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Abstract 

The development of new first-row transition metal catalysts as both replacements for 

precious metals catalysts and in the search for novel reactivity is a crucial evolution for 

catalysis. Manganese is a non-toxic, inexpensive and Earth-abundant metal, making it a 

perfect candidate for catalysis. Despite this, manganese catalysis has not undergone the 

same development as for other Earth-abundant metals. 

The manganese-catalysed hydrosilylation and hydroboration of alkenes has been 

developed to give hydrofunctionalisation products in typically good yields (up to >95%) 

with control of regio- and chemo-selectivity. This work uses a bench-stable pre-

catalyst/activator manifold allowing for a simple methodology, ideal for the non-

specialist.  

 

Scheme A1: Manganese-catalysed hydrofunctionalisation of alkenes. 

This represents the first example of a developed methodology for the manganese-

catalysed hydrosilylation of alkenes. This methodology uses a bis(imino)pyridine 

manganese(II) pre-catalyst which has previously been unreactive in related reactions. 

The critical discovery has been in the use of an alkoxide activation system which enables 

the generation of a catalytically-active manganese species. 

 

Scheme A2: Effect of activation method on the catalytically ability of the generated manganese 

species. 
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Lay Summary  
 
A catalyst is a substance that facilitates the controlled transformation of one chemical 

species into another species. Crucially, the transformation would not occur under the 

same conditions were the catalyst not present. At the end of the transformation, the 

catalyst will remain unchanged from its original form, allowing for potentially limitless 

repetition of the process.  

 

Catalysts are ubiquitous in modern day life; the original catalysts are found in biological 

systems (enzymes) but man-made (and natural) catalysts are now crucial in the 

production of bulk and fine chemicals (pharmaceuticals, plastics, agrochemicals) and are 

essential tools in sustaining our environment (catalytic converters in motor vehicles). 

However, precious metal catalysts (e.g. platinum, rhodium, palladium) tend to dominate 

in the fine chemical sector. These metals are highly efficient however they are rare, 

expensive and toxic to biological systems. Catalysis is widely used in dispersive 

technologies catalysis which renders the recapture and recycling of these metals 

impossible.  

 

Therefore, the ideal catalyst consists of elements which are Earth-abundant and 

consequentially are inexpensive and non-toxic. Manganese is a key rock-forming 

element; it has been utilised by humans since Palaeolithic humankind used manganese 

ore as a pigment in cave paintings. The development and implementation of a broad 

range of selective and efficient manganese catalysts would help make chemical 

manufacture more sustainable and affordable. To this end we have developed 

manganese compounds capable of catalysing a range of transformations from which 

high-value products can be obtained.  These discoveries will hopefully provide an entry 

point for future research and the development of sustainable processes that will allow 

for a more sustainable future.  

 

 

  



iii 
 

Declaration  

I certify:  

a) that the thesis has been composed by myself, and  

b) either that the work is my own, or, where I have been a member of a research group, 

that I have made a substantial contribution to the work, such contribution being clearly 

indicated, and  

c) that the work has not been submitted for any other degree or professional 

qualification except as specified.  

 

 

 

Jonathan Carney 

  



iv 
 

Acknowledgements 

Thanks to: 

Steve: For the opportunity, for your time, patience and advice but most of all for making 

it such a joy. 

The Group: Somewhat for enduring my mess and for always lending a hand but mostly 

for the gossip, the hype and the bantz.  

Technical Staff: For the unthanked hours spent making my life easier. And for running 

the fantasy football league. 

Barry/Leonie: For all your help regarding everything AZ related and beyond. 

AZ Case Students: For making those winter days less bleak. 

AZ/University of Edinburgh: For funding my PhD. 

Mum, Dad, Beth: For 22 years of support, encouragement and nourishment that made 

the last 4 possible. 

Elsa: For moving with me and making memories. For enduring the many highs and lows 

that are inevitable when supporting Liverpool doing a PhD. 

  



v 
 

Table of Contents 

Abstract i 

Lay summary ii 

Declaration iii 

Acknowledgements iv 

Table of contents v 

Abbreviations vii 

1. Introduction 1 

1.1 Alkene Hydrosilylation 2 

1.1.1 Development of Platinum Catalysts for Hydrosilylation of Alkenes and 

Alkynes 

5 

1.1.2 First-row Transition Metals as Catalysts for Alkene Hydrosilylation 10 

1.1.3 Iron-Catalysed Alkene Hydrosilylation 11 

1.2 Manganese Catalysis 

1.2.1 Oxidative Manganese Catalysis 

24 

25 

1.2.2 Reductive Manganese Catalysis 27 

2. Manganese-Catalysed Hydrosilylation of Alkenes 32 

2.1 State-of-the-Art at the Outset of the Project  32 

2.1.1 Manganese-Catalysed Hydrosilylation of Carbonyl Compounds 32 

2.1.1.1 Manganese Carbonyls as Catalysts for Carbonyl Hydrosilylation 32 

2.1.1.2 Manganese Complexes as Catalysts for Carbonyl Hydrosilylation 

2.1.2 Manganese-Catalysed Alkene Hydrosilylation 

2.1.3 Bis(imino)pyridine Manganese Complexes  

38 

42 

44 

2.2 Project Aims 46 

2.3 Methodology Development 47 

2.3.1 Ligand and Pre-Catalyst Synthesis 47 

2.3.2 Reaction Discovery and Control Reactions 49 

2.3.3 Initial Optimisation 52 

2.3.4 Further Optimisation using EtBIPMnBr2 and Discovery of DIPPBIPMnBr2 56 

2.4 Substrate Scope 67 

2.4.1 Scope of Alkene 67 

2.4.2 Scope of Silane 73 

2.5 Gram-Scale Hydrosilylation of Octene 74 

2.6 Mechanistic Investigations 77 



vi 
 

2.7 Future Work and Conclusions 87 

            3. Manganese-Catalysed Hydroboration of Alkenes 89 

3.1 State-of-the-Art at the Outset of the Project 89 

3.1.1 Catalysed Hydroboration Reactions 90 

3.2 Project Aims 94 

3.3 Methodology Development 95 

3.3.1 Reaction Discovery and Control Reactions 98 

3.3.2 Methodology Optimisation 98 

3.4 Substrate Scope 101 

3.5 Mechanistic Investigations 104 

3.5.1 Activation 104 

3.5.2 Identity of the Active Catalyst  105 

3.6 Conclusions and Future Work  108 

4. Iron-Catalysed Reductive Cyclisation 109 

4.1 Project Aim 109 

4.2 Starting Material Synthesis 112 

4.3 Optimisation of Reaction Conditions 113 

4.4 Conclusions and Future Work 117 

             5. Conclusions and Outlooks 119 

             6. Experimental Details 122 

6.1 General Experimental Information 122 

6.2 General Procedures 124 

6.3 Ligand Synthesis 126 

6.4 Catalyst Synthesis 130 

6.5 Substrate Synthesis 137 

6.6 Hydrosilylation Products 144 

6.7 Hydroboration Products  166 

6.8 Reductive Cyclisation Substrates and Products 178 

6.9 X-Ray Crystallography Data 185 

7. References 188 

               8. Appendix: Publications 196 

 



vii 
 

Abbreviations 

Ac   Acetyl  

acac   Acetylacetonate  

API  Active Pharmaceutical Ingredient 

Ar   Aryl  

BArF3  tris(3,5-bis(trifluoromethyl)-phenyl)borane 

BIP   Bis(imino)pyridine  

Bn   Benzyl  

Bpin  4,4,5,5-Tetramethyl-1,3,2-dioxaborolane 

Box   Bis(oxazoline) 

Bu  Butyl 

COD   1,5-Cyclooctadiene  

COT  1,3,5,7-Cyclooctatetraene 

COE  Cyclooctene 

COSY  Correlation spectroscopy 

Cp   Cyclopentadienyl  

Cy   Cyclohexyl  

DCT  Dibenzo[a,e]cyclooctatetraene 

DIPP  Diisopropylphenyl 

DMAP   4-Dimethylaminopyridine 

DMF  N,N-Dimethylformamide  

DMSO   Dimethyl sulfoxide  

dpm  tris(2,2,6,6-tetramethyl-3,5-heptanedionato) 

dppe   1,2-Bis(diphenylphosphino)ethane 

dr   Diastereomeric ratio  

E  Element 

ee   Enantiomeric excess  

equiv.   Equivalents  

ESI   Electrospray ionisation  

Et  Ethyl 

EWG  Electron-withdrawing group 

GCMS  Gas chromatography mass spectrometry 

HAT   Hydrogen Atom Transfer 

HMDS   Bis(trimethylsilyl)amide  



viii 
 

HPLC  High performance liquid chromatography 

HRMS  High resolution mass spectrometry 

HSQC  Heteronuclear single quantum coherence 

ICP-MS  inductively coupled plasma mass spectroscopy 

IR  Infrared 

IP  Imino(pyridine) 

J  Coupling constant in Hz 

L   Ligand 

m.p.  Melting point 

M   Metal 

MD’M  1,1,1,3,5,5,5-heptamethyltrisiloxane 

Me  Methyl 

Mes  Mesityl 

NHC  N-heterocyclic carbene 

NMP   N-methylpyrrolidine 

NMR   Nuclear magnetic resonance 

Ph  Phenyl 

Pr  Propyl 

py   Pyridine 

Rf   Retention factor 

r.t.  Room temperature 

TBAF   Tetrabutylammonium fluoride 

TEMPO  2,2,6,6-tetramethylpiperidin-1-yl)oxyl 

Terpy  Terpyridine 

Tf   Trifluoromethanesulfonyl 

THF   Tetrahydrofuran 

TMEDA  N,N,N',N'-Tetramethylethylenediamine 

TOF  Turnover frequency 

TON  Turnover number 

Ts   para-Toluenesulfonyl 

UV  Ultraviolet 



1 
 

1. Introduction 

 

The use of catalysts is a cornerstone in the movement towards greener and more 

sustainable synthesis. To achieve sustainable synthesis, chemists must address the 

prevention of waste by using highly atom-economic and selective processes.1 In this 

respect, hydrofunctionalisation is an ideal reaction. It is, theoretically, a 100% atom-

economic approach to the formation of carbon–heteroatom (e.g. hydrosilylation, 

hydroboration) and carbon–carbon bonds (hydroformylation, hydrovinylation). 

Hydrofunctionalisation has been reported using a variety of transition-metal catalysts 

but has most commonly used platinum group metal catalysts. In particular, the 

hydrofunctionalisation of olefins is a highly useful reaction, as olefins are readily 

available, diversely functionalised and the construction of carbon–carbon bonds has 

always been highly prized.2,3 

 

Scheme 1.1 Overview of the hydrofunctionalisation of olefins.  

A hydrofunctionalisation reaction is defined by the addition of a hydrogen atom and 

another moiety, ‘E’ which can be either electrophilic or nucleophilic, across an 

unsaturated bond (Scheme 1.1 A). The nature of ‘E’ defines the type of 

hydrofunctionalisation reaction.  The most versatile type of hydrofunctionalisation is 

when ‘E’ is electrophilic (e.g. hydrosilylation, hydroacylation, hydroboration). 

Hydrofunctionalisation reactions typically use a precious metal catalyst. This somewhat 

negates the sustainability of the hydrofunctionalisation process and is an area which can 

be improved. Whilst developments have been made towards recycling precious metal 

catalysts, an ideal solution would be the use of abundant, cheap and low-toxicity metals.  

Hydrofunctionalisation have many important industrial applications. Hydroformylation 

is a vital reaction for the conversion of low-value hydrocarbons into aldehydes which are 

valuable chemical precursors.4 Hydrosilylation is one of the largest uses of homogeneous 

catalysis and is particularly important for the synthesis of cross-linked silicone polymer 

chains.5,6 The synthesis of Nylon 66 (the second most common Nylon polymer) requires 

consecutive hydrocyanation reactions which are catalysed by a nickel compound.7,8 
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Scheme 1.2 The utility of a range of hydrofunctionalisation reactions. A) 

Hydroformylation to form an aldehyde from low-value hydrocarbons. B) 

Hydrosilylation to form cross-linked silicone polymers. C) The use of hydrocyanation in 

the synthesis of Nylon 66.  
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1.1 Alkene Hydrosilylation 

The hydrosilylation of olefins is essential in a myriad of sectors such as healthcare,9 

construction,5 cosmetics10,11 and agriculture.12 Platinum is widely used to catalyse the 

hydrosilylation of olefins on industrial scale. 5,6,12,13 The first significant platinum catalyst 

was hexachloroplatinic acid (Speier’s catalyst) which was found to be highly active and 

selective.14 A second generation platinum catalyst was reported by Karstedt  which 

displayed improved activity and selectivity and has been an industry benchmark 

since.6,15 However, in 2008 it was estimated that the hydrosilylation industry consumes 

5.6 tonnes of platinum a year.13 Recycling of the platinum catalyst is non-trivial. In the 

production of silicone polymers, the catalyst can become immobilised within the 

crosslinked product and as this is a dispersive technology the waste is impossible to 

collect.6 Therefore, the discovery of inexpensive, low-toxicity catalysts is an important 

challenge for the hydrosilylation industry. 

The minimisation of waste by-products (for instance regio and stereoisomers) is a 

crucial aspect of sustainable synthesis. Highly selective processes eliminate waste and 

can make energy intensive purification methods simpler. Platinum-catalysed 

hydrosilylation reactions typically generate a range of side products.16 Regioselectivity 

of the hydrosilylation product can vary between the anti-Markovnikov product and the 

Markovnikov product  but platinum-catalysed hydrosilylation reactions typically exhibit 

anti-Markovnikov selectivity. Additional by-products can originate from 

dehydrogenative silylation, alkene isomerisation, hydrogenation and over-addition 

processes (Scheme 1.3).  
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Scheme 1.3 An overview of the potential products and by-products from the 

hydrosilylation of alkenes 

The first detailed mechanistic report into the hydrosilylation of alkenes was described 

by Chalk and Harrod in 1965,17 in which the mechanism of olefin hydrosilylation using a 

range of preformed platinum(II) and iridium(I) complexes was investigated. The 

proposed mechanism, known as the ‘Chalk-Harrod’ mechanism, has long been accepted 

to be correct (Scheme 1.4).18 It was proposed that silane oxidative addition would be 

followed by alkene coordination to the metal centre to give the metal-olefin complex C. 

This would be followed by hydrometallation of the alkene to give the alkyl-metal species 

D and then carbon-silicon bond forming reductive elimination. An alternative 

mechanism also exists, known as the ‘modified Chalk-Harrod’ mechanism.19 In this 

mechanism upon formation of intermediate C, insertion of the alkene into the M–[Si] 

bond occurs, a process known as silylmetalation to give intermediate F. This is followed 

by carbon–hydrogen bond forming reductive elimination. 
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Scheme 1.4 The Chalk-Harrod and Modified Chalk-Harrod mechanisms. 
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1.1.1 Development of Platinum Catalysts for Hydrosilylation of 

Alkenes and Alkynes 

Platinum-catalysed hydrosilylation was first reported in a patent by Wagner and co-

workers.20 It showed that platinum deposited on powdered charcoal could catalyse the 

hydrosilylation of acetylene 1 at high pressures and temperatures  to give the vinylsilane 

product 2 and the bis hydrosilylation product 3 (Table 1.1, Entry 1). 

Table 1.1 Discovery of solid-supported platinum catalysts in the hydrosilylation of 

acetylene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This was followed by Speier’s report that H2PtCl6 14 was a highly active catalyst for the 

hydrosilylation of alkenes.14  It showed that very small loadings of platinum would 

catalyse the hydrosilylation of 1-pentene, 2-pentene and cyclohexene in high yields over 

short reaction times (Table 1.2, Entry 4).  

 

Entry Catalyst Catalyst Loading 

(mol%) 

Yield of 

H-Si (%) 

Yield of Bis 

H-Si (%) 

1 5% Pt on 

powdered 

charcoal 5 

0.004 75 25 

2 0.77% Pt on 

powdered 

charcoal 6 

6x10-4 60 12.5 

3 5% Pt on 

powdered 

CaCO3 7 

0.004 Trace Trace 

4 5% Pt on 

powdered 

asbestos 8 

0.004 Trace Trace 
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Table 1.2 The hydrosilylation of pentene by different platinum species 

 

 

 

 

 

 

 

 

 

 

 

 

Whilst Speier’s catalyst revolutionised the hydrosilylation industry, providing access to 

a range of poly(siloxane) products, it suffered from catalyst-poisoning, which led to the 

formation of by-products.15 Therefore, a range of methods designed to stabilise the low-

valent platinum centre were developed. Ashby reported a platinum-olefin complex21 

whilst Lamoreaux reported that when hexachloroplatinic acid was reacted with alcohols, 

ethers or aldehydes the resulting, undefined platinum catalyst was more catalytically 

active and more easily recycled than hexachloroplatinic acid.22 Karstedt’s report of a 

platinum-siloxane catalyst was a major advance for catalyst activity and it remains the 

benchmark for catalyst activity.6,15 Karstedt’s original report was of a catalytically active 

solution rather than of a defined catalyst (Scheme 1.5A). Hitchcock et al. synthesised 

platinum species 17 from Pt(cod)2 18 and 1.5 equivalents of tetramethyldivinylsiloxane 

16 and were able to determine the structure by X-ray crystallography (Scheme 1.5B).23 

An NMR comparison between this isolated species and the catalytically active solution 

(formed from Speier’s catalyst) indicated the two species were similar enough to assume 

that platinum species 17 is largely responsible for the catalytic activity of the solution 

reported by Karstedt. 

 

Entry Catalyst Catalyst Loading 

(mol%) 

Yield of 

H-Si (%) 

1 K2PtCl4 12 0.05 65 

2 K2PtCl4 12 2.5 >95 

3 Pt-black 13 12.5 92 

4 H2PtCl6 14 0.0005 93a 

5 0.06% Pt/C 15 0.002 84 

aReaction time is 30 minutes. 
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Scheme 1.5 Synthesis of Karstedt’s catalyst 17 from different precursors 

Mechanistic studies suggest that Karstedt’s catalyst operates by a Chalk-Harrod 

mechanism. Despite the high amounts of platinum black formed in the reaction and a 

long induction period, sufficient evidence exists to suggest that Karstedt’s catalyst 

operates in a homogeneous manner.24 The degradation of Karstedt’s catalyst to 

platinum black is thought to be responsible for the high proportion of side products 

observed in the reaction.25,26 The incorporation of oxygen into the reaction mixture is 

known to aid catalysis as oxygen disrupts the formation of platinum colloids and 

therefore allows for the hydrosilylation of poorly-coordinating olefins.24 The induction 

period exists because the vinyl siloxane ligands coordinated to the pre-catalyst are 

required to undergo hydrosilylation and/or ligand exchange with the substrate prior to 

catalysis. Steffanut et al. reported that the substitution of one of the vinyl siloxane ligands 

in Karstedt’s catalyst with an electron-deficient napthoquinone ligand led to rate 

enhancements and increased catalyst stability (Scheme 1.6A).27  

A final development was the replacement of a vinyl siloxane ligand with a σ-donor type 

ligand such as a phosphine or a carbene.25 The carbene ligated complexes were found to 

be extremely stable and gave increased selectivity for the hydrosilylation product 25. 

The hydrosilylation product of octene was isolated in a 96% yield when catalysed by 

platinum carbene complex 24, whilst Karstedt’s catalyst 17 only gave a 78% yield due to 

the formation of unwanted by-products. Increased functional group tolerance was also 

reported, particularly for alcohols and epoxides. 
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Scheme 1.6: A) The utilisation of a napthoquinone ligated platinum catalyst 20 to 

increase the selectivity of alkene-hydrosilylation. B) A comparison of the 

hydrosilylation of 1-octene catalysed by Karstedt’s catalyst 17 and a carbene derivative 

24. 
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1.1.2 First-row Transition Metals as Catalysts for Alkene 

Hydrosilylation 

In a society increasingly conscious of its own impact on the environment, sustainable 

approaches to existing technologies are urgently required. Within the context of 

hydrosilylation, this desire for change is heightened by the high and volatile price of 

platinum and immobilisation of the catalyst within cross-linked products. Platinum 

group metals are sourced in only a few locations meaning supply can be unreliable.28,29 

Consequently, the replacement of rare, toxic and expensive metals by inexpensive, 

benign and readily available alternatives in catalysis has been a rapidly developing area 

of research since the turn of the millennium. 

The first-row of the transition metals contains elements that are up to one million times 

more abundant than the precious metals of the second- and third-row.30 The abundance 

of these metals has meant that in many cases, nature has evolved to utilise them in its 

biological functions. A key step in photosynthesis utilises a manganese photocatalyst31 

and iron-heme complexes are essential for human life.32 Accordingly, residual iron traces 

allowed in active pharmaceutical ingredients (API’s) are one hundred times greater than 

for that of the platinum group metals.33 

Some of the most studied first-row transition metals for catalysis are nickel and cobalt. 

Nickel has been used extensively as a more abundant replacement for palladium in cross-

coupling reactions.34–38 Similarly, cobalt has been used as an alternative to rhodium for 

hydroformylation.4,39 Cobalt catalysts have displayed a diverse range of reactivity in 

olefin hydrosilylation reactions.40  There have been numerous reports of cobalt-

catalysed anti-Markovnikov hydrosilylation,41–48 Markovnikov hydrosilylation41,49–52 and 

dehydrosilylation of alkenes.53 Additionally, the cobalt-catalysed hydrosilylation of 

alkynes to give (E)-vinylsilanes,54,55 (Z)-vinylsilanes56,57 and α-vinyl silanes58,59 is well 

established. Likewise, there are multiple reports investigating the nickel-catalysed anti-

Markovnikov hydrosilylation,60–67 Markovnikov hydrosilylation68,69 and 

dehydrosilylation of alkenes.70 However, nickel and cobalt are significantly less 

abundant than other first row metals such as iron, titanium and manganese and are 

significantly more toxic than iron, manganese and copper.30,71,72 They therefore do not 

present a complete solution to the issues created by platinum.   
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1.1.3 Iron-Catalysed Alkene Hydrosilylation 

Iron is the most abundant transition-metal and is incorporated in many biological 

systems. It is therefore viewed as an excellent candidate for sustainable catalysis. 

Accordingly, iron has undergone a renaissance in use as a catalyst.73,74 In addition to 

cross-coupling and hydrogenation, a significant portion of this research has been 

dedicated towards the iron-catalysed hydrosilylation of carbonyls and olefins. 

Nesmeyanov et al. demonstrated that iron pentacarbonyl could catalyse the 

hydrosilylation of alkenes at high temperatures to make alkyl silane and alkenyl silane 

products.75  The selectivity between the two products was poor and unpredictable. 

Additionally, it was proposed that the alkene of the substrate was also acting as a 

hydrogen acceptor to give the alkane product (as a byproduct of dehydrogenative 

silylation). This methodology was further investigated by Wrighton and Schroeder who 

used UV irradiation to force dissociation of carbonyl ligands and create co-ordinately 

unsaturated iron species.19,76  

 

Scheme 1.7 General overview of iron carbonyl-catalysed hydrosilylation of alkenes. 

The formation of alkneyl silane products led Wrighton to propose the modified Chalk-

Harrod mechanism (Scheme 1.8). 19,77–80 The formation of an active catalyst G was 

proposed to occur by the liberation of two molecules of carbon monoxide from iron 

pentacarbonyl A. This would then undergo silylmetallation to give intermediate H. At 

this point C–H reductive elimination could occur to give intermediate L. Alternatively, β-

hydride elimination could occur from the alkyl silane to give an iron dihydride 

intermediate I. Ligand exchange of the olefinic ligand would give alkenyl silane, the 

dehydrosilylation product. Hydrometallation of the newly coordinated alkene (from 

intermediate J), followed by a metathesis-type reaction with another hydrosilane 

molecule would give an alkane, the hydrogenation product, and iron hydride species L. 
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Scheme 1.8 Wrighton’s proposed activation of Fe(CO)5 and the modified Chalk-Harrod 

mechanism that leads to the production of dehydrosilylation and hydrogenation 

products. 

Iron carbonyl clusters have also been used to catalyse olefin hydrosilylation. Kakiuchi et 

al. reported the use of Fe2(CO)9 28 and Fe3(CO)12 29 to selectively give the 

dehydrosilylation product in the hydrosilylation of styrenes (Scheme 1.9A).81 This 

reaction occurred at lower temperatures than previous reports using Fe(CO)5, which was 

inactive under the reported conditions. Naumov et al. reported that the iron carbonyl 

compound CpFe(CO)2Me 31 would catalyse the dehydrosilylation of divinylsiloxanes 

using a range of hydrosilanes at 80 °C (Scheme 1.9B).82 Nagashima and co-workers 
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reported that the hydrogenation and hydrosilylation of alkenes was catalysed by an iron 

disilyl dicarbonyl compound.83 

 

Scheme 1.9 A) Hydrosilylation of styrene 26 catalysed by iron carbonyl cluster 

compounds. B) Hydrosilylation of divinylsiloxane catalysed by CpFe(CO)2Me 31 

Using strong field carbonyl ligands results in the formation of catalytically-active low-

spin iron species. However, these methodologies are limited by the need for high 

temperatures or near-constant photoirradiation to generate active catalyst. The use of 

multiple carbonyl ligands leads to saturation of the metal coordination sphere, limiting 

the addition of ligands that can exert an influence on the selectivity and reactivity of the 

catalyst. Additionally, the liberation of carbon monoxide makes these methodologies 

undesirable. Alternative methods of controlling the spin-state of iron would allow for the 

design of more sophisticated catalysts. In particular, the use of redox non-innocent 

ligands allows stabilisation of low oxidation-state iron centres.  

Chirik and co-workers reported that reduced iron bis(imino)pyridine (BIP) complexes 

were highly active for the hydrogenation and hydrosilylation of a range of olefins.84 The 

complexes were synthesised by reduction of iron(II) chloride and bromide precursors 

using a sodium/mercury amalgam to give the formally Fe(0) complexes (Scheme 1.10A). 

The reduced species were found to bear a diradical on the ligand which was 

antiferromagnetically coupled to the metal center.85–87 The hydrosilylation of 

monosubstituted and 1,2-disubstituted alkenes occurred rapidly at room temperate 

with as little as 0.3 mol% of catalyst 34 (Scheme 1.10B). The hydrosilylation of an 
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internal alkyne, diphenylacetylene gave the alkenyl silane product also proceeded in a 

quantitative yield.  

 

Scheme 1.10 A) The reduction of bis(imino)pyridine iron(II) precursors B) The 

hydrosilylation of a range of alkenes catalysed by the reduced bis(imino)pyridine iron 

species. 

Attempts to synthesise related compounds bearing smaller N-aryl substituents (for 

instance 2,6-dimethylphenyl) led to the formation of MeBIP2Fe 36 which was catalytically 

inactive (Scheme 1.10A).  Using sodium napthalenide as the reductant led to the 

formation of iron dimers, bridged by a μ2-N2 ligand 37.88 It was found that BIP complexes 

bearing sterically smaller N-aryl substituents were more active for the hydrosilylation of 

alkenes and (MeBIPFe)2N2 was capable of operating with a turnover number (TON) up to 

100 000 mol h-1 (Scheme 1.10B).89 Notably, these catalysts were also compatible with 

tertiary silanes, allowing access to a range of industrially important products. These 

reactions were also highly regioselective for the anti-Markovnikov product. 
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Scheme 1.11 A) Reduction of bis(imino)pyridine iron(II) precursors 35 with different 

reducing agents. B) hydrosilylation of octene 22 catalysed by highly active iron dimer 

species 37.  

Despite the high activity and selectivity of the pre-formed iron(0) bis(imino)pyridine 

complexes they are highly air- and moisture-sensitive. This makes them unsuitable for 

large-scale use and the synthesis is beyond the capabilities of a non-expert. As a result, 

substantial work has gone into the exploration of in situ activation of bench-stable 

iron(II) precursors. This typically involved the addition of stoichiometric, with respect 

to catalyst, quantities of an organometallic reagent which can act as a hydride source.  

The Thomas group have reported the hydrosilylation of alkenes using EtBIPFeCl2 38 as a 

pre-catalyst (Scheme 1.12A).90,91 The pre-catalyst was formed in situ from the free ligand 

and FeCl2 and the complex was then activated in situ using EtMgBr. This is proposed to 

occur by transmetalation of the ethyl group, from magnesium to iron, to give an iron(II) 

dialkyl intermediate 39. This intermediate can then undergo β-hydride elimination, to 

eliminate ethene and give an iron(II) hydride ethyl intermediate 40. This was proposed 

to reductively eliminate ethane and form a reduced iron species 41 (Scheme 1.12B). The 

use of tolylmagnesium bromide, which cannot undergo β-hydride elimination, still gave 

an active catalyst occurring by direct reductive elimination of bitolyl 43. The amount of 

bitolyl formed was equivalent to the formation of an iron(I) active catalyst (Scheme 
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1.12C). Additionally, the most thorough substrate-scope of iron bis(imino)pyridine 

catalysed hydrosilylation at the time was reported. This found the reaction conditions 

were tolerant of amine, amido, imino, pyridine, ester and ketone functionalities.  

