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Abstract 
Scientific communication used to be based on the article or the monograph. 

Now datasets and databases are becoming as important in some cases. 
Aside from their value in communication, data are also the raw stuff of the 

scientific record, and the basis for verifiability. So scientists need to curate the 
data they create, and make them available for re-use. What are the 

implications and effects of these changes, and what should scientists and 
scholars be doing about them? 

Curation 
Curation is not a new term, being well established particularly in art and 
museum practice. However, it is relatively new in relation to data. We are now 
generally well aware that there are issues relating to the long term 
preservation of digital data (known as digital preservation), but digital curation 
is more than this: maintaining and adding value to a trustworthy body of digital 
information over the life-cycle of scholarly and scientific materials, for current 
and future use. Implicit in this is that data are thoughtfully created, carefully 
managed and curated, and re-used in a disciplined way, where and when 
appropriate. Also implicit is that curation is a whole life process, with 
potentially evolving digital objects. 
Curation is clearly domain-dependent, with significant issues relating to size, 
numbers of objects, complexity of objects, interventions needed, ethical and 
legal implications, policies, practices, standards and incentives. 
The Digital Curation Centre (see http://www.dcc.ac.uk) takes a broad view of 
digital curation. Whilst not exclusively data-oriented, we predominantly focus 
on data resources for science and scholarship. We are concerned with: 

• The sustainability of the resource. 
• The creation or appraisal, selection, acquisition and ingest of the resource, 
• Growth, development of and changes to the resource, 
• Making the resource available (“publishing” it), 
• Access management and other controls on the resource, and the ethical 

and legal basis of these controls, 
• The ability to use, combine, re-combine, inter-operate, process, annotate, 

discuss and review the resource through time (some of which processes 
will in turn contribute to the development of the resource), 

• Linkage, context and metadata relating to the resource, 
• Maintaining authenticity, integrity, provenance and computational lineage 

information relating to the resource, 
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• Maintaining the meaning of the resource despite technology change and 
concept drift in the outside world, 

• Preserving the resource, including preserving access to past states of a 
changing resource, 

• De-selection and deliberate and/or accidental destruction of the resource. 
• All of this, over potentially extended time periods, although timescales 

could also be comparatively short or medium term; 
• Recognising the impacts of finite budgets and potential future policy 

changes, and 
• Paying attention to the education, training and development of the people 

to support this.  

 
Figure 1: Mind map of good practice in curation 

Good curation brings good science 
Science increasingly depends on large quantities of data, representing 
experimental observations and/or other forms of derived or captured data. 
Managing data of this kind requires discipline if the results are to be 
scientifically useful. In some shorter term projects, with stable staffing and 
good communication, the group’s “common knowledge” and good sense are 
sufficient to manage their data well enough to produce sound scientific 
results. Too often, one or more of these does not apply, and the result is data 
which leaves even its own investigators scratching their heads: data shorn of 
their context, of the associated experimental conditions, in un-documented 
files, in convoluted spreadsheets whose authors have left… 



Managing your data properly simply means keeping the necessary context 
information and associated documentation to make sure you and others can 
make use of your data when the need comes. Good curation means good 
science… and conversely, poor curation may easily link to sloppy science. 

Some science impossible without curation 
Some kinds of science are impossible without data from the past. Here are a 
couple of examples from correspondence. Note, these do not necessarily 
represent well-curated data. 

