

gpXP000156 Regulating RNApol pausing and transcription elongation in ESCs X 362

gpXP000168 Ab initio reconstruction of transcriptomes of pluripotent and lineage
committed cells reveals gene structures of lincRNAs

X 179

gpXP000169 Genome-wide map of PCL2 enrichment in undifferentiated ESCs X 574

gpXP000175 Deletion of Tardbp down-regulates Tbc1d1 and alters fat metabolism X 80

gpXP000178 A SNF2 protein targets variable copy number repeats and thereby in-
fluences allele-specific expression

X 296

gpXP000191 RNA-Seq of mouse dendritic cells X 162

gpXP000194 Dual functions of Tet1 in transcriptional regulation in ESCs X 600

gpXP000195 Global deterministic and stochastic allelic specific gene expression in
single blastomeres of mouse early embryos

X 533

gpXP000203 Genome-wide binding of STAT3 and STAT5 under Th17 conditions X 612

Table 4.1: List of mouse experiments. Overview of studies with Mouse data in the first
release of GeneProf (n = 42). Type: R = RNA-seq / DeepSAGE / GRO-seq, T = TF ChIP-seq,
H = HM ChIP-seq, P = Pol2 ChIP-seq. RY = R. Young Lab, unpublished.
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Type
Accession Experiment Name R T H
gpXP000003 FoxA1 ChIP-seq X 631

gpXP000040 Genome-wide mapping of OCT4, NANOG and CTCF in hESCs X 284

gpXP000041
gpXP000161

Distinct epigenomic landscapes of pluripotent and lineage-committed
human cells

X 325

gpXP000047 A general mechanism for transcription regulation by Oct1 and Oct4
in response to genotoxic and oxidative stress

X 251

gpXP000053 ChIP-Seq of Oct4 in Human ESCs X RY
gpXP000057 DNA specificity determinants associate with distinct transcription

factor functions
X 204

gpXP000058 RNA-seq: an assessment of technical reproducibility and comparison
with gene expression arrays

X 340

gpXP000065 Sex-specific and lineage-specific alternative splicing in primates X 45

gpXP000107 Multiplexed massively parallel SELEX for characterization of TF
binding specificities

X 240

gpXP000109 Densely interconnected transcriptional circuits control cell states in
human hematopoiesis

X 394

gpXP000116 Histone methylation and TF binding during intestinal differentation X X 570

gpXP000133 Pol II and its associated epigenetic marks are present at Pol III-
transcribed noncoding RNA genes

X 24

gpXP000135 Pluripotency factors regulate definitive endoderm specification
through Eomesodermin

X 539

gpXP000136 Altered antisense-to-sense transcript ratios in breast cancer X 345

gpXP000145 Dynamic transcriptomes during neural differentiation of ESCs X 602

gpXP000153 RNA sequencing reveals the role of splicing polymorphisms in regu-
lating human gene expression

X 289

gpXP000160 Nascent RNA sequencing reveals widespread pausing and divergent
initiation at human promoters

X 91

gpXP000167 Genome-wide analysis of histone methylations in memory CD8+ T
cells

X 10

gpXP000178 A SNF2 protein targets variable copy number repeats and thereby
influences allele-specific expression

X 296

gpXP000181 Mapping of ETV1 genomic binding sites in gastrointestinal stromal
tumor

X 77

gpXP000182 Mediation of CTCF transcriptional insulation by DEAD-box RNA-
binding protein p68 and steroid receptor RNA activator SRA

X 614

gpXP000222 Identification of Beta-catenin binding regions in colon cancer cells
using ChIP-Seq

X 48

gpXP000255 Analysis of E2F1 mutant proteins reveals that N- and C-terminal
protein interaction domains do not participate in targeting E2F1

X 60

gpXP000265 Functional analysis of Kap1 genomic recruitment X 228

gpXP000377
gpXP000389
gpXP000390

Mapping and analysis of chromatin state dynamics in nine human
cell types (ENCODE project, split across 3 GeneProf experiments)

X X 122

Table 4.2: List of human experiments. A complete overview of all studies with Human
data chosen for inclusion in the initial release of GeneProf (n = 25). Type: R = RNA-seq /
DeepSAGE / GRO-seq, T = transcription factor / regulator ChIP-seq, H = histone ChIP-seq.
RY = R. Young Lab, unpublished data.

Type
Accession Experiment Name Organism R C
gpXP000049 Sequencing of small RNAs from C. elegans embryos C. elegans X 519

gpXP000060 RNA-Seq of Drosophila cell line Dmel2 D. melanogaster X 205

gpXP000062 Traf6 function in the innate immune response of ze-
brafish embryos

D. rerio X 518

gpXP000108 Deep sequencing of small RNAs in transgenic wild type
plant and IWR1-type TF mutant

A. thaliana X 252

gpXP000188 Shox ChIP-seq in chicken micromass cell cultures G. gallus X 105

Table 4.3: List of other experiments. A complete overview of all studies with data from
organisms other than Human or Mouse, which were chosen for inclusion in the initial release of
GeneProf (n = 5). Type: R = RNA-seq / DeepSAGE / GRO-seq, C = ChIP-seq.
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create the datasets.

Utilising the import tools, acquiring the data from the studies outlined in the tables (Ta-

ble 4.1, Table 4.2 and Table 4.3) was rather straightforward and achieved with a minimum

of hands-on time. I chose to subsequently manually augment, correct and standardise the

sample annotation in order to support the intelligibility of what experiments are about and,

ultimately, to make it possible to easily and meaningfully compare and juxtapose datasets

from various sources later on.

As a bare minimum, I tried to always provide information about the organism, technology

platform, meaningful dataset labels, groupings of datasets, cell types, tissues, cell lines and the

targets of ChIP-seq antibodies, wherever applicable. This information was derived either from

the full-text descriptions of the data in the source databases or by consulting the methods

sections and supplementary material of the corresponding research publications.

4.2.2 Using GeneProf for High-Throughput Analysis

I will now explain how the GeneProf data analysis suite has been employed to streamline a

large-scale reanalysis of published RNA- and ChIP-seq data to build up an integrated HTS-

based resource of functional genomics data.

4.2.2.1 Wizard-Based Analysis

In order to create a fully integrated database of analysed experimental data that can be

compared in a meaningful manner it is of paramount importance that all data must be pro-

cessed in a consistent manner. However, it is equally important to acknowledge that it is not

appropriate to analyse every single dataset in exactly the same way – too different are the

protocols employed in various labs across the world and, even more so, too varied the biology

underlying the experiments. ”Consistent” does therefore not necessarily mean identical, but

following equivalent principles and guidelines that ensure that the data will, on the one hand,

be analysed in the most appropriate way for the dataset at hand and, at the same time, ensure

the comparability of the results obtained.

I decided to use GeneProf’s data analysis wizards with the default settings for all analysis

in the first place (Section 3.3.2.2). After an initial run, I examined the automatically created

summary reports manually in detail and, if necessary, adjusted the analysis procedure to deal

with datasets for which the default procedure was not sufficient (see exploratory analysis:

Section 3.3.2.3).

Most commonly, adjustments to the analysis pipeline only necessitated the truncation of

reads to a certain length. As discussed before (Section 3.3.3.1), the quality of short read

sequencing datasets does tend to decline towards the end of the reads due to the accumulation
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Figure 4.1: Accounting for problematic HTS data. The alignment of the dataset
SRR001357367 could be improved by trimming reads to a fixed length of 25bp. (a) After the first
25 sequencing cycles the quality scores drop below 20. (b) Approximately half of all unaligned
reads could be aligned after trimming.

of sequencing errors. This effect is particularly pronounced for older datasets, which were

using the early generation sequencing platforms, or for particularly long reads, stretching

the capabilities of the technology. It is usually impossible to know a priori whether this

phenomenon has any significant impact on a new dataset, but the plots provided by GeneProf

help to quickly spot any trouble caused: If the alignment success rate falls below a certain level

(any less than 60% of all reads aligned uniquely to the genome might be a reason for concern) a

likely reason might be the suboptimal quality of the reads, which can be examined by looking

at quality scores and nucleotide distribution across read cycles (Figure 4.1). If the plots

revealed a clear break point beyond which the quality of the data seemed unacceptable, I would

usually trim the reads to this length. Otherwise I tried to use a dynamic filtering strategy and

truncated each read dynamically from the point onwards, where the quality dropped below

a certain threshold (between Q = 5 or Q = 10 depending on the average quality score of

the dataset; cp. Section 3.3.3.1), discarding any reads that were subsequently shorter than

12bp. In rare cases, even these measures did not suffice to give a satisfactory alignment success

rate, which prompted me to use an iterative alignment procedure84 (implemented in a single

GeneProf module): After initial quality control, I would attempt to align the entire library.

Those reads that could not be aligned in the first step would then be truncated by 1−5bp and

aligned again. The procedure was repeated up to ten times or until (a) no unaligned reads

remained or (b) reads were too short to proceed with.

To further improve data processing, I also considered using the Tophat alignment tool552

instead of the default option, Bowtie292, whenever paired-end / mate-pair or long-read (≥

50bp) RNA-seq data was concerned. The reason for this is simply that, for longer reads,

the probability that a read might span the junction between multiple exons rises (”spliced
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read”). Ungapped alignment programs, like Bowtie, cannot find a match for these reads in

the genome, where the exonic sequences are interleaved with intronic DNA that is not present

in the transcript sequence (Section 3.3.3.2). Tophat, on the other hand, has been developed

to discover potential splice junctions automatically and does hence offer a better sensitivity for

these datasets. Note that, even in datasets with short reads, some of the transcript fragments

read out will span splice junctions, however, the proportion of coverage lost by missing the

alignment of these reads is usually negligible and Bowtie has a clear advantage over Tophat

in terms of speed (up to ten times faster), which makes it a more attractive default choice for

a large-scale, generic and public data analysis system.

4.2.2.2 ChIP-seq Analysis

I employed the ”All-in-one ChIP-seq Analysis Wizard” for the reanalysis of all transcription

factor (TF)-binding and histone-modification ChIP-seq experiments alike (Section 3.3.2.2).

Just to recapitulate, the wizard will create an experiment-specific data processing pipeline

consisting of the following steps:

1. Merge raw read datasets belonging to the same ChIP-seq experiment. For instance,

if multiple sequencing lanes have been used to increase coverage for the same DNA-

associated protein, all corresponding datasets will be merged into one before proceeding.

2. Create summary reports for the quality and nucleotide composition of all datasets and

apply basic quality control measures by filtering out all reads with a very low average

quality score (mean(Q) < 8) (Section 3.3.3.1).

3. Align all libraries individually to the reference genome of the organism they belong to

using the Bowtie algorithm292 (Section 3.3.3.2). Discard all non-unique alignments.

4. Create summary reports for the alignment success rate and chromosomal distribution of

alignments.

5. Use the MACS peak finding algorithm631 to detect significantly enriched binding events

(”peaks”) corresponding to putative DNA-protein binding sites (Section 3.3.3.5).

6. Create summary statistics and plots describing the number and genomic distribution of

binding sites. If multiple factors have been studied in the same experiment, the summary

will also compare the binding sites for all these factors.

7. Associate the binding sites with nearby genes either in a binary fashion (”has a binding

site” or ”has no binding site”) by considering a gene a target of a factor, if it has a

binding site anywhere in the region up to 20kb upstream or 1kb downstream of the

transcription start site (TSS) of the gene (Section 3.3.3.5).
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8. Additionally, consider the transcription factor association strength (TFAS)406 between

all genes and each factor studied in the experiment to gain a good ranking criterion for

interesting candidates (Section 3.3.3.5).

The wizard has been designed primarily for TF data and the algorithms chosen are opti-

mised for this kind of data, however, I found that the methods could also be used reasonably

well for a basic analysis of other ChIP-seq data even if it does not exhibit the characteristic

binding patterns of TFs, which typically have well-defined narrow binding sites. Histones

occupy larger regions of the genome and the ”peaks” (Section 3.3.3.5) are less well defined

than for TFs, but are nevertheless mostly detected using the MACS-algorithm631 used by

the wizard (MACS recommends certain parameter settings for histone modifications). More

sophisticated analyses and comparisons of histone modifications can be performed at a later

point on the basis of the alignment coverage reported in these experiments (see Chapter 5).

4.2.2.3 RNA-seq Analysis

For transcriptomic assays, that is RNA-seq and DeepSAGE experiments, I used the ”All-in-one

RNA-seq Analysis Wizard” in turn, creating workflows consisting of the following steps:

1. If applicable, merge raw read datasets for technical replicates.

2. Create summary reports for the quality and nucleotide composition of all datasets and

apply basic quality control measures by filtering out all reads with a very low average

quality score (mean(Q) < 8) (Section 3.3.3.1).

3. Align all libraries individually to the reference genome of the organism they belong to

using the Bowtie algorithm292 (Section 3.3.3.2). Accept alignments with up to 10

possible matches in the genome. For paired-end read datasets, I changed an option

of the wizard with the effect that, instead of Bowtie, the Tophat program552 was to

be used, which is capable of dealing with gapped alignments. For datasets produced

using the SOLiD platform, I used the iterative alignment strategy as described above

(Section 4.2.2.1).

4. Create summary reports for the alignment success rate and chromosomal distribution of

alignments.

5. Quantify gene expression by calculating the genomic coverage of reads with respect to

known gene models using GeneProf’s custom algorithms (Section 3.3.3.3). For short

RNA datasets, a special analysis module was used that considered only shortRNA-

features in the reference dataset.
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(a) (b)

Expression (n = 202)

Histone Modifications (n = 132)

Transcription Factors (n = 167)

ChIP Background (n = 50)

Polymerase Activity (n = 21)

Figure 4.2: Publicly accessible experiments in the GeneProf database. (a) The amount
of public data stored in the GeneProf databases has been growing constantly over the last year
(January to December 2011). (b) Many genomic datasets are available as tracks for the built-in
genome browser.

6. Summarise gene expression in all investigated datasets, compare the data and create

heatmaps, correlation matrices, principal component analysis and other plots.

7. Use the DESeq algorithm7 to assess differential gene expression between all groups of

datasets in the experiment, i.e. between different biological conditions, cell types or

tissues (Section 3.3.3.4).

8. Created filtered tables of genes found differentially expressed in each comparison (FDR <

0.05).

In this way, I could very quickly analyse gene expression patterns in a wide variety of

biological systems and conditions. Importantly, the results include, apart from experiment-

specific assays of differential expression, reusable measures of gene transcription (raw read

counts per gene as well as intensities normalised as reads-per-million (RPM) and reads-per-

kilobase-million (RPKM); Section 3.3.3.3), which will allow users to integrate data from

multiple experiments straightforwardly in a useful manner.

4.3 A Knowledge-Base for Functional Genomics Experi-

ments

At the time of the first public release of GeneProf in the beginning of January, 2012, the

GeneProf databases had accumulated data from 72 independent experiments or 937 different

HTS runs, amounting to more than 12,217,419,081 (12.2 billion) short reads and approaching

2 terabytes of public data. In addition to this, more than an equal amount of data was yet in

the progress of being analysed and awaiting inclusion in the public databases. This is a vast

amount of data not usually at the disposal of even the largest research labs (Figure 4.2.a).

In order to give the reader a better impression of what sort of information GeneProf offers

to its user, I will now give four illustrative examples:
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1. Gene-centric information retrieval. GeneProf automatically compiles all data rele-

vant for the gene of interest into one concise summary page by cross-matching assorted

data from many public experiments (Section 3.3.3.6). Figure 4.3 shows the gene sum-

mary page for the transcription factor Nanog (in mouse) as an example. The page first

provides generic information about the gene (collected from other databases), e.g. the

name, external identifiers, transcript variants (all from Ensembl136), protein structure

(Protein Data Bank34), functional annotation (Gene Ontology11) and known protein-

protein interactions (BioGRID516). The following sections summarise information about

(i) the expression of the gene in different conditions and cell types (based on RNA-seq

data in GeneProf), (ii) genes potentially targeted by Nanog and (iii) TFs with enriched

binding activity near Nanog (based on ChIP-seq data in GeneProf).

2. Dissemination of genomic data. Much of GeneProf’s genomic data is available in the

form of customisable tracks that can be displayed and juxtaposed in the built-in genome

browser (Section 3.3.2.5) in order to visually disseminate the mechanisms of genome

biology (Figure 4.2.b). Figure 4.4 shows a screenshot of an active genome browser

session in which I have visualised the genomic environment of Nanog, including tracks

for three RNA-seq datasets179 as well as ChIP-seq data for the TFs Pou5f1, Nanog and

Sox2 from two studies75,342.

3. Discovering patterns in large data collections. With the Visual Data Explorer

(VDE; Section 3.3.2.5), gene expression data and information about DNA-protein

binding sites from many different experiments can be integrated and plotted together

within seconds. To illustrate the use of the VDE, I picked human RNA-seq datasets from

various publications321,345,524,602 via the VDE interface and used two different plot types

to compare their gene expression patterns: (i) Correlation matrix: A simple, graphical

representation of the pair-wise Pearson correlation coefficients calculated between all

datasets (Figure 4.5.a) and (ii) Principal component analysis (PCA): A mathematical

method that extracts descriptive variables from the expression data (Figure 4.5.b).

Both plots show how functionally related cell types cluster closely together, because

their expression profiles are similar.

4. Scrutinisation of public experiments. Transparency and reproducibility of scientific

data have been one of the main driving forces in the development of the GeneProf

software (Section 3.1 and Section 3.3.2.4). In order to avoid the obfuscation of

results, I have therefore decided to not only make the final outcomes of GeneProf analyses

available, but to also complement those with the entire analysis workflow, so that it may

be subjected to the critical assessment of our peers. Every user can now browse through

all public experiments, find out in detail how every step of the analysis was done and
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Figure 4.3: Gene-centric data summary. Overview of the gene-centric summary page
for the gene Nanog with assorted sections highlighted. Retrieved 22 April 2012; http://www.

geneprof.org/show?id=gpFT_pub_mm_ens58_ncbim37_14899.
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RNA-seq reads "paint" 
active gene exons

No signal for inactive genes
(Nanog in NPCs and LFs)

TSS

Proximal enhancer

Distal enhancer

ChIP-seq reads mark
DNA-protein binding sites

Nanog gene

Figure 4.4: Genome browser: Nanog. This is an annotated screenshot showing the ge-
nomic landscape made up of aligned RNA-seq data from ESCs, neural progenitor cells and lung
fibroblasts179 and ChIP-seq data for the factors Pou5f1, Nanog and Sox2 from two studies75,342.
Shown here is the Nanog locus.

(a) (b)

Figure 4.5: Visual data exploration. Example plots exported directly from GeneProf’s Vi-
sual Data Explorer. (a) Visualisation of a Pearson correlation matrix between RNA-seq datasets
summarised by cell type (correlation between arithmetic means). (b) Principal component (PC)
analysis of the same datasets. The plot on the top left shows the percentage of variation ex-
plained by the individual PCs (block circles) and the sum of all PCs up to this point (red circles).
The remaining plots show the contribution of each individual dataset to the first, second and
third PC. Datasets clustering together are characteristically similar to each other in their gene
expression profile.

143



Figure 4.6: Experiment main page: gpXP 000683. The experiment main page of the
GeneProf record with accession number gpXP 000683 (http://www.geneprof.org/show?id=
gpXP_000683). Selected sections have been highlighted and enlarged. This page summarises
the most important information about a data analysis experiment in GeneProf. Many additional
details are available via the other pages linked from this page.
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decide whether the results are trustworthy – if not, the user can repeat questionable

parts of the analysis herself. As an example, I show here the GeneProf experiment

gpXP 000683, which is based on RNA-seq and ChIP-seq data from Sultan et al.524.

From the main page for this experiment (Figure 4.6), GeneProf users have immediate

access to the original publications and data sources (link-out to PubMed, SRA and

GEO), the raw input data and the analysis workflow. The page also shows the main

analysis results, including summary reports about raw data quality, alignment, gene

expression and DNA-protein binding peaks.

4.4 Conclusion

The combination of the GeneProf software with the results of the data analyses described ear-

lier (Section 4.2) and the advanced knowledge retrieval mechanisms outlined in the previous

section (Section 4.3), make GeneProf more than a classic data analysis suite and yet more

than a traditional static online database: The combination of all features offers the potential

to serve as a truly useful and comprehensive resource for a wide range of scientists and to have

a long-lasting impact on research by promoting knowledge transfer, exchange and exploita-

tion. It was with the benefit of this plethora of operative data that I was able to address the

questions investigated in the following chapter.
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Chapter 5

An Integrative View of the Core

Transcriptional Circuitry of

Stem Cells

The development of the GeneProf software (Chapter 3) and database (Chapter 4) provided

me with the ideal tool to tap the vast amount of genomic and epigenomic data accumulated

by the scientific community over the past years. The aim was to extract relevant knowledge

and derive novel insight into the workings of the core transcriptional circuitry of embryonic

stem cells and about how single genetic factors fit into a large network able to shape a complex

biological entity that will eventually give rise to life in all its splendid variety.

