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Abstract

In 1915, Debye derived his well-known equation for the X-ray scattering from a

sample of randomly orientated gas-phase molecules. He approximated the molec-

ular scattering by adding the contributions of isolated atomic constituents. This

is known as the Independent Atom Model (IAM). However, it omits the redistri-

bution of valence electrons due to bonding, and is limited to the electronic ground

state. The main proposition of this thesis is that it is worthwhile going beyond

the IAM when interpreting X-ray scattering data. In part, this is motivated by

the arrival of new X-ray sources called X-ray Free-Electron Lasers (XFELs).

A new method called Ab Initio X-ray Diffraction (AIXRD) is introduced. It cal-

culates the elastic X-ray molecular scattering factor directly from wave functions

calculated by ab initio electronic structure theory, for instance Hartree-Fock or

multiconfigurational self-consistent field. In this way, the valence electrons are

correctly taken into account, and calculations based on electronically excited wave

functions become possible. The wave functions must be constructed from spa-

tial orbitals made up of Gaussian-Type Orbitals (GTOs), giving an analytical

solution to the Fourier transform integrals involved, and is key to computation-

ally efficient and accurate results. This is compared to a fast Fourier transform

(FFT) method, where the electron density is computed on a 3D grid and an FFT

algorithm is used to obtain the elastic X-ray molecular scattering factor.

Inspired by post-crystallography experiments such as serial femtosecond crystal-

lography and single-particle imaging at XFELs, the AIXRD method is expanded

to allow accurate X-ray diffraction calculations from large molecules such as pro-

teins. To make the underlying ab initio problem tractable, the molecule is split

into fragments. In other words, the electron density is constructed by a sum of

fragment contributions, as is the corresponding molecular form-factor. In this

way, it is analogous to the IAM approach except that instead of isolated atoms,

there are isolated fragments. A pairwise summation of fragment contributions is
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also used to account for fragment-fragment interactions. Various fragment def-

initions are compared based on their effect on the X-ray diffraction signal, and

are compared to the IAM method.

Finally, X-ray diffraction from molecules in specific quantum states is calculated,

revealing a distinct quantum fingerprint in the X-ray diffraction, and a com-

parison to experiment is made. In particular, the elastic X-ray diffraction is

calculated from gas-phase H2 pumped to various electronic, vibrational, and elec-

tronic states. This is expanded upon for polyatomic molecules using the harmonic

approximation for the vibrational states.

vi



Lay Summary

X-rays interact with matter via absorption or scattering processes, predominantly

via the electrons. This thesis is a theoretical and computational study of gas-

phase elastic X-ray diffraction from molecules as small as H2 to as large as pro-

teins. It is motivated by the arrival of new X-ray sources called X-ray free-electron

lasers (XFELs), capable of producing X-ray pulses with unprecedented intensity

and very short duration. These characteristics are well suited for improvements

in experiments such as gas-phase and time-resolved X-ray diffraction, and crystal-

free structure determination of biomolecules.

A recurring theme throughout is the effectiveness of going beyond the conven-

tional method of calculating the X-ray diffraction signal, called the Independent

Atom Model (IAM), which treats all atoms in a molecule as isolated from one an-

other, and therefore, does not correctly account for valence and bonding electrons.

A new method called Ab Initio (Latin: ‘from the beginning’) X-ray Diffraction

(AIXRD) is described, which uses the total molecular wave function to accurately

calculate the X-ray diffraction signal. An outline of the underlying methodology

is described within, including calculations of X-ray diffraction from molecules in

electronically excited states.

This method is expanded upon in two ways. Firstly, to allow larger molecules

such as proteins to be treated with the AIXRD method, a fragment-based ap-

proach is employed, and is compared to the full AIXRD and IAM methods. It

is inspired by experimental developments at XFELs, such as serial crystallogra-

phy and the possibility of single-particle imaging. Lastly, the effect of specific

quantum states (electronic, vibrational, and rotational) in molecules is studied,

encouraged by progress in experimental state-selection of gas-phase molecular

samples, in combination with renewed interest in gas-phase X-ray scattering.

vii



viii



Contents

Declaration i

Abstract vi

Contents viii

1 Introduction 3

1.1 Brief historical background . . . . . . . . . . . . . . . . . . . . . . 3

1.2 X-ray sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Synchrotrons . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 X-ray free-electron lasers . . . . . . . . . . . . . . . . . . . 7

1.3 Interaction of X-rays with matter . . . . . . . . . . . . . . . . . . 8

1.4 Opportunities at XFELs using scattering . . . . . . . . . . . . . . 9

1.4.1 Towards crystal-free structure determination . . . . . . . . 9

1.4.2 Gas-phase scattering . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Time-resolved experiments . . . . . . . . . . . . . . . . . . 12

1.5 Beyond the Independent Atom Model . . . . . . . . . . . . . . . . 14

1.6 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theory 17

2.1 X-ray scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Elastic scattering from electron density ρ(r) . . . . . . . . 18

2.1.2 The Independent Atom Model . . . . . . . . . . . . . . . . 20

2.1.3 Rotational-averaging . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Beyond the Independent Atom Model . . . . . . . . . . . . 23

2.1.5 Eigenstate scattering and thermal averaging . . . . . . . . 24

2.2 Fundamental ideas of ab initio theory . . . . . . . . . . . . . . . . 26

2.2.1 The Born-Oppenheimer approximation . . . . . . . . . . . 27

2.2.2 Hartree products . . . . . . . . . . . . . . . . . . . . . . . 29

ix



2.2.3 Slater determinants . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 Hartree-Fock theory . . . . . . . . . . . . . . . . . . . . . 31

2.3 Multi-determinant methods . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Excited determinants . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Configuration interaction . . . . . . . . . . . . . . . . . . . 34

2.3.3 Multiconfigurational self-consistent field . . . . . . . . . . 34

2.4 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Slater-type and Gaussian-type orbitals . . . . . . . . . . . 35

2.5 Electron density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Ab Initio Molecular X-ray Diffraction 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Multiconfigurational electron density . . . . . . . . . . . . 42

3.2.2 Ab initio X-ray diffraction . . . . . . . . . . . . . . . . . . 44

3.2.3 Fourier transform of GTO products . . . . . . . . . . . . . 45

3.2.4 Numerical approach . . . . . . . . . . . . . . . . . . . . . 49

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Electron density . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Atomic form-factors . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Molecular structure in diffraction . . . . . . . . . . . . . . 52

3.3.4 Electronic structure in diffraction . . . . . . . . . . . . . . 58

3.3.5 Fitted rotationally-averaged form-factors for solvent molecules 60

3.3.6 Numerical calculations using FFT . . . . . . . . . . . . . . 63

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Fragment-Based Ab Initio X-ray Diffraction from Biomolecules 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Fragment molecular orbital theory . . . . . . . . . . . . . . 71

4.2.2 Independent and pairwise fragment models . . . . . . . . . 73

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Small molecules . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Amino acids . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.4 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.5 Temporal integration . . . . . . . . . . . . . . . . . . . . . 94

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



5 State selective diffraction measurements: H2 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 X-ray scattering from diatomic molecules . . . . . . . . . . 104

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Potential energy curves and vibrational wave functions . . 106

5.3.2 Model chemistry for X-ray scattering calculations . . . . . 108

5.3.3 Electronic structure in diffraction . . . . . . . . . . . . . . 110

5.3.4 Accounting for vibrations and rotations . . . . . . . . . . . 113

5.3.5 Comparison to experiment . . . . . . . . . . . . . . . . . . 119

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 State selective diffraction measurements: Polyatomics 123

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.1 Harmonic vibrations . . . . . . . . . . . . . . . . . . . . . 124

6.2.2 X-ray scattering . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 Basis set convergence (BF3, NH3) . . . . . . . . . . . . . . 127

6.3.2 Triatomics (H2O) . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 135

7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138

xi





List of Abbreviations

XFEL X-ray Free-Electron Laser

IAM Independent Atom Model

SASE Self-Amplified Spontaneous Emission

LCLS Linac Coherent Light Source

XAS X-ray Absorption Spectroscopy

XANES X-ray Absorption Near-Edge Structure

EXAFS Extended X-ray Absorption Fine Structure

XES X-ray Emission Spectroscopy

TRXRD Time-Resolved X-ray Diffraction

ESRF European Synchrotron Radiation Facility

PES Potential Energy Surface

CHD 1,3-Cyclohexadiene

AIXRD Ab Initio X-ray Diffraction

HF Hartree-Fock

DFT Density Functional Theory

MCSCF Multi-Configurational Self-Consistent Field

MD Molecular Dynamics

GTO Gaussian-Type Orbital

SCF Self-Consistent Field

CI Configuration Interaction

FFT Fast Fourier Transform

MO Molecular Orbital

AO Atomic Orbital

MOF Metal Organic Framework

FMO Fragment Molecular Orbital

IFM Independent Fragment Model

FT Fourier Transform

PDB Protein Data Bank

FF Diphenylalanine

PEC Potential Energy Curve

1



2



Chapter 1

Introduction

The subject of this thesis is elastic X-ray scattering from molecules, primarily

in the gas-phase. It is motivated by the recent construction of a new class of

X-ray sources, called X-ray Free-Electron Lasers (XFEL), which open the door

for many experimental possibilities including gas-phase X-ray diffraction experi-

ments. This thesis explores the utility of going beyond the conventional indepen-

dent atom model (IAM) for interpreting elastic X-ray scattering and explicitly

taking into account the electronic, vibrational, and rotational states of molecules.

An approach is developed here called ab initio X-ray diffraction (AIXRD). It is

based on the electronic wave function of the molecule, as calculated by mod-

ern quantum chemistry methods. This chapter provides a brief overview of the

history of X-rays and their sources, their interaction with matter, and finally

the experimental possibilities enabled by XFELs and a more detailed reasoning

behind the development of AIXRD.

1.1 Brief historical background

X-rays are electromagnetic waves with wavelengths on the order of an Ångström

(10−10 m), which is the length scale of chemical bonds in molecules. X-rays inter-

act weakly with matter, meaning that they penetrate further through materials

than, for instance, electrons. They were discovered in 1895 by Wilhelm Conrad

Röntgen in his laboratory at the University of Würzburg, Germany. The first X-

ray crystallography experiment determined the structure of rock salt in 1913 [7].

Since then X-rays have become an invaluable tool for probing the structure of
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matter, ranging from atoms to proteins, crystals and solids. Their importance

in this aspect has been truly staggering; complex molecular structures, such as

DNA and proteins, have been solved by the use of X-ray scattering.

There have been many Nobel prizes awarded for work which included the use of

X-rays, starting with Max von Laue in 1914 for his discovery of X-ray diffraction

from crystals [8], while William Lawrence Bragg, discoverer of Bragg’s law of

diffraction, and his father William Henry Bragg obtained the 1915 Nobel Prize

in Physics “for their services in the analysis of crystal structure by means of X-

ray” [9]. X-ray diffraction was used for the determination of the structure of DNA

by James Watson and Francis Crick in 1953, for which they were awarded the

1962 Nobel Prize in Physiology or Medicine together with Maurice Hugh Fred-

erick Wilkins [10]. The same year the Nobel Prize in Chemistry was awarded

jointly to Max Ferdinand Perutz and John Cowdery Kendrew for their studies of

the structures of globular proteins [11]. Dorothy Hodgkin pioneered X-ray protein

crystallography experiments and determined the structure of penicillin and vita-

min B-12, for which she got the 1964 Nobel Prize in Chemistry [11]. Although

not directly related to X-ray diffraction, Ahmed Zewail’s 1999 Nobel Prize in

Chemistry is also notable for his studies of transition states using femtosecond

spectroscopy [12].

1.2 X-ray sources

1.2.1 Overview

Since the interaction of X-rays with matter is weak, experiments require a surplus

of X-ray photons, making X-ray sources a critical bottleneck in experiments. The

first mayor advance in this respect came in 1912 with Coolidge’s X-ray tube,

followed by the introduction of synchrotrons in the 1970s, and very recently the

development of X-ray Free-Electron Lasers (XFELs). Each technological advance

in X-ray sources has been followed by corresponding scientific advances.

To describe the comparative quality of various X-ray sources a quantity called

brilliance is used, which is a combination of several beam characteristics. It is

proportional to the number of photons emitted by the source per second, and

inversely proportional to the beam collimation, which describes how much the
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beam spreads out as it propagates, measured in units of horizontal and vertical

milli-radians (mrad2); how large the source is in units of mm2, in other words, how

well it can be focused to a small area; and finally, the spectral distribution. This

is conventionally defined as the photon energy range as a fixed relative energy

bandwidth (0.1% BW). The source brilliance can be expressed by the equation,

Brilliance =
Photons/second

(mrad)2(mm2 source area)(0.1% BW)
. (1.1)

The brilliance of synchrotron and XFEL sources is shown in Fig. 1.1, and these

sources are discussed in Sections 1.2.2 and 1.2.3 below. The Coolidge X-ray tube

does not even register on the scale of Fig. 1.1. X-rays can be produced by ac-

celerating electrons into a metal anode, where the sudden deceleration produces

electromagnetic radiation This is consequently known as bremsstrahlung (after

the German ‘bremsen’ for brake), and has a maximum energy proportional to

the acceleration voltage applied. A sharp line spectrum is superimposed on this

broad spectrum. The reason for this is that an incident photon can collide with

an inner shell atomic electron and remove it, which causes a vacancy followed by

relaxation via an outer shell electron, producing X-ray radiation with character-

istic energy equal to the energy difference between the two shells. This is the

fluorescent radiation, and is several orders of magnitude more intense than the

bremsstrahlung spectrum. The inner, middle, and outer shells are conventionally

labelled K,L, and M respectively. The X-ray spectrum produced by relaxation

from the L to the K shell is called the Kα line, and the X-ray spectrum produced

by relaxation from the M to the K shell is called the Kβ line.

1.2.2 Synchrotrons

X-ray sources have come a long way since Coolidge’s invention of the X-ray tube

in 1912, and the subsequent rotating anode source. Nowadays, there are syn-

chrotrons all over the world, which produce X-rays ∼1012 times more brilliant

than the original lab-based sources. These facilities are routinely used to solve

the structures of large molecules such as proteins and other biomolecules via X-

ray crystallography. As of 28 January 2014, there are 97,362 protein structures

in the protein data bank which were predominantly discovered in this way [14].

It is interesting to note that synchrotron radiation occurs naturally and has been

observed near stellar nebulae where high magnetic fields cause relativistic charged
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Figure 1.1: Peak brilliance and photon energy comparison between X-ray free electron
laser and synchrotron radiation. Figure taken from Ref. [13].

particles to follow curved paths or orbits, producing X-ray radiation. Back on

Earth, the same mechanism produces radiation in bending magnets, wigglers,

and undulators in synchrotrons. An electron moving through a constant mag-

netic field experiences a Lorentz force and moves in a curved path. The radial

acceleration causes electromagnetic radiation. In a storage ring the synchrotron

radiation is produced either in the bending magnets needed to keep the electrons

in a closed circuit, or in insertion devices such as wigglers or undulators situated

in the straight sections of the storage ring. In the latter devices, magnets with

alternating polarity force the electrons to follow oscillating paths rather than

moving in a straight line. The undulator is a specifically designed wiggler, con-

structed such that the radiation from one oscillation is in phase with the radiation

from subsequent oscillations. This gives coherent addition of amplitudes and a

monochromatic spectrum (with harmonics). However, due to the finite number

of periods in the undulator, a quasi-monochromaticity is achieved with typical

BW of around 1%.
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1.2.3 X-ray free-electron lasers

While synchrotrons play an important and ongoing role as an established X-ray

source, recent developments have given rise to a new source called the X-ray Free-

Electron Laser (XFEL). Originally proposed by Madey in 1971 [15], this ultra-

bright X-ray source is essentially a repurposed linear accelerator, fitted with long

(∼100 m) undulators. It distinctly relies upon a process called self-amplified stim-

ulated emission (SASE) [16,17], allowing Lorentz contracted electron bunches ac-

celerated to near light speed to lase in the X-ray regime while passing through the

undulators. As electron bunches traverse the long undulators they co-propagate

with their own undulator radiation, and form microbunches which radiate coher-

ently. See Fig. 1.2 for a schematic of this process. This builds up exponentially

to a saturation point (self-amplification), giving extremely bright and coherent

X-ray pulses. For this reason XFELs produce radiation of far higher brilliance,

and transverse and longitudinal coherence than synchrotron radiation.

(a) (b)

Figure 1.2: Schematic of microbunching: As the electron bunches traverse the long un-
dulators they co-propagate with their own undulator radiation, and form microbunches
which radiate coherently. Figure (a) taken from Ref. [18]. There is an ideal undulator
length at which the coherence and power is at a maximum, after which space-charge
repulsion effects take a role. Figure (b) taken from the Paul Scherrer Institute website,
https://www.psi.ch/swissfel/how-it-works.

The first soft X-ray free-electron laser was FLASH [19] in Hamburg, which opened

in 2005, and delivers radiation in the wavelength range 44-5 nm (28-250 eV).

There are now a number of other facilities operating in the soft X-ray, VUV and

XUV ranges including FERMI [20] in Italy and Artemis [21] in the UK. The

original hard XFEL was the Linac Coherent Light Source (LCLS) in Stanford

which first lased in 2009 [22], closely followed in 2011 by SACLA in Japan [23].

Other facilities that are recently completed or near completion include the Euro-

pean XFEL [24] in Hamburg, Korean XFEL [25], and SwissFEL [26] at the Paul

Scherrer Institute in Switzerland.
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They all have unprecedented peak intensity of up to nine orders of magnitude

beyond that of 3rd generation synchrotrons. See again Fig. 1.1 for a comparison

between XFEL and synchrotron peak brilliance and photon energy. All XFELs

produce ultrashort pulses on the order of femtoseconds, and have highly tunable

wavelengths, with their technology covering an enormous bandwidth from the

VUV to the hard X-ray regime. The LCLS is capable of producing hard X-ray

pulses of < 7 fs duration, with < 25 fs pulses generated routinely [27]. It is inter-

esting to note that the total XFEL photon flux is comparable to that of modern

synchrotrons. However, the photons come in highly concentrated pulses with a

low repetition rate (for XFELs based on normal conducting cavities this is typi-

cally about 120 Hz), leading to much higher intensity. Upcoming XFEL projects

which are based on superconductive cavities, such as the European XFEL, are

designed to operate at up to 27 kHz, increasing the total flux significantly. The

short and intense pulses allow detection of very dilute samples such as cold molec-

ular ions or beams, and aid background suppression. For general interest and a

popular description of XFELs, their history and science (with a particular empha-

sis on the LCLS), see the Scientific American article by Berrah and Bucksbaum

in Ref. [28].

1.3 Interaction of X-rays with matter

X-rays can interact with matter in a number of ways. The interaction Hamilto-

nian for an incident X-ray photon field and an electron in a sample has both an

absorption and a scattering term [29],

ĤI = A · p +
A2

2
, (1.2)

in atomic units, where A is the vector potential, and p is the momentum of the

electron. Photoelectric absorption, corresponding to the first term in Eq. (1.2),

involves the destruction of an incident photon upon interaction with an atom,

which for X-rays leads to the ejection of an electron from the atom. If the hole is

created in the atom’s K shell, this can be filled by an electron from the L or M

shell, leading to emission of Kα or Kβ radiation respectively. This is called X-ray

emission. Additionally, a secondary electron can be emitted, called an Auger elec-

tron. This is caused by an outer shell electron receiving energy from the core-hole

relaxation. There are various well-known experimental techniques which measure
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X-ray emission, or use the X-ray absorption process in some other way. Exam-

ples of these methods include X-ray Absorption Spectroscopies (XAS), such as

X-ray Absorption Near-Edge Structure (XANES), Extended X-ray Absorption

Fine Structure (EXAFS); and resonant and non-resonant X-ray Emission Spec-

troscopies (XES). X-ray spectroscopies will benefit greatly from XFELs, but are

not discussed in this thesis. For an overview of recent experimental and theoret-

ical developments in ultrafast X-ray absorption spectroscopies see Ref. [18].

X-rays can also interact with matter via the scattering term in the interaction

Hamiltonian, i.e. the second term in Eq. (1.2). This involves destruction of the in-

cident photon and creation of another photon. If the new photon has exactly the

same energy as the incident photon, this is called Thomson or elastic scattering.

The photon can also deposit energy onto the sample, which results in a scattered

photon with a longer wavelength. This is known as inelastic or Compton scatter-

ing. Elastic and inelastic scattering can be treated within the same theoretical

framework, as shall be discussed further in Section 2.1. The focus in this thesis is

on elastic scattering which provides useful information about molecular structure.

1.4 Opportunities at XFELs using scattering

1.4.1 Towards crystal-free structure determination

In standard synchrotron experiments, radiation damage can be a major obstacle,

and protein crystals are routinely kept at cryogenic temperatures (∼ 100 K) to

minimise this damage. Prior to their construction, this was a concern for future

XFEL sources, as their extremely large radiation dosage per pulse would destroy

the sample. However, in an influential paper Neutze et al. [30] theorised that

the sample would not degrade on the timescale of the ultrashort XFEL pulses.

On the contrary, it would provide a meaningful snapshot of the scattering signal

from the undamaged molecule. Of course, the sample would eventually vaporise

into plasma, and require replacement of the sample after each snapshot. This

situation is known as diffraction before destruction, and has now been confirmed

by various experiments. However, inelastic photon-electron collisions can cause

electronic damage, predominantly photoionisation, and to a lesser extent Auger

emission, at a timescale comparable to the XFEL pulses. Careful tuning of pulse

length (1-10 fs) and fluence (1013-1015 photons/µm2) mostly avoids or outruns
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even these effects [31,32], giving a high signal to noise ratio.

Figure 1.3: An illustration of serial crystallography. (A) Typical in-vivo crystal used
in the study. Most crystals used by Redecke et al. [33] had a volume <10 µm3.
(B) Schematic of the femtosecond X-ray crystallography technique, with a liquid jet
containing microcrystals, femtosecond X-ray pulses, and detector. Figure taken from
Ref. [34].

A structure determination method of increasing importance is called serial fem-

tosecond X-ray crystallography. It utilises the unprecedented peak brilliance of

femtosecond pulses at XFEL sources to bypass the usual requirement of growing

large crystals and irradiating them with X-rays for long periods of time. Instead,

many microcrystals are passed through the XFEL beam in a liquid jet, where

each brief irradiation by an X-ray pulse outruns the radiation damage and cap-

tures high quality diffraction data which is added to a cumulative dataset, used

to solve the molecular structure [14, 33, 34]. The well-known protein lysozyme

has been solved by this method with no prior structural information [35], and

even single-particle imaging of a mimivirus [36] has been performed, showing no

measurable radiation damage. Fig. 1.3 is a schematic for the crystal size data in

Redecke et al. [33] and the experimental setup, showing the liquid jet containing

microcrystals, the femtosecond X-ray pulses, and the detector. As the technol-

ogy improves and access to XFEL beam-time becomes easier, it can be expected

that more structures will be solved in this way; thus avoiding data deterioration

by radiation damage, and crucially, the need for large crystal growth. This is

especially important for proteins which are difficult or impossible to crystallise,

such as membrane proteins, many of which are important drug targets [37]. New

insights into their natural structure, including structures of such proteins en-

coded by the human genome, could soon be obtained using serial femtosecond

crystallography [14].
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1.4.2 Gas-phase scattering

Gas-phase scattering is different from scattering from crystalline samples, as there

are no Bragg peaks, only a continuous diffraction intensity. In X-ray crystallog-

raphy, only the Bragg peaks are useful, as the diffraction signal arriving at these

points is strongly amplified by coherent summation of the signal. This signal

amplification is useful as it mitigates the small scattering cross-section of X-rays,

and has been a requirement for many structure determination experiments. In

the gas-phase this amplification is absent and X-ray scattering from rotationally-

averaged molecules is distributed continuously in concentric rings according to

the Debye formula [38].

Historically, between X-ray and electron scattering, the latter has been thought of

as the preferred method of probing the molecular structure of gas-phase samples

[39]. This is due to two main reasons: The differential cross-section for electrons is

much larger than for X-rays; and lab-based electron sources with high enough flux

have been developed, whereas X-ray sources such as Coolidge tubes and rotating

anodes did not meet flux requirements to be easily used for this purpose. In 1915,

Debye theoretically examined the scattering of X-rays from molecules in the gas-

phase, and wrote his famous equation sin(qr/qr) [38], where r is an internuclear

distance, and q = 2k0 sin(θ/2), with k0 the incident wavevector and θ the radial

scattering angle. His proposed experiment was realised 13 years later by X-ray

scattering from carbon tetrafluoride [40]. There were practical difficulties inherent

in the weak scattering of the gaseous sample by X-rays. Later the apparatus was

improved [41], allowing X-ray scattering from atoms and molecules such as H2,

He, N2, O2, Ar, and CO2 [42] to be measured, with further investigations by

Wollan [43], and Chipman and Jennings [44].

However, already by the 1930s electron scattering was seen as the preferred tech-

nique in the gas-phase [45]. It is therefore not surprising that electron scattering

dominated the field of ultrafast time-resolved diffraction in the beginning [46,47].

Unfortunately time-resolved electron scattering has inherent problems of its own,

as ultrashort electron bunches are difficult to generate due to space-charge repul-

sion effects, and accurate timing can be difficult to achieve using an optical pump

and electron probe pulse due to different propagation velocities. Therefore now,

there is renewed interest in gas-phase X-ray diffraction due to the short pulse

durations and tremendous increase in the number of photons per pulse at XFEL

sources, thus, the promise of ultrafast time-resolved X-ray diffraction [5,6,48,49].
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In parallel, there is a surge in gas-phase X-ray scattering experiments at syn-

chrotrons [50–53] which in part inspired the work in Chapter 5.

1.4.3 Time-resolved experiments

Early time resolved X-ray diffraction (TRXRD) experiments were performed at

synchrotrons, where a mechanical chopper was fitted along the X-ray beam giv-

ing ∼100 ps X-ray pulses. In 2001, Techert et al. [54] probed transient struc-

tural changes in an organic solid at the European Synchrotron Radiation Facility

(ESRF), in Grenoble, France. They managed to achieve 100 ps X-ray pulse widths

using a synchronised chopper; in a pump-probe scheme, photoexciting their or-

ganic crystal with a Ti:sapphire laser and subsequently probing with X-ray pulses

of variable time-delay. They imaged the structural changes in the organic crystal

caused by electronic excitation and relaxation back to the ground state. Later

that year, Neutze et al. [30] probed a photoexcited state of molecular iodine in

solution with a similar technique and were able to visualise via diffraction using

80 ps X-ray pulses how the solvent cage altered the photodissociation dynamics.

Similar TRXRD work at synchrotrons followed in this direction [55–57]. This type

of experiment sets itself apart from spectroscopic techniques as it directly probes

the time-evolving molecular structure, rather than energy spectra. TRXRD and

spectroscopy are complimentary techniques because with information from both

types of experiment a full picture can be obtained in terms of time-evolution on

potential energy surfaces (PES) and changes in molecular structure [58].

The extreme brevity of the pulses at XFELs are ideal for this type of time-

dependent study. The combination of extremely bright and ultrashort pulses is

ideal for imaging molecules, as the length and time-scales for molecular motion

are Ångströms (C-C single bonds are 1.2-1.5 Å) and femtoseconds (the short-

est vibrational periods of molecules are ∼10 fs) respectively, which correspond

very well to XFEL pulse characteristics. The unprecedented qualities of XFEL

radiation expedite new and challenging areas in the field of TRXRD [59,60].

In February 2014, the Kirrander group was fortunate enough to participate in

an experiment at the LCLS, which imaged the photochemical ring-opening re-

action of the 1,3-cyclohexadiene (CHD) molecule in the gas-phase using 30 fs

X-ray pulses [5]. See Fig. 1.4 for the experimental schematic taken from Ref. [5].