• “A prediction of quantum chromo-dynamics (QCD) is that the strong 
coupling ‘constant’ (αs) should be large (~1) at low energies and small 
(~0.1) at high energies. In the 1990's the superb data from LEP at high 
energies showed αs is small. The lower energy data came from older 
experiments Tristan in Japan, PEP and PETRA in Hamburg, and Doris 
and SPEAR. Sigge (Siegfried) Bethke wanted to demonstrate the running 
of αs, and was reduced to hunting round various laboratories for old data. 
He did an heroic job obtaining the data, finding equipment to read it, 
contacting people to find out about the data format (not much 
encapsulated metadata there) and eventually produced a beautiful plot 
shown clearly αs ‘running’ in the expected way.” (Private communication 
from Ken Peach, 2005, referencing (Bethke, 2000)) 

• “In the 12th century BC Shang dynasty Chinese astronomers inscribed 
eclipse observations on ‘oracle bones’ (animal bones and tortoise shells). 
About 3200 years later researchers used these records, together with one 
from 1302BC, to estimate that the total clock error that had accumulated 
was just over 7 hours, and from this derived a value for the viscosity of the 
Earth's mantle as it rebounds from the weight of the glaciers.” (Private 
communication from David Rosenthal, referencing (Pang et al., 1995)). 

Why data? 
Why should you bother to curate your data carefully? Some of the reasons 
have already been suggested: your own project will benefit from good 
management of your data, particularly as its volume (in both size and 
numbers of observations, files, databases, interpretations, metadata, 
workflows) increases. Here are some more reasons. 

Important part of scholarly record 
Fundamentally, data are an (often un-recognised) important part of the 
“record of science”. I mean this in several senses: as the “public good” 
resulting from investment in your science project, as the evidence on which 
your findings are based, and sometimes formally as a record in the legal 
sense (Buchhorn and McNamara, 2006). 
Scientific reputations are built today on published articles, and the influence 
those articles exert, as measured by the prestige of the publishing channel 
and the citations the articles attract. Shotton (Shotton, 2006) has pointed out 
that scientific articles are exercises in rhetoric, designed to persuade the 
reader of an hypothesis, see also (de Waard and van Oostendorp, 2006). 
Within a basic framework of scientific integrity, data are brought in as 



supporters in this rhetorical structure. There is no shame in selecting the most 
appropriate data to illustrate a point, and no space to include all the possible 
data that might support (or contradict) the analysis presented. There would be 
great advantage if data are routinely made accessible so that findings can be 
substantiated by independent observers.  
In fact, major medical publishers have made registration of clinical trials a 
requirement before publication (ICMJE, 2006). Likewise the International 
Union of Crystallography (IUCr)  requires deposit of crystal structures before 
publication of articles referring to them. In the latter case, IUCr has also acted 
as a “Community Proxy” (NSB, 2005) in establishing the CIF common 
standard form for crystal structures (IUCr, 2002), which they require all 
authors to use in depositing structures before their articles will be published. 
Publisher mandates such as these can be among the strongest motivators 
encouraging curation of data and deposit for re-use. 
Similarly, funder mandates are increasing; many funders now require at least 
a data management plan, and several require deposit of data into publicly 
accessible data repositories, sometimes after am embargo period to allow the 
PI time to exploit them. The UK Economic and Social Data Service has 
reportedly found its update increasing after the ESRC mandate was changed 
from deposit to offer for deposit. Now that they get to choose if the dataset is 
worthy of retention (using a peer review system, see 
http://www.esds.ac.uk/aandp/create/depintro.asp), it is seen as a mark of 
esteem! 

Opens up additional interpretation possibilities 
The examples quoted above show how additional possibilities can arise to re-
interpret data for other purposes. There are risks, but also substantial benefits 
in this. 

Legal Compliance 
Legal regimes vary from country to country; the Australian Partnership for 
Sustainable Research (APSR) survey report (Buchhorn and McNamara, 
2006) mentions some of the legal compliance issues that may apply in 
Australia, where the definition of a record is apparently wider in scope than in 
the EU, with the consequence that archives and records legislation may apply 
to the records of science. Certain other compliance regimes are effectively 
exported internationally, like it or not, for example US FDA requirements. 

