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Lay summary  

All living organisms are made of cells, the building blocks of life. Broadly, the process of 

cell division, where one cell becomes two, enables the growth of organisms in a process 

known as mitosis. During mitosis, a cell essentially increases its mass and duplicates its 

contents, including its DNA, and distributes it to two ‘daughter’ cells in a rather dramatic re-

organisation of the cell. DNA acts as an instruction manual for a cell. Having the correct 

amount of DNA is crucial for maintaining healthy cells, as in most cases, incorrect amounts 

can cause cell death or contribute to cancer.

In this way, it is important that DNA is equally distributed to daughter cells during cell 

division. As a result, our cells have a mechanism of monitoring whether DNA, in the form of 

chromosomes, is going to distribute correctly. This mechanism is known as the spindle 

assembly checkpoint.

The checkpoint is able to delay cell division if chromosomes are not ready to divide 

correctly. By delaying cell division, chromosomes have time to re-position for correct 

distribution to daughter cells. The checkpoint is comprised of different members which come 

together to finally delay division. Although the members of the checkpoint pathway are 

known, how they interact to cause a delay is less clear. 

This work provides insight into the functions of an integral member of the checkpoint 

pathway, Mad1. We have identified the additional components it interacts with to gain a 

greater understanding of how the checkpoint pathway works. Additionally, we have 

developed a minimalist method for switching the checkpoint on and off. This tool provides a 

novel method for studying how the individual members of the checkpoint pathway come 

together to delay division. Here, we use a microorganism called S. pombe which is a species 

of yeast commonly used in cell biology, to study the spindle assembly checkpoint as cell 

division in these cells is similar to that in human cells. 
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Abstract 

Cell division allows the passage of genetic information to a new cell. During this process, 

maintaining chromosome transmission fidelity is important in preventing diseases such as 

cancer and Down’s syndrome. To ensure accurate chromosome segregation, eukaryotes have 

developed a cell cycle control mechanism that monitors kinetochore-microtubule 

attachments, known as the spindle assembly checkpoint (SAC). The SAC is active in 

metaphase and is able to sense a lack of tension and incorrect attachments between 

kinetochores and microtubules. This leads to a metaphase arrest, allowing time for error 

correction to take place before anaphase onset. 

The Mad and Bub proteins, along with Mps1 kinase are central to this signalling pathway 

which leads to the formation of the mitotic checkpoint complex (MCC) — the key inhibitor 

of the anaphase promoting complex/cyclosome (APC/C). APC/C inhibition prevents 

proteolytic degradation of Securin and Cyclin B, blocking cells in metaphase. Although we 

are familiar with the components of the SAC pathway, the mechanism by which they interact 

to form the MCC remains unclear.

It is well established that SAC signalling is initiated at kinetochores. These are complex 

structures that are involved in key mitotic functions such as microtubule attachment and bi-

orientation of sister chromatids. To study the checkpoint without interfering with kinetochore 

function, we have devised a minimalist approach. This study describes an ectopic 

reconstitution of SAC activation and silencing in S. pombe. Using abscisic acid induced 

dimerisation, we are able to control the co-recruitment of the checkpoint proteins KNL1 and 

Mps1 to recapitulate robust SAC arrest and silencing. Additionally, we provide insight into 

how S. pombe and HeLa cells respond to a prolonged ectopic arrest. 

It is widely accepted that Mad1 recruits Mad2 to unattached kinetochores, enabling MCC 

formation. However, recent findings point towards a more active role of Mad1 in checkpoint 

activation. This study shows that Mad1 interacts with Bub1 in S. pombe to form a scaffold 

complex that is essential for SAC function. We also investigate Mad1 C-terminal mutants to 

further dissect the roles of Mad1 and find that it forms a complex with the APC/C co-

activator Cdc20. As a result, this study provides evidence in support of the hypothesis that 

the C-terminus of Mad1 has additional roles in SAC signalling aside from Mad2 kinetochore 

recruitment.  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CHAPTER 1 

Introduction 

1.1  Preamble: Cell theory  

Cells are the fundamental structural unit of all living organisms, making up the immensely 

diverse bacterial, archaeal and eukaryotic species that occupy the evolutionary tree of life. 

The discovery of the microscope in the late 16th century greatly facilitated the study of cell 

biology (Wolpert, 1996). Observations of cells using early compound microscopes by Robert 

Hooke, Antoine van Leeuwenhoek, Nehemiah Grew and others in the mid-17th century led to 

the makings of cell theory. Hooke coined the term ‘cellula’, Latin for ‘small room’, to 

describe the compartments of dead cells in cork (Hooke, 1665). Van Leeuwenhoek is 

regarded as the father of microbiology, with bacteria being one of his most notable 

discoveries (Leeuwenhoek, 1682). Work by Grew detailed the anatomy of plant tissue 

(1682). Together, these works and others led to the idea that cells are the basic unit of many 

life forms. 

In the 19th century, Schleiden and Schwann extended this to a unified principle that all 

organisms are composed of cells (Schleiden, 1838; Schwann, 1839). Although instrumental 

to the formation of cell theory, they based their observations on the assumption that cells are 

formed de novo, termed ‘free cell formation’. In 1855, Rudolph Virchow dismissed free cell 

formation concluding classical cell theory with the axiom ‘all cells come from pre-existing 

cells’. This is possible through the cell cycle. 

1.2  The cell cycle  

The mitotic cell cycle (Fig. 1.1) is a process that enables the growth of an organism. It is an 

orchestrated series of events where cell mass increases and DNA duplicated and distributed 

to daughter cells. A typical eukaryotic cell cycle broadly comprises of interphase and mitosis. 

Interphase begins with G1 (gap 1), a growth phase where cell volume increases, organelles 

duplicate, and proteins required for DNA replication and packaging (such as histones) are 

produced. Cells in G1 can enter G0 (gap 0), a non-proliferation resting phase, before they 

commit to DNA replication. Nuclear DNA is replicated in S (synthesis) phase. This is 

followed by G2 (gap 2), during which there is additional growth and protein synthesis. G1, S  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and G2 make up interphase, after which cells enter mitosis (M) (Fig. 1.1) and undergo 

cytokinesis (reviewed in Schafer, 1998; McIntosh 2016). 

Progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases 

(CDKs) — a conserved group of serine-threonine kinases whose enzymatic activity is 

dependent on association with cyclin subunits (reviewed in Hochegger et al., 2008; 

Harashima et al., 2013; Malumbres, 2014). CDK-cyclin complexes enable the switch-like 

initiation of key cell cycle transitions, particularly G1/S and G2/M, through the expression of 

the activating cyclin subunit. Lee Hartwell and Paul Nurse first isolated the CDK1 gene 

(from budding and fission yeast respectively) which, along with Tim Hunt’s discovery of 

cyclin from sea urchin eggs, led to the characterisation of integral cell cycle regulators 

(Hartwell et al., 1974; Nurse et al., 1976; Evans et al., 1983). This paved the way to the study 

of cell cycle control. 

The yeast cell cycle is controlled by CDK1 homologues, Cdc2 (cell division cycle 2) in S. 

pombe and Cdc28 in S. cerevisiae (Hadwiger et al., 1989). This mechanism of cell cycle 

control is well-conserved as a cdc2 mutant in S. pombe can be functionally complemented by 

human CDK1 (Lee and Nurse, 1987). Although Cdc2 can form a complex with different 

cyclins at various cell cycle stages, B-type cyclin Cdc13 (cell division cycle 13) is the only 

essential cyclin. It has been demonstrated that Cdc2-Cdc13 alone is able to control the cell 

cycle, suggesting that regulating the kinase activity of Cdc2 (through association with 

Cdc13) to reach certain thresholds is sufficient to drive the S. pombe cell cycle (Fisher and 

Nurse, 1996; Coudreuse and Nurse, 2010). Fission yeast mitotic entry is achieved by high 

levels of the Cdc2-Cdc13 (Stern and Nurse, 1996).

Mitosis results in the distribution of sister chromatids to daughter nuclei. Experimentation 

with aniline dyes allowed Walther Flemming to illustrate the segregation of chromosomes in 

impressive detail (1882). Flemming hugely influenced research into cell division through his 

pioneering work (Paweletz, 2001). Mitosis requires complex reorganisation of cellular 

architecture and is composed of 5 stages: prophase, prometaphase, metaphase, anaphase and 

telophase (reviewed in Schafer, 1998; McIntosh 2016). In prophase, duplicated DNA 

condenses to form tightly packed chromosomes (Martinez-Balbas et al., 1995), interphase 

microtubules disassemble and duplicated spindle pole bodies (centrosomes in higher 

eukaryotes) start to form spindle microtubules (Ding et al., 1997). Chromosomes are 

captured via kinetochore attachment to mitotic spindle in prometaphase. In metaphase, 

chromosomes are bi-oriented and aligned at the spindle equator. The position of the nucleus 
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determines the deposition of an actomyosin band which marks the future site of cytokinesis 

(Lee et al., 2012). Anaphase results in mitotic spindle-dependent segregation of sister 

chromatids to opposite spindle pole bodies as spindle microtubules lengthen (Watanabe, 

2010). S. pombe have closed mitosis in which the nuclear envelope does not break down as 

in higher eukaryotes (McCully and Robinow, 1971). As a result, in telophase, the nucleus 

elongates and forms two nuclei. The actomyosin band forms a contractile ring, resulting in a 

septum (Krapp and Simanis, 2008; Stachowiak et al., 2014). Cytokinesis then occurs as the 

septum is degraded to form two individual, genetically identical cells. 

1.3  Cell cycle checkpoints 

In 1989, Leland Hartwell and Ted Weinert proposed that progression through the cell cycle is 

dependent on the completion of previous events. This linear progression is regulated through 

feedback loops, allowing the cycle to continue only after the successful completion of certain 

events. These feedback loops are known as cell cycle checkpoints. Checkpoints are pathways 

that identify errors and provide feedback through the initiation of a proliferative signal which 

blocks cell cycle progression, thus allowing time for errors to be completed. In this way, 

checkpoints act as surveillance mechanisms to ensure the fidelity of DNA replication and 

chromosome segregation (Weinert and Hartwell, 1988; Hartwell and Weinert, 1989). This 

prevents cell death and aneuploidy, which could contribute to cancer in higher eukaryotes 

(Holland and Cleveland, 2009). Checkpoint pathways ultimately affect CDK activity to 

control cell cycle progression. They monitor DNA replication fidelity, cell size and 

kinetochore-microtubule attachments at key transitions to licence cell cycle progression 

(reviewed in Elledge, 1996). 

The spindle assembly checkpoint (SAC), also known as the spindle checkpoint or the 

mitotic checkpoint, monitors chromosome attachment to spindle microtubules at the 

metaphase/anaphase transition. How the SAC signalling pathway is activated and propagated 

to allow a metaphase delay, as well as ‘silenced’ to enable cell cycle progression in the 

fission yeast S. pombe will be the focus of this work and the remainder of this chapter. 

1.4  Chapter layout 

This chapter begins with an introduction to kinetochores as the sites of SAC initiation and 

describes how kinetochore bi-orientation can be achieved for correct chromosome 

segregation by monitoring the attachment status and tension at kinetochores. This is then 
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followed by an overview of the SAC and an outline of the contribution of Aurora BArk1 and 

Mps1Mph1 kinase activity. SAC signalling is then detailed in chronological order, starting with 

the assembly of core KNL1-Bub and Mad1-Mad2 complexes which lead to the formation of 

the SAC effector and how it prevents anaphase, ending with an overview of how the 

checkpoint is silenced.

1.5  Kinetochores: sites of checkpoint initiation 

Kinetochores are macromolecular structures present at the centromere of sister chromatids, 

consisting of over 80 proteins (Cheeseman and Desai, 2008; Santaguida and Musacchio, 

2009). They provide a point of contact for microtubule interaction on a chromosome, thus 

enabling chromosome translocation during cell division (reviewed in Foley and Kapoor, 

2013). The inner face of the kinetochore associates with the centromere, a region of 

heterochromatin distinguished by the histone H3 variant CENP-A (Palmer et al., 1987; 

Mellone and Allshire, 2003). The outer face of the kinetochore structure interacts with 

microtubules via the KMN network, comprising of KNL1/Mis12-complex /Ndc80-complex 

(kinetochore null protein 1/missegregation 12/nuclear division cycle 80 complex) 

(Cheeseman et al., 2006). This network is highly conserved between species, named the 

NMS network - Ndc80-Mis12-Spc7KNL1 in S. pombe (Jakopec et al., 2012). 

Unlike yeast, vertebrates start assembling their kinetochores in S phase (Amor et al., 

2004; Maiato et al., 2004). Upon mitotic entry in humans, the dispersed centromeres need to 

assemble. Although components such as CENP-A and Mis12 are constitutively associated 

with centromeres, the transient components do not usually associate until mitosis (Liu et al., 

2005). CENP-A employs the constitutive centromere-associated network (CCAN) to 

assemble the KMN network, thus forming the outer kinetochore (Cheeseman and Desai, 

2008). In S. pombe however, the ‘basic’ kinetochore structure is intact in interphase, as it 

remains bound to spindle pole bodies (Uzawa and Yanagida, 1992). Therefore, the NMS 

network is a constitutive feature at outer kinetochores (Liu et al., 2005).

In prophase, SAC proteins are recruited to the KMN/NMS network, KNL1Spc7 in 

particular, in a step-wise fashion (Desai et al., 2003; Vigneron et al., 2004; Liu et al., 2005; 

Shepperd et al., 2012; Yamagishi et al., 2012; London et al., 2012). Some of the proteins, 

such as Mad1 and Mad2, dissociate from kinetochores as stable chromosome-microtubule 

attachments form. Therefore, the KMN network links the kinetochore attachment 

information to SAC signalling pathway (Cheeseman et al., 2006; Varma and Salmon, 2012).
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It is noteworthy that the potency of the checkpoint signal varies depending on the trigger 

and resulting impact on the state of kinetochore attachment (Weaver, 2003; Rieder and 

Maiato, 2004; Chen et al., 2019). The idea of the checkpoint being more akin to a ‘rheostat’, 

having a graded response where the severity of defect affects the SAC response, as opposed 

to a ‘switch-like’ activation, was first proposed in 2013 and is now favoured (Dick and 

Gerlich, 2013; Collin et al., 2013).

1.6  The attachment versus tension dichotomy  

The SAC generates a ‘wait anaphase’ signal until all sister chromatids are correctly bi-

oriented to achieve equal segregation of chromosomes to daughter cells. Bi-orientation is a 

state where sister chromatid kinetochores form stable, end-on attachments with microtubules 

emanating from opposite spindle pole bodies (reviewed in Foley and Kapoor, 2013). 

Organisms usually form multiple spindle attachments for each kinetochore, from 2-4 spindle 

microtubules binding fission yeast kinetochores to approximately 30 in mammalian cells 

(with the exception of budding yeast which binds 1) (Pidoux and Allshire, 2004; London and 

Biggins, 2014). Given that initial microtubule attachment to kinetochores occurs in a 

stochastic manner, kinetochore attachments tend to be error prone, and involve various 

rounds of attachment and destabilisation in early mitosis (Kitajima et al., 2011; Magidson et 

al., 2011). These errors need to be resolved to achieve biorientation and proper segregation. 

This can be done by stabilising correct attachments and destabilising incorrect attachments 

— allowing the opportunity to bi-orient correctly. 

Bi-orientation is attained through bi-polar attachment and tension (Maresca and Salmon, 

2010) which are controlled by the SAC and error correction pathways. Tension refers to the 

force generated at kinetochores when cohesion between sister chromatid pairs opposes the 

pulling force of bipolar mitotic spindle (Pinksy and Biggins, 2005). While it is widely 

accepted that the SAC proteins accumulate at unattached kinetochores (monotelic 

attachment), how a tensionless kinetochore which is attached to microtubules (syntelic and 

merotelic attachments) activates the ‘wait anaphase’ signal is more elusive (Fig. 1.2) 

(London and Biggins, 2014; Nezi and Musacchio, 2009; Khodjakov and Pines, 2010; 

Maresca and Salmon, 2010). Elucidating a molecular mechanism for how different upstream 

pathways (triggered by tension and attachment) lead to checkpoint activation and a 

metaphase delay is important for understanding how the SAC ensures accurate segregation.
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A strong argument in support of the tension-sensing model is that syntelic attachments 

(where both sister chromatids bind microtubules from the same pole) activate the SAC 

(Watanabe, 2006). A study using grasshopper spermatocytes was the first to describe the role 

of tension in stabilising kinetochore-microtubule attachments and achieving bi-orientation. 

They demonstrated that artificially applying tension to an unpaired chromosome using a 

glass micro-needle enabled cell cycle progression. They also observed that improper 

attachments were destabilised, suggesting that cells are able to sense and correct errors 

(Nicklas and Koch, 1969). Further experiments were published in support of the tension 

hypothesis (Li and Nicklas, 1995; Jang et al., 1995; Stern and Murray 2001).

Early work by Rieder and colleagues used laser ablation to disrupt kinetochores and 

demonstrate that a single unattached kinetochore in mitotic rat Potoroo kidney cells can 

delay anaphase (Rieder et al., 1995). Subsequent ablation of an unattached kinetochore then 

allowed anaphase onset, suggesting that unattached kinetochores activate the SAC and delay 

anaphase. However, this unattached kinetochore also lacks tension. The difficulty in 

distinguishing the role of tension and attachment in SAC activation lies in the 

interconnectivity of unattached and tensionless states as they exist simultaneously. 

Microtubule attachments to kinetochores under reduced tension are destabilised to be 

corrected. This destabilisation results in a tensionless, unattached kinetochore state. 

Therefore, whether a tensionless kinetochore i) activates the SAC directly (by triggering 

SAC signalling), ii) indirectly (by producing an unattached kinetochore), or iii) delays 

anaphase via an independent mechanism, is unclear (Proudfoot et al., 2019). 

It is possible that there is variation between organisms in the attachment versus tension 

signal that results in a metaphase delay. This could be  a result of different kinetochore 

structures and or arrangements (London and Biggins, 2014). For instance, in mammalian 

cells where all kinetochores are unattached in prophase, attachment could be more important. 

Whereas yeast kinetochores are associated with SPBs throughout the cell cycle where 

unattached kinetochores may be less common and tension may need to play a greater role in 

signalling erroneous attachments. In addition, mammals which have several kinetochore 

microtubule attachments may be less sensitive to small changes in microtubule occupancy 

and tension. Whereas budding yeast, which have one microtubule attachment, may be more 

so (London and Biggins, 2014). Nevertheless, a molecular basis for how tension signals the  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SAC is important for understanding the observations from studies based on mechanical 

disruption of kinetochores and/or microtubule attachments.

A molecular basis for tension sensing 

A popular model for tension sensing is the Aurora BArk1 kinase-mediated pathway (reviewed 

in Lampson and Cheeseman, 2011). It proposes that Aurora B is able to sense ‘kinetochore 

stretch’, a product of tension. Aurora B is part of the CPC, positioned at the inner centromere 

between sister chromatids. This model suggests that the tension sensing pathway is regulated 

spatially through Aurora B phosphorylation. Upon lack of bipolarity, ‘kinetochore stretch’ is 

low, positioning Aurora B closer its outer kinetochore substrates which include KNL1, 

Ndc80 and Dsn1. Phosphorylation of these proteins destabilises microtubule-binding at 

kinetochores, thus generating unattached kinetochores which can then activate the 

checkpoint (Welburn et al., 2010; Ciferri et al., 2008; Cheeseman et al., 2006; DeLuca et al., 

2006). Protein phosphatase 1 (PP1), recruited to the outer kinetochore KNL1-RVSF motif is 

thought to oppose Aurora B (Liu et al., 2010). Aurora B-mediated phosphorylation of the 

KNL1-RVSF motif displaces PP1, in a positive feedback loop that destabilises kinetochore-

microtubule attachments for error correction. 

An alternate tension-sensing model put forward by the Desai lab argues that Aurora B, 

activated by Survivin-dependent centromeric chromatin clustering or Survivin-independent 

microtubule clustering, can differentiate between correct and incorrect attachments 

(Campbell and Desai, 2013). They speculate that this distinction is possible through substrate 

affinity, with attached kinetochores under tension being less sensitive to Aurora B activity. 

1.7  Spindle assembly checkpoint: overview  

The SAC is a conserved mechanism in eukaryotes that ensures chromosome transmission 

fidelity during mitosis and meiosis (Rieder et al., 1995; Li and Nicklas, 1995). It is able to 

respond to a lack of or incorrect attachment of kinetochores to spindle microtubules and 

prevent anaphase. Thus providing time for error correction to enable proper attachments 

prior to chromosome segregation. In order to satisfy the checkpoint and progress with 

anaphase, all of the kinetochores need to be attached to spindle fibres and correctly bi-

oriented to opposite spindle poles (Rieder et al., 1995). 

Kinetochores are multi-protein structures present at centromeres of sister chromatids. 

They form points of attachment for microtubules, and, an area for localisation of several 
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proteins (Cheeseman and Desai, 2008). The SAC signal is produced upon recruitment of 

proteins to the kinetochore. The SAC components required for the activation and 

potentiation of the signal in prometaphase are conserved and include the kinases Ark1Aurora B 

(aurora-B kinase) and Mph1Mps1, the kinetochore protein Spc7KNL1, and the Mad (mitotic 

arrest defective) and Bub (budding uninhibited by benzimidazoles) proteins Mad1, Mad2, 

Mad3BubR1, Bub1 and Bub3 (London and Biggins, 2014). 

The SAC signalling pathway prevents anaphase by generating an effector complex named 

the MCC (mitotic checkpoint complex). The MCC inhibits the APC/C (anaphase promoting 

complex/cyclosome) (Hardwick et al., 2000; Fraschini et al., 2001; Sudakin et al., 2001), 

preventing ubiquitination and subsequent degradation of SecurinCut2 and Cyclin Bcdc13 

(Peters, 2006) (Fig. 1.3). This prevents chromosome segregation and sustains CDK1-cyclin 

B activity, delaying metaphase exit until correct kinetochore-microtubule attachments form. 

1.8  Kinase-dependent activation of the SAC 

The balance between kinase and phosphatase activity plays a major role in regulating the cell 

cycle (Novak et al., 2010). In the same way, the activity of the serine/threonine protein 

kinase Aurora BArk1 and PP1Dis2 (protein phosphatase 1) compete at the kinetochore. Aurora 

B, a subunit of the chromosomal passenger complex (CPC), phosphorylates CENP-A and the 

KMN network (KNL1Spc7 in particular) (reviewed in Carmena et al., 2012), therefore 

decreasing microtubule-binding affinity at poorly attached kinetochores (Welburn et al., 

2010), and delaying anaphase. This is an important point of control as it is the site of the ‘tug 

of war’ between the kinases and PP1Dis2, which is responsible for silencing the checkpoint 

(Vanoosthuyse and Hardwick, 2009; Liu et al., 2010; Rosenberg et al., 2011). 

A key role of Aurora B in the checkpoint is to help recruit Mps1Mph1 (monopolar spindle 

1) kinase to the kinetochore (Weiss and Winey, 1996; Vigneron et al., 2004; Heinrich et al., 

2012). This is an important step in SAC activation because Mps1Mph1 kinase has been found 

to phospho-regulate all downstream checkpoint substrates KNL1, Bub1, Bub3, Mad1, Mad2 

and Mad3 (London et al., 2012; London and Biggins, 2014; Hardwick et al., 1996; Ji et al., 

2017; Zich et al., 2012; Zich et al., 2016). Identified in all model organisms except C. 

elegans, Mps1 is a conserved kinase, essential for the checkpoint. Aside from its central 

checkpoint role, Mps1 has functions in spindle pole duplication and bi-orientation. Whereas 

its fission yeast homologue, Mph1 (Mps1 pombe homologue 1), has an additional function 

in bi-orientation (Zich and Hardwick, 2010). 
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Mps1 over-expression has been found to activate the checkpoint in the presence of intact 

kinetochore-microtubule attachments in a manner dependent on Mad and Bub proteins 

(Hardwick et al., 1996). Its persistence at the kinetochore delays checkpoint silencing and 

anaphase onset (Jelluma et al., 2010). Additionally, inhibiting Mps1 prevents the kinetochore 

localisation of all checkpoint proteins and impedes the checkpoint (Maciejowski et al., 2010; 

Sliedrecht et al., 2010; Vigneron et al., 2004).