The reaction proceeds extremely rapidly with a time constant of about 80 fs.
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Figure 1.4: Schematic of gas-phase photochemical 1,3-cyclohexadiene reaction to
1,3,5-hexatriene; pumped with UV pulses and probed with X-ray pulses, with diffraction
data recorded at the CSPAD detector. As performed by Minitti et al. [5]. Figure taken
from this reference also.

After photoexcitation from its ground state (1A) to the Franck-Condon region

on its first excited state (1B), the molecule propagates onto another excited state

(2A), then to a conical intersection with the ground state, and has approximately

50% probability to undergo symmetry breaking and ring-opening to form 1,3,5-

hexatriene. See Fig. 1.5 for a schematic of the reaction. In this experiment X-rays

were used to image the average time-evolving molecular geometry during a photo-

chemical reaction of a small molecule in the gas-phase at an ultrashort timescale.

It strongly supports the perception that the XFEL is an extremely powerful imag-

ing tool for molecules. As improvements are made in this field and XFELs are

upgraded even further (e.g. LCLS II [61]), time-resolved imaging of molecules

will become more common and hopefully new and deeper understanding will be

gained about the dynamic processes of chemical reactions.
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Figure 1.5: Reaction pathway of the photochemical 1,3-cyclohexadiene (CHD) ring-
opening reaction to 1,3,5-hexatriene. After photoexcitation from the stationary point
on the 1A potential energy surface (PES) to the Franck-Condon region on the 1B
PES, the molecule passes through the conical intersection (1B/2A CI), then reaches
the conical intersection with the ground state (2A/1A CI) where it has significant
probability to symmetry break and undergo ring-opening. Figure taken from Ref. [6].

1.5 Beyond the Independent Atom Model

In X-ray diffraction theory, a simple and commonly used approximation is the

independent atom model (IAM). It states that the molecular scattering factor can

be approximated by a sum of atomic scattering factors or form-factors. Tables

of atomic form-factors are listed in the International Tables of Crystallography

[62], in which they were calculated using Hartree-Fock level theory [63, 64]. The

IAM approximation is equivalent to saying that a sum of isolated-atom electron

densities can be summed to approximate the total molecular electron density.

Clearly, this omits alterations in the electron density caused by valence electrons
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involved in chemical bonding, and is also restricted to the electronic ground state.

One of the main arguments in this thesis is that going beyond the IAM approxi-

mation is useful and significant, specifically by deriving the molecular form-factor

from the full electron density. This argument is discussed including a descrip-

tion of theoretical calculations and results in Paper 1 (also reference [1]), and in

Chapter 3 of this thesis. For example TRXRD experiments involving short-lived

electronically excited states may particularly require molecular form-factors com-

puted from electronically excited states. The question of whether X-ray scatter-

ing can be used to identify the electronic state of a molecule has been considered

theoretically [65, 66]; and X-ray diffraction from exceptionally long-lived excited

states in molecules has been observed experimentally [67,68], although indirectly

via changes in geometry. From theoretical results shown in this thesis (Chapters

3 and 5), it appears that electronically excited states could be visible via X-ray

diffraction with ultrashort high intensity pulses.

If there is a degree of molecular alignment, the molecular form-factor will be a

function of the radial and azimuthal scattering angles, dramatically increasing the

information content in the observed scattering signal. Molecular alignment tech-

niques have been developed over the past decades [69,70], as well as techniques for

state-selection [71–74], which have recently been demonstrated in both X-ray [48]

and electron [75] gas-phase scattering. In principle, much richer information can

be deduced from such non-thermal samples [76].

Using an ab initio electronic structure method in combination with X-ray diffrac-

tion theory gives rise to a new methodology called ab initio X-ray diffraction

(AIXRD) to accurately compute molecular form-factors, and is described in de-

tail in Chapter 3. It is not limited to the electronic ground state, as excited

state wave functions obtained via ab initio electronic structure calculations can

be used; and crucially, changes in valence electron distribution caused by chemical

bonding are fully taken into account.

1.6 Thesis overview

This thesis is a theoretical study of molecular X-ray diffraction in the context

of gas-phase experiments at the new ultrabright femtosecond XFEL sources.

It primarily introduces an analytical methodology for calculating elastic X-ray
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molecular scattering factors based on ab initio electronic structure theory using

Gaussian basis sets, entitled ab initio X-ray diffraction (AIXRD), and compares

this method to the simple IAM approximation. The strength of AIXRD lies in

its ability to efficiently calculate scattering factors from molecules in any of their

electronically excited states as well as their ground state, and by explicitly tak-

ing into account changes in electronic structure due to chemical bonding. This

method is discussed in detail in Chapter 3.

With the advent of crystal-free structure determination experiments performed at

XFELs, such as serial femtosecond X-ray crystallography [14,34–36], the AIXRD

method is expanded to calculate elastic X-ray molecular scattering factors from

large molecules, such as proteins and other biomolecules. This method involves

dividing the molecule into appropriate fragments which are treated separately

with electronic structure theory followed by AIXRD. This allows ab initio treat-

ment of molecules with thousands of electrons. A comprehensive comparison

between the fragment-based AIXRD method and the IAM method is performed

for the well-known protein lysozyme, including temporal and orientational aver-

aging as would occur over many shots in serial crystallography. This work is the

topic of Chapter 4.

The AIXRD method is expanded upon by adding vibrational and rotational

states, which is discussed in Chapters 5 and 6. A comparison to a recent high-

resolution elastic X-ray diffraction experiment on H2 in the gas-phase [50] is

made. The motivation for this work is that the feasibility to detect, identify,

and characterise individual quantum states using elastic X-ray scattering is at

hand, whether electronic [1, 65, 66], vibrational [77], or rotational [78], as well

as aligned molecules [79, 80]. Experimental realisations to date include scatter-

ing from partially aligned and somewhat state-selected molecules [75,81,82] and

indirect detection of metastable electronically excited states via changes in ge-

ometry [67, 68]. Due to increasing sophistication of gas-phase X-ray diffraction

experiments performed at XFELs [5, 6], combined with the rapid development

of experimental molecular orientation and alignment [71, 73, 83], it may become

possible to directly image state-selected molecules via X-ray scattering in the not

too distant future.

16



Chapter 2

Theory

The theoretical aspects of this thesis primarily constitute a combination of X-ray

scattering theory and ab initio electronic structure theory, to construct a beyond

IAM method (as briefly mentioned in Section 1.5) for elastic X-ray scattering

from molecules in the gas-phase. This chapter covers the fundamental expressions

and methods involved along with brief discussions. Chapter 3 expands on this

with further details on calculating the X-ray molecular form-factor from a wave

function calculated by ab initio electronic structure theory.

2.1 X-ray scattering

X-rays only interact with the electrons in a molecule. Although the nuclei also

carry charge, they are much heavier than the electrons and do not undergo

substantial oscillations in response to the high frequency electromagnetic field.

Therefore, X-ray scattering probes the spatial positions of the nuclei in an indi-

rect manner, via the electrons associated with the nuclei. This thesis primarily

focuses on elastic X-ray scattering from molecules in the gas-phase, with the main

theoretical points discussed in the following. For a more general overview of the

interactions of X-rays with matter, including scattering, see for instance Refs. [29]

and [84].
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2.1.1 Elastic scattering from electron density ρ(r)

Throughout this thesis the X-ray source is assumed to be monochromatic, which

is valid in most modern X-ray scattering experiments at synchrotrons and XFELs;

and the incident electric field can be considered as a plane wave,

E(r, t) = E0e
i(kr−ωt), (2.1)

where E0 = ε̂E0 for unit vector ε̂ and magnitude E0, |k| = 2π/λ for X-ray

wavelength λ, and ω = 2π/τ = 2πν for wave period τ and frequency ν. For a non-

monochromatic source there is a frequency distribution of incident photons, E0 =

E0(ω). This is the case for an XFEL source, however, using the average photon

energy E0 = 〈E0〉 is a valid assumption as the bandwidth is small compared to

the absolute photon energy. Elastic scattering from a general atomic or molecular

electron density, ρ(r), will now be considered. In a Cartesian coordinate system

with the direction of the incident wavevector along the z-axis,

k0 = |k|

 0

0

1

 , (2.2)

and the scattered wavevector will depend on polar θ and azimuthal φ angles,

k = |k|

 sin θ cosφ

sin θ sinφ

cos θ

 . (2.3)

The incident and scattered wavevectors are shown in this coordinate system in

Fig. 2.1. In a purely classical description, the radiation scattered by an atom

or molecule is a superposition of different volume element contributions of the

electron density, ρ(r). This superposition depends on the phase of the incident

wave as it interacts with the volume element at the origin and at the position

r. The phase difference ∆φ between these two volume elements is the vector

projection of r on k0 multiplied by |k0|, which is simply r · k0, minus the vector

projection of r on k multiplied by |k|, i.e. r · k. The schematic of this is shown

in Fig. 2.2. The momentum transfer or scattering vector can now be defined as,

q ≡ k0 − k, (2.4)
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Figure 2.1: 3D kinematic scattering of the wave vector k0 (green) to scattered wave
vector k (blue), where |k0| = |k|. The incoming wave vector k0 = (0, 0, kz) is aligned
with the z-axis, and the scattered wave vector is k = |k0|(sin θ cosφ, sin θ sinφ, cos θ),
defined in terms of the radial (azimuthal) and angular (polar) scattering angles (θ, φ)
both of which are defined relative to the direction of the incoming wave vector k0.

kk0

r

k̂0 · r k̂ · r
Figure 2.2: Schematic of the phase difference between the wavevector scattering at
the origin and the wavevector scattering at position r, which depends on the vector
projection of r on the incident wavevector k0 and on the scattered wavevector k.

which gives a phase difference of ∆ϕ = (k0−k) ·r = q ·r. The minus sign appears

because there is a phase shift of π upon scattering. The reason for this is that

the total amplitude must go to zero at the scattering point, i.e. for an incident

wave described as sin(kz), the scattered wave must be sin(kz + π) = − sin(kz).
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The scattering is elastic with |k0| = |k|, and thus |q| = 2|k| sin(θ/2) for radial

scattering angle θ. From Eqs. (2.2) and (2.3), the scattering vector in 3D is,

q = |k|

 − sin θ cosφ

− sin θ sinφ

1− cos θ

 , (2.5)

which can also be written as,

q = 2|k| sin(θ/2)

 − cos(θ/2) cosφ

− cos(θ/2) sinφ

sin(θ/2)

 . (2.6)

The superposition of volume element contributions to the scattering can now be

constructed. A volume element dr contributes an amount −r0ρ(r)dr with a phase

factor eiq·r, where r0 = e2/4πε0mc
2 ≈ 2.82 fm is the Thomson scattering length

or classical radius of the electron. Thus, the total scattering length of the atom

or molecule is,

−r0

∫
ρ(r)eiq·rdr = −r0f(q), (2.7)

where f(q) is the atomic or molecular form-factor. Note that the integral in Eq.

(2.7) is a Fourier transform, and that q = 0 corresponds to the exactly forward

scattering case (k0 = k). Then the phase term becomes unity and the integral is

f(q = 0) =
∫
ρ(r)dr = N . The form-factor is complex,

f(q) = |f(q)|eiϕ(q), (2.8)

that is, it has an associated phase factor, eiϕ(q).

2.1.2 The Independent Atom Model

For atoms, the electron density is isotropic and therefore the associated atomic

form-factors are also isotropic and can be written as a function of q = |q| only.

There are tabulated real-valued atomic form-factors f at(q), which generally fit a

sum of Ng Gaussian functions of the form,

f at(q) =

Ng∑
i=1

ai exp

[
− bi

( q

4π

)2
]

+ c, (2.9)
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and contained within the references [62,64] are the values of the fitting coefficients

{ai, bi, c} for many atoms and atomic ions. Conventionally, the molecular form-

factor is approximated by a sum of Nat atomic form-factors with appropriate

phase-terms,

f(q) =
Nat∑
j

f at
j (q)eiq·rj , (2.10)

where each atom is centred at rj. This approximation is known as the independent

atom model (IAM), and is equivalent to stating that the total molecular electron

density can be approximated by a sum of isolated atomic densities,

ρ(r) =
Nat∑
j

ρat
j (r− rj), (2.11)

each centred at rj. Clearly this omits the redistribution of valence electrons due

to chemical bonding, therefore works well for molecules containing heavy atoms,

where the ratio of valence to bonding electrons is small. The absolute-square of

the molecular form-factor gives a probability distribution in q for each photon,

this is proportional to the diffraction intensity,

I(q) ∝ |f(q)|2 =
Nat∑
i

f at
i (q)2 + 2

Nat∑
j>i

f at
i (q)f at

j (q)eiq·(ri−rj), (2.12)

where the first and second terms are called the atomic and molecular terms re-

spectively.

2.1.3 Rotational-averaging

In a gas-phase experiment with incident X-rays scattering from a randomly orien-

tated thermal ensemble of molecules, Eq. (2.12) must be averaged over all possible

molecular orientations. Only the phase term within the molecular term depends

on the positions of the nuclei, so using q · (ri − rj) = q|ri − rj| cos θ = qrij cos θ,

i.e. the distance between the centre of atom i and atom j is rij, and the integral

limits are [0, π] for θ and [0, 2π] for φ, which gives,

〈
eiq(ri−rj)

〉
θ,φ

=

∫
eiqrij cos θ sin θdθdφ∫

sin θdθdφ
=

1

4π

∫
eiqrij cos θ sin θdθdφ. (2.13)
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The remaining integral is,∫
eiqrij cos θ sin θdθdφ = 2π

∫ π

0

eiqrij cos θ sin θdθ (2.14)

= 2π
( −1

iqrij

)∫ −iqrij
iqrij

eudu

= 2π
( −1

iqrij

)(
e−iqrij − eiqrij

)
= 4π

sin qrij
qrij

,

and hence, 〈
eiq(ri−rj)

〉
θ,φ

=
sin qrij
qrij

. (2.15)

Using this result the rotationally-averaged diffraction intensity is,

IDeb(q) =
Nat∑
i

f at
i (q)2 + 2

Nat∑
j>i

f at
i (q)f at

j (q)
sin qrij
qrij

, (2.16)

which was famously derived by Debye in 1915 [38]. Note this expression is only

valid when the molecular form-factor is approximated by a sum of atomic factors,

as in the IAM approximation. Throughout this thesis a ‘beyond IAM’ method is

predominantly used, which has been touched upon in Section 1.5. Eq. (2.16) is

valid with the IAM method where the tabulated atomic scattering factors can be

used. Starting with Eq. (2.7), where the intensity is the absolute square of the

molecular scattering factor, I(q) = |f(q)|2, the rotationally-averaged diffraction

intensity is given by the angular integration,

I(q) =

∫ 2π

0

∫ π

0

|f(q, θ, φ))|2 sin θdθdφ, (2.17)

which is used instead. It is solved via a numerical method such as quadrature, and

the term f(q) from Eq. (2.7) is computed on a reciprocal space grid in spherical

coordinates (q, θ, φ). Alternatively, a Cartesian grid in reciprocal space can be

used with the help of Eq. (2.5) or (2.6). In subsequent chapters comparisons are

made to the IAM method, that is I(q) from the above equation is compared to

IDeb(q) from Eq. (2.16).
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2.1.4 Beyond the Independent Atom Model

The IAM method, as defined by Eq. (2.10), is useful due to its simplicity and

computational efficiency. However, it fails to take into account the redistribution

of valence electrons due to bonding, and only applies to the electronic ground

state. Throughout this thesis, a beyond IAM method is used, beginning with Eq.

(2.7). The electron density can be calculated with ab initio electronic structure

theory, and its description can be such that there is analytical solution to the

Fourier integral. This will be discussed in detail in Ch. 3. In this way, the bonding

electrons are taken into account, and X-ray scattering from electronically excited

states can be calculated. In addition, the molecular wave function within the

Born approximation (see Section 2.2.1) has separate nuclear and electronic terms.

Averaging over all nuclear rotations has been considered in Eqs. (2.16) and (2.17).

However, the molecule can also be pumped to specific rotational states, which

induces alignment, and therefore a anisotropic diffraction signal. Vibrational

states may also play a role in the X-ray scattering. In short, a molecule in a

specific quantum state (electronic, rotational, and vibrational) has a distinct X-

ray diffraction fingerprint. This is the topic of Ch. 5.

The discussion so far has only treated the scattering problem classically. There

are of course quantum effects which ultimately govern the electrons within atoms

and molecules. Such electrons have discrete energy levels, as briefly mentioned in

Section 1.2.1, such as the K,L, and M shells. For example, with incident X-ray

energy much less than the binding energy of the K shell, the response to the X-

ray field will be dampened due to the fact that the electrons are bound. Higher

shell electrons (L,M) are less tightly bound, therefore respond more freely to the

driving field. This is taken into account in the atomic form-factor by adding an

energy-dependent term f ′(~ω). This term becomes zero for X-ray energies much

larger than the binding energy. There is also a phase delay between the incident

field and the oscillation of the electrons. This is taken into account by another

energy-dependent term if ′′(~ω). These two correction terms are known as disper-

sion corrections. These terms have resonance behaviour related to the electron

binding energies, and away from so-called absorption edges these terms are close

to zero. The X-ray energy is assumed to be such that they are approximately

zero, and are therefore ignored throughout this thesis.
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2.1.5 Eigenstate scattering and thermal averaging

Although state-specific single-molecule diffraction imaging has not yet been ex-

perimentally realised and would pose intricate difficulties, especially for small

molecules, the difference between such a case and a thermal or ensemble average

in the scattering signal is briefly discussed here. In short, the scattering from a

single molecule is perfectly described by the molecular form-factor, f(q). It is

up to theory to take into account the effect of the electronic, vibrational, and

rotational states in the scattering. For a single molecule, a convolution of f(q)

over accurately calculated nuclear distributions is the correct theoretical descrip-

tion. In other words, the molecular superposition coherently scatters, and the

phase terms {eiqRj} play an important role. This is eigenstate averaging. In the

thermal case, with X-rays incident upon an ensemble of molecules, as is the case

in gas-phase diffraction experiments, the coherence of each molecule is indistin-

guishable from the incoherent ensemble-average scattering. At the detector only

the average intensity is visible, that is, the convolution of the intensity (not the

form-factor) with the nuclear distribution.

To illustrate the difference between eigenstate and thermal averaging, an IAM

molecular form-factor, f(q; R) =
∑Nat

j fj(q)eiqRj is used. In the eigenstate aver-

aging case, it is convoluted with a Gaussian ground-state vibrational distribution,

defined as,

|Ψ0(R)|2 =
Nat∏
i=1

(γi
π

) 3
2
e−γi(Ri−R0

i )
2

, (2.18)

where {R0
i } are the equilibrium or stationary point coordinates for each atom,

and γi is the Gaussian width. The convolution gives,

〈f(q; R)〉vib =
Nat∑
i=1

(γi
π

) 3
2
fi(q)

∫
e−γi(Ri−R0

i )
2

eiqRidRi. (2.19)

Completing the square, −γj(Rj − R0
j)

2 + iqRj = −γj(Rj − σj)
2 + τj, gives

σj = R0
j + iq

2γj
, τj = iqjR

0
j − q2

4γj
, and the new form-factor averaged over the
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vibrational distribution is,

〈f(q; R)〉vib =
Nat∑
j=1

(γj
π

) 3
2
fj(q)eτj

∫
e−γj(Rj−σj)2dRj (2.20)

=
Nat∑
j=1

fj(q)eiqR
0
je
− q2

4γj .

The square of which is the X-ray intensity,

|〈f(q; R)〉vib|2 =
Nat∑
i,j=1

fi(q)fj(q)eiqR
0
ije−γijq

2

(2.21)

=
[ Nat∑
i=1

|fi(q)|2 +
∑
i<j

fi(q)fj(q)eiqR
0
ij

]
e−γijq

2

= I(q)e−γijq
2

where I(q) is the normal IAM intensity from Eq. (2.12), R0
ij = R0

i − R0
j , and

γij = (γ−1
i + γ−1

j )/4. Note that the entire intensity (atomic and molecular terms)

is blurred by the reciprocal Gaussian e−γijq
2
.

In the thermal ensemble case the convolution should be with the intensity and the

vibrational distribution. The intensity before convolution is the absolute-square

of the form-factor,

|f(q; R)|2 =
Nat∑
i,j

fi(q)fj(q)eiq(R0
i−R0

j ) (2.22)

=
Nat∑
i

|fi(q)|2 +
∑
i<j

fi(q)fj(q)eiqR
0
ij .

Convolution with the vibrational distribution gives,

〈|f(q; R)|2〉vib = (2.23)
Nat∑
i

|fi(q)|2 +
∑
i<j

(γiγj
π2

) 3
2
fi(q)fj(q)

2∏
k=i,j

∫
e−γk(Rk−R0

k)2eiqR
0
kdRk.

The integrals are the same as before, thus,

〈|f(q; R)|2〉vib =
Nat∑
i

|fi(q)|2 +
∑
i<j

fi(q)fj(q)eiqR
0
ije−γijq

2

. (2.24)
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This is different to the coherent single-molecule scattering case, as the atomic

form-factors are not blurred by the vibrational Gaussian term, e−γijq
2
, as can be

seen by comparing Eqs. (2.21) and (2.24). Only the molecular intensity term is

blurred, not the atomic term, i.e. atomic terms do not scatter with themselves

(there is no superposition), and it is an entirely classical situation.

2.2 Fundamental ideas of ab initio theory

A brief discussion of the fundamental ideas of ab initio theory follows, which is

used to calculate molecular wave functions and electron densities in the context

of this thesis. Ab initio is Latin for ‘from the beginning’. It is fairly synonymous

with the term ‘from first principles’. It means using minimal approximations

and deriving equations based on the postulates of quantum mechanics. Com-

putational chemistry ranges from ab initio quantum chemistry methods such as

Hartree-Fock (HF) and multiconfigurational self-consistent field (MCSCF), for

modelling small molecules quantum mechanically; to classical molecular dynam-

ics (MD) simulations of relatively large systems or ensembles of molecules. The

1998 Nobel Prize in Chemistry was awarded to Kohn and Pople for their de-

velopment of computational methods in quantum chemistry [85]. More recently,

Warshel, Karplus, and Levitt were awarded the Nobel Prize in Chemistry in 2013

for progress in the field of computational chemistry [86], particularly for devel-

oping a multiscale method, i.e. an efficient combination of quantum and classical

techniques for modelling complex chemical systems.

The computational chemistry methods used throughout this thesis are predomi-

nantly wave function based, such as HF for molecules in their electronic ground

state, and MCSCF for ground state and excited state molecules. These techniques

are ways of computationally solving the time-independent Schrödinger equation

for molecules, employing the Born-Oppenheimer approximation, whereby the

molecular wave function only depends parametrically on the nuclear geometry.

Basis sets are used; in particular, Gaussian-type orbitals (GTOs), which speed-up

the so-called Coulomb and exchange integrals tremendously, which are crucial to

the linear algebraic solutions to the HF equations. Quantum mechanical treat-

ments are restricted computationally as the processing power necessary scales

exponentially with the number of basis functions. This generally restricts these

methods to small molecules (e.g. <100 atoms). In the following some fundamental
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ideas underlying ab initio methodology are discussed [87].

2.2.1 The Born-Oppenheimer approximation

The Born-Oppenheimer or adiabatic approximation [88] is central to quantum

chemistry. It separates the nuclear and electronic degrees of freedom, making

solving the time-independent Schrödinger equation tractable. It states that since

nuclei are much heavier than electrons, they move much slower; and within a

molecule, the nuclei can be considered stationary with the electrons moving in

the fixed nuclear field. The full N -electron and M -nuclei Hamiltonian in atomic

units is,

Ĥ = T̂N + T̂e + VeN + Vee + VNN (2.25)

= −
M∑
A

1

2mA

∇2
A −

1

2

N∑
i

∇2
i −

M∑
A

N∑
i

ZA
riA

+
N∑
i>j

1

rij
+

M∑
A>B

ZAZB
RAB

,

A
B

i

j

riB

riA

rjA

rjB

rij

RAB

Figure 2.3: Distances within a diatomic molecule with nuclei A and B, and two
electrons i and j.

where T̂N and T̂e are the nuclear and electronic kinetic energy operators; VeN ,

VNN , and Vee are the potential energies for electron-nuclei, nuclei-nuclei, and

electron-electron pairs; mA is the mass of the nucleus with charge ZA; the distance

between nucleus A and electron i is riA; and the distance between nuclei A and B

is RAB. The distances between each particle within a molecule are shown in Fig.

2.3. Application of the Born Oppenheimer approximation means the Laplacian

operator, ∇2
A, acting on the wave function, Ψ, equals zero, as the coordinates

{RA} = (R1,R2, . . . ,RM) are fixed. The distances RAB are also fixed, thus,

the nuclear repulsion term is constant, and any constant added to an operator
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does not affect its eigenfunction, is only added to its eigenvalue. Therefore, an

electronic Hamiltonian can be defined by omitting the terms, T̂N and VNN ,

Ĥel = −1

2

N∑
i

∇2
i −

M∑
A

N∑
i

ZA
riA

+
N∑
i>j

1

rij
, (2.26)

which has a corresponding wave equation called the electronic Schrödinger equa-

tion,

ĤelΨel = EelΨel, (2.27)

with the electronic wave function and electronic energy as its solutions. The elec-

tronic wave function depends explicitly on the electronic coordinates but depends

only parametrically on the nuclear coordinates,

Ψel = Ψel({ri}; {RA}), (2.28)

as does the electronic energy,

Eel = Eel({RA}), (2.29)

meaning that for difference nuclear arrangements Ψel is a different function of the

electronic coordinates and the function Eel({RA}) defines the potential energy

surface for the molecule. The total energy for fixed nuclei must also include the

constant nuclear repulsion,

Etot = Eel +
M∑
A>B

ZAZB
RAB

. (2.30)

It is now possible to solve for the nuclear motion under the Born-Oppenheimer

approximation. As the nuclei are fixed with the electrons moving extremely

quickly, it is reasonable to assume the nuclei move in the average field of the
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electrons. From Eq. (2.25),

Ĥnuc = −
M∑
A

1

2mA

∇2
A +

〈
− 1

2

N∑
i

∇2
i −

M∑
A

N∑
i

ZA
riA

+
N∑
i>j

1

rij

〉
(2.31)

+
M∑
A>B

ZAZB
RAB

= −
M∑
A

1

2mA

∇2
A + Etot. (2.32)

Using this Hamiltonian the nuclear Schrödinger equation is,

ĤnucΨnuc = EΨnuc, (2.33)

whose solutions describe the vibrational, rotational, and translational motions of

a molecule,

Ψnuc = Ψnuc({RA}), (2.34)

and E is the Born-Oppenheimer approximated total energy of the molecule, which

includes electronic, vibrational, rotational, and translational energies. The cor-

responding Born-Oppenheimer wave function is,

Ψ({ri}; {RA}) = Ψel({ri}; {RA})Ψnuc({RA}). (2.35)

2.2.2 Hartree products

In this section only the electronic wave function is discussed, which will be termed

simply as the wave function, and its subscript el will be dropped. The indepen-

dent particle model can now be invoked. This assumption allows the N -electron

Hamiltonian to be written as a sum of N one-electron Hamiltonians,

Ĥel =
N∑
i

ĥ(i), (2.36)

where,

ĥ(i) = −1

2
∇2
i −

M∑
A

ZA
riA

. (2.37)
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This is an oversimplification, as the electron-electron repulsion term r−1
ij has been

omitted, meaning there is no correlation of electron motion. The one-electron

Hamiltonians are termed core-Hamiltonians, since the only interactions included

are those between the electrons and the nuclei. A consequence of using such an

electronic Hamiltonian is that the wave function can be written as a product of

n single particle wave functions, also known as a Hartree product,

Ψ = χ1(x1)χ2(x2) . . . χN(xN), (2.38)

where {χi(xi)} are called spin orbitals, which are the product of spatial orbitals

{ψi(ri)} and spin functions α(ω) or β(ω), which denote up and down spin. The

coordinates {xi} take into account the electrons spatial and spin coordinates,

x = {r, ω}.