Many genes paramount to the establishment and maintenance of stem cell state have been

identified over the last years (Section 1.1.4) and much attention has recently been paid to

the regulatory mechanisms that influence their expression. Still, little is known about how the

complex interplay of multiple regulatory signals can drive gene expression in such a precise

way as it is required to distinguish the manifold types of cells of the developing and adult body.

In this work, I was asking the question as to whether there was indeed a defining regulatory

code (made up of a signature of DNA-binding proteins and histone modifications) that was

able to separate genes that are specifically expressed only in stem cells from the remainder of

the genes in the transcriptome (including those that might be active in stem cells and other

cell types).
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Protein Code Experiment Line Protein Code Experiment Line

Myc Myc gpXP00001275 E14 Smarca4 Sma4 gpXP000031200 E14Tg2a
Tcfcp2l1 T2l1 gpXP00001275 E14 Ep300 P3-2 gpXP000068485 R1
Ep300 P3-1 gpXP00001275 E14 Chd7 Chd7 gpXP000068485 R1
E2F1 E2f1 gpXP00001275 E14 Jarid2 Jd2 gpXP000052308 V6.5
Zfx Zfx gpXP00001275 E14 Mtf2 M2-1 gpXP000052308 V6.5
Mycn Mycn gpXP00001275 E14 Nr5a2 N5a2 gpXP000048198 E14
Nanog Ng-1 gpXP00001275 E14 Luzp1 Luz gpXP000071279 E14
Sux12 Sz-1 gpXP00001275 E14 Spt5 Spt5 gpXP000086437 V6.5
Esrrb Esrb gpXP00001275 E14 NelfA NlfA gpXP000086437 V6.5
Ctcf C-1 gpXP00001275 E14 Ctr9 Ctr9 gpXP000086437 V6.5
Sox2 Sx-1 gpXP00001275 E14 Yy1 Yy1 gpXP000087354 V6.5
Smad1 Smd1 gpXP00001275 E14 Prdm14 Prdm gpXP000101332 LF2
Pou5f1 Po-1 gpXP00001275 E14 Ring1b R1b gpXP000125 RY V6.5
Klf4 Klf4 gpXP00001275 E14 REST Rest gpXP000125 RY V6.5
Stat3 S3 gpXP00001275 E14 MCAF1 Mcaf gpXP000125 RY V6.5
Med1 Md1 gpXP000027245 V6.5 ATRX Atrx gpXP000178296 E14
Med12 Md12 gpXP000027245 V6.5 Mtf2 M2-2 gpXP000169574 R1
Smc3 Smc3 gpXP000027245 V6.5 Tet1 Tet1 gpXP000194600 E14Tg2A
Smc1 Smc1 gpXP000027245 V6.5 Ctcf C-2 gpXP000445512 ?
Nipbl Nipb gpXP000027245 V6.5 Ctcf C-3 gpXP000445512 ?
Nanog Ng-2 gpXP000028342 V6.5 Ctcf C-4 gpXP000445512 ?
Suz12 Sz-2 gpXP000028342 V6.5 Smad3 Smd3 gpXP000426368 V6.5
Pou5f1 Po-2 gpXP000028342 V6.5 Jnk1/3 Jnk gpXP000481548 ?
Sox2 Sx-2 gpXP000028342 V6.5 Nfya Nfya gpXP000481548 ?
Tcf3 Tcf3 gpXP000028342 V6.5

Table 5.1: Selected DNA-protein binding ChIP-seq datasets. ChIP-seq datasets as-
saying DNA-binding proteins (TFs, co-factors, ..) selected for further analysis. For the sake of
brevity, dataset names are abbreviated in plot labels (column ”code”). References refer to the
study in which the data was originally released, RY = Richard Young, unpublished data.

5.1 Materials and Methods

I manually traversed the GeneProf database (Chapter 4) for experiments profiling the DNA-

protein association of transcription factors, co-factors, epigenetic marks and elements of the

transcriptional apparatus previously implicated in the control of pluripotency and self-renewal

(DNA binding proteins: DBPs). I also looked for datasets with gene expression profiling and

histone modification (HM) data in ESCs and other cell types.

Doing so, I collected 49 ChIP-seq datasets for DBPs (Table 5.1), 27 ChIP-seq datasets for

HMs (Table 5.2) and 49 gene expression (RNA-seq) datasets (Table 5.3). For an overview of

the putative function of these DBPs and HMs see Section 1.1.4 and Section 1.1.5. For a few

target proteins, I found more than one ChIP-seq dataset, e.g. there were multiple ChIP-seq

datasets for the three core-factors. Similary, there were multiple RNA-seq datasets for most

cell types. I expect that these data can give us an idea of the biological variability and believe

that, by considering all results across laboratories and biological variants (e.g. different cell

lines), one might be able to disseminate true core mechanisms from random (or non-targeted)

variation.

For all the analyses presented in this chapter I used GeneProf to prepare and process

the data and R to refine and customise plots and visualisations exported from GeneProf.

GeneProf experiments with data analysis workflows and primary results are accessible via the

web interface (Section D.1).
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In Embryonic Stem Cells In Embryonic Fibroblasts
HM Code Experiment Line Code Experiment
H4K20me3 E20m3-1 gpXP 000125 RY v6.5

E20m3-2 gpXP 000535361 v6.5
H3K27me3 E27m3-1 gpXP 000445512 ? F27m3-1 gpXP 000103 RY

E27m3-2 gpXP 000445512 ? F27m3-2 gpXP 000535361

E27m3-3 gpXP 000445512 ?
E27m3-4 gpXP 000121472 R1
E27m3-5 gpXP 000121472 R1
E27m3-6 gpXP 000535361 v6.5
E27m3-7 gpXP 000481548 ?

H3K36me3 E36m3-1 gpXP 000028342 v6.5 F36m3 gpXP 000535361

E36m3-2 gpXP 000535361 v6.5
H3K4me1 E4m1 gpXP 000445512 ?
H3K4me2 E4m2-1 gpXP 000445512 ?

E4m2-2 gpXP 000445512 ?
E4m2-3 gpXP 000481548 ?

H3K4me3 E4m3-1 gpXP 000121472 R1 F4m3-1 gpXP 000103 RY
E4m3-2 gpXP 000121472 R1 F4m3-2 gpXP 000535361

E4m3-4 gpXP 000535361 v6.5
H3K79me2 E79m2 gpXP 000028342 v6.5
H3K9me3 E9m3 gpXP 000535361 v6.5 F9m3-1 gpXP 000103 RY

F9m3-2 gpXP 000535361

Table 5.2: Selected histone modification ChIP-seq datasets. ChIP-seq datasets assaying
histone modifications (HM) selected for further analysis. For the sake of brevity, dataset names
are abbreviated in plot labels (column ”code”). References refer to the study in which the data
was originally released, RY = Richard Young, unpublished data.

Cell Type Code Experiment Cell Type Code Experiment

Blastomere, 2-cell B2-1* gpXP 000195533 ESC, Prdm14 RNAi ESC P14 gpXP 000101332

Blastomere, 2-cell B2-2* gpXP 000195533 ESC, Tardbp−/− ESC T-1 gpXP 00017580

Blastomere, 2-cell B2-3* gpXP 000195533 ESC, Tardbp−/− ESC T-2 gpXP 00017580

Blastomere, 2-cell B2-4* gpXP 000195533 ESC, Tardbp−/− ESC T-3 gpXP 00017580

Blastomere, 2-cell B2-5* gpXP 000195533 ESC ESC-1 gpXP 000101332

Blastomere, 2-cell B2-6* gpXP 000195533 ESC ESC-2 gpXP 000480274

Blastomere, 2-cell B2-7* gpXP 000195533 ESC ESC-3 gpXP 000482512

Blastomere, 2-cell B2-8* gpXP 000195533 ESC ESC-4 gpXP 000482512

Blastomere, 4-cell B4-1* gpXP 000195533 ESC ESC-5 gpXP 00008584

Blastomere, 4-cell B4-2* gpXP 000195533 ESC ESC-6 gpXP 00008584

Blastomere, 4-cell B4-3* gpXP 000195533 ESC ESC-7 gpXP 00008584

Blastomere, 4-cell B4-4* gpXP 000195533 ESC ESC-8 gpXP 000168179

Blastomere, 4-cell B4-5* gpXP 000195533 ESC ESC-9 gpXP 00017580

Blastomere, 4-cell B4-6* gpXP 000195533 ESC ESC-10 gpXP 00017580

Blastomere, 8-cell B8-1* gpXP 000195533 Neural Progenitor NPC-1 gpXP 000482512

Blastomere, 8-cell B8-2* gpXP 000195533 Neural Progenitor NPC-2 gpXP 000482512

Blastomere, 8-cell B8-3* gpXP 000195533 Neural Progenitor NPC-3 gpXP 000168179

Blastomere, 8-cell B8-4* gpXP 000195533 Oocyte Dicer−/− Ooc D-1* gpXP 000195533

Blastomere, 8-cell B8-5* gpXP 000195533 Oocyte Dicer−/− Ooc D-2* gpXP 000195533

Blastomere, 8-cell B8-6* gpXP 000195533 Oocyte Dnmt3l−/− Ooc D3 gpXP 000480274

Embyoid Body EB-1 gpXP 00008584 Oocyte Ooc-1 gpXP 000480274

Embyoid Body EB-2 gpXP 00008584 Oocyte Ooc-2* gpXP 000195533

Embyoid Body EB-3 gpXP 00008584 Oocyte Ooc-3* gpXP 000195533

Embyoid Body EB-4 gpXP 00008584 Sperm Sperm gpXP 000480274

Lung Fibroblast LF gpXP 000168179

Table 5.3: Selected gene expression RNA-seq datasets. RNA-seq datasets assaying gene
expression selected for further analysis. For the sake of brevity, dataset names are abbreviated
in plot labels (column ”code”). References refer to the study in which the data was originally
released. Datasets marked with an asterisk (*) are from single-cell studies.
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5.2 Results

In order to drill down on the mechanisms that make stem cells what they are, I proceeded

sequentially by first establishing a list of genes with an ESC-specific expression pattern (Sec-

tion 5.2.1). I then looked on a broad scale at the wider genomic landscape of ESCs made

up of histone marks and various types of DNA-associating proteins (Section 5.2.2) and then

studied each of these in more detail (Section 5.2.3 and Section 5.2.4, respectively). Lastly,

I used the combination of all three types of measurements (gene expression, HMs and DBPs)

to discriminate different groups of stem cell-related genes and to identify their regulatory

markup (Section 5.2.5). Figure 5.1 shows an overview of the entire analysis pipeline.

5.2.1 Identification of Members of the Core Transcriptional Cir-

cuitry

I first sought to identify genes and possibly other transcriptional features that were integral

to the maintenance of stem cell identity. A number of groups have attempted to track down

lists of ”stem cell genes” by computational analysis before12,157,276,363 and I did not expect

any groundbreaking revelations at this point. Rather the aim was to determine an updated

and extended list of known key players, whose transcriptional patterns could be integrated in

the subsequent analysis.

To do so, I used GeneProf to quantify the expression level of each gene in each of the

assorted expression datasets (Section 3.3.3.3). To improve comparability of the calculated

intensities (as RPKM), the expression values across all datasets were quantile-normalised∗.

Not unsurprisingly, I found striking differences between datasets other than explained by bio-

logical variation alone: While the bulk of all expression in most datasets could be attributed to

protein-coding genes (as it would usually be expected in standard RNA-seq experiments), some

datasets had a considerable skew towards miRNA and ncRNA transcription (Figure 5.2.a).

It should be noted that this drastic non-uniformity is, at least in part, due to the RPKM

normalisation used (Section 3.3.3.3), which tends to inflate expression intensities recorded

for very short transcripts (such as miRNAs and ncRNAs), making the effects of elevated short

RNA expression levels more pronounced. Nevertheless, there is an apparent imbalance in

the initial genome-wide distribution of reads, which I believe is due to technical differences

between sequencing platforms and, in particular, differing protocols in the way the input

material (RNA) was treated. Specifically, ESC-3, ESC-4, NPC-1 and NPC-2, all samples

from the same study512, have been prepared using depletion strategy for ribosomal RNA

rather than by using the ”standard” poly-A selection strategy employed in the other studies.

∗Where necessary, I will in the following refer to the quantile normalised RPKM expression values as
XqRPKM
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Figure 5.1: Overview of analysis pipeline. The analysis presented in this chapter consists
of three converging branches: RNA-seq expression data is used to establish a list of genes specif-
ically expressed in ESCs (Section 5.2.1). ChIP-seq data for HMs and DBPs is first analysed
independently to calculate gene-centric HM enrichment scores and TFAS scores for DBPs, which
are then combined into a regulatory signature for each gene (Section 5.2.2, Section 5.2.3 and
Section 5.2.4) . Using this signature, I employ machine learning methods to cluster the ES-
identity candidate genes identified in the first step into groups and study the regulatory signature
of one of these subgroups in detail (Section 5.2.5).
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Figure 5.2: RNA-seq gene expression data. (a) Percentage of all quantile-normalised
gene expression values (XqRPKM ) per feature type and dataset. (b) Dendrogram of correlation
distances for all features clustered hierarchically by complete linkage. (c) Pearson correlation
matrix clustered hierarchically by complete linkage for only the protein-coding features. (d)
Contribution of individual datasets to the first three principal components (PCs). The first
three PCs explain about 50% of the variation in the data.

This approach has been shown to be much more sensitive to non-coding RNAs, which might

often be missed by conventional RNA-seq98,211, explaining the distributional difference.

As a result, cluster analysis of the expression intensities obtained was strongly governed

by ”experiment-of-origin” rather than the ”cell type-of-origin” (Figure 5.2.b). I expected

that this imbalance would impair the latter analysis and therefore decided to focus only

on the protein-coding portion of the genes annotated in the GeneProf reference dataset

(nprotein−coding = 22, 806 out of ntotal = 35, 529). I would like to stress that this is not

due to a difference in the quality of the datasets per se, but rather due to a fundamental dif-

ference in the nature of the data studied. This difference makes it infeasible to compare both

types of datasets across the board with the same measure without the use of some specialised

normalisation technique – which is not within the scope of the current study.

Thus, I took from all datasets only the protein-coding genes and then repeated the quantile

normalisation. Expression values (XqRPKM ) obtained in this way were generally better corre-

lated between different samples representing the same cell type, although experiment-specific

effects were still strong (Figure 5.2.c). Interestingly, though, principal component analysis

of the signatures was able to distinguish the individual cell types rather well, regardless of

technical differences (Figure 5.2.d).

151



All genes correlated (ρ≥0.7) 
with Pou5f1, Sox2 or Nanog

ESiCρ≥0.7

117 112 588

(a) (b)

Figure 5.3: Overlaps of candidate genes. Venn diagrams demonstrating (a) the overlap
between up-regulated genes in the different cell types as compared to ESCs and (b) the overlap
between candidate genes (ESiC-1) highly correlated with either Pou5f1, Sox2 or Nanog and all
highly correlated protein coding genes.

I chose not to pursue these issues much further and instead decided to focus purely prag-

matically on those genes that, despite all differences, could be clearly associated with ESCs.

At this point, I was not really interested in an exhaustive list of all elements involved, but, on

the contrary, preferred solely the strongest candidates, which I could be most confident about

for the further analysis.

Therefore, the edgeR algorithm458 was used to assess differential expression between

• all ESC samples and all lung fibroblasts (LF; 1 dataset),

• all ESC samples and all embryoid bodies (EB; 4 datasets),

• all ESC samples and all neural progenitor cells (NPC; 3 datasets),

• and all ESCs and all oocytes (Ooc; 3 datasets).

I called genes differentially expressed if they had an FDR-corrected p-value of p ≤ 0.1 for

EBs and oocytes and p ≤ 0.2 for NPCs. A more permissive threshold was used for NPCs since

I expected both undifferentiated cell types to be rather similar and to share candidate genes.

For instance, Sox2 is known to be expressed in NPCs, although at lower levels than in ESCs.

The lack of replicates for LFs did not allow for meaningful statistical comparison, so I decided

to use a fold change threshold of |log2FC| >= log2(1.5) for this comparison. I then took the

overlap (intersection) of all gene lists obtained (Figure 5.3.a). It should be noted that only

genes which were consistently up- or down-regulated in all comparisons were accepted.

I reasoned that genes discerned in such a way would be those that were involved in ESC-

specific functions and not solely in the maintenance of generic progenitor states or early

developmental mechanisms. Since I was primarily interested in genes closely associated with

the core factors Pou5f1, Sox2 and Nanog, I also calculated the Pearson correlation coefficient
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between the expression signature of each of these genes and all other genes in the reference

dataset and used these as a ranking criterion.

Not a single gene was expressed significantly higher in all other cell types as compared to

ESCs. However, a number of genes was consistently over-expressed in ESCs throughout all

comparisons (n = 229). I call those genes ”ES-identity candidate genes” (ESiC). To confirm

that the list did indeed contain genes relevant to stem cells, I characteristed the candidates in

three ways:

• Almost half of all candidate genes (112 of 229, 48.9%) were strongly correlated (ρ ≥ 0.7)

with at least one of the core factors (Figure 5.3.b). This is a significantly higher

proportion than in the entire dataset (700 out of 22, 806, 3.1%; hypergeometric p(X ≥

112) ∼ 7.9 × 10−108). Figure 5.4 shows all candidate genes with a high correlation to

at least one core factor (ESiCρ≥0.7).

• Consistent with previous reports (cp. Section 1.1.4), the selected candidates include,

besides the core factors Pou5f1, Sox2 and Nanog themselves, genes such as Zfp42, Nr0b1,

Klf2/4/5/9, Lefty1/2, Tet1, Phc1, Fgf4/17, Esrrb, Dppa4/5a and Utf1 (Section 1.1.4).

The list also includes many less well-studied genes, which will be discussed later (Sec-

tion 5.2.5, Section 5.3 and Section 5.3.2).

• Functional enrichment analysis with GOseq620 yielded only four biological processes

highly enriched (FDR ≤ 0.01) in the candidates: ”Stem cell maintenance” (GO:0019827,

FDR ∼ 0), ”response to retinoic acid” (GO:0032526, FDR ∼ 0.0018), ”transcrip-

tion” (GO:0006350, FDR ∼ 0.0095) and ”cellular zinc ion homeostasis” (GO:0006882,

FDR ∼ 0.0095).

As a side note to this analysis, I found it interesting to observe that there was globally

a strong correlation between the transcriptional patterns of single oocytes and blastomeres

of the 2-cell embryo, however, this global similarity appeared to be largely lost as early as

at the 4-cell stage, so after one additional cell division. This observation is based solely on

measurements from the same experiment533 and using the same techniques, so is unlikely to

be a mere artefact. On the other hand, 4- and 8-cell stage blastomeres became increasingly

more similar to ESCs.

5.2.2 Genome-Wide Distributions Patterns of Regulatory Proteins

and Histone Modifications

Before further investigating the regulatory dynamics described by DNA-binding proteins

(DBPs) and histone modifications (HMs), I first looked on a broader scale and in an unbiased

manner at the global binding activity of the different proteins. To do so, I first calculated
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Figure 5.4: Clustered heatmap of ESC-identity candidate genes. The heatmap reports
normalised (XqRPKM ), log2-transformed gene expression values for assorted candidate ESC iden-
tity genes (ESiCρ≥0.7, n = 112) clustered hierarchically by complete linkage. Colours have been
rescaled by row. Shades of blue indicate lower than average, shades of red higher than average
expression.
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the coverage of aligned ChIP-seq reads across the genome with respect to known genes in the

GeneProf reference annotation, splitting reads into one of five categories:

• Intronic: In the intron of a gene.

• Exonic: In the exon of a gene.

• Promoter: Overlapping the promoter region of a gene, arbitrarily defined as the 1kb

region surrounding the transcription start site (TSS).

• Near a gene: Within 50kb† of the TSS or transcription termination site (TTS) of a gene.

• Not near any gene: None of the above.

