
Parallel Algorithms and Architectures

for

VLSI Pattern Generation

Roderick David Wolfe Widdowson

PhD

University of Edinburgh

1987

51

Abstract

The process of data preparation for pattern generation consists of the per-

forming of various geometric operations upon a user's design. This is the final

manipulation of the design prior to the making of the masks and can be ex-

ceptionally time consuming, especially when a very large user designs are being

processed.

This thesis addresses one way of speeding up the processing - by the use

of (relatively) small numbers of loosely coupled processors as a multiprocessing

unit. The starting point of the work was commercial pattern generation sys-

tem. This incorporated programs programs or modules to perform parsing and

flattening, overlap removal (merging) and partitioning. The major results are a

series of performance measurements obtained by emulating parallel processors

with an appropriate interconnection pattern. These give a valuable indication

of the degree of performance enhancement which this approach to parallelism

may be expected to bring. Confirmation of these expectations via practical

implementations on two varieties of workstation clusters is reported.

The three major parts of a Pattern Generation system, the merge stage

whose most important aspect is overlap removal and sizing, and the decomposi-

tion and sort (termed fracture) for the two major types of lithographical equip-

ment (electron-beam and photo-mechanical) are examined separately. Particu-

lar emphasis is placed on the merge stage, which is the most time critical part

of the whole process. The method used to partition the merge task among

processors is area subdivision.

The practical work carried out consisted of devising practical algorithms for

the area subdivision and recombination, and in the setting up of test harnesses

multiprocessor emulations.

Acknowledgements

I should like to acknowledge the assistance of all the members of the Computer

Science department but my particular thanks must go to David Rees who su-

pervised this thesis.

Lattice Logic helped financially and the members of staff, both past and

present, have been most supportive. In particular I thank John Gray for his

constant encouragement. All the members of the ShapeSmith group, and in par-

ticular Neil Menzies and Gordon Hughes have helped me immensely to formulate

and develop the ideas presented here.

This work was funded under the Cooperative Awards in Science and En-

gineering scheme by the United Kingdom Science and Engineering Research

Council and Lattice Logic Ltd.

Finally I must thank my parents for their support over the years.

Declaration

I hereby declare that this thesis has been composed by myself, and that the work

it describes is my own.

Roderick David Wolfe Widdowson

September 7, 1987

11

Table of Contents

1. Introduction 	 10

1.1 Making Programs Run Faster11

1.1.1 Algorithmic improvement11

1.1.2 Improving the Software Implementation12

1.1.3 Improving the Hardware Implementation13

1.1.4 Assessing the performance improvement13

1.2 Parallelism15

1.2.1 	Algorithmic parallelism15

1.2.2 Implementing parallelism16

1.2.3 The pitfalls of parallelism22

1.3 Pattern Generation23

1.3.1 The motivation for faster pattern generation25

1.3.2 A method of speeding up pattern generation25

1.3.3 Restrictions upon pattern generation processing26

1.3.4 The Overall techniques used28

1.4

	

	This Thesis30

1.4.1 Description of the rest of the thesis31

1

Table of Contents 	 2

Data Preparation for Pattern Generation 	 33

	

2.1 	Mask Making33

2.1.1 Photo-mechanical mask makers34

2.1.2 Electron Beam mask-makers37

2.1.3 Other Pattern Generation Equipment40

	

2.2 	The Function of Data Preparation for P.G42

	

2.3 	A P.G. Data Preparation System 46

The Polygon Merge Stage 	 48

	

3.1 	Algorithms for Merging48

	

3.1.1 	Theoretical Preamble49

3.1.2 Area Based Algorithms50

3.1.3 Edge Based Algorithms54

3.1.4 Scan Line Algorithms57

	

3.2 	Parallelising the Merge Stage59

	

3.2.1 	The chosen algorithm59

3.2.2 Integrated Circuit Geometry61

3.2.3 Parallel Merge - How63

3.2.4 The system architecture65

	

3.2.5 	Implementation67

	

3.3 	Results, Modifications and Limitations70

3.3.1 Accuracy71

	

3.3.2 	Speed - Overall73

3.3.3 	Load Balancing74

Table of Contents 	 3

	

3.3.4 	Emulated Speed78

3.3.5 Communication costs81

3.3.6 Processor Memory83

3.3.7 Processor numbers85

3.4 Conclusions86

3.4.1 Possible Improvements87

3.4.2 Sequential Program Enhancement90

	

3.5 	Graphs92

4. The Electron Beam Fracture Stage 	 102

	

4.1 	Algorithms for Ebeam Fracture102

4.1.1 Theoretical Consideration of Decomposition102

4.1.2 Scan Line Algorithms103

4.1.3 Sorting105

	

4.2 	Parallelising Ebeam Fracture105

4.2.1 Parallel Ebeam Fracture105

4.2.2 The system architecture109

	

4.2.3 	Implementation109

	

4.3 	Results and Modifications110

4.3.1 Accuracy and Flash Count110

	

4.3.2 	Memory Cost111

	

4.3.3 	Load Balance113

4.3.4 Processor Numbers115

4.3.5 	Emulated Speed117

Table of Contents 	 4

4.3.6 Communication Costs 	 . 117

4.4 Conclusions120

	

4.5 	Graphs122

The Optical Fracture Stage 	 127

	

5.1 	Algorithms for Ebeam Fracture127

5.1.1 Theoretical Considerations in Decomposition127

5.1.2 Algorithms for Polygon Decomposition 128

5.1.3 Sorting130

	

5.2 	Parallelising Optical Fracture131

5.2.1 	Parallel Optical Fracture131

5.2.2 	System architecture132

5.2.3 	Implementation132

	

5.3 	Results and Modifications133

5.3.1 Accuracy133

5.3.2 	Memory Cost135

5.3 .3 	Load Balance135

5.3.4 Processor Numbers135

5.3.5 	Emulated Speed138

5.3.6 Communication Costs141

5.4 Conclusions142

Conclusions 	 146

	

6.1 	Chasing the Bottleneck147

6.2 Architectures148

6.3 	Further Work149

Table of Contents
	 5

A. An outline of changes made to the Merge code 	 151

A.1 The Original Code151

A.2 New Modules155

A.2.1 The SPLIT Module155

A.2.2 The STITCH Module157

A.2.3 The OUTPUT Module159

B. Take Three. Parallel Merge on Real Hardware 	 161

B.1 Implementation162

B.1.1 Background162

B.1.2 Division and Recombination162

B.1.3 The Parallel Implementation164

B.2 Results168

B.2.1 Vax Cluster168

B.2.2 Diskiess Sun Workstations169

B.2.3 Final Points170

Bibliography 	 172

List of Figures

2-1 Optical P.G. Data 	 . 35

2-2 	Acute angle approximation for optical P.G 36

2-3 Flaring37

2-4 Raster and Vector Scan Lithography38

2-5 EBeam P.G. Data40

2-6 Bloating and overlap removal43

2-7 Shrinking and overlap removal45

2-8 Overall Architecture of a P.G. System47

3-1 Egg crates50

3-2 Egg crates in Large Gated transistors51

3-3 Quad Tree representation53

3-4 Four dimensional binary search trees55

3-5 Hierarchical bounding box representation of a line segment . . . 56

3-6 Dividing two convex polygons into Slabs57

3-7 The Overall System Architecture66

3-8 Pictorial representation of the harness68

3-9 Incorrect sizing at Boundaries70

3-10 Triangular differences72

6

List of Figures 	 7

3-11 Pentagonal differences73

3-12 Division into Y and X77

3-13 Division into Y and then X77

4-1 Outputting trapezia from a Scan Line Algorithm104

4-2 Logical construction of the EFF files107

4-3 Edge Event108

4-4 System architecture of the Parallel Ebeam fracture109

4-5 Amended Algorithm: The reduced trapezia countlii.

4-6 Recovering Ullage in EFF Files112

5-1 A complicated Polygon129

5-2 A Possible Covering with 265 Flashes129

5-3 A Better Covering with 444 Flashes129

5-4 System architecture for Parallel Optical Fracture133

5-5 The pinhole accuracy problem134

6-1 Workstation based Architecture149

A—i Self Touching Polygons152

A-2 Clipping Acute Angles154

A-3 Nasty cases when clipping157

A-4 Nasty cases when Stitching159

A—S Ordered Concurrent Output160

B—i Using thin strips to determine segment width164

B-2 Schematic of Parallel Merge166

List of Tables

3-1 Emulated Time78

3-2 Emulated Processor Speedup79

3-3 Communication Overhead81

3-4 Average Bandwidth requirement83

3-5 Peak Output Bandwidth requirement84

3-6 Distribution of vertex count in merge data92

3-7 Timing trend for pure merge, bloat and shrink93

3-8 Function versus Time94

3-9 Time Taken per Processor Merge stage only95

3-10 Vertex Distribution in the X direction96

3-11 Vertex Distribution in the Y direction97

3-12 Vertex distribution over area98

3-13 Timing by the three division methods99

3-14 Memory Requirement vs vertex count100

3-15 Communication Costs for merging multiple Layers101

4-1 Time taken by Output processor115

4-2 Breakdown of fracture timings for one layer116

4-3 Ebeam Fracture - Times and speedup118

List of Tables

4-4 Ebeam fracture. Average and peak bandwidth119

4-5 Original distributed Fracture for 9 processors122

4-6 Original distributed Fracture for 25 processors123

4-7 Amended distributed Fracture for 9 processors 124

4-8 Amended distributed Fracture for 25 processors125

4-9 Ebeam fracture. Data rate over time126

5-1 Optical fracture. Cost breakup per function136

5-2 Modified Optical fracture. Costs per function139

5-3 Emulated time and fractional speed-up140

5-4 Emulated time and fractional speed-up. 'Weak' synchronisation. 141

5-5 Bandwidth requirements for optical fracture142

5-6 Processor Loading144

5-7 Bandwidth requirement over time145

B—i Actual time taken to process a design on a LAVC169

B-2 Actual time taken to process a design on a cluster of SUNS . . . 170

Chapter 1

Introduction

As the packing density, size and consequently the shape count of integrated

circuits becomes greater, the time taken to do all the data processing associ-

ated with generating the designs is increasing. One particular process which is

rapidly becoming a bottleneck is the data preparation prior to pattern genera-

tion.

Simultaneously the demand for high speed turnaround of IC designs is in-

creasing. Technological improvements have reduced turnaround to the extent

that IC design could now be described as an interactive rather than batch pro-

cess, by analogy to the technological improvements to operating systems which

allowed the same transition to happen to programming.

This thesis addresses the problems of improving the performance of pat-

tern generation data preparation through the exploitation of parallelism and

discusses the software engineering issues involved in parallelising pattern gen-

eration algorithms.

10

Chapter 1. Introduction 	 11

1.1 Making Programs Run Faster

As soon as the earliest computers had been built and demonstrated to work,

the race to develop faster machines started. Improvements have been made by

speeding parts from the complete range of the system hierarchy of the system,

from the lowest level of hardware to the highest level of theoretical algorithmic

design. For the purposes of further explanation it is useful to divide this hierar-

chy into three broad categories. The choice of three categories is arbitrary since

the hierarchy of a computer system is continuous and so the actual boundaries

between categories are somewhat fluid. The categories are: the basic algorithm,

its software implementation and its hardware implementation; each of these is

amenable to improvement,

1.1.1 Algorithmic improvement

The algorithmic theorist, when looking for ways to improve systems, develops

better algorithms in terms of asymptotic performance - that is the rate at which

the algorithm gets slower as the input gets larger. Algorithms are independent

of the technology of their implementation and of the computers upon which

they run.

Algorithmic improvements are more important than technological ones. Con-

sider for instance a system which requires an unordered set of data to be sorted

according to some key. There are many sorting algorithms, but consider just

two - insertion sort and merge sort. The time complexities of these are 0(n2)

and 0(n log n) respectively. The former is a somewhat simpler algorithm and

for small input data sizes might be faster. However there is a value for n for

which the latter will be faster. This is always the case no matter what the

implementation is - there will always be a value for n at which a mergesort

running on the slowest hardware with an inefficient implementation in software

is faster than an insertion sort on the fastest possible hardware with a 'perfect'

Chapter 1. Introduction 	 12

software implementation. Algorithmic development is therefore a vital first step

in the speeding up of processing.

In some problems the output of a program may be correct (in some way) but

are not the theoretical best or minimum. For instance a program may generate

solutions to the travelling salesman problem which are feasible (and effectively

usable), but may not guarantee to generate the minimal solution. Very often

problems whose minimal solution is NP complete can be approximated to by

use of polynomial algorithms.

1.1.2 Improving the Software Implementation

The software engineer looks for ways to improve system performance by in-

vestigating techniques which improve the implementation of the algorithm in

software. This ensures that the algorithm and the rest of the software supports

for the system are expressed in the best possible form for the subsequent inter-

pretation by the hardware. Software engineering covers that range of the system

hierarchy which relates to the expression and interpretation of an algorithm.

At the highest level of implementation the job of the software engineer is

somewhat similar to that of the algorithmic theorist; however, the aims may

be somewhat different and this is discussed further below. For instance the

engineer might seek to improve the implementation by running 'profiling' on

the implementation and, having noticed those parts which were exercised most

often, making sure that their implementation is as good as possible. These

changes could be as simple as the reordering of the evaluation of conditions, or

might entail unwinding commonly used procedures 'in line'.

Situated in the hierarchy somewhat below the the engineer interested in

individual implementations are those investigating improvements to the means

of implementation (and thus many implementations). For instance the compiler

engineer might be interested in improving the quality of object code which the

compiler generates.

Chapter 1. Introduction
	

13

At the lowest level the software engineer might develop the microcode which

is the interface between hardware and software.

1.1.3 Improving the Hardware Implementation

The hardware engineer may attempt to speed up a computing system by devel-

oping techniques which improve the basic hardware upon which the system is

based. Again there is a broad range of options which are open to the hardware

engineer. At the highest level there is no real boundary between the work of the

software and the hardware engineer. At the lowest level the hardware engineer

must be involved with the physics which govern electronics.

The majority of techniques used to speed up hardware use parallelism, these

are detailed later, but the following points illustrate some of the options open

to the hardware engineer over the hierarchy of hardware.

increasing the basic clock speed of the hardware. If this is possible it

immediately makes the complete system faster.

Related to the above technique is speeding up the other parts of the

system, for instance the mass storage system.

The majority of programs show some sort of locality of reference. Intro-

duction of cache memories exploits this locality both in the data and the

instructions.

1.1.4 Assessing the performance improvement

All the techniques for performance improvements are independent of each other.

Thus for instance any improvement achieved by a software engineer is totally

orthogonal both to improvements made to any basic algorithm (in as much

as this would not affect the software implementation), or other improvements

made to the implementation by hardware or software engineers.

Chapter 1. Introduction
	

14

In all three cases, algorithmic, software, and hardware improvement, what

is being attempted is a reduction of a cost function. The precise cost function

differs between algorithmic theorists and those performing the actual implemen-

tation. Indeed it may be different between engineers working at separate parts

of the design hierarchy. Specifically, in order to be able to argue rigorously,

algorithmic theorists deal only in orders of growth, and fixed bounds to these

orders of growth. This make is possible to classify the algorithm's behaviour

as the input becomes larger and thus look for ways to reduce the asymptotic

performance.

In implementation the cost function is both considerably different and rather

more general. In speeding up implementation, techniques are normally aimed at

making a system run faster for a given size of input, thus improving the ab8olute

performance. Other points which need to be taken into account when examining

techniques to improve implementation and hence form part of the total cost

function are pragmatic issues such as cost, reliability and supportability.

Thus a theorist may develop an algorithm which is better, since it exhibits

a lower order of growth. The software engineer may choose not to implement

this algorithm since according to the cost function which the software engineer

uses the algorithm is worse. This might be due to the intricacy of the algorithm

which makes the absolute performance for small input unacceptable, or perhaps

the algorithm is so complex that any implementation would be unmaintainable.

Finally since a theoretically minimal solution to a problem may be infeasible

computationally a software engineer will trade off 'goodness' of solution against

computation time.

Chapter 1. Introduction
	

15

1.2 Parallelism

There are many techniques which may be applied at many places across the

system design hierarchy. For instance many of the techniques developed to

control the complexity of software design are equally applicable to controlling

the complexity of Very Large Scale Integrated circuits.

One of the most useful techniques which can be used to increase the perfor-

mance of computer systems is the harnessing of parallelism. It can be applied

across the complete spectrum of the design hierarchy. Actual implementations

have met with varying degrees of success. Parallelism may be studied by algo-

rithmic theorists, software engineers and hardware engineers.

1.2.1 Algorithmic parallelism

The computational complexity of parallel systems has been studied in great

depth and many very interesting algorithms and architectures have resulted.

When implementing these algorithms there is a fundamental problem, which

springs from the fact that the cost functions used to analyse concurrent algo-

rithms differ considerably from those used by engineers. Typically theoretic

measurements of complexity are based on a measure not only of asymptotic

time performance, but also hardware complexity. Time is open ended - thus it

is reasonable to talk of asymptotic time performance. Hardware, however, is

not and so any algorithm which assumes an open ended amount of hardware

must have a limit on its size of input.

Thus although Batcher's bitonic sorting algorithm [BDHM84] has time com-

plexity 0 (be n), the fact that its processor complexity (the rate of growth of

the number of processors) is 0(n) makes implementation difficult. Assume that

a sorting engine was built to use bitonic sorting with k processors. Since the

hardware size is fixed, once the input exceeds the limit of k processors the sort-

ing engine ceases to function according to the algorithms and becomes purely a

Chapter 1. Introduction 	 16

faster machine and as such can only affect the absolute performance; for small

inputs only a fraction of the available processing power is used.

This does not in any way decry the work done on algorithmic parallelism,

it merely points out the problems of generally applying something which may

appear to be good only within a limited cost function. The insights gained

by theoretical analysis are of very great use. However, one of the limitations

as 	in this thesis is that hardware is not unlimited. This thesis does

not address algorithmic parallelism, it describes some algorithms which run on

parallel architectures and achieve an absolute performance increase.

1.2.2 Implementing parallelism

Given the possibility of concurrent hardware, the software and hardware en-

gineer would seek to find methods to improve the absolute performance. The

resulting system would have no upper limit on the input size. All data, re-

gardless of size, would be processed faster. The ideal engineering solution is to

improve the absolute speed of a parallel system by a factor close to the increase

in hardware complexity.

Concurrency has been implemented right across the design hierarchy. The

earliest techniques developed for its implementation were aimed at the lowest

levels of the design hierarchy. With a few remarkable exceptions, development

has been of techniques which are a progression up the design hierarchy, through

the hardware hierarchy to the lower levels of the software hierarchy where most

research is currently taking place. The reason that the highest level of hierarchy

(the theory of algorithms) has already a substantial amount of results is that

the cost functions used allow mathematically rigorous argument about parallel

systems.

hi his stimulating article [Den86] Denning notes the progression up the de-

sign hierarchy and divides the development of the implementation of parallelism

into four stages. It should be mentioned that, as with all form of artificially im-

Chapter 1. Introduction 	 17

posed division, there are some developments which defy classification. However

for the most part this classification remains as being very useful.

Stage One is the explicit addition of parallelism to the hardware. This is

done in such a way as not to require changes to be made to the users' code.

At the lowest level of the hardware hierarchy, what is being made concurrent

is the action of individual gates and transistors. An obvious move is from bit

serial to bit parallel processing. This change is more effective than the next

'obvious' move to word parallel processing since the unit of operation in most

algorithms is the word, not groups of words.

That bit parallel processing is not used throughout all hardware design is

an interesting example of the effect of cost-functions. In many cases, especially

when extreme packing density of circuits is desired, the simplicity of bit serial

processing makes them favoured over the complexities (and greater size) of bit

parallel implementations.

An interesting development of such ideas is the bit serial SIMD machine such

as the DAP [H381, section 3.3]. Instead of processing words serially and bits in

parallel these machines function by processing bits serially and words in parallel.

An earlier and somewhat more complex example is the orthogonal computer

[Sho70] which allowed dual modes of operation - bit serial word parallel and vice

versa. Both these machines are somewhat out of the progression being examined

here since programming them requires explicit knowledge of the architecture

and their specialised op-codes thus disqualifying them from pure classification

under stage one or stage two. This indicates the weakness of the classification.

Another popular technique for, enhancing the absolute processing through-

put of a computing system is to incorporate various pipelines into it. Use of

pipelines stems from the observation that very often access to memory is se-

quential in nature, allowing prediction of where the next access will be. This is

especially true for the instruction streams which make up programs. Pipelined

instruction execution units work by dividing the handling of instructions into

Chapter 1. Introduction 	 18

separate parts, each of which may be dealt with by a separate piece of hard-

ware. Once the instruction has been processed by one piece of hardware, it

moves along to the next site in the pipeline and the next instruction can then

be processed. Thus several instructions are processed in parallel, although the

fixed order of processing is maintained. Parallelism has allowed more processing

power to be introduced without making changes to the users' original programs.

Most modem CPUs have some level of instruction pipelining.

In a similar manner, pipelining can be applied to the data stream [HJ81,

chapter 2], thus introducing parallelism. In practice, the number of applications

which can easily and invisibly utilise data pipelined architectures is limited.

The best example of a data-pipelined architecture are the current 'super-

computers' for instance the Cray series machines. Programming these machines

need not require explicit and detailed knowledge of the architecture. Vectoris-

ing compilers and special purpose run time libraries make use of the vector

instructions which utilise the pipelines.

At the highest level of hierarchy which still remains within the bounds of

stage one development are the loosely coupled multiprocessors such as the DEC

Vax-Cluster[KLS86]. These usually operate in conjunction with a multitasking

operating system. Each process is assigned to one processor, either for its 'life'

or, rather more flexibly, for one time-slice. The available concurrency is used,

not to speed up the execution of one task, but to allow processing of more than

one task in parallel. Thus no single task is performed fast, but more processes

can be performed in parallel without performance degradation. Again no change

needs to be made to the users' code. Such hardware is often the only way, and

is currently the most cost-effective way, of increasing processing power of multi-

user installations. A useful side effect of this sort of hardware is the added

reliability, caused by the inherent redundancy.

Stage Two. In this stage, the parallelism is explicitly introduced into the

system at the software level. In terms of the design hierarchy, development

Chapter 1. Introduction 	 19

here is at the highest levels of hardware and the lower levels of software, com-

prising as it does of both software and hardware architecture. The software

engineer explicitly divides the system into processes which are then assigned to

processors. Any inter-processor communication needs to be explicitly handled.

It is in order to ease the handling of such concepts as multiprocessing and

interprocessor communication that special purpose languages such as OCCAM

have been developed. Although their use is not obligatory, as witnessed by this

thesis, they will considerably ease the process of implementation. The drawback

with using such languages at present is that they are exceptionally difficult to

debug. With traditional languages it is normally very easy to detect when a

program has failed. However, as well as the normal methods of failure, parallel

languages can also fail due to deadlock whose detection is not trivial. Fairness

(equal resource allocation) is another problem which these languages need to

address. The further development of such languages will greatly ease further

research during this stage.

Another highly significant recent development are the public domain Remote

Procedure Call systems. Any (inherently parallel) program written using these

to control the parallelism is guaranteed at least a certain amount of portability

(being amongst those parallel systems upon which the RPC hasbeen mounted).

The wider availability of these systems and their general acceptance will lead

the way to 'portable parallelism' just as the development of high level languages

paved the way for portable programs.

Currently most target hardware for this stage is relatively coarse grain

MIMD [F1y721 with a maximum of a few hundred processing units. Given the

restrictions of Amdahl's law (see section 1.2.3) it is difficult to see how any larger

system could be effectively programmed, except in a few very special purpose

situations. The processing units are all interconnected. A common intercon-

nection is the n-dimensional cubes (as used by the INTEL iPSC, a derivative

of the Caltech Cosmic cube [Sei851 and NCUBE/ten [HMS*861) although grids

and shuffle exchange graphs are possible.

Chapter 1. Introduction
	

20

In as much as they may be placed in the classification, SIMB machines

such as the aforementioned DAP may be placed in stage two by virtue of their

explicit reference to parallelism. However they have not yet proved popular for

implementation of stage two developments; this is probably due to the difficulty

in envisaging algorithms for them. Most SIMD machines can be classified as

belonging either to stage one although there are certain indications that they

will play a role in stage three.

The work described in this thesis can be unequivocally placed into the sec-

ond stage. The concurrency is explicitly described; this is done within the

IMP language [Rob86], the parallelism being specified by a technique similar to

remote procedure calls. The precise mechanism is described later.

Stage Three. From being explicitly described by the engineer, the paral-

lelism becomes implicit in the language, the compiler and associated software

extracts the concurrency from the language. The languages are likely to be

non-imperative.

Whereas the second stage is currently the centre of investigation for the low

to medium level software engineer, the third stage is currently the outpost of

research at the highest levels of software engineering. No particular trend for.

target architectures for this stage of development has appeared yet; develop-

ments include datafiow machines [TB1182] and Logic In Memory machines such

as the DAP and the Connection Machine.

