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ABSTRACT

Agonist-induced contraction of airways smooth muscle is mediated by

phosphoinositide hydrolysis and the production of the second messenger

inositol 1,4,5-trisphosphate (Ins(l,4,5)P3). Muscarinic receptor-stimulation of

bovine tracheal smooth muscle (BTSM) results in a transient increase in

Ins(l,4,5)P3 mass despite a sustained, non-desensitising hydrolysis of its

precursor phosphatidylinositol 4,5-bisphosphate (Ptdlns(4/5)P2). Hence the

rapid metabolism of Ins(l,4,5)P3 appears to be the major regulator of

Ins(l,4,5)P3 levels under agonist-stimulated conditions. A model system has
been developed to facilitate detailed study of the pathways involved in this

complex metabolism. BTSM slices were labelled to equilibrium with myo-

[3H]inositol in the presence of agonist and subsequent carbachol (CCh)- or
histamine (Hist)-stimulations carried out in the presence of lithium ions to

block InsPi breakdown. A delayed accumulation of [3H]Insl/3P and

[3H]Ins4P was observed under agonist-stimulated conditions. Moreover,

there was no demonstrable phosphoinositide hydrolysis either following

membrane-depolarisation, or secondary to a physiologically relevant

increase in intracellular calcium in this tissue. The model therefore provides
an appropriate system for the study of receptor-stimulated PtdIns(4,5)P2-
derived Ins(l,4,5)P3 metabolism. Cell-free experiments confirmed that

Ins(l,4,5)P3 is metabolised primarily by two different pathways - a 3-kinase
and a 5-phosphatase pathway - which yield mutually exclusive products.

H.P.L.C. separation of the individual [3H]inositol polyphosphate (InsPP)

isomers accumulating in BTSM slices enabled the 3-kinase and 5-

phosphatase metabolites to be quantified, and facilitated the determination

of flux of the inositol headgroup through these two pathways. The pattern

2



of Ins(l/4,5)P3 metabolism varies during the lifetime of the agonist-

stimulated response: The 5-phosphatase enzyme is highly dominant

especially at early time-points following agonist-stimulation, whilst the 3-

kinase becomes increasingly important at later time-points. Several possible

regulators of the InsPP metabolising enzymes were studied in order to try

and elucidate the factors which may determine the fate of Ins(l,4,5)P3 in

BTSM. Kinetic analysis reveals that physiological concentrations of calcium
ions have no effect on the activity of the 5-phosphatase and 3-kinase

enzymes in crude BTSM extracts. It is generally thought that the 3-kinase

may be activated by Ca2+/calmodulin via an increase in its Vmax; however

this conclusion is based on studies pre-dating the discovery that 3-kinase

may be a substrate for the calcium-activated neutral protease calpain. The

inclusion of calpain inhibitors in my experiments may explain the conflicting

results. The metabolism of Ins(l,4,5)P3 in stimulated BTSM slices appears to

be agonist-specific such that the proportion of [3H]Ins(l,4,5)P3 entering the 3-

kinase pathway is greater in slices stimulated with Hist than with CCh. The

protein kinase C-activating phorbol ester phorbol dibutyrate has a more

potent inhibitory effect on the accumulation of [3H]InsPPs stimulated by
Hist (IC50 = 5 nM) than by CCh (IC50 = 230 nM). Similarly, the long-acting

{32-agonist salmeterol potently inhibits Hist-stimulated [3H]InsPP
accumulation (IC50 = 0.24 nM) but is without detectable effect on CCh-

stimulated [3H]InsPP formation. In addition to the well-characterised 3-

kinase and 5-phosphatase pathway metabolites, an agonist-stimulated
accumulation of a further [3H]InsP2, co-eluting with [3H]Ins(4,5)P2, was
observed. Accumulation of this isomer exhibited a bell-shaped lithium

concentration response curve and was maximal in the presence of 10 mM

LiCl. These data indicate the possible existence of a novel 1-phosphatase

enzyme for the removal of Ins(l,4,5)P3 in this tissue.
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CHAPTER ONE

INTRODUCTION

Control of airways smooth muscle (ASM) tone is essential for regulating

airways calibre and hence the resistance of the airways. There is also

considerable evidence to suggest that airway wall remodelling, including

hypertrophy and hyperplasia of ASM is an important contributer to

airway responsiveness in asthmatic patients (Wiggs et al., 1992). A

variety of neurotransmitters (released from endogenous neurones),

hormones and peptides (either blood-borne or produced locally by pro¬

inflammatory cells) can elicit contraction of ASM following their binding

to, and stimulation of, surface receptors on the ASM cells. It is now well

established that excitation-contraction coupling is achieved principally by
a pharmacological process (i.e. pharmacomechanical coupling) rather

than an electrical response (i.e. electromechanical coupling). Hence

agonist stimulation of ASM is associated with the hydrolysis of a minor

membrane lipid component namely phosphatidylinositol 4,5-

bisphosphate (PtdIns(4,5)P2), resulting in the formation of the second

messengers inositol 1,4,5-trisphosphate (Ins(l,4,5)P3) and diacylglycerol

(DAG) (e.g. see Berridge, 1987; Rana and Hokin, 1990). DAG can activate

protein kinase C (PKC) (e.g. Hug and Sarre, 1993; Wilkinson and Hallam,

1994) while Ins(l,4,5)P3 can stimulate Ca2+ release from intracellular

stores to provide the activator Ca2+ necessary for the initiation of

contraction (see Berridge, 1993; Berridge and Irvine, 1989). The agonist-

stimulated contraction appears to be unaltered in asthmatic compared to

non-asthmatic subjects (Cerrina ct al., 1986; Coyle et al., 1990; Goldie et al.,

1986; Whicker et al., 1988). Nonetheless, the dominant role played by
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Ins(l,4,5)P3 in initiating agonist-mediated contraction in ASM

necessitates an understanding of the factors regulating Ins(l,4,5)P3
formation and metabolism in this tissue, and further research may

facilitate the generation of clinical modulators of the Ins(l,4,5)P3

response. Moreover, an understanding of the complex interplay between

phosphoinositide hydrolysis and other second messenger systems may

further our understanding of the mechanisms underlying both the

maintainance of contraction of ASM and the relaxant action of currently

used bronchodilators.

1.1 AIRWAYS SMOOTH MUSCLE PHYSIOLOGY

1.1.1 Structure of airways smooth muscle

In the foetus the trachealis consists of both outer (longitudinal) and

inner (transverse) portions together with a mucosal layer (the muscularis

mucosae) (Hakanson et al., 1976); however during development the outer

and mucosal layers are lost, and when fully developed only the
transverse layer - the muscularis transversus tracheae - remains. The

trachealis is classified as a multi-unit smooth muscle consisting of many

individual cell units (myocytes) each with their own nerve supply,

arranged into thick, non-branching, parallel-set bundles of smooth

muscle which connect the ends of the C-shaped tracheal cartilage rings.

The individual myocytes are typically 5-10 |im in diameter and 50-200 pm

long (Stephens, 1987) and the bundles are physically separated from each
other by spaces filled with connective tissue (Dixon and Small, 1983).
While several cell-cell communications exist within each bundle in the

form of intermediate junctions, the density of true gap junctions is very

low in this tissue; furthermore there are almost no communications
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linking the muscle cells bundles. The relative paucity of gap junctions

confers poor electrical conductivity on the trachealis muscle (Dixon and

Small, 1983) and the resting membrane potential (Em) is very stable (-45 -

-60 mV; Stephens, 1987) due to the strong rectifying properties of the

plasmalemma (Kirkpatrick, 1975). Following neuronal or

pharmacological stimulation ASM does not normally exhibit action

potentials; in contrast, the pattern of innervation and the poor electrical

conductivity of this tissue confer a slow, graded deplolarisation response

in which the difference between the resting Em and the mechanical

threshold is typically only ~ 5 mV (Stephens, 1987).

1.1.2 Innervation of the airways

The innervation of ASM is complex, consisting in most species of two
neuronal pathways mediating contraction and two linked to relaxation of
the muscle. The trachealis muscle is richly innervated with afferent

parasympathetic cholinergic neurones, stimulation of which results in
contraction of the muscle. These neurones provide the dominant control

of ASM tone, utilising acetylcholine (ACh) as a neurotransmitter. In

addition, stimulation of an excitatory non-adrenergic non-cholinergic

(eNANC) system can also facilitate contraction of ASM; the tachykinins

substance P, neurokinin-A and neuropeptide-B have been localised to

sensory afferent nerves and are believed to be the neurotransmitters for
eNANC (Hua et al., 1985; Lundberg et al., 1984). Conversely inhibitory

non-adrenergic non-cholinergic (iNANC) stimulation mediates
relaxation of ASM. The precise identification of the neurotransmitter for
this system remains uncertain, but strong candidates are vasointestinal

peptide and nitric oxide (Belvisi, 1992; Li and Rand, 1991; Matsuzaki et al.,

1980). Direct sympathetic (adrenergic) innervation of ASM, employing
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noradrenaline as a neurotransmitter appears to be species dependent;
while it has been demonstrated in a number of animal species (although

the innervation is often sparse), it appears to be entirely absent in man

(Cabezas et al., 1971; El-Bermani, 1987; O'Donnell and Saar, 1973; see

Richardson, 1979). Fibres from cervical sympathetic ganglia do penetrate

the airways however to supply vascular tissue, and have a regulatory
influence at the parasympathetic ganglia level (see Richardson, 1979). In

addition, ASM cells possess [3-adrenoceptors, predominantly (80-90 %) P2-

adrenoceptors, and hence can elicit relaxation in response to circulating
catecholamines (Barnes et al. 1983c; Popovich et al., 1984).

1.1.3 Muscarinic acetylcholine receptors in airways smooth muscle

Receptor-binding and autoradiographic studies have identified a high

density of muscarinic receptors in the smooth muscle layer of the trachea

and large airways from a number of animal species (Barnes et al., 1983a

and b; Basbaum et al., 1984; Cheng and Townley, 1982; Murlas et al., 1982;
Van Koppen et al., 1985). There appears to be a muscarinic receptor

gradient in the ASM of ferret lung as Barnes and colleagues (1983a and b)
noted a decrease in binding of the muscarinic ligand [3H]quinuclidinyl
benzilate (QNB) from the large to the small airways.

Original studies in other tissues, measuring the binding affinity of the
muscarinic antagonist pirenzepine, led to the division of muscarinic

receptors into three functional subclasses Mi .3 (Birdsall et al. 1980;

Hammer, 1980). The arrival of more specific muscarinic agonists and

antagonists however, has highlighted additional heterogeneity of the

originally described M2 subtype. A revised classification on the grounds
of several structural and pharmacological criteria identifies at least four

(Mi.4) receptor subtypes. The latter classification has now been
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substantiated by the cloning, sequencing and expression of distinct but

homologous genes (ml-m4) encoding these receptor subtypes (Bonner,

1989; Peralta et al., 1987). A fifth muscarinic receptor gene (m5) has also

been cloned from rat and human tissue but currently awaits its

pharmacological equivalent (M5) (Bonner et al., 1988; Liao et al., 1989).

Further heterogeneity of muscarinic receptors is suggested by Bognar and

colleagues (1992) who observed contraction of rabbit iris smooth muscle

following stimulation of a muscarinic receptor with an antagonist-

affinity profile distinct from Mi-4 receptors or indeed that of the m5 gene

product.

It is now evident that many smooth muscles co-express multiple

muscarinic receptor subtypes (e.g. Leiber et al., 1990; Mahesh et al., 1992).

Displacement of pH]QNB binding to ASM preparations by M2-selective

(AF-DX-116) and M3-selective (HHSiD and 4-DAMP) receptor antagonists

has identified both M2 and M3 receptor subtypes in this tissue, with the

former representing up to 89 % of the total muscarinic receptor pool

(Fernandes et al., 1992; Mahesh et al., 1992).

Expression of cloned muscarinic receptors has facilitated the
identification of the signal transduction mechanisms employed by the

receptor subtypes. Generally M3 receptors couple to stimulation of

phosphoinositide hydrolysis (e.g. Pinkas-Kramarski et al., 1988; Wess et

al., 1989) wheras activation of M2 receptors couple via a pertussis toxin-
sensitive G-protein (G;) to inhibtion of adenylyl cyclase (e.g. Ashkenazi et

al., 1987, 1989). In accordance with these data, activation of M3 receptors

in ASM results in the generation of contraction, secondary to

phosphoinositide hydrolysis (Roffel et ui, 1990a), however there is

considerable controversy concerning the role of the predominant M2

receptor pool. It has been suggsted that since M2 receptors are coupled to
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the inhibition of adenylyl cyclase their activation may explain (at least in

part) the relative resistance of muscarinic cholinoceptor-mediated

contraction to the relaxant effects of ^-adrenoceptor agonists (see Eglen et

al., 1994b and c). It has also been suggested however, that the extent of (3-

adrenoceptor mediated relaxation is controlled instead by the level of M3

receptor-mediated contractile tone (see Roffel et al., 1994).

Pre-junctional muscarinic autoreceptors may modulate ACh release,

thereby exerting a regulatory role on muscarinic receptor-mediated

contraction of ASM. Such inhibitory autoreceptors have been identified
in the pre-junctional neurones serving many smooth muscles including

human and guinea-pig airways (D'Agnostino et al., 1990; Minette and

Barnes, 1988). While there is some uncertainty over the identity of this

autoreceptor (either M2 or M4) current evidence favours an M2 or 'M2-

like' subtype (see Watson, 1994).

1.1.4 Non-muscarinic contractile receptors in airways smooth muscle

In addition to muscarinic cholinergic receptors, Hi histaminergic

receptors have been localised to the smooth muscle of both the small and

large airways where occupancy of the Hi receptor with histamine (Hist) is

closely related to the contractile response (Grandordy and Barnes, 1987).
A wide range of regulatory peptides which elicit a contractile response,

including substance P, tachykinins and gallanin, have also been identified
in ASM (see Polak and Bloom, 1986) although their signal transducing

mechanisms are less well characterised.
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1.2 MECHANISM OF AIRWAYS SMOOTH MUSCLE CONTRACTION

The force induced by ASM following agonist activation can be divided

into two components - a rapid initial increase in force (phasic

contraction), followed by a slower, maintained contractile phase (tonic

contraction). The mechanisms governing the generation and regulation

of these two contractile states may differ, and although great advances in

our understanding of force generation in smooth muscle have been
made in recent years, the mechanisms underlying force maintenance in

this tissue remain poorly understood.

1.2.1 Contractile proteins in airways smooth muscle

As in striated muscle, actin represents the major contractile protein

present in ASM. This protein is highly conserved in eukaryotic cells and
is readily demonstrable in smooth muscle (e.g. Fatigati and Murphy,

1984). Actin monomers (globular actin or G-actin) polymerise to form F

(filamentous)-actin with two linear chains of actin coiled into a right-

handed double helix. Each G-actin monomer contains a binding site for a

second contractile protein, myosin. This latter protein is present in

smooth muscle in much lower proportions than in striated muscle, being
some 10-20 fold less abundant than actin. Myosin is a hexameric protein,

comprising a single pair of heavy peptide chains folded into a globular
'head' and a 'tail', and two pairs of light chains (17 KDa and 20 KDa)
located at the head region. Myosin molecules combine to form thick,

bipolar filaments, each globular head containing actin-binding sites and
two Ca2+-stimulated, Mg2+-dependent ATPase activities (myosin

ATPase). Further actin-binding proteins which may play a role in

regulating contraction have been identified in smooth muscle including
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tropomyosin (Cummins and Perry, 1973; Fatigati and Murphy, 1984),
caldesmon (see Walsh, 1990) and calponin (Takahashi et al., 1988).

1.2.2 Force generation in airways smooth muscle

Evidence to support the increase in the free intracellular calcium
concentration ([Ca2+]j) as being the primary initiator of the contractile

response was first presented by Filo et al. (1965) in permeabilised vascular
smooth muscle preparations. This finding was later substantiated in

smooth muscle by Taylor (1989) and it is now recognised that a 4-10 fold
increase in free intracellular Ca2+ ([Ca2+]j) from a basal level of 70-180 nM

is necessary for the initiation of contraction (Felbel et al., 1988; Fujiwara et

al., 1988; Kotlikoff et al., 1987; Takuwa et al., 1988; Taylor and Stull, 1988;

Taylor et al., 1988).
In resting smooth muscle myosin forms weak contacts with actin

molecules, however following stimulation, the myosin heads form

transient, but tighter attachments to actin (cross-bridges) before
detachment and re-attachment to a G-actin monomer further along the

actin filament (cross-bridge cycling). The resulting sliding of the thick
and thin filaments over each other results in contraction, with the

magnitude of force related to the degree of interdigitation of the

filaments. The energy required for the cross-bridge cycling is provided by
ATP hydrolysis catalysed by the myosin ATPase, and hence force-

generation is dependent on activation of myosin ATPase. In contrast to

striated muscle in which myosin ATPase is constitutively active unless

regulated by the actin-binding proteins troponin and tropomyosin, a

mixture of partially purified smooth muscle actin and myosin exhibits
little myosin ATPase activity (see Giembycz, 1994). These data suggest the

presence in smooth muscle of a Ca2+-regulated factor responsible for the
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activation of myosin ATPase which is removed during the purification

procedure.

It is now known that activation of the calmodulin-dependent enzyme

myosin light chain kinase (MLCK) is both necessary and sufficient to
facilitate smooth muscle contraction (Itoh et al., 1989). MLCK is inactive

in the absence of Ca2+ ions, however it has a high affinity (Kj ~ 1 nM) for

Ca2+/calmodulin, and in the presence of raised [Ca2 + ]j forms a

Ca2+4:calmodulin:MLCK complex which exhibits phosphotransferase

activity (see Adelstein and Eisenberg, 1980). MLCK shows strict substrate

specificity for the 20 KDa light chain of myosin (LC20) which, when

phosphorylated, facilitates actin-mediated activation of myosin ATPase

(Kamm and Stull, 1985). Taylor et al. (1989) reported a direct correlation

between [Ca2 + ]j and LC20 phosphorylation irrespective of the source of

[Ca2+]j; furthermore the peak in LC20 phosphorylation precedes maximal

force generation (de Lanerolle et al., 1982; de Lanerolle and Stull, 1980;

Gerthoffer and Murphy, 1983; Kamm and Stull, 1985; Silver and Stull,

1984). These data indicate that LC20 phosphorylation, catalysed by

Ca2+ /calmodulin-activated MLCK, is the primary biochemical
determinant for force generation in ASM.

1.2.3 Force maintenance in airways smooth muscle

As described above contraction of ASM can be divided into a phasic and a

tonic component. These contractile states reflect a phasic and tonic [Ca2+]i

response whereby agonist stimulation results in a rapid and transient

[Ca2+]jpeak followed by a plateau of [Ca2+]j slightly above basal levels.

During the tonic phase of smooth muscle contraction the level of LC20

phosphorylation decreases from that associated with phasic contraction,
and plateaus at a concentration slightly above basal. Hence maintained
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tension can be achieved in ASM despite the [Ca2+]i and phosphorylated

LC20 concentrations being relatively low.
Force is maintained during tonic contraction, whereas shortening

velocity decreases rapidly from that obtained in phasic contraction to

reach a relatively low steady-state value. Since force is governed by the

number of attached cross-bridges, and shortening velocity is determined

by the rate of cross-bridge cycling, it would appear that in the maintained
contractile state cross-bridge cycling is dramatically slowed. Flence tonic

contractions are energetically economical, utilising relatively little ATP.

Much interest has focussed on the regulation of myosin phosphorylation

during tonic contraction in order to gain some insight into the factors

governing maintained force. The degree of myosin phosphorylation is

determined by the relative activities of MLCK and myosin light chain

phosphatase (MLCP). There is evidence to suggest that during tonic
contraction of smooth muscle MLCK may be phosphorylated by Ca2+-
calmodulin kinase (CaM kinase II) (Stull et ah, 1990), cyclic AMP-

dependent protein kinase (PKA) (Conti and Adelstein, 1981; Nishikawa et

al., 1984, 1985; Stull et al., 1990) and protein kinase C (Nishikawa et ah,

1985). Phosphorylation by the former two enzymes results in a decrease
in the affinity of MLCK for Ca2+/calmodulin and hence a decrease in its

activity. If this process occurs in vivo it may serve to limit cross-bridge
formation and hence decrease shortening velocity.
Several different MLCPs have been purified and characterised from

smooth muscle (see Cai et ah, 1994) some of which are tightly associated
with myosin filaments. It has been proposed that G-proteins may

decrease MLCP activity since G-protein receptor-linked contractile

agonists and GTPyS increase myosin phosphorylation and inhibit MLCP
in skinned vascular smooth muscle fibres (Kitazawa et ah, 1991a and b).
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In addition to the absolute level of myosin phosphorylation, a change in

the flux of phosphorylated LC20 may serve to regulate ASM tone, since it
has been observed that myosin kinase inhibitor, or MKI (an inhibitor of

both MLCK and MLCP), inhibits shortening velocity in skinned taenia
coli (Strauss et al., 1992). This data suggests that shortening velocity may

vary despite levels of LC20 phosphorylation remaining fairly constant.

While a direct relationship between LC20 phosphorylation and force

generation has been clearly demonstrated in ASM, correlative studies
have failed to demonstrate a tight temporal association between force,

shortening velocity and LC20 phosphorylation during maintained
contractions (Gunst et al., 1992; Merkel et al., 1990; Ozaki et al., 1990; Shieh

et al., 1991; Silver and Stull, 1984). Hence it has been proposed that
additional Ca2+-regulated mechanisms may be responsible for controlling
tonic contraction, and much research has focussed on the potential role of
the thin filament-associated proteins caldesmon and calponin in such a

process. Caldesmon can bind to calmodulin, myosin and tropomyosin.
When bound to the latter caldesmon is an effective inhibitor of myosin

ATPase (see Walsh, 1990). Phosphorylation of caldesmon in vitro
removes its inhibitory action on myosin ATPase (Adam et al., 1990). Like

caldesmon, calponin can bind to actin and tropomyosin and can inhibit

myosin ATPase activity (Abe et al., 1990; Winder and Walsh, 1990).

Phosphorylation of calponin by CaM kinase II or PKC reverses this

inhibiton (Winder and Walsh 1990) which can be restored by the action of

calponin phosphatase (Winder et al., 1992). A preliminary report suggests
that caldesmon may be phosphorylated during contraction of intact

tracheal smooth muscle (Pohl et al., 1991). Thus the phosphorylation
state of these thin filament-binding proteins may play a critical role in
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regulating smooth muscle contraction, although details of whether such

regulation is applicable in vivo remain to be determined.
PKC has been implicated as playing a major role in the maintenance of

smooth muscle contraction. Phorbol 12-myristate 13-acetate (PMA, 500

nM) can both activate PKC and induce tonic contraction, an effect which

is greatly enhanced by the presence of Ca2+-channel activators or Ca2 +

ionophores (Park and Rasmussen, 1985). In agreement, application of
low concentrations (< 1 |iM) of the phorbol esters PMA and 12-

deoxyphorbol 13-isobutyrate (DPB) induce contraction of rabbit trachea
which can be abolished by Ca2+ channel antagonists (Schramm and

Grunstein, 1989). The contraction evoked by low concentrations of

phorbol ester can be abolished by Ca2+ channel antagonists (Schramm and

Grunstein, 1989) indicating that PKC-induced contraction is mediated, at

least in part, by the activation of voltage-operated Ca2+ channels. The

tonic contraction induced by PKC activation is associated with

phosphorylation of the same proteins (including caldesmon) as those

observed during the tonic contraction induced by carbachol (CCh) (Park
and Rasmussen, 1986). It should be noted however that in the study of

Schramm and Grunstein (1989) the application of higher concentrations

of phorbol esters mediated ASM relaxation rather than contraction,

pointing to either a more complex role of PKC in regulating ASM

contraction or non-PKC-mediated effects at high phorbol ester

concentrations.
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1.3 SOURCE OF ACTIVATOR CALCIUM

ASM exhibits poor electrical conductivity and while a slow graded

membrane depolarisation is observed following agonist stimulation, this
effect is unlikely to account for the very rapid events leading to the

initiation of tone in this tissue. The use of fluorescent calcium probes

such as Fura-2 have facilitated temporal studies of the agonist-stimulated

[Ca2+]i response. The response is biphasic, consisting of a rapid, sharp rise
in [Ca2+]j which, in the continued presence of agonist falls to a plateau
level slightly above basal (Kotlikoff et al., 1987; Murray and Kotlikoff,

1991; Pannettieri et al., 1989; Senn et al., 1990; Shieh et al., 1991). It is now

established that the increase in [Ca2+]i responsible for force generation

(the initial transient increase in cytosolic Ca2+) in ASM arises from a non-

mitochondrial intracellular store (Twort and van Breemen, 1989),

whereas the influx of extracellular Ca2+ may be more important for the

maintenance of tone. Thus in ASM agonist-induced phasic contractions

are generally very resistant to the removal of extracellular Ca2+ and are

insensitive to dihydropyridine Ca2+ channel blockers; by contrast

depolarisation-induced contractions (or the tonic phase of agonist-

induced contractions) are more critically dependent on extracellular Ca2+

(Kirkpatrick, 1975; Ritchie et al., 1984; Weichman et al, 1982, 1983).
Electron probe X-ray microanalysis has identified the terminal cisternae

of the sarcoplasmic reticulm (SR) as the major source of activator Ca2+ in
smooth muscle (Bond et al., 1984; see Somlyo, 1981), and Bond et al. (1984)
have shown that this store contains sufficient Ca2+ to elicit maximal

contraction of guinea-pig portal vein. Recent studies in ASM have

highlighted a heterogeneity of the Ca2+ store, such that the available Ca2+

may be divided between multiple discrete pools released by Ins(l,4,5)P3,
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ryanodine or GTPyS, although passage of Ca2+ between the pools may

occur under some circumstances (Chopra et al., 1991).

1.3.1 The inositol 1,4,5-trisphosphate-sensitive calcium store

One of the most important mediators of intracellular Ca2+ release known
is Ins(l,4,5)P3, a water-soluble compound formed by phosphoinositidase
C-mediated hydrolysis of Ptdlns(4/5)P2 (see Berridge, 1993). Ins(l,4,5)P3
has been shown to release Ca2+ from a non-mitochondrial intracellular

store in permeabilised canine (Hashimoto et al., 1985), rabbit (Chopra et

al., 1991) and human (Twort and van Breemen, 1989) ASM preparations.
These studies show that application of exogenous Ins(l,4,5)P3 to

permeabilised tissue results in a rapid (90% release by 12 sec, Twort and
van Breemen, 1989) and concentration-dependent (EC50 = 0.8-2.3 pM;

maximal effect at 2-30 pM) release of intracellular Ca2+. A maximally
effective concentration of Ins(l,4,5)P3 released a high proportion (84 %) of

the ATP-dependent intracellular Ca2+ store in cultured human ASM

cells, a quantity which relates to that released in intact cells in response to

10 pM Hist (Twort and van Breemen, 1989).

A protein with highly specific binding properties for Ins(l,4,5)P3 has been
identified in many cell types including ASM (Chilvers et al., 1990b;
Schramm et al., 1992 and see Ferris and Snyder, 1992). Reconstitution

studies, in which the Ins(l,4,5)P3 binding proteins purified from rat

cerebellar membranes (Ferris et al., 1989) or aortic smooth muscle

(Mayrleitner et al., 1991) were incorporated into artificial membranes,
demonstrated that the Ins(l,4,5)P3 receptor protein has an intrinsic Ca2+
channel activity; moreover the binding affinity of a series of inositol

polyphosphates for this protein correlated with their ability to induce

45Ca2+ flux in these vesicles (Ferris et al., 1989). It has now been shown
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that the vicinal (4/5)-bisphosphate group is crucial for Ca2+-release
(Nahorski and Potter, 1989). In accordance with a role in Ins(l,4,5)P3-

mediated Ca2+ release from intracellular stores the receptor has been

localised predominantly to the endoplasmic reticulum (Mignery et al.,

1989; Ross et al. 1989), however recent studies have also identified an

Ins(l,4,5)P3 receptor in the nucleus (Malviya et al., 1990) and in some cells
an Ins(l,4,5)P3 receptor has been shown to be associated with the plasma

membrane (Khan et al., 1992; Kuno and Gardner, 1987). This latter

observation has prompted speculation for a direct role for Ins(l,4,5)P3 in

agonist-dependent Ca2+ influx. The plasma membrane-associated

Ins(l,4,5)P3 receptors exhibit less specificity for Ins(l,4,5)P3 over receptors

localised to the endoplasmic reticulum (Kalinoski et al., 1992) and

recently attention has therefore been drawn to the potential role of

Ins(l,3,4,5)P4 in Ca2+ influx (Irvine 1991).

The high density of Ins(l,4,5)P3 receptors found in cerebellar Purkinje

cells facilitated their purification and cloning (Danoff et al., 1991; Furuichi
et al., 1989; Nakagawa et al., 1991; Supattapone et al., 1988). More recent

cloning studies however, have identified four subtypes of receptor

(InsP3R-l-4) encoded by distinct but related genes, with the originally

described cerebellar receptor designated as InsP3R-l. Complete cDNA

sequences are also now available for both InsP3R-2 (Sudhof et al., 1991)
and InsP3R-3 (Blondel et al., 1993; Maranto, 1994), and a partial sequence

has been determined for I11SP3R-4 (Danoff et al., 1991). The mRNA

molecules for these Ins(l,4,5)P3 receptor isoforms are differentially

expressed in various tissues (Blondel et al., 1993; Mignery et al., 1990; Ross
et al., 1992) and a study of the Ins("l,4,5)P3-binding properties of the

receptors shows the neuronal sites generally display a lower affinity for

Ins(l,4,5)P3 (Kd = 20-70 nM) than peripheral receptors (K<j = 2-8 nM) (see
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Willcocks et al., 1990). Two major splice sequences, SI and SII, have been
identified within the InsP3R-l subtype leading to further heterogeneity of

Ins(l,4,5)P3 receptors with splice variants expressed in both a

developmentally- and tissue-specific manner (Danoff et al., 1991;

Nakagawa et al., 1991).
The Ins(l,4,5)P3 receptors exhibit extensive sequence and structural

similarity with the ryanodine receptor of skeletal and cardiac muscle
clustered around the transmembrane domains which form the Ca2+-

channel (Mignery et al., 1989; Takeshima et al., 1989). The native protein

exists as a tetramer (Maeda et al., 1991; Mignery et al., 1990) and hence
several forms of the receptor may exist in a single cell-type arising from
different combininations of Ins(l,4,5)P3 receptor monomers.

In many cell types Ins(l,4,5)P3-induced Ca2+ flux exhibits a biphasic

dependence on the cytoplasmic Ca2+ concentration with nanomolar and
micromolar [Ca2+]j potentiating and attenuating Ca2+ release respectively

(Bezprozvanny et al., 1991; Loomis-Husselbee and Dawson, 1993;

Missiaen et al., 1992, 1994). Initial studies by Worley et al. (1987) identified
an inhibitory effect of Ca2+ ions on Ins(l,4,5)P3 binding to the cerebellar

receptor, suggesting that the inhibitory effect of Ca2+ at high
concentrations might be due to regulation of ligand-binding to the

receptor. Danoff et al. (1988) however, observed that Ca2+ did not regulate

Ins(l,4,5)P3 binding to its receptor directly but required a secondary

protein termed calmedin. Moreover, Mignery et al. (1992), unable to

demonstrate such a Ca2+-mediated control of Ins(l,4,5)P3 binding in

cerebellum, proposed that calmedin may be a Ca2+-sensitive isoform of
PIC. The results observed by Worley et al. (1987) would therefore simply
reflect a Ca2+-stimulated production of endogenous Ins(l,4,5)P3 which

displaced radiolabeled [3H]Ins(l,4,5)P3 from the receptor. In agreement
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with this proposal Chilvers et al. (1990b) showed Ins(l,4,5)P3 binding to

the BTSM receptor was unaffected by the Ca2+ ion concentration.

Ins(l/4/5)P3-induced Ca2+ release seems to occur in discrete quanta

(Bootman et al., 1992; Ferris et al., 1992), a phenomenon which may

reflect, in part, an interaction between luminal Ca2+ and Ins(l,4,5)P3

(Missiaen et al., 1992, 1994; Oldershaw and Taylor, 1993; Parys et al., 1993).

Depletion of Ca2+ stores reduces the affinity of the receptor for Ins(l,4,5)P3

(Oldershaw and Taylor, 1993) and increases the EC50 for Ca2+ release

(Nunn and Taylor, 1990). There is also some evidence to suggest that
luminal Ca2+ may modulate the regulatory effects of cytoplasmic Ca2+ on

the Ins(l,4,5)P3 receptor (Missiaen et al., 1992, 1994).

1.3.2 The ryanodine-sensitive calcium store

Ryanodine is a naturally occurring plant alkaloid which has been shown
to release Ca2+ from the SR of cardiac (Wier et al., 1985) and skeletal

(Sutko et al., 1985) muscle. A similar action of this compound has been
observed in airways smooth muscle (Chopra et al., 1991) although the

Ca2+ release effect is quantitatively much smaller. Since ryanodine

binding to its receptor is absolutely dependent on Ca2+ (e.g. Michelak et

al., 1988; Pessah et al., 1985) ryanodine receptors have been implicated in
Ca2+-induced Ca2+ release (see section 1.3.3). In cultured ASM cells pre-

treatment with a maximally effective concentration of ryanodine
abolishes Ca2+ release in response to GTPyS and caffeine suggesting that
the latter pools are a subset of the ryanodine-releasable Ca2+ pool (Chopra
et al., 1991). In addition ryanodine pre-treatment of these cells results in
an inhibition of any subsequent Ins(l,4,5)P3 response indicating that the

ryanodine releasable Ca2+ pool may be a subset of the Ins(l,4,5)P3

releasable pool.
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A further agent which which is now recognised to release Ca2+ from

ryanodine-sensitive stores is cyclic adenosine diphosphate-ribose (cADP-

ribose). The ability of this pyridine metabolite to mobilise Ca2+ was first

observed in sea urchin eggs (Clapper et al., 1987) and has more recently
been demonstrated in mammalian cells (Koshiyama et al., 1991;

Takasawa et al., 1993). Ca2+ mobilisation in response to cADP-ribose
occurs independently of Ins(l,4,5)P3 receptor-activation (see Galione,

1993) and since pretreatment with modulators of the ryanodine receptor

can regulate cADP-ribose-induced Ca2+ release (see Galione, 1992), this

agent has been proposed to mediate Ca2+ efflux from ryanodine-sensitive

sites. It is not known if cADP-ribose is formed following agonist

stimulation of ASM and hence the physiological relevance of this Ca2+-
release mechanism in this tissue is not clear.

1.3.3 Calcium-induced calcium release

Ca2 + -induced Ca2+ release (CICR) has been demonstrated in

permeabilised skeletal, cardiac and vascular smooth muscle where small

increases in the [Ca2+] of the bathing medium elicit substantial Ca2 +

release (Endo, 1975, 1977; Endo et al., 1970; Fabiato, 1983; Ford and

Podolski, 1970; Saida, 1981, 1982). A localised increase in [Ca2+]j has been

proposed to activate large conductance cation channels on the SR close to

the plasma membrane to mediate CICR which has been implicated as the
mechanism underlying the propagation of intracellular Ca2+ waves

(Berridge and Irvine, 1989). In other muscle types, caffeine appears to

release Ca2+ from intracellular stores by sensitising the CICR mechanism

(see Endo, 1977; lino, 1987; Leijten and van Breemen, 1984; see Martinosi,

1984). Although there is no direct evidence for CICR in ASM, the

presence of such a mechanism is suggested by the ability of caffeine to
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induce a slow release of Ca2+ in permeabilised cultured ASM cells

(Chopra et al., 1991).

1.3.4 The guanine-nucleotide-sensitive calcium store

The ability of guanine-nucleotides to release intracellular calicum was

originally observed in hepatic and neuronal cells (Chueh and Gill, 1986;

Dawson, 1989; Gill et al., 1986). A similar action of GTPyS, independent of

G-protein activation of phosphoinositidase C and hence Ins(l,4,5)P3

formation, has more recently been observed in cultured ASM cells

(Chopra et al., 1991). Studies in the DDT} MF-2 smooth muscle cell line

suggest that GTP acts to translocate Ca2+ from an Ins(l,4,5)P3-insensitive
to an Ins(l,4,5)P3-sensitive compartment (Ghosh et al., 1989; Mullaney et

al., 1988). While the presence of such a mechanism in ASM is

questionable since GTPyS-induced Ca2+ release (unlike Ins(l,4,5)P3-

mediated Ca2+ release) is unaffected by heparin (Chopra et al., 1989), the

GTPyS-sensitive pool does appear to communicate with the Ins(l,4,5)P3-
sensitive pool and may be able to regulate its size.

In addition to storing Ca2+ which may be released into the cytosol

following agonist stimulation, in non-excitable cells the SR may also
serve to regulate Ca2+ influx into the cell. A model has been proposed

(the capacitative model) in which depletion of intracellular Ca2+ stores

can, through an unknown mechanism, increase the permeability of the

plasma membrane to Ca2+ ions (Putney, 1986, 1991). In support of such a

mechanism, Randriamampita and Tsien (1993) have isolated a putative

messenger from Jurkat cells which is released into the cytosol from
intracellular organelles following depletion of Ca2+ stores. The

messenger can induce Ca2+ influx when applied exogenously to
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macrophages, astrocytoma cells and fibroblasts and hence has been
termed calcium influx factor, or CIF. This small molecular weight (< 500

Da) molecule is negatively charged and appears to contain both a

phosphate group (essential for stimulation of Ca2+ influx) and two

hydroxyl groups on adjacent carbon atoms. In addition, independent data
from electrophysiological experiments in Xenopus oocytes identify a

plasma membrane Ca2+ current which is activated by a diffusible factor

following depletion of intracelluar Ca2+ stores, and is inhibited by a

phosphatase (Parekh et al., 1993). The capacitative model of Ca2+ entry

provides a possible mechanism for agonist-stimulated Ca2+ influx

(secondary to intracellular Ca2+ release), and may be important in the
maintenance of contraction in ASM.

1.4 INVOLVEMENT OF PHOSPHOINOSITIDE HYDROLYSIS IN

PHARMACOMECHANICAL COUPLING IN AIRWAYS SMOOTH

MUSCLE

Michell (1975) was the first to propose a link between agonist-stimulated

phosphoinositide metabolism and Ca2+-signalling, based on the

following observations from a variety of tissues:-
1. Certain receptors controlled the activation of inositol lipid

metabolism in many tissues regardless of the cellular response.
2. These receptors did not generally activate adenylyl cyclase and the

post-receptor signalling mechanism for these receptors was

unknown.

3. Stimulation of these receptors always appeared to cause an increase

in [Ca2+]i.
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4. Studies in adrenal medulla, platelets and parotid gland suggested
that the inositol lipid metabolism was not secondary to the rise in

[Ca2+]j.

5. Receptor stimulation caused tissues to become partially depleted of

Ptdlns.

6. Inositol lipid breakdown occured with a rapidity to that required of
a signalling reaction.

7. Inositol lipid breakdown showed a concentration-response curve

that corresponded to receptor occupation by the applied agonist

rather than the functional effect.