Incentives? 
One the problems with curation is that it is clearly regarded as that extra 
burden, the one just beyond what is currently possible, in the queue behind 
meeting the conference deadline and writing the grant application. An activity, 
it might appear, that is obviously worthy, but which costs time and effort, and 
does not pay back in academic currency (reputation-building articles). This 
paper attempts to show that it does pay back, but if data are to be more useful 
in the long term, as surely must be the case, we need to build more closely 
geared incentives.  



Publishing in databases needs to be as well-recognised (in some cases) as 
publishing articles. Citation of data needs to become the norm, so that the 
contribution of on person’s data to another person’s research is clearly 
recognised. These attitudes have to be built into systems such as the 
Research Quality Framework, and also into internal promotional 
arrangements. 

What kinds of data? 
Experiments like those associated with the Large Hadron Collider at CERN, 
and even larger quantities likely to emerge from future experiments make it 
clear that even with storage at ever lower costs, we cannot keep everything. 
For many experiments with smaller quantities (up to a few Terabytes!), we 
can keep all the data, but it may not be appropriate to do so. Criteria for 
appraisal and selection then become an issue (see archival practice for 
examples, see (InterPARES, 2006) and (Ross, 2000). 
Environmental Sciences have produced a number of systems to describe the 
“level” of data, see for example the British Atmospheric Data Centre 
description of UARS (Upper Atmosphere Research Satellite) data levels at 
http://badc.nerc.ac.uk/data/uars/levels.htm. Here level 0 is the raw output data 
streaming from telemetry and instrumentation, effectively at the level of 
voltage changes; it is devoid of context. Level 1 data has been converted to 
the physical properties being measured, but will still be in formats tied to the 
instrument. Level 2 is post-calibration, and would refer to entities such as 
calculated geophysical profiles. Level 3 would be gridded and interpolated, 
and at this level there might be no clear correspondence with any 
observations (but there should be a clear computational lineage or 
provenance path linking these steps). Bose and Frew (2005) report similar but 
slightly different level descriptions, from NASA.  
One may need to keep more than level 3 data; level 2 might be sufficient after 
a time, but level 1 may be needed if there is doubt about calibration.  
I have heard several suggestions from particle physicists that only higher level 
data should be kept, not just because of volume, but also because they feel 
that no-one outside their group would understand the combinations of 
instrumentation, calibrations and parameters required to re-do these 
analyses. So much for the verifiability of science? 

Combined and crafted data 
The biological sciences are now very well supported by at least 968 
databases (110 more than last year (Galperin, 2007)) that combine data from 
many sources, and other (or sometimes the same) databases that are 
intensively hand-crafted by teams of skilled data curators.  
Annotations on other people’s data are becoming valuable currency (X 
asserts this is evidence of gene A while Y asserts gene B).  Annotations can 
take many forms, but in bio-informatics databases, the proportion of manually 
curated records is decreasing, as the volume rises and more automatic (and 
inherently less reliable) techniques are used. Annotation is well-used in the 
bio-sciences, but is spreading to other disciplines (Bose, 2006)). Manual 
annotations can cause interoperability problems because of the lack of (or use 



of different) controlled vocabularies, for example the lack of direct 
compatibility between the National Library of Medicine’s Medical Subject 
Headings ( NLM MeSH) and the Gene Ontology, GO (Kersey and Apweiler, 
2006). 

Descriptive (meta)data 
Unlike text, many kinds of data are not self-descriptive. We all make efforts to 
give our data some metadata, whether this is in the file naming and folder 
structures we use, or (more rarely) by filling in Properties boxes, or by 
assigning keywords, writing abstracts, thinking up useful titles. With text we 
can often get away with it (and smart indexing utilities like the Mac Spotlight 
on local drives, and Google on the web help us overcome our shortcomings 
here). But with data we have to be systematic. For any substantial project, file 
names alone will not be enough; some supporting metadata infrastructure will 
be needed.  
Provenance data form valuable parts of the context as well. Particularly in the 
case of manually curated data, we may need to ask “where did these data 
come from?”, “what is the status of their source?” (Batterham et al., 2006). 
(Buneman et al., 2006) are looking for underlying technology improvements in 
database management to make this task easier.  
In addition, in the case of data we may be specifically concerned to 
understand the algorithms and calibrations used to compute derived values, 
sometimes known as computational lineage (Bose and Frew, 2005). 