Mps1 is responsible for the hierarchical recruitment of the Bub and Mad proteins to 

kinetochores (detailed in the following sections). To activate the SAC, it phosphorylates 

KNL1Spc7 on its MELT motifs, allowing Bub3-Bub1 recruitment (London et al., 2012; 

Shepperd et al., 2012; Yamagishi et al., 2012), subsequent Mad1-Mad2 recruitment, and 

MCC formation (London and Biggins, 2014). Despite the involvement of various kinases in 

checkpoint signalling, Mps1 kinase phosphorylates KNL1, Bub1 and Mad1, emphasising the 

importance of its role in MCC formation (Ji et al., 2017; discussed further in Chapters 3 and 

5). 

CDK1-cyclin B activity is required for mitotic entry and APC/C-mediated degradation of 

cyclin B leads to anaphase onset and mitotic exit (Oliveira et al., 2010). In addition, CDK1 

has been found to phosphorylate the SAC components Bub1 and Cdc20 (cell division cycle 

20) (Ji et al., 2017; Miniowitz et al., 2012). Bub1 kinase has been found to play a role in 

biorientation through phosphorylation of histone H2A which enables Shugoshin-dependent 

loading of Aurora B to centromeres (Fernius and Hardwick, 2007; Kawashima et al., 2010). 

Data from our lab suggests that the kinase activity of Bub1 is required for an efficient 

metaphase delay in response to spindle perturbation caused by the anti-mitotic drug 

carbendazim (CBZ), whereas this is less apparent in temperature sensitive β-tubulin mutant 

nda3-KM311 (nuclear division arrest 3) arrests where spindle microtubules are completely 

inhibited (Onur Sen, unpublished). In addition, Bub1-mediated phosphorylation of Cdc20 in 

human cells has been found to contribute to checkpoint signalling (Jia et al., 2016; Tang et 

al., 2004; Faesen et al., 2017). 

1.9  SAC signalling: assembly of the KNL1-Bub3-Bub1 scaffold  

The discovery of BUB and MAD from genetic screens in budding yeast provided the first 

molecular evidence for SAC feedback control (Hoyt et al., 1991; Li and Murray, 1991). This 

opened a field of research into its regulation and mechanism of action. The following 
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sections describe how signalling at KNL1-Bub and Mad1-Mad2 scaffolds leads to the 

formation of an APC/C inhibitory complex.

It is widely accepted that checkpoint signalling initiates at the microtubule binding 

interface of the outer kinetochore, specifically at the KMNNMS network, with KNL1Spc7 being 

the principle receptor for the Bub proteins Bub1, Bub3, BubR1Mad3 (Bub-related kinase 1) 

(Ito et al., 2011; London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012).

BubR1 is a Bub1 kinase paralogue and a pseudokinase in vertebrates which arose out of 

whole genome duplication events in yeast (Hardwick et al., 2000; Kellis et al., 2004; Vleugel 

et al., 2012). The kinase domain of BubR1 has been found to promote protein stability 

(Suijkerbuijk et al., 2012). Bub1 and BubR1 have kinase domain-dependent roles in 

kinetochore bi-orientation, although this is not required for their checkpoint role (Fernius and 

Hardwick, 2007; Suijkerbuijk et al., 2012; Kawashima et al., 2010). Consistently, the N-

terminal Bub1 yeast paralogue Mad3 (also the result of whole genome duplication events) 

lacks the kinase domain is not implicated in bi-orientation (Vleugel et al., 2012).

The mechanism of Bub recruitment to KNL1Spc7 surfaced in light of findings from our lab 

in collaboration with the Millar lab, and results from the Biggins and Watanabe groups 

(London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012). These results 

demonstrated that Mps1Mph1-dependent phosphorylation of threonine residues on the 

conserved MELT-like ([M/I/L/V]-[E/D]-[M/I/L/V]-T) motifs of KNL1Spc7 (Spc105 in 

budding yeast) accommodates Bub3-Bub1 binding (see Fig. 1.3). This method of recruitment 

is conserved in fission yeast, budding yeast, as well as human cells, with non-

phosphorylatable MELT mutants exhibiting defective checkpoint signalling. These studies 

also revealed that Bub1 recruitment to KNL1 occurs via Bub3, and that Bub1 stabilises the 

Bub3-KNL1 interaction (Krenn et al., 2012; Primorac et al., 2013).  

Bub1 and BubR1 form stable, mutually exclusive, complexes with Bub3, both via the 

GLEBS domain (Gle2 binding sequence) (Wang et al., 2001; Larsen et al., 2007). Perhaps 

surprisingly, it was found that BubR1 does not stabilise the Bub3-KNL1 interaction 

(Primorac et al., 2013; Krenn et al., 2014), suggesting an alternate kinetochore recruitment 

method. It was subsequently found that human BubR1 heterodimerises with Bub1 at 

kinetochores with an  active SAC signal (Overlack et al., 2015). Although it has been 

suggested that this interaction is not required for checkpoint activation (Zhang et al., 2015). 

The recruitment of fission yeast Mad3 remains more elusive although recent findings point 
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towards a similar Bub1-dependent mechanism mediated by direct interactions between their 

TPR (tetratricopeptide repeat) domains (Ioanna Leontiou, unpublished). Bub1, BubR1 and 

Mad3 proteins all have a TPR domain (Vleugel et al., 2012). Data from our lab found that 

tethering Bub1 to telomeres recruited Mad3 (Rischitor et al., 2007). Furthermore, FRAP 

(fluorescence recovery after photobleaching) experiments confirmed the dynamic nature of 

Mad3 when at kinetochores compared to the stable association of Bub1. Interestingly, 

BubR1 and Mad3 also contain conserved degradation motifs - the D (destruction) box 

(RxxLxxxx[EDNQ]) and KEN (Lys-Glu-Asn) boxes KEN1 and KEN2, which cause 

ubiquitin-mediated proteolysis (Tang et al., 2004). These signals are commonly recognised 

by APC/C-Cdc20.

The N-terminus of KNL1 contains multiple MELT motifs and the copy number of 

consensus sites varies amongst organisms. Human KNL1 has 19 putative MELT-like motifs, 

compared to 12 in S. pombe (Vleugel et al., 2013; Shepperd et al., 2012; Yamagishi et al., 

2012). Recent data suggests that MELT motifs portray different signalling capacities as a 

result of Bub3-Bub1 binding affinity (Chen et al, 2019). This is indicative of Bub3-Bub1 

MELT recruitment being an important modulator of SAC signalling output, able to rapidly 

initiate a signal which regulates cell cycle progression in the presence of varying inputs - a 

single, or several kinetochore-microtubule defects. 

KNL1 has two N-terminal KI (lysine-isoleucine) motifs, conserved in a few vertebrates 

(Vleugel et al., 2012). They are implicated in Bub1 and BubR1 binding which, although 

found to be non-essential for SAC signalling in the past, may enhance localisation of Bub 

proteins to MELT motifs according to more recent data (Kiyomitsu et al., 2011; Krenn et al., 

2012; Krenn et al., 2014).

1.10  Kinetochore recruitment of the Mad1-Mad2 scaffold   

The Mad1-C-Mad2 (closed-Mad2) heterotetramer (Chen et al., 1999) is an essential, 

conserved checkpoint complex which acts in concert with the KNL1-Bub1-Bub3 complex to 

generate MCC. Kinetochore localisation of Mad1-Mad2 in prometaphase marks an active 

checkpoint and studies have found that tethering Mad1 to kinetochores, using Mis12 as an 

anchor, activates the checkpoint (Maldonado and Kapoor, 2011; Kuijt et al., 2014; Heinrich 

et al., 2014). 
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In vivo yeast studies from our lab and others, C. elegans work, as well as in vitro work 

using human proteins have advanced our understanding regarding the long-standing question 

of the kinetochore receptor for Mad1 (detailed in Chapter 5). Mad1 is recruited to 

kinetochores by a direct interaction with Bub1 (Brady and Hardwick, 2000; London and 

Biggins, 2014; Moyle et al., 2014; Yuan et al., 2017; Zhang et al., 2017, Ji et al., 2017). The 

Mad1 RLK (arginine-leucine-lysine) motif binds Bub1-CD1 (conserved domain 1) in a 

Mps1 kinase dependent manner in yeasts and humans (Brady and Hardwick, 2000; Klebig et 

al., 2007; Heinrich et al., 2014; Ballister et al., 2014; Yuan et al., 2017; Zhang et al., 2017, Ji 

et al., 2017).

Interestingly, Mad1 kinetochore localisation has functions beyond transporting Mad2 to 

the kinetochore as tethering Mad2 directly to kinetochores only triggers a checkpoint arrest 

in the presence of Mad1 (Kruse et al., 2014). In addition, targeting a C-terminal Mad1 

mutant to the kinetochore in which Bub1, Mad2 and Mad1 localisation is intact, abrogates 

the checkpoint (Ballister et al., 2014; Heinrich et al., 2014; Kruse et al., 2014). This suggests 

that Mad1 has an additional, uncharacterised role in checkpoint activation which is the basis 

of Chapter 5. 

While Bub1 is the only kinetochore receptor of Mad1 in fission yeast (Yuan et al., 2017), 

there is mounting evidence of an additional means of Mad1 kinetochore recruitment in 

humans as depleting Bub1 or mutating the RLK motif does not completely abolish Mad1 

kinetochore localisation (Kim et al., 2012). The RZZ (Rod-ZW10-Zwilch) complex, 

primarily present in metazoans (Vleugel et al., 2012), is also required to recruit Mad1 in 

mammalian cells (Santaguida et al., 2010; Silio et al., 2015; Zhang et al., 2019; Rodriguez-

Rodriguez et al., 2018). RZZ localises to the outer kinetochore soon after nuclear envelope 

breakdown through KNL1-Zwint (Kops et al., 2005; Varma et al., 2013). 

Experiments carried out in diploid hTERT-RPE1 cells found that Bub1 is not required for 

checkpoint activation in response to unattached kinetochores (Currie et al., 2018). This is 

consistent with a study in human HAP1 cells (which are near-haploid) which found that 

neither receptor is essential for responding to unattached kinetochores (Raaijmakers et al., 

2018). However it is important to note that studies (Currie et al., 2018, Raaijmakers et al., 

2018) which rely on so-called CRISPR/Cas9 ‘knock-out’ cells for complete Bub1 deletion 

should be treated with caution (Meraldi, 2019). It has been reported recently that low levels 

of Bub1 are expressed in clones constructed by short deletions and frame shifts of the first 

few exons of BUB1 as a result of alternatively spliced Bub1 mRNA (Rodriguez-Rodriguez  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et al., 2018) which can be difficult to detect unless using sensitive mass spectrometry (Zhang 

et al., 2019). 

More recent work in HeLa cells from the Nilsson lab suggests that the RZZ complex 

facilitates Mad1 binding to Bub1, with the two receptors acting synergistically to efficiently 

recruit Mad1 (Zhang et al., 2019). Using a combination of CRISPR-Cas9 and RNAi to 

deplete Rod and Bub1, they demonstrate that although RZZ improves Mad1 recruitment, it 

can be bypassed by tethering Mad1 to kinetochores or increasing the potency of Mad1-Bub1 

binding. They find that the same does not apply to Bub1, which is necessary, suggesting that 

the fundamental Mad1 receptor mechanism is conserved.However, it is unclear in what way, 

if any, the Bub1 and RZZ receptors overlap to stimulate checkpoint signalling, and if this 

varies depending on the SAC trigger and/or cell type.

1.11  The Mad2 template model  

The initial step in forming the SAC effector — the mitotic checkpoint complex (MCC), 

consisting of C-Mad2-Mad3BubR1-Bub3- Cdc20Slp1 (S. pombe MCC lacks Bub3) (Sudakin et 

al., 2001, Chao et al., 2012), is a conformational change in Mad2 resulting in Cdc20Slp1 

binding. The ‘Mad2 template model’ (DeAntoni et al., 2005) is the favoured model for 

explaining the formation of the APC inhibitory C-Mad2-Cdc20Slp1 signal. It is known that all 

MCC components interact dynamically at or proximal to the outer kinetochore, rapidly 

cycling on and off (Kallio et al., 2002; Shah et al., 2004; Howell et al., 2004). FRAP 

experiments studying the dynamics of proteins at kinetochores and structural studies have 

been instrumental in capturing the unusual conversion behaviour of Mad2. 

There are two distinct pools of Mad2, each assuming one of two conformations, a mobile, 

‘open’ cytosolic conformation when unbound and a ‘closed’ conformation when bound to 

either of its ligands Mad1 or Cdc20Slp1 (Shah et al., 2004; Luo et al., 2004). When in the 

closed conformation, a C-terminal tail consisting of two mobile β-sheets comes across the 

face of C-Mad2 (closed-Mad2), enclosing Mad1-MIM (Mad2 interacting motif) in a 

molecular ‘safety belt’-like mechanism (Sironi et al., 2002) (see Fig 1.4).  Mad1-C-Mad2, 

recruited to kinetochores in prometaphase, then assumes the role of receptor for the more 

transient O-Mad2 (open-Mad2) conformer. In accordance with this model, mutations 

perturbing the dimerisation of C-Mad2-O-Mad2 prevent kinetochore localisation of O-Mad2 

and checkpoint signalling (DeAntoni et al., 2005; Mapelli et al., 2006; Nezi et al., 2006). 
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The Mad2 template model proposes that Mad1-C-Mad2 converts O-Mad2 to C-Mad2 to 

enable Cdc20Slp1 binding at the kinetochore (Luo et al., 2000; Luo et al., 2002; DeAntoni et 

al., 2005, Mariani et al., 2012). This binding interface resembles that of Mad1-C-Mad2 as the 

123-137 amino acid segment of the Cdc20 N-terminus ‘threads’ through the C-terminal tail 

of Mad2 (Sironi et al., 2002). The template model is proposed to be a catalytically active 

process, facilitated by Mad1-C-Mad2, that results in a Cdc20Slp1-C-Mad2 complex. It was 

found that Mps1 activity is necessary for Mad2 conversion as inhibiting Mps1 during mitosis 

prevents recruitment of O-Mad2 to Cdc20Slp1-C-Mad2 present at kinetochores (Hewitt et al., 

2010). A Mad2 mutant that is locked in the open conformation is unable to localise to 

kinetochores when Mps1 is inhibited. In comparison, kinetochore recruitment of a Mad2 

mutant that is permanently bound to Mad1 was not hindered (Hewitt et al., 2010). In further 

support of this, a recent in vitro reconstitution study using FRET sensors to detect MCC 

formation has found that Mad1-C-Mad2 catalyses Mad2 conversion upon Mps1 

phosphorylation (Faesen et al., 2017). Thus phosphorylated Mad1-C-Mad2 catalyses the 

formation of Cdc20Slp1-C-Mad2, which is the rate-limiting step in MCC generation. 

The template model results in prion-like (Lara-Gonzalez et al., 2012) expansion of the 

inhibitory signal with Mad1-C-Mad2 facilitating conversion of O-Mad2 to C-Mad2. Low 

levels of C-Mad2 during interphase, low Mps1 kinase activity, and the resulting slow O-

Mad2 to C-Mad2 kinetics, can explain why Mad2 conversion is inefficient during interphase. 

How the Mad2 substrate formed upon dimerisation of O-Mad2 with Mad1-C-Mad2 is loaded 

onto Cdc20 is unknown and remains an interesting question. Whether C-Mad2 directly binds 

Cdc20 or forms an intermediate substrate is unclear. 

1.12  MCC: The product of Bub and Mad signalling 

The Cdc20Slp1-C-Mad2 complex is not sufficient to inhibit APC/C. BubR1Mad3 has been 

found to associate with Cdc20Slp1 in a Mad2-dependent manner (Hardwick et al., 2000; Fang 

2002; Davenport et al., 2006; Burton and Solomon, 2007). Integration with Cdc20Slp1-C-

Mad2 occurs through an N-terminal KEN box (KEN1) (King et al., 2007; Sczaniecka et al., 

2008; Malureanu et al., 2009; Elowe et al., 2010). The crystal structure of S. pombe MCC 

depicts how the helix-turn-helix motif of the KEN box of BubR1Mad3 directly associates with 

both C-Mad2 and Cdc20Slp1 (Chao et al., 2012) (Fig. 1.5). This structure also revealed a 

mutually exclusive binding pattern where BubR1Mad3 binds C-Mad2 at its O-Mad2  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dimerisation region. This suggests that C-Mad2 can no longer convert O-Mad2 once MCC is 

formed. In addition, BubR1Mad3 TPR (tetratricopeptide repeat) domains have also been 

proposed to facilitate C-Mad2-Cdc20 binding (Lara-Gonzalez et al., 2011). 

Whereas association of C-Mad2, Mad3BubR1 and Cdc20Slp1 is sufficient for MCC 

formation in S. pombe (Fig. 1.5), Bub3 is a MCC component in other model organisms 

(Sudakin et al., 2001; Chao et al., 2012). Despite Bub3 not being required for BubR1Mad3 

ligand binding, association of Bub3 with BubR1 is necessary for efficient APC/C inhibition, 

as mutating the Bub3 binding motif in BubR1 greatly reduces checkpoint efficiency despite 

retaining C-Mad2-Cdc20 and APC/C binding (Lara-Gonzalez et al., 2011; Elowe et al., 

2010). Although in vitro studies indicate that Bub3 is not necessary for APC/C inhibition 

(Tang et al., 2001; Fang et al., 2002; Kulukian et al., 2009), it has been suggested that Bub3 

may facilitate recruitment of BubR1 to SAC signalling kinetochores where MCC formation 

is accelerated (Lara-Gonzalez et al., 2011) since they are the major site of C-Mad2-Cdc20 

production. Ultimately, the SAC effector — MCC, is formed.

1.13  APC/C inhibition 

The APC/C is an E3 ubiquitin ligase that polyubiquitylates key mitotic substrates through 

KEN and/or D-box degron recognition, promoting anaphase entry (Clute and Pines 1999; 

Thornton and Tockzyski, 2003). This targets them for destruction by the 26s proteasome. The 

aim of SAC signalling is to inhibit the APC/C and prevent ubiquitin-mediated degradation of 

Securin and Cyclin BCdc13. Securin degradation promotes the cleavage of Cohesin, the ring-

like structures which hold sister chromatids together, as it usually binds to and inhibits the 

protease Separase. The APC/C also targets Cyclin B, therefore depleting Cyclin B-

CDK1mediated phosphorylation which promotes exit from mitosis (Peters, 2006).

The SAC signalling inhibits the APC/C by generating an effector complex named the 

MCC (mitotic checkpoint complex) (Sudakin et al., 2001). The MCC incorporates the APC/

C co-activator Cdc20Slp1, which then binds to the APC/C, thereby preventing mitotic 

substrate binding (Mapelli and Musacchio, 2007). This occurs through the ‘pseudo substrate 

model’, confirmed by the crystal structure of MCC, which postulates that the KEN1 box of 

BubR1 acts as a pseudosubstrate inhibitor of Cdc20 (Burton and Solomon, 2007; Sczaneicka 

et al., 2008; Rahmani et al., 2009; Elowe et al., 2010; Chao et al., 2012). Recent findings 

from in vivo fission yeast studies demonstrate that a second molecule of Cdc20, already 

bound to activated APC/C ‘Cdc20A’, is inhibited by the MCC through binding the C-
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terminal KEN2 and ABBA motifs of Mad3 (May et al., 2017; Sewart and Hauf, 2017). This 

work supports in vitro reconstitution studieson human MCC-APC/C (Izawa and Pines, 2015; 

Alfieri et al., 2016; Yamaguchi et al., 2016). 

1.14  Spindle assembly checkpoint silencing  

Once stable kinetochore microtubule attachments are formed and the checkpoint is satisfied, 

SAC signalling needs to be rapidly inactivated to ensure timely segregation of chromosomes 

so that cells can progress to anaphase and resume the cell cycle. This inactivation of the 

checkpoint is termed ‘silencing’. In order for the checkpoint to be silenced, the inhibitory 

signal targeting the APC/C needs to be lifted. This can occur by halting the production of 

new MCC as well as disassembing  existing MCC from APC/C. The mechanisms and 

regulators of checkpoint silencing are less well characterised than checkpoint activation. This 

could be due to the difficulty in capturing cells undergoing SAC silencing in the cell cycle 

and requires further investigation. 

PP1Dis2 (protein phosphatase 1; Dis2 in S. pombe; Glc7 in S. cerevisiae) is an important, 

well-conserved silencing factor in yeast and humans (Pinsky et al., 2009; Vanoosthuyse and 

Hardwick, 2009; Meadows et al., 2011). PP1 is recruited to kinetochores via KNL1Spc7 and 

the kinesins Klp5 and Klp6 (Liu et al., 2010; Meadows et al., 2011; Rosenberg et al., 2011). 

PP1 opposes Mps1Mph1 (Aravamudhan et al., 2015) and Aurora B activity (Liu et al., 2010) at 

KNL1Spc7 as stable end-on kinetochore attachments form. It is able to bind the conserved 

SILK and RVSF motifs (also referred to as the A and B motifs) present at the amino terminus 

of KNL1Spc7. Mutating these motifs in both fission  and budding yeast greatly abrogates 

silencing, causing a prolonged, lethal checkpoint arrest (Meadows et al., 2011; Rosenberg et 

al., 2011; Amin et al., 2018). Klp mutants have also been found to negatively impact 

silencing in yeast, albeit to a lesser extent (Meadows et al., 2011; Amin et al., 2018). 

Furthermore, studies have found that most of Mps1Mph1, likely bound to Ndc80, is displaced 

upon stable end-on microtubule attachment (Aravamudhan et al., 2015; Hiruma et al., 2015; 

Ji et al., 2015). This release of Mps1 from kinetochores is essential for checkpoint silencing 

(Jelluma et al., 2010). The resulting  reduction in kinase activity at kinetochores decreases 

Mad1-Mad2 localisation and helps ‘tip the balance’ in favour of increased dephosphorylation 

of Mps1Mph1 substrates and metaphase exit. 

Another suggested mechanism for preventing kinetochore-associated MCC production is 

the ‘stripping’ of Mad1-Mad2 from kinetochores to spindle pole bodies (Howell et al., 2001; 
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Gassmann et al., 2008; Gassmann et al., 2010; Barisic et al., 2010). Upon satisfactory 

microtubule attachment, RZZ-associated Spindly enables binding to the minus-end directed 

microtubule motor dynein/dynactin for removal or ‘stripping’ of Mad1-Mad2 from the 

kinetochore. In S. pombe, movement to the spindle poles is driven by a Mad1-Cut7 

Kinesin-5 motor (Eg5 homologue) (Akera et al., 2015), although its contribution to 

silencing, if any, is unclear. 

There are two mechanisms in place to degrade cytosolic free and APC/C-bound MCC. 

The first is conserved APC/C-mediated ubiquitination and degradation of MCC associated 

Cdc20Slp1 (Pan and Chen 2004; Reddy et al., 2007; Ge et al., 2009; Foe et al., 2011). The 

second, not found to occur in S. pombe, occurs via C-Mad2 inhibition in animal, plant and 

insect models. The HORMA domain protein p31comet and the AAA ATPase TRIP-13 inhibit 

C-Mad2, converting it to the unbound, open conformation (Habu et al., 2002; San-Segundo 

and Roeder, 1999; Vader, 2015; Ye et al., 2015). Therefore, in an ATP-dependent process, 

p31comet and TRIP-13 disassemble free MCC (Eytan et al., 2014). p31comet is also thought to 

bind to APC/C-bound MCC and ‘extract’ Mad2, eventually destabilising APC/C-bound 

MCC (Westhorpe et al., 2011). The links, if any, between the two MCC disassembly 

pathways are yet to be elucidated. An additional ATP-dependent factor that disassembles 

MCC by releasing Cdc20 has been identified as the chaperonin CCT/TRiC (chaperonin 

containing TCP1 or TCP1–Ring complex) (Kaisari et al., 2017). This chaperone is 

conserved in yeast although it is unclear if it contributes to silencing as it is also necessary 

for activating Cdc20 (Camasses et al., 2003), making its roles difficult to distinguish. 