 

Scheme 1.12 A) General overview of the hydrosilylation of olefins catalysed by an air-

stable iron(II) pre-catalyst. B) Proposed route of iron(II) reduction. C) Reduction using 

tolylmagnesiumbromide  

This work was developed further by the discovery of air- and moisture-stable activation 

platforms to assist the easy implementation of iron-catalysed olefin hydrosilylation. 

Challinor et al. reported that EtBIPFe(OTf)2 44 with the tertiary amine Hunig’s base 45, 

was capable of catalysing alkene hydrosilylation (Scheme 1.13A).92 The use of the weakly 

coordinating triflate counterion was shown to be crucial for catalysis to occur. Notably 

the bench-stable reagents, paired with the high catalyst activity, allowed for the 

hydrosilylation of octene 22 to occur under air. More recently, Thomas and co-workers 

reported the use of the bench-stable alkoxide salt NaOtBu 49 as a generic activation 

platform for a range of Earth-abundant metals used to catalyse a range of 
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transformations, including hydrosilylation and hydroboration (Scheme 1.13B).42 The 

activation was proposed to proceed through the in situ generation of hypervalent 

siliconate and boronate species. The transmetalation of hydrides to the transition metal 

would then lead to a reductive elimination event and the production of a formally 

reduced, low oxidation-state species (Scheme 1.13C).  

 

Scheme 1.13 A) The use of an amine to activate an iron(II) triflate precatalyst. B) The 

use of NaOtBu to activate EtBIPFeCl2 to catalyse the hydrosilylation of octene. C) The 

proposed activation route for NaOtBu. 

Lam et al. published a computational analysis of the iron bis(imino)pyridine 

hydrosilylation of alkenes.93 They proposed a modified Chalk-Harrod mechanism in 

which the rate-determining step was hydride transfer directly from the hydrosilane into 

the coordinated alkene. 

Bis(imino)pyridine ligands have led to the development of a range of bi-, tri- and 

tetradentate ligands being used in hydrosilylation processes. Nakazawa and co-workers 

reported that iron terpyridine complexes, activated in situ by NaHBEt3, were active for 

the hydrosilylation of unfunctionalized aliphatic alkenes (Scheme 1.14A).94 This was 

swiftly followed by the Chirik group reporting that terpyridine and bis(imino)pyridine 

iron dialkyl species were active for the hydrosilylation of alkenes.95 Notably, the high-

spin terpyridine iron(II) alkyl species was used to catalyse the hydrosilylation of 

industrially relevant vinylcyclohexene oxide 51 by MD’M 23 giving high yields and 
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complete control of selectivity (Scheme 1.14B). This is analogous to the carbene-

substituted derivatives of Karstedts catalyst (see section 1.1.1).25 

 

Scheme 1.14 A) Hydrosilylation of heptene catalysed by an in situ activated terpyridine 

iron catalyst B) Hydrosilylation of vinylcyclohexene oxide catalysed by a terpyridine 

iron dialkyl species. 

Huang and Walter reported a highly chemoselective iron-catalysed methodology for the 

hydrosilylation of alkenes (Scheme 1.15).96 This used a phosphinite-iminopyridine 

(PNN) iron complex 54 that was activated in situ at -37 °C by sodium 

triethylborohydride. Notably they reported the hydrosilylation of the alkene 

functionality of 1-hexen-5-one 61 by diphenyl silane 62 with complete control of 

chemoselectivity. Previous reports by Chirik97 using DIPPBIPFe(CH2SiMe3)2 59 and Tilley98 

using Fe(HMDS)2 58 had shown chemoselectivity for reduction of the carbonyl 63. 

Thomas had previously reported that the hydrosilylation of 5-hexen-2-one 61 by 

phenylsilane 33 gave a mixture of both products but predominately the alkylsilane 

product 64.90 Huang demonstrated that a crucial parameter for the chemoselectivity of 

both the BIP and PNN iron catalysts was the steric bulk of the catalyst as ligands 

substituted with smaller N-aryl substituents demonstrated more chemoselectivity for 

alkene hydrosilylation over carbonyl hydrosilylation.  Additionally, spectroscopic 

measurements showed that the phosphinite-iminopyridine iron complex was more 

electron-rich than the iron complex ligated by bis(imino)pyridine. It was proposed that 
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the increased electron density of PNNFe would give a larger binding affinity to the olefin 

functionality due to more favourable π-backbonding interactions, explaining the high 

chemoselectivity of PNNFe.  

 

Scheme 1.15 The hydrosilylation of 1-hexen-5-one by a range of catalysts. a Alcohol 

product isolated. b Using phenylsilane 

Huang and co-workers developed a phosphine-iminopyridine ligand system which 

displayed regiodivergence for alkene hydrosilylation depending on the metal used.51 

Iron pre-catalysts 67 selectively gave the anti-Markovnikov product 46 whilst cobalt 

pre-catalysts 66 gave the Markovnikov product 65 (Scheme 1.16). By replacing the 

oxygen tether in the phosphinite-iminopyridine iron complex 54 with a carbon atom, the 

active catalyst was found to have greater stability which was demonstrated by a higher 
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TON. It was proposed that the iron-catalysed method proceeded by a Chalk-Harrod 

mechanism. They propose the regiodivergence stems from the cobalt-catalysed reaction 

following a deviation from the modified Chalk-Harrod mechanism. The suggested 

mechanism includes silylmetalation of the alkene, followed by a σ-bond metathesis-type 

interaction between hydrosilane and the alkylcobalt intermediate.  

 

Scheme 1.16 Regiodivergent hydrosilylation of alkenes. 

The Lu Group have undertaken pioneering studies towards the asymmetric iron-

catalysed hydrosilylation of alkenes using iminopyridine oxazoline ligands.99 Initially 

they reported the asymmetric hydrosilylation of 1,1-disubstituted alkenes. The 

hydrosilylation of 1,1-disubstituted styrene derivatives gave high yields and 

enantiomeric excess (ee) (Scheme 1.17A).52 The methodology was limited as the 

hydrosilylation of aliphatic alkenes proceeded with very little stereocontrol. This work 

was followed by a report into the asymmetric, Markovnikov hydrosilylation of alkenes 

(Scheme 1.17B). This was remarkable as during the preparation of the manuscript there 

was no precedent for an iron-catalysed, Markovnikov selective methodology for the 

hydrosilylation of alkenes. This work used an iminopyridine oxazoline ligand possessing 

extremely bulky N-aryl substituents 69. Contrary to the previous work, this methodology 

gave excellent yields and control of the stereochemistry for aliphatic alkenes, while no 

styrene derivatives were reported. When PhSiD3 33’ was incorporated into the reaction, 

no deuterium scrambling from β-hydride elimination product was observed 71 (Scheme 

1.17C). Therefore, it was assumed that an iron(I)–silyl species was the active catalyst and 

silylmetaltion of the alkene was the key mechanistic step. 
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Scheme 1.17 A) An overview of the asymmetric hydrosilylation of 1,1-disubstituted 

alkenes catalysed by an iron catalyst bearing an iminopyridine oxazoline ligand. B) 

Asymmetric Makovnikov selective hydrosilylation of alkenes. C) Mechanistic insight 

showing deuterium incorporation using PhSiD3. 

An alternative ligand system for Markovnikov selective iron-catalysed hydrosilylation 

was reported by Hu et al.100 This system used an iron(II) pre-catalyst bearing a bidentate 

1,10-phenanthroline ligand 72 which gave Markovnikov selectivity for a range of 

terminal and 1,2-disubstituted styrenes (Scheme 1.17A). Terminal, aliphatic alkenes 

would also undergo hydrosilylation in high yields, but the anti-Markovnikov product was 

formed selectively (Scheme 1.17B). 
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Scheme 1.18 A) Markovnikov hydrosilylation of styrenes. B) anti-Markovnikov 

hydrosilylation of octene. 

The Ritter group reported that in situ formed imino(pyridine) iron species 74 could 

catalyse the hydrosilylation of 1,3 dienes.101 The increase in available coordination sites, 

through using bidentate ligand 75 instead of a tridentate ligand, is a plausible 

explanation for the reactivity with dienes in preference to alkenes. 

 

Scheme 1.19 Iron-catalysed hydrosilylation of 1,3-dienes 

Nagashima and co-workers reported an activator free iron(II)-catalysed methodology 

for the hydrosilylation of alkenes using hydroalkoxysilanes and hydrosiloxanes.102 This 

work built on previous work using iron(0) (1,3,5,7-cyclotetraene) compounds and 

adamantyl isocyanide 80 ligands.103 By using iron(II) pivolate 79 pre-catalysts a range 

of styrene derivatives underwent hydrosilylation in high yields. It was shown that the 

hydrosilane used in the reaction acts as the reductant and the reagent. 
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Scheme 1.20 Iron(II) pivolate catalysed hydrosilylation of styrenes 
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1.2 Manganese Catalysis  

Manganese is the third most abundant transition-metal and is crucial to life, as the 

photosystem II uses a Mn(II) oxidation catalyst. Humans have a long association with 

manganese species with manganese oxides being used in cave paintings by Paleolithic 

humankind and in the production of glass by the Romans.104 

Manganese has access to a wide number of oxidation states (-3 to +7) but is most stable 

as manganese(II).30 Manganese(II) has 5 d-electrons and therefore has a half-filled shell. 

Therefore, manganese is more electron-positive than vanadium and chromium (despite 

it possessing more valence electrons) and manganese(II) alkyl species are known to 

possess more ionic character than is typical for a transition metal alkyl species.105,106 

Manganese is most well-known for oxidation chemistry with potassium permanganate 

and manganese dioxide being common laboratory oxidants.107,108  
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1.2.1. Oxidative Manganese Catalysis 

In catalysis manganese has predominately been used in oxidative transformations. Most 

notably, the Jacobson-Katsuki asymmetric epoxidation of alkenes uses a manganese 

salen catalyst 83 (Scheme 1.21).109,110  

 

Scheme 1.21: Jacobsen-Katsuki epoxidation of alkenes. 

Groves and co-workers have developed the manganese porphyrin-catalysed oxidation of 

aliphatic C–H bonds (Scheme 1.22A).111 Whilst chemoselectivity is generally driven by 

the stability of the resulting alkyl radical (tertiary > secondary > primary), it is possible 

to bias the catalyst selectivity by using bulky porphyrin ligands. This methodology 

proceeds by oxidation of the manganese catalyst from manganese(III) A to a 

oxomanganese(V) species B. The oxomanganese species can then perform a radical 

abstraction from the alkyl species to generate a hydroxomanganese(IV) species C. This 

is followed by hydroxyl recombination with the alkyl radical to give the alcohol product 

(Scheme 1.22B). The use of hypochlorite allows for chlorination of C–H bonds.112 The 

replacement of hypochlorite with silver fluoride or sodium azide allowed for fluorination 

or azidation transformations to occur instead (Scheme 1.22C).113–115 
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Scheme 1.22 A) Manganese-catalysed C–H oxidation of cyclohexane. B) Heteroatom 

rebound mechanism for C–H oxidation. C) The chlorination, fluorination and azidation 

of cyclohexane enabled by the addition of a corresponding metal salt. 
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1.2.2 Reductive Manganese Catalysis 

Despite these successes manganese catalysis has not received the same attention as 

other first-row transition metals, particularly in hot-topic research areas such as cross-

coupling, hydrogenation and hydrofunctionalisation. However, since 2016 major 

advances have been made in manganese-catalysis, particularly in hydrogenation-type 

reactions.116,117 

The hydrogenation of ketones has been reported using a range of manganese(I) 

compounds bearing PNP ligands. Beller and co-workers reported the hydrogenation of 

nitriles, ketones and aldehydes using hydrogen gas.118 The PNPMn(I) pre-catalyst 93 is 

activated by NaOtBu and was shown to tolerate a range of other reducible functionalities 

such as esters, alkenes, alkynes, amides as well as coordinating groups such as pyridine 

and amines. A manganese(II) compound ligated by the PNP ligand 94 was not 

catalytically active and neither were manganese(I) species which did not bear the PNP 

ligand (95  and 96. Scheme 1.23A). Beller proposed a mechanism for the reaction where 

the pre-catalyst 93 was activated by NaOtBu to form a Mn(I) amido intermediate 94 

which can then activate H2. From there hydrogenation of the substrate can occur in an 

outer-sphere mechanism (Scheme 1.23C). The group of Kempe reported a similar 

methodology which used a PNP ligand with a 1,3,5-triazine backbone 99 and Sortais 

reported the use of a manganese complex bearing a PNP ligand with a pyridine backbone 

100 would catalyse the hydrogenation of ketones. (Scheme 1.23B).119,120  
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Scheme 1.23 A) Activity of a range of manganese compounds in the hydrogenation of 

benzonitrile. B) Overview of the Beller, Kempe and Sortais catalyst systems in ketone 

hydrogenation. C) Proposed outer-sphere mechanism for ketone hydrogenation. 

 

Clarke and co-workers advanced the field by reporting the asymmetric hydrogenation of 

ketones catalysed by a cationic Mn(I) species ligated by a facially coordinating PNP 

ligand 104. The hydrogenation of a range of aryl ketones was performed in high yields 

and enantiomeric excess (ee) (Scheme 1.24A). Beller and co-workers reported the 

asymmetric hydrogenation of ketones catalysed by chiral PNPMn(I) complex 105, which 

was also tolerant of aliphatic ketones in addition to aryl ketones (Scheme 1.24B).  
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Scheme 1.24 A) Asymmetric hydrogenation of ketones by cationic fac-PNN manganese 

species 104 B) Asymmetric hydrogenation of ketones by cationic PNP manganese 

species 105. 

The hydrogenation of esters is more challenging than ketones and aldehydes due to the 

decreased electrophilicity of the carbon atom. Elangovan, Garbe et al. reported the first 

manganese-catalysed hydrogenation of esters by hydrogen gas (Scheme 1.25A). A range 

of aliphatic and aryl esters underwent hydrogenation, catalysed by a cationic 

manganese(I) species with a PNP ligand 106.121 The Clarke group demonstrated the 

hydrogenation of esters could be performed using a similar system to that used for the 

asymmetric hydrogenation of ketones.122 This work would be extended to the 

hydrogenation of enantioenriched α-chiral esters, which proceeded without loss of 

stereochemistry (Scheme 1.25B).123 Espinosa-Jalapa et al. reported a PNNMn(I) 

compound 107 which was capable of catalysed hydrogenation of esters.124 The report 

also showed the isolation of two key intermediates in the hydrogenation: the Mn(I) 

amido species 108 created by base-activation of the pre-catalyst and the subsequent 

manganese(I) hydride intermediate 109 (Scheme 1.25C).  Pidko and co-workers 

reported a manganese(I) catalyst bearing a simple bidentate aminophosphine ligand 

112.125 The methodology’s substrate scope was slightly hampered by the substantial 

amount of KOtBu (75 mol%) used but this was necessary due to catalyst deactivation 

(Scheme 1.25D).  
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Scheme 1.25 A) Hydrogenation of esters by a PNP manganese catalyst 106 B) 

Hydrogenation of esters with α-chiral groups, proceeding with retention of 

stereochemistry. C) Hydrogenation of esters catalysed by PNN manganese species 107 

The three manganese structures were all isolated and proposed to be part of any 

mechanism. D) Hydrogenation of esters by a bidentate iminopyridine manganese 

species 112 

Many of these complexes have also been used as dehydrogenation catalysts too, for 

instance in the conversion of alcohols to aldehydes or ketones. The addition of external 

nucleophiles can lead to a range of reactions with the intermediate carbonyl species. The 

manganese-catalysed dehydrogenation of alcohols can be used to form a range of 
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nitrogen-containing heterocycles,126–129 amines,130–132 alkylated ketones133 and 

alcohols134.  

Whilst many advances have been made in manganese-catalysis, especially in the last two 

years, there remains huge amounts to explore. Currently manganese catalysts do not 

show the activity of cobalt and iron analogues. However, excellent functional group 

tolerance is displayed even in the presence of terminal alkenes. This demonstrates the 

difficulty in developing manganese catalysts which are reactive with olefins. This is an 

area which is hugely underdeveloped in manganese-catalysed hydrogenation, 

hydrosilylation and hydroboration methodologies.  
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2. Manganese-Catalysed Hydrosilylation of Alkenes 

2.1 State-of-the-Art at the Outset of the Project 

2.1.1 Manganese-Catalysed Hydrosilylation of Carbonyls 

2.1.1.1 Manganese Carbonyls as Catalysts for Carbonyl 

Hydrosilylation 

The first reports of carbonyl hydrosilylation facilitated by a manganese species focussed 

on the use of stoichiometric amounts of a manganese-silyl or manganese-acyl species. 

Gladysz reported the insertion of benzaldehyde 113 into the manganese–silyl bond of 

(CO)5MnSiMe3 114 (Scheme 2.1. A).135 This reaction was very slow, taking over two 

weeks. The analogous reaction between a manganese-acyl species 117 and a hydrosilane 

33 was reported by Cutler and co-workers (Scheme 2.1. B).136 Despite giving the same 

product 116, the reactions are mechanistically distinct. When using the manganese silyl 

complex 114 it was proposed that the benzaldehyde oxygen would first add to the silyl 

group in a nucleophilic fashion before addition of the manganese centre to the acyl 

carbon. This was proposed not to be in a concerted manner with the formation of an 

intermediate ion pair 115. The manganese-acyl species reacted by oxidative addition of 

the hydrosilane to give Manganese(III) hydride 118, before a 1,3-silatropic shift to give 

alkenyl manganese species 119 and then a 1,2-hydride shift to give the hydrosilylation 

product 116. 
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Scheme 2.1 Formation of (CO)4MnCH(O[Si])C6H5 from either A) a manganese silyl 

precursor or B) manganese acyl precursor. 

When an external ketone, either as a non-labile organometallic acyl complex or as an 

organic carbonyl, was added to sub-stoichiometric quantities of manganese acyl species 

121, the reaction proceeded to give silyl ether products in high yields (Scheme 2.2 

A).136,137 It was proposed that the active catalyst was PPh3(CO)3MnSiR3 129  which was 

generated by the addition of excess hydrosilane to the pre-catalyst. The use of 

triphenylphosphine as a ligand led to increased rates of reaction, compared to other σ-

donor ligands. The same pre-catalyst could also be used to catalyse the hydrosilylation 

of esters to give the ether and silyl acetate products by a similar mechanism to that of 

ketone reduction (Scheme 2.2 B). 



34 
 

 

Scheme 2.2 Reduction of carbonyl functionalities by sub-stoichiometric manganese 

compounds A) Reduction of ketones and B) Reduction of esters to ethers 

Lavigne et al. showed that a N-heterocyclic carbene (NHC) manganese carbonyl complex 

135 would catalyse the reduction aldehydes and ketones under UV irradiation (Scheme 

2.3).138 The use of the related cymantrene compound 137 showed no activity as did the 

use of poor σ-donor type ligands such as triphenylphosphine 138. 
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Scheme 2.3 Hydrosilylation of carbonyls with a manganese carbene complex 

Manganese carbonyl compounds have been shown to catalyse the hydrosilylation of 

formamides, amides and carboxylic acids. The photolytic reduction of formamides in the 

presence of silane by CpMn(CO)3 137 gave the disiloxane 141 and amine 142 product in 

high yields (Scheme 2.4 A).139  The reduction of N-acetylpiperidine  143 by triethylsilane 

19 is catalysed by Mn2(CO)10 144 and diethylamine to give 1-ethylpiperidine 145 in a 

90% isolated yield (Scheme 2.4 B).140 The reduction of carboxylic acids can be catalysed 

by Mn2(CO)10 and upon acidic workup the aldehyde product is formed in high yields 

(Scheme 2.5 C).141 The process is dependent on the use of UV irradiation to form 

coordinatively unsaturated manganese species. Notably when a pendant terminal alkene 

146 is used as a substrate, 32% of the ‘trisilylated’ product 148 was formed. 
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Scheme 2.4 A) Reduction of dimethylformamide to trimethylamine and a disilylether. 

B) Hydrosilylation of N-acetylpiperidine to give the amine product. C) Hydrosilylation 

of carboxylic acids to give the aldehyde product. 

A novel approach to the formation of a co-ordinately unsaturated manganese species 

was taken by Chung and co-workers (Scheme 2.5.).142 The use of a η5-1-

hydronaphthalene ligand allowed for a haptotropic shift between the η5- (149)  and η3-

coordination modes (151). This allows for manganese-catalysed hydrosilylation of 

ketones using diphenylsilane. 
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Scheme 2.5 Hydrosilylation of ketones using a manganese hydronapthalene complex. 
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2.1.1.2 Manganese Complexes as Catalysts for Carbonyl 

Hydrosilylation  

Chidara and Du reported the hydrosilylation of aldehydes and ketones catalysed by a 

salen Mn(V) nitride pre-catalyst 152 (Scheme 2.6.).143 The pre-catalyst was proposed to 

be reduced in the presence of an arylsilane, potentially to a (salen)Mn–H 153 or 

(salen)Mn–SiR3 species, which could then undergo a carbonyl insertion process. 

 

Scheme 2.6 Hydrosilylation of carbonyls with a manganese(salen) nitride complex, 

detailing the substrate scope and the mechanism. 

Trovitch et. al. reported the hydrosilylation of aldehydes, ketones, esters and formates 

catalysed by a pentadentate bis(imino)pyridine complex bearing pendant σ-donor 

phosphine groups 155 (Scheme 2.7 A-B).144–147 Complex 155 gave a TOF of 76,800 h-1 for 

the hydrosilylation of ketones which exceeds that of other first row transition metals. 

The mechanism of hydrosilylation using complex 155 was reported to proceed by a 

modified Ojima mechanism whereby a hydrosilane would undergo oxidative addition at 

the manganese centre 156 (Scheme 2.7 C).145 This would be followed by 

hydrometallation of the carbonyl and reductive elimination to form the O–Si bond. A 

modified pre-catalyst, a hexacoordinate manganese hydride 159, was proposed to 
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undergo a different mechanism (Scheme 2.7 D). Initial carbonyl coordination to the pre-

catalyst to generate an alkoxide intermediate 161 was followed by a metathesis-type 

interaction with the silane to give the alkoxysilane product.  
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Scheme 2.7 A) Hydrosilylation of ketones with a manganese bisiminopyridine 

complex. B) Hydrosilylation of esters. C) Mechanism of carbonyl hydrosilylation using a 

Mn(II) pre-catalyst. D) Mechanism of carbonyl hydrosilylation using a Mn(III) pre-

catalyst. 
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Turculet et. al. reported a (N-phosphinoamidinate)manganese complex 163 that could 

catalyse the hydrosilylation of a range of carbonyl groups (Scheme 2.8).148 Amides were 

reduced to the amine whereas ketones, aldehydes and esters were reduced to the silyl 

ether.  

 

 

Scheme 2.8 Hydrosilylation of amides and ketones by a (N-

phosphinoamidinate)manganese complex. 

The first report of an asymmetric hydrosilylation of aryl ketones using a manganese 

catalyst was reported by Huang and co-workers (Scheme 2.9).149 Using a manganese-

complex bearing an enantiopure iminopyridine oxazoline ligand 167, the reduction of 

ketones was carried out with an enantiomeric excess (e.e.) of up to 92%. 

 

Scheme 2.9 Asymmetric hydrosilylation of ketones catalysed by a manganese(II) 

iminopyridine oxazoline complex. 
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2.1.2 Manganese-Catalysed Alkene Hydrosilylation  

The very first reports of manganese-catalysed hydrosilylation were performed using 

alkene substrates. Despite an increasing number of reported manganese catalysts for the 

hydrosilylation of carbonyl groups; the field of alkene hydrosilylation has remained 

sparse. In 1983 Faltynek and Pratt explored the hydrosilylation of pentene 9 using 

(CO)5MnSiPh3 170 which was activated either thermally or by photoirradiation (Scheme 

2.10).150 Thermal activation was unselective, giving alkene hydrosilylation 171, 

dehydrosilylation 172 and alkene isomerisation 173 & 174 products. Photoirradiation 

gave solely the hydrosilylation product. 

 

Scheme 2.10 Hydrosilylation of alkenes using a manganese carbonyl compound 

Hilal et. al. then reported the hydrosilylation of 1-hexene 18 using triethylsilane 19 

catalysed by Mn2(CO)10 144 (Scheme 2.11 A).151 Both alkene hydrosilylation and alkene 

isomerisation products were obtained. By adding Mn2(CO)10 144 to a poly(siloxane) 

surface a polymer-supported manganese pre-catalyst 177 was obtained (Scheme 2.11 

B).152 This enabled the catalyst to still perform well after recycling. Furthermore, the 

addition of the polymer support improved the selectivity of the reaction, exclusively 

giving the hydrosilylation product. More recently, Hilal et. al. reported the 

hydrosilylation of 1-octene 22 by a manganese porphyrin catalyst 178 intercalated into 

micro- and nano-scale clay particles obtained from the Palestinian Territories (Scheme 

2.11 C).153 The support was found to increase the regioselectivity for the linear 

hydrosilylation product 48, but the catalyst was not able to be recycled efficiently with 

even the first repeat showing significantly decreased catalyst activity.  
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Scheme 2.11 Hydrosilylation of alkenes using a manganese carbonyl compound. 

Shenvi et. al. reported the formal hydrosilylation of 1-tertbutyl-4-methylenecyclohexane 

179 catalysed by tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) 

(Mn(dpm)3) 180 (Scheme 2.12.).154 It was proposed that the reaction proceeded by a 

radical mechanism with hydrogen atom transfer (HAT) being the initial step.  

 

Scheme 2.12 Hydrosilylation of a 1,1-disubstituted alkene using Mn(dpm)3.  
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2.1.3 Bis(imino)pyridine Manganese Complexes 

Bis(imino)pyridine complexes have been developed to be highly active and selective 

catalysts for a range of transformations but most prominently: polymerisation, 

hydrofunctionalisation and hydrogenation.12,155–157 Whilst the ligand has been used in 

combination with many metals, it has been most successful when paired with iron or 

cobalt. The highly conjugated nature of the ligand allows for acceptance of up to three-

electrons from the central metal atom (Scheme 2.13).158 This allows for stabilisation of 

low oxidation-state metal centres. In the case of iron, this allows for access to unstable, 

co-ordinately unsaturated formally Fe(0) species which are highly reactive.159  

 

Scheme 2.13 Stabilisation of low-oxidation state iron species by a bis(imino)pyridine 

ligand. 

Despite the catalytic capabilities of iron- and cobalt-analogues, manganese 

bis(imino)pyridine complexes have not yet been shown to be catalytically active. In fact 

there are only a handful of reports of their synthesis. The first manganese 

bis(imino)pyridine to be characterised by single crystal X-ray crystallography was 

HBIPMnBr2 as reported by Walton and co-workers.160 This was followed by the 

characterisation of 4-OMeBIPMn(PF6)2.161 

The first detailed analysis of the catalytic potential of a manganese bis(imino)pyridine 

complex was performed by Gambarotta and co-workers.162 They synthesised 

DIPPBIPMnCl2 182 (a direct analogue of highly successful iron and cobalt polymerisation 

catalysts163–165) but attempts to perform olefin polymerisation were unsuccessful. This 

was attributed to the high spin, S = 
5

2
 manganese(II) center (Scheme 2.14. A). Britovsek 

and co-workers attempted alkane oxidation using MesBIPMn(OTf)2 184 and 

DIPPBIPMn(OTf)2 185 but were also found to be inactive (Scheme 2.14 B).166 Chirik and 

co-workers synthesised the manganese(II) complex DIPPBIPMn(THF)2 187 by stirring 

DIPPBIPMnCl2 182 in the presence of sodium and sub-stoichiometric amounts of 

naphthalene.167 Attempts to catalyse the hydrogenation of hexene 18 and cyclohexene 

were unsuccessful, as were attempts to catalyse the [2+2] cycloaddition of dienes 
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(Scheme 2.14 C).168 Iron and Cobalt bis(imino)pyridine complexes have been shown to 

be highly successful in these reactions.84,88,159,169–171 

 

Scheme 2.14 A) Attempted ethylene polymerization catalysed by a Mn(II) bis(imino) 

pyridine pre-catalyst. B) Attempted alkane oxidation catakysed by a Mn(II) 

bis(imino)pyridine pre-catalyst. C) Attempted hydrogenation and [2+2] cycloaddition 

catalysed by Mn(II) pre-catalyst. 
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2.2 Project Aims 

The objective of the project was to discover a methodology for the manganese-catalysed 

hydrosilylation of alkenes. This would then be thoroughly optimised and applied to a 

number of substrates to demonstrate the generality of the methodology. Ideally the 

system would tolerate tertiary silanes as they are most important in industry. If a 

methodology was developed, it would be important to focus on the mechanism of the 

reaction and the key factor which has generated reactivity to allow further work to be 

done in the area.  

 

Scheme 2.15 State-of-the-Art at the outset of the project and the aims of this project. 
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2.3 Methodology Development  

2.3.1 Ligand and Pre-Catalyst Synthesis 

Given the success of bis(imino)pyridine (BIP) ligands in iron- and cobalt-catalysed 

hydrofunctionalisation, the synthesis of a range of bis(imino)pyridine ligands and 

bis(imino)pyridine manganese complexes was a natural starting point for the project. 