Dawson (1971) demonstrated that a phosphoinositide-specific

phospholipase C (PIC) was responsible for this phosphoinositide
metabolism leading to the formation of DAG and water-soluble inositol

phosphates (InsPs). Durrel et al. (1969) suggested that in guinea-pig brain
the polyphosphoinositides may also be metabolised in addition to Ptdlns -

a finding that was later substantiated in iris smooth muscle by Abdel-Latif
and collegues, (see Abdel-Latif, 1986). All of these proposals are now well

accepted as a means of agonist-stimulated second messenger formation

(see Berridge, 1987; Rana and Hokin, 1990). PtdIns(4,5)P2, formed by the

sequential actions of a 4- and 5-kinase on Ptdlns, is recognised to be the

primary substrate for PIC resulting in the formation of DAG and

Ins(l,4,5)P3. DAG remains within the plane of the membrane and can

activate certain PKC isoforms and hence facilitate phosphorylation of a

range of effector molecules (see Wilkinson and Hallam, 1994), whereas

Ins(l,4,5)P3 is released into the cytosol and can facilitate intracellular Ca2+
release by binding to its specific receptor on the ER (see Berridge, 1993).
The identification of Ins(l,3,4,5)P4 and Ins(l,3,4)P3 isomers in tissue

extracts was thought initially to suggest the presence of additional 3-
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phosphorylated phosphoinositides from which these compounds might
be derived (Batty et al., 1985; Downes et al., 1986; Nahorski and Batty, 1986;

Nahorski et al., 1986). Although a series of 3-phosphorylated

phosphoinositides (PtdIns3P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3) have now

been identified in membranes from a variety of cell types (see Stephens et

al., 1993), they appear to represent minor phosphoinositide components

that are resistant to hydrolysis by PIC (Lips et al., 1989; Serunian et al.,

1989). Recently, much research has been focussed on the role of these 3-

phosphorylated phosphoinositides leading to the proposal that they may

represent components of a separate phosphoinositide signalling pathway,

whereby PtdIns(4,5)P2 is phosphorylated by a 3-kinase to yield

PtdIns(3,4,5)P2 (Stephens et al., 1991b). PtdIns(3,4,5)P3 has now been

implicated in a variety of cellular processes including cell growth (Fantl et

al., 1993; Valius and Kaslauskas, 1993), chemotaxis and cytoskeletal

rearrangement (Eberle et al., 1990), glucose transport (Okada et al., 1994a)
and neutrophil respiratory burst activity (e.g. Eberle et al., 1990; Okada et

al., 1994b). The precise second messenger function of PtdIns(3,4,5)P3
however remains uncertain.

Chilvers et al. (1991a) could not detect any isomeric heterogeneity of the

PtdInsP2 pool in BTSM which appeared to consist solely of PtdIns(4,5)P2-

Conversely analysis of the PtdlnsPi pool by these authors showed the

presence of both the dominant PtdIns4P isomer and a minor (17 %)

PtdlnsPi constituent identified as PtdIns3P. As yet however, no evidence
exists to suggest the presence of higher 3-phosphorylated

phosphoinositides in ASM.

37



1.4.1 Contractile agonist-stimulated phosphoinositide metabolism in

airways smooth muscle

The involvement of phosphoinositide hydrolysis in the coupling of

contractile receptor stimulation to Ca2+ release and ASM contraction was

first suggested in a study by Baron et al. (1984). These authors noted
enhanced [32P]Pj incorporation into Ptdlns following CCh stimulation of
canine trachealis, accompanied by an overall decrease in Ptdlns mass and
a parallel increase in the accumulation of DAG and its metabolite

phosphatidate (PtdOH). A similar agonist-stimulated incorporation of

[3H]inositol into Ptdlns, PtdlnsP and PtdInsP2 has also been observed in

tracheal smooth muscle (Baron et at., 1989; Chilvers et al., 1989a). Studies

in [3H]inositol-labelled BTSM have demonstrated a rapid (ti/2 = 14 sec)

and sustained, CCh-stimulated decrease in the mass of PtdInsP2 (Takuwa

et al., 1986) and more specifically PtdIns(4,5)P2 (Chilvers et al., 1991a). The
former study (Takuwa et al., 1986) demonstrated that in tracheal smooth

muscle, as in most other tissues, PtdInsP2 appears to be the major

membrane phosphoinositide hydrolysed following agonist stimulation.
Accumulation of [3H]InsPs in the presence of 5-10 mM LiCl (a potent,

non-competitive inhibitor of the inositol monophosphatase - see section

1.5.1) has also been used as an index of phosphoinositide hydrolysis in

[3H]inositol pre-labelled ASM. Using this approach, agonist-stimulated

[3H]InsP accumulation has been observed in response to a variety of
contractile stimuli including full and partial muscarinic agonists

(Chilvers et al., 1989a, 1990a; Duncan et al., 1987; Hall and Hill, 1988;

Meurs et al., 1988; Offer et al., 1991; Roffel et al., 1990a), histamine (Hall

and Hill, 1988), bradykinin (Chilvers et al., 1989a), 5-hydroxytryptamine

(Lemoine et al., 1988), endothelin (Hay, 1990), leukotrienes C4, D4 and E4

(Grandordy et al., 1987; Mong et al., 1988), substance P and neurokinins A
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and B (Grandordy et al., 1988). A similar finding was also observed

following both electrical field stimulation of [3H]inositol-labelled BTSM

strips (Miller-Hance et al., 1988), and co-incubation of [3H]inositol-labelled
canine ASM membranes with histamine and GTP (Murray et al., 1989).

1.4.2 Agonist-stimulated inositol 1,4,5-trisphosphate accumulation in

airways smooth muscle

[3H]Ins(l,4,5)P3 has been shown to mediate Ca2+ release from intracellular

stores in permeabilised canine tracheal smooth muscle cells (Hashimoto
et al., 1985). To substantiate a role for this second messenger in

stimulating the release of activator Ca2+ for the contractile response,

Duncan et al. (1987) demonstrated a rapid (1 sec) ACh-stimulated

accumulation of [3H]InsP3 in canine ASM which preceded the detectable
onset of contraction. Similarly, increases in [3H]InsP3 in bovine ASM

have been detected as early as 500 msec following electrical field

stimulation (Miller-Hance et al., 1988).

One of the major defects of these early studies however was the failure to

identify the precise isomeric composition of [3H]InsP3. Using both
H.P.L.C. and enzymic methods the [3H]InsP3 fraction accumulating in

bovine tissue has been shown to consist of both [3H]Ins(l,4,5)P3 and

[3H]Ins(l,3,4)P3 with the latter isomer predominating even at early time-

points after agonist stimulation (Chilvers et al., 1990a; Kennedy et al.,

1989). Nonetheless, Chilvers et al. (1990a) demonstrated a rapid (albeit

transient) increase in [3H]Ins(l,4,5)P3 in BTSM strips following
stimulation with CCh. In agreement, subsequent studies utilising a

specific radioreceptor binding assay for the determination of Ins(l,4,5)P3
mass (Palmer et al., 1989) identified a substantial CCh-stimulated increase
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in Ins(l,4/5)P3 mass, apparent by 2 sec, peaking after 5 sec and returning to

basal and sub-basal levels by 30 sec in BTSM (Chilvers et ah, 1989b).

Rosenberg and co-workers (1991) demonstrated a relationship between
both the EC50 and magnitude of the CCh-stimulated Ins(l,4,5)P3 response

and differences in the contractile response observed between immature
and adult rabbit ASM. Furthermore, a direct relationship has been

observed between [3H]InsP formation and contraction induced by a range

of muscarinic agonists in bovine trachealis (Meurs et ah, 1988). Hence

stimulation of Ins(l,4,5)P3 production in ASM appears to occur with a

time- and concentration dependence compatible with the contractile

response. While Ins(l,4,5)P3 has not been shown directly to mimic
contraction in ASM, such experiments have been carried out in vascular
and gastric smooth muscle where liberation of caged Ins(l,4,5)P3 can elicit
contraction in permeabilised tissue (Bitar et ah, 1986; Somlyo et ah, 1985,

1992; Walker et ah, 1987).

Therefore much evidence has accumulated to implicate the receptor-

mediated generation of Ins(l,4,5)P3 in pharmacomechanical coupling in
ASM. This compound is generated rapidly enough and with a

concentration-dependence consistent with the contractile reponse, and by

binding to its specific receptor on the SR can elicit sufficient Ca2+ release

to initiate contraction. Also in support of a second messenger role for

Ins(l,4,5)P3, it should be noted that inhibition of Ins(l,4,5)P3 generation by

phorbol esters (Baba et ah, 1989) and cAMP (see section 1.6.3) is associated
with an attenuation of agonist-induced contraction.
In BTSM, CCh-stimulated hydrolysis of PtdIns(4,5)P2 appears to persist (>
20 min) in the continued presence of agonist (Chilvers et ah, 1991a),
hence the transient Ins(l,4,5)P3 accumulation response observed in this

tissue must reflect extensive agonist-stimulated metabolism of

40



Ins(l,4/5)P3- Such rapid metabolism is to be expected of a putative second

messenger. An alternative pattern of agonist-stimulated [3H]Ins(l,4,5)P3
formation however, has been observed in rabbit tracheal smooth muscle

where endothelin-1 stimulated a sustained, rather than transient,

increase in Ins(l,4,5)P3 accumulation (Grunstein et al., 1991). The

mechanisms underlying such agonist- and/or species-specific differences
in the Ins(l,4,5)P3 response in this tissue are unclear. They may reflect
intrinsic differences in the enzymes present in the tissues (e.g. the PIC

isozymes recruited by the receptors) or in the regulation of these enzymes

(e.g. the use of different G-proteins to couple the receptors to PIC) (see
sections 1.4.3 and 1.4.4). Alternatively the contrasting receptor-mediated

Ins(l,4,5)P3 responses may arise as a result of differential feedback or

crosstalk mechanisms from other signal transducing pathways, which

could affect both the production and metabolism of Ins(l,4,5)P3.

1.4.3 Phosphoinositidase C studies in airways smooth muscle

Studies in various tissues have identified four, and possibly five,

biochemically, structurally and immunologically distinct subclasses of PIC

enzymes (a, p, y, 5 and e) (see Crooke and Bennett, 1989; Meldrum et al.,

1991; Rhee et al., 1989, 1991). Hornma et al. (1989) identified mRNA

encoding at least four discrete PIC isozymes in rat lung homogenates.

Two groups have subsequently reported partial resolution of at least three

peaks of PIC activity in soluble fractions of bovine, porcine and canine

trachealis (Chilvers et al., 1992; Murray et al., 1991b). The enzyme activity

in all three peaks in bovine trachealis was found to be Ca2+-dependent.
Furthermore, the ability of platelet-derived growth factors PDGF-AB and

PDGF-BB to stimulate [3H]InsP generation and antisense PIC-pi cDNA to

inhibit agonist-stimulated phosphoinositide hydrolysis in ASM suggests
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the presence of at least PIC-y and PIC-(3i isozymes in this tissue (see

Chilvers, 1994).

1.4.4 Involvement of G-proteins in agonist-stimulated phosphoinositide

hydrolysis in airways smooth muscle

G-proteins, or guanine-nucleotide-binding proteins, are a large family of

hetrotrimeric proteins (consisting of a, [3 and y subunits) which serve to

couple a wide range of receptors to their effector enzymes (for review see

Helper and Gilman, 1992). Under resting conditions the a subunit is

bound to GDP which can slowly dissociate and be exchanged for GTP.

Interaction of the G-protein with agonist-bound receptor dramatically

enhances the rate of GDP/GTP transfer and following GTP binding the G-

protein dissociates into a-GTP and (3y subunits. Until recently, the

released a-GTP has been thought to be the principal modulator of effector

enzymes, however evidence has accumulated indicating the importance

of the (3y subunit in regulation of certain responses, most notably
stimulation of PLC-P2 (Boyer et al., 1992; Camps et al., 1992) and binding

of receptor kinases, leading ultimately to receptor desensitisation

(Kameyama et al., 1993; Koch et al., 1993). Termination of a-GTP

mediated responses follows GTP hydrolysis by the intrinsic GTPase

activity of the a subunit.

The first suggestion that G-proteins might be involved in receptor-

mediated phosphoinositide signalling was provided by the observation

that guanine nucleotides could alter the binding affinity of agonists

linked to Ca2+-mobilising receptors in human astrocytoma cells (Evans et

al., 1985). This observation has been substantiated in ASM where

muscarinic agonist binding affinity is regulated by a range of stable GTP

analogues (Grandordy et al., 1986; Lucchesi et al., 1990). GTPyS has since
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been observed to directly stimulate phosphoinositide hydrolysis in ASM

membranes and permeabilised ASM cells (Grunstein et al., 1991; Murray

et al., 1989). The ability of fluoroaluminate (a non-selective G-protein

activator which mimics the y-phosphate of GTP) to elicit concentration-

dependent contractions and [3H]InsP formation in BTSM provided
further evidence for the involvement of G-proteins in coupling receptors

to PIC activation (Hall et al., 1990a). While the precise identity of the G-

protein(s) involved in phosphoinositide signalling in ASM remains to be

determined, the inability of pertussis toxin to modulate high affinity
oxotremorine binding (Lucchesi et al., 1990) or to affect CCh-, Hist- or

bradykinin-stimulated [3H]InsP accumulation in ASM (Chilvers, 1991;

Pyne and Pyne, 1992) implies the involvement of a member of the

recently identified pertussis toxin-insensitive Gq subclass (Gq/i 1/14/15/16)
of G-proteins (Strathmann and Simon, 1990). Furthermore Pyne and

Pyne (1992) have detected the a subunit of Gq/Gn in guinea-pig tracheal
smooth muscle using specific peptide-directed antibodies. By contrast,

leukotriene-D4-stimulated [3H]InsP accumulation in guinea-pig tracheal

smooth muscle cells is pertussis-toxin-sensitive, although it should be

noted that this effect was observed at a very high concentration (10

|ig/ml) of pertussis toxin (Howard et al., 1992). This data may suggest

either the presence of more than one PIC isozyme coupled differentially
to discrete G-proteins, or the recruitment alternative G-protein isoforms
in response to activation of different receptors in guinea-pig ASM.
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1.5 INOSITOL 1,4,5-TRISPHOSPHATE METABOLISM

As detailed above, CCh stimulation of BTSM results in a transient

accumulation of Ins(l,4,5)P3 despite ongoing hydrolysis of PtdIns(4,5)P2,

indicating a rapid agonist-stimulated metabolism of Ins(l,4,5)P3 in this

tissue. Studies in other tissues show that the immediate and

downstream metabolism of Ins(l,4,5)P3 is highly complex, resulting in

the formation of a large array of InsPP isomers (for reviews see Majerus et

ah, 1988; Shears 1989, 1991, 1992). In some cases subsecond oscillations of

Ins(l,4,5)P3 and Ins(l,3,4,5)P4 have been observed (e.g. Breer et ah, 1990;
Raha et ah, 1993). In mammalian cells the metabolism of Ins(l,4,5)P3

proceeds predominantly via two main pathways involving the

Ins(l,4,5)P3 3-kinase and Ins(l,4,5)P3 5-phosphatase enzymes. These '3-

kinase' and '5-phosphatase' pathways are shown in figure 1.5 and

outlined below. The possible regulatory mechanisms governing the
activities of these enzymes are presented in chapter three.

1.5.1 The 5-phosphatase pathway
A Mg2+-dependent inositol polyphosphate 5-phosphatase enzyme has
been identified in many cell types which can specifically remove a

phosphate group from the 5-position of the inositol ring of Ins(l,4,5)P3,

Ins(l,3,4,5)P4, Ins(l:2cyc,4,5)P3 and Ins(4,5)P2 (e.g. Downes et ah, 1982;
Mitchell et ah, 1989; Takimoto et ah, 1989). In the majority of tissues
studied the enzyme appears to be predominantly membrane bound,

forming tight (probably hydrophobic) interactions with the membrane -

in particular the plasma membrane, and can be liberated following
treatment with detergent (Downes et ah, 1982; Hansbro et ah, 1994;

Laxminarayan et ah, 1993; Shears et ah, 1988).
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Two distinct soluble 5-phosphatase activities have been identified in a

variety of tissues including brain (Erneux et al., 1989; Hansen et al., 1987),
skeletal muscle (Hansbro et al., 1994), and neutrophils (Kennedy et al.,

1990). These isoforms were originally designated, according to their

substrate specificity, as Type I (hydrolyses both Ins(l,4,5)P3 and

Ins(l,3,4,5)P4) and Type II (very low affinity for Ins(l,3,4,5)P4 and therefore

in vivo probably metabolises only Ins(l,4,5)P3) (Hansen et al., 1987). The

Type I 5-phosphatases generally have a molecular mass of 40-45 KDa and
are smaller than the Type II enzymes (70-160 KDa). However the

possibility of a further 5-phosphatase isoform has been suggested by the

presence in platelets (Mitchell et al., 1989; Ross et al., 1991) and

erythrocytes (Hodgkin et al., 1994) of a 5-phosphatase activity which can

hydrolyse both Ins(l,4,5)P3 and Ins(l,3,4,5)P4 but which has a higher
molecular mass (70-75 KDa) than the previously identified Type I

enzymes. Hodgkin and co-workers (1994) noted that these enzymes had
lower affinity for Ins(l,4,5)P3 than their smaller 40-45 KDa counterparts,

leading to the conclusion that they may represent a third isoform

designated as Type lb (the 40-45 KDa isoform was redesignated as Type la).
Further evidence to suggest that these isoforms may be distinct enzymes
was provided by Ross et al. (1991) who demonstrated that human platelet

Type la and Type lb enzymes are immunologically distinct. To date, Type
lb 5-phosphatase activity has only been identified in platelets and

erythrocytes, suggesting that they may be restricted to cells of

haematopoietic lineage.
In general, where the membrane-associated 5-phosphatase has been

studied, it has been found to be very similar, both physically and

biochemically to the Type la enzyme (e.g. Erneux et al., 1989; Hodgkin et

al., 1994; Laxminarayan et al., 1993, 1994; Takimoto et al., 1989), and
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Verjans et al. (1990) have shown that these two activities are

immunologically indistinguishable.

Following dephosphorylation of Ins(l,4,5)P3 to Ins(l,4)P2, the latter

compound is further dephosphorylated by a 1-phosphatase to Ins(4)P

(Balla et al., 1986). This enzyme has been purified from bovine brain and

found to have a molecular mass of 44 KDa (Inhorn and Majerus, 1987,

1988). It specifically removes the 1-phosphate from both Ins(l,4)P2 and

Ins(l,3,4)P3, is Mg2+-dependent and is inhibited by lithium ions. The

product of this reaction - Ins4P - is metabolised to free inositol by a

monophosphatase enzyme (Gee et al., 1988) which can additionally utilise

Ins3P, Ins4P, Ins5P and Ins6P as substrates. Lithium is a potent (Kj <

ImM), uncompetitive inhibitor of the monophosphatase enzyme (Gee et

al., 1988; Hallcher and Sherman, 1980) and therefore prevents the

generation of free inositol and traps inositol monophosphates within the

cytosolic fraction of the cell.

1.5.2 The 3-kinase pathway

An Ins(l,4,5)P3 3-kinase enzyme which phosphorylates Ins(l,4,5)P3 to

Ins(l,3,4,5)P4 has been purified and cloned from both brain (Choi et al.,

1990; Johanson et al., 1988; Lee et al., 1990; Sim et al., 1990; Takazawa et al.,

1989, 1990b, 1991a and b) and platelets (Lin et al., 1990) and shown to have

a molecular mass of approximately 50 KDa. Takazawa et al. (1991a and b)
identified two isozymes in a human hippocampus cDNA library with

calculated molecular masses of 50,988 and 53,451 Da. Other Ins(l,4,5)P3 3-

kinase activities with a lower molecular weight have also been identified

(Lin et al., 1990; Takazawa et al., 1989, Lee et al., 1990); however these

proteins may represent proteolysis products of the higher molecular

weight enzyme (Lee et al., 1990). Indeed Takazawa et al. (1991a)
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demonstrated that a truncated 3-kinase cDNA transcript from human

hippocampus encoded an active protein which when expressed in E. coli
had a molecular mass of 36-38 KDa. These smaller, active 3-kinase

proteins can be formed in vivo by calpain digestion (Lee et al., 1990). The

presence of a further 3-kinase isozyme is suggested from studies in

porcine aortic smooth muscle, in which a higher molecular weight

(93,000 Da, calculated by SDS-PAGE) 3-kinase activity has been purified

(Yamaguchi et al., 1988). The molecular mass of this protein estimated by

gel-filtration agrees with that above, indicating the protein is a monomer

and not simply a dimer of two 50,000 Da subunits.
The most generally accepted and well-characterised route of Ins(l,3,4,5)P4
metabolism is by a Type I 5-phosphatase, as described in section 1.5.1, to

form Ins(l,3,4)P3. Phosphorylation of Ins(l,3,4,5)P4 by a novel 6-kinase
identified in turkey erythrocytes and Chlamydomonas eugametos (Irvine
et al., 1992) or dephosphorylation by a 3-phosphatase (e.g. Hughes and

Shears, 1990; Nogimori et al., 1991) may represent additional albeit more
minor routes of Ins(l,3,4,5)P4 metabolism. However it is unknown how

widespread the former enzyme is in the animal kingdom, and the latter

enzyme appears to be localised to the endoplasmic reticulum and not to

be active within the cytosolic compartment under in vivo conditions (Ali
et al., 1993).

The metabolism of Ins(l,3,4)P3 can also proceed through multiple

pathways. Two dephosphorylation pathways have been identified in
which Ins(l,3,4)P3 may be metabolised to either Ins(l,3)P2 by a 4-

phosphatase (Bansal et al, 1987, 1990; Guse et al., 1989), or to Ins(3,4)P2 by
the same 1-phosphatase that degrades Ins(l,4)P2- As noted above, this

enzyme is inhibited by lithium ions; the potency of inhibiton is greater

when Ins(l,3,4)P3 is used as a substrate compared to Ins(l,4)P2 (K; < 1 mM
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and ~ 6 mM respectively). The metabolism of Ins(l/3)P2 proceeds by the
action of a 3-phosphatase (Bansal et al., 1987; Caldwell et al., 1991) to

produce InslP, while Ins(3/4)P2 is metabolised to Ins3P by the same 4-

phosphatase that dephosphorylates Ins(l,3,4)P3 (Bansal et al., 1990). As
detailed above (section 1.5.1), both InslP and Ins3P are finally

dephosphorylated to free inositol by the inositol monophosphatase

enzyme.

An additional route of Ins(l,3,4)P3 metabolism, demonstrated in a variety

of cell types, is phosphorylation by a 6-kinase (e.g. Balla et al., 1987;

Hansen et al., 1988; Hughes et al., 1989; Shears et al., 1987a).

The Ins(l,4,5)P3 3-kinase and 5-phosphatase enzymes therefore provide
mechanisms for both the removal of Ins(l,4,5)P3 and the recycling of
inositol back into the phosphoinositide pool. There are several reasons

however, why the differential routing of Ins(l,4,5)P3 metabolism through
the 3-kinase and 5-phosphatase pathways may be important. The 5-

phosphatase pathway is generally thought to be simply an inactivating

pathway, since Ins(l,4)P2 does not mobilise Ca2+ from intracellular stores

(Berridge and Irvine, 1989). By contrast, the 3-kinase pathway may

provide additional second messengers.

A topic of much debate over recent years has been the involvement of

Ins(l,3,4,5)P4 in Ca2+ entry. Such an action has been the subject of a great

deal of controversy (see Irvine, 1991), nonetheless, the proposed second

messenger role for Ins(l,3,4,5)P4 acting, either alone or in concert with

Ins(l,4,5)P3, to facilitate Ca2+ entry into the cell (e.g. Changya et al., 1989;
De Lisle et al., 1992; Irvine and Moor, 1986; Luckhoff and Clapham, 1992)
is substantiated by the presence of specific intracellular binding sites for

Ins(l,3,4,5)P4 (Bradford and Irvine, 1987; Enyedi and Williams, 1988;
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Theibert et al., 1990). Ins(l,3,4,5)P4 has also been implicated in

intracellular Ca2+ release (Joseph et al., 1989; Ely et al., 1990; Gawler et al.,

1990).

The 6-kinase route of Ins(l,3,4)P3 metabolism may provide even more

functional inositol polyphosphate molecules. For example Ins(l,3,4,6)P4
is a substrate for the synthesis of Ins(l,3,4,5,6)P5 (Balla et al., 1989) and

InsP6 (Ji et al., 1989; Stephens et al., 1991a). Due to the apparently slow
metabolism of these latter compounds (i.e. their labelling to isotopic

equilibrium with [3H]inositol takes several days) and their almost

unchanging mass, Ins(l,3,4,5,6)P5 and InsP6 were originally thought to be

metabolically inert. Passive roles have therefore been suggested for these

highly polar inositol phosphates, for example as Ca2+ chelators (Luttrell,

1992) or antioxidants (Graf and Eaton, 1990). More recently however, a

rapid, PLC-stimulated accumulation of the Ins(l,3,4,5,6)P5 metabolite

Ins(3,4,5,6)P4 has been demonstrated (Balla et al., 1989; Barker et al., 1992;

Menniti et al., 1990; Stephens et al., 1988) and in [3H]inositol labelling
studies the specific activity of this compound following [3H]inositol-

labelling always co-varies with [3H]Ins(l,3,4,5,6)P5. This observation led

to the suggestion that a separate Ins(l,3,4,5,6)P5/TnsP6 signalling pathway

may exist, although a role for the putative messenger - Ins(3,4,5,6)P4 has

not been identified.

Ins(l,3,4,5)P4 and its enantiomer Ins(l,4,5,6)P4 will bind with high affinity
to a protein purified from rat brain (Kanematsu et al., 1992). It should be

noted that Ins(l,4,5,6)P4 is also a cellular constituent which may be
formed in vitro by the action of a 3-phosphatase on Ins(l,3,4,5,6)P5

(Nogimori et al., 1991), and that accumulation of this isomer may

increase following either cell transformation with the src oncogene
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(Mattingly et al., 1991) or treatment with PIC-linked agonists (Barker et al.,

1992).

A high affinity InsP6 binding protein can be found in the nervous system

which contains identical amino acid sequences to, and is recognised by

antibodies raised against the a subunit of the the clathrin assembly

protein AP-2 (Timerman et al., 1992; Volgmaier et al., 1992). In addition
Beck and Keen (1991) have shown that InsP6 inhibits clathrin assembly.
These data suggest that InsP6 may play a regulatory role in

endocytosis/exocytosis cycles involving clathrin coated vesicles.
Further roles for Ins(l,3,4,5,6)P5 and InsP6 may be in the formation of
inositol pyrophosphates. InsPsP and InsP6P (i.e. compounds containing a

diphosphate on the inositol ring) are formed by ATP-dependent

phosphorylation of Ins(l,3,4,5,6)P5 and InsP6 and are rapidly turned over

in AR4-2J cells (Menniti et al., 1993). The standard free energy of

hydrolysis of the inositol pyrophosphates isolated from Dictyostelium
discoideum are 6.5-6.6 kcal mol"1 (Stephens et al., 1992), values similar to

the pyrophopshate bonds of ATP. It is likely therefore that these

compounds represent novel cellular stores of high energy phosphate

bonds.

Hence, in addition to governing the pattern of Ins(l,4,5)P3 formation,

regulation of the Ins(l,4,5)P3 5-phosphatase and 3-kinase enzymes may

serve to regulate the formation of a host of other functional molecules.

Understanding of the factors which could determine the routing of

Ins(l,4,5)P3 through these two pathways in ASM could give valuable

insight into Ca2+ signalling in this tissue and its resultant contractile
effect.
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1.6. RELAXATION OF AIRWAYS SMOOTH MUSCLE

As with the maintenance of ASM contraction, the mechanisms

governing ASM relaxation are not clear. From our current

understanding of the role of cross-bridges in the regulation of ASM tone,

it would appear that when the rate of force generation is less than the rate

of cross-bridge detachment the muscle will relax. Myosin

phosphorylation is the rate-limiting factor for force generation (see
section 1.2.2) but the mechanisms controlling the rate and extent cross-

bridge detachment are not clear. If smooth muscle is relaxed by the

removal of a spasmogenic stimulus a close correlation between myosin

dephosphorylation and relaxation is observed (de Lanerolle and Stull,

1980; Gerthoffer and Murphy, 1983), however little myosin

dephosphorylation accompanies relaxation induced by agents which

decrease [Ca2+]j (Gerthoffer, 1986; Tansey et al., 1990).
It has been appreciated for some time that (3-adrenoceptor agonists (e.g.

isoprenaline) can induce ASM relaxation and these agents represent the

major class of clinical drugs used in the treatment of bronchospasm. (3-

adrenoceptors couple via Gs to activation of adenylyl cyclase with the
resultant formation of the second messenger cAMP which can in turn

activate protein kinse A (PKA). The effects of (3-adrenoceptor agonists on

ASM tone have generally been attributed to their ability to stimulate
PKA. PKA in turn has been thought to effect relaxation by

phosphorylating a number of functionally relevant substrates resulting in

increases in Ca2+-ATPase and Na+/K+-ATPase activity, activation of BKca

channels, inhibition of PIC and modulation of the contractile machinery

(see sections 1.6.1-4 below). In accordance with this theory it has been

observed that cAMP analogues can relax ASM (Francis et al., 1988; Heaslip
et al., 1987; Torphy et al., 1985) and that the bronchorelaxant action of (3-
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adrenoceptor agonists can be mimicked and potentiated by cyclic
nucleotide phosphodiesterase inhibitors (Bryson and Rodger, 1987; Harris

et al., 1989; Poison et al., 1982; Shahid et al., 1991; Small et al., 1989; Torphy

et al., 1988).

Recent evidence however has challenged the dogma that cAMP-mediated

activation of PKA is the sole mechanism underlying the relaxant effects
of (3-adrenoceptor agonists (see Torphy, 1994). For example, cGMP-

dependent protein kinase (PKG) from canine tracheal smooth muscle

shows little selectivity for cGMP over cAMP in vitro (Torphy et al., 1982)
and the increase in cAMP levels following isoprenaline treatment of
bovine coronary arteries results in simultaneous activation of both PKG

and PKA (Jiang et al., 1992). Similarly, preliminary evidence indicates
that treatment of canine trachealis with forskolin (a direct activator of

adenylyl cyclase) also produces activation of PKC and PKG (see Torphy

and Hall, 1994). These data suggest that cAMP may exert some of its

second messenger action through PKG. Moreover, Francis et al. (1988)
showed that the ability of a range of cyclic nucleotide analogues to relax

guinea-pig trachealis correlated with their ability to activate PKG and not

PKA. In support for a role of PKG in relaxation of ASM it has been

observed that increases in the concentration of cGMP, or the application

of non-hydrolysable analogues of cGMP, induce relaxation of pre¬

contracted tracheal smooth muscle preparations (e.g. Heaslip et al., 1987;

Szaduykis-Szadurski and Berti, 1972; Szaduykis-Szadurski et al., 1972).
The demonstration that a greater increase in cAMP content is required to

produce a similar degree of relaxation in canine trachealis treated with
forskolin as compared with isoprenaline also suggests that additional (J-

adrenoceptor-mediated, cAMP-independent mechanisms may contribute

to the relaxant response. Some of the possible mechanisms by which |3-
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adrenoceptor agonists may exert their bronchorelaxant effect are discussed

below.

1.6.1 Regulation of membrane potential

(3-adrenoceptor stimulation of trachealis is accompanied by

hyperpolarisation of the plasma membrane (Allen et al., 1985; Fujiwara et

al., 1988; Honda et al., 1986), an effect which is antagonised by

charybdotoxin, a selective inhibitor of the Ca2+-activated potassium

channel (BKca) (Jones et al., 1990; Murray et al., 1991a) which is densely
distributed in ASM membranes (McCann and Welsh, 1986).

Charybdotoxin treatment also attenuates the relaxant effect of

isoprenaline on ASM (Huang et al., 1993; Jones et al., 1990; Miura et al.,

1992). The observation that the open-state probability of BKca is

increased in rabbit tracheal myocytes following application of either

isoprenaline or exogenous PKA (Kume et al., 1989) led to the suggestion

that this effect might underlie P-adrenoceptor-mediated relaxation of
ASM. In addition it would appear that PKG is also able to regulate BKca

channel activity: Hamaguchi et al. (1992) reported that charybdotoxin
inhibits the relaxation of bovine trachealis in response to agents which
activate guanylyl cyclase and increase the tissue PKG content.

Furthermore, BKca is phosphorylated by PKG in canine coronary smooth
muscle cells (Taniguchi et al., 1993) and rabbit basilar arteries (Robertson
et al., 1993). Hence activation of the BKca channel activity may

contribute to the relaxant effect of P-adrenoceptors on ASM, however part

of the relaxant response is charybclotoxin-insensitive indicating that other
relaxant mechanisms must also exist in this tissue (Huang et al., 1993;

Jones et al., 1990; Miura et al., 1992). In addition to the BKca channel, p-

adrenoceptor agonists can stimulate the plasma membrane Na+/K+-
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ATPase (Gunst and Stropp, 1988) which can also result in membrane

hyperpolarisation and may lower [Ca2+]i by a consequent increase in

Na+/Ca2+ exchange.

1.6.2 Regulation of intracellular calcium concentration

cAMP and cGMP elevating agents, when added immediately prior to or

after the addition of agonist, can attenuate the spasmogen-induced Ca2+

response in ASM (e.g. Felbel et al., 1988; Takuwa et al., 1987; Taylor et al.,
1989). This effect may reflect the ability of cAMP to promote both Ca2+
extrusion and uptake into intracellular stores in smooth muscle

preparations (Itoh et al., 1982; Mueller and Van Breemen, 1979; Schied
and Fay, 1984). Furthermore, the hyperpolarisation induced by (3-

adrenoceptor agonists could reduce Ca2+ entry through the classical

dihydropyridine-sensitive voltage operated Ca2+ channels present in

ASM (Worley and Kotlikoff, 1991). While a continued decrease in Ca2 +

entry may eventually deplete intracellular Ca2+ stores (and hence the
amount of Ca2+ available for the initial spasmogen-induced Ca2 +

transient), such a decrease in Ca2+ entry would be first expected to result
in inhibition of the tonic [Ca2+]j response. The plateau phase of the Hist-
induced Ca2+ response, at least in cultured human airway myocytes

however, is insensitive to organic Ca2+ channel blockers (Murray and

Kotlikoff, 1991). Ca2+ entry in these cultured cells appears to proceed via a

receptor-operated Ca2+ channel rather than a voltage-operated
mechanism which explains the latter result (Murray et al., 1992). It is not

clear whether there are major differences between the Ca2+ entry

pathways of cultured cells and intact human ASM tissue; nonetheless

organic voltage-operated Ca2+ channel blockers have minimal efficacy as

clinical bronchodilators.
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1.6.3 Regulation of phosphoinositide hydrolysis
In ASM, cAMP elevating agents have been shown to inhibit agonist-
stimulated [3H]InsP formation (Hall and Hill, 1988; Hall et ah, 1989;

Madison and Brown, 1988; Offer et al., 1991). The InsP response

stimulated by the non-specific G-protein activator sodium fluoride is also
inhibited by increases in cAMP suggesting a post-receptor mechanism is
involved in this effect (Hall et ah, 1990a). However (3-adrenoceptor

stimulation does not seem to affect the initial Ins(l,4,5)P3 response since

the transient increase in the concentration of this second messenger is

unaffected by isoprenaline pre-treatment in BTSM strips (Challiss and

Boyle, 1994). A differential ability of ^-adrenoceptor agonists to cause

ASM relaxation has been observed, depending on the nature and
concentration of the contractile agonist (Jenne et ah, 1987; Russel, 1984;

van Amsterdam et ah, 1989). The differential relaxant responses are

mirrored by a differential ability of ^-adrenoceptor agonists to inhibit

spasmogen-induced phosphoinositide hydrolysis. Muscarinic

cholinoceptor-stimulated contraction seems particularly resistant to (3-

adrenoceptor-mediated relaxation and InsP responses elicited by

maximally effective concentrations of full muscarinic agonists are

unaffected by (3-adrenoceptor pre-stimulation (Hall and Hill, 1988;

Madison and Brown, 1988; Offer et ah, 1991). However, when tissue

cAMP levels are increased using cyclic nucleotide phosphodiesterase

inhibitors, an attenuation of the [3H]InsP response to low concentrations
of the muscarinic agonist CCh can be observed (Hall et ah, 1990b; Offer et

ah, 1991).

One possible explanation for the relative resistance of muscarinic

receptor-stimulated phosphoinositide hydrolysis to inhibition by (3-

adrenoceptors is the large M3 muscarinic receptor reserve present in
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tracheal smooth muscle (Gunst et al., 1989; van Amsterdam et al., 1989).

This hypothesis however, has been challenged by the observation that

some, but not all, partial muscarinic agonist-stimulated [3H]InsP

responses are susceptible to p-adrenoceptor-mediated inhibition (Offer et

al., 1991). It is possible that a differential stimulation of M2 receptors

(rather than M3 receptors) by these partial agonists may determine their

susceptibility to ^-adrenoceptor inhibition. As detailed earlier, ASM

expresses a large proportion of M2 muscarinic receptors which are

coupled via Gj to the inhibition of adenylyl cyclase. Indeed both basal and
relaxant agonist-stimulated PKA activity in tracheal smooth muscle

preparations are decreased by muscarinic agonists (Langlands and Rodger,

1992; Torphy et al., 1985), and pre-treatment of canine tracheal smooth

muscle with pertussis toxin renders muscarinic agonist-contracted tissue

more sensitive to P-adrenoceptor-mediated relaxation (Mitchell et al.,

1993). In addition, it has been suggested recently that muscarinic

cholinoceptor stimulation may inhibit adenylyl cyclase activity not only

by stimulation of Gj, but also via a functional inactivation of Gs (Pyne et

al., 1992).

1.6.4 Regulation of contractile machinery

As detailed above, PKA can phosphorylate MLCK resulting in a reduction
in its affinity for Ca2+/calmodulin and hence a decreased catalytic activity.
PKA-mediated phosphorylation of MLCK would therefore be expected to

result in a decrease in force generation. In support of such a mechanism

being involved in P-adrenoceptor-mediated relaxation of ASM, de

Lanerolle et al. (1984) reported that forskolin treatment of canine tracheal

smooth muscle increased both cAMP accumulation and phosphorylated

MLCK. It is now clear that isoprenaline-induced relaxation of BTSM
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occurs without a change in the affinity of Ca2+/calmodulin for MLCK

(Miller et al., 1983; Tang et at., 1992) and hence the effects of |3-

adrenoceptor stimulation on the contractile machinery may be secondary

to Ca2+-regulated events.

1.7 AIMS OF THE THESIS

The past decade has witnessed clear advances in our understanding of the

involvement of phosphoinositide metabolism in ASM contraction.