Denning [Den86] infers that this stage will supercede stage two. This seems

unlikely since it is more probable that each stage will develop techniques which

will be, as all other techniques developed across the design hierarchy, orthog-

onal to each other. Thus any improvement made during stage two will be in-

dependent of changes made during stage three - just as the improved hardware

developed during stage one can, and is, used as the base-level implementation

for machine used in stage two.

Stage Four. Beyond saying that this will consist of

Chapter 1. Introduction 	 21

"...very high-level user interfaces capable of interacting with sci-

entists (and engineers) at the same level of abstraction as scientists

do with each other..."

Denning gives no details of how this rather sweeping aim may or will be achieved

and it is safe to assume that research in this field is some way off.

Current Research into Parallelism

The great boost which research in concurrency has recently received is due to

several factors. These have affected the cost functions which in turn have meant

that concurrency has become a viable (and indeed a vital) method of developing

faster hardware.

The cost of hardware has reduced significantly while the reliability has

increased markedly. This is in contradistinction to software which is cur-

rently the major cost factor in a system while also representing the greatest

source of unreliability.

Many other implementation levels are approaching their cost-effective lim-

its eg basic device speed. In order to win further performance increases

different methods need to be developed to improve system performance.

The mathematical background which has been developed by the theorists

(both semantic and algorithmic) allow better formal reasoning about par-

allel hardware.

The ILLIAC W computer of the University of Illinois [S1o671 was well before

its time especially in the first two of these factors. The hardware was too

expensive for a complete configuration ever to be built and even that which

was constructed suffered from unreliability. At the same time faster computers

could be built by improving other parts of the system.

Chapter 1. Introduction 	 22

There is no doubt that these factors have eased to the extent of allowing

huge developments in the field of parallel hardware and it seems likely that the

next few years will see the development of even more concurrent architectures.

1.2.3 The pitfalls of parallelism

The pitfalls of parallelism are really just the limitations which parallel imple-

mentations have. However they are so fundamental that it is always worthwhile

to point them out.

Shore. Having designed the Associative Processor [Sho73], an early logic-in-

memory processor, Shore concluded that it was inappropriate for its design use

(signal processing) because the processing ratio - the ratio of devices used as

memory to those used for processing logic - was too high. He concludes that

for systems with a high processing ratio, the chief aim of the software must

be to keep the proportion of devices which are meaningfully active as high as

possible.

In the light of current developments in VLSI it is dubious whether his con-

clusion is still valid. It can, however, be extended to apply to parallel systems

where the equivalent aim is to keep as many processors as possible active. If,

for instance, at any stage in the computation all the processors are waiting for

one processor to complete its current task, the processing slows down to the

speed of this one processor bottleneck.

Amdahl's Law This states [Amd671 that there is a proportion of processing

which is inherently sequential.. Amdahl terms this data management housekeep-

ing and states that this takes up about 40% of the time, allowing that it could

be reduced to 20%.

Assume that the housekeeping overhead is 20% and that this may be per-

formed on a totally separate processor. Further assume that enough technologi-

cal development has taken place to speed up the processing of the house-keeping

Chapter 1. Introduction 	 23

by a multiple of two. If the rest of the processing is totally parallelised to take

effectively zero time, the total improvement can only be by factor of 10. This

is obviously a useful speed-up, but is less than might have been expected.

It is only fair to point out that since these two papers were published many

limitations which were then apparent have become less restrictive. In the former

case, cost of the basic devices which VLSI has brought weakens the argument. In

the latter case, many of the slow computations which these systems are designed

to speed up have a small proportion of data management housekeeping and so

are more amenable to improvement through the introduction of concurrency.

In both cases the restrictions have not been removed, they remain and have

only been 'moved back'. The upshot is that these pitfalls remain and are just

as deep. Although the immediate possibility of falling into them has been

removed, they still remain to trap the over-ambitious and under-wary. For

instance Amdahl's law must still hold (see for instance [DLS86, page 48] and

several places in the following chapter). Indeed it is still the most critical

software engineering issue in program parallelism. Fortunately several of those

problems which are targets for being speeded up by parallelism are compute

bound to the extent that the data management housekeeping may take up only

a very small (say 1% or 2%) of the processing load. These problems are still

subject to Amdahl's law and thus a basic speed up of the order of 50 to 100

times might be expected.

1.3 Pattern Generation

Chapter two describes what is involved in performing pattern generation, to-

gether with an explanation and justification of each of the stages. What follows

is a description of where and when pattern generation occurs in the process of

designing VLSI integrated circuits. Once aware of this, it should be possible to

Chapter 1. Introduction 	 24

define the limitations imposed upon the processing and so infer which level or

levels of the implementation can be utilised to improve the performance.

Pattern generation is the final step of data processing which occurs before

the physical processing associated with fabrication starts. The output of any

integrated circuit design system, be it silicon compiler, gate-array personali-

sation system or full custom engineers work-station is a representation of the

geometry which will exist on the final product (the chip). 1

The first physical representation of this geometry is the mask which is used

much as a photographic negative is, to project an image of the geometry onto

the chip. Mask making machines convert geometric data presented in in the

form of a pattern tape into physical masks. Their precise method of functioning

is described in the next chapter.

For reasons which are fully explained in the next chapter, a considerable

amount of processing needs to take place to convert the artwork representation

into the pattern tape. This processing is termed pattern generation.

Data preparation for pattern generation is not dissimilar to compilation in

that the (normally binary) output must be equivalent to the (often textual)

input. Both input and output must be in a fixed form. Pattern generation

suffers in a similar manner to compilation in that it incorporates functions

which, although difficult to perform, appear easy to humans. In contrast to

compilation, in pattern generation most of the high level structures of the input

are not directly translatable to any structure in the input. Furthermore it is

the norm for pattern generation input to be massive and pattern generation has

no techniques which correspond to separate compilation.

fact pattern generation is not limited to integrated circuit pre-processing. A

good pattern generation system should be able to handle any sort of pattern data -

be it for electronic systems (when the product is integrated circuits), optical systems

(diffraction gratings) or acoustic systems (surface acoustic wave guides).

Chapter 1. Introduction 	 25

1.3.1 The motivation for faster pattern generation

At first inspection, pattern generation is not an obvious candidate for speed

enhancement. In sharp distinction to simulation and design rule checking, the

traditionally time-consuming parts of the design process, pattern generation

should only occur once. In fact it is not unknown for a design to go through

many iterations even after the design has been sent to the mask shop.

The major motivation in speeding up pattern generation is not unrelated

to Amdahl's argument. Considerable efforts have been and currently are being

expended to speed up the design of integrated circuits. Leading the develop-

ment are the fast prototyping services which will use the direct write devices

mentioned in the next chapter. Once one bottleneck is removed it is bound to

be replaced by another in a different part. Similarly once various parts of a

design process have been speeded up the pattern generation stage will become

the bottle-neck. Currently a large design may take several days to process prior

to its manufacture as a mask. This is less than the turnaround offered by fast

prototyping services. It is obviously essential to reduce the PG processing time

so that it ceases to dominate the fabrication and preparation time.

1.3.2 A method of speeding up pattern generation

Pattern generation, then, is a part of the VLSI design process which requires

speeding up. In many other parts of VLSI design systems great speedups can

be made by taking advantage of the hierarchical nature of the input data (for

instance [Wh181]). This has paid great bonuses in very many cases, as well a

serving as a good way to control the complexity of the system during its design.

Although it may prove possible to make very limited use of hierarchy in future

pattern generation systems, dependency upon hierarchy in order to speed up

processing is inappropriate for two main reasons:

1. Pattern generation systems need to be able to deal with totally 'flat' input,

that is data which has had all the hierarchy removed. Quite often this is

Chapter 1. Introduction 	 26

the result of a previous attempt at pattern generation, the original data

no longer being available.

2. Even were input restricted to hierarchical data, the concept of hierarchy

is as varied as design styles. Because of this only the most general as-

sumptions about the form of hierarchy present could be made. This in

turn makes the processing considerably more difficult than it needs to be

[B0W83].

Thus the chosen pattern generation system needs to be able to work upon

totally flat data. It seems expedient to develop special purpose hardware to

perform the process of pattern generation. In view of the amount of research

currently being carried out in the field,. a 'stage two' approach was decided

upon. There are of course many alternative methods of speed improvement

including the design of a special purpose piece of hardware. This would involve

a higher cost than parallel machines (as well as being outwith the training of the.

author). In addition a parallel machine might prove useful in other regions of

the design system. Given the plethora of different machines available it seemed

pointless to develop a system targeted at any one hardware system. Rather it

was decided to try to develop technique8 which would allow pattern generation

systems to run fast on a range of parallel MIMD hardware platforms. It was

hoped that the applicability of such techniques might prove to be wider than

just pattern generation processing.

Thus., in default of a single target architecture, the research and implemen-

tation were carried out in terms of broad restrictions which should encompass

the greatest possible number of target architectures.

1.3.3 Restrictions upon pattern generation processing

The first stage in doing any development of any techniques must be finding

the limitations and factors which control development of pattern generation

Chapter 1. Introduction 	 27

systems. Having found them the overall implementation techniques could be

broadly formulated.

A fundamental restraint upon PG systems is the possible size of input data.

This is where pattern generation sharply diverges from the closely related field

of graphical image processing. In image processing it is possible to consider

both pixel parallel (shape serial) and shape parallel (pixel serial) processing

[Kil85] since the resultant image is considerably smaller than that involved

in image generation - A graphical image is unlikely to be larger than 4k by

4k pixels or have no more than a few thousand objects to be shown. The

equivalent representations of a state of the art design would be> 40k pixels

and have millions of objects. Of course a graphical image needs to be processed

considerably more quickly than an integrated circuit.

Accuracy is critical to pattern generation systems in that the output should

be as precise an image of the input as possible. All rounding (which needs to

be done since mask making machines have fixed accuracy which is often much

less than the input accuracy) should be performed with the greatest possible

care so as to minimise inaccuracy. Internal rounding (rounding which occurs as

a result of fixed internal resolution) should be avoided wherever possible.

After accuracy, speed is the most important factor, hence the decision to

conduct this research into speeding up the pattern generation process. As pre-

viously noted the major constraint on the work in this thesis was that any

developed software should be able to run on a wide range of all the existing

parallel hardware. This in turn meant that unbounded parallelism could not

be assumed since it might not be present in every case, although it is desirable

that such parallelism which is present be used fully. Having specified that the

amount of available parallelism is limited, His important to ensure that all

individual processors are kept busy.

Given that final choice of machine has been circumvented, it would be pre-

cipitate

re

cipitate to assume a high communication bandwidth. Furthermore no particular

topology for interconnect could be assumed and so any assumed topology must

Chapter 1. Introduction 	 28

be easily and cheaply implementable. This in turn means that communication

must be considered as a restriction.

Finally, the processing units of most concurrent machines do not have un-

limited or virtual memory. Any algorithms which run on concurrent hardware

should not consume large amounts of memory or at worst they should have con-

trollable memory requirement. Since memory is a cheap resource and (within

limits) moderately easy to expand, the actual amount of memory available per

processor can be considered to be large (but fixed). Of course, this limitation

is not a restriction solely of multiprocessors since several uni-processors have a

upper limit of 16 megabytes of user addressable memory.

To summarise, the five major restrictions are that any resulting system

should be: accurate as described above, fast, making the best possible use

of the available processing power, not overloading any communication system

while only requiring a fixed amount of memory in I each processing unit.

1.3.4 The Overall techniques used

The general technique used throughout the the generation of the parallel system

was to take, where appropriate, an existing sequential system and modify it,

substantially in some cases, less so in others, to run on parallel hardware. Since

there was possibility of limited amounts of concurrency, fairly course grain par-

allelism was used throughout. The individual techniques are discussed in the

relevant chapters. In each chapter mention is made of the guidance which each

limitation gave towards the further development - the solution which serves to

meet one limitation goes a long way towards meeting several others.

Speed It is the central supposition of this thesis that any resulting system

will be faster than any existing system. By making the best possible use of

available processors, the best possible speed up should be achievable. How much

performance improvement might be expected for a given increase in hardware

size is discussed below.

Chapter 1. Introduction 	 29

Accuracy The basic system which served as the foundation for the research

is acceptably accurate. It remains to ensure that the additions to the system

do not introduce further errors. The fact that the resulting system was a direct

derivation of an existing one means that any changes made to the original

system in order to enhance accuracy could immediately be incorporated into

the parallel system. This of course goes for all the limitations which are no per 8C

limits introduced by parallelism (for instance memory requirement limitation).

Communication As noted above communication is a source of bottle-necks,

the importance of the bottle-neck increasing as both the amount of concurrency

and the speed of the basic processing units is increased. A good general rule

to observe throughout is to reduce to a minimum, and if possible remove, any

interprocessor communication. This leaves the sole communication being the

distribution of the input data to the processing units and the transmission of

the physical output data onto the necessary output media. Furthermore it was

decided that whenever there was a choice in pay-off between memory, speed and

causing extra communication the first two would be favoured over the latter.

Load balancing This requires that each of the processing units is given the

same workload and so will complete at approximately the same time. This in

turn requires that some relationship between some measure, applied to the input

data, and processing time is established. Having found this measure and the

associated relationship, some method must be found to divide up the processing

effort equally. The measurement of the input data, the corresponding processing

load analysis and data division should be easy to perform or the process of

balancing the load will become so time consuming as to be self defeating.

Controlling memory use takes on two forms. Firstly it requires establish-

ing whether the data which is memory resident needs to be resident for each

processor or whether a different processing philosophy could allow the data to

be processed in such a manner that no processor will ever exceed its memory

Chapter 1. Introduction 	 30

capability. If this cannot be done an assessment of memory requirement, prefer-

ably using the same input measure as used to gauge processing time, can then

ensure that no processor ever 'runs out' of memory.

If the method of division and the ways of measurement are kept cheap, in

terms of required processing, it is not unreasonable to assume that the speed

up achieved is of the same order of magnitude as the increase in complexity of

the hardware.

1.4 This Thesis

Having chosen a system in need of temporal performance enhancement, defined

the limitations and developed the ground rules for implementing the parallelism,

the actual business of speeding up the individual programs could commence. In

doing this, the techniques themselves could be developed.

During the development of the parallel system, analysis needed to be carried

out to ensure that the actual system would be faster. Other characteristics of

the system which needed to be measured were the memory requirements and

the communication bandwidth.

In each case the analysis and measurement of the developed system was

by an emulation of the parallel system. Given such compiler technology and

operating system support for communication as is needed, it would not be hard

to make the system run on any real parallel processor.

The precise form which each emulation took is described in the relevant

chapter. In general the concurrency was emulated by careful use of timing pro-

cedures placed around an iterative loop which simulated each processor in turn.

Timing information was taken by associating a 'clock' with each process being

emulated. This clock was started and stopped as processing was performed

on behalf of each process. Support routines provided such extra information as

finding out which processor became free first. Bandwidth was measured by gen-

Chapter 1. Introduction 	 31

crating a time-stamp log which could be analysed later. Memory requirements

were measured by using calls to functions inherent in the operating system of

the emulation computer. Great care had to be taken when communication was

emulated, especially when bandwidth measurements were also being taken.

It must be borne in mind that the resulting emulation is of a system with

processors which have the same power as the processor which performed the

emulation. The bandwidth measurements would of course differ if the processing

units were of a different power. This is not seen as a difficulty since what is

being presented is a method of achieving speed up by using parallelism not a

single parallel system.

In this way a good measure of the performance of the parallel system could

be achieved in that if the system was not well behaved according to any of

the constraints then the results would show this. However if the system was

well behaved, the results could be assumed to be a reflection of a reasonably

well performed implementation upon real parallel architecture. For instance

although communication was fast in the emulation, a similar rate could be

achieved in an implementation by utilising such techniques as double buffering

and asynchrony - the results of the bandwidth measurement being low enough

to ensure this; any remaining overhead would be mirrored in the emulation as

time taken to write the trace file.

1.4.1 Description of the rest of the thesis

The rest of this thesis falls into three parts. Chapter two describes the com-

plete process or pattern generation (both the mask making and associated data

preparation) in greater detail and gives some details of how one particular

pattern generation system works. This is unfortunately required to motivate

and support the next three chapters. Chapters three, four and five describe

the actual work which was carried out. They are all of roughly the same form.

Where it is appropriate a description of the range of algorithms possible and

the chosen 'sequential' algorithm is given. There then follows a description of

Chapter 1. Introduction 	 32

the resultant, parallel algorithm, with justification for why it was chosen. Re-

sults, both the expected and (in a few cases) the unexpected are then given,

and conclusions drawn. For each chapter important results are the maximum

number of processors allowed for any stage in the system, this being governed

by the input or output bottle-neck and secondly the data bandwidth which this

number of processors require. Finally for each chapter there are several loose

ends, most of which are the result of hindsight and are indications of the ways

in which further research should take place.

The final chapter ties together the preceding chapters and draws some con-

clusions. There is a description of possible further developments incorporating

other facets of implementation improvement. The implications of the developed

techniques for applications other than pattern generation are discussed. The

implications for architectures are also discussed.

I

Chapter 2

Data Preparation for Pattern

Generation

2.1 Mask Making

The function of a mask making machine is to convert a digital representation of

the design, the pattern tape, into a physical representation, the mask set. The

masks, which are normally copies of a master set, are used during the actual

fabrication of the integrated circuit wafer.

Integrated circuit fabrication is a multi-stage operation. At the start of each

stage a two dimensional pattern needs to be made upon the wafer surface. This

pattern will control whether or not parts of the wafer are exposed to various

processes - for instance ion implantation, ion diffusion,, or metal or polysilicon

deposition. The patterning is achieved by covering the entire wafer with a layer

of photo-resist. The mask is brought up to the wafer surface and a light source

(visible or u.v.) exposes the wafer. The light affects the resist, either breaking

it down to make it soluble, or making it insoluble. In either case the excess

resist is removed leaving the desired pattern upon the wafer surface to allow

further processing. Integrated circuit design is the function of designing the

precise geometry which is desired upon the surface of the wafer and thus the

completed chips. It is the job of the mask making machine to generate the mask

sets from a suitable representation of this data.

The earliest mask making systems were purely manual. Each layer was

check-plotted at a large magnification. The precise image of the design was

33

Chapter 2. Data Preparation for Pattern Generation 	 34

hand cut and peeled into rubylith. The rubylith was photo-reduced to generate

a reticle (normally a ten times copy) which was further reduced and duplicated

in a step and repeat machine to the size required for the master mask.

The hand cutting and peeling of rubylith was very tedious, error prone and

time consuming even at small scales of integration. Thus methods of automating

the mask making process were introduced. The earliest development was the

automation of the cutting process. The rubylith was cut by a device similar

(and occasionally identical) to a flatbed plotter. The peeling stage continued to

be performed manually - this was still time consuming and even more, tedious

than before. The way was therefore laid for the development of mask making

machines which required very little operator intervention.

Modern mask making machines can be divided into two major types. The

earlier, but still popular, photomechanical machines [Hen771, and the more re-

cent electron beam machines. Photomechanical mask makers tend to be less

accurate (in the sense .of working to lesser tolerances) than electron beam ma-

chines; however the additional accuracy of electron beam machines is offset by

the reduced cost, both capital and working, of photomechanically generated

masks as well as the lessened problems attendant when working with a mature

technology. Thus photomechanical mask making machines', although decreas-

ing in popularity are still in the majority [Tra85]. Indeed current developments

indicate that photomask making machines will exhibit a longevity which even

its proponents would not have originally envisaged.

2.1.1 Photo-mechanical mask makers

Photo-mechanical (or optical) mask makers are those which are usually de-

scribed in text books on VLSI design [MC80, section 4.21 [HS80]. A transparent

plate (made usually of glass or quartz) is coated with a photographic emulsion.

This plate is mounted onto a table which in turn is sighted below a movable

light projection system with a rectangular aperture whose size may be varied.

The plate can be moved relative to the light source along the X, Y and rota-

Chapter 2. Data Preparation for Pattern Generation 	 35

r,ri

MIN AIOA1I4 •

Figure 2-1: Optical P.G. Data

tional axes. In addition both the length and the width of the aperture can be

adjusted. These are the five main parameters to the mask making machine;

there are others, but these have no impact upon the related data preparation.

The pattern tape for the generation of masks for an optical machine consists

of a series of quintuples, controlling the five major parameters. The mask

maker functions by reading a tuple, adjusting its settings and then flashing an

exposure. Figure 2-1 illustrates typical optical pattern generation data. Once

the complete tape has been read, the plate is removed and developed in a similar

manner to a photographic negative.

Typically the precision of optical mask makers is less than that required for

the final mask'. Therefore the plate is often exposed at a ten time scale gener-

ating a lOx reticle which needs to be step and repeated to generate the master

mask. When generating masks from reticles it is occasionally possible to com-

bine two reticles thus allowing two patterns on the final mask. A combination

'Typical parameters are: smallest box size (length and width) 4&, box size increment

0.5i, positional increment 0.1i. These figures are those which are accepted by the

machine. It is unclear whether they relate to the accuracy or the tolerance of the

machine.

Chapter 2. Data Preparation for Pattern Generation 	 36

of more than two reticles is usually inadvisable due to realignment accuracy

problems with the step and repeat machine. As the tolerance and accuracy of

newer generations of optical mask makers get better, a trend is developing to

generate 1 x Reticles which require no photoreduction.

Side effects of optical mask-making

Figure 2-2: Acute angle approximation for optical P.G.

Because optical mask makers can only generate geometry which is made up

of rectangles, not every input shape can be generated. In particular geometry

containing acute angles cannot be represented and an element of approximation

needs to be introduced - see Figure 2-2.

More problematic are flaring and fogging. It can be assumed that the first

time an area of emulsion is exposed a rectangle corresponding to the input

parameters is generated on the plate. Subsequent (over)exposures of the same

area cause sideways scatter and thus exposure of areas not below the flash. The

resulting inaccuracy manifests itself into two ways - flaring and fogging.

Chapter 2. Data Preparation for Pattern Generation 	 37

flarin

Figure 2-3: Flaring

Flaring When an edge of (for instance) a wire is flashed multiply, the sideways

scatter causes flaring - see Figure 2-3. It is easy to see that this could

cause design rule violations and subsequent reduction in yield in the final

chips.

Fogging If an area is multiply overexposed scatter into neighbouring non-

exposed areas can cause the fogging (partial exposure) of these regions

- even if there has been no overlap along any edge. The amount of over-

exposure has to be large (the order of tens of flashes not ones). There are

cases where overlap can be beneficial since it can reduce flash count.

The speed which an optical mask maker takes to expose a plate is obviously

a function of the input size. However the time taken to alter parameters also

contributes sizeably. Well ordered data can be flashed at an average rate of 150

flashes per second. Flashing badly ordered data can be as slow as 2 flashes per

second.

2.1.2 Electron Beam mask-makers

In electron beam (or Ebeam) mask making the plate is exposed by a beam of

electrons which may be deflected across the plate. As for graphics displays

Chapter 2. Data Preparation for Pattern Generation 	 38

Beam off
Beam on

/ 1
Vector Scan
	

Raster Scan

Figure 2-4: Raster and Vector Scan Lithography

which are, to an extent, based upon a similar technology, Ebeam machines may

be divided up into up into vector scan and raster scan devices.

Raster Scan Devices are the more numerous type of device. As the pattern

tape is read the pattern to be exposed upon the plate is written into a

bit-map memory. This is scanned a line at a time; at the same time the

electron beam scans across the surface of the design. The pattern in the

bit-map controls whether the electron beam is turned on or not and thus

where the emulsion is exposed.

Vector Scan Devices do not use a bit-map memory. As each shape is read

from the pattern tape it is converted into a series of rasters which the

electron beam then describes upon the surface of the plate. The earliest

machines were of this type and the very latest machines have this capa-

bility. As well as the traditional problems for pattern generation outlined

below, vector scan Ebeam machines present the pattern generation sys-

tems with the additional problems of dosage calculation due to proximity

effect [Cha75] (an effect not dissimilar but unrelated from flaring). The

calculations involved are somewhat complex and are not addressed in this

thesis.

Figure 2-4 shows how the two types of Ebeam machine would generate a

simple shape. Despite the difference in operation, the input formats, both in

terms of overall organisation of the data and in terms of the individual data

items, for the two types of machine are surprisingly similar. Neither vector scan

Chapter 2. Data Preparation for Pattern Generation 	 39

nor raster scan machines can expose a complete plate in one operation; rather

the area of the plate is divided up into regions termed stripes or tiles which have

to be processed in a fixed order. In raster scan machines the stripes, which are

normally wide but short2 have to be processed starting at the bottom left in

increasing y value to form a segment. The segments are processed from left

to right. In vector scan machines the regions are square and processed in

boustrophedonic (serpentine) order.

The pattern tape for Ebeam machines consists of a series of subfiles, one for

each stripe. The subifies have to be organised on the tape in the order in which

the stripes will be processed. Each subifie consists of a series of descriptions

of trapezia (quadrilaterals with two parallel sides) with the parallel sides being

horizontal. Squares and triangles are special cases of trapezia. Figure 2-5

illustrates a typical Ebeam output. Trapezia are chosen since:

All shapes may be represented as collections of trapezia.