Bis(imino)pyridines are synthesised in a one-step imine-condensation between 2,6-

diacetylpyridine and an aniline (Scheme 2.16 A). The bis(imino)pyridine manganese 

complexes were prepared by stirring the bis(imino)pyridine ligand and the respective 

manganese salt (Scheme 2.16 B).  

 

Scheme 2.16 A) Synthesis of bis(imino)pyridine ligands. B) Synthesis of bis(imino) 

pyridine manganese(II) complexes. 

These complexes were predominately air- and moisture-stable and were benchtop 

stable for weeks. Characterisation of these species was not trivial as the complexes are 

paramagnetic, so NMR studies were not possible. A number of the complexes were highly 

sensitive under mass spectrometry conditions and rapidly decomposed to free ligand 

and the metal salt. Crystallisation of the complexes was possible and single crystal x-ray 

structures of EtBIPMnBr2 196 and DIPPBipMnBr2 197 were obtained by cooling solutions 

of the complex in dichloromethane (Figure 1). The complexes both displayed distorted 
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square pyramidial geometry, similar to that previously reported for manganese 

bis(imino)pyridine compounds. 

 

Figure 1: Molecular structures of EtBIPMnBr2 196 (left) and DIPPBIPMnBr2 197 (right) 

precatalysts. 50% probability of ellipsoids; hydrogen atoms and solvent molecules 

omitted for clarity; Grey = C, Blue = N, Orange = Br, Purple = Mn. 

Two other ligand systems were also synthesised by simple coordination reactions 

between the ligand and the metal. The synthesis of DIPPIPMnBr2 (made by Jamie Doherty), 

terpyridinemanganesedichloride and terpyridinemanganesedibromide were all 

completed in high yield (Scheme 2.17).  

 

Scheme 2.17 Synthesis of imino(pyridine) manganese(II) bromide and terpyridine 

manganese(II) pre-catalysts. 
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2.3.2 Reaction Discovery and Control Reactions 

Initial investigations of the manganese-catalysed alkene hydrosilylation were performed 

using 1-octene 22 as a model alkene, EtBIPMnBr2 196 (catalyst), sodium tert-butoxide 

(activator), and phenylsilane 33 (Scheme 2.18). The reaction occurred under neat 

conditions and was left to stir at 25 °C for 20 hours. The average yield of the linear 

hydrosilylation product 46 over 3 reactions was 32% with >99% selectivity for the linear 

regioisomer (work done by Jamie Docherty).42 

 

Scheme 2.18 Initial hits for the manganese-catalysed hydrosilylation of alkenes. 

Initial optimisation looked at increasing the reactivity of this catalyst/activator system 

by changing the temperature and solvent. Repeating the original conditions led to a small 

increase in the yield, 55% over two reactions but with a high of a 90% yield (Table 2.1., 

entry 1). Results of individual reactions were observed to be quite inconsistent, so every 

reaction was performed twice in parallel to allow for an average to be taken. Increasing 

the temperature to 60 °C gave a decreased yield of 18%, possibly because of catalyst 

decomposition at higher temperatures (entry 2). The addition of solvent, in this case 

THF, led to no reactivity being observed (entry 3). By reducing the catalyst loading to 1 

mol% the yield was also reduced to 41%. Increasing the catalyst loading to 5 mol% had 

only a small impact on the yield, with a 57% yield of linear hydrosilylation product 46 

being obtained. The system was tested with a range of other alkenes to quantify the 

generality of the methodology. Using 4-phenyl-1-butene 202 as the substrate gave a 

reduced reaction yield of 42% (entry 6) compared to 55% for 1-octene. Subjecting 

different classes of alkenes beyond aliphatic, terminal alkenes to the developed reaction 

conditions, such as styrenes (tert-butylstyrene 203 entry 7), 1,2-disubstituted alkenes 

(cyclooctene 204 entry 8) and 1,1 disubstituted alkenes (α-methylstyrene 205 entry 9), 

gave no conversion of starting material in all cases. Based on these findings the reaction 

needed substantially more optimisation and refinement.  
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Table 2.1. Initial screening of reaction conditions 

 

Control reactions were carried out to ensure the validity of the methodology. By 

removing the individual components of the reaction, it was shown that each component 

was essential for reactivity. The reaction was trialled with only NaOtBu 49 and no 

transition metal catalyst or ligand but there was no observed reactivity (Table 2.2., entry 

1). Using MnBr2 either with or without NaOtBu 49, gave no catalyst activity (entries 2 & 

 

 

Entry Substrate t (°C) Catalyst Loading 

(mol%) 

Solvent Yield 

(%)a 

1 1-Octene 22 25 2 Neat 55 

2 1-Octene 22 60 2 Neat 18 

3 1-Octene 22 25 1 Neat 41 

4 1-Octene 22 25 5 Neat 57 

5 1-Octene 22 25 2 THF 0 

6 4-phenyl-1-

butene 202 

25 2 Neat 42 

7 tButylstyrene 

203 

25 2 Neat 0 

8 Cyclooctene 204 25 2 Neat 0 

9 α-Methylstyrene 

205 

25 2 Neat 0 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu (0.03 

mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the linear 

hydrosilylation product is >95% 
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3). Adding only the ligand with or without NaOtBu 49 gave no observed reactivity. 

Finally, running the reaction under air also gave no yield of hydrosilylation product.  

Table 2.2. Control Reactions 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 Entry Deviation from standard 

conditions 

Yield %a  

 1 Only NaOtBu 0  

 2 MnBr2·(THF)2 + NaOtBu 0  

 3 MnBr2·(THF)2 0  

 4 Only EtBIP  0  

 5 EtBIP + NaOtBu 0  

 6 Under air 0  

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu 

(0.03 mmol), solvent, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction 

mixture, using 1,3,5-trimethoxybenzene as an internal standard, as an average of two 

runs. Selectivity for the linear hydrosilylation product is >95%.  
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2.3.3     Catalyst Optimisation 

Variation of the steric parameters on bis(imino)pyridine components of the catalyst have 

been shown to have dramatic effects on the reactivity of these systems. For instance, 

Chirik et. al. showed that alternating between sterically bulky 2,6-diisopropyl (DIPP) 

substituted aryl imines and unsusbstituted aryl imines would change the 

chemoselectivity of the hydrosilylation of 5-hexen-2-one 61 from the ketone (bulky 

ligand) to the alkene (smaller ligand).96,169 The choice of counterion can also have an 

influence on the activity and selectivity of the catalytic system. For instance, more 

coordinating counter-ions (Cl-) on iron bis(imino)pyridine species have been shown to 

have a higher reduction potential than less coordinating counter-ions (-OTf).92 

The hydrosilylation of 3 different alkenes with phenylsilane 33 was attempted using a 

range of sterically differentiated bis(imino)pyridine catalysts and several manganese 

salts. The three alkenes (1-octene 22, 4-phenyl-1-butene 202 and tbutylstyrene 203) 

were chosen as they had been shown to be highly reactive, moderately reactive and not 

active, respectively, under the established conditions. The use of the sterically bulky 

complexes DIPPBIPMnBr2 197 (Table 2.3. entry 1) and DIPPBIPMnCl2 208 (entry 5) gave 

low hydrosilylation yields. As above, EtBIPMnBr2 196 gave good yields over 18 hours for 

1-octene (90%), moderate activity for 4-phenyl-1-butene (41%) and low activity for 

tbutylstyrene (1%). However, and uniquely in the series of BIPMnX2 complexes  

synthesised for this project, the EtBIPMnCl2 analogue was extremely unstable and would 

spontaneously decompose in the solid state under inert conditions. Using a catalyst with 

a trisubstituted N-aryl group, MesBIPMnBr2 206 (Entry 3) and MesBIPMnCl2 209 (Entry 6) 

gave lower yields than the disubstituted ethyl analogue. In this case, the chloride 

analogue was significantly more active than the bromide analogue. The second highest 

yield was obtained with MeBIPMnCl2 210 giving a 32% yield for the hydrosilylation of 1-

octene and 4-phenyl-1-butene (Entry 7). The least-sterically hindered ligand HBip gave 

poor yields for both the bromide salt 207 (Entry 4) and chloride salt 211 (Entry 8). The 

use of a less coordinating triflate counterion 212 gave no catalyst activity for the 

hydrosilylation of 1-octene. These results showed that both sterically hindered, and less-

sterically hindered ligands gave poor reactivity but mid-sized bis(imino) pyridine 

ligands were optimal. Likewise, counterion variation did not give a consistent pattern, 

with only MesBIPMnCl2 209 being significantly more active than MesBIPMnBr2 206. 
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Mono(imino) pyridine manganese compounds have been reported to catalyse ethane 

polymerization.172 However, under the developed conditions, diisopropylphenyl 

imino(pyridine) (DIPPIP, 200), (Entry 10) gave no conversion to the hydrosilylation 

products. Terpyridine manganese(II) alkyl complexes have been reported to catalyse the 

hydroboration of alkenes.173 We prepared terpyridine manganese dibromide 213 and 

terpyridine manganese dichloride 214 complexes however both gave only trace 

reactivity. The terpyridine complexes were also tested using THF as a solvent but still 

gave no reactivity. Finally, we used (trimethylsilyl)methylenelithium as an in-situ 

activator, in an attempt to mimic the conditions used by Zheng et. al. more closely but 

this still gave no reactivity. The highest yields for hydrosilylation were still found using 

EtBIPMnBr2 as the catalyst, therefore to increase the substrate tolerance of our system 

further optimisation was required.  
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Table 2.3. Screening of catalysts for the hydrosilylation of 1-octene with 

phenylsilane. 

 

Entry Substrate Catalyst Yield %a 

1a 1-Octene 

 

8 

1b 4-Phenyl-1-butene 2 

1c tButylstyrene 0 

2a 1-Octene 

 

90 

2b 4-Phenyl-1-butene 41 

2c tButylstyrene 1 

3a 1-Octene 

 

5 

3b 4-Phenyl-1-butene 0 

3c tButylstyrene 0 

4a 1-Octene 

 

8 

4b 4-Phenyl-1-butene 6 

4c tButylstyrene 0 

5a 1-Octene 

 

0 

5b 4-Phenyl-1-butene 5 

5c tButylstyrene 0 

6a 1-Octene 

 

31 

6b 4-Phenyl-1-butene 26 

6c tButylstyrene 0 

7a 1-Octene 32 
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7b 4-Phenyl-1-butene 

 

26 

7c tButylstyrene 0 

8a 1-Octene 

 

5 

8b 4-Phenyl-1-butene 8 

8c tButylstyrene 0 

9 1-Octene DIPPBIPMn(OTf)2 212 0 

10 1-Octene DIPPIPMnBr2 200 0 

11 1-Octene TerpyMnBr2 213 Trace 

12 1-Octene TerpyMnCl2 214 Trace 

13 1-Octene TerpyMnBr2 213 Traceb 

14 1-Octene TerpyMnCl2 214 Traceb 

15 1-Octene TerpyMnBr2 213 Tracec 

16 1-Octene TerpyMnCl2 214 Tracec 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu 

(0.03 mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction 

mixture, using 1,3,5-trimethoxybenzene as an internal standard, as an average of two runs. 

Selectivity for the linear hydrosilylation product is >95%. b) Reaction performed in THF. c) 

reaction performed with LiCH2SiMe3 as reductant. 
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2.3.4 Further Optimisation using EtBIPMnBr2 and Discovery of 

DIPPBIPMnBr2 

The reaction gave highly variable results when subjected to temperatures above and 

below room temperature. Raising the temperature to 60 °C led to greatly decreased 

yields, presumably because of degradation of the active catalyst (Table 2.4. entry 2). Even 

increasing the temperature to only 40 °C caused the yield to be reduced to 42% (entry 

3). Leaving the reaction temperature unregulated (room temperature approximately 18 

°C) led to no reaction (entry 4). Changing the catalyst to MesBIPMnCl2 209 gave improved 

consistency as at both 25 °C and 40 °C the yield was similar (31% and 33% respectively) 

(entry 5-6). However, the yield was significantly lower than with EtBIPMnBr2 33 so this 

was not investigated further. 

Table 2.4: Optimisation of temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

The use of NaOtBu 49 as an activator is preferable as it is an easily handled, bench stable 

reagent. However, conventionally organometallic reagents such as Grignard 

 

Entry Catalyst Temperature (°C) Yield (%)a 

1 EtBIPMnBr2 25 90 

2 EtBIPMnBr2 60 18 

3 EtBIPMnBr2 40 42 

4 EtBIPMnBr2 r.t. (~18 °C) 0 

5 MesBIPMnCl2 25 31 

6 MesBIPMnCl2 40 33 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu (0.03 

mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 

1,3,5-trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the 

linear hydrosilylation product is >95% 
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reagents,90,174 borohydrides and lithium alkyl species173 have been used to reduce first-

row transition metal pre-catalysts to low oxidation-state active catalysts. A selection of 

these organometallic reductants was applied in the reaction but none of the 

organometallics gave more than trace hydrosilylation product (table 2.5. entries 1-3). 

The amount of NaOtBu 49 required to trigger catalysis was also screened (entries 4-8). 

A minimum of two equivalents of NaOtBu, with respect to catalyst, was required for any 

catalysis to occur. Raising the number of equivalents to three allowed for an improved 

yield.  Other alkoxide activators were tested in this system but without success. Whilst 

this reactivity is somewhat surprising, Stoltz and Grubbs have observed similar 

reactivity in the silylation of heteroaromatics where the choice of metal alkoxide was 

limited to KOtBu.175–177 
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Table 2.5. Screening of different activators 

 

As the organometallic reagents were all added in solution, an investigation into various 

solvents was carried out to determine if this was the cause of reaction inhibition with 

organometallic activators. All solvents tested were obtained from a solvent purification 

system. 4-Phenyl-1-butene 202 was chosen as the substrate so an improvement in 

reactivity could be seen. THF gave a slight increase to the yield compared to neat 

conditions (Table 2.6 entry 1-2), whilst diethylether showed no improvement (entry 3). 

The other solvents tested all inhibited reactivity with only trace product being observed 

(entries 4-6). 

 

 

 

 Entry Activators Mol% Yield (%)a  

 1 EtMgBrb 4 4  

 2 NaHBEt3c 4 2  

 3 LiAlH4d 4 0  

 4 NaOtBu 2 Trace  

 5 NaOtBu 3 5  

 6 NaOtBu 4 40  

 7 NaOtBu 5 22  

 8 NaOtBu 6 45  

 9 KOtBu 4 0  

 10 NaOMe 4 0  

 11 NaOiPr 4 0  

 Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), activator 

(0.03 mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, 

using 1,3,5-trimethoxybenzene as an internal standard, as an average of two runs. Selectivity 

for the linear hydrosilylation product is >95%. b) 3M in Et2O. c) 1M in THF. d) 1M in THF. 
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Table 2.6 Screening of Solvent 

Whilst phenylsilane 33 had been shown to work well with aliphatic alkenes, the 

hydrosilylation products are not particularly synthetically or industrially useful so other 

silanes were tested to gauge reactivity. Given the twofold role of the silane, as an 

activator and as a reagent, the silane choice would be important. Silanes would need to 

be capable of forming a silicon-ate species F able to transfer hydride to the pre-catalyst 

A in addition to participating in the oxidative addition B-C and reductive elimination D-

B steps of the catalytic cycle of a typical hydrosilylation reaction (Scheme 2.19). 

 

 

 

 

 

 

 

 Entry Solvent Yield %a  

 1 Neat 42  

 2 Tetrahydrofuran 69  

 3 Diethylether 41  

 4 Toluene 2  

 5 Dichloromethane 1  

 6 Acetonitrile 0  

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu (0.03 

mmol), solvent (0.5 mL), 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction 

mixture, using 1,3,5-trimethoxybenzene as an internal standard, as an average of two runs. 

Selectivity for the linear hydrosilylation product is >95% 



60 
 

 

Scheme 2.19 The dual role of silane in the hydrosilylation of alkene. a) as an activator 

for the manganese pre-catalyst and b) as a silane reagent. 

Hexylsilane 216 gave a moderate yield of 31% but this was significantly less than 

phenylsilane 33 (Table 2.7. entry 1-2). A secondary silane, diphenylsilane 62 only gave 

trace hydrosilylation product (entry 3). A range of tertiary silanes were tested: 

triethylsilane 19 (entry 4) and siloxane HSiMe(OSiMe3)2 23 (MD’M) (entry 5) gave no 

conversion to the hydrosilylation product. When triethoxysilane 47 was used (entry 6) 

the reaction proceeded with quantitative conversion. Dimethoxymethylsilane 217, 

which is a safe alternative to triethoxysilane (due to the inert Si–CH3 bond being unable 

to disproportionate) was able to undergo hydrosilylation in a 37% yield (entry 7). 
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Table 2.7. Screening of Silane 

 

 

 

 

 

 

Notably, upon addition of HSi(OEt)3 47 to the reaction mixture, the reaction instantly 

effervesced as a gas was formed. The reaction rapidly changed from orange to brown 

suggesting activation of the catalyst. Alkoxy hydrosilane compounds are known to 

rapidly disproportionate when mixed with alkoxide salts to the tetraalkoxysilane and 

SiH4.178 SiH4 is a highly flammable gas which can spontaneously ignite when exposed to 

air. The mechanism for the catalyst activation proposes the formation of a pentavalent 

siliconate 218 intermediate. In the absence of a hydride acceptor this intermediate 

would disproportionate with another molecule of triethoxysilane 47 to give a 

dihydrosilane 219 and tetraethoxysilane 220 (Scheme 2.20 A).64 Assuming the 

manganese pre-catalyst intercepts the siliconate species then the facile nature of 

alkoxysilane disproportionation could explain why triethoxysilane is a more active 

silane for the reaction (Scheme 2.20 B). Importantly as manganese acts as a hydride 

acceptor the disproportionation of the silane is surpressed and only trace R–SiH3 is 

typically observed by 1H NMR of the crude reaction mixture. Additionally, silanes more 

electron-withdrawing substituents tend to undergo faster oxidative addition due to 

 

 

 

 Entry Silane Yield %a  

 1 PhSiH3 33 85  

 2 H13C6SiH3 216 31  

 3 Ph2SiH2 62 5  

 4 HSiEt3 19 0  

 5 HSiMe(OSiMe3)2 23 0  

 6 HSi(OEt)3 47 >95  

 7 HSiMe(OMe)2 217 37  

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), reductant 

(0.03 mmol), solvent, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction 

mixture, using 1,3,5-trimethoxybenzene as an internal standard, as an average of two runs. 

Selectivity for the linear hydrosilylation product is >95% 
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greater polarisation of the Si–H bond.179 Therefore, triethoxysilane is likely to also 

undergo faster oxidative addition to the manganese centre than alkylsilanes or 

monosubstituted silanes such as phenylsilane.  

 

Scheme 2.20 The potential fates of the silicon-‘ate’ intermediate in the reaction. A) 

disproportionation to SiH4 and Si(OR)4. B) interception of the ‘ate’ intermediate by 

LMnX2 to form MnH2, NaX and Si(OR)3OtBu.  

As triethoxysilane 47 gave significantly increased product yield compared to 

phenylsilane, a screen of substrates and solvent choice were tested with the newly 

established conditions. The hydrosilylation of 4-phenyl-1-butene 202 proceeded in high 

yields with all trialled solvents, but not to quantitative conversion as was the case using 

neat conditions (Table 2.8. entries 1-4). 1-Octene 22 underwent hydrosilylation under 

the conditions in quantitative yield, as expected (entry 5). When using triethoxysilane, 

4-tbutylstyrene 203 yielded 27% of hydrosilylation product, the first time in this project 

that the hydrosilylation of styrenes proceeded above trace yield (entry 6). The 

hydrosilylation of cyclooctene only proceeded with trace yield (entry 7). 
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Table 2.8. Screening with HSi(OEt)3 

As styrene derivatives are an important class of alkenes, we decided to optimise for the 

hydrosilylation of styrenes using triethoxysilane 47. A range of catalysts were screened 

in tetrahydrofuran and neat conditions. In all cases, the screened catalysts performed 

worse in solvent than under neat conditions. It appeared that bis(imino)pyridine ligands 

with bulkier N-aryl substituents were most active (Table 2.9. Entry 1a and 2a). This is 

somewhat atypical as for iron and cobalt bis(imino)pyridine catalysts smaller N-aryl 

substituents generally give more active catalysts.12,42,84,157 Additionally, iron and cobalt 

analogues, tend to show a higher TOF and TON than displayed here.42,89 Therefore, it is 

plausible that the larger substituents on the imine side-arm are stabilising the catalyst 

and preventing catalyst degradation rather than facilitating the generation of a more 

active catalyst. The activity of DIPPBIPMnBr2 197 here highly contrasts with previous 

results (table 2.3. entry 1a-c) using phenyl silane 33. The choice of silane clearly has a 

major effect on catalyst reactivity. The ability of triethoxysilane 47 to rapidly form the 

siliconate species and its comparably facile oxidative-addition are likely reasons for the 

observed reactivity with DIPPBIPMnBr2 197. To further exploit this further we heated the 

 

 Entry Substrate Solvent Yield %a  

 1 4-Phenyl-1-butene neat >95  

 2 4-Phenyl-1-butene THF 93  

 3 4-Phenyl-1-butene Et2O 81  

 4 4-Phenyl-1-butene C7H8 88  

 5 1-Octene Neat >95  

 6 4-tButylstyrene Neat 27  

 7 Cyclooctene Neat trace  

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), reductant (0.03 

mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the linear 

hydrosilylation product is >95%. 
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reaction to 60 °C (entry 2c and 4c). This led to higher conversion of starting material but 

to a mixture of linear and branched hydrosilylation products. With DIPPBIPMnBr2 197 the 

branched hydrosilylation product was formed in a 2:3 ratio to the linear product, along 

with a significant proportion of the hydrogenation product. When trialling DIPPBIPMnCl2 

208 at 60 °C, we obtained the highest yield of the linear hydrosilylation product of 

tbutylstyrene (57%). However, 18% of the branched hydrosilylation product and 14% of 

the hydrogenation product were also observed. The increased activity of the bromide 

analogue over the chloride analogue, at 25 °C, led us to synthesise DIPPBIPMnI2 223. 

However, while this gave comparatively good yields, it was still inferior to that of 

DIPPBIPMnBr2 197. 

Table 2.9. Catalyst and solvent screening of tbutylstyrene with triethoxysilane 

 

Entry Catalyst Solvent Yield %a 

1a 

1b 

EtBIPMnBr2 196 neat 

THF 

27 

4 

2a 

2b 

 

DIPPBIPMnBr2 197 

neat 

THF 

37b 

3 
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A range of activators were tested for hydrosilylation using triethoxysilane 47 and 

DippBIPMnBr2 197 as a catalyst. Organometallic activators were still inactive under the 

conditions (Table 2.10. entries 1 and 2) but under these conditions a range of alkoxide 

salts were effective (entries 3-5), in contrast to the conditions using PhSiH3 and 

EtBIPMnBr2. KOtBu was almost as effective as NaOtBu with near quantitative conversion 

of starting material. NaOMe was also capable of facilitating the formation of the active 

catalyst, however the yield of hydrosilylation product was significantly below that when 

using bulkier alkoxides.  

 

 

2c neat 30b 

3a 

3b 

MesBIPMnBr2 206 neat 

THF 

16 

trace 

4a 

4b 

4c 

 

DIPPBIPMnCl2 208 

 

neat 

THF 

neat 

13c 

8 

57c 

5a 

5b 

MesBIPMnCl2 209 neat 

THF 

trace 

trace 

6a 

6b 

MeBIPMnCl2 210 neat 

THF 

3 

trace 

7a 

7b 

HBIPMnCl2 211 

 

neat 

THF 

0 

0 

8a DIPPBIPMnI2 223 neat 19 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu (0.03 mmol), 

neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the linear 

hydrosilylation product is >95%. b) reaction was heated to 60 °C and also yielded 7% of the 

hydrogenation product and 20% of the branched hydrosilylation product. c)  reaction was heated to 60 

°C and also yielded 14% of the hydrogenation product and 18% of the branched hydrosilylation product.  
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Table 2.10. Screening of different activators 

 

  

 

 

 

 Entry Activators Mol % Yield %a  

 1 EtMgBrb 4 0  

 2 NaHBEt3c 4 0  

 3 NaOtBu 6 >95  

 4 KOtBu 6 94  

 5 NaOMe 6 48  

 Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), 

activator (0.03 mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude 

reaction mixture, using 1,3,5-trimethoxybenzene as an internal standard, as an average 

of two runs. Selectivity for the linear hydrosilylation product is >95%. b) 3M in Et2O. c) 

1M in THF. 
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2.4 Substrate Scope 

2.4.1 Scope of Alkene 

With optimised conditions in hand, a screen of different substrates was carried out. 

Firstly, a range of alkenes were tested. The number and type of substituent on the alkene 

was investigated (Scheme 2.21). During the optimisation of this methodology, 

monosubstituted terminal alkenes were shown to work in high yield. However, 

increasing substituents to di-substituted alkenes led to decreased catalytic activity. 1,1-

Disubstituted alkenes (α-methylstyrene 205, limonene 224) and 1,2-disubstituted 

alkenes (trans-oct-4-ene 225) were both unreactive. The use of a strained 1,2-

disubstituted alkene, norbornene 226, gave a 22% yield of hydrosilylation product. 

Trisubstituted 2-methyl-2-butenenitrile 227 was unreactive however the presence of a 

nitrile functional group, which can coordinate to metal centres, could also impact on the 

reactivity in addition to the sterically hindered alkene. Conjugated 1,4 dienes, myrcene 

73, were also tested and they too proved to be unreactive under the reaction conditions. 

 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 
mmol), NaOtBu (0.03 mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR 

of the crude reaction mixture, using 1,3,5-trimethoxybenzene as an internal 
standard, as an average of two runs. Also tested using EtBIPMnBr2 and PhSiH3 

to give the same result. 

Scheme 2.21 Attempted substrates containing di- and trisubstituted alkenes 

A range of terminal alkenes were trialled and, in all cases, the linear hydrosilylation 

product was obtained in high yields and with excellent regioselectivity. Isolated products 

were purified by vacuum distillation as the triethoxysilane motif is unstable to silica gel 

column chromatography. As shown during optimisation, simple alkenes underwent 

hydrosilylation in high yields (Scheme 2.22 5a – 5c). The hydrosilylation of allylbenzene 

230 proceeded in an 81% yield, with no isomerisation to the alkene being observed. The 

methodology was entirely chemoselective for the reduction of a terminal alkene over an 
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internal alkene 231. Terminal amines were tolerated with a morpholine derived alkene 

giving high yield of the hydrosilylation product 232. The trifluoromethyl functional 

group 233 was well tolerated in the reaction, as were derivatives containing aryl C–F 

234 and C–Cl 235 bonds. However, aryl C–Br 236 bonds lead to reduced yields (41%). 

Whilst the protodehalogenated product was not observed, it is feasible that metal 

insertion into the C–X bond caused catalyst deactivation and therefore reduces the yield. 

Alternatively, Nakamura et al. have recently shown that hydrosilicate intermediates are 

capable of reacting with aryl-bromides to give the silylated aryl product.180 4-tert-

Butylstyrene 237, 4-methoxystyrene 238 and styrene 239 all underwent 

hydrosilylation with a moderate yield of product. Notably the branched product was also 

observed for all three styrenes, with an 81:19 ratio of linear product to branched product 

observed when styrene was the substrate. The presence of alkenyl α-heteroatoms 

caused the reaction to stop working. Vinyl ether 242 gave trace reaction product, while 

the commercially significant alkene 241 gave no reaction. Vinyltrimethoxysilane 240 

displayed no reactivity which contrasted to the related compound allyltriethoxysilane 

229 with the only significant difference being the proximity of the silicon heteroatom (in 

this instance, vinylic) to the alkene.  
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Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol), NaOtBu (0.03 mmol), neat, 25 °C, 18 h. 

a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-trimethoxybenzene as an internal standard, as 

an average of two runs.  

Scheme 2.22 Substrate screen of terminal alkenes containing a range of functionality. 

The incorporation of substrates bearing reducible functionalities was difficult in this 

methodology as triethoxysilane 47 has been previously reported to reduce aldehydes, 

ketones and esters in the presence of fluoride or alkoxide salts to give the silyl ether 

product (Scheme 2.23 A).181–183 This has been proposed to occur through siliconate 

formation. Corriu and co-workers showed that the direct addition of a range of 

hydrosilicate species (including potassium tetraethoxysilicate 244) would reduce 

aldehydes, ketones, esters and alkyl halides (Scheme 2.23 B+C).184 The hydrosilicate 

species can also deprotonate alkynes, with phenylacetylene 247 being deprotonated in 
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4 hours by potassium tetraethoxysilicate 244 (Scheme 2.23 D).184 It has also been shown 

that the use of sub-stoichiometric quantities of metal alkoxides are sufficient to catalyse 

the asymmetric reduction of carbonyl compounds using triethoxysilane 47 (Scheme 2.23 

E). This methodology utilises a chiral lithium alkoxide catalyst 250 in low loadings (0.4 

mol%) to give the alcohol in good yields and moderate enantiomeric excess (ee).185 

 

Scheme 2.23 Reactivity of hypervalent hydrosilane species with different 

functionalities. A) The reaction of triethoxysilane and carbonyl compounds in the 

presence of a fluoride or alkoxide salt B) Ketone reduction by a pre-formed 

hydrosiliconate species. C) Ester reduction by a pre-formed hydrosiliconate species. D) 

Alkyne deprotonation by a pre-formed hydrosiliconate species. E) Enantioselective 

reduction of acetophenone using a hydrosilane and a chiral amino alkoxide. 