However no detailed studies have examined inositol polyphosphate

metabolism in ASM, and there has been no investigation into the

potential mechanisms involved in regulating Ins(l,4,5)P3 accumulation,

especially at early time-points. The aim of this study was to set up a

model system (bovine tracheal smooth muscle) in which the inositol

polyphosphate isomers formed following receptor stimulation could be

identified and quantified. The protocol facilitates an assessment of the

relative contributions of the 3-kinase and 5-phosphatase pathways to

Ins(l,4,5)P3 metabolism and so permits a study of the differential routing
of Ins(l,4,5)P3 under various conditions - looking at different time-points

following agonist stimulation, the response to different contractile

agonists, and the response observed when phosphoinositide hydrolysis is

modulated by the pre-treatment of BTSM with activators of both PKC and

(^-adrenoceptors. An important finding obtained during the course of

these studies was the agonist-stimulated accumulation of a novel InsP2

isomer, namely Ins(4,5)P2- Experiments were therefore undertaken to

characterise the kinetics of its accumulation and the possible routes for its

formation and metabolism. In addition kinetic studies were undertaken

to address the relative affinities of the 3-kinase and 5-phosphatase
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enzymes for Ins(l,4/5)P3 and to assess the effect of Ca2+ ions on these

enzymes.
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CHAPTER 2

MATERIALS AND METHODS

2.1 MATERIALS

Fresh bovine tissue samples (tracheas or adrenal glands) were obtained
from the local abattoir. All radiochemicals were purchased from NEN

(Du Pont) (Stevenage, Herts., U.K.). Dowex anion exchange resins were

from Bio-Rad (Watford, Herts., U.K.) and H.P.L.C. anion exchange

columns and pre-columns from Whatman (Maidstone, Kent, U.K.).
Scintillation cocktails were supplied by Packard (Pangbourne, Berks.,

U.K.), D-inositol 1,4,5-trisphosphate by Reasearch Biochemicals
International (St Albans, Herts., U.K.), calpain inhibitors by Calbiochem

(Nottingham, U.K.) and the BCA protein assay kit by Pierce (Chester,

Cheshire, U.K.). Salmeterol was a kind gift from Glaxo (Ware, Herts.,

U.K.). All other reagents were purchased from either Sigma Chemical

Company Limited (Poole, Dorset, U.K.) or BDH (Lutterworth, Leics.,

U.K.).

2.2 PREPARATION OF BOVINE TRACHEAL SMOOTH MUSCLE SLICES

BTSM slices were prepared according to the method described by Chilvers
et al. (1989a). Fresh bovine tracheas were obtained from the local

abbattoir and the trachealis muscle isolated and transported at 4 °C in pre-

oxygenated (95% O2/5% CO2) modified Krebs-Henseleit buffer (KHB) (118
mM NaCl, 4.7 mM KC1, 1.25 mM CaCl2, 1.2 mM MgS04, 25 mM NaHC03,
and 11.7 mM glucose). Prostaglandins, formed by the action of cyclo-

oxygenase on arachidonic acid (a metabolite of DAG) have been proposed
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to act in an autocrine/paracrine fashion in a variety of cell types

including uterine smooth muscle (Goureau et al., 1990; Okawa et al., 1993)
to affect, either directly or indirectly via adenylyl cyclase, the formation of

inositol polyphosphates. In order to ensure that no such modulation of

receptor-mediated InsPP production occurred in my system the potent

cyclo-oxygenase inhibitor flurbiprofen (1 pM) was included in the buffer

(KHB) for all BTSM preparations. The muscle was dissected free of any

overlying epithelium or connective tissue and chopped into 300 x 300 |im

slices on a wooden block with a McIlwain tissue chopper. The tissue

slices were then washed three times in 200 ml KHB and pre-incubated, in

bulk, in 500 ml oxygenated KHB for 60 min at 37 °C in a shaking water

bath. Buffer was replaced and re-equilibrated every 15 min over this pre¬

incubation period.

2.3 LABELLING OF BOVINE TRACHEAL SMOOTH MUSCLE SLICES

WITHMYO-[3H]INOSITOL

Myo-[3H]inositol (specific activity 17-25 Ci/mmole) was used to label
BTSM slices since incorporation of this molecule facilitates labelling of
both the membrane-bound phosphoinositides and the water soluble

inositol phosphates subsequently formed by the hydrolysis of these lipids.
In addition, inositol is not readily metabolised by any other pathways

than those involved in the inositol polyphosphate metabolism under

study. Two different protocols were utilised to achieve steady-state

radiolabelling of the phosphoinositide pool: agonist-stimulated labelling

requires only a short (one hour) labelling period (Chilvers et al., 1989a),
whereas overnight labelling has the advantages of using much less

radioactivity, thereby being more economical, and of producing far more
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labelled slices from each BTSM preparation, so enabling a larger scale

experiment to be carried out.

2.3.1 Agonist-stimulated labelling

Following pre-incubation (2.2) BTSM slices were allowed to settle and 3

ml of gravity packed slices were transferred to a 25 ml Erlenmeyer flask in
a total volume of 12 ml oxygenated KHB containing 1 pM CCh and 30 pCi

(or 150 pCi for experiments involving H.P.L.C.) cleaned rayo-pHjinositol1
(i.e. 0.5 or 2.5 pCi [3H]inositol/50 pi BTSM slices respectively). The slices

were then incubated at 37 °C for 60 min in a shaking water bath, re-

oxygenating the labelling medium (95% 02/5% CO2) every 15 min. This

labelling period was followed by extensive washing of the slices with
fresh KHB over 30 min to remove any agonist and unincorporated label.

Subsequent stimulations were carried out in 6 ml flat bottomed vials.

Aliquots (50 pi) of gravity packed slices were incubated in the presence of
an identical concentration of myo-[3H]inositol to that described above, in
a final volume of 300 pi oxygenated KHB at 37 °C in a shaking water bath.
Unless otherwise stated LiCl was added 10 min prior to agonists, each

being added in a 10 pi volume. In most experiments CCh and histamine

were used at their maximally effective concentrations (100 pM and 1 mM

respectively, as shown in figure 2.3.1.1). Figure 2.3.1.2 shows the

radioactivity associated with [3H]InsPs and [3H]inositol phospholipids
over a 30 min time-course following stimulation with 100 pM CCh. In

agreement with Chilvers (1991), with the above labelling protocol there is
little change in the labelling of the lipids and an approximately linear
accumulation of the [3H]InsPs, suggesting that steady-state labelling of the

agonist-sensitive phosphoinositide pool has indeed been achieved.

Uhe Myo-[3H]inositol label was previously cleaned of polar contaminants by passing
through a 250 pi Dowex AG 1-X8 column (100-200 mesh, formate form).
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Figure 2.3.1.1a & b Concentration-response relationship for carbachol- and
histamine -stimulated total [3H]inositol phosphate accumulation
BTSM slices were pre-labelled for 24 hours with 0.5 pCi [3H]inositol/50 pi
slices (2.3.2) prior to stimulation with the indicated concentration of
agonist for 30 min in the presence of 10 mM LiCl. [3H]InsPs in
neutralised TCA extracts (2.4.2) were were quantified using Dowex anion
exchange chromatography (2.5.1). Data represent mean ± SEM of two
separate experiments.
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(a) Inositol phosphates
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Figure 2.3.1.2a & b Time course of carbachol-stimulated [3H]inositol
incorporation into inositol phosphates and inositol phospholipids
Aliquots (50 pi) of BTSM slices were pre-labelled (short-term) with
[3H]inositol in the presence of 1 pM CCh (2.3.1). After extensive washing,
slices were stimulated in the presence of 5 mM LiCl with 100 pM CCh or
vehicle for the times indicated, in a final volume of 300 pi. Reactions
were terminated with 0.94 ml chloroform/methanol (1:2 v/v) and total

pH]InsPs and pH]PtdIns(P)s separated and quantified as detailed (2.4.1,
2.5). Data represent mean ± SEM of four separate experiments.
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However, when total [3H]InsPPs were assessed over a more detailed,

shorter time-course following CCh stimulation (figure 2.3.1.3), an

attenuation of [3H]InsPP accumulation was seen after 30 seconds. This

may represent a slight decrease in the specific radioactivity of the

phosphoinositides or a small degree of receptor desensitisation, but is
more likely due to an inevitable retardation of the extremely rapid initial

hydrolysis of [3H]PtdIns(4,5)P2. Such rapid metabolism of this lipid
cannot be maintained since its resynthesis by the sequential

phosphorylation of [3H]PtdIns and [3H]PtdIns4P proceeds at a slower rate

(Chilvers et. at. 1991a).

2.3.2 Overnight labelling

BTSM slices (2.2) were washed twice in 20 ml M199 medium containing

50 units/ml of each of penicillin and streptomycin. Aliquots (50 pi) of

gravity packed slices were then transferred to 24 well tissue culture plates

containing M199 medium and 0.92-3.00 pCi/ml myo-[3H]inositol and
incubated at 37 °C for 24 hours in a humidified atmosphere of 5%

C02/95% air. Subsequent stimulations were carried out with the plate

standing on a dry block at 37 °C (returning slices to the incubator when

possible) in a final volume of 1 ml. Unless otherwise stated LiCl was
added to the wells 10 min prior to agonists, each being added in a 10 pi

volume.
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Figure 2.3.1.3 Detailed early time-course of carbachol-stimulated
[3H]inositol phosphate accumulation
Aliquots (50 pi) of BTSM slices were pre-labelled with [3H]inositol in the
presence of 1 pM CCh (2.3.1). After extensive washing slices, were
stimulated in the presence of 0.5 mM LiCl with 100 pM CCh or vehicle
for the times indicated. [3H]InsPs were separated from neutralised
neutralised TCA extracts (2.4.2) using H.P.L.C. (2.6.3), and the radioactivity
in each fraction quantified by liquid scintillation counting. Results are

presented as radioactivity associated with total [3H]InsPPs against time.
Data represent mean ± SEM of three separate experiments.
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2.4 EXTRACTION OF [3H]INOSITOL PHOSPHATES

2.4.1 Neutral chloroform/methanol extraction

For experiments where both [3H]inositol phospholipids and [3H]InsPs
were to be measured a chloroform/methanol extraction was employed.
Neutral extracts were prepared as described by Bligh and Dyer (1959) with
incubations (300 pi) terminated by the addition of 0.94 ml

chloroform/methanol (1:2, v/v). Following the addition of a further 0.31

ml of each of chloroform and dH20, samples were left to extract at room

temperature for 10 min before partitioning of the resulting aqueous and

organic phases by centrifugation (3,000 g, 20 min, 25 °C). Aliquots (0.75

ml) of the upper aqueous phase were diluted with 2.25 ml dH20 and
stored at 4 °C for subsequent separation and quantification of [3H]InsPs
(see section 2.6).

2.4.2 Trichloroacetic acid extraction

For experiments where [3H]InsPs only, or [3H]InsPs and

[3H]polyphosphoinositides were to be measured, a trichloroacetic acid

extraction (as developed by Sharps and McCarl, 1982) was employed. This
acid extraction protocol has the advantage of faithfully recovering the

higher InsPPs (especially InsP3 and above) which are not so readily
isolated with a neutral chloroform/methanol extraction, and of

facilitating a further acidic chloroform/methanol extraction on the tissue

pellet as is necessary for recovery of the polyphosphoinositides (see
section 2.5). Reactions were terminated with an equal volume of ice-cold
1 M trichloroacetic acid (TCA) (except for those experiments performed in

24 well tissue culture plates, in which 1 ml incubations were terminated
with 300 pi ice-cold 3 M TCA). Samples were left to extract on ice for 10-

20 min and, if necessary, transferred to 6 ml flat bottomed vials. After
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vortex mixing and centrifugation (3000 g, 20 min, 25 °C) the TCA was

removed from the extracts using l,l/2-trichloro-l/2/2-trifluoroethane

(freon)/tri-n-octylamine according to the method described by Downes

and Wusteman (1983). Portions of the supernatants were transferred to

1.5 ml Eppendorf tubes containing an equal volume of freon/octylamine

(1:1, v/v, made fresh) and a quarter volume of 10 mM EDTA (pH 7);

samples were vortexed vigorously, microfuged (10,000 g, 5 min, 25 °C)
and aliquots of the upper aqueous layer neutralised with a 1/5 volume 60

mM NaHCC>3. Neutralised TCA extracts were stored at 4 °C for

subsequent separation and quantification of [3H]InsPs (2.6). Since

neutralisation is achieved by the removal of acid rather than the addition

of alkali there is no increase in the amount of salt in the final samples.

The extracts are also free of any insoluble protein or solvents and

therefore this protocol produces samples ideally suited for subsequent
H.P.L.C. analysis.

2.5 EXTRACTION AND QUANTIFICATION OF pH]PHOSPHO-

INOSITIDES

[3Pl]PtdIns may be isolated by neutral chloroform/methanol extraction as

detailed in section 2.4.1: following centrifugation, aliquots of the lower

organic phase are mixed with Emulsifier-Safe scintillation fluid and

radioactivity in the samples determined by liquid scintillation counting.

The polyphosphoinositides however are highly negatively charged and
tend to associate with protein, possibly via interactions with Ca2+ or Mg2+
ions, and therefore do not readily enter the organic phase followiirg
neutral chloroform/methanol extraction. Accurate quantification of

these polyphosphoinositides requires acidic conditions to supress their
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negative charge and prevent the formation of salt-bridges, thereby

facilitating their partitioning into the organic phase with the other

phospholipids (see Hawthorne and White, 1975).

2.5.1 Acidic chloroform/methanol extraction

TCA precipitated tissue pellets (2.4.2) were washed according to the
method of Creba et al. (1983), with 1 ml 5% (w/v) TCA in 1 mM EDTA,

followed by 1 ml dH20. pHjPolyphosphoinositides were extracted from
this pellet as detailed by Downes and Wusteman (1983): 0.94 ml

chloroform/methanol (2:1, v/v)/100 mM HC1 was added to the pellet and

samples left on ice to extract for 10-15 minutes. A further 0.31 ml
chloroform and 0.56 ml 0.1 M HC1 were added to the samples prior to

vortexing and centrifugalion (3,000 g, 20 min, 4 °C). The upper aqueous

layer was gently aspirated and discarded. Aliquots of the lower organic

phase were evaporated to dryness under nitrogen. The radioactivity in

these samples was determined by redissolving in Emulsifier-Safe
scintillation fluid and liquid scintillation counting, or alternatively the

dried lipids could be stored under nitrogen at -20 °C overnight for

subsequent deglyceration (see section 2.5.2).

2.5.2 Alkaline hydrolysis of [3H]phosphoinositides

Base hydrolysis (deglyceration) of pH]polyphosphoinositides, according to

a method modified from Grado and Ballou (1961), was used to produce a

series of [3H]InsPP standards for characterisation of the H.P.L.C. separation

system. Pooled triplicates of acidic chloroform/methanol extracts (2.5.1)

(previously dried under nitrogen) were redissolved in 0.25 ml 1 M KOH,
and placed in a boiling water bath for 30 min. Samples were then cooled
on ice for five minutes prior to centrifugation (3,000 g, 20 min, 4 °C).
Excess alkali was removed by passing the supernatant through a 0.5 ml
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acidified formate Dowex AG 1-X8, 200-400 mesh column. After washing

the column with 2.25 ml dHbO the combined eluates were extracted, as

described by Clark and Dawson (1981), with 3 ml butan-l-ol/petroleum
ether (5:1 v/v) followed by a further 1.875 ml butan-l-ol/petroleum ether

to remove any contaminating fatty acids and other lipids. Aliquots (2 ml)
of the lower phase were sampled with a long-reach pipette, dried down

under nitrogen and stored at -20 °C for subsequent H.P.L.C. analysis

(2.6.3).

2.6 SEPARATION AND QUANTIFICATION OF [3H]INOSITOL

PHOSPHATES

2.6.1 Separation of total [3H]inositol phosphates
The total [3H]InsP fraction extracted from BTSM slices was separated

using formate Dowex AG 1-X8 (200-400 mesh) anion exchange

chromatography according to a method modified from Rooney and
Nahorski (1986). Open glass columns (5 mm internal diameter, ASA

Derby U.K.) were plugged with glass wool and loaded under water with a

1 ml volume of dH70 pre-washed anion exchange resin (50% w/v slurry).
Neutralised TCA extracts (2.4.2) or the aqueous phase from neutral

chloroform/methanol extracts (2.4.1) were applied to the column and

unbound [3H]inositol removed by washing with 20 ml dH20.

[3H]GroPIns was eluted from the column using 4 ml 0.025 M NH4COOH,

and the remaining [3H]InsPs collected by elution with 10 ml 1 M

NH4COOH/O.I M HCOOH. This latter buffer is of sufficiently high

concentration to remove [3H]InsPi-4. More extensive washing with 0.025

M ammonium formate resulted in early elution of [3H]InsPs present in

tissue extracts, and hence figure 2.6.1 shows that with such prolonged
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(a) Elution profile

Fraction number

Figure 2.6.1 Purity of the [3H]GroPIns fraction from Dowex anion
exchange chromatograpy
(a) Neutralised TCA extracts (2.4.2) from [3H]inositol labelled BTSM slices
(2.3.1) stimulated with CCh (30 min) were applied to formate Dowex AG
1-X8 columns and eluted with 10 x 2 ml dEbO, 5 x 2 ml 0.025 M

NH4COOH (1) and 5x2 ml 1 M NH4COOH/O.I M HCOOH (2).
(b) Samples 12-16 were combined, diluted ten-fold and re-eluted exactly as
described above. Radioactivity in the eluate was determined by liquid
scintillation counting.
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washing there is a significant contamination of the [3H]GroPIns fraction

with [3H]InsPs. Higher [3H]InsPs (i.e. [3H]InsPs and [3H]InsP6> can be
removed from the column with 10 ml 2 M NH4COOH/O.I M HCOOH,

however no such compounds could be detected in neutralised tissue

extracts obtained from tissue labelled under short-term (60 min) agonist-

stimulated conditions (2.3.1) (results not shown). Radioactivity

associated with the separated [3H]InsPs was quantified by liquid
scintillation counting of 2 ml samples of eluant mixed with 18 ml
Emulsifier-Safe.

2.6.2 Separation of [3H]inositol mono-, bis-, tris- and tetrakisphosphates

[3H]Inositol polyphosphate fractions were separated using Dowex anion

exchange chromatography and ammonium formate/formic acid buffers
as detailed by Batty et al. (1985). Neutralised TCA extracts (2.4.2) were

applied to 1 ml formate Dowex AG 1-X8 columns as described above.

Typically [3H]Ins, [3H]GroPIns, [3H]InsP!, [3H]InsP2, [3H]InsP3and [3H]InsP4
were eluted in a sequential manner with 20 ml dH20, 4 ml 0.025 M

NH4COOH, 14 ml 0.2 M NH4COOH, 14 ml 0.5 M NH4COOH/O.I M

HCOOH, 14 ml 0.75 M NH4COOH/O.I M HCOOH and 10 ml 1 M

NH4COOPI/O.I M HCOOH respectively. Due to significant batch-batch

variation in the Dowex anion exchange resin purchased, the exact

concentration and quantity required of each buffer was reassessed for each
new batch resin acquired and varied accordingly. Figure 2.6.2 shows the

separation of [3H]InslP, [3H]Ins(l,4)P2 and [3H]Ins(l,4,5)P3 standards
achieved by this technique. For the 3-kinase and 5-phosphatase

experiments in which, by design, there was little or no degradation of
[3H]InsPs to free inositol the dH20 and 0.025 M NH4COOH washes were

omitted.
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Fraction number

Figure 2.6.2 Separation of [3H]inositol phosphate standards by Dowex
anion exchange chromatography
10,000 DPM each of [3H]InslP, [3H]Ins(l,4)P2 and [3H]Ins(l,4,5)P3 were

added to BTSM tissue extract (2.4.2) and applied to a formate Dowex AG 1-
X8 column. The column was then washed with with the following
buffers: 10x2 ml dH20 (1), 2 x 2ml 0.025 M NH4COOH (2), 7 x 2 ml 0.2 M
NH4COOH (3), 7 x 2 ml 0.5 M NH4COOH/O.I M HCOOH (4) and 7 x 2 ml
0.75 M NH4COOH/O.I M HCOOH (5). The radioactivity associated with
each 2 ml sample of eluant was quantified by liquid scintillation
counting.
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2.6.3. Separation of individual [3H]inositol polyphosphate isomers

Individual [3H]inositol polyphosphate isomers were separated using

H.P.L.C. according to a method modified from Batty et al. (1989).
Neutralised TCA extracts (2.4.2) were spiked with 50 pM each of

adenosine-, and guanosine- mono, di, tri, and tetraphosphates and

adjusted to a final volume of 2.5 ml with dH20. Aliquots (2 ml) were
then injected onto a Partisphere 5 SAX anion exchange column equipped
with a cartridge pre-column containing anion exchange resin.

Nucleotides were added to provide internal standards for each H.P.L.C.
run. Following sample injection the column was washed for 20 min

with dH20, and the [3H]InsPPs and nucleotides eluted with five

consecutive gradients (i-v) of dH20 (A) and 1.4 M NH4H2PO4 adjusted to

pH 3.7 with H3PO4 (B) buffers, at a flow rate of 1 ml/min: (i) linear

gradient 0-5% B over 30 min, (ii) isocratic elution at 14% B for 15 min, (iii)
linear gradient 14-21% B over 15 min, (iv) isocratic elution at 35% B for 35
min and (v) isocratic elution at 100% B for 5 min (see figure 2.6.3.1).
Nucleotides were detected by continuous U.V. monitoring of the column
eluate at 254 nm - a typical trace from the on line uvicord (Pharmacia) is
shown in figure 2.6.3.1. The eluate was collected in 0.5 ml fractions and
each mixed with 4.5 ml Flo-Scint IV for quantification of radioactivity by

liquid scintillation counting. Identification of [3H]InsPPs was based on co-

elution with standards, both commercial and those generated by the mild
alkaline hydrolysis of [3H]Ins lipids (2.5.2) (see figure 2.6.3.2), or by

comparison with previous studies (e.g. Batty et al., 1989; Wong et al.,

1992).
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Figure 2.6.3.1 H.P.L.C. separation of adenosine and guanosine nucleotides
A distilled water sample (2 ml) was spiked with 20 pM of each nucleotide
(1-9) and loaded onto a Partisphere 5 SAX H.P.L.C. column equipped with
a Whatman cartridge anion exchange pre-column. The column was
washed for 20 min with dH20 before eluting the nucleotides with five
consecutive gradients of dH20 (A) and 1.4 M NH4H2PO4 adjusted to pH
3.7 with H3PO4 (B) buffers, as detailed in section 2.6.3 and shown on the %
buffer B trace. Nucleotides were monitored using an on line U.V.
spectrophotometer and are identified as cAMP (1), AMP (2), GMP (3), ADP
(4), GDP (5), ATP (6), GTP (7), A-4-P (8) and G-4-P (9).
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2.7 DETERMINATION OF INOSITOL 1,4,5-TRISPHOSPHATE MASS

D-Ins(l/4/5)P3 mass was quantified using a specific radioreceptor assay

according to the method of Challiss et al. (1988, 1990). The assay uses a

bovine adrenal cortex preparation which contains a well characterised,

single high affinity [3H]Ins(l,4,5)P3 binding site and is capable of

distinguishing fmolar concentrations of [3H]Ins(l,4,5)P3.

2.7.1 Preparation of samples for inositol 1,4,5-trisphosphate mass

determination

BTSM slices (300 x 300 pm) were prepared and pre-incubated in

oxygenated KPIB for 60 min as described in section 2.2. Aliquots (50 pi) of

gravity packed slices were transferred to 6 ml flat bottomed vials

containing 230 or 240 pi of either (a) oxygenated KHB for same-day
stimulations or (b) RPMI medium containing 50 units/ml each of

penicillin and streptotomycin for next-day stimulations.

(a) Samples were capped and incubated at 37 °C in a shaking water bath

for 10 min prior to addition of agonists in a 10 pi volume. Reactions

were terminated at the appropriate times with 300 pi ice-cold 1 M TCA

and neutralised extracts (2.4.2) stored at 4 °C.

(b) Samples were incubated for 24 hours at 37 °C in a humidified

atmosphere of 5% CC>2/95% air. Subsequent stimulations were carried

out exactly as described above (a).
The amount of protein in the TCA extracted tissue pellets was

determined following solubilisation overnight in 2 M NaOH using the
BCA protein assay.
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2.7.2 Preparation of inositol 1,4,5-trisphosphate binding protein

Fresh bovine adrenal glands were demedullated and decapsulated to

obtain 60-80 g of adrenal cortex. Tissue was homogenised (Polytron) in 8

volumes ice-cold 20 mM NaHCC^, 1 mM dithiothreitol (DTT), pH 8.0 and

centrifuged at low speed for 15 min (5,000 g, 4 °C). The supernatant was

removed and the pellet rehomogenised in a further 4 volumes of buffer
for re-centrifugation as above. The pooled supernatant fraction was spun

at 38,000 g (20 min, 4 °C) and the resulting pellet washed in 20 mM

NaHCC>3, 1 mM DTT, pH 8.0. The final pellet was resuspended in the

above buffer at a protein concentration of 15-20 mg/ml, as determined

using the BCA protein assay and stored in aliquots at -20 °C.

2.7.3 Inositol 1,4,5-trisphosphate mass assay

Assays were performed in LP3 tubes at 4 °C in a final volume of 120 pi.

Aliquots (30 pi) of neutralised TCA extract (2.4.2) or dH^O containing

standard amounts of D-Ins(l,4,5)P3 (0.036-36000 nmoles, i.e. 0.3-300 nM

final concentration), or 1.2 nmoles (10 pM final concentration) D-

Ins(l,4,5)P3 (to define non-specific binding), were added to 30 pi 100 mM

Tris-HCl, 4 mM EDTA buffer (pH 8.0) and 30 pi water containing 8-10,000

DPM [3H]Ins(l,4,5)P3- Finally 30 pi of adrenal cortex binding protein was

added to the tubes which were vortexed and left to incubate on ice for 30-

60 min. Bound and free [3H]Ins(l,4,5)P3 were separated by rapid filtration

through Whatman GF/B glass fibre filters with 2x3 ml washes of ice-cold

25 mM Tris-HCl, 5 mM NaHC03, 1 mM EDTA (pH 8.0). Emulsifier-Safe

(4 ml) was added to the filter discs and the radioactivity associated with

bound [3H]Ins(l,4,5)P3 determined, after a 1? hour extraction period, by

liquid scintillation counting. Unknown Ins(l,4,5)P3 concentrations were

calculated from the internal standard curve (figure 2.7.3) using a Packard
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Figure 2.7.3 Inositol 1,4,5-trisphosphate mass assay: standard curve

Ins(l/4/5)P3 was incubated, at the concentrations indicated, with
Ins(l,4,5)P3 binding protein (2.6.2) and 8-10,000 DPM [3H]Ins(l,4,5)P3 as
described in section 2.6.3. Bound and free [3H]Ins(l,4,5)P3 were separated
by filtration and the bound [3H]Ins(l,4,5)P3 quantified by liquid
scintillation counting. Values represent means of duplicate samples.
Standard errors (< 5.4% of the mean) lie within the data points. Non¬
specific binding = 1.4%, total [3H]Ins(l,4,5)P3 bound in absence of added
unlabelled Ins(l,4,5)P3 = 40.7%.
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radioimmunoassay programme and corrected for protein content for each

50 (il aliquot of BTSM slices (2.7.1). This method gave consistent standard

curves for the binding of D-Ins(l/4,5)P3 to the bovine adrenal cortex

binding protein: EC50 = 14.21 ± 0.83 nM, non-specific binding = 1.33 ±

0.07%, D-[3H]Ins(l,4,5)P3 bound in absence of competing unlabelled D-

Ins(l,4,5)P3 = 40.27 ± 1.84% (Data represent mean ± SEM of 12 separate

experiments).

2.8 METABOLISM OF [3H]INOSITOL POLYHOSPHATES BY BOVINE

TRACHEAL SMOOTH MUSCLE CELL FREE EXTRACTS

2.8.1 Preparation of bovine tracheal smooth muscle cytosol extract

BTSM strips were dissected free of overlying epithelium and surrounding

connective tissue. Portions (9 g) of tissue were minced with scissors, and
both washed in (5x15 ml), and homogenised in (36 ml), ice-cold isotonic

buffer (10 mM Tris-maleate, 150 mM sucrose buffer, adjusted to pH 7.5

with NaOTI). After centrifugation at low speed for 10 min (5,000 g, 4 °C),
the upper fatty layer was aspirated and discarded and the supernatants

respun at high speed (48,400 g, 90 min, 4 °C). Aliquots of the final

supernatant were stored at -80 °C.

2.8.2 Preparation of bovine tracheal smooth muscle homogenates
BTSM was homogenised and spun at low speed as described above (2.8.1).

Following centrifugation, the upper fatty layer was discarded and the

remaining supernatant and pellet rehomogenised. Aliquots of

homogenate were stored at -80 °C.
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2.8.3 Assay conditions for cell free incubations

Reactions were performed in 1.5 ml Eppendorf tubes in an intracellular-

like 100 mM KC1, 20 mM NaCl, 2 mM MgC^1 and 25 mM HEPES buffer,

adjusted to pH 7.4 using KOH. Standard [3H]Ins(x)PP label (10-60,000

DPM) was diluted in the above buffer and incubated with 20 pi cell free

extract in a final volume 100 pi at 37 °C in a shaking water bath.
Reactions were terminated by the addition of 100 pi ice-cold 1 M TCA

and neutralised extracts prepared as detailed in section 2.4.2 stored at 4 °C

for subsequent separation of [3H]InsPPs using AG 1-X8 Dowex open-

column chromatography (2.6.2) or EI.P.L.C. (2.6.3).

2.9 INOSITOL 1,4,5-TRISPHOSPHATE 3-KINASE INCUBATIONS

An Ins(l,4,5)P3 3-kinase enzyme purified from rat brain has been shown

to be susceptible to degradation by the calcium dependent neutral cysteine

protease calpain (Lee et al., 1990), and a cDNA clone of the 3-kinase from

this tissue reveals the presence of six TEST' regions, i.e sequences

common to proteins susceptible to calpain (Choi et al., 1990). In order to

prevent such a degradation of the BTSM Ins(l,4,5)P3 3-kinase in my

studies calpain inhibitors were included in the buffers at all stages of both

preparation and assay of the enzyme. These compounds potently inhibit
the calpains (Kj = 0.12-0.23 nM) but were used at high (pM) concentrations
since the inhibtion exhibited by these agents is reversible.

1 MgCl2 was included in the incubation buffer since the 5-phosphatase has an absolute
requirement for Mg3+. A concentration of 2 niM MgCl2 was chosen as this value lies within
the range of Mg-+ concentrations (1-3 mM) generally required for optimal activity of
Ins(1,4,5)P3 5-phosphatase (e.g. Connolly et al., 1985; Kennedy et al., 1990; Sasaguri et
al., 1985; Scyfred et al., 1984).
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2.9.1 Preparation of bovine tracheal smooth muscle cell free extract for the

assay of inositol 1,4,5-trisphosphate 3-kinase enzyme activity
BTSM was dissected free of overlying epithelium and surrounding
connective tissue. Portions (9 g) of tissue were minced with scissors, and

both washed in (5 x 15 ml), and homogenised in (36 ml), ice-cold (10 mM

Tris-maleate, 150 mM sucrose buffer (pH 7.5, NaOH) containing the

following agents to prevent proteolytic digestion: 100 nM 2,2'-azino-di-(3-

ethyl-benzthiazoline-6-sulphonic acid) (AEBSF), 0.1% (v/v) 2-

mercaptoethanol, 17 pg/ml (i.e. 46 pM) calpain inhibitor I and 7 pg/ml

(i.e. 18 pM) calpain inhibitor II. After centrifugation at low speed for 10

min (5,000 g, 4 °C), the upper fatty layer was discarded and the

supernatants respun at high speed (48,400 g, 90 min, 4 °C). Aliquots of the
final supernatant (8.23 ± 0.23 mg protein/ml1) were stored at -80 °C.

2.9.2 Assay conditions for 3-kinase incubations
In order to optimise the conditions for study of the BTSM Ins(l,4,5)P3 3-

kinase, a buffer was chosen which would facilitate this enzyme activity,

but inhibit dephosphorylation of both its substrate and product. Assays of
3-kinase activity have been performed in a variety of other tissues

including rat brain (Irvine et al., 1986) in which it has been identified that
the 3-kinase is both ATP- and Mg2+-dependent, and therefore these agents

were included in the incubation buffer. In addition, ATP (Hansen et al.,

1987; Shears et al.,1987b) and Mg2+ ions, when present in high enough

concentrations (Connolly et al., 1985; Hansen et al., 1987; Kennedy et al.,

1990; Seyfred et al., 1984), have an inhibitory action on the 5-phosphatase.
This enzyme is also potently inhibted by 2,3-diphosphoglycerate (2,3-DPG)

1 Protein concentration determined using the bicinchoninic acid (BCA) protein assay
(Smith et al., Anal. Biochem. 150: 76-85, 1985) and bovine serum albumin as a standard.
Results represent mean ± SEM of three separate BTSM 3-kinase preparations.
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(Dowries et al., 1982; Hansen et al., 1987; Kennedy et al., 1990; Shears et al.,

1987b).

Ins(l,4,5)P3 3-kinase activity was assayed according to a method modified

from Batty (1987). Reactions were performed in 1.5 ml Eppendorf tubes in
50 mM Tris-maleate, 20 mM MgCH, 10 mM ATP, 5 mM 2,3-

diphosphoglyceric acid, 5 mM EGTA and appropriate concentrations of

CaCh1, pH 7.5 containing 17 pg/ml calpain inhibitor I, and 7 pg/ml

calpain inhibitor II. [3H]Ins(l,4,5)P3 label was diluted in the above buffer
and incubated with 40 pi of the cytosol extract prepared for assay of 3-
kinase activity (2.9.1) (diluted appropriately in the reaction buffer) in a

final volume of 200 pi at 37 °C in a shaking water bath. Reactions were

terminated by the addition of 200 pi ice-cold 1 M TCA, and 20 pi 5% (w/v)
bovine serum albumin added to the samples to aid precipitation of the

protein pellet. Neutralised TCA extracts (2.4.2) were stored at -80 °C for

subsequent separation of pHjlnsPPs.

2.10 INOSITOL 1,4,5-TRIS PHOSPHATE 5-PHOSPHATASE

INCUBATIONS

2.10.1 Preparation of bovine tracheal smooth muscle cell free extracts for

assay of inositol 1,4,5-trisphosphate 5-phosphatase enzyme activity

BTSM was dissected free of overlying epithelium and surrounding
connective tissue. Portions (9 g) of tissue were minced with scissors, and
both washed in (5 x 15 ml), and homogenised in (36 ml), ice-cold 10 mM

Tris-maleate, 150 mM sucrose buffer, adjusted to pH 7.5 with NaOH,

containing 1 mM phenylmethylsulphonyl fluoride (PMSE)2 and 0.1%

hCa2+|frcc was calculated with the use of software based on the work of Pcrrin and Sayce
(1967).
2A high concentration of PMSF was used since it has a short half-life in aqueous solutions.
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(v/v) 2-mercaptoethanol. After centrifugation at low speed for 10 min

(5,000 g, 4 °C), the upper fatty layer was discarded and the supernatants

respun at high speed (48,400 g, 90 min, 4 °C). Aliquots of the final

supernatant (containing the soluble 5-phosphatase enzyme activity, 8.37 ±

0.87 mg protein/ml1) were stored at -80 °C. The pellet was solubilised in 5

ml of the above buffer containing 1% Nonidet (NP40) (v/v) at 4 °C for
two hours and re-centrifuged to remove any remaining insoluble
material (48,000 g, 90 min, 4 °C). Aliquots of the final supernatant

(containing solubilised particulate 5-phosphatase enzyme activity, 5.84 ±

0.28 mg protein/ml2) were stored at -80 °C.

2.10.2 Assay conditions for 5-phosphatase incubations

Reactions were performed in 1.5 ml Eppendorf tubes in 100 mM KCL, 20

mM NaCl, 2 mM MgCb and 25 mM HEPES buffer, adjusted to pH 7.4.

using KOEI. pH]Ins(l,4,5)P3 (10-12,000 DPM) was diluted in the above

buffer and incubated with 40 pi of the cytosol extract prepared for assay of

5-phosphatase activity (2.10.2) (diluted appropriately in the reaction

buffer) in a final volume of 200 pi at 37 °C in a shaking water bath.

Reactions were terminated by the addition of 200 pi ice-cold 1 M TCA,

and 20 pi 5% (w/v) bovine serum albumin added to the samples to aid

precipitation of the protein pellet. Neutralised TCA extracts (2.4.2) were
stored at -80 °C for subsequent separation of pHjlnsPPs. For experiments

undertaken at determined [Ca2 + ]freC/ ImM EGTA and appropriate

concentrations of CaCb were added to the reaction buffer3.

1 Protein concentration determined using BCA protein assay and bovine scrum albumin as a
standard. Results represent mean ± SEM of three separate BTSM soluble 5-phosphatase
preparations.
2 Protein concentration determined using BCA protein assay and bovine serum albumin as a
standard. Results represent mean ± SEM of three separate BTSM solubilised particulate 5-
phospha tase preparations.
3|Ca2+]frec was calculated with the use of software based On the work of Perrin and Sayce
(1967).
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CHAPTER 3

MUSCARINIC CHOLINOCEPTOR-STIMULATED

ACCUMULATION OF [3H]INOSITOL
POLYPHOSPHATES IN BOVINE TRACHEAL

SMOOTH MUSCLE

3.1 INTRODUCTION

In BTSM, stimulation with the muscarinic cholinoceptor agonist

carbachol (CCh) results in a rapid increase in Ins(l/4/5)P3 (Chilvers et al.,

1990a) prior to Ca2+ release (Takuwa et al., 1987). This in turn precedes

myosin light chain phosphorylation and the development of tone

(Kamm and Stull, 1985). Although CCh stimulation results in only a

transient increase in Ins(l,4,5)P3 accumulation in BTSM, PtdIns(4,5)P2

hydrolysis is persistent in the continued presence of agonist (Chilvers et.

al., 1991a), suggesting that Ins(l,4,5)P3 is rapidly removed from the system

by its metabolising enzymes and is under stringent regulatory control.

Studies in other tissues (for reviews see Shears, 1991, 1992) have shown

that two major pathways exist for the metabolism of Ins(l,4,5)P3 - namely

the 3-kinase and 5-phosphatase pathways. The latter is initiated by the

removal of a phosphate group from the 5-position of the inositol ring to

produce Ins(l,4)P2, whereas the 3-kinase pathway proceeds by

phosphorylating the inositol ring on the 3-position to form Ins(l,3,4,5)P4.
Both metabolites are subject to further sequential dephosphorylation to

free inositol which may be recycled into the phosphatidylinositol pool.

The production and degradation of these Ins(l,4,5)P3 metabolites has been
studied extensively in other tissues, however characterisation of the
individual inositol polyphosphate isomers formed following receptor
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stimulation, and the relative importance of the 3-kinase and 5-

phosphatase pathways to Ins(l,4,5)P3 metabolism is lacking in BTSM.
Chilvers et al. (1990a) have demonstrated a rapid and transient CCh-

stimulated increase in [3H]Ins(l,4,5)P3 accumulation in BTSM which is

followed by a more delayed increase in [3H]InsP2 and [3H]InsPi. In
addition, H.P.L.C. and enzymic analyses of the [3H]InsP3 isomers showed
a progressive and sustained accumulation of [3H]Ins(l,3,4)P3 in BTSM

slices stimulated with 100 pM CCh. This compound represented the

predominant (> 80 %) [3H]InsP3 isomer present at all time-points greater

than 1 min following CCh stimulation, suggesting that the 3-kinase

pathway operates in BTSM and may contribute substantially to

Ins(l,4,5)P3 metabolism.

I have sought to separate, identify and quantify the individual inositol

polyphosphate isomers produced in BTSM in order to determine the

routes of Ins(l,4,5)P3 metabolism employed in this tissue and the flux of
the inositol headgroup through these pathways. Four major pre¬

requisites for such experiments are:-

(1) that there are no agonist-stimulated changes in [3H]phosphoinositide
(and hence [3H]InsP) specific radioactivity;

(2) that the individual inositol polyphosphates formed can be readily

separated and quantified;

(3) that the enzyme pathways responsible for the metabolism of

Ins(l,4,5)P3 yield mutually exclusive products; and

(4) that there is no major contribution to inositol polyphosphate

accumulation from either PLC-mediated breakdown of Ptdlns or

PtdIns4P, or from PLD action on the inositol-containing phospholipids.