1.15  Aims of this work  

This work aims to:

I. Reconstitute checkpoint activation and silencing employing a novel chemically-

induced dimerisation tool in S. pombe. Chapter 3 describes an assay to control 

checkpoint activation and silencing by regulating the formation of minimal Mph1 and 

Spc7 heterodimers. This method allows for ectopic control of the SAC, without 

impacting the structural and functional complexities associated with kinetochores. 

Chapter 4 follows on, studying the effects of prolonged checkpoint activation in S. 

pombe and HeLa cells. 

II. Identify the kinetochore receptor of Mad1 in S. pombe and characterise the additional 

roles of the Mad1 C-terminus, aside from Mad2 recruitment to kinetochores, in 
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checkpoint activation. These questions are investigated in Chapter 5 using genetics 

and biochemistry where surprisingly stable interactions between the Mad1 C-

terminus and Cdc20Slp1 are detected. 
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CHAPTER 2 

Materials and methods  

2.1  DNA methods 

2.1.1  Polymerase chain reaction 

Q5®  Hi-Fidelity 2X Master Mix (New England Biolabs) was used for cloning purposes in 

accordance with manufacturer’s instructions. 

To test the genotype of yeast clones, a colony PCR using Taq polymerase was used. A large 

yeast colony was transferred from a fresh plate to PCR tubes containing 10 μL of 0.02N 

NaOH. Cells are heated at 95oC for 5 minutes and then cooled on ice. The lysate is vortexted 

and 2 μL is added to 28 μL of the PCR reaction (in the table below) as a template. The steps 

for Colony PCR are also given below. 

Colony PCR components:  

Colony PCR conditions:  

Reagent Volume (μL)

dH2O 16.5

10X buffer 3.0

2mM dNTP 1.5

10μM forward primer 3.0

10μM reverse primer 3.0

Cell lysate 2.0

Taq polymerase 1.0

Step Temperature (oC) Time 

Initial boil 95 5 minutes

Denaturation 92 30 seconds

Annealing and Extension: 30 cycles 92 10 seconds

50 5 seconds

72 1 min/kb

Final extension 72 10 minutes 

Hold 4-10 forever 
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2.1.2  Site-directed mutagenesis  

Quikchange®  Lightning or Quikchange®  II site-directed mutagenesis kits were used 

(Agilent) in accordance with manufacturer’s instructions with the exception that all volumes 

were scaled down by 5X to reach a final volume of 10 μL.  

2.1.3  Gibson assembly  

Individual DNA fragments to be assembled into a linearised vector backbone were obtained 

by PCR. The PCR fragments were treated with Dpn1 to degrade template DNA following 

heat inactivation of the enzyme. 5 μL of DNA fragments was added to 15 μL of homemade 

gibson master mix. It is important to use equimolar amounts of DNA for efficiency. Reaction 

is  incubated at 50oC for 30 minutes. 2 μL of reaction was transformed into DH5⍺ chemical 

competent E. coli using heat-shock transformation or 1 μL of reaction was transformed into 

NEB®  10-beta competent E. coli by electroporation. The optimal method of transformation 

was determined empirically.

2.1.4  Sequencing 

Sanger sequencing was performed by Genepool (University of Edinburgh). Samples 

prepared using Big Dye®  v3.1 Cycle Sequencing Kit (Applied Biosystems) according to the 

manufacturer’s instructions. 

2.1.5  Restriction endonuclease digestion 

All restriction digests were carried out using enzymes and buffers supplied by New England 

Biolabs or Roche and used according to manufacturer’s instructions. 

2.1.6  De-phosphorylation 

De-phosphorylation of linearised DNA was performed using Antarctic Phosphatase (New 

England Biolabs) according to manufacturer’s instructions.

2.1.7  Ligation    

Ligation was performed using T4 Quick DNA ligase (New England Biolabs) in accordance 

with manufacturer’s instructions.
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2.1.8  Bacterial transformation  

While heat shock was more commonly used for bacterial transformation, electroporation was 

used in some instances following gibson assembly. The optimal method of transformation 

was determined empirically.

Heat shock 

DNA was added to 50 μL of defrosted chemically competent DH5⍺ E. coli cells in a pre-

chilled tube, gently mixed, and incubated on ice for 30 minutes. Heat shock was performed 

at 42oC for 45 seconds, the mixture is then placed on ice for 2 minutes after which 250 μL of 

pre-warmed SOC medium is added. Cells recover at 37oC with shaking for 1 hour before 

plating on pre-warmed LB selection plates. Plates are incubated at 37oC overnight.

Electroporation  

This was carried out with the help of Eftychia Kyriacou in the Heun lab. 1-10 pg DNA was 

added to 40 μL of thawed NEB®  10-beta competent E. coli (a kind gift from Patrick Heun’s 

lab) in 0.5 mL pre-chilled microfuge tubes and kept on ice for 15-30 minutes. Gently transfer 

to pre-chilled electroporation cuvettes, tap the suspension to ensure it is at the bottom of the 

cuvette. Dry the moisture on the outside of the cuvette and electroporate at 25 μF 

capacitance, 2.5 kV, and 200 Ω resistance. As soon as the electrical pulse is delivered, 

remove the cuvette from the electroporation device and add 1 mL of SOC medium. Transfer 

the mixture to a 5 or 10 mL polypropylene tube and incubate at 37oC with gentle rotation 

(220 RPM) for 30 minutes. Plate onto LB selection plates and incubate at 37oC for 12-16 

hours. 

2.1.9  Ethanol precipitation of DNA   

To isolate DNA from an aqueous solution, 1/10th volume of 3M sodium acetate and 3 

volumes of ice-cold 96% ethanol was added and the mix is incubated at -20oC for 30 

minutes. Samples were centrifuged at 4oC for 15 minutes at 12000-13000 RPM. The 

supernatant was removed and the pellet washed with 500 μL 70% ethanol. The samples were 

centrifuged at room temperature for 5 minutes at 13000 RPM. The supernatant was removed, 

the precipitated DNA pellet air-dried and re-suspended in 10 μL dH2O.
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2.2  List of plasmids used in this work  

2.3  Plasmid construction 

pRAD41-Padh41-Mph1303-678-3xHA-ABI 

Mph1 (residues 303-678) was amplified from a pDONR 201 plasmid containing Mph1 

(303-678) (Yuan et al., 2017). 3xHA was amplified from a plasmid from the Allshire 

laboratory (University of Edinburgh) containing codon-optimised PYL-3x-HA. ABI was 

amplified from a pMT_CID_ABI_VS_H vector from the Patrick Heun laboratory 

(University of Edinburgh). These PCR fragments were treated with Dpn1 and assembled into 

a Sma1-digested and antarctic phosphatase-treated gel-purified pRad41 yeast expression 

vector by Gibson assembly. A Blp1 digest linearlised the plasmid for yeast integration.

pLYS1U-Padh21-Spc71-666-PYL 

The yeast expression vector pLYS1U-Padh21-NLS-rTetR-mCherry-2xFLAG-spc71-666 (Yuan 

et al., 2017, with a modified adh promoter TATA box: TAAATA for adh21) was digested with 

Nhe1 and Xho1 and gel purified to isolate the vector backbone. Spc71-666 was amplified from 

Plasmid	 Source

pRAD41-Padh41-Mph1303-678-3xHA-ABI this	work

pLYS1U-Padh21-NLS-Spc71-666-PYL this	work

pLYS1U-Padh21-NLS-Spc71-666-12A-PYL this	work

pBluescript-hyg-Pendogenous-2xFLAG-mad1		
(based	on	Karen	May’s	pBluescript-hyg-Pendogenous-GFP-mad1.	hyg-Pendo-GFP-mad1.	CasseTe	
amplified	out	for	integraWon	at	the	endogenous	mad1	locus	of	a	mad1Δ::ura	strain)

this	work

pBluescript-hyg-Pendogenous-2xFLAG-mad1ΔCC	
(based	on	Karen	May’s	pBluescript-hyg-Pendogenous-GFP-mad1ΔCC	(Yuan	et	al.,	2017).	CasseTe	
amplified	out	for	integraWon	at	the	endogenous	mad1	locus	of	a	mad1Δ::ura	strain)

this	work

pRAD41-Padh41-Mph1303-678-GFP-ABI this	work

pLYS1U-Padh21-NLS-Spc71-666-mCherry-2xFLAG-PYL this	work

pRAD41-Padh15-GFP-ABI this	work

pLYS1U-Padh15-NLS-rTetR-mCherry-2xFLAG-PYL this	work

pRAD41-Padh15-GFP-GID this	work

pLYS1U-Padh15-NLS-rTetR-mCherry-2xFLAG-GAI this	work
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pLYS1U-Padh21-NLS-rTetR-mCherry-2xFLAG-spc71-666 (Yuan et al., 2017) containing wild 

type spc7. PYL was amplified from a bVNI-221 vector from the Heun laboratory. The 

fragments were then assembled into the digested vector backbone using Gibson Assembly. A 

Not1 digest linearlised the plasmid for yeast integration.

2.4  List of primers used in this work 

No. Name Sequence (5’-3’) Purpose/Notes

22 Gibson	pRAD	
GFP	F

GAATTCATATGTCGACTCTAGAGGATCCCCATGGGTA
AAGGAGAAGAACTTTTCACTGG

GFP-ABI	construct

23 Gibson	-	GFP	
ABI	R

GTGAAGCCGTACAGGGGCACTCCAGCTTTTTTGTAC
AAACTTGTGATATCTTTGTATAGTTCATCCATGC

GFP-ABI	construct

24 Gibson	-	GFP	
ABI	F

GCATGGATGAACTATACAAAGATATCACAAGTTTGTA
CAAAAAAGCTGGAGTGCCCCTGTACGGCTTCAC	

GFP-ABI	construct

25 Gibson	ABI	
pRAD	R

GGGAGACATTCCTTTTACCCAACTTTACGTTTTTTTT
TAGGCTTCAGGTCCACCACCACC

reverse	for	ABI-pRAD	term

26 Gibson	-	adh-
mph1303-678	F

TTCATATGTCGACTCTAGAGGATCCCCATGAAGCGTC
AGCAGGACGTTGTTACTGTTGCC	

mph1-GFP-ABI	
construct

27 Gibson	mph1	-	
GFP	R

GTTCTTCTCCTTTACCCATGTTAATTAACCCGGGGAT
CCGTTCTGGCATTTTTCGTAAAT

mph1-GFP-ABI	
construct

28 Gibson	-	GFP-
mph1	F

ATTTACGAAAAATGCCAGAACGGATCCCCGGGTTAA
TTAACATGGGTAAAGGAGAAGAAC

mph1-GFP-ABI	
construct

30 spc71-666	+	pac1	
site	R

ACCATGTTAATTAACCCGGGGATCCGATTCAAAGTT
GAAATTGATTTT

spc7	to	replace	rTetR	for	spc7-
mch-PYL	construct

33 spc7	+	nhe1-NLS	
F

AGAATTGCTAGCATGCCTAAGAAGAAGCGTAAAGTT
ATGCCAACATCGCCTCGTCG

spc7	to	replace	rTetR	for	spc7-
mch-PYL	construct

66 GA_mad1flag	
Pendogenous	R

CATTTTGTCATCGTCGTCCTTGTAGTCCATGGGTTTA
TCGTCATCATCCTTATAATCCATGGATGTAGTCGCTTG
ATACA

Pendo-flag-mad1	construct.	
Template	for	mutants.	

69 Gibson_spc7	
(adh)	F

CTTTTCTTTAAGCAAGAGAATTGCTAGCATGCCTAA
GAAGAAGCGTAAAGTTATGCCAACATCGCCTCGTCG
CAAT

gibson	for	spc7-PYL	construct

70 Gibson_spc7	
(PYL)	R

TGAACTCGTCCTGGGTGGCCATGTTAATTAACCCGG
GGATCCGATTCAAAGTTGAAATTGATTTT

gibson	for	spc7-PYL	construct

71 Gibson_PYL	
(spc7)	F

AAAATCAATTTCAACTTTGAATCGGATCCCCGGGTT
AATTAACATGGCCACCCAGGACGAGTTCA

gibson	for	spc7-PYL	construct

72 Gibson_PYL	
(term)	R

CGCTTATTTAGAAGTGGCGCGCCCTCGAGTTAGTTC
ATGGCCTCGGTGATGGAGG

gibson	for	spc7-PYL	construct

75 Gibson_ABI	
(term)	R

CTGGCAAGGGAGACATTCCTTTTACCCCTTCAGGTC
CACCACCACCACGCT	

GA	mph1-3xHA-ABI	construct

76 GA_M1	3UTR-
pBS	F

CAATGCAAATGGTATAATCCACTATCGAATTCCTGCA
GCCCGGG

Pendo-flag-Mad1	construct.	
Template	for	mutants.	
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78 GA_M1	3UTR-
pBS	R

CCCGGGCTGCAGGAATTCGATAGTGGATTATACCAT
TTGCATTG

amplify	mad1	from	genomic	prep	
for	Pendo-flag-Mad1	construct.

82 GA_mph1	
(3XHA)	R

ACATCGTATGGGTAGTTAATTAACCCGGGGATCCGT
TCTGGCATTTTTCGTAAATTGCT

GA	mph1-3xHA-ABI	construct

83 GA_3XHA	
(mph1)	F

GAAAAATGCCAGAACGGATCCCCGGGTTAATTAACT
ACCCATACGATGTTCCTGACTAT

GA	mph1-3xHA-ABI	construct

89 PYL	F	 ATGGCCACCCAGGACGAGTTCAC PYL	sequencing

90 PYL	280	F CAACACCAGCAGAGAGAGACTGG PYL	sequencing

91 PYL	537	F CCATCACCGAGGCCATGAAC PYL	sequencing

92 PYL	R GTGAACTCGTCCTGGGTGGCCAT PYL	sequencing

93 adh	724	F GGGTGGTGGACAGGTGCCTTCG sequencing

94 GA_3XHA	(ABI)	
R

ATGCTGGTGAAGCCGTACAGGGGCACAGATCCACC
AGATCCACCGCACTGAGCAGCGTAATCTGGAACGT

GA	mph1-3xHA-ABI	construct

95 GA_ABI	(3XHA)	
F

ACGTTCCAGATTACGCTGCTCAGTGCGGTGGATCTG
GTGGATCTGTGCCCCTGTACGGCTTCACCAGCAT

GA	mph1-3xHA-ABI	construct

98 GA_mad1flag	F	
II

ATGGATTATAAGGATGATGACGATAAACCCATGGAC
TACAAGGACGACGATGACAAAATGGCGGATTCTCCT
AGGGATCCGTTCC

amplify	genomic	mad1	adding	N-
term	flag	tag.	For	Pendo-flag-Mad1	
construct.

99 Set1_1 AAAATCGAGCTTATATCCAAAAAGAGCAAAAACAG
CTTCGCGAAATTCCAA

Mad1	mutagenesis	S598A

100 Set1_2 CAGCTTCGCGAAATTCCAAAGCCTTTACTGAAAAAA
TCTCCTT

Mad1	mutagenesis	introducing	
S589A	to	S598A	construct

101 Set1_3 TTGGAATTTCGCGAAGCTGTTTTTGCTCTTTTTGGAT
ATAAGCTCGATTTT

Mad1	mutagenesis	S598A	

102 Set1_4 AAGGAGATTTTTTCAGTAAAGGCTTTGGAATTTCGC
GAAGCTG

Mad1	mutagenesis	introducing	
S589A	to	S598A	construct

103 Set2_1 CGAGAATATGTGGCTGTAACACGAACACTCCCATTA
GGC

Mad1	mutagenesis	S616A	

104 Set2_2 GCCTAATGGGAGTGTTCGTGTTACAGCCACATATTCT
CG

Mad1	mutagenesis	S616A	

105 Set3_1 GCCTGATGGATTACCAACCAATTTCATTGCGGCGGC
TTCGCCATCAAATATAAAAGCGGTATTA

Mad1	mutagenesis	S632A,	
S633A,	T634A	

106 Set3_2 TAATACCGCTTTTATATTTGATGGCGAAGCCGCCGCA
ATGAAATTGGTTGGTAATCCATCAGGC	

Mad1	mutagenesis	S632A,	
S633A,	T634A	

107 Set4_1 CAAGAAGCTCTAACGCTAGAGCCGCTAACATGCCT Mad1	mutagenesis	T668A	

108 Set4_2 TGGTGTGATGAACGCAAAGCAATACCAGGCATGTTA
G

Mad1	mutagenesis	introducing	
T659A	to	T668A	construct

109 Set4_3 CTAACATGCCTGGTATTGCTTTGCGTTCATCACACCA Mad1	mutagenesis	introducing	
T659A	to	T668A	construct

110 Set4_4 AGGCATGTTAGCGGCTCTAGCGTTAGAGCTTCTTG Mad1	mutagenesis	T668A	

113 spc7	1019	F AATCACGATCAGTCGGAAAA spc7	sequencing

No. Name Sequence (5’-3’) Purpose/Notes
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2.5  Reaction kits 

2.6  Protein methods  

2.6.1  Yeast whole cell extracts: small-scale for SDS-PAGE 

10 mL yeast cultures grown overnight in the appropriate liquid medium were harvested by 

centrifuging at 3000 RPM for 2 minutes, pellets were re-suspended in 1 mL ice-cold dH2O 

and transferred to a screw-cap tubes. Tubes were centrifuged, the supernatant removed and 

114 spc7	1528	F	 CAATTCTTCAAAGCCCATTC spc7	sequencing

124 ABI	20	F GTGCCCCTGTACGGCTTCACC ABI	sequencing	

125 ABI	285	F TGGAAAAGTGGAAGAAGGCC ABI	sequencing	

126 ABI	602	F TGAAGCCCAGCATCATCCC ABI	sequencing	

137 M1	T659E	F TTTGGTGTGATGAACGCAAAGAAATACCAGGCATG
TTAGCGG

Mad1	phosphomimeWc	mutant

138 M1	T659E	R CCGCTAACATGCCTGGTATTTCTTTGCGTTCATCACA
CCAAA

Mad1	phosphomimeWc	mutant

139 M1	T668E	F CAGGCATGTTAGCGGCTCTAGAGTTAGAGCTTCTTG
ACAAAA

Mad1	phosphomimeWc	mutant

140 M1	T668E	R TTTTGTCAAGAAGCTCTAACTCTAGAGCCGCTAACA
TGCCTG

Mad1	phosphomimeWc	mutant

KM
9

M1	3’UTR AGCAGTTTTGACTAGTTTGTAATGG from	Karen	May

KM	
284

M1	5’UTR	F1 ATGATAACTTGAATATGTA from	Karen	May

No. Name Sequence (5’-3’) Purpose/Notes

Product name Manufacturer Catalogue number

GeneJET Gel Extraction Kit
 

Thermo Scientific K0691

Promega A9282

QiaQuick PCR Purification Kit Qiagen 28104

Monarch®  PCR and DNA Cleanup Kit NEB T1030S

GeneJET Plasmid Miniprep Kit Thermo Scientific K0503

Monarch®  Plasmid Miniprep Kit NEB T1010L

Quikchange® Lightning Agilent 210518

Quikchange® II Agilent 200523
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washed cell pellets were either lysed for immediate use or snap frozen on dry ice for later 

use. 

Cells were lysed by adding 100 μL of lysis buffer (containing: 50 mM Hepes pH 7.6, 75 

mM KCl, 1 mM MgCl2, 1 mM EGTA, 0.1% Triton X-100, 1 mM Na3VO4, 10 μg/mL 

CLAAPE (protease inhibitor mix containing chymostatin, leupeptin, aprotinin, antipain, 

pepstatin, E-64 dissolved in DMSO at a concentration of 10 mg/mL), 1 mM Pefabloc® , 0.01 

mM Microcystin) per 0.3 g of cell pellet. An equal amount of zirconia/silica beads (BioSpec 

Products Inc.) were added to each sample and cells were broken by bead-beating for 2x 30 

seconds (kept on ice for 30 seconds in between). 100 μL of 2XSDS sample buffer containing 

DTT per 0.3 g of cell pellet was added to each sample. The lysates were briefly vortexed and 

denatured at 95oC for 5 minutes. They were then centrifuged to remove pelleted cell debris 

12000-13000 RPM for 5 minutes at 4oC. Clear lysates were then loaded on SDS-PAGE gels 

for size separation. 

2.6.2  Yeast whole cell extracts: large-scale for Co-IP 

1-2 L of overnight yeast cultures were harvested by centrifugation in a Beckman Coulter 

centrifuge at 3500 RPM for 10 minutes at room temperature. A small volume of dH2O 

(15-20% of pellet volume) was added to the cell pellet for a paste-like consistency. 1 mM 

Pefabloc was also added to the cell paste before freezing as cell droplets in liquid nitrogen. 

Frozen cell droplets were ground to form cell powder using a mortar and pestle cooled 

over a bed of dry ice. Samples were ground for an equal duration of time. Powder was 

weighed and 1 mL of lysis buffer (50 mM Hepes pH 7.6, 75 mM KCl, 1 mM MgCl2, 1 mM 

EGTA, 10% Glycerol, 0.1% Triton X-100, 1 mM Na3VO4, 10 μg/mL CLAAPE (protease 

inhibitor mix containing chymostatin, leupeptin, aprotinin, antipain, pepstatin, E-64 

dissolved in DMSO at a concentration of 10 mg/mL), 1 mM Pefabloc® , 0.01 mM 

Microcystin) was added per gram of powder. Samples were lysed by sonicating while on ice 

for 30 seconds (5 sec on, 5 sec off) at an amplitude of 25-30%. Lysates were then cleared by 

centrifugation at 14000 RPM for 10-20 minutes at 4oC to remove cell debris. The Co-IP 

protocol was then followed (2.2.3).

2.6.3  Co-immunoprecipitation 

Antibody coupled Dynabeads were washed once with 1 mL 0.1% PBS-Tween 20 and twice 

with wash buffer (50 mM Hepes pH 7.6, 75 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10% 
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Glycerol, 0.02% Tween 20). The clear lysate was incubated with antibody-coupled 

Dynabeads for 15 minutes at 4oC. The beads were washed 4-5 times with wash buffer 

(changing eppendorf tubes twice). Proteins were either eluted from beads immediately for 

SDS-PAGE or beads stored at -80oC until needed. Proteins were eluted by adding 2X sample 

buffer containing DTT and standing at room temperature for 15 minutes, following this, they 

were then run on an SDS-PAGE gel (2.2.8). 

2.6.4  Crosslinking using DSP 

This protocol is from Adele Marston’s lab. 1-2 L of overnight yeast cultures were harvested 

by centrifugation in a Beckman Coulter centrifuge at 3500 RPM for 10 minutes at room 

temperature and re-suspended in reaction buffer (20 mM Hepes pH 7.6, 100 mM KOAc). 20 

mM DSP (in DMSO) was added to the cells and the cross-linking reaction was left to shake 

slowly for 30 minutes (or 2 hours at 4oC). To quench the reaction, cells were pelleted at room 

temperature 3000 RPM for 2 minutes, re-suspended in 100 mM Tris pH 7.5 and left to shake 

slowly for 15 minutes. Cells were pelleted at 4oC 3000 RPM for 2 minutes. A small volume 

of dH2O (15-20% of pellet volume) and 1 mM Pefabloc was added to the cell pellet before 

freezing yeast droplets in liquid nitrogen. The yeast droplets were then ground and lysed as 

described in 2.2.2 and the Co-IP protocol followed (2.2.3).  

2.6.5  Cross-linking M2 FLAG antibody to Dynabeads®   

This protocol was adapted from Robin Allshire’s lab. For cross-linking anti-GFP antibody to 

Protein G Dynabeads®  (10004D, Invitrogen), the same method was followed using 

approximately 1.5x more antibody (a 1:1 mix of anti-GFP sheep T and G was used). 