Trapezia may be easily vectorised.

They are easily converted into bitmap format (rasterised)

Side effects of electron beam mask makers

The methods of functioning both of raster and vector scan machines is such

that all data may be represented (to the level of accuracy of the machine)

without the need for approximation which was required for optical machines.

Although the data is still rounded to the nearest address unit, the levels of

2Typically 32768 by 512 or 1024 address units. The address unit (a.u.) is the

resolution of machine. Typically it is a few tenths of a micron

3Typically 32768 a.0 each side

Chapter 2. Data Preparation for Pattern Generation 	 40

7w:
•

— I.. U
-_- - - 	u _uiIIF 1 -

Figure 2-5: EBeam P.G. Data

representational accuracy achievable by Ebeam machines are still much greater

than those offered by optical systems.

Since raster scan machines represent the pattern in a bitmap there, is no side

effect of overlapping. However vector scan machines still suffer with sideways

scatter with the attendant problems of fogging and flaring when an area is

multiply exposed.

2.1.3 Other Pattern Generation Equipment

Although mask making equipment accounts for the vast majority of pattern gen-

eration systems there are other types of equipment which fall within the bounds

of pattern generation and should, for the sake of completeness, be mentioned.

Direct Write and related devices

Machines of this class circumvent the requirement for masks by actually working

on the wafer surface. The vast majority of devices in this class are still at the

prototype stage. The motivation behind the development of these systems is

to enhance the speed of processing of designs. It seems feasible to assume that

direct write on wafer machines will be able to process ten layers in one hour.

Chapter 2. Data Preparation for Pattern Generation 	 41

This obviously increases the need for faster data preparation. There are two

main classes, direct write systems and deposition systems.

Direct Write on Wafer Devices are used in the patterning for any layer

during processing. Direct write devices function by using an electron beam to

remove resist without the intermediate stages of mask making, exposure and

development.

Laser and Plasma Deposition systems obviate the need for resist com-

pletely by depositing the upper (metal) layers of a sernicustom design directly.

In addition some systems can etch away layers (for instance for vias).

Formats and side effects. Systems of both these types are so new that

their input formats are not known. However it seems likely that they will be

similar to those for Ebeam machines (input based on simple shapes, covering

discrete regions). Similarly the restrictions and side effects of these systems are

unknown although avoidance of multiple exposure is vital for deposition and

direct write systems.

Mask Checking Machines

The purpose of a mask checker is to ensure that there has been no error in the

mask making process and that the masks reflect the input data. Early mask

checkers functioned optically, more recent systems work electronically. As far

as data preparation is concerned these are very similar to Ebeam machines,

indeed in some cases the same data will drive both the mask maker and the

mask checker.

Laser Driven Optical Equipment

Another recent development is the raster scan, laser driven optical mask maker

[SR87]. This functions in a similar manner to a raster scan Ebeam machine,

Chapter 2. Data Preparation for Pattern Generation 	 42

but uses light (in the form of a laser) rather than electrons to expose the mask.

The similarity of function is mirrored by the fact that these machines take as

input format the 'industry standard' formats which are used to drive the Ebeam

machines. Thus as far as data preparation is concerned these may be viewed

as equivalent to Ebeam machines.

2.2 	The Function of Data Preparation for P.G

The ultimate purpose of pattern generation data preparation is to generate a

pattern tape. The input is usually data expressed in an artwork format although

P. C. format input is not unknown. P.G. data is that which forms the input to

a mask maker". Artwork data is the result of a design system. P.G. formats

are rather more restricted than artwork formats in the following ways:

As discussed earlier the shapes representable by a mask maker, and thus

by a P.G. format, are limited. Artwork formats normally allow general

polygons, boxes and wires (the last two being special cases of polygons).

. Artwork formats allow hierarchy. P.G. formats are completely flat.

. In P.G. formats the layers which will make up the individual masks need

to be specified in order in their entirety. Artwork formats allow shapes to

be specified on any layer at any time.

Data which is an artefact of the design system and which will not cause

geometry to appear on the masks. Examples include nodes, stretch points

and text.

4The term 'P.G. data' is often taken to mean data for optical machines only. In this

thesis it refers to data for all types of pattern generation equipment discussed above.

Chapter 2. Data Preparation for Pattern Generation 	 43

To summarise, artwork formats reflect the ways that design systems and

designers think and work, P.G. formats reflect the way in which mask makers

function.

Pattern generation data preparation must perform the conversion from an

artwork format to a P.G. format. In doing so it must take into account the side'

effects of the mask maker. In addition it may need to perform other operations

which are the result of side effects of both the design style and the fabrication

process. Functions which it should fulfil over and above the conversion include:

Overlap Removal. This ensures that there is no fogging or flaring during

the mask making process. If the overlap removal is achieved by joining

together all overlapping and abutting shapes into polygons it makes the

sizing considerably simpler.

cats ears

Pre-bloat overlap removal avoids cats ears

Overlap removal needed after bloating

Figure 2-6: Bloating and overlap removal

Chapter 2. Data Preparation for Pattern Generation 	 44

Sizing. Very often the fabrication techniques are such that the pattern made

upon the plate should be larger or smaller than specified by the designer.

This sizing is achieved by moving each edge by an absolute value in a

normal direction. Thus the pattern (or field) becomes larger (respectively

smaller) in that it covers a greater (respectively lesser) proportion of the

area of the design. Performing of sizing is the most important function

of P.G. data preparation systems. Both positive sizing (bloating) and

negative sizing (shrinking) need to be carried out in conjunction with

overlap removal. In fact as Figures 2-6 and 2-7 show, overlap removal

needs to be performed both before and after sizing. When sizing angles,

the apex will move by more than the amount of sizing. It is often useful

to clip angles to reduce this effect. See for instance [BB80] or [Kil82].

Mask Generation. Often the precise masks required do not correspond one

to one with the layers specified by the designer or the design systems.

For instance, the implant region for an nMOS process may be generated

from the union of active area for depletion mode transistors and buried

contacts, both suitably sized (possibly by different amounts). Other func-

tions which are needed are intersection and subtraction. Simple Boolean

algebra ensures that given these three functions (which can correspond to

-

	

	 the Boolean operations of or, and and not), any function can be generated.

However, in addition to these functions it is useful also to have an explicit

(rather than derived) exclusive or function.

Pattern inversion. Depending upon the polarity of the resist used in fabri-

cation it is occasionally necessary to invert the pattern - that is to make

areas of pattern into holes and holes into patterns. This is usually achieved

by subtracting the design from a box whose size is the design's bounding

box.

Scaling. This trivially performed operation is vital, not only when generating

pattern tape for lOx reticles, but also when reducing existing designs. As

fab-line tolerances improve, it is quite common to reduce mask sizes by

Chapter 2. Data Preparation for Pattern Generation 	 45

reprocessing a design with a scale of 0.9 or 0.8. Scaling is achieved by

moving each edge by a relative amount. The proportion of the area which

is occupied by the pattern in a scaled design is the same as the original.

The overall area is different. Scaling is performed by multiplying the

coordinates of each vertex by the scaling factor.

Open circuit

Shrinking could cause open circuits

Shrink causes badly formed polygons

Figure 2-7: Shrinking and overlap removal

Chapter 2. Data Preparation for Pattern Generation 	 46

2.3 A P.G. Data Preparation System

Most PG systems function in two stages. The first stage involves performing

most of the functions described above. The input data is parsed and converted

into a totally flat internal format. This internal format is chosen so as to

be suitable for the implementation of sizing, scaling and Boolean operations.

These operations are applied repetitively until the geometry representing the

final masks is achieved.

The second stage of the processing involves the conversion of this internal

format into a suitable format for presentation to the mask maker. According

to the precise internal format used, this may be purely a translation or involve

a conversion of form as well as format. For instance, if the intermediate format

is based upon polygons (lists of vertices), the second stage needs to involve

conversion of form from edge-based representation to area-based representation.

However if the internal format was based upon trapezia, conversion to Ebeam

output becomes trivial. Finally the programs which make up the second stage

need to sort the PG data into the appropriate order. 	 -

Since there may be more than one form of output, the second stage is likely

to consist of more than one program. Thus it is sensible to migrate as much

function as possible into the first stage.

The system which forms the implementational basis of this research is illus-

trated in Figure 2-8. The first (merge) stage carries out the majority of the

pattern generation function on data represented as polygons. The second stage

then has to decompose (fracture) these (arbitrarily complex) polygons into the

simple shapes which make up PG formats and apply suitable ordering to them.

Thus there are three separate programs whose analysis and conversion to run

in parallel form the basis of this thesis: merge, Ebeam Fracture and Optical

Fracture. These make up the next three chapters.

Chapter 2. Data Preparation for Pattern Generation 	 47

goo 	Artwork Formats.

N. 	,[,7" Parse to polygon format.

MERGE
	

Sizing, Scaling, Boolean operations
Discussed in Chapter 3

Optical Fracture Ebeam Fracture
Geometric Decomposition
Discussed in Chapters 4 and 5

P.G. Formats

Figure 2-8: Overall Architecture of a P.G. System

Chapter 3

The Polygon Merge Stage

The first stage in the generation of mask-making data is the 'merge' stage. This

performs the functions of-

 Sizing

Overlap removal

. Other Boolean operations

3.1 Algorithms for Merging

When examining algorithms for use in the merge stage of a P.G. system there

are several important factors to note. As mentioned in Chapter 1 it is highly

important that the performance is as near optimal as possible, both in the best

and in the worst case. At the theoretical level it is advantageous if the system

performance degrades gracefully as the input becomes 'harder to process', that

is to say as it moves from being the best to the worst case. At the software

engineering level the algorithm should take advantage of known properties of

the input data (if there are any), such as Guting's algorithms for merge of C-

oriented polygons [Gut841 or Bentley et al's algorithms for (Manhattan) design

rule checking, based upon statistical analysis of IC data [BHH801.

9

48

Chapter 3. The Polygon Merge Stage 	 49

3.1.1 Theoretical Preamble

In [Sha78, Chapter 51 Shamos investigates the intersection of shapes - both the

reporting and the counting of the intersections. We shall look at the algorithms

that he describes and their descendants (which include the one used in this

research) later. At this point it will suffice to state his key results.

Intersection generation (ie the description of the intersection or union) of

two convex polygons may be carried out in time linearly proportional to

the number of vertices involved. This result can be extended to monotonic

polygons.

Intersection detection of arbitrary polygons can be done in 0(nlogn)

time.

Intersection generation of arbitrary polygons has a worst case run-time of

Q(2)

This last result is because arbitrary polygons may intersect in such a manner

as to yield O(rt2) intersection points. Shamos cites 'chicken feet' but of greater

concern in processing integrated circuit data is the Manhattan 'egg crate' case.

See Figure 3-1.

Thus although Manhattan geometry may, give simpler algorithms the asymp-

totic worst case performance is the same as for general geometry. In fact egg-

crates do occur in IC design - usually as the gate of large transistors (see Figure

3-2) - although they rarely occur in sizes large enough for the quadratic time

complexity to cause embarrassment. Note that all these bounds refer to the

intersection of two polygons whereas merging is concerned with the intersection

of many polygons. However, as always the simple case can give indications of

possible methods of dealing with the complex.

Chapter 3. The Polygon Merge Stage
	

50

2 Polygons, 16 Vertices

64 Intersection Points

Figure 3-1: Egg crates

3.1.2 Area Based Algorithms

In this class of algorithm the data is represented by the area it covers, rather

than the edges. The expression of Boolean operations is simple, but biasing

becomes difficult.

Bit mapping

The most obvious method of performing merge operations is via bit-mapping.

All the input shapes are rasterised into a region of memory.

By careful choice of the operations which are applied to the bit-map the

union, intersection, difference and so forth are trivially calculated. These be-

ing especially useful in design rule checking. In [Wi1801 Wilmore describes a

development whereby memory utilisation is reduced by using a hierarchy (of

memory) and effectively only changes are stored.

Chapter 3. The Polygon Merge Stage 	 51

JLJ- ----- -
 - hH H H HIH

	

I 	I

	

1-9 	E 	1-9 	F1I'
H H H HI'

ill 	H 	H 	El 	H 	I i 	* indicates a contact

Polysilicon egg-crate gate

	

1 	1_i

	

F-I 	F-I 	P--~-,-\diffusion source and drain

Diagonal Metal wires join the sources and drains

Figure 3-2: Egg crates in Large Gated transistors

Chapter 3. The Polygon Merge Stage 	 52

As mentioned above biasing is not simple to implement. It could be achieved

by some form of neighbour to neighbour negotiation between pixels. The rep-

resentation is the same as that used by raster scan Ebeam machines. There

would be obvious advantages if some method of exploiting this commonality

could be found.

Bit mapping is an obvious choice for hardware acceleration (see for example

[Sei82]) in that the basic operations are simple and are replicated over the entire

design. Close analysis shows that however appealing this approach may be, bit

mapping is not really applicable for pattern generation:

Arbitrary angled geometry can only be represented by the same approx-

imations which raster scan Ebeam machines use in the final stage before

mask making (jagged edges). This representation is cumbersome and does

not lend itself to the regeneration of other representations.

The space requirement is massive. Even the processing of designs which

are currently generated (not state of the art) would require hundreds of

megabytes of bitmap. For special purpose hardware each bit needs to

have associated logic thus adding to the cost. Obviously a certain amount

of saving would be achieved by repeated use of a smaller processor array.

Unless direct access is available to the bitmap store of raster Ebeam ma-

chines trapezoids need to be generated from the representation. Such

access is not available. For optical P.G., rectangles (complete with the

necessary approximation) need to be generated. In both cases it is not

obvious how to achieve this 'de-rasterisation'.

Bit-map representations were considered not to be very useful as a basis for

hardware accelerated pattern generation. It is necessary to investigate other

ways of representation and manipulation.

Chapter 3. The Polygon Merge Stage 	 53

Quad Trees

Quad trees (and their three dimensional counterpart Oct-Trees) [ABJN85] can

be viewed as a variation of bit-map representations, in some ways related to

Wilmore's hierarchical bit-map format. Each shape is represented by a tree.

The root of the tree covers the bounding box of the entire shape. This area

is recursively divided into four equal parts and these are represented by the

four children of the subtree. The recursion continues until every leaf of the tree

Figure 3-3: Quad Tree representation

represents an area which is either white or black or the level of resolution met.

See Figure 3-3.

Shape intersection is fast but for pattern generation every shape would need

to be intersected with every other shape - obviously a great inefficiency, although

the 4-dimensional binary tree approach described below can reduce this. The

essentially unbalanced and unbounded nature of the tree representation means

Chapter 3. The Polygon Merge Stage 	 54

that any hardware would either be under-used or it would overflow. Further-

more the communication costs would be large.

3.1.3 Edge Based Algorithms

In edge based algorithms the shapes are represented, not by the area they cover,

but by their boundaries. As Weiler points out in [Wei80], general polygon com-

parison can be carried out by simple operations on the graph of the boundaries

of the polygons; he gives examples of the generation of union, intersection, dif-

ference and clipping given this graph. Although this generation is fast, involving

one pass on the graph, the construction of the graph is difficult. Weiler only

gives the trivial algorithm for generating it - namely the comparison of every

edge with every other edge. Although this is, of course, worst case optimal,

in most cases the 0(n2) run time is totally unacceptable. All developments of

edge based algorithms have been aimed at reducing the number of edge-edge

comparisons where possible. To reduce the number of edge-edge comparisons

methods need to be sought in which lines will only be compared where there

is a possibility of them crossing ie a method should be found to guarantee that

they do not cross. Apart from Scan line algorithms which are described later

two methods of doing this have been proposed, Four Dimensional Binary Search

Trees and Hierarchical Bounding-Boxes.

Four Dimensional Binary Search Trees

This technique, described in [Lau78], is used to reduce the number of polygon-

polygon comparisons needed when performing design rule checking. Polygons

are only compared when their bounding boxes overlap and the number of times

that this check takes place is limited by using a binary 4 dimensional tree.

Each polygon is stored as a node of the tree. At each 'layer' of the tree one

of 4 keys (comparison of the 2 extrema of the bounding boxes in X and Y) are

used, in turn, to ascertain whether the next polygon is inserted to the left or

Chapter 3. The Polygon Merge Stage 	 55

Comparing YMAX
Comparing YM j
Comparing XMj(
Comparing XMIN

Figure 3-4: Four dimensional binary search trees

right of the sub-tree see Figure 3-4. By careful tree-traversal the number of

polygon comparisons is limited to approximately 0 (nh) where n is the number

of polygons and h is the maximum height of the tree.

It is not obvious how this approach generalises to merging nor is it apparent

how to build special purpose hardware. The tree generation would be simple to

perform in hardware but the tree traversal would require considerable commu-

nications overhead which is contrary to the requirement of low communication

costs.

Hierarchical Bounding Boxes

Hierarchical Bounding Boxes (or binary searchable polygon representations)

[Bur77] are another method of speeding up polygon-polygon intersection. A

tree is built - the leaves of which represent line segments which are monotonic

in X and Y; these can be easily compared.

Chapter 3. The Polygon Merge Stage
	

56

Associated with the line segment is a bounding box (a section rectangle).

The section rectangles are recursively paired together until the root node, whose

associated section rectangle is the bounding box of the complete polygon, is

reached. See Figure 3-5.

one (leaf osile)

—r-,,

Figure 3-5: Hierarchical bounding box representation of a line segment

Searching for intersection between any two polygons is a matter of (succes-

sive) binary searches through the trees representing the shapes. As soon at the

bounding boxes cease to overlap (a simple test to make) the search for intersec-

tions can stop. If the section rectangles of the leaf cells overlap, then the line

segments can be (cheaply) compared.

The ease of representing complex shapes (for instance areas in maps) make

this approach attractive at first glance, the more so since is can deal with

curves - a great boon when bloating acute angles this being used to great effect

in the Barton-Buchanan Polygon Package [BB80] . Unless 4-D binary trees

are used the algorithm is still quadratic - each shape needs to be compared

with each other shape. Furthermore the representation is at its best when

representing predominantly convex shapes - outlines of counties for instance.

Chapter 3. The Polygon Merge Stage 	 57

Pattern generation data with its propensity for wires (long thin shapes, as

described in [BHH80]) does not lend itself well to this method.

3.1.4 Scan Line Algorithms

In [Sha78, Chapter 51 Shamos presents algorithms for the generation of the

intersection of two convex polygons and for the detection of intersection of

two arbitrary polygons. These algorithms are described below, since they are

the forerunners of the class of algorithms known as plane sweep or scan line

algorithms. It is interesting to study the development of these algorithms.

Intersection Generation of Convex Polygons

Each of the two polygons is divided into two separate 'chains' of vertices. The

chains are a collection of continuous vertices delimited by the extrema of the

polygons in X. The four chains are monotonic in X and may be combined in

linear time. Vertical lines drawn through these points divide the plane into

n + m + 1 'slabs' (ti and m being the vertex count of the two polygons) -

See Figure 3-6. The intersection of any slab and either polygon is bound to

be a trapezium (possibly degenerate). Intersection detection of trapezia takes

constant time thus the intersection detection can be carried out in linear time.

Figure 3-6: Dividing two convex polygons into Slabs

An imaginary scan line is 'swept' along the combined chain. At any point

the slab defined by the line in its current position and its previous position will

Chapter 3. The Polygon Merge Stage 	 58

contain at most two trapezia - one for each of the polygons. The intersection

of these trapezia will have a maximum of six points only two of which can lie

within the slab (as opposed to on its boundary). Thus the upper and lower

chains of the resultant polygon is formed in one pass. These chains may be

joined together in linear time. Thus the complete algorithm is linear. (see

[Sha78, page 116-119])

It is simple to see how this algorithm may be adapted to generate the union

of the polygons. Furthermore it is easily extended to work with convex line

segments and is equally suited for use with monotonic polygons.

Intersection Detection of Arbitrary Polygons

Shamos shows that this is linearly reducible to line segment intersection detec-

tion. All the points in the two polygons are sorted in X. As in the previous

algorithm these points are used as the base line for a scan line across the image.

At each point the scan line has line segments crossing it and these are kept in

an ordered list. At each step in the scan either a line joins the scan line list

or a line leaves the scan line list. Furthermore if the line intersects with any

other lines it will do so with at least its neighbour either above or below (in

the ordering in which it joined the scan line list). As the: scan line progresses

whenever a line segment joins the scan line list an intersection check is made

with its neighbours above and below. Similarly when a line leaves a list the

new neighbours are checked. Note that in this manner the amount of line-line

intersection checks is reduced, at the cost of an original sort which causes the

overall run time to be O(n log n).

As Shamos points out, the algorithm will fail if 3 lines meet at one point, or

if any line segment is vertical, and that

If either of these conditions is not met the algorithms we

develop will be longer in detail, but not in asymptotic run-time."

Chapter 3. The Polygon Merge Stage 	 59

This algorithm is quite acceptable as far at it goes but does not produce the

intersection (let alone union) of the polygons, only an indication that it exists

or not. Bentley et a! in [B079], taking this algorithm as a basis demonstrate an

algorithm which reports (or counts) all the intersections of n line segments in

O(n log n + k log n) time, where k is, the number of intersections (note that this

is not worse case optimal). This is done by the (in hindsight) simple expedient

of processing the occurrences of intersections. When an intersection is found,

instead of terminating the intersection is reported and the intersection point

is added to the position of 'stopping' points in the event list (previously solely

the endpoints of the lines). When such a point is encountered the two lines are

swapped in the scan line list, further intersection tests carried out, and the al-

gorithm continues. Berreta and Nievergelt termed this style of algorithm 'plane

sweep'. Further details of scan-line algorithms are given in [NP82]. [LP84] gives

details of scan-line and of related algorithms.

Scan line algorithms present a theoretically sound basis for a parallel merge

system. No hardware architecture suggests itself immediately as suitable for

parallel processing by scan line but it was hoped that some techniques could be

developed which would be appropriate to other algorithms.

3.2. Parallelising the Merge Stage

As noted earlier the techniques used to parallelise any stage consist of selecting a

theoretically sound algorithm and dividing up the function such that the limits

upon parallel processing for P.G. are met - accuracy, speed, load balancing and

memory requirement control.

3.2.1 The chosen algorithm

The chosen algorithm was Kilgour's Polygon Package. This was developed by

Kilgour while working at Lattice Logic ltd. The package, which comprises of

Chapter 3. The Polygon Merge Stage 	 60

about five thousand lines of IMP [Rob86], was productised at Lattice Logic by

Neil Menzies. It is the at the core of the Lattice Logic Polymerge program and

is used extensively in other parts of the Lattice Logic ShapeSmith products.

The version which was taken as the basis for this development was 3.1.5.

This is based upon a scan line algorithm, but specifically aimed at integrated

circuit pattern generation in that it carefully deals with cases which arise in

VLSI pattern generation. For instance the case of abutting shapes is very

carefully dealt with, as is the case of malformed (in the geometric sense) input.

The algorithmic performance of the basic algorithm is stated here without

proof as being 0 ((n + k) log p) where p, n and k are, respectively, the number

of peaks (local minima) in the input, the number of input vertices and the

number of intersection points. This is made up as the time to manipulate the

event list (upto 0(k + n) operations on a queue of max size 0(p)) and the

edge list (similarily O(p) operations on an edge list of max size 0(p)) Note that

the algorithm is not optimal in the worst (egg crate) case, being 0(n2 log n)

(since p and k are 0(n)), but it is optimal in the best (linear) case at 0(n)

(since p = 2 and k = 2). The absolute performance is difficult to quantify since

it is thoroughly implementation dependent (and even machine configuration

dependent as noted later) and is constantly being improved. Furthermore the

processing time is so large that finding enough resource to run benchmarks is

hard.

The system has six stages which include the actual functioning of the scan

line algorithm. Each stage needs to be analysed for the possibility of parallelis-

ing. The six stages are:

Parse the input format and flatten to the polygonal format.

Normalise the polygons.

Generate original event list.

Perform the scan-line processing.

Apply any sizing.

Chapter 3. The Polygon Merge Stage
	

61

6. Decomposition (if needed) and output.

These are described to the extent that they affected the work detailed here

in section A.1. Complete details are given in [K11821 and [Ki186]. It is impor-

tant to note that the output has no hierarchy associated - it consists of one

cell containing all the geometry. In VLSI design 'hierarchy' has many defini-

tions. To be able to deal with them the most general definition needs to be

assumed. This in turn can cause computational difficulties [B0W83]. To avoid

this all hierarchy is removed at the earliest stage. In this manner all the pattern

generation algorithms are somewhat of the form of brute force and ignorance.

Partial retention of hierarchy during the merge processing, with the attendant

advantages of increased speed, for both the merge and the fracture stages, is a

matter for further research.

Before describing the manner in which this basic algorithm has been de-

veloped to run on parallel processors, it is necessary to sidetrack briefly and

examine the general nature of integrated circuit geometry.