The first two considerations are in part resolved by steady-state labelling
of the phosphoinositides with [3H]inositol as detailed in section 2.3.1 and
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including lithium ions during the agonist-incubation period. Lithium is

an uncompetitive inhibitor of the inositol monophosphatase enzyme

responsible for the degradation of inositol monophosphates to free
inositol (Gee et al., 1988; Hallcher and Sherman, 1980). Inclusion of

lithium ions in the experimental system therefore prevents the total

degradation of [3H]inositol phosphates, so trapping them within the

cytosolic fraction of the cell. The efficient trapping of [3H]InsPis by Li+

using this protocol is partially validated by the linear accumulation of
total [3H]InsPs following CCh stimulation (0-30 min) of BTSM slices (see

figure 2.3.1a). [3H]InsPPs may be extracted with TCA and separated using
H.P.L.C.. Very clear separations (at least five fractions between each

[3H]InsPP isomer) were achieved using the complex H.P.L.C. gradient

system detailed in section 2.6.3, and the radioactivity in each fraction was

quantified by liquid scintillation counting.
The experiments detailed in this chapter were designed to assess whether
or not the requirements (3) and (4) above are satisfied in BTSM, to

determine the flux of [3H]Ins(l,4,5)P3 through it's metabolic pathways and

to evaluate the relative importance of these pathways during a 0-30 min

agonist-stimulated response.

3.2 DETERMINATION OF THE ROUTES OF [3H]INOSITOL 1,4,5-

TRISPHOSPHATE METABOLISM IN BOVINE TRACHEAL SMOOTH

MUSCLE

As detailed previously, two major pathways exist for the metabolism of

[3H]Ins(l,4,5)P3. Chilvers et al. (1990a) have identified [3H]Ins(l,3,4,5)P4

and [3H]Ins(l,3,4)P3 accumulation in [3H]inositol labelled BTSM slices

stimulated with 100 (iM CCh, indicating the presence of a 3-kinase
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pathway in this tissue. In all other cell types studied the 3-kinase pathway
has led to the production of Ins(l,3,4,5)P4, Ins(l/3/4)P3/ Ins(l,3)P2/

Ins(3,4)P2, InslP and Ins3P isomers, whereas in most tissues the sole

products of the 5-phosphatase pathway are Ins(l,4)P2 and Ins4P. Hence

the two pathways give rise to mutually exclusive metabolic products. In
order to determine whether the same pathways of InsPP metabolism also
occur in BTSM, exogenous [3H]InsPPs were incubated with BTSM cell free
extracts (both cytosol extracts and homogenates), under conditions which

prevent further phosphorylation, and the resulting [3H]InsPP degradation

products separated and quantified.

3.2.1 Degradation of [3H]inositol 1,4,5-trisphosphate by bovine tracheal

smooth muscle cytosol extract
To determine optimal conditions for subsequent H.P.L.C. separations the

degradation of [3H]Ins(l,4,5)P3 by BTSM cytosol extract was assessed over a
30 min time-course and the resulting [3H]InsPs separated and quantified

using Dowex AG 1-X8 anion exchange chromatography. Reactions were

performed in an 'intracellular-like' buffer containing 2 mM MgCl2 (to

support 5-phosphatase activity, see section 2.8.3), in the absence of added
ATP to prevent further phosphorylation of the [3H]Ins(l,4,5)P3 substrate.

Figure 3.2.1.1 shows that under these conditions there is a rapid

degradation of [3H]InsP3 (ti/2 = 2.4 min) followed by a transient

accumulation of [3H]InsP2, (maximal after 2 min incubation with cytosol

extract), and secondary increases in [3H]InsPi and [3H]inositol. In control

reactions in which the cytosol extract had been previously heat-
inactivated (100 °C, 30 min) no such degradation of [3H]InsP3 was

observed. These results suggest that in BTSM, [3H]Ins(l,4,5)P3 maY be

metabolised by a sequential dephosphorylation reaction via [3H]InsP2 and
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Figure 3.2.1.1 Metabolism of [3H]inositol 1,4,5-trisphosphate by bovine
tracheal smooth muscle cytosol extract
[3H]Ins(l/4/5)P3 (10,000 DPM) was incubated with 20 pi BTSM cytosol
extract (2.8.1) in a final volume of 100 pi as described in section 2.8.3.
Reactions were terminated with 100 pi TCA at the time-points indicated
and the [3H]InsP fractions separated by Dowex AG 1-X8 anion exchange
chromatography (2.6.2). Results represent the mean ± SEM of three
separate experiments, each performed in duplicate, using three separate
cytosol extract preparations.

92



[3H]InsPi to free [3H]inositol. However, these data do not give any

information as to the individual [3H]InsPP isomers formed during the
reaction. In order to determine the isomeric composition of the

[3H]InsPPs generated similar experiments were carried out in which the
incubations were terminated after 10 min (the time at which the

accumulation of [3H]InsPi is maximal), and the individual [3H]InsPP

isomers separated and quantified by H.P.L.C.. Figure 3.2.1.2 shows a

typical H.P.L.C. trace from one of these experiments and the relative

accumulations of each of the [3H]InsPPs is summarised in table 3.2.1.

[3H]Ins(l,4,5)P3 was not degraded by dephosphorylation to less polar

[3H]InsPPs following incubation with the heat-inactivated cytosol extract.
It is unlikely that any further phosphorylation could have taken place
with either the heat-inactivated or active cytosol extracts since there was

no added ATP in the system and any endogenous ATP was substantially
diluted during the cytosol extract preparation. The trace amounts of

[3H]Ins(2,4,5)P3 and [3H]InsP4 detected in the samples represent minor

impurities in the [3H]Ins(l,4,5)P3 standard used. When [3H]Ins(l,4,5)P3
was incubated with active cytosol extract it was degraded solely to

[3H]Ins(l,4)P2 and [3H]Ins4P, as is consistent with sequential actions of the

Ins(l,4,5)P3 5-phosphatase and inositol polyphosphate 1-phosphatase on

[3H]Ins(l,4,5)P3 and [3H]Ins(l,4)P2 respectively.

3.2.2 Degradation of [3H]inositol 1,3,4,5-tetrakisphosphate by bovine

tracheal smooth muscle cytosol extract

The degradation of [3H]Ins(l,3,4,5)P3 by BTSM cytosol extract was

monitored in an identical fashion to that of [3H]Tns(l,4,5)P3. Reactions

were performed in an 'intracellular-like' buffer and [3H]InsPs formed
over a 30 min time-course were initially separated and quantified by
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Figure3.2.1.2H.P.L.C.profileof[3H]inositol1,4,5-trisphosphatedephosphorylationmetabolites [3H]Ins(l,4/5)P3(20,000DPM)wasincubatedwith20piBTSMcytosolextract(2.8.1)inafinalvolumeof100piasdetailed insection2.8.3.Reactionswereterminatedafter10minwith100pi1MTCAandtheindividual[3H]InsPPisomersin neutralisedextractsseparated,usingH.P.L.C.(2.6.3),andquantifiedbyliquidscintillationcounting.



% Total Radioactivity
[3H]Ins(x)PP Inactive cytosol extract Active cytosol extract

(n=2) (n=4)

1/3 0.12 ±0.12 0.21 ± 0.04
4 0.06 ± 0.06 81.35 ±4.42

1/3 0.09 ± 0.09 0.08 ±0.01

1,4 0.22 + 0.10 5.81 ±2.13

3,4 0.09 ± 0.03 0.18 ±0.06

4,5 0.23 ± 0.06 0.08 ± 0.03

1,3,4 0.07 ±0.07 0.14 ±0.07

1,4,5 92.99 ± 1.42 8.77 ±3.13

2,4,5 1.97 ±0.40 0.96 ±0.14

1,3,4,5 3.71 ±1.66 2.23 ± 2.07

Table 3.2.1 [3H]Inositol 1,4,5-trisphosphate dephosphorylation metabolites
[3H]Ins(l,4/5)P3 (10-15,000 DPM) was incubated with 20 pi BTSM cytosol
extract (2.8.1) in a final volume of 100 pi as detailed in section 2.8.3.
Reactions were terminated after 10 min with 100 pi 1 M TCA and the
individual [3H]InsPP isomers in neutralised extracts separated, using
H.P.L.C. (2.6.3), and quantified by liquid scintillation counting. Results
are expressed as the percentage of the total retrieved radioactivity
associated with the [3H]InsPs (12,431 ± 1,321 DPM, n=6) and represent the
mean ± SEM of n separate experiments, using two or three separate
cytosol extract preparations.

Dowex AG 1-X8 chromatography (see figure 3.2.2.1). As expected,
incubation of [3H]Ins(l,3,4,5)P4 with cytosol extract resulted in a rapid

decline in the levels of [3H]InsP4 {t\/2 = 1-25 min), accompanied by a

transient accumulation of [3H]InsP3 (maximal at 5 min), a secondary

increase in the level of [3H]InsP2 and delayed accumulations of [3H]InsPi
and [3H]inositol. These results suggest that [3H]Ins(l,3,4,5)P4 is degraded
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Figure 3.2.2.1 Metabolism of [3H]inositol 1,3,4,5-tetrakisphosphate by
bovine tracheal smooth muscle cytosol extract
[3H]Ins(l,3,4,5)P4 (10,000 DPM) was incubated with 20 pi cytosol extract
(2.8.1) in a final volume of 100 pi as described in section 2.8.3. Reactions
were terminated with 100 pi 1 M TCA and the [3H]InsP fractions separated
by Dowex AG 1-X8 anion exchange chromatography (2.6.2). Results
represent the mean + SEM of three or four experiments, each performed
in duplicate, using three separate cytosol extract preparations.
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to free [3H]inositol by BTSM cytosol extract via a series of sequential

dephosphorylation reactions.

H.P.L.C. separation of the [3H]InsPP isomers formed following incubation
with BTSM cytosol extract for 30 min (the time at which the greatest

accumulation of [3H]InsPi was observed and which therefore affords

optimal conditions for identification of the isomeric composition of

[3H]InsPi) indicates the presence of the 3-kinase pathway metabolites

[3H]Ins(l,3,4)P3, [3H]Ins(3/4)P2, and [3H]Insl/3P (see figure 3.2.2.2 and table

3.2.2). However the other common 3-kinase pathway metabolite

[3H]Ins(l/3)P2 could not be detected. The activity of the InsPP 1-

phosphatase which hydrolyses Ins(l/3/4)P3 to Ins(3,4)P2 exhibits a

sigmoidal dependence on Mg2+ ions with half maximal stimulation

occurring at 0.3 mM [Mg2+] (Inhorn and Majerus, 1987). Since the
incubation buffer utilised in these experiments contains 2 mM MgCl2 it is

likely to favour the 1-phosphatase route of Ins(l,3,4)P3 metabolism. In

addition the 1-phosphatase from calf brain has a slightly higher affinity
for Ins(l/3/4)P3 (Km ~ 20 pM, Inhorn and Majerus, 1987) than the InsPP 4-

phosphatase responsible for the formation of Ins(l,3)P2 (Km = 40 pM,

Bansal et ah, 1990).

Under the conditions outlined, [3H]Ins(l,3,4,5)P4 metabolism results in a

significant accumulation of [3H]Ins(l,4)P2 and [3H]Ins4P, compounds
which cannot be accounted for by metabolism via any of the recognised
'3-kinase pathway' enzymes. Similar data were consistently observed in a

series of five experiments utilising two separate BTSM cytosol extract

preparations, suggesting the presence of an active 3-phosphatase in the

cytosol extract which, under the conditions specified, may attack either

[3H]Ins(l,3,4,5)P4 or [3H]Ins(l,3,4)P3. It is tempting to suggest that the latter

compound is the 3-phosphatase substrate in this system as no
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% Total Radioactivity
[3H]Ins(x)PP Inactive cytosol extract Active cytosol extract

n=2 n=5

1/3 0.00 ± 0.00 30.63 ± 7.79
4 0.00 ± 0.00 1.35 + 0.35

1,3 0.00 ± 0.00 0.00 + 0.00

1,4 0.00 ± 0.00 13.28 ±1.16
3,4 0.00 + 0.00 40.47 ± 4.43

4,5 0.00 ± 0.00 0.23 ± 0.02

1,3,4 0.73 ± 0.62 10.80 ±1.89

1,4,5 0.34 ±0.12 0.20 ± 0.03

2,4,5 0.00 ± 0.00 0.17 ±0.06

1,3,4,5 97.12 ± 0.42 0.60 ± 0.09

Table 3.2.2 [3H]Ins(l/3,4/5)P4 dephosphorylation metabolites
[3H]Ins(l,3,4,5)P3 (40-60,000 DPM) was incubated with 20 pi BTSM cytosol
extract (2.8.1) in a final volume of 100 pi as detailed in section 2.8.3.
Reactions were terminated after 30 min with 100 pi 1 M TCA and the
individual [3H]InsPP isomers in neutralised extracts separated using
H.P.L.C. (2.6.3), and quantified by liquid scintillation counting. Results
are expressed as the percentage of the total radioactivity retrieved (29,462
± 1,738, n=5) and represent the mean ± SEM of n separate experiments,
using two or three separate cytosol extract preparations.

[3H]Ins(l,4,5)P3 could be detected in the samples, however such a reaction

has not been described in any other cell type. The incubation buffer used

also supports 5-phosphatase activity and hence a more likely conclusion
is that any [3H]Ins(l,4,5)P3 formed is rapidly dephosphorylated to

[3H]Ins(l,4)P2 as described in section 3.2.1.
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3.2.3 Degradation of [3H]inositol 1,4,5-trisphosphate and [3H]inositol

1,3,4,5-tetrakisphosphate by bovine tracheal smooth muscle homogenate

The above in vitro experiments indicate that a 5-phosphatase pathway

operates in BTSM which may facilitate the sequential dephosphorylation
of Ins(l,4,5)P3 to free inositol via Ins(l,4)P2 and Ins4P. Ins(l,3,4,5)P4 may

be metabolised by a 3-kinase to Ins(l,3,4)P3, but may also be acted on by a

3-phosphatase enzyme. A similar 3-phosphatase activity has been

identified previously in a variety of cell types including rat liver

(Hodgson and Shears, 1990) and parotid gland (Hughes and Shears, 1990),
in which the total activity in cytosolic and membrane preparations is

greater than in that associated with the parent homogenate. It is possible

that this enzyme may be less active in vivo as a result of being bound or

sequestered within a subcellular compartment. Indeed, in liver, the 3-

phosphatase has been shown to be compartmentalised within the

endoplasmic reticulum (Ali et ai, 1993) and is evenly distributed between

the 'rough' and 'smooth' subfractions (Craxton et al., 1995). The

Ins(l,3,4,5)P4 3-phosphatase from turkey erythrocytes however, is

localised to the inner face of the plasma membrane (Estrada-Garcia et al.,

1991). Craxton et al. (1995) have shown that these two activities are

structurally distinct since the latter enzyme is not recognised by a

polyclonal antibody directed against the hepatic enzyme. It is also

possible that in vivo the 3-phosphatase may be subject to regulation by

agents that are separated from it or diluted in the preparation of cell free
extracts. In view of this uncertainty and the fact that these possible

alterations of regulation could equally well affect any of the enzymes

under study, further experiments were conducted to ascertain the pattern

of metabolism of both [3H]Ins(l,4,5)P3 and [3H]Ins(l,3,4,5)P4 by BTSM

homogenates.
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Table 3.2.3.1 summarises the data obtained when 60,000 DPM of either

[3H]Ins(l,4,5)P3 or [3H]Ins(l,3,4,5)P4 were incubated for 10 or 30 minutes

respectively with BTSM homogenates and the resulting [3H]InsP products

separated and quantified by Dowex anion exchange chromatography.
Neither [3H]Ins(l,4,5)P3 nor [3H]Ins(l,3,4,5)P4 were hydrolysed by the heat-

inactivated homogenate preparation. The active homogenate resulted in

the degradation of [3H]Ins(l,4,5)P3 to [3H]InsP2, [3H]InsPi and [3H]inositol,
with the majority of the radioactivity (81 %) residing in the [3H]InsPi
fraction. H.P.L.C. analysis of samples obtained from identical incubations
showed this monophosphate fraction to be comprised of [3H]Ins4P alone

(see figure 3.2.3.1). [3H]Ins(l,3,4,5)P4 was degraded by treatment with the

BTSM homogenate preparation to [3H]InsP2, [3H]InsPi, and [3H]inositol
(see table 3.2.3.1). Any [3H]InsP3 that may have been formed must itself
have been hydrolysed after a 30 min incubation period. H.P.L.C. analysis

of identical samples showed that the [3H]InsPs formed under the specified
conditions were comprised of [3H]Ins(l,3,4)P3, [3H]Ins(l,3)P2, [3H]Ins(3,4)P2
and [3H]Insl/3P alone (see figure 3.2.3.2 and table 3.2.3.2). X and Y

represent impurities in the [3H]Ins(l,3,4,5)P4 standard. Hence BTSM

homogenates contain enzymes capable of metabolising [3H]Ins(l,3,4,5)P4
to all of its well characterised dephosphorylation products, but unlike
BTSM cytosol extracts do not contain any detectable 3-phosphatase

activity. This latter result is entirely consistent with previous
observations of Ins(l,3,4,5)P4 3-phosphatase activity in other tissues. Such

enzyme activity has only been detected in permeabilised cell (Oberdisse et

al., 1990), broken cell (e.g. Foster et al., 1994; Hoer and Oberdisse, 1991;

Hughes and Shears, 1990; Nogimori et al., 1991) or electroporated cell

(Cullen et al., 1989) preparations and, as mentioned above, the total

activity detected in isolated cellular fractions of rat liver and parotid
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[3H]InsP

%Radioactivityineach[3H]InsPfraction
fraction

Active

enzyme

Heatinactivatedenzyme

[3H]Ins(l,4,5)P3
[3H]Ins(l,3,4,5)P4
[3H]Ins(l,4,5)P3

[3H]Ins(l,3,4,5)P4

[3H]Ins

14.21

15.19

0.00

0.00

[3H]InsPi

81.39

51.80

0.00

0.00

[3H]InsP2

2.75

31.55

0.00

0.00

[3H]InsP3

1.66

0.00

100.00

0.00

[3H]InsP4

0.00

1.48

0.00

100.00

Table3.2.3.1.[3H]Inositolphosphatesformedfollowingdephosphorylationof[3H]Inositol1,4,5-trisphosphateand [3H]inositol1,3,4,5-tetrakisphosphatewithbovinetrachealsmoothmusclehomogenate BTSMhomogenate(20|il)(2.8.2)wasincubatedwith60,000DPMofeither[3H]Ins(l,4,5)P3or[3H]Ins(l,3,4,5)P4inafinal volumeof100piasdetailedinsection2.8.3.Reactionswereterminatedafter10or30minfor[3H]Ins(l,4,5)P3and [3H]Ins(l,3,4,5)P4incubationsrespectively.[3H]InsPswereseparatedfromneutralisedTCAextracts(2.4.2)usingDowex AG1-X8anionexchangechromatography(2.6.2)andquantifiedbyliquidscintillationcounting.Resultsrepresentdata fromoneexperiment.
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Figure 3.2.3.1 Typical H.P.L.C. profile (monophosphate fraction) following
incubation of [3H]inositol 1,4,5-trisphosphate with active bovine tracheal
smooth muscle homogenate
[3H]Ins(l,4,5)P3 (40,000 DPM) was incubated with 20 pi active BTSM
homogenate (2.8.2) in a final volume of 100 pi as detailed in section 2.8.3.
The reaction was terminated after 10 min by addition of 100 pi 1 M TCA.
The individual [3H]InsPi isomers were separated and quantified by
H.P.L.C. as described in section 2.6.3, except that the following gradient
was used: After sample injection the column was washed for 10 min
with dH20, and the [3H]InsPi isomers eluted with a linear gradient 0 - 0.07
M NH4H2PO4 (adjusted to pH 3.7 with H3PO4). Radioactivity in the
column eluate was monitored by liquid scintillation counting.
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Figure3.2.3.2TypicalH.P.L.C.profilefollowingincubationof[3H]inositol1,3,4,5-tetrakisphosphatewithactivebovine trachealsmoothmusclehomogenate [3H]Ins(l/3,4/5)P4(60,000DPM)wasincubatedwith20piactiveBTSMhomogenate(2.8.2)inafinalvolumeof100pias detailedinsection2.8.3.Thereactionwasterminatedafter30minbyadditionof100pi1MTCAandtheindividual [3H]InsPPisomersseparatedbyH.P.L.C.(seeseciton2.6.3).Radioactivityinthecolumneluatewasdeterminedbyliquid scintillationcounting,



[3H]Ins(x)PP

Radioactivity(DPM)
%Totalradioactivity
%Radioacitvityin[3H]InsP fraction

1/3

16,861

16,258

41.22

38.69

98.29

98.21

4

293

296

0.72

0.70

1.71

1.79

1/3

9539

9940

23.32

23.66

50.76

49.93

1/4

56

88

0.14

0.21

0.30

0.44

3/4

9129

9723

22.32

23.14

48.58

48.84

4,5

68

155

0.17

0.37

0.36

0.78

1/3,4

3277

3878

8.01

9.23

96.30

97.05

1,4,5

53

46

0.13

0.11

1.56

1.15

2,4,5

73

72

0.18

0.17

2.15

1.80

X

624

581

1.53

1.38

40.13

37.15

IP4

536

616

1.31

1.47

34.47

39.39

Y

395

367

0.97

0.87

25.40

23.47

Table3.2.3.2[3H]Inositolpolyphosphateisomersformedonhydrolyisisof[3H]inositol1,3,4,5-tetrakisphosphatewith bovinetrachealsmoothmusclehomogenate [3H]Ins(l,3,4,5)P4(60,000DPM)wasincubatedwith20piBTSMhomogenate(2.8.2)inafinalvolumeof100piasdetailed insection2.8.3.Reactionswereterminatedafter30minbytheadditionof100pi1MTCA.Theindividual[3H]InsP isomersinneutralisedTCAextracts(2.4.2)wereseparatedbyH.P.L.C.(2.6.3)andquantifiedbyliquidscintillation counting.Resultsrepresenttheduplicatedatafromasingleexperiment.Totalretrievedradioactivity=41,462±558.



glands was found to be greater than that of the parent homogenate,

indicating that the enzyme may be intimately regulated or even non¬

functional in vivo.

Since the first description of the Ins(l,3,4,5)P4 3-phosphatase it has become

apparent that Ins(l,3,4,5,6)P5 and InsP6 (phytic acid) act as extremely

potent inhibitors of this enzyme (Hoer and Oberdisse, 1991; Hughes and

Shears, 1990; Nogimori et al.r 1991). The latter authors have
demonstrated that these highly phosphorylated InsPs can inhibit the

purified 3-phosphatase from rat liver with Kj values of 25 and 0.5 nM

respectively (similar values were also obtained in pig brain, Hoer and

Oberdisse, 1991), which closely resemble their Km values when used as

substrates for the enzyme. The affinity of InsP6 for the 3-phosphatase is

the highest yet defined for any enzyme involved in inositol phosphate
metabolism. In addition, the 3-phosphatase inhibitory activity of liver co-
elutes with standard InsP6 on Cellufine GCL-90 size exclusion gel
filtration and is depleted by treatment with phytase (Ali et al., 1993).
These data suggest that InsP6, and possibly Ins(l,3,4,5,6)P5 are the true

substrates for the 3-phosphatase in vivo, and given the high intracellular

concentration of these compounds in mammalian cells (see Berridge and

Irvine, 1989; Shears, 1992) dephosphorylation of Ins(l,3,4,5)P4 by this

enzyme in vivo is likely to be negligible. Large amounts of InsP6 have
been found associated with rat cerebellar membranes in the presence of

trace amounts of trivalent cations (Poyner et al., 1993). A similar metal

ion-dependent association of InsP6 with cell membranes may explain the

presence of Ins(l,3,4,5)P4 3-phosphatase activity detected in BTSM cytosol
extracts but not homogenates in the current study.
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Although the cell free experiments described above were not designed to

examine whether or not a 3-kinase activity exists in BTSM, they do
indicate that all of the other enzymes required for formation of exclusive

3-kinase and 5-phosphatase pathway metabolites from Ins(l,4,5)P3 are

present. Chilvers et al. (1990a) have identified Ins(l,3,4,5)P4 and

Ins(l,3,4)P3 in CCh-stimulated BTSM slices indicating that a 3-kinase

enzyme is present in this tissue. Hence it is likely that both the 3-kinase

and 5-phosphatase are important for the regulation of Ins(l,4,5)P3 levels
in BTSM. The data obtained using cell free BTSM extracts imply that in
the absence of 3-phosphatase activity (as would be expected in the intact

cell model), the two pathways do indeed yield mutually exclusive

products.

3.3 ASSESSMENT OF THE ROLE OF PHOSPHATIDYLINOSITOL AND

PHOSPHATIDYLINOSITOL 4-PHOSPHATE HYDROLYSIS IN INOSITOL

POLYPHOSPHATE ACCUMULATION IN BOVINE TRACHEAL

SMOOTH MUSCLE

It has been shown that a number of different isozymes of PIC exist in

tissues which can be distinguished by their biochemical properties,

immunological analysis and their primary protein structure (for reviews
see Crooke and Bennett, 1989; Meldrum et al., 1991; Rhee et al., 1989,

1991). Each of these isozymes are capable of hydrolysing all three of the

major phosphoinositides (i.e. Ptdlns, PtdIns4P and PtdIns(4,5)P2) in vitro

(e.g. Hiramatsu et al., 1992; Wilson et al., 1984), however the substrate

specificity of each of these enzymes in the intact cell is unclear. From

studies carried out in vitro it seems that in general, PIC will hydrolyse the

polyphosphoinositides at low Ca2+ concentrations whereas hydrolysis of
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Ptdlns requires a higher Ca2+ concentration (e.g. Griendling et al., 1991).
Hence it has been suggested that at later time-points of the agonist-

stimulated response, PIC may utilise Ptdlns and PtdIns4P as substrates in

addition to PtdIns(4,5)P2- An increase in [Ca2+]j may also activate PIC

directly since elevation of [Ca2+]frcc from 2.7 nM to 617 nM has been

reported to enhance basal InsP accumulation (1.6-fold) in digitonin-

permeabilised canine tracheal smooth muscle cells (Yang et al., 1993). It

has been widely reported that agents which increase [Ca2+]j/ such as

calcium ionophores and membrane depolarising concentrations of K+

ions, result both in an accumulation of [3H]InsPs in [3H]Ins prelabelled
neuronal and synaptosomal preparations (Baird and Nahorski, 1989, 1990;
Brammer and Weaver; 1989; del Rio et al., 1994; Fisher et al., 1989) and an

increase in Ins(l,4,5)P3 and Ins(l,3,4,5)P4 mass in rat cerebral cortex slices

(Challiss and Nahorski, 1991). These studies noted a preferential
accumulation of [3H]InsP2 over that of [3H]InsP3 following application of

depolarising agents and calcium ionophores even in the presence of the

5-phosphatase inhibitor 2,3-DPG (Fisher et al., 1988), suggesting that in

contrast to agonist activation of PIC, PtdlnsP rather than PtdInsP2 may be

the predominant substrate for such agonist-independent PIC activation.

The majority of these studies have been conducted in excitable tissue, in

particular neuronal cells; however phosphoinositide hydrolysis in

response to calcium ionophores and depolarising agents has also been
observed in guinea-pig visceral smooth muscle preparations (Best and

Bolton, 1986; Jafferji and Michell, 1976; Sasaguri and Watson, 1988;

Watson and Downes, 1983) and guinea-pig trachea (Kardasz et al., 1987).
Some of the responses in these smooth muscle preparations have

subsequently been shown to be neuronal in origin (Watson et al., 1990),
or secondary to endogenous neurotransmitter release from neuronal
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tissue contained within the preparation (Akhtar and Abdel-Latif, 1984;

Watson and Downes, 1983). If PIC is able to hydrolyse the lower

phosphoinositides in significant quantities in BTSM, the resulting
formation of InslP and Ins(l,4)P2 isomers (indistinguishable from those
formed by Ins(l/4/5)P3 metabolism) would preclude the assessment of

Ins(l/4,5)P3 3-kinase and 5-phosphatase metabolites. To address whether

or not a Ca2+-mediated activation of PIC occurred in BTSM slices,

pHjInsPs accumulating over a 30 min period in the presence of lithium
were quantified following incubation with depolarising concentrations of
KC1 or the calcium ionophore ionomycin, and compared with basal and
CCh-stimulated values.

Receptor-stimulated activation of phospholipase D (PLD) is common to a

large number of agonists which also activate PIC, and may occur

secondary to PKC activation (see Billah, 1993). In guinea-pig tracheal

smooth muscle cells PLD can be activated following stimulation with

either bradykinin or the protein kinase C activator phorbol myristate
acetate (PMA) (Pyne and Pyne, 1993). This PLD response is inhibited both

by the PKC inhibitor staurosporine or by prior down regulation of PKC.

Phosphatidylcholine appears to be the preferred substrate for PLD,

however in some systems PLD may also hydrolyse

phosphatidylethanolamine (Kiss, 1992) or Ptdlns (Huang et al., 1992).
Hence a PKC-stimulated PLD activity directed against the

phosphoinositides could occur in BTSM following muscarinic

cholinoceptor stimulation, resulting in a non-direct receptor mediated
accumulation of inositol phosphates. In order to ascertain whether or
not such an activation of PLD contributes significantly to the CCh-

stimulated accumulation of [3H]InsPs in BTSM additional incubations
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were carried out in the presence of the PKC-stimulating phorbol ester

phorbol dibutyrate (PDBu).

3.3.1 Effect of potassium ions, ionomycin and phorbol dibutyrate on

[3H]inositol phosphate accumulation in bovine tracheal smooth muscle

[3H]Inositol pre-labelled BTSM slices were incubated for 30 min with 100

(iM CCh, 80 mM KC1, 5 |iM ionomycin, 100 nM PDBu or vehicle and the

resulting [3H]InsPs separated from neutralised TCA extracts using Dowex

AG 1-X8 resin (see figure 3.3.1). Although not statistically significant,
there was a trend for KC1 to inhibit both basal and CCh-stimulated

[3H]InsP accumulation (17 % and 23 % respectively). This is in agreement

with further KC1 experiments carried out in collaboration with E.R.

Chilvers, R.A.J. Challiss and G.J. Offer (see Chilvers et al., 1994b).

Moreover, these authors report that application of 80 mM KC1 results in a

decrease in both basal and CCh-stimulated Ins(l,4,5)P3 mass after a five

second incubation (the time at which Ins(l,4,5)P3 mass is maximal).

Biden et al. (1993) demonstrated that CCh-stimulated InslP accumulation

is directly proportional to the calculated membrane potential in rat

pancreatic islets, an effect which is not mediated by voltage-gated Ca2+
channels. A similar regulation of phosphoinositide hydrolysis by

membrane-potential in BTSM could account for the decrease in [3H]InsP
accumulation observed in the presence of a high K+ concentration.

Alternatively this effect may result from a Ca2+-mediated inhibition of
Ptdlns synthesis as described in rabbit vas deferens (Egawa, et al., 1981)
and insect salivary glands (Berridge and Fain, 1979). In most mammalian

systems however, Ptdlns synthesis is enhanced by hormonal stimulation.
The concentration of K+ ions in these experiments was chosen specifically

because it has been shown to initiate a prompt contractile response in
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BTSM, associated with both membrane depolarisation and an elevation

in [Ca2+]j secondary to Ca2+ influx - an effect that can be greatly inhibited

by the Ca2+ channel antagonist nimodipine (Takuwa et al., 1987). No

reduction in the concentration of Na+ ions was performed in the

experiments involving high K+ concentrations since in guinea-pig
visceral smooth muscle cell types this manoeuvre alone can induce

[3H]InsP formation (Best and Bolton, 1986; Sasaguri and Watson, 1988),

possibly via stimulation of a Na+/Ca2+ exchange mechanism. However

Chilvers et al. (1994b) describe control experiments in which addition of
80 mM NaCl fails to reduce Ins(l,4,5)P3 mass (as observed with 80 mM

KC1 addition), indicating that the results observed in their experiments

are not simply due to an osmotic effect of the high KC1 solutions.

By contrast, incubation of [3H]inositol pre-labelled BTSM slices for 30 min
with 5 pM ionomycin (see figure 3.3.1) did result in a significant

accumulation of [3PI]InsPs (27 ± 2 % of that seen with 100 pM CCh). It

would seem therefore that depolarisation of the plasma membrane with

80 mM KC1, which results in an influx of extracellular Ca2+ is unable to

stimulate PIC activity in this tissue, but that increasing [Ca2+]j with 5 pM

ionomycin does enhance the activity of this enzyme. Application of a

calcium ionophore would be expected to result in a much greater increase
in [Ca2+]j than would be achieved by K+ depolarisation since it facilitates

free flow of Ca2+ across the plasma membrane (and also possibly
intracellular membranes), unlike a high KC1 concentration which is

likely to produce a more physiological increase in Ca2+ via the opening

of voltage-operated Ca2+ channels. In order to restrict the rise in [Ca2+]j
with ionomycin to physiologically relevant levels, further incubations

were performed in which 2 mM or 4 mM EGTA was added to the system

(resulting in the reduction of [Ca2+]frcc in the medium from 1.8 mM to 6
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jiM or 0.8 pM respectively1) 30 sec prior to ionomycin addition. Under

such conditions the ionomycin response was completely ablated. Hence

it is possible to augment [Ca2+]j artificially to levels that can sustain

agonist-independent hydrolysis of the [3H]phosphoinositides, but this can

only be achieved at unphysiologically high [Ca2+]j since when [Ca2+]free is
reduced to 6 pM or 0.8 pM no significant accumulation of [3H]InsPs can be

detected.

The effect of the PKC-activating phorbol ester PDBu on [3H]InsP
accumulation was also monitored in order to ascertain whether or not a

PLD-mediated breakdown of the phosphoinositides secondary to PKC

activation occurs in this tissue. PDBu (100 nM) had no significant effect
on the basal accumulation of [3H]InsPs and failed to augment the

ionomycin effect. It is unlikely therefore that PKC-mediated PLD activity

could contribute significantly to the accumulation of [3H]InsPs in BTSM

since no detectable increase in [3H]InsP levels was observed after a 30 min

incubation in the presence of PDBu.

These data indicate that there is no significant contribution to [3H]InsP
accumulation in BTSM slices from either PLD-mediated phosphoinositde

hydrolysis, or breakdown of PtdIns(4,5)P2 or the lower phosphoinositides

by PIC secondary to physiologically relevant increases in [Ca2+]j.

hThc Ca2+lfrcc under identical conditions had been determined in the study by Chilvers et
al., (1994) using a Ca2+-sensitivc electrode according to the method of Wojcikiewicz et al.
(1990).
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3.4 MUSCARINIC CHOLINOCEPTOR-STIMULATED ACCUMULATION

OF [3H]INOSITOL POLYPHOSPHATE ISOMERS IN BOVINE TRACHEAL

SMOOTH MUSCLE

It is well established that lithium ions inhibit inositol monophosphatase
in an uncompetitive manner (see Nahorski et al., 1991), thus in the

presence of an ample concentration of its substrate (InsPi) lithium ions

potently inhibit this enzyme, and provide an effective block of InsPi

hydrolysis. BTSM exhibits a low level of basal inositol phospholipid

hydrolysis (see table 3.4.1), and therefore by introducing lithium ions into
the system 10 min prior to agonist/vehicle addition, a sufficiently high
concentration of InsPi can be attained to facilitate inhibition of the

inositol monophosphatase enzyme, thereby trapping any [3H]InsPs
formed within the cytosolic fraction of the cell. The effective trapping of

[3H]InsPs in the cytoplasm is demonstrated by their linear CCh-stimulated

accumulation in this system (figure 2.3.1.2a). The use of this protocol
should thus enable accurate quantification of the [3H]InsPPs formed in

these experiments. Since the 3-kinase and 5-phosphatase pathways yield

mutually exclusive products in this tissue (see section 3.2), and there

would appear to be no significant contribution to [3H]InsPP accumulation

from PIC action on the lower [3H]phosphoinositides or PLD-mediated

breakdown of the [3H]inositol phosphates (see section 3.3) it can be

concluded that an appropriate experimental system has been devised for

the study of the flux of [3H]Ins(l,4,5)P3 metabolism through the 3-kinase
and 5-phosphatase enzymes.

The only additional requirement of these studies is that agonist

stimulation of BTSM should result only in accumulation of [3H]InsPP
isomers that can be accounted for by the 3-kinase and 5-phosphatase

pathways. As detailed in section 3.4.1 below, this pre-requisite was also
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fulfilled except for the quantitatively very minor accumulations of

[3H]Ins(4/5)P2 and [3H]Ins(2,4,5)P3 (see table 3.4.1) which would have no

significant bearing on the calculations of flux of [3H]Ins(l,4,5)P3 through
the 3-kinase and 5-phosphatase pathways. The use of a short-term

[3H]inositol labelling strategy was a deliberate ploy to ensure that the
results were not complicated by the labelling of additional InsPPs.

3.4.1 Accumulation of [3H]inositol polyphosphates following 30 minute
carbachol stimulation of BTSM slices

[3H]Inositol pre-labelled BTSM slices were incubated with 100 pM CCh or

vehicle in the presence or absence of 5 mM LiCl for 30 min and the

resulting individual [3H]InsPP isomers separated and quantified using
H.P.L.C.. The results of these experiments are summarised in table 3.4.1.

An accumulation of [3H]InsPs was observed over the 30 min incubation,

even under basal conditions in the absence of lithium ions. When

lithium was added into the system a 3.3-fold increase in basal [3H]InsP
accumulation could be detected. CCh caused a dramatic (33-fold) increase

in [3H]InsP accumulation which was also markedly enhanced (6.7-fold) by
the inclusion of lithium ions. Several [3H]InsPP isomers were isolated

from the BTSM slices and were identified on the basis of co-elution with

commercial and generated standards, and by comparison with other
inositol polyphosphate H.P.L.C. separation studies (e.g. Batty et al., 1989;

Wong et al., 1992) as illustrated in the materials and methods section

(2.6.3).