This reactivity offers an explanation for the limitations in functional group tolerance for 

this methodology. The methodology used an excess, with respect to catalyst, of NaOtBu. 

The excess NaOtBu can catalyse hydrosilicate formation which can then react with 

carbonyl functionalities outside of the catalytic process. 5-Hexen-2-one 61 saw both 

functionalities reduced when 3 equivalents of triethoxysilane 47 was used in the 

reaction (Table 2.11. Entry 1). However, when 1.25 equivalents of triethoxysilane 47 was 

used only the carbonyl functionality was reduced. The methodology was tested with two 
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different substrates with pendant ester groups. When methyl 4-(3-buten-1-yl)benzoate 

252 was used as the substrate only the ester was reduced, in quantitative yields to the 

alcohol product 253 (Table 2.11. Entry 2). When methyl 10-undecenoate 254 was 

subjected to the conditions, some alkene hydrosilylation 255 was observed but only in 

low yields and the ester functionality remained intact (Table 2.11. Entry 3). 1-(4-

Morpholinyl)-3-buten-1-one 256 gave a complex mixture of intractable products when 

subjected to the hydrosilylation conditions (Table 2.11. Entry 4). Allyl bromide 257 gave 

no observed hydrosilylation product, with protodebromination by the siliconate a 

potential deactivation pathway (Table 2.11. Entry 5; Scheme 2.24).  

Table 2.11. Reaction of substrates containing reducible functionalities 

 

 

 

 

  

 Entry Substrate Product Yield %a   

  

1   

>95 (81)   

  

2   

>95%   

  

3   

27%   

  

4  

Complex mixture of 

starting material and 

reduction products 

-   

 5 

 

n.r.   - 

 Reaction conditions: Alkene (1 mmol), HSiR3 (3 mmol), catalyst (0.02 mmol), reductant (0.06 

mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the linear 

hydrosilylation product is >95%. Isolated yield in parenthesis. 
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Scheme 2.24 A potential deactivation pathway of a siliconate species in the presence of 

an alkyl bromide 

A potential work around to the side reactions associated with the hydrosilicate reactivity 

would be to allow a pre-stirring period before the addition of substrate. This would allow 

for complete reaction of the hydrosilicate species with pre-catalyst before the substrate 

was introduced. However, bis(imino)pyridine species in the presence of NaOtBu can 

undergo ligand decomplexation making this approach unviable.  
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2.4.2 Scope of Silane 

Although triethoxysilane 47 is an industrially important silane, its high reactivity in 

conjugation with alkoxide salts has limited the functional group tolerance of the system. 

A screening of other silanes would not only demonstrate the tolerance of the system but 

could potentially allow us to generate a system with increased functional group 

tolerance. 

However, the silane screen using DIPPBIPMnBr2 197 was unproductive, with only 

triethoxysilane 47 giving any alkene hydrosilylation (Scheme 2.25). Even related 

alkoxysilanes such as methyldiethoxysilane 260 were unreactive. When the conditions 

were altered to use EtBIPMnBr2 196 the silane scope was broader. As previously 

discussed phenylsilane 46 would undergo hydrosilylation of octene 22 in quantitative 

yield. The yield of methyldiethoxysilane 260 was improved compared to earlier testing 

and full conversion and an 88% isolated yield of product was observed. Both these 

silanes retained the high regioselectivity seen with triethoxysilane 47, however, 

diphenylsilane 261, triethylsilane 262 and 1,1,1,3,5,5,5-heptamethyltrisiloxane 263 

(MD’M) remained unreactive. 

 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 
mmol), NaOtBu (0.03 mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR 

of the crude reaction mixture, using 1,3,5-trimethoxybenzene as an internal 
standard, as an average of two runs. Also tested using EtBIPMnBr2 and PhSiH3 

to give the same result. 

Scheme 2.25 Substrate screen of silanes 
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2.5 Gram-Scale Hydrosilylation of Octene 

Hydrosilylation of 1-octene 22 typically had been carried out on a 0.5 mmol or 1.0 mmol 

scale. As the reaction was exothermic, under neat conditions and the formation of a gas 

presumed to be SiH4 had been observed in the initial phase of the reaction, we envisioned 

the scale-up of the reaction could be difficult. The safety concerns led to the reaction to 

be carried-out in a sealed system, in an inert atmosphere as silane is only spontaneously 

flammable above a 10:1 SiH4:O2 ratio.186 As triethoxy(octyl)silane 48 is a commercially 

important chemical and was made in high yields under our conditions we decided to fully 

optimise this reaction.5 It was hoped that by increasing the reaction scale a lower catalyst 

loading could be used and therefore increasing the TON (turnover number) and TOF 

(turnover frequency) of the catalyst. 

Gradually scaling-up by 4 times saw no impact on the yield (Table 2.13 entries 1-3). 

However, when the scale was increased to 4 mmol the reaction yield fell to 35% (entry 

4).  The increase of pressure in a sealed system on this scale, as well as the greater 

temperatures being reached by the reaction mixture could lead to catalyst 

decomposition, causing the lower yield. A potential solution to this was the lowering the 

catalyst concentration and therefore the activator concentration which would make the 

disproportionation of HSi(OEt)3 47 less rapid and give more controlled conditions. This 

worked to an extent as the yield rose when using 1 mol% of DIPPBIPMnBr2 197 to 46% 

(entry 5) and to 67% when using 0.5 mol% of catalyst (entry 6). Further decreasing the 

catalyst loading led to lower yields and the formation of the branched regioisomer (entry 

7 and 8).  

Another potential issue is that the reaction vessel was unchanged from the small-scale 

experiments (6 mL reaction vessel) and to be able to perform the reaction on gram-scale 

an alternative vessel would need to be used. Initial testing on gram-scale (8.9 mmol) used 

a 25 mL round bottom flask and a catalyst loading of 0.2 mol %. The reaction was poorly 

yielding for the hydrosilylation of 1-octene 22 and the selectivity was poor compared to 

the small-scale reaction (entry 9). By adding alkene before the silane, it was hoped that 

the production of silane gas would be suppressed, and the reaction temperature would 

be more consistent. However, this led to lower conversions to hydrosilylation product 

(entry 10), potentially because siliconate formation would be less rapid in a more dilute 

mixture enabling residual NaOtBu 49 to demetallate the pre-catalyst before activation 

could occur. Increasing the catalyst loading to 0.5 mol% led to increased yields of 49% 
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(entry 11). Switching from a 25 mL roundbottom flask to a small Schlenk tube (appox 12 

mL volume, 1.5 cm internal diameter) led to the reaction to occur with a quantitative 

conversion (entry 12). The product was isolated by distillation to give 2.3 g of 

triethoxy(octyl)silane 48 in a 95% yield. Decreasing the catalyst loading to 0.1 mol% 

gave a conversion of 65% (entry 13). This result gave the highest obtained TON for this 

methodology with a TON of 650 being obtained. The highest TON for iron 

bis(imino)pyridine catalysed hydrosilylation is 2000 obtained by Chirik et. al.42,89 

Optimisation attempts in a larger Schlenk tube (~ 20 ml and 2.5 cm internal diameter) 

gave lower yields and poor regioselectivity (entry 14).   
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Table 2.13. Screening for the gram-scale hydrosilylation of 1-octene. 

 

 

Entry Scale 

(mmol) 

Catalyst 

Loading 

(mol %) 

Activator 

Loading 

(mol %) 

Yield 48  Yield 263 

1 .5a 2 6 85b 0b 

2 1a 2 6 >95b 0b 

3 2a 2 6 85b 0b 

4 4a 2 6 35b 0b 

5 4a 1 3 46b 0b 

6 4a .5 1.5 67b 0b 

7 4a .1 .3 55b 11b 

8 4a .01 .03 4b 7b 

9 8.9c 0.2 0.6 20d 4d 

10 8.9c 0.2 0.6 15d Traced 

11 8.9c 0.5 1.5 49d 0d 

12 8.9e 0.5 1.5 >95d (95)f 0d 

13 8.9e 0.1 0.3 65d 0d 

14 8.9g 0.5 1.5 25d 29d 

Reaction conditions: Alkene, HSiR3, catalyst,  NaOtBu, neat, 25 °C, 18 h. a) reaction performed in a 6 mL sealed tube. 

b) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-trimethoxybenzene as an internal 

standard, as an average of two runs. c) reaction performed in a 25 mL round bottom flask. d) Conversion 

determined by the ratio of products to starting material in an NMR of the crude reaction mixture, as an average of 2 

runs. e) reaction performed in a 12 mL Schlenk tube. f) isolated yield obtained by distillation. g) reaction performed 

in a 25 mL Schlenk tube. 
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2.6 Mechanistic Investigations 

During the reaction screening for the manganese-catalysed hydrosilylation of alkenes it 

was found that the in situ activation of the pre-catalyst would only give an active catalyst 

when a siliconate species was used as an activator. The use of related hydride species as 

activators such as NaHBEt3 and LiAlH4, failed to give an active catalyst. Previously, 

BIPMn(II)X2 species have been reduced using a range of organometallic reagents. 

Gambarotta et al. had reduced DIPPBIPMnCl2 196 using methyl lithium to give a formally 

manganese(I) reduction product 264 (Scheme 2.26).162 It was proposed that a methyl 

radical elimination mechanism was responsible for reducing the manganese by one 

electron. By changing the reductant to LiCH2SiMe3, DIPPBIPMnCl2 196 was reduced to a 

formally manganese(0) species 265. The difference in observed reactivity is rationalised 

by the participation of the ligand when using LiCH2SiMe3 as a reductant. Bis(imino) 

pyridine ligands can accept electron density from the bound metal. This occurs when the 

metal becomes antiferromagnetically coupled to the bis(imino)pyridine triplet. 

Gambarotta and co-workers found that when this happened in their manganese species 

that the ligand could reductively couple with another molecule of pre-catalyst to give a 

dimeric species 267.187 This species was isolated and characterised by x-ray 

crystallography.  

Chirik et al. had shown that the reduction of DIPPBIPMnCl2 using sodium naphthalene, in 

THF gave DIPPBIPMn(THF)2 268 (Scheme 2.26).167 The structural, electronic and 

spectroscopic properties of the complex were studied. These studies concluded that the 

high-spin manganese(II) centre was antiferromagnetically coupled to the bis(imino) 

pyridine triplet diradical ligand. The species was inactive in [2+2] cycloaddition and 

hydrogenation processes.  
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Scheme 2.26 Reductions of Manganese(II) complexes. 

In order to ascertain insight into the reaction mechanism, attempts were made to isolate 

the reduction product of the manganese(II) pre-catalyst. Adding DIPPBIPMnBr2 197 to a 

THF solution of HSi(OEt)3 47 and NaOtBu 49 led to a rapid colour change from orange to 

purple. The order of addition was important as the addition of HSi(OEt)3 33 or THF after 

the introduction of DIPPBIPMnBr2 197 led to the formation of a pink solid, presumed to 

be manganese(II) dibromide. Filtering the purple solution through celite, washing with 

pentane and removing the solvent gave a purple solid. 1H NMR analysis of the solid was 

uninformative. Many attempts were made to grow crystals of this solid however none of 

these attempts were successful. The solid was stirred with CH3OD to probe if deuterium 

incorporation into the ligand would occur upon decomplexation however, no deuterium 

signals were present by NMR analysis.  

The identity of the activating agent was also investigated. By mixing alkoxide and 

HSi(OEt)3 in an NMR tube we were able to observe the formation of siliconate species in 

situ (scheme 2.27). The addition of KOEt to a solution of HSi(OEt)3 197 in d8-

tetrahydrofuran gave two peaks in the 29Si NMR. The peak at -77.6 ppm was attributed 

to the formation of the siliconate species tetraethoxyhydrosilane 270. The peak at -82.3 

ppm is for tetraethyl orthosilicate, a decomposition product of HSi(OEt)3 

disproportionation. The addition of 0.5 equivalents with respect to of DIPPBIPMnBr2 led 

to the complete removal of the siliconate peak from the spectra.  
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Scheme 2.27 29Si NMR spectra of siliconate formation and then quenching with 

DIPPBIPMnBr2. 

Deuterium labelling experiments were performed to test for reversible 

hydrometallation. 1,1,2-Trideutero-4-phenylbutene 273 was synthesised from 4-

phenyl-1-butyne 271 by deprotonation with tBuLi and quenching with MeOD followed 

by alkyne semi-hydrogenation using D2 gas and Lindlar’s catalyst (Scheme 2.28).  

 

Scheme 2.28 Synthesis of d3-4-phenyl-1-butene 273 from 4-phenyl-1-butyne 271. 

The hydrosilylation of 1,1,2-trideuterophenylbutene gave a distribution of products. The 

expected product 274 with a single hydrogen atom incorporated at the internal position 

of the alkene was the major product obtained (Scheme 2.29). Products containing two 

hydrogens 275 and two deuteriums 276 in the internal alkene position were also found. 

There was no evidence of deuterium incorporation α- to the silane. 
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Scheme 2.29 Hydrosilylation of d3-4-phenyl-1-butene. 

The incorporation of multiple hydrogens or deuteriums in the C2 position is presumably 

due to reversible hydrometalation/β-hydride elimination steps in the mechanism 

(Scheme 2.30). Insertion of the d3-alkene into a manganese–hydride bond (formed by 

oxidative addition of the hydrosilane would give an organomanganese intermediate. 

This intermediate could either undergo silicon-carbon reductive elimination, to give the 

major hydrosilylation product, or undergo β-hydride elimination to give 1,1-

dideuterooctene. If this d2-alkene then inserts into a second manganese–hydride bond 

and undergoes reductive elimination it would give the product bearing 2 hydrogen 

atoms in the C2-position. The absence of deuterium scrambling in the C1 position agrees 

with the observed regioselectivity of the hydrosilylation of 1-octene under standard 

reaction conditions.  
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Scheme 2.30 Reversible hydrometallation/β-hydride elimination pathway for 

deuterium scrambling at the alkene. 

In order to probe a potential radical mechanism, the addition of radical traps to the 

reaction were investigated. When low quantities of 2,2,6,6-tetramethylpiperidin-1-

yl)oxyl (TEMPO, 277, 1-2 mol%) were added to the standard reaction conditions there 

was no effect on yield (Table 2.14 entries 2 and 3). When the amount added was 

increased to 10 mol% and above, the yield of reaction started to decrease (entry 4 and 

5). However, even when 100 mol% of TEMPO 277 was added to the reaction, there was 

still some observed reactivity (entry 6). There was no observed TEMPO-octene adduct 

or TEMPO-catalyst adduct so it is unlikely the reaction was inhibited due to radical 

trapping. Instead, radical traps have been reported to interact with metal-hydrides even 

in reactions which are known to operate by two-electron processes.188 The use of further 

radical traps such as 3-carboyl-PROXYL 278 (entries 7-9) and Galvinoxyl 279 (entries 

10-12) led to complete inhibition of catalyst activity. However, these radical traps bear 

amide groups which could either coordinate to the catalyst or act as a hydride acceptor 

for the siliconate species and prohibit catalyst activation. As a result, no reactivity was 

observed in these trials.  
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Table 2.14 Screening of radical traps and their impact on catalysis 

 

Entry Radical Trap Mol % Yield %a 

1 - - >95% 

2  

 

1 >95 

3 2 71 

4 10 69 

5 50 36 

6 100 6 

7 

 

 

 

10 

 

0 

8 

 

50 0 

9 100 0 

10 

 

 

 

10 

 

0 

11 

 

50 

 

0 

12 100 0 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol),  NaOtBu 

(0.03 mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, 
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Dibenzo[a,e]cyclooctatetraene 283 (DCT) has been shown to be a selective poison of 

homogenous catalysts.189 Given the use of strong reducing agents in the reaction, it is not 

inconceivable that manganese colloids or nanoparticles are formed in the reaction. For 

instance, Jacobi von Wangelin and co-workers had reduced a Mn(II) precursor to a Mn6 

cluster that was an active catalyst in hydrogenation reactions.190 Whilst this test has not 

been applied to manganese, the test has proved indicative in examples with iron 

catalysts.191,192 When DCT was added 10 minutes into the reaction it caused a decrease 

in the yield of the octene hydrosilylation product (table 2.15. entry 3+4) suggesting a 

homogeneous catalyst. 

Trityl cations have been shown to accept hydrides from organometallic 

compounds.193,194 If a manganese–hydride is on the catalytic cycle, the addition of trityl 

cation should inhibit catalysis. It should be noted that two potential hydride sources are 

present under reaction conditions: the in situ generated siliconate species and a potential 

manganese–hydride species (Scheme 2.31).  

 

Scheme 2.31 Proposed quenching of manganese hydride and a hydrosiliconate by 

trityl cation. 

When trityl hexachloroantimonate 280 is added before the reaction, no catalytic activity 

was observed. However, this was likely due to the hydride abstraction from the in-situ 

generated siliconate species 218. The addition of trityl cation 280 10 minutes after the 

using 1,3,5-trimethoxybenzene as an internal standard, as an average of four runs. 

Selectivity for the linear hydrosilylation product is >95%. 
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activation of the catalyst by siliconate should rule out inhibition of catalyst activation. 

The addition of stoichiometric amounts, with respect to catalyst, of trityl 

hexachloroantimonate 280 to a reaction after 10 minutes still led to complete inhibition 

of the reaction (Table 2.15, entry 5) equal to the quench by aqueous acid. The addition 

of 1 mol% and 0.5 mol% of trityl led to proportional increases in reactivity (entry 6 + 7). 

The addition of superstoichiometric quantities of trityl cation gave unclear results, as the 

diagnostic hydrosilylation peak in the NMR was broadened. This was presumed to be 

caused by the formation of trityl–OH upon reaction quenching with aqueous 

hydrochloric acid. This could interact with the hydrosilylation product and cause peak 

broadening.   

Table 2.15 The impact of additives on the hydrosilylation of 1-octene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The regioselectivity of the reaction also offers an insight into the mechanism (Scheme 

2.32.). The regioselectivity is dictated by the hydrometalation step. Hydrometalation 

 

Entry Additive Mol % Yield %a 

1 - - >95% 

2 HCl Excess 12 

3 

 
 

10 36 

4 2 46 

5 

 

2 11 

6 1 44 

7 0.5 47 

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.63 mmol), catalyst (0.01 mmol),  NaOtBu 

(0.03 mmol), neat, 25 °C, 4 h. Additive added after 10 mins from substrate addition. a) 

Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of four runs. Selectivity for the 

linear hydrosilylation product is >95%. 
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could occur to give either a primary organometallic 285 or a secondary organometallic 

286. If a secondary organomanganese intermediate 286 was formed it would give the 

branched product 290, whilst the primary organomanganese intermediate 285 would 

give the linear product 289. Alternatively, if silylmetalation (alkene insertion into the 

manganese–silane bond) was to occur instead of hydrometalation, the secondary 

organomanganese intermediate 287 would give the linear product 289 and the primary 

organomanganese intermediate 288 would give the branched product 290. Given the 

high regioselectivity observed for the linear product 289, it is likely that the primary 

organometallic 285, formed from hydrometallation, or the secondary organometallic 

intermediate 287, formed from silylmetallation, would be predominately formed as the 

key intermediate. The increased inductive effect from an additional neighbouring carbon 

centre and the increased steric bulk would make the formation of the branched 

silylmetaltion intermediate 287 disfavoured. The formation of a primary 

organomanganese intermediate 285 would be thermodynamically favoured. This would 

give the predominate formation of the linear product 289, as has been observed in 

experiments.  

 

Scheme 2.32. Rationale for the regioselectivity based on the intermediate formed by 

hydro- and silylmetalation. 

Using all these experiments, a mechanism was proposed (Scheme 2.33.). The 

manganese(II) pre-catalyst A is reduced by hydride transfer from an in-situ generated 

hydrosiliconate species. The manganese(II) dihydride complex  B would then eliminate 

H2 gas to give a formally low-oxidation state species C. The oxidation addition of silane 

would produce manganese–hydride D. Coordination of the alkene followed by alkene 
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insertion into the manganese–hydride bond would give organomanganese F. This would 

be followed by reductive elimination to form a carbon–silyl bond and regenerate the 

formally low oxidation-state manganese species. 

 

Scheme 2.33. Proposed mechanism for the hydrosilylation of alkenes.  
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2.7 Future Work and Conclusions 

The manganese-catalysed hydrosilylation of alkenes has been developed, with broad 

substrate scope. The reaction is operationally simple and uses a bench-stable manganese 

pre-catalyst and activator.  

A thorough optimisation of the methodology was performed. In particular, a range of 

bis(imino)pyridine ligands were comprehensively tested. Terpyridine and an 

imino(pyridine) ligand were also trialled however a comprehensive ligand screen has 

not been performed. There are numerous redox-active ligands known and by 

investigating manganese complexes bearing these ligands it may become possible to 

develop methodologies that give differing selectivity or are more active. 

The methodology was applied to a range of substrates. Terminal, aliphatic alkenes were 

well tolerated, undergoing hydrosilylation in excellent yields with total control of 

regioselectivity. Whilst styrenes proceeded in lower yields, di- and tri-substituted 

alkenes were unreactive. When using DIPPBIPMnBr2 only triethoxysilane was reactive but 

the closely related catalyst EtBIPMnBr2 was capable of tolerating phenylsilane and 

diethoxymethylsilane.  

 

Scheme 2.34 Overview of the manganese-catalysed hydrosilylation of alkenes. 

It was found that catalyst activation by sodium tert-butoxide was crucial for the catalysis 

to occur. Whilst attempts were made to isolate the reduced manganese species they were 

unsuccessful. If this key species could be characterised it would offer a key insight into 

the activation mechanism and help determine what makes the sodium tert-butoxide 

activation methodology so potent in this system.  
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A mechanistic investigation using 1,1,2-trideuterooct-1-ene showed deuterium 

scrambling suggesting that a reversible hydrometalation/β-hydride elimination step is 

key to the reaction mechanism. Quenching studies with trityl cation indicated that a 

manganese–hydride is probably generated in the reaction pathway. These experiments 

strongly suggest a Chalk-Harrod type mechanism is being followed in this methodology. 

  



89 
 

3. Manganese-Catalysed Hydroboration of Alkenes 

3.1. State-of-the-Art at the Outset of the Project 

Hydroboration is the addition of hydrogen and boron across an unsaturated bond. Unlike 

most other hydrofunctionalisations, hydroboration can proceed without a catalyst. Alkyl 

borane (9-BBN) or borane species (BH3 291, B2H6) are capable of undergoing alkene 

hydroboration without a catalyst. However, the resulting products are unstable and are 

usually oxidised to the alcohol without being isolated. The synthesis of isolable 

hydroboration products necessitates the use of boronic ester reagents (catechol borane, 

pinacol borane 292). These species are less electrophilic and require a catalyst for 

hydroboration to occur. Catalysed hydroboration reactions potentially possess a greater 

control of selectivity, allowing for chemo-, regio- or stereoisomers to be selectively 

formed.  

 

Scheme 3.1: A) Uncatalysed hydroboration of an alkene by BH3 followed by an 

oxidation to form the primary alcohol. B) The catalysed hydroboration of an alkene 

using pinacol borane which gives a stable boronic ester product.  
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3.1.1 Catalysed Hydroboration Reactions 

Männig and Nöth used Wilkinson’s catalyst, Rh(PPh3)3Cl 294, to catalyse the 

hydroboration of 5-hexen-2-one 61 with catechol borane 293.195 When no catalyst was 

added, the hydroboration of the ketone 295 was observed, but the addition of 

Wilkinson’s catalyst 294 gave complete selectivity for the alkene hydroboration product 

296. Additionally, it was shown that unfunctionalized alkenes would undergo 

uncatalyzed hydroboration by catechol borane at high temperatures. Meanwhile, the use 

of Wilkinson’s catalyst allowed for the hydroboration of alkenes at room temperature. 

Whilst catechol borane 293 is more stable than alkyl boranes, it is still not easily isolated. 

Pinacol borane (HBPin) 292 is the most commonly used reagent which can provide 

access to bench-stable hydroboration products. Pereira and Srebnik used Wilkinson’s 

catalyst 294 to catalyse the addition of pinacol borane 292 to a range of alkenes.196 

Mechanistic investigations suggests that the rhodium-catalysed reaction proceeds akin 

to the Chalk-Harrod mechanisms for hydrosilylation reactions.197–201 

 

Scheme 3.2: A) The effect of adding a rhodium catalyst 294 on the hydroboration of 5-

hexen-2-one 293. B) The proposed mechanism for a catalysed hydroboration reaction. 
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Recently, efforts have gone into developing new hydroboration methodologies. 

Significant amounts of this research has focussed on the development of enantioselective 

hydroboration catalysts. This area has been previously reviewed202 but a notable recent 

example was the development of a Markovnikov hydroboration of terminal alkenes that 

proceeded with good yields, high regioselectivity and good ee (Scheme 3.3).203 

 

Scheme 3.3: An example of a Markovnikov-selective, enantioselective hydroboration of 

terminal alkenes by Aggarwal and co-workers. 

Developments have also focused on the use of non-precious metals as catalysts in 

hydroboration, particularly iron and cobalt.12,204 Notably, Zhang et. al. reported the first 

manganese-catalysed hydroboration of alkenes.173 This methodology used a well-

defined manganese(II) dialkyl catalyst bearing a terpyridine ligand 300. The reaction 

was regiodivergent, with the regioselectivity dictated by the substrate. The 

hydroboration of styrene proceeded with Markovnikov selectivity 301 (Scheme 3.4A) 

whilst aliphatic alkenes underwent hydroboration in an anti-Markovnikov fashion 302 

(Scheme 3.4B). The selectivity is presumably dictated by the formation of the 

thermodynamically favoured organomanganese intermediate (see structure D in 

Scheme 3.2). For aliphatic alkenes, the primary organometallic is favoured whilst for 

styrenes the secondary, benzylic organometallic is thermodynamically more stable.  
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Scheme 3.4: A) Hydroboration of styrenes using a manganese(II) pre-catalyst 300 to 

give the Markovnikov hydroboration product 301. B)  Hydroboration of octene using a 

manganese(II) pre-catalyst 300 to give the anti-Markovnikov product 302. 

Recently, main group elements have been used as catalysts for hydroboration, 

particularly the metals in group 13.205–212 Ingleson and co-workers reported the trans-

hydroboration of alkynes which was mediated by a borenium cation 304 and B(C6F5)3 

305 (Scheme 3.5A).207 This was followed by a report by Stephan and co-workers of the 

hydroboration of alkynes using substoichiometric amounts of Piers’ borane (HB(C6F5)2 

307) as an initiator for catalysis (Scheme 3.5B).209 The boron-catalysed hydroboration 

of alkenes was reported by Oestreich and co-workers who used tris(3,5-

bis(trifluoromethyl)-phenyl)borane, BArF3 309, as a catalyst (Scheme 3.5C).210 This work 

was also extended to the hydroboration of alkynes, ketones and imines.211 
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Scheme 3.5 A) Hydroboration of alkynes mediated by a borenium cation and B(C6F5)3. 

B) Hydroboration of internal alkynes catalysed by Piers’ borane. C) Alkene 

hydroboration catalysed by BarF3.  

Of the most relevance to this chapter, is the borane-catalysed hydroboration of alkynes 

and alkenes reported by Thomas and co-workers.213 Here the formation of boronic esters 

by hydroboration was catalysed by BH3 291 (Scheme 3.6A). The reaction is proposed to 

proceed initially by BH3 291 hydroboration of the alkene 22 (akin to the uncatalyzed 

hydroboration methodology). The resulting alkylboron species 310 can then undergo 

either a transborylation or a ligand exchange to give the boronic ester product 309 

(Scheme 3.6B). 

 

Scheme 3.6 A) Synthesis of alkyl boronic esters using BH3 291 as a catalyst. B)  

Proposed mechanism for the formation of boronic ester product 303. 
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3.2 Project Aims 

At the outset of the project there was no precedent for the manganese-catalyzed 

hydroboration of alkenes. Therefore, the project aimed to build upon the previously 

developed manganese-catalysed hydrosilylation of alkenes methodology (Chapter 2) 

and develop a methodology for the manganese-catalysed hydroboration of alkenes. 

Following the publication by Zhang et. al.,173 shortly after the start of the project, we 

focused on exploring the differences between the methodologies. Particularly with 

styrenes derivatives, we observed a different regioselectivity, so this area was explored 

with a more thorough substrate scope than with aliphatic alkenes.  