3.2.2 Integrated Circuit Geometry

Forming any detailed classification of integrated circuit geometry is virtually

impossible since designs will reflect the method in which the design has been

generated, the philosophy of the design and the designer's teacher, which tools

were used in the design and so forth. Student designs will be completely different

from hand-designed products of a silicon design centre which will again be

different from those produced by cell assemblers or gate-array generators. The

difference in technology (CMOS/nMOS/bipolar) will affect the design geometry.

[Whi85] gives some examples of 'circular' geometry. However more general

classifications have been achieved.

Working at CMIJ, Bentley et al [BHH80] studied Manhattan designs of vari-

ous sizes and extracted the proportion of shapes which were 'components' (small

Chapter 3. The Polygon Merge Stage 	 62

rectangles), 'wires' (long thin rectangles) and other rectangles. Without repro-

ducing the results in full here the percentages were, approximately 65%, 30%,

and 5% respectively. These figures were used to influence design decisions when

constructing a design rule checker. This excellent work is slightly restricted

for development of pattern generation algorithms in that it solely deals with

Manhattan geometry. Furthermore the input was non-merged, that is the only

input was rectangles and no attention was paid to overlap. This was the correct

decision for the design on a DRC system, but since there was no data about

the results of merged systems it was considered useful to do an overall analysis

of the output of a merge stage, to see whether any trend in the output could be

used to influence the partitioning of function.

By doing edge counts on merged PG data it was discovered that the majority

of output shapes were rectangles see Table 3-6. Of the remainder of the shapes

the vast majority had less than .20 edges. In all cases there was a rapid drop in

number of polygons as the edge count increased. In a very few cases were there

polygons with greater than a thousand edges. In most cases the large polygons

are accounted for by the power and ground nets on the metal layer, although

one sheet with 40,000 edges on the active area mask of a CMOS design formed

the transistor net of a PLA.

Obviously even with this small sample there is a variation between layers eg

the contact and via layers will be mostly, if not exclusively, made up of large

numbers of very small shapes - these are usually squares, but it is not unknown

for them to be flashes - circles which have to be approximated as n-gons where

n> 8. Similarly, as noted above, the active area layer in CMOS designs and

the metal layers in all designs can have high vertex count polygons. The trend,

however, remains.

Chapter 3. The Polygon Merge Stage
	

63

3.2.3 Parallel Merge - How

In developing concurrent systems it is obviously highly advantageous to move

as much function into the parallel part of the system as possible. There will of

course be parts of the system which must remain as solely sequential.

As detailed in Section A.1 the code of the polygon package is very well

organised with modules dealing with input, output, polygon normalisation, edge

handling, path handling, event handling and so on. With some experience

with the code, an obvious form of parallelism is to divide the function over

processors - each processor (or processor group) dealing with one fixed function

as previously handled by a module.

After consideration this technique was rejected for the following reason.

There is obviously an upper bound on the number of functions which can be

processed separately. When a certain number of processors have been added

they will cost more in synchronisation and communication costs than they add

by sharing the load. A requirement of any special purpose hardware dealing

with integrated circuits is that it should, as much as is allowed by Amdahls

law, be upwardly expandable with the problem. This is not possible with the

system described above.

Further reasons for the abandonment of this approach was the communica-

tion costs envisaged and the fact that the topology of such a system was hardly

likely to lend itself to the fracture stages and even less to. other general purpose

computing. A different approach had therefore to be developed.

The chosen approach

It was noted earlier that the output of the merge stage consisted of a very large

number of simple shapes. It may thus be inferred that in the majority of cases

an input shape will have interaction only with other shapes in its immediate

vicinity. Thus if a processor was assigned to dealing with this shape there is

only a low possibility that it will have to communicate in any manner with a

Chapter 3. The Polygon Merge Stage
	 M.

processor assigned to a shape some distance removed. As already mentioned the

use of one processor per shape whether input or output is unrealistic. However

the idea can be extended and a processor assigned to a region containing many

putative output shapes. Thus instead of distributing the function over the

processors the data is distributed with the (almost) complete function at each

processor. There has been a payoff between memory and communication and

the former has been chosen.

The now eight stage system was accordingly treated thus.

Parse and flatten. This must obviously remain a sequential process. Re-

cent development has been addressed at removing the parse overhead from

the merge stage. This is achieved by parsing in a separate operation to a

disk-based parse data-structure.

Normalisation. This would, at first sight, appear an obvious candidate

for moving into the parallel part of the system. Unfortunately before

parallel processing can start the data must be divided. The division stage

requires that the data be well formed (normalised). It appeared that the

normalisation stage was required to be performed in the sequential part of

the system. It was believed (and early experiments bore this out) that the

time required by the normalisation would be minimal and so it would not

be problematic. Later sections re-examine this decision and note ways of

moving both the flattening and the normalisation process into the parallel

part.

Division. A detailed description of this is given in section A.2. At this

point all that concerns us is whether it is performed in the sequential or

parallel stage of the processing. In the former case all the input shapes

are divided, clipped where necessary, and passed individually to the pro-

cessors. In the latter case all the shapes go to all processors which individ-

ually decide how much of which shapes is relevant to them. In hardware

terms the former would be achieved by multiple point to point commu-

Chapter 3. The Polygon Merge Stage
	

65

nication, whereas the latter would be achieved by, a broadcast system of

some sort. In performance terms the latter is obviously the better choice,

since although more actual computation takes place it is spread over all

the processors, thus reducing overall elapsed time.

Preprocess, Merge, Size.

These three are the central parts of the process and as such are processed

in parallel.

Recombination of data. Each processor will produce output shapes which

may be classified by whether they are totally within the processor's 're-

gion' or run along the boundary (indicating that this shape is part of a

larger shape covering more than one region). In the former case the data

may be output directly but in the latter the shapes should be combined.

There are two ways in which this recombination could be achieved, either

processors can negotiate the recombination between themselves or this

can be left to a separate, recombination stage (which may of course be

in a separate processor). The former case requires processor to processor

communication which would increase bandwidth and impose some sort of

topology.

Decomposition and Output. As mentioned elsewhere decomposition is

peripheral to this study. It is noted in passing that all decomposition can

take place in parallel so long as care is taken that the recombination does

not cause output polygons to be larger than the threshold size. Output

is obviously a purely sequential operation.

3.2.4 The system architecture

Having considered a collection of techniques which should allow concurrent

merging of integrated circuits, the problem of mapping these techniques onto

a system architecture upon which it can run with minimum overhead needs to

Chapter 3. The Polygon Merge Stage

I

Parse Broadcast 	 Many Stitch
Input 	and flattened Processor 	to one and Merged
Data Flatten Input Cluster 	Output Output Data

Figure 3-7: The Overall System Architecture

be addressed. The technique consists of a large parallel processing phase 'sand-

wiched' between two small, less immediately parallelisable, phases concerned

mostly with input and output respectively. The communication from the input

to the parallel stage is by broadcast, but that to the output is, at least notion-

ally, on a point to point basis. Thus we have the broad outline shown in Figure

3-7.

The upward limit on the number of parallel processors is governed by the

capabilities of the input processor, the output processor and the communica-

tion between them.. Up to the limits the parallel processor can be expanded

arbitrarily as design size grows. Ways of mitigating the restraining effects of

the 10 processors and the communication bandwidth are investigated later.

The mode of functioning is very much 'batch' oriented with a distinct in-

put phase being followed by a separate merge and output phase. Thus the

functions of the input and output could be put into one processor with only a

Chapter 3. The Polygon Merge Stage 	 67

small loss in efficiency - this being due to the necessity of emulating broadcast

communication on a point to point connection or vice versa.

3.2.5 Implementation

Although this approach seems intuitively good, it remained unproven and so a

simple implementation was considered. There was no suitable multiprocessor

system available and so the system was built in the form of a emulator. This

approach had the advantage of flexibility; furthermore had the system been

implemented upon real concurrent hardware the results would have reflected

the hardware performance as much as the software. In the emulations the

numbers of processors chosen were squares for the obvious reason of simplicity.

A procedure 'Emulate Processor' was written which performed the function of

one processor. Since each merge processor was performing the same operations

the same procedure could be used for all. An integer parameter to the procedure

indicated which area of the design was to be processed.

A special module was developed which handled the emulated time. This took

as a basis the operating system provided clock. At the start of the emulation

of each processor a variable was initialised with the current value of the system

clock; at the end this value was subtracted from the clock, the value remaining

was the time which that processor spent. When all the processors had been

emulated the maximum time was added onto the notional current time. During

any part of the emulation (either of a merge processor of during the sequential

part) a current emulated time could be found by calling a function within the

module, this feature being used extensively when measuring bandwidth. Given

this basis, the emulation took the form of a simple iteration:

Perform input
Stop Sequential Time
%for Processor Count = 1, 1, Num processors %cycle

Reset Emulated Time
Emulate Processor (Processor Count)

%repeat
Restart Sequential Time

Chapter 3. The Polygon Merge Stage

Timer
Control
Program I 	 I Ofifine I Bandwidth

I—Timestamp 	Analysis

10 and CommR

Figure 3-8: Pictorial representation of the harness

Figure 3-8 illustrates the conceptual construction of the harness. The con-

trol program, timing module and timestamp facility make up the harness, whilst

the processor emulator and the 10 and communication package form the •sys-

tem under evaluation. Obviously the latter form the major part of system in

physical terms.

Such a system can of course only be an approximation to a real system, the

more so since operating system provided clocks are notoriously inaccurate. It

should be noted that all operations which are being emulated are measured by

some clock and as such all timings will be representative. In fact the greatest

problem in verifying such a system lies, not in ensuring that the times reported

are accurate but in verifying that the output data is accurate. This topic is

further covered in Section 3.3.1

As mentioned in Chapter 1 all timings given should be treated not as abso-

lute, but relative to the base time - that taken by a single processor of equivalent

power and in equivalent configuration. For this reason, when presenting the re-

Chapter 3. The Polygon Merge Stage 	 69

suits, no special emphasis is placed on precise timing. Rather the emphasis has

been on demonstrating trends.

During the first iteration of design no trace was kept of communication costs

- communication was considered to be costless. This simplicity was justified in

that at this stage the main effort was to produce a working system to which

could be added software timing measurements in a similar manner to probes

being attached to real hardware. At every possible point communication was

minimised and it was hoped that communications costs would only marginally

affect overall performance. As described in Section 3.3.5, once the system had

been shown to work the communication cost was further analysed.

The new modules

A brief description of the modules used is given in Section A.2; SPLIT clipped

the input shapes on a per-processor basis and S TI T C H recombined region-

spanning shapes on output. In order for the emulation to function the main

control module was substantially altered and a minor module (TIMER) writ-

ten.

Coping With Sizing

When sizing is going to be applied care must be taken along the region bound-

aries that the sizing is done correctly. See Figure 3-9.

Shrinking In order that the data within one processor's region will be accu-

rate once the shrinking has been applied, the area which the data is clipped to

is increased by the amount of bias. Thus when the shapes are shrunk they are

all precisely within the processor's region. Recombination can take place as for

merge where there is no sizing.

Bloating Coping with bloating correctly is marginally more complicated and

requires that convex angles be clipped.

Chapter 3. The Polygon Merge Stage 	 70

I Design

Design

Figure 3-9: Incorrect sizing at Boundaries

Observe that the shapes within a region can only be affected on bloating

by shapes within a 'bloating width' of the region's boundaries. The region is

expanded as for shrinking, then merged, bloated and re-merged. So long as

acute angles are clipped correctly all the shapes and parts of shapes within

the assigned region will be represented correctly whereas the boundaries will

not. The boundaries are clipped off and the shapes recombined as normal. The

clipping is considerably simpler than that used in the SPLIT module, due to

the known greater simplicity of the shapes involved.

3.3 Results, Modifications and Limitations

With this basic skeletal package in place the first round of experiments com-

menced. These consisted of emulations of processing clusters with the number

of processors varying from 1 (the standard merge, used as the base line for mea-

surement) to up to 49. These were applied, a layer at a time to a small-medium

size P.G. benchmark, and several small university designs. At this stage in

order to check the correct functioning of the emulated system the result was

Chapter 3. The Polygon Merge Stage 	 71

checked against the original geometry by using the subtraction operator. Fi-

nally a limited number of similar experiments were carried out on one layer of

a large design.

An important early result, which impacted more on further experiments

than on the system design, was that, although the processing for a shrink op-

eration takes longer than that for a bloat, which in turn is slower than a pure

merge, any overall trends remain the same. Thus in further experimentation

only a shrink or a bloat operation need take place; since they take longer any

trend or timing disparity will be much more marked. See Table 3-7.

At this stage these experiments were not only taking timing measurements

and so forth but also concerned with ironing out the 'wrinkles' in the system.

Discounting convential 'bugs', these problems were in two main classes. Firstly

there were problems caused by interfacing with the polygon package, such as

making assumptions about the ordering of data. Very often the failure that

such an assumption caused would not happen immediately, rather processing

would continue until all the data was corrupt. The second class can be loosely

described as rounding and rounding related problems. These would often lead

to wrong ordering of vertices (for instance in the pre-stitch lists as described

in appendix A). This in turn could cause program failure in such a manner as

to cause difficulty with debugging. When dealing with a design with several

tens of thousands of shapes what may be passed off as 'a million to one chance'

suddenly becomes a distinct possibility! Furthermore it is in the nature of things

that these problems only make themselves felt after several hours of processing.

3.3.1 Accuracy

The first notable result that these experiments showed was that the output

may be different from that produced by the standard system, although never

significantly enough to cause a design rule violation. The variations occur when

non-Manhattan geometry is present at the boundaries and may be attributed

to a combination of rounding problems and size representation inadequacies.

Chapter 3. The Polygon Merge Stage
	

72

All positions in output formats are in integral measurements'. Thus there has

to be an element of rounding.

Any difference is usually a collection of triangles along the region boundaries

although a few pentagons and higher order polygons may be present.

Triangular Differences

This is both the most common case and the easiest one to allow for. It occurs

when an angled line crosses a region boundary and its crossing point is calcu-

lated and rounded. Thus the re-joined polygon acquire an extra vertex. This

problem may be easily overcome by filtering such extraneous points from the

rejoined polygon, See Figure 3-10.

Line crossing boundary rounded to this point.
Remove this point to re-establish accuracy.

units on boundary
boundary

Figure 3-10: Triangular differences

Pentagonal and Higher Order Differences

Again this is caused by an angled line crossing a region boundary and an approx-

imation of the intersection point being taken. If this line then crosses another

the intersection point may be rounded down rather than up as previously, see

Figure 3-11. Snapping edges will reduce the pentagon to a kite shape. The

11n the polygonal format used in this system this is one hundredth of a micron.

Chapter 3. The Polygon Merge Stage 	 73

pproximation at boundary moves intersection to
his point rather than
his point

Figure 3-11: Pentagonal differences

vertex of the kite can only be inaccurate by a maximum of one representa-

tional unit which is considerably less than the tolerance of the mask making

equipment.

3.3.2 Speed - Overall

The second result was at once the least expected, hardly relevant, and the

most pleasing. In all the experiments the emulation of at least one processor

configuration for every layer of every design took less time (real elapsed CPU

time, not emulated) to run than the standard product. In many cases the

difference was not significant, but nonetheless present.

It is interesting to examine why this surprising result happens. The time

complexity of the merge operation is

O((n + k) log p)

Which means for an arbitrary (but fixed) C.

Time < C(n + k) log

Chapter 3. The Polygon Merge Stage 	 74

So assuming (simplistically) that the division is even into X areas which take

exactly the same time to process the time taken to do the merge only is:

Time < CX(j +) log p

~ C(n+k)log

This is an absolute improvement (of (n + k) log X). If the speed up achieved

thus is more than the time taken to run the SPLIT and STITCH modules then the

overall time taken will drop and thus the absolute performance will increase.

Intuitively this speed up can be reasoned as the result of a divide and conquer

operation taking place with a very cheap recombination stage. For instance in

the calculation of the initial event queue, instead of sorting the minima of all

the polygons in one set they would be sorted into several subsets, which will

be cheaper. The topic of affecting the absolute performance of the sequential

system is further discussed in Section 3.4.2.

3.3.3 Load Balancing

The third and the most important result, as far as the development of feasible

pattern generation machines is concerned, lies in the time taken by each separate

processor. The total time taken by the complete system is the sum of the time

taken by the slowest processor at each stage and the (sequential) time take to -

perform the input and the recombination and output.

It is obvious from Table 3-8 that with 9 processors the overall elapsed2

time is reduced by less than a factor of four. Although a certain amount of

this inefficiency is due to 'data management' and is unavoidable the greater

proportion is due to bad load balancing.

2split, merge and size and recombine

Chapter 3. The Polygon Merge Stage 	 75

Reference to Table 3-9 shows that good load balancing is not being achieved

- whereas some processors complete processing in less than a second one takes

60 second to complete (this is a very small university design used only as an

example).

Achieving a good load balance

The bad load balance that the system shows is explained by the very simplistic

method used for division. A regular grid is placed over the chip image and

the regions are thus allocated. For this to work with any reasonable success the

geometry within the chip image has to be distributed evenly so that the number

of input vertices, peaks and output intersections in each region is roughly the

same.

That integrated circuits do not have this property is not altogether surpris-

ing, even though it is commonly assumed that they do. Consider, for instance

a region of the chip which contains routing. See for instance Figure 3-11. All

the routing will take place on the metal and polysilicon layers, with a small

amount of geometry on the contact layer. No geometry at all will be present

on the diffusion layers upon which the routing will just appear as a gap.

Examination of Tables 3-10 and 3-11, which show the vertex count within

a thin row (respectively column) as the row (or column) is moved across the

chip, shows the tendency for designs to become more dense towards the centre

as noted in [BHH80]. This trend cannot be guaranteed. The best illustration of

the non-uniformity is given by the pseudo-three-dimensional plot Table 3-12.

The X and Y axes describe the chip image and the Z axis the vertex count

(for one layer) within the small region around the appropriate X and Y. It is

immediately apparent that the distribution is not even, with large areas with

no vertices whatsoever. Even where there is a vertex presence the distribution

is uneven.

Chapter 3. The Polygon Merge Stage 	 76

With a 'perfect' division the time taken per processor to merge is constant.

In theory the best way of achieving this is to equalise n (the number of input

vertices), p (the number of input peaks) and k (the number of intersections).

There is no simple way of gauging k or p from the input data, although it may

be hoped that they will vary with n which can be measured very simply. op-
portunity to perform this measurement arises both at the parse stage and the

normalisation stage. The simplest measurement to take is the vertex distribu-

tion in X and Y (as shown in Tables 3-10 and 3-11), which may be done on

the fly, during one pass of the data. Given this data it is a relatively simple

process to make the divisions in X and Y such that each row and each column

contain the same number of vertices. See Figure 3-12.

This will not give a completely even distribution of vertices in the enclosed

rectangles (consider for instance a small dense area and its impact on the divi-

sion). This is borne out by the timing results (Table 3-13), which, although

better than for the simple case, do leave room for further improvement.

While investigating methods of achieving more even distributions it is im-

portant to realise that all the measurements will, perforce, be carried out se-

quentially. Any measurement should be cheap to calculate - every second taken

in calculating the distribution is equivalent to one processor being one second

slower than all the others. Thus overly complex region calculation can have a

negative effect upon the overall run time.

The method adopted gives perfect division in terms of even vertex count

which in turn gives reasonable results. This is achieved at the expense of an ex-

tra pass through the data and a marginally more complex recombination stage.

As before the vertex frequency distribution is worked out in the Y direction

and the design divided into horizontal slabs accordingly. On the second pass

the X frequency distribution is calculated within each slab. Finally each slab

is divided up into regions. See Figure 3-13. This gives much better results,

reducing the idle time considerably (see Table 3-13).

Chapter 3. The Polygon Merge Stage

Col Col Col Col
one two three four

Row four

Row three

Row two

Row one

Every row and every column has the same vertex count

Figure 3-12: Division into Y and X

Slab 4

Slab 3

Slab 2

Slab 1

Each region has the same vertex count

Figure 3-13: Division into Y and then X

77

Chapter 3. The Polygon Merge Stage 	 78

3.3.4 Emulated Speed

Given that good load balancing has been achieved and that communication

cost has been minimised the performance of such hardware should be optimal

for the chosen technique. The effect of partitioning the design becomes more

pronounced as the design gets larger. Thus the most efficient use of processors

occurs with large designs. Tables 3-1 and 3-2 indicates this. Various layers of

the base layers of a gate-array were processed on a variety of emulated systems.

Due to limited memory on the emulating processor (and in fact any processor)

the largest layers in some designs could not be processed. For each layer the

vertex count V(an indication, as we have seen, of design complexity) is given

and for each emulation the emulated time taken to process' the design is given

in Table 3-1.

Layer V Norm. 4 PUs 9 PUs 16 PUs 25 PUs 36 PUs 49 PUs

Active 356452 3361 1361 * 1081 1034 1234 873 1040

Metal 2089472 16069 5969 * 3875 3171 2365 2573 3086

Contact 2280949 17160 5178 2984 * 2380 1938 1897 1674

Poly 3726244 19161 6145 4006 * 3474 2928 3234 3106

Glass t 1 896 5 11 16 18 19 22 23
inaicates wnere tile normalise and split stages become predominant

indicates that the data contains an evaluation of the time to normalise

In either case the cost of the two pass area calculation is noted in the complete

overhead.

Table 3-1: Emulated Time

3normalise where appropriate, split, merge, size and stitch

Chapter 3. The Polygon Merge Stage 	 . 	79

Table 3-2 gives for the same design the speedup for each processor configu-

ration for each layer. Speed up is calculated as S = ATLL where T is the emulated
Tn

time, ,j is the number of processors emulated and T1 is the actual time for the

uniprocessor configuration.

Layer V 4 PUs 9 PUs 16 PUs 25 PUs 36 PUs 49 PUs

Activ4 356452 2.5 * 3.1 3.3 2.7 3.8 3.2

Metals 2089472 2.7 * 4.1 5.1 6.8 6.2 5.2

Contact 2280949 3.3 5.8 7.2 * 8.5 9 10.2

Poly 3726244 3.1 4.8 5.5 * 6.5 6 6

Glasst 896 0.45 0.31 0.27 0.26 0.22 0.21
inuicaies wnere ine normanse ana spat stages become preaominant

indicates that the data contains an evaluation of the time to normalise

In either case the cost of the two pass area calculation is noted in the complete

overhead.

Table 3-2: Emulated Processor Speedup

In these tables the * indicates where the cost of normalising (if given) and

split (which is a sequential process in this system) becomes predominant, that

is they consume more than 50% of the emulated processing time. In sharp

contrast with the output stage these stages cannot run in parallel with the merge

and sizing. In this implementation of the system they must complete before

the merging starts. The fact that for some layers the time given includes the

normalise time and others not is a reflection of the fact that the normalisation

and the division can take place separately (In some cases normalisation does not

need to take place at all - if the input format is known to be well formed already

such as for PG formats). In this case the 'base' system was treated equivalently

(the time taken to perform the normalisation not incorporated). The high

cost of these stages is due to the cost of working through the data multiple

times, sequentially. In particular the normalisation and the area calculation are

expensive.

Chapter 3. The Polygon Merge Stage
	

ME

The fact that these stages show themselves to be particularly dominant in

these tables but not in Table 3-8 is due to the configuration of the systems from

which these results were drawn. The processor upon which the measurements

given in Tables 3-1 and 3-2 had around three times as much available real

memory as the machine upon which the system was originally implemented.

Lack of real memory has the greatest effects on the merge and size stages (con-

sider the relative cost of page faults measured in millions rather than hundreds

of thousands). Thus the speed up demonstrated in Table 3-2 is less than that

which might be shown on a machine with less real memory. This in turn reflects

upon the fact that any of these emulations are in fact emulations of groups of

the emulating processor. Regardless of the reasons it is apparent that the over-

head presented by the area calculation and division are candidates for removal

by further development since they dramatically affect the speedup achievable.

Furthermore although it can take place remotely it would be advantageous if

the normalisation stage was encorporated as part of the complete system. Ways

of achieving this are discussed in the conclusions and further in Appendix 2.

As can be seen from these figures, very often layers in IC designs are of such

a small size that processing on large multiprocessing clusters is wasteful (and

in some cases counterproductive). Having established which these layers are it

should possible and might be advisable to divide a large processing system into

two (or more) logical subsystems upon which the processing of two (or more)

layers may be carried out concurrently. Indeed if the designs being processed

are very small it should be possible for each processing unit to handle one layer

of a design. Speedup by use of this sort of parallelism is discussed further in the

final chapter. Assuming that the overhead of area normalisation and division are

controlled, as designs become larger and larger the number of processors which

can be effectively introduced will become limited only by the communication

C08t8.

Chapter 3. The Polygon Merge Stage 	 81

3.3.5 Communication costs

Communication costs are made up of two parts: the time taken by the output

processor and the bandwidth between the processing units and the input and

output processors.