Two dominant peaks of radioactivity were detected in the [3H]InsPi
fraction under all conditions specified which co-eluted exactly with

[3H]Insl/3P and [3H]Ins4P standards. [3H]InslP and [3H]Ins3P are

enantiomers and as such cannot be resolved by the H.P.L.C. technique
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%TotalRadioactivityinFraction

Ins(x)PP

-Li+

+

Li+

Control
(n=4)

CCh(n=8)

Control
(n=9)

CCh

(n

=9)

1/3

25.69±
1.02

16.73±
0.78

25.21±

2.08

21.87

±

1.30

4

13.49±
2.38

30.74±

3.55

30.51±

2.31

59.97

±

1.68

1,3

2.35±

0.12

5.83±

0.77

3.22±

1.06

1.27

±

0.24

1,4

18.63±
2.24

36.01±

2.57

16.18±
3.18

13.89

±

2.11

3,4

5.00±

0.31

2.33±

0.33

3.79±

0.70

0.32

+

0.03

4,5

0.56±

0.28

0.73±

0.05

0.96±

0.82

1.27

±

0.06

1,3,4

3.72±

0.86

4.94±

0.46

3.27±

0.70

1.05

±

0.14

1,4,5

10.50±
0.76

1.29±

0.14

6.46±

0.57

0.17

±

0.02

2,4,5

0.96±

0.36

0.05±

0.01

0.34±

0.09

0.01

±

0.001

InsP4

14.95±
0.71

1.64±

0.10

10.04±
1.08

0.28

+

0.03

3-kinase metabolites

61.68±
0.36

32.03±
1.82

49.70±

3.14

25.13

±

1.34

5-phosphatase metabolites

38.33±
0.36

67.97±
1.82

50.30±

3.14

74.87

±

1.34

TotalDPM/50glslices
1,398±
142

45,856±
7,281

4,550±

957

306,468
+

35,797

Table3.4.1Carbachol-stimulatedaccumulationof[3H]inositolpolyphosphatesinbovinetrachealsmoothmuscleslices. [3H]Inositolpre-labelledBTSMslices(2.3.1)wereincubatedfor30minat37°Cinthepresenceorabsenceof5mMLiCland 100jiMCCh.[3H]InsPPsinpooledtriplicateTCAextracts(2.4.2)wereseparatedusingaPartisphere5SAXH.P.L.C.column (2.6.3)andquantifiedbyliquidscintillationcounting.Resultsareexpressedasthepercentageoftotalretrievedradioactivity associatedwitheach[3H]InsPPisomer,orasthepercentageofmetabolised[3H]Ins(l,4,5)P3presentas3-kinaseor5- phosphatasepathwaymetabolites,andrepresentthemean±SEMofnseparateexperiments.



employed here. [3H]Insl/3P represented the dominant [3H]InsPi isomer

present under basal conditions. The accumulation of both

monophosphates was enhanced following prolonged CCh stimulation
with [3H]Ins4P constituting the major [3H]InsPi under these conditions

(64 ± 3 % and 73 ± 1 % of the [3H]InsPi pool in the absence and presence of
lithium respectively). In addition, a further very minor [3H]InsPi peak
could be detected in some of the basal samples which has been tentatively
identified as [3H]Ins2P since it co-eluted with a generated standard for this

compound (see section 2.6.3), however it is also possible that it represents

[3H]Ins5P, low concentrations of which have been detected in brain

(Ackermann et al., 1987). The accumulation of this isomer was negligible

(if detectable at all) under all conditions assayed.

Four peaks of radioactivity were detected in the [3H]InsP2 fraction, two co-

eluting with standard or generated [3H]Ins(l,4)P2 and [3H]Ins(4,5)P2 (see
section 2.6.3), the other two being identified as [3H]Ins(l,3)P2 and

[3H]Ins(3,4)P2 by comparison with a similar study by Batty et al. (1989) in
rat cerebral cortex slices. [3H]Ins(l,4)P2 was the major bisphosphate in all

samples assayed.

Three [3H]InsP3 peaks were observed - two of which co-eluted with
standard and generated [3H]Ins(l,4,5)P3 and [3H]Ins(2,4,5)P3 (see section

2.6.3), the third identified as [3H]Ins(l,3,4)P3 since it is the only known

trisphosphate isomer to elute prior to Ins(l,4,5)P3 (Batty et al., 1989; Wong

et al., 1992). [3H]Ins(l,4,5)P3 was the major [3H]InsP3 present in basal

samples whereas [3H]Ins(l,3,4)P3 was by far the main constituent under
CCh-stimulated conditions. Accumulation of [3H]Ins(2,4,5)P3 was

negligible under all conditions assayed. This isomer may represent an

acid-hydrolysis product of trace amounts of [3H]Ins(l:2c,4,5)P3, which has
been reported to accumulate in a variety of tissues including thrombin-
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stimulated platelets (Ishii et al., 1986) and vasopressin-stimulated WRK1

rat mammary tumour cells (Wong et al., 1988).

Although the H.P.L.C. gradient used in these studies does not allow good

separation of [3H]InsP4 isomers, it is probable from previous data on CCh-
stimulated increases in Ins(l,3,4,5)P4 in this model (Chilvers et al., 1991b)

that the agonist-stimulated increase in [3H]InsP4 accumulation represents

an increase in the [3H]Ins(l,3,4,5)P4 isomer. In addition no late-running

[3H]InsP4 peak or shoulder to the [3H]InsP4 peak was observed suggesting

that there is no significant accumulation of [3H]Ins(l,3,4,6)P4 under the
described conditions.

The presence of 5 mM LiCl in the control incubations resulted in a minor

increase in the accumulation of both [3H]Insl/3P and [3H]Ins4P. Under

CCh-stimulated conditions the presence of lithium resulted in a 9-fold

and 13-fold increase in [3H]Insl/3P and [3H]Ins4P accumulation

respectively, and a 2.6-fold increase in [3H]Ins(l,4)P2- Lithium had a more

minor effect on [3H]Ins(l,3)P2, [3H]Ins(3,4)P2 and [3H]Ins(l,3,4)P3

accumulation. These results are in keeping with the known effects of

lithium as a potent uncompetitive inhibitor of the inositol

monophosphatase responsible for converting each of the inositol

monophosphate isoforms into free inositol, and a weaker inhibitor of the
inositol polyphosphate 1-phosphatase which converts Ins(l,4)P2 and

Ins(l,3,4)P3 into Ins4P and Ins(3,4)P2 respectively. Lithium ions therefore

result in a marked accumulation of the immediate substrates of these

enzymes, and a lesser accumulation of their upstream precursors. In

addition, lithium resulted in a 10-fold increase in [3H]Ins(4,5)P2 in CCh-

stimulated BTSM slices, suggesting the presence of at least one further
lithium-sensitive metabolising enzyme. The lithium-sensitive, agonist-
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stimulated accumulation of this novel bisphosphate isomer is discussed

in further detail in chapter six.
It is possible therefore to calculate the relative proportions of

[3H]Ins(l/4/5)P3 that had been metabolised by the 3-kinase and 5-

phosphatase pathways in these experiments by totalling the radioactivity
associated with each of the respective pathway metabolites (i.e. the 5-

phosphatase pathway metabolites are quantified by totalling the

radioactivity in the [3H]Ins(l/4)P2 and [3H]Ins4P fractions, whereas the 3-

kinase pathway is represented by the total radioactivity associated with

[3H]Ins(l,3,4,5)P4, [3H]Ins(l,3,4)P3/ [3H]Ins(l,3)P2, [3H]Ins(3,4)P2/ and
[3H]Insl/3P). The only [3H]inositol polyphosphate isomers excluded from
these calculations were [3H]Ins2P, [3H]Ins(2,4,5)P3 and [3H]Ins(4,5)P2, as the

source of these isomers is uncertain, and their accumulation following
CCh stimulation was very minor (accumulation of the two former
isomers was negligible under all conditions assayed, while [3H]Ins(4,5)P2

represented only 1 % of the total inositol polyphosphate pool after 30 min

in the presence of Li+). Using this approach, the relative contributions of

these two enzyme pathways to [3H]Ins(l,4,5)P3 metabolism has been

assessed for each of the experimental incubations described above.

When lithium ions were included in the system the contribution to

[3H]Ins(l,4,5)P3 metabolism by the 5-phosphatase pathway increased from
38 % to 50 % in basal samples, and from 68 % to 75 % in 30 min CCh-

stimulated samples. The inclusion of lithium ions probably gives a more

accurate portrayal of the activity of these two enzyme pathways since the

hydrolysis of [3H]InsPi isomers to [3H]Ins, and therefore their omission
from the calculations, would be negligible under these conditions. In the

presence of lithium ions, [3H]Ins(l,4,5)P3 formed under basal,
unstimulated conditions would appear to be metabolised in equal
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proportions by the 3-kinase and 5-phosphatase over the 30 min

incubation period. Because of the small accumulation of [3H]InsPP
isomers under basal conditions however, the calculation is much less

certain. In the presence of a maximally effective concentration of CCh

(100 pM) the 5-phosphatase enzyme clearly dominates, accounting for 75

% of the total [3H]Ins(l,4,5)P3metabolism.

In other tissues it has been shown that Insl/3P and Ins4P share a

common enzyme for their degradation to free inositol and that this

enzyme has a similar affinity (Km = 0.1-0.2 mM) for Insl/3P and Ins4P

(Gee et al., 1988; Hallcher and Sherman, 1980). If a similar

monophosphatase is responsible for the degradation of these isomers in

BTSM then steady-state [3H]InsPP accumulation should still reflect the
metabolism of [3H]Ins(l,4,5)P3 through the 3-kinase and 5-phosphatase

pathways in the absence of lithium.

3.4.2 Accumulation of [3H]inositol polyphosphates over a 30 minute

time-course of carbachol stimulation

The accumulation of [3H]InsPP isomers in [3H]inositol pre-labelled BTSM

slices in response to CCh stimulation in the presence of 5 mM LiCl was
assessed over a 30 min time-course. Table 3.4.2 summarises the results

obtained from these experiments, and the accumulation of [3H]InsPPs
over the first 5 min following agonist stimulation is illustrated in figure
3.4.2.1. Agonist stimulation resulted in a rapid (< 5 sec) rise in the

accumulation of [3H]Ins(l,4,5)P3 (figure 3.4.2.lc), consistent with it being

the primary product of muscarinic receptor-stimulated [3H]PtdIns(4,5)P2

hydrolysis. In the continued presence of agonist the accumulation of this
isomer returned to basal levels within 1 min with only a minor increase

observed at much later time-points following CCh stimulation. It is
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[3H]Ins(x)PP

%TotalRadioactivityinFraction
0sec

5sec

30sec

1min

5min

30min

1/3

16.67±7.08

21.79±1.35

9.43±2.76

8.90±2.00

12.78±0.71

26.57±3.20

4

29.63±7.41

31.17±3.85

22.22±5.77

27.05±3.24

48.63±0.89

50.47±8.67

1,3

3.55±1.37

0.98±0.50

0.95±0.49

2.19±0.28

2.35±0.31

0.73±0.37

1,4

27.08±11.86
37.17±6.56

59.86±7.88

55.65±5.11

31.73±0.29

19.67±5.32

3,4

2.85±0.95

1.53±0.23

0.90±0.09

0.90±0.09

0.63±0.03

0.30±0.03

4,5

0.13±0.07

0.10±0.08

0.07±0.03

0.28±0.01

0.28±0.01

1.11±0.09

1,3,4

4.83±1.03

3.13±0.38

3.7±0.32

3.52±0.39

2.49±0.04

0.79±0.07

1,4,5

5.51±1.87

6.33±1.81

1.15±0.18

0.51±0.09

0.39+0.01

0.14±0.01

2,4,5

0.39±0.10

0.17±0.08

0.07±0.02

0.04±0.003

0.03±0.01

0.01±0.00

InsP4

8.49±3.09

4.41±1.32

1.23±0.19

1.00±0.15

0.67±0.02

0.21±0.00

3-kinase metabolites

37.87±8.44

26.63±5.14

16.48±2.34

16.66±1.91

18.87±0.57

28.97±3.50

5-phosphatase metabolites

62.14±8.44

73.37±5.14

83.52+2.34

83.34±1.91

81.13±0.57

71.03±3.50

DPM/50pislices
4809±1861

8672±3420
26626±5541
30841±7583
63529±10165
337179±14219

Table3.4.2Time-courseofcarbachol-stimulatedaccumulationof[3H]inositolpolyphosphatesinbovinetrachealsmooth muscleslices [3H]Inositolpre-labelledBTSMslices(2.3.1)werestimulatedinthepresenceof5mMLiClwith100pMCChforthetimes indicated.[3H]InsPPsinpooledtriplicateTCAextracts(2.4.2)wereseparatedusingaPartisphere5SAXH.P.L.C.column andquantifiedbyliquidscintillationcounting.Resultsareexpressedasthepercentageoftotalretrievedradioactivity associatedwitheach[3H]InsPPisomer,orasthepercentageofmetabolised[3H]Ins(l,4,5)P3presentas3-kinaseor5- phosphatasemetabolitesandrepresentthemean±SEMofthreeseparateexperiments.
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Figure 3.4.2.1 Pattern of pHlinostiol polyphosphate accumulation over five minutes
following carbachol-stimulation of bovine tracheal smooth muscle slices
[3H]Inositol pre-labelled BTSM slices (2.3.1) were incubated with 100 pM CCh in the
presence of 5 mM LiCl in a final volume of 300 pi. Reactions were terminated at the
times indicated by addition of 300 pi 1 M TCA. Individual [3H]InsPPs were separated
from poled triplicate neutralised extracts (2.4.2) by H.P.L.C. (2.6.3) and the radioactivity
associated with each isomer quantified by liquid scitntillation counting. Results represent
the mean + SEM of three separate experiments.
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possible that this delayed and quantitatively very minor increase in the

'[3H]Ins(l,4,5)P3 peak' was due to the accumulation of non-resolving

[3H]InsP3 isomers such as [3H]Ins(l,4,6)P3 which has previously been

identified in avian erythrocytes (Stephens and Downes, 1990; Stephens et

al., 1989) and its enantiomer [3H]Ins(3,4,6)P3 identified in the slime mould

Dictyostelium discoideum (Stephens and Irvine, 1990). Indeed Wong et

al. (1992) identified an additional minor component in their 'Ins(l,4,5)P3

peak' which increased following stimulation with vasopressin. They

provide evidence to indicate that this compound was Ins(l,4,6)P3.
A rapid elevation in the levels of [3H]Ins(l,4)P2, the product of Ins(l,4,5)P3

5-phosphatase, was seen upon CCh stimulation (see figure 3.4.2.1a),
which plateaued after 1 min (the time at which [3H]Ins(l,4,5)P3

radioactivity had returned to basal values). [3H]Ins(l,4)P2 was the major

[3H]inositol bisphosphate present in all samples assayed. The other 5-

phosphatase pathway metabolite [3H]Ins4P showed a linear accumulation
in response to CCh, and was the dominant [3H]InsPi isomer at all time-

points measured.

[3H]Inositol tetrakisphosphate accumulated only to a minor degree over

the agonist stimulation period (figure 3.4.2.1 d), and in agreement with
Chilvers et al. (1990a) only increased to significant levels after 5 min. It

would seem that at early time-points any [3H]Ins(l,3,4,5)P4 formed is

rapidly dephosphorylated to [3H]Ins(l,3,4)P3 since large increases in this

isomer can be detected within 30 sec following agonist addition (figure

3.4.2.1c). The rate of increase in this [3H]inositol trisphosphate slows after
1 min. In agreement with Chilvers et al. (1990a), [3H]Ins(l,3,4)P3 was the

major trisphosphate isomer in BTSM slices stimulated for 30 sec or more

with 100 (iM CCh, accounting for > 80 % of the trisphosphate fraction
after 1 min of stimulation with this agonist. The other major 3-kinase
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pathway metabolites ([3H]Ins(l,3)P2, [3H]Ins(3,4)P2 and [3H]Insl/3P)
exhibited a delayed accumulation in response to CCh, only increasing to

significant levels after 1 and 5 min for the bisphosphates and

monophosphates respectively (figures 3.4.2.1a and b).

[3H]Ins(2/4,5)P3 and [3H]Ins2P levels were negligible under all conditions

assayed and hence are not illustrated in figure 3.4.2.1. Interestingly,

[3H]Ins(4,5)P2 showed a very delayed accumulation in response to CCh
stimulation (figure 3.4.2.Id) suggesting an indirect formation of this

bisphosphate isomer. Further studies designed to address the possible
routes of formation and metabolism of this isomer are detailed in chapter

six.

The flux of the inositol headgroup through the Ins(l,4,5)P3 3-kinase and

5-phosphatase regulated pathways following CCh stimulation was

determined in an identical fashion to that described in section 3.4.1 and is

shown in table 3.4.2. Although the initial contribution from the two

pathways (at 0 sec) appears to vary slightly from that documented for
basal conditions over 30 min (see section 3.4.1), the difference between

these values is not statistically significant. The 5-phosphatase was the

dominant Ins(l,4,5)P3 metabolising pathway at all time-points following
CCh stimulation, however it would seem that the 3-kinase becomes

increasingly important after 1-5 min. A detailed picture of the flux of the
inositol headgroup through these two enzymes was obtained when the 3-

kinase and 5-phosphatase metabolites were quantified over time-

intervals (as opposed to the cumulative response). The result of this

analysis is summarised in figure 3.4.2.2. The 5-phosphatase pathway was

the dominant route for [3H]Ins(l,4,5)P3 metabolism at all time-intervals

measured, accounting for over 85 % of its metabolism over the first 5 sec

following agonist addition. At later time-points of the agonist-stimulated
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Figure 3.4.2.2 Flux of [3H]inositol 1,4,5-trisphosphate through the 3-kinase
and 5-phosphatase pathways following carbachol-stimulation
[3H]Inositol pre-labelled BTSM slices (2.3.1) were incubated with 100 pM
CCh in the presence of 5 mM LiCl in a final volume of 300 pi. Reactions
were terminated after 0 sec, 5 sec, 30 sec, 1 min, 5 min and 30 min by the
addition of 300 pi 1M TCA and the individual [3H]InsPP isomers present
in pooled triplicate neutralised extracts (2.4.2) separated and quantified by
H.P.L.C. (2.6.3). The individual [3H]InsPPs accumulating over the time-
intervals shown were calculated, and the radioactivity associated with the
[3H]Ins(l,4,5)P3 3-kinase and 5-phosphatase metabolites over these time-
intervals determined. Data represents the mean ± SEM of three separate
experiments.
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response however, the contribution from the 3-kinase pathway became

increasingly important.

3.5 DISCUSSION

The experiments described in this chapter were designed to characterise,
in detail, the accumulation of [3H]inositol polyphosphates following

agonist stimulation of BTSM and to assess the routes of metabolism of

Ins(l,4,5)P3. While the dominant route of metabolism, both at early and
late time-points after agonist addition, appears to be via the 5-

phosphatase pathway, the 3-kinase pathway plays an increasing role at

later time-points following agonist addition. A second bifurcation point
in inositol polyphosphate metabolism is seen with the breakdown of

Ins(l,3,4)P3 since this compound can be converted either to Ins(l,3)P2 or

to Ins(3,4)P2- Following prolonged CCh stimulation (30 min), a greater

accumulation of [3H]Ins(l,3)P2 over [3H]Ins(3,4)P2 was detected (see table

3.4.1) both in the absence and presence of lithium (2.5- and 4-fold

respectively). This is in agreement with Batty et al. (1989) who detected
an accumulation of [3H]Ins(l,3)P2 to levels three times that of

[3H]Ins(3,4)P2 following CCh stimulation (30 min) of rat cerebral cortex
slices and with Wreggett and Irvine (1993) who found Ins(l,3)P2 to be the

predominant Ins(l,3,4)P3 metabolite in thrombin- and histamine-
stimulated human umbilical vein endothelial cells. The latter two

studies were carried out in the presence of lithium ions which inhibit the

Ins(l,4)P2/Ins(l,3,4)P3 1-phosphatase and would therefore favour
metabolism of Ins(l,3,4)P3 via the 4-phosphalase. It is also possible that
the greater proportion of [3H]Ins(l,3)P2 produced following CCh
stimulation in the absence of lithium ions in the present study results
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from [3H]Ins(l/3/4)P3 competing with the much larger concentration of

[3H]Ins(l/4)P2 for the Ins(l,3,4)P3/Ins(l,4)P2 1-phosphatase (Inhorn and

Majerus, 1987, 1988). Indeed, under basal conditions, when the 3-kinase

pathway contributes substantially to Ins(l,4,5)P3 metabolism,

proportionally more [3H]Ins(3,4)P2 is produced compared to [3H]Ins(l,3)P2
(see table 3.4.1).

Despite its continued formation [3H]Ins(l,4,5)P3 accumulates only

transiently following CCh stimulation (Chilvers et al., 1991a). The

underlying reason for this apparent tight metabolic control of Ins(l,4,5)P3
accumulation in BTSM remains uncertain, and contrasts to the situation

pertaining in a number of other tissues including rat cerebral cortex slices
where Ins(l,4,5)P3 mass remains elevated for a prolonged period

following agonist stimulation (Challiss et al., 1988). It is possible that
some of the more recently described functions of Ins(l,4,5)P3, such as its

effect on tyrosine phosphatase activity (Stader and Hofer, 1992) underlie a

need for differential regulation of Ins(l,4,5)P3 metabolism between
tissues. Hence it may be more important to rapidly curtail the Ins(l,4,5)P3

response in BTSM, a process which would require stringent regulation of
the enzymes responsible for the metabolism of this second messenger.

The demonstration that the 5-phosphatase and 3-kinase pathways yield

mutually exclusive products was verified in part by examining

[3H]Ins(l,4,5)P3 and [3H]Ins(l,3,4,5)P4 metabolism in BTSM homogenates.

Given evidence suggesting little, if any, hydrolysis of the Ptdlns and

PtdIns4P, or PLD-stimulated phosphoinositide hydrolysis in the

production of InsPs in this tissue, it would seem that the individual
InsPP isomers detected in these experiments are derived predominantly
from the sequential dephosphorylation of Ins(l,4,5)P3 and its primary
metabolite Ins(l,3,4,5)P4. The short-term labelling protocol employed in

127



these studies has been extensively validated and provides steady-state

phosphoinositide labelling and prevents agonist-stimulated changes in

the specific radioactivity of [3H]PtdIns(4,5)P2 (Chilvers et al., 1989a). This

approach results in very little, if any, labelling of higher inositol

phosphates (i.e. Ins(l,3,4,5,6)P5 and InsP6) and hence avoids many of the

problems inherent in attempting to follow Ins(l,4,5)P3 metabolism in
tissues labelled to isotopic equilibrium over many days. This BTSM

model therefore provides a good preparation for the study of Ins(l,4,5)P3

metabolism, facilitating the analysis of the relative contributions of the 3-

kinase and 5-phosphatase pathways.

Although the 3-kinase enzyme contributes significantly to Ins(l,4,5)P3
breakdown under the conditions specified, the 5-phosphatase pathway

appears to dominate especially at early time-points after agonist

stimulation when the accumulation of Ins(l,4,5)P3 is still elevated over

control values. Of interest was the finding that the 3-kinase pathway
becomes an increasingly important route for Ins(l,4,5)P3 metabolism at

later time-points following agonist stimulation. This could relate to a

Ca2+/calmodulin-mediated activation of this enzyme as suggested in

insulin secreting RINm5F cells (Biden and Wollheim, 1986) and later
substantiated in a variety of tissues including rabbit tracheal smooth

muscle (Rosenberg et al., 1991), pig aortic smooth muscle (Yamaguchi et

al., 1987), rat aortic smooth muscle (Rossier et al., 1987) and rat heart

(Renard and Poggioli, 1987). Increases in the concentration of this ion

following CCh stimulation occur as a result of both its release from
intracellular stores and an increase in Ca2+ influx (Takuwa et al., 1987). In

most cases studied the 5-phosphatase is unaffected by physiological
increases in [Ca2+]j (e.g. Biden et al., 1986), however notable exceptions are

the 5-phosphatases present in porcine coronary artery smooth muscle,
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which is enhanced by 0.1-1 (iM free Ca2+ concentrations (Sasaguri et al.,

1985), and that found in bovine iris sphincter smooth muscle which is

inhibited by [Ca2+]frcc concentrations greater than 1 pM (Wang et al.,

1994).

There are also reports that PKC may regulate the 3-kinase and 5-

phosphatase enzymes: PKC-mediated phosphorylation results in a 3-fold
stimulation of the Type la 5-phosphatase enzyme from human platelets

(Connolly et al., 1986). This effect is substantiated by data in thrombin-
stimulated platelets where inhibition of PKC with staurosporine results
in a decrease in 5-phosphatase activity (King and Rittenhouse, 1989). To

date however, PKC-regulation of 5-phosphatase activity has not been
described in any other cell type, although indirect evidence for such

regulation was obtained in C62B glioma cells in which pre-treatment

with the PKC-inhibitor sphingosine resulted in an enhanced ACh-

stimulated I11SP3 accumulation, accompanied by a concurrent decrease in

InsP2 accumulation (Brooks et al., 1987). By contrast, the conversion of

Ins(l,4,5)P3 to Ins(l,4)P2 in RINm5F cells decreased slightly in the

presence of the PKC activating phorbol ester phorbol myristate acetate

(PMA) (Biden et al, 1988b).

The activity of the Ins(l,4,5)P3 3-kinases from rat brain (Sim et al., 1990)
and human platelets (Lin et al., 1990) are inhibited by PKC-dependent
serine phosphorylation, an effect mediated by a dramatic reduction in the

Vmax of the enzyme (Sim et al., 1990). In contrast with this data Imboden

and Pattison (1987) reported a PKC-mediated activation of the 3-kinase

from a clonal T cell line and Biden et al., (1988a and b) noted a slight

enhancement of 3-kinase activity in the presence of PMA in both insulin-

secreting RINm5F cells and rat hepatocytes. Furthermore the Vmax of the
3-kinase in saponin-permeabilised platelets was increased 1.8-fold in the
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presence of PDBu (King and Rittenhouse, 1989). The 3-kinases cloned
from rat brain (Takazawa et al., 1990b) and human hippocampus

(Takazawa et al., 1991a) contain putative PKC-dependent serine and

threonine phosphorylation sites.
The Km values of the Ins(l,4,5)P3 5-phosphatase and 3-kinase enzymes

have been calculated in rabbit ASM as 95 pM and 5 pM respectively

(Rosenberg et al., 1991). Indeed, in all tissues studied so far the 3-kinase

has a greater affinity for Ins(l,4,5)P3 than the 5-phosphatase. It would
therefore be anticipated that at low concentrations of Ins(l,4,5)P3 this
second messenger would be metabolised preferentially by the 3-kinase

enzyme. It is important to note however that Ins(l,4,5)P3 may be

compartmentalised within the cell (Horstman et al., 1988; Challiss et al.,

1990) or produced preferentially at a specific cellular locus, and therefore

may be present locally in concentrations above that expected from our

data. This consideration may be of particular relevance in BTSM where
mass measurements suggest a relatively high resting Ins(l,4,5)P3
concentration of 3-4 pM (Challiss et al., 1990), as compared with the

'normal' range of 0.1-0.2 pM (see Shears, 1991).
Studies now performed in a variety of other tissues suggest that the flux
of Ins(l,4,5)P3 via the 3-kinase and 5-phosphatase pathways may vary

considerably, not only with regard to the differential routing during the

lifetime of the agonist-stimulated response but also with respect to the

tissue, agonist and species under study: Batty and colleagues (1992) have
shown in rat cerebral cortex stimulated with a maximally effective

concentration of CCh that Ins(l,4,5)P3 is metabolised by the 3-kinase and

5-phosphatase enzymes in roughly equal proportions; Wreggett and
Irvine (1993) have demonstrated that the 3-kinase pathway is more active

in human umbilical vein endothelial cells stimulated with histamine
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than with thrombin at concentrations which give a comparable level of

total InsPs; Pirotton et al. (1991) have shown that ATP stimulation of

vascular endothelial cells results in a rapid and transient routing of

Ins(l,4,5)P3 metabolism almost exclusively through the 5-phosphatase

pathway at early time-points of stimulation followed by a small, but
sustained increase in 3-kinase routing. In light of these studies it is very

possible that the metabolic fate of Ins(l,4,5)P3 accumulation in response to

other PIC-coupled agonists, or even sub-maximal concentrations of CCh,

may differ to that described in this study. Such possibilities are examined
in chapter five.
It is now clear that at least three different isoforms of both the Ins(l,4,5)P3

5-phosphatase and 3-kinase exist, with the possibility of further active

forms of the latter enzyme being produced by limited proteolysis (see
section 1.5.1). If these 3-kinase and 5-phosphatase isoforms vary in their
kinetics of Ins(l,4,5)P3 metabolism their differential distribution or

activation may account for the variations in Ins(l,4,5)P3 accumulation
seen in many tissues. Indeed the Type lb (Hodgkin et al., 1994; Mitchell et

al., 1989) and Type II (Erneux et al., 1989; Hansbro et al., 1994; Hansen et

al., 1991) 5-phosphatases generally exhibit a lower affinity for Ins(l,4,5)P3

than their Type la counterparts. In addition, a differential ability of PKC
to phosphorylate these 5-phosphatase isoforms has been detected in

platelets where PKC phosphorylates the Type la (Conolly et al., 1986) but
not the Type lb (Mitchell et al., 1989) enzyme. Consistent with these

observations, several putative PKC phosphorylation sites have been
identified on the Type la receptors cloned from dog thyroid (Verjans et

al., 1994) and human placenta (Laxminarayan et al., 1994) but not on the

type lb enzymes cloned from human erythroleukaemic and

megakaryocytic cells (Ross et al., 1991).
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PIC-linked receptor agonists may also activate a host of different

signalling pathways secondary to Ptdlns(4/5)P2 hydrolysis which may

interact with the phosphoinositide cycle, regulating both the formation

and metabolism of Ins(l,4,5)P3. For example, PKA (stimulated following

activation of adenylyl cyclase and formation of cAMP) may be an

important regulator of 3-kinase activity since cloning of the rat brain 3-

kinase has revealed a consensus sequence for PKA phosphorylation on

serine (Takazawa et al., 1990b), and reconstitution experiments conducted

by Sim et al. (1990) demonstrate a near doubling of the Vmax following

cAMP-dependent serine phosphorylation of this enzyme.

Further studies aimed at identification and characterisation of the

possible modes of regulation of the 3-kinase and 5-phosphatase enzymes

which could thereby dictate the flux of Ins(l,4,5)P3 through these two

metabolic pathways are detailed in chapters four and five.
The regulation of Ins(l,4,5)P3 metabolism is clearly an important control

point with respect to Ins(l,4,5)P3-mediated Ca2+ release, but may also play

a crucial role in cell functioning by determining the cytosolic
concentrations of other inositol polyphosphates, in particular

Ins(l,3,4,5)P4. The 5-phosphatase pathway is generally thought of as being

merely an inactivating pathway with Ins(l,4)P2 having no Ca2 +

mobilising activity. The 3-kinase pathway on the other hand may,

through the generation of Ins(l,3,4,5)P4 and a host of other InsPPs with

putative functional roles, be very important to Ca2+-signalling (see
section 1.5.2).
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CHAPTER FOUR

CHARACTERISATION OF THE INOSITOL 1,4,5-
TRISPHOSPHATE 3-KINASE AND 5-PHOSPHATASE

ENZYMES

4.1 INTRODUCTION

As detailed in chapter three, Ins(l,4,5)P3 is metabolised via two major

enzyme pathways, a 5-phosphatase route to Ins(l,4,)P2 and a 3-kinase

route to Ins(l,3,4,5)P4. The activity of these two enzymes therefore plays a

critical role in determining the levels and patterns of Ins(l,4,5)P3
accumulation following receptor stimulation. While the Ins(l,4,5)P3 3-

kinase and 5-phosphatase enzymes have been studied in a variety of

tissues, very little data exists regarding the activity of these enzymes in
ASM. Large variations in the Km and Vmax values of these enzymes have
been observed in different tissue types (see Shears, 1991) which, although
in part may reflect the differing assay conditions employed in these

studies, more likely reflects a differential regulation of these enzymes (e.g.

by Ca2+, PKC or PKA) or the presence of more than one isozyme.

Characterisation of the Ins(l,4,5)P3 3-kinase and 5-phosphatase in BTSM

is therefore an essential component in our understanding of the factors

influencing of Ins(l,4,5)P3 metabolism.

Only two previous studies have examined the kinetics of these

Ins(l,4,5)P3 metabolising enzymes in ASM. Chilvers (1991) determined

Ins(l,4,5)P3 3-kinase Km (1.9 pM) and Vmax (385 pmol min-1 mg protein'1)
values in soluble BTSM extracts. These values differ slightly from those

obtained in soluble extracts of rabbit tracheal smooth muscle (Rosenberg
et al., 1991) where apparent Km and Vmax values of 5 pM and 137.8 pmol
min-1 mg protein-1 respectively were calculated. In common with most
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other determinations of 3-kinase activity, both of these studies were

performed in the absence of calpain inhibitors. This consideration is

likely to be of importance since Lee and co-workers (1990) have now

shown that the rat brain Ins(l,4,5)P3 3-kinase may, in common with a

number of other calmodulin-binding proteins, be a substrate for calpain, a

Ca2+-activated neutral cysteine-proteinase. The presence of six putative

calpain cleavage sites ('PEST' regions) in the amino acid sequence

predicted from a rat brain 3-kinase cDNA clone (Choi et ah, 1990) support
this observation. It is therefore highly likely that the 3-kinase may be a

substrate for calpain both in vivo and in vitro and that this proteinase

may regulate the activity of the 3-kinase during an agonist-stimulated

response. Of interest is the accumulating evidence to suggest that

excessive activation of calpain could play a key role in the pathology of a

variety of disorders (see Wang and Yuen, 1994).
Studies performed in the absence of calpain inhibitors have provided

strong evidence to support a role for Ca2+ ions in stimulating 3-kinase

activity. This effect is mediated by the close association of the 3-kinase
with calmodulin (Daniel et al., 1988; Johanson et ah, 1988; Kimura et ah,

1987; Takazawa et ah, 1989; Yamaguchi, et ah, 1987) and results in an

increase in the Vmax of the enzyme (Biden and Wollheim, 1986; Renard
and Poggioli, 1987; Rosenberg et ah, 1991; Takazawa et ah, 1989). To date

however, the effect of Ca2+ ions on a 3-kinase activity prepared in the

presence of calpain inhibitors has not been addressed.
The effect of Ca2+ ions on Ins(l,4,5)P3 5-phosphatase activity is far more

controversial. Most studies have indicated that this enzyme is unaffected

by physiological changes in the concentration of Ca2 f ions (e.g. Biden and

Wollheim, 1986; Kennedy et ah, 1990; Mitchell et ah, 1989; Shears et ah,
1987a and b). Other studies however, including those conducted on
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smooth muscle preparations, suggest that this enzyme may be either
inhibited (Wang et al., 1994, bovine iris smooth muscle) or stimulated

(Sasaguri et al., 1985, porcine coronary artery) by Ca2+ ions. In view of the
evidence indicating a major, early activation of the enzymes responsible
for Ins(l,4,5)P3 breakdown in agonist-stimulated BTSM, the potential for
Ca2+ to exert a direct effect on 3-kinase or 5-phosphatase is of considerable
interest. The characterisation of the 5-phosphatase and 3-kinase activities

is particularly important in BTSM since this tissue appears to have an

extremely high (1-4 pM) basal Ins(l,4,5)P3 mass concentration (Challiss et

al., 1990; Chilvers et al., 1989b) implying that a 3-kinase enzyme with a

typical affinity for Ins(l,4,5)P3 (Km = 0.2-2 pM) may be fully active even

under resting conditions.
It is apparent therefore that the enzyme kinetics of both the 3-kinase and

5-phosphatase warrant further study and experiments were undertaken

to characterise the two enzymes in BTSM and, in particular, to assess the

effect of Ca2+ ions on their activities.

4.2 CHARACTERISATION OF THE SOLUBLE INOSITOL 1,4,5-

TRISPHOSPHATE 3-KINASE ACTIVITY IN BOVINE TRACHEAL

SMOOTH MUSCLE

Previous studies on the Ins(l,4,5)P3 3-kinase from a variety of tissues e.g.

RINm5F cells (Biden and Wollheim, 1986), turkey erythrocytes (Morris et

al., 1987), rat brain (Johanson et al., 1988; Moon et al., 1989), guinea-pig

peritoneal macrophages (Kimura et al., 1987), Rat-1 fibroblast cells

(Johnson et al., 1989) and pig aortic smooth muscle (Yamaguchi et al.,

1988) indicate that this enzyme is predominantly cytosolic. The latter

study showed that 94 % of the total cellular 3-kinase activity could be
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located in the cytosolic fraction of the cell. BTSM cytosol was therefore
utilised as a source of 3-kinase activity in the following 3-kinase enzyme

studies. Calpain inhibitors were included throughout both the enzyme

preparation procedures and the enzyme activity assays.

4.2.1 Determination of the optimal conditions for the study of inositol

1,4,5-trisphosphate 3-kinase activity

Preliminary experiments were designed to establish conditions suitable
for defining the basic kinetic properties of the 3-kinase enzyme (i.e. a

linear rate of conversion of [3H]Ins(l,4,5)P3 to [3H]Ins(l,3,4,5)P4 with

minimal hydrolysis of substrate or product) and were conducted in the
absence of competing unlabelled Ins(l,4,5)P3. BTSM cytosol extracts (see
section 2.9.1) were incubated at various dilutions with [3H]Ins(l,4,5)P3 for

0-20 min in the presence of 1 pM Ca2+ under conditions which inhibit 5-

phosphatase activity (see section 2.9.2). The conversion of [3H]Ins(l/4/5)P3
was assessed by monitoring the production of [3H]InsP4, using AG 1-X8

Dowex columns to separate total [3H]InsP3 from [3H]InsP4. Of the various

dilutions of cytosol extract chosen (25, 100 and 250-fold dilutions), the 25-

fold dilution (final protein concentration = 0.329 ± 0.009 mg/ml) gave the
most appropriate results (see figure 4.2.1.). Under these conditions a

linear conversion of [3H]Ins(l,4,5)P3 was observed over 10 min. Since a

large proportion (54 %) of the [3H]Ins(l,4,5)P3 had been metabolised by 10

min a 5 min incubation period was chosen for all subsequent

experiments.
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Figure 4.2.1 Metabolism of [3H]Ins(l,4,5)P3 with bovine tracheal smooth
muscle cytosol extract
[3H]Ins(l/4/5)P3 (12,000 DPM) was incubated with a 25-fold dilution of
BTSM cytosol extract (2.9.1) at 37 °C in a final volume of 200 ju.1 (2.9.2).
Reactions were terminated at the times indicated with 200 |il 1 M TCA and
[3H]InsP fractions separated from neutralised TCA extracts (2.4.2) by Dowex
AG 1-X8 anion-exchange chromatography (2.6.2). The increase in
radioactive label associated with the [3H]InsP4 fraction was used as an

index of [3H]Ins(l,4,5)P3 metabolism by the Ins(l,4,5)P3 3-kinase and is
expressed as a percentage of the total retrieved radioactivity. Data is from a

single experiment.
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4.2.2 Effect of calcium ions on the cytosolic bovine tracheal smooth

muscle inositol 1,4,5-trisphosphate 3-kinase

In order to assess the effect of Ca2+ ions on the metabolism of Ins(l,4,5)P3

by the soluble BTSM 3-kinase, incubations were carried out as described
in section 4.2.1 in the presence of 'zero', 1 pM and 1 mM [Ca2+]free. All

cytosol extract preparations (diluted 25-fold) exhibited linear metabolism
of [3H]Ins(l,4,5)P3 over 5 min with the three [Ca2+]free concentrations

tested (see figure 4.2.2.1). Data obtained in the presence of 1 pM Ca2+ was

not greatly different from that obtained in the absence of Ca2+ (22.6 %

metabolism and 18.33 % metabolism after 5 min respectively), however

addition of 1 mM Ca2+ resulted in a stimulation of enzyme activity (43.09
% metabolism after 5 min). The isomeric composition of the

[3H]Ins(l,4,5)P3 metabolites formed during the reaction was determined

using H.P.L.C.; the results are shown in figure 4.2.2.2 and table 4.2.2.