 

Scheme 3.7 Overview of the manganese-catalysed hydroboration of alkenes with 

potential catalysts. 
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3.3 Methodology Development 

3.3.1 Reaction Discovery and Control Reactions 

Whilst optimising the manganese-catalysed hydrosilylation of alkenes, several attempts 

to perform a similar hydroboration reaction were attempted by replacing the silane with 

pinacol borane 292. Pinacol borane 292 also had precedent at being capable of the 

activation of first-row transition metals when mixed with sodium tert-butoxide 49.42  

Initial attempts focussed on modifying the procedure used for the hydrosilylation of 

alkenes by replacing the silane reagent with pinacol borane 292. As attempts made using 

bis(imino)pyridine manganese pre-catalysts were initially unsuccessful. Investigations 

turned to other manganese catalysts. For instance, Sood et. al. had reported the use of an 

iminopyridine manganese(II) complex successfully catalysing ethene polymerisation at 

60 °C.172 In an effort to replicate these conditions the reaction temperature was raised to 

60 °C. Under these increased temperatures DIPPIPMnBr2 200 catalysed the hydroboration 

of octene 22 in a moderate yield (entry 7). By increasing the amount of pinacol borane 

292 to 1.5 equivalents the reaction yield increased to 75% (Entry 8). When using 

DIPPBIPMnBr2 197 as a pre-catalyst at 60 °C, the hydroboration of octene 22 proceeded 

in a comparable yield to DIPPIPMnBr2 200 (Entry 9). Due to the simplicity of using the 

same catalyst for both hydrosilylation and hydroboration methodologies it was decided 

that the studies would focus on the bis(imino)pyridine catalyst. 
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Table 3.1 Initial screening reactions and discovery of the manganese-catalysed 
hydroboration of alkenes. 

Control reactions showed that whilst ligand, metal salt and activator were all crucial for 

the highest yields to be obtained, there was a relatively high degree of background 

reactivity. In particular, running the reaction with only the activator, NaOtBu, present 

gave moderate amounts of the linear boronic ester (Table 3.2, entry 1). Using the 

manganese dibromide salt in conjunction with the alkoxide gave similar reactivity (entry 

2) and using just the metal salt gave lower reactivity than only the alkoxide (entry 3). 

Free bis(imino)pyridine ligand gave no conversion of starting material to the 

hydroboration product (entry 4). Running the reaction with standard conditions but in 

air gave low yields of hydroboration (entry 5). 

 

 

Entry Substrate t (°C) Catalyst Eq of 

HBPin 

Yield 

(%)a 

1 Octene r.t. EtBIPMnBr2 1.25 0 

2 Octene 25 EtBIPMnBr2 1.25 0 

3 Octene 25 DIPPBIPMnBr2 1.25 0 

4 Octene 25 IPBIPMnBr2 1.25 0 

5 Myrcene 25 IPBIPMnBr2 1.25 0 

6 Myrcene 60 IPBIPMnBr2 1.25 0 

7 Octene 60 IPBIPMnBr2 1.25 43 

8 Octene 60 IPBIPMnBr2 1.50 75 

9 Octene 60 DIPPBIPMnBr2 1.50 67 

Reaction conditions: Alkene (0.5 mmol), HBPin (0.63 mmol), catalyst (0.01 mmol),  NaOtBu (0.03 mmol), neat, 

25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-trimethoxybenzene as an 

internal standard, as an average of two runs. Selectivity for the linear hydroboration product is >95% 
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Table 3.2: Control reactions for the manganese-catalysed hydroboration of alkenes. 

 

  

 

 

 

 Entry Alteration to standard conditions Yield %a  

 1 Only NaOtBu 41  

 2 MnBr2·(THF)2 + NaOtBu 44  

 3 MnBr2·(THF)2 21  

 4 Only DIPPBIP 0  

 5 Ran in air 12  

Reaction conditions: Alkene (0.5 mmol), HBPin (0.75 mmol), catalyst (0.01 mmol), NaOtBu (0.03 mmol), neat, 25 °C, 18 

h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-trimethoxybenzene as an internal standard, 

as an average of two runs. Selectivity for the linear hydroboration product is >95% 
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3.3.2 Methodology Optimisation 

Initial attempts at optimising the reaction focussed on changing the temperature. 

Increasing the temperature of the reaction to 80°C did significantly increase the reaction 

yield (Table 3.3, entry 2) but decreasing the temperature below 60°C (entry 3) led to 

decreased yields even at higher loadings of HBPin 292 (entry 3). 

Table 3.3: Optimisation of temperature 

 

 

 

 

 

 

 

 

 

 

 

In general, the addition of solvent led to decreased yields. Ethereal solvents gave some 

activity but significantly inferior yields to neat conditions (Table 3.4, entries 1-3). Using 

toluene as the solvent gave a small improvement on the yield but dichloroethane, 

acetonitrile, ethyl acetate and dimethyl carbonate all gave no reaction or very low 

boronic ester yields (Table 3.4, entries 4-8).  

 

 

 

 

 

Entry Amount of HBPin Temperature (°C) Yield (%)a 

1 1.5 60 67 

2 1.5 80 74 

3 1.5 40 6 

4 2.0 40 6 

Reaction conditions: Alkene (0.5 mmol), HBPin (0.75/1 mmol), catalyst (0.01 mmol),  NaOtBu (0.03 

mmol), neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the linear 

hydroboration product is >95% 
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Table 3.4. Screening of Solvent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A range of bis(imino)pyridine ligands with sterically differentiated N-aryl groups were 

tested under the developed hydroboration conditions. These ligands were trialled in 

conjunction with both manganese bromide and manganese chloride salts (Table 3.4). 

DIPPBIPMnBr2 197 (entry 1) and DIPPBIPMnCl2 208 (entry 2) were the most active 

catalysts and the remaining catalysts all gave moderate to good yields. There was not a 

strong trend with respect to ligand size or the choice of counter-ion. It is notable how 

each catalyst was active for hydroboration, apart from MesBIPMnX2 which only gave 

background reactivity (see Table 3.2). This contrasts with the previously developed 

manganese-catalysed hydrosilylation methodology where changing the steric properties 

of the bis(imino)pyridine ligand could lead to a large variation in reactivity. 

 

 

 

 Entry Solvent Yield %a  

 1 Neat 67  

 2 Tetrahydrofuran 21  

 3 Diethylether 18  

 4 Toluene 28  

 5 Dichloroethane 6  

 6 Acetonitrile 0  

 7 Ethyl Acetate 0  

 8 Dimethyl carbonate 0  

Reaction conditions: Alkene (0.5 mmol), HSiR3 (0.75 mmol), catalyst (0.01 mmol),  NaOtBu (0.03 

mmol), solvent (0.5 mL), 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction 

mixture, using 1,3,5-trimethoxybenzene as an internal standard, as an average of two runs. 

Selectivity for the linear hydroboration product is >95% 
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Table 3.4. Screening of catalyst 

  

 

Entry Catalyst Yield %a 

1 

2 

DIPPBIPMnBr2 197 

DIPPBIPMnCl2 208 

67 

68 

3 EtBIPMnBr2 196 61 

4 

5 

MesBIPMnBr2 206 

MesBIPMnCl2 210 

44 

47 

6 

7 

HBIPMnBr2 207 

HBIPMnCl2 211 

52 

60 

Reaction conditions: Alkene (0.5 mmol), HBPin (0.75 mmol), catalyst (0.01 mmol),  NaOtBu (0.03 mmol), 

neat, 25 °C, 18 h. a) Yield determined by 1H NMR of the crude reaction mixture, using 1,3,5-

trimethoxybenzene as an internal standard, as an average of two runs. Selectivity for the linear 

hydroboration product is >95%.  
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3.4 Substrate Scope 

The generality and selectivity of the methodology was explored using HBPin 292 and a 

range of alkenes. Initial attempts were undertaken using DIPPBIPMnBr2 197 , NaOtBu 49 

(in a 1:3 ratio) and 1.5 eq of HBPin 292. Whilst consumption of the starting materials 

was in many cases quantitative, product yield determined by 1H NMR of the crude 

reaction mixture using an internal standard showed that only moderate-good amounts 

of hydroboration product were formed. Attempts to purify the hydroboration products 

by distillation and flash column chromatography were difficult and led to poor yields. 

The resulting products were often yellow amorphous solids despite precedent 

identifying them as colourless oils. This suggested a competing polymerization reaction 

was taking place, consuming starting material and making purification non-trivial. As a 

result, the amount of HBPin 292 was increased from 1.5 to 3 equivalents giving increased 

yields of hydroboration and supressing polymerisation. The products were then easily 

purified by flash column chromatography with good retention of isolated yields 

compared to NMR analysis of the crude reaction. 

A range of electronically and sterically differentiated styrene derivatives were subjected 

to the hydroboration conditions (Scheme 3.8). 4-tert-Butylstyrene underwent 

hydroboration in excellent yield (96%) with predominant formation of the anti-

Markovnikov product 311 (90:10). The use of styrene derivatives bearing electron-

withdrawing groups containing trifluoromethyl- 312, fluoro- 313 and bromo-groups 

314 proceeded in good yields (64%-74%) and high selectivity. 3-Methoxystyrene 315 

underwent hydroboration in an excellent yield (99%) with slightly improved selectivity 

(93:7). A highly sterically hindered substrate, 2,4,6-trimethylstyrene was converted to 

the hydroboration product 316 in a significantly lower yield (31%) but with excellent 

control of regioselectivity (97:3). Hydroboration of 1,1-disusbtituted styrene, α-

methylstyrene gave a 33% of the boronic ester product 317 but with excellent selectivity 

(>99:1). Aliphatic alkenes underwent hydroboration in high yields and with essentially 

complete control of regioselectivity.  
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Scheme 3.8 Substrate scope for the manganese-catalysed hydroboration of alkenes. 

When compared to the substrate scope of the previously developed hydrosilylation 

methodology there are some stark contrasts. Most noticeably in the hydroboration 

methodology is that styrene derivatives gave excellent yields of linear boronic esters. 

Substrates such as 2,4,6-trimethylstyrene and α-methylstyrene, which were unreactive 

under hydrosilylation conditions, exhibited some reactivity. If this method is compared 

to that of Zhang et al. there are also considerable differences. The terpyridine based 

system displayed anti-Markovnikov selectivity (although with significant Markovnikov 

product in some cases) for aliphatic alkenes and Markovnikov selectivity for styrene 

derivatives. It also was unreactive for α-methylstyrene. The method developed here is 

consistently selective for the anti-Markovnikov position across styrenes and aliphatic 

alkenes. In the case of aliphatic alkenes there was no observation of the Markovnikov 

product.  

A range of alkenes were tested which were not reactive under the developed conditions 

including highly substituted alkenes, limonene 224, (1,1-disubstituted alkene), oct-4-

ene 225 (1,2-disubstituted) and myrcene 73 (1,4-disubstituted diene). Styrene 

derivatives bearing strongly electron-withdrawing groups were consumed under 

reaction conditions but did not convert to the hydroboration product. Given the broad 
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NMR spectra and viscosity of the resulting product, it was presumed a polymer was 

formed. 

 

 

Scheme 3.9 Unreactive substrates for the manganese-catalysed hydroboration of 

substrates. 
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3.5 Mechanistic Investigations 

3.5.1 Activation 

The first step in the activation process is the in situ generation of a hypervalent 

borohydride species by alkoxide addition to pinacol borane. Presumably the hydride 

then undergoes transmetalation to the manganese(II) pre-catalyst to form a 

manganese(II) dihydride intermediate which can then undergo reductive elimination to 

form hydrogen gas and a reduced manganese-species. Notably, sodium 

triethylborohydride was not a successful activator in the hydrosilylation methodology 

which is conducted at room temperature (see Chapter 2). This indicates that boronate 

complexes are not as powerful activators as siliconate species and might explain why the 

manganese-catalysed hydroboration of alkenes required higher temperatures than the 

manganese-catalysed hydrosilylation of alkenes.  
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3.5.2 Identity of the Active Catalyst 

It has been shown that reacting alkoxide salts with pinacol borane 292 leads not only to 

the boronate species 316, but also to BH3 49 which is formed by disproportionation of 

the boronate species.42 Further studies by Thomas and co-workers showed that BH3 

would catalyse the hydroboration of alkynes and alkenes at 60 °C.213 Therefore, it is 

plausible that the method demonstrated here is merely an extension of the BH3-catalysed 

methodology. 

 

Scheme 3.10 Formation of BH3 291 when pinacol borane 292 and an alkoxide salt 49 

are mixed as reported by Docherty et al.42 

There is evidence that supports a boron-based active catalyst. The control reaction 

without a manganese-species demonstrated moderate activity (41%, see Table 3.2, entry 

1). Whilst adding a manganese-species had a clear impact on the overall reactivity, it may 

assist the alkoxide-mediated decomposition of pinacol borane 292 to BH3 291. 

Additionally, the choice of ligand seems to have a limited effect on the activity of the 

system (see Table 3.4). This could possibly indicate that the coordination sphere around 

the metal is not influential in the mechanism. Finally, the substrate scope contrasts 

strongly with that of the manganese-catalysed hydrosilylation of alkenes (Scheme 3.11). 

If the methodology was to follow a similar mechanism (i.e. hydrometallation) then it 

would be presumed that similar classes of substrate would demonstrate similar 

activities across both methodologies. However, the high activity this method 

demonstrates with styrene derivatives contrasts with manganese-catalysed 

hydrosilylation. 
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Scheme 3.11 Comparison of tert-butylstyrene hydrofunctionalisation. A) manganese-

catalysed hydrosilylation of tert-butylstyrene. B) manganese-catalysed hydroboration 

of tert-butylstyrene. C) BH3-catalysed hydroboration of tert-butylstyrene. 

However, there is evidence that supports a manganese-based catalyst. Previously, 

DIPPBIPMnBr2 had been reacted with NaOtBu and HSi(OEt)3 to give an activated 

manganese-species. This amorphous, purple solid was isolated and although it was not 

characterised, a small quantity of the activated manganese species was used as a catalyst 

in a test hydroboration reaction. When mixed with HBPin and octene at room 

temperature and left for 18 hours, a 35% yield of hydroboration product was observed. 

Considering the limitations of this approach (not using exact proportions of catalyst and 

possible contaminants), this represents a reasonable yield and is evidence that this 

transformation is catalysed by a manganese-based catalyst. 
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A) the solution was stirred for 18 hours at room temperature before the crude mixture was filtered through 

celite and the volatiles removed in vacuo. The purple substance was then washed with pentane to give a purple 

solid. B) The reduced manganese species (5mg) was added to a reaction vessel. Octene and pinacol borane were 

added and the reaction left to stir at room temperature for 18 hours.  

 

Scheme 3.12: A) Synthesis of an undefined manganese species through 

activation with HSi(OEt)3 47 and NaOtBu 49. B) The use of this species to 

catalyse a hydroboration reaction at room temperature. 

 

There is sufficient evidence to propose that there are two active catalysts in the reaction. 

It is plausible that depending on the substrate class, the predominant catalyst could 

change (for instance BH3 could be the major catalytic species in the hydroboration of 

styrenes). It is unknown whether the BH3 methodology proceeds by a ligand exchange 

or a transborylation event. Likewise, the manganese-catalysed pathway could follow an 

oxidative addition or σ-bond metathesis of the B–H bond.  
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3.6 Conclusions and Future Work 

The anti-Markovnikov manganese-catalysed hydroboration of alkenes has been 

developed. The method shows consistent regioselectivity for the linear product for both 

styrenes and aliphatic alkenes, in contrast to previous methods. There is evidence to 

suggest that there may be two different mechanisms occurring under the reaction 

conditions. The most significant is likely to be a manganese-catalysed pathway, 

reminiscent of the Chalk-Harrod mechanism for hydrosilylation. The minor pathway is 

likely to be BH3-catalysed hydroboration. BH3 was formed by alkoxide decomposition of 

HBPin as reported by Docherty et. al. in 2017.42  

 

Scheme 3.13 Overview of the manganese-catalysed hydroboration of alkenes 

Future work should be carried out on the necessity of the transition metal. Investigating 

the activation process would allow a greater understanding of the role of the manganese 

catalyst. For instance investigating the use of NaHBEt3 as an activator in hydrosilylation 

methodologies at increased temperatures would confirm that boronate species are 

capable of activating the manganese(II) bromide pre-catalyst. Ideally, isolation and 

characterisation of the activated manganese species would also enable it to be used 

directly in hydroboration reactions and avoid the use of sodium tert-butoxide.  

A kinetic analysis of two model reactions, one with an aryl and one with an aliphatic 

alkene, would show if the two reactions are significantly different. Comparison with the 

kinetic profile of the equivalent reactions catalysed by BH3 would allow for comparisons 

to be made. Possibly the most important information would be determining the order of 

the reaction with respect to catalyst and substrate.  
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4. Iron-Catalysed Reductive Cyclisation 

4.1 Project Aim 

The use of iron catalysts for the hydrogenation of alkenes has been an important 

development in replacing precious metal catalysts with sustainable alternatives.74,214 

The rate-determining step for the iron-catalysed hydrogenation of alkenes is reductive-

elimination to form a C–H bond. Due to the slow reductive-elimination, the alkyl iron 

intermediate 326 has a longer lifetime than is typical. Thus, it was proposed that an 

intramolecular nucleophile could intercept the alkyl iron species 326 to give the product 

of reductive cyclisation 327 (Scheme 4.1). 

 

Scheme 4.1 Proposed mechanism of iron-catalysed reductive cyclisation.  

The main challenge of this methodology would lie in finding a catalyst which is 

chemoselective for hydrometallation of an alkene over a carbonyl. Additionally, the 

reductive elimination could compete with reductive cyclisation, and a mixture of 

products would be formed (Scheme 4.2).  
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Scheme 4.2 Potential products of iron-catalysed reductive cyclisation 

The choice of catalyst was dictated by the need for chemoselective hydrogenation of the 

alkene in preference to the nucleophilic group. At the outset of the project there were no 

reports of iron-compounds chemoselectively catalysing the hydrogenation of 

unactivated alkenes in preference to ketones.156 However, Carter et al. reported the iron-

catalysed hydrogenation of 1-cyclopenten-1-ylacetonitrile 331 to give cyclopentyl 

acetonitrile 333 (Scheme 4.3A).215 This process used a simple iron salt, Fe(OTf)2 44, and 

sodium triethylborohydride as a hydride source. Additionally, there are examples of 

iron-catalysed alkene hydrosilylation processes which are selective for the alkene group 

in the presence of a ketone. Huang and co-workers reported an iron-compound 54 which 

was capable of catalysing the hydrosilylation of alkenes in the presence of a ketone 

(Scheme 4.3B).96 In addition, they showed that bis(imino)pyridine catalysts bearing 

small N-aryl substituents were also chemoselective for alkene hydrosilylation when 

using the unactivated alkene 5-hexen-2-one 61 (Scheme 4.3C).  
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Scheme 4.3 Chemoselective alkene reduction in the presence of other reducible 

functional groups A) Iron-catalysed alkene hydrogenation in the presence of a nitrile 

group using a simple iron(II) salt 44.215 B) Iron-catalysed alkene hydrosilylation in the 

presence of a ketone using an iron catalyst bearing an imino(pyridine)phosphinite 

ligand 54.96 C) Iron-catalysed alkene hydrosilylation in the presence of a ketone using 

an iron-catalyst bearing a bisimino(pyridine) ligand 57.169 
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4.2 Starting Materials Synthesis 

2’-Allylacetophenone 325 was chosen as the model substrate which would allow for a 5- 

or 6-membered ring to be formed depending on if hydrometallation formed a primary 

or secondary organoferrate intermediate. This substrate was synthesised by Stille cross-

coupling from 2’-bromoacetophenone 334 and allyltributylstannane 335 in a 72% 

isolated yield. Whilst this method was simple, removal of the residual tin proved 

difficult.216 Therefore, 2’-allylacetophenone was also synthesised from 2’-

bromoacetophenone by acetal protection, Grignard formation and nucleophilic addition 

to allyl bromide 257 and subsequent deprotection. 2-Allylbenzonitrile 344, 2-

allylbenzaldehyde 345 and 1-(2-Allylphenyl)propan-2-one 346 were synthesised by 

Stille cross-coupling. 

 

Scheme 4.4 Synthesis of 2’allylacetophenone 
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4.3 Optimisation of Reaction Conditions 

Initial attempts focussed on using the imino(pyridine)phosphinite iron catalyst 54 

developed by Haung. Following the reported conditions, it was found that 2’-

allylacetophenone 325 was converted to the racemic indane product 347 (5-membered 

ring) and to a linear alkene hydrosilylation product 348 in a 1:1 ratio (Scheme 4.5). 

There was no observed decanil product (6-membered ring) or ketone hydrosilylation 

product.  

 

Scheme 4.5 Reductive cyclisation of 2’allylacetophenone using Huang’s catalyst 54. 

Attempts to optimise this methodology further were largely unsuccessful. Phenyl silane, 

triethoxysilane and triethylsilane were all unreactive when trialled. Several different 

substrates were synthesised and trialled. Using 2’-vinylacetophenone 349 the 

hydrometallation product is likely to be a secondary organometallic intermediate which 

could then undergo a 4-exo-trig reductive cyclisation to form a cyclobutene 350 (Scheme 

4.6). However, neither hydrosilylation or reductive cyclisation product was observed - 

Huang’s original manuscript did not include styrene derivatives bearing ortho-

substituents and styrene derivatives bearing electron-withdrawing groups led to 

reduced yields.96 Using 1-(2-Allylphenyl)propan-2-one 346 gave a 31% yield of the 

linear hydrosilylation product 351 (Scheme 4.6). The carbonyl had additional 

conformational flexibility and therefore reductive cyclisation was less likely to occur.  
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Scheme 4.6 Attempts towards the reductive cyclisation of 2’-vinylacetophenone and 1-

(2-allylphenyl)propan-2-one. 

We found the activation procedure (NaHBEt3 at -37 °C) to be unreliable and the limited 

substrate scope and poor selectivity led us to trial other catalyst systems. A range of 

bis(imino)pyridine iron(II) complexes were screened with the substituents of the N-aryl 

substituents being changed. DIPPBIPFeBr2 354 displayed no catalytic activity as it was 

insoluble in tetrahydrofuran (Table 4.1, entry 1). MesBIPFeBr2 355 gave a small yield but 

only the linear hydrosilylation product was observed (entry 2). EtBIPFeBr2 356 and 

MeBIPFeBr2 357 both gave reasonable conversion of starting material which was 

distributed equally between the linear silane and the reductive cyclisation product 

(entries 3 and 4).  Generally, the catalysts bearing smaller N-aryl substituents were more 

active (i.e. less remaining starting material) and more likely to give the cyclised product.  
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Table 4.1 Effect of N-aryl substituent of the bis(imino)pyridine ligand on reductive 

cyclisation. 

 

Additional attempts at optimising the bis(imino)pyridine iron(II)dibromide complex 

were unsuccessful. Investigations at high temperatures showed increases in a presumed 

polymerisation side-product. Replacing a silane with pinacolborane led to decreased 

activity with only trace amounts of hydroboration and reductive cyclisation products 

observed. 

 

Entry Catalyst Remaining 

Starting 

Material (%)a 

Hydrosilylation 

(%)a 

Reductive 

Cyclisation 

(%)a 

1 DIPPBIPFeBr2 354 >95 0 0 

2 MesBIPFeBr2 355 41 13 trace 

3 EtBIPFeBr2 356 35 21 21 

4 MeBIPFeBr2 357 28 26 27 

Reaction conditions: Enone (0.5 mmol), HSiR3 (0.5 mmol), catalyst (0.005 mmol), reductant (0.01 mmol), THF (0.5 

mL), r.t., 1 h. a) Yield determined by 1H NMR of the crude reaction mixture. 
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Finally screening was attempted using the Fe(OTf)2-catalysed method (Scheme 4.3A).215 

2’-Allylacetophenone 325 underwent ketone and alkene reduction in a 65% yield 

(Scheme 4.7). Additionally, a 33% yield of the isomerised alkene product was observed. 

This suggests whilst an iron-hydride is inserting into the alkene, it is incapable of 

reductive cyclisation. 2’-Allylbenzonitrile 344 underwent chemoselective alkene 

hydrogenation in a 41% yield (Scheme 4.7). 

 

Scheme 4.7 Attempts at reductive cyclisation using iron(II) triflate as a catalyst. 
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4.4 Conclusions and Future Work 

Conditions for the iron-catalysed reductive cyclisation of alkenes of enones have been 

discovered (Scheme 4.8). However, the conditions are only moderately active (~50% 

conversion to products) and display poor selectivity as an equal distribution of linear 

hydrosilylation and reductive cyclisation product are formed.  

 

Scheme 4.8 Best developed conditions for the iron-catalysed reductive cyclisation of 

enones using a bis(imino)pyridine ligand. 

To develop this work into a useful methodology, greater activity and control of selectivity 

needs to be achieved.  Bis(imino)pyridine has been shown to be a more flexible ligand 

than the imino(pyridine)phosphinite ligand (i.e. more tolerant of silanes and substrates 

for instance ortho-substituted styrenes). Therefore, they are the most promising 

candidate for optimisation. Most notably, the sterically least demanding 

bis(imino)pyridine ligand (phenyl N-aryl group) was not tested here. It has previously 

been shown to be the most chemoselective iron-catalyst for alkene hydrosilylation.96 The 

smaller size might also help slow reductive elimination and therefore increase selectivity 

for the reductive cyclisation product.217,218 Thorough optimisation of  all conditions 

including the silane, the reaction temperature, the solvent and the activation 

methodology could all help to improve this reaction further.  

To attempt to control the selectivity, the rate of carbon–silicon reductive elimination 

would need to be slowed. Changing to an octahedral catalyst would have the potential to 

slow reductive elimination.219 Using a silane with electron-donating substituents could 

slow reductive elimination by making the metal more electron-rich but this is unlikely to 

be a significant factor.220 Another way to potentially control the selectivity of substrates 

bearing longer chains would be to use a substrate containing a heteroatom to coordinate 

the metal and keep the conformational rigidity needed to favour reductive cyclisation.  

Since the conclusion of this project, there have been reports coupling between alkenes 

and compounds with carbonyl functional groups. Baran and co-workers have extensively 

demonstrated the coupling of highly-substituted alkenes with enones (amongst other 
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electron deficient alkenes), through hydrogen atom transfer (HAT) (Scheme 4.9A). 

Additionally, Zheng et. al. demonstrated the iron(III)bromide catalysed coupling of 

aldehydes with alkenes (Scheme 4.9B). These methodologies do not exhibit the 

selectivity problems in our developed methodology and the radical nature of the reaction 

means that any potential ring-closing reaction would be reliable and predictable.  

 

Scheme 4.9 A) Coupling of alkenes and enones catalysed by Fe(acac)3. B) Couping of an 

aldehyde with a 1,1-disubstituted alkene. 
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5. Conclusions and Outlooks 

At the outset of this project there were no detailed reports of the manganese catalysed-

hydrofunctionalisation of alkenes. There were several detailed investigations into 

manganese-catalysed carbonyl hydrosilylation but the hydrosilylation of alkenes is a 

more important application in industry. The few reports of manganese-catalysed alkene 

hydrosilylation were limited to one hydrocarbon substrate (e.g. pentene, octene). 

The aim of this project was to develop a general method for the manganese-catalysed 

hydrosilylation of alkenes. In addition, we aimed to use this methodology as an entry 

point to manganese-catalysis and use the results and mechanistic insight generated to 

inspire further research in manganese-catalysis.  

The foundation in the discovery of the manganese-catalysed hydrosilylation is the use of 

NaOtBu as an activator for a range of bis(imino)pyridine manganese(II) halide 

complexes. These complexes have previously been synthesised but were found to be 

inactive in a range of transformations. The new activation methodology was 

demonstrated to be essential in order to generate an active catalyst. Whilst the activated 

catalyst remains undefined there is evidence to suggest that in situ formation of a 

siliconate species is responsible for catalyst activation. 

The discovered method was extensively optimised and then applied to a range of 

substrates.  Aliphatic, terminal alkenes underwent hydrosilylation in good to excellent 

yields and excellent regioselectivity. Styrene derivatives gave significantly lower yields 

and the presence of carbonyl functional groups generally gave chemoselective reduction 

of the carbonyl group.  
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Scheme 5.1 A) State-of-the-art manganese-catalysed alkene hydrosilylation methods at 

the outset of the project. B) The developed manganese-catalysed hydrosilylation 

methodology. 

The catalyst/activator manifold was then applied to the manganese-catalysed 

hydroboration of alkenes. In the early stages of developing this methodology, a report 

demonstrating the manganese-catalysed hydroboration of alkenes was published. Our 

method differed from this report by displaying consistent anti-Markovnikov 

regioselectivity over a range of substrates whilst the published method showed 

Markovnikov selectivity for the hydroboration of styrene derivatives.  

The application of this catalyst/activator platform to the manganese catalysed: 

hydrogenation of alkenes, hydrovinylation and [2π+2π] alkene cyclisation reactions is a 

natural progression of this methodology, as these reactions have been demonstrated 

with iron and cobalt bis(imino)pyridine catalysts. To gain more detailed mechanistic 

insight, characterisation of the activated manganese species would be an ideal starting 

point. 