The bulk of all aligned reads was, as expected, assigned to the largest categories, namely

intronic and intergenic regions near genes (the majority of the mouse genome is in the prox-

imity of at least one gene) and since the individual categories are of vastly variable size

(number of bins: exonic = 78, 959; intronic = 947, 372; promoter = 33, 731;near gene =

1, 466, 149;not near gene = 769, 599), I normalised the counts for each category further by

dividing them by the size of the category in order to get a better estimate of how the observed

coverage relates to the expected coverage, if all regions of the genome were equally likely to

be sampled (Figure 5.5.a).

One may conclude that a remarkably high number of all reads appeared to originate from

genic regions and especially the promoters of known genes. Ctr9 and NelfA, in particular,

stood out from the profiles of the other proteins, since they seemed to be specifically enriched in

exonic and promoter regions, respectively, which is in line with their expected function: NelfA

(part of the NELF complex) coincides strongly with the initiation site of PolII transcription,

where it prevents elongation when coupled with DSIF (containing Spt5 )437. Spt5 was also

enriched at promoters, however, extended further into the gene. Ctr9, on the other hand,

which is representative of PAF1, was enriched at the termination site of transcription and

also present throughout the gene437. Several TFs were also enriched strongly at promoters:

For example, Myc has been implicated in the same study in the release of PolII from the

transcriptional pause437. The enrichment was less pronounced for other TFs, which might

rather bind in distal enhancer elements, e.g. Nr5a2.

Next, I sought to look at the global similarity of the binding profiles of all proteins. I

divided the genome into equally sized bins (size = 1kb) and summed up the number of reads

falling into each of these bins. I then calculated the pair-wise Pearson correlation (ρ) between

†Note, I use a permissive window size of 50kb here first in order to get a coarse overview of the global
binding patterns of all factors. In the following analysis I refine this initial impression by looking at the more
detailed distribution of binding peaks with respect to the location of TSSs (Figure 5.9 and Figure 5.11)
and then finally decide to use a 20kb for the assignment of peaks to genes – a window size that attributes the
majority of peaks to a target gene, but does not yet suffer too much from creating ambiguous assignments.
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Figure 5.5: Global distribution of aligned short reads. Aligned read coverage was anal-
ysed with respect to known transcriptional features (genes, short RNAs, ..) and the total number
of reads in each category depicted was summed up for each dataset. Shown are the d percentages
normalised for variable category size for (a) various DNA-binding proteins in ESCs, (b) histone
modifications in various embryonic cell types.

the bin counts of each combination of factors (”correlation matrix”) and visualised the results

as a heatmap (Figure 5.6). In order to more easily spot globally similar patterns, the heatmap

was clustered hierarchically with average linkage defined on the Euclidean distance between

correlation coefficients.

Generally speaking, the global patterns of all factors were positively correlated to some

degree (average correlation ρ̂ = 0.394), indicating that probably a high fraction of genome-wide

binding reported by ChIP-seq is due to genomic characteristics such as chromatin accessibility

rather than the actual binding specificity of the protein in question. Datasets for the same

or closely related proteins tended to cluster together (e.g. C-1 to C-4), although there were

exceptions: Notably, datasets for the core pluripotency factors Pou5f1 (Po-1 and Po-2) and

Sox2 (Sx-1 and Sx-2) did not cluster directly together, although their correlation was still

reasonably high (ρPo−1/Po−2 = 0.586, ρSx−1/Sx−2 = 0.605). Reassuringly, close clusters were

also formed by different subunits of protein complexes: Mtf2 and Suz12 (PRC2) together

with Ring1b (PRC1), Med1 and Med12 (mediator), Smc1 and Smc3 (cohesin). Interestingly,

Jarid2, also PRC2-related, correlated more closely with a set of TFs rather than Mtf2 and

Suz12. TFs were in general closely linked in their genome-wide profile, with Nanog, Tcf3, Sox2

and Pou5f1 forming a particularly strong subunit. The last observation I would like to point

out is, that while cohesin components Smc1 and Smc3 closely correlated with Ctcf, the strong

correlation between cohesin was also detected for the promoter-linked mediator members Med1

and Med12, but not so much for Ctcf and the mediator. It seems likely that a subset of genes

might be occupied only by mediator and cohesin, which could be the active ones, while those
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Figure 5.6: Correlation of genome-wide DNA-protein binding activity. Pair-wise
Pearson correlation matrix of coverage counts across 1kb-bins. Darker colors correspond to
higher correlation. Factors were rearranged by hierarchical clustering with average linkage.

that also have Ctcf lack DNA-loop formation and mediator and are inactive245.

I then repeated this analysis for the collections of HM data (Figure 5.5.b and Figure 5.7).

Trimethylation of lysine 27 as well as mono-, di- and trimethylation of lysine 4 of histone

3 appeared to be strongly enriched at the TSS of genes (Figure 5.5.b), consistent with their

putative role in the activation and silencing of gene transcription (Section 1.1.5.2). This

trend prevailed across both assayed cell types (ESCs and fibroblasts) and was largely consistent

between datasets from different experiments. Methylation of lysines 9, 79 and 36 (especially

the latter) and lysine 20 of histone 4, on the other hand, were less restricted to promoter

regions and covered the entire gene body.

Clustering of the global distribution patterns confirmed that the major deciding factor for

clustering is the type of HM profiled rather than the laboratory group that carried out the

investigation (Figure 5.7). The distribution patterns of H3K4me2 and -me3 were generally

closely correlated making up one major cluster together with H3K36me3 and H3K79me2 (the

latter two forming a distinct subcluster). Monomethylation of H3K4, however, contributed to

the other major cluster which was made up primarily of H3K27me3. Two H3K27me3 datasets,

though, while still closely related with other data for the same HM, did not share the high

similarity with modification patterns observed for other datasets. It is not clear whether this

was due to technical differences or biological ones (e.g. due to the use of different cell lines).
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Figure 5.7: Correlation of genome-wide histone modification patterns. Pair-wise
Pearson correlation matrix of coverage counts across 1kb-bins. Darker colors correspond to
higher correlation. Factors were rearranged by hierarchical clustering with average linkage.

The same two datasets showed evidence of a weak anti-correlation to the activating H3K36me3

and H3K79me2 marks.

The assignment of H3K9me3 and H4K20me2 was somewhat inconclusive since individual

datasets were spread across the two major clusters. Nevertheless, I found it reassuring that the

majority of related datasets clustered together and that the two main clusters corresponded

to the functional distinction declared by the putative role of histone modifications marking

active and inactive gene states, respectively.

5.2.3 Epigenetic State of Stem Cell Genes

I had noticed in the previous part of the analysis (Section 5.2.2), that certain HMs were

mostly located at the TSS of genes, while others were spread more evenly across the entire

gene body, that is promoter, exons and introns. As discussed in the introductory chapter of

this thesis (Section 1.1.5.2), the presence of HMs is believed to correlate with, or even be

causally involved with the activation and silencing of gene expression. I sought to examine

HM patterns in more detail and decided to first have a closer look at the occupancy of the

various modifications at some assorted gene loci (Pou5f1, Sox2, Nanog, Fgf4 and Cdx2 ),

where I examined the coverage of HMs within a genomic context of 14.0kb centred on the gene

(Figure 5.8) using the genome browser built into GeneProf.

Interestingly, H3K36 trimethylation – thought to be a mark of active gene transcription –

could be found strongly associated with chromatin around the genes Pou5f1, Sox2, Nanog and

Fgf4, all of which are expressed in stem cells, but not near Cdx2, a differentiation marker not
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Figure 5.8: Detailed view of histone modifications in the genome. Post-processed
graphics exported from GeneProf. Shown are coverage patterns of aligned ChIP-seq reads at five
selected genomic loci. Track heights have been normalised in such a way that the height of each
track corresponds to the number of reads per million aligned reads at each given position of the
genome.

159



expressed in self-renewing ESCs (Section 1.1.4). H3K36me3 covered the entire gene body,

starting from the promoter region and reaching often beyond the TTS. No H3K36me3 was

detected for any of these genes in EFs, in which none of the genes are expressed.

Distinct differences in coverage between active and inactive genes could also be observed

for H3K79me2 and H3K4me3, but not H3K4me2 or -me1. Trimethylation appeared to be

strongly associated with active promoters, but sometimes reached far into the gene body (see

Sox2 : Figure 5.8) and it is lost entirely in EFs.

In contrast, repressive H3K27me3 was clearly preferentially associated with inactive genes

(Cdx2 ) and was gained for genes silenced in differentiated cell types, in particular, Fgf4 and

Sox2, but less pronounced for Pou5f1 and Nanog.

As in the previous analysis (Section 5.2.2), measurements for H3K9me3 and H4K20me3

were somewhat inconclusive on this small scale. H4K20me3 seemed to be associated with

promoters (and possibly enhancers, see upstream of Nanog) in active as well as inactive genes

and H3K9me3 signals were overall weak and no clear pattern stood out in this view.

In order to examine whether these observations held up on a global scale, I used the

SISSRs peak detection algorithm242 to search for ”peaks”, that is, regions of the genome that

showed a statistically significant enrichment for any one HM in at least one of the datasets

as compared to a control signal (Section C.1). Peaks for the same HM were then iteratively

merged by joining together any peaks that were within 100bp of each other in order to define

a comprehensive list of modification sites throughout the genome.

Examination of the number (Figure 5.9.a) and genomic location of these modification

sites with respect to the closest annotated gene (Figure 5.9.b and Figure 5.9.c) showed that

particularly many modification sites were found for H3K36me3, which covers broad regions

across whole genes, and H3K4me2, which shows small, rather well-defined peaks that would

not have been merged into larger groups by the iterative clustering strategy. Genome-wide,

the majority of H4K20 and H3K4 di- and trimethylation was concentrated at the promoters

of known genes, while H3K36 tri- and H3K4 monomethylation was observed throughout the

gene body. A large part of H3K9me3 happened outside of genic regions in the upstream area

of genes (possibly linked with enhancers) or in gene-remote regions.

A close look at the distribution of peaks with respect to the TSS of the next-closest gene

(Figure 5.9.c), revealed distinct patterns for each modification: While all HMs were centred

on the TSS‡, I found it especially interesting to observe that H3K79me2 accumulated slightly

downstream of the TSS with decreasing amounts detectable further into the gene body. H3K4

mono-methylation was slightly depleted at the TSS, probably due to an enrichment of di- and

trimethylation of the same lysine (mutually exclusive with mono-methylation) at the same

‡This is partially due to a bias of the analysis that links peaks to the next TSS and will hence prefer
assignments towards the TSS-centre of the plots. Nevertheless, true biology overrules this bias and distinct
differences in patterns are clearly visible.

160



H3K4me3
H3K4me2
H3K4me1
H3K9me3

H3K27me3
H3K36me3
H3K79me2
H4K20me3

0.0 0.2 0.4 0.6 0.8 1.0

H3K4me3
H3K4me2
H3K4me1
H3K9me3

H3K27me3
H3K36me3
H3K79me2
H4K20me3

0 10000 20000 30000

(a) (b)

2
4

6
8

10
12

N
um

be
ro

fs
ite

s
[lo

g2
] H3K4me3

−15kb −9kb −3kb 3kb 9kb 15kb
2

4
6

8
10

12 H3K4me2

−15kb −9kb −3kb 3kb 9kb 15kb

2
4

6
8

10
12 H3K4me1

−15kb −9kb −3kb 3kb 9kb 15kb

2
4

6
8

10
12 H3K9me3

−15kb −9kb −3kb 3kb 9kb 15kb

2
4

6
8

10
12

N
um

be
ro

fs
ite

s
[lo

g2
] H3K27me3

−15kb −9kb −3kb 3kb 9kb 15kb

2
4

6
8

10
12 H3K36me3

−15kb −9kb −3kb 3kb 9kb 15kb

2
4

6
8

10
12 H3K79me2

−15kb −9kb −3kb 3kb 9kb 15kb

2
4

6
8

10
12 H4K20me3

−15kb −9kb −3kb 3kb 9kb 15kb

(c)

E
4m

1

E
27

m
3

F
27

m
3

F
9m

3

E
20

m
3

E
9m

3

E
79

m
2

E
36

m
3

F
36

m
3

E
4m

2

E
4m

3

F
4m

3

Sox2,
Pou5f1

Nanog

S
te

m
 C

el
l C

o
re

 F
ac

to
rs

:
N
an
og

S
ox
2

P
ou
5f
1

E4m1

E27m3

F27m3

F9m3

E20m3

E9m3

E79m2

E36m3

F36m3

E4m2

E4m3

F4m3

(d)

x2 x4 x8 x16 x32

Enrichment to UniRef

Ratio of all peaksNumber of peaks

Narrow Promoter

Wide Promoter

20kb Upstream

50kb Upstream

Exonic

Intronic

None

Figure 5.9: Genome-wide histone modification signatures. (a) The number of sites
enriched for eight types of HMs. (b) Global distribution of HM sites with respect to the closest
annotated gene. Narrow promoter: TSS ±0.5kb, wide promoter: TSS ±2kb, none = not near a
known gene. (c) Detailed distribution of HM sites with respect to the TSS of the closest gene.
(d) The heatmap reports log2-fold changes (compared to UniRef) between normalised coverage
intensities for HM clusters associated with all protein-coding genes with at least one cluster was
assigned (n = 16, 871). Rows and columns have been reordered by hierarchically clustering the
intensities (with complete linkage) using the Euclidean distance for rows and Pearson correlation
distance ((1− ρ)/2) for columns.
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1700067K01Rik B4galnt4 Epcam Insig1 Ndufs2 Rpl26 Slc7a7
2700062C07Rik Bcar1 Esrrb Lif Nodal Sall1 Spp1
Acy1 Calr Fat1 Lin28 Notch3 Sall4 Trim71
Adam23 Ccnb1 Fgf4 Lipt1 Nphs1 Samd1 Tyro3
AL596446.7 Cdh1 Fgfr1op Mast1 Prmt3 Sap25 Utf1
Anapc5 D10Wsu102e Gm4767 Mcm3 Psmd7 Setd1b Zfp64
Arhgap26 Ech1 Hjurp Mrpl45 Pttg1 Setdb1 Zic3
Atxn2l Elmo3 Hmgn2 Mycn Rcor2 Slc12a7

Table 5.4: Genes sharing common histone signature with Pou5f1 and Sox2. Genes
hierarchically clustering by HM signature together with the two core factors.

sites.

Peak calls are subject to many, largely arbitrary decisions and I sought to minimise the

effect of thresholding by working with quantitative intensity values rather than qualitative

peak calls alone. Using the previously defined modification sites, I quantified the amount of

aligned reads falling into any one region and subsequently rescaled these counts to account for

differences in sequencing library size (reads per million, RPM; Section 3.3.3.3). I then calcu-

lated the logarithmic (log2) fold change with respect to the background signal (”enrichment”).

Where multiple samples were available for the same HM in the same cell type, measurements

were averaged for the sake of easier interpretation.

Generally speaking, I observed high levels of H3K4 methylation at a large proportion of

all genes (Figure 5.9.d). I also noticed a strong concordance of intensity levels for H3K4

di- and trimethylations – in both cell types. For a subset of genes (including Pou5f1, Sox2,

Nanog), H3K4me3 was abolished in fibroblasts and only a small number of genes appears to

gain stronger H3K4me3 in fibroblasts. H3K4me1 was present at a similar set of genes as di-

and trimethylation, however, at lower levels.

Those genes with the strongest H3K4me2, tended to be also strongly occupied with

H3K27me3. However, H3K27me3 appeared to occupy a lower number of genes than H3K4.

The methylation patterns of H3K27 for most genes were largely identical in ESCs and EFs,

but several clusters of genes existed for which it was observed at either increased (including

the stem cell core factors) or decreased levels in EFs.

Confirming my earlier observations, H3K36me3 was inversely correlated to H3K27me3,

with genes that were highly trimethylated at H3K27 in ESCs being less strongly methylated

in EFs and vice versa. Again, this held for the stem cell core factors as well as a cluster of

other genes.

The genes with the strongest H3K36me3 in ESCs were also occupied by H3K79me2. Un-

fortunately, no data was available to confirm this trend in EFs.

H3K9me3 was rarer – or, at least, less often associated with genic regions and only a small

number of genes showed noteworthy presence of this modification in ESCs, but levels were

overall much higher in EFs in a pattern that appeared to be closely related to H4K20me3 and
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also H3K4me1.

Shifting the focus to the genes (putatively) affected by the HM patterns described above,

I noticed that the three core factors were somewhat separated in their epigenetic profile:

Pou5f1 and Sox2 closely mirrored each other’s profile, but Nanog showed a distinct pattern.

Closer examination of other genes clustering alongside Pou5f1 and Sox2 yielded 57 candi-

dates (Table 5.4), many of which had a known implication in stem cell characteristics, e.g.

Utf1, Sall1/4, Lin28, Nodal, Mycn, Notch3, Esrrb, Fgf4 and Lif. More genes showed a sig-

nature similar to Nanog (n = 1, 307 at a similar clustering height) including Dnmt3l, Chd7,

Dppa2/3/4/5a, Eras, Kit, Lefty1/2, Nr0b1/2, Zfp42 and many more.

5.2.4 Control of Stem Cell Genes by Groups of Regulators

In the next step of the analysis, I applied a similar methodology as previously used for HMs

to all DBP datasets. To get an impression of the nature of data I first examined the binding

profiles of all proteins at a selection of genomic loci surrounding genes of particular interest

using the GeneProf genome browser. As an example, I show here the binding profiles at

five gene loci (Pou5f1, Sox2, Nanog, Fgf4 and Cdx2 ; Figure 5.10). In the figure, only one

sample (the first in Table 5.1) is shown for those DBPs where multiple datasets were available.

The order and colouring of the individual tracks reflects the results of a similarity clustering

performed at a later stage of the analysis (Figure 5.14).

Generally speaking, TFs tended to bind overlapping regions of the genome either near the

promoter of (putative) target genes or at distinct regions that might serve as enhancers75,245.

For instance, there are two rather well described enhancer regions upstream of Nanog, both

of which clearly stood out in the binding profiles (Figure 5.10), with evidence of binding for

Pou5f1, Sox2, Nanog, Ep300, Nr5a2, Tcfcp2l1, Esrrb, Prdm14, Tcf3 and other TFs as well

as elements of the transcriptional machinery (Med1/12, Smc1/3, Nipbl, Spt5 ).

Mtf2, Suz12, Jarid2 and Ring1b were associated with inactive genes (e.g. Cdx2 ), where

they might facilitate the repression of the expression of those gene. In contrast, Ctr9, Spt5,

NelfA, Myc, Mycn and others were closely linked to transcriptionally active genes. These are

all proteins that are either components of the RNA polymerase machinery or crucial to its

functioning, so they are indeed functionally linked to active transcription.

To study DBP profiles on a global scale, I looked for binding events that were enriched

in comparison to the UniRef control (Section C.1) using SISSRs242. The individual DBPs

occupied a vastly variable number of sites (Figure 5.11.a), ranging from only several hundred

(nYy1 = 480) to tens of thousands (nEsrrb = 76, 727).

I associated each of the detected peaks with the closest known gene and recorded the

peak-to-TSS distance as a categorical value (Figure 5.11.b). This analysis confirmed the ob-
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Figure 5.10: Detailed view of DNA-protein binding in the genome. Post-processed
graphics exported from GeneProf. Shown are coverage patterns of aligned ChIP-seq reads at five
selected genomic loci. Track heights have been normalised in such a way that the height of each
track corresponds to the number of reads per million aligned reads at each given position of the
genome.
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Figure 5.11: Number and distribution of DNA-protein binding sites. (a) The number
of sites enriched for protein-to-DNA binding in 49 datasets examined. (b) Global distribution of
these enriched binding sites with respect to the closest annotated gene. Narrow promoter: TSS
±0.5kb, wide promoter: TSS ±2kb, none = not anywhere near a known gene.

servations drawn from the previous small-scale examination of binding profiles (Figure 5.10).

For instance, DBPs that are either direct members or functionally linked to the immediate

control of polymerase activity were clearly clustered at the promoters of genes (e.g. NelfA,

Nipbl, Ring1b, Suz12, Myc, Mycn, Jarid2, Jnk1/3 ). Subtle differences in the binding patterns

were revealed by a closer look at the exact distance of the peaks with respect to the TSS of

the closest genes (Figure 5.12): For example, one could see that, even though all peaks were

centred on the TSS of this meta-genic profile, some proteins showed a preferential bias to

the upstream region immediately adjacent to the TSS. This is consistent with the traditional

model of how TFs might bind upstream of promoters to recruit polymerase or initiate tran-

scription and held up most clearly for Chd7, Nr5a2, Nanog, Pou5f1, Smarca4, Smc3 and Sox2.