Of some interest in these studies was the finding that even in the

presence of 5 mM 2,3-DPG, 10 mM ATP and 20 mM MgCl2 (all inhibitors
of the Ins(l,4,5)P3 5-phosphatase) a small proportion (~ 5-6 %) of the

[3H]Ins(l,4,5)P3 substrate was broken down to [3H]Ins(l,4)P2- Despite this,

negligible amounts of the [3H]InsP4 formed were metabolised

([3H]Ins(l,3,4)P3 and its downstream dephosphorylation metabolites
accounted for less than 2 % of the total retrieved radioactivity even in the

presence of 1 mM Ca2+ when [3H]InsP4 accumulation is maximal).
Accurate determinations of 3-kinase activity could still be calculated
therefore if the formation of [3H]InsP4 was used as a measure of enzyme

activity rather than removal of [3H]InsP3-

The data obtained in the previous two sections (4.2.1 and 4.2.2) indicate
that linear conversion of [3H]Ins(l,4,5)P3 is obtained both in the absence of
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Figure 4.2.2.1 Effect of calcium ions on inositol (1,4,5)P3 3-kinase activity
[3H]Ins(l,4,5)P3 (12,000 DPM) was incubated for the times indicated with a

25-fold dilution of BTSM cytosol extract (2.9.1) at 37 °C in the presence of
'zero', 1 |iM and 1 mM [Ca2+]free (2.9.2). Reactions were terminated with
1 M TCA after 5 min and the [3H]InsP fractions in neutralised extracts

(2.4.2) separated using Dowex AG 1-X8 anion-exchange chromatography
(2.6.2). The increase in radioactive label associated with the [3H]InsP4
fraction was used as an index of metabolism by the Ins(l,4,5)P3 3-kinase
and is expressed as a percentage of the total retrieved radioactivity. Data
represents mean ± SEM of duplicate determinations from a single
experiment.
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%Totalretrievedradioavtivity

[3H]Ins(x)PP

Ca2+-free

lpM

[Ca2+]

1mM

[Ca2+]

0min

5min

0min

5min

0min

5min

1/3

0.00

0.36

0.00

0.03

0.06

0.14

4

0.18

0.13

0.00

0.22

0.14

0.41

1,3

0.04

0.06

0.00

0.05

0.00

0.07

1,4

0.01

5.37

0.04

6.01

0.06

4.79

3,4

0.05

0.03

0.10

0.00

0.02

0.02

4,5

0.01

0.00

0.07

0.00

0.10

0.00

1,3,4

0.05

0.54

0.23

0.62

0.06

1.57

1,4,5

98.07

68.58

97.26

66.39

97.60

39.15

2,4,5

1.41

1.05

1.69

1.34

1.63

0.93

[3H]InsP4

0.19

23.88

0.61

25.34

0.33

52.91

Totalretrieved radioactivity

15,503

15,398

16,363

15,878

16,172

16,205

(DPM)
Table4.2.2[3H]inositolpolyphosphateisomersformedduring[3H]inositol1,4,5-trisphosphate3-kinaseincubations [3H]Ins(l/4/5)P3(20,000DPM)wasincubatedat37°Cfor0or5minwitha25-folddilutionofcytosolextract(2.9.1)inthe presenceof'zero',lgMor1mM[Ca2+]free(2.9.2).Reactionswereterminatedwith200pi1MTCAand[3H]InsPPisomers separatedfromneutralisedextracts(2.4.2)byH.P.L.C.(2.6.3).Theradioactivityassociatedwitheach[3H]InsPPisomerwas quantifiedbyliquidscintillationcountingandisexpressedasapercentageofthetotalradioactivityretrievedfromeach sample.Datawasobtainedfromasingleexperiment.



Ca2+ ions and in the presence of either 1 pM or 1 mM [Ca2+]free for up to 5

min. Under these conditions there is minimal breakdown of

[3H]Ins(l,3/4/5)P4. Hence a 5 min incubation with a 25-fold dilution of

cytosol extract provides appropriate conditions for the kinetic analysis of
the soluble BTSM Ins(l,4,5)P3 3-kinase.

4.2.3 Determination of kinetic parameters of soluble inositol 1,4,5-

trisphosphate 3-kinase

[3H]Ins(l,4,5)P3 was incubated at 37 °C with a 25-fold dilution of cytosol
extract in the presence of 0.1-5 pM competing unlabelled Ins(l,4,5)P3 for 5

min, in the presence of 'zero', 1 pM and 1 mM Ca2+. The initial reaction

velocity (Vo) was calculated for each substrate concentration ([S]) and is

illustrated on an Eadie-Hofstee (Vo vs Vo/[S]) plot in figure 4.2.3. A

computer-generated line of best fit was drawn through the data points for
each Ca2+ concentration to facilitate accurate calculation of the Km and

Vmax values of the enzyme (y axis intercept = Vmax; gradient = -Km) and
these parameters are listed in table 4.2.3. Although the data indicate a

trend towards an increase in the Vmax of the 3-kinase when the [Ca2+]free

is raised from 0 to 1 mM this effect is not statistically significant (two-

tailed, unpaired student's t-test). There was no statistically significant
difference in either the Km or Vmax values of the soluble BTSM 3-kinase

obtained in the absence of Ca2+ as compared to those obtained in the

presence of either 1 pM or 1 mM [Ca2+]frcc.
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Figure 4.2.3 Eadie-Hofstee analysis of BTSM Ins(l,4,5)P3 3-kinase activity
[3H]Ins(l,4/5)P3 (12,000 DPM) was incubated at 37 °C with a 25-fold
dilution of BTSM cytosol extract (2.9.1) in the presence of varying
concentrations (0.1-5 pM) of competing unlabelled Ins(l,4,5)P3 (2.9.2).
Reactions were terminated after 5 min with 200 pi 1 M TCA and [3H]InsP
fractions separated from neutralised extracts (2.4.2) using Dowex AG 1-X8
anion-exchamge chromatography (2.6.2). The increase in radioactive
label associated with [3H]InsP4 was used as an index of metabolism by the
Ins(l,4,5)P3 3-kinase and the reaction velocity calculated for each substrate
concentration. Results represent the mean ± SEM of three or four
separate experiments, each performed in duplicate, using three separate
BTSM cytosol extract preparations.
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[Ca2+]free Km (pM) Vmax

(pmol min"* mg protein"*)
0 2.49 ± 0.45 361.921 55.52

1 |iM 2.07 ± 0.24 322.831 41.53
1 mM 1.6010.04 488.531 16.89

Table 4.2.3 Effect of calcium ions on the Km and Vmax values of the
soluble bovine tracheal smooth muscle inositol 1,4,5-trisphosphate 3-
kinase activity
[3H]Ins(l/4/5)P3 (12,000 DPM) and unlabelled Ins(l,4,5)P3 (0.1-5 (iM) were
incubated with BTSM cytosol extract (2.9.1) (diluted 25-fold) at 37 °C for 5
min in a final volume of 200 (il (see section 2.9.2). Reactions were

terminated with 200 pi 1 M TCA and [3H]InsP fractions were separated
from neutralised TCA extracts (2.4.2) using Dowex AG 1-X8 anion-
exchange chromatography (2.6.2). The increase in radioactive label
associated with the [3H]InsP4 fraction was used as an index of
[3H]Ins(l/4,5)P3 3-kinase activity. Km and Vmax values were determined
using Eadie-Hofstee plots. Results represent the mean ± SEM for three or
four separate experiments, each performed in duplicate, using three
different BTSM cytosol extract preparations.

4.3 CHARACTERISATION OF THE SOLUBLE AND PARTICULATE

INOSITOL 1,4,5-TRISPHOSPHATE 5-PHOSPHATASE IN BOVINE

TRACHEAL SMOOTH MUSCLE

In the majority of tissues studied to date 5-phosphatase enzyme activity
has been found to be predominantly associated with particulate fractions

of cells, e.g. in bovine brain (Erneux et al., 1989), rat brain (Hansen et al.,

1987; Moon et al., 1989), rat liver (Joseph et al, 1985; Seyfred et al., 1984;

Shears et al., 1987a, 1988; Takimoto et al., 1989), turkey and human

erythrocytes (Morris et al., 1987; Shears et al., 1987b) and guinea-pig
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macrophages (Kukita et al., 1986). There are however, some notable

exceptions: the 5-phosphatases from human platelets (Connolly et al.,

1985), rabbit peritoneal neutrophils (Kennedy et al., 1990) and porcine

skeletal muscle (Hansbro et al., 1994) are all predominantly soluble while

the activity in porcine coronary artery (Sasaguri et al., 1985) and bovine
iris smooth muscle (Wang et al., 1994) appear to be fairly evenly

distributed between the soluble and particulate fractions of the cell.
Given this diversity of 5-phosphatase enzyme distribution, the BTSM

Ins(l,4,5)P3 5-phosphatase activity was studied in both a cytosolic and a

detergent-solubilised membrane fraction. Nonidet P40 was the detergent

chosen to solubilise the membrane-associated BTSM 5-phosphatase since

it has been utilised successfully in the solubilisation of 5-phosphatases
from bovine testes (Hodgkin et al., 1991) and rat liver microsomes

(Takimoto et al., 1989).

4.3.1 Determination of optimal conditions for the study of inositol 1,4,5-

trisphosphate 5-phosphatase activity

Preliminary experiments were conducted using both cytosolic and
solubilised membrane preparations in order to determine conditions in

which linear metabolism of Ins(l,4,5)P3 could be achieved. BTSM cell

extracts were incubated at various dilutions with [3H]Ins(l,4,5)P3 for 0-20

min in the absence of added ATP to prevent phosphorylation (see section

2.10.2) and the conversion of [3H]Ins(l,4,5)P3 to [3H]Ins(l,4)P2 was

monitored by measuring the increase in label into [3H]Ins and [3H]InsPi-2

(separated by Dowex AG 1-X8 anion-exchange chromatography). A 50-

fold dilution of the cytosol extract preparation (final protein

concentration = 0.167 ± 0.017 mg/ml) provided linear metabolism for

approximately 10 min, while a 75-fold dilution of the solubilised
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membrane extract (final protein concentration = 0.078 ± 0.004 mg/ml) was

required for linear metabolism over 5 min (figure 4.3.1). Since a 5 min

incubation of [3H]Ins(l,4,5)P3 with the membrane extract resulted in a

high percentage (63.85 ± 0.85 %) of substrate being metabolised, the

incubation period was reduced to 2 min for subsequent experiments.

4.3.2 Effect of calcium ions on the soluble and membrane-associated

inositol 1,4,5-trisphosphate 5-phosphatase activities

In order to address the effect of Ca2+ ions on the metabolism of

[3H]Ins(l,4,5)P3 by the soluble and membrane-associated BTSM 5-

phosphatases, incubations were carried out as described in section 4.3.1 in

the presence of varying [Ca2+]frcc (0-1 mM). The results are illustrated in

figure 4.3.2. It would appear that Ca2+ ions have very little effect over a

physiologically relevant range, however a statistically significant increase
in both the soluble and membrane-associated 5-phosphatase activity was

observed in the presence of 1 mM [Ca2+]frce.

4.3.3 Determinations of kinetic parameters of soluble and membrane-

associated inositol 1,4,5-trisphosphate 5-phosphatase

[3H]Ins(l,4,5)P3 was incubated at 37 °C with either BTSM cytosol or

membrane extract under conditions which exhibit linear substrate

metabolism (see section 4.3.1), in the presence of competing unlabelled

Ins(l,4,5)P3 and varying [Ca2+]frec ('zero', 1 pM and 1 mM). The results

are illustrated as Eadie-Hofstee plots (figure 4.3.3) and the calculated Km

and Vmax values for the soluble and particulate 5-phosphatase activities
are shown in table 4.3.3. The Km values determined for both the soluble

and particulate enzymes were very similar whereas the Vmax value was

much greater for the particulate enzyme. Increasing [Ca2+]frec from 'zero'

to 1 pM did not affect the KIT1 or Vmax values of either the soluble or
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(a) Cytosol extract

(b) Solubilised membrane extract o Heat-inactivated
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Figure 4.3.1 [3H]Ins(l,4,5)P3 metabolism by BTSM 5-phosphatase
[3H]Ins(l/4/5)P3 (12,000 DPM) was incubated at 37 °C with a 50-fold or 75-
fold dilution of BTSM cytosol or membrane extract (2.10.1) respectively
(2.10.2). Reactions were terminated at the times indicated and the

[3H]InsP fractions in neutralised extracts (2.4.2) separated by Dowex
chromatography (2.6.2). Data represents the mean ± SEM of a single
experiment performed in triplicate. Where not shown, error bars lie
within symbols.
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Figure 4.3.2 Effect of Ca2+ ions on the BTSM Ins(l,4,5)P3 5-phosphatase
[3H]Ins(l/4/5)P3 (12,000 DPM) was incubated at 37 °C with a 50- or 75-fold
dilution of BTSM cytosol or membrane extract (2.10.1) respectively
(2.10.2). Reactions were terminated after (a) 10 or (b) 2 min and [3H]InsP
fractions in neutralised TCA extracts (2.4.2) separated by Dowex
chromatography (2.6.2). Data represent the mean ± SEM of (a) three or (b)
two experiments, each performed in triplicate. Two or three separate
solubilised membrane or cytosol extracts were used respectively.
* * Denotes p < 0.01 for comparisons with data obtained in Ca2+-free
buffer (two-tailed, unpaired students' t-test).
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Figure 4.3.3 Eadie-Hofstee analysis of BTSM 5-phosphatase activities
[3H]Ins(l,4,5)P3 (12,000 DPM) was incubated at 37 °C with 50- or 75-fold
dilutions of BTSM cytosol or membrane extract (2.10.1) respectively in the
presence of 1-40 pM competing unlabelled Ins(l,4,5)P3 (2.10.3). Reactions
were terminated after (a) 10 or (b) 2 min and [3H]lnsP fractions in TCA
extracts (2.4.2) separated by Dowex chromatography (2.6.2). Data
represents the mean ± SEM of three separate experiments, each
performed in duplicate, using three separate cytosol and membrane
extract preparations
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Soluble
enzyme

Particulateenzyme

[Ca2+]free

Km

Vmax

Km

Vmax

(pM)

(nmolmin"3mgprotein"3)
(pM)

(nmolmin"3mgprotein"3)

0

18.7±1.9

9.05±1.07

17.7±2.2

50.02±6.09

1pM

16.7±1.5

8.04±1.47

14.7±1.9

44.86±4.70

1mM

3.3±1.2*

2.10±0.15*

1.3±0.7*

6.97±1.07*

Table4.3.3EffectofcalciumionsontheKmandVmaxvaluesofthesolubleandparticulatebovinetrachealsmoothmuscle inositol1,4,5-trisphosphate5-phosphataseactivities [3H]Ins(l,4/5)P3(12,000DPM)wasincubatedwith50-or75-folddilutionsofBTSMcytosolormembraneextract(2.10.1) respectivelyinthepresenceof1-40pMcompetingunlabelledIns(l,4,5)P3(2.10.3).Reactionswereterminatedafter(a)10or (b)2minandthe[3H]InsPfractionsinTCAextracts(2.4.2)separatedbyDowexAG1-X8anion-exchangechromatography (2.6.2).Increasesinradioactivityassociatedwith[3H]Insand[3H]InsPi-2wereusedasanindexof5-phosphataseacitivty. KmandVmaxvaluesweredeterminedusingEadie-Hofsteeplots.Datarepresentsthemean±SEMfromthreeseparate experiments,eachperformedinduplicate,usingthreeseparateBTSMcytosolormembraneextracts.*Denotesp<0.05for comparisonswithdataobtainedinCa2+-freebuffer(two-tailed,pairedstudent'st-test).



particulate 5-phosphatase. However, Eadie-Hofstee analysis
demonstrated a statistically significant decrease in both the Km and Vmax

of the enzymes in the presence of 1 mM Ca2+. It is unclear if this reflects a

real regulation of 5-phosphatase activity by Ca2+ since the Eadie-Hofstee

plot deviates from a straight-line under these conditions (indicating non¬

standard Michaelis-Menten kinetics). These latter results may reflect a

degree of co-operativity exhibited by the 5-phosphatase in the presence of
1 mM Ca2 + or may simply be due to indirect effects of the

unphysiologically high Ca2+ concentration used.

4.4 DISCUSSION

The kinetic parameters of the Ins(l,4,5)P3 3-kinase an 5-phosphatase

enzymes have been determined in detail in cell free extracts of BTSM.

Ca2+ ions exerted very little effect on the 3-kinase and 5-phosphatase

activities over a physiologically relevant concentration range, although

both enzymes appeared to be stimulated in the presence of a much higher

(1 mM) Ca2+ concentration. The enzymes were subsequently
characterised further in order to obtain Km and Vmax values for

Ins(l,4,5)P3 metabolism at 'zero', 1 gM and 1 mM [Ca2 + ]free

concentrations.

The 3-kinase is generally understood to be a Ca2+-regulated enzyme with

increases in [Ca2+] causing an increase in the Vmax of the enzyme via its

interaction with calmodulin. Activation appears to occur across a narrow

range of Ca2+ concentrations (Biden et al., 1988a; Imboden and Pattison,

1987; Morris et al., 1987; Ryu et al., 1987), a property that is a common

feature of calmodulin-stimulated enzymes. However, maximum

stimulation of the 3-kinase by Ca2+ is generally only 2-3 fold, provided
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[Ca2+]frce is at least 1 |iM (Balla et al., 1988; Biden et al., 1988a; Biden and

Wollheim, 1986; Johanson et al., 1988; Kimura et al., 1987; Morris et al.,

1987; Renard and Poggioli, 1987) and hence the physiological significance
of Ca2+-mediated regulation may need to be questioned. The data
obtained from the experiments described in this chapter, performed in

the presence of calpain inhibitors, argue that the intact soluble BTSM 3-

kinase kinetic parameters are unaffected by increases in [Ca2+] over a

physiological range. An increase in Vmax (from 362 to 489 pmol min"1

mg protein*1) was observed in the presence of 1 mM [Ca2+]frcc but found
to be statistically insignificant. Experiments conducted in pig aortic

smooth muscle (Yamaguchi et al., 1987), guinea-pig peritoneal

macrophages (Kimura et al., 1987), human platelets (Daniel et al., 1988),

insulin-secreting RINm5F cells (Biden et al., 1987) and rat brain

(Johanson et al., 1988) indicate that the purified 3-kinase is only regulated

by Ca2+ ions in the presence of added exogenous calmodulin. The

experiments described here however, utilised a crude BTSM cytosol

extract as a source of 3-kinase activity; the enzyme would therefore be

expected to have access to endogenous BTSM calmodulin.
It is possible that calpain acts as a regulator of the 3-kinase in vivo by
selective proteolysis of the enzyme. Even when cell-extracts are prepared
in the presence of a battery of protease inhibitors many contain a number
of differently sized peptides which exhibit 3-kinase activity (Choi et al.,

1990; Lee et al., 1990; Lin et al., 1990; Takazawa et al., 1989, 1991a). Indeed

Lee et al., (1990) identified several calpain proteolysis products of the rat

brain 3-kinase which surprisingly retained catalytic activity; moreover,

the specific activity of the 40 KDa enzyme obtained in this study was

slightly higher than that of the parent 53 KDa enzyme. In summary

therefore, when prepared in the presence of calpain-inhibitors, BTSM
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cytosol extract contains a 3-kinase activity which does not appear to be
modulated by Ca2+. Clearly this does not preclude a regulation of the 3-

kinase by Ca2+ ions in vivo: calpain may be activated during the agonist-
stimulated response and may partially degrade the 3-kinase to form

smaller proteins which retain enzyme activity but have altered regulatory

properties; alternatively Ca2+ may stimulate other enzymes (e.g. PKC)
which could in turn regulate 3-kinase activity.

The Km calculated for the soluble BTSM 3-kinase was 2.49 ± 0.45 pM. This

figure is very comparable to that obtained in the same tissue by Chilvers

(1991). Km values determined for the 3-kinase from other sources are

shown in table 4.4.1. In the majority of tissues a Km value of between 0.2

and 2 pM was observed; the Km for the BTSM 3-kinase hence lies at the

top of this range and therefore this enzyme can be considered to have a

relatively low affinity for Ins(l,4/5)P3. In a few of the tissues studied

however, a higher range of Km values, between 5 and 11 pM, were

determined. It is possible that these variations could represent

alternative isozymes. The high resting concentration of Ins(l,4,5)P3 in

BTSM may explain the relatively low affinity of the BTSM 3-kinase for

Ins(l,4,5)P3, as this may be required in order to prevent its constitutive

activation.

It is not generally possible to compare Vmax values from different studies,

since this parameter is dependent on the specific activity of the enzyme

and therefore the purity of the enzyme preparation. The BTSM cytosol
extract utilised in the present study however, was prepared according to a

similar protocol used by Chilvers (1991), and hence the Vmax value

obtained by this author (385 pmol min-1 mg protein-1) can be readily

compared to that described here (362 ± 56 pmol min-1 mg protein-1).
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Kmfor

Sourceof3-kinaseactivity
Ins(l,4/5)P3

Reference

(pM)

rabbittrachealsmoothmuscle
5.0

Rosenbergetal.,1991

porcineaorticsmoothmuscle
0.4

Yamguchietal.,1988

ratheart

5.61

RenardandPoggioli,1987

porcineskeletalmuscle

0.42

Fosteretal.,1994

bovinebrain

0.7

Ryuetal.,1987

bovinebrain

1-2

Takazawaetal.,1989

ratbrain

1.3*

Simetal.,1990

ratbrain

11

Takazawaetal.,1990a

ratbrain

8.8

Takazawaetal.,1990b

ratbrain

0.21

Johansonetal.,1988

ratbrain

0.6

Irvineetal.,1986

humanhippocampus

1.6

Takazawaetal.,1991b

humanplatelets

0.76

Linetal.,1990

bovineadrenalcortex

0.4

Ballaetal.,1988

humanJurkatcells

0.2

ImbodenandPattison,1987

RINm5Fcells

1.5

Bidenetal.,1986

Table4.4.1Affinityof3-kinaseenzymesforinositol1,4,5-trisphosphate
*Thisstudyutilisedcalpaininhibitorsduringtheenzymepurificationprocedure.



The kinetic parameters of both the soluble and particle-associated BTSM

5-phosphatases were found to be unaffected by physiologically relevant

Ca2+ concentrations, however the Km and Vmax values were both

dramatically decreased in the presence of 1 mM [Ca2+]free. These results

are in accordance with data obtained in human platelets (Mitchell et al.,

1989), rabbit peritoneal neutrophils (Kennedy et al., 1990), human

placenta (Laxminarayan et al., 1993), and rat liver (Takimoto et al., 1989)
where no effect of Ca2+ was seen over a physiological Ca2+ range but

gradual inhibition was observed at higher Ca2+ concentrations. The

stimulation of the BTSM Ins(l,4,5)P3 5-phosphatase activity noted at 1

mM [Ca2+]frcc in the absence of added competing unlabelled Ins(l,4,5)P3

(see section 4.3.2) probably reflects the increased affinity of this enzyme for

Ins(l,4,5)P3 (i.e. the lowered Km), since an extremely low concentration of
substrate (-1-1.5 nM) is available to the enzyme under these conditions
and the Vmax is therefore highly unlikely to be attained.

The Km values obtained for Ins(l,4,5)P3 dephosphorylation by both the
soluble and particle-associated 5-phosphatase enzymes are very similar

suggesting that these two enzyme activities may represent the same

protein. These results are reminiscent of previous data in which the

kinetic and physical properties of the Type la soluble 5-phosphatase and

particulate 5-phosphatase activities were found to be remarkably similar

(Erneux et al., 1989; Takimoto et al., 1989). It is likely therefore that the
BTSM 5-phosphatase activities identified here in BTSM are of a Type la

classification (i.e. hydrolyse both Ins(l,4,5)P3 and Ins(l,3,4,5)P4). It is clear
that an enzyme exists in BTSM capable of converting Ins(l,3,4,5)P4 to

Ins(l,3,4)P3 (see chapter 3); whether this 5-phosphatase activity is the
same as that characterised in the present chapter remains to be
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determined. It would be interesting to carry out further kinetic

experiments to characterise the Ins(l,3,4,5)P4 5-phosphatase.

The much higher Vmax value of the Ins(l,4,5)P3 5-phosphatase in BTSM

membrane extracts than in cytosol extracts is indicative of a concentration

of the enzyme in the particulate fraction. In agreement, the 5-

phosphatase has been found to be predominantly particulate in most

systems studied to date, and in liver has been localised to the cytoplasmic

face of the plasma membrane (Seyfred et al., 1984; Shears et al., 1987b,

1988; Joseph et al., 1985).
The Km values determined for the 5-phosphatase from various sources

are shown in table 4.4.2; the affinity of the enzyme for Ins(l,4,5)P3 is

highly variable with Km values ranging from 1 to 95 (iM. Although the

Km for Ins(l,4,5)P3 metabolism determined in BTSM (-12-20 (iM) is in

close agreement with those observed in rat liver membranes, human

erythrocyte membranes, human platelet cytosol, rabbit peritoneal

neutrophil cytosol and rat pancreatic islets, it is dramatically lower than

determined in rabbit tracheal smooth muscle and slightly lower than that
of the bovine iris smooth muscle 5-phosphatase. Where Ins(l,4,5)P3 and

Ins(l,3,4,5)P4 metabolism by the 5-phosphatase have been studied in the

same tissue, the affinity of the enzyme for Ins(l,3,4,5)P3 is always much

higher than for Ins(l,4,5)P3 (with the exception of soluble Type II

isozymes, classified as such because they do not readily metabolise

Ins(l,3,4,5)P4); the Vmax values however, are much higher for Ins(l,4,5)P3r

generally 10-15 fold higher, with the notable exception of the soluble type

I enzyme from porcine skeletal muscle which has a 28-fold greater Vmax

for Ins(l,4,5)P3 than for Ins(l,3,4,5)P4.
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Sourceof5-phosphataseactivity
Km(InsP3> (pM)

Km(InsP4> (pM)

vmax(InsP3):Vmax(InsP4) ratio

Reference

rabbittrachealsmoothmuscle

95.3

Rosenbergetal.,1991

bovineirissmoothmuscle

28.6

Wangetal.,1994

porcineskeletalmuscle:solubleTypela
8.9

1.1

28

Hansbroetal.,1994

solubleTypeII

71.4

Hansbroetal.,1994

particulate

46.3

1.9

Fosteretal.,1994

bovinebrain:solubleTypela

11

1

11.1

Erneuxetal.,1989

solubleTypeII

72

Erneuxetal.,1989

particulate

10

0.9

11

Erneuxetal.,1989

ratbrain:solubleTypela

6

0.8

11.5

Takimotoetal.,1989

solubleTypeII

8

130

0.02

Takimotoetal.,1989

ratbrain:solubleTypela

3.0

0.8

12.2

Hansenetal.,1987

solubleTypeII

18.3

>150

Hansenetal.,1987

humanfrontalcortex

65

DeSmedtetal.,1994

caninethyroid

28.3

3.4

11.4

Verjansetal.,1994

ratlivermembranefractions

-15

10-15

Shearsetal.,1988

ratliver(particulatefraction)

5

0.8

11.1

Takimotoetal.,1989

ratliver:plasmamembrane

1.4

Josephetal.,1985

cytosol

1.0

Josephetal.,1985

bovinetestis(particulate)

22

1.9

Hodgkinetal.,1994

humanerythrocytes(particulate)
14

1.1

Hodgkinetal.,1994

humanerythrocytemembranes

25

Downesetal.,1982

humanplatelets(75kDasolubleTypelb)
24

7.5

Mitchelletal.,1989

humanplatelets(40kDasoluble)
17

Connollyetal.,1986

humanplatelets(solublefraction)
30

Connollyetal.,1985

RINm5Fcells(particulatefraction)
-30

BidenandWollheim,1986

rabbitperitonealneutrophils(soluble)
18

(Kj=1.0pM)

Kennedyetal.,1990

humanplacentalmembranes

5

1.2

Laxminarayanetal.,1993

ratpancreaticislets

16

Ranaetal.,1985

Table4.4.2Kineticparametersof5-phosphataseactivitiesfromvarioussources (InsP3andInsP4representIns(l,4,5)P3andIns(l,3,4,5)P4respectively).



The Ins(l,4,5)P3 3-kinase and 5-phosphatase enzymes have been

characterised in BTSM cell free extracts. Although the affinity of the
BTSM 3-kinase for Ins(l/4/5)P3 is relatively low compared to the enzyme

from other tissues, it is still much greater than that of the BTSM 5-

phosphatase; the 3-kinase pathway therefore is likely to be the favoured
route of Ins(l,4,5)P3 metabolism at low concentrations of this second

messenger. The 5-phosphatase however, has a greater capacity to

metabolise Ins(l,4,5)P3 than the 3-kinase (as exemplified by their Vmax

values). These kinetic properties of the Ins(l,4,5)P3 metabolising enzymes

may explain, at least in part, the observed flux of Ins(l,4,5)P3 through the

3-kinase and 5-phosphatase pathways following agonist stimulation. At

early time-points of the agonist-stimulated response the elevated

Ins(l,4,5)P3 concentration would be expected to favour metabolism

through the 5-phosphatase pathway whereas after 30 sec, when the

Ins(l,4,5)P3 concentration has decreased, the 3-kinase enzyme with its

higher affinity for Ins(l,4,5)P3 could be activated. Surprisingly both

enzymes appear to be relatively unaffected by Ca2+ ions over a

physiologically relevant range, however it is possible that Ca2+ may have
an indirect effect on their activity in vivo by modulating the activity of

other enzymes (e.g. calpain and PKC) which may interact with the 3-

kinase and 5-phosphatase.
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CHAPTER FIVE

REGULATION OF INOSITOL POLYPHOSPHATE

METABOLISM IN BOVINE TRACHEAL SMOOTH

MUSCLE

5.1 INTRODUCTION

As discussed in chapters three and four, a host of different regulatory-
factors could influence the routing of Ins(l,4,5)P3 metabolism through the
3-kinase and 5-phosphatase pathways. The experiments described in this

chapter were designed to address some of the potential mechanisms

underlying this regulation. One obvious but important factor which may

influence Ins(l,4,5)P3 metabolism is the concentration of this second

messenger itself. The enzyme kinetic experiments detailed in chapter
four show that the 3-kinase from BTSM has a much greater affinity for

Ins(l,4,5)P3 than does the 5-phosphatase and hence at low concentrations

of Ins(l,4,5)P3 the 3-kinase pathway would be expected to be the preferred
route of removal for this compound. To explore this hypothesis further,

experimental conditions were examined which could (or might be

predicted to) reduce the level of agonist-stimulated inositol phosphates
formed and hence the level of Ins(l,4,5)P3 accumulation. The effects of

stimulation with an alternative PIC-linked agonist aside from CCh,

activation of PKC with phorbol dibutyrate (PDBu), and the addition of p2"

adrenoceptor agonists or glucocorticosteroids on the accumulation of

[3H]InsPs was examined. The rationale behind these experiments is

discussed in more detail in sections 5.2-5. In addition to studying the

effects of a reduced Ins(l,4,5)P3 concentration, the differing assay

conditions also enabled the function of other possible regulatory
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processes to be addressed concurrently. For example, the use of two
different agonists could highlight the potential for receptor-mediated

and/or G-protein-mediated regulation of Ins(l,4,5)P3 metabolism. There

is very little data available regarding the effects of PKC activation on

[3H]InsP accumulation in ASM, and hence the data obtained in the

presence of PDBu is of particular interest, allowing the role of PKC in the

regulation of InsP formation and metabolism in this tissue to be

examined. In addition treatment with salmeterol, a long-acting P2-

adrenoceptor agonist, provides an important opportunity to explore the

relative importance of P2-adrenoceptor-mediated inhibition of InsP

formation to the relaxation of ASM. Furthermore, the use of both P2-

adrenoceptor agonists and the glucocorticosteroid dexamethasone may

provide some insight into the potential interaction of other hormones

and second messenger pathways with the InsP response in BTSM.

5.2 COMPARISON OF CARBACHOL- AND HISTAMINE-STIMULATED

INOSITOL POLYPHOSPHATE ACCUMULATION IN BTSM

Phosphoinositide hydrolysis is a mode of signal transduction utilised by
an extensive range of eukaryotic cell types in response to a wide variety of
stimuli (see Berridge, 1987; Berridge and Irvine, 1989; Rana and Hokin,

1990). The pattern, regulation and localisation of inositol polyphosphate

production is therefore likely to vary considerably in response to different
stimuli to allow this common signalling pathway to generate its vast

array of discrete effector events. In order to address whether Ins(l,4,5)P3

metabolism, or the pattern of InsPP accumulation differs following

stimulation with different PIC-linked agonists the accumulation of

[3H]InsPP in response to a prolonged stimulation with both Hist and CCh
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was assessed. These two compounds stimulate InsPP formation through

Hi-histaminergic (Barnes et al., 1986) and M3-muscarinic (Roffel et al.,

1990) receptors respectively and the different classes of receptors may well
recruit alternative subsets of G-proteins or PIC isozymes which could
influence the pattern of inositol polyphosphate formation.

[3H]Inositol labelled BTSM slices (2.3.1) were incubated with a maximally
effective concentration of either histamine (1 mM) or CCh (100 |iM) for 30

min in the presence of 5 mM LiCl and the accumulating [3H] InsPP
isomers isolated and separated using H.P.L.C. (as detailed in section 2.6.3).
As shown in table 5.2, stimulation of the BTSM slices with Hist resulted

in a reduced accumulation of [3H]InsPs compared to that following CCh
stimulation (31 % of the CCh response). This reduction in [3H]InsP
formation was associated with a statistically significant (p < 0.05, two-

tailed, unpaired student's t-test) change in the routing of Ins(l,4,5)P3

through the 3-kinase pathway (calculated as detailed in chapter three)
from 23.77 ± 1.80 % in the presence of CCh to 33.02 ± 2.38 % in the

presence of Hist. The proportional increase in 3-kinase activity observed
in the presence of Hist (compared to CCh) resulted in an increase in the
relative accumulation of [3H]Ins(l,3,4,5)P4 and hence may have important

implications in calcium signalling (see section 1.5.2). In addition the ratio

of [3H]Ins(l,4)P2 to [3H]Ins4P accumulation was greatly reduced in the

presence of Histamine compared to CCh. This latter result probably
reflects the uncompetitive nature of the inhibition of the InsPP 1-

phosphatase by LiCl, i.e. the smaller amount of [3H]Ins(l,4)P2 formed in

the presence of Hist decreases the effectiveness of Li+ inhibition and

results in an increased metabolism through this enzyme.
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[3H]Ins(x)PP

Control

%Totalradioactivity Histamine

CCh

-PDBu(n=3)
+PDBu(n=3)

-PDBu(n=3)
+PDBu(n=3)

-PDBu(n=5)
+PDBu(n=5)

1/3

32.50±2.72

29.21±2.59

30.28±1.98

31.77±3.11

21.46±1.66

24.42±1.13

4

38.01±5.44

23.32±1.97

61.29±3.14

58.24±5.01

60.35±3.13

57.82±2.75

1/3

1.65±0.20

1.67±0.39

1.05±0.12

1.01±0.19

0.94±0.09

1.02±0.11

1,4

10.92±1.64

19.85±2.05

5.26±1.16

5.29±1.24

15.02±1.75

14.44±2.64

3,4

3.20±0.58

3.50±0.67

0.33±0.03

0.62±0.06

0.30±0.02

0.36±0.02

4,5

0.03±0.01

0.18±0.08

0.18±0.07

0.09±0.04

0.94±0.07

0.80±0.13

1,3,4

1.69±0.29

2.38±0.27

0.76±0.22

0.86±0.40

0.62±0.08

0.78±0.13

1,4,5

5.34±0.81

10.03±2.15

0.35±0.09

0.93±0.20

0.17±0.04

0.16±0.03

2,4,5

0.22±0.04

0.80±0.16

0.02±0.01

0.05±0.03

0.01±0.003

0.01±0.004

InsP4

5.57±0.64

7.11±1.27

0.38±0.07

0.98±0.22

0.18±0.01

0.18±0.02

3-kinasc metabolites

45.55±2.06

50.41±3.80

33.02±2.38

35.69±3.90

23.77±1.80

27.85±1.74

5-phosphatase metabolites

54.45±2.06

49.59±3.80

66.98±2.38

64.31±3.90

76.23±1.80

72.15±1.74

DPM/50pislices
7,405±2,461

4,003±607

130,373±26,960
36,570±6,250
413,901±57,508
365,115±56,159

Table5.2Effectofphorboldibutyrateoncarbachol-andhistamine-stimulated[3H]inositolpolyphosphateaccumulation [3H]Inositolpre-labelledBTSMslices(2.3.1)werepre-incubatedfor30minat37°Cwith100nMPDBuorvehiclepriorto histamine-(1mM)orCCh-(100pM)stimulation(30min)inthepresenceof5mMLiCl.[3H]InsPPsinpooledtriplicate TCAextracts(2.4.2)wereseparatedusingaPartisphere5SAXH.P.L.C.column(2.6.3)andquantifiedbyliquidscintillation counting.Resultsrepresentthemean±SEMofnseparateexperiments.Ins(4,5)P2andIns(2,4,5)P3accumulationswere notincludedinthe3-kinaseand5-phosphatase'routing'calculationsastheirmetabolicoriginsareuncertain.



5.3 PROTEIN KINASE C-MEDIATED REGULATION OF CARBACHOL-

AND HISTAMINE-STIMULATED INOSITOL POLYPHOSPHATE

ACCUMULATION IN BOVINE TRACHEAL SMOOTH MUSCLE.

PKC proteins represent a large family of isoenzymes which appear to

differ markedly in their tissue expression, substrate specificity, and mode

of activation (see Hug and Sarre, 1993). To date ten different PKC

isoenzymes have been identified which can be classified into those

requiring Ca2+ for activation (the Ca2+-dependent or cPKCs) including the

09 Pi/ P2 and y isoforms, the Ca2+-independent or novel PKCs (nPKCs)

including the 5, £, r\ and 9 isoforms, and the atypical (aPKCs) which are

not activated by phorbol ester and include the and A. isoforms.
A wealth of evidence has accumulated to suggest that activation of PKC

may inhibit receptor-stimulated phosphoinositide hydrolysis. For

example activation of cPKC/nPKC with either phorbol esters or stable

analogues of DAG has been shown to inhibit the agonist-stimulated
inositol phosphate response in a range of cell types including Hist-, CCh-
and GTPyS-stimulated astrocytoma cells (Orellana et al., 1985, 1987),

angiotensin Il-stimulated rat aorta smooth muscle cells (Brock et al., 1985;
Pfeilschifter et al., 1989), CCh-stimulated PC12 cells (Vincentini et al.,

1985) Hist- and bradykinin-stimulated adrenal chromaffin cells (Boarder
and Challiss, 1992), epidermal growth factor-, angiotensin II- and
adrenaline-stimulated hepatocytes (Johnson and Garrison, 1987; Lynch et

al., 1985) thrombin-stimulated platelets (Rittenhouse and Sasson, 1985)
and CCh-stimulated intestinal smooth muscle (Prestwich and Bolton,

1995). Moreover, the addition of purified PKC to astrocytoma cell

membrane preparations has been shown to mimic the effects of phorbol

myristate acetate (PMA) in decreasing agonist-stimulated [3H]InsP3

production (Orellana et al., 1987), while inhibition (Boarder and Challiss,
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1992; King and Rittenhouse, 1989) or down-regulation (Pfeilschifter et ah,

1989) of PKC activity have the opposite effect.

A similar phorbol ester-mediated regulation of phosphoinositide

hydrolysis has also been demonstrated in airways smooth muscle where

both muscarinic- and histaminergic-stimulated accumulation of InsP is

markedly attenuated in the presence of phorbol ester (Baba et ah, 1989;

Murray et ah, 1989; Yang et ah, 1994). In order to ascertain whether PKC
activation could influence InsPP metabolism in BTSM and whether or

not such an effect could discriminate between CCh- and Hist-stimulated

responses, [3H]InsPP accumulation was monitored following a 30 min

pre-incubation with 0.1 nM - 10 pM PDBu.