How to curate it? 
In a short article like this, it is impossible to give comprehensive advice on 
how to curate your data. However, here are a few suggestions on what to do 
and what to keep. 

Build curation/re-usability into your workflow 
One of the best pieces of advice (from the R4L project in the UK, see 
http://r4l.eprints.org/ (Coles et al., 2006)) is to make life easier for yourself, by 
building workflows to manage your data collection and processing pipelines. 
You will be more systematic as a result, and your data will be more reliable. 
You can also easily build provenance information and associated metadata 
into your workflows, and hence into whatever metadata catalogue or data 
structures you have built. Ironically, while your project is active, all the 
information anyone would ever need to re-use your data is all around you. 
Unfortunately, because “everyone knows”, some is never written down until 
near or after the end of the project, when the post-doc has left for that great 
job in the US, and the PhD student has left for a merchant bank (she’s a 
rocket scientist, after all), when the PI realises he hasn’t a clue what some of 
those data files actually contain.  
Whether you use formal workflows or not, make sure you capture everything 
you can while it’s easily accessible; this might include some of the text and 
key parameters of the proposal to your funders, or items as apparently 
unconnected as health and safety plans and records (which may record who 
was doing what, where and when). You must of course keep and manage 



your experimental parameters and calibrations your data file descriptions, 
database designs and schemas, tag libraries, questionnaires, etc etc… 

Keep data, and the ability to process it 
Of course you have to keep the data, preferably in standard data formats and 
file types, processed with standard programs. Open source has advantages 
over proprietary code in some (but not all) cases, as you are not forced to 
move forward onto new versions, and so should be able to recover data for 
longer. Home-crafted code is necessary quite often, but has risks (see 
Geoffrey Chang’s retraction of several articles, due to a simple programming 
error that flipped columns in a table (Chang et al., 2006)). Make sure you 
keep the code, and that it is well-documented, commented and annotated. 
Preferably get someone else to maintain it before the author leaves. Don’t 
trust this to your PhD student without good supervision. This one is 
important!!! 

Make ownership and allowable uses clear 
You will need to establish and often to document the issues relating to use of 
your data. In many cases involving human subjects, you will have to have 
your experiment cleared by your ethics committee. Your proposal to them and 
their response are critical records: keep them! If you make agreements about 
sensitive data with particular groups, these are promises on which future trust 
depends. Make them carefully and with what forethought you can, keep them, 
and make sure others will continue to respect them. 
If you have partners in other institutions, you need to avoid disputes over data 
ownership. Make some sort of agreements and document them (at least in 
minutes or notes of meetings, if getting formal legal agreements presents too 
great an obstacle). 

Make it citable 
Relating to incentives above, make it clear how your data should be cited 
(follow standard formats and discipline practice as closely as possible), and 
cite both your own data and that of others. The best way to get credit in the 
academic world is to build a base of data citations. Many archives, eg those in 
the Social Sciences, specify how their data should be cited, but often at the 
dataset level. Peter Buneman (Buneman, 2006) is exploring how datasets 
should be cited at a finer level of granularity, and in the face of change (2006). 
Standards in this are often mildly contradictory and very little followed; the 
best is probably the NLM Internet Supplement (Patrias, 2001). 