Proteins forming part of the transcriptional apparatus, Ctr9 and Spt5, on the other hand, were

clearly enriched downstream of the TSS where active transcription by polymerases was taking

place (it appears that the data was capturing transcription as it happened at various places

throughout the gene).

In order to examine the putative co-occupancy of DBPs genome-wide§, I merged binding

§Since all ChIP-seq experiments have been performed on different populations of cells, one cannot say for
certain that any of the DBPs or HMs mentioned in this analysis ever physically co-occur at the very same
sites in the genome. One way of resolving the question whether two proteins do indeed physically co-occupy
binding sites is the use of sequenctial ChIP71,141,355,554, however, not enough large-scale data was available
for me to use at the time when I performed the analysis presented here.
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Figure 5.12: Distribution of DNA-protein binding sites near TSS. Binding sites were
assigned to the closest neighbouring gene and the peak-to-TSS distance was recorded (rounded
to 0.5kb accuracy). The plots show the frequency with which peaks were detected within a given
proximity of the TSS (dashed line). Where multiple datasets for the same protein were available,
the plot shows the average (arithmetic mean) of all measurements. The numbers on the y-axis
are log2-scaled.
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chr6:122714271-122716811 - ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr17:66828511-66830871 Rab12 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr5:136409751-136411991 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr2:98502391-98503151 AL837506.1, AL837506.2 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr2:154251791-154254231 Snta1, Cbfa2t2 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr1:88420451-88426051 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr17:35640831-35641331 Pou5f1, Tcf19, Cchcr1 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr12:3109851-3110151 - ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr12:12793831-12795751 - ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr12:12949111-12950731 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr8:87174151-87174611 Cacna1a, Ier2 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr7:147129631-147131851 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr5:123587591-123589631 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

chr1:53009391-53010791 700019D03Rik ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###
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Figure 5.13: Frequency of putative DBP co-occupancy in MTLs. Peaks for all indi-
vidual datasets were merged into ”multiple transcription factor-binding loci” (MTLs)75 if they
were within 100bp of each other. (a) The plot shows the count of MTLs (y-axis) that incorpo-
rated a given number of binding peaks (x-axis). (b) A list of the 12 MTLs with more than 30
constituting peaks.
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Figure 5.14: Cooccupancy patterns of DNA-binding proteins. Pair-wise Pearson cor-
relation was calculated on the basis of the binding enrichment of each DBP across all MTLs.
MTLs were generated by merging the peaks for all datasets that were within 100bp of each other.
Rows and columns have been reordered by hierarchical clustering with complete linkage.

peaks located within at most 100bp of each other iteratively to form so called ”multiple tran-

scription factor-binding loci” (MTL)75 and checked how frequently how many DBPs shared

the same bound locus. Overall, the majority of loci was occupied by one factor alone, but a

surprisingly high number of sites (38.7%) showed evidence for binding by several factors at

once (Figure 5.13.a), with 8, 397 MTLs bound by 10 or more different DBPs and 10 even

by at least 28 DBPs. It seems plausible that much of this binding is indicative of coopera-

tive (or antagonistic) functional relevance. Interestingly, one of the MTLs with the highest

co-occupancy of DBPs was situated near Pou5f1 (Figure 5.13.b).

Next, I went ahead to assess the global correlation of binding intensities across all detected

peaks. During many previous analyses (in the process of populating the GeneProf databases;

Chapter 4) I had noticed that the binding of individual factors at places enriched for the

binding of another might sometimes not be sufficient to be called a ”peak”, yet the measured

intensities tended to be stronger for related factors across the board. I therefore quantified

the number of aligned reads for each dataset in each MTL, rescaled the intensities to account

for differences in library size (reads per million), calculated the enrichment to the control

(logarithmic fold change floored at 0) and calculated the global correlation between all datasets

(Figure 5.14). The results of this analysis confirmed my suspicions: Nearly all DBPs were

positively correlated to a considerable degree. The only notable exception to this phenomenon

was Ctcf, which globally correlated strongly only with Smc1 and Smc3 and was actually anti-
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correlated to the binding intensity of a number of TFs.

Interestingly, DBPs clustered in a way related to their functional similarity (Section 1.1.4).

Five major groups were identified (although the boundaries are fuzzy!):

DBP -1: Ctcf, Smc1, Smc3 : The Cohesin members are involved in DNA-loop formation

connecting active enhancers to the core promoters245, while Ctcf acts (amongst other roles)

as a transcriptional insulator partly also via DNA-loop formation280,424.

DBP -2: Mtf2, Suz12, Tet1, Jarid2, Ring1b: Mtf2 and Suz12 are both subunits of PRC2

and involved in the repression of gene expression61,574. Although visually distinct in the

clustered heatmap, I also added Jarid2 and Ring1b to this group (also PRC members), because

they were very highly correlated to the former two. Tet1, which converts 5-mC to 5-hmC,

although apparently not directly involved in PRC has previously been reported to bind to

many of the same targets592. The latter three, and in particular Tet1, were also closely linked

to the binding of proteins in group DBP -4 and some members of DBP -3.

DBP -3: Nr5a2, Smad1, Tcfcp2l1, Esrrb, Stat3, Prdm14, Ep300, Tcf3, Nanog, Sox2,

Smarca4, Smad3, Chd7, Pou5f1 : This group consists mainly of TFs, including the core factors.

It also includes the co-activator Ep300, which has previously been reported to co-occupy many

active enhancers75 and Smarca4, which together with Stat3 opens chromatin rendering the

enhancers accessible to TF binding200.

DBP -4: Klf4, Nipbl, Med1, Med12, Rest, Mcaf, Ctr9, Spt5, E2f1, Myc, Zfx, NelfA, Mycn:

Mediator complex and polymerase-associated proteins that are present at active promot-

ers245,437. The group also contains TFs that appear to be very closely linked to the presence

of these proteins at the promoters, suggesting a more direct link to the regulation of transcrip-

tion than those in group DBP -3. The first four DBPs were also correlated with the previous

group ( DBP -3), but the latter are less so.

DBP -5: Nfya, Jnk1/3 : Both proteins are involved with chromatin remodelling and open-

ing up chromatin at promoters. They have both been previously observed to cluster closely

together at promoters with a role in differentiation548. The proteins clustered loosely with

group DBP -1 and also showed a considerable correlation with promoter-associated compo-

nents in DBP -2 and DBP -4.

The remaining proteins (Yy1, Luzp1, Atrx ) did not closely correlate with any other, which

I believe is mainly due to an overall weak binding intensity. It is not clear whether this lack

of binding signal was due to a technical weakness (inability to detect the binding) or due to

the biology of those proteins (genuinely low number of bound regions in the genome).

So far I have focused solely on the markup of the binding profile of a multitude of DBPs,

but neglected how this binding relates to putative downstream effectors. Let us now shift

the focus to a target gene-centric view. Associating enriched binding sites with potentially

regulated genes is a matter of some controversy (cp. Section 3.3.3.5), but most published
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research relies on a binary assignment of binding sites to genes. That is, a gene is called a target

of a certain DBP, if there is a binding site for this factor somewhere within a fixed window

surrounding the TSS of this gene. The choice of window size varies between publications from

narrow ranges (TSS±0.5kb) via those presuming binding matters only in the upstream region

of genes (TSS − 20kb) to those that allow binding in a huge neighbourhood (TSS ± 100kb).

Some researchers associate only the closest known gene with a binding site, others choose to

link all genes within the window to a binding site.

There is no definitive answer as to what is the best way of proceeding in this issue and

it seems likely that thresholds indeed depend on the protein under study. For the purposes

of this study, I chose to assign a peak to every gene for which it was either (a) within a

window size of 20kb to either side of the outer-most TSS of a gene or (b) anywhere within

the gene’s body (introns or exons). Having examined the binding patterns of many TFs and

other regulatory proteins throughout the genome (in the context of this analysis and of other

work I have been doing before), this seemed a reasonable choice capturing the majority of

characterised enhancer activity as well as those proteins exerting their function directly in the

gene body. Nevertheless, I acknowledged that a simple binary assignment would miss certain

functional links between DBPs and effector genes and I also applied an alternative strategy

assigning to each gene-DBP combination a continuous score called the ”transcription factor

association strength”406 (TFAS; Section 3.3.3.5). To recapitulate briefly, the TFAS takes all

binding peaks within a huge range (1mb) surrounding the TSS into account and sums up the

intensity of the binding observed in this peak weighted indirectly proportional to the distance

of the peak to the TSS. Thus, genes that have many strong peaks close to their TSS will rank

higher than those with only weak or remote peaks.

While the use of the TFAS scores overcomes the necessity for fixed cut-off thresholds, the

issue remains that a binding site located in the proximity of a gene might not be regulating

this target gene. Binding sites might instead be regulating genes that are much further away

and possibly with other genes in between280. The combination of ChIP-seq experiments with

targeted loss-of-function studies for the same DBPs may help to establish a better link between

binding sites and the genes they regulate, but matched expression data is not yet widely

available and even if it was, the assignment of peaks to target genes would still be hindered

by second-order effects (the loss of expression of a transcription factor is likely to trigger a

cascade of effects on the expression of other genes via intermediaries) and by the dependence

of DBPs on co-factors and other influences (a binding site could be functionally regulating

a target gene, but only if all other given determinants of regulation were available at the

same time). Despite all given limitations, TFAS scores have been demonstrated to correlate

reasonably well with gene expression406, so overall this way of assigning binding events to their

likely transcriptional targets appears to be valid.
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2410080I02Rik Bcat2 Gm7325 Klf2 Pycr2 Socs3 Zfp553
2410137M14Rik Bcl3 Gpa33 Klf3 Rest Spry2 Zfp57
4932422M17Rik Capns1 Gpx4 Lefty1 RP23-117P3.3 Spry4 Zic3
6430527G18Rik Cbx7 H2-M5 Macf1 Sall1 Tdh Zscan10
9630014M24Rik Cldn4 Hsd17b14 Mkrn1 Sall4 Wbscr27
AC101915.1 Dusp27 Ifitm1 Mycn Scd2 Zbtb45
AC133494.1 Fam100b Igfbp2 Mylpf Sept1 Zbtb8a
Agtrap Fbxo36 Jam2 Nodal Sgk1 Zfp13
Arhgap26 Gemin7 Jarid2 Plekha4 Slc29a1 Zfp296

Table 5.5: Genes sharing common regulator characteristics with Pou5f1, Sox2 and
Nanog. Genes hierarchically clustering by TFAS signature together with the three core factors.

The results of both analyses are summarised in Figure 5.15. Note that both heatmaps

have been reordered by the similarity of rows and columns in the binary profile to facilitate

comparability. There was a large number of genes with evidence for binding by many different

factors. I was particularly interested in the small number of genes (n = 61), that had a signa-

ture of putative regulators very similar to Pou5f1, Sox2 and Nanog. The list contained many

genes previously implicated in ESC identity (in either a supporting or disrupting manner),

e.g. Jarid2, Klf2/3, Lefty1, Mycn, Nodal, Sall1/4 and Rest (Table 5.5). Those genes appear

to be controlled by a shared set of regulatory inputs and it would be plausible to believe that

they might also be functionally related, making even the less well-known members of the list

interesting candidates for stem cell research.

5.2.5 Many Stem Cell Genes Share a Common Regulatory Signature

Finally, I meant to put the results of the previous analyses together to unravel regulatory

signatures common to genes that are central to ESC identity (ESiC gene list, Section 5.2.1).

In order to make it possible to compare values from DBPs and HMs in the same analyses, I first

standardised all intensities calculated previously by subtracting the mean of each measurement

and dividing by the standard deviation (zero-mean and unit variance normalisation).

I first meant to examine how the intensity of DBP and HM occupancy related to transcrip-

tional activity in ESCs on the whole. Comparing the frequency with which all DBPs/HMs of

a certain intensity occurred in all protein-coding genes that were transcriptionally active in

ESCs (XqRPKM ≥ 5, nactive = 7, 375) with those that were inactive (XqRPKM < 5, ninactive =

15, 431), showed up notable differences in distribution, in particular, for various histone mod-

ifications (Figure 5.16.a): As fits well with our current model of their functional role, genes

with a high level of H3K79me2, H3K36me3 and H3K4me3, were clearly enriched in the ac-

tive subset of genes. Less pronounced, but still notable, the same held for H4K20me3 and

H3K4me2, while high levels of H3K27me3 were only very rarely observed with active genes.

Many DBPs also showed differential patterns between active and inactive genes. Sensibly,

these are proteins linked to polymerase and the transcriptional machinery (Ctr9, Spt5, Smc1,
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Figure 5.16: Regulatory signature of active and inactive genes. (a) Percentage of genes
(y-axis) with a certain standardised intensity value (x-axis) for each DBP and HM. (b) Pearson
correlation of HM and DBP intensities with average gene expression values (XqRPKM ) in ESCs.
(c) Decision tree discriminating active from inactive genes based on the intensity of three HMs.
The coloured bars report the percentage of genes from each category falling into the respective
branch.

Smc3, Med1, Med12, Nipbl, NelfA): Above-average levels of binding for these proteins were

preferentially associated with active genes. Many TFs, while present at all levels of intensity

in active and inactive genes, were hardly ever found at the lowest observed intensity in the

context of inactive genes (Esrrb, Chd7, Klf4, Myc, Mycn, Nanog, Pou5f1, Prdm14, Smarca4,

Tcfcp2l1, Zfx ).

The only DBPs clearly enriched in inactive genes were Suz12 and Mtf2. Others with a

supposed repressive function (Ring1b, Rest, Jarid2 ), were still preferentially associated with

active genes, although only at modest (approximately average) levels of intensity. Global

pair-wise Pearson correlation analysis of gene expression intensities with DBP/HM occupancy

(Figure 5.16.b), also confirmed that most proteins were correlated positively to some degree

with expression levels, however, only H3K36me3 and H3K79me2 at a strong level (ρ > 0.6).

The only factors showing up a global negative correlation were H3K27me3, Mtf2 and Suz12,

but in all cases this correlation was rather weak. Importantly, this surprising observation does

not necessarily contradict established models of the function of these proteins, but only goes
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to show that the control of transcriptional activity depends on the complex interactions of a

plethora of different factors.

I used linear discriminant analysis (LDA; as implemented in the lda function from the

MASS package in R568) to identify those variables (HM/DBP intensities) that were most con-

clusive for the distinction between active and inactive genes. This analysis returned H3K79me2

and H3K27me3 as the best discriminators (data not shown). However, none of these variables

alone was sufficient to distinguish both classes: That is, even for H3K79me2 and H3K36me3,

there were many inactive genes that had a high intensity.

I hypothesised that a combination of multiple variables might be able to discriminate active

from inactive genes more successfully than a single factor alone. Therefore I tried to define a

set of simple, (human-) understandable rules by which one could effectively distinguish both

classes. A machine learning approach for determining such rules is given by so-called ”decision

trees” and I attempted to build such a tree using the rpart package in R543. Based on the

data at hand, the algorithm identified H3K79me2, H3K36me3 and H3K27me3 as the best

discriminators (Figure 5.16) – consistent with my previous observations. Taking only the

measurements for these three HMs into account, it was possible to distinguish active from

inactive genes with high accuracy (A = 0.844) and precision (P = 0.755)¶.

Evidently, the distinction made by this simple decision tree was still not perfect. I expect

a large proportion of erroneous class predictions to be due to imperfect measurements and

biological variation. That is, the HM, DBP and gene expression intensities used here are

averages over a number of biological replicates (in themselves mixtures of heterogeneous cell

populations). However, the unaveraged measurements within these classes are not always

consistent – indeed, often they vary massively (Figure 5.2, Figure 5.6, Figure 5.7). This is

due to technical measurement errors and the fact that the datasets were generated in different

laboratories using a variety of cell lines, treatments and culture conditions. Hence the biology

I am trying to model with this classifier is certainly not perfectly represented by the data

that was available to me. Consequently, one could never expect a perfect discrimination to be

achieved by the decision tree.

Given that there was a difference in regulatory and epigenetic markup between active and

inactive genes in general, I now wanted to test whether there was a unique DBP/HM signature

marking the 229 ES-identity candidate genes (ESiC) identified in Section 5.2.1 on the basis

of their gene expression patterns in different cell types. The majority of those candidates (226

of 229) were also ”active” in ESCs according to the previously used criteria (XqRPKM ≥ 5)‖,

¶The terms ”accuracy” and ”precision” are used in the sense in which they are generally defined in the
field of machine learning. Accuracy is the ratio of correct classifications (true positives and true negatives) in
the entire population. Precision is the ratio of true positives divided by all positive calls, here, the number
of genes correctly called ”active” divided by the number all genes predicted ”active” (including those wrongly
called ”active”).
‖The three genes that did not satisfy the ”active” criterion were: Olfr957, Sult6b1, Ankrd3.
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Figure 5.17: Regulatory signatures of ESC candidate genes. The heatmap reports
standardised intensity values for HMs and DBPs for 229 selected ES-identity candidate genes
(ESiC). Rows and columns have been reordered by hierarchical clustering with complete linkage.
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so the task was not only to find a signature that marked active genes in ESCs, but distinguish

a certain subgroup of active genes from rest of the transcriptome. If such a signature existed,

it would be suggestive of common regulatory mechanisms driving the expression of an ESC

gene transcriptional network. Even if no unique signature was shared across all candidate

genes, there might be a subgroup of tightly co-regulated core elements of this network.

In order to look for a common regulatory code shared across ESC genes, I integrated all

sources of data from the previous analyses (gene expression: Section 5.2.1 , HMs: Sec-

tion 5.2.3 and DBPs: Section 5.2.4). Within these datasets, I concentrated on only the

predefined candidate genes (ESiC). Hierarchical clustering of the regulatory signatures dis-

tinguished five distinct subgroups of genes within the candidate set (Figure 5.17):

ESiC-1 contained the three core factors as well as many other genes with a definite im-

plication in ESC function, for instance, Klf2, Tcfcp2l1, Phc1 and Lefty2. The cluster was

marked by a high binding intensity across most DBPs and all ”active” histone marks. On the

other hand, intensities for the repressive histone mark H3K27me3 and PRC-members Suz12

and Mtf2 were low, with the exception of Esrrb, which also exhibited a comparatively high

signal for these proteins.

ESiC-2 contained further stem cell genes (e.g. Klf4/5, Nr0b1 and Utf1 ) and, like ESiC-1,

showed evidence for binding of most HMs and DBPs. However, signal intensities were gen-

erally weaker and repressive influences were not always absent. Further subgroups might be

distinguished in this large group, but I chose to leave this for later investigations.

ESiC-3/4/5: ESiC-3 still showed medium-intensity binding for many TFs (Sox2, Nanog,

Tcf3, Nr5a2, Smad1 and the co-factor Ep300 ), but weaker intensities for the other DBPs.

It contained some previously characterised genes like Dppa4 and Tet1, but also others which

still need further investigation. ESiC-4 had even weaker signals for most DBPs and ESiC-5

had hardly any noteworthy evidence of binding – neither by DBPs nor by associating HMs.

Interestingly, the last group contained almost only badly studied transcripts and during further

investigations I have found that the lack of DBP/HM-signals for these genes might be explained

by the repetitiveness of the genomic regions they are situated in (Section C.2).

I have noticed that many HMs and DBPs tended to show a higher propensity of strong

signals in the candidates as compared to the rest of the transcriptome (Figure 5.18.a) and

even in comparison to all active genes (data not shown for the sake of brevity). Chd7, Esrrb,

Klf4, Mcaf, Med1, Med12, Nipbl, Pou5f1, Prdm14, Smc1 and Smad3 had visually clearly

distinguishable patterns in both populations, however, again no single epigenetic or regula-

tory signal was powerful enough to discriminate all 229 ESiC genes from all other genes. I

attempted to create a decision tree that would support the understanding of the separation

between ESiC genes and other genes active in ESCs, but found the results too complex to

give any insight into the biological nature of the difference (data not shown). This is not
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Figure 5.18: Regulatory signature of ESC genes. (a) Percentage of genes (y-axis) with
a certain standardised intensity value (x-axis) for each individual DBP and HM. (b) Decision
tree discriminating candidate genes from gene list ESiC-1 (see text) from all other genes on
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candidate genes (ESiC-1, green) with all ES-identity candidates (ESiC, blue) and all genes in
the right branches of the decision tree in the previous panel (DT = decision tree, red). Five
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so surprising given the drastic observable disparity between the groups identified from the

hierarchical clustering (Figure 5.17) and the lack of signal for a subset of candidate genes

(ESiC-5 and possibly more: Section C.2). Instead, I decided to focus, for the time being,

entirely on ESiC-1, that is, those 37 genes for which I thought it might be most reasonable

to expect an important, direct functional role linked to stem cells.