500 μL Protein G Dynabeads® , first were washed 2 times in PBS containing 0.001% 

Triton X-100 in a screw cap tube and left in a final volume of 1 mL 0.001% PBS-Triton 

X-100. 150 μL of M2 antibody was added to the slurry and left to bind while rotating at 

room temperature for 30 minutes. Beads were washed with 1 mL PBS and 1 mL 1 M Borate 

buffer pH 9 (0.25 g boric acid, 1.53 g sodium tetraborate decahydrate, made up to 100 mL) 

and transferred to a 50 mL FalconTM tube. Beads were isolated using a magnetic rack and 

resuspended in 15 mL cross-linking buffer made fresh just before use (room temperature 20 

mM dimethyl pimelimitate (Thermo 21667) in Borate buffer pH 9). Slurry cross-linked for 

30 minutes at room temperature while rotating. Beads washed in 20-30 mL Borate buffer pH 

9 and 1 M Tris pH 8 for 5 minutes while rotating at room temperature to quench the reaction. 
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Tris was removed and antibody cross-linked beads were washed with 0.001% PBS-Tween 

2-3 times and re-suspended in 500 μL 0.001% PBS-Tween with sodium azide. 

2.6.6  Sample preparation for mass spectrometry   

2 L cultures were harvested and lysed as in 2.2.2. Antibody coupled Dynabeads were 

washed once with 1 mL 0.1% PBS-Tween 20 and twice with wash buffer (50 mM Hepes pH 

7.6, 75 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10% Glycerol, 0.02% Tween 20). The clear 

lysate was incubated with antibody-coupled Dynabeads for 15 minutes at 4oC. The beads 

were washed 3 times with wash buffer (changing eppendorf tubes twice). Beads were then 

washed five more times in wash buffer without detergent (50 mM Hepes pH 7.6, 75 mM 

KCl, 1 mM MgCl2, 1 mM EGTA, 10% Glycerol) the tubes were changed in between. The 

wash buffer was removed and an on-bead tryptic digestion was performed (2.2.7). 

2.6.7  On-bead digestion and Stage Tip Extraction 

This was carried out with the help of Christos Spanos in the Rappsilber lab. Beads were re-

suspended in 50 μL denaturation buffer (8 M urea in 50 mM ammonium bi-carbonate, ~ pH 

8.0) and add digestion buffer (50 mM ammonium bi-carbonate in water, pH 8.0) so that 

beads were covered. 1 μL of reduction buffer (10 mM dithiothreitol (DTT) in 50 mM 

ammonium bi-carbonate) per 10 μL digestion solution was added and incubated at room 

temperature for 30 minutes. 1 μL of alkylation buffer (55 mM iodoacetamide in 50 mM 

ammonium bi-carbonate) per 10 μL digestion solution was then added and incubated at room 

temperature, in the dark, for 30 minutes. 1 μg/μL LysC in 0.1% TFA (trifluoroacetic acid) 

per 50 µg protein was added and incubated for at least 3-4 hours at room temperature. The 
sample was then diluted x4 with digestion buffer (50 mM ammonium bi-carbonate pH 8.0). 1 

μg trypsin in 0.1% TFA per 50 µg protein was added and the sample was incubated overnight 

at room temperature. The supernatant was transferred to a new eppendorf tube and acidified 
to pH < 2.5 with 10% TFA to quench the trypsin digest. The peptides were then purified 

using C18 Stage Tips. C18-Stop and go extraction (stage) tips were used to desalt peptides 

prior to mass spectrometry analysis as described in Rappsilber et al., 2003. Subsequent mass 

spectrometry analysis was performed by Christos Spanos (Rappsilber lab) using an Orbitrap 

mass analyser Q ExactiveTM Hybrid Quadrupole-OrbitrapTM Mass Spectrometer 

(IQLAAEGAAPFALGMAZR, ThermoFisher) and analysis was carried out using MaxQuant 

software. 
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2.6.8  SDS-PAGE 

The protein samples were run on 10 cm x 20 cm SDS-PAGE (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis) gels, the percentage of which was determined 

based on the size of the protein of interest. The composition of the resolving gel was as 

follows: 

10% ammonium persulphate and TEMED (indicated with an asterix (*)) were added 

immediately before the gel is poured. 1 mL of butan-1-ol was laid over the resolving gel to 

aid setting and removed prior to adding the stacking gel: 

10% ammonium persulphate and TEMED (starred) were added immediately before use. Gels 

were typically run at a constant voltage of 120-170 V in SDS-PAGE buffer (50 mM Tris, 384 

mM glycine, 2% SDS) until the protein of interest was resolved.

2.6.9  Western blot semi-dry transfer  

The proteins were transferred onto nitrocellulose membranes (Amersham Protan 0.2μm

nitrocellulose, GE Healthcare Lifescience) using a TE77 semi-dry transfer unit (Hoefer) at 

150-220 mA for 90-150 minutes (depending on protein size). In the unit, the membrane and 

Reagent Gel percentage 

10.0% 12.5% 15%

40% acrylamide 3.7 mL 4.7 mL 5.6 mL

2% Bis 0.98 mL 0.75 mL 0.64 mL

1.5M Tris-HCl pH 
8.8

3.75 mL 3.75 mL 3.75 mL

Water to 15 mL to 15 mL to 15 mL

10% ammonium 
persulphate*

150 μL 150 μL 150 μL

TEMED* 15 μL 15 μL 15 μL

Reagent Volume 

40% acrylamide 6.25 mL

2% Bis 3.33 mL

1.0M Tris-HCl pH 8.8 6.25 mL

Water to 50 mL

10% ammonium persulphate* 25 μL

TEMED* 250 μL
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gel were placed inbetween 5 pieces of 3MM Whatman®  filter paper pre-soaked in transfer 

buffer (25 mM Tris, 130 mM glycine, 10-20% methanol (depending on protein size)). 

Following the transfer, the proteins on the nitrocellulose membrane were stained with 

Ponceau S solution to determine the efficiency of transfer. The membrane was then washed 

with 0.1% Tween 20 in PBS. 

2.6.10  Immunoblotting 

The membranes were blocked in a 0.1% Tween 20 in PBS, 5% w/v dried semi-skimmed 

milk (Marvel) solution while shaking for 30 minutes at room temperature. Membreanes were 

then incubated overnight with primary antibody while shaking at 4oC. Membranes were 

washed with 0.1% Tween 20-PBS 4 times for 5 mins while shaking  to remove any unbound 

antibody. They were then incubated with the corresponding secondary antibody for 1 hour at 

room temperature while shaking. Membranes were re-washed with 0.1% Tween 20-PBS 4 

times for 5 mins while shaking prior to protein visualisation. 

2.6.11  Protein visualisation 

Proteins were detected using an enhanced chemiluminescense (ECL) kit (SuperSignal West 

Pico or SuperSignal West Femto, Pierce) according to manufacturer’s recommendations. The 

ECL solution was applied to the blots which were placed between clear acetate sheets and 

exposed to X-ray film (Agfa Healthcare). The film was developed using a SRX-101A Film 

Processor (Konica-Minolta).

2.6.12  List of primary and secondary antibodies used in this study  

Secondary antibodies are indicated with an asterix (*)

Antibody Species Immunobloting 
concentration

Source

anti-Bub1 rabbit 1:1000 Hardwick lab

anti-FLAG M2 mouse 1:1000 Sigma-Aldrich

anti-GFP S2T sheep 1:1000 Hardwick lab

anti-GFP G sheep 1:1000 Hardwick lab

anti-HA 12CA5 mouse 1:1000 Kumiko Samejima

anti-Mad1 T rabbit 1:1000 Hardwick lab

anti-Mad2 sheep 1:1000 Hardwick lab

�36



2.7  Yeast methods  

2.7.1  Yeast transformation  

Transformation of DNA into yeast in this work was carried out using either lithium acetate 

pH 4.9 (Ito et al., 1983) or pH 7.5 (adapted from Bahler et al., 1998). The optimal method of 

transformation was determined empirically. An overnight 100 mL yeast culture in YES (set-

up from a fresh patch and starter culture of yeast) was grown at 30oC (unless temperature 

sensitive) with shaking for transformation the following day. 5x106 cells/mL needed from the 

overnight culture. 

For pH 4.9 LiAc transformation, 2x108 cells were harvested by centrifuging culture at 

3000 RPM for 2 minutes. The cells were resuspended in 1 mL dH2O and transferred to a 

sterile eppendorf tube. The suspension was then centrifuged at 6000 RPM and resuspended 

in 100 μL of 0.1 M LiAc pH 4.9. The cells were then incubated at 30oC (unless temperature 

sensitive) for 30 minutes after which it was added to 2-10 μg DNA. The tube was mixed 

gently and 290 μL of 50% PEG4000 in 0.1M LiAc pH 4.9 was added. This was mixed well 

and the tube was incubated at 30oC (unless temperature sensitive) for 2-2.5 hours. Heat 

shock was performed at 43oC for 15 minutes and the mixture was left to cool to room 

temperature. Depending on the type of selection, the mixture was either plated directly onto 

selection plates or plated onto YES for 24 hours to recover before replica-plating onto 

selection plates. Plates were incubated at 32oC (unless temperature sensitive) for 3-5 days to 

obtain colonies. Positives were screened by western blotting and if necessary, PCR and 

sequencing. 

For pH 7.5 LiAc transformation, 2x108 cells were harvested by centrifuging culture at 

3000 RPM for 2 minutes. The cells were resuspended in 1 mL dH2O or 1 mL 0.1M LiAc/TE 

pH 7.5 and transferred to a sterile eppendorf tube. The suspension was then centrifuged at 

6000 RPM and resuspended in 100 μL of 0.1 M LiAc/TE pH 7.5. The cell suspension was 

added to 2-10 μg DNA in TE, and left at room temperature for 10 minutes. 260 μL of 40% 

anti-Spc7 G sheep 1:1000 Hardwick lab 

anti-mouse, HRP conjugated* donkey 1:10000 GE Healthcare

anti-rabbit, HRP conjugated* sheep 1:10000 GE Healthcare

anti-sheep, HRP conjugated* donkey 1:10000 Jackson Immuno-Research

Antibody Species Immunobloting 
concentration

Source
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PEG4000 in 0.1 M LiAc/TE pH 7.5 was added, mixed well and incubated at 30oC (unless 

temperature sensitive) for 1-2.5 hours. Heat shock was performed at 42oC for 5 minutes and 

the mixture was left to cool to room temperature. The mix was then plates as described 

above. 

2.7.2  Yeast genomic DNA extraction  

Genomic DNA from yeast was extracted for testing and cloning purposes using the LiOAc-

SDS lysis method described in Löoke et al., 2011. 

2.7.3 Crosses and random spore analysis  

Yeast were plated onto YES plates from -80oC stocks and incubated at the appropriate 

temperature (25oC or 32oC) for 1-2 days. Strains of opposite mating type were mixed on SPA 

plates (1% w/v anhydrous D-glucose, 7.3 mM monopotassium phosphate, 3% w/v agar, 1x 

vitamins mix, 1x minerals mix, 0.2x supplements mix) using a 5 μL inoculation loop and 

dH2O. Plates were incubated at 30oC (unless temperature sensitive) overnight. The following 

day (2 days if incubated at 25oC), a light microscope was used to check for the formation of 

tetrads. If tetrads were visible, a small colony’s worth of mated cells were added to a solution 

of 500 μL of dH2O with 1 μL of β-glucuronidase extract (MP Biomedicals LLC) and 

incubated for a day at 32oC to digest the ascus (unless temperature sensitive). The spores 

were then vortexed and washed twice with dH2O (while briefly vortexing in between 

washes). Spores were plated onto YES plates and incubated at the appropriate temperature 

for 3-5 days for colony formation. Colonies were patched onto selective plates (replica 

plating if necessary) and positives were verified by imaging if fluorescent, western blotting 

and/or colony PCR and sequencing . A stock of resulting strain was made in a 50% glycerol/

YES solution and stored at -80oC.

2.7.4 G2 synchronisation with cdc25-22  

Cells in a cdc25-22 genetic background were grown at 25°C for 1-2 days on YES (unless 

stated otherwise) plates. They were then pre-cultured in 10 mL of liquid YES containing 

amino acid supplements at 25°C over the day and inoculated into a larger culture of YES 

overnight. The following day, log phase cultures were shifted to 36°C for 3.5 h to block in 

G2. After this, cultures were briefly cooled in iced water to rapidly shift them back to 25°C 

and release them from the G2 block.
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2.7.5  ABA arrest and silencing assay  

Following a cdc25-22 block, 250 mM ABA stock (in DMSO Sigma Aldrich A1049) was 

added to cultures 5 min after release (20 min if comparing to a carbendazim arrest) to 

achieve a final concentration of 250 μM (unless otherwise stated). Following an ABA-

induced synthetic arrest, the cells were washed 2 times with 50 mL YES.

2.7.6  Carbendazim arrest 

Following a cdc25-22 block, 3.75 mg/mL stock of carbendazim (Sigma Aldrich) was added 

to cultures 20 min after release to achieve a final concentration of 100μg/mL.

2.7.7  Cell viability  

Following an arrest assay (unless DMSO treated), cells from 1 mL of culture were harvested 

by centrifugation at 6000 rpm for 1 minute and re-suspended in 1 mL of distilled water. 

Tenfold serial dilutions were made in distilled water. Cells were diluted by factors of 100 and 

1000, and 0.1 mL plated in triplicate. Colony forming units (cfu) per millilitre of culture was 

calculated and cell viability over time was plotted as a percentage relative to that at time 

zero.

2.7.8  nda3-KM311 arrest 

Cells in an nda3-KM311 background were grown on YES plates for 1 day at 32oC and pre-

cultured over the day in liquid YES while shaking after which a larger overnight culture was 

inoculated. Cultures were transferred to a 18oC water bath placed in a 4oC room for 6 hours 

to arrest cells. Time points were taken periodically and tubes were stored on ice and 

centrifuged in the cold before fixation in ice-cold methanol and imaging. Samples were 

stored at -20oC. 

2.7.9  rTetR arrest assay: SynCheck 

Cells were grown overnight on PMG plates containing 15μM thiamine at 32oC. Cells were 

then pre-cultured while shaking over the day in liquid PMG containing 15μM thiamine to 

repress the nmt promoter. After 7 hours, cultures were washed with 50 mL PMG liquid 3 

times and inoculated into larger liquid PMG cultures (without thiamine) for 12-16 hours 

(depending on experiment) to activate the nmt promoter and generate an arrest.
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2.7.10  Methanol fixation and fluorescence microscopy  

The samples of culture (1-1.5 mL) were centrifuged for 1 min at 6000 rpm. The cell pellet 

was fixed in 200–500 μL of 100% ice-cold methanol. To image cells, 8 μL  of the cell 

suspension in methanol was added to a glass slide when the methanol evaporated, 1-2 μL 

DAPI (0.4 μg/mL) was added to the sample and a glass cover slip was placed on top. Cells 

were imaged immediately using a 100Å~ oil immersion lens and a Zeiss Axiovert 200M 

microscope (Carl Zeiss), equipped with a CoolSnap CCD camera (Photometrics) and 

Slidebook 5.0 software (3i, Intelligent Imaging Innovations). Typical acquisition settings 

were 300 ms exposure (FITC and TRITC) and 100 ms exposure (DAPI), 2Å~ binning, Z-

series over 3μm range in 0.5 μm steps (seven planes).

2.7.11  Quantifying fluorescence  

This work was conducted in collaboration with the Joglekar lab. The images for 

quantification of the mCherry and GFP fluorescence signal were acquired on a Nikon Ti-E 

inverted microscope with a 1.4 NA, 100x, oil immersion objective as described in Joglekar et 

al., 2013. Image analysis was performed using a semi-automated graphical user interface 

written in MatLab as described in Joglekar et al., 2013, with the exception that fluorescence 

at a TetO array was being analysed (as opposed to at kinetochores).

2.8  HeLa cell methods 

This work was conducted in collaboration with the Joglekar lab. The eSAC arrest assay and 

long term IncuCyte® imaging were carried out as described in Chen et al., 2019. Cell fate 

was characterised manually based on cellular morphology. The cell line used was pPS28 – 

MELT12-13-14-2xFKBP12, inducible:mCherry-FRB-Mps1500-857

2.9  S.pombe growth media  

Cells are either grown on solid or in liquid PMG (minimal) or YES (rich) media. Liquid 

cultures were usually grown in a 30°C (unless temperature sensitive) room/incubator while 

shaking at 180 RPM. Cells were usually harvested when at mid-log growth (5x106 cells/mL).  

Media recipes are given below with PMG and YES plates usually supplemented with 2% w/

v agar. All media was autoclaved, with amino acids supplements, vitamin and mineral stocks 

and other additives included after autoclaving. 
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PMG (pombe minimal glutamate) media :

YES (yeast extract supplemented) media :

Supplements mix (amino acids):

Vitamin stock (1000x):

Reagent Final concentration 

Phtalic acid 14.7 mM

Di-sodium hydrogen orthophosphate, anhydrous 15.5 mM

L-glutamic acid, monosodium salt 25.4 mM

D-glucose, anhydrous 2% w/v

Vitamins mix 1x

Minerals mix 1x

Supplements mix 1x

Reagent Final concentration 

Yeast extract 0.5 w/v

D-glucose, anhydrous 3% w/v

Supplements mix 1x

Reagent Final concentration 

Adenine 3.75 g/L

Arginine 3.75 g/L

Histidine 3.75 g/L

Leucine 7.5 g/L

Lysine 3.75 g/L

Uracil 3.75 g/L

Water to 500 mL

Reagent Final concentration 

Pantothetic acid 1 g/L

Nicotinic acid 10 g/L
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Mineral stock (1000x):

Drug selection plates:

2.10  Bacterial cell media 

LB media (Lysogeny broth) plates:

Liquid SOC (super optimal broth with catabolite repression) recipe:

Inositol 10 g/L

Biotin 10 mg/L

Reagent Final concentration 

Reagent Final concentration (mM)

Boratic acid 80.9

MnSO4 23.7

ZnSO4 13.9

FeCl3 7.4

Molybic acid 2.47

KI 6.02

CuSO4 1.6

Citric acid 47.6

Reagent Final concentration 

CloNat 100 μg/mL

G418 150 μg/mL

Hygromycin 100 μg/mL

Reagent Final concentration 

Tryptone 20 g/L

Yeast extract 5 g/L

NaCl (pH 7.2) 5 g/L

Agar 20 g/L
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2.11  List of fission yeast strains used in this work 

Reagent Final concentration 

Tryptone 20 g/L

Yeast extract 5 g/L

NaCl (pH 7.2) 5 g/L

KCl 2.5 mM

MgCl2 10 mM

D-glucose 20 mM

Strain Genotype Source

PA	103 Padh15-GFP-ABI:LEU2	lys1::adh15-rTetR-mcherry-PYL:ura4	112xtetO:kanR this	work

PA	252 Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	lys1::Padh21-spc7(1-666)-
PYL:ura4	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	bub1-GFP:his

this	work

PA	88 Padh15-eGFP-GID:LEU2	lys::adh15-rTetR-mCherry-GAI:ura4	112xtetO:kanR this	work

PA	269 Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	cdc25-22	Z:Padh15-mCherry-
atb2:natMX6	bub1GFP:his

this	work

PA	286 lys1::Padh21-spc7(1-666)-PYL:ura4	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	bub1-	
GFP:his

this	work

PA	260 mad1Δ::hyg	Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	lys1::adh21-
spc7(1-666)-PYL:ura4	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	bub1-GFP:his

this	work

PA	262 spc7Δ::G418	spc7-T12A:hyg	lys1::Padh21-spc7(1-666)-PYL:ura4	Padh41-
mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	cdc25-22	Z:Padh15-mCherry-
atb2:natMX6

this	work

PA317 Padh41-mph1(303-678)-3xHA-ABI:LEU2	lys1::Padh21-spc7(1-666)12A-PYL:ura4	
cdc25-22	Z:Padh15-mCherry-atb2:natMX6

this	work

PA	264 spc7Δ::G418	spc7:hyg	lys1::Padh21-spc7(1-666)-PYL:ura4	Padh41-
mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	cdc25-22	Z:Padh15-mCherry-
atb2:natMX6

this	work

PA	338 Padh41-mph1(303-678)-3xHA-ABI:LEU2	lys1::Padh21-spc7(1-666)-PYL:ura4	cdc25-22	
Z:Padh15-mCherry-atb2:natMX6	cdc13-GFP:leu

this	work

PA	363 Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	lys1::Padh21-spc7(1-666)-
PYL:ura4	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	

this	work

PA	364 Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1Δ::nat	lys1::Padh21-spc7(1-666)-
PYL:ura4	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	cdc13-GFP:leu

this	work

PA	295 adh41-mph1(D1-302)-3xHA-ABI:LEU2	mph1D::nat	lys::adh21-spc7(1-666)-PYL:ura	
cdc25-22	adh15-mCherry-atb2:nat	bub1-GFP:his	mad2-GFP	

this	work

PA	175 lys::adh21-spc7(1-666)wt-flag-mCherry-PYL:ura	adh41-mph1(D1-302)-GFP-ABI:LEU2,	
mph1D:Nat,	cdc25-22

this	work
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PA	253 Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1D::nat	lys1::Padh21-spc7(1-666)-	
PYL:ura4	2xflag-mad1-Δ1CC:hyg	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	bub1-
GFP:his

this	work

PA	254 Padh41-mph1(303-678)-3xHA-ABI:LEU2	mph1D::nat	lys1::Padh21-spc7(1-666)-
PYL:ura	2xflag-mad1-Δ1CC:hyg	cdc25-22	Z:Padh15-mCherry-atb2:natMX6	bub1-
GFP:his

this	work

PA	278 adh41-mph1(D1-302)-3xHA-ABI:LEU2	mph1D::nat	lys::adh21-spc7(1-666)-PYL:ura	
flag-mad1:hyg	cdc25-22	adh15-mCherry-atb2:nat	bub1-GFP:his	

this	work

PA	299 adh41-mph1(D1-302)-3xHA-ABI:LEU2	mph1D::nat	lys::adh21-spc7(1-666)-PYL:ura	
cdc25-22,	adh15-mCherry-atb2:nat	cen2-GFP

this	work

PA	326 adh41-mph1(D1-302)-3xHA-ABI:LEU2	mph1D::nat	lys::adh21-spc7(1-666)-PYL:ura	
cdc25-22,	adh15-mCherry-atb2:nat	bub1Dkinase-GFP

this	work

PA	36	 ura4::[4xtetO:ade6+]his3D	lys1::adh15-rTetR-mCherry-spc7(1-666)-9TE:ura4	
pnmt81-rTetR-mph1(D1-302):leu1	mad2	GFP:his

this	work

IY	222 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	leu1+	:Pnmt81rtetR-mph1(D1-302)	
mad2-GFP:his3	

Ivan	Yuan

IY	230 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	tetO:kanR	leu1+	:Pnmt81rtetR-
mph1(D1-302)	mad2-GFP:his3	

Ivan	Yuan

IL	250 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	tetO:kanR	leu1+	:Pnmt81rtetR-
mph1(D1-302)	bub1-GFP:his3	

Ioanna	
LeonWou

IL	615 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	leu1+	:Pnmt81rtetR-mph1(D1-302)	
bub1-GFP:his3	

Ioanna	
LeonWou

IL	382 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	tetO:kanR	leu1+	:Pnmt81rtetR-
mph1(303-678)	

Ioanna	
LeonWou

IL	626 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	tetO:kanR	leu1+	:Pnmt81rtetR-
mph1(303-678)	bub1CD1	mad2-GFP:his3

Ioanna	
LeonWou

IL	266 lys1::Padh15-rtetR-mCherry-spc71-666-9TE:ura4	tetO:kanR	leu1+	:Pnmt81rtetR-
mph1(303-678	bub3Δ::hygR	bub1-GFP:his3	

Ioanna	
LeonWou

IL732 lys1::adh15-rtTA-mCherry-bub1Δkinase:ura+,Pnmt81-mph1(303-678):leu1	
mph1D:natR	tetO:G418	mad2-gfp

Ioanna	
LeonWou

IL	728 lys1::adh15-rtTA-mCherry-bub1ΔkinaseΔCD1:ura+	Pnmt81-mph1(303-678):leu1	
mph1Δ:natR	tetO:G418	mad2-gfp