Output Processor

For a given size of output the time taken performing the output operation will,

to a first approximation be constant - regardless of the number of processors

performing the merge. What is being measured is the time taken to write the

merge data to disk together with any related processing. Since the output

data is the same regardless of processor configuration, the time taken will be

the same. There will be a slight extra cost involved in the handling of more

communications. Table 3-3 gives, for each layer (in the same design as above),

the time taken by the output processor and the number of merge processors in

the configuration where the output processor takes as long as the slowest merge

processor.

Layer Output Time Processor Threshliold

1 103 >16

2 896 >16

3 973 >16

4 261 >49

5 0.4 n/a

Table 3-3: Communication Overhead

Chapter 3. The Polygon Merge Stage
	

82

This processor threshold which is obviously very data dependent will in turn

govern the maximum number of merge processors. It should be added that

during sizing and merging the output does not start until the first stage merge

has taken place.

Bandwidth Cost

The bandwidth cost was measured by attaching 'software probes' to the system.

Every communication 'event' was noted by writing an (emulated) time stamp

to a log file. The size of the data transfer was noted with the time stamp. Off

line analysis could then be made of the log. The graph in Table 3-15 shows

how the communication cost varied over time for processing a layer from the

example above. The communication cost is calculated as: Cost = Bi where B1

is the bits transferred during the (fixed) time interval T. This is equivalent to

the bandwidth required if all transfers were buffered over a period of T. The

majority of the communication cost is for the output. Inspection of the graph

shows that cost is not well balanced. However it is not high.

Tables 3-4 and 3-5 show, for 5 different processing configurations on each

layer, the average and peak bandwidth costs respectively, where the average cost

is the total number of bits transferred divided by the total (emulated time) and

peak cost is the largest value of cost noted above where T = 0.5s. All values

are given as kilobits per second. It can easily be seen from the tables that

bandwidth does not represent an immediate problem. Furthermore even a 10

times speedup of the power of the merge processors would not cause problems.

Chapter 3. The Polygon Merge Stage 	 83

Layer 4 PUs 9 PUs 16 PUs 25 PUs 36 PUs

Active 17.5 18.7 19.5 17.3 20.0

Metal 12.2 16.4 18.3 19.1 25.2

Contact 20 26 28 30 30

Poly 20.4 25.6 27.0 28.4 27.3

Glass 1.7 1 	1.4 1.3 f

Input

Layer 4 PUs 9 PUs 16 PUs 25 PUs 36 PUs

Active 20.8 22.3 23.1 20.5 23.8

Metal 22.0 29.5 32.9 34.3 45.3

Contact 36 47 51 55 55

Poly 8.6 10.8 11.4 12.0 11.5

Glass 3.1 2.5 2.3 t t

Output t indicates that no results were taken since they would have been

meaningless.

Table 3-4: Average Bandwidth requirement

3.3.6 Processor Memory

This is an important aspect of the design by virtue of the impact of getting it

wrong. If communication is underestimated then the system will merely run

slowly - if memory is underestimated then it will not run at all.

Chapter 3. The Polygon Merge Stage
	

84

Layer 4 PUs 9 PUs 16 PUs 25 PUs 36 PUs

Active 191.2 190.1 191.2 188.7 190.4

Metal 59.3 57.6 57.6 57.0 88.0

Contact 90 88 88 87 88

Poly 513.6 513.9 511.0 520.0 495.3

Glass 1 	5.1 1 	3.2 2.9 f t

Input

Layer 4 PUs 9 PUs 16 PUs 25 PUs 36 PUs

Active 260.2 541.8 596.8 1106 1204

Metal 107.7 200.0 349.1 543.2 1018

Contact 207 371 591 799 1115

Poly 558.9 789.5 1057 763.4 1236

Glass 73.7 1 	105.4 1 	62.2 f t

Output f indicates that no results were taken since they would have been

meaningless.

Table 3-5: Peak Output Bandwidth requirement

Using virtual memory for each of the processors in the cluster would, of

course, solve this problem but there would be considerable extra complexity

(and cost) in the extra hardware, local disks and so forth. There would also be

a speed overhead in supporting the necessary operating system enhancement.

Furthermore, assuming a complex system such as one with virtual memory

control is not in keeping with the requirement of a non restrictive software

architecture which will map onto many hardware configurations.

Chapter 3. The Polygon Merge Stage 	 85

A series of merges, using the standard merge program was run and the

memory requirement was plotted against the input vertex count. This graph is

shown in Table 3-14 and shows a remarkably good fit of memory requirement

to input vertex count. It is thus possible to judge the vertex count which the

memory of each processor can handle.

3.3.7 Processor numbers

The limit on the number of processors is governed by many factors. For instance

as can be readily seen in Table 3-1 when the time taken in area calculation

and normalisation dominates the effect of adding extra processors beyond 9 is

very small - but still achievable.

The fundamental limit upon this system is the size of the merge cluster

at which merged data is being generated faster than the output processor can

handle it - the communication limit. As can be seen from Table 3-3 this is very

data dependent, but for the given system 20 would seem to be appropriate.

It should be noted that if the more time-consuming operations, involving

sizing or the calculation of any non-intrinsic Boolean function, are performed

then the elapsed time increases and the number of processors achievable will

increase.

Chapter 3. The Polygon Merge Stage

3.4 Conclusions

There are several important points which spring from the work represented by

this chapter. First of all, however, it should be emphasised that there are quite

probably great improvements which can be made purely be rewriting. This is

discussed further below.

The techniques presented were developed as a result of studying the output

from the system, not as a result of studying the algorithm. It should therefore

be quite feasible to apply them to other algorithms which perform the same

or similar PG operations. The method of speeding up is independent of the

algorithm

The problems of implementing systems to perform merging are not dissimilar

to those of implementing systems to do design and electrical rule checking.

Indeed many of the algorithms are fundamentally the same. It is pointless to

make predictions but it may well be that these two problems would be amenable

to acceleration in a similar manner to that described above for the merge stage

of pattern generation; indeed the decomposition algorithm described in the next

chapter uses a scan line algorithm and would be amenable to parallelising as

described here, if that processing presented a bottleneck.

The performance of the system when processing very large designs is difficult

to gauge and can only be done by extrapolation from existing results. This is

because of the difficulties of processing examples which represent state of the

art and beyond designs. The merge stage of pattern generation is exceptionally

CPU intensive - if it were not there would be no need to investigate concurrent

hardware. Although in terms of CPU time the emulation of many configurations

performing the merge stage of large designs could be handled (in a matter of

CPU months) there is a critical shortage of memory.

Chapter 3. The Polygon Merge Stage 	 87

The design of the emulation was such that the memory of every processor

was kept in the (virtual) memory of the emulating host. Unfortunately this was

limited to 70 megabytes and this is considerably less than needed to emulate

any processor configuration when dealing with massive designs. The designs

demonstrated here do however show that for this system the problem when

dealing with large designs will be the output bottleneck.

3.4.1 Possible Improvements

The current system would probably be best implemented as having 20 merge

processors, at which stage something around a 6 time speedup should be achiev-

able. Although this is quite acceptable for a first pass implementation it is obvi-

ously desirable to bring the latter figure closer to the former while increasing the

former. These two aims may be met by, in the first case, reducing the overhead

of the area calculation (and if possible incorporating the normalisation stage)

and in the latter case improving the implementation of the output system. By

doing this a speed up well in excess of ten times seems quite possible.

Design Flattening, Normalisation and Partitioning

In the current system this takes place in the input processor. As noted in section

3.3.4 the effect of the calculation of the partitions can be large when very big

designs are processed and thus there are gains to be made from improving them.

There are two methods of approaching this, firstly improving the code efficiency

and secondly moving as much function as possible into the parallel stage.

Chapter 3. The Polygon Merge Stage

Improving the code is a standard software engineering practice. That the

original code is amenable to improvement is demonstrated by the fact that a

10% improvement in the area calculation stage was achieved with remarkable

ease. It has recently been shown that there is no need for the sub-areas to have

a similar aspect ratio to the input data. Indeed there are certain cases when

long thin data areas (with equal vertex counts) are preferable. Thus the second

pass through the data prior to division could be avoided. By using these two

techniques the load placed by the partitioning could be sizeably reduced.

Moving functions into the parallel part of the system is potentially much

more effective in terms of elapsed time. In fact perfect hindsight provides a far

better system in which the functions of flattening, normalisation, area calcula-

tion and division are all carried out in the parallel part of the system.

Each processor receives the complete data structure which results from the

parsing with any hierarchy being intact. Each processor calculates the vertex

density within a small region of the whole design. A small amount of interpro-

cessor liaison establishes the merge region boundaries for each processor which

can then flatten and normalise within its region only. Since each processor only

needs to deal with data within a window the flattening then become much faster

(when flattening hierarchical designs, cells whose bounding box are outwith the

processors window need not be flattened). The norm alisation is then placed

within the SPLIT module. As each processor receives the (malformed) input

shapes it decides by simple bounding box calculation whether they are relevant.

Relevant shapes are norm alised and then clipped.

Chapter 3. The Polygon Merge Stage
	

99

Although every processor has to do slightly more computation than strictly

necessary, since region-spanning shapes will be normalised in every relevant

processor, the overall time taken will be considerably reduced and, more im-

portantly, there will be no sequential overhead to swamp the time taken by

large multiprocessing clusters.

Improvement of output

Although some of the function of output processing (data compaction and so

forth) can be migrated to the parallel part of a system, ultimately output can-

not become parallel and, by virtue of the data explosion which happens when

flattening occurs, presents the ultimate bottleneck where Amdahl's law can no

longer be put off. As discussed earlier for the given system this bottleneck oc-

curs at 20 merge processors. At this stage a 5% improvement in the efficiency

of the output (or migrating some of the function to the parallel part) means

that the merge cluster can be increased by one. Chapter four demonstrates 7%

improvement in output processor efficiency achieved just by moving a few lines

of code. The output stage must be made as efficient as possible.

Changes to the basic algorithm

Although there are several improvements to the basic scan line algorithm they

are not relevant here and are thus not discussed. See for example [0W86].

Further hardware acceleration

This architecture performs the pattern generation computation very fast. It

should be possible to drive the fastest pattern generation hardware. If further

speed is required this would need to be achieved by making improvements at

other levels of the system hierarchy. A traditional way of achieving further

speedup is by migrating function into the hardware. One way of achieving this

has been briefly discussed earlier. The most obvious candidate for hardware

acceleration is a line segment intersection calculation.

Chapter 3. The Polygon Merge Stage 	 KC

All the above are really what might be described as second and later gen-

eration developments. Their precise impact has not been studied, indeed to

implement some of them, it becomes necessary actually to build an example

system upon which to carry out further experiments.

3.4.2 Sequential Program Enhancement

It has already been noted that the emulations took a similar time to the stan-

dard Polygon Package merge for small and medium designs. For large design

the timing differences are rather more pronounced. One large design took 8

hours to merge and bloat using the emulator with an elapsed time of approx-

imately 14 hours. The Polygon Package required 12.25 hours and 38 hours

elapsed. Although some of this astonishing improvement is due to the algorith-

mic improvements mentioned earlier the most part is related to the memory

requirements. The Polygon Package requires 28 Mb of (virtual) memory and

the emulator 19 Mb. The scan line algorithm has very bad locality of reference,

especially on the second merge used when sizing, and thus reduced memory re-

quirements will reduce paging requirements. This is confirmed by the emulator

having 4 million page-faults against the Polygon Package's 13.25 million.

It is a characteristic of VMS (the operating system upon which all the exper-

iments were carried out) that at least part of the cost of handling a page-fault is

credited to the user process and thus the disparity in times become even more

pronounced. Recently this memory control facility has been usefully exploited.

Designs which could not be processed in 70 Megabytes can be processed in

under 6 [Fer87].

Chapter 3. The Polygon Merge Stage 	 91

In a survey of LSI artwork-analysis and design rule checking programs con-

tained in [Bai77] Baird notes that there was a "widespread" use of partitioning

(eg [Cra751). This is a very similar operation to the splitting used in the em-

ulations. Although motivated by a desire to conserve the use of store (most,

if not all, of the described systems ran on 16 bit machines) it was noted that

run-time could be "dramatically improved by the introduction of partitioning".

The algorithms used had a time complexity of n2 so the performance improve-

ment was rather more marked. Baird shows, in fact, how with careful choice

of partition size the growth can be made linear with the size of chip, although

this cannot be true in the worst case.

The introduction of splitting to the polygon package was motivated neither

by a requirement to reduce storage, nor run-time although both were achieved.

In distinction to the partitioning Baird described all the data is kept in store.

Theorist are examining methods of reducing storage requirements [0W86}.

Partitioning is a simple method of achieving this. Although most current gen-

eration VLSI pattern generation (and possibly artwork analysis) packages no

longer use partitioning, as packing density and consequent complexity of designs

increase partitioning will become more and more important. This will become

true for all tasks which make up VLSI design.

0
0
N
A

0
0
N

03
5
03
I-

I.0
S

5

N
5
N
I-

I-

0
I-

0
0
I-

03

0
03

0
N
V

Chapter 3. The Polygon Merge Stage 	 92

U3 	 N 	Lt) 	 in 	0
N 	 0

(spuosnoqj.)
.un0

C
-C

-a
C
a

2'
4)

04

Chapter 3. The Polygon Merge Stage

I I I I I I I I I
0 000 0 0 0 0 0 0 0 0 0
C4 '- 0 0) N (0 in *) C
I- - 1•

sp uoaea

Table 3-7: Timing trend for pure merge, bloat and shrink

C.,
0

C
0

U
C

L
0.
E

0

a

E
w

[oJ

Chapter 3. The Polygon Merge Stage

N N CO Co 	 c4 i- Go Co * 04 0

(spuD Sn o
UG)O, BLUU.

Table 3-8: Function versus Time

Chapter 3. The Polygon Merge Stage 	 95

o 	a 	0 	0 	0 	0 Co 	 it)

Table 3-9: Time Taken per k'rocessor.Merge stage only

c.J 	LI] 	0 	LO 	0 	to 	0 	tt) 	0 	ii) 	0 to 	 ?') 	pd)

Chapter 3. The Polygon Merge Stage 	 96

1 0404 aq; o ;uao.ied o to s4;uGJ

Table 3-10: Vertex Distribution in the X direction

Chapter 3. The Polygon Merge Stage 	 97

C

Ii

Ln 	 It 	 In
(S 	 a 	 0 	 0 	 0 	 0

I-

lD;o; aq; o WOOjed o o sq;uj

Table 3-11: Vertex Distribution in the Y direction

C,)
z
0 C,)
U)
C.,
0

IL

Chapter 3. The Polygon Merge Stage 	 99

I- 	 I- V-

(9) (s) 3VIIJ.

Table 3-13: Timing by the three division methods

Chapter 3. The Polygon Merge Stage 	 100

[I,

Cn 	c
13

CI

00

0 Q2

o %.V 	 44- k--t-
LO

0 0

(sw) uawa.unba £iowai 	 -

Table 3-14: Memory Requirement vs vertex count

I

Chapter 3. The Polygon Merge Stage 	 101

o 0 0
0 0 0

o'N 0 0
0 0 0
0 0 0
Cr) 0

Table 3-15: Communication Coats for merging multiple Layers

Chapter 4

The Electron Beam Fracture Stage

The time taken to fracture polygons for writing by Ebeam lithography is very

little compared with that taken to generate the merged and flattened polygons:

It is however useful to spend some time examining ways in which the process

can be parallelised.

4.1 Algorithms for Ebeam Fracture

As mentioned in Chapter 2 the input for electron beam mask makers (as well

as the newer generations of other pattern generation equipment) is a series of

stripe data subfiles, each of which consists of a list of trapezia whose parallel

edges are horizontal. Performing the conversion fracture from the polygonal

format output by the merge stage to this format is therefore a two part process:

the decomposition of the polygons into trapezia, and the sorting of the trapezia

into stripe data subfiles. It should be emphasised that the order in which these

operations are performed is unimportant, what matters is the result.

4.1.1 Theoretical Consideration of Decomposition

Decomposition of any polygonal structure consists of finding a set of chords

which break it down into a set of simpler structures. In [AA186] Asano et

102

Chapter 4. The Electron Beam Fracture Stage 	 103

al investigate the computational complexity of the minimal decomposition of

polygonal structures into trapezia - that is the decomposition which yields the

least number of output trapezia. The approach they chose is to search for the

maximum number of effective chords. These chords are used to divide the input

polygon up into sub-polygons which may be easily further decomposed into the

minimal set of trapezia by the scan line method given below. By reduction

through various set and graph theoretic arguments they demonstrate that the

searching for the maximum number of pairwise independent effective chords is

NP complete and thus that the minimal decomposition problem is NP complete.

Working from the same basis - that of finding the maximum number of

pairwise independent effective chords they then demonstrate an 0(n2) algorithm

for polygons with n vertices but without holes and extend this to an O(n2 ')

algorithm for polygons with n vertices and h holes.

As has been seen earlier the size of polygons can be quite vast and so 0(n2)

and higher orders of growth on the complexity of the fracture stage should be

avoided if possible. Thus they present an approximate solution to the problem

with performance of 0(n log n). This approximates the finding of the maximum

pairwise independent effective chords.

4.1.2 Scan Line Algorithms

The algorithms mentioned above are somewhat complicated, which is liable

to affect their absolute performance (and, to an extent, reliability). Further-

more they all rely on an algorithm which will decompose the sub polygons into

their component trapezia. This section describes such an algorithm which is a

development of a scan line algorithm.

As described in the previous chapter scan line algorithms [NP82] work by

sweeping a line across the object, stopping and performing various functions at

key points (events). At any point the scan line is a list of those edges which cross

the line at that point. The scan line, in conjunction with the list of pending

events, controls the further operation of the algorithm.

Chapter 4. The Electron Beam Fracture Stage
	

104,

For Ebeam fracture the scan line algorithm is modified as follows. The input

is the polygon which is to be decomposed, the events are the vertices and the

edge list is the list of. those edges which currently cross the scan line. The

number of edges is bound to be even and since the input is well formed they

form edge pairs which always enclose the field of the polygon.

Processing an event has two major functions. Firstly, as for all scan line

algorithms it causes the edge list to be updated and secondly it controls which

trapezia are output. Whenever an edge ends (ie a vertex is reached) or a

vertical concavity causes two new edges to be introduced between an edge pair,

a trapezium is output whose upper edge is the current Y value of the scan line,

whose lower edge is the last Y value for the edge pair and whose non-parallel

edges are derived from the edge pair. Thus all the chords introduced by the

scan line algorithm are horizontal and are introduced at events. See Figure

4-1.

can line pauses here

Figure 4-1: Outputting trapezia from a Scan Line Algorithm

The initial event list is the sorted list of local minima in the input polygon.

Thus the time complexity of decomposition of a polygon with n vertices of

which p are minima is obviously 0 (p log p + n). Thus the best case complexity

Chapter 4. The Electron Beam Fracture Stage 	 105

(for convex polygons) is 0(n) and the worst case (chicken feet and egg crates)

is 0(n log n).

4.1.3 Sorting

Not only do the input polygons need to be decomposed into trapezia, the

trapezia have to be in a sorted form, such that all the data for one stripe

is given with one subfile and that the subfiles are specifed in the correct order

for the Ebeam machine.

The sorting can take place either before or after the polygon decomposition

stage. In the former case the input polygons are sorted such that all the poly-

gons which will contribute trapezia to that stripe, and thus subfile, are kept

together. Since some polygons will span stripe boundaries there will be an el-

ement of duplication. Having been thus sorted, the polygons are fractured a

stripe at a time. This generates the subfiles in the order required by the Ebeam

machine. Any trapezia which cross stripe boundaries are clipped to the current

stripe boundary.

4.2 Parallelising Ebeam Fracture

The development of Ebeam fracture to run on a parallel architecture is consid-

erably simpler than for merging since there is an obvious operation which can

be made to run in parallel - the actual performance of the decomposition.

4.2.1 Parallel Ebeam Fracture

Sequential processing requires that all the data is in memory before processing

starts. This governs the order of processing of the individual polygons and takes

place totally in isolation from the processing of previous or later polygons.

Chapter 4. The Electron Beam Fracture Stage 	 106

In theory, if the requirements upon the ordering of the processing of the

polygons were relaxed, all the polygons could be fractured simultaneously, as-

suming that sufficient hardware was available; the total time taken being the

time to fracture the most complex polygon. Thus very high levels of concur-

rency would be feasible. This restriction is only one embodiment of the fact that

the pattern tape must consist of consecutive stripe data fields, each of which

contains all the data for that stripe. If another way of guaranteeing this fact is

adopted the restriction can be waived.

On first inspection it appears that the only way of assembling stripe data in

the correct order after a random order fracture is to sort all the output trapezia.

Since there may be millions of output shapes this would be prohibitively ex-

pensive on any hardware configuration. Examining the problem rather more

closely shows that the stripe data need not be ordered, and so any sorting need

only establish into which stripe file to place the trapezia. This can be achieved

by careful file manipulation in a manner similar to the first pass of a radix sort.

These files were called Ebeam fracture format files.

The Ebeam Fracture Format File

The Ebeam Fracture Format. (EFF) file consists of one physical file which is

subdivided into many logical subfiles. Every subfile may be open for writing

simultaneously. For the sake of simplicity the following describes the organisa-

tion of a one layer (mask level) EFF file. Multiple layer files are achieved by

the obvious extension of this organisation.

The EFF file is built on top of the random access, block based 10 system'.

The first blocks are given up to pointers to the start of each stripe file, each

pointer being in two parts: a block number and a within block offset. The final

word in any data block is a similar pointer to the continuation of this stripe file.

See Figure 4-2. Once the fracture has been completed the correctly ordered

'IMP has no such system and so one was developed for this thesis

Chapter 4. The Electron Beam Fracture Stage
	

107

I

Stripe ptr One
Stripe ptr Two

Stripe ptr n

Start of
Stripe File

One

E:]
Start of

Stripe File
Two

First block contains
start pointers

Last datum in block
is a pointer to

first datum in next block

Figure 4-2: Logical construction of the EFF files

pattern tape is generated by reading back the EFF file a stripe file at a time.

This operation is completely independent of the fracture processing (and thus

can be pipelined and organised to run at the speed of a magnetic tape drive).

Currently it is not uncommon for fracturing to be performed in two similar

phases, the motivation being to reduce possession time of the tape drive.

Alterations to the Scan Line Algorithm

Obviously the precise algorithm used to perform the decomposition is com-

pletely independent of the technique described above to parallelise the process

of Ebeam fracture. For the experiments detailed below an adapted scan line

algorithm was used. In addition to events at minima and events at the ends of

edges two new events are introduced. Whenever a new edge is introduced into

the scan line (or an edge is changed by virtue of an end edge event) an inter-

section check is made with the bounding box of the stripe. If the edge crosses a

Chapter 4. The Electron Beam Fracture Stage 	 108

boundary at the top a stripe end event is introduced and if at the sides a stripe

edge event.

At a stripe end event trapezia are output at all the edge pairs before pro-

cessing continues (with trapezia now being output to a new stripe subifie). In

the sequential system processing had to terminate at an end edge event, but

the state of the fracture was saved to enable faster processing when handling

the next stripe.

At a stripe edge event two new edges are introduced. These edges run

vertically and divide the old edge pair into two new pairs, each of which is in a

separate stripe. See Figure 4-3. These two events have the effect of clipping

Edge list after Edge event

Edge list prior to Edge event

Stripe boundary

Figure 4-3: Edge Event

any stripe crossing polygons to the stripe boundaries, while ensuring that the

data both within and without all stripes is preserved.

Chapter 4. The Electron Beam Fracture Stage 	 109

4.2.2 The system architecture

The envisaged architecture is similar to that of the merge system. See Figure

4-4. A single input processor reads the input data and passes polygons to

one of a bank of fracture processor8, whichever is not currently performing any

calculation. Each fracture processor decomposes the polygons and passes the

trapezia to the output processor which drives the EFF file. As a totally separate

function the EFF ifie is copied across to the required format of magnetic tape.

EEic tape

Merged
Data

Broadcast
merged

data

Fracture Many
Processor to one
Cluster Output EFF files

Figure 4-4: System architecture of the Parallel Ebeam fracture

4.2.3 Implementation

Given these techniques for parallelising the Ebeam fracture process it remains

only to demonstrate its effectiveness or otherwise and to examine at least the

first stages of performance improvements. As for the merge stage this has been

achieved by an emulation of the system.

Each fracture processor is emulated by an individual fracture time clock.

When a polygon is fractured it is assigned to the fracture time clock with

Chapter 4. The Electron Beam Fracture Stage 	 110

the minimum time recorded. In addition to the fracture processors, both the

input and the output processors are emulated with separate clocks. If the

input processor has to wait for a fracture processor to come free or vice versa

the necessary clocks are resynchronised (ie the clock brought forward, thus

emulating a period of null processing).

As for the merge stage, the communication cost was measured by generating

a trace ifie of events. This was normally a series of time-stamps, each with a

value, indicating the amount of data transferred, each one being written either

when a polygon was passed to a fracture processor, or when a trapezium was

passed to the output processor.