What re-use issues? 
Not to be too alarmist, but re-using other people’s data also brings problems. 
The first relates back to the issue of articles being rhetorical exercises. Once 
again stressing the integrity of good scientists, but data are collected for a 
purpose (data are not neutral with respect to the hypothesis being tested), 
and this can affect what is collected and how, and also how it is subsequently 
treated. Not all of this information will necessarily be clear from the 
documentation provided, so extreme care must be taken not to misinterpret 



the data. In the cases quoted above, the scientists involved went to great 
lengths to take account of these issues. 
Since data are not self-describing, it can be hard to find the data you need. In 
some cases, tools like Google will help (for example, (Murray-Rust et al., 
2004) have reported good results with known item Google searches using an 
InChI, a globally unique chemical identifier). However most often Google will 
be useless for data. This is where storing good metadata is essential, but you 
must also know where to look. Once they are better established, following 
data citations from literature should be helpful; at the moment, Buchhorn 
(2006) implies that many scientists track down data by inference from 
following up articles. 
Once you have found the data, it may prove difficult to understand them in the 
sort of detail required to analyse, and particularly to integrate with other data. 
Once you have understood the data, it may prove hard to use them; details 
like formatting, keys, defaults, truncation etc can get in the way. In these 
cases, well-documented data made available according to community agreed 
“standards” will be much easier to use. 
Overall, it can be hard to know the risks and pitfalls. Nevertheless, for the right 
problem, using other people’s data is essential, and can greatly extend your 
work. 

Who does it? 
Given this critical importance, how can we assure the continued curation of 
data? Whose job is it anyway?  
There is some evidence that “big science” is comparatively safe. No-one gets 
a big science grant these days without a data management plan. This 
particularly applies to large international collaborations with shared 
instruments, as in astronomy, particle physics, oceanography, etc. However, 
James M. Caruthers, a professor of chemical engineering at Purdue 
University has claimed ‘Small Science will produce 2-3 times more data than 
Big Science, but is much more at risk’ (Carlson, 2006). The lone scholar or 
small group, working comparatively isolated is under great pressure to 
publish. Such a group, as noted in Buchhorn and McNamara (2006) will tend 
to regard data curation as a set of optional activities to completed once the 
pressure is off… and it never is! The data are often on individual or at best 
shared drives. They will often not even be adequately backed up. The 
individuals concerned are intimately involved in the scientific work; they know 
so much that they do not feel a need to write down: they know too much, and 
are too busy, to create good metadata or documentation. At best some time 
after the PI has moved attention on to a successor project, at worst when a 
staff member leaves and the accounts are deactivated and then deleted, 
these data will simply disappear; they have no tomorrow.  
Perhaps not complete, here is a classification of data curators: 

• Individuals, using their hard disks, or perhaps networked drives 
• Departments or groups, whether using separate or shared drives 
• Institutions, perhaps in the shape of their libraries 



• Communities of institutions, either formal (as consortia), or informal (as in 
the case of the LOCKSS system, Lots Of Copies Keep Stuff Safe, a 
distributed service founded at Stanford University, see 
http://www.lockss.org/) 

• Disciplines 
• Publishers  
• National services, perhaps national libraries or archives, or national data 

services, and/or 
• Other 3rd party services. 
In a book chapter to be published shortly, I argue (Rusbridge, in press) that 
institutional curation repository solutions have some fundamental 
sustainability advantages, but lack the necessary critical mass of domain 
science involvement in curation. Discipline curation services do exist at the 
network level, and have huge advantages for data curation in being able to 
direct domain expertise to the curation task. But sustainability is always an 
issue for such disciplinary services, and many if not most disciplines have 
never even got to the point where sustainability has to be confronted.  

Conclusions  
Australia appears at the point of devising a national framework for data 
services; this is highly desirable and should be strongly supported (Buchhorn 
and McNamara, 2006). In the US, the National Science Foundation Office for 
Cyberinfrastructure has just published its strategy (NSF, 2007). In the UK, 
there is little consistency across the Research Councils, with Arts and 
Humanities (AHRC), Social Science (ESRC) and Natural Environment 
(NERC) all having long-standing data deposit policies, and most of the others 
moving that way. 
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