Again, I trained a decision tree on the distinction between this group (ESiC-1) and all

other genes (Figure 5.18.b). The generated tree was able to achieve a perfect distinction

between both classes (A = 1.0, P = 1.0). The vast majority of non-ESiC-1 genes (22, 620 of

22, 806 protein-coding genes, 99.2%) could be distinguished from ESiC-1 by the application of

just five decisions: High levels of Med12, E2f1, Smarca4, Ep300 and Nanog were necessary for

the inclusion in ESiC-1. These five decisions make up the left-most ”branch” of the decision

tree. The other decisions in the tree are only required to distinguish the remaining 144 ”other”

genes from ESiC-1 (Figure 5.18.c). These genes might be interesting in themselves thanks to

their similarity to ESiC-1. In fact, five of them (Epha2, Slc29a1, Utf1, Asns, Ftl1 ) were also

in the wider candidate list (ESiC), but had not been included in ESiC-1 by the hierarchical

clustering (Figure 5.17).

The decision tree provides a way to distinguish ESiC-1 genes from others conclusively

and without error with a minimum number of decisions. The tree basically states that genes

with low levels of five key proteins (Med12, E2f1, Smarca4, Ep300 and Nanog ; left-most

branch) are definitely not members of the ESiC-1 group. However, it would be a mistake

to extrapolate this rule to say that all ESiC-1 genes had high levels of all those proteins.

This is because second- and third-order decisions in the left branch of the tree do not pertain

to the genes in the right-most branches (and vice versa). Consequently, for the genes in the

right-most branch, one could not make any statement about Nanog levels, for example. Thus,

the decision tree cannot help us to find a common DBP/HM profile for all ESiC-1 genes and

to understand the co-regulatory mechanisms that coordinate those genes.

An alternative strategy was employed to find common characteristics of ESiC-1 genes: I

defined the ”discriminative power” P (V |Gx) of a variable V (HM/DBP measurement) with

respect to a group of genes Gx ⊂ G as the percentage of non-Gx (Gother = Gx) genes that

could be discarded if a threshold Θ on the measurements for this variable (mV (x)) was to be

used. As a threshold, either the minimum measurement in Gx is used (Θmin), implying that

all passing genes need to be greater or equal to this threshold, or alternatively the maximum

measurement in Gx (Θmax), implying that all passing genes need to be less or equal to this

threshold. The discriminative power is hence defined as:

P (V |Gx) =
max(|{x|x ∈ Gx ∧mV (x) ≥ Θmin}|, |{x|x ∈ Gx ∧mV (x) ≤ Θmax}|)

|G|
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Figure 5.19: Common regulatory inputs of ESiC-1 genes: (a) The plot visualises the
potential of DBPs/HMs to distinguish ESiC-1 genes from others at 10 iterations of the decisions
process (top to bottom). The absolute value of the discriminative power represents the percentage
of non-ESiC-1 genes that can be removed by imposing a threshold on the given variable. Positive
values mean that a high measurement of this variable is required for inclusion in ESiC-1, negative
values require a low measurements. (b) Examples of how the decision path (first 6 steps) changes
after manually forcing the use of certain variables (forced variables have gray background colour).
Shown are also the numbers of genes after 5 and 6 decisions.

To distinguish ”greater than” and ”less than” decisions, I denote those decisions that re-

quire a measurement to be below the threshold as negative numbers. Using the discriminative

power P (V |ESiC-1), one can decide on a ”decision path” discriminating ESiC-1 from other

genes using an iterative strategy: For the first decision, the variable with the highest (absolute)

discriminative power is chosen. After removing all genes that do not satisfy the threshold used

for the first decision, the discriminative power for all variables is calculated on the remaining

genes and again the most discriminative variable is chosen. The procedure will be repeated

until no non-ESiC-1 genes are left or the selection of genes does not change any more.

The results of the iterative discriminative power analysis (IDPA), are shown in Fig-

ure 5.19.a. Interestingly, the very first decision already discards 98% of non-ESiC-1 genes.

IDPA has revealed E2f1 as the most decisive factor at this step: All ESiC-1 genes as well as

430 other genes have a very high level of this DBP associated with them. A number of alter-
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native variables would be able to achieve a similar split: E2f1 is closely followed by Pou5f1,

Chd7, Ep300, Med1, Nanog, Sox2, Tcf3 and Med12 (in order), all of which could remove more

than 95% of non-ESiC-1 genes in the very first decision. The second decision is based on the

core pluripotency factor Pou5f1, that manages to further separate out 56% of the remaining

non-ESiC-1 genes. Alternative decisions at this stage could be using Nanog, Tcf3, Esrrb or

Ep300.

Why are there alternative decision variables? There is a certain level of redundancy be-

tween the genes marked by the different DBPs/HMs: For instance, genes that have a high

level of Pou5f1 also tend to have a high level of Sox2. I tried to examine the effects of chang-

ing the decision variables in the first step by enforcing the use of a sub-optimal variable, e.g.

Pou5f1, Nanog, Med1 and Chd7 in the first stage or Pou5f1 and Nanog in the first two stages

(Figure 5.19.b). Pou5f1 and E2f1 were entirely interchangeable in the first two stages. Even

changes to the other variables did not have any strong effect on the signature: The order in

which some variables were chosen in the IDPA procedure changed, but the decision paths still

maintained the same components and led to similar selections of genes. This demonstrates

the robustness of the IDPA approach.

Evidently, the first two steps of the process are the most decisive, making it possible to

rapidly reduce a list of 22, 806 protein-coding genes to 206, including the 37 core ES-identity

candidate genes from ESiC-1. After another three decisions (Esrrb, Ep300, H4K20me3 ), the

list of selected genes stabilises at just over a hundred genes (nIDPA = 116). Any subsequent

decision will cut off less than 10% of the remaining genes. I believe that the 79 genes (nIDPA−

|ESiC-1| = 116 − 37 = 79) that remain after five decisions together with the core stem cell

genes from ESiC-1 make up another group of interesting candidates genes, because they

share a core regulatory signature (high levels of E2f1, Pou5f1, Esrrb, Ep300, H4K20me3 )

that implicates them directly with the tightly co-regulated cluster of stem cell genes defined

earlier (ESiC-1). I call this extended group of candidate genes ESiC-1+.

The complete list of all ”new” members of ESiC-1+ (that is, those that were not in

ESiC-1) along with their gene expression patterns and regulatory profiles is given in Fig-

ure 5.20. With only a few exceptions (Arhgap26, Fbxo36, Plekha4, AC133494.1, AC142098.4,

Gemin7, Setd1b, 4932422M17Rik), these genes are expressed at an above-average level in

ESCs. One gene, Slc29a1, was also part of the initial candidate gene list (ESiC), but the rest

had been excluded by my strict analysis (Section 5.2.1), because they were either (i) not

differentially expressed in at least one condition or (ii) more highly expressed in some other

cell type than in ESCs. Interestingly, statement (ii) fits to a large number of histone-encoding

genes that are indeed differentially expressed in ESCs in comparison to most other cell types,

but are even more highly expressed in NPCs. It appears plausible that the expression of these

histone genes was required in the genome-wide remodelling process that is necessary to enable
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Figure 5.20: ESiC-1+: Genes sharing a regulatory signature with ESiC-1. Combi-
nation of two heatmaps. Left: gene expression signature per cell type (mean of all samples).
Colours have been scaled by row. Right: Standardised intensity values for DBPs and HMs. The
rows in both heatmaps have been reordered by hierarchical clustering with complete linkage over
the Euclidean distances in the right heatmap. The columns in the right heatmap have been
reordered by the clustering in Figure 5.17.
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the drastic epigenetic changes that enable pluripotency in stem cells and in the differentiation

of those stem cells to cells with a more restricted state. Many other genes were still expressed

in embryoid bodies to a degree that did not warrant calling differential expression towards

ESC, which again seems reasonable in such a diverse aggregate of cells, many with a wide

potency. The expression of those genes might mark the remnants of ES-identity in EBs.

Many of the genes in ESiC-1+ have previously been implicated in ES-related functions,

e.g. Jarid2, Mycn or Tbx3, but further work will be required to investigate the role of other

members of the list. Curiously, the list also contains Gapdh, which is frequently used as

a control for low-throughput expression assays (qPCR) and is generally considered to be a

”house-keeping” gene. There are multiple strong binding sites for many DBPs and HMs in the

proximity of Gapdh (warranting its inclusion in ESiC-1+), but it is impossible to tell whether

they are functionally linked Gapdh, because the gene, in its genomic context, is situated right in

the middle of a cluster of overlapping genes (with Iffo1 and Ncapd2 ). However, the expression

of Gapdh is certainly not constant across cell types (see http://www.geneprof.org/record.

jsp?ds_id=pub_mm_ens58_ncbim37&id=24141), shedding doubt on its use as a control gene.

It will be interesting to see what future research will reveal about this gene.

5.3 Conclusions

There are two main conclusions to be drawn from the analysis presented in this chapter:

Firstly, a rather small list of regulatory elements was defined that marks co-regulated genes

with ESC-specific expression (Section 5.3.1). Secondly, based on common characteristics of

this regulatory code between known key ESC genes and others, it was possible to identify

a number of additional, bona-fide candidates for the core transcriptional circuitry of mouse

ESCs (Section 5.3.2). I will now summarise and discuss these outcomes.

5.3.1 A Small List of Regulatory Elements is Sufficient to Define

ESC Master Genes

It is of paramount importance not to misinterpret the results of the analysis presented in the

previous section (Section 5.2.5) with respect to what they say about the regulation of stem

cell genes: For example, one might be easily misled into thinking that the regulation of ESC

genes (at least of ESiC-1) depended solely on the factors mentioned in the IDPA decision path

(Figure 5.19.a) and that TFs previously considered important for ESC identity (e.g. Sox2 )

were insignificant just because they were not required for these decisions. This is most likely

not the case. Indeed, many DBPs and HMs are strongly enriched in the proximity of ESiC-1

genes (and of ESiC-1+) and I believe that this binding is functionally relevant. However, the
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occurrence of these DBPs/HMs is non-informative with respect to the class distinction (”In

ESiC-1” or not): This might be either because they also bind near many non-ESiC-1 genes,

or because their binding intensity is redundant with respect to another DBP/HM. I use the

term ”redundant” here in a strictly statistical sense, as it gives no additional information.

Biologically, the factors might not be redundant, but act cooperatively, antagonistically, or

in some other way that causes them to frequently colocalise. Thus, what I am saying is not

that the variables defined by the IDPA decision path describe the complete regulatory code

of stem cells, but rather that these few regulatory elements are sufficient to discriminate ESC

master genes from other genes in the stem cell transcriptome.

The composition of the list of regulatory elements in the decision path is very interest-

ing: The very first decision disregards the majority of the mouse transcriptome, singling out

genes with unusually high intensities for Smad1, Ep300, Nr5a2, Tcf3, Sox2, Nanog, Stat3,

Tcfcp2l1, Smad3, Esrrb, Prdm14, Smarca4, Zfx, Klf4, Mcaf, Pou5f1, Nipbl, Med1, Med12

and E2f1. Several factors achieve an almost equivalent split in the gene selection at this point

(Figure 5.19), but the most optimal decision is made on the basis of E2f1 intensity. E2f1

(together with E2f2 and E2f3 ) is believed to be important for normal cell cycle progression

and survival, but can also function as a TF or by recruiting TFs to enhancers and promot-

ers41,82. No interactions with any of the known ESC core TFs have been reported in the

literature, however, Gsk3β has been shown to interact with E2f1 promoting the ubiquitina-

tion of E2f1, blocking its activity638. Gsk3β-inhibitors have been used to maintain ESCs in

an undifferentiated state619 (Section 1.1.3). At this point, it is not clear whether said effect

of Gsk3β-inhibitors might be, in part, due to increased E2f1 activity in absence of Gsk3β.

Furthermore, E2f1 also interacts with several chromatin and histone modifiers, e.g. Hdac1 19

and Dnmt1 456. I speculate that E2f1 might act as a pioneering factor in stem cells, facili-

tating changes in chromatin structure favourable for active transcription and recruiting core

regulatory elements to enhancer elements. In doing so, it marks a subgroup of genes accessible

to TFs and to the elements of the transcriptional machinery. In a recent study, Cheng and

Gerstein76 have demonstrated that the binding intensity of E2f1 is highly predictive of gene

expression levels in ESCs lending further credibility to the importance of this gene in the

transciptional network of stem cells.

All subsequent decisions would then single out ES-specific genes from these genes that

are generally accessible to the transcriptional control by an assortment of TFs: As such it

is not surprising that the core ESC regulator Pou5f1 is the second key component of the

decision path and that Nanog, another core element of the ESC transcriptional circuitry,

could substitute as an alternative decision node (Figure 5.19). Of course, Pou5f1 (and

Nanog) also binds at many other genes, but amongst those ”pre-filtered” by E2f1 -intensity it

might highlight those where it acts in concert with other TFs to establish a tightly regulated
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control mechanism for cell state-critical genes. One of the factors that might be more crucial

to these control mechanisms than previously expected could be Esrrb, which appears in the

next step of the decision path. It has been known for some time that Esrrb is involved in

ESC self-renewal227,327 and can promote reprogramming of mouse embryonic fibroblasts to

iPSCs132. The ways in which Esrrb exercises its function are still poorly understood, but

recent research (personal communications and our own unpublished data: Festuccia, Osorno,

Halbritter, Tomlinson & Chambers, manuscript in preparation) consolidates its importance

at the heart of the ESC transcriptional circuitry.

The decision process is further helped along by the transcriptional co-factor Ep300, which

has previously been observed to be present at many ES-specific enhancers75. Ep300 is a

versatile protein acting as a acetyl transferase for all histones396 and other proteins185,432.

In this role, it renders chromatin accessible for transcription factors and active transcrip-

tion. Moreover, Ep300 interacts with a plethora of proteins facilitating the binding of TFs.

Amongst the DBPs included in my analysis, evidence has been demonstrated for interac-

tions with Yy1 241 and Smad3 605 in mouse, and additionally for the orthologues of Smad1 419,

Tcf3 53,369, Stat3 371,441, Myc124,629 and Klf4 623 in human. It is not unlikely that the interac-

tions observed in human also apply to the equivalent mouse proteins and it might even turn

out that Ep300 could interact with Pou5f1 or Sox2 directly, since interactions with Sox4,

Sox9 and Pou3f2 – structurally similar proteins – have also been reported (source: http:

//thebiogrid.org/108347/summary/homo-sapiens/ep300.html). I speculate that Ep300

might play a critical role in the enhancers and promoters of the genes in ESiC-1 by open-

ing up chromatin and forming complexes with various TFs binding in these places. Without

Ep300 other key factors might not be able to exert their function correctly, explaining the

presence of Ep300 in the regulatory code of ESiC-1. Interestingly, the genetic deletion of

Ep300 in ESCs has been reported to affect Nanog expression (one of the members of ESiC-1)

and impair the differentiation potential of the cells, but did not disrupt self-renewal637.

Further studies will be required to scrutinise the significance of Ep300 and other regulatory

inputs in the context of ESiC-1 gene expression and to investigate in more detail how these

factors colocalise, interact and cooperate to achieve their biological function.

5.3.2 New Candidates of the ESC Transcriptional Circuitry

In my analysis, I have used a ”regulatory code” of DBP/HM inputs to define several lists

of genes (ESiC-1 to ESiC-5: Figure 5.17 and ESiC-1+: Figure 5.20) that I consider

high-confidence candidates with a likely role in important ESC-specific functions.

The list of genes with the most distinct regulatory signature (ESiC-1) contained many

of the well-known members of the core ESC circuitry and genes previously implicated in the
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Figure 5.21: Functional annotation of ESiC-1. Gene ontology annotations for the 37
candidate genes from ESiC-1 as assigned by g:Profiler446 (http://biit.cs.ut.ee/gprofiler;
retrieved 26 April 2012).

maintenance of pluripotency and self-renewal, like Pou5f1, Sox2, Nanog, Phc1, Lefty2, Nodal,

Tdh, Klf2, Tcfcp2l1, Fbxo15, Zic3, Esrrb, Zfp42, Cbx7 or Dppa5a (Section 1.1.4). A quick

overview of the putative function of all ESiC-1 genes is given in Figure 5.21. The findings

in this study strengthen the link between those genes and ESC identity and call for further

study of the less well known representatives of this list of genes. For instance, Fbxo15 has

been known to play some role in ESCs for quite a long time, however, little is known about

what this role actually is. The gene is dispensable for self-renewal and pluripotency549 and its

use as a marker for the reprogramming of somatic cells to an induced pluripotent state cannot

effectively distinguish fully from incompletely reprogrammed iPS cells400. Nevertheless, its

expression is highly ES-specific and, as shown in this study, its genomic fingerprint closely

reflects those of known key players in stem cells. Thus, I reason that Fbxo15 might exert its

role in ESCs redundantly with other factors and double knock-down studies might be required

to delineate this function in detail.

The list also contains many candidates which have, to date, no known involvement in

stem cells. Could their appearance alongside other established genes indicate some, as yet,

unknown function specific to pluripotency or self-renewal? I have investigated these genes

in the literature and public databases, singling out several particularly interesting candidates

and will now further discuss their possible relevance in ESCs. Further experimental work will

be required to validate any of these statements.

The gene Zbtb8a encodes a zinc-finger protein and presumed TF (source: UniProt, http:

//www.uniprot.org/uniprot/Q96BR9), that is included in the Kruppel-like family of TFs,

but may have so far been overlooked, possibly due to its name. According to gene expression

data from the ArrayExpress atlas (http://www.ebi.ac.uk/gxa), the gene is quickly down-
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regulated during ESC differentiation181 and is only weakly expressed in non-embryonic stem

cells, e.g. haematopoietic stem cells142, but is also spuriously found in other tissues and

developmental stages, including adult cells. Several KLF’s contribute to stem cell self-renewal,

pluripotency and reprogramming75,183,236,315, so this gene along with Klf9, which I have not

mentioned before, but was also included in the list, might have a more central role in ESCs

than previously believed.

The adhesion molecule Claudin-4 (Cldn4 ) has recently been implicated with a differ-

ential role during the commitment of ESCs to endothelial and haematopoietic lineages515.

The protein is involved in structural integrity and in tight junctions (source: EBI, http:

//www.ebi.ac.uk), which might possibly contribute to colony formation in ESCs. Cldn4

is also linked to various cancers and its over-expression has recently been associated with

derepression of epigenetically silenced genes287, consistent with the concept of transcription-

ally permissive ESC transcriptomes. Calling Cldn4 ”ES-specific”, however, is certainly not

warranted: Examination of transcriptional profiles from ArrayExpress does indeed confirm

differential over-expression in ESCs in comparison to various other embryonic cell types, but

there are somatic tissues in which it is much more strongly expressed169. It might be possi-

ble that Cldn4 exerts a specific function in ESCs, perhaps via its properties as an epigenetic

modifier, rather than in its role as a wide-spread membrane-associated molecule.

Cordon-bleu (Cobl) has been described as a nucleation factor involved in neuronal or-

ganisation2, but was originally identified as a gene specifically regulated during early mouse

development and patterning150. As for the previous genes, examination of a wider range of

conditions via ArrayExpress shows that Cobl expression is not entirely ES-specific: Cobl ex-

pression in ESCs is quickly lost upon differentiation into EBs181 and is higher in ESCs than

in hematopoietic stem cells142. However, it is more highly expressed in various adult tissues

than in ESCs. Cobl ’s link to early mouse development could point to a possible role in ESCs.

Earlier computational meta-analysis has already pointed out the gene Manba157, but no

new findings with respect to ES-related functionality have been reported since. The gene

has been found over-expressed in various adult organs, in particular, kidney490, but not as

high as in ESCs563. Manba encodes the enzyme Beta-mannosidase that works in the glycan

metabolism pathway. It is not clear to me what role this particular gene might play in ESCs,

but experimental evidence (including additional unpublished data not shown here) repeatedly

links Manba to the ESCs.

Septin-1 ( Sept1) is a protein involved in cytokinesis. In their hallmark study, Takahashi

and Yamanaka529 found Sept1 as one of a group of genes that was up-regulated in ESCs in

comparison to EFs and in some but not all iPS cells. Those cells that did not up-regulate

Sept1 also did not activate other stem cell markers like Sox2 and Dppa5a, indicating that Sept1

might mark a partially reprogrammed state and possibly be critical to whatever mechanisms
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are required for a complete transition to pluripotency. Lastly, the gene is down-regulated upon

inhibition of Esrrb by RNAi406 and has also been reported to be a shared target of Nr0b1 and

Nr5a2 258, putting it further in line with Pou5f1 and others.