2.2.3 Slater determinants

Electrons are fermions and must obey the Pauli exclusion principle, which leads

to the requirement of an overall antisymmetric wave function. Therefore, no two

electrons can occupy the same spin orbital, and swapping two electrons must

change the sign of the wave function,

Ψ(x1,x2, . . . ,xN) = −Ψ(x2,x1, . . . ,xN). (2.39)

The use of a Slater determinant enforces this,

Ψ(x1,x2, . . . ,xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)

χ1(x2) χ2(x2) . . . χN(x2)
...

...
. . .

...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣
, (2.40)

which for short-hand is written as,

|Ψ〉 = |χ1χ2 . . . χN〉. (2.41)

Note that the factor (N !)−1/2 in Eq. (2.40) is a normalisation factor. Determinants

have various mathematical properties. Most importantly in this case, the inter-

changing of any pair of columns or rows of a matrix multiplies its determinant by

−1, which enforces an antisymmetric wave function, as swapping any electronic
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coordinate is the same as swapping a row within the matrix; and whenever two

rows of a matrix are identical, its determinant is 0, which avoids any electrons

occupying the same spin orbital i.e. having the same spatial and spin coordinate

simultaneously. The dip to zero when any two coordinates are equal, xi = xj,

is referred to as a Fermi hole, and is a consequence of the antisymmetric wave

function. This repulsive effect is, at least partially, a correlation of two electrons

with equal spin. Electrons with opposite spin are not correlated, as such, single

determinant wave functions are described as uncorrelated.

In general multiple Slater determinants are necessary to best approximate the true

molecular wave function. However single determinant methods are conceptually

helpful and are often used as a starting point for more accurate methods. One

such single determinant method is Hartree-Fock theory.

2.2.4 Hartree-Fock theory

The essence of the Hartree-Fock (HF) approximation is to replace the complicated

many-electron Schrödinger equation by a one-electron problem in which electron-

electron repulsion is treated in an average way, for this reason it is known as

a mean-field theory. To achieve this it assumes that only one Slater determi-

nant can be used to approximate the wave function, and that the independent

particle model is appropriate, thereby reducing the problem to N single particle

equations. Generally, these are poor assumptions but they can be reasonable

for molecules in their ground state, and as a starting point for more accurate

theoretical treatments.

In practice, ab initio electronic structure methods make use of an important

theorem in quantum mechanics called the variational theorem. It states that for

any trial wave function, |Ψtrial〉, which satisfies the correct boundary conditions,

the expectation value of the energy, E, obtained with this wave function never lies

below the true or exact energy, Eexact, of the state. Expressed in mathematical

terms,

E =
〈Ψtrial|Ĥ|Ψtrial〉
〈Ψtrial|Ψtrial〉

≥ Eexact. (2.42)

In HF theory, trial wave functions are chosen by assigning the N electrons to

occupy a set of spin orbitals,

|Ψtrial〉 = |χ1χ2 . . . χN〉. (2.43)
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There is an infinite number of spin orbitals to choose from, but generally a basis

set of K spatial orbitals is selected, which gives rise to 2K spin orbitals, restrict-

ing the choice of spin orbitals to
(

2K
N

)
combinations, where N is the number of

electrons, or equivalently, spin orbitals to be occupied. The choice of spin or-

bitals that minimises the energy E is the variationally best choice, and is called

the Hartree-Fock ground state, |Ψ0〉. To find this set of spin orbitals the Hartree-

Fock equations are used, which are the N one-electron eigenvalue equations,

f̂(i)χ(xi) = εiχi(xi), (2.44)

where f̂(i) is an effective one-electron operator called the Fock operator,

f̂(i) = −1

2
∇2
i −

M∑
A=1

ZA
riA

+ νHF (i), (2.45)

where νHF (i) is the average potential experienced by the ith electron due to the

presence of other electrons. This depends on the choice of spin orbitals, i.e. the

Fock operator, f̂(i), which depends on its eigenfunctions, {χk}. Therefore, the

HF equations must be solved iteratively, via a method called the self-consistent

field (SCF) method. The trial set of orbitals, {χk}, are used to calculate νHF (i),

thus, f̂(i), then, solving the HF equations (2.44) gives a new set of orbitals,

{χ′k}, and a set of energy eigenvalues, {εk}, which can then be used to repeat

the process until ‘self-consistency’ is achieved, that is, until the new orbital set

equals the previous one, {χ′k} = {χk}, and the total energy,
∑

k εk, is minimised.

The exact form of νHF (i) involves the so-called Coulomb and exchange integrals.

For a detailed evaluation of these integrals and discussion of Hartree-Fock theory

and the SCF method, the reader is referred to Szabo-Oslund [87].

2.3 Multi-determinant methods

The Hartree-Fock method often results in inadequate descriptions of excited

states, chemical reactions, and locations of saddle points. A well known error

of HF is that it wrongly predicts molecular dissociation limits. The reason for

these problems are essentially that HF theory is an uncorrelated theory, that is the

motion of electron 1 is independent of the motion of electron 2. Scenarios where

electrons are very close together are therefore given too high weighting. So-called
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correlated methods fix this problem by introducing electron correlation. They

mainly do this by utilising more than one Slater determinant to construct the

total wave function. There is a wide range of such methods, including Configura-

tion Interaction (CI), and Multi-Configurational Self-Consistent Field (MCSCF).

The general properties of excited determinants are described in the next Section,

followed by a closer look at CI and MCSCF.

2.3.1 Excited determinants

If a basis of K spatial orbitals are selected, there are 2K spin orbitals, with N

occupied, and 2K −N unoccupied. The Slater determinant,

|Ψ0〉 = |χ1χ2 . . . χaχb . . . χN〉, (2.46)

is one of
(

2K
N

)
possible determinants, or configurations, that could be formed

from the 2K > N spin orbitals. If |Ψ0〉 is the Hartree-Fock ground state wave

function, it is convenient to define other ‘excited’ determinants with respect to

it. A singly excited determinant is one in which an electron has been promoted

from an occupied orbital χa in |Ψ0〉, to a virtual orbital χr, this can be written

as,

|Ψr
a〉 = |χ1χ2 . . . χrχb . . . χN〉. (2.47)

A doubly excited determinant is one in which two electrons from orbitals χa and

χb have been promoted to virtuals χr and χs. Using previous notation,

|Ψrs
ab〉 = |χ1χ2 . . . χrχs . . . χN〉. (2.48)

All
(

2K
N

)
determinants can be classified as N -tuply excited determinants with re-

spect to the Hartree-Fock ground state determinant. These excited determinants

are not accurate representations of the true excited states of the system, but

they are important as N -electron basis functions for an expansion of the exact

N -electron states of the system. In general, the importance of excited deter-

minants drops off with their excitation number, i.e. an expansion involving the

ground state determinant and singly and doubly excited determinants is usually

not greatly improved upon by adding triply excited determinants and so on.
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2.3.2 Configuration interaction

Using the ground state determinant and all possible excited Slater determinants,

as allowed within the chosen basis set, i.e. using all possible configurations, to

form a basis for an improved wave function, gives the configuration interaction

(CI) wave function,

|ΨCI〉 = c0|Ψ0〉+
∑
ra

cra|Ψr
a〉+

∑
a<b,r<s

crsab|Ψrs
ab〉+ . . . . (2.49)

The infinite set of N -electron determinants {|Ψi〉} = {|Ψ0〉, |Ψr
a〉, |Ψrs

ab〉, . . . } is

a complete set for the expansion of any N -electron wave function. Since every

|Ψi〉 can be defined by specifying a configuration of spin orbitals, the method is

known as configuration interaction. In practice, a finite basis of 2K spin orbitals

is necessary. Then, the set of N -electron determinants is finite. Using all
(

2K
N

)
possible determinants in the wave function expansion, constitutes the best pos-

sible wave function within the basis set constraints, this is called a full CI. It

quickly becomes impossible to calculate, as for increasing N , larger sets of 2K

spin orbitals become necessary and the value of
(

2K
N

)
rises extremely rapidly. It

can be appropriate to omit all doubly excited or higher determinants, which is

called CIS for CI ‘singles’. Omission of all triply excited or higher determinants

is called CISD for CI ‘singles and doubles’, and so on.

2.3.3 Multiconfigurational self-consistent field

Multiconfigurational self-consistent field (MCSCF) is closely related to CI theory,

and can be regarded as a truncated CI expansion where both the expansion coef-

ficients and the orbitals are optimised variationally. It is often used in studies of

chemical reactions, where prediction of the correct dissociation limits is necessary.

It is also effective at modelling excited states as long as it is appropriately used.

It utilises a pre-selected active space where electrons can adapt. The active

space should be chosen to contain the orbitals where main changes in occupancy

occur during a reaction. Table 2.1 is an illustration of the active space in which

electron occupancies can be non-integer in the range [0,2], whereas the secondary

and inactive orbitals have fixed integer occupancies of 0 and 2 respectively. A

shorthand description of an active space consisting of six electrons within four

orbitals is written as (6,4). This often follows the method, e.g. MCSCF(6,4).
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Secondary

a = 0

Active

0 < a < 2

Inactive

a = 2

Table 2.1: MCSCF orbital distribution showing occupancies a for each class of orbitals.

This means detailed pre-knowledge of a system is often necessary as the method

strongly depends on the choice of active space. This drawback is overcome by

the fact that it is a powerful method which allows study of much larger systems

compared to full CI.

2.4 Basis sets

The spin orbitals which make up the Slater determinant (Eq. (2.40)) consist of a

spatial orbital and spin function,

χ(r, ω) = φ(r)α(ω), (2.50)

where α is a spin function which can either be up or down depending on the

spin coordinate, ω. The spatial orbitals can be constructed from a basis set,

making the problem of solving the Schrödinger equation tractable, as the infinite

number of possible spin orbitals becomes a finite set of
(

2K
N

)
orbitals (that have

a reasonable likelihood to be occupied).

2.4.1 Slater-type and Gaussian-type orbitals

In 1930, J. C. Slater proposed approximate analytical wave functions for all the

atoms [89], in any ionisation state. They have radial form,

φ = rn
∗−1 exp

[
− (Z − s)

n∗
r
]
, (2.51)
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with Z the charge on the nucleus; s a screening constant; the effective quantum

number, n∗, is assigned via a direct mapping from the principle quantum number

n; and s assigned by simple rules. Which makes a complete set of one-electron

wave functions. They can be rewritten as general Slater-type orbitals,

φSTO = rn
∗−1e−ηr, (2.52)

where r = |r−RA|, for an electron positioned at r = (x, y, z), centred at nuclear

coordinates RA = (XA, YA, ZA), with tabulated values for η.

Later in 1950, S. F. Boys proposed an computationally practical approximation

to the one-electron wave functions in the form of Gaussian functions [90],

φGTO = CGe−αr
2

(2.53)

The main functional differences between Gaussian and Slater-type functions are

at r = 0 and large r. At r = 0, [ d
dr
e−ηr]r=0 6= 0, and [ d

dr
e−αr

2
]r=0 = 0; and as

r → ∞, the Gaussian function decays toward zero, e−αr
2 → 0, at a faster rate

than the Slater function. In terms of computing one and two electron integrals,

Gaussian functions are much more efficient. However, they do not approximate

the true one-electron wave functions to the same level of accuracy as Slater-

type functions. This can be mitigated by using a sum of multiple Gaussian

functions, or primitives, to approximate a Slater function, still with net gain

in the computational effort in solving integrals. This is known as a Gaussian

contraction, and replaces Slater-type orbitals as basis functions,

φBF =

nk∑
s=1

µsφ
GTO
s , (2.54)

with fixed basis coefficients {µi}. The contraction size nk and coefficients {µi}
are pre-optimised variables, and are contained within well-established basis sets;

such as Pople basis sets, 6-31G, . . . , 6-311++G**; and Dunning basis sets, VDZ,

. . . , aug-cc-pV6Z. See Table 2.2 for a comparison of the number of primitives per

basis set for HF calculations on the H2 molecule. Each spatial orbital can be

expressed as a linear combination of basis functions,

ψ(r) =

NBF∑
k=1

Mkφ
BF
k , (2.55)

weighted by {Mj}. In ab initio electronic structure theory, the Gaussian primi-
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Basis set Primitives

STO-3G 12

6-31G 16

6-31G∗∗ 28

6-311++G∗∗ 36

aug-cc-pVDZ 60

aug-cc-pVTZ 148

aug-cc-pVQZ 300

Table 2.2: Comparison of basis set size, by total number of primitive functions, for
Hartree-Fock calculations on H2.

tives, {φGTO
k }, can either be Cartesian Gaussians or spherical Gaussians. Spher-

ical Gaussians, centred at distance r0 from the origin, have the form,

g̃(r) = ÑY l′

m′(θ, φ)(r − r0)n
′
e−γ(r−r0)2 , (2.56)

where θ and φ are the polar and azimuthal angles, Y l′

m′(θ, φ) is a spherical har-

monic, and l′,m′, and n′ are the respective polar, azimuthal, and radial quantum

numbers. Transformation between Cartesian and spherical harmonic Gaussians

is described in Ref. [91]. From here on, only Cartesian Gaussian functions are

used, for their simplicity in the algebra necessary in the following. A general

Cartesian GTO centred at coordinates r0 = (x0, y0, z0) has the form,

g(r) = N (x− x0)l(y − y0)m(z − z0)ne−γ(r−r0)2 , (2.57)

with exponent γ and Cartesian orbital angular momentum L = l +m+ n. Each

individual GTO must be normalised using,

N 2

∫ ∞
−∞
|g(r)|2dr = 1, (2.58)

where the normalisation constant N is dependent on the Gaussian exponent, γ,

and orbital angular momentum numbers, l, m, and n. A general GTO normali-

sation constant can be derived [92],

N =

[(
2

π

)3/4
2(l+m+n)γ(2l+2m+2n+3)/4

[(2l − 1)!!(2m− 1)!!(2n− 1)!!]1/2

]
, (2.59)
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where (2l − 1)!! = 1 · 3 · 5 · · · (2l − 1).

2.5 Electron density

The electron density is a physical observable of the wave function. As discussed

earlier, see e.g. Eq. (2.7), it is experimentally probed by X-ray diffraction. As

such, it is an important property throughout this thesis. It is the real space

analogue of the X-ray molecular form-factor (which is in reciprocal space). For

a N -electron wave function the electron density is the probability of an electron

being found at a specific location. The electron density operator is a one electron

operator, defined as,

ρ̂(r) =
N∑
i

ρ̂i(ri) =
N∑
i

δ(ri − r). (2.60)

This is important when applying it to wave functions consisting of multiple Slater

determinants, such as in MCSCF theory, which will be shown in Chapter 3 when

calculating the multi-determinant electron density (and following from that de-

riving the X-ray molecular form-factor based on multiple determinants). Its ex-

pectation value with the wave function can be used to calculate the electron

density,

ρ(r) = 〈Ψ|
N∑
i

δ(ri − r)|Ψ〉 =

∫
|Ψ(r, r2, . . . , rN)|2dr2dr3 . . . drN (2.61)

+

∫
|Ψ(r1, r, . . . , rN)|2dr1dr3 . . . drN

+ . . .

+

∫
|Ψ(r1, r2, . . . , r)|2dr1dr2 . . . drN−1.

These integrals are identical because swapping electron coordinates only alters

the sign of the wave function, Ψ(r1, r2, . . . , rN) = −Ψ(r2, r1, . . . , rN), thus it can

be written as N multiples of the N − 1 dimensional integral,

ρ(r) = 〈Ψ|
N∑
i

δ(ri − r)|Ψ〉 = N

∫
|Ψ(r, r2, . . . , rN)|2dr2 . . . drN . (2.62)

The exact form of the wave function is highly dependent on the model chemistry

used. In this thesis ab initio electronic structure theory is used, such as HF or

38



MCSCF theory, with various Gaussian basis sets. The wave function depends on

3N spatial coordinates and N spin coordinates, e.g. as in Eq. (2.40). The elec-

tron density is reduced to a three dimensional function, because 3(N − 1) spatial

coordinates and the spin coordinates are integrated out. It’s worth noting that

this is main strength of density functional theory (DFT), as it uses the electron

density as the main variable rather than the wave function. This reduces the

high dimensional problem to only a three dimensional one, making it much more

computationally tractable. However, a considerable focus in the next Chapter is

on X-ray diffraction from electronically excited states, therefore MCSCF was cho-

sen as the central theoretical method, with HF calculations for quick verification

purposes.

39



40



Chapter 3

Ab Initio Molecular X-ray

Diffraction

3.1 Introduction

This chapter outlines how the elastic X-ray molecular form-factor can be calcu-

lated efficiently from single determinant wave functions, such as from Hartree-

Fock theory, and multi-determinant (multiconfigurational) wave functions, such

as obtained by MCSCF computations. This method is coined ab initio X-ray

diffraction (AIXRD) [1]. This expands upon previous work by Debnarova and

Techert [80, 93, 94] by deriving the form-factor from a multiconfigurational wave

function; as well as obtaining a full analytical expression for the Fourier transform

of two Gaussian-type orbitals (GTOs), which is fundamental to a computation-

ally efficient solution. In addition, a fast Fourier transform (FFT) method is

investigated and compared to the analytical method in terms of accuracy and

computational time. Time-resolved X-ray diffraction experiments are capable of

imaging photochemical molecular dynamics [5,6], which involves electronic state

crossings and molecular geometry changes. Ultrafast diffraction experiments gen-

erally compliment time-resolved spectroscopy studies such as those pioneered by

Zewail et al. [12, 95]. Multiconfigurational methods are necessary to accurately

model electronically excited states in molecules [87]. Thus, this method is an

important connection between modern quantum chemistry methods and state-of-

the-art X-ray diffraction pump-probe experiments at XFELs and synchrotrons.

The effect of the molecular geometry, the ab initio electronic structure method
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(HF or MCSCF), and the basis set (STO-3G, 6-31G, . . . ), on the predicted diffrac-

tion signal is examined, as well as the significance of using a wave function method

rather than the straight-forward independent atom model (IAM). A key advan-

tage of a wave function method is the capacity to calculate diffraction from elec-

tronically excited states in molecules, and that valence and bonding electrons are

fully accounted for.

3.2 Theory

3.2.1 Multiconfigurational electron density

Multiconfigurational methods will be used in this chapter to model the electronic

wave function for molecules in their ground and excited states. For this reason

and because the X-ray scattering depends on the electron density, a derivation

follows of the electron density based on a multi-determinant wave function. Such

a wave function is a sum over configurations,

|Ψmulti〉 =

Nconf∑
I

cI |ΨI〉, (3.1)

where
∑

I |cI |2 = 1, and |ΨI〉 = |χ1χ2 . . . χn〉 is short-hand for a Slater deter-

minant, with configurations defined by the ordering of spin orbitals |1, 2, . . . , n〉.
Applying the electron density operator to Eq. (3.1) gives the electron density,

ρ(r) = 〈Ψmulti|ρ̂(r)|Ψmulti〉 (3.2)

=

Nconf∑
I

c2
I〈ΨI |ρ̂(r)|ΨI〉+

∑
I 6=J

cIcJ〈ΨI |ρ̂(r)|ΨJ〉,

where c∗I = cI . There are two distinct integrals here, one where each determinant

is the same and one where they differ. Using the electron density operator,

ρ̂(r) = δ(ri − r), the first case is,

〈ΨI |ρ̂(r)|ΨI〉 =
N∑
i

〈χi(i)|δ(ri − r)|χi(i)〉 (3.3)

=
Nocc∑
i

bi〈φi(i)|δ(ri − r)|φi(i)〉 =
Nocc∑
i

bi|φi(r)|2,
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where there are Nocc occupied spatial orbitals with occupancies bi = {1, 2}, i
stands for the ith-electron coordinate. Note that for a single determinant wave

function, such as the ground state Hartree-Fock wave function |Ψ0〉, this is the

total electron density expression, as ρ(r) = 〈Ψ0|ρ̂(r)|Ψ0〉. The second integral

between different determinants I and J is only non-zero when they differ by only

one spin orbital [87], that is,

〈ΨI |ρ̂(r)|ΨJ〉 = 〈χa(j)|ρ̂j(j)|χr(j)〉, (3.4)

where χa(j) and χr(j) are the orbitals that differ. In other words, determinant I

has its jth-electron in spin orbital a; determinant J has its jth-electron in spin

orbital r; and all other electrons are in the same spin orbitals in both determi-

nants. Terms involving spin orbitals with opposite spin evaluate as zero due to

the Pauli exclusion principle, i.e. 〈α|α〉 = 〈β|β〉 = 1 and 〈α|β〉 = 0, therefore,

〈χa(j)|ρ̂j(j)|χr(j)〉 =

〈φa(j)|ρ̂j(j)|φr(j)〉, if spins are parallel.

0, otherwise.
(3.5)

Applying the density operator ‘sifts out’ the coordinate j, because
∫
δ(rj −

r)f(rj)dr = f(r) for an arbitrary function f , and the only ket orbitals which

give non-zero integrands are ones with the same coordinates,

〈φa(j)|ρ̂j(j)|φr(j)〉 = 〈φa(j)|δ(rj − r)|φr(j)〉 = φa(r)φr(r), (3.6)

and the spatial orbitals are all real-valued, i.e. φ∗i = φi. Thus, the total electron

density for a multi-determinant wave function is,

ρ(r) =

Nconf∑
I

c2
I

Nocc∑
i

biI |φiI(r)|2 +
∑
I 6=J

cIcJφaI(r)φrJ(r). (3.7)

The first term can be rewritten as,

Nocc∑
j

aj|φj(r)|2, (3.8)

where, 0 ≤ aj =
∑

I c
2
IbjI ≤ 2, are partial occupancies, which take into ac-

count configuration weightings. The sum of configuration weightings equals one,∑
I c

2
I = 1, thus, the sum of partial occupancies equals the sum of configu-

ration occupancies for each configuration, and equals the number of electrons,
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∑
j aj =

∑
i biI∀I = N . Therefore, the integral over all r for the first term in the

total density (Eq. (3.8)) equals the number of electrons,

Nocc∑
i

ai

∫
|φiI(r)|2dr = N. (3.9)

The integral over total electron density equals N by definition, that is,
∫
ρ(r)dr ≡

N , which means the integral over the second term equals zero,

∑
I 6=J

cIcJ

∫
φaI(r)φrJ(r)dr = 0, (3.10)

and does not contribute to the net electron density.

3.2.2 Ab initio X-ray diffraction

As described in Section 2.1, the X-ray molecular form-factor is a Fourier transform

of the electron density,

fα(q; R) =

∫
ρα(r; R)eiqrdr, (3.11)

which depends on the electronic state α and parametrically on the nuclear ge-

ometry R. The electronic coordinate is r, and the expression ρα(r; R)dr is the

probability of finding an electron in the infinitesimal volume element dr. Sin-

gle and multiconfigurational ab initio methods are used to calculate ρα(r; R)

throughout this thesis. To solve Eq. (3.11) and determine the molecular form-

factor for elastic X-ray scattering, an analytical or a numerical approach can be

used. The analytical approach described in Section 3.2.3 is referred to as such

because it involves analytical solutions to the Fourier transform of the electron

density, despite being evaluated computationally. In contrast, the ‘pure’ numeri-

cal approach is based on a Fast Fourier Transform (FFT) of the electron density,

which is described in Section 3.2.4. A strong focus on the analytical approach fol-

lows with a brief discussion of the numerical solution towards the end of Section

3.2.

The electron density in terms of a contracted Gaussian basis set is,
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ρ(r) =
Nocc∑
j=1

aj

∣∣∣ NBF∑
k=1

M j
k

nk∑
s=1

µksg
k
s (r)

∣∣∣2, (3.12)

where there are Nocc occupied orbitals with partial occupancies 0 < aj ≤ 2,

NBF basis functions or Gaussian contractions with orbital coefficients M j
k , nk

primitives per kth basis function with fixed basis coefficients µks , and the Cartesian

Gaussian primitives are centred at coordinates r0 = (x0, y0, z0), and are defined

as,

g(r) = N (x− x0)l(y − y0)m(z − z0)ne−γ(r−r0)2 , (3.13)

with exponent γ and Cartesian orbital angular momentum L = l+m+ n, where

{l,m, n} ∈ N, and normalisation constant N , defined as,

N =

(
2

π

)3/4
2(l+m+n)γ(2l+2m+2n+3)/4

[(2l − 1)!!(2m− 1)!!(2n− 1)!!]1/2
, (3.14)

where (2l − 1)!! = 1 · 3 · 5 · · · (2l − 1).

3.2.3 Fourier transform of GTO products

To analytically solve Eq. (3.11) the Fourier transform operator F̂r, for transfor-

mation of the electronic coordinates r to their reciprocal q, is applied to Eq.

(3.12) giving,

fα(q; R) =

NMO∑
i=1

aiF̂r

[∣∣∣ NBF∑
j=1

M i
j

nk∑
s=1

µksg
k
s (r)

∣∣∣2](q) (3.15)

=

NMO∑
i=1

ai

NBF∑
j,k=1

M i
jM

i
k

nj∑
s=1

nk∑
t=1

µjsµ
k
tK

jk
st F̂r

[
Gjk
st (r)

]
(q),
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where Gjk
st (r) = gjs(r)gkt (r) is a new Gaussian defined by the Gaussian product

theorem [92], with Kjk
st = exp[−γjsγkt (rjs−rkt )

2/(γjs +γkt )], centred at rG = (γjsr
j
s+

γkt r
k
t )/(γ

j
s + γkt ), and new exponent γG = γjs + γkt . It is a product of three 1D

Gaussians in Cartesian coordinates,

Gst(r) =
∏

r′=x,y,z

(r′ − r′s)p
r′
s (r′ − r′t)p

r′
t e−γG(r′−r′G)2 , (3.16)

where r′s and r′t define the central coordinates of Gaussians s and t and the

superscripts j and k (which refer to basis functions j and k) are dropped for

brevity; and pxs = ls, p
y
s = ms, and pzs = ns are the orbital angular momentum

numbers. Thus, the Fourier integral in Eq. (3.15), omitting super- and subscripts,

can be simplified to three 1D integrals,

F̂r

[
G(r)

]
(q) ≡

∫
G(r)eiqrdr =

∏
r′=x,y,z

∫
G(r′)eiqr′r

′
dr′. (3.17)

This amounts to Fourier transforming each combination of 1D Gaussian products,

defined by {pr′i = 0, 1, 2, . . . ; pr
′
j = 0, 1, 2, . . . }. The orbital angular momentum

numbers 0, 1, 2, 3, . . . correspond to s, p, d, f, . . . GTOs. In practice, GTOs with

p > 3 (higher than f -orbitals) are rare, and only used for atoms with many

electrons or where high accuracy is necessary. Thus, only the combinations of

GTO products up to and including p = 3 are practically needed. However,

the derivation for all combinations (∀pr′i , pr
′
j ) follows, i.e. the completely general

mathematical solution to the problem.

To solve the 1D Fourier transform from coordinate x to reciprocal qx of a general

Gaussian product centred at xG with exponent α, where each individual Gaussian

is centred at xi and xj with angular momentum numbers li and lj, the binomial

theorem is used (twice),∫
G(x)eiqxxdx =

∫
(x− xi)li(x− xj)lje−α(x−xG)2eiqxxdx (3.18)

=

li∑
m=0

lj∑
n=0

(
li
m

)(
lj
n

)
(−xi)li−m(−xj)lj−n

∫
xm+ne−α(x−xG)2eiqxxdx.
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Completing the square, −α(x − xG)2 + iqxx = −α(x − σ)2 + τ − q2x
4α

, gives, σ =

xG + iqx
2α

, τ = iqxxG, and,∫
G(x)eiqxxdx (3.19)

=

li∑
m=0

lj∑
n=0

(
li
m

)(
lj
n

)
(−xi)li−m(−xj)lj−neτ−

q2x
4α

∫
xm+ne−α(x−σ)2dx.

Changing coordinates to u = x − σ, using the binomial theorem again, and

defining ν = m+ n gives,∫
G(x)eiqxxdx (3.20)

=

li∑
m=0

lj∑
n=0

(
li
m

)(
lj
n

)
(−xi)li−m(−xj)lj−neτ−

q2x
4α

∫
(u+ σ)m+ne−αu

2

du

=

li∑
m=0

lj∑
n=0

ν∑
p=0

(
li
m

)(
lj
n

)(
ν

p

)
(−xi)li−m(−xj)lj−nσν−peτ−

q2x
4α

∫
upe−αu

2

du.