4.3 Results and Modifications

Using the emulation enough data was captured on how the system would per-

form with respect to the major points of interest - accuracy, speed, communi-

cation costs, memory requirement. Where performance in any of these fields

was less than expected the emulation was used to explore the directions that

further development should take. As for the, merge stage, several first stage

improvements were incorporated.

4.3.1 Accuracy and Flash Count

Since the fracture system works to a level of resolution of 0.011A, so long as

rounding to the Ebeam address units (which are never less than 0.11) is per-

formed correctly, accuracy will never be present as a problem to the system.

A useful side-effect of the amended scan line algorithm is that the number of

flashes produced is reduced from that generated by a sequential decompose and

clip fracture system. When a stripe-spanning polygon is fractured, any event

will only affect edge pairs (and thus cause trapezia to be output) within the

stripe where they occur. See Figure 4-5.

Chapter 4. The Electron Beam Fracture Stage 	 111

:ause this line stops at
.ndary, one flash is saved

Figure 4-5: Amended Algorithm: The reduced trapezia count

4.3.2 Memory Cost

The cost of memory can be divided up into two distinct parts. Of greatest

importance is the memory requirements of the fracture processors. However

techniques which control the size of the fracture files generated are also of

interest.

Fracture processor memory

As for the merge stage this is vital, but in sharp distinction to the merge phase

the memory requirements for decomposition are minimal since the polygons are

fractured individually. The memory requirements for any fracture processor

are just the amount needed to store the largest polygon and the code and data-

structures needed to decompose it (which will be considerably less than that

needed to store the polygon itself). The size of a polygon will never be so vast

that even a megabyte of memory is required to store it. Thus fracture processor

memory requirements are not a limitation of parallel Ebeam fracture.

Controlling the size of EFF files

The described implementation of EFF files is very wasteful of disk space. On

average the free space (ullage) at the end of every stripe file will be half a block

I 	 I 	 I

I 	 I 	 I

+-

I 	 I 	 I

+- 	---+- .---+-
I 	 I 	 I

+- 	---+- 	---+-
I 	 I 	- 	I

+-+-- --+-

	

A 	 I 	 I

+-+-- --+-

	

I 	 I 	 I

Stripe 7

Stripe 6

Stripe 5

Stripe 4

Stripe 3

Stripe 2

Stripe 1

Chapter 4. The Electron Beam Fracture Stage 	 112

in size. The smallest block size is one half of a kilobyte and so wasted space

may become several hundred kilobytes. It is clearly advisable to reduce this as

much as possible. If any stripe subflle can be closed before the processing has

terminated then the ullage in the file's last block can be re-used. A stripe ifie

---y -----

---1

--
----I

---•1
----I
- - -

Segment 1 Segment 2 Segment 3 Segment 4 When region A has

been processed, stripe files 1 and 2 within segment 1 can be closed.

Figure 4-6: Recovering Ullage in EFF Files

can be closed only when all the polygons covering that stripe's area have been

processed. This is different from the pre-ordering required by the sequential

algorithm. That this has been achieved may be deduced from the intrinsic

order of the input.

During the merge stage the output from each processor (the processor data

set) was kept logically distinct. When the data set for one processor has been

completely fractured, all the subfiles for stripes wholly covered by this merge

processor (and previously dealt with merge processors) may be closed since no

further trapezoids will be output to these files. Any space left at the end of the

final block of the subflle may be reused. See Figure 4-6.

The closing of the subflles and the reclamation of space may take place

incrementally during processing of one data set. The merge system ouputs all

Chapter 4. The Electron Beam Fracture Stage 	 113

polygons in order of decreasing global minimum Y. If the data was read in

reverse order the polygons would appear in order of increasing global minima.

When a polygon has been processed there will be no more data (within the

current processor data set) below the lowest point of that polygon. The sub

file of any stripe below this minimum Y (and totally enclosed by the merge

processor data area) may be immediately closed. Thus wasted space will be

reduced to a minimum. This final space saving is particularly useful when only

one processor was used to perform the merge.

In order to allow the polygons to be read in reverse order and a data set

at a time, the standard output of the merge system was altered somewhat.

As for EFF flies, this file format is based upon a block based 10 system and

consists of many sub files (one for each processor data set). Whereas output

from the merge stage normally consists of a header followed by the data points,

the amended system consists of data points followed by a header. Furthermore

the indices held in the headers of the block file point to the end of the data set

and the first (not last) word in a block is a continuation pointer to the previous

(not next) block. The last data set is that of those shapes which have been

recombined. This is the first to be read.

Given that the output stage of the merge system can be the bottleneck on

multiprocessors this coding needs to be done exceptionally carefully. Indeed it

may well be that the extra overhead to generate these specialised output files

is such that the extra space in the EFF files caused by the ullage is accept-

able. Furthermore, if the performing of input becomes a bottleneck it would be

sensible to remove the extra cost of reading complex input files.

4.3.3 Load Balance

The graphs given in Tables 4-5 and 4-6 give the time taken to fracture one

layer of a design. It is obvious from these graphs that an even load balance is

not being achieved. The reason for this is that the output from the merge stage

of this example consisted of very many polygons of relatively small size and

Chapter 4. The Electron Beam Fracture Stage 	 114

one very large polygon. That this is a moderately common scheme of things is

born out by reference to Table 3-6. The fracture processor takes a very long

time to complete, by which time the rest of the data for that layer has been

fractured. Thus all but that fracture processor spend the majority of the time

idling. Massive polygons also have a detrimental effect upon the bandwidths -

the passing of one massive polygon to a fracture processor is liable to swamp

the available input bandwidth.

It is therefore advantageous to ensure that the input polygons are not ex-

cessively large. As mentioned in the previous chapter there is a special module

in the merge stage which achieves this. This crumble module was specifically

designed to reduce massive polygons to below a threshold set either by plotting

software (some plotters cannot handle polygon fill for large polygons) or by a

format definition such as Calma GDS-1 (LU) format which allows 117 vertices.

The reduction of vertex count for distributed Ebeam fracture does not

present such a tight threshold. All that needs to be achieved is an avoidance of

massive polygons. Furthermore using the crumble routine will add to the time

taken to do the merge. Thus crumbling is best avoided if it can be.

If the recombination STITCH phase of the merge process is removed,

then the vertex count of the largest polygons will naturally decrease (since

large polygons will tend to be spread over more than one merge area). Since

Ebeam fracture data can represent acute angles there is no possible loss of

accuracy introduced by non-Manhattan wires crossing boundaries. The only

disadvantage is an increase in the number of trapezia output.

The graphs given in Tables 4-7 and 4-8 indicate that the removal of the

STITCH module does indeed give a much more balanced load. This removal has

another advantage. The recombination stage of the merge process takes place

in the sequential part of the system and, as can be seen in Table 3-8 for large

designs this can take a large proportion of the overall time.

It is immediately apparent from the Tables 4-7 and 4-8 that once balance

has been achieved the input and output processors become the bottlenecks and

Chapter 4. The Electron Beam Fracture Stage 	 115

as such the targets for careful coding. It is particularly worth pointing out that

the 10 package used in the emulations was not a 'professional product' but was

just another part of the necessary programming required in the research for this

thesis. Experience shows that the performance of this system could probably

be improved considerably. An indication of the performance improvements

possible in this field is given in Table 4-1.

Old New Increase

S s percent

412.1 382.1 7.3

426.3 394.7 7.4

427.7 399.7 6.5

Table 4-1: Time taken by Output processor

The only difference between the 'old' and 'new' systems is that four lines

of code were migrated from being performed by the output processor to the

fracture processor. The cost of doing this is that the bandwidth has to be

increased.

In addition to changes made by moving the function from being performed

sequentially to being performed in parallel, there are other 'traditional' software

engineering techniques for speeding up the output and input processor, some of

which were described in Chapter 1.

4.3.4 Processor Numbers

The distributed fracture algorithm can be divided into three parts - input,

output and decomposition. For any given input data the time taken to input

it and to output the trapezia should remain constant, regardless of the number

of fracture processors. Similarly the total fracture time, defined as being the

Chapter 4. The Electron Beam Fracture Stage 	 116

sum of the time that all the fracture processors spend decomposing polygons

not idling, should be constant. This is indicated by Table 4-2.

Number of

Processors

Input

Time

Total Fracture

Time

Output

Time

1 153.6 987.5 388.7

2 153.8 990.5 399.5

3 151.7 1000.0 399.9

4 154.3 996.6 392.1

5 153.6 998.3 385.9

6 156.9 996.0 385.6

7 154.4 990.8 399.7

8 153.7 965.3 392.1

9 152.5 982.7 394.5

10 153.5 984.2 384.3

11 162.1 996.8 388.3

12 153.3 985.7 383.1

Table 4-2: Breakdown of fracture timings for one layer

It is desirable to choose a value for the number of fracture processors so as

to avoid processors being unneccesarily idle. The time taken by the fracture

processors overall (ie the time taken by the slowest processor) should be as close

as possible to time taken by the slowest of the input or output processor. Thus

the number of fracture processors Np can be calculated as:

Np = 1max(T1,T0) 1

Where Tp. is the total fracture time, T1 is the input time and T0 is the

output time. For the data given in Table 4-2, Np is 3.

Chapter 4. The Electron Beam Fracture Stage 	 117

4.3.5 Emulated Speed

Assume that a good load balance is achieved and that communication costs

are negligible. Let T be the time taken for a parallel system with n fracture

processors and To be the time taken by the equivalent sequential system. TF

is the time taken to perform fracture by the nth processor.

TO = T+T0 +T

T = max(T1,T0,Tp)

= T. when Ti = N

The speedup is given as

speedup.
—

TO

:
Ti 1+ TP
T0 	T.

Since O< ~1andNp~
TO

~Np+1
TO

1 + Np :5 speedups < 3 + Np

So, allowing for communication cost and non perfect load balancing, it -

should be reasonable to assume a speedup of at least 3 times for this particular

setup. As mentioned above, a more skilfully implemented 10 package would

allow immediate and massive improvments to this. Table 4-3 gives details of

the time taken and factor speedup. All times are given in seconds. As can be

seen an order of 3 times speedup has been achieved regardless of the size of the

problem.

It should be pointed out that the calculations upon which this section is

drawn were all based on designs which had a large amount of non-Manhattan

geometry in them

4.3.6 Communication Costs

As for the merge stage, the cost of communication was measured by generating

a trace file to which a time-stamp datum was appended whenever any commu-

Chapter 4. The Electron Beam Fracture Stage 	 118

Total

Time

Emulated

Time

Fractional

Speedup

85.6 23.0 3.7

236.2 63.8 3.7

555.9 140.5 3.9

1.7 0.46 3.7

252.0 60.6 4.2

17.9 5.1 3.5

411.6 87.3 4.7

Table 4-3: Ebeam Fracture - Times and speedup

nication was generated. From this both the average and peak bandwidth could

be calculated. The average bandwidth was calculated as the amount of data

output (or input) divided by the amount of time over which input or output

occurred. This gives a rough idea of the loading which a communications chan-

nel would be expected to handle. The peak bandwidth is simply calculated as

the maximum number of bits moved over a discrete time-step (in this case one

hundredth of a second) divided by that time-step. Table 4-4 gives details.

As can be seen both the average and peak 'bandwidth' measurements are

somewhat different for each experiment (these are the same fractures as de-

scribed in Table 4-3). However the 'average bandwidth' is well below one

megabit per second and so should not present any problems in terms of hard-

ware implementation. The gross variation in peak measurement - which also

shows up as great variation on the graph in Table 4-9 is a function both of the

small timestep used in the analysis and the fact that the input contained one

massive polygon.

It is interesting to note that the input bandwidth is always larger than the

output. This can be attributed to the difference in the coding used for the

input and the output data. Consider for instance a box. As input this might be

Chapter 4. The Electron Beam Fracture Stage 	 119

Input bandwidth Output bandwidth

Peak Ave. Peak Ave.

Mb/s kb/s Mb/s kb/s

0.32 96.5 5.12 52

0.32 100.0 5.12 53

57.2 592.0 916 51.4

0.12 56.6 1.84 30.7

24.1 324.0 385 57.5

0.17 72.7 2.66 36.2

1.31 149.5 20.9 68.4

Table 4-4: Ebeam fracture. Average and peak bandwidth

represented by its bounding box. Since the box may be of any size and anywhere

on the mask each coordinate would need to be stored as a four byte integer.

Thus for input a box requires 16 bytes to be represented and this does not allow

for the box descriptor. On output it is known that all output will be trapezia

and will be within stripes. Thus the output could consist of a stripe identifier,

a segment identifier, a bottom and top Y coordinate and 4 X coordinates.

Depending on the stripe height and segment width this can be represented as

less than 16 bytes2. There are obviously greater data compressions which can

be achieved. It should be remembered that greater speedup is bound to have

an adverse impact on the bandwidth.

2for VARIAN ALF format this is 15 bytes

Chapter 4. The Electron Beam Fracture Stage 	 120

4.4 Conclusions

As for the merge stage a parallel algorithm has been demonstrated. Again the

limitation on the amount of available parallelism is not due to a failing of the

general technique, but because of poor implementation of time-critical parts of

the system. Even had more time been available it was not within the bounds

of this research to follow up the tail-chasing path of further improvement, but

a critical examination and reimplementation of the input and especially the

output systems would be the most important next stage of development. It

should be stressed that since the Ebeam fracture stage is less CPU intensive

than the merge stage it is less critical to achieve great improvements.

Another development which could be investigated is the post processing of

the EFF files such that the compacted format which some Ebeam machines

accept could be generated. This has been done (with surprisingly good results)

for a sequential system. Work would need to be carried out to see how this

might be adapted to become part of a parallel system.

Similarily again to the merge stage the techniques used to parallelise the

fracture stage are not all dependent upon which algorithm is used to perform

the decomposition of the polygons. The algorithm used was chosen for the

pragmatic reason that it was easy to implement. A more complex algorithm

which gave better (in the sense of being closer to optimal) results could easily

be adopted. Adoption of a different decomposition algorithm would of course

require Np to be recalculated. Algorithms with considerably worse asymptotic

time performance might need more careful load balancing.

In sharp contrast with the merge stage, the parallel system for Ebeam frac-

ture does not become amenable to greater levels of parallelism as the data size

becomes larger. The optimal size for a fracture system is fixed (once the algo-

rithms and their implementations have been fixed). Thus even for very small

designs the speedup due to parallelism is achievable. See Table 4-3.

Chapter 4. The Electron Beam Fracture Stage 	 121

As for merge there is another level of parallelism available over and above

that demonstrated in this chapter - the possibilities of handling more than one

layer at a time in parallel. This is particularly useful for the Ebeam fracture

stage where the number of processors used is rather less than for the merge

stage.

N

in

4-I

0

Chapter 4. The Electron Beam Fracture Stage 	 122

0 	0 	0 	0 	0 	0 	0 	0
o 	0 	0 	0 	0 	0 	0
N 	CO U1 * in 	Cl

Table 4-5: Original distributed Fracture for 9 processors

Chapter 4. The Electron Beam Fracture Stage

7T 77 17

(1141

I 	I 	I 	I 	I 	I 	 I 	I
0 0 0 0 0 0 0 0 0 u_i 	0 	It) 	0 	u_i 	0 	It) 	0 	It)

F') 	 N

spuoes 	 ft

Table 4-7: Amended distributed Fracture for 9 processors

Chapter 4. The Electron Beam Fracture Stage 	
I 26

0
0
0
0
0

0
0
0
0
0
LO

Table 4.9 Ebeam fracture Data rate against time.

Chapter 5

The Optical Fracture Stage

As for Ebeam fracture, optical fracture consists of two stages - the decompo-

sition of the polygons and their sorting. Depending on the precise algorithm

used in the decomposition and the make up of the input data the time taken to

fracture for optical machines varies enormously. It is therefore advantageous to

investigate methods of speeding optical fracture, especially in the cases where

it runs particularly slowly.

5.1 Algorithms for Ebeam Fracture

Again similarily to Ebeam fracture, study of algorithms for optical fracture

consists of two parts, investigation of the algorithms which perform the decom-

position and of those algorithms which sort the output.

5.1.1 Theoretical Considerations in Decomposition

Decomposition of a polygon can either be by way of a covering or a partitioning,

depending upon whether overlap is allowed or not in the output. For Ebeam

fracture a partitioning was used, but for optical fracture, in order to reduce the

flash count (and in many cases in order to make the decomposition possible), a

covering is usually adopted. Unfortunately minimal cover even for Manhattan

127

Chapter 5. The Optical Fracture Stage 	 128

polygons is NP complete [J82]. Thus approximation techniques have to be

adopted.

The order in which the flashes are written to the pattern tape is the order

in which they will be exposed on the plate. This critically affects the speed

at which the plate is exposed. To further complicate the issue, the speed of

the various mechanical functions (rotation, movement and so forth) varies, not

only between machine types but also between machines of the same type. The

problem of finding the best order for the flashes is thus equivalent to the Trav-

elling Salesman Problem and as such is NP complete. Thus approximation

techniques or heuristics have to be adopted to achieve a reasonable flash rate

within a reasonable period of time.

5.1.2 Algorithms for Polygon Decomposition

The covering of non-Manhattan polygons, although a thing which humans can

do with consummate ease, is difficult to express algorithmically. Indeed very

early pattern generation software would only fracture all angle polygons which

were expressed, not as vertex lists, but in terms of high level constructs - for

instance arcs, circles and rectangles. This already complex problem is further

complicated by the fact that in many cases a lessened flash count does not nec-

essarily mean a better fracture.. Consider, for example, the highly complicated

polygon shown in Figure 5-1. Figure 5-2 is a fracture with 265 flashes and

Figure 5-3 has 444 flashes. Although Figure 5-2 has less flashes the amount

of overlapping is such that it would be impossible to generate successful reticles

from this data.

In the absence of polynomial time complexity bounds on the problem, most

implementations and algorithms developed for covering polygons for use with

optical pattern generation equipment have been ad-hoc in nature. One tech-

nique which seems reasonably common is for optical fracture systems to have

two distinct decomposition algorithms: one, for the decomposition of Manhattan

polygons and one for the decomposition non-Manhattan polygons. [Ber861 and

Chapter 5. The Optical Fracture Stage 129

Figure 5-1: A complicated Polygo:

Figure 5-2:. A Possible Covering with 265 Flashes

Ift

Figure 5-3: A Better Covering with 444 Flashes

Chapter 5. The Optical Fracture Stage 	 130

[Heg82] describe all angle fracture programs of the 'ad-hoc' type. These work

by successively growing rectangles out from the edges of the input polygon un-

til the whole polygon is covered. The outward growth is limited by the 'other'

edge either hitting another edge of the polygon, or by it completely covering

a frontier, that is an internal edge of a previously flashed polygon. Heuristics

are used to control the algorithm, these include which edge to grow from next,

whether to extend the edge sideways (if possible) prior to growing the rectangle

and whether to stop at a frontier or not. These heuristics have a great impact

on the output and indeed the performance. For instance the difference between

Figure 5-2 and 5-3 was made solely by adjusting these heuristics. Further in-

vestigation of these is continuing, but is outwith the scope of this thesis.

[GG83] describes the PTR (polygon to rectangle) algorithm. This algorithm,

not unrelated to the scan line algorithms used in the last two chapters, partitions

a Manhattan polygon into Manhattan rectangles. In some cases, the use of

non-Manhattan flashes can reduce the flash count. This is a highly infrequent

occurrence and the added complexity of searching for such an occurence makes

its inclusion self-defeating. The work described in this chapter was based upon

the all angle decomposition algorithm described in [Ber86] and an adaptation

of the PTR algorithm which generates a covering of the input polygons.

5.1.3 Sorting

In the system which was the basis for the work described in this chapter, the

NP complete problem of finding the optimal flash ordering was handled, by

applying heuristics. Every flash, as it is generated, is sorted, first by angle of

rotation, then by Y position and finally by X position. When all the polygons

which make up one layer have been decomposed (or a flash count threshold has

been reached), the sort tree is unwound in such a way that the rotation changes

least frequently, then the Y value and finally the X. The output is such that

the plate moves back and forward in the X direction as the Y increases thus

the overhead of fly-back is avoided. This boustrophedonal method of sorting

Chapter 5. The Optical Fracture Stage 	 131

the output flashes produces reasonable results and is particularly effective on

machines which can 'flash on the fly'.

5.2 Parallelising Optical Fracture

As for Ebeam fracture, the polygon decomposition, represents an obvious choice

of unit for parallelisation. A major difference between the parallelising of the

optical fracture and that for Ebeam was that whereas the parallel Ebeam frac-

ture system was based upon theoretically sound algorithms, which had little

scope for improvement by software engineering techniques, the Optical frac-

ture system, in particular the decomposition part, was at a less well developed

stage. Thus the basic system could be improved by standard software engi-

neering practices without resorting to use of parallelism. The results of this

chapter show that algorithmically sound algorithms are not a necessary basis

for performance improvement by use of concurrency. It is, however, usually

preferable to improve the implementation by established software engineering

methods before launching into the fray with parallelism.

5.2.1 Parallel Optical Fracture

If performance of the decomposition is the most time consuming part of per-

forming a fracture (as it is in the time dependent cases in particular), the ob-

vious method of parallelising optical fracture is by development of the system

described in the previous chapter for the fracturing for Ebeam machines.

Since the sort takes place after the decomposition polygons may be decom-

posed in any order; in particular they can be processed in the order in which the

merge stage generates them. With the experience gained when parallelising the

merge and Ebeam fracture stages it is obvious that a method of parallelising

fracture is for each polygon to be assigned to fracture processors as they come

free with a dedicated output processor serving to order the rectangles prior

Chapter 5. The Optical Fracture Stage 	 132

to writing the PG tape. Rectangles, of course, pass immediately from input

to output with no intermediate decomposition stage, being merely sorted and

translated from input to output format.

In contrast to the Ebeam fracture stage, correct functioning of the system

does not rely on non-standard input or output - in fact the standard input and

ouput were used in the emulation described below.

5.2.2 System architecture

The architecture of the resulting system is very similar to that for the Ebeam

fracture system which itself was not dissimilar to the merge system. The main

changes are that the output can go directly to magnetic tape (although buffer-

ing through disk intermediate files to reduce tape drive possession time is still

useful) and the fact that some shapes (rectangles) are immediately passed to

output. See Figure 5-4

5.2.3 Implementation

Again, experiments were performed on the system by means of an emulation of

the system. Just as the parallel optical fracture system was based upon that

developed for the Ebeam, so was the emulation with each processor, whether

decomposition, input or output, being associated with an emulating clock. Pro-

cedures were provide to emulate synchronisation and allowed selection of 'next

free processor'. Obviously the overall emulated time is the greatest of those

shown on the emulating clocks, when processing has terminated.

Chapter 5. The Optical Fracture Stage 	 133

In
Proc

LJJ,J 	

Proc
Out
Proc

01
Rectangles bypass fracture processors

Broadcast Fracture Many Sort
Merged 	merged 	Processor 	to one 	and 	Output to

Data 	data 	Cluster 	Output Output Tape or Disk

Figure 5-4: System architecture for Parallel Optical Fracture

5.3 Results and Modifications

The emulated parallel system was used as the basis for experiments to evaluate

the performance of the system. Some improvements were included during these

experiments, and these are described in the relevant sections.

The same time-stamping techniques used in Chapters 3 and 4 were used

to measure the overheads associated with communication cost in a manner

amenable to off line analysis.

5.3.1 Accuracy

Since the basic decomposition and sorting algorithms are unchanged there will

be no change to the output data. Thus parallelising the system introduces no

Chapter 5. The Optical Fracture Stage 	 134

further inaccuracies upon the standard system. However the standard system

itself is less accurate than might be desired. In particular a fundamental design

decision with the original system was that all geometry should be covered.

Although this appears to be a sensible approach there are cases when it can

badly affect the quality of the fractured data - Figure 5-5 illustrates.

Pin

Figure 5-5: The pinhole accuracy problem

The two flashes 'A' and 'B' leave a minute 'pin-hole' in the original data.

If this flash is ignored the final mask quality would not be affected. Since the

algorithm seeks to cover all the data and will not terminate until such a time

as this has been done a third flash 'C' is generated. This flash (although of the

minimum size generatable by the machine) is much larger than the hole it is

covering and furthermore is offset so that it appears as a bulge on the edge of

the field. In such cases an algorithm which does not seek to cover all the data

might be favoured.

The methods for handling this sort of inaccuracy are not part of the work

described here. It is the subject of current and future research. It is included

here only for the sake of completeness and as a reminder that any parallel

system developed by the techniques described in this thesis is only going to be

as good as the system upon which it is based.

Chapter 5. The Optical Fracture Stage
	

135

5.3.2 Memory Cost

As for Ebeam fracture, memory usage of the system is not great. Indeed the

limiting factor is the size of the search tree used to sort the output flashes. This

can be controlled by governing the threshold at which the sort trees are purged.