The chaperone Hsp90aa1 assists in the folding of target proteins (source: NCBI Gene,

http://www.ncbi.nlm.nih.gov/gene/3320) and, most interestingly, has been linked to Stat3

function in ESCs480,494. Knock-down of the co-chaperone Hop required for Hsp90aa1 func-

tion results in extracellular accumulation of Stat3, decreased Nanog mRNA levels and loss in

capacity for EB formation328. The human orthologue of the protein has been shown to in-

teract with a large number of proteins (source: http://thebiogrid.org/109552/summary/

homo-sapiens/hsp90aa1.html), for instance, Tgfbr1/-2, Map3k3/-7 and Fgfr3, which might

link the gene to several ESC-relevant signalling pathways (Section 1.1.3). It appears that

this protein might play a central role in maintaining ESC pluripotency by supporting Stat3,

Nanog and possibly others in their functioning.

An unrelated study also demonstrated that Hsp90 suppression allowed efficient ubiquitina-

tion and degradation of a subunit of telomerase270. Sustained telomerase activity is required

to maintain telomere length in continuously dividing stem cells. The same study also identified

another gene in my candidate list, makorin, ring finger protein, 1 (Mkrn1). Mkrn1 encodes

a ubiquitin ligase that might mediate this ubiquitination. Furthermore, the same protein has

been linked to both cell survival and apoptosis via selective ubiquitination of p53 and p21,

respectively298. Recently, Emily Walker (University of Toronto) reported as part of her the-

sis that Mkrn1 over-expression could support the maintenance of ESCs under differentiation

conditions573.

Glycoprotein A33 (Gpa33) is a gene formerly believed to be expressed ”almost exclusively

by intestinal epithelial cells”239. More recently it has been associated with colon cancer (in

human) and is, in fact, used as a marker for this condition. Interestingly, its expression

has been found to be Klf4 -dependent436. Examination of global expression signatures from

ArrayExpress, however, clearly shows that it is also expressed in ESCs and a number of other

tissues142,326. I am unable to speculate about its involvement with stem cells, however, the

gene, being a cell surface antigen might turn out to be useful as an ESC marker.

Lastly, latent transforming growth factor beta binding protein 4 (Ltbp4) is a protein that

may have a role in the structure of the ECM (source: http://ghr.nlm.nih.gov/gene/LTBP4).

The gene is also transcribed in various adult tissues, including heart, pancreas and lung

(source: http://www.copewithcytokines.de/cope.cgi?key=LTBP4) and it is required for

normal lung development517, but it has also been confirmed independently as differentially

expressed in ESCs and primordial germ cells142,169. More interestingly, Ltbp4 has previously

been correlated with Pou5f1 when its expression levels were observed to drop quickly with

Pou5f1 -depletion183. Ltbp4 can also bind to Tgfβ. Tgfβ signalling is important to many
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developmental processes (Section 1.1.3) and the implication of its binding protein Ltbp4

directly in the core transcriptional network of ESCs is certainly an interesting finding.

Before any further specific studies were to be carried out into any of these candidates or

any of the other members of the candidate gene groups (ESiC or ESiC-1+), I would suggest

to investigate the genes further by investigating their functions using various databases in

order to bring in complementary sources of knowledge and single out the most promising

candidates for follow-up studies. I have done so here manually for a number of candidates,

but the evaluations should be done in a more systematic manner using the following and

similar resources:

• Loss-of-function phenotypes: The International Knockout Mouse Consortium52 (IKMC;

http://www.knockoutmouse.org) and its member projects, e.g. the Knockout Mouse

Project (KOMP; https://www.komp.org), have started systematically investigating the

phenotypic effects of the knock-out of all protein-coding mouse genes. The projects are

still ongoing, but where phenotype information is available this would provide a valuable

source of information for all candidate genes. In addition to the phenotype information

from the IKMC, knock-out or knock-down microarray studies for several candidates are

available and I would like to compare the effects observed in these studies to the effects

observed after loss of the stem cell core factors (Pou5f1, Sox2, Nanog) to see whether

there is any remarkable overlap (either by looking at the global correlation or at overlaps

of differentially expressed target genes).

• Protein-protein interactions: Databases storing information about experimentally deter-

mined interactions between proteins, e.g. the BioGRID516 (http://thebiogrid.org),

can further help to support the candidacy of genes if interactions between those proteins

and others with a relevance to stem cell function have previously been found.

• Evolutionary conservation: Genes with critical biological functions in essential develop-

mental processes are likely to be conserved across species and thus it would certainly

be a good idea to check how well the genes in my candidate lists are conserved, at

least, across other mammalian species. This could be achieved either by looking only at

the sequence conversation to closely matching homologs in human, rat and others (e.g.

via Ensembl’s BioMart; http://www.ensembl.org), or by summarising the sequence

conservation score across multiple-species alignments per gene (multispecies conserved

sequences, phastCons or regulatory potential scores; reviewed and compared by King et

al.271). Multi-species conservation tracks for this purpose are available from the UCSC

genome browser (http://genome.ucsc.edu).

• Other functional annotations: I have already used the Gene Ontology to annotate the
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genes from ESiC-1 (Figure 5.21). However, many alternative sources of gene-centric

functional annotation, pathway memberships, disease relevance and the like exist and

there are a number of tools that can be used to annotate genes automatically, e.g.

DAVID208,209 (http://david.abcc.ncifcrf.gov). This information should be utilised

to further annotate the candidate genes and to check whether the groups of co-regulated

genes identified in the analysis are enriched for similar biological functions.
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Chapter 6

Final Discussion

Approaching the end of this thesis, I shall now review the work that has been detailed before

and put the primary research achievements in a broader context. Finally, some perspectives

for future work shall be addressed and the work will be concluded with a few closing remarks.

6.1 Summary of Research Motivation and Achievements

When I started writing up this dissertation, I thought this would all be a rather short and

concise affair. As it turns out, summarising the work of several years is anything but a trivial

task – evidenced now by the extent of this document. I shall now try to summarise the main

achievements of my work and reiterate how the different components described in the earlier

chapters fit into that journey that is now soon to be concluded.

6.1.1 Motivation and Goals

From the outset, it had been my goal to investigate the fundamental mechanisms, the driving

forces that make stem cells what they are. Decades of past research have elucidated a plethora

of extrinsic and intrinsic contributors to the establishment and maintenance of the peculiar

identity of these cells. A selection of these factors have been reviewed in Chapter 1, including

a summary of the best-known signalling pathways that trigger cell-internal programs essential

for this state. Many of the genes affected by these pathways have been studied extensively,

although the way in which their expression is directed as a result of incoming stimuli is often

poorly understood. Three genes stand out as the key regulators of stem cells: Pou5f1 (also

known as Oct4 ), Nanog and Sox2, although the latter is also expressed in a variety of neural

cells in the embryo and even in some adult cells.

Virtually all other genes implicated in the ESC circuitry have in some way been linked

to the activity of these core factors and it is now commonly believed that they orchestrate
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the expression of many downstream effectors often in a cooperative manner possibly involving

many other TFs and regulatory elements75. Simple binding by one factor alone is not sufficient

to regulate transcription of target genes and the correlation of any one factor to the gene

expression programme in changing cell states is generally poor. Additionally, the importance of

non-genic influences on gene expression is becoming increasingly evident and it appears that it

is only the right combination of TF binding activity with the presence of many transcriptional

control elements like co-activators and polymerase-linked or -controlling elements as well as the

epigenetic markup of a cell that allows productive transcription to occur75,245,342. Epigentic

factors, in particular in the form of a multitude of histone modifications and DNA methylation,

are believed to influence gene expression programmes beyond the life time of a single cell and

are crucial for stable cell cultures. The importance of epigenetics has recently received much

additional support with observations derived from the generation of iPS cells: It has been

reasoned that a major epigenetic reset or remodelling is required to erase cell type-specific

properties from differentiated cells in order to redefine their cell identity to one akin to that

of ESCs37,202,212,360.

It was my goal to expand our understanding of how heterogeneous regulatory inputs influ-

ence gene expression. I hypothesised that there were common regulatory mechanisms driving,

if not all, then at least some of the functionally related members of the core transcriptional

network of stem cells. Would it be possible to identify such a shared signature, a ”regulatory

code of stem cells”? Which genes were described by this code and which factors determined

it?

6.1.2 Early Exploratory Data Analysis

With these questions in mind, I was thrilled to start my Ph.D. research at a time that coincided

with the publication of the first large-scale applications of HTS to the study of regulatory and

epigenetic mechanisms. Perhaps of most impact to my personal direction were those ground-

breaking studies conducted in the laboratories of Ng75, Young342 and Meissner360, which

demonstrated the great potential this technology would have to offer for future functional

genomics research.

6.1.2.1 Establishment of Data Analysis Workflows for High-Throughput Sequenc-

ing Data

At this time, I was keen to get an opportunity to try out the technology myself and was

fortunate enough to have the chance to become involved in various collaborations, the two

most extensive of which I have described in detail in Chapter 2. I valued these experiments,

apart from their obvious relevance to stem cell research, as a vehicle to identify requirements
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and issues with the data analysis of HTS and to establish effective, practical workflows for the

processing of the large amounts of data generated.

This was not an easy task back then with many software tools still in their infancy and

an overall lack of established methodologies. I therefore spent a lot of time looking for and

evaluating existing software tools fit for the purpose and chained those together into a simple

pipeline, filling in gaps where required, for instance, by writing custom scripts for assessing raw

data quality and filtering out erroneous segments of the data or to quantify gene expression

intensities from alignment coverage.

The pipeline developed and general expertise acquired were then applied in the context

of of two collaborations, one of which has already resulted in a publication and another is

currently under review. The primary results of these studies shall be briefly recapitulated in

the next sections (Section 6.1.2.2 and Section 6.1.2.3).

6.1.2.2 Identification of Putative Targets of the Transcription Factor Nanog

In this study, DeepSAGE expression profiling had been used to assay global gene expression

signatures in wild-type ESCs and in a mutant in which the Nanog gene had been knocked out.

This research was conducted in collaboration with Ian Chambers and various members of his

group at the Institute for Stem Cell Research / Centre for Regenerative Medicine, aforemost

Violetta Karwacki-Neisius, Nicola Festuccia and Rodrigo Osorno.

I applied my previously established analysis pipeline to the generated data and differential

gene expression analysis yielded over a thousand genes. In-depth bioinformatics analysis

allowed us to narrow down my initial results to a concise list of high-confidence candidate

genes that I considered likely direct targets of the TF. I achieved this target refinement by

integrating various external gene expression datasets as well as ChIP-seq and ChIP-on-chip

binding data from published studies. These data were used to look for consistently observed

expression changes associated with different levels of Nanog and also to find those genes

with reliable binding sites in their proximity. Many of the candidate genes were subsequently

studied by my collaborators resulting in promising future research – the gene Rlim (also known

as Rnf12 ), for example, has already been studied further by the members of the Chambers

group375.

This demonstrates impressively how the meta-analytic integration of different datasets

can help to enrich independent and otherwise isolated pieces of data and leverage existing

knowledge to derive new insight, a philosophy which I have now very much taken to and try

to advocate as part of all my ongoing work.
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6.1.2.3 Determination of Transcriptional Characteristics of Stem Cell-Like Pop-

ulations in Plants

In a second collaborative effort, I teamed up with the group of Gary Loake (Institute of

Molecular Plant Sciences, University of Edinburgh), who are studying pluripotent and self-

renewing cell populations in various plant species. In a remarkable piece of work they were

able to isolate a population of cells from the cambium of the Japanese yew (T. cuspidata) that

exhibited a proliferative potential exceeding that of other cells, in particular, dedifferentiated

cell types which had previously been used for the derivation of various plant products. The

use of these cells, called cambial meristemic cells (CMCs), opens up a new avenue for the

effective, large-scale production of natural plant products with medicinal or cosmetic value,

such as taxol, which is used in cancer treatments297.

As a part of the larger study, comparative gene expression profiling was performed on two

cell populations and I contributed to this work by comparing the data from both conditions

by aligning the data to the newly assembled T. cuspidata transcriptome and statistically

evaluating differences. A number of a contigs (basically, putative genes) were detected that

were substantially over-expressed in CMCs and hence putatively involved in the stem cell-like

properties of these cells. The existence of stem cells in plants in itself is not a new idea, but

their genetic, epigenetic and regulatory properties have so far been poorly studied despite

potential medical and commercial impact. The contigs discovered in this study are now being

used by the Loake lab as markers for the most suitable cells for taxol production.

I am currently continuing my collaboration with the Loake lab to elucidate the role of

similar cell populations in other plant species and to discover common properties.

6.1.3 Development of a Tool and Resource for the Study of Gene

Expression and Regulation

Looking back at the effort it took me in the beginning to get started with HTS data analysis,

the situation has definitely improved with a broad variety of rather mature tools available

nowadays. Nevertheless, finding right tools and putting them effectively together remains a

difficult task for those new to the matter.

After the initial round of pilot projects, I had set out to develop a new software tool, an en-

vironment for the execution of the kind of analysis workflows I had developed previously. The

aim was to streamline common analysis tasks in a user-friendly, reproducible and transparent

manner that would allow for the rapid analysis of large sets of experimental data.

The motivation for this project (Section 3.1) came from two angles: On the one hand, I

meant to make HTS data analysis more accessible to all researchers. Commonly, the analysis

process involves many largely repetitive tasks: Issues like quality control and alignment of
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short read sequences to a reference genome are steps that are part of almost any experiment

and from contact with other research groups I had learned that many researchers struggled

even at this first hurdle. Why should it not be possible to provide the excellent openly available

tools to a wider audience in a simple and usable manner?

On the other hand, I was motivated by my own research goals, of course. In order to

effectively integrate the vast amounts of heterogeneous data generated by modern HTS in-

struments, it was critical to have a way to rapidly process them in a consistent manner, but

with the ability to easily and quickly adapt standard pipelines for individual experiments.

The latter is necessary, because although the analysis steps are largely the same, experimental

techniques are variable and the exact same analysis approach does not always fit. Conse-

quently, to make this work the software needed to be flexible and provide means to quickly

assess the outcomes of each step of the process.

In response to these requirements, an analysis framework which I later called GeneProf

was developed, which has been described in detail in Chapter 3. The main features may be

summarised as:

• A web-based user interface presents an accessible and easy-to-use entry point for users.

There is no need to install specialised bioinformatics tools or other software.

• Computationally complex genomics analysis tasks, that would usually necessitate power-

ful computer equipment, are being executed remotely on a network of high-performance,

dedicated computing machines.

• The system integrates expert knowledge and assists users by providing best-practice data

analysis approaches via simple data analysis ”wizards”. These wizards make it possible

(even for novice users) to set up elaborate and sensible analysis workflows within minutes.

• Data analysis is powered by a flexible and adaptable workflow engine. In this workflow

environment, all data analysis steps (”modules”) can be combined in arbitrary ways to

achieve highly specialised analysis goals. Wizards also create such workflows, so they

can be adjusted later on as the user sees fit.

• All steps of the analysis are supplemented by a range of summary statistics and plots,

which make it easy to assess the results at each stage and, if necessary, spot problems

that can than be accounted for by amending the analysis workflow.

• The outputs and intermediate results of all steps of the analysis process are recorded,

changes to the workflow tracked and all parameter settings are available through the

workflow, making the analysis fully transparent and addressing the issue of reproducibil-

ity.
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• Short read quality control measures and alignment are integral to all types of analysis

and well-supported by the software. Several established, publicly available tools have

been integrated into the system to provide a choice of methodologies.

• The system supports downstream RNA-seq analysis by providing means to quantify

gene expression intensities from aligned read datasets and to normalise and compare

the expression in different cell types, tissues or experimental conditions with the best

available statistical methods.

• ChIP-seq analysis is also supported and the software can be used to identify sites of

significant enrichment in binding profiles (”peaks”) using multiple published algorithms.

Peaks can also be assigned to putative target genes.

• Data from different experiments and different techniques can be juxtaposed and visu-

alised together easily for comparison and meta-analysis.

I utilised this software to re-analyse a large amount of published data from studies relevant

to stem cell research (Chapter 4). In this process, I soon realised that it would be most

sensible to use the results of these analyses to build up an integrated database. Currently,

most published HTS research data is submitted to public archives in raw format, which is

commendable and a great step towards open science. However, the raw data in itself is of

little immediate use to any researcher and requires laborious processing to be transformed to

biologically meaningful findings.

Therefore, I have then extended GeneProf’s functionality to combine the data analysis suite

with a resource of all completed analysis experiments: All analysis projects that I (or others)

run through the software can be made available (publicly, if desired) through the interface.

Each project contains the complete input data and all analysis results in combination with

the entire workflow that produced these results.

While most smaller research labs will probably rarely generate HTS data themselves, they

can still benefit from the wealth of information that is available nowadays, thus boosting the

effective sharing of knowledge. Data from experiments that have already been analysed in the

system can be imported (within seconds) into other workflows, where it can be used to enrich

primary experimental data and to leverage findings to another level – much like I did in my

early data analysis projects described in Section 2.1. Of course, researchers may also choose

to re-analyse individual pieces of data and to try out different methodologies to gain a better

understanding of the nature of the data and the effects of different analysis steps.

The software has been released to the research community in the beginning of 2012182 and

has since attracted much interest. Thousands of people have visited the website and browsed

the archives of data available and several hundreds have registered and started analysing their
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own experiments (Section 3.4.3). I sincerely hope that this trend will keep up and I plan to

generate further interest by implementing new features into the program and publicising its

availability to the community.

6.1.4 A Step Towards Identifying Common Regulatory Mechanisms

of Stem Cell Genes

Having developed the necessary tools, I could then return to the study of the regulatory

mechanisms driving the expression of genes crucial for the establishment and maintenance of

stem cell identity (Chapter 5). I hypothesised that functionally related genes in stem cells

shared common regulatory mechanisms. To test this hypothesis, I proceeded in three steps:

Firstly, I attempted to identify a list of genes that I considered likely to be important for

ESCs (Section 6.1.4.1). Secondly, I gathered a large amount of data about the state of

regulatory proteins in ESCs and objectively investigated the genome-wide characteristics of

these signals (Section 6.1.4.2). Finally, I combined both collections of data to identify a

regulatory signature shared between ESC-specific genes (Section 6.1.4.3).

6.1.4.1 Identification of Genes Expressed in Embryonic Stem Cells

I first wanted to establish a list of functionally related genes, so that I could later on look

for common regulatory mechanisms within this group. I decided to focus on genes that were

important for stem cells and reasoned that genes that were highly expressed specifically in

ESCs would be likely candidates for this function. The idea was simply that genes that were

phenotypically related (expressed in the same conditions) might serve similar or complemen-

tary functions. If these genes were expressed in ESCs, but not in other cell types, it would be

plausible to expect that they were involved in conveying ESC-specific characteristics to cells.

To establish a list of candidate genes, I compared the global gene expression profile of mouse

ESCs with those of four other cell types: Adult lung fibroblasts (LF), neural progenitor cells

(NPC), embryoid bodies (EB) and totipotent oocytes (Ooc). For each comparison, I pulled out

several datasets from the GeneProf database and looked for differentially over-expressed genes.

I then took the intersection of the genes identified in all individual comparisons to pinpoint

genes specifically expressed in ESCs. By including embryonic cell types in the comparison

(NPC, EB, Ooc), it was possible to filter out genes that were important in early development,

interesting in themselves, but not specific to the identity of ESCs.

The intersection of all comparisons contained 229 candidate genes (called ”ES-identity

candidates”, ESiC; Section 5.2.1). This list was highly enriched for genes involved in the

maintenance of stem cells, for instance, the core ESC regulators Pou5f1, Sox2 and Nanog,

supporting the notion that my methodology did indeed select genes relevant to stem cell
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identity.

6.1.4.2 Investigation of the Genome-Wide Markup of Regulatory Signals

In the next step of the analysis, I wanted to examine different kinds of regulatory signals with

respect to how they were distributed across the mouse genome and to discover relationships

between them. Here, I call ”regulatory” all those signals that might contribute towards alter-

ations of the expression level of target genes. To get started, I chose to look at various types

of histone modifications (HM) in ESCs and embryonic fibroblasts (EFs). Specifically, I looked

at methylations of various lysine residues, which was the kind of HM with the most available

data. Additionally, I collected all the datasets for DNA-binding proteins (DBP) in ESCs that

were stored in the GeneProf database. These DBPs were either transcription factors (TFs),

other proteins that were actively involved in shaping DNA in a way permissive for productive

transcription or proteins directly involved in the transcriptional machinery around polymerase

itself. There was data for 40 DBPs in total with several biological replicates for a number of

them.