The integral
∫
upe−αu

2
du can be solved with some useful tricks. Consider the

analogous integral,

H(l, α) :=

∫
xle−αx

2

dx. (3.21)

If l is not a multiple of 2, the function is odd and the integral is zero. In the even

case, ∫
x2le−αx

2

dx =
2α

2l + 1

∫
x2l+2e−αx

2

dx (3.22)

Replacing l with l − 1, the recurrence relation is,∫
x2le−αx

2

dx =
2l − 1

2α

∫
x2l−2e−αx

2

dx =
(2l − 1)!!

(2α)l

√
π

α
. (3.23)

Hence,

H(l, α) =


(l−1)!!

(2α)l/2

√
π
α
, if l ∈ 2N.

0, otherwise.
(3.24)

This allows Eq. (3.20) to be solved, giving the general analytical solution for the
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integral of any two GTO products,∫
G(x)eiqxxdx (3.25)

=

li∑
m=0

lj∑
n=0

ν∑
p=0

(
li
m

)(
lj
n

)(
ν

p

)
(−xi)li−m(−xj)lj−nσν−peτ−

q2x
4αH(p, α),

which is a polynomial in qx multiplied by a Gaussian, as expected for a Gaussian

Fourier transform problem. Table 3.1 shows analytical Fourier integrands for

GTO combinations up to li + lj = 4. The numerical implementation of AIXRD

therefore involves reading all required wave function coefficients from an ab initio

electronic structure calculation, followed by the numerical evaluation of the above

analytical expressions.

li lj F̂x[G(x; li, lj)](q)

0 0 G00(q) =
√

π
α
e−

γiγj
α

(xi−xj)2eiqxGe−s
2
x/4α

1 0 (a− xi)G00(q)

2 0
(
a2 + 1

2α
− 2xia+ x2

i

)
G00(q)

1 1
(
a2 + 1

2α
− (xi + xj)a+ xixj

)
G00(q)

3 0
{
a3 − 3xia

2 +
(
3x2

i + 3
2α

)
a

−3xi
2α
− x3

i

}
G00(q)

2 1 {a3 − (2xi + xj)a
2 + (x2

i + 2xixj

+ 3
2α

)
a −2xi+xj

2α
− x2

ixj

}
G00(q)

4 0
{
a4 − 4xia

3 +
(
6x2

i + 3
α

)
a2

−
(
4x3

i + 6xi
α

)
a+

3x2i
α

+ x4
i + 3

4α2

}
G00(q)

3 1 {a4 − (3xi + xj)a
3 + 3 (x2

i + xixj

+ 1
α

)
a2 −

(
x3
i + 3x2

ixj +
9xi+3xj

2α

)
a

+
3xixj+3x2i

2α
+ x3

ixj + 3
4α2

}
G00(q)

2 2
{
a4 − 2(xi + xj)a

3 +
(

3
α

+ x2
i + x2

j

+4xixj) a
2 −

(
2x2

ixj + 2xix
2
j +

3(xi+xj)

α

)
a

+
x2i+x

2
j+4xixj

2α
+ x2

ix
2
j + 3

4α2

}
G00(q)

Table 3.1: Fourier transforms of the product of two 1D Cartesian Gaussian functions,
F̂x[G(x; li, lj)](q), where G(x; li, lj) = (x−xi)li(x−xj)lje−α(x−xG)2 , with α = γi+γj
and xG = (γixi + γjxj)/α. The factor a in the table is a = (iq/2α) + xG.
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3.2.4 Numerical approach

An alternative to the analytical approach detailed above is based on the direct

Fourier transform of the electron density represented on a grid. In this case solving

Eq. (3.11) requires that the electron density, Eq. (3.12), is computed on a 3D grid

in r, followed by use of a FFT algorithm. The choice of grid spacing and the size of

the grid depends on the system being studied. In general, it is preferable to use as

small a grid spacing ∆r as computationally feasible (e.g. ∆r = 0.1 a0), and a grid

size such that as much of the electron density as possible (e.g. > 99%) is contained

within it, and the integral
∫
ρ(r)dr ≈ Nelec. This often means a very large grid

with N3
r ≈ 2003 points, which introduces a costly overhead calculation in the

overall computation. Note that the analytical solution described in Section 3.2.3

does not involve explicitly computing the electron density, effectively skipping

this step, and directly evaluating Eq. (3.11) on a grid in reciprocal space q with

the help of Eq. (3.25). The q-grid can be much smaller than the r-grid, such

as N3
q ≈ 503. The reason for this is that it always gives the correct number

of electrons, as
∫
ρ(r)dr = f(q = 0) ≡ Nelec, and at every point on the q-grid

the molecular form-factor is calculated exactly, whereas the FFT method has

associated numerical error. A comparison of the accuracy and computational

scaling for both methods is shown in Section 3.3.6. Numerically solving the

Fourier transform of the electron density,

fα(q; R) = F̂r

[
ρα(r; R)

]
(q) = F̂r

[NMO∑
j=1

aj|φj(r)|2
]
(q), (3.26)

by FFT avoids summation over Gaussian products, as each spatial orbital φj(r)

is evaluated on the grid, then each grid point is squared. That is, ρα(r; R) is a

sum of NMO grid-evaluated then squared sums of NBF × nk Gaussian primitives.

This compares with a scaling of NMO(NBF × nk)2 for the analytical method. As

such, the FFT method can be computationally faster under certain conditions.

This is discussed further in Section 3.3.6.
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Figure 3.1: (a) Electron density slices ρ(R) for H2(X1Σ+
g ) along its bond-axis, using

Hartree-Fock (HF) with various basis sets and one multiconfigurational self-consistent
field (MCSCF) method; the HF/aug-cc-pVQZ optimised geometry with bond-length
1.38658524 a0 was used for all calculations. The MCSCF method used a (2,2) ac-
tive space. (b,c) Electron density isosurfaces containing 87% of ρ(r) for H2 at its
ground state geometry; calculated with (b) MCSCF(2,7)/aug-cc-pVTZ and (c) the
independent atom model (IAM).

3.3 Results and discussion

3.3.1 Electron density

In ab initio electronic structure calculations, the use of large basis sets is impor-

tant for obtaining the best wave functions and lowest energies. The more accurate
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the wave function, the more accurate the electron density, and hence the predicted

elastic scattering. Fig. 3.1 shows slices through the electron density for H2 along

its bond-axis. Each electron density was calculated using single-point energy

HF theory using Molpro [96] with different basis sets at the HF/aug-cc-pVQZ

optimised geometry. For comparison a reference electron density slice was calcu-

lated using MCSCF(2,2)/aug-cc-pVQZ. It is clear the use of the smallest basis set

STO-3G achieves a very different electron density profile than the reference. The

modest 6-31G basis electron density is similar to the reference close to the nuclei,

but differs the most (aside from IAM) at the centre of the bond, R = 0. The

calculations using the 6-31G** basis set and the HF/aug-cc-pVQZ are very simi-

lar to the reference density. However, preference is given to the 6-31G** basis as

it gives the best trade-off between computational efficiency and accuracy in this

instance. The IAM method is also shown for comparison. The electron density

implicit in the IAM has been reverse engineered using isolated atomic densities

calculated at the HF/6-31G level. Unsurprisingly, its ρ(R) electron density dis-

tribution is the furthest from the reference. Figs. 3.1(b) and 3.1(c) show electron

density isosurfaces containing 87% of the total electron density for the reference

ab initio calculation and the IAM. The IAM only has radially symmetric density

centred at each nucleus, whereas the ab initio density has much more bonding

characteristics as it takes into account the bonding valence electrons. This is a

fundamental difference between AIXRD and IAM, and the impact this has on

the scattering will depend on the ratio of valence to core electrons. In the case of

H2, both its electrons are valence so taking them into account correctly becomes

crucial. This effect diminishes for molecules containing atoms with larger atomic

number Z, as will be shown later.

3.3.2 Atomic form-factors

Atomic form-factors are assumed to be radially-symmetric (corresponding to an

isotropic electron density), and thus depend only on q = |q|. They are well

approximated by an analytical fit of a sum of Ng Gaussians of the form,

f(q) =

Ng∑
i=1

ai exp

(
− bi

( q

4π

)2
)

+ c, (3.27)
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where there are fitted, {ai}, {bi}, and c, for each atom in the international tables

of crystallography [62]. Fig. 3.2 compares these tabulated form-factors to AIXRD

based on HF/STO-3G and HF/6-31G wave functions. The atoms H, He, Li, Be,

and Ne, are spherically symmetric as they either consist entirely of s-orbitals or

are closed-shell. For atoms such as B, C, N, O, and F, there is slight angular

anisotropy in the calculated electron density. For this reason, the AIXRD result

f0(q) has been rotationally-averaged,

f0(q) =
1

4π

∫ 2π

0

∫ π

0

f0(q) sin θqdθdφq, (3.28)

as would be physically observable, where q = (q, θq, φq), and q = |q|. The

6-31G results agree exceptionally with the reference curves, but the STO-3G

results do not. This is a manifestation of the STO-3G basis failing to accurately

approximate the atomic Slater-type orbitals. The larger 6-31G basis set is very

similar to the International Table of Crystallography results [62], which is derived

from Dirac-Slater relativistic wave functions [97,98].

3.3.3 Molecular structure in diffraction

The focus of this section is on the interplay between molecular structure and

the scattering signal in the gas-phase. The main aim is to show the utility and

strengths of the AIXRD method in this context, and to compare it to the simple

IAM method. The assumption of the IAM model is that the electron density for

a molecule is the sum of its atomic densities. The scattering equivalent is that the

molecular form-factor is the sum of its atomic form-factors. This fails to take into

account the redistribution of valence electrons due to chemical bonding. Thus, it

is a more accurate approximation for molecules containing heavier atoms because

the ratio of valence electrons to total number of electrons is small. This effect

is examined in Fig. 3.3, which compares diffraction intensities calculated by the

IAM method and the AIXRD method for various molecules (H2, CO, H2O, O3,

C2H4, and C4H4). Fig. 3.3a shows side-by-side curves I0(q) = I(q)/I(q = 0) for

the IAM and AIXRD methods, and Fig. 3.3b compares the two in terms of their

percent difference, defined as %∆I(q) = 100(IAI − IIAM)/IIAM . Table 3.2 shows

the mean and median values of the absolute percent difference |%∆I(q)| for each
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Figure 3.2: Atomic form-factors from the International Table of Crystallography [62]
(lines), AIXRD using HF/6-31G (×’s), and AIXRD using HF/STO-3G (dashed). The
kinematic X-ray form-factor at q = 0 is f(q = 0) =

∫
ρ(r)dr ≡ Nelec, where Nelec

is the number of electrons. Note the exceptional similarity between the tabulated
form-factors (lines) and the AIXRD using HF/6-31G calculated form-factors (×’s).

molecule. The clear outlier is the H2 molecule, which has a mean |%∆I(q)| of

74.9%, whereas this value is<6.2% for the other chosen molecules. This is because

the independent atom model is a poor approximation for H2 since it contains only

valence bonding electrons and the IAM approximation assumes the electrons are

centred about the nuclei (as in Fig. 3.1c). The other mean values of |%∆I(q)| =
(1.9, 6.1)% are still significant and represent the percent error caused by not taking

into account the redistribution of electrons by chemical bonding. Such errors are

increasingly important with the rise of gas-phase X-ray diffraction experiments

at XFELs. For example the time-resolved X-ray diffraction experiment of the

photochemical ring-opening reaction of the CHD molecule [5,6] was possible based

on being able to experimentally resolve pump-probe differences I(q, t)−I(q, t = 0)

on the order of 1%.

In general, each nucleus within a molecule has many strongly associated core

electrons, which means gas-phase X-ray diffraction signals are highly determined

by the molecular geometry, i.e. the atomic positions. This is the underlying

approximation of the IAM, where the diffraction only depends on the relative
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Figure 3.3: (a) Comparison between orientationally-averaged AIXRD method (solid
lines) and IAM approximation (dashed lines with circles), with I0(q) = I(q)/I(q = 0).
MCSCF optimised geometries and wave functions were used with the 6-311++G** ba-
sis. (b) Percent difference between AIXRD and IAM, %∆I(q) = 100(IAI−IIAM)/IIAM.

atomic positions within the molecule. An illustration of this strong depen-

dence is shown in Fig. 3.4. X-ray diffraction patterns are calculated from two
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Molecule Mean |%∆I(q)| Median |%∆I(q)|
CO 2.76 2.37

C4H4 5.94 4.87

C2H4 6.11 4.72

H2 74.87 82.37

H2O 3.74 2.53

O3 1.89 1.77

Table 3.2: Complimentary table for Fig. 3.3. Mean and median values of |%∆I(q)|
are shown; where %∆I(q) = 100(IA − I0)/I0.

stereoisomers of perfectly aligned butadiene (C4H6), cis- and transbutadiene, as

well as cyclobutadiene (C4H4), which is the Jahn-Teller distorted closed-ring ver-

sion of butadiene [99]. The molecular geometries were optimised via the mul-

ticonfigurational self-consistent field (MCSCF) method [100] using Molpro [96]

at the MCSCF(4,4)/6-31G** model chemistry, with an active space consisting

of four electrons within four π-orbitals. The energies for each geometry op-

timised butadiene form are Ecis = −154.980896, Etrans = −154.985878, and

Ecyclo = −154.716941 Hartree. The same ab initio wave functions were used to

analytically calculate the corresponding diffraction patterns using AIXRD. From

here on the maximum elastic scattering angle θ = π corresponding to q = 9.67

Å−1, where q = (4π/λ) sin(θ/2), which is equivalent to a 1.3 Å X-ray wavelength.

The molecular point groups for trans-, cis-, and cyclobutadiene are C2h, C2v, and

D2h respectively. This is apparent in their diffraction patterns, which in general

share symmetry elements as long as the molecules are assumed to be perfectly

aligned, as they are here.

Considering the strong influence of the molecular geometry on the diffraction

pattern, the question arises, is it worth going beyond the IAM? Fig. 3.5a shows

the difference between geometry optimised MCSCF(6,6)/6-31G** level of theory,

with six electrons in six π-orbitals, and keeping the geometry fixed, the IAM

diffraction for the benzene molecule. For additional perspective, diffraction at

this level of theory and geometry is compared to AIXRD using Hartree-Fock (HF)

and the STO-3G basis set. The MCSCF/6-31G** energy is Emulti = −230.786833

Hartree. The C-C bond lengths are 1.396 Å. The maximum difference between

MCSCF and IAM diffraction is approximately 45% in Fig. 3.5a, calculated by the

equation 100(IMCSCF− IHF)/IHF. Most of the difference pattern is approximately
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: X-ray (1.3 Å) diffraction from multiconfigurational ab initio using 6-
31G(d,p) basis for (a,b) trans-, (c,d) cis-, and (e,f) cyclo-, butadiene forms. Each
pattern has the same point group as the projection of the molecule onto a plane
perpendicular to incoming X-rays. Exceptionally, the cis-butadiene pattern (d) has
2 planes of mirror symmetry. This is because mirror images of this molecule give
the same diffraction patterns. The central peak in all patterns has intensity n2

elec,
as |

∫
ρ(r)eiqrdr|2 has maximum value |

∫
ρ(r)dr|2 = n2

elec. This is not the case in
experiment as the central peak, usually behind beam-stopper, has intensity IX-ray.

0 except for particular regions in the pattern (i.e. at the detector).

The maximum difference between the MCSCF(6,6)/6-31G** and HF/STO-3G

diffraction is significantly smaller, approximately 9%, in Fig. 3.5b. As this dif-
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(a)

(b)

Figure 3.5: Benzene, (a) MCSCF(6,6) 6-31G(d,p) compared to IAM difference pat-
tern, |f6-31G(d,p)|2 − |fIAM|2, which corresponds to ≈ 45% maximum difference, and
(b) benzene MCSCF(6,6) 6-31G(d,p) compared to HF STO-3G difference pattern,
|f6-31G(d,p)|2 − |fSTO-3G|2, which corresponds to ≈ 9% maximum difference.

ference is much lower than the previous comparison, it implies that taking into

account the valence electrons is more significant than enhancing the model chem-

istry. The main difference in fact manifests itself in the basis set difference, not so

much in the difference between the electronic structure method (HF or MCSCF).

This is because the STO-3G basis set is generally inadequate and should only be

used for quick or benchmark calculations at a significant cost to accuracy. Also

the difference between MCSCF and HF lies in the active space, which is rather

small in comparison to the total number of electrons, and the difference it causes

is therefore minimal. In other words, allowing six electrons to move slightly into

other orbitals is insignificant compared to the background signal from the total

42 electrons.

57



The computational time required for an ab initio X-ray diffraction calculation

is proportional to the number of molecular orbitals which construct the total

wave function, and the number of Gaussian primitives (GTOs) per MO squared,

n2
gNMO, where ng = nkNBF. MCSCF methods include additional MOs for elec-

trons to occupy compared to Hartree-Fock (i.e. the active space). Therefore, extra

basis functions must be used to take account of these, and an AIXRD calculation

based on MCSCF requires a linear multiple of the time taken for one based on

HF. In addition, each basis set can contain different numbers of GTOs. For exam-

ple, STO-3G uses 3 GTOs per atomic orbital (AO) to describe an atom, whereas

6-31G* uses six GTOs per core AO, and contractions containing 3 and 1 GTOs

for valence AOs. This means there are significantly more Gaussian products per

MO. For diffraction from molecules in their electronic ground state, HF/STO-3G

may be useful as a quick calculation that includes valence electrons. However,

this computational speed is lost when multiconfigurational methods are needed.

This is because often they need large basis sets to converge to an accurate wave

function. This is especially true for electronically excited states. Whether or not

it may be possible to determine the electronic state of a molecule via elastic X-ray

diffraction is discussed in the next section.

3.3.4 Electronic structure in diffraction

AIXRD can be used to predict molecular form-factors, thus diffraction patterns,

for molecules in electronically excited states, and from individual molecular or-

bitals. The latter is shown in Fig. 3.6. Singly occupied σ and π-orbitals are

shown, with corresponding diffraction patterns, for O2 in its electronic ground

state calculated at the MCSCF(8,8)/6-31G** level, with an active space con-

sisting of eight electrons in four π and four σ-orbitals. The geometry optimised

energy is EO2 = −149.663091 Hartree, with a bond-length of 1.245 Å. There are

characteristic diffraction patterns for each MO type, such as σ, σ∗, π, and π∗,
which can be determined by AIXRD.

Theoretically, X-ray diffraction can detect electronic state changes, as the elastic

X-ray form-factor is the Fourier transform of the electron density (Eq. (3.11)),

which in turn depends on the electronic state. Experimental verification of this

is challenging for several reasons. A high signal to noise ratio is necessary, since

the changes in electron density are small. Often, only a small number of valence

electrons are reconfigured during excitation to a different electronic state. In
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(a) (b)

(c) (d)

Figure 3.6: O2 various molecular orbitals, (a) σ-bond, red and blue represent different
phases, (b) corresponding normalised diffraction pattern, (c) π∗-bond (π-antibond),
and (d) corresponding normalised diffraction pattern.

practice, excitation usually comes with associated nuclear geometry changes, and

the two are not easily distinguishable. Furthermore, a pump-laser only excites

a fraction of target molecules, leaving a fractionally diminished difference signal

after subtraction [5, 6, 76]. Finally, electronic states have finite lifetimes, which

may make inelastic effects more important [101,102].

The diffraction pattern for the first singlet excited state, S1, vertically excited

from the ground state, S0, of perfectly aligned 1,3-cyclohexadiene (CHD) is shown

in Fig. 3.7a. The S0 geometry optimisation was performed at the MCSCF(6,6)/6-

31G** level of theory, with an active space consisting of six electrons within

four π-orbitals and 2 σ-orbitals, and the S0 and S1 wave functions were calcu-

lated at this geometry. They have energies of ES0 = −231.916756 Hartree and

ES1 = −231.668618 Hartree, respectively. Fig. 3.7b shows the difference pat-

tern between S1 and S0 states. Although near-zero for most detector regions,

at certain angles this difference is up to 40%, as calculated by the equation

100(|f1|2 − |f0|2)/|f0|2. This example is analogous to a ‘perfect experiment’ with

100% vertical excitation from S0 to S1 state, and perfect alignment i.e. no blur-
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(a)

(b)

Figure 3.7: 1,3-Cyclohexadiene vertical excitation, (a) 1st singlet excited state, |f1|2,
and (b) difference pattern |f1|2− |f0|2, red areas are characteristic of the excited state
and blue areas are ground state remnants.

ring due to vibrational and rotational motion. Signature diffraction differences for

identifying an electronic state may remain with reasonable and even non-existent

alignment. This hypothesis will be explored in detail in Chapters 5 and 6.

3.3.5 Fitted rotationally-averaged form-factors for solvent

molecules

The molecular form-factor is a key variable in X-ray diffraction experiments. Its

absolute square gives the intensity distribution of scattered photons as a function

of the momentum transfer, q. Crystallographic data often contains significant

signal from solvent molecules, which are dispersed throughout the sample. The
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(a) R0, top view. (b) R0, side view.

(c) R1, top view. (d) R1, side view.

Figure 3.8: CHD geometries top and side view schematics, (a) top view of global
minimum geometry, R0, with numbered carbons; (b) corresponding side view; (c,d)
puckered ring geometry, R1, top and side views respectively.

use of a form-factor derived for the entire rotationally-averaged molecule could

therefore be useful to subtract out or otherwise infer extra structural information

about the crystal sample. The molecule 1,3-cyclohexadiene (CHD) is used here

as an example solvent molecule.

Using Molpro [96], MCSCF(4,4)/6-31G** geometry optimisation was performed

to find two ground state stationary points for CHD, the global minimum, R0,

(E = −231.90032678 a.u.) and a local ‘puckered ring’ minimum, R1, (E =

−231.71508274 a.u.). A schematic of each is shown in Fig. 3.8 and their geo-

metric parameters are shown and compared to experimental electron diffraction

values [103] in Table 3.3. AIXRD was used at these geometries with the cor-

responding MCSCF(4,4)/6-31G** wave functions to compute the rotationally-

averaged elastic X-ray diffraction curves for the range q = [0, 5.8860] Å−1,

I(q) =
1

4π

∫ 2π

0

∫ π

0

|f(q, θ, φ)|2 sin θdθdφ. (3.29)

61



Parameter Experiment R0 R1

C2C3 (Å) 1.468± 0.014 1.471 1.483

C2C1 (Å) 1.350± 0.004 1.330 1.361

C1C6 (Å) 1.523± 0.016 1.512 1.535

C6C5 (Å) 1.534± 0.020 1.538 1.599

<C3C2C1 120.13± 0.6 120.65 114.40

<C2C1C6 120.14± 0.5 120.77 110.05

<C1C6C5 110.7 111.85 92.31

Table 3.3: Experimental and theoretical geometric parameters for CHD. The experi-
mental values are from [103], and the theory used is MSCSF(4,4)/6-31G** geometry
optimisation using Molpro [96].
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Figure 3.9: Rotationally-averaged theoretical form-factors for the CHD molecule, and
corresponding fitted curves for the global minimum geometry R0 and a local ‘puckered-
ring’ minimum geometry R1.

The square-root was taken to approximate a real-valued molecular form-factor,

f ′(q) =
√
I(q). The fitting equation for atomic form-factors (Eq. (3.27)) was

used, and by variation of the coefficients {ai}, {bi}, and c and minimising the

mean of the difference,

〈∆f〉 =
1

N

N∑
i=1

|f ′(qi)− f(qi)|, (3.30)

where N is the number of points computed in q, an optimised fitted molecular

form-factor f(q) is obtained. The theoretical and corresponding fitted curves are
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Coefficient R0 R1

a1 570.1466 625.5978

b1 108.7478 97.5134

a2 241.0022 219.6332

b2 57.4738 50.6245

a3 -554.7766 -546.6454

b3 75.6884 67.6380

a4 -217.3425 -259.4986

b4 139.7514 122.9526

c 4.8595 4.7768

Table 3.4: Curve fitting parameters for CHD stationary point geometries R0 and R1

using Eq. (3.27).

shown in Fig. 3.9 for the R0 and R1 molecular geometries, and the optimised

fitting coefficients are shown in Table 3.4.

The utilisation of pre-fitted, rotationally-averaged form-factors such as for CHD

in the present example is currently being investigated in collaboration with Prof.

Simon Parsons (University of Edinburgh) in the refinement of X-ray scattering

data from metal-organic frameworks (MOFs), where solvent molecules are known

to disperse inside the cavities in a quasi-structured manner.

3.3.6 Numerical calculations using FFT

As briefly mentioned in the theory section, an alternative fast Fourier transform

(FFT) method can be used to calculate the elastic molecular form-factor. It

involves representing the electron density on an appropriate grid with regular

spacing ∆r, then, numerically Fourier transforming via an FFT algorithm. This

approach benefits from the efficiency of the FFT algorithm, and from conceptual

simplicity. To converge to the analytical solution, a small grid spacing and large

grid size are crucial. This means significant computational effort is required to

produce accurate results.

Vital to the accuracy of the FFT algorithm is that the signal to be Fourier

transformed is within the Nyquist critical frequency, qc = 1/2∆r. Equivalently,
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Nr = Nq Ngrid ncrit
g

50 512 500

50 1024 1700

50 2048 5500

100 512 200

100 1024 600

100 2048 2000

Table 3.5: Timing comparison between analytical and FFT methods for calculation
of the molecular form-factor, as Eq. (3.11). In the FFT method, the electron density
is represented on a N3

r sized grid with equal spacing ∆r. The FFT algorithm requires
extra ‘padding’ of trailing zeros to make a grid of size, N3

grid = (2m)3, where m ∈
{0, 1, 2, . . . } and Ngrid > Nr. It has scaling of ngNMON

3
r + (Ngrid lnNgrid)3, for

NMO MOs and ng = nkNBF GTOs per MO. Grid sizes for powers of 2m where m =
{9, 10, 11} are shown, which are generally appropriate for such calculations, and the
larger the value the more accurate the FFT. The analytical method directly calculates
the elastic molecular form-factor from an ab initio wave function on a N3

q -sized grid in
q, and has scaling n2

gNMON
3
q . Shown are the critical numbers of Gaussian primitives

(GTOs) per MO, ncritg , rounded to the nearest 100, for each calculation method to take
equal computational time, below which the analytical calculation is faster.

this means the electron density must be represented on a grid with sufficiently

small spacing, ∆r, to produce accurate results. Often the Nyquist frequency is

greater than 2|k0|, so a large number of grid points are needed to accurately

resolve the experimentally relevant region, 0 ≤ |q| ≤ 2|k0|. This is done by

enlarging the electron density grid with trailing zeros, while ensuring each spatial

dimension has length equal to a power of 2 for optimal FFT performance [104].

The 3D FFT algorithm scales as, (Ngrid lnNgrid)3. Thus, including the initial

calculation of the N3
r sized electron density grid, the overall scaling of the FFT

method to calculate elastic molecular form-factors is, ngNMON
3
r +(Ngrid lnNgrid)3.