Ioanna	
LeonWou

IL	725 lys1::adh15-rtTA-mCherry-bub1:ura+	Pnmt81-mph1(303-678):leu1	mph1Δ:natR	
tetO:G418	mad2-gfp

Ioanna	
LeonWou

PA	160 lys::adh15-rtetR-mCherry-spc7(1-666)wt:ura	nmt81-rtetR-mph1(303-678):leu	
mph1D:NAT	mad1GFP-C2A	bub1GFP

this	work

PA	158 lys::adh15-rtetR-mCherry-spc7(1-666)wt:ura	nmt81-rtetR-mph1(303-678):leu	
mph1Δ:NAT	mad1GFP-M6A	bub1GFP

this	work

PA	155 lys::adh15-rtetR-mCherry-spc7(1-666)wt:ura	nmt81-rtetR-mph1(303-678):leu	
mph1D:NAT	mad1GFP-C8A	bub1GFP

this	work

KM	382	 mad1Δ::ura4	bub1-GFP:his Karen	May	

Strain Genotype Source
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PA	185 flag-mad1:hyg,	bub1-GFP this	work

IL	235 bub1Δ::ura4
Ioanna	
LeonWou

IY	157 mph1Δ::natMX6 Ivan	Yuan

IY	6	 mad2Δ::ura4 Ivan	Yuan

IY	266 mad3Δ::ura4 Ivan	Yuan

KM332 wt	972 Karen	May	

PA	208 flag-mad1-S598A:hyg	bub1-GFP:his this	work

PA	209 flag-mad1-S598A:hyg	bub1-GFP:his this	work

PA	210 flag-mad1-S598A:hyg	bub1-GFP:his this	work

PA	211 flag-mad1-S598A:hyg	bub1-GFP:his this	work

PA	212 flag-mad1-S598A:hyg	bub1-GFP:his this	work

PA	213 flag-mad1-S616A:hyg	bub1-GFP:his this	work

PA	215 flag-mad1-S616A:hyg	bub1-GFP:his this	work

PA	216 flag-mad1-S632A/S633A/T634A:hyg	bub1-GFP:his this	work

PA	217 flag-mad1-S632A/S633A/T634A:hyg	bub1-GFP:his this	work

PA	218 flag-mad1-S632A/S633A/T634A:hyg	bub1-GFP:his this	work

PA	219 flag-mad1-T659A/T668A:hyg	bub1-GFP:his this	work

PA	220 flag-mad1-T659A/T668A:hyg	bub1-GFP:his this	work

PA	221 flag-mad1-T659A/T668A:hyg	bub1-GFP:his this	work

PA	222 flag-mad1-T659A/T668A:hyg	bub1-GFP:his this	work

PA	223 flag-mad1-RLK/AAA:hyg	bub1-GFP:his this	work

PA	224 flag-mad1-RLK/AAA:hyg	bub1-GFP:his this	work

PA	225 flag-mad1-RLK/AAA:hyg	bub1-GFP:his this	work

PA	226 flag-mad1-RLK/AAA:hyg	bub1-GFP:his this	work

PA	233 flag-mad1:hyg	bub1-GFP:his,	nda3-KM311 this	work

PA	234 flag-mad1-S616:hyg	bub1-GFP:his	nda3-KM311 this	work

PA	235 flag-mad1-S632/S633/T634A:hyg	bub1-GFP:his	nda3-KM311 this	work

PA	236 flag-mad1-T659A/T668A:hyg	bub1-GFP:his	nda3-KM311 this	work

PA	237 flag-mad1-RLK/AAA:hyg	bub1-GFP:his	nda3-KM311 this	work

PA	293 mad1D::ura	bub1-GFP:his	nda3	 this	work

PA	302 flag-mad1-T659E:hyg	bub1-GFP:his	nda3 this	work

PA	304 flag-mad1-T668A:hyg	bub1-GFP:his	nda3 this	work

PA	306 flag-mad1-T668E:hyg	bub1-GFP:his	nda3 this	work

Strain Genotype Source
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PA	311 flag-mad1-T659A:hyg	bub1-GFP:his	nda3 this	work

PA	355 	flag-mad1:hyg,	slp1-HA:G418,	cdc25-22,	mad3-GFP this	work

PA	358 	flag-mad1T659AT668A:hyg,	slp1-HA:G418,	cdc25-22,	mad3-GFP this	work

PA	360 	flag-mad1T668A:hyg,	slp1-HA:G418,	cdc25-22,	mad3-GFP	 this	work

PA	362 flag-mad1T668E:hyg,	slp1-HA:G418,	cdc25-22,	mad3-GFP	 this	work

YLM	109 mph1-GFP:kanR Judith	Zich

SL	336 leu1-32	ade6-M216	ura4-D18	mph1∆::mph1-∆1-302-S(GGGGS)3-GFP<<kanR Silke	Hauf	

Strain Genotype Source
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CHAPTER 3  

In vivo reconstitution of spindle assembly checkpoint 

activation and silencing using chemically induced 
dimerisation 

3.1  Introduction: Chemically induced dimerisation 

Cell signalling is dynamic, often involving acute spatiotemporal regulation of a protein 

through interactions with other proteins and post-translational modifications. Manipulating 

signalling pathways in a complex biological environment, without the use of gene/protein 

depletion or over-expression, requires a rapid and reversible control system. Chemically 

induced dimerisation (CID) is the process of artificially co-recruiting two proteins in the 

presence of a small molecule. Thus forming a ternary complex that is freely diffusible, or 

one that can be tethered to a specific subcellular location.

One of the first and most widely adopted heterodimerisers is the rapamycin-induced 

dimerisation system (Spencer et al., 1993; Rivera et al.,1996). Rapamycin was discovered as 

an antifungal antibiotic in Streptomyces hygroscopicus from a soil sample from Easter Island 

(Vézina et al., 1975) and was later found to be an immunosupressor in mammalian cells 

(Martel et al., 1977). It binds to FKBP12 (FK506-binding protein 12-kDa), the complex then 

binds to and inhibits the FRB (FKBP12 and rapamycin binding) domain of TORC1 kinase 

(target of rapamycin complex 1). Therefore, tagging proteins of interest with FKBP12 and 

FRB will induce heterodimers in the presence of rapamycin. However, despite its popular 

use and rapid mode of action, this system has some limitations.

• The high affinity binding of rapamycin to FKBP (Kd = 0.2 nM) and the subsequent 

binding of the complex to FRB (Kd =12 nM) (Banaszynski et al., 2005) makes 

reversing the dimerisation impractical within short timeframes. Alternatively, using 

competitive binders of rapamycin is often ineffective (Putyrski and Schultz, 2012).

• The nutrient-sensing TOR pathway is highly conserved among eukaryotes and controls 

essential cellular functions responsible for growth (Virgilio and Loewith, 2006). To 

prevent cross-reaction with endogenous TORC1 and FKBP proteins, cells need to be in  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a fkh1Δ (fission yeast homologue of FKBP), tor1-S1834E mutant background. Our lab 

and others have found that these mutations decrease mating efficiency and make S. pombe 

more sensitive to stress (Weisman et al., 2001; Ding et al., 2014). 

Over the last 25 years, chemical biology research has taken to improving existing CID 

methods, and developing the use of novel small-molecules for studying protein interactions. 

Among them, plant phytohormones such as S-(+)-abscisic acid (ABA) (Liang et al., 2011) 

and gibberellic acid 3 analog (GA3-AM) (Miyamoto et al., 2012) have successfully emerged 

as rapid, non-toxic, controllable systems in mammalian models. Both systems have been 

used to manipulate transcription initiation, signal transduction pathways and protein 

localisation in mammalian cells. In addition, these systems are fully orthogonal to the 

existing rapamycin system in mammalian cells. Thus allowing simultaneous spatiotemporal 

control of multiple cell circuits.

As these methods are derived from plant pathways, cross-reaction is limited to algae and 

phytopathogenic microbes (Dorffling et al., 1984; Shi et al., 2016). Plant hormones have 

been recorded as non-essential secondary metabolites in some phytopathogenic filamentous 

fungal species. It remains unclear whether phytopathogenic fungi are able to produce these 

hormones de novo, simply metabolise them from growth media, or both (Chanclud and 

Morel, 2016). This is because the majority of research in this field has been carried out in 

vitro and in addition, widely used growth media made from potato dextrose agar and yeast 

extract contains unknown concentrations of phytohormones. The effects of GA and ABA on 

fungi physiology are not well-characterised but are thought to affect processes such as 

hyphal growth, appressorium formation and spore germination. 

In this work, we focus on the use of abscisic acid for CID. 

3.2  Proof of principle: abscisic acid as a dimerisation tool in S. pombe 

Identified in the 1960s (Eagles and Wareing 1963; Ohkuma et al., 1963), the phytohormone 

abscisic acid is involved in the plant stress response and plays a key role in developmental 

processes. Liang et al. (2011) re-engineered the ABA signalling pathway from Arabidopsis 

thaliana for use as a CID system in mammalian cells. The ABA CID system induces the 

heterodimerisation of the complementary surfaces of its cognate binding proteins PYL1CS 

(pyrabactin resistance 1-like (residues 33-209)) and ABI1CS (ABA insensitive 1 (residues 

126-423)), hereafter referred to as PYL and ABI. This occurs via a sequential binding 
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mechanism where ABA binds to its receptor PYL, inducing a conformational change which 

then creates a binding surface for ABI. Thereby inducing proximity of proteins fused to these 

domains. 

To test the cell permeability and effectiveness of ABA in S. pombe, a strain was built 

containing fluorophore-tagged plant domains, one of which was also anchored to a TetO 

array (see Fig 3.1 A). The strain contains 3 components: GFP-ABI, NLS-rTetR-

mCherry-2xFLAG-PYL and an array of Tetracycline operators (TetO). The array is 

composed of 112 tandem copies of TetO integrated at the arg3 locus of chromosome 1 (Yuan 

et al., 2017). The PYL domain is tagged with rTetR (reverse tetracycline repressor) which 

allows binding to the TetO array. In the absence of ABA, NLS-rTetR-mCherry-2xFLAG-

PYL is enriched on the TetO array in the nucleus, and ABI-GFP is distributed throughout the 

cell. Upon ABA addition, rapid association of fusion proteins is visible at the array as early 

as 15 minutes after addition of the drug, with equilibrium reached at approximately 60 

minutes in this case (Fig 3.1 B). Importantly, this reaction accommodates rapid on/off control 

as ‘washing out’ or putting the cells in fresh media lacking ABA reverses the interaction 

within 15 minutes (Fig 3.1 B, lower panel). This level of control is an important advantage of 

the ABA system which is absent in others such as rapamycin, where reversing the phenotype 

by ‘wash out’ is not possible due to high affinity binding of the ligand to its receptor. The Kd 

of rapamycin binding to FKBP is 0.2 nM (Banaszynski et al., 2005), this is much lower than 

that of ABA-PYL1 which is 52 μM (Miyazono et al., 2009). 

Figure 3.1 C shows a linear increase in the fluorescent signal of GFP-ABI at the array 

when cells are treated with increasing concentrations of ABA, while the rTetR-mCherry-PYL 

signal at the array remains constant. 250 μM is used in this study as it provides near maximal 

effect. This wide range of linear dose response provides the possibility for more precise 

control of the desired effect by altering concentration. Comparatively, rapamycin exhibits 

more of a ‘switch-like’ linear dose response where activity peaks (from none) within a 

narrow dose range. Liang and colleagues found that for rapamycin, the full range of activity 

is attained when concentration is increased by a factor of 10 (2011). For ABA, this occurs 

over a 1000 fold change in concentration. Their experiment used CID to control luciferase 

expression. 

When testing GA3AM in a similar proof of principle experiment as that described above, 

we did not detect any co-localisation of fluorescent fusion proteins (Fig 3.1 D). GA3AM 

causes heterodimerisation of its receptor GID (gibberellin insensitive dwarf 1) and GAI  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(gibberellin insensitive). These domains were fused to fluorophores, and GAI had an 

additional rTetR domain which tethered it to a TetO array. This result was unexpected 

especially since the cell permeability of gibberellic acid was optimised by concealing the 

negatively charged carboxylic acid moiety with an ester (acetoxymethyl) to generate 

GA3AM (Miyamoto et al., 2012). It may have been unsuccessful in S. pombe due to the lack 

of compatible esterases to cleave the ester and reveal the carboxyl group, or a result of the 

added complexity brought by a cell wall.

Hence we find that the ABA CID system is a valuable tool for controlling protein-protein 

interactions in S. pombe. The rest of this chapter i.) describes ABA-dependent reconstitution 

of SAC activation, ii.) and silencing, and iii.) broadly discusses the benefits this system in the 

context of others used to study the SAC. 

3.3  Design: Reconstitution of the SAC 

Our lab previously published a synthetic checkpoint (SynCheck) assay which is driven by 

rTetR dimers of rTetR-Spc71-666 and rTetR-Mph1303-678 (Yuan et al., 2017). Since rTetR 

homodimers form spontaneously, dimerisation needs to be transcriptionally controlled. In the 

absence of thiamine, transcription at the nmt81 (no message in thiamine 81) promoter is 

activated, rTetR-mph1 is expressed and is able to bind rTetR-Spc7. This recruits the Bub and 

Mad proteins, eventually leading to APC inhibition. While this arrest is effective, 

transcriptional control means it is time consuming as a peak mitotic index is reached in 

14-16 hours. An additional factor is that since rTetR dimerisation is ligand-independent, 

dimerisation is constitutive, making reversal unfeasible. Due to these reasons, ABA induced 

dimerisation was implemented to improve efficiency and regulation.

This novel reconstitution (published in Amin et al., 2018) is designed to be independent 

of kinetochores with the aim to study the checkpoint without interfering with other 

kinetochore functions such as microtubule attachment and chromosome biorientation (see 

model Fig 3.2). The complementary surface of the ABA receptor PYL (residues 33-209) was 

tagged to an N-terminal region of Spc7, spc71-666. This truncation prevents the fusion protein 

from localising to kinetochores since it can no longer bind to the kinetochore protein Mis12 

(Petrovic et al., 2014; Petrovic et al., 2016). This recombinant protein was expressed under a 

constitutive adh21 promoter (Tanaka et al., 2009). Similarly, the complementary surface of 

the ABI domain (residues 126-423) was tagged with the C-terminus of Mph1 kinase, 

mph1303-678, which prevents its localisation to kinetochores (Heinrich et al., 2012). The  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endogenous mph1 gene is deleted in most of the strains used here. This construct was 

expressed under a constitutive, low-strength, adh41 promoter (Tanaka et al., 2009). In 

addition to the above constructs, the strains used in this study also contain a temperature 

sensitive cdc25-22 mutant for G2 synchronisation, mCherry-labelled microtubules 

(mCherry-alpha tubulin) and a GFP-tagged checkpoint protein, Bub1-GFP in some cases.

3.4  Spc7-Mph1 heterodimers trigger a robust metaphase arrest

To induce an ABA-dependent ectopic metaphase arrest, cells were first synchronised in G2 

after incubating cells at 36°C for 3.5 hours using temperature-sensitive cdc25-22 mutant.  To 

‘release’ from the G2 block, cells were moved to 25°C, resuming progression through the 

cell cycle. Abscisic acid was added 5 minutes after release from the G2 block to form Spc7-

PYL and Mph1-ABI heterodimers (Fig. 3.3 A). 60 minutes after release from G2, over 70% 

of cells have short metaphase spindles, condensed chromatin and Bub1-GFP at spindle poles 

(Fig. 3.3 B,C). The arrest can be sustained for at least 4 hours (Fig. 3.3 C). 

The ABA-induced arrest is dependent on the hetero-dimerisation of Spc7-PYL and 

Mph1-ABI, yeast strains containing either the Mph1-ABI or Spc7-PYL component alone are 

unable to arrest in the presence of ABA (Fig. 3.3 D). Deleting the downstream checkpoint 

protein Mad1 (mad1Δ) abrogates the arrest (Fig. 3.3 D), indicating that it is checkpoint-

dependent. This arrest works well in both rich (YES) and minimal (PMG) media. A 

comparison between different GFP-tagged Mph1 fusion proteins indicates that the N-

terminal truncation and ABI tag do not significantly alter expression levels (Fig. 3.4 A).

Without pre-synchronising in G2, mitotic index increases over time and reaches a peak 4 

hours after release from the G2 block (Fig. 3.4 B). To determine the optimal time to add 

ABA, ABA was added to cultures at varying times following G2 release (Fig. 3.4 C). We 

found that ABA can be added up to 20 minutes after release from the G2 block without 

impacting the efficiency of the arrest. We note that adding ABA early does not impact entry 

into mitosis (demonstrated in Fig. 3.4 B, C). Upon testing a range of concentrations of ABA, 

we found that 250 μM was sufficient to generate a robust arrest (Fig. 3.4 D). When 

examining how the concentration of ABA affects the arrest over time, we find a positive 

correlation until 60 mins after release from G2 after which the % of cells arrested in a given 

population remains constant over time (Fig. 3.4 E). We find a clear split in the population 

where a cell either arrests or it does not. This bimodal distribution in a clonal population is 

interesting and suggests that the phenotypic split is due to non-genetic factors. This is in  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agreement with work by the Hauf group (Heinrich et al., 2013). They noticed a similar 

pattern in cells following a nda3-KM311 arrest (where microtubules are depolymerised at 

18°C). They concluded that this type of response in a clonal population occurs due to 

‘ultrasensitivity’ to slight differences in checkpoint protein abundances (such as Slp1Cdc20) 

which can occur in stoichiometric binding reactions like MCC formation. 

To achieve an ectopic arrest, the Spc7-PYL and Mph1-ABI constructs used in this study 

lack their kinetochore-binding domains. The strain used above also lacks endogenous mph1, 

preventing all Mad and Bub checkpoint protein recruitment to kinetochores (Heinrich et al., 

2012). To further test kinetochore independence, a strain with endogenous spc7Δ but 

supplemented with a full length copy of the unphosphorylatable MELT mutant spc7-12A 

(containing 12 MELA motifs), was used (Yamagishi et al., 2012; Mora-Santos et al., 2016). 

Mph1-phosphorylated MELT motifs are required for Bub3-Bub1 recruitment to kinetochores 

and in turn, kinetochore-dependent checkpoint activation. The spc7-12A mutant arrested with 

similar efficacy as the wild type spc7 strain in the presence of ABA (Fig. 3.4 F). Importantly, 

cells with the Spc71-666 MELT mutant tagged to PYL, Spc71-666-12A-PYL, are unable to 

arrest in the presence of ABA, despite dimerisation with Mph1-ABI (Fig. 3.4 F). This 

strongly suggests that the ectopic arrest is driven by Mph1 phosphorylation of Spc7 MELT 

motifs, allowing the recruitment of downstream checkpoint effectors and MCC generation. 

Taken together, the data implies that the ABA-induced SAC arrest does not require 

endogenous kinetochores for initiation or propagation of the checkpoint signal.  

The accumulation of Cyclin B at spindle poles is an indicator of a metaphase delay. Using 

a modified yeast strain, we were able to observe Cdc13 (fission yeast Cyclin B) along the 

mitotic spindle and at spindle poles as an indicator of checkpoint arrest (Fig. 3.5 A). These 

cells reached peak mitotic index 30 minutes after addition of ABA (when added at 20 

minutes after G2 release), similar to when treated with the anti-microtubule drug 

carbendazim (CBZ) (Fig. 3.5 B). This strain also had endogenous mph1 as the kinetochore 

binding domain of Mph1 is required for the kinetochore-dependent CBZ arrest.  

We observed that the strain with Cyclin B-GFP consistently arrests more efficiently than 

the original strain used containing Bub1-GFP, with over 80% of cells arrested in the modified 

strain versus 70% in the original (Fig. 3.5 C). To test whether this was due to the presence of 

endogenous mph1 in the Cyclin B strain, it was compared to a similar strain in which 

endogenous mph1 was deleted. Arrest efficiency was similar in both strains (Fig. 3.5 D).  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Further investigation revealed that the C-terminal GFP tag on Bub1 was attributing to the 

discrepancy in arrest efficiency (Fig. 3.5 E), most likely resulting in a partial loss of function. 

We find that C-terminal tagging of Bub1 with 3xHA (hemagglutinin) also leads to a loss of 

function (unpublished). 

Consistent with our previously published SynCheck assay (Yuan et al., 2017), the 

checkpoint proteins Bub1 and Mad2 localise at spindle poles in an ABA-controlled arrest 

(Fig. 3.6 A). This movement is driven by an interaction between Mad1 and Cut7 (fission 

yeast homologue of Kinesin-5), a bi-directional motor protein (Edamatsu, 2014). In this 

ectopic arrest, we also detect Mph1 and Spc7 at spindle poles as they are, via Bub1-Bub3, 

associated with Mad1 which binds to the motor (Fig. 3.6 B). Deleting the first N-terminal 

coiled coil of Mad1, residues 1-136 (mad1Δ1-136), abrogates its interaction with Cut7 

(Akera et al., 2015). As a consequence preventing localisation of checkpoint proteins such as 

Bub1 to the spindle poles (Fig. 3.6 C). This however does not disrupt checkpoint signalling 

(Fig. 3.6 D). This confirms that location of checkpoint activation signal within in the nucleus 

is not important, presumably as the end product is a diffusible MCC.

Thus, using yeast genetics to simplify components and CID to control the initial step of 

the checkpoint signalling pathway, we are able to reconstitute SAC signalling ectopically by 

artificially dimerising Mph1 and Spc7 to allow Mph1 phosphorylation of the Spc7 MELT 

motifs. This generates a robust arrest where peak mitotic index is reached in 30 minutes. The 

kinetochore independence of this system gives added weight to the claim that the 

kinetochore is a scaffold on which Mph1-mediated phosphorylation of Spc7 can take place 

upon sensing incorrect microtubule attachment or lack of tension. Future work includes 

studying the effects of other mitotic kinases on this system by coupling it to ATP analog-

sensitive alleles of Ark1 and Plk1. 

3.5  A novel spindle checkpoint silencing assay 

A significant advantage of the ABA CID system is that the arrest can be reversed by simply 

removing ABA from the media (Fig. 3.7 A). Using this assay we are able to study how the 

checkpoint is silenced, which has proven to be technically challenging in the past. 

In a simple assay, cells are synchronised in G2, treated with ABA, and 60 minutes 

following release from G2, cells are washed and put into fresh media lacking ABA (Fig. 3.7 

B). Fig 3.7 C, D, E illustrate how Cyclin B degrades following wash-out and spindles  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elongate with the onset of anaphase B. Cells recover from an ABA wash out slower than a 

CBZ-induced arrest which silences almost immediately, likely due to a higher dissociation 

rate of CBZ from tubulin (Fig. 3.8 A). However, this could make it difficult to capture subtle 

delays in silencing mutants. It is worth noting that endogenous mph1 is required in this strain 

in order to directly compare the CBZ and ABA systems.

Work carried out in the last decade has identified Protein Phosphatase 1 (PP1; Dis2 in S. 

pombe) as an important checkpoint silencing factor in yeast and humans (Pinsky et al., 2009; 

Vanoosthuyse and Hardwick, 2009; Meadows et al., 2011), the activity of which results in 

the activation of the APC and Cyclin B degradation. PP1 binds to the conserved SILK and 

RRVSF motifs on Spc7 (also known as the A and B motifs), and to the Kinesin 8 heterodimer 

(Klp 5 and 6) to mediate silencing (see Fig. 3.9) (Meadows et al., 2011; Rosenberg et al., 

2011). Work by Sadhbh Nı́ Chafraidh in our lab used the ABA silencing assay to confirm that 

the association of PP1 with Spc7 A and B motifs and kinetochore-associated Klp6 

contributes to timely silencing of the checkpoint (Amin et al., 2018). The strains used to 

confirm this contained the endogenous mph1 gene, enabling the recruitment of checkpoint 

proteins to kinetochores. This therefore allows silencing to take place at the ectopic Mph1-

Spc7 scaffold and at kinetochores. 