Using these datasets, I investigated the genome-wide patterns of DBP and HM distribution

(Section 5.2.2, Section 5.2.3 and Section 5.2.4): I quantified the occupancy levels of the

surveyed proteins across the entire genome and checked how the occupancy related to known

genes and to each other. Where did individual proteins bind? Were regions bound by one

protein also enriched for the binding of another protein and were there any distinguishable

groups of proteins binding in similar regions of the genome? Put briefly, the results of my

investigations confirmed observations from previous research, but also revealed a few patterns

that as such had not been described before:

Location of DBP/HM binding: I observed that many DBPs were preferentially en-

riched in the proximity of promoters, i.e. near the TSS of known genes. The TFs Nanog, Sox2,

Pou5f1, Nr5a2, Chd7 and others were specifically enriched upstream of the TSS, indicating

that they might exercise their activity in distal enhancer elements. On the other hand, the

PolII -interacting proteins NelfA, Ctr9 and Spt5 were occupying loci at promoters and within

gene bodies consistent with the reports of others437. H3K36me3 and H3K79me2 were detected

along the entire body of genes. All other HMs were preferentially enriched in promoter re-

gions. This is coherent with their function: HMs modulate the accessibility of chromatin by

DBPs and the transcriptional apparatus. Those HMs that were enriched at the TSS have an

impact on the initiation of transcription, while those that are found throughout the gene open

chromatin paving the way for transcriptional elongation. This is consistent with the general

understanding of HM function26,76,264,343.

Similarity of DBP occupancy patterns: Genome-wide occupancy patterns of almost

all DBPs were correlated to some degree. It is possible that this is a technical artefact caused
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by preferential pull-down of certain DNA regions by ChIP regardless of actual protein binding.

Another explanation might be a rather weak binding affinity of many DBPs resulting in all

(accessible) DNA regions to be bound at a low level. Nevertheless, enrichment patterns beyond

this background level of similarity successfully clustered functionally related proteins together.

For instance, the mediator subunits Med1 and Med12 and the associated protein Nipbl or

the PRC2 members Suz12 and Mtf2 frequently occured together at the same regions in the

genome. It has been previously reported that many DBPs putatively co-occupy enhancer

elements75 and I can confirm this observation and say that it extends to more proteins than

previously known. Some sites were occupied by as many as 31 distinct DBPs. One of the

sites occupied by the most factors was in the proximity of the pluripotency gene Pou5f1.

The TFs Nanog, Sox2, Tcf3 and Pou5f1 appeared to be particularly closely related. It is

now commonly believed that Pou5f1 and Sox2 bind DNA cooperatively in many places by

forming heterodimers70; such cooperative binding might also occur in other combinations of

the mentioned factors. Another group of TFs was centred around Myc, Mycn, Klf4, Zfx and

others. However, measurements from two independent studies for Sox2 and Pou5f1 were

somewhat inconclusive as to whether there is indeed a global distinction between this group

of TFs and the first. Binding of the insulator element Ctcf is (weakly) anti-correlated to the

activity of many TFs, including Pou5f1, Sox2, and Nanog.

Similarity of HM occupancy patterns: On a global level, signals for the activating

histone marks H3K4me2 and -me3 were closely correlated. Their profiles were also highly

similar with H3K79me2. H3K36me3 distributed differently with respect to genes, but still

clustered more closely with the other active marks than with the repressive ones. The re-

pressive mark H3K27me3 also occupied similar regions as H3K4me2/-me3 (that is, regions

overlapping the TSS of genes), but often at different genes. Interestingly, H3K4me1 was more

closely correlated to H3K27me3 than to H3K4me2 or -me3. The global pattern of HM oc-

cupancy was highly correlated in ESCs and EFs (across all marks where data was available

for both cell types), indicating that the majority of epigenetic signatures did not change be-

tween cell types. However, there was a subset of genes for which H3K27me3, H3K36me3 and

H3K4me2/-me3 occupancy changed notably.

Common regulatory patterns pertaining to genes: The core stem cell genes

Pou5f1, Sox2 and Nanog shared a highly similar DBP profile, however, differed slightly in

their HM markup. This was mostly due to a lack of (strong) Nanog- and Pou5f1 -associated

H3K27me3 in EFs and the presence of a Nanog-associated H3K9me3 signal in ESCs. Genes

sharing the same HM profile as Pou5f1 and Sox2 included many previously implicated in ESC

state and developmental processes. A larger number of genes shared similarities in HM occu-

pancy with Nanog. Similarly, genes sharing a DBP profile alike those of thee three co-factors

also contained a substantial proportion of putative ESC regulators.
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6.1.4.3 A Combination of Regulatory Signals Marks Phenotypically Related Genes

in Stem Cells

In the final part of my analysis (Section 5.2.5), I attempted to combine the different mea-

surements, HM and DBP signatures, to closely examine the regulatory code of the ESC

candidate genes identified in the first stage (ESiC genes). Before I could discriminate an

ESC-specific signature, though, it was necessary to find out whether there was a signature

that distinguished active from inactive genes in general. Many DBPs and HMs showed differ-

ences in intensity levels between both groups of genes, however, no single factor alone would

have been able to discriminate active and inactive genes reliably enough. That is, although

H3K36me3, H3K4me3 and H3K79me2 were quite well correlated with expression levels, and

Mtf2 and Suz12 quite anti-correlated to the same, their mere presence was not enough to say

whether a gene was active or not. I found, however, that the combination of measurements for

H3K36me3, H3K4me3 and H3K79me2 was fairly successful in predicting gene activity with

84.4% accuracy – much more could not not be expected given the variability in measurements

between experiments and replicates.

It was not possible to define a single regulatory signature for all ESiC genes using the

measurements at hand. However, I was able to identify five subgroups within the candidates,

one of which was investigated in detail: The group of candidates termed ESiC-1 contained

the three core factors and 34 other genes that were all marked by strong intensities for a

large number of DBPs and HMs. It seems reasonable that these genes might make up a core

of tightly regulated ESC-prototype genes. Indeed it was possible to perfectly discriminate

ESiC-1 from the rest of the transcriptome by a computationally determined set of rules (Fig-

ure 5.18.b). In subsequent investigations, I discovered that the genes in ESiC-1 are marked

primarily by an enrichment in the activity of four DBPs and one HM in the neighbourhood

of their promoters (Figure 5.19): E2f1, Pou5f1, Esrrb, Ep300 and H4K20me3. Based on

measurements for these five regulatory inputs it was possible to distinguish ESiC-1 genes

alongside 79 other genes with a similar regulatory markup (and many with known involve-

ment in stem cell establishment and maintenance) from 99.5% of mouse transcriptome. The

regulatory code defined in this part of the analysis has been discussed in Section 5.3.1.

Moreover, I have used the similarity of genes in terms of their regulatory inputs (DBPs

and HMs) to define several lists of genes (ESiC-1 to ESiC-5: Figure 5.17 and ESiC-1+:

Figure 5.20) that I consider high-confidence candidates with a likely role in important ESC-

specific functions. These candidate lists contain many of the known champions of pluripotency

and self-renewal, for instance, Pou5f1, Sox2 and Nanog, but also include a number of genes

of whose function little is known. I have discussed some particularly interesting candidates in

Section 5.3.2. It will be exciting to see what future research will tell us about those genes.
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6.1.5 Relation to Other Studies on Regulatory Elements

To date, most computational genomics research concerning itself with HMs and DBPs as regu-

latory mechanisms has focused on (i) how these are linked to transcriptional activity112,196,641,

(ii) whether the presence of regulatory proteins can be used to predict gene expression lev-

els76,93,143,253,267,406,492, (iii) on the identification of regulatory modules, that is, combina-

tions of regulatory inputs that co-regulate target genes1,156,493 and on (iv) how regulatory

signatures differ between cell types, tissues or conditions122.

I also address these kinds of questions in the beginning of my analysis, but eventually have

a slightly different goal in mind: To identify common regulatory signatures that distinguish

classes of genes and specifically, those genes that are important to stem cells. A better under-

standing of these regulatory mechanisms can complement our models of the transcriptional

programme of stem cells, help to optimise the efficiency for the derivation and maintenance

of stem cells (whether from the embryo or from somatic cells) and provide hypotheses for the

perturbation of stem cell state and differentiation.

6.2 Future Work and Perspectives

Naturally, the work described in this thesis does not present the end of the line. The devel-

opment of methods and the analysis described is very much an ongoing project and several

future avenues shall be briefly outlined in the following paragraphs.

6.2.1 Expansion of the GeneProf Platform for Other Data and as a

Rich Resource for the Research Community

I have previously pointed out several future improvements to the GeneProf system that I

mean to implement in the future (Section 3.4.4). The improvement with probably most

relevance to my future research will be an expansion to further types of data, support for

DNA methylation being the most obvious candidate that could help to complete the regulatory

signature I am trying to discover.

This improvement and further extensions will expand GeneProf’s profile as a rich resource

for the biological research community. GeneProf has already accumulated and processed a

large amount of data and even during the process of writing this thesis the repertoire has

further increased. I trust that many other researchers will benefit from this database.

6.2.2 Refining the Regulatory Code of Mouse Embryonic Stem Cells

As far as the data analysis is concerned, I have already pointed out several weaknesses in the

current approach that need to be (and will be) addressed in the future.
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First, one of the benefits of using HTS for expression profiling is that it can be used to

study transcription as a whole and without any inherent bias. Limiting my analysis to the

protein-coding fraction of all transcriptionally active units was thus a regrettable, yet in this

particular context necessary, decision to make. Being more aware of the issues impairing

comparability between studies, I will now be able to make a better-informed decision about

which datasets to include in order to avoid discarding valuable information. Due to a lack

of data, even the final candidate list contained many genes that, following further research,

turned out to be expressed in many non-ES cell types. More high-quality RNA-seq datasets

are now being published (including data from iPS cells) and I believe that using these in

combination with new cross-experiment normalisation algorithms for HTS data303, it will be

possible to derive an (even) more accurate and complete candidate list.

Second, I have extensively used correlation measures to compare genome-wide similarities

(and differences) between datasets. Several recent publications have proposed more sophisti-

cated techniques to calculate such distance measures in a more precise and sensible manner

by assessing similarity in peak profiles in an asymmetric fashion81. Additionally, a recent

paper puts forward a novel way of normalising ChIP-seq intensities on the basis of shared

binding peaks496, which I also consider likely to further refine out results, possibly in a more

appropriate manner than by the standardisation that I chose to apply to the final data.

Third, a major issue has been discovered with disregarding ambiguous alignments in ChIP-

seq data (Section C.2). At present, almost all published research I am aware of is concen-

trating on uniquely aligned reads to avoid ambiguity. It is unlikely that the difference has any

far-ranging impact on the global conclusions drawn from ChIP-seq studies, however, genes

located in highly repetitive regions or those that are present in multiple (identical or near-

identical) copies in the genome, will be substantially under-represented in all results. The

ESC candidate genes in ESiC-5 are a striking example of this phenomenon and it is not

unlikely that those in ESiC-4 are also affected to a lesser extent (Section 5.2.5). I plan

to rigorously validate existing approaches378,579 for dealing with alignment ambiguity in the

context of ChIP-seq data and amend the data analysis methodology accordingly.

Fourth, the current selection of inputs represent only a small percentage of all known

regulatory elements: Most notably, I have so far not considered any histone modifications

other than methylations. More acetylation data is now becoming available and these datasets

can be easily added on to the current data selection. Further, I have in the introduction

briefly discussed the role of DNA methylation, but not yet integrated this kind of data in my

analysis. With future improvements to the GeneProf software it will be possible to include the

DNA methylation state of genes in the regulatory signature defined in the analysis. Finally,

I have assessed 40 different DBPs, more than ever before in ESCs, yet this still represents

only a tiny fraction of all proteins (it is estimated that there are somewhere in the range
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of 1585 − 1727 TFs in mouse249,440). With the inclusion of other parameters it should, in

principle, be possible to derive increasingly ”clean” signatures for functionally related genes.

But rather than including just more and more inputs, I consider it more promising to look for

data that have already been implicated in pluripotency and self-renewal. For instance, I am

keenly waiting for ChIP-seq data for Zfp42, Nr0b1 and KLFs other than Klf4.

Lastly, many genome-scale datasets for human are currently being generated, primarily via

the Encyclopedia of DNA Elements (ENCODE; http://genome.ucsc.edu/ENCODE) project

and the Human Epigenome Project (HEP; http://www.epigenome.org). Consequently, there

are now equivalent human datasets for many of the DBPs and HMs I have studied in mouse

– in fact, there might be more by now and the data is consistently of excellent quality. It will

be interesting to see how regulatory mechanisms translate from mouse to human.

6.3 Concluding Remarks

”It was the best of times, it was the worst of times, it was the age of wisdom, it was the age

of foolishness, it was the epoch of belief, it was the epoch of incredulity [..]”∗, in short, it

was a Ph.D. With the presentation of this thesis a long and laborious, yet often joyful and

inspiring journey comes to a conclusion (or so I hope). The work I have been doing over the

last years has driven me into the depths of biology, only to reemerge to light with ever more

questions than I have had before. During all these years, I have spent much time developing

and optimising methods, laying the groundwork that would enable me to ask those questions

that had motivated me in the beginning. In the meantime, the field had moved forward a

lot and I was excited to find more and more data being generated that I could use in my

endeavours. We have now reached a point at which findings from many different aspects of

stem cell biology can be fit into a larger, albeit certainly not yet complete picture and I have

attempted to contribute just a little first step into this direction. The future is bright and new

insight is close. I look forward, with excitement, to what the coming years will bring with

them.

∗From Charles Dickens, ”A Tale of Two Cities”
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Appendix A

Abbreviations

API Application programming interface (sometimes ”Advanced programming interface”). A
specification by which computer programmers can use an externally-developed software.

bp Base-pair. One bond between the nitrogenous bases of complementary DNA. This is
commonly used as a unit of length for DNA sequences (and also RNA sequences, even
if not strictly applicable to most types of RNA).

ChIP Chromatin immunoprecipitation. An experimental technique used to investigate the
interaction of certain proteins with DNA. Selective precipitation and purification of
sheared DNA fragments bonded by the protein of interest, e.g. a transcription factor.

ChIP-seq ChIP-sequencing. Chromatin immunoprecipitation followed by sequencing of ex-
tracted DNA fragments. A technique which is now routinely employed to study the
activity patterns of DNA-binding proteins.

CMC Cambial meristemic cell. A undifferentiated cell derived from the cambium of T.
cupsidata (and other plants).

DBP DNA-binding protein. I use this term to collectively refer to transcription factors, tran-
scriptional insulators and other elements of the transcriptional machinery that directly
or indirectly bind or in any way associate with DNA.

DDC Dedifferentiated cell. A proliferating cell derived from either needles or embyros of T.
cupsidata (and other plants).

DEG Differentially expressed gene. A transcriptional feature that exhibits statistically sig-
nificant differences in expression levels between two or more conditions. Statistical sig-
nificance may be assessed with numerous different methods.

DOC Direction of change. In fold change analysis, the sign of the logarithmic fold change,
i.e. whether a feature was up- or down-regulated.

DNA Deoxyribonucleic acid. A macromolecule made up of a double-stranded chain of nucleo-
tides. DNA encodes the genetic information constituting the basis for the development
and operation of life.

EB Embryoid body. A cluster of cells originating from ESCs in which colony-formation has
been prevented and a part of the cells has differentiated (or started to).

ECM Extracellular matrix. Structural components of animal tissue outside cells. The ma-
trix gives support to cells and is involved in signalling, nutrition and other important
functions.

EF Embryonic fibroblast. Fibroblasts are cells making up the ECM, collagen and connective
tissue.

232



ES(C) Embryonic stem (cell). A pluripotent cell which can be maintained indefinitely in vitro
and can differentiate into any cell of the body (but not into extraembryonic tissues).

ESiC Embryonic stem cell identity candidates. A list of candidate genes identified by my
analyses. I consider these genes to be central to the establishment and maintenance of
ESC identity.

FACS Fluorescence-activated cell sorting. A type of flow cytometry used for sorting cells
into different populations on the basis of their fluorescent properties.

gb Gigabase. 1, 000, 000, 000 base-pairs, see bp.

GB Gigabyte. 1, 024 ∗ 1, 024 ∗ 1, 024 = 1, 073, 741, 824 bytes, see KB.

GRO-seq Global run-on sequencing. An experimental approach using HTS to profile RNA
polymerases in the state of active transcription.

HAT Histoneacetyltransferase. An enzyme that adds acetyl to histone tails.

HDAC Histone deacetylase. An enzyme that removes acetyl from modified histone tails.

HM Histone modification. Any sort of biochemical modification (methylation, phosphoryla-
tion, ..) to a histone tail.

HTTP Hypertext transfer protocol. A networking protocol most famous for its use in the
world wide web.

HTS High-throughput sequencing. I use this term collectively referring to all modern, mas-
sively parallel sequencing platforms and their applications.

ICM Inner cell mass. A mass of cells occurring during early development (before implanta-
tion) in the blastocyst. ESCs are derived from these cells.

IDPA Discriminative power analysis. A method for finding common regulatory inputs of
groups of genes.

iPS/iPSC Induced pluripotent stem cell. A somatic cell that has been reprogrammed to a
stem cell-like pluripotent and self-renewing state.

kb Kilobase. 1, 000 base-pairs, see bp.

KB Kilobyte. 1, 024 bytes. A byte is a unit of digital information consisting of 8 bits (each
bit is a binary value, 0 or 1).

LDA Linear discriminant analysis. A mathematical method that aims to identify descriptive
variables that distinguish sets of data.

LF Lung fibroblast. Fibroblasts are cells making up the ECM, collagen and connective tissue.

mb Megabase. 1, 000, 000 base-pairs, see bp.

MB Megabyte. 1, 024 ∗ 1, 024 = 1, 048, 576 bytes, see KB.

miRNA Micro-RNA. A very short species of non-coding RNA that can interact with mRNA,
DNA and histones.

ncRNA Non-coding RNA. Any sort of transcript that is not translated into a protein, in-
cluding miRNAs.

NGS Next-generation sequencing. Synonymous to high-throughput sequencing (HTS).

NPC Neural progenitor cell. An oligopotent progenitor of neural cell types.

233



PC(A) Principal component (analysis). A mathematical method aiming to identify descrip-
tive variables in a set of values by projecting the data into a lower-dimensional space.

PE Primitive endoderm. An early developmental lineage.

PRC Polycomb repressive complex (divided into PRC1 and PRC2). Proteins involved in the
mediation of epigenetic silencing.

ROI Region of interest. A genomic region deemed worthy of particular interest, for example,
an enriched binding event in a ChIP-seq experiment.

RNA Ribonuleic acid. A macromolecule made up of a (single-stranded) chain of nucleotides.
Various species of RNA exist, importantly messenger RNA (mRNA), which is transcribed
from DNA, carries the information encoding synthesis of a wide range of proteins.

RPKM Reads per kilobase million. A unit denoting gene expression levels from RNA-seq
experiments.

RPM Reads per million. A unit denoting gene expression levels from RNA-seq experiments.

RNA-seq High-throughput sequencing of messenger RNA (or more frequently of reverse-
transcribed cDNA). A technique used for the study of gene expression and transcriptome
assembly.

SNP Single nucleotide polymorphism. A variation in the genome sequence between individ-
uals or paired chromosomes within the same individual. In this type of variation, only
one single nucleotide differs between DNA sequences.

SRA Sequence Read Archive. A public database of raw high-throughput sequencing data.
http://www.ncbi.nlm.nih.gov/sra.

TB Terabyte. 1, 024 ∗ 1, 024 ∗ 1, 024 ∗ 1, 024 = 1, 099, 511, 627, 776 bytes, see KB.

TE Trophectoderm. An early developmental lineage.

TF Transcription factor. A DNA-binding protein controlling the transcriptional activity of
target genes.

TFBS Transcription factor binding site. A genomic locus enriched for the binding of a certain
TF.

TSS Transcription start site. The genomic locus of a gene at which transcription is initiated.
Many genes possess multiple, alternative start sites.

TTS Transcription termination site.The genomic locus of a gene at which transcription ends.
Many genes possess multiple, alternative termination sites.

URL Universal resource locator. A character string referring uniquely to one particular
internet resource.
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Appendix B

List of Publications,
Presentations and Posters

Peer-reviewed publications based on work carried out during the course of the
work outlined in this thesis:

• Festuccia, N., Osorno, R., Halbritter, F., Karwacki-Neisius, V., Navarro, P., Colby,
D., Wong, F., Yates, A., Tomlinson, S.R. & Chambers, I. Esrrb Is a Direct Nanog Target
Gene that Can Substitute for Nanog Function in Pluripotent Cells. Cell Stem Cell 11(4),
477-490 (2012).