Comparing to the 3D analytical method scaling, n2
gNMON

3
q , shows that the FFT

method is preferable for ng above a certain critical value, ncrit
g , with appropriately

chosen constants, Ngrid, Nr, and Nq. For Ngrid = 2048, and Nr = Nq = 100, ng

must be greater than about 2000 for the FFT to be worthwhile in terms of

efficiency. For small molecules with reasonably sized basis sets, ng < 2000, and

the analytical method is preferable. The analytical route also has the benefit of

guaranteeing exact solutions at each chosen value of q. Values of ng at which the

FFT and analytical method take equal computational time are shown in Table

3.5 for other values of Ngrid, Nr, and Nq. Note that in practice, Nq < Nr, because
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the grid in r must be fine and large enough to accurately encompass most of the

electron density (e.g. > 99%), whereas the grid in q does not suffer from this

problem. It only has to be calculated precisely at the desired points in q, and

extend as far as an experimental setup can reach. Both grids are set to be equal

in size here, which is a fairly extreme example. This means that ncrit
g is actually a

lot larger than shown in Table 3.5 and the analytical method is computationally

faster for a far more extensive range of ng values. It is also always more accurate

because it does not incur the numerical errors inherent in FFT. Thus, even at

slightly greater than ncrit
g GTOs per MO, the analytical method may still be

preferable.
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Figure 3.10: Convergence of numerical calculations using FFT. The difference between
the diffraction calculated by numerical FFT and the analytical ab initio approach. The
comparison is made for the ground state benzene molecule as a function of the radial
angle θ with azimuthal angle φ = 0. The FFT has been calculated on two different
sized electron density grids, 1024× 1024× 512, and 2048× 2048× 1024. The error in
the FFT calculation, relative to the analytical calculation, is on the order of 2.7% for
the larger grid.

The convergence of the FFT towards the analytic result, as a function of grid size,

is shown in Fig. 3.10. The largest grid in Fig. 3.10 reproduces the analytic result

with approximately 2.7% average difference. Calculations of the X-ray diffraction

signal were performed for ground state benzene with the MCSCF(6,6)/6-31G**

model chemistry. Fast-Fourier transform methods suffer from ‘artificial interfer-

ence’, due to periodicity of discrete Fourier transforms. Deviations from correct

values appear close to edge regions because of this. This is mitigated by increas-

ing the number of trailing zeros, and the initial grid density. However, there is a

practical limit to the amount this can be done, due to the (Ngrid lnNgrid)3 scaling.
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3.4 Conclusion

The diffraction pattern for molecules in various electronic states can be efficiently

and directly calculated from ab initio multiconfigurational wave functions ex-

pressed by Gaussian basis sets. Single determinant wave functions, such as those

calculated from HF theory, can be used in conjunction with AIXRD for mod-

elling the X-ray diffraction from molecules in their ground state. The calculation

is based on the derived general analytical formula for the Fourier transform of

any two Cartesian GTO products. In general, analytical solutions are sought

out over their numerical counterparts for many scientific problems, due to their

efficient and exact nature.

Diffraction patterns calculated from perfectly aligned butadiene isomers show

large variations in signal at all scattering angles >0, demonstrating the potential

of X-ray diffraction from aligned molecules to track structural changes. A com-

parison is made between the ab initio X-ray diffraction (AIXRD) method and the

independent atom model (IAM) for benzene in its ground state. As expected,

the main difference stems from accounting for the delocalised valence electrons,

and a maximum difference of 45% is seen at specific scattering angles. The refer-

ence X-ray diffraction pattern was calculated from a MCSCF(6,6)/6-31G** wave

function, which was compared to a HF/STO-3G calculated diffraction pattern

revealing a maximum difference of 9%, and about a four times decrease in com-

putational effort. Thus, for electronic ground states IAM can be improved at

low computational cost using AIXRD with a small basis set and single determi-

nant wave function, and enhanced accuracy can be achieved straight-forwardly

by using larger basis sets.

Multiconfigurational electronic structure methods are necessary to accurately ob-

tain excited state wave functions and energies. These methods require large basis

sets to converge, thus large computational effort to calculate their correspond-

ing AIXRD diffraction patterns. The diffraction patterns for 1,3-cyclohexadiene

in its first singlet excited state and its ground state are compared. This shows

that changes in electronic structure, e.g. during a photochemical reaction, are in

principle visible with X-ray diffraction, at least for aligned molecules. The inter-

pretation of experimental data remains complex, especially in terms of separating

contributions from nuclear motion and electronic structure changes. Theoretical

calculations such as AIXRD can help to elucidate these distinctions.
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A hierarchy of approaches to calculating elastic X-ray molecular form-factors

has been outlined. The fastest by far is the independent atom model which

merely scales with the number of atoms. However, it can only be used for the

electronic ground state and does not take account of delocalised valence elec-

trons. Single determinant ab initio X-ray diffraction with a small basis set such

as HF/STO-3G can be used at modest computational investment. It is also es-

sentially constrained to the electronic ground state but includes delocalised and

bonding valence electrons. To model the X-ray diffraction from electronically ex-

cited states and improve the overall ab initio wave function, multiconfigurational

methods with larger basis sets are needed. In this case, one of two AIXRD meth-

ods are viable: the numerical FFT; or the analytical approach. The analytical

method is more accurate, and computationally faster except when a very large

number of GTOs have been used to construct the total wave function.
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Chapter 4

Fragment-Based Ab Initio X-ray

Diffraction from Biomolecules

4.1 Introduction

Since Max von Laue’s discovery of X-ray diffraction from crystals in 1914 [8] there

have been many Nobel prizes related to X-ray crystallography. Today, it remains

one of the foremost techniques for determining the structure of molecules, and

its success has greatly advanced the understanding of molecular structure and

function. However, there are many biomolecules which are difficult or impossible

to crystallise, and therefore difficult to study using X-ray crystallography [34,105].

In addition, the growth of large well-ordered protein crystals is a major bottleneck

in structure determination by X-ray crystallography.

X-ray free-electron laser (XFEL) sources are so bright that they overcome the

need for conventional crystals. Serial femtosecond crystallography [35, 36, 106],

where a liquid jet containing 100,000s of micro-crystals intersects the femtosec-

ond X-ray source, circumvents the need to grow large crystals. This gives many

snapshots of microcrystals in different orientations, and a computer algorithm

must be used to extract meaningful information from the data to determine the

molecular structure. An example of this is the de novo determination of the struc-

ture of lysozyme with a 2.1 Å resolution [35]. In addition, the problem of X-ray

radiation damage and degradation of the sample is avoided because of diffraction

before destruction [30]. That is the XFEL pulses outrun the destruction of the

micro-crystals, giving damage-free diffraction snapshots. This is in contrast to
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conventional crystallography, where the protein crystal accumulates damage over

several hours of data collection time.

Fragment-based electronic structure methods have opened the way for quantum

mechanical treatment of large molecules, such as biomolecules [107]. There are

many fragment-based electronic structure methods [108], such as fragment molec-

ular orbital (FMO) theory [109], subsystem DFT [110], effective FMO [111,112],

3-body FMO [113], and multiconfigurational FMO [114]. Many popular fragment-

based methods are implemented in the electronic structure program GAMESS

[113]. Fragment-based methods make possible nearly linear scaling of calcula-

tions of large molecular systems [115], such as water clusters, proteins, and DNA.

In addition to this, the capacity of ab initio electronic structure methods to be

used on larger molecules is improving alongside the growth in available compu-

tational resources. Recently, full ab initio geometry optimisation was performed

on 55 protein structures [116].

It is intuitive to combine a fragment-based electronic structure method with X-ray

diffraction theory. In 1916, Debye hypothesised that a sum of atomic form-factors,

with phase terms dependent on the positions of the nuclei, is a good approxima-

tion for the total molecular form-factor [38]. In the current context, his method

can be thought of as a simple fragment-based method with isolated atomic frag-

ments, where X-rays scatter from radially-symmetric distributions of electron

density centred at each atom. Combining ab initio X-ray diffraction (AIXRD),

as outlined in the previous Chapter, with a fragment-based method allows the

calculation of fragment form-factors which are based on electronic structure the-

ory, and summing these fragment form-factors is an approximate way to calculate

the total molecular form-factor of a large molecule. Structure determination, and

TRXRD experiments could benefit from molecular form-factors based on ab initio

electronic structure theory. For example, serial crystallography can theoretically

achieve very high resolution structure determination due to the mitigation of ra-

diation damage and the unprecedented peak intensity of XFEL pulses. X-rays

probe the electron distribution rather than the atomic positions, therefore it may

be possible to probe subtleties in electronic structure, such as those from delo-

calised electrons [1, 117]. In this new age of X-ray structure determination, it is

worthwhile thinking about going beyond the IAM approximation in the calcula-

tion of the X-ray diffraction signal.
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4.2 Theory

The following theory briefly describes fragment molecular orbital (FMO) theory

[109], which is an inspiration for this Chapter. The idea that follows involves

combination of a fragment-based ab initio electronic structure method with the

AIXRD method described in Chapter 3. Ideally, the true FMO electron density

would be Fourier transformed to obtain the total molecular form-factor. However,

a similar yet less sophisticated model is used in this Chapter, where entirely

isolated fragment form-factors are used. The method here is analogous to the

IAM method, except instead of isolated atomic fragments, larger fragments are

used. For example, each amino acid residue in the protein lysozyme is defined as a

fragment in Section 4.3.4. The problem with this is that each fragment is defined

by severing a bond, and as such, is a radical. There are several ways to avoid

the radicalisation of each fragment, e.g. by simply introducing fragment pairs or

dimers which include the unsevered bond. This is briefly explored in the following

discussions. The method arrived upon in this Chapter is an intermediate method

between the IAM and AIXRD methods. It is called the Independent Fragment

Model (IFM).

4.2.1 Fragment molecular orbital theory

(a) IFM1. (b) IFM2.

Figure 4.1: Ethanol divided into two different sets of N = 3 fragments, denoted IFM1
and IFM2. From Mulliken population analysis using HF/6-31G, the OH group a net
negative charge of −0.35388e, and the CH3 group a net positive charge of +0.45377e.
Images taken from Kitaura et al. [109].

In FMO theory [109], a molecule is divided into fragments. See Fig. 4.1 for
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reference. The fragment Hamiltonian is defined as,

HI =

nI∑
i

{
− 1

2
∇2
i −

Nat∑
s

Zs
|ri −Rs|

(4.1)

+
N∑
J 6=I

∫
dr′

ρJ(r′)

|ri − r′|
}

+

nI∑
i>j

1

|ri − rj|
,

where nI is the number of electrons in fragment I, Nat is the total number of atoms

in the molecule, Zs is the nuclear charge on atom s, {ri} are the nI electronic

coordinates within fragment I, {Rs} are the Nat nuclear coordinates within the

molecule, N is the number of fragments, and ρJ(r′) is the electron density of

fragment J . The electron densities for each fragment are calculated in an iterative

manner. Dimers are defined as two fragments (or monomers) together. The dimer

Hamiltonian is analogous to the fragment Hamiltonian,

HIJ =

nI+nJ∑
i

{
− 1

2
∇2
i −

Nat∑
s

Zs
|ri −Rs|

(4.2)

+
N∑

K 6=I,J

∫
dr′

ρK(r′)

|ri − r′|
}

+

nI+nJ∑
i>j

1

|ri − rj|
.

The electron densities are not recalculated for the dimers, the fragment densities

are simply used again. Trimers can be subsequently defined as sets of three

fragments, as in 3-body FMO [113]. Here only 2-body FMO is considered. The

Hamiltonians give rise to two sets of time-independent Schrödinger equations;

one for the individual fragments, and one for the dimers,

HIΨI = EIΨI , (4.3)

HIJΨIJ = EIJΨIJ . (4.4)

Solving these with an appropriate level of theory such as Hartree-Fock(HF)/6-

31G gives the energies {EI , EIJ} and wave functions {ΨI ,ΨIJ}. The total energy

in 2-body FMO is,

E =
∑
I>J

EIJ − (N − 2)
N∑
I

EI +
Nat∑
s>t

ZsZt
|Rs −Rt|

, (4.5)

if all possible dimers are calculated. The last term is the nuclear repulsion energy.

In practice, only fragments which are within an appropriate cut-off radius of each

other are defined as dimers. This is called the electrostatic dimer approximation.
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A dimer consisting of far separated fragments is very well approximated by the

fragments alone, which is already accounted for in the fragment sum. More

generally, the electronic energy is,

E ′ =
∑
I>J

(EIJ − EI − EJ) +
N∑
I

EI , (4.6)

where the double sum is over the chosen set of dimers only. The total (2-body

FMO) electron density is analogously,

ρ(r) =
∑
I>J

[
ρIJ(r)− ρI(r)− ρJ(r)

]
+

N∑
I

ρI(r), (4.7)

where the individual monomer and dimer densities are as in conventional ab initio

electronic structure theory, and are previously derived in Section 2.5.

4.2.2 Independent and pairwise fragment models

A fragment-based improvement to the IAM scattering approximation is consid-

ered here, where the sum over the atomic form-factors is upgraded to a sum

over fragment form-factors. This introduces an ab initio electronic structure the-

ory aspect to the calculation of elastic X-ray molecular form-factors for large

molecules, while still maintaining a modest computational resource cost. Unfor-

tunately, it also introduces the breaking of covalent bonds, causing radicals, which

is problematic, as the electronic structure of the molecule is no longer correct.

However, there are ways to somewhat fix this issue. The FMO method involves

self-consistent iteration of the fragment energies within the average field of the

other fragments. In this way, the radical electrons are accounted for in the total

energy. Additionally, dimers are defined as pairs of fragments which include the

unsevered bond. Inclusion of dimer terms is another way of correcting the elec-

tronic structure. For the purposes of improving upon the IAM method, it turns

out, a simple sum of radical fragment form-factors (as calculated with AIXRD)

is a reasonable approach. The reason for this is that the IAM method is itself

a sum of radical atomic form-factors, because not all atoms are fundamentally

closed shell.

In any fragment-based method, a first approximation to the electron density is a
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simple sum of fragment densities,

ρ(r) =
N∑
I

ρI(r), (4.8)

which is the case in subsystem DFT [110]. The elastic X-ray molecular form-

factor, is the Fourier transform (FT) of the electron density (as in Section 2.1),

which is,

f(q) =
N∑
I

∫
ρI(r)eiqrdr =

N∑
I

fI(q). (4.9)

This is analogous to the IAM scattering approximation, which is f(q) =
∑Nat

j fj(q),

with {fj(q)} a set of atomic form-factors, except here the sum is over fragments

consisting of >1 atom and {fI(q)} is a set of molecular (radical) form-factors.

This is reasonable in a scattering context as an improvement over the IAM ap-

proximation. From an ab initio perspective, the wave function, and therefore the

electron density, can be improved upon by explicitly taking into account all inter-

actions, e.g. by using the FMO Hamiltonians in Eqs. (4.1) and (4.2). However, the

approximation used in this Chapter uses isolated fragments and fragment-pairs

(dimers). This implies effective Hamiltonians which omit fragment-fragment in-

teractions,

H ′I =

nI∑
i

{
− 1

2
∇2
i −

NI∑
s

Zs
|ri −Rs|

}
+

nI∑
i>j

1

|ri − rj|
, (4.10)

H ′IJ =

nI+nJ∑
i

{
− 1

2
∇2
i −

NIJ∑
s

Zs
|ri −Rs|

}
+

nI+nJ∑
i>j

1

|ri − rj|
, (4.11)

where NI and NIJ are the number of atoms in fragment I and dimer IJ re-

spectively. Solving the resulting Schrödinger equations for Eqs. (4.10) and (4.11)

gives energies E ′I and E ′IJ ; and wave functions ψ′I and ψ′IJ . The corresponding

Kohn-Sham or Hartree-Fock electron densities, from Eq. (3.8) are,

ρ′I(r) =

nI∑
i

bi|φ′i(r)|2 (4.12)

ρ′IJ(r) =

nIJ∑
j

bj|φ′j(r)|2, (4.13)
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where nI and nIJ are the number of occupied orbitals in the fragment and dimers

respectively, bi, bj ∈ {0, 1, 2} are their occupancies, and {φ′i} and {φ′j} are the

molecular orbitals which construct ψ′I and ψ′IJ . Similar to Eq. (4.7), a pairwise

sum can be constructed,

ρ′(r) =
∑
I>J

[
ρ′IJ(r)− ρ′I(r)− ρ′J(r)

]
+

N∑
I

ρ′I(r), (4.14)

the FT of which is,

f ′(q) =
∑
I>J

(f ′IJ − f ′I − f ′J) +
N∑
I

f ′I , (4.15)

a molecular form-factor based on a pairwise sum of isolated fragment and dimer

densities, and takes into account fragment-fragment interactions, albeit in an

approximate way.

4.3 Results and discussion

The molecular form-factor is generally a 3-dimensional function, i.e. f = f(q, θ, φ),

where q = |q|, and θ and φ are the polar and azimuthal scattering angles. The

molecular form-factor squared is the diffraction intensity, I(q) = |f(q)|2. The

rotationally-averaged diffraction intensity is the molecular form-factor squared

taking into account all possible orientations of the molecule,

I(q) =
1

4π

∫ 2π

0

∫ π

0

|f(q, θ, φ)|2 sin θdθdφ, (4.16)

which is observed in unaligned gas or liquid-phase X-ray diffraction experiments,

where the X-rays scatter from the randomly-orientated ensemble-average of sam-

ple molecules.

Throughout this Chapter comparisons are made between theoretical methods for

determining I(q) or I(q). The percent difference is used for this, which is defined

as,

%∆I = 100
(IA − IB

IB

)
, (4.17)

where diffraction intensity of method A is compared to reference intensity IB.
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4.3.1 Small molecules

Ethanol was chosen as a prototype small molecule to test the effect of various

fragmentation methods on the resulting AIXRD results. It is used as an example

case to determine the effect of very small fragments on the X-ray diffraction

compared to full (N = 1 fragment) AIXRD. In later Sections where fragment-

based AIXRD is used on peptides and a protein molecule, fragments will be at

least as large as an entire ethanol molecule. Ethanol was geometry optimised

at the Hartree-Fock(HF)/6-31G level, and a Mulliken population analysis was

performed using Molpro [96]. A low quality electronic structure theory was used,

and the effect of increasing the basis set size is compared to the choice of fragments

at the end of this section (see Fig. 4.4 and corresponding text). The partial

charges on the oxygen atom and the end hydrogen atom were −0.75401e and

+0.40013e, giving the OH group a net negative charge of −0.35388e. The middle

group (CH2) has a net charge of −0.09988e, and the end group (CH3) has a

net charge of +0.45377e. For this reason, ethanol was divided into two different

sets of N = 3 fragments, CH3-CH2-OH, and CH+
3 -CH2-OH−, which are denoted

IFM1 and IFM2 respectively. See Fig. 4.1 for a representation of each fragment

definition. HF/6-31G was used on each fragment, all N(N − 1)/2 = 3 unique

dimers, each individual atom (N = Nat); denoted the independent atom model

(IAM), and the full (N = 1) molecule. The full ab initio calculation can be

thought of as a trimer calculation using any definition of N = 3 fragments. It is

therefore more accurate than any pairwise or simple sum approximation of N = 3

fragments.

The energies of each fragment were summed and pairwise summed and compared

with the full HF/6-31G energy. See Table 4.1 for the energies of each method.

Aside from the IAM energy, the IFM2 energy is the furthest from the full energy,

followed by the IFM1 energy which is 0.42 Hartree closer and 0.27 Hartree larger

than the N = 1 energy. The IFM1pw and IFM2pw energies are similar by 0.017

Hartree and 0.06 − 0.08 larger than the N = 1 energy. The IAM energy is the

furthest from the full HF/6-31G energy as it is constructed by completely isolated

atomic energies. Comparing the simple N = 3 fragment sum energies, IFM1 is a

much better choice than IFM2. For the pairwise sum energies, IFM2pw is only a

slightly better choice than IFM1pw.

The electron densities, ρA(r), for each method A were calculated with Eqs. (4.8)

and (4.14) on a (12 a0)3 grid with spacing 0.1 a0. Slices through the xy-plane
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Method E (Hartree) ∆E (Hartree)

Full -154.01322721 0

IFM1 -153.74573447 0.26749274

IFM2 -153.32481489 0.68841232

IFM1pw -153.93283357 0.08039364

IFM2pw -153.94940080 0.06382641

IAM -152.82161838 1.19160883

Table 4.1: Energy extensivity for ethanol divided into N = 3 fragments, CH3-CH2-
OH, denoted IFM1; and CH+

3 -CH2-OH−, denoted IFM2. The simple and pairwise sums
(pw) of fragment energies and full HF/6-31G energy are shown. HF/6-31G was used
for each fragment and unique dimer. The independent atom model (IAM) energy is
shown, which is a sum of isolated atomic energies. It is equivalent to dividing the
molecule into N = NA fragments.

of the electron densities, ρ(x, y, z = 0), as well as the IAM electron density, are

shown in Fig. 4.2 where the atomic centre of the end hydrogens, both carbons,

and the oxygen lie on the xy-plane. The IAM density was calculated by summing

the individual HF/6-31G atomic electron densities. By qualitatively examining

the electron density slices for each method shown in Fig. 4.2, it appears that the

IFM1 slice better represents the oxygen and end-carbon distributions than IFM2.

The IFM2pw slice has a slightly closer end carbon distribution to the full ab initio

electron density compared to IFM1pw, and a potentially better representation

of the oxygen distribution. An absolute difference |∆ρ| = |ρA − ρfull| analysis

between each method A and the full ab initio calculation is shown in Table 4.2.

It shows that the IFM1 sum of fragment densities is actually better that the

pairwise summations in terms of mean and median |∆ρ|, and IFM2 is the worst

choice apart from IAM. As expected, the IAM method has the largest maximum,

mean and median |∆ρ|. The IFM1 method has a significantly lower mean and

median |∆ρ| than IFM2, i.e. the IFM1 choice of fragments gives a result closer to

the full ab initio method, showing strong dependence on the choice of fragments

even if they only differ by the location of one electron. The IFM1pw and IFM2pw

have slightly lower maximum values of |∆ρ| than their non-pairwise counterparts.

Ab initio X-ray diffraction (AIXRD) was performed on each of the IFM1 and

IFM2 fragments and dimers to give fragment-based AIXRD results via Eqs.

(4.9) and (4.15), which correspond to the fragment-based electron densities. Fig.

4.3 shows orientationally-averaged X-ray diffraction intensities, Eq. (4.16), in
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(a) Ab initio electron density. (b) IAM electron density.

(c) IFM1. (d) IFM1pw.

(e) IFM2. (f) IFM2pw.

Figure 4.2: Ethanol electron density slices ρ(x, y, z = 0), with ρ(r) calculated on a
(12 a0)3 cubic grid with 0.1 a0 spacing. Calculated via: (a) full (N = 1) HF/6-31G;
(b) independent atom model (IAM), a sum of atomic densities each calculated with
HF/6-31G; (c) fragment-based ab initio, a sum of N = 3 fragment-densities defined as
CH3-CH2-OH, denoted IFM1, each calculated with HF/6-31G; (d) the pairwise sum of
IFM1 fragments, denoted IFMpw, which includes a sum of all unique dimer-densities;
(e,f) same as (c,d) but with fragments defined as CH+

3 -CH2-OH−, denoted IFM2 and
IFM2pw respectively. The positions of the atoms were defined by a HF/6-31G geometry
optimisation. The colour-scale is a base 10 log-scale e.g. the green region has a value
of ρ(x, y, z = 0) = 10−2.

the range q = {0, 4.2} a−1
0 , for each method; and the percent difference curves

%∆I(q), Eq. (4.17), comparing each method to full AIXRD reference method.

Table 4.3 shows the maximum, mean, and median of |%∆I(q)| for each method.

The IAM method is the furthest from full AIXRD with the largest maximum,

mean, and median |%∆I(q)|. Each other method is comparatively close to the

full ab initio method. That is, approximating the ab initio molecular form fac-

tor with a fragment-based method is worthwhile and a significant improvement

over the IAM. IFM1pw has the smallest maximum, mean, and median |%∆I(q)|,
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Method Max. |∆ρ| Mean |∆ρ| Median |∆ρ|
IAM 7.40 2.8×10−3 2.3×10−4

IFM1 0.82 1.1×10−3 0.1×10−4

IFM2 0.82 1.7×10−3 0.5×10−4

IFM1pw 0.62 1.3×10−3 0.4×10−4

IFM2pw 0.37 1.4×10−3 0.4×10−4

Table 4.2: Electron density difference |∆ρ| = |ρA − ρfull| analysis, where method
ρA is either the sum of 3 fragment densities, ρIFM1 = ρ(CH3) + ρ(CH2) + ρ(OH),
denoted IFM1; ρIFM2 = ρ(CH+

3 ) + ρ(CH2) + ρ(OH−), denoted IFM2; the pairwise
density sums for IFM1 and IFM2, denoted IFM1pw and IFM2pw respectively; or the
independent atom model (IAM) density. The full electron density, ρfull; each fragment;
and dimer were calculated using HF/6-31G at the HF/6-31G optimised geometry for
the full molecule. The IAM density was calculated by summing the individual densities
of the atoms in the molecule. The positions of the atoms were defined by a HF/6-31G
geometry optimisation. Each electron density was computed on a (12 a0)3 cubic grid
with 0.1 a0 spacing.

Method Mean |%∆I(q)| Median |%∆I(q)| Max. |%∆I(q)|
IAM 3.98 2.90 9.25

IFM1 1.68 1.57 4.28

IFM2 1.54 1.00 4.10

IFM1pw 0.70 0.60 1.72

IFM2pw 1.16 0.96 2.92

Table 4.3: Mean, median and maximum values of |%∆I(q)| for ethanol using the
independent atom model and fragment-based approximations compared to the full
AIXRD method.

followed by IFM2pw, IFM2, and IFM1. This implies the best method after full

AIXRD is IFM1pw, and a pairwise method is more accurate than a non-pairwise

one.

To examine the effect of larger basis set on the fragment-based method, full

AIXRD and AIXRD with IFM1 fragments were performed with the 6-311++G**

basis set. These curves were compared to full AIXRD and IFM1 AIXRD as

before with the 6-31G basis set. Fig. 4.4 shows %∆I(q) using full AIXRD with

6-311++G** as the reference signal. The 6-31G full AIXRD curve is the closest

to having a 0% difference with a mean |%∆I(q)| of 0.63%. All three curves have

a similar trend at q > 2.5 Å−1, corresponding to real space distances of < 2.51 Å.
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Figure 4.3: Ethanol orientationally-averaged elastic X-ray diffraction curve comparison
for each method. Where the methods are, full ab initio X-ray diffraction (AIXRD),
IFM1, IFM2, IFM1pw, and IFM2pw, and the independent atom model (IAM). (a) The
log of the diffraction intensity IA(q) = |fA(q)|2 for each method. (b) The percent
difference, %∆I(q) = 100(IA − Ifull)/Ifull, between each method and the full AIXRD
reference curve.

Both the N = 3 fragment-based methods have similar curves with mean |%∆I(q)|
values of 1.61% for 6-311++G** and 1.97% for 6-31G despite the difference in

basis set size. This shows that increasing the basis set size cannot outperform or
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Figure 4.4: Comparison for ethanol between the effect of basis set and fragmentation
on the percent difference %∆I(q), as in Eq. (4.17), with a reference signal of full
(N = 1) AIXRD HF/6-311++G**. Increasing the basis set does not circumvent the
effect of fragmentation. The full HF/6-31G calculation is more accurate than the
N = 3 HF/6-311++G** calculation, which is not much of an improvement over the
N = 3 HF/6-31G calculation

circumvent raising the fragment size. In this example going from N = 3 fragments

each with size ≈ 1/3 of the molecule to a molecule sized N = 1 fragment gave a

much more accurate result than using N = 3 fragments and going from 6-31G to

6-311++G**.

4.3.2 Amino acids

Keeping in mind a later Section will involve calculating the elastic X-ray molecular

form-factor for a protein, amino acids are examined, which are biologically im-

portant organic molecules containing amine (-NH2) and carboxylic acid (-COOH)

functional groups. Proteinogenic (“protein-building”) amino acids can construct

peptide chains and form the building blocks of proteins. Nine proteinogenic amino

acids are defined as “essential” for human diet because the body cannot produce

them from other compounds. In solution with moderate pH of about 2.2 − 9.4

the α-carboxylic acid group is deprotonated becoming -COO− and the α-amine
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Figure 4.5: The 21 proteinogenic amino acids.

group is protonated becoming -NH+
3 . These are the zwitterionic forms of amino

acids. See Fig. 4.5 for graphical representation of 21 proteinogenic amino acids.