5.3.3 Load Balance

The graph in Table 5-6 shows the idle and the busy time for the fracture of

one layer of a complex, predominantly non-Manhattan design. The fracture

was carried out on an emulated system consisting of an input processor twelve

fracture processors and an output processor which was also used to perform the

sorting. Quite obviously for this example at least, an even load balance has

been achieved.

A good load balance is achieved. The most important reason for this is the

fact that the size of the input polygons is limited. The basic decomposition

algorithm for non-Manhattan geometry is of such an algorithmic complexity

that large input polygons are exorbitantly costly to decompose. Thus it is

normal with this system to limit the size of the input polygons. Had this not

been done it is very likely that the system would show a very bad load balance

- considerably worse than that shown for the Ebeam decomposition case in the

previous chapter, where the computational complexity of the decomposition

stage is much lower.

5.3.4 Processor Numbers

It is reasonable to assume that the total time taken to perform input, decom-

position and sorting and output, will remain constant regardless of the number

of processors performing the decomposition. This is confirmed by inspection

of Table 5-1, which shows, for three separate emulated systems, the amount

of time taken in performance of these three functions for each of three layers

taken from two designs.

Chapter 5. The Optical Fracture Stage 	 136

Layer Polygon Processor Input Decomp. Output Flash

Count Count Time(s) Time (s) Time(s) Count

4 53.4 2,204 121

Active t 3,253 8 55.0 2,231 123 15,844

12 54.4 2,188 120

4 140 1,150 110

Contact t 9,338 8 143 1,179 113 16,994

12 143 1,173 112

4 1,162 1,938 4,770

Duff. t 107,692 8 1,217 1,970 4,723 287,818

12 1,190 1,902 4,708
T inaicates tnat tne geometry was preaominant!y non-Manhattan

indicates that the geometry was predominantly Manhattan

Table 5-1: Optical fracture. Cost breakup per function

Although the time taken per function does remain constant regardless of the

configuration of the system, the time which decomposition and output take is

very variable and completely unpredictable. Obviously the input time varies

as a function of the size of the input and the output time on the number of

flashes; but there is no way of judging the latter from the former. The time

taken to perform the decomposition is equally variable being in particular a

function of the makeup of the geometry (note the effect that mainly Manhattan

geometry has). In the absence of any obvious trend it is therefore difficult, if not

impossible, to make a decision as to an optimal number of processors. Given

the figures in Table 5-1, in the case of non-Manhattan geometry as many as

possible up to a limit of around 20 (for this configuration) seems feasible. When

fracturing Manhattan data even a configuration with one fracture processor

might lead to idle time on that processor.

If some of the load on the output or input processor could be migrated to the

fracture processors then a greater level of parallelism would be possible. This

Chapter 5. The Optical Fracture Stage 	 137

is obviously useful in the case of Manhattan input. In all cases the overall time

taken to perform whatever function was migrated would of course decrease.

A great deal of the time taken to output, especially in the case of the Man-

hattan geometry, is due to the sorting of the output flashes. If each processor

sorted those flashes which it generated, and a proportion of all the rectangles

which originally were passed directly to the output geometry, all that would

remain for the output processor to do is merge the (already sorted) shapes and

perform the actual output. Doing this means a of change method in which the

output communication happens. All the communication to the output processor

takes place once all the decomposition has finished (rather than incrementally

as previously). Thus the bandwidth required will be greater. The precise level

of this bandwidth is discussed later.

The changes outlined above were incorporated in the system. The large,

Manhattan, diffusion layer given in Table 5-1 was fractured at various emulated

configurations with the result shown in Table 5-2.

As the table shows the load on the output processor has been considerably

reduced. The expected similarity in the times taken both to perform the decom-

position and sorting and the output are not so marked. This can immediately

be traced to the performance of the sorting as the level of distribution varies.

In particular the time taken, both to sort and to output peaks is maximum

where at least one sort tree needed to be flushed during the performance of the

fracture.

Since output is performed after the decomposition stage, the best configu-

ration for the multiprocessor fracture of Manhattan geometry by this system

should be one where the total time taken by the fracture processors is the same

as that taken by the input processor. Consulting the data in Table 5-2 shows

that this is at 	6.

Chapter 5. The Optical Fracture Stage 	 138

5.3.5 Emulated Speed

Table 5-3 gives the emulated time and the fractional speed up for the same

batch of experiments which made up Table 5-2. The fractional speed up is

taken against the uniprocessor speed of 2 hours 11 minutes and 13 seconds.

Again the configuration where the sort tree is not output affects the emu-

lated time; but the emulated time is still considerably higher than might rea-

sonably be expected. The reason for this is the restrictiveness of the model

of synchronisation implemented by the emulating system. In this model no

fracture processor can recieve data from the input processor until the input

processor becomes free; furthermore the input processor itself often needs to

wait for fracture processors to become free. This equates to there being no

input buffering in the fracture processors. A further experiment emulated the

same configurations running on the same input data but with no notice being

taken of synchronisation (this equating to an infinite buffer being available).

The results are shown in Table 5-4.

As can be readily seen, the fractional speedup is considerably increased in

this case until all the ouput has to be performed at the end (no intermediate

flushing of buffers). This now becomes the new bottleneck and the target for fur-

ther improvement. In reality the emulated time and thus the fractional speedup

will be somewhere between these two extremes, depending on the amount of

buffering and the quality of the asynchronous input/output handling code.

5.3.6 Communication Costs

Again, these were measured by generating a time-stamp file during an emula-

tion. These were analysed at a later stage to find the amount of data which

needed to be transferred between the input and output processors and the

fracture processors. By analysing the occurrance of the time-stamps over (em-

ulated) time the peak rate of transference can be analysed. A simple division

gives the overall bandwidth; in implementation terms this means having an infi-

Chapter 5. The Optical Fracture Stage 	 139

nite buffer. Table 5-5 gives the details of the costs thus derived for emulations

of configurations of 4, 6 and 12 processors. The 'strong' synchronisation model

described above was used. When calculating the bandwidth the assumption

was made that the amount of data comprising a polygon was (8 x the number

of points) bytes and that each flash was made up as 12 bytes (4 bytes each for

X and Y, 12 bits for rotation and 10 bits each for length and width). A large

amount of data compression is quite feasible and so these figures should be con-

sidered as worst case. A half second 'snap shot' is used to evaluate maximum

bandwidth. All bandwidth values are given in kilobits per second.

The bandwidth values, although high, are not excessive. Furthermore, the

peak values are not considerably larger than the average values. This argues

that the input and output occur at a fairly balanced rate. This is born out by

the graph shown in Table 5-7 which shows the level of input or output activity

over time for the 6 processor configuration.

5.4 Conclusions

One of the basic tenets given in the first chapter was to ensure that the basic

algorithm was sound prior to embarking on parallelising it. Design of algo-

rithms for decomposition for optical machines could form the basis of a thesis

in itself. However although the original optical fracture system was distinctly

sub-optimal in the algorithmic sense, the same techniques used to parallelise

the other parts of the Pattern Generation system could be applied to it without

difficulty to give usable speedup - especially in the particularly time-critical

fracture of non-Manhattan geometry. As for Ebeam fracture the speedup was

not dependent upon the data being large. Very importantly, when algorith-

mically superior systems are developed, the techniques developed here could

immediately be applied since, as for the preceding chapters, not the algorithm

for solving the problem but the form of the problem has been the basis of the

work.

Chapter 5. The Optical Fracture Stage 	 140

The critical bottleneck, which cause further speed decrease are the input

and output; however since standard input and output systems were used in

writing the emulator their impact was not as great as it was for the Ebeam

system. Certainly with good coding their impact could be further reduced to

allow even greater levels of parallelism.

It would, however, be imprudent to reembark immediately upon a new par-

allel implementation of this system without first studying in greater depth the

precise algorithms used to decompose and sort the data. Certainly great im-

provements are possible for the sorting system. Work carried out by other

people while this thesis was being written has generated improvements of the

basic decomposition algorithm resulting in the improvements shown between

Figure 5-2 and 5-3, in removal of pinhole flashes (Figure 5-5), and reduc-

tion in the time taken to decompose non-Manhattan geometry. Certainly the

modules which perform the sorting would benefit from similar attention.

Again, it must be emphasised that no matter how bad the original implemen-

tation, the techniques used in this chapter were still usable for improving the

speed of any implementation (in this case an optical fracture system). However

any problems in the original system will also be present in any resulting parallel

system and so it would normally be the case that the original implementation

should be as good as possible prior to paralIelising it.

Chapter 5. The Optical Fracture Stage

Processor

Count f

Input

Time(s)

Decomposition

Time (s) *
Output

Time(s)

1 924 5,515 1,650

2 948 5,883 1,697

3 925 6,356 1,681

4 936 6,286 1,692

5 936 7,049 t 1,735

6 934 5,840 1,632

7 930 5,748 1,659

8 923 5,620 1,674

9 922 5,523 1,659

10 920 5,453 1,654

11 925 5,368 1,666

12 931 5,315 1,694

AVE 929 5,829 1,679

* decomposition includes some of the sorting costs

t Processor count refers to the number of fracture processors

This was the last configuration which involved flushing the search tree

141

Table 5-2: Modified Optical fracture. Costs per function

Chapter 5. The Optical Fracture Stage

Fracture

Processors

Emulated

Time (s)

Fractional

Speed up

1 5,941 1.32

2 3,692 2.13

3 3,150 2.50

4 2,412 3.26

5 1,995 3.94

6 2,984 2.64

7 2,897 2.71

8 2,828 2.78

9 2,759 2.85

10 2,713 2.90

11 2,697 2.92

12 2,705 2.91

Table 5-3: Emulated time and fractional speed-up

Fracture

Processors

Emulated

Time (s)

Fractional

Speed up

1 5,499 1.43

2 2,938 2.67

3 2,116 3.71

4 1,574 5.00

5 1,388 5.67

6 2,609 3.01

7 2,619 3.00

8 2,581 3.05

9 2,639 2.98

142

Table 5-4: Emulated time and fractional speed-up. 'Weak' synchronisation

Chapter 5. The Optical Fracture Stage 	 143

Fracture Input Bandwidth Output Bandwidth

Processors Average 	Peak Average 	Peak

4 227 659 16 62

6 266 723 17 18

12 327 851 16 18

Table 5-5: Bandwidth requirements for optical fracture

V

Input 	1

'S

N N

F' .

i
t.'..J. N

I:" N

..
5. ..

.. ',.

Distributed Optical Fracture
280

Busy and Idle time

r 	'N 260 fll
\d

240-(

220-7,

.\I'\. \•

200

' 180 \
160- \!'

140- ..

S N
N

120- / N N \
100-

/
I

'. 	'
L

' 	.
N

' 	''• 	I"
N

N

80
N

-'./ 60

4.0

20

2 	3 	4 	5 	6

processor

/ / /
/ / /
/

5 'l A
IA

7 	8 	Output

Chapter 5. The Optical Fracture Stage

	

I 	I 	 I 	"d

	

ID 	2. 	2. 	 it 	
0

	

jc 	 it

	

r 	. fl

Chapter 6

Conclusions

This thesis presents a series of techniques which improve the absolute perfor-

mance of the process of pattern generation. This has been achieved by ad-

dressing one particular level of implementation, coarse-grain loosely coupled

concurrency. The performance improvements are totally independent of any

other implementation detail. There is no reason why any implementation given

here could not coexist with any other sort of performance improvement in-

cluding further parallelism. The method given is not dependent upon the basic

algorithm, although in some cases the program has had to be amended. This

is because the method is based not upon the algorithms but upon the form of

the problem. Thus if a system were implemented on a distinct sort of parallel

machine, for instance an SIMI) machine such as the DAP, there is no reason

why multiple (multi) processors should not be coupled together as detailed in

this thesis to achieve even more speed up.

The implementations demonstrated and the next generation improvements

suggested will be more than capable of handling the new generation of very

large scale integrated circuits.

146

Chapter 6. Conclusions 	 147

6.1 Chasing the Bottleneck

Although very much experimental, a speed up of at least four times has been

achieved in every case, with greater speed up being achieved for those stages

which are particularily CPU intensive. As has been stressed throughout, the

implementation has scope for massive further improvements. In no case has

communication presented a serious bottleneck, although some level of buffering

has been assumed in the communications to smooth out bursts.

These improvements should take the form of further development by remov-

ing more and more of the bottlenecks in the system. Ultimately with careful

enough coding the final bottleneck will be the speed at which data may be trans-

ferred to and from magnetic media, with some added cost for the recombination

of the data.

This means that the major drawback with this research (and presumably

all research) was knowing when to stop. With hindsight it is always easy to

know exactly how the development should have taken place and to know what

improvements could be made to make the system even better. The motivation

throughout this research was to prove the validity of the ideas developed to

parallelise the task of VLSI pattern generation. The further improvements to

the system, both in terms of making the code more robust, and in terms of the

considerable extra speed-ups which are still achievable, are purely a matter of

software engineering. The development of existing ideas and programs such as

those developed in this thesis, although not easy, is a well understood part of

software engineering.

Chapter 6. Conclusions 	 148

6.2 Architectures

Unusually for research in parallelism, none of the resultant algorithms are de-

pendent upon a specific target architecture, but will run on any architecture

which obeys the (architecturally loose) design constraints. This is because the

methods developed have been targetted against loose, general limitations not

tight, architectural ones.

There can be no doubt that the era of parallel processors being available

in quantity has arrived. Each new parallel processing system presents a new

architecture and a new method of programming. In this thesis there has been

no emphasis put on single hardware architectures, but there has been, as a

recurring theme a system architecture consisting of dedicated input and output

processors and as many 'work' processors as can be supported in one-to-many

and many-to-one communication with them. Any hardware which supports this

configuration would be suitable.

In particular the most interesting of the possible architectures is the one

which is well suited to silicon design centres. It is very common for design

centres to have many workstations interconnected with a local area network and

a central main-frame, very often used as a simulation engine and for keeping

overall control of developing designs. The envisaged architecture is for the

main-frame to handle the function of the input and output processors, and the

workstations to handle the processing. See Figure 6-1.

Very often workstations are underloaded and the processing could run as a

low priority background job. The importance of such an arrangement is that

no further processing power is required above that which exists already, a large

proportion of the load imposed by pattern generation being removed from the

(usually overloaded) main-frame and placed upon the (usually underloaded)

workstations.

Chapter 6. Conclusions 	 149

File Server I Serves as input and
Output Processor

Local Area Network

Multiple workstations

0 	0 	perform distributed

-1

 fl

k 	9 	fracture or merge

Figure 6-1: Workstation based Architecture

6.3 Further Work

As noted above the next stage of development of the system is the removal of the

current crop of bottlenecks which absorb so much of the sequential processing

power that they reduce the ultimate amount of useable parallelism. For the

merge stage this is the norm alisation and area calculation stage, for the fracture

systems the recombinations of the output into the correct order. Appendix two

details an implementation based upon such a system, incorporating many of

the improvements suggested in Chapter 3.

In order that future implementations take advantage of the presented sys-

tems' capability to function on many different parallel architectures, it would

be sensible to implement all the parallelism in terms of one of the public domain

remote procedure call implementations which are currently becoming more and

more numerous.

Chapter 6. Conclusions 	 150

Obviously pattern generation is not the only time consuming part of the

process of integrated circuit design which is amenable to performance improve-

ment by the use of parallelism. It is hoped that some of those processes which

are similar in many ways to pattern generation (in particular design and elec-

trical rule-checkers) are amenable to parallel implementation by use of similar

techniques to those outlined in this thesis.

There is a very obvious alternative (and indeed supplementary) method of

parallelising pattern generation, which is to perform it on every layer simulta-

neously. Thus if a design was being processed to generate seven masks, seven

separate systems could be used to perform the processing time in the time taken

to process the slowest layer. The amount of data on layers tends to vary consid-

erably and so the resulting speedup would not as much as might be anticipated.

Of course there is no reason why such a technique could not be combined with

the techniques developed in this thesis. In particular the parallel merge stage

works best for large designs and so it might be possible to merge several layers

concurrently on one multiprocessor - a small layer would be processed on one

processing unit only, a medium sized layer on two or three and a massive layer

on the remaining processing units. In this manner the best possible utilisation

of machine resources and thus turnaround can be achieved. 	-

Data processing for pattern generation is going to become more and more

important as designs become larger and larger. The work described in this

thesis should alleviate any speed-related problems in the immediate future but

there are still vast areas to be invesitgated. These include finding better heuris-

tics for the computationally intractable problems, getting better absolute time

performance for the tractable, and the continual search for better accuracy and

more graceful handling of the perpetual rounding problems.

Newer generations of mask patterning machines, and indeed all Pattern

Generation equipment, will present new and greater challenges.

Appendix A

An outline of changes made to the

Merge code

This appendix describes the amendments which were made to the Kilgour's

polygon package [Ki1861 to enable it to run (in emulation) as a parallel system.

A.1 The Original Code

The basic algorithm is scan line with the scan line moving top down. This

can cause some confusion in that the view of the Y coordinate' can be strange

(bounding boxes for instance are kept top-left, bottom-right). The Algorithm

has five stages.

The input geometry is parsed. Originally this was CIF [11580], however

many other formats, both artwork and PG, may be read. Which language

is parsed is unimportant since, geometrically speaking, all the languages

are similar. Since the input geometry may be hierarchical it is parsed

into a hierarchical data-structure which is then flattened and the basic

polygons handed to the second stage.

The geometry is normalised, coincident points are removed, the vertex

order is reversed where needed and holes are removed and treated as

151

Appendix A. An outline of changes made to the Merge code 	 152

Figure A—i: Self Touching Polygons

separate sheets. CIF enforces no order on the vertices of a polygon, nor

does it have any concept of holes. These have to be achieved by having

'self-touching-polygons' [NS80]. See Figure A—i.

The CIF polygons (and wires and flashes which have been converted into

polygons during stage one) are converted to a normal form, for the polygon

package this is as follows: A polygon in the polygon package consists of

a doubly linked list of sheets (in arbitrary order) each of which is either

a box (a Manhattan rectangle, this being used purely as a space saving -

device, one which is essential when remerging optically fractured input)

or a doubly linked list of vertices. The order of the vertices determines

whether the sheet has positive or negative sense - respectively is a sheet

or a hole (note the ambiguous overload of the term sheet).

A sheet has vertices in a anti-clockwise order, a hole in a clockwise order.

Thus the enclosed area is always to the left of the line between consecutive

vertices.

Another function of the normalisation is to reduce all self-intersecting

polygons to non-intersection.

3. A pre-processing stage is performed. This consists of finding all the local

maxima of all the sheets and holes. A local maximum is where:

Sheet_NexILY <= Sheet_Y %and Sheet_Last_Y < Sheet_Y

Appendix A. An outline of changes made to the Merge code 	 153

All these points are sorted and placed into the Event List, the sorting

being done by Y and then X. The event list is a priority queue, a dynamic

structure containing an ordered list of events. An event is where the scan

line will stop and processing will occur. The most important events are

at the start of an edge (produced by local maxima), the end of an edge,

and the intersection of two edges. At any point the event list will not

contain all the events, for instance at the start it will only contain start

edge events. Processing of an event may cause generation of more events,

these events will always be further down the event list (lesser Y or equal

Y and greater X). Thus the event at the head of the priority queue will

always be the event which should be processed next.

4. The scan line processing can now proceed. In addition to the event list,

one other important structure is associated with the movement of the scan

line down the image. The active edge list, a fully dynamic structure, is a

doubly linked list (initially empty) of all the edges which cross the scan

line at the time of the current event. There are performance gains to be

had from using AVL trees or b-trees, but these are offset by the ease of

removal of a series of edges from the list.

Each edge in the active edge list is has associated with it a path (a list of

vertices which form an incomplete sheet). Obviously each path is associ-

ated with only two edges.

Assigned to each path (and thus every output sheet) is a wrap number.

This may be computed by moving along the edge list incrementing a

count, initially at zero, every time a positive edge (going top to bottom)

is crossed and decrementing it for event negative edge. The union of the

polygons is all the sheets with wrap number 1, the intersection all those

with wrap number 2.

Processing an event consists of updating the active edge and path lists

appropriately, checking for intersections where necessary and if needed

outputting a sheet, any further events generated are inserted in the event

Appendix A. An outline of changes made to the Merge code 	 154

list. Special care needs to be take in the case of several edges crossing

at one point. If further processing is required (see below) outputting a

sheet consists of appending it to an output polygon, otherwise the sheet

is passed to stage six. The processing completes when the event list is

empty.

If sizing is to be applied then it occurs at this stage. If bloating is applied

then the acute angles may be clipped, See Figure A-2. After the sizing

stages three and four are repeated

/ Clip 	1 Line

Figure A-2: Clipping Acute Angles

The output form is a dense, binary representation of holes and sheets.

This Merged Pattern Data (MPD) may be viewed' or plotted, passed to

later pattern generation stages (fracture) or converted to any of the in-

put formats. Some of these formats define a maximum edge count for

polygons, furthermore large polygons can affect the performance of the

optical fracture algorithm dramatically. Thus at output the sheets may

be decomposed into smaller units.

The presence of stages one and six are noted only for completeness since

they have no impact on the research presented here. The method in the

decomposition used in stage six in particular may be very complex. The

development of the decomposition algorithm was carried out in paral-

Appendix A. An outline of changes made to the Merge code 	 155

lel with this research and was incorporated after a frozen version of the

Polygon Package was taken for development.

A.2 New Modules

Although alteration had to be made throughout the body of the polygon package

only two new modules of any import had to be written. Since the original

package was written in IMP [Rob86] so were the additional modules. Thus any

code fragments have been given in psuedo-IMP.

The two modules were SPLIT, which (per processor) clipped the input

shapes and STITCH which recombined region-spanning shapes on output.

The main control module was substantially alterered and a minor module

(TIMER) written which took care of simulated time.

Finally, as part of the work carried out on Ebeam fracture a new output

module was developed which presented the same interface as the standard mod-

ule.. Thus the linker could be used to chose the output format. The standard

output module was used for all timings. An overview of the new output format

and justification for it is contained in Chapter 4. Although the standard out-

put module worked in the simulation it would not do so were 'real' concurrancy

involved thus a description of a different output module - not disimilar to the

one actually written, is given.

A.2.1 The SPLIT Module

The input communication model used is that all processors receive continuous

stream of shapes which cover the complete image area. Each processor also

knows which the region of the image it covers. At this first stage the regions

were allocated by trivially dividing the image in X and Y into equal sized

rectangles. For every input shape each processor can quickly decide to:

Discard the shape

Appendix A. An outline of changes made to the Merge code 	 156

Use the shape

• 	Clip the shape

This is a fast operation since each shape has an associated bounding box which

can be quickly compared with the region.

lit Shape_BB_Min_Y < Region_Max_Y br
Shape_BB_Min_X > Regionj4ax_X br
Shape_BB_Max_Y > Region_Min_X bar
Shape_BB_Max_X < Region_Min_X Istart

{ Ignore shape }
Icontinue

belse bit Shape..BB_Min_Y <= Region_Min_Y land
Shape_BB_Max_Y >= Region_Max_Y land
Shape_BB_Min_X >= Region_Min...X land
Shape_BB_Max_X <= Region_Max_X lthen

Append Shape To Current List
lelse

Clip Shape
If inish

It is the clipping which forms the major part of this module. During the de-

velopment of the SPLIT module, the emphasis was placed upon achieving an

implementation which would be easy to design, develop and debug. The impact

of the efficiency or otherwise of this system was perceived to be minimal since

the clipping would take place in the merge processors, and be applied to a small

subset of the input data.

The input to the clipping algorithm was a well formed sheet. In contrast to

[SH74], the polygon was clipped to all four sides of the region in one pass. Each

vertex of the input sheet was examined. If it lay within the clip region then it

was added to the embryonic clipped sheet. If the vertex was outwith the clip

region then it was projected onto the edge of the region if the previous or next

vertex was within the region, otherwise it was ignored.

When a sheet reentered the clip region, great care was taken to distinguish

separate sheets which are found as a result of the clipping, see Figure A-3. As

Appendix A. An outline of changes made to the Merge code 	 157

a result, the clipped sheets were well formed and could be passed directly to

the merge system.

In the system presented in Appendix B, the clipping algorithm adopted is

that described in [LB83].

Figure A-3: Nasty cases when clipping

When a shape is output, it is sorted according to whether it is completely

within the region, or impinges upon one (or more) of the boundaries. In the

former case it is handed to the output module but in the latter it is handed to

the STITCH module.

A.2.2 The STITCH Module

During the development of the SPLIT module (and in the system presented in

Appendix B) this was purely a call on the merge routine. This had the obvious

advantage of being an immediately usable module but it also worked remarkably

well. It is unnecessarily complex and slow when the results are large, complex

polygons which cover most of the design, so the STITCH module was written.

Appendix A. An outline of changes made to the Merge code 	 158

For each region four linked lists were kept, one each for the East, North,

West and South edges. These were initially empty. Whenever an output shape

touched one of these edges an entry was made in the appropriate list, which

was kept sorted by increasing X for the North and South lists and increasing

Y for the East and West. Associated with each entry was the corresponding

vertex and a field which indicated whether the edge was outgoing or incoming.