Since the publication of our manganese-catalysed hydrofunctionalisation method, there 

has been a further report investigating the manganese-catalysed hydrosilylation of 

alkenes using a β-diketimine manganese catalyst.221 The continued exploration of 

different manganese species is crucial to the further development of manganese-
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catalysis. Mechanistic insight into earth-abundant metal catalysis has proved difficult but 

detailed mechanistic investigations carried out by Trovitch145 and Gade222 into 

manganese-catalysed carbonyl hydrofunctionalisation reactions are valuable 

contributions to the field. There are multiple examples of manganese catalysts 

comparing favourably to more established cobalt and iron analogues, especially in the 

fields of carbonyl hydrofunctionalisation and hydrogenation.146,223,224 However the 

development of methodologies unique to manganese should remain the ultimate 

ambition in the field.  
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6. Experimental Details 

6.1 General Experimental Information  

 

Reaction Setup: All reactions were performed in oven (180 °C) dried glassware 

under an atmosphere of argon, unless otherwise indicated. All air- and moisture 

sensitive reactions were carried out using standard vacuum line and Schlenk techniques, 

or in a glovebox with a purified argon atmosphere. All glassware was cleaned using base 

(KOH, iPrOH) and acid (HClaq) baths. All reported reaction temperatures correspond to 

external bath temperatures. Room temperature (r.t) was approximately 20 °C. “Brine” 

refers to a saturated solution of sodium chloride in H2O. For the hydrosilylation of olefins, 

the reactions were typically carried out in a glass vial (10 ml, Fisher Scientific, product 

code 11563680), under an inert atmosphere of argon, unless otherwise stated.  

NMR Spectroscopy: 1H, 11B, 13C, 19F and 29Si NMR spectra were recorded on 

BrukerAvance III 400 and 500 MHz; Bruker AVI 400 MHz; BrukerAvance I 600 MHz 

spectrometers. Chemical shifts are reported in parts per million (ppm). 1H and 13C NMR 

spectra were referenced to the residual deuterated solvent peak (CHCl3: 7.27 ppm, 77.00 

ppm; CH2Cl2: 5.32 ppm, 54.00 ppm; d8-THF: 1.73 ppm, 25.37 ppm; CD3CN: 1.94 ppm, 1.39 

ppm). Multiplicities are indicated by app. (apparent), br. (broad), s (singlet), d (doublet), 

t (triplet), q (quartet), quin. (quintet), sext. (sextet), sept. (septet), non. (nonet). Coupling 

constants, J, are reported in Hertz and rounded to the nearest 0.1 Hz. Integration is 

provided. 

Infrared Spectroscopy: Infra-red (IR) spectra were recorded on a Perkin-Elmer 

Spectrum One FT-IR, or Shimadzu IRAffinity-1 spectrometer (serial no. A213749). Peaks 

are reported in cm−1 with indicated relative intensities: s (strong, 0–33% T); m (medium, 

34–66% T), w (weak, 67–100% T), and br. (broad).  

Mass Spectrometry: Mass spectrometry (MS) was performed by the University 

of Edinburgh, School of Chemistry Mass Spectrometry Laboratory. High resolution mass 

spectra were recorded on a VG autospec, or Thermo/Finnigan MAT 900, mass 

spectrometer. Data are reported in the form of m/z (intensity relative to the base peak = 

100). 

X-ray Crystallography: X-ray crystallography was performed by the University 
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of Edinburgh, X-ray Crystallography Service. Crystals suitable for X-ray crystallography 

were mounted on a MITIGEN holder in Paratone oil and spectra were obtained on either 

an Agilent Technologies SuperNova diffractometer or a Bruker SMART APEXII 

diffractometer. Crystals were kept at T = 120.0 K during data collection. Using Olex22 the 

structure was solved with either: the SIR2008 structure solution program, using the 

Direct Methods solution method; or the ShelXS3 structure solution program, using the 

Patterson solution method. The model was refined with version of ShelXL2 using Least 

Squares minimisation. 

Melting Points: Melting points (mp) were determined on a Stuart Scientific 

SMP10, or Griffin Gallankamp melting point apparatus in capillary tubes and are 

uncorrected.  

Chromatography: Analytical thin-layer chromatography was performed on aluminium-

backed silica plates (Merck 60 F254). Pet. ether refers to petroleum ether 40-60. Product 

spots were visualised by UV light at 254 nm, and subsequently developed using 

potassium permanganate solution if appropriate. Flash column chromatography was 

performed on silica gel (Merck Kielselgel 60, 40-63 μm).  

Solvents: All solvents for air- and moisture sensitive techniques were obtained 

from an anhydrous solvent system (Innovative Technology). Anhydrous d8-

tetrahydrofuran was distilled from sodium/benzophenone.  Reaction solvents 

tetrahydrofuran (THF) (Fisher, HPLC grade), ether (Et2O) (Fisher, BHT stabilized ACS 

grade), and dichloromethane (CH2Cl2) (Fisher, unstabilised HPLC grade) were dried by 

percolation through two columns packed with neutral alumina under a positive pressure 

of argon. Toluene (ACS grade) was dried by percolation through a column packed with 

neutral alumina and a column packed with Q5 reactant (supported copper catalyst for 

scavenging oxygen) under a positive pressure of argon. Solvents for filtration, transfers, 

chromatography, and recrystallization were dichloromethane (CH2Cl2) (ACS grade), 

ether (Et2O) (Fisher, BHT stabilised ACS grade), ethyl acetate (EtOAc) (Fisher, ACS 

grade), hexane (Optima), methanol (MeOH) (ACS grade), pentane (ACS grade), and 

petroleum ether (40–60°C, ACS grade).  

Chemicals: All reagents were purchased from Sigma Aldrich, Alfa Aesar, Acros 

Organics, Tokyo Chemical Industries UK, Fluorochem, Fisher Scientific UK and Apollo 

Scientific or synthesised within the laboratory. Manganese(II) Bromide 98% (Product 
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Number 223646) was purchased from Sigma Aldrich. Sodium tert-butoxide (97%) was 

purchased from Sigma Aldrich.  

6.2 General Procedures 

General Procedure A: Formation of MnLX2 species 

 

 

MnX2∙(THF)2 (5.84 mmol) and ligand (6.24 mmol, 1.1 eq.) were stirred in anhydrous 

tetrahydrofuran for 18 hours and then filtered and washed with Et2O (3 x 20 mL). The 

resulting orange solid was then dissolved in boiling dichloromethane and filtered before 

being concentrated in vacuo to give an orange solid. 

General Procedure B: Hydrosilylation of alkenes 

 

Triethoxysilane (230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 

μmol, 2 mol%) and NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of alkene 

(1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. Caution! 

Silane addition produces a highly exothermic reaction and may result in the 

formation of SiH4. Perform the reaction carefully. The reaction was then quenched by 

the addition of an aqueous solution of HCl (2M, 1 mL). The crude reaction yield was 

determined by the addition of trimethoxybenzene (16.8 mg, 0.2 mmol, 0.2 eq.), dissolved 

in diethyl ether (1 mL), as an internal standard. The product was purified by vacuum 

distillation. 

General Procedure C: Hydroboration of alkenes 

 



125 
 

Pinacolborane (220 μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14mg, 20 μmol, 2 

mol%) and NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of alkene (1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The reaction was then 

quenched by the addition of an aqueous solution of HCl (2M, 1 mL). The crude reaction 

yield was determined by the addition of trimethoxybenzene (16.8 mg, 0.2 mmol, 0.2 eq.), 

dissolved in diethyl ether (1 mL), as an internal standard. The product was purified by 

flash column chromatography. 

Gram- Scale Hydrosilylation of Octene 

In an argon atmosphere glove-box, triethoxysilane (2.03 mL, 11 mmol, 1.25 eq.) was 

added to NaOtBu (13 mg, 0.13 mmol, 1.5 mol%) and DIPPBIPMnBr2 (31.38 mg, 0.445 

mmol, 0.5 mol%) in a Schlenk tube (15 mL). Caution! Silane addition produces a highly 

exothermic reaction and may result in the formation of SiH4. Perform the reaction 

carefully. 1-Octene (1.4 mL, 8.9 mmol, 1 eq.) was quickly added and the reaction left to 

stir for 4 hours. The reaction was then quenched by the addition of an aqueous solution 

of HCl (2M, 10 mL) and extracted with diethyl ether (3 x 10 mL). The product was 

purified by vacuum distillation (8x10-2 mbar, 80°C) to give triethoxy(octyl)silane as a 

colourless oil (2.34 g, 95%). 
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6.3 Ligand Synthesis 

2,6-Bis{1-[(2,6-diisopropylphenyl)imino]ethyl}pyridine 

 

2,6-Diisopropylaniline (3.6 mL, 19.3 mmol) was added to a stirred suspension of 2,6-

diacetylpyridine (1.45 g. 8.8 mmol) and para-toluenesulfonic acid mono-hydrate (101 

mg, 0.53 mmol) in toluene (30 mL). The resulting mixture was heated at reflux under 

Dean-Stark conditions for 20 hours.  After cooling to room temperature, the solvent was 

removed in vacuo and the solid recrystallised from dichloromethane (20 mL) to give 2,6-

bis{1-[(2,6-diisopropylphenyl)imino]ethyl}pyridine (6 crops, 2.8 g, 66%) as yellow 

needles. 

m.p:  298°C-299°C Lit: 298°C-299°C225  

1H NMR: (601 MHz, CDCl3)  

δ 8.51 (d, J = 7.8 Hz, 2H, ArH), 7.96 (t, J = 7.8 Hz, 1H, ArH), 7.22 – 7.19 (m, 

4H, ArH), 7.16 – 7.11 (m, 2H, ArH), 2.80 (hept, J = 6.9 Hz, 4H, ArCH), 2.30 

(s, 6H, CCH3), 1.19 (d, J = 6.9 Hz, 24H, CH(CH3)2). 

13C NMR:   (151 MHz, CDCl3)  

δ 167.0 (C), 155.2 (C), 146.5 (C), 136.9 (CH), 135.8 (CH), 123.6 (CH), 

123.0 (CH), 122.2 (CH), 28.31 (CH), 23.24 (CH3), 22.92 (CH3), 17.15 (CH3). 

The spectroscopic data were consistent with those reported.226 
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2,6-Bis{1-[(2,6-diethyl propylphenyl)imino]ethyl}pyridine 

 

2,6-Diethylaniline (4.5 mL, 27 mmol) was added to a stirred suspension of 2,6-

diacetylpyridine (2 g. 12.3 mmol) and para-toluenesulfonic acid mono-hydrate (105 mg, 

0.6 mmol) in toluene (40 mL). The resulting mixture was heated at reflux under Dean-

Stark conditions for 20 hours.  After cooling to room temperature, the solvent was 

removed in vacuo and the solid recrystallised from dichloromethane (20 mL) to give 2,6-

bis{1-[(2,6-diethylphenyl)imino]ethyl}pyridine (5 crops, 3.9 g, 75%) as yellow needles. 

m.p:  182°C-184°C Lit:90 185°C-186°C 

1H NMR: (500 MHz, CDCl3) δ 8.50 (d, J = 7.8 Hz, 2H, ArH), 7.95 (t, J = 7.8 Hz, 1H, 

ArH), 7.17 – 7.13 (m, 4H, ArH), 7.09 – 7.04 (m, 2H, ArH), 2.51 – 2.34 (m, 

8H, ArCH2), 2.28 (s, 6H, CCH3), 1.18 (t, J = 7.5 Hz, 12H, CH2CH3). 

13C NMR:   (126 MHz, CDCl3)  

δ 166.9 (C), 155.2 (C), 147.8 (C), 136.9 (CH), 131.2 (C), 126.0 (CH), 123.3 

(CH), 122.2 (CH), 24.6 (CH2), 16.8 (CH3), 13.7 (CH3). 

The spectroscopic data were consistent with those reported.174 
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2,6-Bis{1-[(2,4,6-trimethylphenyl)imino]ethyl}pyridine 

 

2,4,6-Trimethyllaniline (3.8 mL, 27 mmol) was added to a stirred suspension of 2,6-

diacetylpyridine (2 g. 12.3 mmol) and para-toluenesulfonic acid mono-hydrate (172 mg, 

0.62 mmol) in toluene (40 mL). The resulting mixture was heated at reflux under Dean-

Stark conditions for 20 hours.  After cooling to room temperature, the solvent was 

removed in vacuo and the solid recrystallised from dichloromethane (25 mL) to give 2,6-

bis{1-[(2,4,6-trimethylphenyl)imino]ethyl}pyridine (4 crops, 3.3 g, 68%) as yellow 

needles. 

m.p:  164°C-166°C Lit:227 164°C-165°C 

1H NMR: (500 MHz, CDCl3)  

δ 8.48 (d, J = 7.8 Hz, 2H, ArH), 7.92 (t, J = 7.8 Hz, 1H, ArH), 6.95 – 6.87 (m, 

4H, ArH), 2.32 (s, 6H, CCH3), 2.26 (s, 6H, ArCH3), 2.04 (s, 12H, ArCH3). 

13C NMR:  (126 MHz, CDCl3)  

δ 167.4 (C), 155.3 (C), 146.3 (C), 136.8 (CH), 132.2 (C), 128.6 (C), 125.3 

(CH), 122.2 (CH), 20.7 (CH3), 17.9 (CH3), 16.4 (CH3). 

The spectroscopic data were consistent with those reported.228 
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2,6-Bis{1-[(phenyl)imino]ethyl}pyridine 

 

Aniline (2.5 mL, 27 mmol) was added to a stirred suspension of 2,6-diacetylpyridine (2 

g. 12.3 mmol) and para-toluenesulfonic acid mono-hydrate (105 mg, 0.62 mmol) in 

toluene (40 mL). The resulting mixture was heated at reflux under Dean-Stark conditions 

for 20 hours.  After cooling to room temperature, the solvent was removed in vacuo and 

the solid recrystallised from dichloromethane (25 mL) to give 2,6-bis{1-

[(phenyl)imino]ethyl}pyridine (2 crops, 2.1 g, 54%) as yellow needles. 

m.p:  157°C-158°C  

1H NMR:  (400 MHz, CDCl3)  

δ 8.38 (d, J = 7.9 Hz, 2H, ArH), 7.90 (t, J = 7.7 Hz, 1H, ArH), 7.43 (t, J = 7.5 

Hz, 4H, ArH), 7.18 (t, J = 7.2 Hz, 2H, ArH), 6.87 (d, J = 7.9 Hz, 4H, ArH), 2.44 

(s, 6H, CCH3). 

13C NMR:  (101 MHz, CDCl3)  

δ 167.4 (C), 155.5 (C), 151.3 (C), 136.8 (CH), 129.0 (CH), 123.6 (CH), 

122.3 (CH), 119.3 (CH), 16.2 (CH3). 

The spectroscopic data were consistent with those reported.229  
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6.4 Catalyst Synthesis  

2,6-Bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine manganese(II) bromide 

 

According to a modified version of General Procedure A, MnBr2∙(THF)2 (2.06 g, 5.84 

mmol) and 2,6-bis{1-[(2,6-diisopropylphenyl)imino]ethyl}pyridine (3.00 g, 6.24 mmol) 

were stirred in anhydrous tetrahydrofuran for 18 hours, the solution quickly became 

orange. The solution was then filtered and washed with diethylether (3 x 20 mL). The 

resulting powder was then dissolved in dichloromethane and filtered before being 

concentrated in vacuo to give an amorphous orange solid (2.92 g, 4.2 mmol, 72%). 

Crystals were grown at −40 °C from a saturated solution in anhydrous dichloromethane 

to give orange needles. 

MS:  (HRMS - EI+) 

Found 694.11961 (C33H43N3Br2Mn), requires 694.11987 

IR: 2961 (m), 2924 (w), 2866 (w), 1622 (m), 1582 (s), 1464 (m), 1445 (m), 

1369 (s), 1254 (s), 1202 (s), 1103 (w), 1018 (m), 935 (w), 818 (s), 795 

(s), 775 (s). 
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2,6-Bis[1-(2,6-diethylphenylimino)ethyl]pyridine manganese(II) bromide 

 

 

 

Following a modified version of General Procedure A, MnBr2∙(THF)2 (2.06 g, 5.84 mmol) 

and 2,6-bis{1-[(2,6-diethylphenyl)imino]ethyl}pyridine (3.00 g, 6.24 mmol) were stirred 

in anhydrous tetrahydrofuran for 18 hours, the solution quickly became orange. The 

solution was then filtered and washed with diethylether (3 x 20 mL). The resulting 

powder was then dissolved in dichloromethane and filtered before being concentrated 

in vacuo to give an amorphous orange solid (2.92 g, 4.2 mmol, 72%). Crystals were grown 

at −40 °C from a saturated solution in anhydrous dichloromethane to give orange 

needles. 

IR:   νmax(neat) 

   2970 (m), 1630 (m), 1584 (m), 1462 (m), 1443 (m), 1375 (m), 1260 (s), 

1206 (s), 1107 (w), 1016 (m), 866 (w), 810 (s), 779 (s), 768 (m), 739 (m).  
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2,6-Bis{1-[(2,4,6-trimethylphenyl)imino]ethyl}pyridine manganese(II) bromide 

 

 

Following a modified version of General Procedure A, MnBr2∙(THF)2 (400 mg, 1.12 

mmol) and 2,6-bis{1-[(2,4,6-trimesitylphenyl)imino]ethyl}pyridine (477 mg, 1.2 mmol) 

were stirred in anhydrous tetrahydrofuran (24 mL) for 18 hours, the solution quickly 

became orange. The solution was then filtered and washed with diethylether (3 x 20 mL). 

The resulting powder was then dissolved in dichloromethane and filtered before being 

concentrated in vacuo to give an amorphous orange solid (624 mg, 1.1 mmol, 91%). 

MS:  (HRMS - EI+) 

Found 610.02231 (C27H31N3Br2Mn), requires 610.02597 

IR:   νmax(neat) 

   2970 (w), 2951 (w), 2913 (w), 2857 (w), 1636 (w), 1585 (m), 1475 (m), 

1431 (w), 1369 (m), 1369 (m), 1267 (s), 1258 (s), 1219 (s), 1159 (w), 

1062, 1016 (m), 856 (s), 812 (s), 740 (m), 565 (m). 

The data were consistent with those reported.230 
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Synthesis of other bis(imino)pyridine manganese catalysts 

 

All catalysts were synthesized according to General Procedure A except for 

entry 7 which was synthesized by salt metathesis. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Entry Ar R X Yield (%) 

1 2,6-Me CH3 Br 65 

2 Ph CH3 Br 82 

3 DIPP CH3 Cl 81 

4 Mes CH3 Cl 48 

5 Ph CH3 Cl 40 

6 DIPP CH3 I 41 

7 Mes CH3 I 56 

8 DIPP CH3 OTf 23 

9 DIPP Ph Br 74 
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2,2’:6,’,2”-Terpyridine manganese(II) bromide 

 

 

MnBr2∙(THF)2 (300 mg, 0.86 mmol) and terpyridine (200 mg, 0.86 mmol) were stirred 

in anhydrous tetrahydrofuran for 18 hours. The solution was then filtered and washed 

with diethylether (3 x 20 mL). The resulting amorphous solid was then dissolved in 

dichloromethane and filtered before being concentrated in vacuo to give a yellow solid 

(155 mg, 0.34 mmol, 80%). 

MS:  (HRMS - EI+) 

Found 366.95202 (C15H11N379Br55Mn1) requires 366.95202  

IR:   3043.67 (w), 1593.20 (m), 1573.91 (w), 1562.34 (w), 1475.54 (w), 

1452.40 (m), 1317.38 (m), 1298.09 (w), 1253.73 (m), 1159.22 (w), 

1014.56 (m), 775.38 (s), 651.94 (m), 638.44 (m). 

 

The data were consistent with those reported.231 
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2,2’:6,’,2”-Terpyridine manganese(II) chloride 

 

 

 

MnCl2∙(THF)2 (115 mg, 0.43 mmol) and terpyridine (100 mg, 0.43 mmol) were stirred in 

anhydrous tetrahydrofuran (10 mL) for 18 hours. The solution was then filtered and 

washed with diethylether (3 x 20 mL). The resulting amorphous solid was then dissolved 

in dichloromethane and filtered before being concentrated in vacuo to give a yellow solid 

(155 mg, 0.34 mmol, 80%). 

MS:  (HRMS - EI+) 

   Found 357.97127 (C15H11N335Cl255Mn1) requires 357.97050 

 

IR:   3053.32 (w), 1593.20 (m), 1575.84 (w), 1560.41 (w), 1473.62 (w), 

1436.97 (m), 1313.52 (m), 1294.24 (w), 1247.94 (m), 1159.22 (w), 

1014.56 (m), 775.38 (s), 657.73 (m), 638.44 (m). 

 

The data were consistent with those reported.231 
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6.5 Substrate Synthesis  

1-Fluoro-4-(3-butenyl)-benzene 

 

Allylmagnesium bromide (31.0 mL, 1 M in diethylether, 31.0 mmol) was added to a 

solution of 4-fluorobenzyl bromide (5.00 g, 26.5 mmol) in anhydrous tetrahydrofuran 

(20 mL) at 0 °C under a nitrogen atmosphere. The reaction was allowed to warm to room 

temperature over 18 hours. Aqueous sulfate buffer solution (10 mL) was added and the 

aqueous phase extracted with diethyl ether (3 x 30 mL). The combined organic extracts 

were washed with water and brine, dried (MgSO4) and concentrated in vacuo to give 1-

fluoro-4-(3-butenyl)-benzene as a colourless oil (3.40 g, 22.6 mmol, 85%). 

1H NMR: (400 MHz, CDCl3) 

  δ 7.19 – 7.12 (m, 2H, ArH), 7.03 – 6.94 (m, 2H, ArH), 5.86 (ddt, J = 16.9, 

10.2, 6.6 Hz, 1H, HC=CH2), 5.12 – 4.92 (m, 2H, HC=CH2), 2.75-2.66 (m, 2H, 

ArCH2), 2.42-2.32 (m, 2H, CH2). 

13C NMR: (126 MHz, CDCl3)   

  δ 161.3 (d, J = 242.9 Hz, C), 137.8 (CH), 137.4 (d, J = 3.1 Hz, C), 129.7 (d, J 

= 7.7 Hz, CH), 115.1 (d, J = 8.0 Hz, CH), 114.9 (CH2), 35.6 (CH2), 34.5 (CH2). 

19F NMR: (471 MHz, CDCl3)  

δ -117.9. 

The spectroscopic data were consistent with those reported.174 
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1-Chloro-4-(3-butenyl)-benzene 

 

Allylmagnesium bromide (5.85 mL, 2 M in tetrahydrofuran, 11.7 mmol) was added to a 

solution of 4-chlorobenzyl bromide (2 g, 9.75 mmol) in anhydrous tetrahydrofuran (15 

mL) at 0 °C under a nitrogen atmosphere. The reaction was allowed to warm to room 

temperature over 3 hours. Aqueous sulfate buffer solution (10 mL) was added and the 

aqueous phase extracted with diethyl ether (3 x 30 mL). The combined organic extracts 

were washed with water and brine, dried (MgSO4) and concentrated in vacuo to give 1-

chloro-4-(3-butenyl)-benzene as a colourless oil (1.48 g, 8.88 mmol, 91%). 

1H NMR: (400 MHz, CDCl3) 

  δ 7.28 – 7.23 (m, 2H, ArH), 7.16 – 7.11 (m, 2H, ArH), 5.85 (ddt, J = 16.9, 

10.2, 6.6 Hz, 1H, HC=CH2), 5.11 – 4.94 (m, 2H, HC=CH2), 2.75 – 2.66 (m, 

2H, ArCH2), 2.43 – 2.31 (m, 2H, CH2). 

13C NMR: (101 MHz, CDCl3)   

  δ 140.3 (C), 137.6 (CH), 131.5 (C), 129.8 (CH), 128.4 (CH), 115.3 (CH2), 

35.4 (CH2), 34.7 (CH2).  

The spectroscopic data were consistent with those reported.174 
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1-Bromo-4-(3-butenyl)-benzene 

 

Allylmagnesium bromide (30 mL, 1 M in diethylether, 30.0 mmol) was added to a 

solution of 4-bromobenzyl bromide (6.32 g, 25.0 mmol) in anhydrous tetrahydrofuran 

(15 mL) at 0 °C under a nitrogen atmosphere. The reaction was allowed to warm to room 

temperature over 3 hours. Aqueous sulfate buffer solution (10 mL) was added and the 

aqueous phase extracted with diethyl ether (3 x 30 mL). The combined organic extracts 

were washed with water and brine, dried (MgSO4) and concentrated in vacuo to give 1-

bromo-4-(3-butenyl)-benzene as a colourless oil (4.91 g, 23.2 mmol, 93%). 

1H NMR: (500 MHz, CDCl3) 

  δ 7.39 (m, 2H, ArH), 7.08 – 7.02 (m, 2H, ArH), 5.82 (ddt, J = 16.9, 10.2, 6.6 

Hz, 1H, CH), 5.07 – 4.91 (m, 2H, CHCH2 ), 2.71-2.63z (m, 2H, ArCH2), 2.38-

2.31 (m, 2H, CH2CH2).   

13C NMR: (101 MHz, CDCl3)  

δ 140.8 (C), 137.6 (CH), 131.3 (CH), 130.2 (CH), 119.6 (C), 115.3 (CH2), 

35.3 (CH2), 34.8 (CH2). 

   

The spectroscopic data were consistent with those reported.174 
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4-(3-Butenyl)-benzoic acid 

 

1-Bromo-4-(3-butenyl)-benzene (0.35 g, 16.6 mmol) was added to magnesium turnings 

(0.81 g, 33 mmol) in anhydrous tetrahydrofuran (30 mL) under a nitrogen atmosphere. 

This was followed by the addition of a single iodine crystal to initiate the reaction. When 

the reaction temperature increased, the remaining 1-bromo-4-(3-butenyl)-benzene (3.2 

g, 15 mmol) was added periodically over 15 minutes. The reaction was left for 2 hours 

and then excess solid carbon dioxide was added. After a further 1 hour of reaction time, 

the solution was quenched with sodium hydrogen carbonate solution (aq, 10 mL) and 

the aqueous phase washed with ether (3 x 10 mL). Conc. HCl was added to the aqueous 

phase and extracted with diethyl ether (3 x 30 mL). The organic phase was dried (MgSO4) 

and concentrated in vacuo to give 4-(3-butenyl)-benzoic acid as a colourless amorphous 

solid (2.41 g, 13.6 mmol, 82%).  

1H NMR: (500 MHz, CDCl3)  

δ 8.05 – 7.97 (m, 2H, ArH), 7.32 – 7.28 (m, 2H, ArH), 5.84 (ddt, J = 16.9, 

10.2, 6.6 Hz, 1H, CH), 5.12 – 4.97 (m, 2H, CHCH2), 2.86 – 2.70 (m, 2H, 

ArCH2), 2.50 – 2.31 (m, 2H, CH2CH2). 

13C NMR:  (101 MHz, CDCl3)  

δ 171.7 (CO2H), 148.4 (C), 137.4 (CH), 130.3 (CH), 128.7 (CH), 127.0 (C), 

115.5 (CH2), 35.5 (CH2), 35.0 (CH2). 

The spectroscopic data were consistent with those reported.174 
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4-(3-Butenyl)-benzoic acid methyl ester 

 

Sulfuric acid (conc., 30 drops) was added to 4-(3-butenyl)-benzoic acid (1.5 g, 8.5 mmol) 

in anhydrous methanol (60 mL) and left to stir at reflux at 18 hours. The reaction was 

then allowed to cool to room temperature and then quenched by addition of sodium 

hydrogen carbonate solution (aq, 50 mL). The aqueous phase washed with ethyl acetate 

(3 x 10 mL) and the combined organic phase was dried (MgSO4) and concentrated in 

vacuo to give 4-(3-butenyl)-benzoic acid methyl ester as a yellow oil (1.51 g, 7.9 mmol, 

93%).  

1H NMR: (500 MHz, CDCl3)  

  δ 8.00 – 7.96 (m, 2H, ArH), 7.30 – 7.25 (m, 2H, ArH), 5.85 (ddt, J = 16.9, 

10.2, 6.6 Hz, 1H, CH), 5.15 – 4.89 (m, 2H, CHCH2), 3.92 (s, 3H, OCH3), 2.85 

– 2.75 (m, 2H, ArCH2), 2.49 – 2.33 (m, 2H, CH2CH2). 

13C NMR:  (101 MHz, CDCl3)  

δ 167.1 (C=O), 147.4 (C), 137.5 (CH), 129.7 (CH), 128.5 (CH), 127.9 (C), 

115.4 (CH2), 52.0 (OCH3), 35.4 (CH2), 35.1 (CH2). 

The spectroscopic data were consistent with those reported.174 
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d1-4-Phenyl-1-butyne 

 

tert-Butyllithium (10.8 mL, 1.7 M in diethylether, 18.4 mmol) was added to a solution of 

4-phenyl-1-butyne (2 mL, 15.4 mmol) in anhydrous tetrahydrofuran (20 mL) at -78 °C 

under a nitrogen atmosphere. The reaction was stirred for 1 hour before the dropwise 

addition of d1-methanol (1 mL) over 15 minutes. The reaction was allowed to warm to 

room temperature before HCl (aq, 5 mL, 2M) was added. The aqueous phase was 

extracted with diethyl ether (3 x 15 mL). The combined organic extracts were dried 

(MgSO4) and concentrated in vacuo to give d1-4-phenyl-1-butyne as a yellow oil (1.66 g, 

12.6 mmol, 82%). The product was used without further purification. 