A qualitative comparison between the ab initio and IAM electron densities for

six amino acids is shown in Fig. 4.6, and a comparison between IAM and AIXRD

intensities for 20 (selenocysteine not included) zwitterionic proteinogenic amino

acids is shown in Fig. 4.7. The electron density difference |∆ρ| is shown in Fig.
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(a) Alanine. (b) Glycine.

(c) Cysteine. (d) Arginine.

(e) Phenylalanine. (f) Tryptophan.

Figure 4.6: Isosurfaces of difference between IAM and ab initio electron densities for
various amino acids. ∆ρ(r) = |ρIAM (r) − ρAI(r)| = {0.23, 0.2, 0.1} (arb. units) for
red, blue, and green respectively. Images generated with VMD [118].

4.6 for three isosurfaces of |∆ρ| = {0.23, 0.20, 0.10} (arb. units), these values are

arbitrary and only serve to visualise the qualitative difference between IAM and

ab initio in terms of electron densities. Non-spherically symmetric distributions

are clearly visible about atomic centres, such as p-orbitals, especially around

phenyl-rings e.g. Fig. 4.6e and 4.6f. There is less difference at the sulphur atom

in the cysteine residue (Fig. 4.6c) because higher Z atoms have a lower valence/-

total electron ratio, and they have predominantly spherically symmetric electron
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labelled by their single letter codes.

Figure 4.7: Amino acids, percent difference between IAM and AIXRD.

distributions. It is clear that there are important effects taken into account in

the ab initio electron distribution compared to IAM.
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The AIXRD results in Fig. 4.7 were calculated from HF/6-31G wave functions

from PDB file geometries contained in the Facio molecular visualisation pro-

gram [119]. The IAM results use tabulated atomic X-ray form-factors from The

International Table of Crystallography [62]. AIXRD improves upon the IAM ap-

proximation for molecular form-factors primarily by taking into account valence

electrons [1]. As seen in Chapter 3, the higher the valence/total electron ratio, the

greater the difference between IAM and AIXRD. Residues containing groups with

high valence/total electron ratio e.g. phenyl-groups, such as phenylalanine (F) and

tryptophan (W) have some of the largest differences in percent difference terms,

%∆I(q); (Fig. 4.7a), and in average absolute percent difference,
∫
|%∆I(q)|dq,

(Fig. 4.7b). Sulphur-containing residues cysteine (C) and methionine (M) have

the least difference between IAM and AIXRD, due to their relatively small size

and the large Z sulphur atom, giving a low overall valence/total electron ratio.

4.3.3 Peptides

As an example of a peptide, diphenylalanine (FF) is next examined. It is a com-

mon naturally-occurring dipeptide consisting of two phenylalanine (F) residues.

Known from molecular dynamics simulations, it has three distinct conformers in

water [120]: contracted (Fig. 4.8a); intermediate; and elongated (Fig. 4.8b), and

spends the most time in its contracted conformer. Compared to other amino acid

residues, its constituent, phenylalanine (F) has one of the largest average abso-

lute percent differences,
∫
|%∆I(q)|dq, between IAM and AIXRD, predominantly

because of the delocalised electrons within the phenyl-group. Moving beyond indi-

vidual amino acids and to compare residue-size fragments and smaller fragment

sizes, two HF/6-31G calculations were performed for FF in its contracted and

elongated forms, from geometries obtained via steepest descent using the univer-

sal force-field (UFF) [121]. Molecular mechanics geometry optimisation is capable

of achieving physically relevant geometries at fractions of the computational time

of ab initio methods. Where accurate biomolecular geometries are a priority, the

force-fields AMBER [122], CHARMM [123], and many others [124] are readily

available. For an X-ray diffraction theory it makes sense to utilise this benefit,

and becomes more necessary when moving towards protein structures consisting

of > 100 residues. The HF/6-31G energies for each optimised conformer are

Econtracted = −1026.34853945 Hartree and Eelongated = −1026.35699991 Hartree,

with ∆E = |Econtracted − Eelongated| = 0.00846046 Hartree. Rotationally-averaged

diffraction intensities were determined from AIXRD molecular form-factors, see
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Fig. 4.8c. There are distinct diffraction signals for each conformer.

(a) Contracted. (b) Elongated.
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(c) Orientationally-averaged diffraction intensity I(q).

Figure 4.8: Diphenylalanine (FF), representation of contracted and elongated con-
formers (a,b); and corresponding orientationally-averaged elastic X-ray diffraction in-
tensity curves (c), calculated with AIXRD.

Then, FF was split into N = 2 fragments, each consisting of one F residue. The

total energy was constructed by EN=2 = EF1 + EF2. AIXRD form-factors were

calculated for each fragment from two separate electronic structure wave func-

tions, and then added to approximate the total molecular form-factor, fFF(q) =

fF1(q) + fF2(q). The same was done except using N = 5 fragments (Phenyl-

C2H3NH2-HNCO-C2H3COOH-Phenyl). All N(N − 1)/2 = 10 dimer form-factors

were calculated and a pairwise sum of N = 5 fragment form-factors was made

to better approximate the molecular form-factor. The total energy E was con-

structed again by a sum of fragment energies, and a pairwise sum of fragment and

dimer energies. These are shown and compared to full ab initio in Table 4.4. Each

fragment-based method of calculating the total molecular form-factor are com-

pared to the full (N = 1) AIXRD method, for both the elongated and contracted

FF conformers, see Fig. 4.9 and corresponding Table 4.5. The percent difference
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Method Econtracted ∆E Eelongated (Hartree) ∆E

N = 5 -1025.61372264 0.7348 -1025.78545524 0.5715

N = 5 (pairwise) -1025.98608101 0.3625 -1025.86825528 0.4887

N = 2 -1026.08604548 0.2625 -1026.03736460 0.3196

Full -1026.34853945 0 -1026.35699991 0

Table 4.4: FF contracted and elongated conformer energies for each method. Hartree-
Fock with 6-31G basis set was used for each fragment and for the full calculation. Note
that an N = 2 pairwise calculation is equivalent to an N = 1 or full calculation.
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Figure 4.9: Diphenylalanine (FF) percent difference %∆I(q) between fragment-based
methods and full AIXRD. HF/6-31G was used for each calculation. The IAM calculation
is equivalent to a N = Nat fragment-based calculation. Solid lines are for elongated
FF and dashed are for contracted FF.

is greatest for IAM. The closest approximations to the full AIXRD calculation

are the N = 2 sum and the N = 5 pairwise sum. The pairwise sum can be

thought to mitigate the error caused by the choice of small fragments, which are

an intuitively worse approximation than larger residue-sized fragments. There is

a minor difference in %∆I(q) in all cases between contracted and elongated FF.

This implies that fragment-fragment interactions have a low dependence on the

molecular geometry and there is no need to alter the fragment definition due to
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Conformer Method Mean Median Maximum

N = 2 0.24 0.25 0.79

Elongated N = 5 (pairwise) 0.15 0.12 0.57

N = 5 0.68 0.45 2.39

IAM 4.27 3.41 10.74

N = 2 0.23 0.17 0.93

Closed N = 5 (pairwise) 0.16 0.12 0.46

N = 5 0.63 0.38 2.10

IAM 4.24 3.58 10.75

Table 4.5: Diphenylalanine, analysis table for absolute percent difference |%∆I(q)|
between fragment-based AIXRD and full AIXRD.

Method N fragment-based AIXRD scaling

N = 1 t1 ≈ NM2 = M2

N = 2 t2 ≈ N(M
N

)2 = M2

N
≈ 0.5t1

N = 5 t5 ≈ M2

N
≈ 0.2t1

N = 5 (pairwise) t5pw ≈ N(N−1)
2

(2M
N

)2 +N(M
N

)2 = (2N−1)M2

N
≈ 1.8t1

Table 4.6: Fragment-based AIXRD scaling, where AIXRD scales with M2, the total
number of primitive Gaussians squared. For N fragments there is an average of M/N
primitives per fragment, therefore a tN = N(M/N)2 scaling for a sum of fragment-
based AIXRD form-factors. An average of 2M/N primitives per dimer and including all
N(N − 1)/2 unique dimers, gives a pairwise scaling of tNpw = N

2 (N − 1)(2M/N)2 +
N(M/N)2 = (2N − 1)M2/N , which is ≥ M2 ∀N . In this case the N = 2 pairwise
calculation is equivilent to the N = 1 calculation, therefore t2pw ≡ t1.

molecular geometry in this case. The scaling factors for computational calcula-

tion time for each method are shown in Table 4.6. For fragment-based AIXRD,

simple sums of fragment form-factors are linearly faster to compute than the full

AIXRD method. The more fragments there are the quicker the calculation takes

at the cost of accuracy. The pairwise summation for any value of N is slower than

full AIXRD. Therefore non-pairwise fragment-based AIXRD is preferable, it is

just a matter of choosing appropriately large fragments with reasonable fragment-

fragment interface. Note on defining fragments: Residues make good fragments

due to reasonable ‘break-region’ near each peptide bond, such as a C-C single

bond. The Facio program [119] has a graphical interface for defining fragments,

and can automatically detect appropriate break-regions for peptides and proteins.
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A bad fragmentation would be one which results in a large alteration to the local

electronic structure, such as splitting a benzene ring in two. For these reasons,

the N = 2 is the optimal choice for FF and individual residues appear to be a

good choice for fragments [115].

4.3.4 Proteins

This final results Section is based on the calculation of the elastic X-ray molec-

ular form-factor from a protein, specifically lysozyme, it compares the selected

fragment-based AIXRD method to the conventional IAM method, with temporal-

integration over a molecular dynamics trajectory.

Before he discovered penicillin, Alexander Fleming discovered lysozyme [125] by

chance during a search for medical antibiotics. It is a small stable enzyme which

is abundant in hen egg whites and part of our innate immune system, giving

protection from bacterial infection. In 1965 it became the second protein structure

and the first enzyme structure to be solved via X-ray crystallography [126]. It

consists of 128 amino acid residues and contains all 20 common amino acids which

are encoded by the universal genetic code.

There are many available protein data bank (PDB) files for lysozyme. Its struc-

ture has recently been determined (de novo) with diffraction imaging at a XFEL

source [35] via femtosecond protein serial nanocrystallography. The resulting

4N5R PDB file has 992 atoms in the protein, with 480 side-chain atoms and

512 backbone atoms. After adding hydrogens with a tool in the computational

biochemistry program Maestro [127] it has 1941 atoms in the protein, with 1172

side-chain atoms and 769 backbone atoms. There are Nelec = 7559 electrons,

which is a very large amount in the context of electronic structure theory, and

shows the strength of fragment-based methods which make such large calculations

tractable. Fig. 4.10(a,c,e) shows representations of the 4N5R PDB file coordinates

with added hydrogens from three different directions (along each axis). The 128

amino acid residues are shown in different colours by residue type. The 4N5R

PDB geometry with added hydrogens was used, each residue was defined as a

fragment, and AIXRD HF/6-31G was performed on each fragment, then added

as f(q) =
∑N

I fI(q). As a side note, instead of using the PDB file geometry,

molecular dynamics could be used to search for stable geometries in aqueous

solution. This would be logical for unsolved structures, such as membrane pro-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Lysozyme from three perspectives (a) x-perspective, (c) y-perspective,
and (e) z-perspective with each amino acid type distinctly coloured, side-chains shown
as ball and stick, and backbone as cartoon (made with VMD [118]), with corresponding
diffraction patterns I(θ, φ), q = q(θ, φ) (b,d,f), calculated with residue-sized fragment-
based AIXRD using HF/6-31G, for incident X-rays along each axis (perpendicular to
plane of paper), with 0 uncertainty in alignment. A log-scale is used for the colour-axis.

teins, and would give a theoretical X-ray form-factor based on MD geometries

and fragment-based AIXRD to aid structure determination experiments, and po-
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tentially structural dynamics at a XFEL source for example.

The diffraction intensities, |f(q)|2, are shown in Fig. 4.10(b,d,f) for the three

different orientations (x, y, z) of the protein. The polar plot images shown are

|f(q(θ, φ))|2 with |f(q = 0)|2 ≡ N2
elec at the centre, going out from here to the

edge of the circle is the polar scattering angle 0 ≤ θ ≤ π, and going counter-

clockwise around the circle is the azimuthal scattering angle 0 ≤ φ ≤ 2π (shown

in degrees). A log-scale is used as the central peaks are orders of magnitude

greater in intensity than the larger θ scattering directions. There are distinct

peaks in the diffraction intensity which depend parametrically on the protein

orientation.

|%∆I(q)| 〈x, y, z〉 x y z

mean 4.23 4.46 4.13 4.10

median 2.22 2.28 2.34 2.05

fraction > 5% 0.23 0.23 0.24 0.22

fraction > 10% 0.09 0.09 0.09 0.10

fraction > 25% 0.01 0.02 0.01 0.01

Table 4.7: Analysis table for absolute percent difference |%∆I(q)| between IAM and
residue-sized fragment-based AIXRD for lysozyme, for each direction x, y, z of the
incident X-rays.

The absolute percent difference between the IAM and fragment-based AIXRD

diffraction intensities, |%∆I(q)| is shown in Fig. 4.11(a,c,e). The complementary

Table 4.7 shows the mean, median, and fractions > 5, 10, 25%. Considerable mean

|%∆I(q)| values of 4.10-4.46 and median values of 2.05-3.34 for each orientation of

the protein reveals the importance of taking into account valence electrons with an

ab initio based method. In addition, over 1/5 of |%∆I(q)| values are > 5%, close

to 1/10 are > 10%, and there are particular peaks which have > 80% difference

for each orientation of the protein. This is because individual amino acids give

rise to maximum percent differences between IAM and AIXRD of 5.6 − 11.2%

(Section 4.3.2), and a lot of them scattering together will amplify this effect at

certain angles. This shows that valence electrons give rise to large differences

at particular scattering angles. Fig. 4.11(b,d,f) shows normalised counts divided

amongst 200 bins in the range |%∆I(q)| ∈ [0, 25]% for each orientation of the

protein. The counts for the ith bin, Ci, are defined as,

Ci = n(x ∈ [xi, xi+1)), (4.18)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: (a,c,e) Absolute percent difference |%∆I(q(θ, φ))|, and (b,d,f) abso-
lute percent difference normalised counts between 0 and 25% counted into 200 bins,
between IAM and residue-sized fragment-based AIXRD for the 128 residue protein;
lysozyme, for incident X-rays in the (a,b) x-direction, (c,d) y-direction, and (e,f) z-
direction.

where n(x) denotes the number of elements in set x, and x ∈ [xi, xi+1) denotes

the elements of x in the interval from xi to xi+1 inclusive of xi but exclusive of

xi+1. Here, x = |%∆I(q)|. The counts are normalised by dividing by the sum of
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all Nbins counts,

C ′i =
Ci∑Nbins

i Ci
. (4.19)

This makes the sum of normalised counts equal unity, i.e.
∑Nbins

i C ′i = 1. The

normalised counts show the relative amount of errors for each value of |%∆I(q)|.
There are clear peaks in the range 0-5% with counts decreasing at larger values

of |%∆I(q)|, for each orientation of the protein. The distributions do not appear

to be significantly influenced by molecular orientation.
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Figure 4.12: Percent difference between fragment-based AIXRD and IAM elastic
X-ray intensities, integrated over the azimuthal scattering angle φ, |%∆I(q(θ))| =
1

2π

∫
|%∆I(q(θ, φ))|dφ, for X-rays incident along the x, y, and z axes.

Fig. 4.12 shows the results from Fig. 4.11(a,c,e) integrated over the azimuthal

scattering angle φ,

|%∆I(q)| = 1

2π

∫ 2π

0

|%∆I(q(θ, φ))|dφ, (4.20)

where q = |q| = 4π sin(θ)/λ. This reveals the location of errors as a function of q

only. The curves are similar in shape for each direction (x, y, z) of incident X-ray,

again showing that the error is not strongly dependent on molecular orientation,

i.e. there is not a particular X-ray direction which is solely responsible for large
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outlier errors. The main peak spans q ≈ [0.2, 1.5] a−1
0 , which corresponds to real

space distances of 2.2-16.6 Å. At larger values of q (>1.2 a−1
0 ) the error is non-zero

(≈ 2.5%), thus, the entire electron distribution is affected by the inaccuracy of

the IAM approximation.

4.3.5 Temporal integration
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Figure 4.13: Lysozyme RMSD (all and backbone) compared to starting geometry for a
100 ps NVT 298 K molecular dynamics (MD) trajecotry in vacuum. Starting geometry
was obtained via steepest descent energy minimisation of the 4N5R PDB [35] with
added hydrogens geometry. MD trajectory calculated with Gromacs [128] and the
AMBER99SB-ILDN force-field [129].

A 100 ps molecular dynamics (MD) simulation was performed on a single lysozyme

molecule in vacuum. The starting geometry was obtained via steepest descent

energy minimisation of the 4N5R PDB [35] geometry with added hydrogens. The

MD was performed using an NVT ensemble at 298 K with a 0.2 fs timestep using

Gromacs [128] and the AMBER99SB-ILDN force-field [129]. Fig. 4.13 shows the

root-mean-squared deviation (RMSD) from the starting geometry for the whole

protein and the backbone only. This simulation was done to model the effect

of different molecular geometries during an X-ray diffraction experiment. The

recent experiment [35] used a jet of lysozyme micro-crystals with passed through

ultrabright femtosecond-order X-ray pulses from an XFEL source. In this study,

94



the difference between the conventional IAM method and the fragment-based

AIXRD method is quantified, including temporal effects. These temporal effects

manifest themselves in the data due to averaging over many X-ray diffraction

snapshots to obtain statistically meaningful data. Thus, although the XFEL

pulses are of femtosecond-order, it is appropriate to allow for picosecond order

molecular motion. Keeping this in mind, starting at t = 20 ps, X-ray diffraction

calculations were performed every 0.4 ps using IAM and fragment-based AIXRD

(as before with each residue defined as a fragment) for incident X-rays along the

z axis. The temporal-averaged absolute error is defined as,

|%∆I(q,∆t)| = 100

∣∣∣∣〈IAI〉∆t − 〈IIAM〉∆t
〈IIAM〉∆t

∣∣∣∣, (4.21)

where,

〈IAI〉∆t =

∫ ∆t

0

IAI(q, t)dt, (4.22)

and,

〈IIAM〉∆t =

∫ ∆t

0

IIAM(q, t)dt, (4.23)
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Figure 4.14: Percent error, Eq. (4.21), detector images between time-integrated
fragment-based AIXRD, Eq. (4.22), and time-integrated IAM, Eq. (4.23), for (λ =
3 a0) X-rays incident along the z-axis; and for time-intervals ∆t = 0, 8, 32 ps, corre-
sponding to 1, 20, and 80 snapshots, each 0.4 ps apart.

and is shown in Fig. 4.14 at the detector for ∆t = 0, 8, 32 ps, (corresponding to

1, 20, and 80 snapshots,) for X-rays incident along the z-axis. For ∆t = 0 (single

snapshot), a large error of > 120% appears at a particular scattering direction,

with relatively large (> 20%) errors being more common. For larger ∆t such as

∆t = 8, 32 ps (20 and 80 snapshots respectively), such large errors are averaged
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(a) Percent error, |%∆I(q,∆t)|.
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(b) Corresponding slices through |%∆I(q,∆t)| at time-intervals ∆t =
0, 8, 32 ps.

Figure 4.15: Lysozyme X-ray diffraction percent error |%∆I(q,∆t)|, Eq. (4.21), be-
tween the fragment-based AIXRD and IAM methods, for absolute value of q = |q| =
4π sin(θ)/λ (azimuthal scattering angle, φ, integrated out), with incident X-rays along
the z-axis, after temporal-averaging over time-interval ∆t during a MD trajectory.

out by the motion of the molecule, e.g. for ∆t = 8 ps the maximum error is

16%. Distinct rings of error points appear at particular radial angles, θ, which

correspond to q ≈ 0.5 a−1
0 and q ≈ 1.0 a−1

0 , or real space distances of 3.3 Å
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and 6.6 Å. In addition, the error dependence on the azimuthal scattering angle φ

decreases as ∆t increases. This makes sense as over time the molecule finds more

of its conformational space. The full set of data is shown in Fig. 4.15, except

the data for each ∆t has been integrated over φ, as in Eq. (4.20). It is notable

that the ∆t = 0 (1 snapshot) result in Fig. 4.15b agrees well with the static

results in Fig. 4.12. The ∆t = 8 ps matches the ∆t = 32 ps curve, showing that

the integrals in Eq. (4.21) converge with increasing ∆t. The distinct peaks at

q ≈ 0.5 a−1
0 and q ≈ 1.0 a−1

0 are more visible in these curves, and have maxima

of 8.1% and 3.7% error respectively. There is also a low error (<1%) region in

the range q = [1.4, 1.9] a−1
0 , corresponding to real space distances of 3.3-4.5 Å,

suggesting that the IAM is a good approximation only in this region.

The data is also shown in terms of normalised counts, Eq. (4.19), of |%∆I(q,∆t)|
at each value of ∆t in Fig. 4.16. Similar to the static results in Fig. 4.11, counts C ′i

were assigned to 200 bins in the range |%∆I(q,∆t)| = [0, 15]%, where the total

counts equal 1 (i.e. are normalised) for each value of ∆t. A similar temporal

convergence is seen as C ′i(∆t) at ∆t =8 ps agrees well with the ∆t =32 ps slice.

There is a distinct peak at |%∆I(q,∆t > 8 ps)| ≈ 2%, meaning most errors are

of this magnitude. Larger errors diminish with increasing ∆t, but a non-zero

amount remain even at ∆t =32 ps.

These results show that the difference between the IAM and the AIXRD approxi-

mations remain even after temporal-averaging, as would be physically observable

in a X-ray diffraction experiment. To clarify these results further, the same anal-

ysis was done for incident X-rays along the x and y axes. Then the average of

|%∆I(q,∆t)| was taken over each incident direction (x, y, z), to take into account

different molecular orientations, that is,

〈|%∆I(q,∆t)|〉xyz =

∑
j=x,y,z |%∆I(q,∆t)|j

3
. (4.24)

The corresponding results from Fig. 4.15 are shown in Fig. 4.17, and the corre-

sponding results from Fig. 4.16 are shown in Fig. 4.18. The new results averaged

over the three incident X-ray directions are very similar to the results from inci-

dent X-rays along the z axis only. Specifically, for ∆t =32 ps there is still ≈ 8%

error at q ≈ 0.5 a−1
0 and ≈ 3.5% error at q ≈ 1.0 a−1

0 ; and most errors are of ≈ 2%

magnitude in the entire range q ∈ [0, 4.2] a−1
0 . The main difference is that there

are slightly less large magnitude (> 5%) errors due to the orientational averaging

(compare Fig. 4.16(b) and Fig. 4.18(b)). This implies little molecular orientation
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(a) Normalised counts, Eq. (4.19), as a function of percent error
|%∆I(q)| and time-interval ∆t.
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Figure 4.16: (a) Normalised counts, Eq. (4.19), for 200 bins in the range [0, 15]%
percent error, Eq. (4.21), between the time-integrated fragment-based AIXRD, and
time-integrated IAM, for (λ = 3 a0) X-rays incident along the z-axis; and (b) for
time-intervals ∆t = 0, 8, 32 ps, corresponding to 1, 20, and 80 snapshots, each 0.4 ps
apart.

dependence on the errors, even when averaging over different orientations, as

would likely occur in a serial crystallography experiment. Thus, fragment-based

AIXRD is an improvement over the IAM, with consideration to averaging over
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(a) Percent error, 〈|%∆I(q,∆t)|〉xyz.
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Figure 4.17: Lysozyme X-ray diffraction percent error 〈|%∆I(q,∆t)|〉xyz, Eq. (4.24),
between the fragment-based AIXRD and IAM methods, for absolute value of q = |q| =
4π sin(θ)/λ (azimuthal scattering angle, φ, integrated out), after temporal-averaging
over time-interval ∆t during a MD trajectory.

different snapshots of proteins in various molecular geometries and orientations.
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(a) Normalised counts, Eq. (4.19), as a function of percent error
〈|%∆I(q)|〉xyz and time-interval ∆t.
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Figure 4.18: (a) Normalised counts, Eq. (4.19), for 200 bins in the range
〈|%∆I(q,∆t)|〉xyz ∈ [0, 15]% percent error, Eq. (4.24), between the time-integrated
fragment-based AIXRD, and time-integrated IAM, for (λ = 3 a0) X-rays; and (b) for
〈|%∆I(q,∆t)|〉xyz at time-intervals ∆t = 0, 8, 32 ps, corresponding to 1, 20, and 80
snapshots, each 0.4 ps apart.

4.4 Conclusion

The method described in this Chapter is a conceptually simple improvement

to the independent atom model (IAM) for elastic X-ray diffraction, whereby, a
100



molecule is divided into fragments larger than its individual atoms. Then, ab

initio electronic structure theory is used on each fragment, followed by ab initio

X-ray diffraction (AIXRD), as described in Chapter 3. In this way, the effect of

electron interactions from atoms within the same fragment are taken into account

in the X-ray molecular form-factor, as well as non-spherically-symmetric electron

distributions about atomic-centres such as p-orbitals and delocalised electrons

within phenyl rings. To further improve on this, dimers are defined as frag-

ment pairs and also calculated with AIXRD, which takes into account fragment-

fragment electron interactions.

Fragment-based AIXRD makes an ab initio quantum chemistry treatment of the

electron distribution feasible in the theoretical calculation of the X-ray molecular

form-factor for large molecules such as proteins and other biomolecules. In terms

of AIXRD timing a simple sum approach is linearly faster with the number of

fragments compared to a computation based on a full (single fragment) ab ini-

tio wave function. The pairwise approach is slower than full AIXRD but the

maximum computational time taken is only larger by a factor of two. The real

limitation that is overcome by a fragment-based approach is the ab initio quan-

tum chemistry calculation e.g. Hartree-Fock which scales approximately with the

4th power of the total number of basis functions. This becomes very costly for

large molecules such as proteins. A fragment-based approach gives a drastic speed

up, bringing it into the realm of routine calculation possibility.

Comparisons to the IAM method were performed for the ethanol molecule, 20

common amino acid residues, diphenylalanine (FF), and a 128 residue protein;

lysozyme. In all cases, the use of fragments larger than individual atoms are a

considerable improvement in terms of electronic energy, electron distribution, and

X-ray molecular form-factor. Introducing dimers and using a pairwise summation

approach is a comparatively small improvement which can be made if needed.

However, residue-sized fragments with a simple summation of fragment-terms

gives results which are close to those from full AIXRD.

Although not calculated by full AIXRD, the moderately sized protein lysozyme

was split into 128 residue-sized fragments and a simple sum of residue form-

factors was used to approximate the full molecular form-factor. This gives a

median of 2.23% and a mean of 4.23% difference from the IAM method, with

particular scattering angles showing > 80% difference. The quantitative results

for how close this method is to a full ab initio method for lysozyme are left

for a future calculation when 100+ residue proteins are routinely treated with
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electronic structure methods. It can be inferred from the N = 2 FF results

that residue-sized fragment-based AIXRD has an approximate mean diffraction

intensity percent difference to full ab initio of 0.23% with a median of 0.17-0.25%.

Temporal integration of the X-ray diffraction results calculated with fragment-

based AIXRD and IAM for a short (100 ps) MD simulation of a single lysozyme

molecule show that the resulting errors of the IAM approximation persist and are

not averaged-out over time, ∆t. This remains true for the same results averaged

over three incident X-ray directions (x, y, z), which approximates an orientational-

averaging of the protein. These results are relevant to X-ray structure determina-

tion and pump-probe diffraction experiments for proteins and other biomolecules,

as there are significant errors (2-8%) introduced by not taking into account the

true electronic structure. The fragment-based AIXRD approach described in this

Chapter is a possible solution to this problem.
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Chapter 5

State selective diffraction

measurements: H2

5.1 Introduction

Since their discovery by Wilhelm Conrad Rontgen in 1895, X-rays have been

established as an invaluable probe of the structure of matter. X-ray scattering

has had exceptional impact on our understanding of the structure and proper-

ties of atoms to proteins, crystals, and solids. This chapter examines elastic

scattering from gas-phase H2 pumped to specific electronic, vibrational, and ro-

tational states, i.e. state-selective diffraction imaging. This work is motivated by

recent experimental preparations of molecules in non-thermal distributions, such

as H2 [73], N2 [71], and polyatomics such as acetylene [72]; and the unprecedented

peak intensities of X-rays available at newly constructed X-ray free-electron lasers

(XFEL) [130,131]. The ab initio X-ray diffraction (AIXRD) method, as described

in Ch. 3 and in reference [1], is used for the theoretical predictions, which are

benchmarked against earlier calculations [132] and recent experiments [50].