Consistent with evidence from our rTetR-based SynCheck assay, mammalian cells and 

budding yeast (Yuan et al., 2017; Klebig et al., 2009; Fernius and Hardwick, 2007 

respectively), our investigations suggest that the kinase activity of Bub1 is not required for 

ABA-induced checkpoint signalling (see time 0, Fig. 3.8 A). However we find that cells 

lacking the kinase domain — bub1-Δkinase — take longer to exit the ABA arrest (Fig. 3.8 

B). This could be a consequence of Bub1 kinase activity on error correction. Studies have 

shown that Bub1 phosphorylates histone H2A to recruit the inner centromere protein 

Shugoshin (Sgo2) which is necessary for the bi-orientation of sister chromatids (Riedel et al., 

2006; Kawashima et al., 2010). It is possible that these mal-oriented sister chromatids could 

take more time to be resolved and segregate correctly. This may be the case as the 

endogenous SAC response and error correction are affected here. Future work can look at 

missegregation of chromosome 2 by following GFP-labelled centromere 2 (Yamamoto and 

Hiraoka, 2003) after ABA wash out. Previous work from our lab suggests a similar trend. 

Vanoosthuyse and colleagues found that 10% of cells in a Bub1 kinase-dead mutant 

background, bub1K762M, displayed lagging chromosomes while checkpoint activation 

remained unperturbed (2004). In addition results obtained following release from a nda3-  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KM311 block, found a delay in mitotic exit as well as chromosome segregation defects in 

bub1-Δkinase (Onur Sen, unpublished). 

Interestingly, we find that the mad1-ΔCC strain is able to exit the ABA metaphase block 

faster than full length Mad1 (Fig. 3.8 C). Given that the checkpoint signalling components in 

mad1-ΔCC are unable to bind the Cut7 motor protein and localise to spindle poles, the 

increased silencing efficiency could occur as the PP1-Spc7 pathway alone is needed to 

silence the arrest. The mad1-ΔCC strain (also lacking endogenous mph1) is unable to bind to 

any part of the mitotic machinery and may bypass the need for the spindle-based PP1-Klp5-

Klp6 silencing pathway (see model Fig. 3.9). This is plausible since in an unperturbed 

mitosis, Klp5 recruitment to kinetochores is microtubule dependent (Garcia et al., 2002) and 

PP1-Klp5-Klp6 is likely to dephosphorylate checkpoint proteins present at the kinetochore-

microtubule interface (Meadows et al., 2011). In mad1-ΔCC, the spindle pool of PP1 has no 

SAC targets (namely Spc7, and possibly other checkpoint proteins), leaving available a 

larger pool of PP1 for ectopic Spc7-based silencing. To test this hypothesis, further 

experiments include testing the above experiment in an mph1+ background and testing the 

silencing behaviour of Klp mutants in mph1Δ, mad1-ΔCC strains (i.e. preventing 

localisation to kinetochore and spindle poles). It is also possible that the faster mitotic exit 

reflects the more efficient nature of silencing at the ectopic PP1-Spc7 pool. As an aside, it 

would be useful to have a direct measure of MCC levels to determine whether silencing 

discrepancies arise due to varying levels of MCC present in these mutant backgrounds.

This novel assay provides a way of studying SAC silencing without perturbing 

kinetochore-microtubule interactions. It has confirmed how PP1 recruitment to Spc7 and 

Kinesin-8 is needed to silence the checkpoint and allow anaphase progression. We also find 

that the kinase activity of Bub1 is required for timely exit possibly due to its downstream 

effect on chromosome bi-orientation, and use mad1-ΔCC to describe how bypassing the 

PP1-Klp5-Klp6 silencing pathway may speed up mitotic exit. 

3.6  Summary and perspectives  

In summary, by using yeast genetics and abscisic acid induced dimerisation to control the 

interaction of Spc7 and Mph1, we are able to ectopically reconstitute spindle assembly 

checkpoint activation and silencing in a manner which is tightly regulated and rapid. As with 

the rTetR-based SynCheck assay, this is dependent on the downstream checkpoint protein 

Mad1, and is independent of kinetochore and spindle pole localisation. The ectopic arrest has  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reinforced the idea of kinetochores being the scaffold where sensing incorrect attachments is 

coupled to checkpoint activation. The contribution of the kinetochore would be difficult to 

dissect in an anti-microtubule arrest initiated by CBZ or a cold sensitive tubulin 

depolymerising nda3-KM311 arrest or in an experiment where checkpoint proteins are 

anchored to kinetochores. 

The ability to reverse the arrest is a major advantage of this system which, along with its 

lack of cross-reactivity, adds to its novelty in the ‘pombe toolkit’. We have confirmed that 

PP1Dis2 needs to associate with Spc7 as well as Kinesin-8 to mediate silencing of the Mph1-

Spc7 platform (Amin et al., 2018). Previous attempts at PP1Δ strain construction in our 

SynCheck system (Yuan et al., 2017) were hindered by synthetic lethality as a result of 

‘leaky’ expression from the nmt81 promoter controlling rTetR-mph1.

We believe that the controllability of this system is a significant improvement over our 

existing SynCheck assay, in particular with regard to reversibility. Whereas silencing has 

been studied using nda3-KM311, carbendazim (Meadows et al., 2011), nocodazole wash-out 

(Liu et al., 2010), or following reversal of a Mph1 over-expression block  (Karen May, 

unpublished), this method provides an alternative that preserves kinetochore-microtubule 

attachments and comes without the technical challenges of reversing a prolonged mitotic 

block. 

ABA CID also has potential as an anchor away system (Haruki et al., 2008). This would 

enable the depletion of a protein from its subcellular location and also allow for rescue of the 

phenotype by reversing the dimerisation. Anchor away using ABA was successfully used in 

budding yeast where the nuclear protein Nab3 (Nuclear polyadenylated RNA-binding 

protein 3) was tagged with ABI and relocated to the cytoplasm in the presence of ABA via 

binding to PYL-tagged ribosomal protein L13A (Rpl13A-PYL) (Sander Granneman, 

personal communication). This allows a reversible way to study signalling pathways where 

gene deletions are lethal or which are location-specific, in a way that has a broad linear range 

of responsiveness to changes in concentration. 

Joglekar and colleagues published the first use of CID to study the SAC activation in 

budding yeast (Aravamudhan et al., 2015). They used rapamycin to dimerise fragments of 

Mps1 and Spc105 and demonstrated that this is sufficient for a cell cycle delay. Although 

their intention was not to achieve kinetochore-independence, they used a temperature 

sensitive ndc10-1 kinetochore mutant to show that the kinetochore does not contribute to the 
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rapamycin induced arrest. More recently, they used this method to achieve an ectopic arrest 

in HeLa cells (detailed in Chapter 4) to study the switch-like mechanism of SAC activation 

(Chen et al., 2019). Other reconstitutions of the SAC have been done in vitro using Xenopus 

egg extracts (Minshull et al., 1994) and purified recombinant proteins (Faesen et al., 2017). 

Different methods of studying the checkpoint are necessary for a multifaceted 

understanding of how checkpoint signalling is regulated in the greater context of mitosis 

with its various feedback loops. This simple assay for studying checkpoint mutants, and 

silencing factors and regulators in vivo adds to the repertoire of tools. It has applications 

beyond the checkpoint. By regulating metaphase entry and exit, it can be used to study 

different aspects of the mitotic machinery such as chromosome segregation and kinetochore-

microtubule attachment, without disrupting kinetochore and microtubule physiology or over-

expressing components of a given pathway. 
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CHAPTER 4 

S. pombe and HeLa cell fate following prolonged mitotic 
arrest  

4.1  Introduction 

The previous chapter described a novel, ectopic method used to regulate checkpoint 

activation and silencing. To follow, we wanted to study the subsequent effects of a prolonged 

ectopic arrest on yeast and mammalian cells. This chapter describes the response of S. pombe 

to ABA-induced arrest and extends this work to HeLa cells using a recently published 

ectopic arrest assay (Chen et al., 2019). We compare cell fate profiles of HeLa cells in an 

ectopic arrest and an anti-microtubule nocodazole arrest. Using single cell analysis, we 

attempt to gauge the full complexity of responses between and within cell populations 

treated with different drugs and discuss the responses and trends observed.

4.2  Prolonged ABA-induced arrest leads to untimely septation in S. 

pombe 

To test the viability of cells following an ectopic metaphase arrest, we used the method 

described in the previous chapter. Cells were synchronised in G2 using a temperature 

sensitive cdc25-22 mutant. ABA, CBZ or DMSO was added 20 minutes after release from 

the G2 block and cells were plated on rich media (without solvent) 0, 60, 120, 180 and 240 

minutes after addition of solvent to determine which were able to form colonies. While 

nearly 80% of cells plated 30 minutes after solvent addition were able to form colonies, we 

find that cell viability gradually decreases to approximately 30% 4 hours after ABA addition 

(Fig. 4.1). Cells treated with the anti-microtubule drug CBZ responded similarly. Therefore, 

the longer cells spend in an ABA-induced metaphase block, the less viable they become.

Next, we wanted to determine why S. pombe cells lose viability in a protracted arrest. We 

followed the segregation of chromosome 2 using GFP-labelled cen2 (centromere 2) 

(Yamamoto and Hiraoka, 2003) to test whether the decrease in cell viability was a result of 

chromosome segregation errors during nuclear division. Cells were arrested with ABA for 0, 

60, 120, 180 and 240 minutes and ‘washed out’ to induce anaphase and follow the  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segregation of cen2-GFP (Fig. 4.2 A). In cultures treated with ABA, anaphase B was 

captured 45 minutes after wash-out. In control cultures treated with DMSO, anaphase B was 

captured 60 minutes after release from the G2 block. Accurate segregation of chromosome 2 

would lead to one cen2-GFP dot at each end of the anaphase spindle whereas, incorrect 

segregation would lead to two cen2-GFP dots at one end of the spindle and none at the other 

(Fig. 4.2 B). We found that missegregation of chromosome 2 during nuclear division 

occurred at a low frequency of between 0 and 1.2% in both DMSO-treated and the ABA-

treated cultures (Fig. 4.2 C). This suggests that chromosome segregation errors during 

nuclear division are not causing a decrease in cell viability. This experiment explored the 

segregation of cen2 to individual nuclei, rather than to daughter cells. We observe that after 2 

hours of arrest many cells displace their nucleus and undergo septation before anaphase is 

complete. After ABA wash-out, these cells are still able to complete nuclear division, usually 

resulting in a daughter cell with 2 haploid nuclei and another which is aploid (lacking 

chromosomes). This phenotype is also observed when cells leak out of a prolonged 

SynCheck arrest. 

We hereby refer to the untimely occurrence of septation before nuclear division as 

‘premature septation’, depicted in Fig. 4.3 A. Following a 4 hour ABA-induced arrest, 94.6% 

of prematurely septated cells displace their SAC-arrested nucleus before septation and 5.4% 

of cells display the cut (cell untimely torn) phenotype where the septum cuts through the 

undivided nucleus (Fig. 4.3 B) (Yanagida, 1998). In a given population, the percentage of 

cells that have prematurely septated increases with time spent in mitosis (Fig. 4.3 C). Around 

10% of cells are prematurely septated 2 hours after release from G2 (when ABA is added at 5 

minutes). This increases to nearly 80% 4 hours after G2 release, inversely correlating with 

the loss of cell viability observed over time. Additionally, we find that when prematurely 

septated cells are plated individually on rich media without ABA, they are unable to divide. 

Together, this data supports the hypothesis that the loss of S. pombe cell viability during a 

prolonged mitotic arrest is due to the consequences of prematurely septated cells. 

This phenotype has been observed in temperature sensitive S. pombe APC mutants cut4, 

cut9, nuc2, lid1/cut20, cut23 and apc10 where a septum either cuts through an undivided 

nucleus or in such a way that DNA is segregated to one only daughter cell (Chang et al., 

2001). Surprisingly, the Gould group found that in the APC mutant lid1-6, Cdc13cyclin B-

Cdc2CDK1 levels still oscillate and decrease prior to septation, while Cut2Securin levels are 

seemingly stable as chromosomes remain unsegregated (Chang et al., 2001). They reasoned  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that APC cut mutants are hypomorphic to Cdc13 degradation (and not to Cut2Securin) as in 

APC-null mutants, Cdc13 levels remain stable and cells do not septate prior to nuclear 

division. A similar phenotypic trend has been reported in cut4 temperature sensitive and null 

mutants (Yamashita et al., 1996). This supports the established hypothesis that septation can 

only occur if CDK1-cyclin B activity is inhibited. To further support this theory, in early 

mitotic arrests where tubulin is inhibited, such as in nda3-KM311, cells do not septate 

prematurely and Cyclin B levels remain high (McCollum and Gould, 2001). This suggests 

that septation prior to nuclear division could occur due to a decrease in Cyclin B levels 

during a prolonged ABA arrest.

4.3  Complex variation of HeLa cell fate in response to prolonged 

mitotic arrest  

To study the effect of a prolonged metaphase arrest in mammalian cells, this work was 

extended to HeLa cells in collaboration with Ajit Joglekar’s lab. They have engineered a 

rapamycin dependent method of generating an ectopic arrest in HeLa cells, named 

‘eSAC’ (ectopic SAC) (Chen et al., 2019). In a bi-cistronic cassette integrated at a LoxP site 

in the HeLa cell genome, the kinase domain of Mps1 (residues 500-857) was fused to the C-

terminus of FRB-mCherry, and placed under the control of a doxycycline induced promoter. 

The same cassette was used to constitutively express 2 copies of the KNL1 MELT motifs 12, 

13 and 14 (residues 800-1014) C-terminal to a 2xFKBP12-mNeonGreen tag (Fig. 4.4 A). 

Positive colonies from the Cre-recombinase integration were pooled. They consequently 

built a system that allows for inter-cell variation in eSAC activity. This results in variation in 

the time spent in mitosis. In the presence of rapamycin, cells spend approximately 0-24 

hours in mitosis. Therefore, this system allows the study of HeLa cell behaviour as a 

consequence of different levels of eSAC activity and mitotic durations. 

To compare how HeLa cells respond to an arrest with and without microtubule 

interference, eSAC cells were treated with either nocodazole or rapamycin and tracked 

individually by long term live cell imaging. 48 hours before the time course, HeLa cells were 

synchronised in early S (synthesis) phase using a double thymidine block and Mps1500-857 

kinase expression was induced (Fig. 4.4 B). Cells were then treated with either 500 mM 

rapamycin or 100 mM nocodazole 2 hours before long term IncuCyte live cell imaging 

where images were taken every 10 minutes for approximately 65 hours. 
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Studies published in 2008 were amongst the first to use single cell analysis to study the 

response of cancer cell lines to antimitotic drugs (Brito et al., 2008; Gascoigne and Taylor, 

2008; Orth et al., 2008; Shi et al., 2008). Consistent with what they reported, we find that 

there is intra- and inter-cell population variation in the response to antimitotic drugs. Most 

cells enter mitosis in the first few hours of the time course. These cells either die or exit 

mitosis. Cells which exit the 1st mitosis either die in interphase, stay in interphase for the rest 

of the time course or survive interphase and enter a 2nd mitosis where they either die or 

survive (Fig. 4.4 C). The fate of individual cells following treatment with either nocodazole 

(top panel) or rapamycin (lower panel) is depicted in Fig. 4.5 A. Each bar represents the 

history of a single daughter cell, the colours denote behaviour, and the length of bars 

indicates duration of a particular stage. In cases where mitotic slippage occurred, defined as 

gradual cyclin B degradation and mitotic exit despite checkpoint arrest (Brito and Rieder, 

2006), bars are arranged in order of increasing mitotic duration. 

We find significant variation in cell behaviour. Cells treated with nocodazole spent 

between 0.3 to 53.4 hours in the initial mitosis, with an average of 11.7 hours. A wide range 

was also observed in rapamycin treated cells which spent 0.3 to 48 hours in mitosis, or 6.94 

hours on average. In agreement with findings from Brito and colleagues (2008), we find that 

the presence of microtubules does not affect duration of mitotic arrest. While 13.4% of 

nocodazole treated cells died in the 1st mitosis, only 2.3% did so when treated with 

rapamycin. Perhaps surprisingly, and similar to other published analyses, there is no apparent 

correlation in this minority population between death in mitosis and time spent in mitosis in 

either drug (Fig. 4.5 B). A larger sample size would be useful in this case. 

Severe defects in cytokinesis were found in cells treated with nocodazole, which binds to 

β-tubulin and inhibits microtubule polymerisation. In most cases, cells were unable to 

undergo cytokinesis. A few divided unequally and of these, a small proportion of daughter 

cells merged after dividing incorrectly. These cytokinesis defects led to endoreduplication 

(DNA replication without cell division), resulting in polyploid cells. This could provide an 

explanation for why the fate of the largest subpopulation — around 58% —was death in 1st 

interphase. In addition, the inability to undergo cytokinesis could explain why more 

nocodazole-treated cells died in metaphase, and earlier as a population in general, when 

compared to rapamycin treated cells. On the other hand, cells treated with rapamycin display 

lower instances of abnormal cytokinesis. 24 out of 150 1st mitotic events led to abnormal 
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cytokinesis. Of these, cells died in the 1st interphase in 19 cases. Therefore, abnormal 

cytokinesis negatively correlates with time taken for apoptosis in HeLa cells. 

Rapamycin treated cells tend to die later than nocodazole treated cells (Fig. 4.5 B). This 

could be because apoptosis is triggered more quickly in response to nocodazole treated cells 

where abnormal cytokinesis causes severe aneuploidy (discussed later in this chapter). 63.5% 

of cells survived the 1st interphase (compared to 19.8% in nocodazole). While nearly a third 

of the population dies in the 1st interphase, 29.2% die in the 2nd interphase and 31.6% 

remained in interphase for the remainder of the experiment, the fate of which was not 

captured in the duration of this time course. Interestingly, rapamycin and nocodazole treated 

cells that survived the 1st interphase arrested in mitosis for a shorter period of time on 

average than those that had died in interphase (Fig. 4.5 B). This indicates a link between the 

duration of mitosis and apoptosis.

4.4  Discussion and future work  

This chapter aimed to study the effects of a prolonged checkpoint arrest in yeast and HeLa 

cells. We found that fission yeast lose viability over time in mitosis due to an increased 

incidence of septation before nuclear division. Fission yeast cytokinesis is regulated by  

GTPase-dependent protein kinases which form the septation initiation network (SIN) 

(reviewed in McCollum and Gould, 2001). SIN signalling is temporally coordinated with 

late mitosis in order for septation to occur after mitotic exit (Goyal et al., 2011). In an 

unperturbed mitosis, high CDK1 (Cdc2 in S. pombe) activity during metaphase inhibits 

septation, with the APC playing an important role in SIN activation as the APC is 

responsible for Cyclin B degradation and the subsequent lowering of CDK1 activity in 

anaphase (Yamano et al., 1996; Chang et al., 2001; Rachfall et al., 2014).  It has been found 

that inhibiting the GTPase activating protein (GAP) Cdc16 leads to Cdc2CDK1 inactivation 

and septation (Fankhauser et al., 1993). This provides a link between the SIN and the SAC.

It is possible that the uncoupling of septation from an ABA-dependent mitotic delay 

occurs due to slow degradation of Cyclin B during a prolonged ectopic mitotic arrest 

(slippage). This degradation may be sufficient to lower CDK1 activity to a threshold where 

the SIN can be activated. This could occur due to limitations in SAC protein abundance 

which could allow low levels of APC activation — sufficient to lower CDK1 activity and 

initiate SIN signalling. This can be tested by quantifying Cyclin B levels in cells over time in 

a mitotic arrest, achievable by measuring Cyclin B-GFP fluorescence at spindle pole bodies 
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and immunoblotting. A comparison between an ectopic, nda3-KM311 and APC mutant arrest 

would provide insight on how timing or the phase of the mitosis perturbed affects the 

coordination of septation with nuclear division. 

To test the hypothesis that decreased CDK1-cyclin B activity is required for SIN and 

septation, a non-destructible Cyclin B N-terminal D-box mutant (Yamano et al., 1996) could 

be tested in the ABA arrest and should prevent premature septation if the hypothesis is true. 

A SIN null mutant or over-expression of Cdc16 can be used to determine whether this 

phenotype is SIN-dependent.

The mitotic exit network (MEN) is a similar pathway that exists in budding yeast that 

promotes septation through Cdc14Clp1 phosphatase-dependent Cyclin B proteolysis and 

mitotic exit (Visintin et al., 1998). However, an additional pathway exists which may explain 

why the cut phenotype is common in fission yeast but not in budding yeast, for example in 

the DNA topoisomerase II mutant top2 (Uemura and Yanagida, 1984; Mendoza et al., 2009). 

Budding yeast and mammalian cells appear to have an additional abscission checkpoint, 

termed ‘NoCut’, which delays septation in response to chromatin at the spindle midzone, 

detected by Cdc14Clp1-dependent Aurora B localisation (Norden et al., 2006; Steigmann et 

al., 2009, Amaral et al., 2016). This therefore ensures that septation only occurs after 

anaphase. It would be interesting to elucidate why the NoCut delay, evident in budding yeast 

and higher eukaryotes, is not seemingly conserved in S. pombe. It could be the case that a 

similar delay exists in S. pombe but is insufficient to sustain a prolonged delay in response to 

a protracted metaphase arrest (Norden et al., 2006). The contribution of this Aurora B-

mediated delay can be tested in S. pombe using an ATP analogue-sensitive allele of Ark1Aurora 

B in an ABA arrest and the inhibitor 1NMPP1 to suppress Ark1Aurora B during mitosis and 

observe whether premature septation in a synchronous population occurs earlier (than at 3 

hours as observed here). 

In contrast to the clear bimodal distribution of an ABA-treated population of S. pombe, 

where cells either arrest or remain cycling followed by increased premature septation over 

time in arrest, HeLa cells exhibit variation. This variation exists within and between 

populations treated with the anti-microtubule polymerising drug nocodazole or rapamycin, 

for kinetochore-independent eSAC activation. Variation within a population, occurring in 

terms of mitotic duration and cell fate, is likely due to differences in eSAC expression. 

Whereas cell fate between nocodazole treated and rapamycin treated cells varied due to the 
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mechanism of action of the drugs. Nocodazole led to severe defects in cytokinesis, causing 

most cells to die within the 1st interphase. This is in contrast to rapamycin which mostly 

caused cell death in the subsequent cell cycle. The competing fates model suggests that 

whether a cell dies in a prolonged mitosis or undergoes mitotic slippage depends on two 

competing networks — activation of apoptotic pathways (likely due to Caspase-9 

dephosphorylation, discussed in the next paragraph) versus decreasing Cyclin B levels 

(slippage) — each of which have thresholds (Gascoigne and Taylor, 2008). Once a threshold 

is breached by the competing network, it dictates the fate of the cell. Therefore according to 

the competing fates model, in the nocodazole arrest, apoptotic pathways may have been 

activated before Cyclin B levels could drop to a level which allowed sister chromatid 

separation and slippage.

An interesting trend emerged where the mitotic duration of cells that died in interphase 

was higher than those that survived interphase and continued to the next cell cycle. The link 

between mitotic duration and apoptosis onset after mitotic slippage is novel as although other 

single cell analyses have found cell fate to depend on the drug used and its concentration, a 

relationship with mitotic duration has not been observed (Gascoigne and Taylor, 2008). A 

possible explanation for mitotic-linked death in interphase is CDK1 phosphorylation-

dependent inhibition of Caspase-9. This is lost after mitotic exit, increasing Caspase-9 

activity to a level that allows apoptosis to ensue (Allan and Clarke, 2007). Additionally, 

mitotic slippage, a symptom of a prolonged metaphase block, would gradually relieve 

CDK1-dependent inhibition of Caspase-9. This could explain the temporal link between 

mitotic duration and onset of apoptosis in interphase. Interestingly, apoptotic regulating 

genes such as those in the Bcl-2 family, namely Mcl1, are controlled by CDK1 

phosphorylation and APC/C ubiquitination (Harley et al., 2010; Terrano et al., 2010). 