Stitching up a design took the form of scanning the relevant lists, combining the

polygons on both sides as necessary. Special care needs to be taken at the start

and end of the list. If the first element is of type 'outgoing edge', then it may

be necessary to introduce a hole (see Figure A-4). If the final element in the

list is in the corner, then the sheet may cover the region, and some extraneous

points at the corner will need to be removed.

In order to minimise these difficulties, the East/West edges were combined

first, leaving short fat slabs to be combined. The North/South lists for these

slabs were joined together (so that they now spanned the complete design).

Having done this the case of hole generation was reduced to checking whether

the two vertices (North and South) forming an outgoing edge pair belonged

to the same polygon (ie the polygons had been previously joined). Checking

for covered corners took on the form of checking for (and removing) coincident

points in the joined list.

Recent investigation has shown that STITCHing is not as important as

may be immediately be assumed. In particular, as described in Chapter 4, not

performing stitching presents a natural method of limiting vertex size, which

can have an enormous impact on the functioning of later PG stages. The only

places where STITCHing may be required are where slivers which might present

difficulties to the mask maker are present at the edges of the regions, and where

non-Manhattan geometry causes acute angles to be introduced when the masks

are to be made by Optical equipment.

Appendix A. An outline of changes made to the Merge code 	 159

Figure A-4: Nasty cases when Stitching

A.2.3 The OUTPUT Module

The emulator works by running one processor to completion before starting

the next. Thus by using the standard 10 module an ordered output could be

achieved.

In reality, of course, output sheets will be produced by all the processors

concurrently and so the standard output module would produce output in an

arbritrary order. As shown in Chapter 4 it can often be useful to keep the

output from each merge processor separate. An immediate solution and the one

adopted in Appendix B, is to have an output file per processor and to combine

these files at a later stage. This is somewhat inelegant and can be inefficient.

A better solution is to have one output ifie which is logically separated into

several output streams.

This is very similar to the EFF files introduced in Chapter 4 and indeed

is implemented on top of the same block based 10 system. As for the EFF

files (and similar to the 'backwards' data files used as the input to the parallel

Ebeam fracture) the last datum in each block points to the first datum in the

next block which contains data output by the same processor. The first block

contains a series of pointers to the first block of data of each logical file. See

Figure A—S.

Appendix A. An outline of changes made to the Merge code 	 160

F

Data from proc 1
Data from proc 2

Data from proc n

Start of Data
From Merge
Processor. 1

Start of Data
From Merge
Processor 2

:i

First block contains
start pointers

Last datum in block
is a pointer to

first datum in next block

Figure A-5: Ordered Concurrent Output

Appendix B

Take Three. Parallel Merge on Real

Hardware

The results given in this thesis are all based on emulations of a 'perfect', al-

though loosely constrained system. This was the best way of doing the de-

velopment since no hardware which remotely corresponded to the target was

available at the start of the research. Furthermore, working one level removed

from any actual hardware enforced concentration on the problem rather than

on one particular hardware implementation.

Towards the end of the period of research two parallel systems which corre-

sponded to the target architecture became available. At the same time it was

felt that the research would benefit from having some real hardware to sup-

port the results- demonstrated in the body if the thesis. Finally there was an

overwhelming urge to put right some of the wrong design and implementation

decisions which had resulted in less than the expected speed up.

The chosen stage to implement on real concurrent hardware was the merge

stage, the development of which is detailed in Chapter 3. As well as being

the most time critical of the applications some of the required prograimning

alterations had been done, as described below, which made the parallel im-

plementation much easier. As described in the final section, the two parallel

systems used were a Vax/VMS Local Area Vax Cluster and a cluster of diskiess

SUN workstations.

161

Appendix B. Take Three. Parallel Merge on Real Hardware 	 162

B.1 Implementation

B.1.1 Background

During the development of emulated of the parallel merge system which is de-

scribed in Chapter 3, it became apparent that the design partitioning, originally

conceived as a method of parallelising the merge operation could be exception-

ally useful in allowing the control of the memory requirements of the sequential

merge system. To this end a development of the partitioning was adopted.

This took advantage of the mistakes which had been made when developing the

emulation and was done in such a way that subsequent parallelisation could be

done easily.

B.1.2 Division and Recombination

The programming described in this section was performed by Kenneth Ferguson,

working at Lattice Logic, under the general guidance of the author.

The basic merge program was amended in two ways. Firstly the design had

to be partitioned into small segments such that the memory requirements would

not be large, and secondly the data which crosses a segment boundary needed

to be recombined.

Rather than divide the design in two dimensions as described in Chapter 3,

only a one dimensional division was implemented. This had the advantage that

only one pass was required to derive the partition boundaries. It was quickly

established that the memory requirements for long,, thin strips was much less

than for short, fat strips. This can be seen intuitively since there are two data-

structures associated with the X direction (the currently open paths and the

active edge list) and only one in the Y direction (the event list). The size of the

strips are established by equal vertex count, since this gives very good control

of the memory requirements. The ability to have fixed width segments was also

Appendix B. Take Three. Parallel Merge on Real Hardware 	 163

included to allow segments to have the same width as the Ebeam segments,

thus allowing the requirement for stitching to be relaxed.

The width of each segment is determined thus: The design is divided up into

many thin strips and the vertex count within each one is determined during one

pass over the data. These thin strips are grouped together until the sum of

their vertex counts was equal to or greater than threshold value, which can be

specified as a command line option, at which point the width of the first segment

has been established. This process is iterated until the complete design has been

covered with segments.

Each segment is then processed individually, with the processing moving

from the left to the right. See Figure B-i. At this stage the input data still

exists in a hierarchical format in the internal CIFSYS data-structure. This data-

structure can be unwound into the flattened state many times, communication

being via routine calls to deal with the geometrical primitives. One of the

attributes of the data-structure is that prior to each unwinding, a clip window

can be set. When a cell instance is being expanded, if it is completely outside

the current clip window the cell is not expanded. Thus the amount of data

handed to the client program (which of course still has to apply clipping) is

considerably reduced.

This facility was originally intended for a graphics viewing system where

it is convenient to zoom into individual parts of a design as fast as possible,

but was also used to great effect in the processing of the segments. The clip

window is set to the current segment window prior to unwinding. As the data

is passed to the merge system it is completely clipped to the segment window.

As described in Chapter 3, the segment window is increased if sizing is being

applied and the data clipped again after the sizing operation.

During output the shapes are classified as to whether they impinge upon

the left of the segment window, the right of the segment window or are totally

within the segment window. In the last case the shape is output immediately,

otherwise the shape is added to the list of left seam and right seam shapes.

Appendix B. Take Three. Parallel Merge on Real Hardware 	 164

Many Thin strips

one two three four five six

Figure B—IL: Using thin strips to determine segment width

When the processing of one segment has been completed the left seam is re-

merged, thus joining up abutting shapes. Extraneous points along the boundary

are removed as described in Section 3.3.1. The left seam is then cleared, and

the right seam shapes are moved in to the left seam to form the left hand side

of any subsequent recombination operation. Thus accurate recombination is

achieved.

B.1.3 The Parallel Implementation

The basic system can be broken up thus:

Parse the input geometry

Calculate the segment windows as described above

Performing the merge and bias and (where needed) recombination on each

stripe, whilst writing the output data to a temporary file.

Appendix B. Take Three. Parallel Merge on Real Hardware 	 165

When processing has been completed, the temporary files are copied to the

permanent file, a suitable header containing information such as bounding

box and layer information being inserted.

In the parallel implementation each processor parses the input geometry.

The segment windows are calculated thus: Each processor is assigned, for the

purposes of segment window calculation a geometric partition. Thus if there

are three processors and 3000 thin strips, the first processor establishes the

vertex count within the first 1000 thin strips, the second the next 1000 and so

forth. Obviously the clipping window can be applied to CIFSYS during this

operation, resulting in a possibly faster segment area calculation. The proces-

sors then synchronise, and exchange the values for the thin strip counts. The

segment window recalculation then proceeds as for the sequential system. Each

processor therefore knows how many segments the design is going to be parti-

tioned into and thus which segments it has to process. Obviously the number

of partitions, and thus the amount of feasible concurrency, is controlled by the

vertex per segment threshold. Recombination within the segments associated to

one processor is performed as for the sequential system, but any shapes which

impinge on the extreme boundaries of the any processor's window are written

to a temporary file, separate from the main temporary file which contains the

majority of the data.

When the processors have finished their allocated segments they synchronise

and exchange the bounding boxes of their output data and the names of their

temporary data files. One processor alone is responsible for the recombination

of the boundary shapes, whilst another is responsible for concatenation of the

data files and the adding of the bounding box information header. When the

recombination is finished the processors synchronise again and the recombined

data is finally appended onto the output data file. Figure B-2 gives a schematic

of the system. Time proceeds downwards.

Appendix B. Take Three. Parallel Merge on Real Hardware 	 166

Processor Processor 	Processor Processor
One Two 	 Three Four

Start
I

Parse Data
I

I 	 I

Parse Data 	Parse Data
I 	 I

I

Parse Data
I

Set clip window Set clip window Set clip window
I 	 I I

Set clip window

Establish thin Establish thin 	Establish thin
I

Establish thin
strip count strip count 	strip count strip count

in own region in own region 	in own region in own region
I ISYNCHRONISEI if

Perform Merge Perform Merge Perform Merge Perform Merge is YNCHRONISE
Add header
copy data

Recombine regions

copy reconbined data
	viii;i t'

Finish

Figure B-2: Schematic of Parallel Merge

Communication

Although at a low volume, interprocessor communication forms an important

part in this system -. vertex counts, data windows and such like have to be

freely available to all processors. Thus some sort of communication has to be

available. Ideally this communication should not be targetted to one particular

operating system. The method chosen was to use standard input and output to

perform the communication, using a shared file server as medium. Furthermore

it was assumed that the input and output data will reside on this shared filing

system. Thus as well as the clusters described here, any distributed processing

system with a common file server could be used as a suitable basis for par-

allel merge. This system has the advantage of being simple, highly portable

and flexible. It lacks some of the speed that a special purpose communication

package might have, but the amounts of data being handled are small and the

speed requirements are not high, especially since in the system presented above

communication is invariably associated with synchronisation. Obviously this

Appendix B. Take Three. Parallel Merge on Real Hardware 	 167

system requires that the file server can adequately handle multiple reads on

data.

Synchronisation

The synchronisation was based on a simple flag system, whereby each processor

raised a flag when it was awaiting synchronisation. When the flags for all the

processors were raised, synchronisation had been achieved and processing could

continue. As for communication the medium used was the shared file server.

Each flag consisted of the existence of a file (with a unique name). Waiting for

synchronisation became waiting for the existence of a series of files. Thus the

general synchronisation routine became:

%routine Synchronise Processors

%own %integer Number = 0
%integer i
%string (63) Target

{ How many times have }
{ we synchronised 	}

Target = I to S(number0)."Sync"
Open Output (1, Target. I to S(My Processor NumberO))
Select Output(i)
Printstring("Nibble a Happy Warthog!")
Newline
! in case the Operating system optimises

away any empty files
Close Output

%for i = 1, 1, Number of Processors %cycle
%while %not Exists(Target.I to S(i 0)) %cycle

Wait (5) { seconds - avoid busy loops)
%repeat

%repeat

Number = Number + 1
%end

Again this has the advantages of flexibility, simplicity, portability and very

simple debugging - if the system deadlocks it is easy to see, by the state of the

Appendix B. Take Three. Parallel Merge on Real Hardware 	 168

synchronisation files, the state of each processor. The requirement for synchro-

nisation is not great - there are only three synchronisations in the total system

and so its inefficiency is not important.

It should be stressed that the files used to provide the synchronisation should

not be used for data transfer. Processing will proceed as soon as the synchro-

nisation file exists by which time it may not have valid data in it.

B.2 Results

A major advantage of the system described above is that it has no machine

dependent part and such can be swiftly ported to a range of machines so long

as they support multiple access to a common file server. The following gives

the results of porting the system described above to two particular systems.

B.2.1 Vax Cluster

The hardware here was a small Local Area Vax Cluster (LAVC) where the

communication is achieved through a 10Mhz ethernet. The cluster consists of a

VAX 11/780 with 8 Mb of memory and a micro Vax (Vax) with 13 Mb. This

meant that the processing power was relatively well balanced. Both machines

paged off disks local to themselves. The communication, synchronisation and

data files were mounted on a disk attached to the jVax. This had a slight

impact on the speed of access to the data by the 780. The cluster presented

the user with machine specific, low priority, batch queues and so the the merge

was performed by submitting one job into each of these queues. All processing

was performed during the evening, when the effects of other users' load could

be minimised (The 780 supported a massive daytime load, in contrast to the

Vax and so the liVax would have had to wait for considerable periods).

Table B—i gives details of the results. Two runs were performed one with

a vertex per segment limit of 80,000 and one at 120,000. For each run the CPU

Appendix B. Take Three. Parallel Merge on Real Hardware 	 169

and elapsed time for a sequential run on each of the processors is given and the

elapsed time only for the parallel processing. No factored speed up is given since

it is unclear what the yardstick should be for an unbalanced cluster. In each

case the the timings were taken for a merge and shrink of one layer of a large

design. No stitching was applied during these runs, this being the default mode

of running for the partitioning merge program. As described in the chapter on

Ebeam fracture lack of stitching is an advantage for parallel Ebeam fracture.

VAX 11/780 MicroVAX LAVC

Vertex CPU Elapsed CPU Elapsed Elapsed

Threshold Time (h:m) Time (h:m) Time (h:m) Time (h:m) Time (h:m)

80,000 5:03 5:54 4:43 4:52 3:35

120,000 5:06 6:06 4:49 4:59 3:11

Table B—IL: Actual time taken to process a design on a LAVC

B.2.2 Diskiess Sun Workstations

The system used here was that presented in Chapter 6 namely a collection of

workstations attached, again through a local area network (a 10 Mhz Ethernet),

to a fileserver. The actual workstations were Sun model 3/110, each with 4

Megabytes of real memory. They all have virtual memory, with pagefaults being

handled by the same fileserver as was used as the communication medium. In

addition the fileserver itself could be used as a processing unit. The cluster was

of 4 machines. Six runs were performed, being on the same data as was used by

the VAX-cluster presented above. For vertex thresholds of 80,000 and 120,000

three runs were made. Firstly the standard product was run both with a local

disk and a remote disk and then on the cluster. As can be seen by reference to

the results given in Table B-2, the presence of a local disk had little effect on

timing, in fact since the machine with the local disk was performing other tasks

its elapsed time is slower. This confirms that memory is being well controlled.

Appendix B. Take Three. Parallel Merge on Real Hardware 	 170

As always the numbers given are limited by the accuracy of the operating

system. In addition some of the figure may be greater than expected due to the

impact of other users; on an open system such as this it is difficult to ensure

that the machines were not supporting other users; this is especially true for

the local disk machines, which was a file server for many other machines.

Sun local disks Sun remote paging Cluster

Vertex Elapsed 	CPU Elapsed 	CPU

Threshold (h:m) 	(h:m) (h:m) 	(h:m)

80,000 5:28 5:08 5:04 5:03 1:30

120,000 4:50 4:44 4:45 4:43 1:35

In the run marked tone of the processors was heavily loaded and this affected

the time taken by approximately 15 minutes.

Table B-2: Actual time taken to process a design on a cluster of SUNS

B.2.3 Final Points

These results adequately support the original decision to do the development

upon an emulation. The predicted level of speedup has been achieved and the

cost of communication has been kept well under control. In addition the first

implementation upon actual concurrent hardware has been made much simpler

and it has been possible to introduce many improvements. However it is worth

emphasising a few points which arise.

Firstly in both the emulations above the processing power was somewhat

similar and so. a trivial partition of the problem could be achieved. Were there

a more marked disparity in the relative power of the machines in the cluster,

then the calculation of the division would need to be more complex. In the case

both of the LAVC and the Sun cluster the most powerful processor was given

the extra task of handling the control of the file server. This being in marked

Appendix B. Take Three. Parallel Merge on Real Hardware 	 171

disparity with the 'perfect' design where the 10 was handled by a dedicated

processor. However as detailed in Chapter 3, the merge stage was less bound

by the power of the 10 processors. As demonstrated in section B.2.2, there is

also an advantage in having the processor with local control of the file server to

perform the file concatenation.

The main drawback with the system is that if one of the processors has an

extra load applied (for instance an interactive load or as in the case of the SUN

system by operating system oddities), then all the other processor in the group

are going to spend a great deal of time waiting for this processor, and so it is

important to ensure either that the processors all have (roughly) the same load,

or that the processor with the greatest load has the least work to perform as

part of the merge cluster.

Bibliography

[AA186] 	T. Asano, T. Asano, and H. Imai. Partitioning a polygonal region

into trapezoids. JA CM, 33(2) :290-312, April 1986.

[ABJN85] D. Ayala, P. Brunet, R. Juan, and I. Navazo. Object representation

by means of non-minimal division quadtrees and octtrees. ACM

Trans Graphics, 4(1):41-59, January 1985.

[Amd67] G.M. Amdahl. Validity of the single processor approach to achiev-

ing large scale computing capabilities. AFIPS SJCC, 483-485, 1967.

[Bai77] 	H.S. Baird. Fast algorithms for LSI artwork analysis. In Proceeding

of the 14th Design Automation Conference, pages 303-311, June

1977.

[BB80] 	E.E. Barton and I. Buchanan. The polygon package. Computer

Aided Design, 12(1):3-11, January 1980. also EUCSD CSR 44-79.

[BDHM84] D Bitton, D.J. DeWitt, D.K. Hsiao, and J. Menon. A taxonomy

of parallel sorting. Computing Surveys, 16(16):287-317, September

1984.

[Ber861 	N. Bergmann. A polygon fracture algorithm for opto-mechanical

pattern generation equipment. In Microelectronics '86, Adelaide,

Australia, May 1986.

[BHH80] J.L. Bentley, D. Haken, and R.W. Hon. Statistics on VLSI designs.

Technical Report CMU-CS-80-111, Carnegie-Mellon University, De-

partment of Computer Science, Pittsbugh PA, April 1980.

172

Bibliography 	 173

[B079] 	J.L. Bentley and T.A. Ottman. Algorithms for reporting and count-

ing geometric intersections. IEEE Transactions on Computers, C-

28(9), September 1979.

[B0W831 J.L. Bentley, T.A. Ottman, and Widmayer. Advances in Computing

Research, pages 127-158. Volume 1, 1983.

[Bur77] 	W. Burton. Representation of many-sided polygons and polygonal

lines for rapid processing. CA CM, 20(3) :166-170, March 1977.

[Cha75] 	T.H.P Chang. Proximity effect in electron beam lithography. Jour-

no.! of Vacuum Science and Technology, 12(6), Nov/Dec 1975.

[Cra75] 	B.J. Crawford. Design rule detection for IC's using graphical op-

erators. In Proc. Second Annual Conference on Computer Graph-

ica and Interactive Techniques, pages 168-176, ACM SIGGRAPH,

June 1975.

[Den86] 	P.J. Denning. Editorial - parallel computing and its evolution.

CA CM, 29(11):1163-1167, December 1986.

[DLS86] 	J.T. Deustch, T.D. Lovett, and M.L. Squires. Parallel computing

for vlsi circuit simulation. VLSI Design, 46-52, July 1986.

[Fer871 	K. Ferguson. Memory requirements for low VM polymerge. Per-

sonal Communication, March 1987.

[Fly721 	M.J. Flynn. Some computer organisations and their effectiveness.

IEEE Transactions on Computers, C(21):948-960, 1972.

[GG831 	K.D. Gourley and D.M Green. A polygon to rectangle conversion al-

gorithm. IEEE computer Graphics, 3(9):31-36,. January/February

1983.

[Gut84] 	R.H. Guting. Dynamic C-oriented polygonal intersection searching.

Information and Control, 63:143-163, 1984.

Bibliography 	 174

[Heg82] 	A. Hegedus. Algorithms for covering polygons by rectangles.

Computer-aided design, 14(5):257-260, September 1982.

[Hen771 	G.H Henriksen. Reticles by automatic pattern generation. SPIE

Semiconductor Lithography, 2:86-95, 1977.

[HJ84] 	R.W. Hockney and C.R. Jesshope. Parallel Computers. Adam

Hiller, Bristol, 1981.

[HMS*861 J.P. Hayes, T. Mudge, Q.F. Stout, S. Colley, and J. Palmer. A

microprocessor-based hypercube supercomputer. IEEE micro, 6-

17, October 1986.

[HS80] 	R.W Hon and C.H Sequin. A Guide to LSI Implementation. Tech-

nical Report SSL-79-7, XEROX - Palo Alto Research Center, 3333

Coyote Hill Road, Palo Alto, January 1980.

[J82] 	Johnson D.S. The NP-completeness column: an ongoing guide.

Journal of Algorithms, 3:182-195, 1982.

[Ki182] 	A.C. Kilgour. A Span-Line Approach to the Polygon Intersection

Problem. Technical Report CSC/82/R6, Glasgow University Com-

puter Science Department, December 1982.

[Kil851 	A.C. Kilgour. Parallel Architectures for High Performance Graph-

ics Systems. Technical Report CSC/85/R5, Glasgow University

Computer Science Department, 1985.

[Ki186] 	A.C. Kilgour. Polygon Processing for VLSI pattern generation.

Technical Report, Glasgow University Computer Science Depart-

ment, 1986.

[KLS86] 	N.P. Kronenberg, H.M. Levy, and W.D. Strecker. VaxCius-

ters: a closely-coupled distributed system. ACM Trans. Comput.,

4(2) :130-145, May 1986.

Bibliography 	 175

[Lau78] 	U. Lauther. 4-Dimensional Binary Search Trees as a means to speed

up associative searches in design rule verification of integrated cir-

cuits. Journal of Design Automation and Fault Tolerant Comput-

ing, 2:241-247, 1978.

[LP84J

[Mc8o]

[LB83]

[NP82]

[NS80]

[0 W86]

ItI

[Sei82]

[Sei85J

D.T. Lee. and F.P Preparata. Computational geometry - a survey.

IEEE Transactions on Computers, C-33(12):1072-1101, December

1984.

C.A. Mead and L. Conway. Introduction to VLSI Design. Addison-

Wesley Series in Computer Science, Addison-Wesley, October 1980.

Liang Y. and Barsky B.A. An Analysis and Algorithm for Polygon

Clipping CA CM., 26(11) :868-887, November 1983.

J. Nievergelt and F.P. Preparata. Plane sweep algorithms for inter-

secting geometric figures. CACM, 25(10):739-747, October 1982.

M.E. Newell and C.H. Sequin. The inside story on self-intersecting

polygons. VLSI design (was Lambda), 20-24, 2nd Quarter 1980.

T. Ottman and D. Wood. Space economical plane sweep algorithms.

Computer Vision, Graphics and Image Processing, 34(1):35-51,

April 1986.

P.S. Robertson. The Imp Language, A reference Manual. Lattice

Logic, Edinburgh, Scotland, 1986.

L. Seiler. A hardware assited design rule checker. In 19th Design

Automation Conference, pages 232-235, 1982.

C.L. Seitz. The cosmic cube. CA CM., 28(1) :22-33, January 1985.

[Sha78] 	M.I. Shamos. Computational Geometry. PhD thesis, Yale Univer-

sity, May 1978.

Bibliography 	 176

[SH74] 	I.E. Sutherland and G.W. Hodgman Reentrant Polygon Clipping

CA CM., 17(1):32-42, January 1974.

[Sho70] 	W. Shooman. Orthogonal Computing. In Parallel Processor Sys-

tems, Technologies and Applications, chapter 15, pages 297-311,

Spartan Books, New York, 1970.

[Sho73] 	J. E. Shore. Second thoughts on parallel processing. Computers

and Electrical Engineering, 1:95-109, 1973.

[S1o67] 	D.L. Slotnik. Unconventional systems. In AFIPS Conference Pro-

ceedings, pages 477-481, 1967. Number 30.

[SR87] 	J.A. Shoeffel and M.L. Rieger. Economics of fast turnaround wafer

production. VLSI design, VIU(2), February 1987.

[TBH821 P.C. Treleaven, D.R. Brownbridge, and R.P. Hopkins. Data-driven

and demand-driven computer architecture. Computing Surveys,

14(1):93-143, March 1982.

[Tra85] 	J. Traub. Photomasks - Optical or Ebeam. Silicon Design, 2(9) :5,

September 1985.

[WeiSO] 	K. Weller. Polygon comparison using a graph representation.

A. C.M. Computer Graphics, 3(19):10-18, July 1980.

[Whi8l] 	T.E. Whitney. A Hierarchical Design Rule Checker. Technical Re-

port 4320, Caltech (CS) Silicon structures project, May 1981.

[Whi85] 	T.E. Whitney. Hierarchical Composition of VLSI Circuits. PhD

thesis, California Institute of Technology, Pasadena, California,

May 1985.

[WilSO] 	J.A. Wilmore. A hierarchical bit-map format for the representation

of IC masks. In .17th Design Automation Conference, pages 585-

590,1980.