The idea to use elastic scattering to image molecular states, whether electronic

[1,65,66], vibrational [77], or rotational [78], as well as aligned gas-phase molecules

[79, 80] has been around for quite a while. Experimental realisations are rare

and limited to a few unique cases such as partially aligned and somewhat state-

selected molecules [48, 75, 81, 82], and indirect detection of metastable excited

electronic states via changes in geometry [67, 68]. Among the references above,

[1, 48, 65–68, 80] pertain to X-ray scattering and [75, 77–79, 81, 82] to electron
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scattering. Although electron scattering has been thought as a preferable tech-

nique for gas-phase scattering due to greater scattering cross-sections [133], the

arrival of XFELs, such as the LCLS [22], the European XFEL [24], SACLA [23],

and FERMI [20], has renewed interest in gas-phase X-ray scattering [6, 48], par-

tially driven by the prospect of crystal-free biomolecular structure determina-

tion [14,34–36].

High-resolution synchrotron experiments of X-ray differential cross-sections have

been recently performed, and are capable of distinguishing between elastic [50]

and inelastic [51–53] scattering contributions. In one such experiment, the elastic

X-ray scattering from gas-phase H2 in its electronic ground state was measured

[50]. This is a strong motivating factor for this chapter and the theoretical work

within. In addition, the experimental rise of molecular orientation (i.e. +M

magnetic sublevels have different population to −M sublevels) and alignment

(i.e. only |M | is controlled) gives the motivation for calculating these states and

their corresponding X-ray scattering factors (specifically for H2 in this Chapter).

Bartlett et al. [73] reports retention of initial polarisation for >100 ns for H2

making it a suitable candidate for future scattering experiments. Due to large

retention times, it is more feasible to consider imaging the oriented and aligned

states (v = 1; J = 2;M = 0, 2). In addition, an oriented or aligned molecule gives

more structural information via a second diffraction coordinate, i.e. q = q(θ, φ)

for polar and azimuthal scattering angles θ and φ.

5.2 Theory

5.2.1 X-ray scattering from diatomic molecules

A Born-Oppenheimer wave-function for a diatomic molecule has separate nuclear

(rotational and vibrational) and electronic parts,

Ψ = Y J
M(Θ,Φ)ψv(R)ψα(r;R), (5.1)

where v is vibrational quantum number, J and M are rotational quantum num-

bers, α is the electronic state, R is the diatomic bond-length, and Θ and Φ

are molecular frame rotation angles for a linear molecule. The rotational wave
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function is a spherical harmonic, defined as,

Y J
M(Θ,Φ) = neiMΦP J

M(cos Θ), (5.2)

with associated Legendre polynomials P J
M and normalisation constant n. The ab-

solute value squared, |Y J
M(Θ,Φ)|2; real value squared, <(Y J

M(Θ,Φ))2; and imagi-

nary value squared, =(Y J
M(Θ,Φ))2 are shown in Fig. 5.1 for J = 1,M = 0, 1 and

J = 2,M = 2. The electron density is,

|Y 1
0 |2 =
<(Y 1

0 )2
|Y 2

0 |2 =
<(Y 2

0 )2

|Y 1
1 |2 <(Y 1

1 )2 =(Y 1
1 )2

|Y 2
2 |2 <(Y 2

2 )2 =(Y 2
2 )2

Figure 5.1: Spherical harmonics: absolute value squared, |Y J
M (Θ,Φ)|2; real value

squared, <(Y J
M (Θ,Φ))2; and imaginary value squared, =(Y J

M (Θ,Φ))2. The polar and
azimuthal angles Θ and Φ are defined from the vertical (z) axis, which is also the C∞
principle rotation axis, and the origin is at the point of inversion symmetry for all Y J

M .
The colour and lighting are for aesthetic purpose only.
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ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 =

2π∫
0

π∫
0

|ψJM(Θ,Φ)|2
Rmax∫
Rmin

|ψv(R)|2ρα(r;R,Θ,Φ)dR sin ΘdΘdΦ,

(5.3)

withN electron density operator ρ̂(r) =
∑N

i δ(ri−r), and ρα is a multi-determinant

density for electronic state α. The elastic X-ray molecular form-factor is the

Fourier transform of the electron density,

f(q) =

2π∫
0

π∫
0

|Y J
M(Θ,Φ)|2

Rmax∫
Rmin

|ψv(R)|2fα(q;R,Θ,Φ)dR sin ΘdΘdΦ, (5.4)

where fα(q;R,Θ,Φ) = F̂r[ρ(r;R,Θ,Φ)](q), and its evaluation is outlined in Sec-

tion 3.2 for a multi-configurational electronic structure calculation using a Gaus-

sian basis set. As this equation involves triple integration over both rotation

angles and the bond-length, the evaluation of fα(q;R,Θ,Φ) must be computa-

tionally fast. This is one of the reasons H2 was chosen for this chapter.

5.3 Results and discussion

5.3.1 Potential energy curves and vibrational wave func-

tions

Energy (Hartree) MCSCF(2,7) Referencea |∆U |
UX(R0) -1.17089198 -1.17447589 0.00358391

UEF (RE) -0.71554080 -0.71815456 0.00261376

UEF (RF ) -0.70762693 -0.71452167 0.00689474

Table 5.1: H2 energies calculated by MSCSF(2,7)/aug-cc-pVQZ compared to refer-
ence values at the X minimum UX(R0); and the inner and outer EF minima UEF (RE)
and UEF (RF ) respectively. The absolute difference |∆U | between the values from
both methods are also shown. Note that the ab initio minimum bond lengths differ
slightly from reference values, with maximum difference of 0.016a0 at the outer EF
minimum.
aSee Refs [134, 135].

Accurate potential energy curves (PECs) for H2 in its ground state and first

excited 1Σ+
g state, denoted X and EF respectively, have been calculated using

essentially the exact H2 wave function [134,135]. They can be closely reproduced
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Figure 5.2: H2 PECs for the X and EF 1Σ+
g states calculated with MCSCF(2,7)

and MCSCF(2,2) with the aug-cc-pVQZ basis set, compared to highly accurate PECs
[134, 135]. Bond-length probabilities for v = 0 and v = 1 vibrational distributions are
shown on each PEC with ascetically adjusted heights.

with the multi-configurational self-consistent field (MCSCF) method using an

appropriate active space. A comparison between these accurate PECs and those

from MCSCF with two different active spaces, both using the aug-cc-pVQZ basis

set, is shown in Fig. 5.2. The (2,7) active space calculation gives good agreement

with the reference PECs, but the (2,2) calculation fails at large R. It also correctly

predicts the second minimum on the EF PEC, whereas the (2,2) active space does

not. The seven molecular orbitals (MOs) in the (2,7) active space are shown in

Fig. 5.3 at the equilibrium bond-distance of the second EF minimum, RF =

4.37475793 a0. To predict the second stationary point, it is necessary to include

additional bonding-MOs such as the third Ag MO, and the B2u and B3u MOs.

These orbitals and the B1u MOs, which are σ∗ orbitals, also improve the X PEC,

especially at large bond-length. See Table 5.1 for MCSCF(2,7)/aug-cc-pVQZ

energies of each minima compared to the Wolniewicz values.
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(a) B1u; ε = −0.2042 (b) Ag; ε = −0.2042 (c) Ag; ε = 0.1699

(d) B3u; ε = 0.2986 (e) B2u; ε = 0.2986

(f) Ag; ε = 0.3326 (g) B1u; ε = 0.4403

Figure 5.3: H2 MCSCF(2,7)/aug-cc-pVQZ active space MOs at the second EF minima
(RF = 4.37475793 a0) with D2h point group symmetry labels. From left to right along
each row MOs are in order of energy, UMO(RF ) (eigenvalues, ε, are shown).

5.3.2 Model chemistry for X-ray scattering calculations

For consistency, it is desirable to use the same model chemistry as the calculation

of the PECs in subsequent ab initio X-ray diffraction (AIXRD) calculations. It

is also useful to compare basis sets to see convergence in the X-ray curves. This

is shown in Fig. 5.4 via percent difference, defined as,

%∆I(q) = 100
Imethod − I0

I0

, (5.5)

where I0 and Imethod are rotationally-averaged (thermal-averaging) X-ray intensi-

ties, and I0 is the reference signal. In this case, the reference uses the aug-cc-pVQZ

basis set. Each curve was calculated at the MSCSF(2,7)/aug-cc-pVQZ ground

state minimum bond-length, R0, using AIXRD MSCSF(2,7) for all basis sets

except STO-3G and 6-31G where MSCSF(2,2) was used. This is because there

are not enough basis functions in the STO-3G and 6-31G basis sets to perform

a MSCSF(2,7) calculation. The independent atom model (IAM) curve is also
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Figure 5.4: H2 basis set convergence for orientationally-averaged elastic X-ray diffrac-
tion intensity calculated with ab initio X-ray diffraction (AIXRD). Percent difference,
|%∆I(q)| = 100(IA− I0)/I0, is shown; where IA is the diffraction signal from method
A, and the reference signal I0 is from an MCSCF(2,7)/aug-cc-pVQZ AIXRD calcu-
lation. The other curves were calculated with MCSCF(2,7) with different basis sets,
except STO-3G and 6-31G used MCSCF(2,2). All curves are at the MCSCF(2,7)/aug-
cc-pVQZ optimised geometry. Also shown is the independent atom model (IAM) curve,
calculated via the square of a sum of tabulated atomic X-ray form-factors from [62].

shown for comparison. Table 5.2 gives the mean and maximum absolute errors.

The mean absolute error is defined as,

〈|%∆I(q)|〉 =
1

∆q

qmax∫
qmin

|%∆I(q)|dq, (5.6)

with integration over the interval [qmin, qmax] = [0, 8.3] a−1
0 and ∆q = qmax− qmin.

In terms of the AIXRD method, larger basis sets naturally improve results. In

fact, the energy difference |E − Eref| shown in Table 5.2 predicts quite well the

quality of the AIXRD calculations. This energy gap correctly ranks the top

four performing methods, and the three poorest performing ones. The closest

method to the reference uses the aug-cc-pVTZ basis set with 〈|%∆I(q)|〉 = 1.7%,

closely followed by the 6-311++G** basis set with 〈|%∆I(q)|〉 = 1.8%. The IAM

method is furthest from the reference with 〈|%∆I(q)|〉 = 44.1%. It is important
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METHOD Error (%) |E − Eref| Primitives Speed-

Mean Max (10−2 Eh) Ng Ngp up

IAM 44.1 59.0 - - 826.5

STO-3G 20.3 63.1 3.723 12 30 110.2

6-31G 7.9 20.5 2.819 16 56 59.0

6-31G∗∗ 3.4 10.1 1.011 28 90 36.7

6-311++G∗∗ 1.8 4.4 0.692 36 182 18.2

aug-cc-pVDZ 21.7 40.7 1.065 60 240 13.8

aug-cc-pVTZ 1.7 6.1 0.427 148 1122 3.0

aug-cc-pVQZ1 0.0 0.0 0.358 300 3306 1.0

Table 5.2: Comparison of accuracy and speed for various levels of theory for scattering
from the X1Σ+

g ground state at R0 = 1.40496862 a0. The mean and maximum errors
shown correspond to the errors in Fig. 5.4, with the scattering from MSCSF(2, 7)/aug-
cc-pVQZ taken as reference, see Eq. (5.5). The gap |E − Eref| between calculated
energies and Wolniewicz reference value [134] is used as a proxy for ab-initio con-
vergence. The speed of the scattering calculations scales linearly with the number of
non-zero unique Gaussian products per molecular orbital, Ngp, with the number of
Gaussian primitives given by Ng. The IAM calculation uses tabulated atomic form-
factors [62].

to minimise computational time, keeping in mind evaluation of the triple integral

in Eq. (5.4) which will be used in Section 5.3.4. The AIXRD scaling for H2

with different basis sets is shown in Table 5.2. It scales non-linearly with the

number of primitive Gaussians per basis set, Ng. The scaling is proportional to

the number of unique non-zero Gaussian products per MO, which in this case

is Ngp ≈ N1.42
g . Taking this and the diffraction convergence into account, an

ideal basis set is aug-cc-pVTZ as it comes very close to the quadruple-zeta basis

set X-ray diffraction result while being ≈3 times faster computationally. As H2

is the smallest molecule, this basis set is affordable. For larger molecules, the

6-311++G** basis set would be advisable as it is ≈18 times faster than aug-cc-

pVQZ while still maintaining a low 〈|%∆I(q)|〉.

5.3.3 Electronic structure in diffraction

After selecting an active space and basis set for accurately describing the H2 X and

EF 1Σ+
g PECs while considering the AIXRD calculation, orientationally-averaged
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Figure 5.5: H2 X and EF 1Σ+
g orientationally-averaged X-ray diffraction intensities: At

the X minimum geometry on the X and EF PECs, X(R0) and EF(R0) respectively; the
inner and outer EF minima geometries (labelled E and F respectively) on the EF PEC,
EF(RE) and EF(RF ); and the outer EF minimum geometry on the X PEC, X(RF ).
AIXRD with MCSCF(2,7)/aug-cc-pVTZ was used for each calculation which strongly
matches theory by Bentley and Stewart [132, 136].

diffraction intensities are computed for points of interest on each PEC, which are

shown in Fig. 5.5. A previous theory curve from Bentley and Stewart [132,

136] is also shown, which is based on a Davidson-Jones expansion of essentially

the exact wave function for the H2 ground state at equilibrium geometry. The

points of interest chosen for Fig. 5.5 are: on the X PEC at its equilibrium bond-

length, X(R0); on the EF PEC at the X equilibrium bond-length, EF(R0); at the

inner and outer EF minima, EF(RE) and EF(RF ) respectively (as defined by the

double minima on the solid blue curve in Fig. 5.2); and on the X PEC at the

outer EF minimum bond-length, X(RF ). This essentially follows an imaginary

excitation from the X minimum vertically to the EF PEC, relaxation to the

inner EF minimum, barrier-crossing (e.g. from thermal energy) to the outer EF

minimum, finally returning to the X curve at an increased bond-length.

Each X-ray diffraction curve is distinct, showing that not only changes in bond-

length alter the diffraction but also changes in electronic structure. The low-q

region q ∈ [0, 1] a−1
0 is strongly affected by the overall size of the electron distri-

bution. The vertical excitation from the X state to the EF state (X→EF) causes
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Figure 5.6: H2 radial electron density calculated with MCSCF(2,7)/aug-cc-pVTZ for
X and EF states at the ground state equilibrium bond-length, centred at centre of mass.

an outward radial shift in the electron density, shown in Fig. 5.6. This causes a

drop in signal in the low-q region, consistent with the general principles of Fourier

transforms. Also notable is the appearance of a large low-q (≈ 1.5 a−1
0 ) peak after

the vertical excitation X→EF. Using the reciprocal relation q = 2π/d, where d

is the corresponding real space distance, gives d ≈ 4.2 a0. This is approximately

the distance between the inner and outer peaks in the EF radial electron den-

sity at the X equilibrium bond-length, shown in Fig. 5.6. The appearance of the

second peak in mainly caused by a change of occupancy in the Ag orbitals. In

the ground state, the first Ag MO (Fig. 5.3b) is highly occupied (aocc = 1.9634).

After excitation the second Ag MO (Fig. 5.3c) gains occupancy (aocc = 0.8183).

The X (R0) radial electron distribution is a smooth single-peaked curve, and its

corresponding scattering curve is almost a Gaussian, which is characteristic of no

second peak in the electron distribution.

In general, it is hard to separate the effect of bond-length from the effect of the

electronic structure on the scattering. In fact, the differences between the X (R0)

and X (RF ), and the EF (RE) and EF (RF ) curves in Fig. 5.5 are caused by a

combination of bond-length and electronic structure changes. For example, on the

EF PEC at the inner EF minimum, RE, the first two Ag orbitals have significant

electron occupancy (aocc = 1.1730 and aocc = 0.8175, respectively), and have
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single-centred diffuse shape. At the outer EF minimum, RF , the B1u orbital which

has a two-centre shape (Fig. 5.3a) becomes the most occupied (aocc = 1.0251

from aocc = 0.0075 at RE). At the same time the second Ag orbital decreases in

occupancy to aocc = 0.1094 and changes from a one-centre to a two-centre shape

(Fig. 5.3c) while the first Ag orbital retains its one-centre shape (Fig. 5.3b) and a

relatively large occupancy (aocc = 0.8324). In addition, the more diffuse orbitals,

B2u and B3u, gain about 1% of total occupancy. This shows that the change

in bond-length from RE to RF causes significant electronic structure changes,

making it difficult to decouple the effects of electronic structure and bond-length.

Another outward radial shift is apparent when considering the change in I(q)

based on a small increase in bond-length such as the change between EF (R0)

and EF (RE) in Fig. 5.5, which have similar shaped curves but are shifted in q.

5.3.4 Accounting for vibrations and rotations

To investigate the effect of molecular vibrations on the X-ray scattering, vibra-

tional wave functions for v = 0, 1, 2, 3 on the X surface and for v = 0, 1 on the EF

surface were calculated on the Wolniewicz PECs. The vibrational distributions

for X and EF v = 0, 1 are shown in Fig. 5.2. The 1st EF minimum has lower

gradient dU/dR than the X minimum, thus has more diffuse vibrational distri-

butions. Not shown are the v = 0, 1 vibrational wave functions for the second

EF minimum and the v = 2 EF wave function which spreads across both EF

minima. Orientationally-averaged X-ray diffraction curves were calculated for

the X v = 0, 1, 2, 3 and EF v = 0, 1 states using AIXRD with MCSCF(2,7)/aug-

cc-pVQZ wave functions. They are shown in Fig. 5.7, which also shows the

equilibrium bond-length curves for both electronic states.

It is clear that the electronic state change X→EF is more apparent in the diffrac-

tion than vibrational transitions. A slight change in the bond-length distribution,

thus in ρ(r;R), caused by vibrational excitation gives greater changes at high-q

(> 1 a−1
0 ). The v = 0 state scattering curves are very close to the equilibrium

bond-length (R0) curves, only differing slightly at q (> 4 a−1
0 ). Their vibrational

distributions are almost symmetric Gaussians about R0 (see Fig. 5.2), therefore

have average bond-lengths of ≈ R0 and barely affect the diffraction. Higher vi-

brational states increase the average bond-length, thus have similar shaped curves

to those of the same electronic state, but have lower intensity as q increases.
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Figure 5.7: H2 X v = 0, 1, 2, 3 and EF v = 0, 1 1Σ+
g orientationally-averaged X-ray

diffraction intensities, also showing the curves for the equilibrium bond-length R0 for
each electronic state. AIXRD with MCSCF(2,7)/aug-cc-pVTZ used at each iteration
of bond-length in the vibrational distributions, which were calculated by the shooting
method on the Wolniewicz [134, 135] X and EF PECs.

Next, scattering from specific electronic, vibrational, and rotational states is con-

sidered. The addition of non-ground state rotational wave functions breaks the

rotational symmetry of the scattering patterns, and gives more information at

the detector. Here the focus is on the states reported by Bartlett et al. [73] that

retain polarisation for > 100 ns, the X 1Σ+
g v = 1, J = 2,M = 0, 2 states.

Diffraction difference images between theoretically pumped states and the ground

state (v = 0, J = 0,M = 0), ∆I = IvJM − I000, are shown in Fig. 5.8 for 2.60

keV (λ = 9 a0 = 4.96 Å) X-rays incident along the y-axis, and in Fig. 5.9

for X-rays incident along the z-axis; for v = 0 states with J = 1,M = 0, 1;

J = 2,M = 0, 2; and v = 1 states with J = 2,M = 0, 2. Their rotational

distributions are the absolute square of spherical harmonics |Y J
M |2, which have

C∞ principle axes of rotation, denoted the z-axis. X-rays incident perpendicular

to this axis (as in Fig. 5.8) see a side view of either a dumbbell-shape (Figs

5.1a and 5.1b), or a disc shape (Figs 5.1c and 5.1f), whereas X-rays incident

parallel to this axis (as in Fig. 5.9) see a top view which is centrosymmetric for

all L and M . These shapes are blurred by the vibrational distribution and the

diffuse electron density, cf Eq. (5.4). Nonetheless, specific magnetic rotational
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Figure 5.8: H2 detector diffraction difference signals, ∆I(q) = IvJM (q) − I000(q),
between various vibrational/rotational states and the ground state (v = 0, J = 0,M =
0). AIXRD was used with MCSCF(2,7)/aug-cc-pVTZ. X-rays incident along the y-axis.
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Figure 5.9: H2 detector diffraction difference signals, ∆I(q) = IvJM (q) − I000(q),
between various vibrational/rotational states and the ground state (v = 0, J = 0,M =
0). AIXRD was used with MCSCF(2,7)/aug-cc-pVTZ. X-rays incident along the z-axis.

states are distinguishable in the X-ray diffraction, i.e. the left and right images

of each row in Figs 5.8 and 5.9, which only differ by magnetic quantum number
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Figure 5.10: H2 detector diffraction difference signals, ∆I(q) = IvJM (q)−I000(q), be-
tween various vibrational/rotational states and the ground state (v = 0, J = 0,M = 0).
AIXRD was used with MCSCF(2,7)/aug-cc-pVTZ. Left column is for X-rays incident
perpendicular to z-axis, right column is for X-rays incident parallel to z-axis.
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M , are strongly distinct, and in a qualitative way are almost the inverse of each

other. This is because they correspond to dumbbell-shaped (density along the z-

axis) and horizontal disc-shaped (density on the xy-plane) rotational distributions

respectively. Comparing the 1st two rows of these figures represents a change

J = 1→ 2 (and M = 1→ 2 for the right column) and does not strongly alter the

X-ray difference patterns ∆I. This is because increasing the rotational quantum

number L does not dramatically alter the shape of |Y J
M |2, for example compare

Figs 5.1a and 5.1b, which are both dumbbell-shaped rotational distributions;

and Figs 5.1c and 5.1f, which are both disc-shaped rotational distributions. Not

shown however is an intermediate state between these extremes, such as |Y 2
1 |2,

which has an hourglass shape. Its corresponding scattering signal would simply

look like an intermediate between the M = 2 and M = 0 scattering signals.

X-rays incident parallel to the z-axis only see the top-view of the dumbbell and

disc-shaped rotational distributions, which is a radially-symmetric view-point.

Therefore, the detector difference images ∆I in Fig. 5.9 have no dependence on

the azimuthal scattering angle φ.

Comparing the second and third rows of Figs 5.8 and 5.9 involves a change in

vibrational quantum number v = 0 → 1. This gives a relatively large change in

∆I as the v = 1 state has a larger average bond-length 〈R〉 than the v = 0 state.

It can also be thought of as the X-rays distinguishing a vibrational state change

in the third row images, whereas the second row images correspond to the v = 0

state, i.e. no vibrational state change. This effect shows the power of exciting a

rotational state and increasing the information available on the detector (from a

function of θ to a function of θ and φ), allowing greater distinction between not

only rotational states but vibrational states as well.

Fig. 5.10 shows X-ray diffraction difference signals, ∆I, for the v = 5 vibrational

state, and for progressively higher energy rotational states (J = M = {1, 5, 9})
down each column. The left and right columns represent incident X-rays per-

pendicular and parallel to the z-axis respectively. There is a clear progression of

increasing signal down the left column, as the disc-shaped rotational distribution

becomes more and more planar, i.e. Figs 5.10a, 5.10c, and 5.10e. This is not

true for the signals from incident X-rays parallel to the z-axis (Figs 5.10b, 5.10d,

and 5.10f), as they only see the top-view of the disc-shaped distribution which

does not change much with increasing J = M . Based on these results the infor-

mation at the detector has a strong dependence on the incident X-ray direction.

The columns in Fig. 5.10 represent the most and least information extremities.
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The left column gives the largest variance with the azimuthal scattering angle φ,

whereas the right column gives no variance with φ and the advantage of having

aligned or oriented molecules is mostly lost.

5.3.5 Comparison to experiment

0 1 2 3

q (a
0

-1
)

0.1

1

I(
q

)

Liu et al. (Experiment)
R

0

ν = 0
ν = 1

Figure 5.11: H2 comparison to a gas-phase X-ray diffraction experiment performed at
a synchrotron [50]. AIXRD was used at the equilibrium bond-length, R0, to calculate
I(q). The shooting method on the ground state Wolniewicz X 1Σ+

g PEC [134,135] was
used to compute the v = 0 and v = 1 vibrational distributions, and AIXRD was used at
each integration step. MCSCF(2,7)/aug-cc-pVTZ was used for geometry optimisation
and with AIXRD to calculate each curve.

In a recent experiment by Liu et al. X-ray diffraction at the Taiwan Beamline

BL12XU at SPring-8, a third generation synchrotron source, was used to de-

termine the molecular form-factor for H2 in the gas phase with incident photon

energy of about 9889 eV at 8.94 atm and 298 K [50]. A spectrometer was used

to isolate the pure elastic signal, at it would otherwise contain inelastic and ion-

ization channels. A Boltzmann distribution can be used to determine the ratio

between the number of molecules in the v = 0 and the v = 1 state, N0/N1. At

T = 298 K, N0/N1 = e−(E0−E1)/kT ≈ 1.6× 109, with Ev = hcν̃(v+ 1
2
), and the H2

MCSCF(2,7)/aug-cc-pVTZ normal mode wavenumber is ν̃ = 4382.87 cm−1 (the
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experimental reference value is 4401.21 cm−1 [137]) and c = 2.99 × 1010 cm s−1.

That is, at 298 K the vibrational ground state is extremely dominant.

Comparison between the AIXRD equilibrium bond-length R0, v = 0 and v = 1

diffraction curves is shown in Fig. 5.11. There is good agreement between the Liu

et al. experimental curve and the R0 and v = 0 curves. The similarity between

R0 and v = 0 results shows it is unnecessary to account for the ground state

vibrational distribution in this experimental comparison. It would require very

high experimental resolution to detect a difference of the magnitude of the R0 and

v = 0 theoretical difference. The v = 1 curve is plotted despite its extremely low

state population. It shows that for non-negligible v > 0 population it becomes

necessary to consider the vibrational state in the X-ray diffraction. The agreement

with experiment validates this method predicting molecular form-factors based

on ab initio electronic structure calculations.

5.4 Conclusion

The results in this chapter demonstrate that electronic structure gives a strong

signature in the elastic X-ray scattering signal, in agreement with the results of

Ch. 3 and Ref. [1], with scattering from Rydberg states [66, 117] as an extreme

example. The importance of accounting for electronic structure, hence electron

density, beyond the independent atom model is validated, especially for electron-

ically excited states, and even vibrationally excited states (v > 0).

In addition to electronic states, even vibrational states in a thermal distribution

of molecules are distinct, although with lower magnitude differences in this case.

Rotational states grant partial alignment and information at the detector be-

comes dependent on the azimuthal scattering angle, φ, although only for X-rays

non-parallel to the principle rotation axis of the spherical harmonic rotational

distributions. In fact, the most scattering information is available for X-rays ex-

actly perpendicular to this axis. These results show that a pump-probe X-ray

diffraction experiment, with sufficient pulse intensity and duration, can theoreti-

cally image a chemical reaction pathway including different state changes. More

specifically, and because the electronic ground state of H2 has been imaged via

X-ray diffraction [50], gives plausibility for state selective diffractive imaging of

H2. Specific states could be pumped e.g. as in Ref. [73], then imaged e.g. via

femtosecond X-ray diffraction at a XFEL source.
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The AIXRD method described in Ch. 3 and in Ref. [1] is upgraded in this chapter

to take into account vibrational and rotational states, although only for diatomics.