1H NMR:  (500 MHz, CDCl3)  

δ 7.36 – 7.30 (m, 2H, ArH), 7.27 – 7.22 (m, 3H, ArH), 2.88 (t, J = 7.6 Hz, 2H, 

ArCH2), 2.51 (t, J = 7.6 Hz, 2H, CH2CH2). 

2H NMR:  (77 MHz, CHCl3)  

  δ 1.98 (s, 1D, CD)  

The spectroscopic data were consistent with those reported.232 

  



142 
 

d3-4-Phenyl-1-butene 

 

d1-4-Phenyl-1-butyne (1.6 g, 12.6 mmol) was added to a stirred solution of Lindlar’s 

catalyst (532 mg, 0.25 mmol of Pd) in DCM/Methanol (1:1 v/v, 20 mL) at room 

temperature under a deuterium atmosphere (1 atm). After 16 hours, HCl (aq, 2M) was 

added and the aqueous phase extracted with DCM (3 x 20 mL). The organic phase was 

dried (MgSO4) and concentrated concentrated in vacuo. The off-white oil was then 

purified by vacuum distillation (2 x10-1, 60 °C) to give d3-4-phenyl-1-butene as a clear oil 

(320 mg, 2.3 mmol, 18%). There was also some over-reduction product d5-4-phenyl-1-

butane which could not be removed from the crude product. 

1H NMR:  (400 MHz, CDCl3)  

δ 7.34 – 7.29 (m, 2H, ArH), 7.25 – 7.18 (m, 3H, ArH), 2.74 (t, J = 7.5 Hz, 2H, 

ArCH2), 2.44 – 2.35 (m, 2H, CH2CH2). 

2H NMR:  (77 MHz, CHCl3)  

  δ 5.9 (s, 1H, CD), 5.0 (br, 2H, CD2). 

13C NMR: (101 MHz, CDCl3) 

  δ 141.9 (C), 137.6 (t, J = 23.4 Hz, CD), 128.5 (CH), 128.3 (CH), 125.9 (CH), 

114.3 (p, J = 23.8 Hz, CD2), 35.4 (CH2), 35.3 (CH2). 

MS:  (HRMS - EI+)  

Found 135.11107 (C10H9D3) requires 135.11218  
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6.6 Hydrosilylation Products 

1-(Triethoxysilyl)octane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of octene (156 μl 1.0 mmol, 1.0 

eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was then 

purified by distillation (8x10-2 mbar, 80°C) to give 1-(triethoxysilyl)octane as a 

colourless oil (235 mg, 85%). 

1H NMR: (500 MHz, CDCl3) 

  δ 3.84 (q, J = 7.0 Hz, 6H, OCH2), 1.46 – 1.23 (m, 21H, 6xCH2+3xCH3), 0.90 

(t, J = 6.9 Hz, 3H, CH3), 0.72 – 0.61 (m, 2H, SiCH2). 

13C NMR: (101 MHz, CDCl3)   

 δ 58.3 (CH2), 33.2 (CH2), 31.9 (CH2), 29.2 (CH2) (2 resonances), 22.8 

(CH2), 22.7 (CH2), 18.3 (CH3), 14.1 (CH3), 10.4 (CH2). 

29Si NMR: (99 MHz, CDCl3)  

δ −44.5. 

HRMS: (HRMS - EI+)  

Found 276.2143 (C14H32O3Si), requires 276.2115. 

 

The spectroscopic data were consistent with those reported.48 
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Octylsilylbenzene 

 

 

The title compound was produced according to General Procedure B. Phenylsilane (168 

μL, 1.25 mmol 1.25 eq.) was added to EtBIPMnBr2 (12.8 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of octene (156 μl 1.0 mmol, 1.0 eq.) and 

the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was then purified by 

distillation (2.5 x 10 -1 mbar, 80 °C) to give octylsilylbenzene as a yellow oil (193 mg, 

88%). 

1H NMR: (500 MHz, CDCl3)  

δ 7.63 – 7.56 (m, 2H, ArH), 7.45 – 7.35 (m, 3H, ArH), 4.31 (t, J = 3.7 Hz, 2H, 

SiH2Ph), 1.52 – 1.43 (m, 2H, CH2), 1.42 – 1.34 (m, 2H, CH2), 1.30 – 1.17 (m, 

8H, CH2), 1.00 – 0.93 (m, 2H, SiCH2), 0.90 (t, J = 6.9 Hz, 2H, CH2CH3). 

13C NMR: (126 MHz, CDCl3)  
 

δ 135.2 (CH), 132.9 (C), 129.5 (CH), 127.9 (CH), 32.8 (CH2), 31.9 (CH2), 
29.5 (CH2), 29.3 (CH2), 29.2 (CH2), 25.1 (CH2), 22.7 (CH2), 14.1 (CH3), 10.0 
(CH2). 
 

29Si NMR: (99 MHz, CDCl3)  
 

δ −30.8. 
 

HRMS: (HRMS - EI+)  

Found 220.1632 (C14H24Si), requires 220.1641. 

 
The spectroscopic data were consistent with those reported.233 
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1-[(Diethoxy)methylsilyl]octane 

 

 

The title compound was produced according to General Procedure B. 

Diethoxy(methyl)silane (160.2 μL, 1.25 mmol 1.25 eq.) was added to EtBIPMnBr2 (12.8 

mg, 20 μmol, 2 mol%) and NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 

octene (156 μl 1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. 

The yellow oil was then purified by distillation (2.5 x 10 -1 mbar, 80 °C) to give 1-

[(diethoxy)methylsilyl]octane as a yellow oil (210 mg, 85%). 

1H NMR: (500 MHz, CDCl3) 

δ 3.78 (q, J = 7.0 Hz, 4H, SiOCH2), 1.42 – 1.27 (m, 12H, CH2), 1.24 (t, J = 7.0 

Hz, 6H, CH3), 0.94 – 0.87 (m, 3H, CH3), 0.67 – 0.60 (m, 2H, CH2), 0.13 (s, 

3H, SiCH3). 

13C NMR: (126 MHz, CDCl3)  
 

δ 58.0 (OCH2), 33.3 (CH2), 31.9 (CH2), 29.2 (CH2), 22.8 (CH2), 22.7 (CH2), 

18.4 (CH3), 14.1 (CH2), 13.9 (CH2), -4.9 (CH3). 

29Si NMR: (99 MHz, CDCl3)  
 

δ −4.2. 

The spectroscopic data were consistent with those reported.48 
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1-Phenyl-4-(triethoxysilyl)butane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-phenyl-1-butene (156 μl 1.0 

mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was 

then purified by distillation (1.6 x 10 -1 mbar, 100 °C) to give 1-phenyl-4-

(triethoxysilyl)butane as a colourless oil (254 mg, 86%). 

1H NMR: (600 MHz, CDCl3) 

δ 7.32 – 7.25 (m, 2H, ArH), 7.22 – 7.16 (m, 3H, ArH), 3.83 (q, J = 7.0 Hz, 

6H, SiOCH2), 2.63 (t, J = 7.0 Hz, 2H, ArCH2), 1.74 – 1.65 (m, 2H, CH2), 1.54 

– 1.45 (m, 2H, CH2), 1.24 (t, J = 7.0, 9H, CH3), 0.77 – 0.65 (m, 2H, SiCH2). 

13C NMR: (151 MHz, CDCl3)  

δ 142.7 (C), 128.4 (CH), 128.2 (CH), 125.6 (CH), 58.3 (CH2), 35.6 (CH2), 

34.9 (CH2), 22.5 (CH2), 18.3 (CH3), 10.3 (CH2). 

29Si NMR: (99 MHz, CDCl3) 

 δ −45.0. 

HRMS: (HRMS - EI+)  

Found 296.1804 (C16H28O3Si), requires 296.1802. 

IR:   νmax(neat) 

   2972 (w), 2926 (w), 2884 (w), 2862 (w), 1454 (w, 1443 (w), 1389 (w), 

1294 (w), 1165 (w), 1101 (s), 1074 (s), 1030 (w), 999 (w), 953 (s), 849 

(w), 779 (s), 745 (s), 698 (s), 635 (w) 

 

The spectroscopic data were consistent with those reported.48 
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1,3-Bis(triethoxysilyl)propane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of allyltriethoxysilane (228 μl 

1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil 

was then purified by distillation (2 x 10 -1 mbar, 80°C) to give 1,3-

bis(triethoxysilyl)propane as a yellow oil (287 mg, 78%) 

1H NMR:  (400 MHz, CDCl3)  

3.82 (q, J = 7.0 Hz, 12H, OCH2), 1.64 – 1.53 (m, 2H, CH2), 1.23 (t, J = 7.0 Hz, 

18H, CH3), 0.78 – 0.70 (m, 4H SiCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 58.3 (CH2), 18.3 (CH3), 16.5 (CH2), 14.3 (CH2). 

29Si NMR: (99 MHz, CDCl3) 

δ −45.3. 

The spectroscopic data were consistent with those reported.234 
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3-Phenylpropyltriethoxysilane 

 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of allylbenzene (132 μl 1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was then 

purified by distillation (2.5 x 10 -1 mbar, 120 °C) to give 3-phenylpropyltriethoxysilane 

as a colourless oil (230.1 mg, 81%). 

1H NMR: (600 MHz, CDCl3) 

δ 7.31 – 7.26 (m, 2H, ArH), 7.23 – 7.16 (m, 3H, ArH), 3.83 (q, J = 7.0, 1.0 

Hz, 6H, OCH2), 2.67 (t, J = 7.6 Hz, 2H, ArCH2), 1.84 – 1.70 (m, 2H, CH2), 1.24 

(t, J = 7.0, 1.0 Hz, 9H, CH3), 0.79 – 0.61 (m, 2H, SiCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 142.4 (C), 128.5 (CH), 128.2 (CH), 125.7 (CH), 58.3 (CH2), 39.2 (CH2), 

24.8 (CH2), 18.3 (CH3), 10.2 (CH2). 

29Si NMR: (99 MHz, CDCl3)  

δ −45.2. 

The spectroscopic data were consistent with those reported.235 
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4-(2-Triethoxysilyl)ethylcyclohexene 

 

 

The title compound was produced by General Procedure B. Triethoxysilane (230 μL, 1.25 

mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu (5.8 

mg, 60 μmol, 6 mol%) followed by addition of 4-vinylcyclohexene (130 μl 1.0 mmol, 1.0 

eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was then 

purified by distillation (8 x 10 -2 mbar, 80 °C) to give 4-(2-triethoxysilyl)ethylcyclohexene 

as a colourless oil (214 mg, 77%). 

1H NMR: (600 MHz, CDCl3) 

δ 5.74 – 5.61 (m, 2H, HC=CH), 3.84 (q, J = 7.0, 6H, OCH2), 2.18 – 2.10 (m, 

1H, CH), 2.10 – 1.99 (m, 2H, CH2), 1.82 – 1.73 (m, 1H, CH2), 1.69 – 1.61 (m, 

1H, CH2), 1.55 – 1.44 (m, 1H, CH2), 1.43 – 1.37 (m, 2H, CH2), 1.26 (t, J = 7.0 

Hz, 9H, CH3), 1.22 – 1.11 (m, 1H, CH) 0.71 – 0.64 (m, 2H, CH2). 

13C NMR: (151 MHz, CDCl3)   

δ 127.1 (CH), 126.6 (CH), 58.4 (OCH2), 36.3 (CH), 31.5 (CH2), 29.4, 28.4, 

25.3, 18.3, 7.5. 

29Si NMR: (99 MHz, CDCl3)  

δ −44.4. 

The spectroscopic data were consistent with those reported.48  
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1-(Triethoxysilyl)-4-butylmorpholine 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-(3-buten-1-yl)morpholine 

(141 mg, 1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The 

yellow oil was then purified by distillation (2 x 10 -1 mbar, 120 °C) to give 1-

(triethoxysilyl)-4-butylmorpholine as a yellow oil (183 mg, 60%). 

1H NMR:  (500 MHz, CDCl3)  

δ 3.84 (q, J = 7.0 Hz, 6H, OCH2), 3.73 (t, J = 7.0 Hz, 4H, OCH2), 2.52 – 2.40 

(m, 4H, NCH2), 2.35 (t, J = 7.0 Hz, 2H, NCH2), 1.59 – 1.42 (m, 4H, CH2), 1.27 

– 1.23 (t, J = 7.0 Hz, 9H, CH3), 0.71 – 0.65 (m, 2H, SiCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 67.0 (CH2), 58.7(CH2), 58.3 (CH2), 53.8 (CH2), 29.8 (CH2), 20.8 (CH2), 

18.3 (CH3), 10.4 (CH2). 

29Si NMR:  (99 MHz, CDCl3) 

 δ −45.2. 

HRMS: (HRMS - EI+)  

Found 305.20273 (C14H31O4NSi), requires 305.20169. 

IR:   νmax (neat) 

   2970 (w), 2928 (w), 2886 (w), 2859 (w), 2806 (w), 1389 (w), 1200 (w), 

1165 (w), 1101 (s), 1072 (s), 1036 (w), 1007 (w), 953 (w), 916 (w), 872 

(w), 860 (w), 779 (s), 741 (w), 677 (w), 627 (w). 

 

 

  



151 
 

1-(Triethoxysilyl)-4-(4-trifluoromethylphenyl)butane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-(4-trifluoromethyphenyl)-

1-butene (200 mg, 1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 

25 °C. The yellow oil was then purified by distillation (2 x 10 -1 mbar, 120 °C) to give 1-

(triethoxysilyl)-4-(4-trifluoromethylphenyl)butane as a yellow oil (218 mg, 60%). 

1H NMR: (500 MHz, CDCl3)  

δ 7.54 (d, J = 7.6 Hz, 2H, ArCH), 7.30 (d, J = 8.0 Hz, 2H, ArCH), 3.83 (q, J = 

7.0 Hz, 6H, OCH2), 2.69 (t, J = 7.7 Hz, 2H, ArCH2), 1.75 – 1.64 (m, 2H, CH2), 

1.54 – 1.44 (m, 2H, CH2), 1.24 (t, J = 7.0 Hz, 9H, CH3), 0.74 – 0.64 (m, 2H, 

SiCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 146.8 (C), 128.7 (CH2), 128.0 (q, J = 32.2 Hz, C), 125.1 (q, J = 3.8 Hz, CH) 

124.4 (q, J = 271.5, CF3), 58.3 (CH2), 35.4 (CH2), 34.4 (CH2), 22.4 (CH2), 

18.3 (CH3), 10.2 (CH2). 

29Si NMR: (99 MHz, CDCl3)  

δ −45.2. 

19F NMR: (471 MHz, CDCl3)  

δ −62.29. 

HRMS: (HRMS - EI+)  

Found 364.16755 (C17H27O3F3Si), requires 364.16761. 

IR:   νmax (neat) 

2976 (w), 2928 (w), 2887 (w), 1618 (w), 1443 (w), 1391 (s), 1325 (s), 

1300 (w), 1163 (s), 1099 (w), 1067 (s), 1018 (s), 1003 (w), 955 (s), 843 

(w), 789 (s), 689 (w), 631 (w), 598 (w). 
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1-(Triethoxysilyl)-4-(4-fluoromethylphenyl)butane 

  

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 1-fluoro-4-(3-butenyl)-

benzene (150 mg, 1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 

25 °C. The yellow oil was then purified by distillation (2 x 10 -1 mbar, 100 °C) to give 1-

(triethoxysilyl)-4-(4-fluoromethylphenyl)butane as a yellow oil (245 mg, 78%). 

1H NMR: (500 MHz, CDCl3) 

δ 7.17 – 7.11 (m, 2H, ArH), 7.01 – 6.89 (m, 2H, ArH), 3.83 (q, J = 7.0 Hz, 

6H, OCH2), 2.60 (t, J = 7.0 Hz, 2H, ArCH2), 1.72 – 1.62 (m, 2H, CH2), 1.51 – 

1.44 (m, 2H, CH2), 1.24 (t, J = 7.0 Hz, 9H, CH3), 0.71 – 0.65 (m, 2H, SiCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 161.2 (d, J = 242.8 Hz, CF), 138.3 (C), 129.6 (d, J = 7.84 Hz, CH), 114.9 

(d, J = 21.0 Hz, CH), 58.3 (CH2), 35.0 (CH2), 34.7 (CH2), 22.4 (CH2), 18.3 

(CH3), 10.3 (CH2). 

 
29Si NMR: (99 MHz, CDCl3)  
 

δ -45.1. 

 
19F NMR: (471 MHz, CDCl3) 

δ -118.32. 

MS:  (HRMS - EI+)  

Found 314.1707 (C16H27O3FSi), requires 314.1708 

IR:   νmax(neat) 

2974 (w), 2928 (w), 2886 (w), 2864 (w), 1508 (m), 1389 (w), 1221 (m), 

1157 (s), 1101 (s), 1074 (s), 1001 (w), 953 (m), 847 (w), 779 (m), 756 

(m), 702 (w), 677 (w). 
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1-(Triethoxysilyl)-4-(4-chlorophenyl)butane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 1-bromo-4-(3-butenyl)-

benzene (211 mg, 1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 

25 °C. The yellow oil was then purified by distillation (2 x 10 -1 mbar, 100 °C) to give 1-

(triethoxysilyl)-4-(4-chlorophenyl)butane as a yellow oil (139 mg, 65%). 

1H NMR: (500 MHz, CDCl3) 

δ 7.27 – 7.22 (m, 2H, ArH), 7.14 – 7.10 (m, 2H, ArH), 3.83 (q, J = 7.0 Hz, 

6H, OCH2), 2.62 – 2.57 (m, 2H, ArCH2), 1.70 – 1.61 (m, 2H, CH2), 1.52 – 

1.43 (m, 2H, CH2), 1.24 (t, J = 7.0 Hz, 9H, CH3), 0.71 – 0.65 (m, 2H, CH2Si). 

 
13C NMR: (126 MHz, CDCl3)  

 

δ 141.1 (C), 131.3 (C), 129.7 (CH), 128.3 (CH), 58.3 (CH2), 34.9 (CH2), 34.7 

(CH2), 22.4 (CH2), 18.3 (CH3), 10.3 (CH2). 

 
29Si NMR: (99 MHz, CDCl3)  
 

δ -45.2. 
 

HRMS: (HRMS - EI+)    

Found 330.1419 (C16H27O3ClSi), requires 330.1413. 

IR:   νmax (neat) 

2974 (w), 2926 (w), 2855 (w), 1490 (m), 1388 (w), 1165 (m), 1101 (s), 

1074 (s), 1101 (m), 1002 (m), 954 (m), 856 (w), 833 (m), 779 (s), 738 

(s), 704 (m), 659 (m), 628 (w) 
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1-(Triethoxysilyl)-4-(4-bromophenyl)butane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 1-bromo-4-(3-butenyl)-

benzene (211 mg, 1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 

25 °C. The yellow oil was then purified by distillation (2 x 10 -1 mbar, 100 °C) to give 1-

(triethoxysilyl)-4-(4-bromophenyl)butane as a yellow oil (139 mg, 37%). 

1H NMR: (601 MHz, CDCl3) 

δ 7.40 (d, J = 8.4 Hz, 2H, ArH), 7.06 (d, J = 8.4 Hz, 2H, ArH), 3.83 (q, J = 7.0 

Hz, 6H, SiCH2), 2.57 (m, 2H, CH2), 1.70 – 1.60 (m, 2H, CH2), 1.52 – 1.44 (m, 

2H, CH2), 1.24 (t, J = 7.0 Hz, 9H, CH3), 0.70 – 0.65 (m, 2H, CH2). 

 
13C NMR: (126 MHz, CDCl3)  

 

δ 141.7 (C) , 131.3 (CH), 130.2 (CH), 119.3 (C), 58.3 (CH2), 35.00 (CH2), 

34.6 (CH2), 22.4 (CH2), 18.3 (CH3), 10.3 (CH2). 

 
 
29Si NMR: (99 MHz, CDCl3)  
 

δ −45.1. 
 

HRMS: (HRMS - EI+)  

Found 374.0906 (C16H27O3BrSi), requires 374.0907. 

IR:   νmax(neat) 

2972 (w), 2926 (w), 2884 (w), 1487 (m), 1389 (w), 1165 (m), 1101 (s), 

1070 (s), 1011 (m), 955 (m), 856 (w), 777 (m), 631 (w), 602 (w). 
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1-(Triethoxysilyl)-5-(triethoxysilylether)hexane 

 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(552 μL, 3 mmol 3 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 5-hexen-2-one (117 μl, 1.0 mmol, 1.0 

eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was then 

purified by distillation (2 x 10 -1 mbar, 100 °C) to give 1-(Triethoxysilyl)-5-

(triethoxysilylether)hexane as a yellow oil (345 mg, 81%). 

1H NMR: (500 MHz, CDCl3) 

δ 4.09 – 4.02 (m, 1H, OCH), 3.88 – 3.81 (m, 12H, OCH2), 1.49 – 1.30 (m, 

6H, CH2), 1.28 –  1.23 (m, 18H, CH3), 1.22 (d, J = 6.1 Hz, 3H, CHCH3), 0.69 

– 0.63 (m, 2H, SiCH2). 

13C NMR: (126 MHz, CDCl3) 

δ 69.6 (CH), 59.1 (CH2), 58.3 (CH2), 38.9 (CH2), 29.1 (CH2), 23.2 (CH2), 

22.9, 18.3 (CH3), 18.1 (CH3), 10.5 (CH2). 

29SI NMR: (99 MHz, CDCl3) 

δ −44.9 (RSi(OEt)3), −82.9 (Si(OR)4). 

MS:  (HRMS - EI+)  

Found 426.2464 (C18H42O7Si2), requires 426.2464. 

IR:    νmax(neat)  

   2974 (w), 2928 (w, 2886 (w), 1391 (w), 1167 (w), 1102 (w), 1075 (s), 

957 (s), 851 (w), 785 (s), 737 (w), 677 (w) 

  



156 
 

2-[4-(tert-Butyl)phenyl]-(triethoxysilyl)ethane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-tert-butylstyrene (184 μl, 

1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil 

was then purified by distillation (2 x 10 -1 mbar, 100 °C) to give 2-(4-(tert-butyl)phenyl-

(triethoxysilyl)ethane as a yellow oil (97 mg, 30%, as a 94:6 mixture of linear:branched 

regioisomers). 

1H NMR: (500 MHz, CDCl3)  

δ 7.35 – 7.31 (m, 2H, ArH), 7.20 – 7.16 (m, 2H, ArH), 3.84 (q, J = 7.0 Hz, 

6H, OCH2), 2.78 – 2.70 (m, 2H, ArCH2), 1.33 (s, 9H, CH3), 1.25 (t, J = 7.0 Hz, 

9H, CH3), 1.06 – 0.99 (m, 2H, SiCH2).  

13C NMR: (101 MHz, CDCl3) 

δ 148.43 (C), 141.51 (C), 127.44 (CH), 125.18 (CH), 58.38 (CH2), 34.33 
(CH2), 31.42 (C), 28.25 (CH3), 18.30 (CH3), 12.34 (CH2). 

 
29Si NMR: (99 MHz, CDCl3) 
 

δ -45.8 
 

IR:    νmax(neat)  

3707 (w), 3680 (w), 3665 (w), 2972 (m), 2924 (w), 2876 (w), 2845 (w), 

1454 (w), 1389 (w), 1165 (m), 1099 (s), 1072 (s), 1034 (s), 955 (m), 775 

(m), 741 w), 698 (m). 
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2-[4-(Methoxy)phenyl]-(triethoxysilyl)ethane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-methoxystyrene (133 μl, 1.0 

mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was 

then purified by distillation (2 x 10 -1 mbar, 100 °C) to give 2-(4-(methoxy)phenyl-

(triethoxysilyl)ethane as a yellow oil (97 mg, 30%, as a 94:6 mixture of linear: branched 

regioisomers). 

1H NMR: (500 MHz, CDCl3) 

δ 7.15 (d, J = 8.6 Hz, 2H, ArH), 6.85 (d, J = 8.6 Hz, 2H, ArH), 3.85 (q, J = 7.0 

Hz, 6H, OCH2), 3.81 (s, 3H, OCH3), 2.74 – 2.67 (m, 2H, ArCH2), 1.26 (t, J = 

7.0 Hz, 9H, CH3), 1.03 – 0.92 (m, 2H, SiCH2). 

13C NMR: (126 MHz, CDCl3)   

δ 157.7 (C), 136.8 (C), 128.7 (CH), 113.7 (CH), 58.4 (CH2), 55.3 (CH3), 28.0 
(CH2), 18.3 (CH3), 12.8 (CH2). 

29Si NMR: (99 MHz, CDCl3)  

δ −45.9.  

The spectroscopic data were consistent with those reported.236 
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Phenyl-2-(triethoxysilyl)ethane  

 

 
 
The title compound was produced according to General Procedure B. Triethoxysilane 

(230 μL, 1.25 mmol 1.25 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and 

NaOtBu (5.8 mg, 60 μmol, 6 mol%) followed by addition of styrene (115 μl, 1.0 mmol, 1.0 

eq.) and the reaction mixture left to stir for 4 hours at 25 °C. The yellow oil was then 

purified by distillation (1 x 10 -2 mbar, 100 °C) to give phenyl-2-(triethoxysilyl)ethane as 

a yellow oil (89 mg, 33%, 80:20 L:B). 

Phenyl-2-(triethoxysilyl)ethane 

1H NMR: (601 MHz, CDCl3) 

δ 7.33 – 7.17 (m, 5H, ArH), 3.85 (q, J = 7.0 Hz, 6H, OCH2), 2.79 – 2.74 (m, 

2H, ArCH2), 1.26 (t, J = 7.0 Hz, 9H), 1.05 – 0.98 (m, 2H, CH2). 

13C NMR: (151MHz, CDCl3) 

δ 144.6 (C), 128.3 (CH), 127.8 (CH), 125.6 (CH), 58.4 (CH2), 28.9 (CH2), 

18.3 (CH3), 12.5 (CH2). 

 

 

Phenyl-1-(triethoxysilyl)ethane 

 

1H NMR: (601 MHz, CDCl3) 

δ 7.33 – 7.17 (m, 5H, ArH), δ 3.75 (q, J = 7.0 Hz, 6H, OCH2), 2.37 – 2.30 (q, 

J= 7.4 Hz, 1H, ArCH), 1.46 – 1.42 (d, J = 7.6 Hz, 3H, CH3), 1.17 (t, J = 7.0 Hz, 

9H, CH3). 

13C NMR: (151MHz, CDCl3) 

δ 144.1 (C), 128.0 (CH), 127.9 (CH), 124.8 (CH), 58.8 (CH2), 26.2 (CH), 

18.2 (CH3), 15.6 (CH3). 

 

 
The spectroscopic data were consistent with those reported.233  
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d3-Phenyl-4-(triethoxysilyl)butane 

 

 

The title compound was produced according to General Procedure B. Triethoxysilane 

(115 μL, 0.625 mmol, 1.25 eq.) was added to DIPPBIPMnBr2 (7 mg, 10 μmol, 2 mol%) and 

NaOtBu (2.9 mg, 30 μmol, 6 mol%) followed by addition of d3-4-phenyl-1-butene (67 mg, 

0.5 mmol, 1.0 eq.) and the reaction mixture left to stir for 4 hours at 25 °C. T  

rimethoxybenzene (16.8 mg, 0.2 mmol) dissolved in diethylether (1 mL) was added to 

the reaction. The volatiles were removed in vacuo and an NMR taken. The predominant 

product is d3-phenyl-4-(triethoxysilyl)butane.  

1H NMR: (600 MHz, CDCl3) 

δ 7.33 – 7.26 (m, 2H, ArH), 7.24 – 7.16 (m, 3H, ArH), 3.83 (q, J = 7.0 Hz, 

6H, SiCH2), 2.63 (t, J = 7.0 Hz, 2H, ArCH2), 1.74 – 1.65 (m, 2H, CH2), 1.54 – 

1.45 (m, 2H, CDH), 1.24 (t, J = 7.0, 9H, CH3), 0.77 – 0.65 (m, 2H, SiCD2). 

2H NMR:  (77 MHz, CHCl3)  

  δ 1.51 (CD2), 0.71 (CDH). 

13C NMR: (151 MHz, CDCl3)  

δ 142.7 (C), 128.4 (CH), 128.2 (CH), 125.6 (CH), 58.3 (CH2), 35.6 (CH2), 

34.7 (CH2), 22.0 (t, J = 18.9 Hz, CHD), 18.3 (CH3), 9.4 (p, J = 18.0 Hz, CD2). 

29Si NMR: (99 MHz, CDCl3) 

 δ −45.1. 
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 13C NMR of hydrosilylation of d3-4-phenyl-1-butene with peak at ~22.0 expanded to 

show multiple hydrosilylation products corresponding to the following products: 
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6.7 Hydroboration Products 

2-[4-(tert-Butyl)phenethyl]-4,4,5,5-tetramethyl]-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-tert-butylstyrene (184 μl, 1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography  (40 g SiO2, 30 mm Ø, wet loaded, 9:1 

pentane:EtOAc, ca. 5 mL fractions) to give 2-[4-(tert-butyl)phenethyl]-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane as a yellow oil (276 mg, 96%, as a 90:10 mixture of 

linear:branched regioisomers). 