• Halbritter, F., Vaidya, H.J. & Tomlinson, S.R. GeneProf: analysis of high-throughput
sequencing experiments. Nature Methods 9, 7-8 (2011).

• Lee, E.-K., Jin, Y.-W., Park, J.H., Yoo, Y.M., Hong, S.M., Amir, R., Yan, Z., Kwon,
E., Alfick, A., Tomlinson, S.R., Halbritter, F., Waibel, T., Yun, B.-W. & Loake,
G.J. Cultured cambial meristematic cells as a source of plant natural products. Nature
Biotechnology 28, 1213-1217 (2010).

Peer-reviewed publications pre-dating this thesis:

• Halbritter, F. & Geibel, P. Learning models of relational MDPs using graph kernels.
MICAI 2007: Advanced in Artificial Intelligence, Lecture Notes in Computer Science
4827, 409-419 (2007).

Manuscripts in preparation:

• Halbritter, F., Brandsma, J., van den Berg, D., Tomlinson, S.R. & Poot, R. Interac-
tions of core pluripotency transcription factors. Manuscript in preparation.

• Tetelin, S., O’Neill, K., Bredenkamp, N., Vaidya, H.J., Halbritter, F., Tomlinson, S.R.
& Blackburn, C. Role of Foxn1 in thymus. Manuscript in preparation.

• Halbritter, F. & Tomlinson, S.R. The regulatory code of stem cells. Manuscript in
preparation.
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Conference presentations and posters (excluding internal talks and conference
attendances without presentation):

• Talk: ”ChIP-seq Data Analysis using GeneProf” (2011). EuroSyStem Workgroup on
the Biology of Neural Systems, Milan, Italy.

• Poster: ”GeneProf: Integrated Analysis of High-Throughput Sequencing Data” (2011).
19th International Conference on Intelligent Systems for Molecular Biology (ISMB) /
10th European Conference on Computation Biology (ECCB), Vienna, Austria.

• Talk / practical: ”Analysis of Next-Gen Sequencing Data” (2009). Quantitative ’Omics
Technologies Workshop, Edinburgh, UK.

• Poster: ”Digital Transcriptomics for Stem Cell Bioinformatics” (2009). Hydra V Sum-
mer School: Stem Cells and Regenerative Medicine, Hydra, Greece.

• Talk / practical: ”Finding Data on Stem Cells in StemDB” (2009). Computational Stem
Cell Biology Workshop, Leipzig, Germany.
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Appendix C

Additional Notes about Data
Analysis Issues

C.1 Definition of a Universal Background Signal for Peak
Detection Analysis

The analysis of ChIP-seq datasets, whether targeted at DBPs or HMs, usually boils down to
the identification of enriched binding (or accumulation) events for the protein of interest in
specific regions of the genome (”peak finding”; Section 3.3.3.5). It has been noted many
times that local elevations in ChIP-seq binding profiles do not always necessarily correspond
to ”true” biological enrichment events, but that they might instead be caused by other factors
such as the accessibility of chromatin, the general susceptibility of specific DNA regions to be
pulled out by ChIP or fragmentation, and non-specific binding of the ChIP antibody415,470,631.

For this reason, most researchers nowadays supplement their primary experiment with a
negative control sample that can be used to distinguish ”false positives” from real binding
events. There are various different types of control samples that are being used, but no clear
consensus exists as to which might be most appropriate in general. One possibility is the use of
an antibody against a protein that is known not to bind DNA. For instance, anti-GFP (green
fluorescent protein) or IgG (Immunoglobulin G) are commonly used. Any DNA fragments
pulled out would hence be explainable by non-specific effects. Alternatively, other groups
prefer to use randomly fragmented input DNA from whole cell extracts as a control. Regions
of accessible chromatin and DNA stretches that preferentially come out of the screen can thus
be identified and controlled for.

I do not attempt to give a justification or even a conclusion with respect to which type of
control is best to use, however, I have noticed that differences between ChIP-seq experiments
for the same proteins are often in part caused by the use of different controls. I have therefore
hypothesised that the use of a common control might help to improve consistency between
observations and went ahead to build a universal background signal dataset (called ”UniRef”)
by combining control samples from six different experiments in ESCs (GeneProf accession
codes: gpXP000012, gpXP000027, gpXP000028, gpXP000031, gpXP000048, gpXP000071).

Taking ChIP-seq datasets for Pou5f1 from two independent studies75,342 as an example,
it was possible to demonstrate that the use of the UniRef control dataset helped to increase
the ratio of overlapping peak calls consistently between three different peak detection algo-
rithms: MACS631, SISSRs242 and ChIPseqPeakFinder (CSPF)75. For this comparison, I have
calibrated the stringency of the individual peak callers in such a way to approximate the
estimated true number of binding peaks for Pou5f1 (nexpected = 4, 407; cp. supplementary
material of reference75). The results of this experiment are summarised in Figure C.1.

Alas, it must be noted that the overlaps, while improved, are still rather poor. Some
differences might be explained by actual biological diversity between the cells used in both
experiments (E14 and v6.5), but I would expect others to be caused by differences in antibody
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Figure C.1: UniRef control improves agreement of peak calls. The use of a cross-
experiment control sample improves the agreement (percentage overlap) between peaks from
different ChIP-seq experiments for the same factor. Chen data75, Marson data342.

specificity and other technical reasons which are not easily accounted for70.
I do not want to suggest to replace experimental ChIP-seq controls with UniRef in general

and only use it for the purposes of the meta-analysis presented in Chapter 5 (in all cases
and without any exceptions even if not explicitly mentioned), in order to reduce the effect of
differences between experimental setups other than the factor under study.

C.2 Impact of DNA Repetitiveness and Short Read Map-
pability on ChIP-seq Analysis

During the course of the analysis presented in Section 5.2.5, I had noticed that a considerable
number of genes were missing any sort of noteworthy regulatory signal. I hypothesised that
this phenomenon was in part due to the fact that these genes were situated in highly repetitive
regions of the genome or that they themselves were present in various copies throughout the
genome.

In order to assess the validity of this hypothesis, I first used the GeneProf genome browser
to examine the binding profiles in a wide window around three of the genes missing a ChIP-
seq signal: AC186033.1, renamed Zscan4f-ps in the latest release of Ensembl, Zscan4c and
Zscan4f. Looking at the surroundings of these genes in the GeneProf genome browser, revealed
that there was indeed a distinct lack of aligned reads. The Zscan4 family of genes, in particular,
are highly similar in sequence.

It is common practice to accept only uniquely aligned reads for ChIP-seq data analysis
in order to avoid ambiguity. For repetitive genomic regions this strategy might lead to fewer
successfully aligned reads. The lack of binding signal in repetitive DNA regions might hence
be an artifact of computational ”mappability” rather than the consequence of genuinely low
binding activity or an inability to capture binding events on the sample preparation-end of
the experiment.

To check whether ”mappability” had indeed an impact on the signal in this region, I
realigned the raw data of six arbitrarily picked ChIP-seq datasets allowing for up to 10 am-
biguous matches in the genome and compared the coverage profile with the unique alignment
profile I was working with before. To my surprise, there was a striking difference in both
profiles (Figure C.2 left) at the locus of Zscan4f and other genes that were missing intensi-
ties across the board (ESiC-5). Hardly any difference was noticed for the majority of other
genes (checked against (ESiC-1), e.g. Nanog (Figure C.2 right). Thus, it appears that the
repetitiveness of DNA does have an impact on the investigation of regulatory signatures by
ChIP-seq in a subset of genes, but that it does not critically effect the conclusions I have
drawn here with respect to the genes in ESiC-1.
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Figure C.2: Effect of repetitive DNA sequence on alignment. Genomic snapshot of a
highly repetitive genomic locus (Zscan4f, left) and a less repetitive region for comparison (Nanog,
right). Shown are alignments of six ChIP-seq datasets75 allowing only uniquely mapped reads
(blue) or all maps with up to 10 possible alignments (red).

Accounting for the problem of DNA repetitiveness (and hence alignment ambiguity) is
not trivial. Ambiguity in alignments is an issue, to my knowledge, so far addressed almost
exclusively for RNA-seq data, where approaches have been developed that take ambiguous
alignments into account, including the method used in GeneProf (Section 3.3.3.3). All
ChIP-seq peak-finding algorithms I have worked with so far, though, assume uniqueness of
alignments. A literature search revealed two possible routes for addressing this issue: A
post-alignment strategy for resolving ambiguously aligned reads based on the local genomic
context has been proposed that would be compatible with existing ChIP-seq tools579. This
is in principle not unlike my RNA-seq ambiguity resolution that makes use of information
about other reads aligned to the same gene. Alternatively, the idea has been put forward to
combine alignment and peak detection into a single step that could make use of ambiguity
information in the statistical procedure378. The matter of which of these strategies is preferable
or whether indeed either of them is capable of solving the issue at hand, certainly deserves
further investigation that is beyond the scope of current study.
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Appendix D

Additional Notes about the
GeneProf Software and
Algorithms

D.1 Access to Data and Analyses from this Thesis

All data and analyses presented in Chapter 5 of this thesis can be accessed via the GeneProf
software (http://www.geneprof.org) under the accession codes listed below. Please note,
the corresponding experiments have not (yet) been made publicly available, therefore access
is restricted to selected individuals (”collaborators”). If you wish to view these experiments,
please register for a GeneProf user account and get in touch.

Accession Experiment
gpXP 000557 Mouse ESC Universal ChIP-seq Background
gpXP 000558 Meta-Analysis of Transcription Factor Binding in ESCs
gpXP 000564 Meta-Analysis of Histone Modifications in ESCs
gpXP 000565 Meta-Analysis of Gene Expression in ESCs and other Cell Types
gpXP 000588 Meta-Analysis: Integration of Gene Expression, Transcription Factor Binding

and Histone Modifications in ESCs
gpXP 000634 No signal due to mappability?

D.2 External Software and Algorithms Used

The GeneProf data analysis makes use of a great number of publically available third-party
software. At the time of the first public release (coinciding with the writing of this thesis,
GeneProf Version 1.1204041), the following is a comprehensive list of all relevant packages:

Basic Code Dependencies: Apache Commons software libraries, GNU Trove, JDOM,
Java Secure Channel, JExcelAPI, JavaMail API, Legion of Bouncy Castle, Zehon File Transfer,
Picard, SAMTools, Xstream, XPP3, Google Snappy.

Web Interace Dependencies: recaptcha4j, jQuery, jQuery UI, Adobe Spry, Open-
Jacob Draw2d, sprintf for JS, Swfupload, SACK, DHTMLGoodies Modal Dialog, jsplumb,
snap2objects icons, FamFamFam icons.

External Programs Used: R, TexLive, ImageMagick, GraphViz, Bioconductor (various
libraries), MACS, SISSRs, ChIPseqPeakFinder, Bowtie, Tophat, FASTX Toolkit, BEDTools,
SRA Toolkit.

An up-to-date version of dependencies is maintained with the GeneProf software license
online at http://www.geneprof.org/terms_and_conditions.jsp.
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D.3 Data Compression

D.3.1 Performance of Assorted Compression Algorithms

This is an informal comparison of a number of widely-used, general-purpose compression
algorithms on the dataset with the SRA accession number SRR037952 552. Compression and
decompression times were measured with the Unix tool time over one single trial and may
hence differ slightly when repeated. All algorithms were tested using there implementation in
Ubuntu Linux 10.04 with default compression level.

Algorithm File Size (bytes) Ratio Compression (s) Decompression (s)
None 6, 613, 373, 443 1.0 0 0
GZIP 2, 168, 061, 531 0.33 657.4 67.2
BZIP2 1, 774, 190, 147 0.27 692.0 332.3
ZIP 2, 168, 061, 785 0.33 918.0 73.8

D.3.2 Short Read Sequence Encoding

The following two algorithms are used to encode and decode nucleotide sequence for efficient
in-memory storage in the Java programming language.

D.3.2.0.1 Encoding Algorithm

public final static long NUM_NUCLEOTIDES = 5;

public final static long ENCODING_MULTIPLIER = NUM_NUCLEOTIDES + 1;

public final static int MAX_SEQ_LENGTH_PER_LONG = 24;

public static long[] sequence2longs(char[] nucs) {

char[][] segments = splitStringInSegments(nucs,

MAX_SEQ_LENGTH_PER_LONG);

long[] encoded = new long[segments.length];

for (int i = 0; i < segments.length; i++) {

encoded[i] = sequence2long(segments[i]);

}

return encoded;

}

private static long sequence2long(char[] nucs) {

long pos = 1;

long l = 0;

for (char c : nucs) {

l += getNucToInt(c) * pos;

pos *= ENCODING_MULTIPLIER;

}

return l;

}

private static char[][] splitStringInSegments(char[] nucs, int len) {

int l = (int) Math.ceil((double) nucs.length / ((double) len));

char[][] segments = new char[l][];

int start = Integer.MIN_VALUE, end = 0;

for (int i = 0; i < l; i++) {

start = end;

end = Math.min(nucs.length, end + len);

segments[i] = copyOfRange(nucs, start, end);

}

return segments;

}
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D.3.2.0.2 Decoding Algorithm

public static String longs2sequence(long[] ls) {

StringBuilder sb = new StringBuilder(ls.length

* MAX_SEQ_LENGTH_PER_LONG);

for (int i = 0; i < ls.length; i++) {

sb.append(long2sequence(ls[i]));

}

return sb.toString();

}

private static String long2sequence(long l) {

long tmp = l;

StringBuilder sb = new StringBuilder(

SequenceEncoder.MAX_SEQ_LENGTH_PER_LONG

);

while (tmp > 0) {

if (sb.length() > SequenceEncoder.MAX_SEQ_LENGTH_PER_LONG) {

throw new RuntimeException("Error in encoded sequence.");

}

sb.append(getIntToNuc((int) (tmp % ENCODING_MULTIPLIER)));

tmp /= ENCODING_MULTIPLIER;

}

return sb.toString();

}

D.4 Workflow Modules

All workflow modules available to all GeneProf users as of software version v1.1204041 are
listed in the following tables (n = 80). In addition to these modules, another 28 are currently
under development.

Modules marked with one asterisk (*) are so-called ”meta-modules”, that is, combinations
of other modules that combine larger units of work into one simple and concise building block.
Modules marked with two asterisks (**) are only available to administrators / super-users –
they are being used to modify or augment the public database in GeneProf.

242



Name Description
Add Annotations to Reference Augment a reference dataset with annotations.
Align against cDNA with Bowtie Align sequences to a transcriptome.
Align against DNA with Bowtie Align sequences to a reference genome.
Align against Sequences with Bowtie Align sequences to a arbitrary other sequences.
Assign TFBS to Genes Assign ChIP-seq peaks to nearby genes.
Basic Features Filter Filter feature data, e.g. by fold change or p-value.
Basic Genomic Regions Filter Filter genomic regions, e.g. by FDR-values.
Basic Sequences Filter Filter sequences on the basis of their annotations.
BEDTools: intersectBed Return overlaps between genomic datasets.
Bowtie Output Parser Parse genomic regions from Bowtie aligments.
Bowtie Output Parser (Mate-Paired) Parse genomic regions from paired-end Bowtie aligments.
Calculate Additional Columns Calculate new annotation columns for the given features.
Calculate Additional Columns (Region
Data)

Calculate new annotation columns for the given genomic data.

Calculate TFAS Calculate the TF association strength for each gene.
Center Peaks Center peaks on their heighest point.
ChIP-seq Peak Summary Summarise statistics about ChIP-seq peaks.
Compare Feature Data Juxtapose multiple feature datasets.
Complex Features Filter Filter feature data using complex criteria.
Complex Genomic Regions Filter Filter genomic data using complex criteria.
Complex Sequences Filter Filter sequence data using complex criteria.
Create Transcriptome-only Reference Define new references by providing only a transcriptome assembly.
Define a new Reference Set Define new references based on gene annotations, a transcriptome

and a genome assembly.
DESeq Assess differential expression with DESeq.
DESeq (for Region Data) Assess differential expression with DESeq (for genomic data).
Calculate Fold Changes Assess differential expression by fold change.
Calculate Fold Changes (Region Data) Assess differential expression by fold change (for genomic data).
Drop Feature Annotation Columns Drop annotatios from features.
Drop Region Annotation Columns Drop annotations from a genomic data.
EdgeR Assess differential expression with EdgeR.
EdgeR (for Region Data) Assess differential expression with EdgeR (for genomic data).
Extract Regions from Reference Extract genomic coordinates (e.g. promoters or exons) from a

reference.
Extract Sequences from Regions Extract the DNA sequences from genomic regions.
FASTA Parser Parse sequence data from a FASTA-files.
FASTQ Paired-End Parser Parse paired-end sequence data from a a single FASTQ-file.
FASTQ Paired-End Parser (2 Files) Parse paired-end sequence data from two FASTQ-files.
FASTQ Parser Parse sequence data from a FASTQ-file.
FASTX Toolkit: Artifacts Filter Remove sequencing artifacts.
FASTX Toolkit: Clip Adapter Se-
quences

Remove adapter sequences.

FASTX Toolkit: Reverse Complement Transform sequence to their reverse complement.
Feature Annotations Parser Parse feature data (e.g. expression values) from a text file.
Find Peaks with CCAT Find peaks ChIP-seq data using CCAT.
Find Peaks with ChIPSeqPeakFinder Find peaks ChIP-seq data using ChIPSeqPeakFinder.
Find Peaks with MACS Find peaks ChIP-seq data using MACS.
Find Peaks with SISSRs v1.4 Find peaks ChIP-seq data using SISSRs.
Gene Expression Summary Summarise statistics about gene expression.
General Genomic Region Statistics Summarise statistics for genomic datasets.
General Sequence Statistics Summarise statistics for nucleotide sequence datasets.
Generic Sequence Parser Guess the file format and parse sequence data.
Genomic Region Parser Parse genomic data from text files (e.g. BED).
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Name Description
Genomic Region Parser Parse genomic data from text files (e.g. BED).
GOSeq Enrichment Analysis Gene ontology enrichment analysis with GOSeq.
MACS + Gene Association + Statis-
tics

Use MACS to detect peaks, assign them to nearby genes and cre-
ates a summary report in one step. *

Main Experimental Results Mark a selection of datasets in a workflow as the main results.
Make Annotations Public Add datasets to the public collection of searchable data. **
Make Reference Public Add a reference to the public collection of recommended reference

datasets. **
Make Tracks Public Add datasets to the public collection of browser tracks. **
Map Features to Another Reference Map the features in a feature dataset onto another reference.
Map Regions to Genes Assign genomic regions (e.g. ChIP peaks) to nearby genes.
MEME Motif Discovery Find DNA motifs using MEME.
Merge Genomic Region Data Merge multiple genomic datasets.
Merge Sequence Data Merge multiple sequence datasets.
Modify and Filter Sequences Trim, expand or alter sequences and apply permanent filters.
Modify Genomic Regions Trim, expand or merge all regions in a dataset.
Parse Reference Set from GenBank Define new reference sets by parsing GenBank files.
Put Aligned Reads into Bins Split genome into bins and count reads aligned to each bin.
QC + Bowtie Filter reads and align them using Bowtie. *
QC + Bowtie Iterative Trimming
Alignment

Quality control and repeated cycles of alignment followed by read
trimming. *

QC + Tophat Filter reads and align them using Tophat. *
Quantile Normalisation Apply a quantile normalisation.
Quantitate Coverage in Regions Calculate the read count for each provided genomic region.
Quantitate Gene Expression Calculate an expression value for each gene.
Quantitate Promoter Activity Quantify the coverage intensity for each promoter.
Random Sample of Features Select a random subset of features.
Random Sample of Genomic Regions Select a random subset of genomic regions.
Random Sample of Sequences Select a random subset of sequences.
Raw Sequence Parser Parse raw sequences from a file containing one sequence per line.
SAM/BAM Region Parser Parse genomic data from a SAM- or BAM-formatted file.
Select Regions for Regions Select the regions whose IDs are in a genomic dataset.
Select Sequences for Regions Select the sequences whose IDs are in a genomic dataset.
Select Sequences for Sequences Select the sequences whose IDs are in another sequence dataset.
Separate Mate Sequences Separate paired-end sequences into two independent sequences.
Split Sequences into Mate Pairs Split single-end sequences into two separate sequences (mate-

pairs).
SRA File Parser Parse sequences from an SRA- or SRAlite-formatted file.
TopHat Alignment Align sequences to a genome using the Tophat.
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