It is relatively expensive to accurately compute the effect of these states as triple

integration over rotational angles and the vibrational coordinate is necessary. For

larger molecules this scales quickly towards unfeasibility. The theoretical method

in this chapter is successfully benchmarked against previous theory [132] and

experiment [50].
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Chapter 6

State selective diffraction

measurements: Polyatomics

6.1 Introduction

Continuing from the previous chapter, the effect of vibrations on the elastic X-

ray scattering from larger molecules (Nat > 2) is studied. This is a demanding

problem as the exact vibrational wave function depends on the 3Nat − 6 dimen-

sional nuclear potential energy surface (PES). It would require a costly mapping

of the PES at appropriately large deviations centred at the equilibrium geometry.

The aim of this short chapter is to show a simple model of the X-ray diffraction

from molecules undergoing motion via their vibrational states. As such, a highly

accurate nuclear wave function is not necessary, and the harmonic approximation

is reasonable for lowly excited vibrational states, where the nuclear motion only

encompasses a local vicinity of the PES, about the equilibrium molecular geom-

etry, which is approximately harmonic-well shaped. X-ray diffraction from small

molecules (BF3, NH3, and H2O) is calculated directly from Born-Oppenheimer

wave functions, where the electronic part is calculated from ab initio electronic

structure theory and the nuclear (vibrational) part is calculated by the harmonic

approximation. The rotational wave functions are left out in this work, but can

be included. They are molecule specific, and as shown in the previous Chapter,

for diatomics they are spherical harmonics. Molecules such as BF3 are so-called

symmetric tops, and have corresponding rotational wave functions. The effect of

rotational wave functions on polyatomic molecules is specifically looked at in an
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upcoming paper [4]. Here, only the (thermal) orientational-average of the molec-

ular form-factor is considered, which is the case for an ensemble of randomly

orientated gas-phase molecules probed by X-ray diffraction. The electronic term

in the X-ray molecular form-factor is calculated by AIXRD. The convergence of

this term with basis set (STO-3G, 6-31G,. . . ,aug-cc-pVQZ) is quantified for BF3

and NH3. The X-ray diffraction signals from H2O in various vibrationally excited

states are calculated and compared to the vibrational ground state by percent

difference in X-ray diffraction intensities.

The motivation for this chapter is analogous to that of Chapter 5. The prepara-

tion of molecules in specific quantum states is increasingly possible [70, 72, 138].

In addition, gas-phase X-ray diffraction has been spurred on by the brilliance

of XFEL sources, such as LCLS and other facilities [22–25]. Diffraction from

aligned molecules [75,139–142] has been experimentally successful, will continue,

and likely be improved upon in the future.

6.2 Theory

The following theory pertains to the calculation of the X-ray molecular form-

factor based on a Born-Oppenheimer wave function, where the nuclear wave

function is split into separate rotational and vibrational parts. The electronic

part is calculated by AIXRD as per the previous chapters, which is integrated

over the vibrational distribution, calculated with the harmonic approximation

as shown in the following subsection. The implicit rotational wave functions

are omitted here and will be shown in an upcoming paper [4]. The work here as-

sumes fully orientationally-averaged diffraction intensities, as would be physically

observable in an X-ray diffraction experiment on randomly orientated molecules

in a gas-phase ensemble.

6.2.1 Harmonic vibrations

To determine the nuclear vibrational wave function for a molecule, a convenient

starting point is the Nat-atom nuclear Hamiltonian, which is defined as,

Ĥnuc = −1

2

Nat∑
i=1

1

Mi

d2

dR2
i

+ V (R1,R2, . . . ,RNat), (6.1)
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where {Mi} are the atomic masses within the molecule, {Ri} are the Nat nu-

clear coordinates, and V is the 3Nat dimensional potential energy function. It

is convenient to use mass-weighted coordinates qi =
√
Midi for displacements

di = Ri − ai, where {ai} is the set of 3Nat 1D equilibrium coordinates and the

subscript is now i = 1, 2, . . . , 3Nat. The kinetic energy operator is then,

T̂ = −1

2

3Nat∑
i

∂2

∂q2
i

, (6.2)

and the potential energy expressed as a Taylor expansion about the stationary

point is,

V = V0 +
3Nat∑
i

(∂V
∂qi

)
0
qi +

1

2

3Nat∑
i,j

( ∂2V

∂qi∂qj

)
0
qiqj + . . . , (6.3)

where V0 is a constant and for here on can be omitted for brevity. At equilibrium

the gradient is zero, (∂V/∂qi)0 = 0 ∀i, and omitting higher than quadratic terms

gives,

V ≈ 1

2

3Nat∑
i,j

( ∂2V

∂qi∂qj

)
0
qiqj =

1

2

3Nat∑
i,j

fijqiqj, (6.4)

where the 3Nat×3Nat matrix elements {fij} make up the mass-weighted Hessian

matrix,

f =


f1,1 . . . f1,3Nat

...
. . .

...

f3Nat,1 . . . f3Nat,3Nat

 . (6.5)

Now the Hamiltonian can be rewritten in matrix form as,

Hnuc =
1

2
pTp +

1

2
qTfq, (6.6)

where q and p are column matrices of length 3Nat containing the coordinates {qi}
and momenta {pi} respectively. The coordinates can be transformed to become

the normal coordinates of the molecule,

Q = L−1q, q = LQ, (6.7)

P = LTp, p = (LT)−1P, (6.8)
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where L is a real-valued orthogonal transformation matrix, with LTL = E the

identity matrix, and LT = L−1. If LTfL = Λ, where the matrix Λ is diagonal

and has the values {λi} along its diagonal, then pre-multiplication by L gives a

matrix of eigenvalue equations, fL = LΛ. Which can be solved by diagonalising

the mass-weighted Hessian, f, to find L; and the Hamiltonian becomes,

Ĥnuc =
1

2
PTP +

1

2
QTΛQ =

1

2

3Nat∑
i

[P 2
i + λiQ

2
i ]. (6.9)

In other words, the transformation q → Q, p→ P gives 3Nat uncoupled harmonic

oscillators with frequencies ωi =
√
λi, with well-known solutions,

Ei = ωi(vi +
1

2
), vi = 0, 1, 2, . . . , (6.10)

ψi(Qi) = niHvi(
√
ωiQi) exp

[
− 1

2
ωiQ

2
i

]
, (6.11)

where {Ei} are the energies of each normal mode, {vi} ∈ N are their vibrational

quantum numbers, ni = (ωi/π)1/4/
√

2vivi! is the normalisation constant, and Hvi

is a Hermite polynomial. It is worth noting that for non-linear molecules there are

three translational and three rotational degrees of freedom, which have ωi = 0.

Thus, in general there are 3Nat − 6 vibrational degrees of freedom or modes.

6.2.2 X-ray scattering

The X-ray scattering calculation used in this Chapter involves integration over

all 3Nat − 6 polyatomic vibrational modes, using the vibrational wave functions

obtained from the harmonic approximation (Eq. (6.11)). This is an eigenstate

averaging, that is, the molecule is in a (vibrational) superposition which scatters

in-phase. Thus, to take into account the phase terms, integration is done with

the molecular form-factor,

〈f(q; Q)〉vib =

Qmax
1∫

Qmin
1

Qmax
2∫

Qmin
2

· · ·
Qmax

3Nat−6∫
Qmin

3Nat−6

∣∣∣ 3Nat−6∏
i

ψνi(Qi)
∣∣∣2 (6.12)

fν1,ν2,...,ν3Nat−6
(q;Q1, Q2, . . . , Q3Nat−6)dQ1dQ2 . . . dQ3Nat−6.
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Then, the diffraction intensity is the absolute square of this, and its rotational-

average (thermal averaging) is the gas-phase experimental observable,

I(q) =
1

4π

2π∫
0

π∫
0

|〈f(q; Q)〉vib|2 sin θdθdφ, (6.13)

where q = (q, θ, φ), q = |q| = 4π sin(θ)/λ, and θ and φ are reciprocal space

spherical coordinate angles.

6.3 Results and discussion

6.3.1 Basis set convergence (BF3, NH3)
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Figure 6.1: BF3 basis set percent error for AIXRD calculations based on Hartree-Fock
(HF) wave functions at the HF/aug-cc-pVQZ optimised geometry, compared to the
reference intensity calculated with the aug-cc-pVQZ basis set. The IAM percent error
is shown for comparison.

The trigonal planar molecule BF3 was geometry optimised at the Hartree-Fock

(HF)/aug-cc-pVQZ level using Molpro [96], resulting in BF bond-lengths, RBF =

2.44432190 a0. AIXRD was used at this geometry using HF with various basis

sets. The aug-cc-pVQZ basis set was used for the reference signal I0 and the
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METHOD Error (%) |E − Eref| Primitives Speed-

Mean Max (Eh) Ng Ngp up

IAM 1.75 7.26 - - 4.1×104

STO-3G 6.36 14.58 4.694 960 9697 67.6

6-31G 0.54 1.99 0.274 1408 21319 30.7

6-31G∗∗ 0.26 0.66 0.164 1792 32105 20.4

6-311++G∗∗ 0.39 1.08 0.070 2304 51222 12.8

aug-cc-pVDZ 0.41 0.96 0.133 4288 104984 6.2

aug-cc-pVTZ 0.11 0.38 0.024 8128 258515 2.6

aug-cc-pVQZ1 0.0 0.0 0.0 14080 655366 1.0

Table 6.1: Comparison of accuracy and speed for various basis sets for scattering
from the Hartree-Fock (HF) electronic ground state of BF3 at the HF/aug-cc-pVQZ
optimised geometry (RBF = 2.44432190 a0). The mean and maximum errors shown
correspond to the errors in Fig. 6.1, with the scattering from HF/aug-cc-pVQZ taken
as reference, see Eq. (5.5). The gap |E − Eref| between calculated energies and the
reference value is used to show ab-initio convergence. The speed of the scattering
calculations scales linearly with the number of non-zero unique Gaussian products per
molecular orbital, Ngp, with the number of Gaussian primitives given by Ng. In this
case, Ngp ≈ N1.38

g . The IAM calculation uses tabulated atomic form-factors [62].

percent error, %∆I(q) = 100(Imethod− I0)/I0, curves are shown in Fig. 6.1. Table

6.1 shows the mean and maximum absolute percent errors for each basis, the

energy gaps |E − Eref| between each basis set and the reference, the number

of primitive Gaussian functions per calculation Ng and the number of non-zero

unique Gaussian products per MO Ngp (AIXRD scales with Ngp), and a speed

up factor relative to the reference calculation. Somewhat surprisingly, IAM isn’t

the furthest from the reference in this case. The minimal basis set (STO-3G)

calculation is however, with mean error 〈|%∆I(q)|〉 = 6.36% and maximum error

14.58%, while the IAM only has 〈|%∆I(q)|〉 = 1.75% and maximum error is

7.26%. For this reason, it may be beneficial to simply use IAM for a molecule

with a low valence to core electron ratio, such as BF3, as it can be computed

∼104 times faster than AIXRD while maintaining a reasonably low 〈|%∆I(q)|〉.
This analysis of BF3 is a benchmark to assess the quality of each basis set for

use in AIXRD for further molecules. The aug-cc-pVTZ basis set is closest with

〈|%∆I(q)|〉 = 0.11% and has the lowest energy gap, |E − Eref| = 0.024 Hartree.

This isn’t surprising as it is the second largest basis set after the reference basis

set with about 0.6N ref
g , where N ref

g is the number of primitive Gaussians in the
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reference calculation. Oddly, it is closely followed by the relatively small basis set

6-31G** which has about 0.1N ref
g , and its AIXRD calculation is 20.4 times faster.

In fact, all the basis sets have 〈|%∆I(q)|〉 < 0.6% except STO-3G, showing that

unless supreme accuracy is desired, any medium sized basis set is a reasonable

choice. The 6-31G** appears to lie in a sweet spot of low percent error and large

computational efficiency, but the 6-31G basis set could also be used for an even

larger speed-up.
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Figure 6.2: NH3 basis set percent error for AIXRD calculations based on Hartree-
Fock (HF) wave functions at the HF/aug-cc-pVQZ optimised geometry, compared to
the reference intensity calculated with the aug-cc-pVQZ basis set. The IAM percent
error is shown for comparison.

The IAM method works quite well for molecules containing larger Z atoms be-

cause they have a low valence/total election ratio. The use of a more accurate

method which takes into account the redistribution of valence electrons due to

bonding (such as AIXRD) is less needed in these cases. In addition, STO-3G

is a poor choice for modelling the Slater-function asymptotic form of the wave

function near the nuclei, which is important for such molecules. To test this hy-

pothesis, the analogous calculations as were done for BF3 were done on a small

molecule containing hydrogen atoms, specifically NH3. Fig. 6.2 show %∆I(q) for

AIXRD using HF wave functions with various basis sets. Like before, the refer-

ence basis set is aug-cc-pVQZ. Table 6.2 is the equivalent to Table 6.1 but for the

NH3 results. This time, the IAM method is the furthest from the reference with
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METHOD Error (%) |E − Eref| Primitives Speed-

Mean Max (10−1 Eh) Ng Ngp up

IAM 2.94 12.54 - - 1.6×104

STO-3G 2.54 7.16 7.729 120 1500 173.3

6-31G 0.35 1.08 0.621 170 2975 87.4

6-31G∗∗ 0.38 1.32 0.292 245 6125 42.5

6-311++G∗∗ 0.12 0.34 0.098 315 10080 25.8

aug-cc-pVDZ 0.31 1.06 0.190 560 18705 13.9

aug-cc-pVTZ 0.11 0.36 0.037 1190 74390 3.5

aug-cc-pVQZ2 0.0 0.0 0.0 2225 260015 1.0

Table 6.2: Comparison of accuracy and speed for various basis sets for scattering
from the Hartree-Fock (HF) electronic ground state of NH3 at the HF/aug-cc-pVQZ
optimised geometry (RNH = 1.88579802 a0). The mean and maximum errors shown
correspond to the errors in Fig. 6.2, with the scattering from HF/aug-cc-pVQZ taken
as reference, see Eq. (5.5). The gap |E − Eref| between calculated energies and the
reference value is used to show ab-initio convergence. The speed of the scattering
calculations scales linearly with the number of non-zero unique Gaussian products per
molecular orbital, Ngp, with the number of Gaussian primitives given by Ng. In this
case, Ngp ≈ N1.58

g . The IAM calculation uses tabulated atomic form-factors [62].

〈|%∆I(q)|〉 = 2.94%, closely followed by STO-3G with 〈|%∆I(q)|〉 = 2.54%. All

other basis sets have 〈|%∆I(q)|〉 ≤ 0.38%. These results agree with the hypoth-

esis, and based on the near necessity to account for the valence electrons in H2,

it seems that for calculating the X-ray molecular form-factor for small molecules

containing light atoms (low Z) such as hydrogen the IAM is a poor choice and

another method such as AIXRD is increasingly useful. Also STO-3G is a poor

choice of basis set in general as there is a leap of improvement in percent error

going from STO-3G to 6-31G, then a convergence of error mostly inline with the

size of basis set (i.e. number of primitive functions Ng).

6.3.2 Triatomics (H2O)

Finally, to examine the effect of nuclear vibrations, H2O was chosen, as it is a

small molecule containing hydrogens, where a method such as AIXRD is more

valid. The other main reason it was chosen is that it is a triatomic, and there-

fore only has three vibrational modes to integrate over via Eq. (6.12). Larger
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(a) v = (0, 0, 0). (b) v = (1, 0, 0). (c) v = (0, 1, 0).

(d) v = (0, 1, 1). (e) v = (2, 1, 1).

Figure 6.3: H2O atom positions for various vibrational states with N3
Q = 93 integration

steps.
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Figure 6.4: H2O rotationally-averaged percent difference signals for various vibra-
tionally excited states, with the v = (0, 0, 0) curve as reference signal. AIXRD with
MCSCF(8,6)/6-31G was used for the X-ray scattering, and the harmonic approximation
was used to calculate the vibrational distributions.
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molecules become unfeasible computationally. In this case, NQ = 9 integration

steps per vibrational mode were used, giving N3
Q = 729 total integration steps.

For a HF/6-31G calculation on the similarly sized (it also has ten electrons) NH3

molecule, the number of unique Gaussian products per MO is Ngp = 2975. There

are Nel/2 = 5 closed shell MOs, therefore 595 Gaussian products per MO. In

this case, a MSCSF(8,6)/6-31G calculation was used for H2O, with four elec-

trons in closed shells, and the remaining six in the eight orbital active space.

This gives ten total MOs, thus Ngp = 5950. In other words, the active space

in the MCSCF wave function up-scales the AIXRD calculation by a factor of 2

compared to the corresponding HF wave function (in this particular case). A

MSCSF(8,6)/6-31G geometry optimisation followed by a frequencies calculation

for H2O using Molpro [96] gives normal mode wavenumbers of 1702.9, 3779.49,

3897.56 cm−1. Then, the normal mode wavenumbers were used in the vibra-

tional wave function Eq. (6.11), and Eq. (6.12) was solved using AIXRD with

MSCSF(8,6)/6-31G at each of the N3
Q integration steps. Each step takes about 5

seconds on a single 3.1 GHz core. The nuclear coordinates were saved and plotted

in the plane of the HOH angle for various vibrational states, they are shown in

Fig. 6.3. Note that the nuclear motions are almost entirely the hydrogen atoms,

and the oxygen atom has negligible vibrational movement. Fig. 6.4 shows the

percent difference X-ray diffraction intensities for the various vibrational states,

I(q) = 100(Imethod − I0)/I0, with the ground vibrational state, v = (0, 0, 0), as

the reference calculation. Similar to H2 in the previous chapter, the higher the

vibrational state the further the X-ray diffraction curve diverges from the ground

state curve, especially at high values of q.

6.4 Conclusion

An attempt was made to continue from diatomic calculations shown in Chapter

5 to polyatomic molecules. However, using the harmonic approximation and per-

forming the full integration over all 3Nat − 6 vibrational modes scales extremely

quickly towards computational unfeasibility. Even with NQ = 9, which is as small

as possible without severe degradation of the quality of the numerical integration,

there are N3Nat−6
Q total integration steps with each step taking about 5 seconds

for H2O. This can be reduced by choosing a smaller basis set or only using HF

theory with AIXRD, but these reductions are only linear, and do not counter-

act the exponential scaling with Nat. Similar results have been achieved as in
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previous Chapters, such as more validation that the IAM is a poor choice for

small molecules containing hydrogen atoms, and in these cases a method such as

AIXRD has greater validity. In addition, just like H2, increasing the vibrational

excitation of H2O causes the X-ray diffraction difference signal from the ground

vibrational state to diverge. This is an intuitive and expected result however. An

upcoming paper addresses much more valid experimental examples, and includes

calculations of the X-ray scattering from rotational wave packets for polyatomic

molecules [4].
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Chapter 7

Conclusion

This thesis contains a description of the ab initio X-ray diffraction (AIXRD)

method for calculating the elastic X-ray scattering factor based on ab initio elec-

tronic structure theory [1]. It requires that the wave functions are expressed by

Gaussian basis sets, such as Pople-type (6-31G, . . . , 6-311++G**), or Dunning-

type (VDZ, . . . , V6Z). The wave function can be expressed in a single or multi-

configurational form, and calculations based on both Hartree-Fock (HF) and mul-

ticonfigurational self-consistent field wave functions are included. The proposed

method goes beyond the conventional independent atom model (IAM) because it

takes into account the redistribution of valence electrons due to bonding, and it

can calculate X-ray diffraction from electronically excited states.

This approach was expanded for use with large molecules by introducing a fragment-

based method, loosely based on fragment-molecular orbital theory [109]. The

molecule, for instance a protein, was divided into fragments, then HF with the

6-31G basis set was used on each fragment, followed by AIXRD. A good com-

promise of accuracy and efficiency was achieved by using 6-31G, while STO-3G

was unsurprisingly too small a basis set to produce reliable results. A sum of

isolated fragment scattering factors gave an approximate total molecular scatter-

ing factor, analogous to the IAM method. A pairwise summation of fragment

and dimer contributions allowed fragment-fragment interactions to be taken into

account. Significant improvements of 4-8% compared to the IAM were achieved

for lysozyme, even after temporal-averaging to allow for slight variation of molec-

ular geometry, as would be observed in serial crystallography [105]. This type

of approach has potential for use in structural refinement algorithms because it

gives a more physically accurate structure factor compared to the IAM [143].
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Finally, state-specific scattering from molecules was examined. Calculations of

elastic X-ray diffraction from H2 in specific quantum states [2] were motivated

by experimental progress in state selection of various molecules in the gas-phase

such as H2 and HD [73,83], N2 [71], and other polyatomic molecules [72]; as well

as gas-phase diffraction experiments of oriented and aligned molecules [75,81,82]

and indirect detection of metastable electronically excited states via changes in

geometry [67,68]. A comparison is also made to an experimental X-ray scattering

measurement of the rotationally-averaged diffraction intensity of H2 in its ground

state [50].

7.1 Outlook

Continuation of the work described in this thesis falls into three categories.

Firstly, focus could be applied to modelling the elastic X-ray diffraction sig-

nal during a photochemical reaction, involving quantum dynamical treatment

of the molecular motion and electronic state changes. By using the multiconfig-

urational Ehrenfest method [144], for example, followed by AIXRD calculations

based on the same MCSCF wave functions as obtained every n timesteps, would

give a time-dependent and time-evolving electronic state dependent molecular

form-factor. Expanding further upon this would involve temporal integration

over the X-ray pulse duration, as would occur in experiments. Progress has been

made in this direction but only the IAM method was used to calculate the time-

dependent scattering [145]. It would be interesting to improve on this by using

AIXRD, and to compare to a gas-phase time-resolved X-ray diffraction exper-

iment at an XFEL source, such as in Ref. [6], especially if the photochemical

reaction involved substantial electronic state changes which could be visible in

the diffraction signal.

Secondly, improvements could be made to the fragment-based AIXRD method

described in Ch. 4. This is relevant to protein structure determination, and the

future possibility of single-molecule X-ray diffraction experiments (the natural

progression from the imaging of a single mimivirus particle at an XFEL source

[36]). In fact, improvements over the conventional method could be welcomed by

scientists for usage alongside experiments. This is because there are troublesome

sources of error in structure determination [143], followed with refinement by

comparison to an IAM structure factor. The improvements of the fragment-
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based AIXRD method are promising in this regard. The method outlined in Ch.

4 has room for improvement however, as the full wave function obtained from

a Fragment Molecular Orbital (FMO) calculation could be used rather than the

isolated fragment and dimer summation method described.

Finally, AIXRD is ripe for combination with a wide variety of electronic structure

methods. As the only limitation is for a Gaussian basis set to be used, there is no

intrinsic reason why it could not be combined with orbital-based density function

theory (DFT) [93,146], and full configuration interaction, for two examples.
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scattering from state-selected molecules. The Journal of Chemical Physics,

145(15):154304, 2016.

[4] A. Moreno Carrascosa, T. Northey, and A. Kirrander. Imaging rotations

and vibrations in polyatomic molecules with X-ray scattering. (manuscript),

2016.

[5] M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson, D. Ratner,

T. J. Lane, D. Zhu, J. M. Glownia, M. Kozina, H. T. Lemke, M. Sikorski,

Y. Feng, S. Nelson, K. Saita, B. Stankus, T. Northey, J. B. Hastings, and

P. M. Weber. Imaging Molecular Motion: Femtosecond X-Ray Scattering of

an Electrocyclic Chemical Reaction. Physical Review Letters, 114:255501,

Jun 2015.

[6] M. P. Minitti, J. M. Budarz, A. Kirrander, J. Robinson, T. J. Lane, D. Rat-

ner, K. Saita, T. Northey, B. Stankus, V. Cofer-Shabica, J. Hastings, and

P. M. Weber. Toward structural femtosecond chemical dynamics: imaging

chemistry in space and time. Faraday Discussions, 171:81–91, 2014.

[7] W. L. Bragg. The structure of some crystals as indicated by their diffraction

of X-rays. In Proceedings of the Royal Society of London A: Mathematical,

139



Physical and Engineering Sciences, volume 89, pages 248–277. The Royal

Society, 1913.

[8] M. von Laue. Concerning the detection of X-ray interferences. Nobel Lec-

ture, 1915.

[9] R. L. Weber. Pioneers of science: Nobel Prize winners in Physics. Taylor

& Francis, 1988.

[10] T. L. Sourkes and L. G. Stevenson. Nobel Prize winners in Medicine and

Physiology, 1901-1965. Number 45. Abelard-Schuman, 1967.

[11] J. K. Laylin. Nobel Laureates in Chemistry, 1901-1992, volume 1. Chemical

Heritage Foundation, 1993.

[12] A. H. Zewail, F. C. De Schryver, S. De Feyter, and G. Schweitzer. Femto-

chemistry: with the Nobel lecture of A. Zewail. Wiley-VCH, 2001.

[13] Z. Huang et al. Brightness and coherence of synchrotron radiation and

FELs. MOYCB101, Proceedings of IPAC2013, Shanghai, China, 2013.

[14] E. F. Garman. Developments in X-ray crystallographic structure determi-

nation of biological macromolecules. Science, 343(6175):1102–1108, 2014.

[15] J. M. J. Madey. Stimulated emission of bremsstrahlung in a periodic mag-

netic field. Journal of Applied Physics, 42(5):1906–1913, 1971.

[16] Y. S. Derbenev, A. Kondratenko, and E. Saldin. On the possibility of using

a free electron laser for polarization of electrons in storage rings. Nuclear

Instruments and Methods in Physics Research, 193(3):415–421, 1982.

[17] J. B. Murphy and C. Pellegrini. Free electron lasers for the XUV spectral

region. Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, 237(1-

2):159–167, 1985.

[18] C. Milne, T. Penfold, and M. Chergui. Recent experimental and theoretical

developments in time-resolved X-ray spectroscopies. Coordination Chem-

istry Reviews, 277:44–68, 2014.

[19] V. Ayvazyan, N. Baboi, J. Bähr, V. Balandin, B. Beutner, A. Brandt,

I. Bohnet, A. Bolzmann, R. Brinkmann, O. Brovko, et al. First operation

140



of a free-electron laser generating gw power radiation at 32 nm wavelength.

The European Physical Journal D-Atomic, Molecular, Optical and Plasma

Physics, 37(2):297–303, 2006.

[20] V. Lyamayev, Y. Ovcharenko, R. Katzy, M. Devetta, L. Bruder, A. LaForge,

M. Mudrich, U. Person, F. Stienkemeier, M. Krikunova, et al. A modular

end-station for atomic, molecular, and cluster science at the low density

matter beamline of FERMI@ Elettra. Journal of Physics B: Atomic, Molec-

ular and Optical Physics, 46(16):164007, 2013.

[21] E. Springate, C. Froud, I. Turcu, S. Spurdle, D. Wolff, S. Hook,

B. Landowski, J. Underwood, A. Cavalleri, S. Dhesi, et al. Artemis: Syn-

chronised XUV and laser sources for ultrafast time-resolved science. CLF

Annual Report, 9:221–224, 2008.

[22] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brach-

mann, P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Ed-

strom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, HeringPh,

Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller,

H. D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Ste-

fan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and

J. Galayda. First lasing and operation of an angstrom-wavelength free-

electron laser. Nature Photonics, 4(9):641–647, 2010.

[23] M. Yabashi, H. Tanaka, T. Tanaka, H. Tomizawa, T. Togashi, M. Nagasono,

T. Ishikawa, J. R. Harries, Y. Hikosaka, A. Hishikawa, K. Nagaya, N. Saito,

E. Shigemasa, K. Yamanouchi, and K. Ueda. Compact XFEL and AMO

sciences: SACLA and SCSS. Journal of Physics B: Atomic, Molecular and

Optical Physics, 46(16):164001, 2013.

[24] J. Feldhaus, M. Krikunova, M. Meyer, T. Möller, R. Moshammer,
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