5.3.1 Differential effect of phorbol dibutyrate on carbachol- and histamine-

stimulated [3H]inositol phosphate accumulation

The effect of a 30 min pre-incubation of BTSM slices with various

concentrations of PDBu (0.1 nM - 10 pM) on CCh (100 pM)- and

Histamine (1 mM)-stimulated [3H]InsP generation is illustrated in figure
5.3.1. Both the CCh- and Hist-stimulated [3H]InsP responses were

inhibited by PDBu treatment in a concentration-dependent manner. The
Hist response was decreased by as little as 1 nM PDBu and could be

completely abolished (99.1 ± 0.6 % inhibition) with 10 pM PDBu (IC50 = 5

nM). The CCh-stimulated [3H]InsP response was far more resistant to

inhibition by PDBu pre-treatment with detectable inhibition only being

observed at concentrations greater than 10 nM, and a 'maximal'

inhibition of 75.7 ± 1.6 % (IC50 = 230 nM).
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Figure 5.3.1 Phorbol dibutyrate concentration-response curve for
carbachol- and histamine-stimulated [3H]inositol polyphosphate
accumulation in bovine tracheal smooth muscle.

[3H]Inositol pre-labelled bovine tracheal smooth muscle slices (2.3.1) were
pre-incubated for 30 min with 5 mM LiCl and the indicated concentration
of PDBu prior to a 30 min stimulation with either 100 pM CCh or 1 mM
Hist. Total [3H]InsPs were separated from neutralised TCA extracts (2.4.2)
by Dowex AG 1 X-8 anion-exchange chromatography (2.6.1) and
quantified by liquid scintillation counting. Results are expressed as the
percentage maximal [3H]InsPP response (415434 ± 39930 and 162121 ± 5066
DPM/50 pi BTSM slices for CCh and Hist respectively), and represent the
mean ± SEM of three separate experiments, each performed in duplicate.
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5.3.2 Effect of phorbol dibutyrate on carbachol- and histamine-stimulated

inositol 1,4,5-trisphosphate mass and [3H]inositol 1,4,5-trisphosphate

metabolism

Since pre-treatment of BTSM slices with PDBu can inhibit, albeit it to a

different extent, the CCh- and Hist-stimulated total [3H]InsP responses, it

might be expected that this agent may also decrease the peak
concentration of Ins(l,4,5)P3 accumulation in response to these agonists.

This prediction is based on the assumption that PKC activation results in

receptor-PIC uncoupling (e.g. Murray et al., 1989; Orellana et al., 1987),
unlike the inhibition of agonist-stimulated [3H]InsP accumulation

observed with p?-adrenoceptor stimulation that results in inhibition of
the sustained but not immediate phase of PtdIns(4,5)P2 hydrolysis

(Challiss and Boyle, 1994). Such a proposal is also supported by the
observation that the response to maximally effective (1 mM) Hist

stimulation of BTSM is approximately 30 % of that following maximally
effective (100 pM) CCh stimulation for both total [3H]InsP accumulation

over 30 min (see table 5.2) and Ins(l,4,5)P3 mass at 5 sec (Chilvers et al.,

1989b). In addition, the concentration-response curves for CCh-

stimulated [3H]InsP accumulation (see figure 2.3.1.1; Chilvers et al., 1994b)
and Ins(l,4,5)P3 accumulation (Chilvers et al., 1989b) are near identical.

Indeed data obtained by Chilvers (personal communication, see figure

5.3.2.1) show that the peak Ins(l,4,5)P3 response in CCh-stimulated BTSM

slices is reduced by 36.9 ± 2.5 % following a 30 min pre-incubation with 1

pM PDBu. This data correlates closely with the above [3H]InsP
accumulation data (figure 5.3.1).
As described earlier, small alterations in the concentration of Ins(l,4,5)P3

may in itself have a significant influence on the routing of this second

messenger through the 3-kinase and 5-phosphatase pathways. In order to
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Figure 5.3.2.1 Effect of phorbol dibutyrate on carbachol-stimulated inositol
1,4,5-trisphosphate mass in bovine tracheal smooth muscle
BTSM slices (2.2) were pre-incubated for 30 min in oxygenated KHB in the
presence or absence of 1 pM PDBu (2.7.1) prior to further incubation with
either CCh (100 pM) or vehicle. Reactions were terminated at the
indicated time-points with 1 M TCA and the Ins(l,4,5)P3 present in
neutralised extracts (2.4.2) quantified using a radioreceptor assay (2.7.3).
Results represent the mean ± SEM of three separate experiments, each
performed in triplicate.
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assess the effect PDBu could have on the metabolism of Ins(l,4,5)P3 by the
3-kinase and 5-phosphatase enzymes a concentration of PDBu (100 nM)
was chosen that could facilitate a measurable decrease in the CCh-

stimulated [3H]InsP response while still permitting a significant Hist-
stimulated response. The effect of 100 nM PDBu pre-treatment on the
accumulation of the individual [3H]InsPP isomers in response to

prolonged CCh- and Hist stimulation is shown in table 5.2, and the flux of

[3H]Ins(l,4,5)P3 through the 3-kinase and 5-phosphatase pathways
illustrated in figure 5.3.2.2. PDBu (100 nM) pre-treatment results in a

71.05 ± 3.75 % reduction in the total [3H]InsP response to Hist, and a 30.88

± 14.15 % and a 12.53 ± 2.17 % reduction of the [3H]InsP response in
control and CCh-stimulated slices respectively. It is clear from this data
that although there is a trend in all experiments undertaken in the

presence of PDBu for more [3H]Ins(l,4,5)P3 to be metabolised via the 3-

kinase route, this does not reach statistical significance. These results
exclude any major influence of PKC stimulation on Ins(l,4,5)P3 routing
over a 30 min agonist stimulation period.

5.4 P2-ADRENOCEPTOR AGONIST-MEDIATED REGULATION OF

CARBACHOL- AND HISTAMINE-STIMULATED [3H]INOSITOL

PHOSPHATE ACCUMULATION IN BOVINE TRACHEAL SMOOTH

MUSCLE

It is well documented that agents which elevate the tissue cAMP

concentration in ASM including ^-adrenoceptor agonists can inhibit

spasmogen-induced contraction and initiate relaxation in tissue pre¬

contracted with a range of agonists (e.g. Ellis et al., 1995; Francis et al.,

1988; Gorenne et al., 1995; Torphy et al., 1985, 1988). Tracheal smooth
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Figure 5.3.2.2 Effect of phorbol dibutyrate on [3H]inositol 1,4,5-
trisphosphate routing through the 3-kinase and 5-phosphatase pathways
[3H]Inositol pre-labelled BTSM slices (2.3.1) were pre-incubated for 30 min
at 37 °C with 100 nM PDBu prior to histamine- (1 mM) or CCh- (100 pM)
stimulation (30 min) in the presence of 5 mM LiCl. [3H]InsPPs in pooled
triplicate extracts (2.4.2) were separated using a Partisphere 5 SAX H.P.L.C.
column (2.6.3) and quantified by liquid scintillation counting. Results are

expressed as the proportion of [3H]Ins(l,4,5)P3 metabolised by the 3-kinase
and phosphatase pathways (see section 3.4.1) and represent the mean ±
SEM of n separate experiments.
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muscle from a number of tissues expresses both Pi- and p2-adrenoceptors,

predominantly P2, coupled to adenylyl cyclase (Barnes et al., 1983c;

Popovich et al., 1984). The p-adrenoceptor agonists salmeterol and
salbutamol exhibit very high P2- versus pi-selectivity (e.g Dougall et al.,

1991). Salmeterol, (a derivative of salbutamol with a long, flexible,

lipophilic N-substituted side-chain) is a designer P2-adrenoceptor agonist,

specifically formulated to provide long-acting P2-adrenoceptor
stimulation (see Johnson et al., 1993; Jack, 1991 and references therein).

By virtue of its lipophilic side-chain, salmeterol is thought to bind non-

competitively to an exo-site deep within the hydrophobic core of the

receptor protein. This agent does not therefore readily dissociate from the

membrane and is capable of producing both persistent, non-desensitising

relaxation of ASM in vitro (Johnson et al., 1993) and long-lasting (> 12 h)
bronchodilatation in vivo, (see Jack, 1991) Salmeterol (Salm) and

salbutamol (Salb) have been characterised as partial agonists (with respect

to adrenaline and isoprenaline) for P-adrenoceptor stimulation of cAMP
accumulation (Dougall, et al., 1991), although the potency of Salm for
relaxation is similar to that of isoprenaline in guinea-pig trachea and

human bronchus (Ball et al., 1991; Bradshaw et al., 1987). The availability
of highly selective p2-adrenoceptor agonists with very different kinetics
with respect to the duration of relaxation (both in vivo and in vitro)
affords an opportunity to re-assess the likely relative importance of p-

adrenoceptor-mediated inhibition of PtdIns(4,5)P2 hydrolysis to ASM
relaxation.
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5.4.1 Comparison between effects of salmeterol and salbutamol on

agonist-stimulated [3H]inositol phosphate accumulation in bovine
tracheal smooth muscle

To permit a subsequent comparison between the effects of Salm and Salb
on the duration of inhibition of Hist-stimulated [3H]InsP accumulation

initial experiments were performed to investigate the potency of these
two (^-adrenoceptor agonists on agonist-stimulated [3H]InsP
accumulation. BTSM slices were pre-treated for 30 min with either Salm

(0.01-100 nM) or Salb (3 nM - 1 pM) prior to stimulation for 30 min with
Hist (1 mM) or CCh (100 pM). The CCh-stimulated [3H]InsP response was

unaffected by Salm (see figure 5.4.1.1), whereas the Hist-stimulated

[3H]InsP response was significantly attenuated by both Salm and Salb (see

figures 5.4.1.1 and 5.4.1.2). Salm was more potent (IC50 = 0.24 ± 0.9 nM)
than Salb (IC50 = 10.8 ± 2.9 nM) in inhibiting the Hist-stimulated [3H]InsP

response. These potencies correlate well with those obtained in a

comparable system by Ellis and co-workers (1995) where IC50 values of 1.4
nM and 13.8 nM were obtained for Salm- and Salb-mediated inhibition of

Hist-stimulated [3H]InsP accumulation respectively. These authors noted
that the maximal inhibitory effect of the two p-adrenoceptor agonists (~
60 % inhibition) on the [3H]InsP response were not significantly different.
While Salm appeared to be more effective in inhibiting Hist-stimulated

[3H]InsP accumulation than Salb in the present study (maximal
inhibition = 59.8 ± 1.8 % and 49.5 ± 1.8 % for Salm and Salb respectively)

this difference did not reach statistical significance and the results are

therefore in close agreement with Ellis and co-workers. Similarly, the

maximal inhibitory effect of Salb and isoprenaline on Hist-stimulated

[3H]InsP formation were not found to differ (66 % and 68 % respectively)
in BTSM (Hall and Hill, 1988). The latter study did however observe a

171



c
o

OS

100 -
T

o
VJ

M ©« Q.

Ol <5
W u
■n —

Q. C5
V3 P
© .5
x: x
Q. OS

_ E
o

C/3 . -

o
C

ac

75-

50-

25 -

0-1

T

Salm

h Salm

1

Control Hist

Agonist

CCh

Figure 5.4.1.1 Effect of salmeterol on prolonged (30 minute) carbachol-
and histamine-stimulated [3H]inositol phosphate accumulation
[3H]Inositol labelled BTSM slices (2.3.2) were pre-incubated in 24 well
tissue culture plates for 30 min in the presence or absence of 100 nM
salmeterol. The slices were subsequently incubated (30 min) with 100 pM
CCh, 1 mM Hist or buffer in the presence of 10 mM LiCl. Total [3H]InsPs
were separated from neutralised TCA extracts (2.4.2) by Dowex AG 1-X8
anion-exchange chromatography (2.6.1) and quantified by liquid
scintillation counting. Results are exressed as the percentage of the CCh-
stimulated [3H]InsP response in the absence of salmeterol (449,424 ± 90,837
DPM/50 pi slices), and represent the mean ± SEM of five or six separate
experiments, each performed in duplicate. * Denotes p < 0.05 for
comparisons between salmeterol-treated and -unteated slices (two-tailed,
unpaired student's t-test).
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Figure 5.4.1.2 Salmeterol and salbutamol concentration-response curves
for inhibition of histamine-stimulated [3H]inositol phosphate
accumulation

[3H]Inositol labelled BTSM slices (2.3.2) in 24 well tissue culture plates
were pre-incubated for 30 min in the presence of the indicated
concentrations of either salmeterol or salbutamol. The slices were then

further incubated (30 min) with 1 mM Hist in the presence of 10 mM
LiCl. Total [3H]InsPs were separated from neutralised TCA extracts (2.4.2)
by Dowex AG 1-X8 anion-exchange chromatography (2.6.2) and quantified
by liquid scintillation counting. Results are expressed as the percentage
inhibition of the 1 mM Hist-stimulated [3H]InsP response in the absence
of added inhibitor (133,569 ± 26,928 DPM/50 pi slices) and represent the
mean ± SEM of three separate experiments, each performed in duplicate.
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lower potency of Salb for this effect (IC50 = 290 nM) than described here.
This discrepancy may reflect differences in the experimental conditions
since Hist and Salb were added simultaneously in the study by Hall and
Hill.

5.4.2 Time-course for salbutamol- and salmeterol-mediated inhibition of

histamine-stimulated [3H]inositol phosphate accumulation

While p2-adrenoceptor agonists are capable of relaxing ASM pre¬

contracted with a variety of agents, it would appear that the relative
extent of relaxation is dependent on both the contractile agonist (e.g.

Russell, 1984; Torphy et al., 1985) and the initial contractile state of the

tissue (Torphy, 1984). For example, muscarinic cholinoceptor-mediated
contraction is relatively resistant to P2-adrenoceptor-induced relaxation

(Hall et al., 1990; Madison and Brown, 1988; Offer et al., 1991). Salm and

Salb are unable to inhibit the [3H]InsP response to the muscarinic agonist

CCh but significantly attenuate the response to Hist in BTSM (see above).
In addition, these two p-adrenoceptor agonists exhibit a differential

inhibitory effect on both the [3H]InsP response (Figure 5.4.1.2) and the
contractile response (Ellis et al., 1995) stimulated by Hist. It is therefore

possible that the effects of Salm and Salb on [3H]InsP accumulation may

explain, at least in part, their differential relaxant activity.
A close temporal correlation between the Salm- and Salb-mediated

relaxation of methacholine-induced tone and intracellular cAMP

accumulation has been observed in BTSM (Ellis et al., 1995). In this

model Salm resulted in a slowly developing reversal of induced tone

accompanied by a progressive accumulation of cAMP, with both

responses maximal after 30-40 min. By contrast, Salb resulted in rapid
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effects on both induced tone and cAMP which were maximal within 5

min and declined thereafter. Hence the relaxant effects of P2-

adrenoceptor agonists in this model would seem to be secondary to

elevation of cAMP.

The time-course of Salm- and Salb-mediated inhibition of Hist-

stimulated [3H]InsP accumulation was investigated in order to address
whether or not the differential inhibition of phosphoinositide hydrolysis
could account for the long-term relaxant effects of Salm and the shorter-
term relaxant effects of Salb. [3H]Inositol pre-labelled BTSM slices were

incubated with the ^-adrenoceptor agonists or buffer for 0-24 h prior to a

30 min stimulation with Hist, and the resulting accumulation of

[3H]InsPs quantified. Figure 5.4.2 shows that while the [3H]InsP response

was highly sensitive to short-term treatment with both [^-adrenoceptor

agonists, the [3H]InsP response gradually recovered at later time-points

and no inhibition of Hist-stimulated [3H]InsP accumulation was observed

12 h after Salm or Salb addition. At the earliest time-point analysed (1 h)
the inhibition of [3H]InsP accumulation was significantly greater in Salm-
treated BTSM slices than in those treated with Salb. At later time-points

(3, 6, 12 and 24 h) however, no such differential inhibition was evident.

Control values for Hist-stimulated [3H]InsP accumulation remained

remarkably constant over the duration of the time-course (data not

shown).
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Figure 5.4.2 Time-course of salmeterol and salbutamol inhibition of
histamine-stimulated [3H]inositol polyphosphate accumulation
[3H]Inositol labelled BTSM slices (2.3.2) were pre-incubated for the times
indicated with concentrations of Salm or Salb (100 nM and 5 pM
respectively) that gave equivalent (maximal) inhibition of Hist-
stimulated [3H]InsP accumulation after 30 min pre-incubation (see figure
5.4.1.2). The slices were then stimulated with 1 mM Hist for 30 min in

the presence of 10 mM LiCl. Total [3H]InsPs were separated from
neutralised TCA extracts (2.4.2) by Dowex AG 1-X8 anion-exchange
chromatography (2.6.1) and quantified by liquid scintillation counting.
Results are expessed as the percentage of the Plist-stimulated [3H]InsP
response in the absence of inhibitor and represent the mean ± SEM of
three separate experiments, each performed in triplicate. * Denotes p <
0.05 for comparisons between salmeterol and salbutamol treated slices
(two-tailed, paired student's t-test).
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5.4.3 Effect of salmeterol on carbachol- and histamine-stimulated inositol

1,4,5-trisphosphate mass

BTSM slices were incubated with a maximally effective concentration of

Salm for 30 min prior to stimulation with agonist and subsequent
measurement of Ins(l,4,5)P3 mass. In agreement with Chilvers and co¬

workers (1989b), CCh (100 pM) resulted in a transient increase in

Ins(l,4,5)P3 that was maximal at 5 sec and decreased to sub-basal values by
30 sec (data not shown). No difference was observed between Ins(l,4,5)P3

accumulation in control BTSM slices and those pre-treated with 100 nM

Salm (0-300 sec). Further experiments were conducted to establish the
effect of Salm pre-treatment on the peak (5 sec) Ins(l,4,5)P3 accumulation
in response Hist- and CCh. Data from freshly prepared BTSM slices and
tissue incubated overnight in RPMI medium were not significantly
different and were pooled for statistical analysis. Figure 5.4.3 shows that
Hist stimulation results in only a very modest increase in Ins(l,4,5)P3
accumulation at 5 sec, which is significantly inhibited by Salm pre-

treatment. The basal and CCh-stimulated accumulation of Ins(l,4,5)P3

however is unchanged by such treatment.

5.5 EFFECT OF DEXAMETHASONE ON CARBACHOL- AND

HISTAMINE-STIMULATED PHOSPHOINOSITIDE HYDROLYSIS IN

BOVINE TRACHEAL SMOOTH MUSCLE

In addition to inhibition of inflammatory mediator release (Bersenstein
et al., 1987; Fitzke and Dieter, 1991), glucocorticoids have also been shown

to modulate ASM responses to contractile agonists (e.g. Powell et al.,

1993). Furthermore, activation of glucocorticoid receptors with
dexamethasone (Dex) in RBL-2H3 cells (Berenstein et al., 1987) and
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Figure 5.4.3 Effect of salmeterol on peak (5 second) histamine- and
carbachol-stimulated Ins(l,4,5)P3 accumulation
BTSM slices (2.2) were incubated in the presence or absence of salmeterol
for 30 min at 37 °C in either oxygenated KHB or RPMI medium (2.7.1).
The slices were then further incubated for 5 sec with Hist (1 mM), CCh
(100 (iM) or buffer. Reactions were terminated with 1 M TCA and the
Ins(l,4,5)P3 present in neutralised TCA extracts (2.4.2) quantified using a

radioreceptor assay (2.7.3). Results are expressed as the percentage
Ins(l,4/5)P3 mass in control slices in the absence of salmeterol (17.0 ± 3.6

pmol/mg protein), and represent the mean ± SEM of 12 separate
experiments, each performed in duplicate or triplicate. * Denotes p < 0.05
for comparisons between salmeterol-treated and -untreated BTSM slices
(unpaired, two -tailed student's t-test).
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macrophages (Fitzke and Dieter, 1991) results in inhibition of agonist-
stimulated phosphoinositide hydrolysis. The latter study showed this

effect to be specific for glucocorticoids since cortisone exhibited a similar

action, but other steroids such as progesterone were without effect. These

authors concluded that the effect of dexamethasone on agonist-

stimulated phosphoinositide hydrolysis was due to an inhibition of the

incorporation of [3H]inositol into the membrane phospholipids rather
than an inhibition of PLC. Fitzke and Dieter (1991) demonstrated that

prolonged (> 6 h) exposure to dexamethasone was necessary for this

steroid to influence zymosan-stimulated phosphoinositide hydrolysis in

macrophages and also noted a similar time-dependent inhibition of

zymosan-stimulated InsP formation in response to protein- and RNA-

synthesis inhibitors. These results strongly suggest an indirect action of

glucocorticosteroids on phosphoinositides involving de novo synthesis
of proteins.

In order to address whether or not such a corticosteroid-mediated

inhibition of agonist-stimulated phosphoinositide hydrolysis could occur

in BTSM, the ability of Dex to influence CCh- and Hist-stimulated

accumulation of [3H]InsPs and incorporation of [3H]inositol into the

inositol phospholipids was assessed.

5.5.1 Effect of dexamethasone on carbachol- and histamine-stimulated

[3H]inositol phosphate accumulation

[3FI]Inositol-labelled BTSM slices were pre-incubated for 24 h with 1 pM

Dex prior to further incubation (30 min) with varying concentrations of
either CCh or Hist. The resulting accumulation of [3H]InsPs was

quantified and is illustrated in figure 5.5.1. Dex (1 (lM) had no effect on

[3H]InsP formation in response to either Hist (10 nM - 1 mM) or CCh (10
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Figure 5.5.1 Effect of dexamethasone on carbachol- and histamine-
stimulated [3H]inositol phosphate accumulation in bovine tracheal
smooth muscle

[3H]Ins labelled BTSM slices (2.3.2) were pre-incubated for 24 h with 1 pM
Dex prior to agonist stimulation (30 min) with 100 pM CCh or 1 mM Hist.
[3H]InsPs were separated from neutralised acidified
chloroform/methanol extracts (2.5.1) by Dowex AG 1-X8 anion-exchange
chromatography (2.6.1) and quantified by liquid scintillation counting.
Results represent the mean ± SEM of two-three separate experiments.
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nM - 100 pM). Addition of Dex 6 or 18 h prior to agonist stimulation was

also without effect on agonist-stimulated [3H]InsP formation (data not

shown).

5.5.2 Effect of dexamethasone on carbachol- and histamine-stimulated

[3H]inositol incorporation into inositol phospholipids in bovine tracheal

smooth muscle slices

BTSM slices were labelled by pre-incubation (24 h) with [3H]inositol (2.3.2)

prior to treatment (24 h) with Dex (1 pM) and further incubation (30 min)
with either CCh (10 nM - 100 pM) or Hist (10 nM - 1 mM). The

incorporation of [3H]inositol into the inositol phospholipids was

quantified (2.5.1) and is illustrated in figure 5.5.2. Despite the [3H]inositol
label being present for 48 hp labelling of the CCh-accessible

[3H]phosphoinositide pool to isotopic equilibrium was not reached.

Hence a definite increase in incorporation of [3H]inositol is observed with

1 pM CCh. 1 pM Dex had no significant effect on the degree of

[3H]inositol incorporation observed under basal or agonist-stimulated

conditions. Addition of Dex 6 or 18 h prior to agonist stimulation was

also without effect on agonist-stimulated [3H]inositol incorporation.

5.6 DISCUSSION

The experiments described in this chapter were designed principally to

modulate the agonist-stimulated InsPP response in order to shed light on

the factors regulating InsPP metabolism in BTSM. While stimulation
with Hist and CCh results in broadly similar patterns of TnsPP generation,

i.e. a transient accumulation of Ins(l,4,5)P3 and dominant metabolism of

Ins(l,4,5)P3 via the 5-phosphatase pathway, differences in the regulation
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Figure 5.5.2 Effect of dexamethasone on CCh- and Hist-stimulated
[3H]inositol incorporation into membrane phospholipids
[3H]Ins labelled BTSM slices (2.3.2) were incubated for 24 h in the presence
or absence of 1 pM Dex prior to agonist stimulation (30 min) with 100 pM
CCh or 1 mM Hist. [3H]Phosphoinositide incorporation was quantified by
measuring the radioactivity in the lower phase of partitioned acidified
chloroform/methanol extracts (2.5.1). Results represent the mean ± SEM
of two-three separate experiments.
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of these responses clearly do exist. Stimulation of BTSM slices with a

maximally effective concentration of Hist produces an [3H]InsP response

only 35 % of that seen in response to a maximally effective CCh
concentration. This reduction in [3H]InsP accumulation is accompanied

by a 54 % reduction in the peak Ins(l,4,5)P3 mass concentration and a

small but significant increase in the proportion of Ins(l,4,5)P3 metabolised

by the 3-kinase pathway. Hence the decrease in Ins(l,4,5)P3 available for
metabolism results in a relative increase in metabolism through the 3-

kinase pathway. Due to the much higher affinity of the 3-kinase than the

5-phosphatase for Ins(l,4,5)P3 it is likely that this 'shift' reflects a relative
reduction in the amount of Ins(l,4,5)P3 metabolised via the 5-

phosphatase rather than an enhancement of 3-kinase activity. It cannot

be ruled out however, that the metabolism of Ins(l,4,5)P3 may be subject

to direct receptor-mediated regulation. This possibility is supported by
the fact that the 5-phosphatase is located predominantly on the inner

leaflet of the plasma membrane where it may come into contact with the

active receptor/G-protein complex.

The PKC-stimulating phorbol ester PDBu had a major but differential
effect on the Hist- and CCh-stimulated [3H]InsP responses. While

[3H]InsP accumulation following CCh- and Hist addition were clearly
decreased in response to a 30 min pre-incubation with a high

concentration (10 pM) of this phorbol ester, PDBu had both a greater

potency and greater efficacy for inhibition of the Hist-stimulated [3H]InsP

response than that stimulated by CCh. A similar heterogeneity of PKC-
mediated feedback inhibition of agonist-stimulated InsP responses has
also been observed in a number of cell-types. For example, in rat

hepatocytes the Ins(l,4,5)P3 response to angiotensin II stimulation is

attenuated, whereas the response to epidermal growth factor is
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completely blocked following activation of PKC (Johnson and Garrison,

1987). In addition phorbol ester treatment of bovine adrenal chromaffin
cells inhibits the peak Hist- and bradykinin-stimulated Ins(l,4,5)P3

responses by 70 % and 30 % respectively (Boarder and Challiss, 1992). A

more dramatic difference can be observed in Rat-l-fibroblasts (Plevin et

al., 1991) where application of PMA results in an inhibition of the

lysophosphatidic acid stimulated inositol phosphate formation whereas
the response to endothelin-1 is completely unaffected. Furthermore a

differential regulatory activity of PKC can be observed between different

cell-types. For example Ward and Cantrell (1990) have demonstrated
that antigen-stimulated phosphoinositide metabolism is inhibited

following PKC activation in Jurkat cells but not in T lymphoblasts.
The mechanisms underlying the PKC-mediated inhibition of agonist-

stimulated InsP responses and the apparent agonist and/or tissue

specificity of this regulation are currently unclear. Several studies have
demonstrated that the receptor number and affinity for its agonist are

unchanged following addition of phorbol ester (e.g. Brock et al., 1985;

Orellana et al., 1985, 1987; Vincentini et al., 1985). A notable exception

however, is the ai-adrenoceptor from liver: following perfusion of liver
membranes with PMA, a 30-40 % reduction in receptor number was

observed (Lynch et al., 1985). Nonetheless, the large number of different

agonist responses which can be modulated by PKC activation suggest a

common component of the signal transduction mechanism, and not the

receptor, is the site of PKC action. In support of this hypothesis

guanosine nucleotide- (Murray et al., 1989; Orellana et al., 1987) or

fluoroaluminate- (Yang et al., 1994) stimulated inositol phosphate
formation is also inhibited by PKC activation. These results suggest a

post-receptor site of action for PKC, possibly by phosphorylation of the G-
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protein or PIC enzyme. To date there does not appear to be any evidence

for PKC-mediated phosphorylation of Gq, however both Gsa (Pyne et al.,
1992a) and Gja (Bushfield et al., 1991) may be subject to such modulation.

In addition PKC may phosphorylate and thereby inhibit PIC-pi (Ryu et al.,

1990). The differential inhibition of agonist-stimulated InsP responses by
PKC may therefore arise as a result of the expression or activation of
distinct G-protein and PIC isozymes. This differential regulation could
also be mediated in vivo by the activation of alternative PKC isoforms
and therefore it is interesting to note that while rat RBL-2H3 cells contain

several PKC isoforms, only PKCa and PKCe can inhibit antigen-induced

phosphoinositide hydrolysis (Ozawa et al., 1993).
It is also possible that some of the effects observed following PKC

activation could be secondary to adenylyl cyclase activation and cAMP

accumulation since treatment of cultured guinea-pig tracheal smooth

muscle cells with either PMA or bradykinin results in enhanced adenylyl

cyclase activity (Stevens et al., 1994). The bradykinin-stimulated
activation of adenylyl cyclase is mediated through PLD rather than PLC

signallling (Stevens et al., 1994) and does not involve the activation of

PKCa (Pyne et al., 1994).
Whether a PKC-mediated feedback inhibition of the PIC response occurs

in vivo is difficult to judge since the phorbol ester used in this study is

relatively stable and induces highly unphysiological and global activation

of multiple PKC isoforms. Its cellular counterpart - PtdInsP2-derived

DAG - is likely to be subject to rapid metabolism. Since the CCh-

stimulated pHjlnsP response does not readily desensitise in this tissue,

with a linear accumulation of [3H]InsP evident for at least 90 min

(Chilvers et al., 1989a), it would appear most unlikely that PKC activation

has a major curtailing influence on M3-mediated PtdInsP2 hydrolysis.
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The Hist response however does desensitise with time (Hall and Hill,

1988) and exhibits a greater sensitivity to inhibition by PDBu. Therefore
the possibility of a physiological PKC-mediated feedback loop regulating
Hist receptor signalling is far more likely. Clearly, with the advent of
more selective PKC isozyme inhibitors and more detailed knowledge of
the precise PKC isoforms targetted by PtdInsP2-derived DAG it may, in the

future, be possible to dissect these pathways further. It should also be
noted that PLC-mediated phospholipid hydrolysis may not be the only
route of DAG formation in ASM since bradykinin clearly induces

phosphatidylcholine hydrolysis in cultured guinea-pig tracheal smooth
muscle cells (Pyne and Pyne, 1993). There is therefore a strong possibility
of cross-talk between the different signal transduction pathways in this

tissue.

In addition to regulating PLC activity, PKC activation may also modulate
the enzymes responsible for Ins(l,4,5)P3 metabolism (see chapter three).
However any effect of PKC on the these enzymes must be 'balanced' since
there was no significant difference in the routing of Hist- or CCh-
stimulated Ins(l,4,5)P3 metabolism in the presence of PDBu.
A further differential activity on CCh- and Hist-stimulated [3H]InsP
formation is exhibited by the (^-adrenoceptor agonists Salm and Salb.
Salm did not affect the accumulation of [3H]InsP in response to a

maximally effective concentration of CCh, or the peak CCh-stimulated

increase in Ins(l,4,5)P3 mass. The Hist-stimulated [3H]InsP response

however was significantly attenuated by both Salm and Salb. Salm was

the more potent in its inhibition of the [3H]InsP response to Hist, and this

agent also significantly reduced the Hist-stimulated Ins(l,4,5)P3 mass

response. Maximally effective concentrations of Salm and Salb elicited a

similar degree of inhibition of the Hist-stimulated [3H]InsP response (50-
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60 %) which was also comparable to that observed for isoprenaline (68 %,

Hall and Hill, 1988).

The mechanisms underlying the inhibition of Hist-stimulated [3H]InsP
accumulation by P2-adrenoceptor agonists remain to be elucidated but
could be mediated at several levels of the inositol phosphate signal
transduction pathway. A reduction in the available substrate

(PtdIns(4,5)P2) is unlikely since [3H]inositol incorporation into membrane

phospholipids is unaffected by Salb in Hist-stimulated BTSM slices (Hall
and Hill, 1988). Alternatively, ^-adrenoceptor agonists may affect the Hi

receptor, the receptor-G-protein complex, or even directly inhibit PIC.
Since agents which increase intracellular levels of cAMP can inhibit
fluoroaluminate-stimulated [3H]InsP formation, a post-receptor mediated

mechanism has been implicated in the ^-adrenoceptor mediated
inhibition of phosphoinositide hydrolysis (Hall et al., 1990a). Hence

alterations in the G-protein-PIC coupling mechanism may underlie the

effect of p2-adrenoceptor agonists on receptor-stimulated [3H]InsP
accumulation. Indeed the possibility for G-protein regulation by P-

adrenoceptor agonists is exemplified by the phosphorylation in vitro of

Gsa by PKA (Pyne et al., 1992b). It should also be noted that py G-protein
subunits liberated following P-adrenoceptor-mediated stimulation of Gs
can activate P-adrenergic and muscarinic acetylcholine receptor kinases

(Kameyama et al., 1993; Koch et al., 1993). These kinases may

phosphorylate the receptors or G-proteins involved in phosphoinositide

hydrolysis thereby serving to uncouple the receptor from its G-protein.

Hence, as discussed above for PKC activation, the recruitment of distinct

G-protein and PIC isoenzymes may explain the differential susceptibility
of various agonists to p2-adrenoceptor activation.
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It has been suggested that the relative resistance of muscarinic receptor-

mediated contraction to relaxation with [^-adrenoceptor agonists may be

explained, at least in part, by the ability of muscarinic receptor

stimulation to inhibit cAMP accumulation in ASM tissue and cells (Jones

et al., 1987; Sankary et al., 1988; Yang et al., 1991). ASM contains two

subtypes of muscarinic cholinoceptors, M2 and M3 (e.g. Yang et al., 1991;
Mahesh et al., 1992). The latter are coupled to phosphoinositide

hydrolysis while the former (the predominant receptor subtype in most

species thus far studied) appears to be linked via G; to the inhibition of

adenylyl cyclase. Activation of muscarinic cholinoceptors may also serve

to inhibit adenylyl cyclase via a functional inactivation of Gs (Pyne et al.,

1992c). The ability of (3y G-protein subunits to bind to- and inactivate Gsa
could possibly underlie this latter effect (Hildebrandt and Kohnken, 1990).
The relative importance of M2 and M3 muscarinic receptor subtypes in

determining the extent of inhibition of adenylyl cyclase is highly
controversial (see Eglen et al., 1994b and c; Roffel et al., 1994a). Watson

and Eglen (1994) suggested that M2 receptors are primarily responsible for
this inhibition since the selective M2 antagonist methoctramine

augmented the relaxant potency of isoprenaline in guinea-pig trachea at a

concentration associated with minimal M3 receptor occupancy. This data

is supported by the observation in guinea-pig ileum that following

alkylation of M3 receptors, M2 receptor activation inhibits the relaxant

responses to [^-adrenoceptor agonists (Reddy et al., 1994). However, a

similar study in guinea-pig trachea failed to reveal such an effect (Eglen et

al., 1994a). An alternative proposal is that the extent of p-adrenoceptor-
induced relaxation is controlled instead by the level of M3 receptor-

mediated tone (Roffel et al., 1994b). Indeed small alterations in the

contractile tone are associated with large shifts in the potency of
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isoprenaline for relaxation (van Amsterdam et al., 1989). To date the

study of M2/M3 receptor-mediated regulation of ASM contraction has
been severely hampered by the absence of a highly selective M2 receptor

antagonist. The future development of more subtype-specific muscarinic

receptor agonists, antagonists and antisera may lead to greater

understanding of muscarinic receptor functions.
When the Hist-stimulated [3H]InsP response was monitored at different

times following Salm/Salb pre-incubation, a difference between the
effects of the two fb-adrenoceptor agonists was only observed at the

earliest time-point studied (1 h), with no difference in the apparent

duration of inhibition between the two agents. Hence it is unlikely that

the inhibition of Hist-stimulated InsP formation by Salm explains the

prolonged relaxant effects of this agonist observed both in vitro and in

vivo (see Jack, 1991). The spasmolytic effects (relaxation of pre-contracted

tissue) of these agents probably reflect the increased cAMP formation

(Ellis et al., 1995), while the inhibition of Hist-mediated phosphoinositide

hydrolysis may be important in the maintenance of the relaxed state

(anti-spasmogenic effect).

P2-adrenoceptor agonists have proved to be useful tools in the treatment

of asthma and hence the role of these agents in ASM relaxation has been
a topic of much interest in recent years. P2_adrenoceptor agonists may

exert their relaxant effect by regulating the intracellular Ca2 +

concentration. (3-adrenoceptor stimulation of ASM is often accompanied

by membrane hyperpolarisation (Allen et al., 1985; Fujiwara et al., 1988),
which can be induced by both cAMP-dependent (Kume et al., 1989) and

-independent (Kume et al., 1992, 1994) activation of high conductance
Ca2+-activated potassium channels (BKca)- Membrane hyperpolarisation

189



would prevent influx of Ca2+ through voltage-dependent Ca2+-channels
and could thereby influence the sustained (tonic) phase of contraction.
When considering the effects of (3-adrenoceptor agonists, it should be

appreciated that cAMP may activate PKG in addition to PKA: cAMP

activates PKG with an EC50 (80 nM) only slightly greater than that for
PKA (30 nM) in canine trachealis (Torphy et al., 1982). Moreover, the
relaxant potencies of cyclic nucleotide analogues against K+-induced
contractions of guinea-pig trachea strongly correlate with their EC50
values for PKG but not PKA (Francis et al., 1988). Further to the effects of

increased levels of cAMP, P-adrenoceptor agonists may also stimulate
direct receptor-mediated effects to induce relaxation of ASM as evidenced

by the cAMP-independent action of isoprenaline on BKca-

In addition to modulating Ca2+ signalling by agonist-stimulated InsP

formation, agents which activate both PKC and PKA may also be able to

regulate intracellular Ca2+ release downstream of Ins(l,4,5)P3 formation

through the phosphorylation of the Ins(l,4,5)P3 receptor. Consensus

sequences for phosphorylation by PKA have been identified on the

InsP3R-l (Furuichi et al., 1989; Mignery et al., 1990) and InsP3R-2 (Sudhof
et al., 1991) receptors. Although these sequences are often conserved
between tissues, phosphorylation of Ins(l,4,5)P3 receptors by PKA appears

to have different effects in different cell types. For example the sensitivity

of the receptor from cerebellar microsomes is decreased by PKA-mediated

phosphorylation (Supattapone et al., 1988) whereas Ca2+ release from

permeabilised hepatocytes is potentiated by pre-treatment of the cells with
the catalytic subunit of PKA (Burgess et al., 1991). The Ins(l,4,5)P3

receptor is also known to be a target for PKC (Ferris et al., 1991) and

phosphorylation by this kinase is associated with accelerated Ca2+ release

(Matter et al., 1993).
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A final attempt to manipulate InsPP formation and metabolism in BTSM
utilised the glucocorticoid dexamethasone. While glucocorticoids have

been shown to inhibit agonist-stimulated InsP formation in a number of

tissues, the data obtained in BTSM show that dexamethasone is without

effect on either InsP formation, or incorporation of inositol into the
membrane lipids. These results are in agreement with Michoud and co¬

workers (1994) who demonstrated that treatment of cultured rat tracheal

smooth muscle cells with 100 nM dexamethasone had no effect on the

subsequent 5-hydroxytyptamine-stimulated PLC activity.