Therefore, it is likely that the regulatory requirement of APC/C ubiquitination and CDK1 

phosphorylation for both mitosis and apoptosis is responsible for the link between apoptosis 

and mitosis. 

Although cell culture experiments mirror some of the complexity observed when anti-

mitotics are administered for cancer therapy, existing cell culture methods are unable to 

emulate the fluctuations in drug concentration that occur due to bioavailability and clearance 

in complex living systems (Gascoigne and Taylor, 2009). To mimic bioavailability by a 

greater extent, future studies could implement the more controllable ABA system in cell 

culture experiments to be able to better regulate mitotic duration, mitotic exit (through wash 
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out) and alter concentration. Given that variation in response is expected, this method could 

enhance control of the input (drug) to better understand the resulting effects and predict how 

cells may respond to a particular type of anti-mitotic treatment. It could also provide a useful 

tool to directly monitor the links between the SAC, which impacts mitotic duration, and cell 

death. 
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CHAPTER 5

The roles of the Mad1 C-terminus in spindle assembly 
checkpoint signalling  

5.1  Introduction: mitotic arrest deficient 1 

Mad1 is essential for mitotic checkpoint signalling and was first isolated in 1991 (Li and 

Murray; Hardwick and Murray, 1995) from a genetic screen in the budding yeast 

Saccharomyces cerevisiae. They found that Mad1 mutants divide faster when exposed to low 

doses of benomyl, a drug that perturbs microtubule polymerisation, but also exhibit 

increased rates of chromosome loss which causes cell death. Mad1 is evolutionarily well 

conserved in eukaryotes (Vleugel et al., 2012).

S. pombe Mad1 has 676 amino acids and is 78.49 kDa in size. Crystal structures of the 

human protein show that it consists of a long coiled coil region and a well conserved C-

terminal globular head which has a similar structure to the kinetochore binding domains 

Spc25 and Csm1 (Kim et al., 2012). It is a homodimer that forms a constitutive 1:1 

heterotetramer with Mad2 (Chen et al., 1999; Sironi et al., 2002; Kim et al., 2012). Similar to 

other eukaryotes, the S. pombe Mad1-Mad2 complex localises to the nuclear periphery in 

interphase and translocates to kinetochores in prometaphase in a Mad1-dependent manner 

(Ikui et al., 2002). This complex is then transported to the spindle pole bodies via the 

Kinesin-5 motor Cut7 (Eg5 homologue) (Akera et al., 2015), a bi-directional motor protein 

(Edamatsu, 2014). We have shown that localisation of Mad1 to the nuclear periphery is 

dispensable for an ectopic checkpoint response in S. pombe (Chapter 3; Yuan et al., 2016; 

Amin et al., 2018). In humans cells, MCC is reportedly generated at nuclear pore complexes 

(NPCs) in interphase, decreasing segregation errors and improving efficiency of SAC 

signalling in early mitosis, before kinetochores are fully assembled and able to generate 

MCC (Rodriguez-Bravo et al., 2014). Studies in budding yeast implicate Mad1 in regulating 

nuclear trafficking, ultimately impacting spindle dynamics during mitosis (Cairo et al., 

2013). 

Mad1 is also involved in chromosome alignment (Akera et al., 2015). The N-terminus of 

S. pombe Mad1 recruits Cut7 to the kinetochores of misaligned chromosomes in early 

mitosis and aids chromosome gliding to the spindle equator to achieve biorientation. It has 
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been found that artificially anchoring Cut7 to kinetochores partially reduces the chromosome 

biorientation defects of mph1Δ, bub1Δ and bub3Δ. This could account for the Shugoshin-

independent bi-orientation function of Bub1-Bub3 (Windecker et al., 2009). In budding 

yeast, Kinesin-5 motors proteins Cin8 and Kip1 mediate chromosome alignment (Gardner et 

al., 2008), although it is unknown whether this is Mad1-directed. In human cells, this 

function is carried out by Mad1-dependent recruitment of Kinesin-7/CENP-E to 

kinetochores (Akera et al., 2015). Downstream members of the SAC via Mad1 and CENP-E 

subsequently localise to spindle poles in a dynein-dependent fashion (Silva et al., 2014). This 

is thought to facilitate SAC silencing in mammalian cells by ‘stripping’ Mad1-Mad2 from 

the kinetochore, thus preventing MCC formation (Howell et al., 2001; Gassmann et al., 

2008; Gassmann et al., 2010; Barisic et al., 2010). 

More recent data from mammalian cell studies finds that the Mad1 recruits Cyclin B-

CDK1 to unattached kinetochores in an Mps1 kinase-dependent manner, via a complex 

between the N-terminus of Mad1 and Cyclin B-CDK1 (Alfonso-Pérez et al., 2019; Hayward 

et al., 2019). Thus establishing a positive feedback loop as CDK1 in turn promotes Mps1 

recruitment to unattached kinetochores, for a sustained mitotic delay. 

This Chapter focuses on the roles of Mad1 in SAC signalling, mediated by the C-

terminus. It aims to uncover the long standing question of how the Mad1-C-Mad2 (Mad1-

closed-Mad2) complex is recruited to kinetochores and how it contributes to propagating the 

SAC signal. We confirm the Mad1-Bub1 interaction as a mechanism of kinetochore 

recruitment and provide evidence which suggests that Mad1 contributes to MCC formation 

through C-Mad2-Slp1 binding. 

5.2  Mad1 and Bub1 form a complex in S. pombe  

Some focus in the field and in our lab has been on the importance of Bub1-recruited Mad1-

C-Mad2 to unattached kinetochores for SAC activation. Although this interaction has 

previously proved to be quite labile in S. pombe, evidence of a Mad1:C-Mad2-Bub1:Bub3 

complex has been reported in Saccharomyces cerevisiae (S. cerevisiae). The first indications 

of a link were seen when a co-immunoprecipation (co-IP) of Mad1 revealed Mad1p-Bub1p-

Bub3p complex formation in nocodazole-treated cells (Brady and Hardwick, 2000). They 

additionally identified that this interaction occurs via the conserved Mad1 RLK motif and is 

dependent on the presence of Mad2 and Mph1 kinase. This was confirmed by a more recent 
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budding yeast study that found a direct Mad1-Bub1 interaction, mediated by Mph1-

phosphorylated Bub1 and dependent on Mad2 (London and Biggins, 2014). 

Previous efforts by our lab to capture the Mad1-Bub1 complex in nda3-arrested fission 

yeast cells following IP and mass spectrometry analysis have been unsuccessful. 

Furthermore, attempts to capture this transient complex in mammalian cells has also proven 

challenging (Kim et al., 2012; Faesen et al., 2017). The complex has been detected in 

Caenorhabditis elegans (C. elegans), where Mad1 has been found to bind the kinase domain 

of Bub1, although there are fundamental differences in how the SAC is regulated as they 

lack Mps1 kinase (Moyle et al., 2014; Espeut et al., 2015).

We used our previously published SynCheck (synthethic checkpoint) assay, described in 

Chapter 3 (and Yuan et al., 2017), to arrest cells in metaphase for co-IP. This assay uses 

rTetR dimerisation to co-recruit rTetR-Spc71-666-9TE and rTetR-Mph1303-678. The 

spc71-666-9TE allele is a phosphomimetic mutant of spc71-666 where 9 threonine residues 

within MELT motifs are mutated to glutamic acid. Although this is sufficient to recruit 

downstream SAC proteins Bub1, Bub3 and Mad3, the dimerisation with rTetR-Mph1 kinase 

is required for checkpoint activation (London et al. 2012; Shepperd et al. 2012; Yamagishi et 

al., 2012; Zhang et al., 2014; Yuan et al., 2017). Dimerisation occurs when rTetR-Mph1303-678 

is expressed, which is driven by a thiamine-repressible nmt81 promoter (Fig. 5.1 A). A peak 

mitotic index of around 85% is reached 16 hours after growing cells in the absence of 

thiamine. rTetR domains are also able to spontaneously bind to a tandem array of TetO 

repeats integrated at the arg3 locus of chromosome 1. Despite that being the case, we have 

found that co-localisation of rTetR-Spc7 and rTetR-Mph1 to a TetO array is not required for 

a robust arrest, regardless of the number of TetO repeats (Fig. 5.1 B, Yuan et al., 2017).   

To test whether Mad1 and Bub1 form a complex in S. pombe, we immunoprecipitated 

Bub1-GFP from cells (with and without a TetO array) following 16 hours of SynCheck 

rTetR-Mph1 expression, and DSP (dithiobis(succinimidyl propionate)) crosslinking. We 

found that significantly more Mad1 co-immunoprecipitated with Bub1-GFP following an 

anti-GFP pull down in arrested cultures (when rTetR-Mph1 is expressed), in the presence 

and absence of a TetO array (Fig. 5.1 C and Yuan et al.; 2017 Fig. 4). We are also able to 

detect this complex in nda3 arrested cells and without DSP crosslinking (data not shown). 

We propose that harvesting cells at room temperature improves the detection of these 

complexes in in vivo extracts. Our data is in accordance with that from Mora-Santos and 

colleagues (2016) who immunoprecipitated Mad2-GFP from nda3-KM311 arrested fission  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yeast cells and detected Bub1 and Mad1 in the complex. In addition, it is supported by later 

work in HeLa cells showing a direct interaction between Bub1 and the C-terminus of Mad1 

(Zhang et al., 2017).

It has been shown that Bub3 is not required for checkpoint activation in fission yeast 

(Tange and Niwa, 2008; Vanoosthuyse et al., 2009; Mora-Santos et al., 2016) and acts to 

prevent premature activation of the checkpoint by inhibiting ectopic activation of Bub1 

(Yamagishi et al., 2012; Mora-Santos et al., 2016). This is supported by Yuan and colleagues 

(2017) who observed that SynCheck is still active in a bub3Δ background and that the 

Spc7-9TE and Mph1 SynCheck arrest occurred faster in the absence of bub3, where peak 

mitosis is reached after 12 hours of rTetR-Mph1 expression, 4 hours earlier. Thus implying 

that a lower threshold of rTetR-Mph1 kinase activity is required for rTetR-Spc7-9TE based 

SynCheck activation. Consistent with this, we find that the Mad1-Bub1 complex is detected 

earlier, after 12 hours of rTetR-Mph1 induction, in bub3Δ cells (Fig. 5.1 D), and Bub1 is 

likely hyperphosphorylated as the Bub1-GFP band appears to run slower through the 

polyacrylamide gel. Therefore, Mad1-Bub1 complex formation is not dependent on Bub3 in 

the SynCheck arrest. 

The CD1 (Conserved Domain 1) was first characterised in HeLa cells as a conserved 

Bub1 motif and has been identified as being essential for the checkpoint function of Bub1 in 

humans and yeast (Klebig et al., 2009; Heinrich et al., 2014; London and Biggins, 2014; 

Zhang et al., 2017). Mph1-mediated phosphorylation of CD1 is the proposed mechanism 

responsible for Mad1 kinetochore recruitment in yeast and humans (Brady and Hardwick, 

2000; London and Biggins, 2014; Heinrich et al., 2014; Yuan et al., 2017; Zhang et al., 

2017). We carried out an anti-flag co-IP after arresting cells using an ectopic SynCheck assay 

developed in our lab by Ioanna Leontiou where Spc7 was by-passed by co-recruiting rTetR-

flag-Bub1 and rTetR-Mph1303-678 (Fig. 5.2 A; manuscript under revision). A Mad2:Mad1-

Bub1 complex was found in arrested cells with full length rTetR-flag-bub1 and rTetR-flag-

bub1-Δkinase (residues 1-398; still containing CD1) when rTetR-Mph1 is expressed (Fig. 

5.2 B). Although there appears to be more Mad1 pulled down with full length Bub1 than 

Δkinase, the mitotic indices are similar. This is consistent with the ABA arrest described in 

chapter 3 where we also found that the absence of Bub1 kinase activity does not measurably 

impact mitotic index. However in C. elegans, which lacks a Bub1-CD1 domain (Zhang et al., 

2017) and a mps1 homologue, the Bub1 kinase domain is essential for its interaction with 

Mad1 (Moyle et al., 2014). 
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We also found that the Mad2:Mad1-Bub1 complex is undetectable in cells co-recruiting 

an N-terminal fragment of Bub1 (residues 1-289; not containing the CD1 and the kinase 

domain) and rTetR-Mph1 (Fig. 5.2 B). Consistently, we find that mutating conserved 

phosphosites to alanine in the CD1 (residues 380-398 in S. pombe Bub1) predicted to be 

necessary for Mad1 interaction (Heinrich et al., 2014), abrogates Spc7-Mph1 based 

SynCheck signalling (Fig. 5.2 C; Yuan et al., 2017 Fig 4). Additionally, a recent HeLa cell 

study by-passed the need for CD1 by fusing a C-terminal fragment of Mad1 with an N-

terminal fragment of Bub1 in which CD1 was deleted but still retained its Bub3 and Cdc20 

binding motifs (Zhang et al., 2017). This suggests that the major function of CD1 is Mad1 

recruitment.

Using a potent mitotic arrest and improved Co-IP protocol, we have discovered a Mad1-

Bub1 interaction, mediated by Mph1-phosphorylation of CD1, in fission yeast. We have also 

found that this interaction is not dependent on Bub3, Spc7 or Bub1 kinase activity in an 

ectopic arrest. These results indicate that Bub1 is the kinetochore receptor for Mad1 in a 

manner dependent on Mph1 kinase and that this interaction is crucial for a mitotic delay. 

5.3  Mutations at the very C-terminus of Mad1 impede the SAC    

It has been proposed that Mad1 has an additional role in the checkpoint aside from recruiting 

Mad2 to kinetochores via an interaction with Bub1. In a fission yeast study by the Hauf 

laboratory, a Mad1 C-terminal mutant (E670 D673 D676) artificially tethered to 

kinetochores was found to be checkpoint null despite preserving Mad2 and Bub1 at 

kinetochores (Heinrich et al., 2014). In conjunction, the Nilsson lab found that human Mad1 

C-terminal truncations were unable to activate the checkpoint despite Mad2 presence at 

kinetochores (Kruse et al., 2014). A more recent study from their lab found that human Mad1 

C-terminal mutants (E710 F712 R714) were checkpoint defective despite Bub1 binding 

(Zhang et al., 2017). Studies from both groups implicate conserved residues exposed on the 

globular head at the very C-terminus of Mad1 in this additional function. 

In light of these findings, I aimed to test the importance of the C-terminal region of Mad1 

and attempt to uncover its additional function. 3 groups of Mad1 mutants based on 

phosphorylation data from mass spectrometry (carried out by Sjaak JA van der Sar, 

unpublished) and conserved putative phosphorylation sites were synthesised. 6 alanine 

mutations were made in the middle region of Mad1 — M6A, 8 mutations at the C-terminus 

(C8A), of which two sites (S633A, T634A) were used to make a double mutant C2A (see  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Fig. 5.3 A). Consistent with aforementioned studies, the C-terminal C8A mutant failed to 

arrest in a SynCheck arrest with rTetR-Spc71-666 (wild type) and rTetR-Mph1303-678 (Fig. 5.3 

B). Figure 5.3 C and D show the position of residues in the C8A mutant in green in a S. 

pombe homology model based on the human crystal structure of the Mad1 C-terminus (Kim 

et al., 2012), and a sequence alignment. 

The C8A mutant was split into 4 groups depending on positioning to elucidate which 

region is responsible for the checkpoint defect and were constructed with an N-terminal flag 

tag for future biochemistry work. These new mutant strains contained Bub1-GFP and flag 

tagged Mad1 at its endogenous locus, under the control of its endogenous promoter. Upon 

testing these mutants on plates containing the microtubule poison benomyl, we found that 

the T659A T668A double alanine mutant at the very C-terminus of the protein conferred a 

checkpoint defect to a similar extent of the RLK<AAA mutant which is deficient in Bub1 

binding and the mad1Δ bub1-GFP parent strain (Fig. 5.4 A). These strains were then crossed 

into an nda3-KM311 background where microtubules depolymerise at 18oC. Consistently, 

the T659A T668A mutant was unable to activate a checkpoint response in the absence of 

microtubules (Fig. 5.4 B, C).   

To determine which, if either, of the double mutant residues is responsible for the 

checkpoint null phenotype, single alanine and glutamic acid mutations of T659 and T668 

were made. We found that the T668A (alanine) and E (glutamic acid) mutants were unable to 

grow on plates containing a low concentration benomyl, similar to the double mutant (Fig. 

5.5 A). In strains bearing the cold sensitive tubulin mutant nda3-KM311, where no 

kinetochore-microtubule attachments can be formed, T668E was unable to activate the SAC 

similarly to mad1Δ, the RLK mutant and the double T659A T668A mutant. Alternatively 

55% of T668A cells were able to mount a checkpoint response, albeit to a lesser extent than 

wild type Mad1 and the T659 mutants where over 70% of cells were arrested after 6 hours at 

18oC (Fig. 5.5 B, C). This confirms that the conserved T668 residue is important for the 

function of the C-terminus of Mad1. 

We initially expected the phosphomimetic T668E mutant to reverse the SAC defect of 

T668A. We instead find that it impedes SAC function to a higher degree. It is possible that 

the E mutation is distorting the structure of the C-terminus and/or significantly reducing 

protein levels. We find that T668A cells are more sensitive to minor spindle perturbation 

brought on by a low dose of benomyl (5μg/ml), than a major disruption to kinetochore 

microtubule attachment caused by nda3-KM311. This could be due to increased redundancy  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in C-terminal phosphorylation caused by ‘stronger’ upstream signalling generated by many 

unattached kinetochores. Despite the likelihood that the Mad1 C-terminal mutants are 

affecting a process occurring downstream of the Mad1-Bub1 interaction, a caveat of this 

nda3 assay is that kinetochore recruitment of Bub1, a Mad1 interactor, was used as a read-

out for an active checkpoint response. This nda3-KM311 experiment could be performed in a 

strain using a marker such as cyclin Bcdc13-GFP in future. 

While both T659 T668 residues are conserved, T659 was identified as a phosphorylated 

residue in S. pombe (Sjaak JA van der Sar, unpublished). Intriguingly, this residue has also 

been found to be phosphorylated in human Mad1 - residue S699 - following an in vitro Mps1 

kinase assay. Notwithstanding that the sequence surrounding T659 (RKT) in S. pombe meets 

the Aurora B consensus site [R/K]1-3-X-S/T (Meraldi et al., 2004; Ferrari et al., 2005). It is 

possible that there is redundancy in phosphorylation at the C-terminus of Mad1 and detecting 

multiple phosphorylation sites on the same peptide using mass spectrometry could be 

challenging. 

Both T659 and T668 residues are present at the dimerisation interface of the protein, 

implying that phosphorylation in this region may cause the globular head region to come 

apart slightly and possibly facilitate a protein-protein interaction. Further phospho-mass 

spectrometry analysis comparing the different C-terminal mutants would provide useful 

insight into the phospho-regulation of Mad1. 

As a side note, Kim and colleagues (2012) crystallised the C-terminal domain of human 

Mad1 and mutated buried hydrophobic residues. They found that these mutants were unable 

to homodimerise following in vitro co-translation and IP of differently tagged copies of 

Mad1 and displayed defective in kinetochore targeting. This suggests that disruptions to the 

Mad1 homodimer negatively impact the SAC response. 

This still leaves the possibility for a subtle conformational change of the head driven by 

phosphorylation of surface residues, or those at the dimerisation interface when the SAC is 

active. Localised unfolding of the C-terminal globular head is technically difficult to capture 

using biochemistry. Our attempts to purify a C-terminal fragment (residues 559-676) of S. 

pombe wild type and mutant Mad1 from bacteria to confirm this and test dimerisation using 

native PAGE were unsuccessful due to protein purification issues. Troubleshooting this 

remains interesting work for the future. 
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In summary, a T668 mutant at the very C-terminus of Mad1, away from the Bub1 binding 

motif RLK and the Mad2 interaction motif (MIM) confers a defective SAC response, 

suggesting a yet to be characterised role for the C-terminal globular head. At this stage we 

contend that it could aid an interaction with Mad2 or Bub1, or even mediate a novel Slp1 

(Cdc20 in humans) interaction to facilitate MCC formation.  

5.4  The C-terminus of Mad1 forms a complex with Slp1Cdc20 

To test whether the C-terminal mutations were affecting protein-protein interactions between 

Mad1 and other checkpoint proteins, we needed a method to harvest mitotic cells despite the 

mutants being SAC defective and unable to maintain a mitotic delay. For this reason, we 

used the microtubule depolymerising drug CBZ to capture cells in mitosis, as they have 

active Mph1 kinase, Bub1 at kinetochores and Slp1Cdc20 expression. In addition, a CBZ arrest 

tests the response of the T668 single mutant to minor spindle perturbations in liquid medium.

Cells were synchronised in G2 using a temperature sensitive cdc25-22 block for 3.5 

hours, and CBZ was added 20 minutes after release from the block to arrest cells (Fig. 5.6 

A). 30 minutes after CBZ addition, we find Mad3-GFP localised at kinetochores in 70% of 

cells with wild type Mad1. Comparatively in the T659A T668A double mutant and the 

T668A and T668E single mutants, approximately 45% of cells with Mad3-GFP at 

kinetochores (Fig. 5.6 B and C). This went down to around 15% 60 minutes after CBZ 

addition. Therefore, Mad1 C-terminal mutants are less able to delay in mitosis. Despite this, 

this method allows us to harvest a larger population of mitotic cells than usual in these 

mutants.

An immunoblot (Mad1 has an N-terminal flag tag) revealed lower expression levels of C-

terminal mutants, around 25% of that of wild type Mad1 (Fig. 5.6 D). A follow-up co-IP in 

cycling cells found that Mad2 levels corresponded to that of Mad1. Although it is possible 

that the checkpoint defect of T668A is caused by low protein abundance, it is unlikely as this 

mutant is still able to mount a checkpoint arrest in nda3-KM311 despite reduced levels. The 

Hauf lab determined that time spent in prometaphase following an nda3-KM311 arrest is 

identical between strains with 30% and wild type levels of Mad1 (Heinrich et al., 2013). 

They found that a reduction to 10% severely affected but did not fully abrogate the 

checkpoint, making it likely that a ~25% abundance of Mad1 is sufficient for some 

checkpoint delays. An immunoblot using an anti-Mad1 antibody to compare flag-Mad1 to  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untagged Mad1 showed that protein levels were similar in the two, ruling out a negative 

impact of the N-terminal flag tag (Fig. 5.6 E).

A flag co-IP comparing a cycling and CBZ arrested population found that wild type Mad1 

associates with the MCC components Mad2, Slp1Cdc20 and Mad3, as well as Bub1 in an 

arrest (Fig. 5.7 A). We find Bub1 harder to detect by this method, possibly due to the Bub1 

antibody used for detection. Tagging Bub1 (with GFP for example) may make it more 

apparent. However, we are able to detect a Slp1-Mad1 complex from in vivo extracts for the 

first time. Previous attempts by our lab to capture this interaction may have been hindered by 

the use of C-terminal GFP and TAP tags which may have led to a subtle perturbation of 

function, making it difficult to capture Bub1 and Slp1Cdc20 binding. Where other work on 

Cdc20-Mad1 has been conducted in vitro (Ji et al., 2017), by using a small N-terminal flag 

tag and IP protocol we have been able to capture a Mad1-Slp1Cdc20 complex from in vivo 

extracts. 

Slp1Cdc20 expression oscillates during the cell cycle with levels increasing upon mitotic 

onset and decreasing in late mitosis in an APC and 26S proteasome dependent manner 

(Yamada et al., 2000). Here, we find that Slp1Cdc20 levels are stabilised in cycling cells and 

attribute this to its HA tag. It is possible that Slp1Cdc20 persistence in cycling cells may also 

contribute to the presence of Mad3 in the complex. It is important to note that these cycling 

cells do not exhibit a checkpoint arrest — these cells were not synchronised in G2 or treated 

with CBZ and did not present Mad3-GFP at kinetochores. To supplement this finding, mass 

spectrometry analysis in these samples confirmed Mad2, Bub1 and Slp1Cdc20 peptides in 

complex with Mad1 in arrested cells, but not in cycling cells, re-affirming a Mad1-Slp1Cdc20 

association in mitosis (Fig. 5.7 B). 