1H NMR: (500 MHz, CDCl3)  

δ 7.34 – 7.29 (m, 2H, ArH), 7.20 – 7.15 (m, 2H, ArH), 2.77 – 2.71 (m, 2H, 

ArCH2), 1.32 (s, 9H, C(CH3)3), 1.24 (s, 12H, C(CH3)2), 1.19 – 1.13 (m, 2H, 

CH2). 

13C NMR: (126 MHz, CDCl3) 

δ 148.3 (C), 141.4 (C), 127.6 (CH), 125.1 (CH), 83.1 (C), 34.3 (C), 31.4 

(CH3), 29.4 (CH2), 24.8 (CH3). Missing CH2 peak (CH2–B) due to 

quadrupole effect. 

11B NMR: (160 MHz, CDCl3)  

  δ 34.0.  

The spectroscopic data were consistent with those reported.237 
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2-[4-(Trifluoromethyl)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-(trifluoromethyl)styrene (130 μl, 

1.0 mmol, 1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow 

oil was then purified by flash column chromatography  (40 g SiO2, 30 mm Ø, wet loaded, 

9:1 pentane:EtOAc, ca. 5 mL fractions) to give 2-[4-(trifluoromethyl)phenethyl]-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane as a yellow oil (216 mg, 72%, as a 89:11 mixture of 

linear:branched regioisomers). 

2-[4-(trifluoromethyl)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

1H NMR: (500 MHz, CDCl3) 

δ 7.53 (d, J = 7.8 Hz, 2H, ArH), 7.34 (d, J = 7.9 Hz, 2H, ArH), 2.82 (t, J = 8.1 

Hz, 2H, ArCH2), 1.24 (s, 12H, CH3), 1.20 – 1.14 (m, 2H, BCH2) 

13C NMR: (126 MHz, CDCl3)  

δ 148.5 (C), 128.3 (CH), 128.0 (CH), 127.9 (q, J = 32.2 Hz, C), 125.1 (q, J = 

4.0 Hz, CH)), 124.5 (q, J = 271.7 Hz, CF3), 83.3 (C), 29.8 (CH2), 24.8 (CH3). 

Missing CH2 peak (CH2–B) due to quadrupole effect. 

11B NMR: (160 MHz, CDCl3)  

δ 33.8 

1-[4-(trifluoromethyl)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

1H NMR: (500 MHz, CDCl3) 

δ 7.53 (d, J = 7.8 Hz, 2H, ArH), 7.34 (d, J = 7.9 Hz, 2H, ArH), 2.53 (q, J = 7.5 

Hz, 1H, ArCH), 1.37 (d, J = 7.5 Hz, 3H, CH3), 1.24 (s, 12H, C(CH3)3). 

13C NMR: (126 MHz, CDCl3)  
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δ 149.3 (C), 128.0 (CH), 125.1 (m, overlapped by linear product), 83.6 (C), 

24.6 (CH3), 24.6 (CH3), 16.7 (CH3). Peaks at 127.4 (q, J = 32.5 Hz, CH), 

124.5 (q, J = 271.6 Hz) not observed because of the C-F coupling and the 

dominance of the linear product in the sample. Missing CH2 peak (CH2–B) 

due to quadrupole effect. 

11B NMR: (160 MHz, CDCl3)  

δ 33.8 

The spectroscopic data were consistent with those reported.237 
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2-[4-(Fluoro)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-fluorostyrene (120 μl, 1.0 mmol, 1.0 

eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography  (30 g SiO2, 30 mm Ø, wet loaded, 3:1 

pentane:EtOAc, ca. 5 mL fractions) to give 2-[4-(fluoro)phenethyl]-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane as a yellow oil (185 mg, 74%, as a 93:7 mixture of linear:branched 

regioisomers). 

2-[4-(fluoro)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

1H NMR: (400 MHz, CDCl3) 

δ 7.21 – 7.15 (m, 2H, ArH), 7.00 – 6.91 (m, 2H, ArH), 2.74 (t, J = 8.1 Hz, 2H, 

ArCH2), 1.23 (s, 12H, CH3), 1.17 – 1.11 (t,  J = 8.2 Hz, 2H, BCH2). 

13C NMR: (151 MHz, CDCl3)  

δ 161.1 (d, J = 238 Hz), 140.0 (d, J = 3.1 Hz), 129.3 (d, J = 7.9 Hz), 114.8 (d, 

J = 21.3 Hz), 83.2, 29.2, 24.8. Missing CH2 peak (CH2–B) due to quadrupole 

effect. 

11B NMR: (128 MHz, CDCl3)  

34.4. 

19F NMR: (376 MHz, CDCl3)  

  δ −118.41. 

1-[4-(fluoro)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

1H NMR: (400 MHz, CDCl3) 
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δ 7.21 – 7.15 (m, 2H, ArH), 7.00 – 6.91 (m, 2H, ArH), 2.43 (q, J = 7.3 Hz, 

1H, ArCH), 1.33 (d, J = 7.5 Hz, 3H, CHCH3), 1.23 (s, 12H, C(CH3)2). 

13C NMR: (151 MHz, CDCl3)  

δ 160.9 (d, J = 242 Hz), 140.5 (d, J = 3.0 Hz), 129.0 (d, J =7.7 Hz), 115.0 (d, 

J = 21.9 Hz), 83.4, 24.6, 24.6, 17.2. Missing CH2 peak (CH2–B) due to 

quadrupole effect. 

11B NMR: (128 MHz, CDCl3)  

34.4. 

19F NMR: (376 MHz, CDCl3)  

  δ −119.02. 

The spectroscopic data were consistent with those reported.237 
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2-[4-(Bromo)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-bromostyrene (131 μl, 1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography  (40 g SiO2, 30 mm Ø, wet loaded, 9:1 

pentane:EtOAc, ca. 5 mL fractions) to give 2-[4-(bromo)phenethyl]-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane as a yellow oil (198 mg, 64%, as a 91:9 mixture of linear:branched 

regioisomers). 

1H NMR: (500 MHz, CDCl3) 

δ 7.42 – 7.36 (m, 2H, ArH), 7.13 – 7.08 (m, 2H, ArH), 2.72 (t, J = 8.1 Hz, 2H, 

ArCH2), 1.24 (s, 12H, CH3) 1.16 – 1.10 (m, 2H, CH2). 

13C NMR: (126 MHz, CDCl3)  

δ 143.4 (C), 131.2 (CH), 129.8 (CH), 119.2 (C), 83.5 (C), 29.4 (CH2), 24.8 

(CH3). Missing CH2 peak (CH2–B) due to quadrupole effect. 

11B NMR: (160 MHz, CDCl3)  

δ 33.8.  

The spectroscopic data were consistent with those reported.237 
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2-[3-(Methoxy)phenethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 3-vinylanisole (139 μl, 1.0 mmol, 1.0 

eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography  (40 g SiO2, 30 mm Ø, wet loaded, 9:1 

pentane:EtOAc, ca. 5 mL fractions) to give 2-[3-(methoxy)phenethyl]-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane as a yellow oil (274 mg, 99%, (as a 93:7 mixture of 

linear:branched regioisomers). 

1H NMR: (500 MHz, CDCl3)  

δ 7.23 – 7.16 (m, 1H, ArH), 6.83 (ddt, J = 7.5, 1.6, 0.8 Hz, 1H, ArH), 6.82 – 

6.78 (m, 1H, ArH), 6.73 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H, ArH), 3.81 (s, 3H, 

OCH3), 2.79 – 2.71 (m, 2H, ArCH2), 1.25 (s, 12H, C(CH3)2), 1.18 – 1.14 (m, 

2H, BCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 159.6 (C), 146.1 (C), 129.1 (CH), 120.4 (CH), 113.6 (CH), 111.0 (CH), 

83.1 (CH3), 55.1 (CH2), 30.0 (CH2), 24.8 (CH3). Missing CH2 peak (CH2–B) 

due to quadrupole effect. 

11B NMR: (160 MHz, CDCl3) 

  δ 33.9. 

MS:  (HRMS - EI+)  

Found 262.17478 (C15H23O3B), requires 262.17348. 

IR:    νmax(neat)  

   2976 (w), 2934 (w), 2835 (w), 1601 (w), 1584 (w), 1489 (w), 1454 (w), 

1369 (s), 1315 (m), 1260 (s), 1213 (w), 1163 (m), 1142 (s), 1107 (w), 

1045 (m), 966 (m), 847 (m), 777 (m), 694 (m), 673 (w). 
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2-(2,4,6-Trimethylphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane  

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 2,4,6-trimethylstyrene (161 μl, 1.0 

mmol, 1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil 

was then purified by flash column chromatography  (40 g SiO2, 30 mm Ø, wet loaded, 9:1 

pentane:EtOAc, ca. 5 mL fractions) to give 2-(2,4,6-trimethylphenethyl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane as a yellow oil (104 mg, 31%, as a 97:3 mixture of 

linear:branched regioisomers). 

1H NMR: (601 MHz, CDCl3)  

δ 6.83 (s, 2H, ArH), 2.72 – 2.67 (m, 2H, ArCH2), 2.32 (s, 6H ArCH3), 2.26 (s, 

3H, ArCH3), 1.29 (s, 12H, CH3), 1.02 – 0.95 (m, 2H, BCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 138.5 (C), 135.6 (CH), 134.6 (C), 128.9 (C), 83.1 (C), 24.9 (CH3), 23.3 

(CH3), 20.8 (CH3), 19.7 (CH3). Missing CH2 peak (CH2–B) due to 

quadrupole effect. 

11B NMR: (160 MHz, CDCl3)   

  δ 34.0. 

MS:  (HRMS - EI+)  

Found 274.20986 (C17H27O2B), requires 274.21060. 

IR:    νmax(neat)  

   2976 (w), 2916 (w), 2870 (w), 1612 (w), 1481 (w), 1466 (w), 1447 (w), 

1369 (s), 1312 (s), 1271 (w), 1213 (w), 1165 (m), 1144 (s), 1109 (w), 

1074 (w), 1028 (w), 1007 (w), 966 (m), 885 (w), 847 (s), 741 (w), 673 

(w). 
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2-(2-Phenyl-2-methylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of α-methylstyrene (130 μl, 1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography (40 g SiO2, 30 mm Ø, wet loaded, 9:1 

pentane:EtOAc, ca. 5 mL fractions) to give 2-(2-phenyl-2-methylethyl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane as a yellow oil (81 mg, 33%, >99:1 linear:branched). 

1H NMR: (500 MHz, CDCl3) 

δ 7.32 – 7.23 (m, 4H, ArH), 7.19 – 7.14 (m, 1H, ArH), 3.05 (app. sextet , J = 

7.1 Hz, 1H, ArCH), 1.30 (d, J = 6.9 Hz, 3H CHCH3), 1.23-1.12 (m, 2H, BCH2), 

1.18 (s, 12H, C(CH3)2). 

13C NMR: (126 MHz, CDCl3)   

δ 149.2 (C), 128.2 (CH), 126.6 (CH), 125.7 (CH), 83.0 (C), 35.8 (CH), 24.9 

(CH3), 24.8 (CH3), 24.7 (CH3). Missing CH2 peak (CH2–B) due to 

quadrupole effect. 

11B NMR: (160 MHz, CDCl3)  

δ 33.7. 

The spectroscopic data were consistent with those reported.174 
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Octyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition octene (156 μl, 1.0 mmol, 1.0 eq.) and 

the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then purified by 

flash column chromatography (40 g SiO2, 30 mm Ø, wet loaded, 4:1 pentane:EtOAc, ca. 5 

mL fractions) to give Octyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as a yellow oil (225 

mg, 94%, >99:1 linear:branched).  

1H NMR: (500 MHz, CDCl3)  

δ 1.47 – 1.37 (m, 2H, CH2), 1.27-1.23 (m, 22H, CH2/C(CH3)2), 0.90 (d, J = 

7.1 Hz, 3H, CH3), 0.79 (t, J = 7.8 Hz, 2H, BCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 82.8 (C), 32.4 (CH2), 31.9 (CH2), 29.4 (CH2), 29.3 (CH2), 24.8 (CH3), 24.0 

(CH3), 22.7 (CH2), 14.1 (CH3). Missing CH2 peak (CH2–B) due to 

quadrupole effect. 

11B NMR:  (160 MHz, CDCl3)  

δ 34.1. 

The spectroscopic data were consistent with those reported.238 
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4,4,5,5-Tetramethyl-2-(4-phenylbutyl)-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of 4-phenyl-1-butene (130 μl, 1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography (40 g SiO2, 30 mm Ø, wet loaded, 9:1 

pentane:EtOAc, ca. 5 mL fractions) to give 4,4,5,5-tetramethyl-2-(4-phenylbutyl)-1,3,2-

dioxaborolane as a yellow oil (242 mg, 93%, >99:1 linear:branched). 

1H NMR: (400 MHz, CDCl3) 

δ 7.32 – 7.24 (m, 2H, ArH), 7.22 – 7.14 (m, 3H, ArH), 2.70 – 2.55 (t, J = 7.7 

Hz, 2H, ArCH2), 1.71 – 1.61 (m, 2H, CH2), 1.54 – 1.45 (m, 2H, CH2), 1.26 (s, 

12H, CH3), 0.84 (t, J = 7.8 Hz, 2H, BCH2). 

13C NMR: (101 MHz, CDCl3)  

δ 142.9 (C), 128.4 (CH), 128.2 (CH), 125.5 (C), 82.9 (C), 35.8 (CH2), 34.2 

(CH2), 24.8 (CH3), 23.8 (CH2).  Missing CH2 peak (CH2–B) due to 

quadrupole effect. 

11B NMR: (128 MHz, CDCl3)  

34.6. 

The spectroscopic data were consistent with those reported.174 
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4,4,5,5-Tetramethyl-2-(3-triethoxysilylpropyl)-1,3,2-dioxaborolane 

 

 

The title compound was produced according to General Procedure C. Pinacolborane (220 

μL, 1.5 mmol 1.5 eq.) was added to DIPPBIPMnBr2 (14 mg, 20 μmol, 2 mol%) and NaOtBu 

(5.8 mg, 60 μmol, 6 mol%) followed by addition of allyltriethoxysilane (130 μl, 1.0 mmol, 

1.0 eq.) and the reaction mixture left to stir for 18 hours at 60 °C. The yellow oil was then 

purified by flash column chromatography  (30 g SiO2, 30 mm Ø, wet loaded,4:1 

pentane:EtOAc, ca. 5 mL fractions) to give 4,4,5,5-tetramethyl-2-(3-

triethoxysilylpropyl)-1,3,2-dioxaborolane as a colourless oil (279 mg, 84%, (>99:1 

linear:branched). 

1H NMR: (500 MHz, CDCl3)  

δ 3.82 (q, J = 7.0 Hz, 6H, OCH2), 1.60 – 1.52 (m, 2H, CH2), 1.28 – 1.17 (m, 

21H, C(CH3)2/CH3), 0.86 (t, J = 7.6 Hz, 2H, BCH2), 0.73 – 0.64 (m, 2H, 

SiCH2). 

13C NMR: (126 MHz, CDCl3)  

δ 82.8 (C), 58.2 (CH2), 24.8 (CH3), 18.3 (CH2), 17.5 (CH2), 13.4 (CH2). 

Missing CH2 peak (CH2–B) due to quadrupole effect. 

11B NMR: (160 MHz, CDCl3)  

δ 34.0. 

IR:    νmax(neat)  

   2978 (w), 2930 (w), 2882 (w), 1371 (s), 1333 (m), 1312 (s), 1273 (w), 

1219 (m), 1142 (s) 1105 (s), 1074 (s), 1026 (s), 968 (m), 885 (w), 866 

(m), 847 (m), 760 (m), 675 (m). 
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6.8 Reductive Cyclisation Substrates and Products 

1-(2-allylphenyl)ethanone 

 

To a solution of LiCl (2.13 g, 50.3 mmol) and Pd(PPh3)4  (0.58 g, 0.500 mmol) in 

anhydrous tetrahydrofuran (50 mL) was added 2’bromoacetophenone (2.00 g, 1.40 ml, 

10.0 mmol) and allyltributyltin (3.99 g, 3.73 ml, 12.1 mmol). The reaction was heated to 

reflux and left to stir for 18 hours. After this time, the reaction mixture was cooled and 

then diluted with 100ml of water. The aqueous phase was extracted with ethyl acetate 

(3 x 100ml) and the combined organic phase dried over MgSO4. The crude oil was then 

purified by flash column chromotogaphy (SiO2/KsCO3 9:1, wet loaded, 19:1 petroleum 

ether:EtOAc) to give 1-(2-allylphenyl)ethanone as a colourless oil (1.17 g, 7.2 mmol, 

72%). 

OR 

2-[(1',1'-ethylenedioxy)ethyl]bromobenzene  (1.08 g, 4.44 mmol) was added to a stirred 

solution of magnesium (129 mg, 5.33 mmol) and THF (5 mL). Initially 10% was added 

and the remainder added over 10 minutes after activation of Mg (by addition of I2 crystal 

and heating) had occurred. After stirring for 1 hour, allyl bromide was added (1.27 g, 

6.66 mmol) and the reaction stirred at room temperature. After 2 hours the reaction was 

poured onto NH4Cl (50 mL), dried with MgSO4, filtered and concentrated in vacuo. 

Without further purification, the product was added to a stirred suspension of 

FeCl3∙6H2O (3.04 g, 13.8 mmol) in CH2Cl2 (45 ml). The reaction was stirred for an hour 

and then sat. NaHCO3 (75 mL) was added and the reaction stirred for 5 minutes. The 

aqueous layer was extracted with DCM (3 x 30 mL) and dried with Na2SO4. The organic 

layer was then concentrated in vacuo and purified by flash chromatography (95:5 pet 

ether-ethyl acetate) to give 1-(2-allylphenyl)ethanone (604 mg, 85% over two steps) as 

a yellow oil. 

1H NMR:  (500 MHz, CDCl3)  
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δ 7.68 (dd, J = 8.1, 1.4 Hz, 1H, ArH), 7.46 – 7.41 (m, 2H, ArH), 7.34 – 7.30 

(m, 1H, ArH), 6.01 (ddt, J = 16.6, 10.1, 6.5 Hz, 1H, CH), 5.08 – 4.99 (m, 2H, 

C2=CH2), 3.68 (d, J = 6.5 Hz, 1H, CH2), 2.60 (s, 3H, CH3). 

13C NMR: (126 MHz, CDCl3)  

δ 202.1 (C=O), 139.7 (C), 138.1 (C), 137.5 (CH), 131.5 (CH), 131.2 (CH), 

129.0 (CH), 126.2 (CH), 115.7 (CH2), 38.0 (CH3), 29.8 (CH2). 

The spectroscopic data were consistent with those reported.239   
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2-[(1',1'-ethylenedioxy)ethyl]bromobenzene 

 

2'-bromoacetophenone (3.00 g, 15.1 mmol), glycol ether (1.87 g, 30.1 mmol), tosic acid 

(57.1 mg, 0.30 mmol) and toluene (9 ml) are stirred under reflux. After 18 hours, the 

reaction was allowed to cool then NaHCO3 (20 mL) was added. The aqueous layer was 

extracted with diethyl ether (3 x 20 mL). The combined organic extracts were then dried 

over Na2SO4, filtered and concentrated in vacuo. The crude oil was then purified by flash 

chromatography (96:4 pet ether:ethyl acetate) to give the 2-[(1',1'-

ethylenedioxy)ethyl]bromobenzene (1.1 g, 31%) as an oil. 

1H NMR:  (601 MHz, CDCl3)  

δ 7.69 (dd, J = 7.8, 1.8 Hz, 1H, ArH), 7.62 (dd, J = 7.9, 1.3 Hz, 1H, ArH), 7.31 

(td, J = 7.6, 1.3 Hz, 1H, ArH), 7.16 (ddd, J = 8.0, 7.3, 1.8 Hz, 1H, ArH), 4.10 

– 4.07 (m, 2H, CH2), 3.80 – 3.77 (m, 2H, CH2), 1.84 (s, 3H, CH3). 

13C NMR:  (151 MHz, CDCl3)  

δ 141.1 (C), 135.0 (CH), 129.5 (CH), 127.9 (CH), 127.1 (CH), 120.6 (C), 

108.8 (OCO), 64.3 (OC), 25.3 (CH3). 

The spectroscopic data were consistent with those reported.240  
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2-Allylbenzaldehyde 

 

To a solution of LiCl (0.58 g, 13.7 mmol) and Pd(PPh3)4  (0.16 g, 0.137 mmol) in 

anhydrous tetrahydrofuran (20 mL) was added 2-bromobenzaldehyde (0.51 g, 0.32 ml, 

2.74 mmol) and allyltributyltin (0.73 g, 0.68 ml, 3.3 mmol). The reaction was heated to 

reflux and left to stir for 18 hours. After this time, the reaction mixture was cooled and 

then diluted with 100ml of water. The aqueous phase was extracted with ethyl acetate 

(3 x 100ml) and the combined organic phase dried over MgSO4. The crude oil was then 

purified by flash column chromotogaphy (SiO2/KsCO3 9:1, wet loaded, 19:1 petroleum 

ether:EtOAc) to give 2-allylbenzaldehyde as a colourless oil (0.32 g, 2.2 mmol, 80%). 

1H NMR:  (601 MHz, CDCl3) JRC-1-70 

δ 10.28 (s, 1H, COH), 7.87 (dd, J = 7.7, 1.5 Hz, 1H, ArH), 7.55 (td, J = 7.5, 

1.5 Hz, 1H, ArH), 7.46 – 7.39 (m, 1H, ArH), 7.35 – 7.30 (m, 1H, ArH), 6.06 

(ddt, J = 17.1, 10.1, 6.2 Hz, 1H, CH), 5.18 – 4.93 (m, 2H, CH2), 3.88 – 3.81 

(m, 2H, ArCH2). 

13C NMR:  (151 MHz, CDCl3)  

δ 192.3 (C=O), 142.3 (C), 137.0 (CH), 134.0 (CH), 133.9 (C), 131.6 (CH), 

131.1 (CH), 126.9 (CH), 116.4 (CH2), 36.5 (CH2). 

The spectroscopic data were consistent with those reported.242  
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2-Allylbenzonitrile 

 

To a solution of LiCl (0.58 g, 13.7 mmol) and Pd(PPh3)4  (0.16 g, 0.137 mmol) in 

anhydrous tetrahydrofuran (10 mL) was added 2-bromobenzonitrile (0.5 g, 2.74 mmol) 

and allyltributyltin (0.73 g, 0.68 ml, 3.30 mmol). The reaction was heated to reflux and 

left to stir for 18 hours. After this time, the reaction mixture was cooled and then diluted 

with 25 mL of water. The aqueous phase was extracted with ethyl acetate (3 x 20 mL) 

and the combined organic phase dried over MgSO4. The crude oil was then purified by 

flash column chromotogaphy (SiO2/KsCO3 9:1, wet loaded, 19:1 petroleum ether:EtOAc) 

to give 1-(2-allylphenyl)ethanone as a colourless oil (0.282 g, 1.92 mmol, 72%). 

1H NMR:  (601 MHz, CDCl3)  

δ 7.65 (dd, J = 7.7, 1.4 Hz, 1H), 7.55 (td, J = 7.7, 1.4 Hz, 1H), 7.38 – 7.31 (m, 

2H), 5.98 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.21 – 5.12 (m, 2H), 3.64 (d, J = 

6.6, 2H). 

13C NMR: (151 MHz, CDCl3)  

δ 201.3 (CN), 141.5 (C), 133.9 (CH), 133.7 (C), 131.8 (CH), 128.9 (CH), 

127.5 (CH), 118.9 (CH2), 30.3 (CH2). 

The spectroscopic data were consistent with those reported.239  
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1-(2-Allylphenyl)propan-2-one 

 

To a solution of LiCl (0.30 g, 7.05 mmol) anzd Pd(PPh3)4  (0.008 g, 0.007 mmol) in 

anhydrous tetrahydrofuran (5 mL) was added 1-(2-bromophenyl)propane-2-one (0.30 

g, 0.32 mL, 1.41 mmol) and allyltributyltin (0.56 g, 0.53 mL, 1.7 mmol). The reaction was 

heated to reflux and left to stir for 18 hours. After this time, the reaction mixture was 

cooled and then diluted with 10 mL of water. The aqueous phase was extracted with 

ethyl acetate (3 x 15 mL) and the combined organic phase dried over MgSO4. The crude 

oil was then purified by flash column chromotogaphy (SiO2/KsCO3 9:1, wet loaded, 19:1 

petroleum ether:EtOAc) to give 1-(2-allylphenyl)propan-2-one as a yellow oil (0.21 g, 1.2 

mmol, 84%). 

1H NMR:  (500 MHz, CDCl3)  

δ 7.28 – 7.14 (m, 4H, ArH), 5.94 (ddt, J = 17.1, 10.1, 6.2 Hz, 1H, CH), 5.16 

– 4.87 (m, 2H, CHCH2), 3.76 (s, 2H, ArCH2CO), 3.49 – 3.32 (m, 2H, ArCH2), 

2.17 (s, 3H, CH3). 

13C NMR:  (126 MHz, CDCl3)  

δ 206.5 (C=O), 138.4 (C), 136.6 (CH), 133.0 (C), 130.8 (CH), 130.1 (CH), 

127.6 (CH), 126.8 (CH), 116.1 (CH2), 48.5 (CH2), 37.5 (CH2), 29.4 (CH3). 

The spectroscopic data were consistent with those reported.243  
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1,2-Dimethyl-2,3-dihydroindene-diphenylsilyl ether 

 

A Schlenk tube was charged with complex 18 (3.26 mg, 6 μmol), diphenyl silane (110 

mg, 0.6mmol), and dry toluene (1 mL). The reaction mixture was cooled to -34°C 

(Acetonitrile/CO2(s)) and NaHBEt3 (12 μl, 12μmol) was then added to the mixture. After 

2 minutes, the carbonyl-substituted alkene (21) (96.12 mg, .6 mmol) was added to the 

solution. The reaction mixture was stirred at room temperature for 1 hr and then 1M HCl 

(aq, 5 ml) was added. The organic product was extracted with diethyl ether (3x10ml) 

and dried with MgSO4. The racemic product was obtained by flash chromatography on 

silica gel with an eluent of pet ether:ethyl acetate (95:5). 

1H NMR:  (601 MHz, CDCl3)  

δ 7.56 – 7.52 (m, 2H, ArH), 7.44 – 7.29 (m, 6H, ArH), 7.27 – 7.09 (m, 6H, 

ArH), 5.11 (s, 1H, SiH), 2.84 (dd, J = 15.3, 7.3 Hz, 1H, ArCH), 2.62 (dd, J = 

15.3, 9.9 Hz, 1H, ArCH), 2.25 – 2.13 (m, 1H, CH), 1.68 (s, 3H, CCH3), 1.27 

(d, J = 6.8 Hz, 3H, CHCH3). 

 

13C NMR:  (126 MHz, CDCl3)  

δ 148.1, 142.7, 136.1, 135.7, 135.0, 134.5, 130.2, 129.8, 128.3, 128.0, 

125.8, 80.8, 47.0, 38.1, 24.8, 12.8. 

The spectroscopic data were consistent with those reported.244  

 

 

 

  



180 
 

6.9 X-Ray Crystallography Data 

 

Compound  EtBipMnBr2 (196) DippBIPMnBr2 (197) 
      
Formula  C30H37Br2Cl2MnN3  C36H49Br2Cl6MnN3  
Dcalc./ g cm-3  1.521  1.492  

/mm-1  8.071  8.447  
Formula Weight  725.28  951.24  
Colour  pale brown  dark orange  
Shape  cylinder  needle  
Size/mm3  0.53×0.05×0.05  0.81×0.12×0.06  
T/K  120.0  120.0  
Crystal System  orthorhombic  triclinic  
Space Group  Pbca  P-1  
a/Å  14.95995(14)  9.9404(3)  
b/Å  16.39558(12)  10.6641(4)  
c/Å  25.8321(2)  20.5595(6)  

/°  90  83.404(3)  
/°  90  78.033(3)  
/°  90  87.267(3)  

V/Å3  6336.02(9)  2117.30(12)  
Z  8  2  
Z'  1  1  
Wavelength/Å  1.54184  1.54184  
Radiation type  CuK   Cu K   

min/°  4.352  4.175  

max/°  76.693  76.568  
Measured Refl.  124047  43439  
Independent Refl.  6619  8803  
Reflections Used  6090  7253  
Rint  0.1159  0.0937  
Parameters  350  444  
Restraints  0  0  
Largest Peak  1.107  0.832  
Deepest Hole  -1.007  -0.911  
GooF  1.135  1.032  
wR2 (all data)  0.1877  0.1426  
wR2  0.1850  0.1314  
R1 (all data)  0.0688  0.0639  
R1  0.0652  0.0514  
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EtBIPMnBr2 (196) – Ellipsoid Plot 
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DIPPBIPMnBr2 (197) – Ellipsoid Plot 
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