The experiments detailed in this chapter provide further insight into the
factors regulating InsPP metabolism in ASM. It would appear from the

experiments performed in the presence of PDBu that receptor-PIC

coupling can be modulated in an agonist-specific way by PKC-mediated
feedback. The Hist experiments indicate that a reduction in the
concentration of Ins(l,4,5)P3 (compared to CCh-stimulated

concentrations) may facilitate a relative increase in its metabolism

through the 3-kinase pathway. Whether this reflects a direct effect of PKC
in regulating the activity of the 3-kinase and 5-phosphatase enzymes

themselves, or is simply due to the higher affinity of the 3-kinase enzyme

for Ins(l,4,5)P3 is uncertain. The reduced formation of InsPs in response

to both Hist and CCh in the presence of PDBu highlight the possibility for

cross-talk between different signal transduction pathways (e.g. inhibition
of phosphoinositide hydrolysis by the PLD-mediated production of DAG).
The susceptibility of both Hist- and CCh-stimulated InsP responses to

PDBu indicate similar components may be involved in the hydrolysis of

phosphoinositides in response to these two agonists. The differential
sensitivities of the two responses to PDBu suggest however, that the Hist-
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and CCh- receptors themselves (and the G-proteins/PIC

isozymes/phosphoinositide pools they recruit) may be subject to

differential regulation. A similar differential inhibitory effect is exerted

by (32-adrenoceptor agonists, i.e. the Hist-stimulated InsP response can be

inhibited by both Salm and Salb, while the CCh-stimulated response is

unaffected by these agents. The effect of Salm and Salb on Hist-
stimulated InsP accumulation further substantiates a role for cross-talk

between signal transducing pathways in the regulation of InsP formation.

However, the very similar time-course for the inhibition of Hist-

stimulated [3H]InsP accumulation by these agents, despite differing cAMP
accumulation and relaxant effects, suggests that inhibition of

phosphoinositide hydrolysis may not be the primary mechanism

underlying p-adrenoceptor-mediated relaxation of ASM. In contrast to

many other tissues studied, InsP accumulation does not appear to be

regulated by the glucocorticoid dexamethasone in BTSM.
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CHAPTER SIX

AGONIST-STIMULATED ACCUMULATION OF

INOSITOL 4,5-BISPHOSPHATE IN BOVINE
TRACHEAL SMOOTH MUSCLE

6.1 INTRODUCTION

Muscarinic receptor stimulation of BTSM slices results in a Li+-sensitive
accumulation of a novel inositol bisphosphate isomer, namely

[3H]Ins(4,5)P2 (see section 3.4). This isomer has previously been detected
in only a limited number of mammalian cell types: thyrotropin-releasing
hormone-stimulated GH3 cells (Dean and Moyer, 1987; Hughes and

Drummond, 1987), unstimulated WRK1 rat mammary tumour cells

(Wong et al., 1992) and CCh-stimulated rat cerebral cortex slices (Batty et

al., 1989; Jenkinson et al., 1992). Jenkinson and co-workers (1992) have

carried out the only detailed study of the accumulation of [3H]Ins(4,5)P2 to

date and, in agreement with the data described here and with Hughes and
Drummond (1987), showed that the accumulation of [3H]Ins(4,5)P2 is Li+-

sensitive.

Since the accumulation of Ins(4,5)P2 in BTSM, GH3 cells and in rat

cerebral cortex slices may be agonist-stimulated, it is possible that this
novel InsP2 isomer may play some role in signal transduction. Ins(4,5)P2
has been shown to be as effective as Ins(l,4,5)P3 in mobilising Ca2+ from

non-mitochondrial intracellular stores in permeabilised guinea-pig

hepatocytes (Burgess et al., 1984) and Swiss mouse 3T3 cells (Irvine et al.,
1984) albeit with a much lower potency. Ins(4,5)P2 does not appear to

accumulate to very high concentrations even under agonist-stimulated
conditions as it represents only 2.9 ± 0.1 % and 1.71 ± 0.21 % of the total
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[3H]InsP2 pool following 30 min CCh stimulation in rat cerebral cortex

slices (Batty et al., 1989) and BTSM slices (see section 3.4.1) respectively. It

is possible however, that this isomer may play a significant calcium-

signalling role at later time-points in the agonist-stimulated response,

when the Ins(l,4,5)P3 concentration has returned to basal values, and may

be of particular importance in patients receiving Li+ therapy for manic

depression or other affective disorders. Ins(4,5)P2 has also been shown to

be an effective inhibitor of the Ca2+-ATPase of human erythrocytes in

vitro (Davis et al., 1991). In addition, Ins(4,5)P2 may function as an

extracellular signalling molecule since superfused Ins(4,5)P2 causes a

concentration-dependent increase in luteinising hormone release from

non-permeabilised rat pituitary cells (Przylipiak et al., 1990).
The origins and metabolic fate of Ins(4,5)P2 in the cell is unknown. There
are several possible routes for both the formation and metabolism of this

compound which are summarised in figure 6.1. Ins(4,5)P2 may be formed

by the action of a 1-phosphatase on Ins(l,4,5)P3, or possibly Ins(l,3,4,5)P4
followed by subsequent hydrolysis by a 3-phosphatase. A novel

Ins(l,4,5)P3 1-phosphatase has been described in Dictyostelium
discoideum (Van Lookeren Campagne et al., 1988) but no mammalian

counterpart has been identified to date. The well-characterised

Ins(l,4)P2/Ins(l,3,4)P3 1-phosphatase has no activity against either

Ins(l,4,5)P3 or Ins(l,3,4,5)P4 (Inhorn and Majerus, 1987). Recent interest

in the role of InsPs and InsP6 in cell signalling was sparked by the
observation of an agonist-stimulated conversion of Ins(l,3,4,5,6)P5 to

Ins(3,4,5,6)P4 in rat pancreatoma cells (Menniti et al., 1990). Hence

mammalian cells appear to contain an alternative 1-phosphatase enzyme,

the substrate specificity of which is currently unknown. The
accumulation of [3H]Ins(3,4,5)P3 in avian erythrocytes has been

194



PtdIns(4,5)P2

Ins4P

Ins(lA5)P3

Inositol

Ln

Ins(4,5)P2
Ins5P

%

Ins(3,4/5)P3

Ins(l/3/4/5)P4

Figure6.1.Possiblepathwaysfortheformationandmetabolismofinositol4,5-bisphosphate



documented (Stephens et al., 1989); however this study indicated that

Ins(l,3/4)P3 was formed by a 6-phosphatase action on Ins(l,3,4,6)P4.
An alternative route of Ins(4,5)P2 formation could be a PLD-mediated

hydrolysis of PtdIns(4,5)P2- While a role for PLD in transmembrane

signalling in ASM, secondary to PKC stimulation, has been suggested

(Pyne and Pyne, 1993), there is little, if any, evidence to date implicating
PLD in the hydrolysis of the phosphoinositides in ASM.

The metabolism of Ins(4,5)P2 is likely to proceed by a dephosphorylation

pathway to form either Ins4P or Ins5P. Ins(4,5)P2 has been shown to be a

substrate (albeit a poor one) for the Ins(l,4,5)P3/Ins(l,3,4,5)P4 5-

phosphatase (Mitchell et al., 1989), whereas the significant accumulation
of Ins5P observed in muscarinic receptor-stimulated rat cerebral cortex

might suggest the involvement of a 4-phosphatase (Ackermann et al.,

1987). In addition, it is possible that Ins(4,5)P2 could be phosphorylated to

Ins(3,4,5)P4 since it can be metabolised slowly by an Ins(l,4,5)P3 3-kinase

purified from rat brain (Morris et al., 1988).
The purpose of this chapter is to assimilate the data obtained in

experiments described earlier with a focus on the accumulation of

Ins(4,5)P2- To expand on these studies further experimental data on the
effect of Li+ and phorbol ester pre-treatment on agonist-stimulated

[3H]Ins(4,5)P2 accumulation are presented which give some insight into

the possible routes of formation and metabolism of this novel inositol

phosphate isomer in BTSM.
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6.2 CARBACHOL- AND HISTAMINE-STIMULATED INOSITOL 4,5-

BISPHOSPHATE ACCUMULATION

Experiments conducted to establish the flux of Ins(l,4,5)P3 through the 3-

kinase and 5-phosphatase pathways (detailed in section 2.4) utilised

H.P.L.C. to separate and quantify individual [3H]InsPP isomers. An

unexpected observation of these experiments was the presence in BTSM
slices of a late running [3H]InsP2 peak which was easily separated from
the common [3H]Ins(l,3)P2, [3H]Ins(l,4)P2 and [3H]Ins(3,4)P2 isomers (see

figure 6.2.1). This novel [3H]InsP2 isomer co-eluted with [3H]Ins(4,5)P2

generated by alkaline hydrolysis of the [3H]phosphoinositides isolated
from BTSM (see section 2.6.3). Alkaline hydrolysis cleaves

phosphoinositides into its glycerol and inositol phosphate moieties, and
hence the major [3H]InsP2 isolated by this process is [3H]Ins(4,5)P2- Since

no labelled alditols would be formed following periodate oxidation of

[2-3H]Ins(4,5)P2, this technique could not be used to positively identify the

isomeric composition of the late running [3H]InsP2- It may be possible to

give a clearer identification of this isomer by examining the products
formed following its dephosphorylation by a purified

Ins(l,4,5)P3/Ins(l,3/4/5)P4 5-phosphatase.

Under basal conditions [3PI]Ins(4,5)P2 was hardly detectable, however its

accumulation increased following muscarinic cholinoceptor stimulation
with CCh and was dramatically enhanced in the presence of 5 mM LiCl

(see figure 6.2.2). Following prolonged (30 min) CCh (100 pM)
stimulation in the presence of 5 mM LiCl, [3H]Ins(4,5)P2 represented 1.27

± 0.06 % of the total retrieved [3H]InsPPs and 8.61 ± 1.18 % of the total

[3H]InsP2 pool. Time-course experiments indicated that the accumulation
of [3H]InsP2 following receptor stimulation was delayed, only

accumulating to levels significantly above basal after 5 min (Figure 6.2.3).
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Figure 6.2.1 Typical H.P.L.C. elution profile obtained following carbachol
stimulation of bovine tracheal smooth muscle slices

[3H]Inositol pre-labelled BTSM slices (2.3.1) were incubated for 30 min at
37 °C in the presence of 5 mM LiCl and 100 pM CCh. [3H]InsP2S were

separated from pooled triplicate TCA extracts (2.4.2) using a Partisphere 5
SAX H.P.L.C. column (2.6.3) and quantified by liquid scintillation
counting.
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Figure 6.2.2 Effect of lithium ions on prolonged carbachol-stimulated
inositol 4,5-bisphosphate accumulation
[3H]Inositol pre-labelled BTSM slices (2.3.1) were incubated for 30 min at
37 °C in the presence or absence of 5 mM LiCl and 100 pM CCh.
[3H]Ins(4,5)P2 was separated from pooled triplicate TCA extracts (2.4.2)
using a Partisphere 5 SAX PI.P.L.C. column (2.6.3) and quantified by liquid
scintillation counting. Results represent the mean ± SEM of n separate
experiments. * Represents p < 0.05; * * represents p < 0.01 (two-tailed,
unpaired student's t-test).
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Figure 6.2.3 Time-course of carbachol-stimulated inositol 4,5-
bisphosphate accumulation
[3H]Inositol pre-labelled BTSM slices (2.3.1) were incubated with 100 pM
CCh or vehicle in the presence of 5 mM LiCl in a final volume of 300 pi.
Reactions were terminated at the times indicated by the addition of 300 pi
1 M TCA. [3H]Ins(4,5)P2 was separated from pooled triplicate neutralised
extracts (2.4.2) by H.P.L.C. (2.6.3) and the radioactivity associated with each
isomer quantified by liquid scintillation counting. Results represent the
mean ± SEM of three separate experiments. * Represent p < 0.05; **
represents p < 0.01 for comparisons with basal values (two-tailed, paired
student's t-test).
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This delayed accumulation of [3H]Ins(4,5)P2 contrasts the very rapid

generation and accumulation of [3H]Ins(l,4,5)P3 and [3H]Ins(l,4)P2 (see
section 3.4.2) and would suggest an indirect route for the formation of

[3H]Ins(4,5)P2 following stimulation with CCh.

In order to gain some insight into the pathways responsible for the
formation of [3H]Ins(4,5)P2 the effects of different agonists on

[3H]Ins(4,5)P2 accumulation were examined. Experiments were

performed comparing the effects of CCh (100 |iM) and Hist (1 mM)
stimulation on [3H]InsPP accumulation in BTSM. Stimulation with

agonists for 30 min in the presence of Li+ resulted in a 1,751-fold increase
in the accumulation of [3H]Ins(4,5)P2 in response to 100 pM CCh and a

106-fold increase in response to 1 mM Hist stimulation. These 'fold'
stimulations may be misleading however, due to the negligible
accumulation of [3H]Ins(4,5)P2 under basal conditions (2 ± 1 DPM/50 pi

BTSM slices). CCh stimulation produces relatively more [3H]Ins(4,5)P2 (as
a percentage of the total [3H]InsPPs) than Hist stimulation (see fig 6.2.4).
Hence it would seem that muscarinic-cholinoceptor stimulation of BTSM

slices is significantly more effective in producing [3H]Ins(4,5)P2 than

stimulation with histaminergic agonists.

6.3 EFFECT OF PHORBOL DIBUTYRATE ON CARBACHOL- AND

HISTAMINE-STIMULATED [3H]INOSITOL 4,5-BISPHOSPHATE

ACCUMULATION

It is possible that [3H]Ins(4,5)P2 may be formed secondary to PKC

stimulation and a subsequent activation of PLD-mediated

[3H]PtdIns(4,5)P2 hydrolysis. Hence it is interesting to consider the effects
of phorbol esters on [3H]Ins(4,5)P2 accumulation to determine if PKC
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Figure 6.2.4 Effect of phorbol dibutyrate on histamine- and carbachol-
stimulated [3H]inositol 4,5-bisphosphate accumulation
[3H]Inositol pre-labelled BTSM slices (2.3.1) were pre-incubated for 30 min
at 37 °C in the presence or absence of 100 nM PDBu prior to Hist (1 mM)-
or CCh (100 pM)-stimulation (30 min) in the presence of 5 mM LiCl.
[3H]Ins(4/5)P2 was separated from pooled triplicate TCA extracts (2.4.2)
using a Partisphere 5 SAX H.P.L.C. column (2.6.3) and quantified by liquid
scintillation counting. Results are expressed as the percentage of total
retrieved radioactivity associated with [3H]Ins(4,5)P2 and represent the
mean ± SEM of three or five experiments for Hist and CCh incubations
respectively. * Represents p < 0.05; * * represents p < 0.01 (two-tailed,
unpaired student's t-test).
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stimulation may alter the pattern of [3H]Ins(4,5)P2 formation. Pre-

treatment of BTSM slices with 100 nM PDBu resulted in a decrease in the

accumulation of [3H]Ins(4,5)P2 in both CCh- and Hist-stimulated BTSM

slices (22.0 ± 15.5 % and 82.9 ± 12.4 %, section 5.3.1). However, these

decreases reflected the observed decreases in total [3H]InsPPs (12.5 ± 2.1

and 71.1 ± 3.8 for CCh- and Hist-stimulated slices respectively) and

therefore the percentage of [3H]InsPPs present as [3H]Ins(4,5)P2 remained
unaltered (two-tailed, unpaired student's t-test) by PDBu treatment (see

figure 6.2.4).

6.4 EFFECT OF LITHIUM IONS ON [3H]INOSITOL 4,5-BISPHOSPHATE

ACCUMULATION

As described above, the CCh-stimulated accumulation of [3H]Ins(4,5)P2 is

highly sensitive to Li+. Jenkinson et al. (1992) demonstrated a bell-shaped

Li+-concentration curve for the CCh-stimulated accumulation of

[3H]Ins(4,5)P2 in rat cerebral cortex slices. If a similar response to Li+

occurs in BTSM it is possible that an even greater accumulation of

[3H]Ins(4,5)P2 may occur at lower, therapeutically relevant concentrations
of Li+. Hence the accumulation of [3H]InsPP isomers in response to

prolonged CCh stimulation over a range of LiCl (0 - 10 mM)
concentrations was studied. The results are shown in table 6.4. At low

concentrations of LiCl (< 10 mM) [3H]Ins(4,5)P2 accumulates in a manner

similar to the Li+-sensitive [3H]InsPis with a progressive increase in

[3H]Ins(4,5)P2 levels, suggesting a Li+-sensitive metabolism of this isomer.

The EC50 for the effect of Li+ on [3H]Ins(4,5)P2 accumulation is 1.06 mM

compared to 1.12 mM and 0.87 mM for [3H]Insl/3P and [3H]Ins4P
accumulation respectively. Extending the Li+ concentration range
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Radioactivityassociatedwith[3H]Ins(x)PP(%Control)
[3H]Ins(x)PP

[LiCl](mM)

0

0.01

0.1

0.3

1

3

10

30

(n=4)

(n=4)

(n=4)

(n=4)

(n=4)

(n=4)

(n=4)

(n=1)

1/3

100±17

111±13

129±8

232±26

490±38

925±162

1208±470

1004

4

100±20

116±15

136±11

279±39

774±59

1497±259
1894±963

725

1/3

100±17

91±7

104±17

117±10

127±18

131±23

131±25

140

1/4

100±17

108±13

104±10

139±10

153±5

213±41

480±167

634

3,4

100±14

92±3

114±19

112±9

119±19

111±15

159±34

264

4,5

100±19

105±11

140±16

237±31

525±28

1191±231
1415±644

642

1,3,4

100±18

89±4

105±114

115±6

125±8

127±20

131±33

153

1,4,5

100±15

99±15

101±10

105±6

113±6

89±15

101±27

90

2,4,5

100±31

356±256

242±113

158±74

70±27

180±108

258±121

71

InsP4

100±14

102±13

259±139

123±3

121±8

123±21

124±35

114

Total [3H]InsPs

100±16

107±11

118±10

190±16

377±23

706±129

910±361

644

Table6.4Effectoflithiumionsonthecarbachol-stimulatedaccumulationof[3H]inositolpolyphosphateisomers [3H]Inositolpre-labelledBTSMslices(2.3.1)werestimulatedwith100pMCChinthepresenceoftheindicated concentrationofLiClfor30min.Individual[3H]InsPPisomerswereseparatedfrompooledtriplicateTCAextracts(2.4.2) usingaPartisphere5SAXH.P.L.C.column(2.6.3)andquantifiedbyliquidscintillationcounting.Resultsareexpressedas theradioactivityassociatedwitheach[3H]InsPPisomerasapercentageofthevalueobtainedintheabsenceoflithium ions,andrepresentthemean±SEMofnseparateexperiments.



however, demonstrated a marked attenuation of [3H]Ins(4,5)P2

accumulation in the presence of 30 mM LiCl (see table 6.4, figure 6.4.1).

Hence, in accordance with the results of Jenkinson et al. (1992) a bell-

shaped Li+ concentration-response curve for the accumulation of

[3H]Ins(4,5)P2 is observed if LiCl is increased to high (> 10 mM)

concentrations. It is important to note that 30 mM LiCl also caused a

marked decrease in [3H]Ins4P accumulation (table 6.4, figure 6.4.2) and a

parallel increase in [3H]Ins(l,4)P2 accumulation (table 6.4) implying that
this concentration of Li+ can inhibit the 1-phosphatase responsible for the
conversion of Ins(l,4)P2 to Ins4P. The near identical concentration-

dependence of both [3H]Ins4P and [3H]Ins(4,5)P2 on Li+ ions suggest that
similar enzymes might be involved in the formation and metabolism of
these two [3H]InsPs.

6.5 DISCUSSION

The demonstration of an agonist-stimulated accumulation of

[3H]Ins(4,5)P2 in BTSM is of particular interest since the accumulation of

this isomer cannot be accounted for by any conventional routes of
mammalian InsPP metabolism. The agonist-stimulated nature of its

accumulation from very low basal levels suggests that Ins(4,5)P2, or one
of its precursors or metabolites, may play an important role in signalling
in this tissue. Furthermore, the sensitivity of its accumulation in the

presence of Li+ ions suggests that the flux of the inositol headgroup

through Ins(4,5)P2 may be substantial in vivo.

Two alternative routes of formation of Ins(4,5)P2 are PLD action on

PtdIns(4,5)P2 or metabolism of Ins(l,4,5)P3. Muscarinic cholinergic

stimulation of BTSM slices produced a greater proportion of [3H]Ins(4,5)P2
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Figure 6.4.1 Effect of lithium ion concentration on carbachol-stimulated
[3H]inositol 4,5-bisphosphate accumulation
[3H]Inositol pre-labelled BTSM slices (2.3.1) were stimulated with 100 pM
CCh in the presence of the indicated concentration of LiCl for 30 min.
[3H]Ins(4/5)P2 was separated from pooled triplicate TCA extracts (2.4.2)
using a Partisphere 5 SAX H.P.L.C. column (2.6.3) and quantified by liquid
scintillation counting. Results are expressed as the radioactivity
associated with [3H]Ins(4,5)P2 as a percentage of the value obtained in the
absence of LiCl, and represent the mean ± SEM of four separate
experiments.
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Figure 6.4.2 Effect of lithium ion concentration on carbachol-stimulated
[3H]inositol 4-monophosphate accumulation
[3H]Inositol pre-labelled BTSM slices (2.3.1) were stimulated with 100 (iM
CCh in the presence of the indicated concentration of LiCl for 30 min.
[3H]Ins4P was separated from pooled triplicate TCA extracts (2.4.2) using a

Partisphere 5 SAX H.P.L.C. column (2.6.3) and quantified by liquid
scintillation counting. Results are expressed as the radioactivity
associated with [3H]Ins4P as a percentage of the value obtained in the
absence of LiCl, and represent the mean ± SEM of four separate
experiments.
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(in comparison to total [3H]InsPPs) than histaminergic stimulation. It is

possible therefore that CCh stimulation may effect Ins(4,5)P2
accumulation by routes other than Ins(l,4,5)P3 metabolism. However, as

detailed in the previous chapter, Ins(l,4,5)P3 can be channelled

differentially through the 3-kinase and 5-phosphatase pathways in

response to CCh and Hist; equally a putative 1-phosphatase activity could
be subject to such differential regulation.
Studies in a variety of cell types have indicated that receptor-mediated
activation of PLD may occur through several mechanisms including

protein tyrosine kinase activation (e.g. Cook and Wakelam, 1992),
increases in intra- and extracellular Ca2+ (e.g. Lin and Gilfillan, 1992; Wu

et al., 1992) and activation of G-proteins (MacNulty et al., 1992). However

PLD activation is most widely recognised to occur secondary to PKC

activation since in most cells phorbol esters cause persistent activation of

both PKC and PLD (see Shukla and Halenda, 1991). It would seem

unlikely that a PKC-stimulated PtdIns(4,5)P2-specific PLD activity was

responsible for the [3H]Ins(4,5)P2 accumulation in the present study for
the following reasons: (1) CCh-stimulated activation of PLD in BTSM

and bradykinin-stimulated PLD activation in guinea-pig ASM cells is

rapid and transient and therefore could not (alone) account for the

delayed and progressive accumulation of [3H]Ins(4,5)P2 observed in BTSM

(Challiss et al., manuscript in preparation; Pyne and Pyne, 1993); and (2)
treatment of BTSM slices with PDBu fails to induce [3H]Ins(4,5)P2

accumulation or alter the proportion of [3H]Ins(4,5)P2 accumulating in

response to either Hist or CCh. This latter observation is in agreement

with the study by Jenkinson et al. (1992) in rat cerebral cortex in which
neither activation nor inhibition of PKC had any effect on the basal or

CCh-stimulated accumulation of [3H]Ins(4,5)P2-
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Ins(4/5)P2 is more likely produced by the action of a novel 1-phosphatase
on Ins(l,4,5)P3 similar to that described in the slime mould Dictyostelium
discoideum (Van Lookeren Campagne et al., 1988). These authors

demonstrate that the major route of dephosphorylation of Ins(l,4,5)P3 is

via a 1-phosphatase and that the resulting Ins(4,5)P2 is further degraded to

Ins4P. Hence, as suggested by Bominaar et al. (1991), two novel enzymes

catalysing the specific dephosphorylation of Ins(l,4,5)P3 at the 1-position

and of Ins(4,5)P2 at the 5-position may exist in this organism, in addition
to the more familiar Ins(l,4,5)P3/Ins(l,3,4,5)P4 5-phosphatase and the

Ins(l,4)P2/Ins(l,3,4)P3 1-phosphatase. Jenkinson et al (1992) were unable
to demonstrate a dephosphorylation of [3H]Ins(l,4,5)P3 to [3H]Ins(4,5)P2
with crude brain homogenates. However, Hughes and Drummond

(1987) state that in the absence of added ATP, sonicated GH3-cell

preparations can, to small extent, metabolise [3H]Ins(l,4,5)P2 to a

substance with identical chromatographic properties to [3H]Ins(4,5)P2- It is

possible therefore that compartmentalisation or concentration of

Ins(l,4,5)P3 with the putative Ins(l,4,5)P3 1-phosphatase in vivo may

allow such a reaction to proceed.
A dramatic enhancement of [3H]Ins(4,5)P2 accumulation was observed in

the presence of low concentrations of Li+. An EC50 of 1.06 mM was

calculated for this effect, approximately one order of magnitude greater

than that determined in rat cerebral cortex (94 pM, Jenkinson et al., 1992).

These data suggest that metabolism of either Ins(4,5)P2 or possibly its

primary metabolite is inhibited by Li+. In the latter case the metabolism
of Ins(4,5)P2 would be subject to product inhibition. Support for this

hypothesis comes from the study by Jenkinson et al. (1992) in rat cerebral
cortex. After muscarinic receptor blockade with atropine any

accumulated [3IT]Ins(4,5)P2 quickly decays in the absence of Li+, implying
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that metabolism of this isomer occurs rapidly in the intact cell. In the

presence of Li+ however, the metabolism of [3H]Ins(4,5)P2 was suppressed.

Ins(4,5)P2 is likely to be metabolised to either Ins4P or Ins5P. As detailed

earlier, Ins(4,5)P2 has been shown to be a weak substrate for the

Ins(l,4,5)P3/Ins(l,3,4,5)P4 5-phosphatase (Mitchell et al., 1989), however
this enzyme is not Li+-sensitive (Connolly et al., 1985; Seyfred et al., 1984)
nor is it likely to be inhibited by Ins4P since this enzyme is largely
unaffected by monophosphorylated compounds (Kennedy et al., 1990).
The possibility remains however, that Ins(4,5)P2 may be metabolised by a

novel Ins(4,5)P2 5-phosphatase such as that described in Dictyostelium
discoideum (Bominaar et al., 1991). Conversely involvement of a 4-

phosphatase in the metabolism of Ins(4,5)P2 is suggested by the presence

of Ins5P in rat cerebral cortex (Ackermann et al., 1987), a tissue in which

Ins(4,5)P2 has been detected.

The bell-shaped Li+ concentration-response curve observed for [3H]Ins4P
accumulation can be explained by the competitive inhibitory action of Li+
on the inositol monophosphatase enzyme, and their less potent

inhibitory effect on the Ins(l,4)P2/Ins(l,3,4)P3 1-phosphatase. At low

concentrations of Li+ inositol monophosphatase is strongly inhibited (Kj
< 1 mM, Gee et al., 1988; Hallcher and Sherman, 1980) resulting in a rapid
accumulation of [3H]Ins4P. At higher concentrations of LiCl however ,

the 1-phosphatase is effectively inhibited (Kj ~ 6 mM, Inhorn and

Majerus 1987), thus decreasing the supply of [3H]Ins4P and therefore its
accumulation. The formation of Ins(4,5)P2 from Ins(l,4,5)P3 by a Li+-

sensitive Ins(l,4,5)P3 1-phosphatase akin to that found in Dictyostelium
discoideum (Van Lookeren Campagne et al., 1988) could similarly
account for the bell-shaped Li+ concentration-response curve for

[3H]Ins(4,5)P2 accumulation.
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[3H]Ins(4/5)P2 accumulation is stimulated in BTSM by muscarinic- and

histaminergic receptor stimulation. The former receptor appears to

couple more effectively to Ins(4,5)P2 generation. The accumulation of
this novel bisphosphate isomer is highly sensitive to Li+, indicating that
in vivo, in the absence of Li+, there may be a substantial flux of the

inositol headgroup through Ins(4,5)P2- The lack of effect of pre-treatment
with PDBu on the pattern of basal, Hist- or CCh-stimulated Ins(4,5)P2
accumulation renders it unlikely that PKC-stimulated, PLD-mediated

hydrolysis of PtdIns(4,5)P2 is the major source of Ins(4,5)P2 in this tissue.

However, a role for PLD hydrolysis, activated by an alternative
mechanism such as that described in human polymorphic nuclear

leukocytes (Perianin et al., 1993), in Ins(4,5)P2 production cannot be ruled
out. The most likely source of Ins(4,5)P2 in BTSM appears to be

Ins(l,4,5)P3. A Li+-sensitive Ins(l,4,5)P3 1-phosphatase could account for
the bell-shaped Li+ concentration-response curve observed for

[3H]Ins(4,5)P2 accumulation. This therefore may represent a novel
additional route for Ins(l,4,5)P3 metabolism especially at later time-points

of agonist stimulation when the 5-phosphatase activity decreases.

Ins(4,5)P2 is probably further metabolised to either Ins4P or Ins5P. While
the primary metabolite of Ins(4,5)P2 remains uncertain, it is clear that the

enzyme responsible for the dephosphorylation of this InsP2 is strongly
inhibited by Li+ ions.
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SUMMARY

Excessive bronchoconstriction is an important factor governing airways

calibre in conditions such as asthma and the pharmacological

manipulation of the contractile response of ASM plays a central role in
the treatment of this and many other respiratory diseases. Contraction is

initiated following stimulation of surface receptors by spasmogens and
the generation of Ins(l,4,5)P3- This second messenger plays a pivotal role
in pharmacomechanical coupling in ASM and is subject to rapid agonist-
stimulated metabolism via a complex cascade of reactions which to date

have been poorly studied in this tissue. A knowledge of the factors which
determine the intracellular concentration of Ins(l,4,5)P3 is of considerable

importance since it may facilitate the generation of therapeutic
modulators of ASM contraction and provide an understanding of the
mechanisms underlying the currently used bronchodilators. The aims of

this thesis were to study, in detail, the formation and metabolism of

Ins(l,4,5)P3 in an ASM model and to determine the factors which could

modulate this response.

A model system was established in which BTSM slices were labelled to

steady-state with wyo-[3H]inositol and subsequently stimulated with

agonist for various time-periods in the presence of Li+ ions to prevent the
breakdown of InsPi isomers. This protocol allowed accurate

quantification of InsPP accumulation following agonist-stimulation of
BTSM. An important finding of the initial studies was the lack of

demonstrable phosphoinositide hydrolysis following either membrane

depolarisation or physiological increases in [Ca2+]j. In addition, no
accumulation of InsPs was observed following activation of PKC with
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PDBu, indicating that PKC-stimulated Ptdlns-specific PLD activity is

unlikely to contribute significantly to the agonist-stimulated InsP

accumulation. The model therefore provided an appropriate system for

monitoring the metabolism of agonist-stimulated, PtdIns(4,5)P2-derived

Ins(l,4,5)P3. The muscarinic cholinoceptor agonist carbachol (CCh)
induced a rapid and transient accumulation of [3H]InsP3 accompanied by

secondary increases in [3H]InsP2 and delayed increases in [3H]InsPi.
Experiments utilising cell-free preparations of BTSM indicated that, as in

other tissues, Ins(l,4,5)P3 could be metabolised by two major pathways -

the 3-kinase and 5-phosphatase pathways - to yield a series of mutually
exclusive InsPP products. Further experiments were therefore
undertaken to determine the relative contributions of these two

pathways to agonist-stimulated Ins(l,4,5)P3 metabolism in BTSM.

Following prolonged (30 min) stimulation with a maximally effective
concentration of CCh the 5-phosphatase pathway accounted for 75 % of
the total metabolism of [3H]Ins(l,4,5)P3. Detailed time-course analysis

however revealed that the flux of [3H]Ins(l,4,5)P3 through the two

enzyme pathways varied during the agonist-stimulated response. The 5-

phosphatase pathway was highly dominant especially at early time-

points, accounting for more than 85 % of the total metabolism over the
first 5 sec following agonist-addition. The 3-kinase pathway became

increasingly important at later time-points.
Since the 3-kinase pathway provides many additional putative second

messenger and functional molecules the factors governing the regulation
of metabolism through the two pathways may be extremely important to

cell signalling and the contractile response. To gain a greater

understanding of the enzymes involved, kinetic studies of the Ins(l,4,5)P3
3-kinase and Ins(l,4,5)P3 5-phosphatase were undertaken. The 5-

213



phosphatase activity was found to be predominantly particulate. The

similar affinity of the soluble and particulate 5-phosphatase activities

indicate that these enzymes may be identical and are likely to be Type la

isoforms. The particulate 5-phosphatase had a higher capacity and lower

affinity for Ins(l,4,5)P3 metabolism (Vmax = 45-50 nmol min-1 mg

protein-1; Km = 15-20 pM) than the soluble 3-kinase (Vmax = 323-360 pmol
min-1 mg protein-1; Km = 2-2.5 pM). The affinity of the 3-kinase however

was relatively low compared to studies obtained in most other tissues. A

finding of particular interest in the current study was that neither the 3-

kinase nor 5-phosphatase activities were significantly affected by

physiologically relevant increases in [Ca2+]free. The 3-kinase is generally

thought to be activated by Ca2+ via an increase in its Vmax- This

conclusion however is based on studies conducted in the absence of

calpain inhibitors. The 3-kinase has been shown to be a substrate for

calpain and sequencing studies have demonstrated that it contains

several putative calpain cleavage sites. The inclusion of calpain
inhibitors in the current study indicates that the intact enzyme, at least in

this model system, is insensitive to changes in [Ca2+]frce, and highlights
the possibility for activation of this enzyme following limited calpain-

mediated proteolysis. An important area of further research with clinical

applications may therefore be the study of regulators of calpain activity
and their effect on the ASM contractile response.

Stimulation of BTSM with a maximally effective concentration of
histamine (Hist) results in a decreased (~ 30 % ) [3H]InsP and Ins(l,4,5)P3

response compared to stimulation with a maximally effective
concentration of CCh. This decrease in the initial accumulation of

Ins(l,4,5)P3 is associated with a relatively greater metabolism of

Ins(l,4,5)P3 through the 3-kinase pathway. It is quite possible that the
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'stimulation' of the 3-kinase simply reflects the higher affinity of this

enzyme for Ins(l,4,5)P3 rather than any direct modulation of the 3-kinase
or 5-phosphatase enzyme kinetics.
The Hist- and CCh-stimulated [3H]InsP responses displayed differential

sensitivity to both activation of PKC with PDBu, and (32-adrenoceptor
stimulation with either salmeterol (Salm) or salbutamol (Salb). Pre-

treatment of BTSM slices with PDBu resulted in 99 % and 76 % maximal

inhibition of the (30 min) Hist- and CCh-stimulated [3H]InsP responses

respectively. The mechanisms underlying the PKC-mediated selective
feedback inhibition of Hi receptor-PIC coupling are unknown but may

involve phosphorylation of the G-protein/PIC signal transducing

machinery. These data therefore support the suggestion that the H]

histaminergic and M3 muscarinic receptors are coupled to alternative G-

protein and/or PIC isozymes, and that a component of the desensitisation
of the InsP response to Hist is mediated via a PKC inhibitory pathway.

The Hist-stimulated [3H]InsP response, unlike the CCh-stimulated

[3H]InsP response, was also inhibited by pre-treatment with P2-

adrenoceptor agonists. Salm, a novel, long-acting P2-adrenoceptor

agonist was a considerably more potent inhibitor of the Hist-stimulated

[3H]InsP response (IC50 = 0.24 nM) than the short-acting P2-adrenoceptor

agonist Salb (IC50 = 10.8 nM). In order to determine whether the
differential effects of Salm and Salb on agonist-stimulated [3H]InsP

production underlie their differential relaxant responses the time-courses

of Salm- and Salb-mediated inhibition of Hist-stimulated [3H]InsP

accumulation were examined. Both agents resulted in a substantial but
short-term inhibition of the Hist-stimulated L3HJInsP response which

gradually recovered between 1 and 24 h following addition of the P2-

adrenoceptor agonist. A significant difference in the Salm- and Salb-
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mediated inhibition was only observed at the earliest time-point

measured (1 h). Since Salm has been shown, in an identical model, to

produce relaxation over a far longer time-period than Salb, this data

would suggest that the inhibition of agonist-stimulated phosphoinositide

hydrolysis may not be the major mechanism underlying |32-adrenoceptor-
mediated relaxation of ASM.

An important and unexpected finding encountered during the course of
these studies was the agonist-stimulated and Li+-sensitive accumulation

of a novel [3H]InsP2 isomer tentatively identified as [3H]Ins(4,5)P2- Since

the origins and metabolic fate of this isomer are currently unknown

further detailed experiments were conducted to try and determine its

possible routes of formation and metabolism. The CCh-stimulated

accumulation of this isomer only reached significant values at later time-

points (> 5 min) following agonist addition. The accumulation of

[3H]Ins(4,5)P2 indicates the possible existence of a Ptdlns-specific PLD

activity in BTSM or of a novel Ins(l,4,5)P3 1-phosphatase. Although the

first suggestion cannot be ruled out entirely, such an activity does not

appear to be stimulated following PKC activation (the dominant

mechanism underlying PLD activation in ASM) since treatment of BTSM

with PDBu was without effect on either basal [3H]Ins(4,5)P2 accumulation

or the relative amount of [3PI]Ins(4,5)P2 accumulation following Hist- or

CCh stimulation. [3H]Ins(4,5)P2 and [3H]Ins4P accumulation exhibited

bell-shaped Li+ concentration-response curves suggesting that similar

enzymes may be responsible for the formation and metabolism of these
two InsPs. The accumulation of [3H]Ins4P at low concentrations of Li+ is

due to the uncompetitive inhibition of the inositol monophosphatase

enzyme by Li+. At higher concentrations of Li+ the InsPP 1-phosphatase
is also inhibited thereby decreasing the supply of [3H]Ins4P from
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[3H]Ins(l,4)P2. It is likely therefore that Ins(4,5)P2 is both formed and

metabolised by Li+-sensitive enzymes. Hence it is proposed that a novel

Li+-sensitive Ins(l,4,5)P3 1-phosphatase similar to that identified in

Dictyostelium discoideum, and a Li+-sensitive Ins(4,5)P2 4- or 5-

phosphatase exist in BTSM and account for observed concentration effects
of Li+ on the accumulation of [3H]Ins(4/5)P2- This data indicates the

presence therefore of a novel, albeit relatively minor, route of Ins(l,4,5)P3
metabolism in BTSM.

The studies documented in this thesis represent the first detailed analysis
of the InsPP isomers present in BTSM and have highlighted the potential
for the regulation of the pattern of InsPP accumulation by both PKA and
PKC. The complexity of the phosphoinositide signal transducing

pathways and their multiple regulatory mechanisms testify to the

importance of phosphoinositide signalling in ASM. Hist and CCh appear

to generate distinct patterns of InsPP accumulation in this tissue and

these responses display differential sensitivity to regulation by p2-

adrenoceptor agonists and PKC activation. These data imply that the two

agonists may utilise different G-protein or PIC isozymes, and hence a

future generation of highly specific G-protein and PIC inhibitors may

prove to be clinically relevant. In addition, a novel InsP2 isomer -

Ins(4,5)P2 - has been identified whose potential functional role is

currently unknown and which warrants further study.
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