We find that T668A protein levels are close to 25% of wild type Mad1 and interestingly, 

this mutant displays relatively reduced Mad2 binding but increased Slp1Cdc20 binding in 

mitosis (Fig. 5.7 C) while Bub1 levels remain unaffected. The same is true for the T659A 

T668A double mutant. In essence, the nature of Mad2 and Slp1Cdc20 binding to Mad1 is 

impacted when the very C-terminus of Mad1 is perturbed and as a result, cells cannot sustain 

a mitotic arrest. This implies a functional link between the C-terminus of Mad1, Mad2 and 

Slp1Cdc20. It is possible that the C-terminus of Mad1 transiently interacts with Slp1Cdc20 to 

facilitate the formation of C-Mad2-Cdc20. We suggest that the single T668A and double A 

mutants inhibit localised ‘splaying’ of the C-terminal globular head and enable Mad1 to 

stably ‘capture’ Slp1, therefore perturbing the formation of C-Mad2-Slp1. As Mad1-C-Mad2 
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is the site of Mph1-dependent conversion of O-Mad2 (open-Mad2) to C-Mad2 (closed-

Mad2) (described in Chapter 1 section 11; Mapelli and Musacchio, 2007; Luo and Yu, 

2008), these results propose that the globular head dynamically binds Slp1 when 

phosphorylated in mitosis, bringing it in proximity to Mad1-bound Mad2 to facilitate C-

Mad2-Slp1 formation.

Catalysis of the rate-limiting C-Mad2-Cdc20 interaction in human cells has been 

proposed to occur via phosphorylated Mad1 (Faesen et al., 2017). An in vitro reconstitution 

by the Musacchio group using FRET (Förster resonance energy transfer) sensors on purified 

human SAC proteins to detect MCC production determined that the C-Mad2-Cdc20 

interaction was catalysed by Mps1 phosphorylated Mad1-C-Mad2 (Faesen et al., 2017). This 

data is also in agreement with another in vitro reconstitution study which found that Mps1-

mediated phosphorylation of human Mad1 at a C-terminal T716 residue following a kinase 

assay is implicated in binding to the N-terminus of Cdc20Slp1 (residues 26-37) (Ji et al., 

2017). As the T716 region does not match the consensus sequence of Mps1 substrates, it is 

likely that this region can bind Mps1 through tertiary contacts, although the possibility that it 

is phosphorylated by another kinase cannot be excluded (Ji et al., 2017).

To conclude, these results suggest that Mph1 phosphorylation of Spc7 MELT motifs 

enables Bub3-Bub1 binding to unattached kinetochores with phosphorylation of Bub1 

recruiting Mad1-C-Mad2 via a CD1-RLK interaction. Successive phosphorylation of the 

very C-terminus of Mad1, most likely by Mph1 kinase, enables dynamic Slp1Cdc20 binding 

proximal to the site of Mad2 conversion. This catalyses the formation of rate-limiting C-

Mad2-Slp1, enabling subsequent MCC formation. 

5.5  Perspectives and future work  

Here we examined the checkpoint roles of Mad1 and found that Bub1 is the kinetochore 

receptor for Mad1 using co-IP following a SynCheck arrest. This interaction is dependent on 

Mph1 phosphorylation and Bub1-CD1, and independent of the Bub1 kinase domain and 

Bub3. Mad2 dependency is discussed in Chapter 6.

Using co-IP and mass spectrometry, we found that wild type Mad1 was able to form a 

complex with Slp1Cdc20 in mitosis. This is the first indication of a Mad1-Slp1Cdc20 complex in 

vivo and may relate to the additional, uncharacterised role of the Mad1 C-terminus. We find 

that mutating the very C-terminus of Mad1 at the homo-dimerisation interface of the 
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globular head affects its checkpoint function. A conserved C-terminal T668A mutation 

increased the levels of Slp1Cdc20 binding to Mad1 in mitosis. It is very likely that the inability 

to ‘release’ Slp1 from Mad1 perturbed the formation of diffusible C-Mad2-Slp1 and MCC by 

extension. 

It was proposed that the Mad1 C-terminus ‘folds back’ onto itself, near the Mad2 

interaction motif to possibly facilitate Mad1-C-Mad2 or O-Mad2-C-Mad2 binding (Sironi et 

al., 2002), although there is no evidence for the functional relevance. Unpublished cross-

linking  data of the Mad1-Mad2 tetramer from our lab (Sjaak JA van der Sar) supports the 

structural hypothesis of ‘folding back’ although it is not known what function, if any, this 

structural configuration supports. We propose that the ‘folding back’ of the C-terminus of 

Mad1 positions Slp1Cdc20 close to Mad2 to enable C-Mad2-Slp1 binding. This dependency 

can be tested by studying Slp1-C-Mad2 binding in predicted ‘folding back’ mutants. In 

addition, cross-linking co-IP could be performed with N-terminally flag tagged Mad1 to 

minimise changes to the C-terminus. The above cross-linking study (Sjaak JA van der Sar, 

unpublished) was done using a C-terminal Mad1-TAP tag which may have impacted its 

association with Slp1Cdc20 and Bub1. Albeit a technically challenging and ambitious 

undertaking in practice, further structural analysis would provide valuable insight into the 

conformational arrangement of Mad1 along with its binding partners Mad2, Bub1 and 

Slp1Cdc20.

Therefore, we hypothesise that the additional role of the C-terminus of Mad1 in SAC 

activation is to facilitate formation of C-Mad2-Slp1 through a direct interaction with 

Slp1Cdc20. We propose that in mitosis, the Mad1 C-terminal head is phosphorylated, causing 

subtle conformational change or ‘splaying’ of the globular head dimer. Slp1Cdc20 is able to 

transiently bind to this region where, as a result of ‘folding back’ it is brought in proximity to 

Mad1-associated C-Mad2 - the site of O-Mad2 conversion to C-Mad2. As a result,  C-

terminally phosphorylated Mad1 facilitates C-Mad2-Slp1 binding.

Future experiments to supplement these findings include:

1. Adding an extra copy of Mad1-T668A into the existing mutant strain to increase 

protein levels and assess whether this alters the checkpoint defect of this mutants. We expect 

it will not rescue the checkpoint defect due to the largely preserved SAC function of the 

mutant in an nda3-KM311 arrest, observed effects on levels of binding partners (such as 

increased Slp1 abundance) in addition to results by the Hauf group suggesting that 30% of 
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Mad1 protein abundance maintains SAC ability in an nda3-KM311 arrest (Heinrich et al., 

2013). This can also be done with the T668E mutant where levels are lower and the 

checkpoint more severely abrogated. We find that interpretation of the phenotype of this 

mutant is marred by the low protein levels, which are suggestive of structural perturbation. It 

is possible that adding an extra copy to this strain may relieve the SAC defect. 

2. We observe in our co-IPs that Slp1-HA is present in cycling cells and attribute this 

stabilisation to the HA tag which may hinder degradation of Slp1. Future co-IPs can be done 

using Slp1Cdc20 with an internal GFP tag that is present in a non-conserved N-terminal loop 

(made by Onur Sen and Ioanna Leontiou unpublished). This protein is recognised by western 

blotting although it is not detected using a fluorescent microscope in cycling cells as Slp1 

turnover does not provide sufficient time for the GFP to mature.

3. Testing Slp1Cdc20 mutants required for the checkpoint and Mad1 binding by CBZ arrest 

followed by co-IP. In human Cdc20, the N-terminus (residues 26-37) is implicated in Mad1 

binding (Ji et al., 2017). 

4. It is not known whether the conserved Mad1 T668 residue is phosphorylated, and if so, 

by which kinase. It is likely that multiple residues in C-terminal region of Mad1 are 

phosphorylated and contribute to its SAC function. Attempts to determine this and gather 

additional phosphorylation data of mitotic Mad1 by mass spectrometry from in vivo samples 

have been unsuccessful. Phospho-mass spec can be optimised in the future. Phosphorylated 

Mad1 can be enriched for mass spectrometry from bacterial purification of Mad1, following 

an in vitro kinase assay comparing Mph1Mps1, Ark1Aurora B, Cdc2CDK1 and Plo1Plk1 samples. 

Albeit technically difficult, in vitro kinase assays can also be carried out on short C-terminal 

fragments of Mad1 and run on a native PAGE gel to indicate whether dimers comes apart or 

‘splay’ upon phosphorylation. 

5. It would be interesting to test Slp1Cdc20 binding in the T668A mutant during an nda3-

KM311 arrest as it is able to arrest to a large extent. This could be due to redundant 

phosphorylation at the C-terminus of Mad1 caused by higher Mph1 activity in a ‘stronger’ 

arrest where no kinetochore-microtubule attachments can form. To test whether this 

interaction is influenced by the attachment state of the kinetochore, Mad1 mutants and 

Mad1-Slp1 binding can be tested in an ectopic ABA arrest (described in Chapter 3) assay and 

co-IP in cells where microtubules remain intact. 
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The possible dependencies of Mad2 and Bub1 on the Mad1-Slp1 complex is discussed in 

Chapter 6.
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CHAPTER 6

Final discussion  

The spindle assembly checkpoint (SAC) is a conserved mechanism in eukaryotes that 

enables the correct segregation of chromosomes during anaphase. Upon incorrect 

kinetochore-microtubule attachment or lack of tension at kinetochores, SAC signalling is 

initiated at these kinetochores, inhibiting the APC/C through formation of the diffusible 

mitotic checkpoint complex. In this way, the SAC is able to delay anaphase onset until 

chromosomes are properly attached and biorientated. 

6.1  Reconstituting SAC signalling using ABA-induced dimerisation 

The first aim of this work was to reconstitute SAC activation and silencing ectopically using 

a novel chemically induced dimerisation (CID) tool in S. pombe. Chapter 3 demonstrated 

that abscisic acid (ABA) is an effective tool for co-recruiting proteins in S. pombe. Using 

ABA to form heterodimers of minimal fragments of Spc7 and Mph1, we were able to 

recapitulate upstream checkpoint signalling rapidly and independently of kinetochores and 

spindle pole body localisation. Similarly to the SynCheck arrest (Yuan et al., 2017), this co-

recruitment was sufficient to trigger SAC signalling, suggesting that kinetochores act as 

scaffolds for coupling attachment defects with checkpoint signalling. It would be interesting 

to test the effects of other mitotic kinases on the ectopic arrest using the ATP-analogue 

sensitive drug 1NMPP1 to regulate Aurora BArk1 and Plk1Plo1 activity. This would resolve the 

functions of these kinases in error correction and SAC signalling. The Joglekar lab used 

rapamycin to dimerise Plk1 with KNL1Spc7 MELT motifs in HeLa cells and found that 

mitotic duration was not prolonged despite MELT phosphorylation (Chen et al., 2019). This 

emphasises the importance of Mps1 phosphorylation for SAC signalling downstream of the 

initial trigger. An ABA-dependent Plk-Spc7 and Aurora B-Spc7 arrest could also be tested in 

S. pombe although we predict it is unlikely to result in a mitotic delay. 

Using an ABA-induced arrest to test whether Mph1 and Bub1 heterodimers can bypass 

Spc7 in the same way as in the rTetR system (explained in chapter 5) found that 60% of cells 

in a given population can arrest transiently (for approximately 30 minutes) (Ioanna Leontiou, 

manuscript under revision). This emphasises the role of Spc7 MELTs in amplifying the 

checkpoint signal for a robust arrest. Reducing the number of Spc7 MELTs in the Mph1-
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Spc7 ABA arrest would be interesting future work. One would expect that dimerising 1-2 

MELT motifs with Mph1 would mimic the Bub1-Mph1 arrest behaviour if signal 

amplification was the difference. In addition, it is possible that the ability of Bub1 (and or 

Mph1) to homodimerise contributed to signal amplification in the Bub1-Mph1 rTetR arrest, 

although differing protein levels could also be the cause. 

A major advantage of the ABA-induced checkpoint is the ability to reverse dimerisation 

and capture SAC silencing. This novel silencing assay confirmed that silencing is mediated 

by PP1 localisation to Spc7 and Kinesin-8. This method induces silencing without affecting 

with kinetochore-microtubule attachments, as is the case with nda3-KM311, CBZ and 

nocodazole assays, therefore separating the events of biorientation and error correction from 

the SAC signalling pathway. Reversal is not possible in SynCheck rTetR or the widely used 

rapamycin system. Less is known about how the SAC is silencing compared to its activation. 

In future, this silencing assay can be used to test regulators of PP1 and other potential 

silencing candidates such as Bub3 (Vanoosthuyse et al., 2009) and PP2A (Schmitz et al., 

2010; Espert et al., 2014) to further understand the SAC silencing pathway. 

The ABA-induced signalling method provides a more controllable method of inducing 

SAC signalling in vivo than the existing SynCheck rTetR-based system used by our lab 

(Yuan et al., 2017). While the rTetR system is effective at generating an ectopic arrest, ABA-

induced dimerisation has significantly improved the time frame to achieve peak mitosis from 

a 14-16 hour transcriptional induction in the rTetR system to 30 minutes in ABA (in cells 

pre-synchronised in G2). Expression of rTetR-mph1 at the nmt promoter for SynCheck 

induction can be leaky, which can add complications to strain construction.  Whereas with 

ABA, the desired response can be modulated by varying the concentration of drug used  or 

the number of spc7 MELT motifs dimerised with mph1 in this case. A limitation to the rTetR 

system is that since rTetR forms homodimers, one cannot be certain that the resulting 

phenotype is a result of a 1:1 ratio of heterodimers, or a combination of hetero- and homo-

dimers. As ABA generates heterodimers of PYL and ABI, it is more likely to cause 1:1 

binding, unless the protein of interest itself exists as a dimer.

There is limited cross-reactivity with endogenous proteins in the plant-based ABA 

system. This is particularly important for S. pombe, where the fkh1Δ, tor1-S1834E mutant 

background required for rapamycin sensitivity has been found to increase stress and reduce 

mating efficiency. It is also promising as an anchor away technique and can be used in 

conjunction with other CID systems to allow control of multiple cell circuits. For example, 
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rapidly and reversibly depleting an essential protein from its subcellular location to study its 

effect on a particular process which is under the control of another CID. This avoids the need 

for deleting genes or altering their expression levels. 

6.2  How do cells respond to a prolonged mitotic block?  

Chapter 4 follows on to study the effects of prolonged ectopic checkpoint activation in S. 

pombe and HeLa cells. We observe that cell viability in fission yeast decreases in a 

prolonged metaphase arrest due to loss of temporal coordination between septation and 

nuclear division. This is consistent with findings from APC mutants where septation occurs 

before nuclear division. They found that this occurred due to a decrease in Cyclin Bcdc13 

levels while Securincut2 levels remained stable (Chang et al., 2001). Similar to our studies, 

they also found cell death to occur in these prematurely septated cells. This suggests that 

septation ensues before nuclear division due to gradual degradation of Cyclin B in a 

prolonged ABA arrest which results in lower CDK1cdc2 activity and SIN activation. This 

hypothesis can be tested in future experiments by i) monitoring Cyclin B levels in a 

prolonged arrest using microscopy and quantitative western blotting - is there a decrease 

prior to septation? ii) using a non-destructible Cdc13cyclin B D-box mutant and iii) a SIN null 

mutant. Therefore, we propose that in a prolonged arrest, Cyclin Bcdc13 levels decrease (due 

to limited SAC protein abundance) to a threshold which allows septation while the cell is 

able to remain ‘arrested’. We suggest this occurs as the ABA-generated arrest is independent 

of CDK1cdc2 once cells have entered mitosis. This can be tested using the CDK1as allele. 

Using single cell analysis in HeLa cells we found variation in cell fate within and 

between populations treated with either the anti-microtubule drug nocodazole or rapamycin 

(for ectopic activation of the checkpoint (eSAC) through KNL1-Mps1 dimers) (Chen et al., 

2019). Intra population differences in mitotic duration in eSAC most likely to arise due to 

varying Mps1 expression levels, which in turn affects the level of MCC formation. We 

observed that the severe defects in cytokinesis and aneuploidy likely trigger apoptosis sooner 

in nocodazole treated cells. Comparatively, in rapamycin treated cells, cytokinesis defects 

were not as apparent and cells took longer to undergo apoptosis. This suggests that severe 

aneuploidy increases the likelihood of apoptosis. 

A link between mitotic duration and timing of apoptosis onset following mitotic exit (or 

slippage) emerged from our single cell analysis. Broadly, cells that arrested in mitosis for 

longer died sooner following mitotic slippage than those that arrested for a short duration. 
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Mitotic-linked death in interphase could occur as mitotic slippage gradually releases the 

inhibitory CDK1-mediated phosphorylation of pro-apoptotic Caspase-9. An additional link is 

that apoptotic regulating genes such as Mcl1 are involved in pathways which are regulated 

by CDK1 and APC/C. Future experiments include quantifying eSAC activator and cyclin B 

levels in these cells and comparing these with mitotic duration and time of apoptosis. This 

could be possible using a similar MATLAB program to that developed by Chen and 

colleagues (2019) to quantify fluorescence of cyclin B as well as eSAC components. This 

would allow clearer correlations between these variables. 

Single cell analyses conducted here and by others demonstrate the complexity and 

variation within and between cell lines, drugs used and drug concentrations. Cell culture 

studies have important implications in understanding the variability in cancer cell response 

to anti-mitotic drugs. Understanding the molecular links between the SAC and apoptosis 

would provide valuable insight into the basis of variation observed in cell culture as well as 

in complex living systems. While investigating the molecular link is beyond the scope of this 

study, we suggest that ABA-dependent regulation of mitosis provides a useful tool for tight 

regulation of mitosis timing, ‘strength’ of checkpoint, as well as mitotic exit. Therefore 

enabling a more direct study of how the SAC and mitosis affect apoptosis as well as more 

accurate indicators of how cells may react to different types and concentrations of anti-

mitotic drugs. 

These 2 chapters employed novel, ectopic methods for regulation of the spindle assembly 

checkpoint in space and time. They illustrated results from its direct implementation to 

studying SAC signalling as well as discussed its broader applications.

6.3  Contribution of the Mad1 C-terminus to SAC signalling  

Chapter 5 aimed to uncover the kinetochore receptor for Mad1 as well as identify the 

additional role of its C-terminus. Co-immunoprecipitation following a SynCheck rTetR 

arrest revealed that Bub1-CD1 is the kinetochore receptor of Mad1 in S. pombe, similar to 

budding yeast and later confirmed in mammalian cells. We find that this interaction is crucial 

for the fission yeast checkpoint function and is dependent on Mph1 phosphorylation of 

Bub1. It is independent of the kinase domain of Bub1, and Bub3. 

Unsurprisingly, as Mad2 is a stable binder of Mad1, we find that Mad2 co-IPs with Bub1 

and Mad1. It has been demonstrated that the Mad1-Bub1 interaction is dependent on Mad2 
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in budding yeast in vivo and in vitro (Brady and Hardwick, 2000; London and Biggins, 

2014), although this may not be conserved as there are indications that it is not required in 

human cells (Hewitt et al., 2010; Kim et al., 2012; Ji et al., 2017). Testing the Mad2 

dependency for the Mad1-Bub1 binding in S. pombe could be conducted in future by 

performing a Bub1-GFP and/or flag-Mad1 co-IP in mad2Δ cells captured in mitosis using 

the cdc25-22 CBZ arrest assay described in Chapter 5 section 4.

To test the additional function of the Mad1 C-terminus, we mutated putative 

phosphorylation sites and conserved sites at the C-terminus and found that mutating the very 

C-terminus of Mad1 disrupts the checkpoint response. A conserved T668A mutation present 

at the dimerisation interface of the C-terminal globular head region, caused sensitivity to 

minor spindle perturbation induced by benomyl and CBZ. 

Co-IP and mass spec revealed that Mad1 co-immunoprecipates with Slp1Cdc20, Mad2 and 

Bub1, providing the first indication of a Mad1-Slp1Cdc20 complex in vivo. To our surprise, we 

found that more Slp1 associates with Mad1 T668A in the IP from CBZ arrested cells, despite 

lower expression levels of the mutant. We suggest that the T668A mutant abrogates the SAC 

as it is unable to ‘release’ Slp1Cdc20, impeding C-Mad2-Slp1 binding. We hypothesise that the 

C-terminal globular head of Mad1 undergoes subtle splaying upon checkpoint activation, 

possibly as a result of phosphorylation, which enables dynamic Slp1Cdc20 association. This 

positions Slp1 close to Mad2, facilitating C-Mad2-Slp1Cdc20 formation.

To dissect the dependencies of the Mad1-Slp1 complex, the following are suggested: 

• The co-IP in Figure 5.7 C suggests that in an arrest, Mad2 levels in the alanine mutants 

are disproportionately lower than Mad1. This is at odds with Mad1-Mad2 levels in a 

cycling population of these mutants 5.6 C where levels of Mad2 seem proportional to wild 

type Mad1 at approximately 25%. The reduction of Mad2 could be a consequence of 

stabilised Slp1 binding to Mad1 which could spatially perturb Mad2 binding. Careful 

assessment of Mad2 levels in these mutants during an arrest is important future work, as 

chemiluminescence is indicative and does not provide quantitative comparisons. To 

improve accuracy when comparing protein levels in the IPs, quantitative western blots 

with a LI-COR could be used as an alternative to chemiluminescence. Although not 

strongly supported by this work, we cannot exclude the possibility that Slp1 binds to Mad1 

via Mad2. To test whether Mad1-Slp1 binding is dependent on the presence of Mad2, co-IP 

can be carried out in a mad2Δ background. Additionally, to test whether it is dependent on 
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Mad2 dimerisation (C-Mad2-O-Mad2), the co-IP can be performed in a Mad2 ⍺C region 

mutants, such as mad2R133A, which are unable to dimerise and abrogate the SAC (DeAntoni 

et al, 2005; Mapelli et al., 2006, Sironi et al., 2001).

• In vitro reconstitution studies have reported that Bub1-Bub3, along with Mad1-Mad2 

contribute to the formation of C-Mad2-Cdc20 (Faesen et al., 2017). Additionally they 

found that MCC formation in a Mad1 triple mutant (at the very C-terminus) was 

completely abrogated in the absence of Bub1. This suggests a requirement for Bub1 in 

Mad2-Cdc20 formation. This need could arise as the Bub1-ABBA and, to a lesser extent, 

its KEN motif have been found to be a key recruiter of Cdc20 to the kinetochore (Lischetti 

et al., 2014; Di Fiore et al., 2015; Vleugel et al., 2015). The BubR1-ABBA motif can also 

recruit Cdc20 but redundancy with Bub1-ABBA could make it less crucial. Nevertheless, 

whether Bub1-ABBA motif is the key receptor for Slp1 has not been determined in S. 

pombe. Due to the labile interaction between Mad1 and Slp1 (previous efforts to detect this 

complex were unsuccessful), it is not obvious that Mad1 is the principle kinetochore 

receptor of Slp1, although the possibility exists. However, to test the requirement of Bub1 

on the Mad1-Slp1 complex, co-IPs could be conducted in mad1-RLK and bub1-CD1 

mutants which hinder the Mad1-Bub1 interaction.

In conclusion, our predicted model (Fig. 6.1) for the additional function of Mad1 in the 

SAC is as follows. The Mad1 C-terminus, which folds back over the Mad1-C-Mad2 

tetramer, is able to bind C-Mad2 throughout the cell cycle via its MIM (Mad2 interacting 

motif). In mitosis, Mad1-C-Mad2 is recruited to kinetochores via a Mph1-dependent 

interaction between the Mad1-RLK motif and Bub1-CD1. Additional phosphorylation at the 

dimerisation interface of the C-terminal globular head domain of Mad1 by Mph1 kinase 

causes subtle splaying of the head. This spatial rearrangement reveals a charged surface (due 

to phosphorylation) on Mad1 that dynamically interacts with Slp1. Thus bringing Slp1 close 

to the MIM and in proximity to the site of Mad2 conversion, enabling formation of C-Mad2-

Slp1.  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Figure 6.1: SAC roles of the Mad1 C-terminus
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